Hacking NIMEs

Abram Hindle
Department of Computing Science
University of Alberta
Edmonton, Alberta, Canada
abram.hindle@ualberta.ca

ABSTRACT

NIMEs typically focus on novelty but the cost of novelty
is often to ignore other non-functional requirements and
concerns such as usability or security. Digital security has
probably not been a concern for performers due to the du-
ration of their performances and lack of disrespectful hack-
ers, known as crackers, in attendance carrying the appro-
priate equipment and software necessary to hack a perfor-
mance. Yet many modern NIMEs could be hacked from
smart-phones in the audience. The lack of security harden-
ing makes NIMEs an easy target — but a question arises:
if hacking can interrupt or modify a performance couldn’t
hacking itself also be performance? Thus would music hack-
ing, live-hacking, be similar to live-coding? In this paper we
discuss how NIMEs are in danger of being hacked, and yet
how hacking can be an act of performance too.

Author Keywords

network security, software security, opensound control, hack-
ing, live-hacking

ACM C(lassification

H.5.5 [Information Interfaces and Presentation] Sound and
Music Computing, K.6.5 [Security and Protection] Unau-
thorized access (e.g., hacking, phreaking)

1. INTRODUCTION

A problem with developing an instrument for computer mu-
sic performance is all of the non-functional requirements
one has to address, such as usability, reliability, and run-
time performance. Often a computer musician runs into
run-time performance problems as their computer cannot
keep up with their music. But one kind of non-functional
requirement that is rarely addressed in computer music per-
formance is security.

One threat to security that we hear about in the media
day to day is hacking. The media portrays hacking as the
malicious use of a computers to gain access to networks,
computers, and information without permission. Richard
M. Stallman [19], of the Free Software Foundation, argues
that this malicious use is “security breaking” and should
be called cracking, while the subversive and playful use of

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
BY remains with the author(s).
NIME’ 16,

technology in unexpected ways should be considered hack-
ing. This subversion is the face of hacking within the NIME
community which has unquestionably welcomed the hacker
ethos [19, 13]. A hacker is someone who tries to push the
limits of a device, a system, or a piece of software. Many
NIME instruments and experiments do just that, for in-
stance Ferguson et al [7] sought to control guitar feedback
through a method of automatically generating controlled
guitar feedback — not something a guitar was intended for.

NIME instruments tend to push boundaries, but those
boundaries are often not security relevant. There is a whole
class of performances, NIMEs, and computer music instru-
ments who are affected by the concern of security: wireless
performances, wireless NIMEs, and internet hosted networked-
computer music performances.

Currently wireless performances are popular, especially
with laptop orchestras [21, 18] that use wireless networks
to transmit MIDI and OSC messages. Some performances
occur over the internet, on computers in data-centers, or
within the cloud [5, 9]. Networking and networked comput-
ers open up avenues for malicious use and even malicious
audience interactions or new potentials for performance.

Thus security is relevant to NIME community both as a
concern and a non-functional requirement that should be
addressed, but also as a nowvel form of performance similar
to live-coding [12, 22]. Consider these three contexts: 1)
performance that is interrupted maliciously by a cracker
(a malicious hacker); 2) a performance that is augmented,
modified, or interacted with by a hacker; 3) a performance
that is the live-hacking of a performance meant for hacking.
When an instrument’s security is hacked, a performance can
be turned on its head and manipulated via hacking, hacking
is a form of improvisation akin to live-coding.

One of the most popular technologies used in wireless and
wired networked performance is OpenSound Control [24]
(OSC). OpenSound Control is used by many software syn-
thesizers including Max/MSP, pure-data, CSound, chuck,
SuperCollider, and many more. In this paper we will use
OpenSound Control as the main vector of attack and talk
about security issues that one faces if one uses OpenSound
Control, especially over UDP rather than TCP. We subvert
existing network security tools such as scapy and pcap [4,
10] to manipulate OpenSound Control messages on a net-
work in order to repeat, replay, and modify messages.

In this paper we contribute the following:

e Discuss security weaknesses in current networked NIMEs.
e Propose some solutions to security issues facing NIMEs.

e Propose hacking as performance — much like glitch [17]
or live-coding [12, 22].

e Provide concrete examples of automated methods of
hacking OSC driven performances.

1.1 Dangers of Performance Cracking

A performance can be non-musically interrupted by an un-
ethical hacker, a cracker. There are 3 main avenues that
a performer should be weary of: denial of service, security
exploitation of networked computers, and dangerous param-
eters.

Denial of service (DOS) is when a service such as a net-
worked computer is attacked such that it is overloaded. This
could be done by making too many requests, making large
requests, or rapidly requesting work be done at a higher rate
than work can be accomplished filling a queue. Playing too
many instances of an instrument concurrently can achieve
a denial of service. Jamming, in the sense of radio and net-
work availability, can be considered a denial of service if
an attacker flooded a network with irrelevant requests. A
network could be flooded by using up available bandwidth,
perhaps by downloading a movie via bit-torrent, preventing
the network from being used for performance. If more than
1 host takes part in this denial of service is it considered a
distributed denial of service (DDOS). OSC can be exploited
to DOS services simply by repeating commands.

Security exploitation is when weaknesses in software are
exploited in order for an intruder to gain access to a com-
puter. We will not cover much of these issues in this pa-
per but be aware that once software is known to have ex-
ploitable bugs that attacks are often automated, enabling a
hacker to simply scan a network and automatically attack
vulnerable clients. Products such as Metasploit [15] collect
such exploitable bugs and payloads to deploy on vulnerable
systems. The best defense for a performer is to use up to
date software and isolate their performance computers from
potential curious hackers and malicious crackers.

Dangerous parameters are a concern if an attacker gains
access to a network they could attack OpenSound Control
enabled devices on the network. Some of these devices can
damage themselves. For instance, you could imagine that a
robot-drummer could be damaged by commands that cause
it to strike too hard. Any device that could be harmed via
OSC commands should be isolated or have its commands
filtered such that it is within acceptable parameters.

2. UDP AND OSC

One of the main weaknesses of modern computer music
performance is the reliance on transport protocols that are
connection-less. UDP, unlike TCP, only contains port num-
bers and no other context. Thus if one captures a sole UDP
message, one can repeat it and inject it back onto the net-
work using tools such as pcap [10].

OSC usually sits on top of UDP and provides a path for
routing. It has no abstraction or support for a session or
a connection. Some authors use OSC over TCP. Typically
one listens for OSC packets on a UDP port and then for-
wards the OSC message to a software synthesizer such as
SuperCollider.

2.1 Weakness of UDP

UDP does not maintain a connection, thus UDP packets
can be lost, arrive out of order, and also be potentially
duplicated. UDP packets do not need any sort of hand-
shaking and can be sent directly. UDP packets are also
susceptible to spoofing, this is when one host impersonates
another host and sends traffic from a different IP address.
Thus UDP packets can be replayed and because there are
no unique identifiers or sequence number neither side knows
if a packet is in fact new.

Notice in Figure 1 that there is no session ID or any-
thing in the headers to track a session or connection. This

is because both IP and UDP are connection-less transport
protocols. They are meant to allow routing and commu-
nication/transport of data. What is not depicted in this
figure is the ethernet packet which often encapsulate these
IPV4/UDP packets. Any kind of connection could be main-
tained through OpenSound Control parameters or paths but
it would require everyone involved to agree to a connection
protocol. Thus UDP does not strongly enforce identity or
security during communication.

2.2 Weakness of OSC over UDP

The OSC message format for OSC packets has no identi-
fiers or sequence numbers to ensure in-sequence operation
— although there is a bundle abstraction for combining mul-
tiple messages into 1 packet . When OSC is combined with
UDP anyone can capture and replay OSC messages, spoof-
ing their origin, or just inject any particular messages onto
the network.

Many OSC configurations do not validate a client’s TP
address against a white-list. But OSC servers can white-
list certain clients to provide a minor hurdle for hackers.
OSC provides no protection against duplicate messages, or
other hosts injecting messages. Furthermore typical setups
for receiving UDP OSC packets do not limit the number
of clients. Anyone sharing the network could send a OSC
message to a host.

Thus OSC over UDP is susceptible to:

e replay attacks — where traffic is captured and re-
played;

e denial of service (DOS) and distributed denial of ser-
vice (DDOS) attacks [8];

e spoofing — whereby the origin of the OSC packet is
obfuscated [8].

3. PREVIOUS WORK

There is much work relevant to networked computer music.
Barbosa et al. [3] surveyed networked computer music since
the 1970s. One reason to employ networking in a computer
music instrument is to provide wireless interfaces or user
interfaces to mobile devices over the web, thereby allowing
audience participation. Oh et al. [16] demonstrate the use
of smartphones in audience participatory music and per-
formance. Jorda [11] describes many patterns of collective
control and multi-user instruments as well as the manage-
ment of musicality of instruments. Dahl et al. [5] used twit-
ter in TweetDreams to promote audience participation by
aggregating audience tweets to alter the music instrument
watching that twitter account.

User interfaces are often communicated over the network
via HTML. For instance Jesse Allison et al. [1, 2] present the
Nexus framework which distributes a musical user-interface
via the web. Weitzner et al. [23] provided a user-interface
proxy for Max/MSP called massMobile. This tool enables
interaction with Max/MSP over the web. Some of these
interfaces by definition could be automated or potentially
“hacked”.

Laptop orchestras [21, 18] are composed of laptop syn-
thesizer users who are connected together, often with OSC
messaging. Lee et al. [12] describe many opportunities for
live network coding. They argue that networked live coded
music allows for interesting mixes of centralized and decen-
tralized synthesis and control. Lee’s arguments amplify our
argument that open and relatively insecure networked live
music allows for decentralized control and hacking based
synthesis.

10OSC bundles will start with # rather than a /

Offsets Octet 0 1 2 3
Octet | Bit (0123 4567891011 121314 1516 17 18 19 20212223 24|25|26 27 28/29 30 31

0 0 Version IHL DSCP ECN Total Length

4 32 Identification Flags Fragment O set

8 64 Time To Live Protocol Header Checksum | PV4
12 96 Source IP Address H ea d er
16 128 Destination IP Address

20 160 Options (if IHL > 5)

24 192 Source port Destination port U D P
28 | 224 Length Checksum Header
32... | 256 / (OSC path) OpenSound Control Message Datagram OSC

Message

Derivative of CC-BY-SA 4.0 (C) 2016 Wikimedia Foundation from https://en.wikipedia.org/wiki/IPv4 and https://en.wikipedia.org/wiki/User_Datagram_Protocol

Figure 1: IPV4 4+ UDP + OSC Message packet structure. Notice the lack of a session ID or any identifier
that could be used to track state or a connection. UDP is a connection-less protocol and contains only
source port, destination port, length and check-sum. IP addresses are provided by the IPV4 header. The
OpenSound Control message resides after the UDP header.

Some of the OSC relevant security issues, related to OSC
over UDP, were discussed within the OpenSound Control
Forums [8].

4. CONTEXTS OF NETWORKED MUSIC

To understand the impact of security issues we need to look
at some of the contexts of networked computer music. We
will address 2 main contexts, performing live before an au-
dience with networked instruments/installations, and per-
formances over the internet.

4.1 Laptop Orchestras, Live Networked Per-
formance, and Networked Installations

Laptop orchestras [21, 18] as discussed before typically are
networked portable computers in a room or on stage, oper-
ated by performers in a fashion similar to how a chamber
orchestra might perform. The networking for a laptop orch-
estra is often wired, but wifi is so popular that many laptops
do not come with ethernet ports anymore. Laptop orches-
tras often present a piece performed by numerous computer
musicians on their laptop. Live networked performance is
any live performance that uses communications networks.
Networked installations are musical installations that are
networked computer music instruments and are typically
meant for interacting with the public.

4.1.1 Attack Vectors

If the laptops are totally wired into the network their at-
tack surface is much smaller. A malicious audience member
might have to physically manipulate a switch or hub con-
nected to the network. If the wired network is connected
to the internet, the attacker only needs to sniff packets and
they might discover the traffic of the laptop orchestra. Re-
gardless wired networks typically requires physical access or
an internet connection for an attacker or curious hacker to
connect.

Wifi (802.11abgn) is very popular and most laptops come
equipped with wifi cards. Wifi networks are far easier to
covertly gain access to. Many performances will try to im-
prove latency by not using encryption [14] (WEP / WPA
/ WPA/2 / etc.) and leave the wifi-network open. In this
case, the attacker can simply associate with the network
and watch for musical traffic. Once an OSC message is sent
across the network an attacker or curious hacker can copy
and resend that message.

If a networked performance or installation provides phys-
ical access to a computer just about anything could happen.
The computer could be rebooted and forced to boot a new
operating system that enables the attacker or curious hacker
to modify the installation itself. Even without physical ac-
cess to the main computer, if a browser was provided there
are many ways for an attacker to start an inspector and use
JavaScript to hijack the installation. These issues are out
of the scope of this work as we focus on network security.

4.1.2 Solutions?

For wired networks: try to ignore traffic from outside the
local network, and make physical access difficult.

For wifi networks the accessible wifi-area can be tuned
with specially designed and organized antennas [14]. Wifi
networks can try to prevent intrusion via encryption via
WEP, WPA, or WPA/2. Encryption requires performers
share such information about how to connect before hand
and keep it a secret from the audience. In the case of WEP
or WPA| these are crackable within the time of a perfor-
mance [6] — use WPA/2 if you are encrypting your wifi-
network while keeping your key secret.

e Bring your own wifi-router and use encryption (WPA /2).

e Choose wifi channels wisely: tune your router to avoid
interference with other channels.

e Consider using unpopular spectra such as 802.11a to
avoid interference.

e In case of audience networked interaction, use a sepa-
rate network for audience participation.

e Avoid Wireless if possible; consider wired connections.

e Harden user interfaces — ensure there is no way to
quit or escape.

e If possible do not connect to the internet.

4.2 Over internet performance

Some performances take place over the internet. Tome
et al. [20] present a massively multi-player online (MMO)
drum machine that used twitter and is available as website.
Ignoring the concerns of OSC, the website can be attacked
in terms of denial of service, as well it can have its security
breached — this is beyond the scope of this paper. Re-
gardless the performance is hosted online and available to

anyone. Alternatively we have performances like Tweet-
Dreams [5] that are clients to other internet services.

4.2.1 Attack Vectors

The main attack vector is the internet itself and then the
interface surface, the webservices, and open OSC ports of
the over internet performance itself. These services are sus-
ceptible to interruption via denial of service attacks and live
streams can be affected as well. TweetDreams could be in-
terrupted if the network that was hosting the performance
was affected or interfered with.

Sometimes performers assume no one will do anything
negative and leave a service open — this allows exploration
but can also cause interruptions. The main issue with the
internet is overload — too many requests will harm a per-
formance. Or in the case of a client to the internet perfor-
mance, any interference with network access will result in
an interruption of the performance. Something as trivial as
a user downloading email on the same wifi network could
cause an interruption.

4.2.2 Solutions?

Thus what should we watch out for with internet enabled
performances?

e Use a wired connection to the internet for internet
client performances.

e Assume the worst and require authentication for con-
trol systems.

e Rate-limit input from sessions and hosts.

e Employ DDOS protection or distributed hosting —
use content delivery networks or ISPs who can provide
DDOS protection.

5. ARMORING INSTRUMENTS

In general if one wants to prevent interference with one’s
performance consider using encryption not only to lock down
the wifi network, but to ensure that messages sent are from
trusted sources.

Signed messages.

OSC messages could include a string which contains a
cryptographic signature. This allows the host to determine
who made the message and prevents tampering with the
message — it does not prevent replay attacks. An attacker
can replay signed messages at a later time.

White-listing MAC addresses or IP addresses.

White-listing MAC addresses prevents attackers or the
curious from joining your wifi network, but they can often
just sniff wifi-packets and steal the appropriate MAC ad-
dress — MAC addresses can be set. IP addresses can be
spoofed once the attacker is on the same network. A knee
high fence will keep some people out of your yard, thus mi-
nor hurdles can befuddle attackers who are racing against
the clock to disturb a performance before it is over.

Lock down Wifi or use a VPN.

If you use encryption (WPA/2) on Wifi you will prevent
most attackers. Alternatively if a virtual private network
is employed it is unlikely an attacker can access the virtual
private network (VPN).

DOS protection via rate limiting.

Denial of Service can avoided by limiting the number of
commands can execute at one time, especially on a per-
client basis.

6. HACKING AS PERFORMANCE: CASE
STUDY

Hacking need not be malicious, while much of this work has
focused on dealing with unwanted interruptions or malicious
cases of hacking, cracking, it is important to note that hack-
ing can be a performance unfolding over time. Thus much
like live-coding or playing an instrument, the hacking of a
performance can be itself performative. Those who perform
by hacking we will refer to as live-hackers much like we refer
to live-coders.

There are numerous ways to turn hacking/packet manip-
ulation into an engaging and interesting performative work:

e Display the live-hacker’s performance terminals used
for the hacking — show the network traffic and the
manipulation of the traffic.

e Visualize network traffic with graphics, histograms,
and communication graphs.

e Project the use of an interactive interpreter such as
bpython or the scapy interactive shell [4] to live-code
the packet routing and sniffing.

e Combine live-coders and live-hackers.
e Forward OSC packets to different addresses and hosts.

e Capture and replay allows for riffs discovered during
improvisation to be recorded and played back across
the network regardless of the number of hosts involved
to play that riff.

In the following two subsections, examples of automatic
OSC packet manipulation are provided that follow the same
general structure: a network adapter is placed into promis-
cuous mode and a program listens to UDP OSC traffic being
sent to it or sent near it. The network adapter is the net-
work card (either wifi or ethernet). Promiscuous mode tells
the network adapter to listen to all packets regardless of the
MAC addresses of the packets. This enables traffic sniffing
and allows programs like scapy [4] to listen to traffic sent to
other hosts over the same medium (CATS5 cable or wireless).
The program sniffing these packets, then responds either by
re-sending the OSC messages later or by forwarding it off to
a client to manipulate further. The amount of code neces-
sary to listen to for OSC packets is minimal and a Python
example is depicted in Figure 2.

import dpkt, pcap

pc = pcap.pcap(name="1o")
pc.setfilter ("udp")

for ts, pkt in pc:
eth = dpkt.ethernet.Ethernet (pkt)
ip, udp = (eth.data, eth.data.data)
if packet[0] == ’/’:
print ‘udp‘

Figure 2: Minimal OSC packet listener in Python
with pcap[10]

Download executable source code of the following exam-
ples, to apply proxy and chorus effects to existing OSC pack-
ets: https://archive.org/details/20160201-NIME-275 2.

2Source code at https://github.com/abramhindle/

6.1 Chorus.py

Chorus.py demonstrates the ability to listen, retrieve, and
replay OSC messages with a certain delay. Chorus.py can
operate automatically with no user interaction. When lis-
tening to a network, upon detecting an OSC message (bun-
dles are currently unsupported) on any UDP port, the Cho-
rus.py program will resend that message with some optional
delay. This functionally creates a chorus effect, similar to
hitting a key twice in rapid succession.

To avoid infinite loops, chorus.py has to maintain a cache
of recently sent packets such that it does not resend its own
packets. Chorus.py has 2 main modes of operation, a spoof
mode whereby the exact ethernet frame is duplicated on the
network, and a no-spoof mode where by the packet is resent.
Both modes are needed because user space programs do
not necessarily receive the traffic that is injected — thus if
one was running Chorus.py on a performance computer one
would not see the spoofed packets appear on the network
from the same computer.

Chorus.py is an example of executing macros with OSC
messages where by performances could be computer aug-
mented without prior knowledge of the instruments or hosts
on the network.

It can also cause chaos if deployed upon the network of
an unsuspecting performer whereby their old input will be
repeated causing potential confusion.

6.2 Proxy.py

Proxy.py forwards observed OSC packets to a client, such
as pure-data or SuperCollider, who then can manipulate a
packet and send it back to the Proxy.py for re-transmission.
What proxy.py does is it listens to the network, sniffing for
OSC messages, and when it sees an OSC message it adds
a destination string that packet, containing the host and
port, and forwards the new message to the client. Clients
will receive this modified OSC packet, manipulate the values
and send the packet back to Proxy.py via OSC. The clients
also have the option of overriding the destination, effectively
bouncing OSC messages to other unsuspecting hosts.

Figure 3 shows the architecture of Proxy.py. The OSC
packet source sends a packet that proxy.py observes on the
network. Proxy.py then sends the message to the client OSC
proxy client. The OSC proxy client manipulates the OSC
packet and sends it back to the proxy.py proxy. Then the
proxy.py proxy reads the destination from the OSC packet,
removes the destination information, and sends the modified
OSC packet to the OSC destination. This demonstrates
how one could use a relatively interactive computer music
language like pure-data or max/MSP to engage in hacking
NIMEs by manipulating OSC packets.

Figure 4 shows how Proxy.py can manipulate OSC pack-
ets from an OSC client on a wireless Android tablet. In that
example, the proxy.py pure-data patch rewrote the path of
the OSC packet to use a different instrument altogether. 3

7. DISCUSSION

7.1 The Double Edged Sword

Open Sound Control is meant to be simple much like MIDI,
but it is meant to address the power of modern computers
with 32-bit processors and associated data-types. Wright’s
OSC is functional and beautiful in its simplicity. Yet OSC’s
simplicity unfortunately allows for unintended subversion.
This subversion can frustrate and perplex clients of OSC
but it also allows OSC to be used in a broadcast manner.

hacking-nimes-src
3See the video of this interaction at: https://archive.
org/details/20160201-NIME-275

Original OSC Packet D

/\

Modifed OSC Packet

0OSC Destination

Original Proxy OSC
0SC Source ggc packet (Q
0SC Proxy \-/

Modifed OSC

Packet OSC Proxy Client

: :import mrpeach, OSC Destination % Saport mrpeach, OSC Proxy Clie

i udpreceive 59120 ‘udpreceive 57129,

i unpack0SC, unpack0SC,
Zrouteosc /1/x /modified/x, % route0sc /1/x
i unpack f unpack s f unpack s £

122 9.22

% 127.6.8.1759120
.2

* 1.1

% Dack s T

': sendtyped /modified/x/ sf S1 $2 :
% Dpack0SC

= & =

loadbang
= | connect 127.8.6.1 9997

Figure 3: An example of an OSC “proxy” archi-
tecture where OSC packets are intercepted by the
proxy server. These packets are forwarded to a
client who manipulates the OSC packets and sends
them back to the proxy for re-transmission to the
original OSC destination. The first PD patch dis-
played is the OSC destination patch. The second
PD patch receives OSC packets from the proxy.py
proxy and manipulates the values and the path of
the packet, redirecting the path from /1/x to /mod-
ified/x and multiplying the first floating point value
by 1.1. Consider how the proxy passes off an OSC
packet to the client, then forwards the client traffic
with the destination information removed.

Furthermore this simplicity enables us to build automated
tools to manipulate transmitted OSC messages further en-
abling interesting performance opportunities.

The lack of security affordances of OSC cede to its impro-
visational affordances. One could guess that perhaps impro-
visation is likely many times more important to the NIME
community than security, except in a few scenarios. This
openness of OSC should be embraced as OSC packet ma-
nipulation lets one manipulate existing instruments rather
than building totally new instruments to enable parame-
ter manipulation. Some OSC instruments cannot be modi-
fied but packet manipulation opens an avenue of instrument
modification and augmentation.

8. CONCLUSIONS AND FUTURE WORK

This work focused on co-opting network security tools, such
as pcap [10] and scapy [4] into the service of computer mu-
sic for mostly good purposes. We demonstrated that Open-
Sound Control (OSC) messages are easy to capture and easy
to manipulate. We demonstrated that these messages could
be used positively for musical improvisation purposes. By
integrating such a packet listening framework into an OSC
service (proxy.py) we demonstrate that one could hack OSC

Original
OSC Packet

Original
OSC Packet

Proxy OSC

Packet OSC Proxy

Modifed OSC Modifed OSC Packet

Packet

dsport mrpeach,

udpreceive 57138, —
| Jdmport mrpeach,

L
unpack0SC

¢ C
ToutedsC /1/x ydpreceive 5712,
o X

f f

~‘\A_V\pﬂ(k st

T92.168.0[11:57120 npack0SC,

4]
= . oute0SC /1/x {1y /2dx 12/
N84 f - WD) ,
3‘5\\,;- 1.1 \LL\
. - T" f D=
ack s f &
f [SS T
L <4 - 3
Sendtyped /2/x st $1 $2 - ? _“_‘
I - / ~
2ack0SC, el /
polytron |polytron
~Korg Monotron delay ~Korg Mo
oadbang Pitch Pitch
connect 192.168.0.11 99" C | C

udpsend

OSC Proxy Client OSC Destination

Figure 4: OSC messages from GoOSC on An-
droid are sent to Proxy.py, the OSC Proxy. These
OSC packets are sent to the OSC Proxy Client, a
pure-data patch, that multiplies x-coordinate of the
GoOSC pad widget by 1.1 and changes the path of
the OSC message to send it to /2/x, another synthe-
sizer depicted as the OSC destination. Essentially
enabling a polyphonic response from remote OSC
Messages.

packets live with tools such as pure-data. We named per-
formance hacking as live-hacking, and provided suggestions
for such performances.

Thus will live-hacking become a new kind of NIME perfor-
mance? Future work includes incorporating “live-hacking”
into NIMEs and networked computer music performances.
Future work also includes extending the automated OSC
packet manipulators to support Max/MSP udpsend format
which is similar to OSC. In order to make this work more
accessible to NIME practitioners a more coherent library
of services should be proposed and designed. Future work
should also explore the musicality of hacking tools such as
Metasploit [15]. In this work we addressed network security,
but hacking existing software systems to produce music via
security exploits is an un-addressed area.

9. REFERENCES

[1] J. Allison. Distributed performance systems using html5
and rails. In Proceedings of the 26th Annual Conference of
the Society for Electro-Acoustic Music, 2011.

[2] J. Allison, Y. Oh, and B. Taylor. Nexus: Collaborative
performance for the masses, handling instrument interface

[15]

[16]

[17]

18]

[19]

[20]

(21]

22]

23]

24]

distribution through the web. In NIME, 2013.

A. Barbosa. Displaced soundscapes: A survey of network
systems for music and sonic art creation. Leonardo Music
Journal, 13:53-59, 2003.

P. Biondi. Scapy project, 2003.
http://wuw.secdev.org/projects/scapy/.

L. Dahl, J. Herrera, and C. Wilkerson. Tweetdreams:
Making music with the audience and the world using
real-time twitter data. In International Conference on New
Interfaces For Musical Expression, Oslo, Norway, 2011.
T. d’Otreppe. Aircrack-ng homepage.
http://www.aircrack-ng.org.

S. Ferguson, A. Martin, and A. Johnston. A corpus-based
method for controlling guitar feedback. In Proceedings of
the International Conference on New Interfaces for
Musical Ezxpression, pages 541-546, Daejeon, Republic of
Korea, May 2013. Graduate School of Culture Technology,
KAIST.

A. Freed and AWS. Udp spoofing and dos attacks, 2005.
https://archive.org/details/UDPSpoofingWithOsc
originally from http://opensoundcontrol.org/topic/42.
A. Hindle. Cloudorch: A portable soundcard in the cloud.
Proceedings of New Interfaces for Musical Expression
(NIME), London, United Kingdom, 2014.

V. Jacobson, C. Leres, and S. McCanne. pcap-packet
capture library. UNIX man page, 2001.

S. Jorda. Multi-user Instruments: Models, Examples and
Promises. In NIME’05, pages 23-26, 2005.

S. W. Lee and G. Essl. Models and opportunities for
networked live coding. Live Coding and Collaboration
Symposium 2014, 1001:48109-2121, 2014.

S. Levy. Hackers: Heroes of the Computer Revolution -
25th Anniversary Edition. O’Reilly Media, Inc., 1st
edition, 2010.

T. Mitchell, S. Madgwick, S. Rankine, G. Hilton, A. Freed,
and A. Nix. Making the most of wi-fi: Optimisations for
robust wireless live music performance. In Proceedings of
the International Conference on New Interfaces for
Musical Ezpression, pages 251-256, London, United
Kingdom, June 2014. Goldsmiths, University of London.
J. O’Gorman, D. Kearns, and M. Aharoni. Metasploit:
The penetration tester’s guide. No Starch Press, 2011.

J. Oh and G. Wang. Audience-participation techniques
based on social mobile computing. In Proceedings of the
International Computer Music Conference 2011 (ICMC
2011), Huddersfield, Kirkless, UK, 2011.

R. Quintas. Glitch delighter : Lighter’s flame base
hyper-instrument for glitch music in burning the sound
performance. In Proceedings of the International
Conference on New Interfaces for Musical Expression,
pages 212-216, Sydney, Australia, 2010.

S. Smallwood, D. Trueman, P. R. Cook, and G. Wang.
Composing for laptop orchestra. Computer Music Journal,
32(1):9-25, 2008.

R. M. Stallman. On hacking.
https://stallman.org/articles/on-hacking.html, 2010.
B. Tome, D. Haddad, T. Machover, and J. Paradiso.
Mmodm: Massively multipler online drum machine. In

E. Berdahl and J. Allison, editors, Proceedings of the
International Conference on New Interfaces for Musical
Ezpression, pages 285-288, Baton Rouge, Louisiana, USA,
May 31 — June 3 2015. Louisiana State University.

D. Trueman. Why a laptop orchestra? Organised Sound,
12(02):171-179, 2007.

G. Wakefield, C. Roberts, M. Wright, T. Wood, and

K. Yerkes. Collaborative live-coding with an immersive
instrument. In Proceedings of the International Conference
on New Interfaces for Musical Ezpression, pages 505-508,
London, United Kingdom, June 2014. Goldsmiths,
University of London.

N. Weitzner, J. Freeman, S. Garrett, and Y.-L. Chen.
massMobile - an Audience Participation Framework. In
NIME’12, Ann Arbor, Michigan, May 21-23 2012.

M. Wright, A. Freed, and A. Momeni. Opensound control:
State of the art 2003. In Proceedings of the International
Conference on New Interfaces for Musical Ezpression,
pages 153-159, Montreal, Canada, 2003.

