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ABSTRACT

Three algorithms for localization of electrical neural activity of the brain, based on the
spatio-temporal decomposition of the EEG, are explored. The EEG is decomposed in
spatial and temporal components using the PC (prncipal component) and the CSP
(common spatial pattern) decompositions. The components thought of as representing the
neural activity of interest are isolated and used with the Single Dipole Fitting, MUSIC
(multiple signal classification) and LORETA (low resolution electromagnetic tomography)

source localization algorithms in an analytical three-shell spherical model of the head.

In 2 noiseless simulation example, the CSP decomposition shows to be superior to PC in
isolating the sources of interest when background sources are also present, and used with
MUSIC and LORETA precisely localize the sources. Applied to a seizure EEG, the seizure
onset zone of the brain is estimated. The result is corroborated with the clinical findings and

shows correct lateralization of the onset.
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1 INTRODUCTION
Many research groups from all over the world have been actively involved in finding

improved methods for producing images of the brain activity to generate insight in basic and
clinical aspects of neural processing. Imaging techniques as functional Magnetic Resonance
Imaging (fMRI), Magnetic Resonance Spectroscopy (MRS), Positron Emission Tomography
(PET) and Single Photon Emission Tomography (SPECT) can produce images containing
important information regarding the neural activity. Some of these techniques (PET, fMRI in
the same scanner) are capable of producing images with a spatial resolution on the order of

millimeters (Hammer et al., 1998).

On the other hand, the ElectroEncephaloGram (EEG) directly measures the scalp electric
potentials produced by neural activation and has good temporal resolution, on the order of a
few milliseconds, that can not be equaled by any of the mentioned imaging techniques. The
temporal resolution is important as it can provide information about changes in pattems of the
neural activity. Considerable research interest has been spawned by studies of the electrical
activity of the human brain. Many studies examine the relationship between the location of the
neural sources and the measured potentials on the scalp (EEG). These studies aim either to get
more insight about which regions of the brain are activated during certain cognitive tasks, or
for clinical purposes, as to determine in which region of the brain some abnormal electrical

activity would occur from one point in time.

The main objective of this work is to describe and apply methods of localization of the
sources of EEG, given the measurement. The methods will be applied to EEG data acquired
from epileptic patients. Besides the locations, the orientations and thre moments of the neural

sources that become active at one point in time can be determined within 2 head model.
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Finding the source parameters from the available EEG is called the inverse problem. This is an
ill-posed problem; not only one distribution of sources can produce the measured EEG. The
non-uniqueness of the solution can be overcome by imposing physical models to the neural
sources, which can be modeled as dipoles or as distdbutions of dipoles. The dipole model is
considered as accurately modeling the coherent activity of a large number of neurons (Scherg

and won Cramon, 1985).

11  Electroencephalography
The word electroencephalogram (EEG) means “electrical brain picture”, coming from the

Greek elctro- electrical, encephalo- brain and gram(ma)- picture. Electroencephalography is the
technique that allows the measurement of the electrical potential difference between two
points on the scalp produced by the neuronal activity in the brain. Hans Berger published the
first EEG in 1929. His study was based on the measurement of the potental at only one site

(Kuzmiecky., et al., 1995)

1.1.1 Characteristics of the EEG
The EEG is a set of signals (potentials) with amplitudes that vary in time and is the result of

the flow of volume currents produced by the synchronized electrical activity in the brain cortex
through brain, skull and scalp. The amplitude of the EEG in a normal patient is of the order
of tens of microvolts or lower. The electrical activity of the normal brain generates frequencies
that are divided into five frequency bands: delfa (0.54 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta
(13-22 Hz) and gamma (22-30 Hz). The most prominent rhythm in the EEG activity of healthy
adults is the alpha rhythm. It originates in the occipital region of the head and can be seen on
the EEG recording when the subject is with eye closed, with visual input causing the

amplitude of the alpha wave to decrease. A similar change in the alpha rhythm amplitude can



be observed during the performance of mental tasks like arithmetic. The alpha rhythm
attenuates during the task performance, the amplitude being reestablished after the answer is

given (Tyneret al, 1983).

The EEG recorded from humans not only contains activity which is the result of sources in
the brain, but also artifacts, with sources extraneous to the brain, such as eye blinks and muscle
artifacts. The eye blink artifact appears predominantly at the inferior frontal electrodes, Fp1l
and Fp2 and consists of a high amplitude oscillation of very low frequency that lasts less than
one second. The muscle artfact appears on the EEG as a high frequency waveform
superimposed on the brain and the other artifactual activity and comes from the facial and

scalp muscles.

The normal EEGs are considered as being the recordings obtained from healthy patients,
with no symptoms, complaints and history of neurological disorders or other significant
disease (Tyner et al., 1983). However, in unhealthy patients changes from the known normal
pattemns, specific to the disease, occur in the electrical activity. Only the pattemns specific to the

epilepsy disorders will be mentioned here.

Three periods of time are considered in the observaton and processing of an EEG
recorded in an epileptic patient: interictal, ictal, postictal. The inter-ictal EEG is the EEG recorded
in the interval of time between two seizures and often in this work will be referred to as “zhe
normal EEG” or the pre-ictal EEG. What it is called iza/ EEG in epilepsy (the abnormal EEG) is
the recording in the period of time when the patient is having a seizure. The time at which the
seizure starts is called the onsef of the seizure and is considered as the delimitation between the

pre-ictal and ictal EEG, its identification being one of the main challenges in the source



localization process. It is thought that the seizure usually starts in a so-called focxs (also referred
to in the literature as sezzure focus or pacemaker), at the time that corresponds to the seizure onset.
The interval of the recording that corresponds to the disappearance of the patient’s signs and

symptoms of the seizure and the returning to his pre-ictal condition is the postictzal EEG.

The EEG in epilepsy is characterized by certain patterns. It has been observed that in many
of the epileptic subjects, the inzerictal EEG recordings show spike discharges of approximately
50UV, generated by irritative zones in the cortex. In the 774/ state the patient’s behavior may be
altered or/and paroxysmal neuronal activity takes place within the brain. The ictal EEG is
characterized by high amplitude waveforms of frequencies up to 10-12Hz, superimposed on
the background EEG. The high amplitude activity may appear in bursts or as a constant

pattern and it would last for seconds or more.

1.1.2 EEG Instrumentation

The scalp electroencephalogram is obtained by measuring the amplified difference in
potential between sensors (electrodes) placed on the human scalp. EEG recorded on the scalp
is not the only type of brain electrical recording. However, in this thesis “EEG” refers to the

surface electrcal recordings, if otherwise not specified.

The electrodes are attached to the scalp with a conductive gel in order to minimize the
impedance between the electrode and the scalp. Ideally the electrodes are identical, and this
impedance is identical between all of the electrodes and scalp. This is however difficult to
achieve in practice mainly due to the differences in the electrode composition and to electrode
movement. The electrodes are placed on the scalp in standard positions for each measurement.
A channel in an electrode array is the potential measured between two electrodes, usually with

respect to a reference electrode. When all the potentials are measured with respect to a single
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reference electrode, the montage is called unipolar. Throughout this work a 25-electrode
montage: 24 measurement sites with respect to 2 common reference CZ’ located at the middle
point between the standard positions of CZ and PZ is used. The electrode positions of this

electrode array are shown in Figure 1.1.

Figure 1.1. The 25 electrode montage used for the EEG recording.

The montage used is: FP1, FP2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6,
FZ, CZ, PZ, LSP, RSP, LMA, RMA, OZ. LSP and RSP stand for left and nght sphenoidal
whereas LMA and RMA stand for left and right mastoidal; the other 20 electrodes are placed
in their 10-20 international standard positions (Iyner et @/, 1983). This is the electrode
configuration used in the telemetric unit where the EEG data analyzed in the results chapter of

this thesis was acquired.

With the development of the first digital electroencephalograph in late 80’s the flexibility of
the EEG systems increased. The amplified voltages acquired from the low impedance (less
than 3kQ) electrode array, are applied to an analog-digital converter (ADC), usually at more
than 8 bit analog to digital precision to ensure high dynamic n;nge and ADC resoludon. The

ADC converter is connected to a computer, offering possibilities of data storage and



manipulation. The computer interface with amplifiers, of very high input impedance, common
mode rejection ratio and open loop gain, allow automatic settings and corrections of amplifier
gain. The gain settings are stored and displayed along with the data, as well as the filter (0.3 to
70Hz) settings. The calibration of the channels is controlled by computer software, the gain
adjustment is done such that all of the channels have the same gain. The EEG tracings

therefore show the true voltages on all of the channels (Wong, 1996).

It is thought by Gevins that combining a few technologies, it would be possible to achieve
near one millimeter precision in localizing regions of activated brain tissue and subsecond
temporal precision for characterizing changes in pattems of activation over time (Gezns, 1995,
1998). In the attempt to achieve high spatio-temporal resolution, progress has been made in
concomitantly acquiring interictal EEG and fMRI in an MRI scanner (Ives et al.,, 1993, Jager et

al., 1998, Krakow et al.,, 1998, Lazeyras et al.,, 1998, Symms et al., 1998).

1.2  Brain anatomy

The main divisions of the human brain are brainstem, cerebellum and cerebrum. The
structure that contributes to the generation of the EEG is the outer part of the cerebrum - the
two brain hemispheres, called the cerebral cortex. The cerebral cortex, about 2-3 mm thick,
with a total surface area of approximately 1600 cm® contains about 10" neurons, or nerve cells
(Nunez et al, 1981). It is composed of gray matter, which is an intrcate fabric of
interconnected neural cells (through dendrites and synapses). The layer just below the gray
matter is mostly composed by nerve fibres, axons, and is called white matter. The grey matter
is believed to be the main generator of the strong electrical potential measured on the scalp

(Webster, 1992 Hendelman, 1994, Myers, 1995).



A single neuron can be covered with 10>-10° synapses, with two types of synaptic inputs:
one type produces excitatory postsynaptic potentials across the membrane of the output
neuron; the other produces inhibitory postsynaptic potentials. In both cases a current flows
through the local surface of the membrane, through the intracellular fluid and back to the
membrane at a distance from the local surface, closing the loop at the synapse, its sense
depending on the type of synaptic input. The membrane acts as a current sink or as a current
source, depending on the sense of the current. The membrane surface at an instant in time is
composed of sources and sinks distributed depending on the properties of the synapses,
neurons and medium. On the other hand, the dendrites are distributed in a column fashion mn
the cerebral cortex, normal to the cortical surface. As the high number of synapses is
distributed over the cell body and dendritic surface and due to the high density of neurons
(~10°/mm?), at any instant in time a summed current flow distribution is produced. Due to the
columnar distribution of the cells this current is the result of a coherent summation of the

currents of nearly synchronous activaton of a small area in the cortex.

1.3 Source and Head Models

1.3.1 The Source Model

In the previous section the electrogenesis of the sources of EEG was explained.
Considering the focal activity, the resulting current can be thought of as being produced by an
equivalent dipole located approximately in the center of the small area in the cortex, with
infinitely small distance between the source and the sink compared to the distance between the
dipole and the measurement sites. Thus a single source can be modeled as a dipole. If the
neural activity is distributed over a larger area, the neural activity can be modeled as a dipole

sheet, or dipole layer, which is 2 set of synchronously active dipoles distributed on the area of



the brain. In this work, it is assumed that the source model does not change its location or

onentation during an EEG measurement.

In order to explain the relationship between these sources and the EEG measured on the
scalp, knowledge about the medium between the source and the electrode sites is necessary.
An important feature of a dipole is that it produces a potential in the surrounding medium that
falls off as the inverse square of the distance. This inverse square law holds only in an infinite

homogeneous medium (INuzezg et al., 1981).

1.3.2 The Head Model

In order to perform the localization of the neural sources it is necessary to determine the
potentials produced on the scalp by unit moment current sources. This is called the forward

problem.

In order to be able to calculate the potential produced on the scalp by a unit dipole source,
a mathematical description of the volume conductor is required. This mathematical descrption
can be either analytical, or numerical. First the analytical model is presented. A review of the

numerical methods of head modeling will be made afterward.

13.2.1 The Analytical Head Model
The head model that was used in the present work is an analytical model, a three shell

spherical model, with three regions of constant conductivity: brain, skull and scalp. The radii of
the shells are in order: r,,r, and R. Each shell is considered homogenous. The conductivity of
the neural and scalp tissue is considered the same, 0, and the conductivity of the skull is O;.

This model was first developed by Ary et al, 1981, for the restricted case of dipoles on the z

axis, orented in only one plane. The coordinate system for dipoles in the spherical model is



represented in Figure 1.2. For the sake of simplicity, the radii r,7, are not represented in the

figure.

>y

Figure 1.2. The spherical model and the dipole representation

The potential V (&, ), produced by the dipole 7, placed on the z-axis and orented in the

positive xz plane, at one point on the surface of the inhomogeneous spherical head model (of

radius R) can be calculated using the equation

1 &2n+l,| E@n+1) | ,
Via,B)= 47[0_; - b |: FREPS) [nm, P,(cosax)+ m P (cosax)cos B1,

where b =I§—is the eccentricity of the dipole =, 72, and , are the radial and tangental

components of the dipole moment, §=0/C is the ratio between the conductivity of the skull
tissue, Oy, and the soft tissue (brain and scalp), ©; P,(cosad) and Pn‘(cosa) are the Legendre

polynomials.
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The model used in this work allows the calculation of the potential everywhere on the
surface of the head created by a dipole of arbitrary odentation, placed at any location in the
mner sphere. However, only the equaton of the potential given by Ary ez 4l is given here,

showing the potential created by the dipole on the outer sphere.

1.3.2.2 Numerical Head Models

The numerical models of the head aim to incorporate more information about the
geometric and structural features of the head of the studied patient. This information increases
the accuracy of the localization in comparison to the three shell spherical model used in this

thesis.

A number of methods for calculating the potentials on the surface of a realistic head have
been developed. The FEM (Finite Element Method) and the BEM (Boundary Element

Method) are the most commonly used.

1.3.2.2.1  Finite Elernent Method (FEM)
Three-dimensional finite element models provide a method to study the relatonship

between human scalp potentials and neural current sources inside the brain (Yar et 4/, 1991).
The FEM is based on the conductivity distribution within the head, which can be collected
from a stack of MRI slices, or, as suggested by Hauezsen et al. in 1995, by superimposing MRI
and CT in order to improve the tissue segmentation. The idea of implementing this method

consists of modeling the head as a 3-D n-sized network of resistors, where the voltage at each

10



node is unknown. In the 3-D network, each node can be connected to at most six other nodes.
Each node defines an equation that can have at most seven unknowns and there will be n’
equations, one for each node. The matrix that contains all of the values of the resistors
between the nodes is formed. Depending on the sense of the current in each node, the matrix
will be positive definite or negative definite and symmetrc. If the algebraic sum of all of the

currents in a node is zero, no current source can be located at that node.
The set of equations that must be solved is:
Av=i

where A is the matrix of conductivites, v is the vector of node voltages, and i is the current
vector containing the sources and the sinks of the dipole sources. The indices of each voltage
node indicate its position in the network. If a distance is assigned to each index, the indices will
indicate the distance from an established reference point. The challenge of this method is

computing the inverse of the large matrix A.

13.2.2.2 Boundary Element Method (BEM)

The BEM is a computational technique, which uses Green's Theorem to transform the
differential equation describing the potential distribution within a volume conductor into an
integral equation over the boundary surfaces between regions with different electrical
properties. The construction of the real head model is based on MRI data. After the
acquisition of a set of MRI slices of the head, a sequential view is taken in order to reconstruct
the MRI image of the head. The three surfaces (scalp, skull ar..ld brain) of the head are then
digitized, sampling the three contours of each slice (Ro#b et al, 1993, Fletcher et al., 1995). The

use of the sampled surfaces as they are to perform numerical calculations would be too

11



computationally demanding so that sets of sampled points can be grouped, more often the
three surfaces resulting in sums of trangles, although quadrilateral boundary elements could be

used (Brebbia et al, 1980).

The BEM requires only surface meshes of the different head structures: scalp, skull and
brain. The potential differences on these surfaces can be calculated using an approximation of
the integral equations that characterize the potential on the surface by a system of linear

equations of the form
Bv=g

where V is a vector of length N containing the values of the potental at each center of mass of
every element, g is a vector of length N descrbing the dipole source terms, and B is an NxN
matrx, N being the number of total elements of the model, which does not depend on the
dipole source, involving solid angles under which each trangle of each surface sees every other

trangle. N? solid angles will result (44bad; et al,1993, Fletcher et al., 1995).

Yuvert et al., in 1995, developed a method of improving the numerical accuracy by using
locally refined meshes such that the solid angle of each element subtended at the source
location was constant. This work considers the influence of the dipole depth and the
improvement brought by local mesh refinement. The terms "global mesh density” and "local

mesh density" were introduced to define the number of triangles per cm®

13.2.2.3 Lead Field Analysis (LFA)
The LFA algorithm is a computational technique for the calculatdon of potentials on the

surface of a realistically shaped volume conductor model based on the Boundary Element

12



Method. Fletcher et al. shows that this method is superior to BEM from the point of view that it
yields more accurate surface potentials for a wider range of dipole locations. This method is
less computationally costly and the amount of data that needs to be stored is considerably

reduced.

14  Source Localization
Localization of the neural activity in the brain is important clinically especially for surgical

candidates. In the case of epilepsy for example, the decision regarding the area of the brain that
has to be removed is made based on the information regarding the location of the seizure
focus. Imaging methods, mostly MRI, are currently used as clinical tools in the pre-surgical
localization of epileptic activity, in the attempt to detect the regions of the brain that are
structurally or functionally abnormal (Amold, 1993, Casano, 1995, Kusmietsky et al., 1995,
Dezortova et al., 1998, Lin et al, 1998, Shen et al, 1998). In some cases, with structural
abnormalities, the zone of the abnormal tissue is highly suspected as being responsible for the
abnormal patterns in the EEG, and are removed. However, the success consists in removing
the seizure focus, and sometimes removing the abnormal tissue gives only temporary results.
MRS can provide direct biochemical information from within the cell. This imaging method
might be important for source localization, in spite of the poor temporal and spatial resolution,
as the source current is dependent on the diffusion of a chemical (transmitter) from the

synapses through the subsynaptic membrane.

The source localization based on EEG data requires both reliability and resolution. The
sources are considered as produced by current dipoles in a three-shell sphere, and a unit dipole
model can be calculated at any point in the head model. In order to determine the neural

source parameters, the EEG is often decomposed into spatial and temporal patterns (Scherg et
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al., 1986, Koles, 1991, 1997, Mosher et al., 1992, Koles et al., 1995, Soong et al., 1995, van Drongelen
et al, 1997, Koks et al,, 1998, Mosker et al, 1998). The problem is that the number of soutces of

EEG can be greater than the number of measurement sites.

The EEG contains both spatial and temporal pattemns that are of interest and spatial and
temporal patterns that are not of interest for source localization and can be modeled as noise.
The separation of the spatial and temporal pattems of interest is a challenge especially in the
presence of noise. However, if this separation is done and the EEG is reconstructed from
estimated spatial and temporal pattemns corresponding to the neural activity of interest, the
source parameters for these sources can be found by finding the best fit (minimum error)
between the EEG model and this EEG. An alternative method to localizing the sources based
on the dipole fitting is calculating the smoothest solution for the current density distribution in

the head volume.

In this work, a method that calculates the current density distribution in the head volume,
called LORETA, is applied to multiple time slices. Also, two methods of separating the signal
components from the noise spatial and temporal components, based on the analysis of the
covariance matrix of the EEG, are demonstrated, applied and compared. The decompositions

are incorporated in source localization algorithms, which are compared for effectiveness.

This thesis aims to conclude about which developed methods of source localization,
modified to incorporate two types of EEG decomposition, give accurate localization of
simulated sources and if the methods give relevant results in analyzing real data using a
spherical model of the head. In the future, more realistic head models, that better describe the

volume conductor, based on information from MRI and CT, can be developed and used in the
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localization methods, in the attempt to obtain increased accuracy in estimating the locations of

the neural sources of interest.
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2 METHODS

The source localization problem involves the estimation of the source parameters
(locations, odentations, and magnitudes) that produced the measured scalp electric potentials.
In order to estimate these parameters the measured scalp potentials are modeled. Chapter 2.1
describes the method of modeling the EEG. Using this model, the source parameters are

determined. Three source localization methods are presented in Chapter 2.2.

21 EEG Spatio-Temporal Decompositions
The EEG is a complex signal, with statistical properties depending on space and time. It is

usually assumed that the EEG samples are normally distributed, and, for this reason, the

statistics of the normal distributions can be used in EEG analysis.

211 The EEG model
Let the potential measured at N electrode sites be V(O)=[V(t), V(t),---, V(t),---» V(t],

where V(t) is the N dimensional instantaneous potential vector recording at time sample # The

recording progresses for t = LT samples. Consequently, V will be 2 matrix of dimension NxT.

As mentioned before, the recorded potential V can be decomposed into spatial and
temporal components using physical models that incorporate the head models and neural
source models, with the neural source model a current dipole. The current dipole is assumed
to be in a fixed position and orientation and has variable magnitude during the recording. The
head model is assumed to be a purely conductive medium and the transfer coefficient between
a dipole at some location, with some odentation, and an electrode placed at a specific location
on the head model surface represents the potential produced at the electrode by 2 unit strength
dipole. This is known as the forward problem in EEG. The transfer coefficient is calculated

using the head model, in the present work a three-shell spherical model, with three regions of
16



conductivity: In this case the potential produced by a dipole can be computed analytically as in

section 1.3.2.1

With these assumptions, the potental variation in time, at any electrode site n =1, N , with

T>N, can be modeled as a linear combination of the transfer coefficients 7, between the

I=1,L active source generators and the electrode »#, and the varation of the dipole source

magnitude in time:

L
v () =D m,s,(0)+e, (1) 2.1
=1

e,(?) is the additive, zero mean Gaussian random noise term that may be measured at the
electrode site #. Since the head is assumed to be purely conductive, any current dipole source /
will produce potentials at the N electrodes on the scalp which will be in phase with the source
current s(2). The formula is the spatio-temporal decomposition of the potential at electrode 7.

In matrix form, the measured V(%) can be expressed as

V=MS +E 22

M represents the NxL source image matrix on the scalp for the L unit dipole sources. S is
the IxT source current matrix and E is the N by T noise matrix and is also the error between
the measured V and the potentals produced by the L dipole soutces. Each column of M in
this formula is the vector sum of three calculated unit source vector components, Mx, My,
Mz, that share the same location in the Cartesian coordinate system X,Y,Z. In the spherical
head model, the origin of the coordinate system is placed in the center of the spheres; X is

odented towards the right ear, Y towards naison and Z towards the top of the head.
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The matrix form of the spatio-temporal model presented incorporates the spatial (M) and
the intensity information (S) about the L current sources. To make the model more general,

the dipole orientation matrix, A, is defined:

a, 0 --- 0

0 a, : :
A=|. °

0 a, 3LxL

Where al=[al, a2, a3]’ is the dipole orientation vector for each 1 unit dipole source generator.

The spatio-temporal model becomes

V=(MA)S+E 23

The transfer matrix M in this case is of dimension N by 3L and contains the orthogonal unit
components Mx, My, Mz for all the dipoles L. Each column of MA in equation 2.3 can be

viewed as the potential image of a unit dipole on the scalp.

2.1.2 The Principal Component EEG Decomposition
The Prncipal Component (PC) EEG decomposition is based on the analysis of the

covariance matrix of the zero mean recorded potential V, that contains the abnormal features

of interest for source localization:

R =V V. 24

a a a

The NxN covariance matrix R, is symmetric and positive semidefinite. The elements on the

diagonal of R, represent a measure of the variances of the potential variations recorded at each
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electrode site 7, v,. The off diagonal elements of R, are the covariances between the potental
varations recorded at the electrodes. The EEG samples are distributed within some ellipsoidal

boundary described by R,.

The principal component decomposition of the EEG contains as spatial components a set
of orthonormal components. These orthonormal basis vectors are obtained from the
covariance matrix through diagonalization. The diagonalization of the covatance matrix results
from the eigenvalue-eigenvector decomposition of R,. The eigenvectors of the covarance
matnix point along the directions of maximum variance in the EEG. This can be demonstrated
by applying a transformation of the EEG that results in a signal of maximum variance in the

EEG:

§=b'V, 25

The variance of the signal vector § is a number that represents the maximum variance and is

expressed as

G*=§5 =bV,V.b=bR,b 2.6

a

The problem becomes the maximization of the last term of equation 2.6 under the

constraint that the transformation vector b is of unit length. The function maximized is

F=bR,b+A(I-bb) 2.7

The first denivative of the function in 2.7 is calculated:
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oF

—=2(R,. -A)b=0
a—F—l-ﬁ‘,b"Z:o .
aﬂ n=l "

The expressions of the derivatives of F are identified with the eigenvector-eigenvalue problem
and indicate that b and A are an eigenvector and an eigenvalue respectively of R.. By

multiplying the left side of the first equation in 2.8 with b’ and substituting equation 2.6,

=—=2 —hR.b=4 2.9

Equation 2.9 proves that the eigenvector b, which corresponds to the maximum eigenvalue,

points along the direction of maximum variance in the EEG.

It follows that in order that nontrivial solutions b may exist, A must be chosen to satisfy

the determinant equation

IR, -1 =0 2.10

This equation is the characteristic equation of the covariance matrix. By solving this equation
for A, the eigenvalues are calculated. Once the eigenvalues are known, the eigenvectors are

determined from equations 2.8.

With the notation B for the eigenvector matrix, with its vector components b, and A for

the eigenvalue matrix, with its diagonal components A, the variances, the relationship between

the covariance, eigenvector and the diagonal eigenvalue matrix is
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R_B=BA

Multiplying the left side with B8 and using the property of the orthonormal matrices BB=I it

results that
BRB=A 2.11

A linear transformation tha:t projects the EEG onto the orthonormal basis vectors B is

applied such as:

Y=BYV 2.12

where B’ is the transformation mmatrix. The covanance of Y is thus

YY =BV,VB=BR,B=A 2.13

The relationship between this covarance matrx and the diagonal eigenvalue matrix
demonstrates that the linear tra.nsformation results in a set of uncorrelated waveforms Y. The
eigenvalue matrix contains, i decreasing order, the amount of the varance that each

waveform accounts for in the measured EEG.

The EEG can be then expre=ssed as

V. =BY 2.14

a

This is the Principal Compomment spatio-temporal decomposition of the EEG. The columns

of B contain the PC spatial pastterns and the rows of Y the corresponding temporal patterns.
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The EEG samples are distributed within some ellipsoidal boundary of radii A, in the directions
of the corresponding columns in B. The diagonal square matrix A combines both the signal
and noise eigenvalues (variances) of V, and can be partitioned into two submatrices A, and A,
where A_ contains the zero or close to zero eigenvalues. The number of zero eigenvalues is
N-rank (R, ). The eigenvalues are in decreasing order and consequently A, contains the first
eigenvalues significantly greater than 0. The set of corresponding eigenvectors B, are estimated
as the spatial pattern components that point in the direction of significantly high variance in
V,, spanning the signal subspace (of interest). The rest of columns in B, B, span the

complement (Halmos, 1974) of the signal subspace, the noise subspace. The PC decompositon

can be then expressed as

Y,
Vv, =[B; BJ[YS] 2.15

and the covadance matrix

A, O .
Ra =[Bs Be][: 05 A ][Bs Be] 2.16

2.1.3 The Common Spatial Pattern Decomposition

In the previous section the Prncipal Component method of decomposing an abnormal
segment of the EEG was presented. The PC decomposition is based on a set of orthonormal
spatial components and their orthogonal temporal components. Each component contains,
besides the abnormal signal of interest, background components from varous normal neural

activity and additive noise. The filtering of the noise and the normal patterns would result in 2
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better indication of the true location of the abnormal sources. The method of Common Spatial
Pattern Decomposition, that was described by Koks in 1991, may result in a more distinctive
separation of the EEG into components that have more clinical relevance, as it appears to

enable individual sources to be better isolated (Koks et a/, 1995).

This method necessitates two sets of data, one before the seizure- the normal EEG, or
EEGn (V), and one containing the abnormal patterns-EEGa (V,)). The CSP method is based
on PC analysis but the spatial components are not constrained to be orthonormal or even
orthogonal, but constrained to account for maximally different proportons of the total
variance present in the abnormal and normal EEGs. In other words, the spatial patterns point

in the directions of maximum differences in vadance between the two EEGs.

Common spatial pattern decomposition is performed starting with the calculation of the

sum covariance matrx, R:

R=R, +R, 2.17

where R, is the covariance matrix of the abnormal EEG, and R_ is the covarance matrix of
the normal EEG. The covariance matrix R is decomposed into eigenvalues and eigenvectors

as before:

R=B_A_B, 2.18
A transformation matrix is applied to the data, which makes the covariance matrix equal to
I, by changing the scales of the principal components in proportion of A;}é . This whitening

transformation is applied to both EEGs (normal and abnormal).
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P=A/?B, 2.19

Since A_is a square diagonal matrix, with element values in decreasing order, possibly with

some equal to zero, it may be necessary to reduce its dimension in order to apply the inverse

A—c}é , which results in a diagonal matrix with its elements 1/A"2. In the whitened space, the

EEG samples are distributed within a unit radius spheroidal boundary. This can be
demonstrated by calculating the covardance matrix of the whitened data. The whitening

transformation is applied to the covariance matrices, R, and R, individually:

S, =PR,P’

: 2.20
S, =PR_P

It can be shown (Fukunaga, 1972) that the whitened covariance matrices above share the

same eigenvectors (common spatial pattemns):

S, =U¥,U
. 221
S, =U%,U
with
Y, +¥, =1 2.22

The last result is very important for the separation of the EEGa and EEGn. In the

whitened measurement space spanned by U, the varance accounted for by the first
eigenvectors (those corresponding to the largest eigenvalues in '¥,) will be maximal for EEGa.

Because of the sum constraint on ‘¥, the variance accounted for by these eigenvectors must
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be then minimal for EEGn. The reverse is also true for the remaining eigenvectors (for which
the eigenvalues in ¥, are maximal). Therefore, a transformation of the EEG epochs by P'U

will yield a decomposition that is optimal for separating the variances in the two EEGs. As
with PC, the application of this spatial filter to an EEG data matrix will extract a set of
temporal waveforms that meet this varance constraint. The linear transformation can be

written:

Z=(PU)V 223

where Z is the set of waveforms, both the abnormal and normal temporal patterns present in

V. It follows that the covariance of the temporal patterns presentin EEGa, Z, is

z,z,=[(PU) v, |[(PU)V, ] =UPR,PU=US, U=V, 224

and that the rows of Z, are uncorrelated. Only the temporal patterns in Z that correspond to
greater eigenvalues in ‘¥, than in ¥, are thought of as being generated by abnormal signal

sources. The set of the corresponding common spatial pattemns is calculated as follows:

C=(UP) 2.25

where C can have any of the dimensions N x ( £ N ) and () is the psendoinverse. The

abnormal EEG can then be expressed as:

V, =CZ 2.26
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This is the Common Spatial Pattern decomposition of the EEG. From the set of column
vectors C, only the spatial patterns that correspond to the abnormal soutces are retained.
These vectors, C,, that span the signal space, point in the direction of maximum variance in the

abnormal EEG (first significant eigenvalues in ‘¥,, ‘¥, ), and minimum variance in the normal
EEG, thus maximum difference (¥, —V, ), where ¥ are the eigenvalues . This is used as a

criterion in separating the abnormal spatial components of interest from the normal spatial
components. It follows that, the rest of the spatial components, C,, which account for
minimum variance in the abnormal EEG and maximum variance in the normal EEG (zero or

close to zero diagonal elements in ‘¥,, ‘¥, ) span the noise space. The waveforms in Z of

maximum vadance in the abnormal EEG are considered to be closest to the abnormal
temporal patterns of interest. The CSP decomposition of the abnormal EEG V, can then be

also written as

V. =CZ, +CZ, 2.27

and using the result from the equation 2.24 and the previous considerations, the scaled

covariance matrix can be expressed as

V,V,=C,¥, C . +C.¥, C, 2.28

It can be remarked that the sets of equations 2.27 - 2.28 and 2.15 - 2.16 are of similar form.

2.2 Source Localization Methods
For the available measured EEG, V, the source localization procedure involves finding the

appropdate set of M (locations), S (dipole moments) and orientations A that produce V. This
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is known as the inverse problem in EEG. In the next three subchapters three methods of
determining primarily the spatial information, which means the location of the sources in the

head, and, where necessary, the temporal and orientation information will be descrbed.

2.2.1 Single Dipole Fitting
The spatio-temporal model of the EEG, equation 2.3, requires that L, the number of

sources, their locations, orientations and moments, be known beforehand. In practice only the

measured EEG (V) and the unit dipole model calculated at each grid point in the head model

are known. For the unit dipole model at any grid point the notation M is used.

The Single Dipole Fitting source localization method involves the scanning of all of the grid
points in the head model for which the Nx3 transfer matrix M, containing the three
orthogonal unit components MXx, My, Mz, has been pre-computed and finding the best fit

of this candidate source to the measured data V.

Since the transfer matrix M is of full column rank 3, smaller than the measurement sites N,

this is an overdetermined problem. This means that there are more equations than unknowns.

Grouping the orientation matrix with the dipole moment matrix and letting AandS be the

set of estimates of the source orientation and magnitude, the error function

—_ A AalR
7 =“V—M(AS)“F 2.29

is minimized with respect to AS. ||" ¢ 1s the Frobenius norm, or matrix norm, and ||"§- in this

case represents the squared error between the measured data and the EEG model.
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The least-squares approximation, AS , based on the T data points, that minimizes the error

function ], at each grid point can be expressed in terms of the pseudoinverse M (Penrose,

1955, Brogan, 1991) as

AS=M'V 2.30
where
M = (1\*{'1\71)’l M 2.31

is the pseudoinverse of the nonsquare matrix M, since M has linearly independent columns

and consequently MM is of full rank 3. M" has the properties

MM=Iand MM" =1 2.32

AS is the approximate solution to the overdetermined least square problem and the amount

of error in this approximate solution is indicated by J,. Substituting the linear terms AS from

equation 2.30 into 2.29, the error function formula becomes

7, =||(I—1v‘11\71‘)v ’ 2.33

F

In this formula, the data is projected onto the left null space (Szrang, 1980) of the candidate
source at each grid point. The formula yields a number which represents the accumulated least

square error over all of the time points T. The scanning of the head means in fact calculating
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this error at all of the grid points and retaining the grid point location for which the error is

If the data V is decomposed using the Principal Component Decompositon, equation 2.14,
it can be easily demonstrated using the definition of the Frobenius norm and the property of
the orthogonal matrix Y (equation 2.13) that the value of ], is preserved for V=BA. ], can be

then written as

2

T = "(I — MM ) BA 2.34

F

Using BA in the minimization function ], has the advantage of reducing the computational

cost of the matrix norm. Rather than calculating the sum of the squares of the projection of a
NxT matrix, V, on the left null projector of M , the norm of a maximum NxN matrix is now

to be calculated. The number of columns of the matrix (I — MM )BA 1s equal to the rank(B)

and is also equal to the number of nonzero singular values in A. In practice, however, the
signal space and the noise space are estimated as presented in Chapter 2.1.2, based on the
decision of which eigenvalues are close enough to zero. The noise spatial and temporal
components are separated from the signal components (equations 2.15, 2.16) and filtered out.

The function reduces to

J = ||(1 —~NINT")B,A, 2.35

2
F

The potential V has smaller values if produced by deep sources than if produced by

superficial sources. Due to the fact that the calculation of the head model is based on the
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assumption that the head is purely conductive, the unit dipole model for the deep sources is
described by small transfer coefficients. For these reasons, ], is scaled such that it is not a
function of small transfer coefficients or/and small recorded potentials. In other words, it does

not depend on depth. Then the minimum will indicate the closeness to orthogonality between

the columns in BA, and the null space of M. It is noted that the value of J, will be 0 for the

case of a perfect fit between the model and the data.

To plot the scaled cost function calculated at each grid point so that the minima at the
determined source locations can be displayed as maxima, the negative of the logarithmic scale

is used. For each grid point a measure called the Source Location Index (SLI) is defined as:

SLI,(x, y, 2) = ~lg~—ma (% Y. X) 2.36
1B,

Now, the value of the source location index approaches infinity at the grid points where the

minimum of [, approaches zero.

In order to quantify estimated source locations, the Goodness Of Fit (GOF) is defined:

"(I —NINL ) B A,

2
GOF (%) =|1—- IF x100 2.37

oo

The squared nomms in the denominators of equations 2.36 and 2.37 represent the square

error between the data V(t) and the estimate M(Ag) . The squared relative error is the ratio of
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the two norms and can be identified with the argument of the logarithmic function of the

source location index.

The aim is to find a value for SLI, that would result in a good fit between the model and

the data. Based on the previous results

1~ GOF = Jims (%::%) 2.38
B[,

It is assumed that a good fit corresponds to an error smaller than 0.01 which means that the
data explains the model at least within 99%. That is, GOF = 0.99 and using the notation for
the loganthmic functon Ig =log,, = —1g(1~0.99) =SLI, 22. Then the decision for the

peaks that correspond to dipole locations is made based on the values of the SLI, which must

be at least 2 in order to obtain a good fit.

It can be easily observed that for GOF=100% the estimate M(AS) perfectly fits the data V,

the columns of BA, are orthogonal to the left null space of M, that is all of the error
expressions are 0 and the SLI, is oo. This can be obtained in simulations but is not likely to be
the case with real data. Since only one dipole model is used for fitting the data, only data that

will be fully explained by one dipole source will be correctly localized.

The method of single dipole fitting can be applied to multple sources as well. If instead of

one unit dipole model M a2 set of dipole models is used in the minimization function this
minimization process results in successively scanning the head with only one dipole, the others

being kept fixed. The source location index is maximum at all of the locations where the set of
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Ms gives a good approximation to B.A, The disadvantage of this method is that the

pseudoinverse of a larger model matrix has to be pre-computed and stored.

2.2.2 Muluple Dipole Fitting
A more economical approach to localizing multiple dipoles is the MUltiple SIgnal

Classification (MUSIC) method. The MUSIC algorithm was first developed by Schmidt in
1979 and applied in Source Localization by Mosker et al, 1992. The algorithm is used to
calculate, at each grid point, the minimum projection of an optimal linear combination of the

columns of M on the noise subspace spanned by a set of eigenvectors.

In this work, the MUSIC algorithm is modified so that the CSP decomposition of the EEG
presented in Chapter 2.1.3 can be used for the noise projector matrix. The noise subspace is
considered to be spanned by the CSPs C, that account for minimum variance in the abnormal
EEG, therefore correspond to the smallest eigenvalues in ¥,, as shown before. The noise
subspace is the left null space of the CSPs, C,, that span the signal subspace. Ideally, the
vectors that span the signal subspace will be orthogonal to the vectors that span the noise

subspace. The two summed subspaces form the measurement space.

The MUSIC method is based on three assumptions, as stated by Mosher et a/ One
assumption is that the transfer matrix is full column rank. Another assumption is that the noise
is white, with zero mean and varance G°. The other is that the moment time seres for
different dipole components are not correlated. The first two assumptions were stated in
Chapter 2.1.1. The last assumption means that the rows of matrix S from the forward EEG
model are linearly independent, thus no current source can be expressed as a linear

combination of the others, in other words, the current sources of the dipoles are uncorrelated.
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The implementation of the MUSIC algorithm in the present method involves minimizing
the error between a linear combination of the CSPs, C,, spanning the abnormal EEG signal

space, and the same number of sources MA,. Mathematically this can be expressed as

7, =|M.A, -CK|[. 2.39

This error is minimum when

R=CM,A, 2.40

p

Substituting 2.40 in 2.39 results in

7, = ||(1 ~C,C.)M,A, 2.41

2
F

Equation 2.41 indicates that J, is the sum of the projections of the columns of M A, on

the left null space of the spatial components C.. This means that minima of [, can be found at

some L grid points by scanning all of the head volume with a single dipole source described by
Ma, where a is an estimate of a, Consequently, in order to determine the best linear

combination of the columns of M that project on the left null space of the signal vectors and

result in a minimum at each grid point, the alternative minimization function is used:

J, = II(I -C,C}) Ma"i 2.42

Let ® =(I-C,C; )M 2.43
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The projection matrix (I—CSC;) can be pre-computed and the images of the candidate

source M at each grid point are also known from the head model. Hence, the matrix norm J,

can be expressed as:

J,=adPa=aZa 2.44

where the matrix @ is of dimension Nx3 and X is symmetric and of dimension 3x3.

The equation above suggests that at every grid point, for the known @, some unit dipole
otientation vector a can be found such that [, is minimum. The minimization function that

incorporates this constraint is

H=1J,+ A1-]al) 2.45
where A is the Lagrange multiplier.

Substituting [, from 2.44, 2.45 becomes

H=aZa+A(l1-aa)

In order to find the minimum of this function, the first derivative of H is calculated:

oH

—=2(Z-A)a=0
g; 2.46
3I=1—(a12+a22+a32)=0
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and hence a and A are eigenvectors and eigenvalues of £ respectively . Multiplying the left side

of the first equation above with a’, the minimum of the function J, is

-~

a

Xa
szin = ﬁﬁ =Ah1in 2.47

The eigenvector 4 is the best odentation of the dipole at a specific location that minimizes
J» and therefore this eigenvector corresponds to the minimum of the eigenvalues resulting

from solving the system of equations 2.46. Therefore, to determine [,... it is sufficient to
calculate the eigenvalues and eigenvectors of the 3x3 matrix %, and retain the eigenvector

corresponding to the minimum eigenvalue.

To eliminate the bias on source localization dueto M,

m, =Ma 2.48

is introduced. M, is the optimum linear combination of the columns of M that minimizes its

projection on the left null space of the signal components C_ over all possible orientations. The

minimum of J, scaled with the norm of MW, yields

[(1-c.c;)m, ]

J2min _ = Ain.in 2.49
e, 1 e, [ e, [

To display the scaled ], .. at locations (x,3,3), the SLI, is defined as:
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SLI, (x,y,x) = -lg—%cil_glfl 2.50
allz

SLI,(x,5) will show peaks at the grid points wherte J, is minimum.

Similar to the case of Single Dipole Fitting, the goodness of fit is defined as follows:

2
I-C.C; )i
"( : ‘)m’ 2 1%100 = 1__’1@_ %100 2.51
~ 12 ~ 12
e [ [0

GOF, (%) =|1-

If the admissible range for the GOF, is set to be greater than 99%, the SLI, is greater than 2.

Therefore, any peak greater than this value will be considered a true dipole location. For a
GOF, approaching 100%, m, is closely orthogonal on the left null space of C,, the error is

close to zero and the SLI, tends to infinity.

2.23 LORETA
The two previous methods of localizing the sources of the EEG assume that the sources

are current dipoles. They involve the scanning of the head with a candidate source and finding
the best fit between this source model and some estimated spatial components, derived from
the data, spanning the signal space. In practice, it is more likely that the soutrces that are
assumed to be dipoles are actually distributed dipole sheets with some shape determined by the
neuronal anatomy. These neighboring neurons are likely to be synchronously active and as a
result the sources within the dipole sheet are correlated. The previous methods would then
localize an equivalent dipole. If the data were produced by synchronous neuronal activity over
a broader volume conductor, both preceding localization procedures based on dipole fitting

would fail to correctly describe the spatial origin of the electrical activity. Mosher et al., 1998,
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describe an extension of the MUSIC algorithm, R-MUSIC, based on the correlation between

the dipole model and the signal subspace, which, in simulations, localizes correlated sources.

A method of localizing sources of EEG without the requirement that the source model be
a current dipole, or that the sources be asynchronous, is the minimum norm. The minimum
norm estimates the current density over all grid points in the head model, with the locations
for the true sources being in the regions where the density is maximum. This only requires

knowledge about the head model and the measured data. The head model matrix contains the
transfer matrices M for all of the grd points and uses the composite matrix M of dimension

Nx3G, with G the number of grid points. The matrix M will result in 2 number of columns at
least of the order of thousands even for a very coarse grid. For one time slice, the moments are

related to the measured potentials by the expression

~

v=Mi 2.52

where i is the current density vector comprised of the i i i, components for the G grd

points. The dimension of i is therefore 3Gx1. The objective is to determine i that leads to v.
The problem is that the system of N equations has 3G unknowns and this is a highly

underdetermined problem, hence with an infinite number of solutions for i .

Researchers have followed several approaches in the attempt to find a unique solution for

i (Gorodnitsky et al, 1995, Srebro, 1996). The minimum normn solution is

i=M'v 2.53
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It has been shown that this solution is biased towards the surface. In order to obtain the
unbiased minimum norm solution 2 diagonal weighting matrix is constructed and the solution

becomes a weighted minimum norm solution.

Srebro normalizes the columns of M, finds the solution i = WM'v , where W is 2 diagonal

matrix containing the normm of all columns of M, and calculates the solution through
iteratively imposing regularization constraints by separating a smaller group of grid points that
have larger values 7 of i. Gorvdnitsky uses an iterative algorithm where the diagonal elements in
the weighting matrix are at each iteration the ratio between the elements of the solution
obtained from the previous iteration step and the norm of the corresponding column of M.
This way, the estimated inidal solution, with currents dispersed over a large area in the brain, is
sharpened such as only some of the elements 7 are nonzero while the rest of the elements are
decreased until they become zero. It is shown that the method works remarkably well in

simulations for single sources and, with some constraints, also for distributed sources.

A method called LORETA (Low Resolution Electromagnetic Tomography), that directly
computes the smoothest 3D distribution of the current density in the head volume, was
developed by Pascual-Marquz, et al. in 1994. The main appeal of LORETA is that it directly
calculates the generalized inverse of M as a unique linear transformation of v into i. The
solution is a2 minimum norm restricted solution, developed in the cited work for single time

slices.

In this work, the LORETA is extended to multiple time slice minimum norm source
localization. The LORETA solution is used with the CSP decomposition of the abnormal

EEG in order to determine the current density over all of the gnid points of the 3D volume of
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the head. However, any EEG decomposition can be used in order to find the solution. That is,
the LORETA solution is the smoothest possible source current density distribution, which can

account for the measurements on the scalp. This can be expressed as

J = min [LWi[; 2.54

under the constraint v =Mi, where i is the current density vector, W is the weighting matrix

as described above, and L is the 3Gx3G laplacian matrix. The transfer matrix M has linearly

independent columans.

The multiple time slice source localization proposed in this work, based on the solution for

a single time slice, as in LORETA, is performed in three steps:

1. The matrices W and L are calculated. The matrix W is of form

W = diag(|fi,|,), withk =13G 2.55

The diagonal weighting matrix W is of rank 3G. The laplacian of the weighted i is equal to the
3D discrete laplacian operator calculated for the regular cubic grid (with G points of
coordinates (x,,3) multiplied by the weighted i. L is then formed such that for each grid point
the three coordinates are assigned the number 6, whereas the neighbours placed at the
minimum distance, d, between grid points are assigned the number —1. This rule is applied
irrespective to the number of neighbors, that is at the edges as well as within the volume. All
of the elements are divided by the square distance, d’, between grid points on any of the
direction X, y, or 3. This is consistent with the formula for the sharpened weighted current

density at each grid point, g, given by Pascual-Margui et al.:
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1, = d—lz[6p8 —zp‘,pp], Vpsuchas d =7, - 7| 2.56

where ris the position vector of the grid points p and g, p being the weighted current density
at the grid points. The laplacian matrix L is symmetric (LL = L*), multidiagonal, sparse, and
positive definite. The nonsingularity is due to the fact that at the edges the values for the grid
points and their neighbors are kept the same as in the rest of the volume, irrespective to the

number of neighbours. As a result of symmetry the matrix WLL W becomes WL*W .

This matrix is symmetric and positive definite.
2. Itcan be shown (Rao et al, 1973), that from the class of all restricted solutions,

the solution that has the least norm "l"2 is obtained by calculating the restricted minimum

WL'W  norm generalized-inverse of M. For the problem presented in this work, the
formula for this inverse is an adapted form of the formula given by Paseual- Margui et al. for

LORETA, and is written as

-1 ~

T= (Wsz)“M'[M(WLZW) M']-l 2.57

The LORETA transformation matrix T, of dimension 3GxN, is thus calculated using only

the inverses of square matrices. The only challenge that the computation of T may bring is due

to the great dimension of the matrix WL*W . Constraining the grid to the cortical regions is
one possible solution to this problem. The smoothest current density that explains v is the

unique, restricted solution of 2.52:
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i=Tv 2.58

as in LORETA. Making the notation

M = M(WL*W)™ 2.59

the following equalities can be derived:

v=Ti=M(WL'W)i=(MW™")(Wi)=Mi 2.60
This series of equalities is important from three reasons:

¢ The equality between v and the last term, denved as shown, demonstrates that the

restricted solution explains the data.

e The equality between the second and the last term proves that T, expressed as in

equation 2.57, is a restricted minimum norm generalized inverse of M, as defined in

Rao et. al, 1973 (p. 481, case 6).

e The equality between v and the fourth term shows that v is expressed in terms of the

normalized basis function MW" . That is, the current densities at all of the grid points

are given equal weight regardless the depth.

3. Once the LORETA transfer matrix T is computed, the solution for multple time slices

1s written:

2.61

é
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In this equation, V is the NxT measured electric potential and 1 is 2 3GxT current density
matrix. In order to localize the abnormal sources, the proposed method is to determine, for
each grid point, the variance of the current density using the CSP decomposition of the
abnormal EEG, V.. The variance of the components on the coordinates x; y, 5 of the current

density at all grid points is contained in the diagonal of the current density covariance matrix:

i, =diag(L,1, ) 2.62

where ia =TV, . If V, is substituted from equation 2.26, the result in 2.62 becomes,

i, =diag(TV,V,T')=diag(TCZ,Z,CT ) = diag (TC,¥,C,T") 2.63

It is noted that the term VaVa' is the scaled covariance matrix of the abnormal EEG,

expressed here in terms of the CSP decomposition 2.26. Since the aim is to localize only the
sources responsible for the abnormal activity present in the abnormal EEG and filter out any
normal activity and noise from the results in equation 2.28 and 2.63 it follows that the vanance

of the current density of interest is

i, = diag(TC,¥, C,T’) 2.64

The total varance of the current density at one grid point g is the sum of the varances of the

components on the coordinates x, y, %

i, (X, y,2) =1, () +1,(¥)+1,(2) 2.65
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2.3 Seizure onset (temporal) localization

One of the main challenges in epileptic source localization is the temporal localization of
the seizure onset, which is determining the temporal boundary between the normal and
abnormal EEG segments. In this work, the seizure onset is detected using a band pass filter, of
the CSP decomposition and the MUSIC algorithm. In short, the whole recorded EEG V is
successively band pass and spatially filtered and the SLI calculated. The choice for the band
pass filter and the normal and abnormal epochs is made based on the maximum of all SLL,

greater than 2, obtainable.
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3 SIMULATION RESULTS
This chapter presents simulation results that illustrate the spatio-temporal decomposition
and the source localization methods described in the previous section, applied to a simulated

EEG.

3.1 EEG Spatio-Temporal Decompositions
An EEG is first simulated applying the spatio-temporal model and then decomposed using

the Principal Component decomposition and the Common Spatial Pattern decomposition. For
each decomposition the spatial and temporal components are plotted such that they can be

compared to the spatio- temporal model.

3.11 The EEG Model
The EEG is simulated at 25 electrodes using the spatio-temporal model in equation 2.3,

with no additive noise (E=0), for the case of three (L=3) uncorrelated sources which, for
llustrative purposes, are located in the same plane, y=0, shown in Figure 3.1. The electrode
positions are at the same angles as in Figure 1.1 on a sphere of unit radius, which represents
the outer boundary of the scalp in the three-shell head model. The two inner circles, of radii
0.87 and 0.92 delimit the skull. The electrodes positioned on the outer circle in the y=0 plane
are shown in Figure 3.1a: T3, C3, Cz, C4, T4, from left to right. The potentials m,, m, and m,
produced at each of the five electrodes by the three unit sources are marked with astedsk, the
line of zero potential being the unit radius circle. The source waveforms from Fig. 3.1b are

sampled at the rate of 256/s.



Figure 3.1. The potential images produced by three sources (a) and the corresponding
source currents (b).

Figure 3.1 shows the locatons, orientations and the moments of the three sources. The

dipole source 1, m,, is located at x,=-0.1 and z,=0.7, is tangential (the angle between the radial

line between the center of the slice and the odentation of the dipole is 90°) and is active for
ten seconds. The first source waveform is a 10 Hz sinusoid in the first two seconds with
superimposed frequencies from a real EEG waveform after this time, such that the frequency
spectra of the three waveforms do not overlap. Source 1 is simulated as the normal source,
responsible for the background activity. The magnitude of the background source was set so
that it accounts for 53.41% of the varance in the last five seconds of the EEG, which is the

highest variance contributed by the three waveforms.
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The second source is a dipole-sheet current source. This source was simulated as the sum
of correlated dipole sources of different orentations as shown in Fig. 3.1a. The source

waveform number 2 starts at five seconds and is 2 3 Hz sinusoid. This source is considered

abnormal and it accounts for 24.2% of the varance in the last five seconds of the EEG.

Source number 3, m,, is a deep dipole source, located at x,=0.2, z,=0.1, radially odented,
also abnormal, starting at 6 seconds. The orientation and location of this soutce is chosen such
that the potential at as many as possible electrodes is close to the potental of source m, also
for illustrative purposes, which are explained later. This third source waveform is of the same
frequency as the second waveform but shifted in phase by 90°. The third source accounts for
the least variance in the last five seconds of activity, 22.38%. It results that the sources account
individually for 53.41%, 24.20% and 22.38% of the total vardance in the last five seconds of

actvity.

The EEG in Fig. 3.2 is obtained by multiplying M, A, and S shown in figure 3.1 as in
equation 2.3 In this simulation the noise term is E=0. The potentials at the electrodes are
simulated with respect to the reference electrode Cz’. The vertical dotted line at 5 sec. delimits

the normal, Vn, and the abnormal, Va, EEG epochs.
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Figure 3.2. The EEG (V) simulated using the spatial and temporal components plotted in
Figure 3.1.

3.1.2 The Principal Component Decomposition of the EEG
The abnormal epoch of the simulated EEG in Fig. 3.2, V,, is decomposed as in equation

2.14 and the spatial and temporal patterns plotted in Fig. 3.32 and 3.3b respectively. The
orthonormal basis vectors B are determined by eigenvalue-eigenvector decomposition of the
covariance matrix of V.. Since three sources are active in the abnormal segment V,, the rank of
the covanance matrx is three. The rest of the N-3 eigenvalues are zero. The eigenvectors b,
b,, and b, account individually for 56.9%, 31.5% and 11.6% of the total variance in V,. These
numbers differ from the varances accounted for by the three sources m,, m, and m,

Applying the linear transformation 2.13, where B=[b, b, b,], to the EEG results in the three
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orthogonal waveforms Y shown in Fig. 3.3b. The eigenvalues are shown in the right side of

the figure.

0.57

032

0.12

Figure 3.3. The Principal Component spatio-temporal decomposition. (z) The spatial
patterns. (b) The temporal patterns

As shown in section 2.1.2, the first prncipal component points along the direction of
maximum varance in the EEG. Since the normal source m, accounts for the maximum
variance in V,, it is expected that the waveform corresponding to the first eigenvector b, will
contain predominantly the temporal pattern s,. By visually inspecting the first waveform it can
be observed that the third source waveform, s,, is also strongly present in the first PC
waveform. One thing to consider in order to explain this effect is that the voltage at the

electrodes is the only information available in the analysis. As mentioned before, the source
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images m, and m, were simulated such that their potential values would be close at as many
electrode sites as possible, at the same time having different potential profiles at points
between the electrodes. This also determines the appearance of the first PC waveform. The

second PC waveform looks similar to the source waveform s,.

The spatial components B are interpolated and their profiles in the slice y=0 plotted in
Figure 3.3.a. It is expected that the spatial component profiles B and the temporal
components Y would relate to the aspect of the source images M and waveforms S. Indeed, if
the first principal component b,, corresponding to the first PC waveform from Y, is inverted
and the values are compared to the values of the source images (Fig. 3.1) at the five visible
electrodes, b, approaches m, and m, at all of the electrodes except C3. The spatial component
b, has the same profile as m,, with scaled down values, which is reflected in the second PC

waveform and slightly smaller variance accounted for.

The aim is to separate the PCs that span the signal and noise subspaces, based on the
varances accounted for in the abnormal EEG epoch. In order to do this, the cumulative sums
of the variances accounted for by the eigenvectors are calculated: 57%, 89% and 100%. The
first two eigenvectors are selected as signal vectors, the last eigenvector being considered as

noise vector, based on the small variance accounted for in Va.

The PC decompositon of the EEG responsible for the abnormal activity can be then

written as in equation 2.15 - 2.16, where
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B, = [bl bz]
— [y 1 ] 3.1
y.
0.57 0
Ag =
0 032

where the noise terms are ignored. The question to be posed now is whether this delimitation

o
|

of the signal space is suitable for isolating the sources that are abnormal, that is the sources
that become active at 5 respectively 6 seconds. It is clear that since the normal source accounts
for maximum varance in the EEG, as it mostly happens in practice, using this decomposition
the first principal component does not isolate an abnormal soutce. In Chapter 3.2 the

application of the PC decomposition in source localization is performed and is discussed.

3.1.3 The Common Spatial Pattern Decomposition

It 1s expected that the PC decomposition will not isolate the abnormal spatio-temporal
components. On the contrary, the most significant spatial component, the first PC, clearly
corresponds to background activity, which is considered to be noise. In the attempt to
eliminate the background activity and isolate the abnormal signal sources the CSP
decomposition, described in Chapter 2.1.3, is applied to the simulated EEG, Figure 3.2 The

result is shown in Figure 3.4.

Comparng both the profiles of the spatial patterns and the temporal waveforms in Fig. 3.4
with the source images in Figure 3.1, the similarty is evident. The first CSP, ¢,, has similar
profile with m,, and the corresponding waveform Z1 is almost identical to s,. ¢, points in the
direction of maximum variance (100%) in the abnormal EEG Va and minimum varance (0%)

in the normal EEG, Vn.
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Figure 3.4. The Common Spatial Pattern Decomposition. (a) The Common Spatal
Patterns; (b) The Temporal Patterns

The second CSP component, ¢,, which has similar profile to m;, accounts for the next

perfectly retrieved m, and s;.

greatest difference between varances in Va and Vn. There is some difference in the
appearance of the deep dipole source waveform s; and the second CSP waveform z,, which

explains the percent variance of 99%, instead of 100% as expected, if the CSP decomposition

The third CSP, c,, accounts only for 34% variance in the abnormal EEG and 66% varance

in the normal EEG. The profile of this vector resembles remarkably well the image profile of
the normal source m,. Since this vector ¢, accounts for more variance in the normal EEG

than in the abnormal EEG, it is selected as spanning the noise space and is part of C,,

51



according to equations 2.27 - 2.28. The CSP decomposition and the covarance matrix of the
EEG responsible for abnormal activity can be then written in terms of the signal vectors C,,

Z,, and ¥, respectively. The eigenvalues that correspond to the signal spatial components are

written in bold characters in Figure 3.4. The spatial components that span the signal space, the

corresponding temporal components and the eigenvalues are:

C;=[c1 <]

Y A Z1 3.2
as T | Z2 .

- 1 0
* |0 099

With respect to the EEG model, it can also be observed that the source that accounts for
maximum combined varance in the abnormal EEG and minimum variance in the normal
EEG is m, (24.2%-0%=24.2%). As opposed to m, and m,, the normal source m,, present
both in the normal and abnormal EEG, accounts for mote vatance in the normal EEG
(100%) than in the abnormal EEG (53.41%). This indicates that the CSP c3 that points in the
direction of m, spans the noise space. This verification of the fact that the CSPs point in the
direction of the maximum variance accounted for by the current sources in the abnormal EEG
and minimum variance in the normal EEG is important as it gives more confidence in
analyzing real data. This is the case when sources that become active at one point in time are to

be 1solated, as in epilepsy.

3.2 Source Localization - Simulation Results
In this subchapter the three methods of source localization descrbed in Chapter 2.2 are

illustrated using the EEG decompositions of the simulated EEG. The objective is to
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accurately localize the two abnormal _sources m, and m,. For all of the simulated source
localizations the inner shell of head model is sampled at 0.5 cm. In the case of LORETA, only
the upper half of the head model is sampled, at 1cm. Therefore the two dipole sources m1 and
m3 are located on the spatial grid, and the SLI is expected to be maximum at these locations if
the sources are localized accurately. Another consideration is the GOF. It was assumed in
Chapter 2 that the SLI should exceed the value of 2 in order to obtain a good fit. This measure
of GOF for the case of noiseless simulations and where the same model is used for both
simulating the EEG data and for source localization might not approprate. For the case of
noiseless simulated data the maximum admissible error is set at 0.001, which corresponds to a
GOF = 0.999 and a SLI equal to at least 3. Any peak higher than this value is considered a

source location, which can easily be verified knowing where the sources are located.

3.21 Single Dipole Fitting
In order to illustrate the Single Dipole Method described in 2.2.1, the PC decomposition of

the EEG from section 3.1.2 is used. First all of the eigenvectors are used in the soutce

localization procedure. That is, the source location index is calculated as

‘Tlmin(‘x’y’x)

SLI(x,y,z) =—lg “Ml\?[‘BA 3 3.3

F

where J, is the squared Frobenius norm of the projection of all three eigenvectors on the left

null space of the candidate source at each grid location, as in equaton 2.34. Since the
waveform matrix Y is orthogonal, this projection is the same as projecting the whole abnormal

EEG Va on the left null space of the candidate source. The mesh of the SLI on the vertdcal

slice y=0, containing the minimum of J, is shown in Figure 3.5a.
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Figure 3.5. The topography of the SLI using Single Dipole Fitting for the three sources
of the simulated EEG. (a) All three eigenvectors corresponding to nonzero eigenvalues are used.
(b) Only the first two eigenvectors are used.

As the EEG is produced by three sources, the Single Dipole Fitting localizes an equivalent
dipole. This equivalent dipole is located at x=-0.1, y=0, z=0.5, that is 2 cm distant on the Z
axis from the normal dipole source m,. This result is not surprising, as the first principal
component that accounts for 57% of the total variance in Va and points in the direction of
maximum vagdance, that is towards source m,, and the fact that the other two sources m, and
m,; are located approximately symmetrically and towards the origin with respect to the Z axis.
The SLIis in this case 2.3, which is another indication that the localized dipole is not at a true
source location. Figure 3.5b shows the localization using only the signal PCs and the

corresponding eigenvalues, from equations 3.1 substituted in equations 2.35 and 2.36. The
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localization result is the same, with the difference that the source location index increased to

2.8.

3.2.2 Multple Dipole Fitting
As explained in section 2.2.2, the sources of EEG can be individually localized if a unit

dipole model is projected at each grid point on the left null space of the spatial components
selected as spanning the signal space. Here the MUSIC algorithm is applied with both the PC

and CSP decomposition of the EEG.

First the noise projector matrix is formed using all three PCs of the abnormal EEG and the
topography of the SLI is shown in Figure 3.6a. For this case the function minimized is similar

to equation 2.42:

7, =|(1- BB )Nl 3.4

In this equation it is possible to use the transpose instead of pseudoinverse since for an
orthonormal matrix the pseudoinverse is equal to the transpose of the matrix. At each grid
location the optimum orientation of the dipole, that minimizes J. 5, 1s found. The SLI in this

case 1s similar to equation 2.50

T (X%, 9,2)
L2min\ P Fa<&) = 3.5

2

SLI(x,y,x) =-lg

~

[

a
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Figure 3.6. The topography of the SLI using Multiple Dipole Fitting for the three sources
of the simulated EEG. (a) All three eigenvectors corresponding to nonzero eigenvalues are used.
(b) Only the first two eigenvectors are used.

All three EEG sources are localized. The two dipole sources are accurately localized and a
minimum of zero is obtained at the locations of m, and a minimum very close to zero at the
location of the deep dipole source m;. The odentations are the same as for the simulated
dipole sources. The SLI for the deep radial dipole source is only 2% smaller than the SLI for

the more superficial, tangential, dipole source. The distributed dipole source is localized at x=-

0.4, y=0, z=0.25, oriented at 162°, with a SLI=3.33.

In Figure 3.6.b the topography of the SLI in the slice y=0, when only the eigenvectors B;

are used in the projection matrix, is shown. The locations, ordentations and SLI of the two

sources are x1=-0.35, y1=0, z1=0.25, odented at 167°, SLI,=3.13 and x2=-0.05, y2=0,
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z2=0.55, odented at 82°, SLI1=2.66. The distrbuted source is located at 0.5 cm from the
previous case and the value of the SLI indicates that this can be considered a source location.

The second source is misslocalized both on the X and Z directions.

This example shows that PC may not localize the signal vectors responsible for the
abnormal activity unless all of the eigenvectors that span the whole signal space, that is all of
the eigenvectors that correspond to eigenvalues different from zero are used in the projection
matrix. This is because of the allocation of the first PC to the abnormal signal space. This
would not be acceptable in the case of real data, unless the data could be previously filtered
such that no background or artifactual activity would be present in the abnormal epoch or

these components account for small variances in the abnormal EEG.

In contrast to using the PC with MUSIC, when the CSPs C are used in the projection
matrix in equation 2.42 both abnormal sources are correctly localized. The SLI, calculated for
each grid point using equation 2.50, resulted in 2 maximum at the location of the dipole and
3.13 at the location of the equivalent dipole for the distributed source. The calculated dipole

orentation is radial. For the equivalent dipole of the dipole sheet the orentation is found

167 . The topography of the SLI for this case is shown in Figure 3.7a.

3.23 LORETA

In the previous section it was shown that both the abnormal dipole source and dipole sheet
can be localized if the CSPs are used in the projection matrix. However, the concem is the
relatively low peak obtained for the distributed source. Since LORETA is 2 minimum norm
based method, there is no requirement for the sources to be dipoles or to be uncorrelated.

Therefore it is expected that the dipole sheet will be better localized using this method.
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Figure 3.7. (a) The topography of the SLI using MUSIC with CSP. (b) The Topography
of the LORETA solution using CSP.

The variance of the source current density is calculated as in equation 2.64 and for each grid
point as in 2.65. The topography of the LORETA solution is shown in Figure 3.7.b. It can be
observed that the dipole sheet is better localized with LORETA, whereas for the dipole source

LORETA gives a blurred solution, the dipole source being better localized with MUSIC.

3.2.4 Seizure Spread

In the case of seizure data, the electrical activity characteristic to the seizure may spread
from one part of the brain to another. The EEG simulated is an example of such a scenario.
First the background soutrce is active, and then the dipole-sheet located in the left side and the

deep dipole source become active afterwards. In order to determine the dynamics of the
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abnormal activity, the CSP and the waveform corresponding to the background pattern are
spatally filtered out from the simulated EEG. Each second of abnormal filtered EEG is then
decomposed using PC and all the resulting PCs used with the MUSIC algonithm. For the
segment of EEG between 5-6 seconds only one PC was found and the topography of the SLI
is shown in Fig. 3.8a. For the EEG segment between 6-7 seconds two PC were found and
used for localization. However, due to the big difference between the peak obtained for the
deep dipole source and the dipole sheet, the location of the dipole sheet peak cannot be seen
in Fig. 3.8b using this type of map, which was chosen to illustrate the determined source

orientations and the spread of the abnormal activity.

Figure 3.8. The dynamics of the abnormal electrical activity in the last five seconds of the
EEG
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4 REAL DATA RESULTS

4.1 Intrtoduction

The adult patient for whom the source localization was performed and is presented in this
chapter was discussed in the weekly Seizure Conference, which is part of the Comprehensive
Epilepsy Program, held at the University of Alberta Hospital. All of the patients analyzed in
the Conference are surgical candidates, in which the drug therapy has failed to control the
seizures, the quality of life for these patients being severely affected by the frequency and the

extent of the seizures.

The clinical routine involves the expertise of epileptologists, radiologists, psychologists and
neurosurgeons. The ultimate goal of the clinical evaluation of an epileptic patient is to
determine if and when the patient should undergo surgical therapy, the area in the brain where
the seizure originates from, and the extent of the resection (neuro-surgical procedure) to be
made. In some of the cases, especially in the case of pediatric patients, the decision is not the
eastest. Considerations such as lack of knowledge about the location of speech and memory
make the neurosurgeons treat these cases with increased precaution as the resection might be

of a potential nisk for the patient. In some cases further trals of drug therapy are considered.

However, in many of the patients an estimate of the location in the brain where the seizure
originates can be obtained. The major disadvantage of the procedure used is that it is highly
invasive due to the fact that it can involve intracranial recording or/and angyography. The
intracranial recording is an invasive technique of acquiring the EEG, using needle electrodes.
Angyography is a technique that involves the injection of a substance in the patient’s body in

order to better visualize the blood vessels, which can be damaged in some epileptic patients.

60



In the following sub-chapters the clinical procedure, the results using the proposed
noninvasive source localization methods and the validation of the results obtained will be

presented.
4.2 Clinical procedure

As mentioned in the above introduction, the clinical procedure in source localization
involves extended information about the electrical activity of the patient’s brain, the brain
structure and the development of its neuro-psychological functions. The medical history of the

patient is also considered in the clinical evaluation.

The recording of the EEG is performed in the so-called Telemetric Unit. The aim is to
record the EEG before and during the seizure. The patient is permanently attached to an array
of electrodes, in this case 25 electrodes. A computerized system detects the inter-ictal EEG
spikes that appear pror to the occurrence of a seizure and the EEG recording commences.
The telemetric system also includes the video monitoring of the patient in order to observe the
clinical manifestations of the patient during the seizure, which can bring very important insight
in the determination of the location of the epileptic activity, based on the a-priod knowledge
of the sensory-motor areas in the human brain. The EEG and video recordings are
synchronously acquired. The system permits the concomitant visualization on the split view of
a monitor screen of both the EEG and the patient during the seizure so that the correlation

between the EEG and the clinical manifestations of the disease can be observed.

The Magnetic Resonance Imaging and sometimes Computer Tomography, Positron
Emission Tomography or Single Photon Emission Computed Tomography scans of the head

are used to determine whether abnormalities can be observed. The neuro-psychological
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assessment is then presented. The information provided as the result of verbal and
petformance IQ tests along with the neuro-motor tests can lead to important conclusions
about the development of various areas of the patient’s brain.
4.3 The seizure onset and source localization procedure
The procedure requires temporal and spatial localization. The temporal localization refers
to the localization in time of the seizure onset, within the recorded EEG. The source
localization requires the delimitation of the signal space by finding a set of spatial components

prior to applying the source localization methods.

The furst step in this procedure presupposes the band-pass filtering of the measured EEG
in order to reduce the number of sources responsible for the background EEG and eliminate
artifactual components. In the second step of the procedure, an epoch of the filtered EEG,
that most probably contains the seizure onset, is retained and decomposed into spatial and
temporal components. The spatio-temporal decomposition is based on spatial patterns
common to both the pre-ictal (normal - preceding the seizure onset) and ictal (abnormal -
following the onset of the seizure) EEGs. The spatial components that account for more
variance in the ictal EEG than they do in the pre-ictal EEG are retained and used to localize

the seizure focus.

44 Real data analysis

The method has been applied on EEGs recorded from eight patients with focal epilepsy
and a total of eighteen seizures. Only one patient is analyzed here using one seizure EEG
recording. The digital EEGs were acquired at 200 samples/sec using the 25-electrode
montage shown in Chapter 1. The raw EEG was recorded for approximately one minute and
only 10 seconds were selected and shown in this work. The selection of the 10-second raw
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EEG epoch, shown in Figure 4.1, was made such that the epoch would contain the

subsequently determined seizure onset.
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Figure 4.1. The epoch from the recorded EEG containing the seizure onset
The seizure onset, which is thought to originate in the epileptic focus is marked in the
figure by a vertical dotted line. The normal (pre-ictal) and the abnormal (ictal) segments of the
EEG are also marked in the figure. The electrodes at which the data was acquired are listed on
the left side of the figure. As it can be seen, no conclusion can be drawn about the seizure

onset from the raw data.

4.4.1 Seizure onset localization

Although the highest voltages can be observed as occurring the earliest at the dght-frontal,
ug £ curnng ng

rght-temporal and right-central electrodes, this is not necessarily an indication that the seizure
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would lateralize in the right side of the brain. The high frequency and amplitude recorded
activity possibly could result from muscle artifact and the patient's motor manifestation during
the seizure. Yet, the seizure onset may be contained by this epoch and if we were to be limited
only to the information from this seizure one interpretation would be that the seizure would
be localized to the right anterio-temporal region with some spread to the left or, another
interpretation would be that the seizure is bilateral, first starting on the right and then on the
left side of the brain. Neither the mastoidal nor the sphenoidal electrode recordings are more

relevant for the onset and source localization.

4.4.11 Band Pass Filtering

The raw data was first filtered using a band pass filter between four and ten Hertz, which,
in the case of this patient, was found satisfactory for the accurate source localization. The

power spectrum of the filter is plotted in Figure 4.2.

Frclqgcncy Spectrum

05 1

Hz
0 4 5 10 15

Figure 4.2. The power spectrum of the band pass filter used for the raw EEG filtering.

The frequency filtering used was performed in the attempt to eliminate the sources present
that are not relevant to the seizure onset and yet preserving the waveform patterns
characteristic to the ictal EEG. The 10-second frequency filtered EEG epoch that clearly

contains the seizure onset is selected and is shown in Figure 4.3.
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Figure 4.3. The frequency filtered EEG epoch.

The frequency and the amplitude content of the EEG responsible for the epileptic activity
can now be identified. However, the precise identification of the seizure onset, within fractions
of seconds, is not yet possible and the presence of the artifacts, especially the strong frontal
involvement resulting from eye fluttering, would introduce errors in the localization process

and need to be suppressed.

4.41.2 Spatial Filtering
The method of Common Spatial Pattem filtering described in Section 2.1.3 is applied to the

temporally filtered data in order to more accurately detect the seizure onset and select the
spatio-temporal components responsible for the epileptic activity, the signal space, while

filtering the remained artifacts and background activity, the noise space. By decomposing the
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covariance matrix R as in equation 2.18 it was determined that the rank of A_ and R is eight.
This 1s reflected in the number of spatial and temporal components resulting from the CSP

decomposition.

The CSP filter applied to the temporally filtered EEG epoch reveals the temporal
components, Z, and the CSPs, C. The resulting temporal components are presented in Figure
4.4. The percentage variance that each CSP accounts for in the ictal segment of the EEG as

compared to pre-ictal is listed on the nght side of the figure.
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Figure 4.4. The EEG temporal components, Z.

The first four corresponding spatial components are shown in Figure 4.5, where the axis
notations N, R, L stand for Nasion, Right and Left respectively. The rcst of the CSP

components, that are not shown, point towards the frontal or left-frontal region, except the
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spatial component that accounts for 31% in the abnormal epoch, which points toward the

central-frontal region.

Figure +.5. The first four spatial components of the frequency filtered LLXG resulung
from the CSP filtering.

The frequency filtered EEG (V) is thus decomposed as:

V24x2000 = C24xLZ 12000 4.1

where L, in this case 8, is the number of current sources responsible for the frequency filtered
EEG epoch of dimensions 24 clectrodes x 2000 samples. Only the common spaual patterns
that account for more than 50% vadance in the ictal and less in the pre-ictal, and ther
corresponding waveforms are retained as being significant for the epileptic activity and their
variances are displayed in bold characters. The rest of the waveforms and their corresponding

CSPs, which account for more varance in the pre-ictal than in ictal, the background and
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artifactual components still present in the frequency filtered EEG, are filtered out. It can be
observed that the eye artifact present in the fourth second is now filtered out, accounting for

only 1% varance in the abnormal EEG epoch.

One great benefit of the Common Spatial Pattern filter is that it allows the evaluation of the
time when the seizure starts, by visually inspecting the appearance of the waveforms. In the
case of the presented patient the seizure onset can be determined visually around the 5th
second in the frequency-filtered epoch. By successively assuming the seizure onset around this
time, and performing CSP decomposition and source localization using the MUSIC algorithm,

the found best fit was for the seizure onset localized at 4.9 sec.

It is thought that an EEG with a specific frequency and amplitude pattern consistent for
three seconds indicates epileptic activity. When the ictal segment was considered three seconds
from the seizure onset, and symmetrically for the pre-ictal segment, the CSP filtering result
consisted of four waveforms that accounted for over 50% vardance in the ictal EEG epoch
(94%, 85%, 68%, 61%) where the last two waveforms clearly contained normal activity. The
MUSIC algorithm using the four CSP resulted in a SLI of 2.18. However, the CSP filtering
performed by delimiting the normal and the abnormal epoch also at 4.9 seconds but using only
two seconds of abnormal activity resulted in the best fit for this seizure data. In this case the
CSP filtering resulted in only three waveforms accounting for variance higher than 50% in the
ictal epoch: 93%, 89% and 74% and smaller variance in the pre-ictal EEG epoch (Figure 4.4).

The source localization using the MUSIC algorithm resulted in the highest SLI (2.29).
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The frequency and spatially filtered EEG, reconstructed using only the first three spatial
and temporal components, is presented in Figure 4.6 and is the result of the matrix

multiplication in equation 4.1, where L is equal to 3.
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Figure 4.6. The reconstructed EEG from the first three spatio-temporal components.

By visually inspecting the reconstructed EEG one can observe the presence of consistently
strong signal at the electrodes placed on the left side of the head: LSP, T3, LMA, T3, T5, F7.
The interpolated images of the spatial components on a sphere (Figure 4.5) indicate strong
activity on the left and right side, mostly right and left anterio-temporal, with some left frontal
involvement. However, there is still no indication about the location in the brain of the activity
that produced these maps. This is where the source localization methods described in Chapter

2 are used.
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4.4.2 Source localization
The source localizanon was performed using the three methods described in Chapter 2 and

the results are to be compared.

4.4.2.1 Single Dipole Fitting
The first method applied is the Single Dipole Fitung. As descnbed in Chapter 2.2.1, a linear

combination, BA, of the eigenvectors of the EEG is used for localizing the seizure focus.
Here, this 1s performed by retaining the first pancpal component of the ictal segment of the
reconstructed EEG shown in Figure 4.6. The pancipal spatial component b (shown bilateral)

and 1ts corresponding waveform are presented in Figure 4.7.
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Figure 4.7. The First Principal Component b and its corresponding waveform
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Figure 4.8. The reconstructed EEG from the first Principal Component b and its
corresponding waveform

The minimum obtained at the closest grid point location is given by the minimization

function below, in which A;=0.79.

J = "(I ~ NIV )b A 42

2
F
The significance of each term and the minimization process was described in Chapter 2.2.1

The source location index formula applied to the calculated minima used to visualize the slices

that contain the estimated source location is given in equation 2.36.

The image of the SLI, distribution on the honzontal and the vertical slice containing the
maximum using the Single Dipole Fitting method is plotted in Figure 4.8. The location
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( x=-0.1, y=0.1, z=-0.4) of the resulung |J,_.. (SLI, .. =1.63) can be observed in the left region,
represented by the high values (red) in the color scale. The method seems to lateralize the
seizure but anatormucally the resulting location cannot represent a true epileptic source, as it is
not localized in the brain volume. Moreover, the value obtained for the S1.[, (< 2) ndicates a

poor fit. As shown in Chapter 3, this method fails in the case of muluple sources.

Figure 4+.9. The Source Location [ndex distribution on the horizontal and verucal shice
contamming the munimum using the Single Dipole Fuitnng Method

4.4.2.2 Mulduple Dipole Fitting
The second method applied s MUSIC, modified to use CSPs. The first three Common

Spanal Patterns Cg, for which the vanances accounted for in the ictal EEG are wntten in bold

characters in Figure 4.5, are used to minimize the function in equaton 2.42
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The objective 1s to minimize the projection of the umit source M of analytically deterrmuned
onentation i , at each gnd point, on the left null space of the CSPs C,, thought of as spanning
the signal space. The SLI s calculated at each gnd point as in equaton 2.50 and its topography
on both honzontal and vertical slices contarning the maximum values of the SLI, is shown in

['igure 4.10.

Figure 4.10. The Source Location Index distnibution on the horizontal and vertical slice
contatning the minimum using the Muluple Dipole Fitung Method

The locations of the resulting peaks can be identified at x=-0.3, y=0.15, z=-0.05; x=0.35,
y=-0.05, z=-0.25; x=0.45, y=-0.05, z=-0.5 and the corresponding SLI, are, in order, 2.29; 1.78;
1.65. The arrows at the three locations represent the orentations of the unit sources that best

fit the data, analytically determined as in Chapter 2.
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It can be observed that the highest SLI, which lateralizes the seizure focus on the left
temporal lobe, is much greater than the two peaks located on the right side. The smaller values
of the SLI for these last peaks would indicate either secondary sources or sources that are not
dipoles or are not even located in the brain. Their location is improbable to represent an
epileptic source, knowing the brain anatomy, even considering the localization error
introduced by using a spherical model for seizure data. The later source is presumably a source
of movement artifacts, resulting from the patient's movements during the seizure; it may be an
artifact that lies within the same frequency range as the epileptic signal and for this reason

could not be filtered out.

4.4.2.3 LORETA
The estimated LORETA solution i is found from equation 2.64 where T is the model

dependent matrix, calculated for the upper half of the sphere, Cs represents the three
Common Spatial Pattern components selected as spanning the abnormal signal space, and ¥,
is the corresponding eigenvalue matrix. The dimension of T is 3Gx24, with the number of grid
points G=1346, C; is 24x3 and W, is 3x3. The source current density for each grid point

(>»3) is the sum of three consecutive elements of i, corresponding to x;, y and g respectively.

i(x, y,2) = sum, [ig (x, 5, 2)] 4.3

Equation 4.3 is another form of equation 2.65. The source localization result obtained

using LORETA on the real seizure EEG data is illustrated in Figure 4.11.
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Figure +.11. The horizontal and vertcal slice topography of the LORLIZTA solution

The estimated source locaton using LORETA s, for this pauent, x=-0.5, y=0.3, z=0 which
confirms the left anterior temporal ongin of the seizure tocus. Comparcd with the result
obtained with MUSIC, LORETA locates the source 1-2 em more towards the surface ot the

head.

4.4.3 Seizure Spread

The results show that there is a2 main seizure focus on the left side of the brain, with some
right involvemnent. The question is whether the source on the aght side is also responsible for
the seizure onset, and if it is to what degree, or is it simply the sprecad of the epilepuc activity
from the left to the rght side of the brain within the two seconds: the scizurc spread may

occur in fractions of seconds after the seizure onset (Tyner et al, 1983).
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To get more msight into this problem, the Prinaipal Component decomposition 1s applied
to successive one second epochs of the ictal segment of the spatally and temporally filtered
EEG m Figure 4.6, and then localizing the resulting spatial components with the MUSIC

algonthm.

The next figure is the result of localizing all of the resulting principal components of four
successive 1 sec ictal epochs, in the attempt to observe all of the sources responsible tor the
ictal actvity, as ume progresses. The utle of each subplot represents the nme limits ot each
EEG epoch in the ictal segment, in seconds.

4.9 -5.9 59-6.9

Figure +.12. The SLI dynamucs in the first four seconds of the seizure

The localizations resulted in acceptable peaks, greater than 2, only in the left-antenor side

of the sphere. The second source is more active between 5.9-6.9 sec. The dynamics of the
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source locations shows a transfer of the activity from the left side to the right side. One can
observe that in the third second of the seizure, the main source is again located in the left, with
reduced activity in the right side, this effect being accentuated as the time progresses. It can
then be concluded that the second source, localized and shown in Figure 10 is an epileptic
source whereas the third source is probably a source of artifact and is not localized in the

sphere.

Overall, the results show a left anterio-mid-temporal seizure, with some spread to the lower

region of the right temporal lobe.

4.5 Validation of Results
The patient presented in this work had complex partial seizures for 17 years that could

poorly be controlled with multiple medication. The MRI scans revealed a left temporal mesial
lesion. The dissection of the medial temporal lobe revealed tough, fibrous tissue in the region

of hippocampus and its anterior proximity, uncus.

The depth EEG recordings, performed during the operation, showed extensive electrical
activity, spikes, occurring medially of the anterior temporal lobe: between 3 to 5 cm posterior
to the antedor tip of the temporal lobe. The patient underwent left anterior temporal
lobectomy in 1997, and is now seizure free. The results using both MUSIC and LORETA

algorithms confirm the left temporal origin of the seizure onset.
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5 DISCUSSION
The results in this work have shown that the nonorthogonal spatial components resulting
from the Common Spatial Pattern decomposition of the data matrix are better for isolating the
signal space of interest and produce more accurate source localizations than when the

Poncapal Components are used.

The simulations show an example where, from a set of uncorrelated sources, a normal
dipole source accounts for the maximum varance in the abnormal EEG and as a result the
first PC in the EEG decomposition is misassigned to the abnormal source space of interest. If
a single candidate source is projected onto the left null space of all the eigenvectors that
correspond to eigenvalues different from zero, it is shown that all the sources, normal and
abnormal, responsible for the EEG are correctly localized. However, no conclusion can be
drawn, without prior knowledge about the origin of the sources, which is the case in practice,

about which determined locations correspond to abnormal sources.

It was demonstrated that the first PC points along the direction of maximum variance in
the EEG. Due to the constraint that the rest of the eigenvectors be orthogonal, their
orentations depend on the odentation of the first If the signal space is selected as in the
MUSIC algorithm, as spanned by the first eigenvectors corresponding to the first eigenvalues
significantly greater than zero, the abnormal signal space is not correctly isolated and the
abnormal sources can not be localized. Instead, from the common spatial patterns, which form
a non-orthogonal set of basis vectors determined from the covarance matrices of the
abnormal and normal EEGs, the abnormal source space can be correctly selected. The

selection of the basis vectors that span the source space of interest is made from common
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basis vectors to both abnormal and normal EEGs resulting from CSP decomposition also on
the basis of the variance accounted for in the EEG. The difference from the PC signal space
selection used in MUSIC algorithm is that the signal vectors from the CSP decomposition of
the EEG account for maximum difference in variance accounted for in the abnormal and
normal EEGs. The basis vectors that account for minimum difference in varance in the
abnormal and normal EEG span the background source space which is not of interest, and

which is modeled as noise space.

One main challenge in successfully applying the CSP decomposition for signal subspace
selection in the case of real data is finding the two EEG epochs, normmal and abnormal, in
other words localizing the moment in ime when the abnormal sources become active. For the
case of seizure data this is critical, as the aim is to localize the seizure focus. The method of
temporal localization of the seizure onset used in this work is based on CSP decomposition of
the EEG and the MUSIC algorithm. First the whole seizure data is filtered with a low pass
filter such that only the frequencies below 20 Hz are retained. Second, the frequency-filtered
data is visually inspected and the temporal region where 2 significant change in amplitude and
pethaps in frequency or/and phase is determined. It is highly unlikely that the seizure onset
can be determined precsely only by visual inspection. Therefore the seizure onset is
successively assumed at different times in the determined region, the abnormal and normal
EEGs selected as three-second epochs before respectively after the assumed seizure onset and
CSP decomposition of the six second EEG performed. The modified MUSIC algorithm
presented in this work is applied by projecting a candidate source on the left null space of the
selected CSP signal vectors. The seizure onset is then assumed to be at the moment in time for

which the error [, calculated as in equation 2.47, is minimum. Third, in the attempt to reduce
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the artifacts that may occur during the seizure the process is repeated for a band pass filter
with different frequency limits, with more care for the low frequency limit as the seizure
temporal patterns usually lie within a low frequency band. The last step concerns the fact that
the seizure can start in one side of the brain and spread in fractions of seconds after the seizure
onset to other areas of the brain. Choosing the length of the abnormal epoch becomes
important for this reason. In order to determine the length of the abnormal epoch, the time
segments around the seizure onset are symmetrically scanned starting with a maximum length
of three-second normal and abnormal epochs, and each time the CSP decomposition and
MUSIC is applied as before until the smallest [, is obtained. Once the seizure onset, the
frequency band of the band pass filter and the length of the normal and abnormal epochs are
found, the temporal and spatial filter is applied to a larger EEG segment that includes the two
epochs in order to better visualize the evolution in time of the EEG produced by the
abnormal signal sources of interest in both pre-ictal and ictal stage. As it results, the appeal of
this method of seizure onset localization lies in the validity of the results, verified by clinical
and imaging methods. As the focus of this research has been on methods of source
localization, the temporal filtering method developed here came as a necessity for advancing
the source localization methods for actual data, and it involves rather artisan work. The
challenge lies in optimizing this method in order to reduce the tediousness of all of the steps

involved.

The results in this work have also shown that the modified MUSIC and LORETA
algorithms, applied to multiple time slices, are effective for multiple source localization
whereas the Single Dipole Fitting fails. The Single Dipole Fitti.;lg involves scanning the brain

volume with a candidate source and calculating at each grid point the projection of the datz on
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the left null space of this candidate source. This is equivalent to projecting the scaled
eigenvectors resulting from the PC decomposition on the left null space of the candidate
source. This method results in the localization of an equivalent dipole located towards the
source of maximum varance. For the simulated EEG this can be explained by the fact that the
first eigenvector accounts for 57% of the total varance in the EEG. The simulations show
that projecting the whole set of eigenvectors on the left null space of the candidate source
results in the same location as projecting only the signal eigenvectors, with a higher peak when
only two eigenvectors are used. This result is not surprsing as the first two eigenvectors
account for more than 88% of varance accounted for in the abnormal EEG. This indicates
that this method would result in a peak close to the location of an abnormal source if this
source would account for considerably more varance compared to other sources that would
generate the abnormal EEG, thought of as noise. The method applied to the real seizure data
also shows the localization of an equivalent dipole and that the method fails as the predicted
location is not in the brain volume. The SLI obtained using this method is smaller than 2 for
real data and smaller than 3 for simulated data. The higher pezk obtained in simulations is vexy
probably obtained due to the lack of noise in the EEG and the use of the head model for both
forward and inverse problems. For these reasons the GOF was set to 0.999 for simulations
and consequently the SLI>3. Using more dipole models in the projection matrix and scanning
the head successively with only one dipole while the others are kept fixed would result in
minima at the locations where the eigenvectors give a good approximation to the dipole
models. This method of localizing multiple dipoles, not shown in this work, has two
disadvantages: one disadvantage is the high computational cost; the other disadvantage is that

it is based on the PC decomposition, which has been shown to be unreliable for the selection
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of the signal space. This last disadvantage could be overcome by using the CSP

decomposition, instead.

The MUSIC algodthm involves scanning the brain volume and projecting, at each grid
point, a single candidate source on the left null space of the signal vectors derived from the
covarance data matrix and directly calculating the odentation and the dipole moment that
results in minimum error. The error is minimum at each location where one of the spatial
components from the projection matrix approximates the linear combination of the columns

of the transfer matrix, with coefficients given by the orentation vector.

The original MUSIC algorithm applied to EEG uses as signal vectors the first principal
components of the data. As shown, these orthonormal spatial components can fail to correctly
describe the source space of interest. In the simulated EEG an example of when the PC
components fail to descrbe the abnormal source space is given and it is shown that neither the
set of selected signal vectors nor the set of corresponding waveforms descrbes the whole set
of abnormal sources. In this example it happens that the second prncipal component
approximately describes the second source image and therefore this abnormal source is

localized within an error of only 0.5 cm.

The modified MUSIC algorithm applied in this work is different from the MUSIC
algorithm referred to in the previous paragraph in the sense that the candidate source is
projected on the left null space of a set of nonorthogonal components resulting from the CSP
decomposition of the data. This is effective since the background components can be chosen

as being in the left null space of the signal vectors and are therefore modeled as noise
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components. It results that the projection matrix is the key to the success in applying this

method.

The main appeal of the MUSIC algorithm is that the projection matrix can be pre-
calculated at each location and only the minimum eigenvalue and the corresponding
eigenvector of a 3x3 matrix has to be determined. In this wotk it has been demonstrated that
this eigenvector is the best odentation of the candidate source that minimizes its projection on
the left null space of the data and the eigenvalue is the minimum error in this projection at the
grd locaton. This suggests that the number of parameters that has to be found by tral and
error is reduced to three (the location parameters) instead of six (three location parameters,
two odentation parameters and one moment). The result is that the scanning for the source
localization of multiple sources can be performed with practically no computational difficulties

even for a finer grid than the one used in this work.

In the simulations presented in this work, the localization of the abnormal soutces using the
CSP signal vectors in the MUSIC projection matrix shows that the peak for the distributed
source is not maximum. In other words, the error J, is not as close to zero as for the abnormal
dipole source. As the dipole sheet is a set of closely spaced, synchronously active dipole
sources, the best fit is found for an equivalent dipole placed in the vicinity of the distributed

source.

On the other hand LORETA, which is not dependent on the source model or on the
correlation between current sources, gives a blurred solution and localizes better the dipole

sheet than the dipole source. Evidently, the low spatial resolution results in a lower peak. The

dipole source is poorly localized with LORETA due to the low resolution of the method.
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Several aspects related to source localization have been studied and not addressed in this
work. One aspect concems the location of the sources with respect to the grid points. In the
simulated EEG, both dipole sources, the normal and the abnormal, are simulated such that
they are located at grid points. Not described simulations showed that the localization of the
noise free dipole sources not on the grid using MUSIC results in low peaks at grid locations in
the vicinity of the simulated dipole source. It has been observed that the SLI topography of
the radial dipole sources located off the grid show sharper peaks compared to the SLI
topography for the tangential dipoles for which the peak is broader and flatter. The grid
refinement of the volumes around the peaks revealed sharp peaks at the dipole source
locations. However, in the presence of noise it was found that the grid refinement does not
produce sharper peaks at the true soutce locations. If the PC is used in the projection matrix,

the flat peak in this case is predominantly the result of the presence of noise components in

the signal space.

Another aspect, which is not presented in this work, is the influence of the number of
electrodes on source localization. Simulations have been done to get some insight into this
problem. The main conclusion is that for dipole sources located on the grid, in the absence of
noise, the SLI topography contains false peaks when the number of electrodes is smaller than
the number of sources times the number of source parameters. For sources simulated in 2
sphere it was found that the minimum number of electrodes necessary for each source to be
localized is six. The 24 electrode configuration is therefore acceptable both for the case of the
three simulated sources, and for real data where the dimension of the signal space was
estimated as being three. It was also found that if the electrode density differs on the surface,

even for a number of electrodes of six times the number of sources, it is still possible to find
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false peaks in the regions towards the small electrode density. This effect is accentuated in the
case of dipole sources generated off the gnd, when, in the absence of noise, refining the grid
helps to enhance the SLI at the source locations. This is useful even if the number of

electrodes is smaller than required.

The main conclusion is that the source localization of the EEG sources is feasible either by
using the MUSIC algorithm or the LORETA method, subject to the correct selection of the
signal subspace. It was found that the CSP decomposition better approximates the spatial and
temporal pattems of the EEG model than the PC decomposition and is more effective in the

selection of the signal space.
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6 CONCLUSIONS
This work described, and applied methods of estimating the set of parameters that

represent the sources of EEG. As an example, a forward model with two dipole sources (one
considered as normal, relatively close to the surface, and one deep, abnormal) and a dipole
sheet (also abnormal) in a three shell spherical model was simulated. Two approaches to

decomposing the EEG and their effectiveness for source localization were presented.

The simulation results showed that the Principal Component decomposition of the EEG is
ineffective for isolating the sources of interest (abnormal). It was shown that the Common
Spatial Pattern decomposition gives a better approximation of the forward model and

therefore this decomposition is more effective to use in source localization.

Three source localization algorithms, Single Dipole Fitting, Multiple Source Localization
(MUSIC) and LORETA, were presented. The simulatons performed using the three methods
indicate that the Single Dipole Fitting is ineffective in the case of data produced by more than
one source, as is generally the case in practice. On the other hand, MUSIC and LORETA
methods correctly localize the sources of interest when used with the CSP decomposition of
the EEG. However, it is shown that the Multiple Source Localization localizes better the single

dipole sources, whereas LORETA gives better results for localizing distributed sources.

One example of seizure data was chosen in this wotk to illustrate the practical application
of the EEG spatio-temporal decomposition and the localization of the epileptic focus. The
data was temporally and spatially filtered using methods based on the CSP decomposition in
order to determine the seizure onset and to isolate the spatio-temporal pattems of interest

from the noise and background activity present in the EEG recording. MUSIC and LORETA
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using the CSP decomposition correctly lateralized the seizure focus whereas the Single Dipole

Fitting failed. The dynamics of the seizure were also presented, and correlated to the clinical

The results show that it is possible to determine the electrogenesis of the neural activity of
interest, without any prior knowledge about the number of sources in the signal space, by
using the Common Spatial Pattern Decomposition of the EEG with the Multiple Source
Localization - MUSIC, or LORETA method. In order to obtain accuracy, however, 2 more

realistic head model calculated for each patient, based on MRI and CT data, should be used.
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