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Abstract

Efficient receiver design plays a crucial role in designing next-generation wireless 

communication systems for high data-rate transmission. In this thesis, we propose a 

unified framework for tree search based data detectors for multiple-input and multiple- 

output systems. We also develop constrained linear detectors, decision feedback de­

tectors and multistage detectors.

Blind data detectors for orthogonal space-time block code are derived. We also 

develop an efficient detector for differential unitary space-time modulation (DUSTM), 

which is termed as bound-intersection detector (BID). The extended Euclidean algo­

rithm is used to generate the candidate sets. Our BID achieves significant computa­

tional savings over the exhaustive maximum likelihood search. Moreover, we develop 

BID variants for multiple symbol detection of DUSTM over both Rayleigh and Ricean 

channels. Furthermore, blind and semi-blind data detectors for orthogonal frequency 

division multiplexing are derived. Channel parameter estimation algorithms are also 

derived.
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Chapter 1

Introduction

1.1 Background and M otivation

Driven by the demand for increasingly sophisticated connectivity anytime, anywhere, 

wireless communications has emerged as one of the largest and most rapidly growing 

sectors of the global telecommunications industry. From broadcast radio stations to 

cellular telephones to wireless Internet, there are more wireless applications than ever 

before.

The first generation systems were introduced in the mid 1980’s, and can be char­

acterized by the use of analog transmission techniques, and the use of simple multiple 

access techniques such as frequency division multiple access (FDMA). Those systems 

such as Advanced Mobile Phone Service (AMPS) only provided voice communica­

tions. They also suffered from a low user capacity, and security problems due to the 

simple radio interface.

Second generation systems were introduced in the early 1990’s, and all used digital 

technology. This increases the user capacity almost three times. This increase was 

achieved by compressing the voice waveforms before transmission.

Third generation systems are an extension of second-generation systems, and op­

erators have begun roll out of services since 2001. The capacity of third generation 

systems is over ten times that of original first generation systems. This high capacity 

is achieved by using complex multiple access techniques such as code division multiple

1
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access (CDMA), or an extension of time division multiple access (TDMA), and by 

improving the flexibility of services available.

However, the consumers’ demand for wireless multimedia services and high-speed 

Internet access has been growing. As a result, the wireless industry continues to 

evolve, and the demand for more sophisticated communications technologies grows. 

Multiple-input and multiple-output (MIMO) and orthogonal frequency division mul­

tiplexing (OFDM) are two technologies under consideration for the future fourth 

generation (4G) wireless networks providing multimedia services.

MIMO is a communications technique that uses multiple antennas to send and 

receive wireless signals, allowing more data to be transmitted without increasing 

bandwidth. This is accomplished by communicating along parallel spatial channels 

at the same time and in the same frequency. It has been both shown theoretically 

and demonstrated in experimental laboratory settings that MIMO systems over a rich 

scattering wireless channel are capable of providing enormous capacity improvements 

without increasing the bandwidth or transmitted power. Hence, the recent explosion 

of interest is from both academic and industrial researchers in the area of signal 

processing techniques for MIMO systems.

OFDM is a multicarrier transmission technique, which divides the available spec­

trum into many sub-carriers. Each one is modulated by a low data rate stream. 

OFDM is similar to FDMA in that multiple access is achieved by subdividing the 

available bandwidth into multiple channels, which are then allocated to users. How­

ever, OFDM uses the spectrum much more efficiently by spacing the channels much 

closer together. This is achieved by making all sub-carriers orthogonal to one another, 

preventing interference between the closely spaced carriers.

Many standards have been developed for further global wireless systems, with 

more standards likely to emerge. The performance improvements resulting from new 

standards usually come at the cost of increased computational complexity in the 

receiver (and often the transmitter as well). The design of low-complexity receivers 

is, therefore, one of the key problems in 4G wireless system design. The largest 

potential for complexity reduction of highest-performance very large scale integration

2
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(VLSI) signal processing circuit depends highly on the optimization of algorithms. In 

this thesis, we optimize detection algorithms for MIMO and OFDM systems, which 

is critical to achieve practicable solutions for 4G wireless systems.

MIMO signal detection has been the subject of intensive study. A prime example 

is the Bell laboratories layered space time (BLAST) architecture [1], and the related 

V-BLAST detector, which is a suboptimal detector. Recently, much effort has been 

expended on the sphere decoder (SD) [2], which is considered to be one of the most 

important and industrially relevant algorithms. Maximum likelihood (ML) or optimal 

detection of signals transmitted over MIMO channels is well-known to be an NP-hard 

problem. However, the SD has been shown to offer ML detection at a computational 

complexity that is polynomial in the average case [3], where the number of antennas is 

moderate and the signal-to-noise ratio (SNR) is high. Hardware implementations of 

the SD have already been reported in the literature [4,5]. Even so, existing SDs exhibit 

two major weaknesses. First, the performance of most current SD algorithms is highly 

sensitive to the value chosen for the initial search radius. The successful termination 

of the algorithm, i.e., returning an optimal solution, as well as its time complexity, 

is also heavily dependent on the initial search radius [6]. Secondly, although its time 

complexity is polynomial in the average case, the complexity can become very large 

when the SNR is low, or when the problem dimension is high, e.g., at the high spectral 

efficiencies required to support higher communication rates [6]. These motivate the 

development of near ML detectors that have affordable worst-case complexity in all 

the cases. We will present these detectors in Chapter 2.

Space-time coding techniques for MIMO system have recently emerged as a promis­

ing way for effectively utilizing the multi-antenna diversity. In particular, space-time 

block codes (STBCs) based on the theory of orthogonal designs [7] have attracted 

much attention because they achieve the maximum antenna diversity gain with a 

simple code structure. In addition, ML decoding of orthogonal STBCs (OSTBC) 

requires only simple linear processing, if the channel fading coefficients are known. 

However, a multiple antenna channel is difficult to estimate and may vary rapidly due 

to the users’ mobility. Moreover, channel state information (CSI) estimation using

3
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pilot symbols reduces the effective data rate. These factors motivates blind OSTBC 

detection. In Chapter 3, we investigate ML blind detection of OSTBCs.

Differential space-time modulation (DSTM) [8-10], particularly differential uni­

tary space-time modulation (DUSTM), allows MIMO communication entirely without 

the possession of CSI by either the transmitter or the receiver. Since DUSTM gen­

eralizes the classical single-antenna differential phase-shift keying (DPSK), similar 

to DPSK, DUSTM performs 3 dB worse than its coherent counterpart. To improve 

the performance of single symbol differential detection, attem pts have been made to 

extend some of these detection techniques to the multiple-antenna case. In Chapter 

4, efficient algorithms for multiple symbol detection of DUSTM are developed.

In OFDM systems, coherent data detection also requires CSI. The use of a cyclic 

prefix (CP) and pilot tones for channel estimation constitutes a significant overhead 

or bandwidth loss, motivating the development of blind techniques for OFDM. Sev­

eral blind channel estimators have been proposed by using statistical or deterministic 

properties of the transmit and receive signals. However, most of these blind estima­

tors typically use averaging over a large number of OFDM symbols (up to several 

thousands in some cases). These estimators thereby introduce a considerable latency 

into the overall system and have high complexity. We will develop several blind data 

detectors for OFDM systems requiring only one OFDM symbol and give their efficient 

implementations in Chapter 5.

1.2 Exam ples of D etection  A lgorithm s

Many detection problems considered in this thesis may be based on the system model 

formulated in a  lattice as

r  =  H x  +  n, (1.1)

where x  £ Z n, r ,n  £ TZm denote the system input, output and additive noise, 

and H  £ 'JZ^xn represents the transfer matrix (i.e., the channel matrix in MIMO 

system), Z n denotes the n-dimensional integer lattice. Generally, the noise terms n*, 

i = 1, • • • , m  are independent and identically distributed (i.i.d.) zero-mean Gaussian

4
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random variables with the same variance <r2. In this chapter, we assume that n > m  

and H  has full column rank. Under such conditions and assuming H  is perfectly 

known at the receiver, the optimal ML detector that minimizes the average error 

probability is given by the so-called integer least-squares problem

x =  arg min Mr — Hxll2, x€ z n ( 1 .2 )

where || • || denotes the Euclidean norm. Eq. (1.2) is known as the closest vector 

problem (CVP) in the lattice theory. The lattice generated by a generation matrix 

H  is [11]

A(H) =  {Hx : x  e  Z n}. (1.3)

The columns of H  are called basis vectors of A, and the number n  is said to be

the dimension of A. Other applications of CVP include vector quantization and

cryptography [11].

Note that (1.1) is a model for real systems. Often, complex signal constellations 

such as quadrature amplitude modulation (QAM) are used. If (1.1) is considered 

to be complex, the resulting complex detection problem can be transformed into an 

equivalent real problem as

x  =  argmin ||r — H x ||2 (1.4)
xeQ"

where

(1.5)r  =
5R{r}

Y —
5R{x}

. .
5 A

H  = (1.6)

and
r 3?{H} -3 { H }

3{H } 3?{H}

Q denotes the real constellation after the transformation. For example, a square QAM 

constellation is transformed to a pulse amplitude modulation (PAM) constellation in 

(1.4). For a MIMO system with N r  transmitted antennas, we have n  =  2N t  in (1.4). 

Since (1.4) is similar to (1.2), we only discuss how to solve (1.2) in the following 

using two classic detection algorithms in communications theory. The vertical Bell 

Laboratories Layered Space-Time Architecture (V-BLAST) detection algorithm [1], 

which is suboptimal, and the optimal sphere decoding algorithm [2].
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1.2.1 V-BLAST algorithm

The V-BLAST detection algorithm [1] consists of nulling and interference cancella­

tion. Nulling is performed by linearly weighting the received symbols to satisfy the 

zero forcing (ZF) or minimum mean squared error (MMSE) performance criterion. 

Denoting the z-th column of H  as h f, the zero-forcing nulling vector w it z =  1, . . . ,  n 

is chosen such that

For interference cancellation, the effect of already-detected symbols can be sub­

tracted from the symbols yet to be detected. This improves the overall performance 

when the order of detection is chosen carefully. For example, denoting the received 

vector r  by r lt if the nulling vector is w j, the first symbol is then detected by

The interference due to xi on the other symbols can be subtracted by taking r 2 =  

r i — ®ihi. Assuming x\  =  xi  (i.e., the decision is correct), the next symbol s 2 

is then detected using w2. The detection process consists of n iterations. In the 

fc-th iteration, the signal with maximum post-detection SNR among the remaining 

n — k + 1 symbols is detected, which is known to be the optimal detection order. The 

post-detection SNR for the k-th detected symbol is given by

From (1.9), maximizing pk is equivalent to minimizing ||w fc||2. 

The whole algorithm is described as follows

• Initialization:

(1.7)

• I H I2 s i  =  argmm |a: — Wj r i | .
xeQ

( 1 .8 )

Gi = I I 1

ki =  arg min ||(Gi)j||2

ri =  r ( 1 . 10)

( 1 .11 )

(1.12)
j

6
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• Recursion: for i = 1 to n

W ki = (G i)^ (1.13)

xki =  argmin \x — wj?r,-|2 
xeQ

(1.14)

r i+i =  i - j - x fcj(H)fcj (1.15)

G i+, =  4 , (1.16)

k ,+1 =  argmin ||(G i+1) j ||2 
J|S(*|...*»)

(1.17)

where (A){ is the i-th column of matrix A and Hf. is obtained by zeroing the 

k i , . . . ,  ki-th columns of H.

As suggested in [12], given an optimum order k i , . . . , k n, V-BLAST detection is 

equivalent to the zero forcing decision feedback detector (ZF-DFD). Assuming II  is 

the column permutation matrix obtained from the optimum order, we apply I I  to H. 

As in [12], the filtering matrices in constrained linear detectors and the corresponding 

constrained ordering can be applied similarly. Let the QR factorization of G =  H II 

be
r R  

0

where R  is an n x  n  upper-triangular matrix, 0 is the (m — n) x n  all-zero matrix, 

Qi is an m x n  unitary matrix and Q2 is an m  x  (m — n ) unitary matrix. Eq. (1.1) 

is equivalent to

y  =  R x  +  v  (L19)

where y  =  Q f r  and v  =  Q fn  is also an i.i.d. complex Gaussian vector with mean 

zero and variance The second description of V-BLAST algorithm is given by

G — [Qi, Q2] (1.18)

for i = n  to 1

Xi =  argmin|2/i -  r ^ x f  (1.20)
x €Q

y  =  y  -  (R)f®i (1.21)

end

where r,-,* is the (i, i)-th entry of R.

7
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1.2.2 Sphere decoding algorithm

Another remarkable algorithm for (1.2) stems from [13], which is well-known as sphere 

decoding in communication theory [2]. The original SD only tests the lattice points 

lying inside a hypersphere. Schnorr and Euchner (SE) [14] then suggested an im­

portant improvement of the SD by examining the nearest points to the center of the 

hypersphere first. In wireless communications, the SD first appeared in [2] on lattice 

code decoding. Since then, the SD has gained popularity in CDMA [15], space-time 

coding [16] and MIMO systems over frequency selective channels [17]. Its popularity 

stems from the fact that the SD offers ML decoding at lower complexity, as opposed 

to the exponential complexity incurred by the exhaustive search. In [3], it has been 

proven tha t for a wide range of SNR and lattice dimension, the expected complexity 

of the SD is polynomial, often cubic in the lattice dimension.

In the following, we use the formulation (1.19). The lattice point R x  lies in a 

sphere of radius d if, and only if

||y — R x ||2 < d2.

Eq. (1.22) can be written as

E
t=i

< < e

(1.22)

(1.23)

where r^- denotes the th entry of R. The left-hand side (LHS) of the above 

inequality can be expanded as

n ( n V
{Vn f'n ,n '^n )  4" idJn—1 f 'n —l .n ^ n  D i—l,n —l® n—l )  4* • ■ • 4" ^  '  I 2/1 ^  '  T 1,j% j  J ^  d

i= l \  j = 1 J
(1.24)

where the first term depends only on x n, the second term on rcn,rrn_i and so forth. 

Therefore a necessary condition for R x  to lie inside the sphere is that d2 > (yn — 

rn,nXn)21 which is equivalent to xn belonging to the interval

(1.25)

where [•] denotes the smallest integer greater than or equal to its argument and |_-J 

denotes the largest integer less than or equal to its argument.

~ - d  +  yn‘ d  4" V n

^n,n .  1 'n ,n  .

8
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For each candidate xn satisfying the above bound, we define d2_1 = d2 — (yn — 

Tn,nXn)2- We can get the following stronger necessary condition for a;n_i

{Vn—1 D i—l .n ^ n  D j - l . n —lX j i—l )  — 4 —1

which leads to the following bound

4 —1 ~b Dn—\ 1'n—\<nXn
D i—l,n —1

—  ®Tl—1 —

4 —1 ~b Un— 1 Tri— l.n^n
D i—l ,n —1

(1.26)

(1.27)

The SD chooses a candidate for x n^i from the above region. We continue in the same 

fashion for xn_2 and so on. The bounds for Xk are

- 4  +  Vk ~  £ " = fc+1 n j x j
rk,k

< X k <
4  +  Vh £j=fc+i rk,jXj 

rk,k
(1.28)

where =  d2+1 — ^j/jt+i — £ " =fc+i rk+ijXjj . If there is no lattice point within the 

bounds for Xk, the SD comes back to Xk+i and chooses another candidate value from 

the corresponding region for rcjt+i. If the SD reaches xi,  the SD finds a candidate 

lattice point x ' within the hypersphere of radius d. SD checks the value of ||y — Rx'H2. 

If this value is less than d, we update the radius d which means the search space is 

limited by the new radius. The above process continues until no further lattice points 

is found within the hypersphere. The lattice point that achieves the smallest value 

of ||y — R x ||2 within the hypersphere is deemed as the ML solution. If no point in 

the sphere is found, the sphere is empty and the search fails. In this case, the initial 

search radius d must be increased and the search is restarted with the new squared 

radius. In [3], the authors analyzed the complexity based on the statistical property 

of the problem. They choose an initial radius such that they can find a lattice point 

with probability 1 — e, and if no point is found, they increase it to a probability of 

1 — e2 and so on. The complexity of the SD with such choice of initial radius is [3]

n — m  + k '
C(m, o2, e) =  5 ^ (1  -  t)€  1 ^  f p{k) ^  7 I

i=l k= 1 i=o +

where a* is chosen such that

rk(l) (1-29)

/can n \  . .
7 ( - £ ’ 2 J  =  1 _ e ’ * =

(1.30)
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where f p(k) is the number of elementary operations (additions, subtractions and

multiplications) that the SD performs per each visited point in dimension k, 7 (0 , x) 

is the incomplete gamma function given by

The complete SD algorithm is shown in A lg o rith m  1.

1.3 Thesis Contributions

Although the average time complexity of SD is low at high SNR, the complexity 

can become large when the SNR is low, or when the problem dimension is high. In 

addition, for VLSI circuit implementation of the SD, the throughput is limited by 

the worst-case complexity, which is exponential in the number of variables. There­

fore, it is important to develop suboptimal algorithms for large system applications. 

In Chapter 2, we develop a unified framework for detecting MIMO systems, which 

includes the well-known algorithms such as ZF-BLAST [1], SD [2], combined ML 

and ZF-DFD [18] and the B-Chase detector [19] as special cases. We generalize the 

feedback decoder of Heller [20] for convolutional codes to a new generalized feedback 

detector (GFD) with three characteristic parameters: window size, step size and 

branch factor. W ith different values for these parameters, the GFD achieves different 

diversity orders between 1 and N  and different SNR gains. These parameters also 

provide a flexible performance-complexity tradeoff. We also consider the relaxation 

approach to the MIMO detection problem. A class of constrained linear detectors 

and a class of constrained decision feedback detectors are developed. Moreover, a 

polynomial constrained detector is proposed and solved using penalty function and 

differential equations. For high order constellations, we derive a multistage sphere 

decoding (MSD) algorithm, which exploits the fact that many higher-order signal 

constellations can naturally be decomposed into several lower-order constellations.

(1.31)

and Tk{l) is given by the coefficient of x 11 in the expansion

(1.32)

10
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n — d  . Pn — Jln> Cm 00|

input : y, R, d. 
output: The optimal x.

1 Set k =  n, c
2 Set UBk =
3 Xk =Xk + 1 (Increase a:*);
4 i f  Xk < UB(xk)  t h e n

5 | goto 10;
6
7  e l s e

8 | goto 17;
0 e n d

10  k = k -f 1 (Increase &);
11 i f  k = n +  1 t h e n

n “  u I. Pn — ynt m — u'J i ^
J and LB* = | =fk±a-1, ** =  LB* -  1 (Bounds for x k);

goto 31;12
13
14 e l s e

15 | goto 3;
16 e n d
17 if k  =  1 then

18 
10
20 e l s e

goto 26;

21

22

23

24

k = k -  1;
Pk =  Vk ~  J2j=k+1 r k , j x j \

Ctf; ~  d-t+l ~  [Vk+l ~  Ylj=k+1 r k+ l , jx j )  i 
goto 2;

25 end
26 C =  d?n -  d? +  (2/1 -  ri 'iXi )2;
27  if C < Cm then

28 | Cm — C, x m =  x;
20 end
30  goto 3;
31  return x m\

A lg o rith m  1: Sphere Decoding Algorithm

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapters 3 and 5 focus on the application of efficient detection algorithms to dif­

ferent systems. In Chapter 3, we derive a general decision rule for the ML blind 

OSTBC decoding in a quasi static (QS) fading channel. Using the linear dispersion 

property of OSTBC, the decision rule is shown to be a quadratic minimization prob­

lem, which can be solved using V-BLAST, SD or the algorithms in Chapter 2. To 

improve the bandwidth efficiency, a novel approach for totally blind decoding without 

any pilots is presented using two different constellations. A superimposed training 

scheme is also presented. Moreover, we give an MMSE channel estimator and derive 

the Cramer-Rao bound (CRB). Similarly, we develop new blind and semi-blind data 

detectors for OFDM systems in Chapter 5, which also result in a quadratic form in 

data symbols. Since the semi-blind detector requires both channel correlation and 

noise variance, we propose a cyclic-prefix based channel correlation and noise vari­

ance estimation algorithm. An enhanced data detector is also derived by noting that 

for a given least squares (LS) channel estimate, the true channel impulse response 

(CIR) can be modeled as complex Gaussian with mean being the LS channel estimate 

itself. The LS channel estimate thus gives a prior on the true channel and averaging 

the likelihood function over the prior distribution gives the enhanced detector that 

mitigates the effect of channel estimation errors.

In Chapter 4, we develop a new, efficient detector for DUSTM. Different from 

the n-dimensional NP-hard problem (1.2), the DUSTM detection problem can be 

formulated as a one-dimensional NP-hard problem. A fast exact ML detector, called 

bound-intersection detector (BID), is derived for single symbol detection with diago­

nal constellations. A key novel feature of the BID is the use of the extended Euclidean 

algorithm [21], well-known for determining the greatest common divisor (gcd) of two 

integers, to generate the candidate sets. While the ML-search complexity is exponen­

tial in the number of transmit antennas and the data rate, our algorithm, particularly 

in high SNR, achieves significant computational savings over the naive ML algorithm. 

We have also developed four BID variants for multiple symbol detection of MSD. The 

first two are ML and use branch-and-bound (BnB), the third one is suboptimal, which 

first uses BID to generate a candidate subset and then exhaustively searches over the

12
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reduced space, and the last one generalizes decision-feedback differential detection. 

Chapter 6 concludes the thesis and outlines future work in this area.

13
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Chapter 2

Efficient D ata D etection  for 

U ncoded MIM O System s

This chapter presents several efficient data detection algorithms for spatial multi­

plexing multiple-input multiple-output (MIMO) systems. Section 2.1 introduces the 

background of the problem. Section 2.2 develops a general framework for tree search 

based detection algorithms. In Section 2.3, a class of constrained linear detectors and 

a class of constrained decision feedback detectors are developed, and a polynomial 

constrained detector is also proposed. A multistage sphere decoder for high order 

constellations is given in Section 2.4.

2.1 Introduction

2.1.1 Background

As stated in Chapter 1, the use of MIMO systems in a rich scattering wireless channel 

is capable of providing enormous theoretical capacity improvements without increas­

ing the bandwidth or transmitted power. Because of the promise of extremely high 

spectral efficiencies, MIMO techniques have attracted considerable interest in the 

wireless research community and are under consideration for future high-speed wire-

14
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less applications including wireless local area network (LAN) and wireless cellular 

systems. The Bell-Labs layered space-time (BLAST) architecture is such a MIMO 

system.

In uncoded MIMO systems, the complexity of the maximum-likelihood detector 

(MLD) increases exponentially with the number of transmit antennas, making the 

MLD infeasible. Several reduced-complexity suboptimal detectors have thus been 

proposed in the literature. The zero-forcing (ZF) decision feedback detector (DFD) 

with optimal ordering or the V-BLAST detector is proposed in [1] using nulling and 

interference cancellation. Using nulling based on the minimum mean square error 

(MMSE) principle, ZF-DFD is extended to MMSE-DFD [22], and this detector offers 

a compromise between interference suppression and noise enhancement. Since the 

performance of such detectors is significantly inferior to tha t of the MLD, and since 

the complexity of the MLD is substantial, recent research has focussed on developing 

reduced-complexity high-performance MIMO detectors. For example, in [18], a com­

bined detector (ML-DFD) is proposed to detect the first few symbols using a MLD 

and the remaining symbols using a ZF-DFD, which prevents the error propagation 

resulting in a higher diversity order. In [2], the sphere decoder (SD) is proposed as 

an optimal detection method, which has low complexity in high SNR. However, in 

low SNR or for systems with a large number of transmit antennas, the SD complexity 

can be high. The Chase decoder for linear block codes has been adopted for MIMO 

detection in [19]. The Chase MIMO detector generates a list for the first detected 

symbol. For each element from the list, a subdetector is applied to the remaining 

symbols. The vector with the minimum mean square error is chosen as the output. 

Depending on the type of subdetector, the performance of the Chase detector varies 

between those of ML and ZF-BLAST. Different SNR gains can be achieved with dif­

ferent list sizes. But the Chase detector achieves a diversity order of 1 or A  in an 

N  x N  system, but nothing in between.

In the relaxation approach, the discrete set is embedded in a larger multidimen­

sional continuous space, and the minimization is performed over this continuous space. 

For example, linear detectors using relaxation approach have been proposed for other

15
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systems. In code-division multiple-access (CDMA) systems, a generalized MMSE 

(GMMSE) detector is proposed [23], where the binary phase shift keying (BPSK) 

vectors are relaxed so that they lie inside the smallest hypersphere that contains the 

unit hypercube. In [24], a tighter relaxation is used to develop a constrained least 

squares (CLS) detector for orthogonal frequency division multiplexing (OFDM) /  

spatial division multiple access (SDMA) systems employing unitary signal constella­

tions. In [25], semidefinite relaxation (SDR) has been applied to CDMA systems with 

BPSK. SDR has been extended to general M-PSK constellations in [26]. However, 

all these relaxations are loose, which motivates the search for tighter and universal 

relaxations applicable for any constellations.

In this chapter, we first develop a unified framework for detecting spatial multi­

plexing systems such as V-BLAST. We reformulate the MIMO detection problem as 

a set of overlapping subdetection problems; the feedback decoder of Heller [20] for 

convolutional codes is then extended to the new generalized feedback MIMO detec­

tor (GFD) with three characteristic parameters: window size, step size and branch 

factor. W ith different values for these parameters, the GFD provides a performance- 

complexity tradeoff and also yields many well-known algorithms such as the ZF- 

BLAST [1], the SD [2], the combined ML and ZF-DFD [18] and the B-Chase detec­

tor [19] as special cases. Moreover, all such detectors can be explained as tree search 

algorithms. If linear detectors are used as the subdetector, the GFD also generalizes 

the L-Chase detector in [19]. A reduced-complexity shared computation technique 

is also proposed, ensuring the GFD complexity varies between those of the ZF-DFD 

and the MLD. The symbol error rate of a detector depends on the diversity order and 

SNR gain. These are derived analytically as a function of the three parameters; for 

example, the diversity order of the GFD varies between 1 and N.  We use the union 

bound (UB) approach for the symbol error probability for this purpose.

We then extend the idea of constrained detection into uncoded MIMO systems. A 

class of constrained linear detectors and a class of constrained DFDs are developed. 

Real constrained linear and decision feedback detectors are proposed for real con­

stellations by suppressing the imaginary interference component. We generalize the

16
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CLS detector of Thoen et al. [24] by dividing the signal vector to several subgroups 

and applying the constant modulus constraints to these subgroups. Similarly, the 

GMMSE detector is extended to non-constant modulus constellations. New ordering 

scheme is also proposed using the constrained linear detectors, which maximizes the 

signal-to-interference and noise ratio (SINR). In V-BLAST, the first detected symbol 

limits the overall performance. The constrained linear detector and the DFD are thus 

combined to improve the quality of the first detected symbol and to mitigate the error 

propagation inherent in the DFD. A polynomial relaxation is also proposed, which 

can be applied for any constellations. The ML MIMO detection problem is hence 

reformulated as an equality constrained minimization problem. The constrained op­

timization problem is solved using a penalty function with Newton method. Because 

the Newton method may be trapped by local minima, a differential equations algo­

rithm using classical mechanics is proposed to improve the detection performance.

Finally, we develop a multistage sphere decoder for systems using high order con­

stellations. This new multistage sphere decoder exploits the fact that many higher- 

order signal constellations can naturally be decomposed into several lower-order con­

stellations. We develop a 2-stage SD for a 16-ary quadrature amplitude modulation 

(16QAM) MIMO system by decomposing 16QAM into two 4QAM constellations. 

The first stage generates a list of 4QAM vectors. For each of these, the second stage 

computes an optimal 4QAM vector.

2.1.2 System model

We consider a spatial multiplexing MIMO system with N t  transmit antennas and 

N r receive antennas. At the transmitter, source data are mapped into complex 

symbols from a finite constellation Q. The resulting data stream is partitioned into 

N?  parallel substreams, each of which is sent though a different transmit antenna 

over a rich scattering memoryless (flat fading) channel. Each receive antenna receives 

the signals from all the N t  transmit antennas. The discrete-time baseband received

17
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signals a t any time t can thus be written as

r  =  H x +  n  (2.1)

where x  =  [z i , . . . ,  x ^ t ]t , 6 Q is the transmitted signal vector, r  =  [ r i , . . .  ,r;v/l]:r, 

Ti G C, is the received signal vector, H  =  [hij] G CNrxNt is the channel matrix, and 

n  =  [ni, . . . ,  nwR]T, ni G CAf{0, cr£), is an additive white Gaussian noise (AWGN) 

vector. The components of n  are identically independent distributed (i.i.d.) complex 

Gaussian, so are the components of H, i.e., /i,j ~  CAf(0, 1). Note that the linear 

model (2.1) can also be applied to certain spatially coded MIMO systems, single 

antenna systems over time and frequency selective channels, intersymbol interference 

(ISI) channels, and multiuser systems. Consequently, the GFD can also be used 

for such applications as multiuser detection for CDMA. For brevity, we restrict our 

considerations to MIMO in this chapter.

For an AWGN channel and i.i.d. source data, and assuming that the channel is 

perfectly known to the receiver, the MLD that minimizes the average error probability 

is given by

x  =  argmin ||r -  H x ||2. (2.2)
xzqnt

Due to the discrete alphabet Q, linear detectors such as least-squares detectors gen­

erally do not give the optimal solution. Eq. (2.2) resembles (1.2) except that Z  is 

replaced by Q. Throughout this section, we assume that the channel is perfectly 

known to the receiver and N r  < N r . If N r > N r , for constant modulus constella­

tions with unity energy, we have x wx =  NT. Since a 2x Hx  is a constant, adding it to

the right hand side of (2.2) does not change the optimization problem and we get the 

equivalent problem as

x  =  argmin | | r ' - H 'x | |2. (2.3)
x&Qnt

where

(H ')"H ; =  H " H  +  (T2I Nr, r ' =  (H ')- / /  H ^ r . (2.4)

For non-constant modulus constellations, when N r  is large, x Hx can also be approx­

imated as a constant using the law of large numbers. Therefore (2.3) is still valid in
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this case. If NT is not very large, systems employing M-QAM constellations can also 

be reformulated as below.

Let a M-QAM constellation and all M-QAM N  x  1 vectors be Qm and Q%f. 

We note that any M-QAM (M  =  2n) constellation can be represented as a weighted 

sum of n /2  quadrature phase shift keying (QPSK) constellations when n  is an even 

number [27]. That is, for s €  M-QAM and s* e  QPSK, 0 <  i < n /2 , we have

For brevity, we only show how to decompose 16QAM so that our algorithm is applica­

ble. Other M-QAM cases can be derived similarly. Using (2.5), the 16QAM transmit 

vector x  can be expressed as

that H ' in (2.3) is an N r  x N r  full rank matrix. Therefore, our proposed GFD and 

the former detectors [1,18,19,28] can also be applied to the equivalent problem (2.4).

Before proceeding, we first transform MLD (2.2). Column reordering can be 

applied to H  by using V-BLAST or other ordering schemes [22,28] and the resulting 

matrix is G =  H II, where I I  is the column permutation matrix. Following the same 

QR factorization as in (1.18), we find (2.2) is equivalent to

x € Q n T

where y  and R  are defined in (1.19) and R  is an upper triangular matrix. Eq. (2.8) 

is the basis for our GFD and the former detectors [1,18,19,28].

(2.5)

a  V2 x  =  V2xj +  "2_X2

where Xj, X2 € Q^T■ Eq. (2.1) can then be represented as

(2 .6 )

r =  [ y / m  ] Xl
L X2

= H x  +  n.

+ n

(2.7)

Since x Hx  is constant, (2.3) can be formulated similarly. It can be readily verified

x  =  argmin ]|y — R x ||2 (2 .8 )
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2.2 Unified Framework for Tree Search Based D e­

tection

2.2.1 Feedback decoding

There are three classical decoding algorithms for convolutional codes [29]: Viterbi 

decoding, sequential decoding and feedback decoding. The Viterbi algorithm achieves 

optimal maximum-likelihood decoding, but the complexity grows exponentially with 

the size of the memory of the encoder. Sequential decoding can however perform near 

ML, but with significantly reduced complexity. Moreover, the SD can be interpreted 

as a chain of sequential decoders [28]. Feedback decoding due to Heller [20], on the 

other hand, sacrifices performance in exchange for complexity reduction. However, 

Heller’s feedback decoder has not been applied to MIMO detection to the best of 

our knowledge. It not only provides a unified framework for describing virtually all 

existing MIMO detectors, but also enables new ones. We use the term generalized 

feedback detector to differentiate from Heller’s feedback decoding for convolutional 

codes.

We now extend the feedback decoding algorithm to MIMO detection in (2.8). We 

start by considering only one parameter: window size (w). The cost metric to be 

minimized in (2.8) can be written in scalar form as

where r , j  is the (i , j)- th  entry of matrix R . Since R  is upper-triangular, the i-th 

term in (2.9) only depends on Xi , . . . ,  x ^ T, 1 <  i < N t ■ The feedback detector can 

be considered as a sliding window algorithm. The detector starts from xnt . When 

hard decisions have been made on Xi as k < i < Nx,  the detector makes a decision 

on xi based on the metric computed from yk- w+i to t/k, where w is a preselected 

positive integer, and we call it window size. We first determine the subvector =

(2.9)
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using

:(fc) =  argmin V  Vi -  V V y x .
jcWeO" i=fc_w+i \ j =i

(2 .10 )

In principle, exhaustive search can solve (2.10), and in the resulting x^k\  although 

contain w  decisions, we discard w — 1 of them in order to improve the overall error 

rate. Consequently, the hard decision on x k is made to be x k =  x.^{w),  where

based on the metric computed from y k- w to y k+i-  When the window size is unity 

(w =  1), the feedback detector reduces to the ZF-DFD or the V-BLAST detector, 

and incidentally, the equivalence between these two detectors has been noted in [12]. 

When the window size increases to N the GFD reduces to the MLD. When window 

size varies between 1 and N T, the performance of the GFD is between those of the 

MLD and the ZF-DFD. Our basic algorithm can be considered as a  sliding window 

detector of size w, making a decision on each x t based on the minimum metric within 

the window.

To allow for more performance flexibility, we introduce another parameter step size 

and allow the window size to change (possibly) in each stage. Also starting from x ^ T, 

instead of making single decision in each stage, we detect the group 1, . . .  ,x/fc

at the Ar-th stage, where lk =  N? — Sk' anc  ̂ sk> is the step size at the k'-th stage. 

The subvector x ^  =  [xjfc_u,fc+i , . . . ,  x ;JT is detected using

where Wk is the window size in the k-th stage. We choose [x;fc_Sfc+i , . . .  ,xik]T =

is shifted by Sfc, and the window size is changed to Wk+i- The group of symbols 

X i k + l - a t l+ l+1, . . . ,  x i k+l  is decided within the new window. If the detector has K  stages,

x ^ ( w )  denotes the tw-th element in x^k\  The same procedure is performed for Xk+i

arg mm
x<fc>eQu,fc

(2 .11)

x(k){wk - S k  +  1 : w k ). When proceeding to the (k +  l)-th  stage, the sliding window

we have J2/?=i sfc =  N t - The basic algorithm with different wk and sk is illustrated 

in Fig. 2.1, where the shadowed regions correspond to hard decisions.
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Fig. 2.1. Basic algorithm illustration of the GFD with different Wk and Sk.

In (2.11), hard decisions are made on the components of x ^ f  However, if the 

group size s*, is large, the error performance degrades rapidly. To overcome this, we 

generate a list of candidates for x ^  that minimize (2.11), instead of returning the 

best candidate. The size of the list is bk named branch factor. The corresponding 

different prefix vectors x^k\ w k  — sjt +  1 : Wk) are stored in another list Ck with qk 

elements. Since some x ^  may have the same prefix, we have 1 < qk < bk- Similarly, 

bk may vary in different stages. We can thus obtain x  by using

x =  argmin ||y -  R x ||2. (2.12)
[xMr_ai+i1...,x/vr Fe£i,...,[ii,...,iJ;<.]r e£/<-

If bk = 1 for k =  1 , . . . ,  K,  (2.12) reduces to the detector in the second case. If bk =  1, 

Sk =  1 and Wk =  w, (2.12) reduces to the original feedback detection algorithm. Note 

in the if- th  stage, we have &/<• =  1 and s/<- =  wk  imposed by the end state condition.

Both (2.11) and (2.12) entail an exhaustive search in a  reduced space. The SD 

[28] efficiently solves (2.11) and (2.12). In particular, the Schnorr and Euchner SD 

(SESD) [14] removes the dependence on the initial radius and hence may be preferred. 

When bk ^  0, the list sphere decoder (LSD) [30] can be used to create the candidate 

list. If not enough candidates have been found, the radius is increased and the LSD 

searches again until a bk element list has been formed.

Clearly, if iuj. =  1, sjt =  1 and bk =  1, the GFD reduces to ZF-DFD [1] and if 

Wk = N t , Sk = Nt  and bk = 1, it becomes SD [2]. When w\ = p, Wk =  1 (k > 1),
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Si =  P, Sk =  1 {k > 1) and bk =  1, the GFD reduces to a combination of MLD and 

ZF-DFD [18]. When Wk = 1, sjt =  1, bi = q and b* =  1 (fc > 1), the GFD becomes 

the B-Chase detector in [19] using a different column permutation matrix. Table 

2.1 summarizes the relationship between these detectors and the GFD for different 

parameter values.

Remarks:

• In the basic algorithm, we propose using the SD to solve the subproblem (2.11) 

in each window. Of course, the complexity can be reduced by replacing the 

SD with a suboptimal detector such as LS, MMSE or GMMSE [23], CLS [24], 

just to name a few. Similarly, the last s* symbols are detected by making hard 

decisions. Furthermore, the SD and linear detectors can be used interchange­

ably. For example, as shown in Section 2.2.4, since the detection of the first few 

symbols is critical to the overall system performance. The SD can be used to 

detect the symbols in the first few windows, and then linear detectors can be 

applied to reduce the overall complexity. Specifically, if tui =  1, w2 =  NT — 1, 

si =  1, s2 =  N t  — 1, b\ =  <7, b2 =  1 and exhaustive search is used in the first 

window, linear detector is used in the second window, our GFD reduces to the 

L-Chase detector in [19]. Allowing linear detectors, our GFD thus generalizes 

the L-Chase detector and provides more flexible complexity and performance 

tradeoff.

• Our proposed GFD can be extended to decoding convolutional codes. Moreover, 

it can also be readily modified to perform joint detection and decoding in coded 

MIMO systems employing both vertical and horizontal coding architectures [31].

2.2.2 New tree interpretation of MIMO detection

All MIMO detection algorithms can be interpreted as performing a search through 

a tree, which is unavailable in the literature to the best of our knowledge. The 

detectors traverse through a |Q |-ary tree of Nt  levels, where |Q| is the cardinality
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TABLE 2.1

Relationship to the generalized feedback detector.

Detector Window size w k Step size sjt Branch factor bk

ZF-DFD Wk =  1 Sk =  1 bk =  1

SD Wk =  N t sk = Nt bk = 1

ML-DFD
wi =p ,

w k =  l , k  >  1

si = P ,

Sk =  1, fc >  1
bk = 1

B-Chase w k =  1 Sk =  1
bi =  9, 

bk =  1, k  >  1

of constellation Q. Except for the leaf nodes, there are \ Q\ branches stemming from 

each node, and each branch is labelled by an element from Q. A node at the k - t h  

level is assigned a metric

m k { x k )  =

Nt

U N r + l - k  ~  ^ 2  r NT + l - k , j X j
j=Wj.+1— k

(2.13)

where x k — [x^T+i-k, • • •, xnt]t  are the symbols labelling the path from the root to 

this node. The accumulated path metric associated with path x*. is thus defined as

Nt  N t

C(*jfc) =  5 3  =  5 3
i= N j ,+ l —k i ~ N t ~̂

Vi

n t

Y L ri j xi
j= i

(2.14)

The MLD performs an exhaustive tree search by computing the accumulated path 

metric (2.14) for all possible tree paths from the root to leaf nodes. At the leaf node of 

the tree, the path with minimum accumulated metric is selected as the ML solution.

Instead of exhaustive search by visiting all of the nodes, the SD only explores 

a subset of the tree. Using a global cost upper bound, the SD explores only those 

nodes whose accumulated path metric is less than the global bound and discards other 

nodes. When the SD reaches a leaf node, if its cost is less than the global upper bound, 

the latter is replaced by the former. The order of the processing of the child nodes 

of a node can impact the complexity. In the SESD, the processing order depends on 

the accumulated metric. Thus, the child node with minimum accumulated metric is
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expanded by the SESD first. This ordering ensures that whenever the SESD reaches 

a leaf node, its path cost is as small as possible, and thus the global bound is reduced 

rapidly.

In contrast to the SD, DFDs are greedy tree search algorithms. Since the DFD 

only expands the child node with minimum accumulated path metric. Therefore, only 

one path is traversed through the search tree, which has complexity linear in NT but 

also a large performance loss.

Our proposed GFD only expands a set of partial trees instead of the full tree 

in the MLD. At the k-th stage, xik, . . .  ,xjvT are assigned values. The GFD searches 

through a wk level tree stemming from Then bk best partial paths from the root 

to the leaf nodes of the partial tree with minimum accumulated metric are chosen. 

.T/fc_ i , . . . , xik- Sk symbols are chosen corresponding to each partial path. The window 

shifts Sk symbols and a partial tree is searched again. In fact, our GFD forms a 

reduced tree with K  levels. At the fc-th level, there are qk branches from a node, 

which is assigned a metric

where Xk = [£ifc- Sfc, . . . ,  xjvT]r  are the symbols labelling the path from the root to this 

node. The SD and DFDs can be applied to the reduced tree. If bk =  1, the GFD 

reduces to ZF-DFD, or the SD can be used to search through the new tree. The 

branch factor bk relates to the number of branches in the new tree.

Fig. 2.2 illustrates the GFD on a tree with 4 levels (i.e., N t  =  4) and binary phase 

shift keying (BPSK). The left side is the full tree expanded by exhaustive search. In 

the GFD, we choose Wi = 3, si =  2 and b\ =  2. Exhaustive search or LSD is used 

to traverse the first partial tree; [£4,£ 3,£ 2]T =  {[+1, + 1, — l]r , [—1, + 1, + l] r } are the 

61 subvectors that make the partial accumulated metric from X4 to x 2 a minimum. 

For each subvector, [£4,£3]r  is stored in a list C\ =  { [+ l,+ l] r , [—1,+1]T}. The b\ 

elements form by branches in the new tree in the right side of Fig. 2.2. In the second 

stage, the window is shifted by Si =  2 to the second rectangle, and window size, step 

size and branch factor are changed to s2 =  w2 =  2 and &2 =  1. Therefore, the original

2

(2.15)
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4-level tree with 16 leaf nodes reduces to a 2-level tree with 2 leaf nodes using GFD. 

SD or SESD can be used to find the path with minimum accumulated metric in the 

reduced tree. The corresponding path of the new tree is the output sequence. The 

ZF-DFD just expands a single branch tree as shown in Fig. 2.2 (c).

The B-Chase detector [19] with list size q and with a ZF-DFD subdetector forms 

a 2-level tree with q leaf nodes; exhaustive search finds the minimum path metric in 

the tree.

Our GFD forms different trees with different parameters Wk, sjt and b^, As will 

be shown in Section 2.2.4, different parameter set provides different performance and 

complexity.

2.2.3 Computation sharing technique

The next section shows tha t the GFD bridges the gap between ZF-DFD and MLD. 

Another important issue is that whether our GFD also has complexity between ZF- 

DFD and ML. We first look at a simple case with bf. = 1. The discussion can be 

readily extended to other cases. A detail analysis of the worst complexity is given 

in Section 2.2.5. The basic GFD constitutes K  SDs and a ZF-DFD on a AMevel 

tree. We denote the complexities of SD and DFD for an n  x n system as Csd(™) and 

C d f d ( tc)> respectively. Thus, we can obtain the complexity of the GFD as
i<

C gfd(N t) =  ^  Cso{wk) +  Cdfd(A'). (2.16)
k=1

In low SNR, Csd(wa-) =  G(|<5|u'fc) and Cqfd(Nt ) < Csd(Nt )- But, in high SNR, 

Csd(w/c) — wl  and it is possible that C gfd(A t) > Csd(At)-

To reduce the complexity gap between the GFD and the SD, we introduce a shared 

computation technique that eliminates redundant computations in the basic GFD. In 

the fc-th stage, if Wk ^  Sfc, there will be — s*. symbols’ overlap between the fc-th 

window and the (fc +  l)-th  window. The basic GFD uses two SDs in the two windows. 

However, due to the overlap, some nodes of the partial tree in the (k +  l)-th  window 

have been visited by the sphere decoder in the fc-th window. We thus propose to store

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a)

b.=2 b = I

(b) (c)

Fig. 2.2. Comparison of exhaustive search, GFD and ZF-DFD in tree representation 

for Nt  =  N r =  4 and BPSK.

all the metrics for the visited nodes in the fc-th SD to avoid repeated computation. 

The tree is a suitable data structure for visited nodes storage since the SD forms a 

tree during the search. When using the SD for the (fc +  l)-th  partial tree, the SD 

traverses the search tree and the  storage tree at the same time. Only the subtree 

corresponding to the selected [a;jfc_afc+ i , . . .  ,xik]T is kept and the other subtrees are 

pruned. If the node has not been visited as indicated in the storage tree, the branch 

metric is computed, and the node is added into the storage tree.

When bk > 1, LSD must be used. Given an initial radius, if less than bk candidates 

have been found within the radius, LSD needs to enlarge the radius and search again 

until bk points are found. Similarly, enlarging the radius and repeating the search 

revisits several nodes that have already been visited. The storage tree can also be 

created for LSD to reduce repeated computation. However, shared computation needs 

more memory, which is exponential in wk in the worst case. It provides a memory- 

complexity tradeoff.
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2.2.4 Performance analysis

In this section, we consider the case of N t  =  N r . In the GFD, we first assume

Wk =  w, Sk =  s and 6̂  =  1. All the analysis and results can be easily extended to

the case N t  ^  N r  and general GFDs. From [32], the squared norm of the entries 

of upper-triangular matrix R  have x 2 distribution with different degrees of freedom, 

specifically, |rii{|2 ~  * 2(2i), for % -  1 , . . . , N T and |r{ii|2 ~  x 2(2), for j  > i , where 

X2 (k) denotes the chi-squared distribution with k degrees of freedom.

In the first stage of the GFD, we perform ML decoding with yi =  RiXi +

Vi to detect x x =  [:rjvr -„,+i , . . .  , x N t ]t , where y x =  [yNT-w+u ■ ■ • ,Vnt \Ti v x =

[t»7vI,_U)+1, .. . , vn t ]t  and R x =  R (NT — w +  1 : N t , N t  — w + 1 : NT)• Denote 

the block error event in the j- th  window by Ej. The union bound for the block error 

probability of x x, P&(£i), is given by

Pb{E\) <  E  ERi , 0) E p(*. = W , r i) (2.17)

where x x2̂  are all the possible vectors other than x f  \  and

P  ( x x =  Xj2)|x[1}, R x̂  = Q ^ \ j  |R 1 (X12) -  /2a l  j  , (2.18)

where Q(-) is the Q-function. Let H 2 be a w x w matrix with complex Gaussian entries 

and its QR decomposition be H 2 =  Q 2R 2. Since R 2 has the same distribution as R x, 

||R 2 ^xx2̂ — x f ^  ||2 has the same distribution as ||R i ^xx2  ̂ — Xj1̂  ||2. Considering 

Q 2 is unitary, we have

R 2 (x (x2) -  x ^ )  =  Q2R 2 (x f°  -  x[1)yj  |  =  |H 2 (xS2) -  x[1})  =  ailjx'(2 ) ,0)112

(2.19)

where a x ~  x 2{2 w) and the last equation is due to the linear combination of indepen­

dent Gaussian variables is also Gaussian. Eq (2.18) thus reduces to

,( 2)Xi -  Xi(1)
/ 2crn ) • (2 .20)
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Using the Chernoff bound for the Q-function, P6(xj) can be bounded as

Z , exP -Pb(Ei) < E  E
Ql „(1) Xl

( 2 )  ( I )

1 + d i J i e l J  (2'21)

where dmin is the minimum distance between and x£2\  In high SNR, a block 

error results from a single symbol error in x i. Therefore, the bound for the symbol 

error probability is Pa(xi) = Pb(Ei)/w, i = NT -  s + 1 , NT and the bound for the 

block error probability of x i =  [ar^T- a+i, • • •, xn t ]t  is Pb{E\) =  Pb(Ei )s /w% where 

Ei is the block error event in x i. We also bound the block error probability for the 

second window as

Pb(E2) = P ( E 2\Ei) • P(E?) +  P ( E 2\Ei) ■ Pb(Ei)

< P { E 2\E{) +  Pb{Ei). (2.22)

If xi is correct, we cancel it from y and perform ML detection with y2 =  R 2x 2 +  

v2, where x 2 =  [x Nt _ s _ w+ u  . . . ,  a:yvr _s]:r, where y2 =  • • • ,Z/wr - s]r , v2 =

['Uai7._s_iu+i, . . .  ,uWt_s]t  and R 2 =  R{NT - s - w  +  \  : NT - s , N T - s - w  + 1 : NT - s ). 

Similarly to (2.21), we can obtain

\ Q \  ' w + sP{E2\E\) < (2.23)

In general, in the fc-th window, we perform ML decoding with y^ =  RfcX  ̂+  v fc to 

detect Xfc (fc—i)s+i, • • ■ > ^Ni—(fc—i)s+tu] > where y^ =  [j/tvx*—(fc—i)«+i»• • • > u/vJ._(fc_i)s-(-m]

Vfc =  [ujvT-(fc—1)*+1, • • •, vjvT-(fc-i)j+i«i]T and Rfc =  R(JVr  -  (fc -  l)s  +  1 : N T -  (fc -  

l)s  + w,NT — (k — l)s  +  1 : N t  — (fc — l)s  +  w ). The union bound for the event Ek 

conditional on is given by

5 3  P  (x fc =  x f  | x f , R fc)  
v(2)

(2.24)
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where xj;2) are all the possible vectors other than xjj.1̂ , and

P  (*» =  4 a>|x<'>, R*) =  Q . (2.25)

Let H 2 be a (k—l)s+ u ; x (k—l)s+w  matrix with each entry complex Gaussian and its 

QR decomposition be H 2 =  Q2R-2- Define two new vectors x j^  =  

and xj.2) =  [(4 2))H> 0(fc-i)«xi]w- Since R 2({k -  l)s  +  1 : (k -  l)s  +  w t (k -  l)s  +  1 : 

(k -  1)5 4- w ) has the same distribution as Rjt, | r 2 ^xjj2̂  -  xjj.1̂ has the same

distribution as Rfc -  x j^ U  . Considering Q 2 is unitary, we have

R: (42’ - 4") |f = |<w*. (421 - 4>) |f = ||h, (42) - 4”) =  a(..||xf!)-x < 1)|p 

(2.26)

where ak ~  X2(2(A: ~  l ) s +  2w) and the last equation is due to the definition of xj^ 

and x). and linear combination of independent Gaussian variables is also Gaussian. 

Similar to (2.21), we have

| Q |  \  lU + ( fc - l ) s

(2.27)
+  dmin/4^n,

Using the total probability theorem [32] and noting that the events (U ẐyEi)0, Ek-iP\ 
(u fr12£'i)c, . . . , E\ are exclusive, we have

p b(Ek) = p  (tffeiEx) p  ( A )  +  p  ( E k\E2 n  e { )  p  [ e 2 n  £ ? ) +  • • •

+ p  ( E k\Ek- i  n  ( u & i ) e) P  ( ^ - 1  n  ( u t i 2̂ ) " )

+P (EkI ( u t - / ^ ) C) P ((u& 1̂ ) C)

< p  ( ^ )  +  p  (^2 n  e {) +  • • • +  p  (£?*| ( u t / E i ) 0)  p  ( ( u t / ^ ) 0)

4 J2  p  (Ej\ nf- 1 Ef) p  (nkfE?) + P [EkI (uf=- / ^ ) c) P (rfc}Et)
j =1

(2.28)

where the inequality (a) is obtained by assuming that given an error event on Eit 

1 <  i < k, the event Ek has probability 1. This assumption is precise at high 

SNR. The equality (b) comes from the Bayes’ theorem [32]. Using the chain rule for
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conditional probability, (6) can be computed in a closed-form. However, this closed- 

form is complicated and does not show insight into the diversity order and SNR gain 

of the detection algorithm. Note tha t in high SNR, P  j  is close to 1. We can

thus further simplify Pb{Ek) as

In high SNR, where 6 is a small positive number and (s/w)Pb(Ei) dominates the upper 

bound (2.31). Therefore, the average symbol error probability can be approximated 

as

Eq. (2.32) shows that the GFD has diversity order w and different s and w provide 

different SNR gains. The union bound (2.32) is loose and the actual SNR gain may be 

different. From the performance analysis, it can be verified that if Wk's are different, 

the performance of GFD is limited by the first window size and the diversity order of 

GFD is w\. bk only determines the SNR gain.

When bk > 1, more SNR gain can be achieved. For the B-Chase detector, the 

effective SNR gain is defined in [19]. Here we take a different approach by calculating 

the upper bound on the symbol error probability. We take the QPSK for example 

and w =  1, Q =  {e~3kixl2\k =  0 ,1, 2,3}. We assume that 1 is transmitted without loss 

of generality. We consider the error event in the first stage E\. The ML detection

k—1
K m  <p  ( s i  ( u f t s ) ' ) + £ F (Ed n t ;  e ?) .

(2.29)

Similarly, in high SNR, we have

(2.30)

where e =  j  . Substituting (2.30) into (2.29), we can obtain

K m  < a ( S ) e * - ‘ +  % ; K m  ( ! + «  +  ••• +  e‘‘ 2)

< ^ A (£ i) ( l  +  *). (2.31)

(2.32)
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for x Nt  reduces to detecting the phase of yNTr*NTiNT = ae>° = X  + j Y .  If bi =  1, 

x N t  is correctly detected if \9\ <  7r /4. But, when = 2, x Nt  is correct if the list

contained 1 or equivalently \Q\ < ir/2 . Similarly, for b\ =  3, the correct decision region 

becomes |0| < 37t / 4. Given rNj,, X  ~  J^{\rNT\2 , ^ l \ rNT\2) and Y  ~  AT(0, al\rNr\2). 

The probability density function (pdf) of 9 = arctan(T /X ) is given by [32]

/(£/) =  CosfA . (2.33)
27T v/27T(7n \  a n )

PbiE,) =  1 -  [ 0  f(9)d9  (2.34)
J  —3

The error probability of Ei  can then be obtained as

rP 

-P

where /? =  7r /4, 7t / 2, 37t/4  for bi = 1,2,3 respectively. In high SNR, using the tight 

upper bound for the Q-function [33, p.83]

Q(x) < —T-Lr-e- *2/2, a; >  0, (2.35)
v 2 ttx

we can obtain
8 4 4

Pi = ~,  P2 = ~,  P3 =  -  (2.36)
1 1 1

where 7 is the SNR. Compared with (2.21), bi =  2,3 have 3 dB gain over bi =  1 

and dmm is increased by a factor of \/2 for b\ =  2,3. Therefore, dmjn increases by 

increasing b\. For w > 1 and other constellations, the SNR gain can be obtained

similarly by integrating the pdf of decision variable over the correct decision region.

As Sk, the branch factor provides additional SNR gain.

A special case is when 61 =  |Q |WI, Pb{E\) =  0 and P{E\)  =  1. Therefore, the 

performance of the GFD is limited by the second window and the diversity order 

becomes w2 +  Si- Similarly, if bi = |<3|Wi for 1 < i < k, the diversity order of the GFD 

increases to +  Yj{=i s«-

2.2.5 Computational complexity analysis

The computational complexity of an algorithm may be measured in terms of best, 

worst, or average-case complexity [34]. In practice, the most useful measure proves
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to be the worst-case complexity [34]. For example, for the MIMO detectors, the best- 

case complexity of the SD is simply the complexity of V-BLAST, which is also the 

best-case complexity of the GFD. The average complexity of the SD derived in [3,6] 

is exponential in N t  but low in high SNR. The SD has been realized on VLSI circuits 

in [4,5]. For VLSI circuits implementation, the throughput is limited by the worst- 

case complexity and the best-case complexity suggests the minimum requirement. 

Although the likelihood of the worst-case complexity decreases with increasing SNR, 

the performance depends heavily on such probability. Therefore, we derive the worst- 

case complexity of the GFD. On the other hand, since we have used both the SD and 

the computation sharing technique in the GFD, the average complexity of the GFD 

seems to be difficult to derive analytically. The average complexity determines the 

energy consumption of a circuit. We determine the average complexity of the GFD 

in Section 2.2.6 via simulation.

We assume that both R  and Q are complex valued. In the first window, the 

number of flops is

of the first tk — Wk-i — Sfc-i variables have been computed in the (k — l)-th  window. 

Due to the computation sharing, the number of flops in the fc-th window is

The number of flops in the k -th window is Ck {w k ) = C\(w k )- Therefore, the total 

number of flops for the GFD is given by

C g f d  =  C\(w) + (K  — 2 ) (C\(w) — Ci(w — s)) + Ci(wk) < I<C1( w ) - { K - 2 ) C l ( w - s ) .

0 . ( 1 )  =  E I t f W i + i - O n ]  =  4^ | q | E 1'v ' + 9 ^ — -

(2.37)

For the k -th window (1 <  k < K ), the accumulate path metrics for all the combination

Ck{wk) =  J 2  IQ|i[9(wi +  l - 0 + 4 ]  =  C1(tofc) - C 1(tfc). (2.38)
i=*fc+l

I< fc-1
( 2 . 3 9 )

k = 1 t = l

For the special case of Wk = w, = s and bk = 1, we have

( 2 . 4 0 )
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Fig. 2.3. BER comparison, of different detectors in an 8 x 8 BPSI< MIMO system. 

In the GFD, we set Wk = w, Sk = s and 6* =  1.

Interestingly, from (2.37) and (2.40), we find that the worst-case complexity of GFD 

is exponential in w. Hence, increasing the diversity order of GFD also increases the 

worst-case complexity exponent. Similarly, as changing step size only changes SNR 

gain, (2.40) suggests that decreasing step size increases the complexity but does not 

change the exponent. Therefore, the GFD offers a flexible complexity-performance 

tradeoff.

2.2.6 Simulation results

We now simulate our GFD for an uncoded MIMO system with 8 transmit and 8 

receive antennas over a flat Rayleigh fading channel. The MATLAB V5.3 command 

’’flops” is used to count the number of flops. Only the flops of the search algorithm are 

counted by ignoring the preprocessing stage. The GFD is compared with V-BLAST 

and the SD in terms of both performance and complexity. We shall use GFD[a,/3,7] 

to denote a GFD with a window size a , step size (3, and branch factor 7 .

Figs. 2.3 and 2.4 show the BER and average number of flops for different detectors 

in a BPSK modulated system. In the GFD, we set = w, =  s and bk =  1. At
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Fig. 2.4. Average complexity comparison of different detectors in an 8 x 8 BPSK 

MIMO system. In the GFD, we set Wk = w, Sk = s and bk =  1.

each stage, we use the SESD [14] and the initial radius is chosen to be infinite. We 

investigate the effect of window size and step size. Clearly, with different window 

size, different diversity order is achieved (Fig. 2.3). GFD[2,1,1] has a 3-dB gain over 

GFD[2,2,1] at BER=10“4. GFD[4,1,1] performs 0.5 dB better than GFD[4,2,1] and 

1.5 dB better than GFD[4,4,1] at BER=10-5. Therefore, the SNR gain diminishes 

with the increasing step size. With different parameter settings, the GFD also has 

different complexity levels (Fig. 2.4). The complexity of the GFD varies between 

those of V-BLAST and the SD. In high SNR, all the detectors achieve almost the 

same average complexity. In low SNR, fixing window size, the average complexity 

decreases for smaller step size. As well, the average complexity decreases by increasing 

window size with the same step size. The complexity variation agrees with that 

of performance, which indicates that better performance results in higher average 

complexity.

Figs. 2.5 and 2.6 compare the BER and average number of flops for different 

detectors in a BPSK modulated system. In the GFD, we also set Wk =  w, Sk =  s but 

bk > 1. Instead of using the SESD [14], the initial radius is chosen to be proportional 

to the noise variance as in [3], If no solution is found with the initial radius, we
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Fig. 2.5. BER comparison of different detectors in an 8 x 8 BPSK MIMO system. 

In the GFD, we set wk =  w , Sk =  s but bk > 1.
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Fig. 2.6. Average complexity comparison of different detectors in an 8 x 8 BPSK 

MIMO system. In the GFD, we set Wk =  w, Sk = s but bk > 1.
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Fig. 2.7. BER comparison of different detectors in an 8 x 8 4QAM MIMO system.

In the GFD, we set Wk =  w, Sk =  s and bk = 1.

double the radius until a point is found. Choosing the initial radius in this way is 

better because the SESD may expand redundant branches in the reduced tree of the 

GFD and each branch needs high complexity for increasing window size and step 

size. With the same window size, the diversity order of the GFD is the same but 

different SNR gains are achieved. GFD[2,2,2] has a 5-dB gain over GFD[2,2,1] at 

BER= 10~3. The performance gap between GFD[3,3,1] and GFD[2,2,2] reduces to 3 

dB at BER= 10-3. GFD[4,4,4] has only a 0.5 dB gain over GFD[4,4,2] at BER= 10-4. 

GFD[4,4,4] performs close to the SD. Increasing window size, the SNR gain achieved 

by decreasing the branch factor also diminishes. But with same window size, the SNR 

gain by increasing branch factor is larger than by increasing step size. With different 

window size, step size and branch factor, the average complexity is also different. In 

high SNR, the complexity of all the detectors is the same. However, in low SNR, 

due to the use of the noise variance initial radius, the average complexity approaches 

the worst case complexity in low SNR. The complexity of GFD[4,3,2] is higher than 

that of GFD[4,4,2] because the former forms a 3-level tree while the latter only forms 

a 2-level tree. In low SNR, GFD[4,4,4] has lower complexity than the SD but with 

almost the same performance. Therefore, it is an adequate replacement for the SD.
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Fig. 2.8. Average complexity comparison of different detectors in an 8 x 8 4QAM 

MIMO system. In the GFD, we set wk =  w, Sf. = s and bk = 1.

In Figs. 2.7 and 2.8, we compare different detectors in a 4 QAM system with 

Gray mapping and Wk =  w, Sk =  s and bk = 1. The SESD [14] is used and the initial 

radius is chosen to be infinite. Both the performance and complexity results are 

similar to those of BPSK systems. The SNR gain by increasing step size reduces with 

the increasing of constellation size. For example, for the BPSK system, GFD[2,1,1] 

has a 3-dB gain over GFD[2,2,1] at BER=10-4. However, the SNR gain reduces to 

2.4 dB for 4QAM at BER=10-3 . The complexity difference in high SNR may be due 

to the number intermediate computations.

Finally, Figs. 2.9 and 2.10 show the BER and average number of flops for different 

detectors in a 4QAM system with Gray mapping. SESD is not used as in Figs. 2.5 

and 2.6. We fix window size and step size and change branch factor to observe its 

effect on performance. The performance of the B-Chase detector [19] is also evaluated 

for different list sizes. GFD[2,2,2] has a 4-dB gain over GFD[2,2,1] at a BER of 10-3. 

GFD[3,3,2] has a 3-dB gain over GFD[3,3,1] at BER=2 x 10-4. The gain reduces to 

2 dB with w =  3 and s =  3 a t BER=10-4 . But all the performance gaps become 

constant in high SNR. GFD[4,4,4] performs close to the SD. The SNR gain achieved 

by increasing the branch factor also diminishes with the increase of constellation
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Fig. 2.9. BER comparison of different detectors in an 8 x 8 4QAM MIMO system. 

In the GFD, we set Wk = w, Sk =  s but b  ̂ >  1.
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Fig. 2.10. Average complexity comparison of different detectors in an 8 x 8 4QAM 

MIMO system. In the GFD, we set Wk =  w, Sk =  s but 6jt >  1.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



size. The B-Chase detector performs better than V-BLAST but much worse than the 

other detectors. The B-Chase detector with q =  3 performs better than the B-Chase 

detector with q =  2 as contrary to the prediction by (2.36). Therefore, numerical 

evaluation of (2.34) is needed to predict the SNR gain. When q =  4, the diversity 

order of B-Chase detector becomes 2, which agrees with our analysis in Section 2.2.4. 

The complexity results are similar to those in Fig. 2.6. The complexity of all the 

detectors decreases with the increase of SNR. The complexity difference at high SNR 

is because of SESD. GFD[4,4,4] has lower complexity than the SD but achieves almost 

the same performance.

2.3 Constrained D etection  for MIMO System s

2.3.1 Classic linear detectors

The ZF detector relaxes X{ to the whole complex plane and solves

Xzf =  arg min ||r — H x ||2. (2.41)
xecNT

The solution to (2.41) is the well-known least squares (LS) solution and given by

xzp =  (H ^ H ) -1 H Hr. (2.42)

The MMSE detector minimizes the mean-square error between the transmitted 

signals and detected signals E { ||x  — x ||2}. The MMSE solution is given by

x m m s e  =  (H ffH  +  o"2Ijvr ) _1 H " r .  (2.43)

However, the ZF and MMSE detectors do not guarantee the optimal solution. In 

general, the solution of an arbitrary linear detector is given by

x  =  G r (2.44)

where G is the corresponding filtering matrix for the linear detector.
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2.3.2 Real constrained detectors

Even if the constellation Q is real i.e., BPSK and pulse amplitude modulation (PAM), 

the ZF and MMSE solutions from (2.42) and (2.43) are usually complex vectors. The 

imaginary part may cause additional interference since the transmitted vector is real. 

To impose a real constraint on (2.42) and (2.43), we rewrite (2.1) as

r  =
’ 3?{r} ‘ 3?{H}

x  +
‘ 3*{n} '

.  . .  .

=  H x  +  n. (2.45)

Note that the entries of n  have zero means and variance cr2/2. The ZF and MMSE 

detectors for the equivalent system (2.45) can be obtained as

, - l
x r - z f  =  ( h " h )  H " r (2.46)

and

x r —m m s e  =  ( h " H  +  a 2j2 l NT)  _1 H " f  (2.47)

where R-ZF and R-MMSE denote real constrained ZF and MMSE detectors, respec­

tively. The combined detector has tighter relaxation than real constrained detector 

and modulus constrained detector individually.

2.3.3 Constrained subgroup detectors based on constant-modulus 

constellations

When Q is a complex constellation, the constraint on the constellation modulus is 

exploited. We first consider a constant modulus constellation with unity modulus 

|.Ti|2 =  1. In [24], the CLS relaxes the candidate vectors to be on the hypersphere 

x Hx  =  NT- T o achieve better performance, we must use a tighter relaxation. We 

partition the vector x  in to g groups and each group forms a subvector x ; with size Si, 

i = 1 , . . . ,  g, where =  N T. We relax each x* on a s,-dimensional hypersphere

x(*Xi =  Si. The constrained detector is thus given by

x c m l  =  argmin ||r -  H x ||5
X f1l X l = S \ , . . . , X ,g l X g = S g

(2.48)
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where CML denotes constrained ML detector. The minimization problem (2.48) can 

be written as

min ||r -  H x ||2X

s .t .x f x i  =  S i , . . . tx%xg = S g .  (2.49)

The Lagrangian £ (x , Ai, . . . ,  Xg) for this minimization problem is

£ (x , Ai, . . . ,  Xg) =  ||r — H x ||2 +  ^  A* (x fx j -  s{) . (2.50)
t=i

Taking partial derivatives with respect to Xi s, the solution for x  can be derived as

x(A!, . . . ,  Xa) = (H WH  +  A) -1 H ^ r  (2.51)

where A is a  diagonal matrix and given by

A =  diag{Ai,. . . ,  Aa, . . . ,  Aff, . . . ,  A,,}. (2.52)
s  s .  ^  S' -------------V --------------- '

a i  Sg

When <7 =  1, there is only one Ai. Eq. (2.52) reduces to the CLS solution in [24]. 

When \ \  ■=... = \ g = the CML detector becomes the MMSE detector (2.43).

In order to obtain the CML solution in (2.51), the optimal values for Ai, . . . ,  Xg 

have to be computed so that the constant modulus constraints are fulfilled. Substi­

tuting x(Aj , . . . ,  Ag) into (2.49), we need to find the zeros of the set of equations

F 1(A1, . . . , A fl) =  | |x1(A1, . . . , Ag)||2 - S l = 0

Fg(Al t . . . ,  Ag) = | |xfl(Ai,. . . ,  Afl)||2 -  =  0. (2.53)

Note that (2.53) are nonlinear equations but (2.51) has the form of (2.44). Therefore, 

we also consider the CML detector as a linear detector.

The multidimensional Newton-Raphson root finding method [35] can be used to 

solve (2.53). It needs to compute the partial derivative of Fj with respect to Aj, 

dFi/dXj , 1 <  i , j  < g. But dFi/dXj  cannot be obtained analytically. Instead, we 

compute the partial derivatives by finite differences. There are several sets of roots 

for (2.53) and an initial estimate is needed to guarantee the convergence to desired

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



root. In CLS where only Aj exists, the global minimum is achieved by the maximal 

real root A}. But the multidimensional case does not yield the roots minimizing 

(2.49). Since the MMSE detector (2.43) provides good solution, the initial values 

for Aj are chosen as Ai =  . . .  =  Xg = cr2. If the Newton method does not converge 

after a specified number of iterations, we simply set Ai — .. .  — \ Q — a\  or the 

CML detector outputs the MMSE solution. Simulation results show that the Newton 

method converges after a few iterations, which thus incurs only a marginal additional 

complexity to the MMSE detector.

For a non-constant modulus constellation such as QAM, we assume p  as the largest 

modulus of the constellation. Similarly, we also partition the vector x  in to g groups. 

We thus relax each x* within a Sj-dimensional hypercube x^Xj < p 2S{. The CML 

detector is modified as

xcml =  argmin ||r -  H x ||2 (2.54)
x [ 'x i< p 2si ,...,x” x ff<p2ss

The minimization problem (2.54) can be written as

min ||r  — H x ||2
X

s . t .x f x i  <  p 2s u . . .  , X g X g  < p 2Sg.  (2.55)

Using the convex duality theorem, the Lagrangian dual function for (2.55) can be 

expressed as

£ (x , Al9. . . ,  Xg) =  ||r -  H x ||2 +  Ai ( x f X j -  p 2s t ) . (2.56)
»=i

Solving (2.56) for x, the solution is the same as (2.51). Substituting it back to (2.56), 

we obtain
9

max - r " H  (H h H  +  A) _1 H " r  -  p 2 V  A ^  (2.57)
Ai>0,...,A9>0 V '  V ’

i = l

where (2.57) is a ^-dimensional optimization problem. The simple unconstrained 

multidimensional gradient descent algorithm can be used to solve (2.57). The partial 

derivatives are computed by finite differences. If g = 1, the CML detector (2.54)

reduces to the GMMSE in [23]. Therefore, the CML detector generalizes the GMMSE.
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The constrained detectors using constellation modulus can be combined with the 

real constraint in Section 2.3.2. For real constellations, the CML detectors (2.48) 

and (2.54) can be directly applied to the equivalent system (2.45). We denote the 

combined receiver as R-CML.

2.3.4 Chase improvement

An iterative detector can be used to improve the performance of our constrained linear 

detectors by correcting unreliable decisions of the detector. As before, we partition 

x  into g groups each with Sj symbols. In each iteration, for i =  1, . . .  , 0 , we fix the 

other <7—1 groups and solve

Xj =  argmin ||r — H x ||2 (2.58)
x f eQ‘J

where Xj is the z-th group in x. x f is updated to Xj. The iteration starts with 

any solution from a constrained detector and terminates when x  ceases to change 

during an iteration. Typically, we choose g = N t  and Sj =  1. It resembles the chase 

decoder [36] for soft decoding of linear block codes.

2.3.5 Real decision feedback detectors

For real valued constellations, using the same arguments in Section 2.3.2, V-BLAST 

detection of (2.45) performs better than that of (2.1) directly and we denote V- 

BLAST for (2.45) as R-V-BLAST. If N t  = N r  and no permutations are used, the 

squared-norm of the entries of R  are known to be x 2 distributed [32], specifically, 

\Ri,i\2 ~  X2(2*), for z =  1 , . . . ,  N t  and \Ri,j\2 ~  X2(2), for j  > i, where x 2(^) denotes 

the chi-squared distribution with k degrees of freedom. Since the performance of V- 

BLAST is limited by the first detected symbol [18], the diversity order of V-BLAST 

detection is only one. However, if QR decomposition is performed on the real matrix 

H  in (2.45), the squared-norm of the entries of R  are also x 2 distributed but \Ri ,i|2 ~  

X 2 (z +  N t ) ,  for z =  1, . .  , , N T and \Rij \2 ~  X2(l)i for 3 > i- Therefore, it can be 

readily verified that the diversity order of R-V-BLAST increases to (N t  + l)/2 .
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For decoupleable complex constellations i.e., QAM, (2.1) can be rewritten as

1R{H} -9{H }
1 J +  1 J (2.59)

9{H} !R{H} ~ ' ' “ ' '
"  m '

3{r}
" »{x} ‘ +

’ 3?{n} ’

.  .
9{n} _

or

r  =  H x  +  n. (2.60)

In [37], it has been shown that applying V-BLAST to the equivalent real system 

(2.59) yields an additional performance gain. We can quantify the improvement. In 

the original system, the diversity order for x ^ T is 1. In (2.59), after QR decomposition 

on H , we find |-Ri,ij2 ~  X2 (*)> for z =  1 , . . .  , 2 N t - Therefore, the diversity order for 

is ( N t + l )/2  and for is 1/ 2, which may improve the total performance

on x/sjfp.

2.3.6 Constrained ordering decision feedback detectors

The ZF nulling vector (1.13) in V-BLAST completely removes the interferences

from the other antennas but also amplifies the additive noise. To get a better trade­

off between noise enhancement and interference suppression, we use our proposed 

constrained linear detectors in Sections 2.3.1-2.3.3 instead of the ZF detector in V- 

BLAST. We replace (1.11) and (1.16) with

G i =  (H ^ H  +  A) -1 H h (2.61)

and

Gj+i =  (H ^ H ^  +  A;) -1 (2.62)

where A and Af can be calculated using (2.53) and (2.57) for constant modulus and 

non-constant modulus constellations, respectively.

When nulling is performed using CML, interference cannot be removed completely. 

We thus propose to determine the detection order at each iteration by maximizing 

the SINR defined as

SINRj =  — %------------ _______________________________
£ i £ , K G f + . H c , ) ^ + <7S||(Gi+1) #
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where (A )ij  is the (i, j)- th  entry of matrix A  and (G ,+i)fc denotes the k -th row of 

matrix G i+i. In V-BLAST, (1.17) is replaced by

ki+i = argmin SINR,-. (2.64)

This modified V-BLAST detection is denoted as constrained DFD (CDFD). Note 

that if A =  cr̂ Î vT, CDFD reduces to MMSE-DFD in [22].

2.3.7 Combined constrained linear and decision feedback de­

tectors

We use the ZF-DFD description of V-BLAST detection algorithm. The performance 

of ZF-DFD is limited by the error propagation of decision feedback. Even though the 

V-BLAST optimal ordering is employed, the diversity order of V-BLAST detection 

is only one. This is because the V-BLAST detection is a greedy algorithm. It makes 

a hard decision only on the “local” metric (1.20) without taking into account its 

effect on the detection for subsequent symbols. We thus propose to combine the 

constrained linear detectors in Sections 2.3.1-2.3.3 and ZF-DFD to let the detector 

make hard decision less greedily. At each iteration, a “global” metric is used to make 

decision on each symbol, which is obtained by the constrained linear detectors.

In the i-th iteration, we define Rj =  R(1 : i — 1,1 : i — 1), r* =  R(1 : i — l , i )  and 

Yi =  y ( l : i — 1). For each a: 6  Q, after cancelling x  from y, the soft decisions for the 

remaining NT — i symbols can be obtained using the constrained linear detectors as

Xi =  ( R f  Rj +  Aj) -1 Rj*(y4 -  rtx)  (2.65)

where x* =  [rci,. . . ,  .'Ei-i]r  and Af can be obtained similarly to (2.53) and (2.57). 

Since the solution to (2.49) or (2.55) gives a low bound on ||r — H x ||2, the effect of 

x  on the decision metric for the remaining N t  — i symbols can be measured using 

II Yi — rix  — RiXiH2- The global metric for x  is defined as

Mi(x) = ||y i -  r{x  -  RiXi||2 +  |yt -  Ritix |2

=  H f e - i  -  R i(R ?R i +  Ai) - 1R,")(yi -  r ia;)||2 +  |yf -  R ^ 2. (2.66)
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In ZF-DFD, (1.21) is simply replaced by

Xi =  argminMf(rr). (2.67)
xeQ

The resulting detector is denoted CL-DFD. If A; =  <r2I;yr -i, (2.65) reduces to MMSE. 

Though it does not give a low bound on ||yj — r,x  — RfXi||2, the metric (2.66) also 

measures the effect of x  on the overall metric. Combined MMSE and DFD (CMMSE- 

DFD) also improves the performance.

2.3.8 Polynomial constrained detector

Due to the finite alphabet nature of Q, each X; 6 Q satisfies the polynomial equation
3

f i x i) =  I I ( *  “  qk) =  °- (2,6S)
Jfc=l

The ML detection problem (2.2) can thus be relaxed as

min llr — Hxll2
x £ C n T  " "

3

s.t. f(x i)  =  J J (x i -  qk) =  0, i = 1, . . . ,  NT. (2.69)
fc=i

Both the objective function and constraints are polynomial in x. For example, for 

BPSK, f ( x i ) =  (Xi — l)(x; +  1). To avoid the complex operation, Eq. (2.69) can be 

transformed into a real problem as

min I l f - H x l l 2
x e 7 i ™ t  " 11

s.t. <7r (3i{xi}, 3{xi}) =  O a n d ^ J i la ; ;} ,^ ^ } )  =  0

i =  l , . . . , JVr  (2.70)

where r  and H  are defined in (2.59), <7r (K{xj}, S{xi}) =  ^ { /(x ,)}  and ^ (^ { x i} , S{xj}) 

3{ f (x i ) } ,  which are also polynomial in 9?{xi} and S{x,}. Specifically for decoupleable 

constellations, i.e., QAM, (2.70) can be simplified as

min | | f - H x ||2

s.t. g(xi) =  0, i =  1 , . , 2Nr  (2.71)
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where 5j is the z-th element of x. For example, for 16-QAM, g(x) = (x2 — 9)(x2 — 1) =  

x 4 — 10x2 +  9.

We next show how to apply penalty function method to (2.71). Eq. (2.70) can 

be solved similarly. The most common penalty function is the one which associates 

a penalty proportional to the square of the constraints. We thus replace (2.71) by

1 2Nt

x € ^ T l|f “  ^ l|2 +  2C^  (2>72)t=i

where the positive scalar c controls the magnitude of the penalty and d controls the 

acceleration of penalty. If d =  2, it reduces to the usual penalty function in [38]. In the 

following, we choose d = 2. Since (2.72) is a polynomial in x, the Hessian matrix of 

(2.72) can be computed in a closed-form. The well-known Newton or Quasi-Newton 

method can be used to solve (2.72). It can be initialized with the LS or MMSE 

solution.

It seems logical to choose a large c to ensure that no constraint is violated. How­

ever, large c may lead to numerical difficulties or ill-conditioning, and the search will 

be trapped by the local minima corresponding to the LS or MMSE initial solution. 

Consequently, the minimization is started with a relatively small c, and c is increased 

gradually. A typical value for ĉ fc+1V c ^  is 5 [38]. If x  is the true solution, ||f — H x ||2 

is a chi-square random variable. The initial c can be set to 2cr2.

To overcome the ill-conditioning, the penalty function method can be combined 

with the Lagrange multipliers. The so-called augmented Lagrangian function [38] is 

defined as

L(x ,A, , . . . ,A2Bt) =  ||f-Hx ||2 + VAi9(ij) + - c V | 9(ii)|2. (2.73)
i = l  i = l

The initial Aj can be set to At-0̂  =  0. After minimizing (2.73), [38] suggests updating 

Xi as
A(fc+i) =  A(fc) _  cW (Ĵ \ k)) (2.74)

where x[k  ̂ is the estimate of Xi in the fc-th iteration.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To avoid the trap of local minima when using the Newton method, we propose 

a differential-equation algorithm inspired by the classical mechanics to improve the 

detection performance. Let the function to be minimized in (2.72) be denoted as F (x), 

where r is omitted for brevity. We associate the following second order differential 

equation with (2.72) [39]:

where fi is a  positive constant, (5{t) >  0 is a function, and V F(x) is the gradient of

Eq. (2.75) represents Newton’s second law for a particle of mass /i moving in R N t ,

Typically, x0 is chosen to be the LS or V-BLAST solution and wo =  0. We numerically 

integrate the differential equation (2.75) with the initial conditions (2.76). Eq. (2.75) 

can be rewritten as first order equations as

where hn is the time integration step at time instant tn. Note that the A-stable

of F (x ), which has high complexity.

At each time tn, we save the current potential F (x n), kinetic energy /xw^/2 and 

the corresponding location x„. The integration is stopped when the particle stops 

moving or the maximum kinetic of K  time steps is less than a threshold. The point

(2.75)

F(x).

subject to the force — V F (x) given by the potential F (x) and the friction —(3(t)dx/dt  

where (3{t) is the time varying friction coefficient.

Let the initial values for (2.75) be

x(0) =  Xq, ~ ^ =  w0.
dx

(2.76)

(2.77)

Applying numerical integration to (2.77), we have

^ n w n + 1 —^ n + 1

M wn+i -  w n) =  -  /i„/?„wn -  /inV F (x n) (2.78)

linearly implicit method [39] can be used. However, it needs to compute the Jacobian
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with the minimum potential on the trajectory is output as the solution for (2.72). If 

the maximum of \g(ii) \ 2 is larger than a threshold, c in (2.72) is increased gradually 

and search again until the condition is satisfied. Due to the existence of the inertial 

term or the second order term in (2.75), local minima of F (x) may be overpassed. 

However, this algorithm does not guarantee the global minimum.

Given the initial value p 0 and f3m > p 0, the friction coefficient p n is kept constant 

for the first 10 steps and then is doubled at each step until 2(3n > P,n. If 2(3n > (3m, 

0 n is set to pm and it remains constant during the rest of the integration.

Given the initial value ho, the value of hn is updated by a factor of 7 . If the total 

mechanical energy E n is increased, we choose 7 < 1 or 7 >  1. In the simulation, we 

choose 7 from 1.6 or 0.6.

To keep the total complexity of the differential equations algorithm constant, we 

can set the maximum number of time integration steps N max in the algorithm. The 

integration stops after reaching N max.

2.3.9 Simulation results

The error rates of our proposed constrained detectors are simulated for a MIMO 

system with 8 transmit and 8 receive antennas over a flat Rayleigh fading channel. We 

assume the receiver has perfect channel state information (CSI) and noise variance. 

We use notation Chase-X to denote the combination of the detector X and iterative 

correction in Section 2.3.4.

Fig. 2.11 show the BER performance of different constrained linear detectors in 

a BPSK modulated system. We compare our detectors with SD [2] and the CLS 

detector [24]. When all the linear detectors are applied to the complex system (2.1), 

the CLS and CML perform close to MMSE. In high SNR, CML with g = 8  performs 

better than MMSE. But the performance of all of them is inferior to the ML per­

formance achieved by SD. When the detectors are applied to the real system (2.45), 

the performance of all the detectors improve. At BER=10-3 , R-MMSE has a 0.5-dB 

gain over R-CLS. Both R-CML with g =  4 and g — 8 perform better than R-MMSE.
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Fig. 2.11. Performance comparison of constrained linear detectors in an 8 x 8 MIMO 

system with BPSK.

They have 0.3 dB and 2 dB gain over R-MMSE, respectively. After employing the 

iterative improvement to all the detectors, R-MMSE, R-CLS and R-CML with g =  4 

have 2 dB, 1.8 dB and 1.5 dB gains at BER=10-3. The detector R-CML with g = 8  

improves by 1 dB at BER=10-4 .

The BER of GMMSE [23] and different constrained linear detectors for 16QAM 

is shown in Fig. 2.12. GMMSE performs worst among all the detectors. CML with 

g = 4 has a 0.8 dB loss over MMSE at BER=10-3. In low SNR, CML with g — 8 per­

forms better than MMSE, but they perform identically in high SNR. With the Chase 

iterative improvement, R-MMSE, R-CLS, R-CML with g =  4 and R-CML with g =  8 

have 2 dB, 1.8 dB 1 dB and 1.2 dB gains at BER=10~2, respectively. Since the group- 

wise hypercube constraint (2.49) is loose, the resulting performance improvement is 

marginal. Tighter constraints are needed for high order QAM constellations.

Fig. 2.13 compares the BER of DFD and real DFD with different constrained 

ordering schemes. BPSK modulation is used. The performance of V-BLAST and SD 

is also shown in Fig. 2.13. We observe a dramatic performance improvement even 

for the constrained DFDs on the complex model. At BER=10~2, the CDFDs and
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Fig. 2.12. Complexity of constrained linear detectors in an 8 x 8 MIMO system with 

16QAM.

CDFD. g*1 
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A- R-V-BLA ST  
SD

SNR dB

Fig. 2.13. Complexity of constrained ordering decision feedback detectors in an 8 x 8 

MIMO system with BPSK.
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Fig. 2.14. Complexity of combined linear and decision feedback detectors in an 8 x 8 

BPSK MIMO system.

MMSE-DFD have more 3 dB gain over V-BLAST. Therefore, the CDFD and the 

MMSE-DFD have a smaller noise enhancement compared to the ZF-DFD. When the 

real constraint is imposed, R-V-BLAST and R-MMSE-BLAST perform close to SD at 

high SNR. They both perform only about 0.2 dB worse than SD at BER=10-4. The 

gap between R-CDFD with <7 =  8 and R-V-BLAST is 0.7 dB at BER=10-4. Since the 

diversity order of R-V-BLAST is (NT +  l)/2 , it performs well and the performance 

improvement by using R-MMSE-BLAST is small.

We then present the results for combined linear and decision feedback detectors in 

a BPSK system (Fig. 2.14). Clearly, our proposed CL-DFDs significantly improve the 

performance, indicating their ability to mitigate error propagation. At BER=10-2, 

the CL-DFD with g =  1 has a 4-dB gain over V-BLAST. The CL-DFD with g — 1 

performs worse than the CMMSE-DFD. But the CL-DFD with g =  8 has better 

performance than the CMMSE-DFD. At BER=10-4, the CL-DFD with g = 8  per­

forms 0.5 dB better than the CMMSE-DFD. When the real constraint is applied, all 

the detectors perform close to SD at high SNR. R-CL-DFD with g =  8 can almost 

achieve the ML performance. However, the performance gain using our R-CL-DFDs 

decreases compared to the complex case. For non-constant modulus constellations,
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the performance gain by using CL-DFD and MMSE-DFD is also significant. More 

results are omitted for brevity.

Finally, we show the performance of our polynomial constrained detector, which is 

denoted as ’’PCD” . The detector without maximum number of time steps constraint 

is denoted as ”PCD-Op” or it is denoted as ’’PCD-X” , where X is N max. The LS 

detector and SD are used as benchmark detectors. The initial value for xo is chosen 

as the LS solution.

Position

0 .5

-0 .5

- 1 .5 “ -
-1 .5 -0 .5 0 .5

Fig. 2.15. The trajectory of a particle for a 2 x 2 MIMO system with BPSK and 5 

dB.

We first show a simple example of 2 x 2 BPSK system at SNR=5dB. Fig. 2.15 

shows the trajectory of the particle (dash line) on a contour graph. The initial point 

is set to xo =  [1.5,1.5]r . Clearly, we can see the particle is not trapped by the local 

minima around [1,1] and it stops at the global minima around [1,-1]. Fig. 2.16 

shows the kinetic, potential and the total mechanical energy as a function of the time 

steps. From the potential curve, we find the particle overpasses a local minima at 

time step 20. In the end, the kinetic energy becomes zero as the particle reaches the 

global minima.

Fig. 2.17 shows the BER performance of different detectors in a BPSK modulated
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Fig. 2.16. The energy of a  particle as a function of time steps for a 2 x 2 MIMO 

system with BPSK and 5 dB.

system with 8 transmit and 8 receive antennas. Our PCD has significant performance 

gain over V-BLAST and LS. At BER =  10-2 , PCD-Op has 4 dB gain over V-BLAST 

and the performance loss over ML is only 2.2 dB. When PCD-40 is used to achieve 

constant complexity, the performance loss over PCD-Op is less than 0.1 dB at BER = 

10-2. However, the complexity of PCD-40 is roughly 15% of that of ML search. Given 

a vector multiplication unit such as Matlab, the computation time of PCD is less than 

that of SD, even though the total number of flops of PCD is more than that of SD.

The symbol error rate (SER) of different detectors for a 4 x 4 system with 16QAM 

is shown in Fig. 2.18. Our PCD-Op still has a 5.8 dB gain over LS a t SER =  xlO-1. 

However, the performance improvement is reduced compared to that of BPSK. In 

high SNR, the performance gap between PCD-Op and SD is large. However, the 

complexity of our PCD is only 1% of that of ML search. The diversity order of PCD- 

Op appears to be one. The performance gain by using our PCD decreases since the 

differential equations algorithm may also be trapped by local minima especially when 

the constellation size is large.
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Fig. 2.17. Performance comparison of different detectors in an 8 x 8 MIMO system 

with BPSK.

2.4 M ultistage Sphere Decoder for High Order Con­

stellations

2.4.1 Multistage sphere decoding algorithm

Fig. 2.19 shows the block disgram of the multistage sphere decoder for 16QAM 

systems. We denote the sphere decoder in Section 1.2.2 as single stage sphere decoder 

(SSD), which computes all x ’s that lie within a sphere of given radius. We use the 

formulation (2.8).

For brevity, we only show how to apply the multistage sphere decoder to 16QAM 

and a more general algorithm is given later. An arbitrary 16QAM vector x  can be 

uniquely expressed as x  =  \/2x i +  \/2 /2 x 2, where x 1; x2 G Q^T■ Similarly, let the 

true transmit vector be x* =  \/2xJ +  The problem of detecting x  (2.2) is

equivalent to detecting two 4QAM component vectors as follows:

[x j,x 2] =  argmin
- N 'T

x i , x 2 € Q 4 1
y  -  R (\/2x i +  y x 2) (2.79)

To begin, we need an initial approximation to the true signal x*. Let this be x  =
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Fig. 2.18. Performance comparison of different detectors in an 4 x 4 MIMO system 

with 16QAM.

Input y

V-BLAST

LSD(4,m)
SSD(4,m)

Fig. 2.19. The block diagram of the multistage sphere decoder for 16QAM systems.

\/2xi +  \/2 /2 x 2. Using this, we do a partial interference cancelation as y2 =  y  — 

\/2 /2 R x 2 in the first stage. Note that we cancel x 2 first since any errors in x 2 will 

be attenuated by \/2  (see Eq. (2.79)). Whereas any errors in Xi will be magnified by 

v/2. If x 2 =  x?j, y 2 is clearly sufficient to detect x{. We search x t that minimizes

||y2 -  V^RxiU2. (2.80)

However, x 2 ^  x£ in general, and minimizing (2.80) will likely give a wrong estimate. 

Therefore, we use a LSD [30] to generate a list C of the Acan(j candidates Xi that 

make (2.80) smallest. The list size is between 4 ^  and 1, and is proportional to the 

probability tha t the true solution x[ falls in the list. With a properly chosen radius 

d, we can obtain £  with Ncand candidates on average. To obtain a typical value of d,
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we note tha t for true x*

||y2 -  x /2 R x ;f  = y/2
R(x£ — x 2) 4- n (2.81)

where n  is the additive Gaussian noise vector with variance cr2. Since x 2 is correlated 

with R  and n, (2.81) cannot be treated as a chi-square random variable with 2N r  

degrees of freedom. The expected value of this random variable is denoted by E, 

which can be obtained via simulation. As in [30], one possible choice of radius is 

d2 = kE,  where k  is chosen so that the average length of the list is Acanci. For typical 

values of a 2 and a\, d2 corresponding to Aca„d can be obtained from simulation and 

can be stored in memory for practical use.

In the second stage, for each candidate Xi e  C, the SSD(4, N t ) solves
2

x2 — arg mm
x26Q.^

Yi
y/2 Rxs (2.82)

where yi =  y  — \/2R xi. This process provides Ncand pairs of [x i,x 2] and the best 

among them is selected as the output. Each time a x2 for (2.82) is found with a x i, 

the search radius of the second stage is updated if ||yi — \/2 /2 R x 2|| is less than the 

current radius.

R em arks:

• Our proposed multistage sphere decoder consists of an LSD(4, N T) and an 

SSD(4, N t ) ,  which computes lVcand points of 4QAM vector pairs. Is our ap­

proach less complex than an SSD(16, A r)? That depends on the difference of 

the complexities of SSD(4, NT) and SSD(16, NT). For example, in the high 

SNR region the difference of complexity is small, and our proposed multistage 

sphere decoder is not more efficient than the SSD(16, N t) ,  while in the low SNR 

region the difference of complexity can be large, our proposed algorithm is much 

more efficient.

• The parameter Acand gives a tradeoff between complexity and performance. 

When Acand is small, the probability that x j G £  is low and the BER will 

increase, while the complexity will decrease.
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• The initial estimate x 2 can be obtained via ZF, MMSB or V-BLAST.

• The performance of our multistage sphere decoder may be further improved 

by using x 2 from the second stage SD to recompute the first stage output 

Xi. This will result in an iterative multistage sphere decoder and will increase 

computational complexity.

Our proposed multistage sphere decoder can be generalized to other constellations. 

For example, a 64QAM vector x  can be uniquely expressed as x  =  2\/2xi +  \/2x2 -f- 

v / 2 / 2 x 3 , where x { 6  Q!\t , i =  1,2,3. Therefore, the multistage sphere decoder 

will have three stages. In the first stage, an LSD is used to generate a list of x j. 

Another LSD is used to generate a list of x 2 in the second stage. In the last stage, 

an SSD is used to obtain the solution. Similar to (2.5), the 49-QAM constellation 

can be represented as a weighted sum of q QPSK constellations [27]. That is, for 

s 6 M -QAM and Si G QPSK, 0 <  i < q, we have

s= E 2‘ ( ^ ) s'- <2-83)
Hence the multistage sphere decoder for 4''-QAM system has q stages. For 29-PSK, 

the multistage sphere decoder has q stages and consists of q — 1 LSD’s. For brevity, 

we do not give the algorithm in detail.

The complexity of a 9-stage multistage sphere decoder Cmsd < (rii= i Ncand,i +  

q — 1 ) C s d , where N can(iti is the list size of the i-th stage and Csd is the complexity 

of the SSD with 4QAM. Simulation results show that the multistage sphere decoder 

achieves increased complexity savings for large constellations.

The multistage sphere decoder algorithm for 47-QAM can be summarized in A l­

g o rith m  2.

2.4.2 Simulation results

We now compare the multistage sphere decoder (MSD) with the SSD for a 16QAM, 

uncoded MIMO system with 4 transmit and 4 receive antennas over a flat Rayleigh

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



input : y , R , d. 
output: The suboptimal x .

1 Compute the ZF solution x  and decomposed it to x  =  E i= i  <*<*•. where x; 6  Q q T \
2 for k <— 1 to  q — 1 do

3 yfc =y-Ei f̂c«>Rii;
4 Solve ||yfc -  afcRxfcH2 <  r2 with an LSD and insert each xjt into a list £*;
5 end
6 for each (q — 1) candidates [xj , . . .  , x g_i] do 

Solve

x q =  argm in ||y ,  -  a ,R x , | |2 (2.84)
x , e s f T

with an SSD, where y q — y  — E ?= i a iR Xii
8 end
9 Find the best q-tuple [ x i , . . . ,  x ,]  and output x

A lg o rith m  2: Multistage Sphere Decoding Algorithm

fading channel. Only the flops of the search algorithm are counted without accounting 

for the preprocessing stage. The initial radius d is chosen according to the noise 

variance. Both the SSD and the multistage sphere decoder use the SESD [14]. The 

initial detection uses the ZF-VBLAST.

Fig. 2.20 compares the BER of the SSD with tha t of the multistage sphere decoder 

as a function of the number of candidates in the first stage Acanj. As (Vcana increases, 

the multistage sphere decoder performs close to the SSD. As Ncand varies, its perfor­

mance varies between those of V-BLAST and SSD. The complexity of the multistage 

sphere decoder increases as Acand increases (Fig. 2.21) and it is lower than that of 

the SSD’s when the SNR is below a threshold. For instance, when Ncan̂  =  10, this 

complexity crossover point is 17 dB. Fig. 2.21 also shows tha t the complexity of the 

multistage sphere decoder is almost constant with specific Acand, suggesting that its 

complexity is polynomial for the whole SNR range in contrast to the conventional SD. 

The major drawback of our multistage sphere decoder is tha t the complexity needed 

to achieve near ML performance increases with increasing SNR. Thus our multistage 

sphere decoder is suitable for the low SNR region, where it can be combined with an 

outer code to achieve low BER.
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Fig. 2.20. BER comparison with different Ncand for a 16QAM MIMO system with 

4 transmit and 4 receive antennas.

2.5 Conclusion

In this chapter, we have proposed a unified framework for MIMO detection. Our 

GFD generalizes the classical feedback decoding for convolutional codes. The GFD 

varies between SD and V-BLAST in terms of both complexity and performance. By 

deriving the union bound for the symbol error probability of the GFD, we showed 

that it achieves an arbitrary diversity order between 1 and N  and different SNR gains. 

We also established the connection between MIMO detectors and tree search algo­

rithms. Moreover, a shared computation technique was proposed to further reduce 

the complexity. We also considered the relaxation approach to the MIMO detection 

problem. A class of constrained linear detectors and a class of constrained decision 

feedback detectors were developed. A polynomial constrained detector was also pro­

posed and solved using penalty function and differential equations. For high order 

constellation applications, we derived a multistage sphere decoding algorithm, which 

exploits that many higher-order signal constellations can naturally be decomposed 

into several lower-order constellations.
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Fig. 2.21. Complexity comparison with different N cami for a 16QAM MIMO system 

with 4 transmit and 4 receive antennas.
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Chapter 3

Blind D ecoding for Orthogonal 

Space-Tim e Block Codes

This chapter considers the efficient joint channel estimation and decoding of orthog­

onal space-time block coded (OSTBC) multiple-input multiple-output (MIMO) sys­

tems over flat Rayleigh fading channels. This chapter is organized as follows. Section

3.1 introduces the system model and OSTBC. Section 3.2 derives a general maximum 

likelihood (ML) blind decoder. Efficient solution for the decoder is also discussed. In 

Section 3.3, the totally blind decoder and a superimposed training scheme are pre­

sented. Section 3.4 gives the minimum mean-square-error (MMSE) channel estimator. 

Section 3.5 gives numerical results, and Section 3.6 concludes this chapter.

3.1 Introduction

3.1.1 Background

Space-time block coding (STBC) with orthogonal designs [7,40] is one of the major 

techniques for multi-antenna wireless systems used to effectively utilize diversity gains. 

OSTC achieves full transmit diversity and is amenable to simple ML decoding if the
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channel state information (CSI) is known at the receiver. However, a multiple antenna 

channel is difficult to estimate and may vary rapidly due to the users’ mobility. CSI 

estimation using pilot symbols will reduce the effective data rate. These factors have 

motivated the blind detection for OSTBC.

In [41], a suboptimal blind detector (cyclic detector) has been proposed to approx­

imate blind ML decoding of OSTBC, which does not guarantee global optimization. 

A subspace based decoder was proposed in [42], which does not show ML perfor­

mance. Recently, an efficient blind ML decoder using semi-definite relaxation (SDR) 

was given in [43]. This SDR-ML decoder provides a substantially better bit error 

rate (BER) than the former blind decoders. However, it is applicable only for binary 

phase shift keying (BPSK), and also needs pilot symbols to solve the phase ambiguity. 

All of these papers assume tha t the channel remains constant during several blocks. 

In practice, however, the mobile channel is time-varying due to the users’ mobility.

In this chapter, we derive a general decision rule for the ML blind OSTC decoding 

in a quasi static (QS) fading channel instead of assuming a constant channel over 

several blocks. That is, we assume the channel remains constant for one block and 

allow it to vary from block to block. However, for a more realistic study, we allow the 

channel to fade continuously in the simulation. Using the linear dispersion property of 

OSTBC, we show that the decision rule is a quadratic minimization problem. Instead 

of using exhaustive search, we solve it using sphere decoding (SD) [2] or V-BLAST [1]. 

To solve the inherent phase ambiguity, pilot symbols may be transmitted. To improve 

the bandwidth efficiency, a novel approach for totally blind decoding without any 

pilots is presented using two different PSI< constellations. A superimposed training 

scheme is also presented. Moreover, we give a minimum mean-square-error (MMSE) 

channel estimator and derive the Cramer-Rao bound (CRB). Power allocation is also 

discussed in the end.
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3.1.2 System model

We consider a MIMO system with Nt  transmit and N r  receive antennas. Each 

block of transmitted symbols has T  time slots and time interval Tr - The symbols 

transmitted during the nth block are denoted by the T  x  N t  matrix S[n] =  [st,,[n]], 

t = 1 , 2 , . . . ,  T  and i =  1 , 2 , . . . ,  Nt , where St,,[n] is transmitted by the ith  antenna in 

the t+  (n — l)T -th  time slot. For OSTBC, P  symbols x[n] =  [a;i[n],X2[n],. . .  ,xp[n]]T 

are transmitted in the nth block with the same average power E a = F'{|^p[n]|2}. S[n] 

is formulated using x[n], and has the property
p

S*[n]S[n] =  c ^ | r r p[n]|2V ,  (3.1)
p = i

where c =  1 /r, and r — P / T  is the rate of the code. The orthogonal property enables 

simple symbol by symbol decoding at the receiver. For Alamouti code [40] or the f/2 

code of [7], N t  =  2, P  = 2, T  =  2, c =  1 and S[n] is given by

Zi[n] x2[n]

 ̂ -x*2 [n] x\[n]

For the 0$ and Q\ codes of [7], c — 2.

S[n] = (3.2)

(3.3)

The OSTBC can be alternately represented as [44]
p

S M  =  (° pW a p +  i ^ N Bp ) .
P=i

where xp[n\ =  ap[n] +  ]/3p[n] and A q, B 9 are called dispersion matrices [44], which 

are specified by the OSTBC. Eq. 3.3 is the linear dispersion property of OSTBC. For 

Alamouti code, we have

(3.4)

T—
1

1 1

o

0  1II<

,  a 2 —

1

o 1 - 1  0

B , =
1 0

r
O l

td to II

i

1o. 
J l

-----1
o

We consider a frequency-flat Rayleigh fading MIMO channel and assume a rich 

scattering environment. The received signal at the j th receive antenna at time slot t
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in the nth  block can be written as
Nt

n A n] =  M nK<lnl +  wt,An\ (3.5)
i=i

where hij[n] denotes the path gain from the ith  transmit antenna to the j th  receive 

antenna and wtj[n] is the complex additive white Gaussian noise at the j th  receive 

antenna with zero mean and variance The fading channel is assumed to be QS, i.e., 

channel variations within each block are negligible. All path gains are statistically 

independent (E{hij[n\h*iy[n\} — 0) and have the same time correlation function 

Rh{r). Therefore, h^j[n] has correlation =  Rh(mTB). Typically, when Clarke’s 

model [45] is used, Rh[m] is given by

Rh[m] =  E{hij[n\hlj[n + m]} = crlJ0 (2nmfdTB) (3.6)

where denotes the power of the path gain, J0(-) is the zeroth order Bessel function 

of the first kind, and f d is the Doppler frequency due to users’ mobility. Note that 

the QS condition is met when f dTB <  0.03. Eq. (3.5) can be written in matrix form 

as

R[n] =  S[n]H[n] +  W[n] (3.7)

where R[n] =  [rfJ [n]] is the T  x N B receive matrix, H[n] =  [/ii,j[n]] is the N t  x 

N r channel matrix, and W[n] =  [ttftj[n]] is the T  x N r noise matrix. The code 

transmission format and channel are shown in Fig. 3.1.

3.2 M aximum-Likelihood Blind D ecoder

This section derives a new general ML metric for blind decoding. The blind decoder 

decodes the transmitted symbols in N  consecutive blocks. We consider the sequence

from n = k + l  to n = k + N.  Let R[/c] =  [R//[fc + 1], R^f/cd- 2] , . . . ,  R H[A: +  N]]H and

S[fc] =  [SH[k +  1], SH[k -f 2] , . . . ,  S H[k +  N]\H. The ML decision rule for the sequence 

S[/c] can be expressed as

S[fc] =  argmax/(R[/c]|S[/!:]), (3.8)
S[fc]
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Fig. 3.1. The transmission diagram of a space time block coded system.

where f{a\b) is the probability density function (pdf) of a conditioned on b. The 

conditional pdf (3.8) can be calculated by averaging the pdf /(R[/c]|S[/i;],H[fc]) with 

respect to the channel matrix H[fc], which results in

/(R[fc]|S[fc]) =  ^ NNt det^CR^ Nn exp ( - t r  ( R ^ C ^ R ^ ) ) , (3.9)

where H  =  [HT[/c +  1], H T[/c +  2] , . . . ,  H T[/c +  N]]T and the conditional covariance 

matrix C r [Ic\ is given by

C  R[k] =^{R[fc]R/ / [fc]|S[A:]} =  S D[k}CHS%[k] +  N r o*1tn (3.10)

So[k] is a block diagonal matrix

S[k + 1]

S D[k] =
S[k +  2]

(3.11)

S[fc +  N]

and C r  is the covariance matrix of the vector H. C r  can be represented as

C h = N R(Ch <s> I  N t ) (3.12)
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where <g> denotes the Kronecker product and C/, is given by

RhlO] /2fc[l] ••• R / J A - 1 ]

^ [ - 1 ]  R h[ 0] ! !
C h =

Rh[~N +  1] Rh[ 0]

(3 .13)

In (3.1), when P  is large (P > 4), J2p=i I^pNP — PP's using the large law of numbers. 

Therefore

S H[n]S[n] = T E 31N t . (3.14)

For unitary constellations, ~ i s  =. Since det(C fl[fc]) =  det(CHS^,[k]SD[k]+NRa l l NTN) 

det(TEsCi{lNTN +  N r^ ntn ) is almost independent of So[fc], (3.8) is equivalent to

S[/c] =  argmintr  (R-^tfcjC^1 [fc]R[/c]). (3.15)
s[fc]

Using the identity (A +  B C D )-1 =  A -1 -  A -1B (C -1 +  D A -1B ) - 1D A -1, (3.15) 

becomes

S[k] =  a rgmin— ^ t r  ( R H[k)(lTN -  S ^ ( J V ^ c -1 +  Sg[fc]SD[^])- 1S g [A:])R[fc])
S[Jt] W R a n

=  arg max tr ( R H[k\ S D [A;] ( +  S 2 [A:] SD [&]) ~1S "  [A;] R[A:])
S[fc]

=  arg max tr (R /f [A:] S[A:] C S ^ [A:] R[A;])
m

(3.16)

where C =  (AflcrjjC^1 +  Ŝ [A:]S£)[A:])-1. Using (3.14), C =  D ® 1nt  via Kronecker 

product properties, where D =  NRa^Cj^ + T E s1n with the (z, j)- th  entry dij. There­

fore, (3.16) can be written as
/  N  N  \

S =  arg max tr
o \ i = i  j= i  /

N  N

= arg max Y ]  Y ]  ditjtr  (R H[z]S[z]SH[j]R[j]) 
s  i= l  j=i (3.17)

where the second equality comes from the trace property. For brevity, we omit the 

time index k in (3.17). If P  is small so that (3.14) is not valid and x p is from a 

non-unitary constellation, the ML decoder is given later.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To further simplify (3.17), we note tha t tr(A B ) =  vec(A//)//vec(B). For the 

(z, j)- th  term

dij  tr  (R"[f]S[f]S" b'JB-b]) =  4 J vec(S''[>lR[i])''vec(S"[,]R[j]). (3.18)

Substituting (3.3) into [j]R[j], we have

p
vec(SH{j]R[j}) = otp[j]vec (A jR ^ ])  -  j(3p\j]vec (B jR [;])

p = 1

= F js[j} (3.19)

where s\j] = [cti\j],. . . ,  a P\ j ] ,P t f ] , . . . ,  0P\j]]T and Fj  =  [vec(AjR\j] ) , . . . ,

vec(ApR[j]), —jv ec(B fR [j]),. . . ,  — jvec(BpR[j])]. Therefore, we can simplify (3.17) 

as

s =  argm axsTG s (3.20)
S

where s =  [sT[l] ,. . .  ,s r [A]]T and G is a positive semidefinite block matrix with the 

(z, j)- th  block [G]ij =  d i^ F fF j.

If the coherence time of the channel is larger than N T b , the channel remains

constant during N  frames. Using M-PSK constellations, all ditj 's are then equal,

and hence (3.17) reduces to the decision metric given in [43]. However, (3.17) is not 

limited to BPSK as in [43].

Clearly, a phase ambiguity exists in (3.17). Take Alamouti code with M-PSK 

(Qm =  {ej27rrn/A/}, m  = 0 , . . . ,  M  — 1) for example and let

(e]2nk/M Q \
) , fc 6 { 0 ,1 ,. . . ,  M  — 1}. (3.21)

0 e-j2nk/M I

If S maximizes (3.17), it can be verified tha t S(Iyy <g>0) also maximizes (3.17). There 

are two possible ways to solve such ambiguity. Firstly, only one pilot can be trans­

mitted, i.e., xi[l]. This scheme has high bandwidth efficiency but it has so-called 

code rotation problem [43]. Only a few OSTBC are identifiable. Hence a pilot block 

should be transmitted for those rotatable codes, i.e., Alamouti code.
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Eq. (3.20) can be solved via SDR [43]. Here, we suggest the use of SD [2]. 

If xp[fc]’s are from unitary constellations, sTs = P N .  Therefore the maximization 

problem (3.20) becomes

s =  arg min sT (t]I2pn  -  G) s (3.22)
S

where 77 is a constant. If 77 is larger than the maximum eigenvalue of G, pmax, 

T7I2pn  — G is positive definite. Possible choices of 77 can be pmax + ct2, pmax +  pmin, 

and tr(G ), where pmjn is the minimum eigenvalue of G. We use the first choice in 

the simulation. Let the Cholesky decomposition of rjl2PN — G be M. Eq. (3.22) can 

then be reduced to

s =  arg min ||M s||2. (3.23)
S

The quadratic form (3.23) is similar to BLAST type MIMO systems. Therefore it 

can be solved by using the V-BLAST (Section 1.2.1) or the SD (Section 1.2.2).

Note that for QPSK, each element of x  is chosen from the set {—1,1}. However, 

for M-PSK (M  > 4), this does not hold. For any constellations, if a p[7r] is fixed, 

Pp[n] is restricted by the constellation. In SD, when a p[n] is assigned a value from 

its candidate set, the candidate set for Pp[n] is determined by the bound given by SD 

and restriction in the constellation. The details of the complex SD is given in Section 

5.3.

When xp[A:]’s are not from a unitary constellation, let £max and £mi„ be the max­

imum and minimum modulus of the constellation Q. Eq. (3.16) is equivalent to 

minimizing

J7i(s) =  n P N  -  tr ( R h S d (Nr oI C J  +  S gS D)" ‘S g R ) (3 24)

where s is defined in (3.20). It can be proven that

9 i (s) > sT ( -£—hpN ~  G '^  s =  g2{s). (3.25)
\  Smax /

where the ( i,j)- th  block of G ' is [G '],j =  d 'jF ^ F j,  d' ĵ is the th  entry of 

D ' =  N Ra 2 C ^ 1 +  T£jLnIjv and F; is defined in (3.19). When using SD, we solve
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02(s) <  <?i(s) <  r 2. All of the candidates that satisfy <72(s) < r2 are found, and the 

one tha t makes 01 (x) a minimum is the ML solution. During the search, the bound 

r 2 can be updated by 01 (s), where s is a valid candidate within the hyper-sphere.

3.3 Totally B lind Decoders

3.3.1 Different constellations scheme

In [43], pilot symbols are inserted to resolve the phase ambiguity. The non-identifiable 

code needs a pilot block. These cause a bandwidth loss. In [46], two different PSK- 

constellations are used to solve the phase ambiguity in blind OFDM detection, which 

motivates the totally blind decoder in this section.

In the totally blind decoder, two different constellations are used in N  consecutive 

blocks. The two constellations are chosen such that the angles between a point 

in one constellation and any points in the other constellation are different. QPSK 

(Q4 =  {eJm7r/2+7r/4, m =  0,1,2,3}) and 3-PSK (Q3 =  {ej2rmr/3,m  =  0,1,2}) satisfy 

this property. For example, 3-PSK is used in the k + l , k  + 3 , . . .  , K  + N  — 1 blocks 

and QPSK is used in the remaining blocks. If S maximizes (3.16) and S[k + 1]© is 

also feasible, it can be verified that S [k + 2]0 is invalid due to the use of different 

constellations. Specifically, for Alamouti code, define

[  0  \  (  e ^ +? 0 \  , x

01 ” [  0 ^  ~~ \  0 e-^+f) j  '
Both S[A: +  l ] 0 j  and S[fc +  2]©2 are valid. However, there does not exist a © that

makes both S[k +  1]© and S[fc +  2]@ valid. Therefore, (3.16) has a unique solution.

QPSK with 5-PSK and 8-PSK with 7-PSK also satisfy the property.

The 3-PSK and QPSK constellations pair is not optimized in [46]. We find the 

optimal 3-PSK constellation is Q3 =  {1, e35n̂ 8, e~35ir̂ 8} and the optimal QPSK is 

Q4 =  {e?m7r/2+7r/‘‘, m  = 0, 1, 2,3} by taking into account the phase ambiguity.
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The binary bits are mapped to 3-PSK via a punctured convolutional encoder 

in [46]. Here we introduce a linear block mapping scheme. 3 binary bits are mapped 

to two 3-PSK symbols, which consists of 9 tuples. The tuple (0,0) is not mapped and 

therefore it has 0.17 bits loss. When performing ML decoding, this tuple is similar 

to the parity check bits in linear block code, which can correct the error. Since the 

gray mapping does not exist for the 3 bits mapping, we develop a quasi-gray mapping 

scheme. After optimization, we find the suboptimal mapping is given by

100-> ( l .e ^ r ) ,  010-♦ ( l ,e " J^ ) ,  001 -» ( e ^ , l ) ,

000 -> ( e ^ , e ^ ) ,  011 -> ( e ^ . e " ^ ) ,  111 -> ( e " ^ ,  1),

101 -> 110 -> ( e ~ ^ , e - ^ ) .  (3.27)

3.3.2 Superimposed pilots scheme

The superposition of pilot and data symbols has been proposed in [42,47]. However, 

the scoring method for channel estimation in [47] can not achieve the CRB. We use 

the superimposed pilots to resolve the phase ambiguity. The p-th transmitted symbol 

in the n-th block can be represented as

Xp [71] =  ^/'7n,p£p[u] +  \ / l  OV̂ pUp [n] (3.28)

where tp[n] is the known pilot and up[n\ is a data symbol from Q. The coefficient 7niP 

denotes the percentage of the power allocated to training. Therefore, the s in (3.23) 

can be written as

s =  r i t  +  r 2u  (3.29)

where t  and u  are formulated using the real and imaginary parts of tp[n] and up[n] 

as s, Tt and T2 are diagonal matrices with diagonal entries ^ ‘yn,P and y^l — 7n ,p, 

respectively. Eq. (3.23) can then be simplified as

u  =  arg min ||y — M 'u ||2 (3.30)
U

where y  =  — M T it and M ' =  M r 2. It can be readily verified that there is no phase 

ambiguity in (3.30) due to the non-zero y without sacrificing the bandwidth efficiency.
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3.4 Channel Estim ation

After the data symbols have been detected using (3.23) or (3.30), the channel can be

In this case, the CRB of the channel estimate for the joint channel estimation and 

decoding can be derived as

where E  =  diag{£*+i , . . .  ,£k+pj}- A remarkable property of (3.32) and (3.34) is that 

the CRB does not depend on the power allocated to the pilots or the location of 

pilots due to the property of OSTBC. However, the training power determines the 

SNR required to achieve the CRB. The more training power, the lower SNR is needed.

However, from an information point of view, if the channel is almost constant 

during the N  blocks, the optimal power allocation scheme is S^+i =  £k+2 = ■ ■ ■ £k+N =  

£ / N  by maximizing the mutual information between the input and the output [47]. 

But, when the channel fluctuates severely, the optimal power allocation depends on 

individual channels. To simplify system design, the equal power allocation scheme is 

suggested.

MMSE estimated using S[ra]. If the channel remains constant during N  blocks, the 

MMSE channel estimator is given by

NTN Ro*al£
(3.32)

where £ = E ^ + i  £n is the total power transmitted during N  blocks and £n is the 

total power allocated to the n-th  block.

When the channel is QS fading, the MMSE channel estimator becomes

f i =  ( ig [n ]§ D[n] +  ^ ( C ^ ® I ^ ) )  ' S g M R H  (3.33)

The corresponding CRB can be obtained as

CRB =  Nfttr —- E  ® I nt +  Ch 1 ® I nt — N r N ^ t

(3.34)
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The estimated channel (3.31) can be used directly to decode the subsequent blocks. 

Wiener filtering can be applied to (3.33) to predict the channel in the following blocks. 

In addition, decision-direct algorithm can be used to update the channel. The blind 

decoder is only needed to stop the error propagation caused by the decision-direct. 

These will alleviate the computational complexity of the blind decoder.

3.5 OSTBC D ecoding over Tim e-Selective Fading 

Channels w ith  Perfect CSI

In Sections 3.1-3.4, we have assumed that the channel is quasi-static. However, in 

practical systems, this assumption may not hold even under normal vehicle speeds. In 

Section 3.6, we will evaluate our blind decoder in a time-selective channel even though 

the decoder is derived with quasi-static assumption. We also want to compare with 

the ML decoder with perfect CSI. But in a time-selective channel, the ML decoding 

of OSTBC is not simply symbol by symbol decoding.

In the following, we consider a time-selective channel. Since OSTBC with perfect 

CSI can be decoded in each block or within T  time slots, we omit the block index 

and rewrite (3.5) as
Nt

rt,j = 5 3  +  WU- (3-35)
t=l

Eq. (3.35) can be written in matrix form as

r[£] =  H r [f]s[£] +  w[£], , t = l , . . . , T  (3.36)

where r[£] =  [rtiU . . . ,  rt,NR]T , s[t] = [sM, . . . ,  st,ivT]T, H[i] =  [hij[t]] and w [t] =

[wt,i, . . . ,  wttNR]T- Using (3.3), we have

p

SM =  5 1  +  jPphtj>) =  C MS (3 -37)
p=i

where a itP and b <iP are the £-th row of A p and B p, s =  [ a x , . . . ,  a p , P i , , fip]T, and
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=  [a£p> • • •. ^T,p, j'aL> • • • ’•7a7’,p]- Substituting (3.37) into (3.36), we get

r[f] =  H r [t]C[t]s +  w[i], ,f  =  l , . . . , T .  (3.38)

Assuming the additive noise is white Gaussian, the ML decoder for OSTBC is given 

by

T

s =  arg min ^  ||r[t] -  H r [i]C[i]s||2 
t=i

=  arg min ||r -  H s||2 (3.39)
S

where f  =  [rT[l], . . . ,  tt [T]}t  and H  =  [C[l]r H [l] ,. . . ,  C[T]t H[T]]t .

Eq. (3.39) is also in a quadratic form similar to BLAST type MIMO systems. It 

can thus be solved by using the V-BLAST detection algorithm (Section 1.2.1) or the 

SD (Section 1.2.2).

3.6 Sim ulation R esults

We consider the OSTBC N T = 3 and P  =  4 [43]

/ \

\

X \  X 2 X z  X 4

- x 2 Si x4 —x3 • (3.40)

- X 3  - x 4 Xi X2 y

The number of receiver antennas is N r = 3 and the number of blocks is N  = 8. BPSK

is used throughout the simulation, xi [1] is transmitted as a pilot to solve the phase

ambiguity. The SNR is defined to be 2£'{||H||^}//Vo. ML decoding with perfect CSI 

using (3.39) is used as the benchmark.

We first consider that the channel remains constant for N  blocks. Fig. 3.2 shows 

the BER versus SNR of various blind decoders, i.e., (3.23) with SD (blind SD), blind 

SDR [43], blind cyclic [41] and blind subspace [42]. The blind SD and blind SDR 

perform substantially better than the other blind decoders. At BER=10-3, the blind
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SD has a 0.2-dB gain over blind SDR. Compared with the benchmark, the blind SD 

performs 2 dB worse, which is due to the differential mechanism behind the blind 

decoder.

- B -  Blind SD  
- e -  Blind SDR  
- V -  Blind Cyclic 

Blind S ubspace  
—  P eriod  CSI

5
CD

10-
SNR (dB)

Fig. 3.2. BER versus SNR for different blind decoders with N  =  8 and BPSK.

Fig. 3.3 compares the average complexities of different blind decoders. The flops is 

used as the measurement since it is less dependent on the programming skills and the 

hardware. The complexity of the preprocessing stage such as Cholesky decomposition 

is also counted for blind SD. The complexities of blind SDR and blind subspace are 

independent of SNR, while the other two depend on SNR. The blind SDR is the most 

complex one, though its complexity is claimed to be 0 ( ( N P )3,5). The reason is that 

the time constant is very large in blind SDR. In the observed SNR region, the blind 

SD achieves the smallest complexity. Therefore, blind SD outperforms the other blind 

decoders in both BER and complexity in that region.

The effects of channel variation on different decoders are shown in Fig. 3.4. 

The Jakes’ model is assumed for the channel and /^T b =  0.005. The ML SDR 

denotes solving (3.20) using SDR. The performance of the blind SDR, blind cyclic 

and blind subspace decoders are greatly degraded due to the unsuitable model used. 

At BER=10-2, the ML SD still has a 0.2-dB gain over ML SDR. However, the per-
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Blind SD  
- e -  Blind SDR  
- V -  Blind Cyclic 

Blind Subspace

I
&

<

Fig. 3.3. Average flops versus SNR for different blind decoders with N  =  8 and 

BPSK.

formance gap between ML SD and the benchmark enlarges to 2.8 dB, which is caused 

by the QS assumption.

3.7 Conclusion

We have investigated joint channel estimation and decoding for OSTBC without CSI. 

A general decision metric for a QS channel is derived. Our blind decoder results in a 

quadratic optimization problem, and it can be efficiently solved using SD, V-BLAST 

and SDR. Pilot symbols are needed to solve the inherent phase ambiguity. To save 

the bandwidth, we propose two totally blind decoders using different constellations 

and superimposed pilots. The MMSE channel estimator and its CRB are given in 

the end. Power allocation issue is also discussed.
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Fig. 3.4. BER versus SNR for different blind decoders with N  =  8, BPSK and 

f dTB = 0.005.
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Chapter 4

Efficient D etection  of 

M ultiple-Sym bol Differential 

U nitary Space-Tim e M odulation

This chapter develops a class of optimal, reduced-complexity detectors for differential 

unitary space-time modulation (DUSTM) called bound intersection detector (BID). 

This chapter is organized as follows. Section 4.1 introduces the DUSTM. Section 4.2 

first develops the BID for single symbol differential detection (SSD) and also presents 

several algorithms for multiple-symbol differential detection (MSD). In Section 4.3, 

MSD for DUSTM over Ricean fading channels is derived and discussed. Section 4.4 

gives numerical results, and Section 4.5 concludes this chapter.

4.1 Introduction

4.1.1 Background

As can be seen in Chapter 2, the wireless communication system capacity can be sub­

stantially enhanced by employing multiple transmit and receive antennas. However,

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



coherent detection needs perfect channel state information (CSI), which is difficult 

to obtain in a fast varying mobile environment and/or in a  multiple-antenna system, 

motivating the development of noncoherent detection strategies. Differential space­

time modulation (DSTM) has thus received considerable interest [8-10]. Tarokh and 

Jafarkhani [8] first proposed a DSTM scheme with orthogonal constellations, which 

can be classified as a nongroup design, existing only for a limited number of antennas. 

Hochwald [9] developed a general framework for DUSTM, where finite-group prop­

erties can simplify the transm itter modulation and constellation design; moreover, 

diagonal signals, where only one transmit antenna is active at any time, exist for any 

number of any number of antennas. The reader is referred to [9,10] for a thorough 

treatment of DUSTM.

From [9], DUSTM generalizes the classical single-antenna differential phase-shift 

keying (DPSK), and, similar to DPSK, DUSTM performs 3 dB worse than its coher­

ent counterpart. To improve the performance of single symbol differential detection 

(SSD), multiple-symbol differential detection (MSD) has been developed for M -ary 

phase-shift keying (M-PSK) signals transmitted over an additive white Gaussian 

noise (AWGN) channel [48]. In MSD, N  + 1 consecutive received samples are jointly 

processed to detect N  data symbols. For moderate N , MSD bridges the performance 

gap between coherent MPSK and MDPSK. The performance of ML-MSD improves 

with increasing N,  albeit at an exponential growth of detection complexity with in­

creasing N.  Several low-complexity single-antenna MSD algorithms are developed 

in [49-51]. Both Mackenthun’s algorithm and the improved version [51] only work 

for AWGN or static fading channels and suffer a mismatch problem [52]. Lampe 

et. al. [52] develop a fast detection algorithm using sphere decoding. Another low- 

complexity approach, which performs worse than sphere decoding but better than 

SSD, is decision-feedback differential detection (DF-DD) [53,54], These papers treat 

single-antenna systems only.

Naturally, attem pts have been made to extend some of these detection techniques 

to the multiple-antenna case. In [55], noncoherent DSTM receivers using MSD and
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DF-DD are developed to overcome the performance loss in fast fading channels. The 

robustness of DF-DD to imperfect knowledge of channel parameters is investigated 

in [56]. However, as the MSD decision rule in [55] is computationally too complex, 

only the special case of diagonal signals is considered in [55]. A general decision metric 

for MSD of DUSTM is derived in [57], which uses the Viterbi algorithm for detection, 

resulting in high complexity for large constellation size L. In both [55] and [57], a 

major thrust is to analyze the error performance of these schemes, as opposed to 

developing efficient decoders. The first important paper dealing with this decoding 

problem is by Clarkson et al. [58], which develops a low-complexity approximate 

algorithm for the SSD of diagonal signals. Their main insight is to recognize that the 

detection problem can be approximated as a closest vector problem (CVP) in a lattice, 

as similar problems appear in number theory applications. They use the celebrated 

LLL lattice reduction algorithm, named after Lenstra, Lenstra, and Lovasz [59]. This, 

however, results in a suboptimal algorithm; moreover, it cannot be directly applied 

for MSD. Throughout this chapter, we refer to it as the LLL decoder.

In this chapter, based on [55-57], we derive a decision metric for MSD of DUSTM 

over a quasi-static (QS) fading channel. The main contribution is, however, a fast 

exact ML detector, called bound-intersection detector (BID), for single symbol detec­

tion with diagonal constellations. Since the decision metric consists of non-negative 

summands, using a bound, they can be used to generate candidate sets of the transmit 

signal. The intersection of all such sets constitutes the whole solution space, which 

is repeatedly pruned until the optimal solution is found. A key novel feature of the 

BID is the use of the extended Euclidean algorithm [21], well-known for determining 

the greatest common divisor (gcd) of two integers, to generate the candidate sets. 

While the ML-search complexity is exponential in the number of transmit antennas 

and the data rate, our algorithm, particularly in high signal-to-noise ratio (SNR), 

achieves significant computational savings over the ML algorithm. Interestingly, our 

BID has lower complexity than the LLL decoder in high SNR (recall that BID is 

ML while LLL is suboptimal). BID also forms the basic backbone of efficient MSD 

algorithms; we thus develop four BID variants for MSD. The first two are ML and
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use branch-and-bound (BnB), the third one is suboptimal, which first uses BID to 

generate a candidate subset and then exhaustively searches over the reduced space, 

and the last one generalizes decision-feedback differential detection.

We then generalize the optimal decision rule to MIMO Ricean channels. To signifi­

cantly reduce this detection complexity, a suboptimal MSD-based DF-DD is proposed 

using our BID. Although DF-DD does not achieve ML performance, it achieves sub­

stantial performance improvement over the conventional differential detector (CDD) 

while its complexity is only linear in N.  Furthermore, we combine the BnB principle 

and BID and give a so-called sphere decoding bound intersection detector (SD-BID) 

to efficiently solve the MSD problem, which offers ML performance. In the high SNR 

region, the complexity of SD-BID is even lower than that of the DF-DD.

4.1.2 System model and differential unitary space-time mod­

ulation

We consider a MIMO system with N?  transmit and N r  receive antennas, and the 

input-output relationship can be written as [9,10,55,57]

R[n] =  S[n]H[n] +  W[n] (4.1)

where S[n] =  [st-,j[n]] is the T  x N T transmitted matrix during the n-th interval, 

and T  is the number of time slots per block interval. s,-j[n] i — 1 , 2 , . . . , T  and 

j  = 1 ,2 , . . . ,  N t  is transmitted by the j- th  antenna in the z-th slot. R[n] =  [rtj[n]] 

is the T  x N r  received signal during the n-th block interval, and rjj[n] is defined 

similarly to Sij[n]. H[n] =  [/i;(j[n]] is the NT x N r  MIMO channel matrix during the 

n-th block interval. W[n] =  [wij[n]] is the T  x N r  noise matrix with independent 

and identically distributed entries witj ~  C7V(0, ofj where a 2n is adjusted to ensure a 

given average SNR. Each time slot occupies an interval Ts, and the block interval is 

Tr  =  TST,  both in seconds.

For a frequency-flat Rayleigh fading MIMO channel and a rich scattering envi-
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ronment [60], the entries /q,j[n] ~  CM{0,1) for i =  1 , . . . ,  NT and j  =  1 , . . . ,  T.  The 

autocovariance of the channel gains is given by

E  {hij[n]h*,j,[n + m]} = 5i<v5jtj>Rh[m] (4.2)

where ^i,j is the Kronecker delta and /?h[m] is the correlation function of /iy[n]. This 

model describes spatially independent and identically distributed random channel 

gains with the identical correlation function Rh[m}. The fading channel is QS, i.e., the 

underlying continuous fading channel gain hitj(t) remains constant over each block 

interval, and hence /i,j[n] is approximated by the mid-point sample of hitj(t) [57], 

whereas the channel changes from block to block. Typically, when Clarke’s (Jake’s) 

model [45] is used, -R/Jm] =  Jo(2nmfdTs),  where J0(-) is the zeroth-order Bessel 

function of the first kind given by

00 2k
M x )  = £ ( - 1 ) * - ^ ,  (4.3)

and fd is the Doppler spread due to users’ mobility. Note that the QS condition is 

met when f dTa < 0.03 [55].

For a frequency-flat Ricean fading MIMO channel, hij[n] can be expressed as the 

summation of the direct component (hd)ij[n] and the scattered component (ha)ij[n]

h i  M =  {hd)i,j M +  (hs)i,j [n]. (4.4)

Assuming the Rice factor K  is common to all paths, K  is defined as |(hd)i,j|2/£{ |(hs)i,j|2} 

[61]. The autocovariance of the channel gains can be obtained similarly as (4.2). Eq. 

(4.2) can be written as

R[n] =S[n](Hd[n] +  H s[n]) +  W[ra] (4.5)

where [Hd]iti[n] =  (hd)ii:j[n\ and [H ^ ^ n ] =  (/is)ij[n].

From [9], the transmit symbols S[n] are generated using a finite group V =  {V), / =

0 , 1 , . . . ,  L — 1}, where V/ is a T  x N t  unitary matrix (V /V ^ =  I^), and L =  2NtR, 

where R  denotes the data rate. We assume T  =  N t , and Vo =  I nt - N t R  binary

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



information bits are first converted to an integer I G [0, L  — 1], and V[n] =  V/ is 

chosen from V. The n-th transmitted block is encoded as

In the first block, S[0] =  Vo is sent. The internal composition property of a group 

ensures that S[n] € V, and is unitary for any positive n. Specifically, for diagonal 

constellations, the unitary matrices V; are chosen as

Vi =  diag {ej27ru'*/L, ( ^

where uit i =  1 , . . . ,  N t  are optimized to achieve the maximum diversity product [9].

4.2 R educed Com plexity Differential U nitary Space- 

Tim e D em odulation over Rayleigh MIMO Chan­

nels

4.2.1 Decision metric

We first derive the ML MSD metric for DUSTM over Rayleigh MIMO channels. 

Since MSD estimates the transmitted symbols in N  consecutive intervals given N  + 1  

received symbols, let us consider symbol intervals n — k to n — N  + k. Let R[/c] =

[R"[fc],RH[fc+l],.. . , R H[k+N]]H and V[fc] =  [V"[fc+1], V"[fc+2], . . . ,  V H[k+N]}H.

S[n] =  V[n]S[n — 1]. (4.6)

The ML estimate for V[fc] can be expressed as

V[/c] =  argm ax/(R[/c]| V[fc]) 
v[fc]

(4.8)

where f{a\b) is the probability density function (pdf) of a conditioned on b. We define 

the covariance matrix of [/it J [fc],. . . ,  hij[k 4- N]]T as

Rh[ 0] Rfcfl] ••• R h[N]

Rfc[-1] R h[ 0] : :

Rh[~N]   R h[ 0]
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and let A =  (C h +  *• Using the results of [55-57], (4.8) can be simplified as

_  N  N + l

V[fc] =  arg max a,- j Re
v[fc] i=1 j=i+1

/ j+k-l
lr K '|i + i - l |  J] VMJ Rfa' + fc-l]

\m=i+k

(4.10)

where a .j  is the (z,j)-th entry of A. We normalize aitj with am = max*, la^jt+il, 

k  =  1 , . . . ,  N  or am =  a ^ j  ^ j +1 and denote =  —a i j /a m, where [rrj denotes the 

largest integer less than or equal to x  (the reason for this normalization will be clear 

soon). Eq. (4.10) is equivalent to

^  N  N+ I  (  /  / j+ f c - l  \  H  N

V[fc] =  arg min ^  — fijjRe < tr I H H[i +  k — 1] I I  V M  R-b +  f c - H  
V[fc) i= i j= i+ i I \  \m = i+ k  J

N  N + l 

= arg min V  V  
v[fc] i=i j=i+l

' j + k - i

R[? + k - l ] -  aij I V[m] j R[z +  k -  1]
\m=i+k )

(4.11)

When the channel is static over the N + l  blocks or equivalently Rh[n\ =  1, it can 

be readily obtained that aitj =  1 (i =  1 ,2 , . . . ,  N, j  = 2 , . . . ,  N  +  1 and i ^  j) .  Eq.

(4.11) becomes

^  N  N + l

V[fc] =  arg min J Z
V[*l <=i j=i+\

f  j+ k —1

R [j +  k — 1] — J ]  V[m] R \i +  k -  1]
Km=i+k (4.12)

When N  = 1, (4.11) reduces to

V[k  -h 1] =  arg min ||R[fc +  1] -  V[fc +  l]R[k]\\2F . 
V[fc+1] (4.13)

Eq. (4.13) is the decision rule given in [9, Eq. (21)]. Hence, the differential detector 

in [9] is still ML in a QS fading channel. If the normalization in (4.11) is not performed 

as in [55,57], the decision rule will not reduce to [9, Eq. (21)] when N  =  1. The 

normalization will provide a tighter bound, as will be shown in the next section. 

Eq. (4.12) can be interpreted as the summation of ML metrics between any two 

received symbols within the N  + l  receive blocks. The non-negative summands in

(4.11) facilitate our efficient MSD algorithm in Section 4.2.2.
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If the channel changes in each time slot, the MSD metric is derived in [55] for 

diagonal constellations. It can be readily verified tha t (4.10) reduces to (26) in [55]. 

Hence, the efficient detection algorithms in Section 4.2.2 can also be applied to the 

noncoherent receivers in [55].

4.2.2 Reduced complexity single-symbol detection

To put the development of our new algorithm in perspective, let us briefly review the 

problem and several previous contributions. The key idea of [58] is to convert the 

decoding of diagonal differential constellations to the CVP in a modular lattice via 

the cosine approximation (cos a  «  1—a 2/2). An n-dimensional lattice L  generated by 

a set of linearly independent vectors Vi, . . . ,  v„ e  is the set L = {J2 a ^ i  | a* € Z}. 

Given a lattice L and arbitrary vector y, the CVP is to find x  G L  so that ||x — y ||p 

is the minimum where the distance is measured in lp norm 1 <  p < oo. The shortest 

vector problem (SVP) is the homogeneous version of the CVP (i.e., y  is the origin). 

Both these problems are known to be NP-hard. Recent results show the CVP in an 

n-dimensional lattice to be NP-hard to approximate to within factor nc/iogiogn fQr 

some constant c > 0 [62]. Note also that [58, Eq. (12)] involves translation from a 

modular lattice to a non-modular lattice. Such a translation has also been considered 

in [63] and [64]. The celebrated LLL algorithm [59] is a polynomial-time algorithm 

that approximates both the SVP and CVP to within a factor of 2°(n\  Thus the LLL 

decoder [58] is faster than the ML exhaustive search, but the cosine approximation 

and the LLL algorithm incur a performance loss. The CVP can also be optimally 

solved by the well-known SD [13]. In [65], SD has thus been used along with the 

lattice approximation of [58]. But note that the search space increases to LNt in [65] 

while the original search space is only L. In addition, the cosine approximation also 

makes the SD solution suboptimal. Therefore, the direct application of SD is not 

optimal in terms of both computational complexity and performance. We next derive 

a novel, efficient SSD algorithm by combining bounding and the extended Euclidean 

algorithm.
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The ML SSD rule (4.13) for diagonal signals can be written as 

/ =  arg min ||R[A; +  1] -  ViR[A;]||^,

where V i is defined in (4.7). The cost metric in (4.14) can be expanded as

N t  N r

I = arg min J ]  ^  \ritj[k +  1] -  e,2™il/Lritj{k]^
1 t = i  j = l  

N t  N r

= arg min E E +m2 +ir<#n2 - 2Re to#+
1 t = i  j = i  

Nt

=  arg min ^  A{ — Bi cos [(urf — (f>i)2ir/L\ =  arg min <p(l)
i= 1

where

(4.15)

N r

Ai =J2\Vî k + ^  + lr«'.#]l'
j = 1 

N r

Bi =2 Y ^ rU k + ^ iA 1 
i=i

fa =  arg ^  rid[k +  l]rE[fc]^ L/2tt. (4.16)

We let the arg operation take values in [0,27r) so that fa G [0, L). If I is the true 

solution, the cost metric (4.14) becomes

Nt  N r

k # + 1] -  ^ uiiiLwitj[k\ i2
»=i i=i ( 4 . 1.7 )

where Wij[n] are the AWGN terms in (4.1). Note that e./a\ is a chi-square random 

variable with 2Nt N r  degrees of freedom. Therefore, we can choose a bound C  to be 

proportional to the variance of the noise as

C  =  aa^  (4.18)

so tha t the probability tha t at least one candidate I exists, which ensures that the 

cost metric (4.14) is less than C, is very high:
r a  x N t N r - I q - x/2

Jo T ( N t N r ) 2NtNr dX  “  1 “  e (4 -1 9 )
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where e is set to a value close to 0 (e.g., e =  0.1). Instead of searching all of the 

0 <  I < L, we only search the values of Z such tha t (p(l) < C. To find all of the Z’s 

that meet this condition, we note that </?(Z) (4.15) consists of N t  non-negative terms. 

Thus a necessary condition for tp(l) < C  is that each term of (4.15) is less than C, or 

equivalently

Ai -  Bi cos [(mod(uj/, L) -  fa)2'n/L\ < C , i  =  1 , 2 , . . . ,  NT. (4.20)

where mod (x , L) reduces x  to an integer between 0 and L. Let us define the candidate 

set Ci =  {Z | Ai -  Bi cos [(mod^jZ, L ) -  fa)2n/L] <  C, 0 <  Z <  L}, i.e., £ ; consists 

of all Z which satisfy the i-th term in (4.20). Note tha t when (.4; — C)/B i > 1, £* 

is a null set. If {Ai — C)/B i < —1, all the integers in [0,L) are included in £j. The 

problem at hand is to determine £; efficiently for all i. Since cos 9 is monotonically 

decreasing between 0 to tt and monotonically increases from tt to 27r, and since cos 0  

is an even function, we can readily show that (4.20) is equivalent to

|mod(ujZ, L) — (j)i\ < pi or L — pi < |mod(ujZ, L) — <f>i\ < L, i = 1 , 2 , . . . ,  N t

(4.21)

where

and cos-1(rc) takes values in [0,7r]. Expanding (4.21), we have

~ P i  +  (f>i< mod(tijZ, L) < p i +  fa (4.23a)

or L — pi + 4>i < mod(ujZ, L) < L + fa (4.23b)

or (f>i — L < mod(ujZ, L) < pi + fa — L. (4.23c)

Define S a =  {Z| — pi+fa < mod (urf,!,) < pi+<pi}>Sb =  {Z \L — pi+fa < mod(ujZ,L) < 

L +  fa} and Sc =  {Z |<̂  — L < mod(«;Z, L) < pi + fa — L}. Since 0 < m od^Z , L) < L

and 0 < fa < L, we have S a = {I \ max(—pi + </>*, 0) < m od^Z , L) < min(p{ +  </>*, L)},

Sb = {l\L  — pi +fa  < mod(uil, L) < L}  and «SC =  {Z |0 < mod(ujZ, L) < pi + fa — L}. 

Clearly, £* = 5 a U<S(,U5c, and exhaustive checking of (4.23) for all 0 <  Z < L  is not 

efficient. We next develop an efficient algorithm to determine £*.
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To do so, we first show how to find I such that mod(itj/,L) =  1. Since Ui is 

relatively prime to L, the gcd of integers u{ and L  is 1. The well-known Extended 

Euclidean Algorithm [21] computes the gcd of and L, as well as the numbers 

and k  such that

utdi + kL  =  1 (4.24)

where 1 is the gcd of Ui and L. For the details of the Extended Euclidean Algorithm, 

the reader is referred to [21]. To find mod(«jZ, L) =  n, we multiply both sides of 

(4.24) by n, which yields

Ui{ndi) +  knL  =  n. (4.25)

Therefore I =  mod(ndi, L) satisfies mod(ujZ, L) =  n. We are now in a position to 

determine £*. Define

[/£< =  (& + f t ] ,  L£i =  | > i - P i l  (4.26)

where [V| denotes the smallest integer greater than or equal to x, and [xj denotes 

the largest integer smaller than or equal to x. We now find that

S a ={mod(ndi, L) | max(LBj,0) < n <  min(Z7£,-,L)}

Sb ={m od(ndi,L ) \ L  + LBi < n <  L}

Sc ={mod(n;d;, L) \ 0 < n < UB{ — L}. (4.27)

Note that it can be readily verified that

mod(ndj, L) = mod((n +  L)di} L) =  mod((n — L)di, L ). (4.28)

Eq. (4.27) immediately reduces to

S a ={m od(ndi,L) |m ax(L£i,0) <  n < min(UBi,L)}

Sb =  {mod(ndi,L) | L B { < n  < 0}, S c = {mod(nidj, L ) \ L < n <  UBi}. (4.29) 

Therefore, we have

=  {mod(nidj,L) | LBi <  n  <  UBi} (4.30)

Let b,- =  [LBi, LBi  +  1, . . .  ,UBi\. The candidate set of I for the i-th term of (4.15) is 

given by

Li =  mod(dibj, L ) , i  = 1 , 2 , . . . ,  N t . (4.31)
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Although the extended Euclidean algorithm is NP-complete [66], can be computed 

before detection. Furthermore, (4.31) is a one-to-one mapping. For B =  [0,1, . . . ,  L -  

1], we can store M  =  mod(djB,T) in memory and (4.31) can be accomplished by 

Li =  [M(LBi) ,M(LBi  +  1) , . . . ,  M {UBi)].

The candidates that satisfy all of the N T equations (4.20) are chosen, i.e., the 

candidate set is the intersection of all of the N t  sets Li as

Nt
£  =  f ) A .  (4.32)

i = l

Intuitively, the term in (4.20) with the largest Uj, which typically is u^T) varies most 

with the change of I. Thus, the element in L  that is closest to <p̂ T is searched first. 

If no I can make <p(l) (4.15) less than the bound C, or equivalently if £  is a null set, 

we increase the probability 1 -  e (e.g., e =  0.12,0.13, . ..), adjust the bound C  and 

perform the same process again. If I* is chosen, C  is replaced by the new cost 

and I* is deleted from the set L (L =  L — {!*}). All L { i =  1 , . . . ,  NT are updated 

using the new bound C. In later iterations, (4.32) is replaced by

(4.33)

which avoids duplicate searches and reduces the search space. The process continues

until L  becomes the null set. The I with the minimum cost is then the optimal solu­

tion. We call this optimal detection algorithm Bound-Intersection Detector (BID).

To further improve the BID performance, we note that each term of (4.15) has a 

lower bound as

Ibi = Ai -  Bi cos [A0j27r/L], i = 1 , 2 , . . . ,  NT (4.34)

where A fa = fa — ["</>;] and f-J denotes the nearest integer to its argument. Hence, 

the lower and upper bounds (4.26) are updated to

UBi = 

LBi  =

,  . £  - j -  c + r : % , i * ,1b;
2tt C0S ( ------------ % -------------

\  L  - !  ( A i ~ C  +
2irC0S -----------Is, —
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Remarks:

• In high SNR, C  is small. The £  in (4.33) usually contains only one element. 

On the contrary, C  becomes large in low SNR. The size of £  approaches L. 

Therefore, similar to SD, the complexity of BID decreases with the increase of 

SNR.

• If the normalization in (4.11) is formulated, e /a \  in (4.17) is not a chi-square 

random variable with N t N r degrees of freedom. The initial bound C will be 

loose and difficult to estimate.

• The dimension of the lattice formed in [58] is the product N t N r . Hence, for 

a large number of receive antennas N r , the complexity of LLL may indeed 

be larger than that of a brute-force ML search which is linear in L = 2RNt. 

However, our problem formulation (4.15) does not expand the search space.

• In [65], SD has been used to solve the DUSTM detection problem based on the 

lattice formulation in [58]. But note that the search space increases to LNt in 

the lattice representation while the original search space is only L.

• The bottleneck of BID is the computation of N t  candidate sets £*, and since 

they can be obtained simultaneously, the BID algorithm can be readily paral­

lelized, an attractive feature for the implementation on a float-point multiple- 

processor digital signal processor (DSP).

The pseudo code of the BID is given in A lg o rith m  3.

4.2.3 Reduced complexity multiple-symbol detection

For the MSD of the diagonal signals, the search space increases to LN, and the 

computation of the metric (4.11) is more complex than in the SSD case. Eq. (4.11)
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i n p u t  : Received signals R[& +  1], R[fc]. 
o u t p u t :  The optimal I.

1 Compute A i,  B i  and (fo; e =  0.1;
2 Compute q using (4.19) and C = aer£;
3 fo r  i  <— 1 t o  N t  d o

5
6
7

8 
0

10

i f  {Ai — C)/Bi >  1 t h e n  

| C =  <j>\ g o t o  16;

e l s e  i f  [Ai — C)/Bi  <  —1 t h e n  

| £ = ( 0 : L - 1 ) ;

e l s e

| Compute L B i  and U B i  using (4.26) and £ ; using (4.31); 
e n d

11 
12
13 end

15 if £  = =  <f> then

10 | e =  O.le; goto 2;
17 end
18  Sort C  according to |mod(uArr f, L )  -  4>nt \\ I*  =  £(1); Imin =  I*', 
io  C = ||R [k +  1] -  Vi*R[fc]||p; C = C -  {!*};
20 w hile C <p do

21

22

23
24
25

26
27
28

20
30
31
32
33

34
35
36
37

38 
30  
40

for i *— 1 to Nt  do

if {Ai — C)/Bi > 1 then  

j £  =  <j>\ goto 33;

else if {Ai -  C) /Bi  < -1  then  

| Ci =  {0 : L  -  1);

else

| Compute L B i  and U B i  using (4.26) and Ci  using (4.31); 
end 

end
C =  c n f ] ^ C i - ,  
if £  = =  <f> then

| return /min; 
end
I*  =  CC\Y C. =  C. — f l * \ -
if ||R[fc +’ 1] -  Vi*R[fc]|fe. <  C  then

C = ||R[* +1] -  V{*R[fc]||?.; Imin = l*\

e l s e

e n d
41
42
43 e n d
44 r e t u r n  /

g o t o  33;

A lg o rith m  3: Bound Intersection Detection Algorithm
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can be reduced to

1 — [^ fc + l  i l k + 7.1 • • •  i ^ c + i v ]

N  N + l

=  arg min E E
f f c + l . f f c + 2  I k + N  i = i  ,'= i + i (4.36)

where V i is given in (4.7). We next give four MSD algorithms which generalize the 

BID algorithm.

4.2.3.1 MSD1

We first use BID for the SSD of the N  block symbols, and the result is denoted by i. 

i is then substituted back into (4.36), and the cost is denoted by C. Note that (4.36) 

is the summation of non-negative terms. The exhaustive search is performed. After 

each of the (N  +  l)iV/2 terms in (4.36) is computed, the current cost is compared 

with C. If it is larger than C, the search stops, and another candidate is tested. 

When all the (N  + l )N /2  terms have been finished, the total cost is compared with 

C. If the cost is less than C, C  is replaced by this value, the current 1 is saved, and 

the search continues until all of the LN possible candidates have been finished. The 

best one is output as the optimal solution. This MSD is similar to a BnB algorithm. 

Unfortunately, this algorithm is not very efficient when L  is large and when the SNR 

is low, making the initial bound C  loose.

4.2.3.2 MSD2

The efficiency of our proposed BID is due to avoiding search of all 0 <  I < L. To 

apply the same idea to MSD, we also begin by using BID for applying SSD for N  

symbols over N  + l blocks. The resulting 1 is then substituted back into (4.36), and 

the initial bound is obtained as C. Since (4.36) is the summation of (N  + l ) N / 2  

non-negative terms, a necessary condition for the cost (4.36) be less than C  is that
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each term of (4.15) is less than C , in particular

||R[fc +  JV] -  aN- hNv [ k+NR[k + N - 1] <C ,
(4 .37 )

which is the SSD problem. The candidate set C^+i for lk+N can be found by using 

BID. For every in A-+yv, the bound for l k + N - 1 can be improved to C — Bk+N-, 

where Bk+N =  H r ^  + N] — V ,1fc+NR[fc +  iV — 1] . The candidate set Ck+N-i for

l k + N - i  can also be found by using BID. The similar process continues for l k + N - 2 , and 

so on. When it comes to lm>, the bound is updated as C  — 5Z?=m'+i where Bi is 

given by

N + l

j=i+l
R \j + k  -  1] -  ai,j vSEim=i+1 'm)R [i + k -  1]

(4.38)

When a set of 1 has been chosen, (4.36) is computed and compared with C. If it is 

less than C, C  is updated, 1 is saved and deleted from their candidate set, and the 

candidate set for each lm is updated by using the new bound. The process continues 

until all of the elements in the candidate set have been searched. The output is the 

optimal solution.

However, the initial bound can become loose with the increase of N  and in high 

SNR. In this case, the candidate set usually contains all of the I's. To overcome this 

problem and further reduce the complexity, the idea similar to BID can be used to 

find the lower bound of each term in (4.36), which can be obtained the same as in

(4.34). The bound for each I can be further improved by using these lower bounds 

(details omitted for brevity).

4 .2.3.3 M SD 3

We may use the output of SSD as a starting point of MSD. In [49], a reduced- 

complexity detector is proposed for MSD of M-PSK. The key idea is to search for a 

small candidate subset with the s > 1 largest symbol-wise metrics for pairs of received
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signals, and then search exhaustively over the reduced space of size sN where N  is 

the number of M-PSK symbols. Similarly, for the MSD of DUSTM, we first modify 

BID to do SSD for each signal lm (m  =  fc-f l , . . . ,  k + N)  and generate a candidate list 

of the s > 1 smallest metrics -  instead of returning only the optimal solution. This 

can be accomplished by choosing a larger initial bound. If less than the s candidates 

are found, the bound is increased until they are obtained. The sN A-tuples are 

substituted into (4.36), and the one with minimum cost is output. When s is small, 

the number of /V-tuples to search is relatively small, and this significantly reduces 

complexity. Furthermore, when testing all of the sN iV-tuples, the BnB algorithm in 

MSD1 can also be used to further reduce the complexity. Reference [49] shows that 

when choosing s =  2, the performance of the reduced-complexity algorithm is nearly 

ML. While ignoring the first stage BID, the complexity of the reduced-complexity 

MSD is only (s /L ) N of tha t of the ML search. The effectiveness of MSD3 in static 

fading channels is verified in Section 4.4.

4.2.3.4 MSD4

The MSD problem (4.11) can be formulated as maximum likelihood sequence esti­

mation (MLSE). DF-DD [55] is equivalent to a decision feedback sequence estimator 

(DFSE). In [67] and [68], a reduced-state sequence estimator (RSSE) is introduced to 

reduce the number of states in MLSE. DFSE can also be viewed as a special RSSE. 

Similarly, a reduced-state differential detector (RS-DD) can be used to solve (4.11) 

as a generalization of DF-DD.

As a special case of DFSE in [67,68], RS-DD replaces 4+i, -  • • J k + x i  with previ­

ously decided symbols 4 +i , . . .  ,4+m, 0 < M  < N  — 1. The ML detection is then 

performed for 1 ^ + m + i , ■ ■ ■ , h + N -  Clearly, if M  =  N  — 1, RS-DD reduces to DF-DD 

in [55] and if M  =  0, RS-DD reduces to MSD. For h + M + i ,  - • • J k + N ,  MSD1 and 

MSD2 can be used to reduce the complexity of exhaustive search. Therefore, RS-DD 

or MSD4 gives a tradeoff between performance and complexity.
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4.3 Reduced Com plexity Differential U nitary Space- 

Tim e D em odulation over Ricean MIMO Chan­

nels

4.3.1 Decision metric

Similarly, we consider the sequence from n = k to n = k + N. Let R[/c] =  

[RH[k], R"[fc + 1 ] , . . . ,  R H[k +  N}\H and H[fc] =  [Hw[fc], H H[fc + 1 ] , . . . , H H[k + N)]H. 

The input-output relationship for the N  symbols can be expressed as

R  [k] = S D[Jfc]H[fc] +  W[k]

=S/>[fc](H#] +  H s[k]) + W[A]

where So[k] is a block diagonal matrix

S[k]

(4.39)

S D [ k ] =
S[k +  1]

(4.40)

S [k +  N]

and H # ]  =  H"[AH-1],. . . ,  H ^fc+iV]]", H.[fc] =  [H f [fc], H"[fc+1], . . . .  H f  [k+

iV]]^, W[fc] =  [W ff[l;], W H[fc+l],. . . ,  W H[k+N]]H. vec(R[fc]) is a complex Gaussian 

vector and the conditional pdf given Spffc] is

1
(ttnn t det(Cfi))iV«

exp {- t r  ((R  -  S dH,,)"C7('! R  -  S DH ,,))}

(4.41)

We ignore the time index k in (4.41) for simplicity. The autocovariance matrix C R 

is given by

C R = £ { R R " }  =  S d C h S q +  N Ra 2n I NtN 

where C// is the covariance matrix of H  and can be represented as

C // =  NR(Ch ® 1nt )
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where <g> denotes the Kronecker product [69] and C h is given in (4.9). Since S[n]’s 

(n = k , k  + l , . .. , k  + N)  are unitary matrix, =  I NrN. We have

C r  = S d C u S d  +  Nro^ 1nt n

= N RS D{Ch ® l NT + (TllNTN)SHD 

= N r S d [(Cft +  <8> IjvJ S"

=N r S d (C ® I^ T) (4.44)

where 0  =  0 ^  +  a \ Iat+i- The third line (4.44) follows the distributivity property of 

Kronecker product. It can be readily verified that det(Cn) does not depend on Sp. 

Therefore maximizing (4.41) is equivalent to minimizing

g{SD) = tr  ((R  -  SDH d)HC ^ ( R  -  S DU d)) .  (4.45)

Note that

< V  — S o f c a v r ' s g

~T7“ ®D (C -1 ® IjvT) Sg. (4.46)
1\ r

The first equality comes from =  I NtN (S ^S d =  I ntn ) and the second equality

comes from the Kronecker product property (A ® B )-1 =  A -1 <g> B _1 (A and B are 

square nonsingular matrices) [69]. We Cholesky factorize C -1 as C -1 =  U HU, U is 

upper triangular. Using the Kronecker product property (A ® B )(C® D ) =  A C ® B D , 

C -1 ® Iatt  =  (U ® Iatt )h (U  ® 1nt ) =  U HU and U is also upper triangular. This

factorization needs to be done only once. After some manipulations and ignoring

constants, (4.45) can be simplified as

g(SD) = | |Ufld -  U S " R ||f  =  ||Y  -  U S " R ||f  (4.47)

where Y  =  U H d =  [Y"[fc], Y H[k +  1], . . . ,  Y H[k +  N]]H and Y[n] is an N T x N R 

matrix. The MSD for DUSTM over MIMO Ricean channels is given by

{s[fc],...,S[fc +  JV]| =  arg min ||Y  -  US2R | |F . (4.48)
*• J sjfc] s[fc+tv]ev

The transmitted signals can be differentially detected as

V[n] =  S[n + l]S*[n] (4.49)
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When N t  = N r =  1, the MSD (4.48) for MIMO systems reduces to the MSD for 

single input and single output (SISO) systems.

Remarks:

•  When K  = 0 =t> H d = 0, (4.48) reduces to the decision metric in 4.11, corre­

sponding to the Rayleigh fading channels. When K  —> oo o\  —> 0, (4.48) is 

equivalent to

{s[fc],. . .  , S[fc +  N ) \  =  arg min ||R  -  S£)Hd||2. (4.50)
L J s[fc],...,s[jfc+jv)ev

Eq. (4.50) corresponds to the coherent detection with perfect CSI. Similarly, 

with different Rice factor K,  the MSD decision metric (4.48) varies between 

Rayleigh fading and perfect CSI cases.

• If N  =  2, we find that (4.48) reduces to the CDD [9] as

V[fc] =  arg vmjnv ||R[fc] -  V[fc]R[fc] f F. (4.51)

•  If K  7̂  0, the decision metric (4.48) is variant to a phase shift common to all the 

components in Sj> Therefore different from the Rayleigh case, the exhaustive 

search need to test all the LN candidate vectors instead of L N~X.

• Increasing K  the MSD performs more like a coherent detector, which is linear 

in N.  But solving (4.50) needs exhaustively search over L. We need to use BID 

to reduce the complexity for (4.50).

4.3.2 Reduced complexity multiple-symbol detection

We now present our sphere decoding bound intersection detector (SD-BID) to solve 

the MSD (4.48). Like SD, we only examine the candidates that satisfy

||Y  -  U SsR II2 <  R2. (4.52)
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Let the entries of U  be denoted by Uij, i <  j .  Taking the upper triangular and 

Kronecker product structure of U  into account, (4.52) can be written as

N

E
i= 1

N

Y[fc +  i] -  ui,jS [k +  +  j]
]=i

< R 2

Thus a necessary condition for (4.53) is

||Y[fc +  N] -  uN<NS[k +  N]R[k +  N] f F < R 2

N

E
i=/V—1

N

J = t

< R 2

(4.53)

(4.54)

(4.55)

N

E
t=i

N

Y[k  + i ] - ^ i j S { k  + j}R[k + j] < R 2. (4.56)

Conditions (4.54)-(4.56) can be checked componentwise. To proceed, we start from 

S[/c +  N]. Using BID, we can obtain its candidate set

XN = {V i |||Y[fc +  N] -  uNtNV[R[k  + iV]||2F <  R 2, I € { 0 ,1 ,. . . ,  L -  1} } (4.57)

where V i is defined in (4.7). If S[fc +  N] is chosen from X^,  it is substituted into 

(4.55). The candidate set for syv—l is

2W_i =  j  Vj j |  Y [k + N -  1] -  ViR[fc + N  -  1] -  uN. 1<NS[k + N]R[k +  N)

I € {0,1,... ,L — 1}}

< R2,

(4.58)

After choosing S[k + j] for S[k +  j] from their candidate set, i +  1 < j  < N.  we 

define
2

d l  =
N

Y[fc +  m\ -  ^ 2  u i,js [k +  +  j]
j = m

R 2n  = R 2, R m =  R m+1 -  dlx+11 i < m < N  -  1

(4.59)

(4.60)
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The candidate set for S[fc +  i] can be obtained as

Ti = { v i
N

Y[fc +  i] -  UitiV[R[k  + i) -  ukJS[k +  j]R[fc +  j ]
j=k

l e  { 0 ,1 , . . . ,L -  1}}. (4.61)

When all S[A; +  i] has found, all the R f  s are updated according to

R 2n  =  ||Y  -  U S /jR ||2, R 2 = R 2+ l - d 2+1)i = N - l , . . . ,  1. (4.62)

The same process continues until all the candidates meet (4.52) have been checked. 

The best candidate is output as the ML solution. Eqs. (4.52)-(4.62) are identical 

to the corresponding operations in SD. The only differences are in SD-BID we use 

Frobenius norm and the candidate set is obtained using BID. If N t  = N r = 1, the 

SD-BID reduces to the SD.

The initial radius R  can also be obtained according to the statistic of ^(Sjr,) in 

(4.45)

<?(Sz>) =  tr  ((R  -  S DH d)HC n l {R  -  S DH d)) . (4.63)

If So  is the true solution, using (4.5), X  = Ŝ [A:]R[fc] -Hd[fc] = Hs[ft] + S"[A:]W[/c] is 

zero mean complex Gaussian with autocovariance matrix 0 *  =  C/,-fCT2Ijv. Therefore 

e =  tr{X H(C /, +  cr2 Iy v )- 1X }  is a chi-square random variable with 2N N r N t  degrees 

of freedom. As in (4.20), R 2 can be chosen to make the probability that e is less than 

R 2 very high.
r R 2 x N N n N T - l e - x / 2

Jo r ( N N RNT)2 NN RNT dx = 1 ~ e- (4‘64)

e can be reduced to enlarge R 2 to make sure that the ML solution can be found. The 

initial radius here does not depend on the noise variance. Hence, we do not need to 

estimate the noise variance.

The Schnorr and Euchner (SE) strategy [14] can also be generalized to SD-BID. In 

each step, we not only find the candidate set J , but also compute the corresponding 

d2 using (4.59) and store it in D*. X* is sorted according to D;. The candidate with 

minimum d2 is searched first.
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Assuming correct decisions of S [k],. . . ,  S[fc 4- N  -  1], the MSD for DUSTM (4.48) 

can be readily modified to MSD based DF-DD by replacing S[fc],. . . ,  S[k +  N  -  1] in

(4.48) with S[fc],. . . ,  S[A:-f- N — 1]. Our BID can be used to solve the DF-DD. We also 

note tha t decision feedback sequence estimator is a special case of the RSSE [67,68]. 

Similarly, a reduced-state differential detector (RS-DD) can be used to solve (4.48) 

as a generalization of the DF-DD. Instead of assuming N  — 1 correct feedbacks in

(4.48), RS-DD only uses M  (0 <  M  < N  — 1) decision feedbacks. S[fc],. . . ,  S[k + M] 

in (4.48) are replaced with S[k],. . .  ,S[& +  M] and SD-BID is used for the N  -  M  

dimensions problem. If M  =  0, the RS-DD reduces to SD-BID and DF-DD when 

M  =  N  — 1. Thus, both the performance and complexity of RS-DD are between 

SD-BID and DF-DD.

4.4 Sim ulation R esults

We now provide and discuss simulation results. We assume a MIMO channel model 

as described in Section 4.1.2 and generate the channel gains by sampling a continuous 

fading process via the Jakes’ model [45]. We use the diagonal signals with parameters 

Ui,i =  1 , . . . ,  N t  from [58, Table 1]. The brute-force ML detector is referred to as ML 

detector in the following. For coherent detection (CD), the transmit symbols S[n] are 

estimated assuming perfect knowledge of the channel matrix H[n]. The information 

symbols are recovered by differential decoding.

4.4.1 Rayleigh channels

We first show the results over Rayleigh fading channels. Fig. 4.1 compares the 

performance of BID for SSD with that of ML and the LLL decoder [58] when Nt  =  

3,4,5, N ji = 1 and R  = 2. Our proposed BID performs exactly ML. At a BER of 

10-3 and N t =  3, the LLL decoder performs 0.15 dB worse than the ML decoder.
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Fig. 4.1. Performance comparison for N t  =  3,4,5 transmitter antennas, N r = 1 

receiver antenna as a function of SNR. The channel is static fading and R  = 2.

When N t  = 5, the performance loss by using LLL decoder increases to 0.5 dB at 

BER=10-3. As stated in [59], LLL achieves an approximation factor 2°^n\  which 

is exponential in the dimension n, which agrees with our simulation results that the 

gap between ML and LLL increases with the increase of N t .  Note that in [58] an 

exact decoder is also proposed. This exact algorithm may be used together with LLL, 

which increases the complexity by a factor of 2 N̂t+^ Nt^ +Nt . Moreover, the exact 

decoder incurs a performance loss due to cosine approximation.

Fig. 4.2 shows the complexity of BID in flops when N t  =  2,3,4,5, N r  =  1 and 

R  =  2. We use the flops function (it provides an estimate of the number of floating 

point operations performed by a sequence of Matlab statements) in Matlab to compare 

the numerical efficiency of various decoders. We do not consider parallelization issues. 

The LLL decoder follows exactly the one given in [58] without using their exact 

algorithm. With the increasing SNR, the flops of BID reduce significantly (Fig. 4.2). 

The ML and LLL complexities are almost constant, given in Table 4.1 for comparison. 

In high SNR, our proposed BID is much more efficient than both ML and LLL while 

offering ML performance. The flops required by the ML decoder is between 10 to
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Fig. 4.2. Complexity of BID for N? =  3,4 ,5  transmitter antennas, N r = 1 receiver 

antenna versus SNR. The channel is static fading and R  =  2.

30 times of tha t of BID. W ith the increase of N t , the complexity gap between our 

BID and LLL decreases while the performance gap increases. Note that DUSTM 

is especially effective in this region [9], which is consistent with the more efficient 

efficient region of BID, making it especially suitable for DUSTM.

Fig. 4.3 compares the complexity of BID and LLL with a fixed number of transmit 

antennas N t  = 4, a different number of received antennas N r and R  =  2. In [58], 

the lattice dimension increases as N t N r . For large N r , the complexity of LLL on

TABLE 4.1

Complexity comparison for ML, LLL and BID in flops.

ML LLL BID (25dB)

N t =3, N r = 1, R = 2 2469 720 214

jVT= 4, N r = 1, R = 2 13312 2561 572

Nt =5, N r = 1, R = 2 66560 8462 2341

Nt =Q, N r = 1, R = 2 344064 19864 14765
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the naive lattice formulation is much more than that of BID. However, we compare 

the LLL for our formulation (4.15) which only has N r  terms regardless of N^.  The 

complexity of LLL is almost independent of Nr,  and the complexity difference is due 

to the preprocessing step. Interestingly, in low SNR, the complexity of BID decreases 

for large N r , while the complexity of BID increases in high SNR. Each term in (4.15) 

is a combination of N r  terms. In low SNR, a larger N r  requires a larger value for each 

term in (4.15), resulting in a smaller candidate set. Since we count the preprocessing 

flops in computing A t , B i  and fa in (4.16), larger N r  encounters higher complexity 

to compute these parameters and the complexity is dominant by the preprocessing 

step. In fact, the performance relates to the complexity in our BID. The probability 

of finding the true solution reflects the tightness of the bound.

Fig. 4.4 illustrates the performance improvement of MSD for a static fading 

channel. A MIMO system with NT =  4, N r  =  1 and R  =  1 is simulated. The 

performance gap between N  =  6 and N  —> oo is relatively small [55]. Hence, in 

our simulation N  — 3,6 blocks of received signals are collected for detection. Since 

both MSD1 and MSD2 are ML, the performance of MSD2 only is shown in Fig. 

4.4. The performance of MSD2 is compared with those of SSD, CD, DF-DD, MSD3 

and MSD4. In MSD3 and MSD4, we choose s = 2 and M  =  3, respectively. The 

performance loss over MSD2 when using MSD3 is negligible even when s =  2, which 

verifies the effectiveness of MSD3. The gap between DF-DD and MSD2 is also small. 

At BER= 10-5 , the gap is only 0.2 dB for N  =  3,6. When N  =  3 blocks are used, 

MSD2 has a 1-dB performance gain over SSD at BER= 10~5, and when N  =  6 

blocks are used, the performance gain increases to 1.8 dB. MSD2 with N  = 6 has 

only a 0.8-dB loss over CD. Fig. 4.5 compares the complexity of different detectors 

in a static fading channel in terms of the average flops per block. In high SNR, the 

complexity of MSD1, MSD2, MSD3 and MSD4 decreases, a  common property of BnB 

detectors since their performance depends on the noise variance or equivalently the 

SNR. In high SNR, the complexity of MSD2 is the lowest among all the detectors. The 

complexity of MSD1 is high since it only performs naive BnB. The high complexity 

of DF-DD is due to the computation of canceling the previous symbols, but DF-DD
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Fig. 4.3. Complexity comparison between BID and LLL for N t  = 4 transmitter 

antennas, N ji =  1 ,2 ,3 ,4  receiver antenna versus SNR. The channel is static 

fading and R  =  2.

cannot offer ML performance. Both MSD3 and MSD4 have lower complexity than 

MSD1 and MSD2 in low SNR, and MSD3 and MSD4 perform better than DF-DD. 

Therefore, MSD3 and MSD4 are suitable in low SNR, and MSD2 is efficient in high 

SNR.

In Figs. 4.6 and 4.7, the performance and complexity are compared for different 

detectors with fd.Ts =  0.0075, and the other parameters are set the same as in Figs. 4.4 

and 4.5. An error floor appears for SSD in high SNR. When N  =  3, the performance 

gap between MSD2 and DF-DD is 0.4 dB at BER= 10~6, and the gap increases to 

ld B  when N  = 6  (Fig. 4.6). However, both MSD3 and MSD4 perform close to 

MSD2. MSD2 has a 6.5-dB loss over CD with N  = 3 at BER= 10-6, but the loss 

reduces to 2.5 dB when N  =  6. The complexity of different detectors as shown in Fig.

4.7 has similar properties as those explained in Fig. 4.6.

We compare the performance and complexity for different detectors in Figs. 4.8 

and 4.9 with f ciTs — 0.03, and the other parameters are the same as before. Note that
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SN R  (dB)

Fig. 4.4. Performance comparison of NT =  4 transmitter antennas, N R = 1 receiver 

antenna with N  = 3,6 and R  = 1 as a function of SNR. The channel is constant 

within N  blocks.

©• D F-D D  N «3 
D F-D D  N «3  
MSD1 N=3 
MSD1 N »6 

B - M SD2 N=3 
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MSD4 N=6.

1 ° tt *i r? n rrtT̂ - - * -" ~r ~ ~ ~ t ~..~ ~.?
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Fig. 4.5. Complexity comparison of N r  =  4 transmitter antennas, JVr =  1 receiver 

antenna with N  =  3,6 and i? =  1 as a function of SNR. The channel is constant 

within N  blocks.
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Fig. 4.6. Performance comparison of N? =  4 transmitter antennas, N r  = 1 receiver 

antenna with N  — 3,6 and R  = 1 as a function of SNR. The normalized Doppler 

frequency is fdTa =  0.0075 and R  =  1.

SSD exhibits a large error floor, which can be reduced by using both DF-DD and our 

proposed MSD’s. MSD2 has smaller error floors than DF-DD. When N  =  6, the error 

floor is not observed for both MSD2 and MSD4 within the plotted SNR region. There 

also exists a large gap between MSD2 and DF-DD. MSD4 performs close to MSD2; 

for example, a t BER= 10~7, the performance gap is only 1.2 dB. MSD3 also exhibits 

large error floors, which can be reduced by increasing both s and N.  Compared to 

the case fdTa =  0.0075, the performance gap between MSD2 with N  =  6 and CD 

increases significantly: almost 10 dB at BER= 10-6. Therefore, the performance of 

all of the noncoherent detectors degrades with increasing fdTs. The complexity of all 

of the proposed MSD’s increases with increasing fdTs. This is because for large fdTs 

the coefficients dij  in (4.11) are far from 1. The bound given by computing (4.11) 

will be on average larger than that in small fdTs. MSD2 still achieves the minimum 

complexity in high SNR. In low SNR, MSD3 and MSD4 again have lower complexity 

than MSD2. They are suitable in low SNR where the complexity of MSD2 is rather 

high.
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Fig. 4.7. Complexity comparison of NT — 4 transmitter antennas, N r  = 1 receiver 

antenna with N  =  3,6 as a function of SNR. The normalized Doppler frequency 

is fdTs = 0.0075 and R  = 1.

ffi
CD

10*#
SSD  

—  CD
• e  OF-OD N=3 
- e -  DF-DD N=6 
•Q - MSD2 N*3 
“B“  MSD2 N=6 
• 0 -  M S D 3 N » 3 ,s= 2  

MSD4 N «6. M=3
10- '

SNR (dB)

Fig. 4.8. Performance comparison of N T  = 4 transmitter antennas, N r  — 1 receiver 

antenna with TV =  3,6 as a function of SNR. The normalized Doppler frequency 

is f dTs = 0.03 and R  =  1.
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Fig. 4.9. Complexity comparison of N t  = 4 transmitter antennas, N ji =  1 receiver 

antenna with N  = 3,6 as a function of SNR. The normalized Doppler frequency 

is fdTs = 0.03 and R =  1.

In Fig. 4.10, we investigate the complexity per block of MSD2 as a function of 

different N  and the normalized Doppler fdT3 with fixed SNR=30dB. When fdTs = 

0,0.02, the complexity per block increases almost linearly as N  increases. Different 

fdTs results in different slopes, which is also due to the bound variation by coefficients 

a jj. When the normalized Doppler frequency is as high as 0.03, the slope is large at 

first and then becomes flat with increasing N. Fig. 4.10 also suggests higher f d T  

will cause higher complexity.

4.4.2 Ricean channels

We now show the results over Ricean fading channels. NT =  4, Nn = 1 and rate 

R  =  1 DUSTM is used as an example.

Fig. 4.11 shows the BER versus SNR for SD-BID, MSD based DF-DD (DF-DD), 

with N  = 3,6, f o T  = 0.0075 and Rice factor K  — 5 dB [70]. Compared with DF-

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



800

700

600

i0)

400

300

200

N

Fig. 4.10. Complexity of MSD2 for N t  = 4 transmitter antennas, N r =  1 receiver 

antenna with SNR=30 dB, R — I and different normalized Doppler frequencies 

as a function of N.

DD, the SD-BID has 0.1 dB gain (N  — 3) and 0.4 dB gain (N  =  6) at BER= 10~4, 

respectively. Both DF-DD and SD-BID can reduce the performance gap between 

CDD and CD. The performance loss of SD-BID over CD is reduced with the increase 

of N.  When JdTr increases to 0.03, the gap between SD-BID and CD enlarges from 

1 dB to 2 dB (Fig. 4.12). At BER=5 x 10-4, the DF-DD performs 0.6 dB and 1.2 

dB worse than SD-BID. This agrees with the conclusion for SISO systems that the 

gap between SD-BID and DF-DD enlarges with the increase of N. We also show the 

performance of RS-DD in Fig. 4.12. When N  = 6, M  =  3, RS-DD has about a

0.6-dB gain over SD-BID with N  = 3, both with 3 dimension’s exhaustive search. It 

outperforms SD-BID by 0.2 dB when N  =  9, M  =  3. RS-DD is a good candidate to 

achieve good performance while still maintain reasonable complexity.

Fig. 4.13 presents the performance of SD-BID (N  =  6), CDD and CD with 

different Rice factor K.  All the detectors perform better increasing K.  The gap 

between SD-BID and CD reduces with the increase of K  and so does the gap between 

SD-BID and CDD.
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Fig. 4.11. The performance comparison between SD-BID, MSD based DF-DD, CDD 

and CD with N  = 3,6 for DUSTM (NT = 4, N r =  1 and R  =  1) over flat 

Ricean channels (/dTb =  0-0075 and K  — 5 dB).
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Fig. 4.12. The performance comparison between SD-BID, MSD based DF-DD, CDD 

and CD with N  = 3,6  for DUSTM (Nt  =  4, N r =  1 and R  =  1) over flat 

Ricean channels (/dT b  =  0.03 and K  =  5 dB).
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Fig. 4.13. The performance comparison between SD-BID (N  = 6 ), CDD and CD for 

DUSTM (Nt  — 4, Nh — 1 and R  = 1) over flat Ricean channels (JdTb =  0.03) 

with different Rice factor K.

We compare the complexity of different algorithm in Fig. 4.14. We apply BID 

to the CD. The complexity of SD-BID reduces as SNR increases. SD-BID is even 

less complex than DF-DD in the high SNR region. In this region, SD-BID has both 

complexity and performance gains. Interestingly, the complexity of RS-DD is less than 

that of SD-BID. In RS-DD, the matrix U  after deleting the corresponding columns 

to the feedback signals is different from the U  in SD-BID with the same size. The 

diagonal terms of the matrix in RS-DD is larger than that in pure SD-BID. The 

structure difference on the matrix offers more complexity savings.

Fig. 4.15 shows the complexity of SD-BID with the increase of K  and different 

/ d T b ’s . W ith the increase of K ,  the complexity of SD-BID reduces significantly as 

SD-BID becomes CD when K  —»• oo. We can also see from Fig. 4.15 that smaller 

Doppler frequency results in less complexity. Like the argument in RS-DD, the com­

plexity reductions with K  and JdTb  are both because of the change on the structure 

of matrix U. It is a good example to show the effect of matrix structure in solving 

CVP.
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Fig. 4.14. The average number of flops comparison between SD-BID, RS-DD, MSD 

based DF-DD for DUSTM (Nt  =  4, N r =  1 and R  =  1) over flat Ricean 

channels ( /qTb =  0.03 and K  =  5 dB).
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Fig. 4.15. The average number of flops of SD-BID for DUSTM ( N t  = 4, N r =  1 

and R  = 1) over flat Ricean channels for different /dT b  and Rice factor K.
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4.5 Conclusion

In this chapter, we have considered efficient algorithms for multiple symbol detection 

of DUSTM over QS fading channels. The multiple symbol detection decision metric 

for both Rayleigh and Ricean channels are derived. We have derived a novel detection 

algorithm called BID for single symbol detection of diagonal constellations. This 

algorithm is exact ML and substantially saves complexity, particulary in high SNR. 

As well, an interesting and novel feature is the use of the extended Euclidean algorithm 

for detection. For MSD over Rayleigh channels, we developed four detectors, all of 

which are derivatives of the BID algorithm. MSD1 and MSD2 are both ML. MSD3 

first generates a candidate subset for each I via BID and exhaustively searches over 

the reduced space. MSD4 generalizes the DF-DD. For the detection of DUSTM over 

Ricean channels, we have proposed a  SD-BID to efficiently solve the MSD. Several 

efficient implementation issues were also addressed. Simulation results confirm the 

relationship between Ricean fading, Rayleigh fading and perfect CSI cases.
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Chapter 5

Blind and Sem i-Blind D ata  

D etection  for OFDM  System s

In this chapter, we develop new blind and semi-blind data  detectors for Orthogonal 

Frequency Division Multiplexing (OFDM) systems. Section 5.1 describes the basic 

baseband OFDM system model. Section 5.2 derives the blind and semi-blind data 

detectors over frequency selective channels. In Section 5.3, we present efficient de­

tection algorithms for our detectors. We develop a cyclic prefix based power delay 

profile (PDP) and noise variance estimation algorithm in Section 5.4. Section 5.5 

generalizes our data detectors. Section 5.6 shows the simulation results and Section

5.7 concludes this chapter.
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5.1 Introduction

5.1.1 Background

OFDM is used for high data rate wireless local area network (WLAN) standards, 

such as the Hiperlan and IEEE 802.11a, providing data rates of up to 54Mbit/s, and 

considered for the fourth-generation (4G) mobile wireless systems and beyond [71]. 

The use of pilot tones for channel estimation [72-74] constitutes a significant over­

head or bandwidth loss, motivating the development of blind techniques for OFDM. 

They use statistical or deterministic properties of the transmit and receive signals, 

properties such as cyclic prefix (CP) and pilot induced redundancy, cyclostationarity, 

finite alphabets and virtual carriers have been exploited [75-78].

Joint estimation of channel impulse response (CIR) and data symbols for OFDM 

has not been investigated extensively. A maximum likelihood (ML) joint blind channel 

and data estimator [79] exploits the finite alphabet property of modulation symbols 

and the presence of virtual carriers (VCs). In [80], a blind channel estimator for block 

fading channels is proposed using the super-trellis and the per-survivor algorithm, 

which requires relatively high complexity. Recently, [81] also proposed a blind joint 

channel and data estimator. The branch-and-bound principle is applied to solve a 

nonlinear integer problem associated with finding the curve that fits a subchannel in 

the least squares (LS) sense.

Note that many previous blind estimators typically use averaging over large num­

ber of OFDM symbols (up to several thousands in some cases). These estimators 

thereby introduce a considerable latency into the overall system and they also re­

quire that the channel remains constant. Thus, estimators that require few OFDM 

symbols are preferable, as they can operate over non-zero Doppler channels and do 

not introduce an appreciable delay. The initial channel estimate can also be used for 

data detection over several OFDM symbols (provided the channel variation is slow
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enough).

In this chapter, we develop new blind and semi-blind data detectors for OFDM 

systems. For frequency selective channels, the semi-blind detector uses both channel 

correlation and noise variance. The quadratic for the blind detector suffers from rank 

deficiency, to which we give an efficient solution. Both the detectors are obtained by 

posing the problem of the joint estimation of channel and data as a mixed discrete 

and continuous LS optimization problem. By eliminating the channel from it, we ob­

tain a discrete integer LS problem (which has the same form for both the detectors) 

for the data symbols. Exhaustive search of the solution space yields the ML solution 

but has exponential complexity in the number of subcarriers and is computationally 

prohibitive. Avoiding this problem, we solve our data detectors using sphere decod­

ing (SD) [2] and Vertical Bell Laboratories Layered Space-Time (V-BLAST) [1] and 

provide simple adaptations of the SD algorithm. Our approach allows for substantial 

computational saving over exhaustive search. Since the semi-blind detector requires 

both channel correlation and noise variance, we propose a  PDP and noise variance 

estimation algorithm. We also consider how the semi-blind detector performs under 

mismatch, generalize the basic data detectors to non-unitary constellations and ex­

tend them to systems with pilots and virtual carriers. An enhanced data detector is 

also be derived by noting that for a given LS channel estimate, the true CIR can be 

modeled as complex Gaussian with mean being the LS channel estimate itself. The 

LS channel estimate thus gives a prior on the true channel and averaging the likeli­

hood function over the prior distribution gives the enhanced detector tha t mitigates 

the effect of channel estimation errors.

5.1.2 OFDM baseband model

In an OFDM system, the source data are grouped and/or mapped into the symbols 

from a constellation Q, which are modulated by inverse discrete Fourier transform
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(IDFT) on N  parallel subcarriers. The resulting time domain samples are

(5 .1)

where

( dfc k £ Id
(5.2)

Pk k  £  Ip

and Id is the index set of data subcarriers with Nd elements, Ip is the index set

(5.2)

of subcarriers reserved for pilot symbols (pilots for brevity) with Np elements and 

Nd + N p = N. Note that k =  0 ,1 , . . . , N  — 1 are called OFDM input symbols. 

We assume that all the djt’s have the same power, i.e., E{\dk\2} = E a and all the 

E{\Pk\2} =  Ep. The symbols after IDFT is denoted as x n, n  =  0 , . . . ,  IV — 1. The 

term “OFDM symbol” denotes the entire IDFT output (so, Xj, • • • ,a;jv-i}. The input 

symbol duration is Ts and the OFDM symbol duration is NTS. These samples are 

appropriately pulse shaped to construct the time domain signal x(t) for transmission. 

Typically, pilots Xk, k 6 Ip, known a priori at the receiver, remain fixed from one 

OFDM symbol to the next. In this pilot arrangement, Np <§: N.  Alternatively, entire 

OFDM symbols of pilots (Np = N ) can be transmitted periodically. We focus on the 

former, as it is more common in applications.

We assume that the composite CIR which includes transmit and receive pulse 

shaping and the physical channel response between the transm itter and receiver may 

be modeled as [29, p.802]

where hi ~  CJ\f(0, erf), is the delay of the Zth tap and L  is the total number of

paths. The [erg, • • • , and [r0, • • • , t i -\\  constitute the PDP. The received signal

after sampling is given by

where wn ~  CJ\f(0,crl) is an Additive White Gaussian Noise (AWGN), and di =  

[ti/T s] is the delay normalized by Ts. For simplicity, we round di to an integer

L- 1
(5.3)

L—1
(5.4)

(=0
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without considering leakage. However, the detectors in this chapter may also be 

extended to fractional dj. We assume perfect synchronization and that the channel 

remains constant during each OFDM symbol, but it varies between OFDM symbols. 

If the cyclic prefix is sufficiently long (Ng > L ), the post-DFT received samples Yk 

are given as follows:

Yk = HkX k + Wk, 0 < k < N  — I (5.5)

where Hk = H ( j2 n k /N )  is the complex channel frequency response at subcarrier 

k, H{ju>) is the Fourier transform of the CIR and Wk k  =  0,1, • • • , N  — 1 is the 

Fourier transform of wn and is independent and identically distributed (i.i.d) complex 

Gaussian random variable (CGRV), each of which also has zero mean and variance 

Assuming rj =  ITS, we find H  =  Fj,h, where H  =  ,H^ r_i]r , h  =

[ho, hi, • • • , hi,-1] G CL is the CIR and F l is a N  x L  submatrix of DFT matrix F, 

which corresponds to each channel path. We can vectorize (5.5) as

Y  =  X DF Lh +  W  (5.6)

where X # =  diag{X0,X i, • • • ,Xyv-i} is a diagonal matrix. Note that (5.6) is the 

basis of our blind and semi-blind data detectors.

5.2 Blind and Sem iblind D ata D etectors

Using ML principles, we derive blind and semi-blind joint CIR estimators and data 

detectors. The semi-blind detector is derived by assuming the availability of the 

exact knowledge of channel correlation matrix and noise variance. Our use of the 

term semi-blind is somewhat unconventional. Typically, semi-blind refers to the use 

of one or more pilots. We use the term semi-blind to indicate that the detector needs 

the knowledge of channel correlation and noise variance.
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5.2.1 Blind detector

Since W4’s in (5.6) are independent and identically distributed (i.i.d) Gaussian vari­

ables, the ML estimator of the channel (h) and transmitted symbols (X ^) is given 

by

(h ,X D) =  argmin ||Y  -  X DF ih | |2. (5.7)
hecL,xDeQN

The minimization in (5.7) is a complex LS problem for h  and an integer LS 

problem for X p .  Given X p  (we assume that X p  = X p )  the channel response h  that 

minimizes (5.7) is given by the LS estimate

- l
h  = ( X dFl )h ( X dF l ) ( X DFLf Y .  (5.8)

Substituting (5.8) into (5.7), we obtain

X D =  argmin Y  -  X DF L [(Xz?F L)H(X DF i )]_1 (X DF L)HY  
X D

=  argmin || [lN -  X DF L (F^Fy,)-1 F * X " ]  Y

=  a rg m in Y " [i*  -  X 0 F L (F " F l ) _1 F hl X hd 
X d  L J

=  argm inx TY%  [I* -  F LF£] Y d x*

(5.9a)

(5.9b)

(5.9c)

(5.9d)

where Y p  = diag{Y0) Yy, • • • , Yv-i} and x  6 QN is the vector whose elements are 

the diagonal elements of matrix X p .  Eq.(5.9b) is due to the use of the constant 

modulus constellation M-PSK; Eq.(5.9c) follows from the fact that the matrix Ijv — 

XoFy, (Fj-fFy,) 1 Fj^Xjj is an orthogonal projection matrix onto ti uI I ( X p F l ) and 

the projection matrix has the property F 2 =  P i  and P f  =  P i.

The rank of the matrix B =  Y$(Ijv — FLF ^ ) Y D is only N  — L. Note that B 

can be QR factorized as B =  Q R , where Q and R  are unitary and upper-triangular, 

respectively. Since the last L  rows of R  are zero, both the standard V-BLAST and 

SD algorithms fail here. We next modify (5.9d) so that both SD and V-BLAST can
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be applied. Note that in [79], an approximate iterative LS projection algorithm is 

developed to solve optimization problems similar to (5.9d). However, the convergence 

of that algorithm is not guaranteed.

Using the constant modulus property (e.g., |ATfc|2 =  1 for Xf. € Q), x TY% Ypx*  =  

22kJo l f̂cl2 is a constant. Therefore the optimization problem (5.9d) is equivalent to

X p  =  arg min t]XTY ^ Y  px* +  xTBx*
x&QN

=  argm inxTY^[(r7 +  1)1^ - F l F ^ ]Y c x ’ . (5.10)
xeQN

Since F/,F^ is positive semi-definite matrix with non-zero eigenvalue 1, (rj +  1)1^ — 

F/,Fj? is a positive definite matrix if 77 >  0. For simplicity, we let 77 =  cr2.

Detector (5.10) can be solved via an exhaustive search over all M N possible data 

sequences, a search whose complexity is exponential in N  and which is prohibitive 

for all but small N.  Therefore, we can use both V-BLAST (Section 1.2.1) and SD 

(Section 1.2.2). Both the algorithms exploit the Cholesky factorization of a positive 

definite matrix, which can be used for the blind detector (5.10) and the semi-blind 

detectors developed in the next section.

Remarks:

• The blind detector (5.10) is known as the generalized likelihood ratio test 

(GLRT) [82]. Similar approach has been used for joint ML channel estima­

tion and signal detection for single input and multiple output systems in [83].

• After X p  is estimated from (5.10), the LS estimate h can be obtained by sub­

stituting X p  into (5.8).

• Both x  and x e ^ ,  where $  G (0,27r), satisfy (5.10), which shows tha t the blind 

detector (5.10) exhibits a phase ambiguity. This can be solved by using a pilot 

tone.
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• Existing OFDM standards such as the IEEE802.11a incorporate pilot symbols 

[84]. These pilots can be used to reduce the search space and solve the phase 

ambiguity.

5.2.2 Semi-blind detector

This requires the knowledge of the autocorrelation matrix R* of the CIR h  and the 

noise variance o\.  We classify it as a semi-blind detector. From (5.6), h  and W  

are zero-mean complex Gaussian random vectors. The received samples Y\. are also 

zero-mean CGRV’s conditioned on X p .  The autocorrelation matrix of the received 

signal is given by

R y =  £ { Y Y "}  =  X DF LR hF l X “ +  a 2nl N

= X £,(F LR /lF f  +  a l l N) X HD. (5.11)

The determinant of R y can be expressed as

det(R y) =  det(X D)d e t(F LR /lF "  +  a2 lN)det(X g) =  det(F LR /lF ^  +  < # „ ) . (5.12)

Note that the determinant of R y is independent of X d if is from a unitary 

constellation. Ignoring terms that are independent of X d , the log-likelihood function 

is given by

A (Y |X d) =  - Y ^ R ^ Y .  (5.13)

As with (5.9d), maximizing the log likelihood function is equivalent to solving

X d =  argmin xTY g (F LR AF ?  +  ^ I jv) - 1Y dx*. (5.14)
xeQN

Eq. (5.14) also results in a quadratic form in x.

R em arks:

1. Semi-blind data detection (5.14) also incurs phase ambiguity, as both x  and

xej0 satisfy (5.14) if eJ0 belongs to the M-PSK constellation. Pilot symbols are

thus needed and the search space hence reduces from QN to QNd.
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2. Semi-blind data detection (5.14) need not be performed every symbol. If the 

channel remains constant for M  symbols, the channel estimate h  obtained in the 

first symbol using (5.8) can be used to detect the data symbols in the remaining 

M  — 1 symbols.

3. The semi-blind data detector needs the knowledge of R/, and which may 

not be known exactly. The resulting mismatch problem is studied in Section 

5.5.1.

5.2.3 Enhanced data detector with channel estimation error

When the LS channel estimator is used with only a few pilots, the estimated CIR 

becomes

h  =  ( F f  P g P s F p ) - 1 F "  P # Y p =  h  +  h  (5.15)

where P p  =  diag{pi,. . .  , P n p } ,  Y p =  Y (/p), F p =  F l ( I p, :) is the Np x L  submatrix 

of F  corresponding to the pilots and h  =  (F ^P j^P /jF p )-1 F ^ P ^ W . We can obtain

R-h =  F { h h "}  =  a2n ( F f P g P ^ F , ) - 1 =  f  (F ^ F P) _1 (5.16)
a p

where Ep is the power of pilot symbols and we assume that all the pilots have the 

same energy. If h  is used to detect the data in the consecutive OFDM symbols with 

one-tap equalization, performance loss can be high. This motivates enhanced data 

detection given channel estimation errors.

Given the a priori channel estimate h, the true CIR h  has a priori Gaussian 

distribution as

P(h) =  7r̂  det(R ^j CXP H h -  ft> X 7 l(h  -  6 >} • <517)

The received symbol vector Y  (5.6) is also Gaussian but with mean X /jF ^h  and 

covariance matrix Ijy. The likelihood function for the unknown CIR h  and X p is
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given by

/(Y |h ,X p )  =  exp { ~  ||Y  -  X p F p h ||2| .  (5.18)

We average the /(Y |h , X p) in (5.18) with respect to h  with (5.17) resulting in the

marginal likelihood function /(Y |X p ) . We next derive the characteristic function of

the following quadratic form

Q = | |y - A x | | 2 (5.19)

where A G Cnxm, y G Cn and x  ~  CN{n,  R ). Since z =  y  -  A x CN(  y -  

An ,  A R A H), using Eq. (B-3-20) in [85, p. 595], the characteristic function of Q is

<p(s) =EQ{e~sQ} = J exp { - s | |z | |2} p(z)dz

= det'( f + ' sA tfA R ) 6XP (sA R A "  + I ) " 1 A ^  ~  SYH ( s A R A H + 1 )"1 y

+ s y H (sA R A h + 1)-1 A n  +  snHA H (sA h R A  + 1)-1 y | .

(5.20)

Let Q = ||Y  — X /jF jrh f . Substituting A =  XpFx,, n = h  and R  =  R /t into (5.20), 

we obtain

(R i  +  £r „ ( F M X DF I ) - T , h

- Y " ( X DF t R sF « X g  +  +  2Re [y «  (X DF t R sF ? X g  + o f o ) - '  X dF z.1i] } .

(5.21)

If X k ’s are unitary, det(cr2Iw +  F^X j^X pFxR,-) is independent of Xp.

Ignoring the terms independent of X p, maximizing (5.21) is equivalent to mini­

mizing

gx(X)  = Y "(X D F ,.R f.F ? X g  +  ^ W ' Y  -  2Re [ y "  (X DF t R sF g X g  +  ^ I J - ' X c F i h  

=  |( F iR iF g  +  <r*A-l) - i  (Fz.1i -  Y DX ')  ||2

(5.22)

where A is a diagonal matrix with

I Ejs k  G Id[A|-=U ( 5 ' 2 3 )
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Substituting (5.16) into (5.22), we have

i&(X) = ( ^ F l (F"Fp) _1 F" +  ^ A " 1)-* (F Lh -  Y/jX*) |

^ ( F i  (F ^F p )-1 F ^  +  FpA-1)"2 ( FLh  -  Y ^X *) I
@ n  \  /

(5 .24)

Since the scalar Ep/a* does not affect the minimum of (5.24), the enhanced data 

detector is now given by

2
X  =  arg min 

xeQN
(F i (F ^ F p )-1 F "  +  EpA "1)" !  (F £h  -  Y DX*) || . (5.25)

R em arks:

1. Unlike (5.15), a remarkable advantage of the enhanced detector (5.24) is that 

it requires neither R;, nor a\.  The only required parameter is the pilot energy 

Ep, which is known at the receiver. Therefore, no parameter mismatch problem 

exists in (5.24).

2. The performance gain of (5.24) is obtained by using the statistics of the channel 

estimation error and sacrificing the simplicity of one-tap equalization. When 

more computational power is available, (5.24) saves the transmission bandwidth 

and power, providing a tradeoff between complexity and bandwidth efficiency.

5.3 D ata D etection  Algorithm s

The blind detector (5.10) and the semi-blind detector (5.14) can both be written in 

a general form as

X p  =  argm inxr Gx* =  ||M x*||2 (5.26)
xeQN

where G is a positive definite matrix, which can be Cholesky factored as G  =  M /7M. 

Eq. (5.26) is the same as the data detection problem in (1.2) given r  =  0 and M  =  H.
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Similarly, the enhanced data detector (5.25) can also be written in the form (1.2). 

Therefore both detectors can be solved via V-BLAST and SD. Details can be found 

in Sections 1.2.1, 1.2.2.

In Section 1.2, we show that a system employing complex constellations such as 

square QAM can be transformed in to a PAM modulated system. However not all 

constellations can be decoupled into real systems (e.g., 8-PSK). In [30], a modified 

sphere decoder is proposed to handle PSK constellations. But it involves the com­

putationally inefficient cos-1 operation, slowing down the SD. We address here the 

decouple algorithm can still be used to handle M-PSK and any other constellations. 

Note that each element of x  is constrained by the constellation. For a given $l(xk), 

the candidates for S(xjb) are hence constrained. Let Q r  =  {5?(a;)|a; E Q } .  Let 

Qi{x) = {^(s)|a; E Q ,x  E Q r } .  Therefore x k is selected from

Xk G
[LBk, UBk] n  Q r  k =  2 i, i =  0 , 1 , . . . ,  N  -  1

(5.27)
[LBk,U B k\ D Qi(xk- 1) k =  2i +  1, i = 0 , 1 , . . . ,  N  — 1

where L B k and UBk are defined in Algorithm 1. Since Qj(x ) can be pre-computed 

for each x from Q r  and be stored in memory, additional computational complexity is 

avoided. This simple idea can be used to handle any constellations. The decoupling 

for M-QAM can be viewed as a  special case of our generalization because Qj(x)'s are 

the same for any x  from Q r  and Q r =  Q j .

An important problem is how to choose the initial radius. For OFDM symbols 

with M-PSK, we relax (5.10) and (5.14) as m inx^G x , x wx  =  N  where the vector 

x  E CN. The Lagrangian £ (x , A) for this minimization problem is £ (x , A) =  x HG x + 

A(xHx  — N).  The optimal A here is the maximum eigenvalue of matrix G and x  is 

the eigenvector corresponding to A. We quantize x  into a point in QN as x. By 

substituting x  into (5.26), the initial radius is given by d2 =  x HGx.
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5.4 Power Delay Profile and N oise Variance Esti­

m ation

The semi-blind data detector (5.14) needs the knowledge of channel autocorrelation 

matrix and noise variance. The autocorrelation matrix is determined by the PDP. 

Other than our semi-blind detector, in OFDM systems, noise variance and PDP are 

needed for many algorithms such as MMSE channel estimation and ML frequency 

offset estimation. Noise variance estimation is also required in many communication 

applications such as adaptive modulation, turbo coding and others. In [86], a noise- 

variance estimator is proposed that directly uses the receiver statistics. A subspace 

approach is presented in [87] that uses the sample covariance matrix of the received 

signal. However, both algorithms are data aided (DA) estimators, which constitute 

a bandwidth loss. The estimation of the number of multipath gains and associated 

time delays have been proposed in [88], where pilot symbols are also needed, and 

channel multipath power and noise variance are required. In [89], a noise variance 

and SNR estimator that uses training symbols is developed for multiple antenna 

OFDM systems. Except for these contributions, no other non-data aided (NDA) 

noise variance and PDP estimators for OFDM systems have been published to date.

We next develop cyclic prefix based NDA noise-variance and PDP estimators for 

OFDM systems over multipath fading channels. The key is to use the fact that the 

cyclic prefix contains the repeated samples which introduces a special correlation 

structure on the received samples. The noise variance, the number of multipath taps, 

and PDP are jointly estimated without pilots. The ML function for the estimated 

parameters is derived, resulting in an ML estimator.

We consider multiple OFDM symbols in this section. Therefore the OFDM symbol 

during the m th block interval is denoted as x n(m ) and the received signal is denoted as 

yn{m). We assume perfect synchronization, and that the PDP is invariant within M  

OFDM symbols. If there exists a synchronization error, a decision directed algorithm
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may be applied using our proposed parameter estimators and the joint ML time and 

frequency offset estimator in [90].

At the border between two OFDM blocks {—Ng < n  < 0), the received signal 

samples can be written as
L- 1 L- 1

yn(m) = hiXn^d,(m)U(n -  d{) + y ' i hlx N+n_dl{'m -  1 )U(di -  n ) + w„(m)
1=0 1=0

(5.28)

where U(■) is the step function. The correlation between each received signal sample 

over the CP interval and its corresponding sample at the end of the OFDM block can 

thus be given by

E{y-k(m)y*N_k(m)}

ffy +  a2 0 < k < N g -  d£_!

EfJo1 °tU {N g - k - d t )  Ng — dL. ,  < k  < Ng — d0 (5.29)

0 Ng   do < k Ng

where ag = E t= o a?i an<̂  & =  !>•••) The expectation in (5.29) is taken with 

respect to both hi and xn(m).

When L is large, yn(m) can be modeled ap p ro x im a te ly  as complex Gaussian 

using the central limit theorem, and the probability density function (pdf) is given

exp ( - ^ y )
} { V n { m ) )  =  .

7r(cr2 +  a 2)

Samples j/-fc(m) and y^-k(m )  are jointly Gaussian with pdf

f ( y - k ( m ) , V r t - k ( m ) )  =  

where

Pk =

 {  \ y - k { m ) \ 2+ \ y N - k ( m ) \ 2 - 2 p k R { v - k { ™ ) y ’N _ k { m ) } \

6XP V (ag+^)(l-pg) )
TT2{(T2 +  a 2) ( l  - p i )  

E{y-k(m)y*N_k{m)}

(5.30)

(5.31)

V E {\y-k(m)\2}E{ \yN- k(m)\2}

E t o  ° ? m 9 ~  k -  dj)
E t o  of +

128

(5.32)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Therefore, the proposed estimator is only approximate ML.

We use M  OFDM blocks to estimate those parameters and assume that they 

remain unchanged during the M  blocks. Define p  =  [a%, . . . ,  cr\_ J ,  d  =  [d0, . . . ,  d i - i ]  

and y  =  [ y - N g ( l ) , y - N g+ i ( l ) ,  ■ ■ ■ ,V n-i(M )\. Using (5.30) and (5.31) and assuming 

the M  OFDM blocks are independent, the log-likelihood function of y  conditioned 

on a 2, p, d  can be written as

A(y|cr2,p,d)
M  / N g  N '  \

= x > g  n  f { y - k { r n ) , y N ^ k { r n ) ) Y [ f ( V k ( r n ) )  )
m = l  \ k = 1 fc=0 /

= -  M  ( E  + log(c(1 _ + £  7  + log(c)) (5'33)\  fc=1 flc—0 /

where N ' = N  — N g — 1,

_ _  E m=i ly-k(m)l2 + lyN- k(m)l2 

k ~  M

, = Em=i ®{y-k(rn)y*N_k(m)} 
k M

a _  Em=i M m ) ?  . j2 . j2
 M  +  (5.34)

Since (5.33) involves many variables, to simplify the joint parameters’ estimation, we 

take a suboptimal way. We first estimate c by maximizing only the last sum in (5.33):

E £ oE i L  |y*(m)l2
N - N g ~  (N - N g) M  ' {b b)

From (5.35), we find c is the time average estimation of a2 +  a2, and hence an 

estimate of c is given by c. Substituting c back into the first summation of (5.33) and 

maximizing pk individually, we get the estimate for pt- as the real root of the equation

2 cp3 — bp2 — 2(c — a,k)p — b = 0. (5.36)

We then compute the value as

s t = (  PK,C k = 1  (5.37)
[PNg-k+l -  PNg-k+2)C k =  2 , , , . , N g
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A threshold value is set as ac, where a  is a constant less than 1. If Sk > ac, it is 

identified as a path; s* is the estimate of path power, and k is the estimate of delay 

time. The number of paths is estimated as the number of Sk that Sk > ac. We denote 

the maximum delay time as dmax. The noise variance can thus be estimated as

— rfmax + 1 * \

( 5 - 3 8 )

If we look directly at the structure of OFDM block, in the absence of noise, 

?/_fc(m) =  yN_k(m) for k = 1 , . . . ,  Ng — dmax + 1. The noise variance can be obtained 

alternatively as

,2 _  \V»-*(">) -
” -------------- 2M(Ng — dmax + 1)------------' (5'39)

Using the results of (5.35) and (5.38) or (5.39), SNR can be estimated by

S N R = - ^ .  (5.40)

Note that (5.39) can only be used to estimate a2.

Note that the SNR considered in this section is average SNR, which is averaged 

over the channel, data and noise realizations. Our proposed algorithm cannot estimate 

the instantaneous SNR, where a fixed channel is considered.

We now investigate the performance of our proposed estimators. We assume an 

OFDM system using QPSK with N  =  64 subcarriers, and CP length Ng — 16. A L = 

6 channel model is used. The power profile is given by p =  [0.189,0.379,0.239,0.095, 

0.061,0.037], and the delay profile after sampling is d  =  [0,1,2, 4,6,8]. Each path is 

an independent, zero-mean complex Gaussian random process.

Fig. 5.1 shows the probability of correct detection of the number of paths using 

our proposed algorithm with different M. The threshold parameter is set to a  =  0.01. 

In low SNR, the paths with smaller power are dominated by the noise, and there may
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Fig. 5.1. The probability of correct detection of the number of paths.

be many paths larger than the threshold. Therefore, the number of paths may be 

overestimated. The probability of correct detection increases in high SNR. With 

increasing M, the probability of detection error decreases.

Fig. 5.2 presents the normalized mean square error (NMSE) of the channel 

power estimation for the 3rd path (arbitrarily chosen), where the NMSE is defined as 

NMSE =  E{(&1 — crf)2} / ^ .  The channel power is overwhelmed by the noise in low 

SNR. In high SNR, the NMSE becomes constant since the number of paths cannot 

be 100% correctly detected. The NMSE is improved by increasing M.

Fig. 5.3 shows the NMSE of the noise variance estimation using different estima­

tors, where the NMSE is defined as NMSE =  E {(a 2 — a 2)2 } /a 4. The estimator using 

(5.38) is denoted as ML, and that using (5.39) is denoted as direct estimator or (DI). 

At low SNR, the DI method performs better than the approximate ML method since 

the probability of dmax detection is higher for the DI method. In high SNR, both 

DI and ML perform identically. With the increase of M, the performance of both 

estimators improve.
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Fig. 5.2. The NMSE of the channel power estimation for the 3rd path.

In this section, we have presented noise-variance and power-delay-profile estima­

tors using the CP in each OFDM block. The correlation structure due to the use of 

the CP has been exploited to derive our estimators, and hence pilot symbols are not 

needed. A direct heuristic noise variance estimator has also been proposed. Simula­

tion results show that our proposed estimators provide an effective way to estimate 

the channel parameters. The results in this section may be used to improve the 

performance and reduce the complexity of channel estimators for OFDM systems.

5.5 Generalizations

5.5.1 Semi-blind detector under mismatch

Even though we can estimate the channel covariance matrix R/, and the noise variance 

o \  using the algorithm in Section 5.4. There still exists residual mismatch. Hence, 

we investigate the design of robust semi-blind detectors for R/, and cr£, while the true 

values are R/, and In [72,73], the estimators against the mismatch are designed
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Fig. 5.3. The NMSE of the noise variance estimation using different estimators.

for the worst case, which is taken to be the uniform power delay profile (UPDP). We 

follow their approach and consider a suboptimal criterion as follows:

E {Y "X D(FLR ,F f + ^ I ) - 1X gY }

= E  { h //F " x g X /?(F i R /tF ^  +  a l l ) - lX HDX D¥ L\i +  W ^ F ^ F "  +  a f r J ^ X g w }

(5.41)

The second equality comes from (5.6). If the first term of (5.41) is independent of 

R/j, the BER may be less dependent of the mismatch. Ignoring the noise variance of, 

and letting AX  =  X .p X D, the first term of (5.41) can be written as

E { h " F £ X g X D(FLR hF ?  +  a ll)~ lX Z X DF Lh}

~ E  { h " F £  A X //(F LR^F[/ ) " 1A X F Lh}

=E | h " F f  A X //F L(R A)~1F ^ A X F z,h j  (5.42)

Since F ^  A X F £, is a circulant matrix, we assume the first row is denoted by oq, a*, • • • , a(L- 

1). Eq.(5.42) becomes
L - 1 L - 1

EE
i=0 j —0

a((z +  j)m odL)|:‘

RfcO)
■Rfc(0 (5.43)
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If R h(j)  is UPDP or R h(j) = l /L ,  (5.43) is equal to L Y i - o  |a (i)|2 which is indepen­

dent of R h- Hence the detector is robust to mismatch with this choice of R h-

5.5.2 Generalization to non-unitary constellations

The blind and semi-blind detectors can be extended to non-unitary constellations. 

Instead of solving the optimal detector (5.7), the suboptimal blind detector solves

(h, X d) =  argmin H X ^Y  -  F Lh ||2 (5.44)
h6C£,XDeQw

where Q denotes the non-unitary constellation. The LS estimate of h  is given by

h  =  F i/X ^1Y  (5.45)

Substituting (5.45) into (5.44), we obtain

Xz, =  argm in Y " X 5 "  (I* -  F iF ? )  X ^ Y  
x D

=  argmin xhY $ (In -  F LFjrf) Y ^ x  
xetQ-1)" (5.46)

where Q-1 denotes the constellation whose element is the inverse of the corresponding

element in Q. Eq. (5.46) can also be solved using V-BLAST and SD but it suffers

from performance loss due to the suboptimal detector (5.44).

For the semi-blind detector, we note that (5.11) is

R Y = X DF LR hF ”X ” +  a 2nl N. (5.47)

Maximizing the log likelihood function is equivalent to solving

X D =  arg min Y H (X DFLR hF” X% +  ^ I * ) " 1 Y  
x D

=  arg min Y h X q H (FLR kF% + a 2n(X DX “ ) - xy l X ^ Y . (5.48)
X-D

As in [72], we derive a suboptimal detector by replacing the term (X ^ X ^ )-1 in

(5.48) with its expectation E { ( X dX q )~1}. Assuming the same constellation on all
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the subcarriers, we have E {(X 0 X g )_1} =  p lN, where p =  £ { l / |: r fc|2}. Therefore 

the suboptimal semi-blind detector is given by

X D = argm in x //Y ^ (F i R/lF i  +  pa2I ^ ) -1Y Dx. (5.49)
xe(Q-l)w

For optimal detection of (5.48), we note that F/,R /tF ^  is positive semi-definite.

It can be readily verified tha t F ^R ^F ^  +  <72(Xjr,Xg)_1 is positive definite. We use 

the following definition from [69, p. 469].

Definition: Let A, B be Hermitian matrices. We write A X B if the matrix 

A -  B is positive semi-definite. Similarly, A >- B means that A — B is positive 

definite.

Let A =  F iR ftF ^ + c r^ X o X g )-1 B =  F LR hF ^+ p ma lI N, where pm = max{l/|a;jfc|2}. 

It can be readily verified tha t B y  A. Using Corollary [69, p. 471], we can obtain 

A -1 y  B -1. Therefore, for any x  6 (Q~l )N

x wY |>B-1Y£)X < x " Y g A - 'Y b x  (5.50)

When applying the SD to (5.48), it find the minimum point among all the points 

satisfying

x h Y d A ~ 1Y dx. < r2. (5.51)

Using (5.50), we find the point minimizing (5.48) among all the points satisfying

x ^ Y g B ^ Y o x  < r 2. (5.52)

Hence, the SD should be modified when the search goes to the bottom of the search 

tree, the SD updates the radius r  according to x a Y j j  A -1Y£>x instead of x HY ^B -1Y dx. 

This gives the optimal solution.
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5.5.3 Time-varying channel tracking via decision feedback

Our proposed detectors may also be used for channel tracking if the channel remains 

constant for K  OFDM symbols. For p — 1 (the first symbol), the initial channel 

estimate h( l )  is obtained by blind or semi-blind detectors. For the remaining OFDM 

symbols (p =  2, • • • , K) ,  channel estimation may not be necessary. Instead, h( l )  

is used to detect p = 2 , . . . ,  K  OFDM symbols. Decision-feedback type iterations 

can also be used to track a slowly-varying channel. For the pth symbol, the OFDM 

symbol is detected using the channel estimate in the p — 1th symbol and is denoted 

as X D(p). The channel in the pth symbol h(p) is then updated as

h(p) =  [(XD(p)FL)" (X /,(p)F i ) ] _1 ( X D(p)FL)HY( p)  (5.53)

where Y p denotes the received symbols in the pth symbol.

5.6 Sim ulation R esults

Simulation results are given for the proposed detectors. We consider a frequency- 

selective slow Rayleigh fading channel with L  Gaussian complex taps hi with of — 

IT[|h/|2] =  ale~l!b for / =  1, • • • , L; and the six-tap COST 207 TU channel model [91], 

which has the delay profile {0.0,0.2,0.5,1.6,2.3,5.0}ps and power profile {0.189,0.379, 

0.239,0.095,0.061,0.037}. The channel output signal-to-noise ratio (SNR) is Eb/N0. 

An OFDM system with 32 subcarriers and binary phase shift keying (BPSK) is sim­

ulated. A training symbol is transmitted at the N th  subcarrier to solve the scaling 

ambiguity. The performance of one-tap equalization with perfect knowledge of the 

CIR -  perfect channel state information (CSI) -  provides the benchmark.

Proposed detectors are tested on OFDM systems with the above simulation pa­

rameters under different SNR over a 6-ary exponential PDP channel. Figure 5.4
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shows the MSE of channel estimation which is defined as

(5 .54)

The semi-blind detector (5.14) with the SD has MSE performance identical to that of 

the blind detector (5.10) with the SD. In high SNR, the semi-blind detector with V- 

BLAST performs close to tha t with the SD, while the blind detector with V-BLAST 

still has a 1.2-dB gap over tha t with the SD at MSE= 5 x 10-4.

•© • Semi-W ind V-BLAST  
• a  Blind V-BLAST  
- 0 -  Seml-WInd SD  
- a -  Blind SD

ui

10**

SN R  (dB)

Fig. 5.4. MSE of the joint ML estimation of the channel response versus SNR for 

an OFDM system with N  =  32 and BPSK in a 6-ray exponential PDP channel.

In Fig. 5.5, the BER performance of the OFDM system is compared with that 

of the benchmark. Both detectors with the SD are within 0.5 dB of the benchmark 

in high SNR. The performance of V-BLAST detection for the semi-blind detector 

is comparable to that of the SD in high SNR. In low SNR, the gap between SD 

and V-BLAST can be as large as 5 dB. The average computational complexity as a 

function of the SNR is given in Fig. 5.6. Note tha t the complexity of the exhaustive 

search is 1.81 x 1013 flops while even for an SNR of 10 dB all detectors’ complexities 

are within 10G flops by using SD. The computational time can be saved significantly. 

The complexity of both detectors increases with the increase of SNR. At OdB, the 

semi-blind detector is 32 times faster than the blind detector. The blind detector
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Fig. 5.5. Bit error rate of the joint ML estimation algorithm versus SNR for an 

OFDM system with N  — 32 and BPSK in a 6-ray exponential PDP channel.

has higher complexity than the semi-blind detector in low SNR. This is possibly 

due to the inherent rank-deficiency in (5.9d) while the complexity is greatly reduced 

compared with the exhaustive search in the first N  — L  variables [16] in the blind 

detector. When the SNR is larger than 25 dB, both the semi-blind detector and the 

blind detector have identical complexity. The semi-blind detector is preferable in low 

SNR when the channel statistics are known at the receiver.

We also compare the different algorithms over the COST 207 TU channel model, 

described above. The channel is assumed to be constant for 100 OFDM symbols. 

The channel is estimated using the first OFDM symbol, and the remaining 99 OFDM 

symbols are detected using the channel estimate. Fig. 5.7 shows the BER of V- 

BLAST and SD detection for the semi-blind detector and SD detection for the blind 

detector. The blind and semi-blind detectors almost achieve the bound given by one- 

tap equalization with perfect CIR. As shown in Fig. 5.5, the V-BLAST detection for 

the semi-blind detector is comparable to that of SD. This result seems to contradict 

the results given in [28], where great performance improvement is achieved by using 

the SD. The reason may be tha t the order of the constellation is not very high.
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Blind SD

SNR (dB)

Fig. 5.6. The computational complexity versus SNR for an OFDM system with 

N  = 32 and BPSK in a 6-ray exponential PDP channel.

The effect of semi-blind design mismatch is shown in Fig. 5.8. The semi-blind 

detector is designed for UPDP and SNR=20dB and evaluated for a 6-ary exponen­

tially decaying power-delay profile. The BER of the robust design is compared with 

perfect R/, and a \. From the figure, the BER performance of the two detectors are 

almost the same. This figure confirms the robust design criteria.

The performance of the blind suboptimal detector with SD and V-BLAST, the 

semi-blind suboptimal detector with SD and V-BLAST, the semi-blind optimal de­

tector with modified SD are compared with that of the benchmark in Fig. 5.9 for an 

OFDM system with N  = 32 and the 4PAM constellation. The suboptimal detectors 

are denoted by ’’Approx” in the figure. The suboptimal blind and semi-blind detec­

tors with SD and V-BLAST perform close in high SNR. But all of them have a 4-dB 

performance loss at BER= 2 x 10~3. The optimal semi-blind detector performs close 

to the benchmark in high SNR. At BER= 2 x 10-3 , it has only a 0.5-dB loss. In the 

figure, we only plot the optimal semi-blind BER curve above 25 dB. This is due to 

the fact that the bound for x wY p B _1Y Dx given by x HY ^ A ~ 1Y Dx  becomes weak 

in low SNR and the complexity becomes exponential.
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Fig. 5.7. Bit error rate of the joint ML estimation algorithm versus SNR for an 

OFDM system with N  = 32 and BPSK in a TU channel

The blind detector needs knowledge of the channel length L. If L  is overestimated, 

the effect of channel length overestimation is presented in Fig. 5.10. The simulation is 

performed over a 6-ary exponential PDP channel. The blind detector is evaluated at 

L  =  6,8,10. The overestimation of L  causes a performance loss in low SNR. However, 

in high SNR, the performance loss is negligible. At BER=4 x 10-4 , the detector with 

L  =  8 has less than 0.1 dB loss over that with perfect L. When L  increases to 10, 

the gap is still less than 0.5 dB. Therefore, our blind detector is insensitive to the 

overestimation of L.

Fig. 5.11 compares the performance of the enhanced data  detector (5.25) and the 

one-tap equalization using pilot-aided channel estimates with estimation errors. A 

3-ary channel is simulated. We simulate BPSK-OFDM at a data rate of 500 kbps 

with different number of pilots. The pilots are uniformly distributed. At low SNR, 

the enhanced detector performance varies slightly as the number of pilots increases 

from 4 to 16. At high SNR, the enhanced detector performs virtually unchanged as 

the number of pilots increases and it gains 1.6 dB, 0.75 dB and 0.2 dB over one-tap 

equalization with 4, 8 and 16 pilots, respectively. The enhanced detector performs
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Fig. 5.8. Effects of semi-blind detector design mismatch in an OFDM system with 

N  = 32 and BPSK. The channel is simulated using an exponential PDP. But in 

the semi-blind detector, the uniform PDP is assumed

0.4 dB within the benchmark.

5.7 Conclusion

We have developed new blind and semi-blind data detectors and channel estimators 

for OFDM systems. We also derived an enhanced data detector to mitigate the effect 

of channel estimation error. Our data detectors are maximum likelihood and require 

minimizing a complex, integer quadratic. The quadratic for the blind detector suffers 

from rank deficiency, to which we gave an efficient solution. Since the semi-blind de­

tector uses both channel correlation and noise level, we have presented noise-variance 

and power-delay-profile estimators using the cyclic prefix in each OFDM block. We 

have also provided simple adaptations of the SD algorithm to handle M-PSK con­

stellations and to achieve reduced complexity. We considered how the semi-blind 

detector performs under residual mismatch and generalized the basic data detectors
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Fig. 5.9. Bit error rate of the joint ML estimation algorithm versus SNR for an 

OFDM system with N  = 32 and 4PAM in a 3-ray exponential PDP channel.

to non-unitary constellations. Simulation results show that the proposed detectors 

perform close to the ideal case. They may also be extended to MIMO-OFDM sys­

tems and OFDM over fast fading channels. These applications are currently being 

investigated.
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Fig. 5.10. The BER versus SNR for an BPSK OFDM system with N  = 32 and 

assuming different channel length L.
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Fig. 5.11. The performance of the enhanced data detector as a function of the 

number of pilots for a BPSK-OFDM system with N  =  32.
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Chapter 6

Conclusion

W ith the rapid growth of the wireless industry, there is a demand for low-complexity 

receivers. Large potential for the complexity reduction of high-performance VLSI 

signal processing circuits motivates the development of the efficient detection algo­

rithms. In this thesis, we have studied efficient detectors for MIMO and OFDM 

systems, which is critical to achieve practicable solutions for next-generation wireless 

communication systems.

In Chapter 2, we developed a unified framework for efficient data detection of 

spatial multiplexing MIMO systems, which includes the well-known algorithms such 

as ZF-BLAST [1], SD [2], combined ML and ZF-DFD [18] and the B-Chase detector

[19] as special cases. This framework provides a performance-complexity tradeoff. 

We also considered the relaxation approach to the MIMO detection and presented 

a class of constrained linear detectors and a class of constrained decision feedback 

detectors. Moreover, a polynomial constrained detector was proposed and solved 

using the penalty function approach and differential equations. Multistage sphere 

decoder for high order constellation applications was also derived, which exploits the 

fact tha t many higher-order signal constellations can naturally be decomposed into 

several lower-order constellations.
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In Chapter 3, we derived an ML decision metric for blind decoding of OSTBC 

in a quasi static fading channel by using the linear dispersion property of OSTBC. 

The decision metric results in a  quadratic minimization problem, which can be solved 

using V-BLAST, SD or the detectors developed in Chapter 2. To remove the need of 

pilots, novel approaches for totally blind decoding were presented using two different 

PSK constellations and a superimposed training scheme. We also gave an MMSE 

channel estimator and derive the CRB. Power allocation issues were also discussed.

In Chapter 4, we developed efficient detectors for DUSTM, where the detection 

problem was formulated as a one-dimensional NP-hard problem. The BID was derived 

for single symbol detection with diagonal constellations using the extended Euclidean 

algorithm [21], well-known for determining the greatest common divisor (gcd) of two 

integers. Our BID achieves significant computational savings over the ML search, 

especially in high SNR. We have also developed four BID variants for multiple sym­

bol detection of DUSTM. The first two were ML and used BnB, the third one was 

suboptimal, which first uses BID to generate a candidate subset and then exhaus­

tively searches over the reduced space, and the last one generalized decision-feedback 

differential detection.

We developed new blind and semi-blind data detectors for OFDM systems in 

Chapter 5, which also result in a quadratic form in data symbols. We proposed a 

cyclic-prefix based channel correlation and noise variance estimation algorithm for the 

semi-blind detector, which requires both channel correlation and noise variance. To 

mitigate the effect of channel estimation errors in pilot aided LS channel estimator, an 

enhanced data detector was also derived by noting that the true CIR can be modeled 

as complex Gaussian with mean being the LS channel estimate itself. The LS channel 

estimate thus gives a prior on the true channel and averaging the likelihood function 

over the prior distribution gives the enhanced detector.

Efficient receiver design is a hot research topic and has attracted great interest 

in the wireless communications community. As such technology is making its way
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from the research labs into industry standards, it will play a crucial role in designing 

next-generation wireless communications systems as well as reengineering existing 

systems to obtain higher bandwidths. Therefore, we expect to see increasing interest 

in this area. The study in this thesis only scratches the tip of the iceberg and many 

important problems remain to be answered:

•  In this thesis, we only discussed efficient data detection for uncoded systems. 

However, in many practical systems, an error-correcting code is usually em­

ployed. The detectors proposed in this thesis may also be extended to coded 

systems.

•  While several relaxation approaches have been proposed in the literature, all of 

them are not tight enough. Tight relaxation still remains an open problem in 

both communications and optimization theory.

• In practical systems, super-orthogonal block codes can achieve higher data rates 

[92]. It would be interesting to derive blind decoders for such codes.

• Our blind and semiblind data detectors for OFDM systems may also be ex­

tended to MIMO-OFDM systems. Also, OFDM transmission over doubly se­

lective channels is a challenging problem. Low-complexity channel estimators 

and equalizers may be derived for transmission over doubly selective channels.
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