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Abstract

We study the widespread logarithmic distribution of first significant digits and significands

of data sets (referred to as Benford’s Law) in the context of dynamical systems. Using recent

tools and conditions under which a recursively defined sequence is Benford via the classical

theory of uniform distribution modulo one, this study derives a necessary and sufficient

condition (“nonresonant spectrum”) on A ∈ Rd×d for every sequence (y⊤Anx)n∈N, with

arbitrary x, y ∈ Rd, emanating from the difference equation xn = Axn−1, to be Benford

or terminating. This result in turn is used to also show that the function t 7−→ y⊤etAx

arising from the differential equation ẋ(t) = Ax(t) is either Benford or identically zero for

t ≥ 0. The results generalize and unify already known facts for one- and higher-dimensional

systems.
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Chapter 1

Introduction

1.1 Background

Throughout this work, the symbols N, N0, Z, Q, R
+, R, and C denote the sets of natural,

non-negative integer, integer, rational, positive real, real, and complex numbers, respectively.

For any x ∈ R, let ⌊x⌋ denote the integral part of x. That is, ⌊x⌋ is the largest integer not

larger than x. Also, let 〈x〉 be the fractional part of x, i.e. 〈x〉 = x − ⌊x⌋. Every x ∈ R+

can be written uniquely as x = S(x) × 10l, for some appropriate (unique) integer l and

1 ≤ S(x) < 10; if x = 0 then, for convenience, S(0) := 0. The function S : R+ → [1, 10)

is referred to as the (base-10) significand function. The first (decimal) significant digit of

x is the integer D1 = ⌊S(x)⌋ ∈ {1, . . . , 9}. For example, let x =
√
200 = 10

√
2. Then

S(x) =
√
2, D1(x) = 1 and 〈x〉 =

√
200− 14.

The occurrence of the first significant digit (also known as leading digit) of randomly

generated data can easily be presumed to be approximately uniformly distributed on 1, . . . , 9.

However, that is not always the case in the real world. Instead, nature seems to favour a

digit distribution that is heavily skewed towards the smaller digits, according to a certain

logarithmic distribution called Benford’s Law. Thus, for a collection of data, numbers with

leading digit one (i.e. with D1 = 1) appear more often than numbers with leading digit two

(i.e. with D1 = 2), numbers with leading digit two appear more often than those with leading

digit three and so on. Specifically, numbers with first significant digit 1 occur approximately

30 percent of the time and about seven times more often than numbers with 9 as first digit,

the latter accounting for only about 4.6 percent. More specifically, Benford’s Law asserts

that digits are distributed according to the formula

Prob(D1 = k) = log(k + 1)− log k = log

(
1 +

1

k

)
, ∀k = 1, 2, . . . , 9, (1.1)

which is a probability distribution, where k is the possible leading digit. Here and henceforth

log denotes the logarithm base 10. The appropriate interpretation of the term “probability”
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used here, i.e. the precise meaning of Prob in (1.1) can take several forms. For sequences of

real numbers (ζn), for instance, probability usually refers to the proportion of times n for

which an event such as D1 = 2 occurs. Thus Prob(D1 = 2) is the limiting proportion, as

N → ∞, of times n ≤ N that the first significant digit of ζn equals 2 (see also Definition 2.1).

Similarly, for real-valued functions f : [0,+∞) −→ R, Prob(D1 = 2) refers to the limiting

proportion, as T −→ +∞, of the total length of time τ < T for which the first significant

digit of f(τ) is 2 (see also Definition 2.2). Here an underlying but crucial assumption is that

all limiting proportions exist. Usually, (1.1) is referred to as the first digit law. We state a

concise and more general form of (1.1) in terms of the significand function as

Prob(S ≤ t) = log t, ∀t ∈ [1, 10). (1.2)

Although astronomer/mathematician Simon Newcomb first documented the phenomenon

in 1881 by examining tables of logarithms and realizing that earlier pages were much more

worn and grubbier than later pages [17], the phenomenon is named after physicist Frank

Benford whose work in 1938 contained considerable empirical evidence of the distribution in

different tables of data [3]. Following Benford’s article, many real-life data including physical

constant [8], stock market indices [14], widths of hadrons [22], stochastic processes [5], and

deterministic sequences like (n!) and the Fibonacci numbers (Fn) [9] have been established

to follow Benford’s Law in some sense.

It is worth noting that some data such as lottery, telephone numbers and prime numbers

(see Tables 1.2 and 1.3) do not obey Benford’s Law, and an objective of research is to establish

conditions under which data conforms to Benford’s Law. In practice, the law is applicable

in detecting fraud in tax, accounting and election data [2, 10, 18] as well as in speeding

up calculation and optimizing computer data storage [1, 20]. Another useful application of

this law is in the area of testing mathematical models. This is based on the observation

that if current data is a good fit to Benford’s Law, then the predicted data from any new

model should also obey the law. Benford’s Law is the only scale-invariant digit law. The law

does not distinguish between numbers 400 and 40000 since both have first significant digit 4.

Thus, Benford’s Law does not depend on any particular choice of unit. It is also known that

Benford’s Law is base-invariant. In the framework of probability theory, it is proven that

scale-invariance implies base-invariance, and base-invariance implies Benford’s Law [11, 12].

1.2 Scope and Goals of this Thesis

Dynamical systems are objects in mathematics for modeling or describing physical phenom-

ena with time changing states. The state x ∈ Rd of a system can continuously depend on

time (that is, x = x(t) with t ∈ R) or time may take only integer values (that is, x = xn
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1 20365011074 573147844013817084101 16130531424904581415797907386349
1 32951280099 927372692193078999176 26099748102093884802012313146549
2 53316291173 1500520536206896083277 42230279526998466217810220532898
3 86267571272 2427893228399975082453 68330027629092351019822533679447
5 139583862445 3928413764606871165730 110560307156090817237632754212345
8 225851433717 6356306993006846248183 178890334785183168257455287891792

13 365435296162 10284720757613717413913 289450641941273985495088042104137
21 591286729879 16641027750620563662096 468340976726457153752543329995929
34 956722026041 26925748508234281076009 757791618667731139247631372100066
55 1548008755920 43566776258854844738105 1226132595394188293000174702095995
89 2504730781961 70492524767089125814114 1983924214061919432247806074196061

144 4052739537881 114059301025943970552219 3210056809456107725247980776292056
233 6557470319842 184551825793033096366333 5193981023518027157495786850488117
377 10610209857723 298611126818977066918552 8404037832974134882743767626780173
610 17167680177565 483162952612010163284885 13598018856492162040239554477268290
987 27777890035288 781774079430987230203437 22002056689466296922983322104048463

1597 44945570212853 1264937032042997393488322 35600075545958458963222876581316753
2584 72723460248141 2046711111473984623691759 57602132235424755886206198685365216
4181 117669030460994 3311648143516982017180081 93202207781383214849429075266681969
6765 190392490709135 5358359254990966640871840 150804340016807970735635273952047185

10946 308061521170129 8670007398507948658051921 244006547798191185585064349218729154
17711 498454011879264 14028366653498915298923761 394810887814999156320699623170776339
28657 806515533049393 22698374052006863956975682 638817435613190341905763972389505493
46368 1304969544928657 36726740705505779255899443 1033628323428189498226463595560281832
75025 2111485077978050 59425114757512643212875125 1672445759041379840132227567949787325

121393 3416454622906707 96151855463018422468774568 2706074082469569338358691163510069157
196418 5527939700884757 155576970220531065681649693 4378519841510949178490918731459856482
317811 8944394323791464 251728825683549488150424261 7084593923980518516849609894969925639
514229 14472334024676221 407305795904080553832073954 11463113765491467695340528626429782121
832040 23416728348467685 659034621587630041982498215 18547707689471986212190138521399707760

1346269 37889062373143906 1066340417491710595814572169 30010821454963453907530667147829489881
2178309 61305790721611591 1725375039079340637797070384 48558529144435440119720805669229197641
3524578 99194853094755497 2791715456571051233611642553 78569350599398894027251472817058687522
5702887 160500643816367088 4517090495650391871408712937 127127879743834334146972278486287885163
9227465 259695496911122585 7308805952221443105020355490 205697230343233228174223751303346572685

14930352 420196140727489673 11825896447871834976429068427 332825110087067562321196029789634457848
24157817 679891637638612258 19134702400093278081449423917 538522340430300790495419781092981030533
39088169 1100087778366101931 30960598847965113057878492344 871347450517368352816615810882615488381
63245986 1779979416004714189 50095301248058391139327916261 1409869790947669143312035591975596518914

102334155 2880067194370816120 81055900096023504197206408605 2281217241465037496128651402858212007295
165580141 4660046610375530309 131151201344081895336534324866 3691087032412706639440686994833808526209
267914296 7540113804746346429 212207101440105399533740733471 5972304273877744135569338397692020533504
433494437 12200160415121876738 343358302784187294870275058337 9663391306290450775010025392525829059713
701408733 19740274219868223167 555565404224292694404015791808 15635695580168194910579363790217849593217

1134903170 31940434634990099905 898923707008479989274290850145 25299086886458645685589389182743678652930
1836311903 51680708854858323072 1454489111232772683678306641953 40934782466626840596168752972961528246147
2971215073 83621143489848422977 2353412818241252672952597492098 66233869353085486281758142155705206899077
4807526976 135301852344706746049 3807901929474025356630904134051 107168651819712326877926895128666735145224
7778742049 218922995834555169026 6161314747715278029583501626149 173402521172797813159685037284371942044301

12586269025 354224848179261915075 9969216677189303386214405760200 280571172992510140037611932413038677189525

Table 1.1: List of the first 200 Fibonacci numbers, F1, F2, . . . , F200. From this list, it is
established that Fn starts with a 1 much more often than with a 9: #{1 ≤ n ≤ 200 :
D1(Fn) = 1} = 60 and #{1 ≤ n ≤ 200 : D1(Fn) = 9} = 9.
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2 73 179 283 419 547 661 811 947 1087
3 79 181 293 421 557 673 821 953 1091
5 83 191 307 431 563 677 823 967 1093
7 89 193 311 433 569 683 827 971 1097

11 97 197 313 439 571 691 829 977 1103
13 101 199 317 443 577 701 839 983 1109
17 103 211 331 449 587 709 853 991 1117
19 107 223 337 457 593 719 857 997 1123
23 109 227 347 461 599 727 859 1009 1129
29 113 229 349 463 601 733 863 1013 1151
31 127 233 353 467 607 739 877 1019 1153
37 131 239 359 479 613 743 881 1021 1163
41 137 241 367 487 617 751 883 1031 1171
43 139 251 373 491 619 757 887 1033 1181
47 149 257 379 499 631 761 907 1039 1187
53 151 263 383 503 641 769 911 1049 1193
59 157 269 389 509 643 773 919 1051 1201
61 163 271 397 521 647 787 929 1061 1213
67 167 277 401 523 653 797 937 1063 1217
71 173 281 409 541 659 809 941 1069 1223

Table 1.2: List of the first 200 prime numbers, P1, P2, . . . , P200, which clearly do not conform
to the first digit law: #{1 ≤ n ≤ 200 : D1(Pn) = 1} = 57 and #{1 ≤ n ≤ 200 : D1(Pn) =
9} = 15.

digit (d) Fibonacci Numbers Prime Numbers log
(
1 + 1

k

)

1 60 (30.0%) 57 (28.5%) 30.1%
2 36 (18.0%) 19 (9.5%) 17.6%
3 25 (12.5%) 19 (9.5%) 12.5%
4 18 (9.0%) 20 (10.0%) 9.7%
5 17 (8.5%) 17 (8.5%) 7.9%
6 12 (6.0%) 18 (9.0%) 6.7%
7 11 (5.5%) 18 (9.0%) 5.8%
8 12 (6.0%) 17 (8.5%) 5.1%
9 9 (4.5%) 15 (7.5%) 4.6%

Table 1.3: The first 200 Fibonacci numbers conform well to the first digit law, while the first
200 prime numbers do not.

with n ∈ Z or n ∈ N). These give rise to continuous-time and discrete-time dynamical

systems, respectively. In this work, (autonomous) linear dynamical systems will be studied

both in continuous and discrete time. Suppose x ∈ Rd and A ∈ Rd×d, with d ∈ N being the

dimension of the system. In this context, a linear continuous-time dynamical system is of

the form

ẋ(t) = Ax(t), t ∈ R,

and a linear discrete-time system takes the form

xn = Axn−1, n ∈ N.

It is justifiable to consider linear (autonomous) systems in this study for the basic reason

that we can always write down their explicit solutions. Also many non-linear systems can

be approximated by linear systems or studied via a linearisation process.

Since not all data obey Benford’s Law, the focus of most research is to establish conditions

under which given data will be a good fit to Benford’s distribution (1.1), in one way or the
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other. Hence to study Benford’s phenomenon in the area of dynamical systems, it stands to

reason that not all data generated from the solution of, say, a recurrence relation (difference

equation or discrete-time system) would exhibit Benford behaviour. However, empirical

evidence is established in [7] that data from numerical simulation related to dynamical

systems are Benford by examining the frequency of the first digit coordinates of the generated

trajectories. For instance, the Lorenz system generates trajectories that follow Benford’s Law

to some extent.

For linear systems of arbitrary dimension, so far no condition is known that is both

necessary and sufficient for Benford behaviour. The main goal of this research is to provide

such a condition. The study builds on earlier work, notably [4, 6, 16, 21]. The main result

of this work can be motivated by looking at the difference equation (general Fibonacci

recursion)

ζn = ζn−1 + ζn−2, n ≥ 3, (1.3)

which we rewrite as

[
ζn
ζn−1

]
=

[
1 1
1 0

] [
ζn−1

ζn−2

]
. Let A =

[
1 1
1 0

]
be the associated

matrix with spectrum σ(A) =
{

1
2

(
1±

√
5
)}

. Every solution of (1.3) is of the form

ζn = c1

(
1 +

√
5

2

)n

+ c2

(
1−

√
5

2

)n

, (1.4)

where c1, c2 are arbitrary real constants determined by the initial values ζ1, ζ2. Take for

instance ζ1 = ζ2 = 1.Then (ζn) = (Fn) and thus Tables 1.1 and 1.3 suggest that

lim
N→∞

#{1 ≤ n ≤ N : D1(Fn) = k}
N

= log

(
1 +

1

k

)
, ∀k = 1, 2, . . . , 9, (1.5)

i.e. (Fn) conforms to (1.1) in some sense. Here and henceforth, the symbol # denotes

the number of elements in a finite set. Note that, for all n ∈ N, ζn = y⊤Anx with x =[
ζ2 − ζ1
2ζ1 − ζ2

]
, y =

[
1
0

]
. How do we decide whether (ζn), or more generally (y⊤Anx) satisfies

(1.5)? In fact, the main result of this work (Theorem 3.20) implies that, for all x, y ∈ R2

either y⊤Anx ≡ 0 or

lim
N→∞

#{1 ≤ n ≤ N : S(y⊤Anx) ≤ t}
N

= log t, ∀t ∈ [1, 10). (1.6)

Note that (1.5) follows from (1.6). It turns out that in order to establish (1.6), the spectrum

σ(A) of A has to be analyzed carefully. The key property is that σ(A) is nonresonant (see

Definition 3.11). Specifically for A =

[
1 1
1 0

]
from (1.3), this means that

log

∣∣∣∣
1

2

(
1±

√
5
)∣∣∣∣ = ± log

∣∣∣∣
1

2

(
1 +

√
5
)∣∣∣∣ /∈ Q.
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In general, Theorem 3.20 asserts that a solution to a difference equation is either terminating

or displays Benford’s phenomenon in the sense of (1.6) if and only if the spectrum of the

associated matrix is nonresonant. As illustrated by means of numerous examples, it is

often quite simple to identify the matrix associated with a linear difference equation as

having nonresonant spectrum. Thus, the main result of this work paves the way to making

conclusions regarding conformance to Benford’s Law using hardly any calculations at all.

The theory for the continuous-time case (differential equation) is also considered in this

research. Consider for instance the differential equation

ζ̈(t) = ζ(t), t ∈ R, (1.7)

which has the general solution

ζ(t) = c1e
t + c2e

−t,

where c1, c2 are any real constants. Choose for instance c1 = 1 and c2 = 0, then the solution

becomes ζ(t) = et. It can be shown that

lim
T→+∞

length {0 ≤ τ < T : S(eτ ) ≤ t}
T

= log t, ∀t ∈ [1, 10), (1.8)

and hence ζ conforms to the continuous time analogue of (1.6). To see this, realize S(eτ ) =
10〈τ log e〉 < t whenever 〈τ log e〉 < log t. This means

τ ∈
∞⋃

n=0

[
n

log e
,
n+ log t

log e

]
∩ [0, T ),

and with
n

log e
≤ T <

n+ 1

log e
then

0 ≤ length {0 ≤ τ < T : S(eτ ) ≤ t}
T

− n

T

log t

log e
≤ log t

T log e
,

and hence

lim
T→+∞

length {0 ≤ τ < T : S(eτ ) ≤ t}
T

= lim
T→+∞

⌊T log e⌋
T

· log t
log e

= log t.

We will see later that Theorem 3.35 gives a more direct answer to why the solutions of (1.7)

satisfy a form of (1.8).

As the analysis of the continuous-time case depends heavily on the discrete-time case,

more attention is given to the latter. The Benford analysis used in this study proceeds via

the classical theory of uniform distribution modulo one due to the strong correspondence

between (1.6) and that theory (see Chapter 2).
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Chapter 2

Basic Definitions and Tools

This chapter gives the formal definitions for most of the terms used in this thesis. Basic facts

from the theory of uniform distribution which are useful for this work will be reviewed. Some

facts pertaining to Benford sequences and Benford functions relevant to this work will be

discussed. Throughout, let (ζn) and (ξn) be sequences of real numbers. The symbols # and

λd will denote the number of elements in a finite set (cardinality) and d-dimensional Lebesgue

measure, respectively; for simplicity write λ := λ1. Remember that log means the logarithm

base 10, and ln is the natural logarithm (base e). For convenience, set log 0 := ln 0 := 0.

Benford Theory and Uniform Distribution

We state the formal definition of Benford sequence and Benford function respectively as

follows:

Definition 2.1. A sequence (ζn) of real numbers is Benford if

lim
N→∞

#{n ≤ N : S(|ζn|) ≤ t}
N

= log t, ∀t ∈ [1, 10).

Definition 2.2. A (measurable) function f : [0,+∞) −→ R is Benford if

lim
T→+∞

λ ({τ ∈ [0, T ) : S(f(τ)) ≤ t})
T

= log t, ∀t ∈ [1, 10).

The tool employed in the analysis in this work is uniform distribution modulo one. Ba-

sically, the theory of uniform distribution modulo one is concerned with the distribution of

fractional parts of real numbers in the unit interval [0, 1). Thus for a sequence (ζn) in R and

a given interval I ⊂ [0, 1), we look at the proportion of the elements of the sequence (〈ζn〉)
that lie in I, and compare it to the length of I. If, for every interval I, this proportion con-

verges to the length of the interval I as N −→ ∞ then the sequence is said to be uniformly

distributed modulo one, henceforth abbreviated as u.d. mod 1.
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Definition 2.3. A sequence (ζn) is uniformly distributed modulo one (u.d. mod 1) if

lim
N→∞

#{1 ≤ n ≤ N : 〈ζn〉 ≤ s}
N

= s, ∀s ∈ [0, 1).

Definition 2.4. A (measurable) function f : [0,+∞) −→ R is continuously uniformly

distributed modulo one (c.u.d. mod 1) if

lim
T→+∞

λ ({τ ∈ [0, T ) : 〈f(τ)〉 ≤ s})
T

= s, ∀s ∈ [0, 1).

The next proposition states the strong correspondence between the Benford property and

the uniform distribution modulo one of sequence. This is the key tool used in the analysis

in this work.

Proposition 2.5. [9, Thm.1] For every sequence (ζn), the following statements are equiva-

lent:

(i) (ζn) is Benford;

(ii) (log |ζn|) is u.d. mod 1.

Remark 2.6. By replacing the decimal significand S(x) with base-b significand Sb(x), that

is, Sb(x) : R
+ → [1, b) in Definitions 2.1 and 2.2, the Benford property can be studied w.r.t.

any integer base b ≥ 2. In this case, we instead take all logarithms w.r.t. base b. However,

for simplicity, only the most common base b = 10 is considered from now on.

In view of Proposition 2.5, we discuss some basic results about u.d. mod 1 (see [13] for a

comprehensive account on uniform distribution of sequences).

Lemma 2.7. The following statements are equivalent for any sequence (ζn) in R:

(i) (ζn) is u.d. mod 1;

(ii) For every ǫ > 0 there exists a uniformly distributed sequence (ξn) with

lim sup
N→∞

#{1 ≤ n ≤ N : |ζn − ξn| > ǫ}
N

< ǫ;

(iii) Whenever (ξn) converges in R then (ζn + ξn) is u.d. mod 1;

(iv) The sequence (kζn) is u.d. mod 1 for every k ∈ Z \ {0};

(v) The sequence (ζn + α log n) is u.d. mod 1 for every α ∈ R.

8



Proof. Clearly, (i) implies (ii), and the converse is [4, Lem.2.3]. Also (iii) implies (i) and the

reverse implication is [13, Thm.I.1.2]. To show that (iv) and (i) are equivalent, assume (iv)

is true and choose k = 1. Then clearly (kζn) = (ζn) is u.d. mod 1. Conversely, assume (ζn)

is u.d. mod 1. Then for any 0 < s < 1,

{ζn : 〈kζn〉 ≤ s} =





{
ζn : 〈ζn〉 ∈

k−1⋃

i=0

[
i

k
,
i+ s

k

]}
for k > 0,



ζn : 〈ζn〉 ∈

|k|−1⋃

i=0

[
i+ 1− s

|k| ,
i+ 1

|k|

]
 for k < 0,

and hence

lim
N→∞

#{1 ≤ n ≤ N : 〈kζn〉 ≤ s}
N

=





λ

(
k−1⋃

i=0

[
i

k
,
i+ s

k

])
for k > 0,

λ




|k|−1⋃

i=0

[
i+ 1− s

|k| ,
i+ 1

|k|

]
 for k < 0,

=

{
k · s

k
for k > 0,

|k| · s
|k| for k < 0,

= s.

Hence (kζn) is u.d. mod 1. To show that (i) and (v) are equivalent, note that clearly (v)

implies (i), simply choose α = 0. Now assume (ζn) is u.d. mod 1. Let f(x) = α log x. Then,

f ∈ C1(R+) and lim
x→+∞

xf ′(x) =
α

ln 10
. It follows from [19, Lem.6] that (ζn + α log n) is u.d.

mod 1.

Proposition 2.8. [6, Prop.4.8(ii)] Let (ζn) be a sequence of real numbers. If (ζn) is periodic,

thus ζn+k = ζn for some k ∈ N and all n, then (nϑ + ζn) is u.d. mod 1 if and only if ϑ is

irrational.

A direct application of the above proposition to Benford’s Law is stated in the following

lemma.

Lemma 2.9. If a, b, α, β are real numbers with a 6= 0 and |α| > |β| then the following two

statements are equivalent:

(i) The sequence (αna+ βnb) is Benford;

(ii) log |α| is irrational.
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Proof. Since a 6= 0, log |αna + βnb| = n log |α| + log
∣∣∣a+ b

(
β
α

)n∣∣∣ for all sufficiently large n.

Using the fact that |α| > |β|, log
∣∣∣a+ b

(
β
α

)n∣∣∣ n→∞−−−→ log |a|. Thus (log |αna + βnb|) is u.d.

mod 1 if and only if (n log |α|+log |a|) is. By letting ζn = log |a|, it follows from Propositions

2.5 and 2.8 that (n log |α|+ log |a|) is u.d. mod 1 if and only if log |α| is irrational.

Lemma 2.10. Let (ζn) be a sequence in R, and L ∈ N. If (ζnL+k) is u.d. mod 1 for every

k ∈ {1, . . . , L} then (ζn) is u.d. mod 1 as well.

Proof. Using Weyl’s criterion [13, Thm.I.2.1], for every p ∈ Z \ {0},
∣∣∣∣∣
1

N

N∑

n=1

e2πıpζn

∣∣∣∣∣ ≤

∣∣∣∣∣∣
1

N

L⌊N/L⌋∑

n=1

e2πıpζn

∣∣∣∣∣∣
+

∣∣∣∣∣∣
1

N

N∑

n=L⌊N/L⌋+1

e2πıpζn

∣∣∣∣∣∣

≤

∣∣∣∣∣∣
1

N

L∑

k=1

⌊N/L⌋−1∑

n=0

e2πıpζnL+k

∣∣∣∣∣∣
+
L

N

≤ 1

L

L∑

k=1

∣∣∣∣∣∣
1

⌊N/L⌋

⌊N/L⌋−1∑

n=0

e2πıpζnL+k

∣∣∣∣∣∣
+
L

N

N→∞−−−→ 0,

because lim
N→∞

1

N

N−1∑

n=0

e2πıpζnL+k = 0 for every k = 1, 2, . . . , L.

Combining the well-known fact that (nϑ) is u.d. mod 1 precisely if ϑ ∈ R is irrational,

which follows from Proposition 2.8, with Lemmas 2.7 and 2.10, we arrive at the following

corollary.

Corollary 2.11. Let α, ϑ ∈ R, L ∈ N, and assume the sequence (ξn) in R has the property

that (ξnL+k) converges for every k ∈ {1, . . . , L}. Then (nϑ + α log n + ξn) is u.d. mod 1 if

and only if ϑ is irrational.

Denote by λd the (normalized) Lebesgue measure on Td = Rd/Zd, the d-dimensional

torus. Now fix d ∈ N, and let the real numbers 1, ϑ0, ϑ1, . . . , ϑd be Q-independent (or

rationally independent). Recall that 1, ϑ0, . . . , ϑd are Q-independent if ρ−1 + ρ0ϑ0 + · · · +
ρdϑd = 0 with ρj ∈ Q implies ρj = 0 for all j ∈ {−1, 0, 1, . . . , d}; otherwise, 1, ϑ0, . . . , ϑd are

said to be Q-dependent (or rationally dependent).

Proposition 2.12. [4, Cor.2.6] Let f : Td → R be continuous on a set of full λd-measure.

Then the sequence (
nϑ0 + f (〈nϑ1〉, . . . , 〈nϑd〉)

)

is u.d. mod 1.
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Lemma 2.13. Assume f : Td → C is continuous, and non-zero (Lebesgue) almost every-

where. Then the sequence (ζn) with

ζn := nϑ0 + α log n+ β log |f (〈nϑ1〉, . . . , 〈nϑd〉) + zn|

is u.d. mod 1 for every α, β ∈ R and every sequence (zn) in C with lim
n→∞

zn = 0.

Proof. The function g : Td → R defined as

g(x) := β log |f(x)|, ∀x ∈ Td,

is continuous on a set of full λd-measure, and so Proposition 2.12 together with Lemma

2.7(v) shows that the sequence (ξn) with

ξn := nϑ0 + α log n+ β log |f (〈nϑ1〉, . . . , 〈nϑd〉)| , ∀n ∈ N,

is u.d. mod 1 for every α, β ∈ R. Given 0 < ǫ ≤ 1, choose 0 < δ < ǫ
2+|β| so small that

λd(Bδ) < ǫ, where Bδ := {x : |f(x)| ≤ δ}. There exists B̃δ ⊃ Bδ such that B̃δ is a finite

union of open balls, and λd(B̃δ) < ǫ. Observe that if (〈nϑ1〉, . . . , 〈nϑd〉) /∈ B̃δ and |zn| < δ2

then

|ζn − ξn| = |β|
∣∣∣∣∣ log

∣∣∣∣1 +
zn

f(〈nϑ1〉, . . . , 〈nϑd〉)

∣∣∣∣

∣∣∣∣∣ ≤ |β|δ < ǫ.

By the Q-independence of 1, ϑ1, . . . , ϑd, the sequence (〈nϑ1〉, . . . , 〈nϑd〉) is uniformly dis-

tributed on Td, and so

lim
N→∞

#{1 ≤ n ≤ N : (〈nϑ1〉, . . . , 〈nϑd〉) ∈ B̃δ}
N

= λd(B̃δ) < ǫ.

With this and lim
n→∞

zn = 0, it follows that

lim sup
N→∞

#{1 ≤ n ≤ N : |ζn − ξn| > ǫ}
N

≤ lim sup
N→∞

#{1 ≤ n ≤ N : (〈nϑ1〉, . . . , 〈nϑd〉) ∈ B̃δ or |zn| ≥ δ2}
N

≤ lim sup
N→∞

#{1 ≤ n ≤ N : (〈nϑ1〉, . . . , 〈nϑd〉) ∈ B̃δ}
N

+

lim sup
N→∞

#{1 ≤ n ≤ N : |zn| ≥ δ2}
N

= λd(B̃δ) + 0 < ǫ,

and an application of Lemma 2.7(ii) completes the proof.
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Lemma 2.14. Given any integers p1, . . . , pd, and α ∈ R \ {0}, there exists ξ ∈ Rd such that

the sequence

(
p1nϑ1 + · · ·+ pdnϑd + α ln |ξ1 cos(2πnϑ1) + · · ·+ ξd cos(2πnϑd)|

)

is not u.d. mod 1 whenever 1, ϑ1, . . . , ϑd are Q-independent.

Proof. See Appendix A.
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Chapter 3

Benford Theory for Linear Systems

3.1 Introduction

Dynamical systems are objects in mathematics for modeling or describing physical phenom-

ena with time-changing states. When the state x ∈ Rd of a system is continuously dependent

on time (that is, x = x(t) with t ∈ R), we categorize it as a continuous-time dynamical sys-

tem. In other cases, time may take only integer values (that is, x = xn with n ∈ Z or n ∈ N),

such is called a discrete-time dynamical system.

Throughout this section, let A ∈ Rd×d and x, y ∈ Rd be a constant real d × d-matrix and

d-dimensional vectors, respectively, with d ∈ N. A linear continuous-time dynamical system

is of the form

ẋ(t) = Ax(t), t ∈ R, (3.1)

and a linear discrete-time system takes the form

xn = Axn−1, n ∈ N. (3.2)

The solutions to the above equations are x(t) = etAx0 and xn = Anx0, respectively, where

x0 ∈ Rd is a given initial value, with e0A and A0 understood as Id, the d× d-identity matrix.

Example 3.1. Some basic examples of linear dynamical system are

ζ̈(t) = ζ(t), t ∈ R, (3.3)

which can be put in the form (3.1) as d
dt

[
ζ̇
ζ

]
=

[
0 1
1 0

] [
ζ̇
ζ

]
and

ζn = ζn−1 + ζn−2, n ≥ 3, (3.4)

which can also be written in the form (3.2) as

[
ζn
ζn−1

]
=

[
1 1
1 0

] [
ζn−1

ζn−2

]
.
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As already encountered in Section 1.2, evidence suggests that solutions to (3.3) and (3.4)

are Benford functions and sequences, respectively.

Henceforth let σ(A) ⊂ C denote the spectrum of the matrix A, i.e. σ(A) contains at most

d numbers, namely the eigenvalues of A. Recall that the characteristic polynomial of every

matrix A is PA(µ) = det(A−µId). For any complex number z, denote its complex conjugate,

real part, imaginary part and modulus (or absolute value) by z, ℜz, ℑz and |z|, respectively.
For z 6= 0, define arg z as the unique number in (−π, π] that satisfies z = |z|eı arg z. Let

S := {z ∈ C : |z| = 1}. For any set Z ⊂ C, denote by spanQZ the smallest subspace of C

(over Q) containing Z; equivalently, if Z 6= ∅ then spanQZ is the set of all finite rational

linear combinations of elements of Z, i.e.

spanQZ = {ρ1z1 + ρ2z2 + · · ·+ ρnzn : n ∈ N, ρ1, ρ2, . . . , ρn ∈ Q, z1, z2, . . . , zn ∈ Z} ;

note that spanQ∅ = {0}. Recall that z1, . . . , zn are Q-independent precisely if the dimension

of spanQZ is n.

The goal of this chapter is to characterize Benford’s Law in linear dynamical systems.

More precisely, the central question is whether there is a necessary and sufficient condition

for Benford behaviour in solutions of dynamical systems that is independent on the choice of

initial conditions. To investigate this, much attention will be devoted to answer this question

for discrete-time dynamical system since the continuous-time case will employ concepts from

the discrete-time case.

3.2 Discrete-Time Dynamical System

Consider a general linear difference equation

ζn = a1ζn−1 + a2ζn−2 + · · ·+ ad−1ζn−d+1 + adζn−d, n ≥ d+ 1, (3.5)

where d ∈ N is the order of (3.5), and a1, a2, . . . , ad ∈ R are given numbers with ad 6= 0. For

instance, (3.4) is a second-order equation, i.e. d = 2, with a1 = a2 = 1. Once the initial values

ζ1, ζ2, . . . , ζd ∈ R are specified, (3.5) defines a unique sequence (ζn), referred to as a solution

of (3.5). The central question in this work is: Under which conditions on a1, a2, . . . , ad, and

presumably also on ζ1, ζ2, . . . , ζd is (ζn) Benford? Instead of studying directly the Benford

property of sequences (ζn) generated by (3.5), the analysis used in this work uses a matrix

approach which is more general and transparent. We can re-write (3.5) using matrix-vector

14



notation by inserting d− 1 redundant rows and thus, for every n ≥ d+ 1,




ζn
ζn−1
...

ζn−d+1


 =




a1ζn−1 + · · ·+ adζn−d

ζn−1
...

ζn−d+1


 =




a1 a2 · · · ad−1 ad
1 0 · · · 0 0
0 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 0







ζn−1

ζn−2
...

ζn−d


 .

Let A ∈ Rd×d be the associated matrix, that is,

A =




a1 a2 · · · ad−1 ad
1 0 · · · 0 0
0 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 0



, (3.6)

and note that A is invertible since ad 6= 0. Represent the standard basis of Rd by e1, e2, . . . , ed.

Then, for every n ≥ 2,

ζn = e⊤1 A
n−d




ζd
ζd−1
...
ζ1


 = e⊤1 A

n(A−1)d




ζd
ζd−1
...
ζ1


 .

Thus, ζn = y⊤Anx with y = e1 and x = (A−1)d
[
ζd ζd−1 · · · ζ1

]⊤
. Here and henceforth

y⊤ denotes the transpose of y ∈ Rd, and an expression y⊤x is understood as the real number
d∑

j=1

yjxj. Note that conversely every sequence (y⊤Anx), with arbitrary x, y ∈ Rd and A

given by (3.6), is a solution of (3.5). Hence we address the central question asked earlier

by considering a more general sequence of the form (y⊤Anx). Our main question of interest

therefore becomes this: Under which conditions is (y⊤Anx) Benford, where A is any fixed

real d× d-matrix and x, y ∈ Rd are given vectors?

To develop intuition about the Benford property for linear difference equations, we will

first consider a couple of examples. Call a sequence (ζn) terminating if ζn = 0 for all

sufficiently large n. A sequence (ζn) is said to be k-periodic whenever ζn+k = ζn for some

k ∈ N and all n ∈ N. Also recall that log denotes the logarithm base 10, and ln is the natural

logarithm (base e).

Example 3.2. For a ∈ R \ {0}, consider a simple first-order difference equation

ζn = aζn−1, n ≥ 2. (3.7)
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This is a scalar equation with a general solution

ζn = an−1ζ1, n ∈ N, (3.8)

where ζ1 ∈ R is an arbitrary constant. In other words, the associated matrix according to

(3.6) is 1 × 1; that is, A = [a]. Suppose ζ1 = 0, then the solution ζn = an−1ζ1 = 0 and

hence the sequence is terminating (in fact, zero). For ζ1 6= 0, simply use Lemma 2.9: For

the sequence (ζn) defined by (3.8) with ζ1 6= 0 to be Benford, it is necessary and sufficient

that log |a| be irrational. For instance the sequences (en) and (2n) are Benford, while the

sequence (10n) is not.

It is natural to investigate what happens if we consider systems with dimension d ≥ 2.

Thus, is there any analogous necessary and sufficient condition under which solutions of

higher dimensional system are Benford? It makes sense to require that if such a condition

exists then it must generalize the condition log |a| /∈ Q for d = 1. To characterize the Benford

property in sequences of the form (y⊤Anx) with A ∈ Rd×d and x, y ∈ Rd, we will first identify

cases that cause problems in that they lead to sequences (y⊤Anx) that are neither Benford

nor terminating.

Example 3.3. Consider the equation

ζn = 12ζn−1 − 20ζn−2, n ≥ 3, (3.9)

which has associated matrix A =

[
12 −20
1 0

]
with σ(A) = {2, 10}. Any solution of (3.9)

has the form

ζn = c110
n + c22

n, n ∈ N, (3.10)

where c1, c2 are arbitrary real constants. Realize that if c1 = 0, then the sequence (c22
n) is

either Benford or zero (see Example 3.2). Now suppose c1 6= 0 then by Lemma 2.9, (ζn) is not

Benford. An explanation for this problem is that there exists an eigenvalue µ of the matrix

associated with (3.9) with log |µ| rational; more specifically, for µ = 10, log µ = log 10 = 1 is

rational.

Example 3.4. Another instance where some solutions (ζn) may be neither Benford nor

terminating is when the matrix A has eigenvalues of the same modulus but opposite signs.

Consider the linear two-step recursion

ζn = 4ζn−2, n ≥ 3, (3.11)

and using (3.6), we have A =

[
0 4
1 0

]
. The spectrum of A is σ(A) = {−2, 2}. Every

solution of (3.11) is given by

ζn = c12
n + c2(−2)n, n ∈ N, (3.12)
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where c1, c2 ∈ R are arbitrary constants. Is the sequence (ζn) given by (3.12) Benford for

every choice of real constants c1, c2? For example, consider the case where c1 = c2 = c 6= 0,

then

ζn = c2n(1 + (−1)n) =

{
0 if n is odd,
c2n+1 if n is even.

Clearly, for our choice of constants, (ζn) is not Benford. This phenomenon of half of the

time zero and other half non-zero generally occurs whenever |c1| = |c2| 6= 0. The oscillatory

behaviour of (ζn) is due to the characteristic equation µ2 − 4 = 0 of A having two roots

(i.e. µ1 = −2, µ2 = 2) of opposite signs but of the same modulus. Note, however, that (ζn)

is Benford whenever |c1| 6= |c2| because log |ζn| = n log 2 + log |c1 + c2(−1)n|, and since the

sequence (log |c1 + c2(−1)n|) is 2-periodic, Proposition 2.8 applies.

Example 3.5. The problem of half of the time zero and other half non-zero can also oc-

cur when the spectrum contains non-real eigenvalues. To see this, consider the recurrence

equation

ζn = −ζn−2, n ≥ 3. (3.13)

The associated matrix is A =

[
0 −1
1 0

]
, and σ(A) = {−ı, ı}. We write down the general

solution to (3.13) as

ζn = c1 cos

(
1

2
πn

)
+ c2 sin

(
1

2
πn

)
, n ∈ N, (3.14)

with c1, c2 ∈ R. For simplicity choose c1 = 1, c2 = 0, then

ζn = cos

(
1

2
πn

)
=

{
0 if n is odd,
(−1)n/2 if n is even.

The issue of half of the time zero and other half non-zero makes the sequence (ζn) not

Benford at least for our choice of constants. Generally, the sequence (ζn) defined by (3.14)

is 4-periodic (oscillatory), that is, ζn = ζn+4 and thus not Benford for any choice of c1, c2.

This oscillatory behaviour of (ζn) corresponds to the fact that the roots of the characteristic

equation µ2 + 1 = 0 associated with (3.13) are µ = ±ı and hence lie on the unit circle and

their arguments are rational multiples of π.

Example 3.6. Now consider the sequence

ζn = (
√
2)n
[
c1 cos

(
1

4
πn

)
+ c2 sin

(
1

4
πn

)]
, n ∈ N,

which is the general solution of the recurrence relation

ζn = 2ζn−1 − 2ζn−2, n ≥ 3. (3.15)
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Contrary to the previous Example 3.5, the sequence (ζn) is not periodic, and so may be

Benford or not. Suppose c1 = 0 and c2 6= 0 then ζn = (
√
2)n
[
c2 sin

(
1
4
πn
)]
. Clearly (ζn) = 0

for n = 4m, (m ∈ N0). Hence (ζn) fails to be Benford in this case. Similarly, (ζn) is not

Benford for c2 = 0 and c1 6= 0 (since ζ4m−2 = 0, for any m ∈ N). However if c1, c2 6= 0

and |c1| 6= |c2|, then log |ζn| = n log
√
2 + log |c1 cos

(
1
4
πn
)
+ c2 sin

(
1
4
πn
)
|, and the sequence

(log |ζn|) is uniformly distributed modulo 1 by Proposition 2.8. We conclude that (ζn) is

Benford for our choice of constants c1 and c2.

Remark 3.7. In Example 3.6 the irrationality of log
√
2 is crucial for Benford behaviour.

Generally, the irrationality of log |µ| is critical in the analysis of the Benford phenomenon

of sequences of real numbers (see Example 3.3). One similarity between Examples 3.5 and

3.6 is that in each case 1
2π

arg µ is rational making both sequences a candidate to be zero

periodically (and hence not Benford). However, with Example 3.5 the spectrum of the

associated matrix, {±ı}, has log | ± ı| = log 1 = 0, which is rational. In other words and

with this particular example, both eigenvalues, µ = e±
π
2
ı = ±ı, lie on the unit circle. This

completely eliminated the possibility of Benford behaviour in the solution generated, no

matter the choice of constants.

Example 3.8. In the light of the previous examples, it is natural to investigate what could

happen when both log |µ| and 1
2π

arg µ are irrational. This example demonstrates that a

problem can arise even in this case. For the two-step recursion

ζn = 2γζn−1 − 102
√
2ζn−2, n ≥ 3, (3.16)

where γ = 10
√
2 cos(π

√
2), the associated matrix is A =

[
2γ −102

√
2

1 0

]
, and the spectrum

of A is σ(A) = {10
√
2e±ıπ

√
2}. With arbitrary constants c1, c2 ∈ R, the solution of (3.16) is

given by

ζn = 10n
√
2
(
c1 cos

(
πn

√
2
)
+ c2 sin

(
πn

√
2
))

, n ∈ N, (3.17)

and log |ζn| = n
√
2 + log |c1 cos(πn

√
2) + c2 sin(πn

√
2)|. Note that now log |µ| =

√
2

and 1
2π

arg µ = 1 −
√
2
2

are both irrational. This makes the sequence
(
c1 cos

(
πn

√
2
)
+

c2 sin
(
πn

√
2
))

non-periodic for all choices of constants c1 and c2, except for (c1, c2) = (0, 0).

We claim the sequence (ζn) is neither Benford nor terminating for some choice of con-

stants c1, c2 ∈ R. For example, let c1 = 0, c2 = 1, then log |ζn| = n
√
2 + log | sin(πn

√
2)|.

Let s = 〈n
√
2〉, the fractional part of n

√
2, and define f(s) = 〈s + log | sin(πs)|〉, thus

f : [0, 1) → [0, 1) and 〈log |ζn|〉 = f(〈n
√
2〉) for every n ∈ N. Recall that (n

√
2) is u.d. mod

1. However,
(
f(〈n

√
2〉)
)
is not u.d. mod 1.

To see this, observe that f is piecewise smooth and has a local maximum at some 0 <

s0 < 1, precisely s0 = 1− 1
π
arctan π

ln 10
. Given that (n

√
2) is u.d. mod 1, if

(
f(〈n

√
2〉)
)
were
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also u.d. mod 1 then the length of each interval J ⊂ [0, 1) would be the same as the total

length of the preimage f−1(J). However this is not the case (see also Figure 3.1), as can be

seen for instance by considering Jǫ = [f(s0 − ǫ), f(s0)]. For all sufficiently small ǫ > 0,

f(s0)− f(s0 − ǫ)

ǫ
=
λ(Jǫ)

ǫ
=
λ(f−1(Jǫ))

ǫ
≥ λ([s0 − ǫ, s0))

ǫ
= 1,

which is impossible since f ′(s0) = 0. Hence (ζn) is not Benford. An explanation for this is

that while log |µ| =
√
2 is irrational for the characteristic roots µ = 10

√
2e±ıπ

√
2 associated

with (3.16), the real numbers 1, log |µ|, 1
2π

arg µ are rationally dependent, as ρ−1 ·1+ρ0
(√

2
)
+

ρ1
(
1−

√
2
2

)
= 0 with ρ−1 = 1, ρ0 = −1

2
and ρ1 = −1.

0 1
0

1

Jǫ

f(s) = 〈s+ log | sin(πs)|〉

s0s0 − ǫ

f−1(Jǫ)

Figure 3.1: The length of Jǫ is not equal to that of f−1(Jǫ).

Example 3.9. In this example we will realize that (y⊤Anx) may be Benford even when the

real numbers 1, log |µ| and 1
2π

arg µ are rationally dependent. Consider the matrix

A =
√
3




cos
(
3π

√
2
)

− sin
(
3π

√
2
)

0 0

sin
(
3π

√
2
)

cos
(
3π

√
2
)

0 0

0 0 cos
(
6π

√
2
)

− sin
(
6π

√
2
)

0 0 sin
(
6π

√
2
)

cos
(
6π

√
2
)


 ,

with σ(A) =
{√

3e±3πı
√
2,
√
3e±6πı

√
2
}
. Realize that ρ−1 · 1

2π
arg µ1 + ρ1 · 1

2π
arg µ2 = 0,

with ρ−1 = 2, ρ1 = 1 (and µ1 =
√
3e3πı

√
2, µ2 =

√
3e−6πı

√
2). Hence 1, log |µ|, 1

2π
arg µ1 =

3
2

√
2 − 2 and 1

2π
arg µ2 = 4 − 3

√
2 are rationally dependent. Given any x, y ∈ R4, let
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c1 = y1x1 + y2x2, c2 = y2x1 − y1x2, c3 = y3x3 + y4x4, c4 = y4x3 − y3x4, and note that

ζn = y⊤Anx

=
√
3
n
[
c1 cos(3πn

√
2) + c2 sin(3πn

√
2) + c3 cos(6πn

√
2) + c4 sin(6πn

√
2)
]
.

(3.18)

Thus log |ζn| = n log
√
3 + f(n

√
2), with the function f : [0, 1) → R given by

f(s) = log
∣∣∣c1 cos(3πs) + c2 sin(3πs) + c3 cos(6πs) + c4 sin(6πs)

∣∣∣.

The function f has at most finitely many discontinuities, and since 1, log
√
3 and

√
2 are

Q-independent, according to Proposition 2.12 the sequence (log |ζn|) defined as above is u.d.

mod 1 and hence the sequence (ζn) is either Benford or terminating.

Remark 3.10. We realize that for the sequence (y⊤Anx) to be either Benford or terminating

for every x, y ∈ Rd, it is necessary to avoid log |µ| ∈ Q and also to rule out real eigenvalues

with µ1 = −µ2. In addition, 1
2π

arg µ /∈ Q must hold for every non-real eigenvalue µ. On

the other hand, with 1
2π

arg σ(A) := { 1
2π

arg µ : µ ∈ σ(A)}, we know from Example 3.9

that rational independence of the numbers 1, log |µ| and the elements of 1
2π

arg σ(A) is not

a necessary condition for (y⊤Anx) to be either Benford or terminating. However, it can be

shown that for systems with dimension d ≤ 3, having 1, log |µ| and the elements of 1
2π

arg σ(A)

rationally independent is necessary for (y⊤Anx) to be either Benford or terminating, see [6,

Thm.5.37].

Having studied all the examples above, we seek a condition that takes into consideration

or eliminates all possible problems encountered. As it will turn out, the right condition to

impose on the spectrum of A to characterize Benford behaviour in sequences of the form

(y⊤Anx) rests on the following definition.

Definition 3.11. A non-empty set Z ⊂ C with |z| = r for some r > 0 and all z ∈ Z, i.e.

Z ⊂ rS (and hence Z is contained in the periphery of a disc with radius r), is nonresonant

if its associated set ∆Z ⊂ R, defined as

∆Z :=

{
1 +

arg z − argw

2π
: z, w ∈ Z

}
, (3.19)

satisfies the following two conditions:

(i) ∆Z ∩Q = {1};

(ii) log r /∈ spanQ∆Z .

An arbitrary set Z ⊂ C is nonresonant if, for every r > 0, the intersection of the Z and the

circle of radius r, i.e. the set Z ∩ rS, is either nonresonant or empty; the set Z is resonant

otherwise.
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Note that the set ∆Z according to (3.19) satisfies 1 ∈ ∆Z ⊂ (0, 2) and is symmetric w.r.t.

the point 1. The empty set ∅ is nonresonant, and so is the singleton {0}, as {0} ∩ rS = ∅

for every r > 0.

Example 3.12. The singleton {u} is nonresonant if and only if either u = 0 or log |u| /∈ Q.

That is, if u 6= 0, ∆Z = {1 + 0
2π
} = {1} so condition (i) is trivially satisfied, and log |u| /∈

spanQ{1} means log |u| is irrational.

Example 3.13. Let u ∈ C \ R. Then the set Z = {u, ū} is nonresonant if and only if

1, log |u| and 1
2π

arg u are Q-independent. To see this, realize ∆Z = {1− 2 arg u
2π

, 1, 1 + 2 arg u
2π

}
and ∆Z ∩ Q = {1} if and only if 1 − 2 arg u

2π
and 1 + 2 arg u

2π
are irrational, i.e. 1

2π
arg u is

irrational. Moreover log |u| = log |ū| /∈ spanQ{1 − 2 arg u
2π

, 1, 1 + 2 arg u
2π

} = spanQ{1, 1
2π

arg u}
means 1, log |u| and 1

2π
arg u are Q-independent.

Remark 3.14. If Z ⊂ rS is symmetric with respect to the real axis, i.e if Z = Z where

Z = {z̄ : z ∈ Z}, then condition (ii) in Definition 3.11 is equivalent to log r /∈ spanQ({1} ∪
{ 1
2π

arg z : z ∈ Z}).

Example 3.15. For Z1 = {10}, Z2 = {−2, 2} and Z3 = {−ı, ı}, we have that ∆Z1 =

{1},∆Z2 = ∆Z3 =
{

1
2
, 1, 3

2

}
. Since log 10 = 1 ∈ Q,∆Z2 ∩ Q 6= {1} and ∆Z3 ∩ Q 6= {1}, the

sets Z1, Z2, Z3 are resonant.

Example 3.16. For Z =
{√

3e±3πı
√
2,
√
3e±6πı

√
2
}
with ∆Z = 1

2
{18− 12

√
2, 14− 9

√
2, 10−

6
√
2, 6−3

√
2, 2,−2+3

√
2,−6+6

√
2,−10+9

√
2,−14+12

√
2} and spanQ∆Z = spanQ{1,

√
2}.

Since log r = log
√
3 /∈ spanQ∆Z and ∆Z ∩Q = {1}, Z is nonresonant.

The following observations are useful in our investigation of Benford behaviour in se-

quences of the form (y⊤Anx).

Lemma 3.17. Assume x1, ..., xL ∈ Rd are linearly independent. Then, given any ξ ∈ RL,

there exists y ∈ Rd such that y⊤xℓ = ξℓ for every 1≤ ℓ ≤ L.

Proof. Define a function

Φ :





Rd → RL,

x 7→
L∑

ℓ=1

(x⊤ℓ x)eℓ,

then Φ is linear. Since x1, . . . , xL ∈ Rd are linearly independent,

det[Φ(x1), . . . ,Φ(xL)] =

∣∣∣∣∣∣∣∣∣

x⊤1 x1 x⊤2 x1 · · · x⊤Lx1
x⊤1 x2 x⊤2 x2 · · · x⊤Lx2
...

...
. . .

...
x⊤1 xL x⊤2 xL · · · x⊤LxL

∣∣∣∣∣∣∣∣∣
= det[x⊤k xℓ]

L
ℓ,k=1 6= 0,

showing that Φ is onto.
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Recall that a set S ⊂ N has density if the relative proportion of elements of S among N

from 1 to N converges to a limit as N approaches infinity, that is, if

ρ(S) := lim
N→∞

#{1 ≤ n ≤ N : n ∈ S}
N

exists. Call ρ(S) the density of S and note that ρ(S) ∈ [0, 1] whenever S has density.

Lemma 3.18. For every A ∈ Rd×d and x, y ∈ Rd, let

SA,x,y := {n ∈ N : y⊤Anx = 0}. (3.20)

Then SA,x,y has density, and ρ(SA,x,y) ∈ Q ∩ [0, 1].

Proof. According to the Cayley-Hamilton Theorem, there exist a1, a2, . . . , ad ∈ R such that

Ad = a1A
d−1 + a2A

d−2 + · · ·+ ad−1A+ adId.

Thus for every n ∈ N and x, y ∈ Rd,

y⊤An+dx = y⊤(a1A
n+d−1 + a2A

n+d−2 + · · ·+ ad−1A
n+1 + adA

n)x

= a1y
⊤An+d−1x+ a2A

n+d−2 + · · ·+ ad−1y
⊤An+1x+ ady

⊤Anx,

showing that (y⊤Anx) satisfies a linear d-step recursion relation with constant coefficients.

By the Skolem-Mahler-Lech Theorem [15, Thm.A], the set SA,x,y is the union of a finite

(possibly empty) set S0 and a finite (possibly zero) number of lattices, i.e.

SA,x,y = S0 ∪
L⋃

ℓ=1

{nMℓ +Nℓ : n ∈ N}, (3.21)

where L is a non-negative integer, andMℓ, Nℓ ∈ N for 1 ≤ ℓ ≤ L. From (3.21) it is clear that

SA,x,y has density, and ρ(SA,x,y) is a rational number, in fact ρ(SA,x,y) · lcm{M1, . . . ,ML} is

a non-negative integer.

For a concise formulation of the following observation, call a set S ⊂ N co-finite if N \ S
is finite. With this, (y⊤Anx) is terminating precisely if SA,x,y is co-finite.

Lemma 3.19. For every A ∈ Rd×d the following statements are equivalent:

(i) For every x, y ∈ Rd, the set SA,x,y according to (3.20) is either finite or co-finite;

(ii) ρ(SA,x,y) ∈ {0, 1} for every x, y ∈ Rd;

(iii) For every r > 0, either ∆σ(A)∩rS ∩Q = {1} or σ(A) ∩ rS = ∅.
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Proof. Clearly (i)⇒(ii) , because ρ(S) = 0 or ρ(S) = 1 whenever S is, respectively, finite

or co-finite. Next, the implication (ii)⇒(iii) will be established by showing that (ii) fails

whenever (iii) fails. Assume, therefore, that (iii) does not hold. (Note that this is possible

only if d ≥ 2.) Thus #(∆σ(A)∩rS ∩ Q) ≥ 2 for some r > 0, which in turn entails one of the

following three possibilities: Either

both − r and r are eigenvalues of A, (3.22)

or

A has an eigenvalue µ ∈ C \ R with |µ| = r and
arg µ

2π
> 0 rational, (3.23)

or
A has two eigenvalues µ1, µ2 ∈ C \ R with |µ1| = |µ2| = r and

arg µ1 > arg µ2 > 0 such that at least one of the two numbers

arg µ1 ± arg µ2

2π
is rational.

(3.24)

Note that these cases are not mutually exclusive, and (3.24) can occur only for d ≥ 4. In

case (3.22), let u, v ∈ Rd be eigenvectors of A corresponding, respectively, to the eigenvalues

−r, r. Let x := u + v and pick y ∈ Rd such that y⊤u = y⊤v = 1. This is possible because

u, v are linearly independent, see Lemma 3.17. Then

y⊤Anx = y⊤((−r)nu+ rnv) = rn ((−1)n + 1) , ∀n ∈ N,

showing that SA,x,y = {2n− 1 : n ∈ N}. Thus ρ(SA,x,y) =
1
2
/∈ {0, 1}, and (ii) does not hold.

In case (3.23), let z ∈ Cd be an eigenvector of A corresponding to the eigenvalue µ, and

observe that, for every n ∈ N,

Anℜz = rn (cos(n arg µ)ℜz − sin(n arg µ)ℑz) ,
Anℑz = rn (sin(n arg µ)ℜz + cos(n arg µ)ℑz) .

(3.25)

Again, since ℜz,ℑz ∈ Rd are linearly independent, it is possible to choose y ∈ Rd such that

y⊤ℜz = 1 and y⊤ℑz = 0. With x := ℑz, therefore,

y⊤Anx = rn sin(n arg µ), ∀n ∈ N.

Since 1
2π

arg µ is rational and strictly between 0 and 1
2
, the set SA,x,y equals LN for some

integer L ≥ 2. Thus 0 < ρ(SA,x,y) = 1
L
< 1 contradicting (ii). Lastly, in case (3.24) let

z, w ∈ Cd be eigenvalues of A corresponding to the eigenvalues µ1 and µ2, respectively. As

seen in (3.25) above, for every n ∈ N,

An(ℜz + ℜw) = rn
(
cos(n arg µ1)ℜz − sin(n arg µ1)ℑz+

+ cos(n arg µ2)ℜw − sin(n arg µ2)ℑw
)
.
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Again, ℜz,ℑz,ℜw,ℑw ∈ Rd are linearly independent, and so by Lemma 3.17 it is possible

to choose y ∈ Rd such that y⊤ℜz = −1, y⊤ℑz = y⊤ℑw = 0, and y⊤ℜw = 1. Then, with

x := ℜz + ℜw,

y⊤Anx = rn (cos(n arg µ2)− cos(n arg µ1))

= 2rn sin

(
πn

arg µ1 − arg µ2

2π

)
sin

(
πn

arg µ1 + arg µ2

2π

)
.

Since both numbers 1
2π
(arg µ1±arg µ2) are strictly between 0 and 1 and at least one of them

is rational, the set SA,x,y once more has a rational density that equals neither 0 nor 1: From

SA,x,y = LN ∪ MN with two (not necessarily different) integers L,M ≥ 2, it follows that

0 <
1

min{L,M} ≤ ρ(SA,x,y) ≤ 1− 1

lcm{L,M} < 1.

Again this contradicts (ii) and hence completes the proof that indeed (ii) ⇒ (iii).

Finally, to show that (iii)⇒(i) , denote the different non-zero eigenvalues of A in the

upper half-plane {z ∈ C : ℑz ≥ 0} by µ1, . . . , µL with L ≤ d, thus ℑµ1, . . . ,ℑµL ≥ 0 and

σ(A) \ {0} = {µ1, . . . , µL}∪ {µ1, . . . , µL}. Assume w.l.o.g. that |µ1| ≥ · · · ≥ |µL| > 0. Given

x, y ∈ Rd, recall that as a consequence of, for instance, the Jordan Normal Form Theorem,

the representation

y⊤Anx = ℜ (P1(n)µ
n
1 + · · ·+ PL(n)µ

n
L) , ∀n ≥ d, (3.26)

holds, where P1, . . . , PL are complex polynomials of degree at most d− 1, determined by A

and x, y. Assume now (iii) holds, and using (3.26) let L1 := 1 + max{1 ≤ ℓ ≤ L : Pℓ = 0},
with max∅ := 0. If L1 = 1+L then y⊤Anx = 0 for all n ≥ d, and SA,x,y is co-finite. On the

other hand, as will be shown next, SA,x,y is actually finite whenever L1 ≤ L. Clearly this

will demonstrate that (iii) ⇒ (i) and conclude the overall proof.

Assume, therefore, that L1 ≤ L, i.e., at least one polynomial Pℓ in (3.26) does not vanish

identically, and suppose SA,x,y was not finite. Then, by (3.21),

SA,x,y ⊃ {nM +N : n ∈ N}, (3.27)

with the appropriateM,N ∈ N. Using (3.26) again, let L2 := max{ℓ ≥ L1 : |µℓ| = |µL1 |} and
denote by p the maximal degree of the polynomials PL1 , . . . , PL2 . By permuting µL1 , . . . , µL2

and decreasing L2, if necessary, for the purpose of the following argument it can be assumed

w.l.o.g. that degPℓ = p for every L1 ≤ ℓ ≤ L2. With this, rewrite (3.26) as

y⊤Anx = np|µL1 |nℜ (cL1e
ın arg µL1 + · · ·+ cL2e

ın arg µL2 + ζn) , (3.28)
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where cℓ := lim
n→∞

Pℓ(n)n
−p 6= 0 for all L1 ≤ ℓ ≤ L2, and (ζn) is a sequence in C for which

(nζn) is bounded, hence lim
n→∞

ζn = 0. In view of (3.27), it follows from (3.28) that, for every

n ∈ N,

ℜ
(
cL1e

ıN arg µL1

(
eıM arg µL1

)n
+ · · ·+ cL2e

ıN arg µL2

(
eıM arg µL2

)n)
= −ℜζnM+N ,

and so, with zℓ := eıM arg µℓ ∈ S for L1 ≤ ℓ ≤ L2,

lim
n→∞

ℜ
(
cL1e

ıN arg µL1znL1
+ · · ·+ cL2e

ıN arg µL2znL2

)
= 0. (3.29)

Since cℓe
ıN arg µℓ 6= 0 for all ℓ, Lemma A.2 implies that either zℓ ∈ {zk, zk} for some ℓ 6= k

with L1 ≤ ℓ, k ≤ L2, or z2ℓ = 1 for some L1 ≤ ℓ ≤ L2. In the former case, at least

one of the two numbers M
2π
(arg µℓ ± arg µk) is a non-zero integer, which in turn shows that

#(∆σ(A)∩|µL1
|S ∩ Q) ≥ 2 and hence contradicts the assumed validity of (iii). In the latter

case, assume w.l.o.g. that z2L1
= 1 and deduce from (3.29) that

lim
n→∞

ℜ
(
cL1+1e

ıN arg µL1+1z2nL1+1 + · · ·+ cL2e
ıN arg µL2z2nL2

)
= −ℜ

(
cL1e

ıN arg µL1

)
.

According to Lemma A.2, this is possible only if either z2ℓ ∈ {z2k, zk2} for some ℓ 6= k with

L1 + 1 ≤ ℓ, k ≤ L2, or z
4
ℓ = 1 for some L1 + 1 ≤ ℓ ≤ L2. In the former case, as before,

at least one of the two numbers 2M
2π

(arg µℓ ± arg µk) is a non-zero integer. In the latter

case, w.l.o.g. let z4L1+1 = 1. But then 2M
2π

arg µL1 and 4M
2π

arg µL1+1 are both integers, hence
1
2π
(arg µL1 − arg µL1+1) is a non-zero rational number. In either case, this again contradicts

(iii). Overall, as claimed, the set SA,x,y is necessarily finite whenever L1 ≤ L. Thus (iii)⇒(i),

and the proof is complete.

The main result of this work is stated in the following theorem.

Theorem 3.20. Given any A ∈ Rd×d, the following two statements are equivalent:

(i) For every x, y ∈ Rd, the sequence (y⊤Anx) is either Benford or terminating;

(ii) The set σ(A) is nonresonant.

Proof. To prove (i)⇒(ii) , assume by way of contradiction that σ(A) is resonant. The goal,

then, is to deduce that (i) cannot hold. If σ(A) is resonant then, for some r > 0, either

#(∆σ(A)∩rS ∩ Q) ≥ 2 or log r ∈ spanQ∆σ(A)∩rS, or both. In the former case, Lemma 3.19

guarantees the existence of x, y ∈ Rd for which 0 < ρ(SA,x,y) < 1 and hence (y⊤Anx) is

neither Benford nor terminating.

It remains to consider the case where #(∆σ(A)∩rS ∩ Q) ≤ 1 for every r > 0 yet log r0 ∈
spanQ∆σ(A)∩r0S for some r0 > 0. Label the elements of σ(A) ∩ r0S as µ1, . . . , µL. Since

σ(A) = σ(A),

log r0 ∈ spanQ∆σ(A)∩r0S = spanQ

(
{1} ∪

{arg µℓ

2π
: 1 ≤ ℓ ≤ L

})
.
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Let L0 + 1 be the dimension (over Q) of spanQ∆σ(A)∩r0S. Hence L0 ≤ L, and L0 ∈ N unless
1
2π

arg µℓ is rational for every 1 ≤ ℓ ≤ L, in which case L0 = 0. (For instance, the latter

inevitably occurs if d = 1.)

Consider first the case that L0 = 0. Here, log r0 is rational, and if µ1 ∈ R then taking x

to be any eigenvector of A corresponding to the eigenvalue µ1 yields

log |(x⊤Anx)| = log(rn0 |x|2) = n log r0 + 2 log |x|,

which is periodic modulo one. Hence (x⊤Anx) is neither Benford nor terminating. If, on the

other hand, µ1 ∈ C \ R then let again z ∈ Cd be an eigenvector of A corresponding to the

eigenvalue µ1. Given any y ∈ Rd, it follows from (3.25) that

y⊤Anℜz = rn0
(
y⊤ℜz cos(n arg µ1)− y⊤ℑz sin(n arg µ1)

)
, ∀n ∈ N.

With x := ℜz and y ∈ Rd chosen such that y⊤ℜz = 0 and y⊤ℑz = −1, a choice possible due

to the linear independence of ℜz,ℑz and Lemma 3.17, and with N ∩ π
| arg µ1|N =MN for the

appropriate integer M ≥ 2,

log |y⊤Anx| =
{
n log r0 + log | sin

(
2πnarg µ1

2π

)
|, if n /∈MN,

0, if n ∈MN,

again is periodic modulo one, and the sequence (y⊤Anx) is neither Benford nor terminating.

Assume from now on that L0 ≥ 1. In this case, by re-labelling the numbers µ1, . . . , µL,

it can be assumed that 1, 1
2π

arg µ1, . . . ,
1
2π

arg µL0 are Q-independent, and consequently

log r0 =
p0
q

+
p1
q

arg µ1

2π
+ · · ·+ pL0

q

arg µL0

2π
, (3.30)

with the appropriate p0, p1, . . . , pL0 ∈ Z and q ∈ N. Let w1, . . . , wL0 ∈ Cd be eigenvectors of A

corresponding to the eigenvalues µ1, . . . , µL0 , respectively. Note that µ1, . . . , µL0 are all non-

real, and consequently the 2L0 vectors ℜw1,ℑw1, . . . ,ℜwL0 , ℑwL0 are linearly independent.

Lemma 3.17 guarantees that, given any ξ ∈ RL0 , it is possible to choose y ∈ Rd such that

y⊤ℜwℓ = ξℓ and y
⊤ℑwℓ = 0 for all 1 ≤ ℓ ≤ L0. With x := ℜ(w1 + · · ·+ wL0) then

y⊤Anx = rn0

(
ξ1 cos(n arg µ1) + · · ·+ ξL0 cos(n arg µL0)

)
.

If (y⊤Anx) is not terminating then, by Lemma 3.19, y⊤Anx 6= 0 for all sufficiently large n,

and (3.30) leads to

q log |y⊤Anx| = p0n+p1n
arg µ1

2π
+ · · ·+ pL0n

arg µL0

2π
+

+
q

ln 10
ln
∣∣∣ξ1 cos

(
2πn

arg µ1

2π

)
+ · · ·+ ξL0 cos

(
2πn

arg µL0

2π

)∣∣∣ .
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Since 1, 1
2π

arg µ1, . . . ,
1
2π

arg µL0 are Q-independent, according to Lemma 2.14 one can choose

ξ ∈ RL0 such that (q log |y⊤Anx|) is not u.d. mod 1, and hence (log |y⊤Anx|) is not u.d. mod

1 either, by Lemma 2.7(iv). Thus (y⊤Anx) is neither Benford nor terminating. Overall, as

claimed, (i) fails whenever (ii) fails.

To prove (ii)⇒(i) , assume σ(A) is nonresonant. Given x, y ∈ Rd, recall from (3.28) that

y⊤Anx = np|µ1|nℜ
(
c1e

ın arg µ1 + · · ·+ cLe
ın arg µL + ζn

)
, ∀n ∈ N (3.31)

where p ∈ N0 and L ∈ N, the numbers µ1, . . . , µL are appropriate (different) eigenvalues of

A with |µ1| = · · · = |µL| > 0 and ℑµℓ ≥ 0 for all 1 ≤ ℓ ≤ L, the numbers c1, . . . , cL ∈ C are

all non-zero, and (nζn) is a bounded sequence in C. By assumption,

log |µ1| /∈ spanQ∆σ(A)∩|µ1|S ⊃ spanQ

(
{1} ∪

{arg µℓ

2π
: 1 ≤ ℓ ≤ L

})
.

As before, let L0 + 1 be the dimension (over Q) of spanQ

(
{1} ∪

{
1
2π

arg µℓ : 1 ≤ ℓ ≤ L
})

,

and consider first the case L0 = 0, that is, 1
2π

arg µℓ is rational for every 1 ≤ ℓ ≤ L. As σ(A)

would be resonant otherwise, this implies that L = 1 and µ1 ∈ R. Since µ1 is real, so is c1,

and

|y⊤Anx| = np|µ1|n
∣∣∣ℜ
(
c1e

ı arg µ1 + ζn

)∣∣∣ = np|µ1|n|c1||1 + ηn|,

where the real sequence (ηn) is given by ηn := 1
c1
e−ın arg µ1ℜζn → 0. As log |µ1| is irrational,

it follows from

log |y⊤Anx| = n log |µ1|+
p

ln 10
lnn+ log |c1|+ log |1 + ηn|

and Lemma 2.7 that (y⊤Anx) is Benford.

It remains to consider the case L0 ≥ 1. Assume w.l.o.g. that 1, 1
2π

arg µ1, . . . ,
1
2π

arg µL0

are Q-independent. Hence there exists q ∈ N and, for every ℓ ∈ {L0 + 1, . . . , L}, an integer

p0ℓ as well as a vector p(ℓ) ∈ ZL0 such that

arg µℓ

2π
=
p0ℓ
q

+
p
(ℓ)
1

q

arg µ1

2π
+ · · ·+

p
(ℓ)
L0

q

arg µL0

2π
, ∀L0 + 1 ≤ ℓ ≤ L.

Note that p(ℓ) = 0 ∈ ZL0 for at most one value of ℓ, and the 2L− L0 vectors

qe1, . . . , qeL0 ,±p(L0+1), . . . ,±p(L) ∈ ZL0

are all different because otherwise σ(A) would be resonant. As a consequence, for every

ξ, η ∈ RL the (multi-variable trigonometric) function Ψξ,η : R
L0 → R given by

Ψξ,η(x) :=

L0∑

ℓ=1

ξℓℜ
(
e2πı(qxℓ+ηℓ)

)
+

L∑

ℓ=L0+1

ξℓℜ
(
e2πı(x

⊤p(ℓ)+ηℓ)
)
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is non-constant unless ξ1 = · · · = ξL = 0. Fix now any m ∈ {1, . . . , q} and deduce from

(3.31) that

y⊤Anq+mx = (nq +m)p|µ1|nq+mℜ
(

L∑

ℓ=1

cℓe
ı(nq+m) arg µℓ + ζnq+m

)

= |µ1|nqnp|µ1|m
(
q +

m

n

)p
ℜ
(

L0∑

ℓ=0

cℓe
ım arg µℓeınq arg µℓ+

+
L∑

ℓ=L0+1

cℓe
ım arg µℓ

L0∏

ℓ=1

eınp
(ℓ)
k

arg µk + ζnq+m

)

= |µ1|nqnp|µ1|m
(
q +

m

n

)p (
Ψξ,η

(
n
arg µ1

2π
, . . . , n

arg µL0

2π

)
+ ℜζnq+m

)
,

where ξ, η ∈ RL are given by

ξℓ = |cℓ|, ηℓ =
m arg µℓ + arg cℓ

2π
, ∀1 ≤ ℓ ≤ L.

Recall that by assumption the L0 + 2 numbers 1, q log |µ1|, 1
2π

arg µ1, . . . ,
1
2π

arg µL0 are Q-

independent. Since lim
n→∞

ζnq+m = 0 as well, Lemma 2.7 and 2.13, applied to

log |y⊤Anq+mx| = nq log |µ1|+
p

ln 10
lnn+m log |µ1|+ p log

∣∣∣q + m

n

∣∣∣+

+
1

ln 10
ln
∣∣∣Ψξ,η

(
n
arg µ1

2π
, . . . , n

arg µL0

2π

)
+ ℜζnq+m

∣∣∣ ,

show that (log |y⊤Anq+mx|) is u.d. mod 1. As m ∈ {1, . . . , q} was arbitrary, the sequence

(log |y⊤Anx|) is u.d. mod 1, by Lemma 2.10. Thus (y⊤Anx) is Benford, and the proof is

complete.

Remark 3.21. If the matrix A is invertible, i.e. whenever 0 /∈ σ(A) then we can replace the

term “Benford or terminating” in Theorem 3.20(i) by “Benford or identically zero”. The

reason for this is that (3.26) holds for all n ∈ N in this case, and so if σ(A) is nonresonant

then either y⊤Anx = 0 for all n, or else (y⊤Anx) is Benford.

Example 3.22. The spectrum associated with the matrix in Example 3.9 is nonresonant

(see Example 3.16) and hence, for every x, y ∈ R4, the sequence (y⊤Anx), explicitly given

by

y⊤Anx =
√
3
n
[
ℜ
(
(x1 + ıx2)(y1 − ıy2)e

−ı3πn
√
2 + (x3 + ıx4)(y3 − ıy4)e

−ı6πn
√
2
)]

is either Benford or identically zero. (Realize that the matrix A in Example 3.9 is invertible

with detA = 9.)
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Example 3.23. The matrices

A =

[
12 −20
1 0

]
, B =

[
0 4
1 0

]
, C =

[
0 −1
1 0

]
,

associated with Examples 3.3, 3.4 and 3.5, respectively, have resonant spectra (see Example

3.15). Thus, for some x, y ∈ R2, the sequence (y⊤Anx) is neither Benford nor identically zero,

and similar for B and C. To see this, choose x = [10 1]⊤ and y = e2, then
(
y⊤Anx

)
= (10n)

is not Benford or identically zero. Also, let y = e2 and x = [0 2]⊤ then
(
y⊤Bnx

)
=

(2n (1 + (−1)n)) which is clearly neither Benford nor identically zero. Finally, let x, y be

e1, e2, respectively, then
(
y⊤Cnx

)
=
(
sin
(
π
2
n
))

and hence is not Benford or identically zero.

Example 3.24. The spectrum of the matrix associated with Fibonacci recursion (3.4),

σ(A) =
{

1
2

(
1±

√
5
)}

is nonresonant and thus the sequence (y⊤Anx) with A =

[
1 1
1 0

]

is either Benford or identically zero for every x, y ∈ R2. The latter happens if x and y

are proportional to, respectively, the eigenvectors 1
2

(
1 +

√
5
)
e2 − e1, corresponding to the

eigenvalue 1
2

(
1−

√
5
)
of A, and to the eigenvector 1

2

(
1 +

√
5
)
e1 + e2, corresponding to the

eigenvalue 1
2

(
1 +

√
5
)
, or vice versa.

Example 3.25. The 3 × 3-matrix A =




3 20 −3
1 0 0
0 1 0


 has nonresonant spectrum. This is

because it has three real eigenvalues, as its discriminant is 18(−3)(−20)(3) − 4(−3)3(3) +

(−3)2(−20)2 − 4(−20)3 − 27(3)2 = 38921 > 0. Also, the eigenvalues have different absolute

values, and none is of the form ±10p/q with p ∈ Z and q ∈ N. To see this, first realize that the

characteristic polynomial of A is PA(z) = z3−3z2−20z+3. Suppose two roots of PA have the

same absolute value r, let z = c be the third root, then (z2− r2)(z− c) = z3− 3z2− 20z+3.

Expanding the expression on the left and comparing coefficients, we have that r =
√
20, c = 3,

but cr2 = 60 6= 3. Hence the three real roots of PA have different absolute values. Suppose

now that PA(z) = 0 and |z| = 10p/q. If p = 0 then |z| = 1, yet PA(±1) = ∓19 6= 0. On the

other hand, if p > 0 then one of the two numbers ±10p is an eigenvalue of the (integer) matrix

Aq and hence divides |detAq| = |detA|q = 3q. Clearly, this is impossible. Similarly, if p < 0

then one of the two numbers ±3q10|p| is an eigenvalue of the (integer) matrix (3A−1)q and

hence divides |det(3A−1)q| = 32q. Again, this is impossible as |p| > 0. Overall, log |λ| /∈ Q

for every eigenvalue λ of A, i.e. σ(A) is nonresonant. It follows that every sequence (y⊤Anx)

is either Benford or identically zero.

The following corollary of Theorem 3.20 is applicable to difference equations (3.5).

Corollary 3.26. Let a1, . . . , ad be real numbers with ad 6= 0. Then the following statements

are equivalent:
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(i) Every solution (ζn) of (3.5) is Benford, unless ζ1 = · · · = ζd = 0;

(ii) The set
{
z ∈ C : zd = a1z

d−1 + a2z
d−2 + · · ·+ ad−1z + ad

}
is nonresonant.

Proof. Realize that, as seen earlier, (3.5) can be put into matrix vector equation by inserting

d − 1 redundant rows. In this case let A be the associated matrix as in (3.6). Note that A

is invertible since ad 6= 0 and also realize that PA(z) = (−1)d(zd − a1z
d−1 − a2z

d−2 − · · · −
ad−1z − ad). Hence σ(A) precisely equals {z ∈ C : zd = a1z

d−1 + a2z
d−2 + · · ·+ ad−1z + ad}.

To show that (ii)⇒(i) , let e1, . . . , ed be the standard basis of Rd, then for every n ≥ 2,

ζn = e⊤1 A
n(A−1)d




ζd
ζd−1
...
ζ1


 ,

i.e. ζn = y⊤Anx with y = e1 and x = (A−1)d
[
ζd ζd−1 · · · ζ1

]⊤
. Thus, if σ(A) is non-

resonant then (ζn) = (y⊤Anx) is Benford or identically zero by Theorem 3.20 and Remark

3.21.

To show that (i)⇒(ii) , we assume that (ii) is not true and deduce that (i) cannot hold

either. To this end, realize that every sequence (y⊤Anx) with arbitrary x, y ∈ Rd and A

given by (3.6) is a solution of (3.5), as seen in the proof of Lemma 3.19. Assuming (ii) does

not hold then by Theorem 3.20, there exists x, y ∈ Rd such that (ζn) = (y⊺Anx) is a solution

of (3.5) that is neither Benford nor identically zero.

Example 3.27. Some solutions of the difference equation (3.15) with (ζ1, ζ2) 6= (0, 0) are

not Benford as the set {z ∈ C : z2 = 2z − 2} = {1± ı} is resonant, with ∆{1±ı} = {3
4
, 1, 5

4
}

and hence ∆{1±ı} ∩ Q 6= {1}. For instance let ζ1 = 1 and ζ2 = 0, then clearly (ζn) =(√
2
n
cos
(
1
4
πn
))

is not Benford.

Example 3.28. The set {z ∈ C : z3 = z2 + 4z − 1} associated with the difference equation

ζn = ζn−1 + 4ζn−2 − ζn−3 is nonresonant. This can be seen similarly as in Example 3.25. It

follows that every solution (ζn), except for the trivial ζn ≡ 0, is Benford.

Example 3.29. The set
{
z ∈ C : z2 = 2

(
10

√
2 cos(π

√
2)
)
z − 102

√
2
}
associated with (3.16)

is resonant, with ∆{10
√
2e±ıπ

√
2} = {3 −

√
2, 1,

√
2 − 1} and hence log |10

√
2e±ıπ

√
2| =

√
2 ∈

spanQ∆{10
√
2e±ıπ

√
2}. Consequently, there exist solutions (ζn) of (3.16) with (ζ1, ζ2) 6= (0, 0)

which are not Benford. To see a concrete example, choose for instance ζ1 = 10
√
2 sin(π

√
2)

and ζ2 = 102
√
2 sin(2π

√
2). Then (ζn) = 10n

√
2 sin(nπ

√
2) is not Benford, as seen in Example

3.8.
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3.3 Continuous-Time Dynamical System

Recall that a linear (autonomous) continuous-time dynamical system (differential equation)

is of the form ẋ(t) = Ax(t), t ∈ R, with solutions x(t) = etAx0, where x0 = x(0) is a given

initial value. Here the matrix exponential etA is defined as

etA =
∞∑

k=0

tk

k!
Ak, t ∈ R.

We ask an analogous question as in the discrete-time case: Given A ∈ Rd×d, and any

x, y ∈ Rd, is the function f(t) = y⊤etAx either Benford or zero? We investigate this question

by imposing an appropriate condition on the spectrum of the matrix A.

Definition 3.30. A set Z ⊂ C is exponentially nonresonant if the set etZ := {etz : z ∈ Z}
is nonresonant for some t ∈ R; otherwise Z is exponentially resonant.

Remark 3.31. The empty set is exponentially nonresonant, and the singleton {z} is expo-

nentially nonresonant if and only if ℜz 6= 0. For A ∈ Rd×d, the set σ(etA) = {etµ : µ ∈ σ(A)}
is resonant for every t ∈ R if and only if

ℜµ1

ln 10
∈ spanQ

{ℑµ1

2π
, . . . ,

ℑµL

2π

}
, (3.32)

for some L ∈ N and the appropriate different eigenvalues µ1, . . . , µL of A with ℜµ1 = · · · =
ℜµL and ℑµℓ ≥ 0 for all 1 ≤ ℓ ≤ L.

Example 3.32. Let A =

[
0 1
1 0

]
which is associated with the differential equation ζ̈(t) =

ζ(t) in (3.3). Then σ(A) = {±1} and thus σ(etA) = {e±t}. Choose t = 1 and then

σ(eA) = {e±1} which is clearly nonresonant since log e±1 = ± log e is irrational.

Example 3.33. Consider the matrix A =

[
2 2π

ln 10

− 2π
ln 10

2

]
which has spectrum σ(A) =

{
2± 2πı

ln 10

}
and thus σ(etA) =

{
et(2±

2πı
ln 10

)
}
. Realize log r = log e2t = 2t

ln 10
and ∆σ(etA) =

{
1, 1± 2t

ln 10

}
. Clearly, 2t

ln 10
∈ spanQ

{
1, 1± 2t

ln 10

}
for every t ∈ R. Note that (3.32) is equiv-

alent to the condition that log r ∈ spanQ∆σ(etA). Overall, σ(A) is exponentially resonant.

The following lemma facilitates the proof of the main result of this section.

Lemma 3.34. For every A ∈ Rd×d the set {t ∈ R : σ(etA) is resonant} either equals R or

else is countable.
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Proof. Assume σ(et0A) is nonresonant for some t0 ∈ R but σ(etA) is resonant for some non-

zero t 6= t0. Then there exists r > 0 such that either #
(
∆σ(etA)∩rS ∩Q

)
≥ 2 or log r ∈

spanQ∆σ(etA)∩rS, or both. Labeling the elements of σ(etA) ∩ rS as etµ1 , . . . , etµL with L ≤ d

and ℜµ1 = · · · = ℜµL = t−1 ln r, in the first case 1
2π

(arg etµℓ − arg etµk) is a non-zero

rational number for some 1 ≤ ℓ, k ≤ L. As arg ez and ℑz differ, for any z ∈ C, be an integer

multiple of 2π, it follows that 1
2π
(ℑµℓ −ℑµk) ∈ Q \ {0}, and consequently

t ∈ 2π

ℑµℓ −ℑµk

Q ⊂
⋃

µ∈σ(A)

⋃

λ∈σ(A):λ 6=µ,ℜλ=ℜµ

2π

ℑλ−ℑµQ =: Σ1.

If, on the other hand,

log r =
tℜµ1

ln 10
∈ spanQ∆σ(etA)∩rS = spanQ

(
{1} ∪

{
tℑµℓ

2π
: 1 ≤ ℓ ≤ L

})
,

then, with the appropriate p0, p1, . . . , pL ∈ Z and q ∈ N,

t

(
q
ℜµ1

ln 10
−

L∑

ℓ=1

pℓ
ℑµℓ

2π

)
= p0.

Note that q̃ ℜµ1

ln 10
− 1

2π

L∑

ℓ=1

p̃ℓℑµℓ 6= 0 for every p̃1, . . . , p̃L ∈ Z and q̃ ∈ N, since otherwise

σ(et0A) would be resonant as well. Hence p0 6= 0, and

t−1 ∈ spanQ

{ ℜµ1

ln 10
,
ℑµ1

2π
, . . . ,

ℑµL

2π

}

⊂
⋃

µ∈σ(A)

spanQ

({ ℜµ
ln 10

}
∪
{ℑλ
2π

: λ ∈ σ(A),ℜλ = ℜµ
})

=: Σ2.

Overall, t ∈ Σ1 or t−1 ∈ Σ2, and both sets Σ1,Σ2 ⊂ R are countable (and independent of

t).

The main result of this section is stated in the theorem below.

Theorem 3.35. Given any A ∈ Rd×d, the following two statements are equivalent :

(i) For every x, y ∈ R, the function t 7→ y⊤etAx is either Benford or identically zero;

(ii) The set σ(A) is exponentially nonresonant.

Proof. Given x, y ∈ R, for convenience let f(t) := y⊤etAx for all t ≥ 0. To prove that

(i)⇒(ii) , as in the proof of Theorem 3.20, assume that σ(A) is exponentially resonant, and
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hence σ(etA) is resonant for every t ∈ R. As seen in the proof of Lemma 3.34 above, this is

only possible if
ℜµ1

ln 10
∈ spanQ

{ℑµ1

2π
, . . . ,

ℑµL

2π

}
,

for some L ∈ N and the appropriate different eigenvalues µ1, . . . , µL of A with ℜµ1 = · · · =
ℜµL and ℑµℓ ≥ 0 for all 1 ≤ ℓ ≤ L. Let L0 be the dimension of spanQ

{
1
2π
ℑµℓ : 1 ≤ ℓ ≤ L

}
.

If L0 = 0 then necessarily L = 1 and µ1 = 0. In this case, picking any x 6= 0 with Ax = 0

yields x⊤etAx = |x|2 6= 0 for every t ≥ 0, hence (i) does not hold.

Consider in turn the case L0 ≥ 1, and assume w.l.o.g. that 1
2π
ℑµ1, . . . ,

1
2π
ℑµL0 are Q-

independent, and so
ℜµ1

ln 10
=
p1
q

ℑµ1

2π
+ · · ·+ pL0

q

ℑµL0

2π
,

with the appropriate p1, . . . , pL0 ∈ Z and q ∈ N. Let w1, . . . , wL0 ∈ Cd be eigenvectors of

A corresponding to the eigenvalues µ1, . . . , µL0 , respectively. Note that µ1, . . . , µL0 are non-

real, and hence the 2L0 vectors ℜw1,ℑw1, . . . ,ℜwL0 ,ℑwL0 are linearly independent. Given

any ξ ∈ RL0 , use Lemma 3.17 to choose y ∈ Rd such that y⊤ℜwℓ = ξℓ and y
⊤ℑwℓ = 0 for all

1 ≤ ℓ ≤ L0. With x := ℜ(w1 + · · ·+ wL0) then, for all t ≥ 0,

f(t) = y⊤etAℜ(w1 + · · ·+ wL0) =

L0∑

ℓ=1

y⊤ℜ(etAwℓ)

=

L0∑

ℓ=1

y⊤ℜ(etµℓwℓ) = etℜµ1

L0∑

ℓ=1

ξℓ cos(tℑµℓ).

It follows that for all but countably many t ≥ 0,

g(t) := q log |f(t)|

= tp1
ℑµ1

2π
+ · · ·+ tpL0

ℑµL0

2π
+

q

ln 10
ln |ξ1 cos(tℑµ1) + · · ·+ ξL0 cos(tℑµL0)|.

Observe that 1, δ
2π
ℑµ1, . . . ,

δ
2π
ℑµL0 are Q-independent for all but countably many δ > 0.

According to Theorem A.4, it is possible to choose ξ ∈ RL0 in such a way that, for almost

all δ > 0, the sequence (〈g(nδ)〉) is distributed according to a probability measure µ on T

with µ 6= λ1. This means that

lim
N→∞

1

N

N∑

n=1

ψ (〈g(nδ)〉) =
∫

[0,1)

ψ(x) dµ(x)

holds for every continuous function ψ : T → C. Since µ 6= λ1, there exists a non-zero integer
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p with

∫

T

e2πıpx dµ(x) 6= 0, and so, by the Dominated Convergence Theorem,

0 6=
∫

T

e2πıpx dµ(x) = lim
N→∞

1

N

N∑

n=1

e2πıpg(nδ)

= lim
N→∞

1

N

N∑

n=1

∫ 1

0

e2πıpg(nδ)dδ

= lim
N→∞

1

N

N∑

n=1

1

n

∫ n

0

e2πıpg(u)du

= lim
N→∞

1

N

N∑

n=1

1

n

n∑

ℓ=1

∫ ℓ

ℓ−1

e2πıpg(u)du.

Since

∣∣∣∣
∫ ℓ

ℓ−1

e2πıpg(u)du

∣∣∣∣ ≤ 1 for all ℓ ∈ N,

0 6= lim
N→∞

1

N

N∑

n=1

1

n

n∑

ℓ=1

∫ ℓ

ℓ−1

e2πıpg(u)du = lim
N→∞

1

N

N∑

n=1

1

n

∫ n

n−1

e2πıpg(u)du

= lim
N→∞

1

N

∫ N

0

e2πıpg(u)du.

As in [13, Thm.I.9.6], it follows that t 7→ g(t) is not c.u.d. mod 1. But then t 7→ log |f(t)|
is not c.u.d. either by [13, Exc.I.9.6]. With the particular choice of ξ, x, y, therefore, the

function t 7→ f(t) is neither Benford nor does it vanish identically. This contradicts (i) and

shows that (i)⇒(ii) as claimed.

Conversely, to demonstrate (ii)⇒(i) , first recall that if f does not vanish identically then,

as a continuous-time analogue of (3.31),

f(t) = tpetℜµ1ℜ
(
c1e

ıtℑµ1 + · · ·+ cLe
ıtℑµL + h(t)

)
, ∀t ≥ 0, (3.33)

where p ∈ N0 and L ∈ N, the numbers µ1, . . . , µL are appropriate different eigenvalues of

A with ℜµ1 = · · · = ℜµL and ℑµℓ ≥ 0 for all 1 ≤ ℓ ≤ L, the numbers c1, . . . , cL ∈ C are

all non-zero, and h : [0,+∞) → C is a smooth function with lim
t→+∞

h(t) = 0. Next deduce

from Lemma A.2 that there exists δ0 > 0 with the property that (f(nδ)) is not terminating

for any 0 < δ ≤ δ0 : Indeed, if (f(nδN)) were terminating for every N with some strictly

decreasing real sequence (δN) satisfying lim
N→∞

δN = 0 then (3.33) would imply that

lim
n→∞

ℜ
(
c1
(
eıδNℑµ1

)n
+ · · ·+ cL

(
eıδNℑµL

)n)
= 0

holds for every N . According to Lemma A.2, however, this would require that ℑµℓ = ℑµk

for some ℓ 6= k, which is not the case. For all 0 < δ ≤ δ0, therefore, the sequence (f(nδ))
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is not terminating, and for all but countably many such δ the set σ(eδA) is nonresonant, by

Lemma 3.34. Thus for almost every τ ∈ [0,1] the sequence (log |f(nτδ0)|) is u.d. mod 1 by

Theorem 3.20, and [13, Thm.I.9.6] implies that t 7→ log |f(t)| is c.u.d. mod 1, i.e. t 7→ f(t)

is Benford.

Example 3.36. For x, y ∈ R2, the solution associated with the differential equation in

Example 3.32,

ζ(t) = y⊤etAx =
1

2
(y1x1 + y1x2 + y2x1 + y2x2)e

t +
1

2
(y1x1 − y1x2 − y2x1 + y2x2)e

−t

is either Benford or identically zero. The latter is the case if and only if y1x1+ y2x2 = 0 and

y1x2 + y2x1 = 0. Recall that the spectrum of the matrix A in Example 3.32 is exponentially

nonresonant.

Example 3.37. Consider the matrix A in Example 3.33 which has exponentially resonant

spectrum. We have

etA = e2t




cos
(

2πt
ln 10

)
sin
(

2πt
ln 10

)

− sin
(

2πt
ln 10

)
cos
(

2πt
ln 10

)


 .

Choose x =
[
1 0

]⊤
and y =

[
0 1

]⊤
, then y⊤etAx = −e2t sin

(
2πt
ln 10

)
and thus log |y⊤etAx| =

2t
ln 10

+ log
∣∣sin

(
2πt
ln 10

)∣∣ = h
(

2t
ln 10

)
, where h(s) = s+ log | sin(πs)|. The function h is not c.u.d.

mod 1 (see Example 3.8) and hence t 7→ y⊤etAx is not Benford.

Example 3.38. Consider the matrix A =

[
−2 −5
1 0

]
with σ(A) = {−1 ± 2ı}. Since

− 1
ln 10

/∈ spanQ

{
1
π

}
, σ(A) is exponentially nonresonant. We have that

etA =
1

2
e−t




2 cos(2t)− sin(2t) −5 sin(2t)

sin(2t) 2 cos(2t) + sin(2t)


 ,

and the function

y⊤etAx =
1

2
e−t [(2y1x1 + 2y2x2) cos(2t) + (y2x1 + y2x2 − y1x1 − 5y1x2) sin(2t)]

is either Benford or identically zero.

Finally, consider the linear (autonomous) differential equation

ζ(d)(t) = a1ζ
(d−1)(t) + a2ζ

(d−2)(t) + · · ·+ ad−1ζ̇(t) + adζ(t). (3.34)

The following corollary of Theorem 3.35 is applicable to (3.34).
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Corollary 3.39. Let a1, . . . , ad be real numbers with ad 6= 0. The following statements are

equivalent:

(i) Every solution ζ = ζ(t) of (3.34) is Benford, unless ζ(t) ≡ 0;

(ii) The set
{
z ∈ C : zd = a1z

d−1 + a2z
d−2 + · · ·+ ad−1z + ad

}
is exponentially nonreso-

nant.

Proof. Realize that (3.34) can be re-stated as a matrix-vector equation by inserting d − 1

redundant rows, thus

d

dt




ζ(d−1)

ζ(d−2)

...
ζ


 =




a1ζ
(d−1) + · · ·+ adζ

ζ(d−1)

...

ζ̇



=




a1 a2 · · · ad−1 ad
1 0 · · · 0 0
0 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 0







ζ(d−1)

ζ(d−2)

...
ζ


 .

With this set-up, (3.34) takes the form V̇ (t) = AV (t), where A is the associated matrix as

in (3.6) and V =
[
ζ(d−1) ζ(d−2) · · · ζ

]⊤
. Also realize that PA(z) = (−1)d(zd − a1z

d−1 −
a2z

d−2 − · · · − ad−1z − ad) and hence the set σ(A) precisely equals {z ∈ C : zd = a1z
d−1 +

a2z
d−2 + · · ·+ ad−1z + ad}.
To show that (ii)⇒(i) , realize that the solution to the system above is given by V (t) =

etAV (0) where V (0) =
[
ζ(d−1)(0) · · · ζ(0)

]⊤
. Thus ζ(t) = e⊤d e

tAV (0) = y⊤etAx, with

y = ed and x = V (0). Thus, if (ii) holds then the function ζ(t) = y⊤etAx is Benford or

identically zero, by Theorem 3.35.

To show that (i)⇒(ii) , we will assume that (ii) does not hold and deduce that (i) cannot

hold either. To this end, note that every function ζ(t) := y⊤etAx with arbitrary x, y ∈ Rd,

and with A given by (3.6), is a solution of (3.34). Assuming (ii) does not hold, then by

Theorem 3.35, there exists x, y ∈ Rd such that t 7→ y⊤etAx is neither Benford nor identically

zero.

Example 3.40. The set Z = {z ∈ C : z2 = z + 1} = {−ϕ−1, ϕ} with ϕ = 1
2
(1 +

√
5),

associated with the differential equation ζ̈ = ζ̇+ ζ is exponentially nonresonant. To see this,

realize that etZ =
{
etϕ, e−tϕ−1

}
, and with t = 1, both log eϕ and log e−ϕ−1

are irrational and

hence the set eZ = {eϕ, e−ϕ−1} is nonresonant. It follows that every solution ζ = ζ(t) of

ζ̈ = ζ̇ + ζ is Benford, except for ζ(t) ≡ 0.

Example 3.41. Consider the differential equation ζ̈ + ζ = 0. The associated set Z = {z ∈
C : z2 = −1} = {±ı} is exponentially resonant. Consequently, no solution ζ is Benford.

This can also be seen directly, as

ζ(t) = c1 cos t+ c2 sin t =
√
c21 + c22 cos(t− t0),
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with the appropriate c1, c2, t0 ∈ R, and Lemma A.7 with p1 = 0, α = 1
ln 10

, ξ =
√
c21 + c22

shows that ζ is not Benford.

3.4 Discussion of Work

Although the tailor-made Definition 3.11 is for arbitrary subsets of complex numbers, it was

not studied how the Benford analysis would look for sequences of the form (y⊤Anx) for which

the matrix A ∈ Cd×d and/or x, y ∈ Cd are non-real. Thus, the main Theorems 3.20 and

3.35 as stated are for real d× d-matrices only. Even with this, difficulties can arise in their

practical usage. For instance, consider the second order recurrence relation

ζn = 2ζn−1 − 5ζn−2, n ≥ 3. (3.35)

The associated matrix is A =

[
2 −5
1 0

]
with σ(A) = {1± 2ı} and thus |1± 2ı| =

√
5. For

σ(A) to be nonresonant both conditions of Definition 3.11 must be satisfied. Realize that

∆σ(A) =
{
1− 1

π
arctan(2), 1, 1 + 1

π
arctan(2)

}
, so condition (i) of Definition 3.11 is clearly

satisfied. Hence nonresonance of σ(A) is equivalent to log
√
5 /∈ spanQ∆σ(A). While both

log
√
5 and 1

π
arctan(2) are irrational, it is an open problem in number theory whether or not

1, log
√
5, 1

π
arctan(2) are rationally independent [24]. Hence, it is unknown whether the

set σ(A) is nonresonant. In this case, we become limited in making theoretical conclusions

as to whether the solution of (3.35),

ζn =
√
5
n
[c1 cos (n arctan(2)) + c2 sin (n arctan(2))] , n ∈ N, (3.36)

is Benford or not. Experimental evidence suggests that except for the trivial case ζ1 = ζ2 = 0,

every solution (ζn) of (3.35), as explicitly given by (3.36) is Benford (see Table 3.1).

digit (d) ζn log
(
1 + 1

k

)

1 29.99 30.10
2 17.23 17.60
3 12.78 12.49
4 9.51 9.69
5 7.92 7.91
6 6.61 6.67
7 6.01 5.79
8 5.19 5.11
9 4.76 4.57

Table 3.1: Leading digit distribution for the first 10000 terms of the solution (ζn) of (3.35),
with ζ1 = ζ2 = 1. The data suggests that (ζn) is Benford.
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In this work, we considered real matrices for their simplicity and since Benford’s Law is

often stated in terms of sequences of real numbers. One may be curious to know how the

results obtained in this work could be extended to complex matrices and vectors. Given

A ∈ Cd×d, denote by AR its realification, i.e. the real matrix

AR :=

[
ℜA −ℑA
ℑA ℜA

]
∈ R2d×2d.

In analogy to Definition 3.11, a possible definition could be that A ∈ Cd×d has nonresonant

spectrum if and only if the spectrum of the realification AR is nonresonant. Realize that

since A is a complex matrix, eigenvalues do not occur in conjugate pairs and thus σ(A) may

not be symmetric; however, σ(AR) = σ(A) ∪ σ(A) is symmetric. For x, y ∈ Cd, (y⊤Anx)

is a sequence of complex numbers. We may require that for the sequence (y⊤Anx) to be

Benford both the real part and the imaginary part, that is ℜ(y⊤Anx) and ℑ(y⊤Anx), are to

be Benford. Do analogues of Theorems 3.20 and 3.35 hold in this context?

Most systems, e.g. biological models, are nonlinear in nature. It is of interest to know if

their digit distribution would be Benford. The level of completeness achieved in this work

for linear (autonomous) systems cannot be expected for the vast class of nonlinear systems.

To extend the work done in this thesis to some nonlinear systems, one would like to do so

via the process of linearisation. Consider the nonlinear system

ẋ = f(x), (3.37)

where x ∈ Rd and f is a smooth vector function. Could we claim that solutions x = x(t) of

(3.37) would lead to Benford functions or sequences if the matrix A ∈ Rd×d associated with

(3.37) via linearisation has σ(A) nonresonant?

3.5 Summary and Conclusions

Linear dynamical systems provide important models for many areas of applied science. The

study of digits generated by these (and other) systems is a classical and rather wide subject

that continues to attract interest from many disciplines. Building on earlier work, notably

[4, 6, 16, 21], this work provides a generalization and unification of already known facts

about the relationship between Benford’s Law and solutions of dynamical systems. Even

though the implication (i)⇒(ii) of Theorems 3.20 and 3.35 seems to have been addressed in

the past only for systems with dimension d ≤ 3 (see [6, Thm.5.37]), the results of this work

fully characterize Benford’s behaviour in dynamical systems of arbitrary dimension.

This work theoretically characterizes Benford’s Law in linear dynamical systems by pro-

viding a necessary and sufficient condition under which solutions of these systems are Ben-

ford. This condition takes into account that if the spectrum of the arbitrary real d×d-matrix
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A associated with the system is (exponentially) nonresonant, then for a sequence (y⊤Anx)

(or function t 7→ y⊤etAx) only two outcomes are possible irrespective of the choice of real

d-dimensional vectors x, y. The sequence (y⊤Anx) (or function t 7→ y⊤etAx) is either Benford

or identically zero. However, it is worth noting that even in the case of resonant spectrum

some solutions of the system may be Benford nevertheless. The characterization presented

here is based on the review of basic facts about Benford sequences (and functions) and

uniform distribution modulo one.

Even though the analysis employed in this work for simplicity considers only integer base

10, the Benford property can be studied with respect to any integer base b ≥ 2 by requiring

the second condition of Definition 3.11 to be logb r /∈ spanQ∆Z . Hence the main theorems

can be extended to, and proved in a similar way for, any base b ∈ N \ {1}.
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Appendix A

Some auxiliary results

The purpose of this appendix is to provide proofs for several analytical facts that have been

used in establishing the main results of this work. Throughout, let d ∈ N be fixed.

Lemma A.1. Given any z1, . . . , zd ∈ S = {z ∈ C : |z| = 1}, the following statements are

equivalent:

(i) If lim
n→∞

(c1z
n
1 + · · ·+ cdz

n
d ) exists with c1, . . . , cd ∈ C then c1 = · · · = cd = 0;

(ii) zj /∈ {1} ∪ {zk : k 6= j} for every 1 ≤ j ≤ d.

Proof. Clearly (i)⇒(ii) because if zj = 1 for some j simply let cj = 1 and cℓ = 0 for

all ℓ 6= j, whereas if zj = zk for some j 6= k take cj = 1, ck = −1, and cℓ = 0 for all

ℓ ∈ {1, . . . , d} \ {j, k}. To show that (ii)⇒(i) as well, proceed by induction. Trivially, if

d = 1 then (c1z
n
1 ) with z1 ∈ S converges only if c1 = 0 or z1 = 1. Assume now that

(ii)⇒(i) has been established already for 1 ≤ d ≤ D, let d = D + 1, and assume that

zj /∈ {1} ∪ {zk : k 6= j} for every 1 ≤ j ≤ D+ 1. If lim
n→∞

(
c1z

n
1 + · · ·+ cD+1z

n
D+1

)
exists then,

as zD+1 6= 1,

{
c1

(
z1
zD+1

)n
z1 − 1

zD+1 − 1
+ · · ·+ cD

(
zD
zD+1

)n
zD − 1

zD+1 − 1
+ cD+1

}
znD+1(zD+1 − 1)

= c1z
n
1 (z1 − 1) + · · ·+ cD+1z

n
D+1(zD+1 − 1)

= c1z
n+1
1 + · · ·+ cD+1z

n+1
D+1 −

(
c1z

n
1 + · · ·+ cD+1z

n
D+1

) n→∞−−−→ 0,

which in turn yields

lim
n→∞

{
c1

(
z1
zD+1

)n
z1 − 1

zD+1 − 1
+ · · ·+ cD

(
zD
zD+1

)n
zD − 1

zD+1 − 1

}
= −cD+1.

Note that
zj

zD+1
/∈ {1}∪

{
zk

zD+1
: k 6= j

}
for every 1 ≤ j ≤ D. Hence by induction assumption,

cj
zj−1

zD+1−1
= 0 for all 1 ≤ j ≤ D, and so c1 = · · · = cD = 0. As zD+1 6= 1, cD+1 = 0 as well.
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Lemma A.2. The following statements are equivalent for any z1, . . . , zd ∈ S:

(i) If lim
n→∞

ℜ (c1z
n
1 + · · ·+ cdz

n
d ) exists with c1, . . . , cd ∈ C then c1 = · · · = cd = 0;

(ii) zj /∈ {−1, 1} ∪ {zk, zk : k 6= j} for every 1 ≤ j ≤ d.

Proof. Clearly (i)⇒(ii) because if zj ∈ {−1, 1} for some 1 ≤ j ≤ d simply let cj = ı and

cℓ = 0 for all ℓ 6= j, whereas if zj ∈ {zk, zk} for some j 6= k, take cj = 1, ck = −1, and cℓ = 0

for all ℓ ∈ {1, . . . , d} \ {j, k}. Conversely, if

lim
n→∞

ℜ (c1z
n
1 + · · ·+ cdz

n
d ) =

1

2
lim
n→∞

(c1z
n
1 + c1 z1

n + · · ·+ cdz
n
d + cd zd

n)

exists then, by Lemma A.1, c1 = · · · = cd = 0 unless either zj = 1 or zj = zj (and hence

zj ∈ {−1, 1}) for some j, or zj ∈ {zk, zk} for some j 6= k. Overall, c1 = · · · = cd = 0 unless

zj ∈ {−1, 1, zk, zk} for some j 6= k. Thus (ii)⇒(i), as claimed.

Let ϑ1, . . . , ϑd be real numbers such that 1, ϑ1, . . . , ϑd are Q-independent. Furthermore,

let p1, . . . , pd be arbitrary integers, and α ∈ R \ {0}. With these ingredients, given any

ξ ∈ Rd, consider the sequence (an) of real numbers defined as

an = p1nϑ1 + · · ·+ pdnϑd + α ln |ξ1 cos(2πnϑ1) + · · ·+ ξd cos(2πnϑd)| , ∀n ∈ N, (A.1)

where ln denotes the natural logarithm, and ln 0 := 0 for convenience.

Lemma A.3. Given d ∈ N, ϑ1, . . . , ϑd ∈ R, p1, . . . , pd ∈ Z and α ∈ R \ {0} as above, there

exists ξ ∈ Rd such that the sequence (an) according to (A.1) is not u.d. mod 1.

The remainder of this appendix is devoted to establishing Lemma A.3 which has been

instrumental in the proof of Theorem 3.20. To prepare for the arguments, denote by Td the

d-dimensional torus, i.e. Td = Rd/Zd, together with the σ-algebra B
(
Td
)
of its Borel sets,

and let P
(
Td
)
be the set of all probability measures on

(
Td,B

(
Td
))
. Given any µ ∈ P

(
Td
)
,

associate with it the family (µ̂(k))k∈Zd of its Fourier coefficients, defined as

µ̂(k) =

∫

Td

e2πık
⊤x dµ(x) =

∫

Td

e2πı(k1x1+···+kdxd) dµ(x1, . . . , xd), ∀k ∈ Zd.

Recall that µ 7→ (µ̂(k))k∈Zd is one-to-one, i.e. the Fourier coefficients determine µ uniquely.

Arguably the most prominent element in P
(
Td
)
is the uniform distribution (or Lebesgue

measure) on Td, henceforth denoted λd, for which, with dλd(x) abbreviated dx as usual,

λ̂d(k) =

∫

Td

e2πı(k1x1+···+kdxd) dx =
d∏

j=1

∫

T

e2πıkjx dx =

{
1 if k = 0 ∈ Zd,
0 if k 6= 0;
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here and throughout, write T1 simply as T. Given µ ∈ P
(
Td
)
, therefore, to show that

µ 6= λd it is (necessary and) sufficient to find at least one k ∈ Zd \ {0} for which µ̂(k) 6= 0.

Recall also that, given a measurable map T : Td → T, each µ ∈ P
(
Td
)
induces a unique

µ ◦ T−1 ∈ P (T) via

µ ◦ T−1(B) = µ
(
T−1(B)

)
, ∀B ∈ B(T).

The Fourier coefficients of µ ◦ T−1 are readily computed as

µ̂ ◦ T−1(k) =

∫

T

e2πıkx d
(
µ ◦ T−1

)
(x) =

∫

Td

e2πıkT (x) dµ(x), k ∈ Z.

If in particular d = 1 and µ ◦ T−1 = µ, then µ is said to be invariant under T (and T is

µ-preserving).

With a view towards Lemma A.3, it will be useful to consider, for any given d ∈ N,

p1, . . . , pd ∈ Z and α ∈ R \ {0}, the family of maps

Tξ :

{
Td → T,
x 7→ 〈p1x1 + · · ·+ pdxd + α ln |ξ1 cos(2πx1) + · · ·+ ξd cos(2πxd)|〉; (A.2)

here ξ ∈ Rd may be thought of as a parameter. Note that each map Tξ is (Borel) measurable,

in fact differentiable outside a set of λd-measure zero. For every µ ∈ P(Td), therefore, the

measure µ ◦ T−1
ξ is a well-defined element of P(T). Lemma A.3 is a consequence of the

following fact.

Theorem A.4. For every p1, . . . , pd ∈ Z and α ∈ R \ {0}, there exists ξ ∈ Rd such that

λd ◦ T−1
ξ 6= λ1, with Tξ given by (A.2).

To see that Theorem A.4 does indeed imply Lemma A.3, let p1, . . . , pd ∈ Z and α ∈ R\{0}
be given, and pick ξ ∈ Rd such that λd ◦ T−1

ξ 6= λ1. Consequently, there exists a continuous

function f : T → C for which

∫

[0,1)

f d(λd ◦ T−1
ξ ) 6=

∫

[0,1)

f dλd. Note that f ◦ Tξ : Td → C is

continuous λd-almost everywhere as well as bounded, and hence Riemann integrable. Also

recall that the sequence ((nϑ1, . . . , nϑd)) is u.d. mod 1 in Rd whenever 1, ϑ1, . . . , ϑd are

Q-independent. In the latter case, therefore,

lim
N→∞

1

N

N∑

n=1

f(〈an〉) = lim
N→∞

1

N

N∑

n=1

f ◦ Tξ (〈(nϑ1, . . . , nϑd)〉)

=

∫

Td

f ◦ Tξdλd =
∫

T

fd
(
λd ◦ T−1

ξ

)
6=
∫

T

fdλ1,

showing that (an) is not u.d. mod 1.

Thus it remains to prove Theorem A.4. The proof presented here is computational and

proceeds in essentially two steps: First the case d = 1 is analyzed in detail. Specifically, it is
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shown that λ1 ◦T−1
ξ 6= λ1 unless p1 6= 0 and αξ1 = 0. For itself, this could be seen directly by

noticing that the map Tξ : T → T has a non-degenerate critical point whenever αξ1 6= 0, and

hence cannot possibly preserve λ1, see e.g. [6, Ex.5.27(iii)]. The more elaborate calculation

given here, however, is useful also in the second step of the proof, i.e. the analysis for d ≥ 2.

As it turns out, the case d ≥ 2 can, in essence, be reduced to calculations already done for

d = 1.

To concisely formulate the subsequent results, recall that the Euler Gamma function, de-

noted Γ = Γ(z) as usual, is a meromorphic function with poles precisely at z = 0,−1,−2, . . . ,

and Γ(z + 1) = zΓ(z) 6= 0 for every z ∈ C \ {0,−1,−2, . . . }. Also, for convenience every

“empty sum” is understood to equal zero, e.g.,
∑

2≤j≤1

j2 = 0, whereas every “empty product”

is understood to equal 1, e.g.,
∏

2≤j≤1

j2 = 1. Finally, the standard (ascending) Pochhammer

symbol (z)n will be used where, given any z ∈ C,

(z)n := z(z + 1) . . . (z + n− 1) =
n−1∏

l=0

(z + l), ∀n ∈ N

and (z)0 := 1, in accordance with the convention on empty products.

Lemma A.5. Given any q ∈ Z and β ∈ R \ {0}, let

J(q, β) :=

∫

T

e4πıqxı+2ıβ ln | cos(2πx)| dx. (A.3)

Then

eıβ ln 4J(q, β) = (−1)q
2ıβΓ(2ıβ)

(ıβΓ(ıβ))2
· (−ıβ)|q|
(1 + ıβ)|q|

=
sin(π|q| − πıβ)

π|q| − πıβ
Γ(1 + 2ıβ)

Γ(1 + |q| − ıβ)

Γ(1 + |q|+ ıβ)

(A.4)

and hence in particular

|J(q, β)|2 = β tanh(πβ)

π(q2 + β2)
. (A.5)

Proof. Substituting −x for x in (A.3) shows that J(q, β) = J(|q|, β), and a straightforward

calculation, with Tl denoting the l-th Chebyshev polynomial (l ∈ N0), yields

J(q, β) =

∫

T

e4πı|q|x+2ıβ ln | cos(2πx)| dx =

∫ 1

0

e2πı|q|x+2ıβ ln | cos(πx)| dx

=

∫ 1
2

0

2 cos(π|q|x)e2ıβ ln | cos(πx)| dx = 2

∫ 1
2

0

T2|q| (cos(πx)) e
2ıβ ln | cos(πx)| dx

=
2

π

∫ 1

0

T2|q|(s)√
1− s2

e2ıβ ln s ds =
2

π

∫ +∞

0

T2|q|

(
1√

1 + t2

)
e−ıβ ln(1+t2)

1 + t2
dt.
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As the polynomial T2|q| can, for every q ∈ Z and u 6= 0, be written as

T2|q|(u) = u2|q|
|q|∑

l=0

(
2|q|
2l

)
(1− u−2)l,

it follows that

J(q, β) =
2

π

|q|∑

l=0

(−1)l
(
2|q|
2l

)∫ +∞

0

t2l

(1 + t2)1+|q|+ıβ
dt

=
1

π

|q|∑

l=0

(−1)l
(
2|q|
2l

)∫ +∞

0

ul−
1
2

(1 + u)1+|q|+ıβ
du

=
1

πΓ(1 + |q|+ ıβ)

|q|∑

l=0

(−1)l
(
2|q|
2l

)
Γ

(
1

2
+ l

)
Γ

(
1

2
+ |q| − l + ıβ

)
.

Note that Γ is finite and non-zero for each argument appearing in this sum. Recall that

Γ

(
1

2
+ l

)
=

(2l)!
√
π

l!22l
, ∀l ∈ N0,

and so

J(q, β) =
(−1)q(2|q|)!√

π22|q|Γ(1 + |q|+ ıβ)

|q|∑

l=0

{
(−1)l

22lΓ
(
1
2
+ l + ıβ

)

(2l)!(|q| − l)!

}

=
(−1)qΓ

(
1
2
+ |q|

)
Γ
(
1
2
+ ıβ

)

πΓ(1 + |q|+ ıβ)

|q|∑

l=0

{
(−1)l

(|q|
l

) l∏

k=1

2k − 1 + 2ıβ

2k − 1

}

=
(−1)qΓ

(
1
2
+ ıβ

)
√
π22|q|Γ(1 + |q|+ ıβ)

|q|∑

l=0



(−1)l

(|q|
l

) l∏

k=1

(2k − 1 + 2ıβ)

|q|∏

k=l+1

(2k − 1)





=
(−1)qΓ

(
1
2
+ ıβ

)
√
π22|q|Γ(1 + |q|+ ıβ)

Q|q|(2ıβ),

where, for every m ∈ N0, the polynomial Qm is given by

Qm(z) =
m∑

l=0

{
(−1)l

(
m

l

) l∏

k=1

(2k − 1 + z)
m∏

k=l+1

(2k − 1)

}
. (A.6)

Thus for example Q0(z) ≡ 1, Q1(z) = −z,Q2(z) = −2z + z2. Note that the degree of Qm
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equals m, and for every j ∈ {0, 1, . . . ,m− 1},

Qm(2j) =
m∑

l=0

{
(−1)l

(
m

l

) l∏

k=1

(2k − 1 + 2j)
m∏

k=l+1

(2k − 1)

}

=
m∑

l=0

{
(−1)l

(
m

l

) m∏

k=j

(2k − 1)

l+j∏

k=l+1

(2k − 1)

}

=

{
m∏

k=j+1

(2k − 1)

}
m∑

l=0

{
(−1)l

(
m

l

) j∏

k=1

(2l + 2k − 1)

}
= 0.

Here the elementary fact has been used that
m∑

l=0

(−1)l
(
m

l

)
P (l) = 0 holds for every poly-

nomial P of degree less than m. As the polynomial Qm has degree m, it cannot have any

further roots besides 0, 2, 4, . . . , 2m− 2, and so

Qm(z) = cm

m−1∏

l=0

(z − 2l),

with a constant cm yet to be determined. The correct value of cm is readily found by observing

that

Qm(−1) = cm

m−1∏

l=0

(−1− 2l) = cm(−1)m · 1 · 3 · ... · (2m− 1),

whereas on the other hand, by the very definition (A.6) of Qm,

Qm(−1) =
m∑

l=0

{
(−1)l

(
m

l

) l∏

k=1

(2k − 2)
m∏

k=l+1

(2k − 1)

}
=

m∏

k=1

(2k − 1).

Thus cm = (−1)m, and overall

Qm(z) = (−1)m
m−1∏

l=0

(z − 2l) =
m−1∏

l=0

(2l − z) = 2m
(
− 1

2
z
)
m
.

With this, one obtains

J(q, β) =
(−1)qΓ

(
1
2
+ ıβ

)
√
π2|q|Γ(1 + |q|+ ıβ)

|q|−1∏

l=0

(2l − 2ıβ) =
(−1)qΓ

(
1
2
+ ıβ

)
√
πΓ(ıβ)

· 1

|q|+ ıβ

|q|−1∏

l=0

l − ıβ

l + ıβ

= 2(−1)q+1e−ıβ ln 4Γ(2ıβ)

Γ(ıβ)2
· 1

|q| − ıβ

|q|∏

l=1

l − ıβ

l + ıβ
,

where the so-called Legendre duplication formula for the Γ-function has been used in the

form

Γ(ıβ)Γ
(1
2
+ ıβ

)
= 21−2ıβ

√
πΓ(2ıβ), ∀β ∈ R \ {0}.
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Minor re-arrangements of the above expression for J(q, β), using the Euler reflection formula

Γ(z)Γ(1− z) =
π

sin(πz)
, ∀z ∈ C \ Z, (A.7)

lead to

eıβ ln 4J(q, β) = (−1)q
2ıβΓ(2ıβ)
(
ıβΓ(ıβ)

)2 · (−ıβ)|q|
(1 + ıβ)|q|

=
sin(π|q| − πıβ)

π|q| − πıβ
Γ(1 + 2ıβ)

Γ(1 + |q| − ıβ)

Γ(1 + |q|+ ıβ)
,

as claimed. Using the standard fact that

|Γ(ıβ)|2 = π

β sinh(πβ)
, ∀β ∈ R \ {0},

which follows for instance from (A.7) together with Γ(z̄) = Γ(z), claim (A.5) now is imme-

diate:

|J(q, β)|2 =
∣∣∣∣
sin(π|q| − πıβ)

π|q| − πıβ

∣∣∣∣
2

|Γ(1 + 2ıβ)|2 = sinh2(πβ)

π2(q2 + β2)
· 4β4π

2β sinh(2πβ)
=
β tanh(πβ)

π(q2 + β2)
.

Remark A.6. Relations (A.4) and (A.5) are valid for β = 0 also, in the sense that

J(q, 0) = lim
β→0

J(q, β) = lim
β→0

sin(π|q| − πıβ)

π|q| − πıβ
=

{
1 if q = 0,
0 if q 6= 0;

here the fact lim
z→0

z−1 sin z = 1 has been used.

An immediate consequence of Lemma A.5 is that for d = 1, and any p1 ∈ Z, α ∈ R\{0},
the map Tξ according to (A.2) does typically not preserve λ1.

Lemma A.7. For every p1 ∈ Z and α ∈ R \ {0},

λ1 ◦ T−1
ξ = λ1 ⇐⇒ ξ1 = 0 and p1 6= 0

Proof. Simply note that for every non-zero ξ = [ξ1] ∈ R1,

̂λ1 ◦ T−1
ξ (2) =

∫

T

e4πıx d
(
λ1 ◦ T−1

ξ

)
(x) =

∫

T

e4πı(p1x+α ln |ξ1 cos(2πx)|) dx

= e4πıα ln |ξ1|J(p1, 2πα) 6= 0,

showing that λ1 ◦ T−1
ξ 6= λ1. On the other hand if ξ1 = 0 then Tξ(x) = 〈p1x〉, and

̂λ1 ◦ Tξ(k) =
∫

T

e2πıkp1xdx =

{
1 if kp1 = 0,
0 if kp1 6= 0,

shows that λ1 ◦ Tξ 6= λ1 if and only if p1 6= 0.
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As mentioned earlier, the case d ≥ 2 will now be studied and, in a way, reduced to the

case d = 1. To this end, let again q ∈ Z and β ∈ R \ {0} be given, and consider the function

ιq,β : R → C defined as

ιq,β(t) :=

∫

T

e4πıqx+2ıβ ln |t+cos(2πx)| dx, ∀t ∈ R.

A few elementary properties of ιq,β are contained in

Lemma A.8. For every q ∈ Z and β ∈ R\{0}, the function ιq,β is continuous and even, with

|ιq,β(t)| ≤ 1 for all t ∈ R. Moreover, ιq,β(0) = J(q, β) and ιq,β(1) = eıβ ln 4J(2q, 2β) 6= ιq,β(0).

Proof. Since for every t∗ ∈ R,

lim
t→t∗

ln |t+ cos(2πx)| = ln |t∗ + cos(2πx)|

holds for all but (at most) two x ∈ T, the continuity of ιq,β follows from the Dominated

Convergence Theorem. Clearly, ιq,β is even, with |ιq,β(t)| ≤
∫
T
dλ1 = 1. Finally, it follows

with

ιq,β(1) =

∫

T

e4πıqx+2ıβ ln |2 cos2(πx)|dλ1(x)

= eıβ ln 4

∫

T

e4πıqx+4ıβ ln | cos(πx)|dλ1(x) = eıβ ln 4J(2q, 2β) 6= 0,

that, for every q ∈ Z and β ∈ R \ {0},
∣∣∣∣
ιq,β(1)

ιq,β(0)

∣∣∣∣
2

=
2β tanh(2πβ)

4q2 + 4β2
· q2 + β2

β tanh(πβ)
=

1

2

(
1 +

1

cosh(2πβ)

)
< 1,

and hence ιq,β(1) 6= ιq,β(0).

For the subsequent arguments, it will be crucial that ιq,β is actually much smoother than

Lemma A.8 seems to suggest. Recall that a function f : Rm → C is real-analytic on an open

set U ⊂ Rm if f can, in a neighbourhood of each point in U , be represented as a convergent

power series. The ultimate proof of Lemma A.3 will rely heavily on the following refinement

of Lemma A.8.

Lemma A.9. For every q ∈ Z and β ∈ R \ {0}, the function ιq,β is real-analytic on the

interval (−1, 1).

Proof. Given q ∈ Z and β ∈ R \ {0}, by Lemma A.8, the function τ 7→ ιq,β (cos(πτ)) is

continuous and 1-periodic. Hence it can be represented, at least in the L2(λ1)-sense, as a
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Fourier series ιq,β (cos(πτ)) ∼
∑

k∈Z
cke

2πıkτ where, for every k ∈ Z,

ck =

∫

T

ιq,β (cos(πτ)) e
−2πıkτ dτ

=

∫

T×T

e−2πıkτe4πıqx+2ıβ ln | cos(πτ)+cos(2πx)| dx dτ

=

∫

T2

e2πı(2qx−kτ)+2ıβ ln | cos(πτ)+cos(2πx)| dλ2(x, τ)

=

∫

T2

e4πıq(y+σ)−4πık(y−σ)+2ıβ ln |2 cos(2πy) cos(2πσ)| dλ2(y, σ)

= eıβ ln 4

∫

T

e4πı(q−k)y+2ıβ ln | cos(2πy)| dλ1(y)

∫

T

e4πı(q+k)σ+2ıβ ln | cos(2πσ)| dλ1(σ)

= eıβ ln 4J(q − k, β)J(q + k, β).

Since c−k = ck, the Fourier series of τ 7→ ιq,β (cos(πτ)) is c0 + 2
∑

n∈N
cn cos(2πnτ) = c0 +

2
∞∑

n=1

cnT2n (cos(πτ)) , and since furthermore

|cn| = |J(n− q, β)J(n+ q, β)| = β tanh(τβ)

π
√
(n2 + q2 + β2)2 − 4n2q2

= O(n−2), as n→ ∞,

the Weierstrass M-test implies that, uniformly in t ∈ [−1, 1],

ιq,β(t) = c0 + 2
∞∑

n=1

cnT2n(t).

For every κ ∈ R with |κ| < 1, consider now the auxiliary function

h(t, κ) := 2
∞∑

n=1+|q|
cnT2n(t)κ

n.

Note that, uniformly in t ∈ [−1, 1],

ιq,β(t) = c0 + 2

|q|∑

n=1

cnT2n(t) + lim
κ↑1

h(t, κ).

In addition, introduce an analytic function on the open unit disc as

H(z) :=
∞∑

n=1+|q|
cnz

n, ∀z ∈ C : |z| < 1, (A.8)
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and observe that

H(z) = z1+|q|
∞∑

n=0

cn+1+|q|z
n = eıβ ln 4z1+|q|

∞∑

n=0

J(n+ 1, β)J(n+ 1 + 2|q|, β)zn

= e−ıβ ln 4z1+|q| (2ıβΓ(2ıβ))
2

(ıβΓ(ıβ))4

∞∑

n=0

(−ıβ)n+1 (−ıβ)n+1+2|q|
(1 + ıβ)n+1 (1 + ıβ)n+1+2|q|

zn

= e−ıβ ln 4z1+|q| (2ıβΓ(2ıβ))
2

(ıβΓ(ıβ))4
· (ıβ)2

(1 + ıβ)2
·

· (1− ıβ)2|q|
(2 + ıβ)2|q|

∞∑

n=0

(1− ıβ)n(1 + 2|q| − ıβ)n
(2− ıβ)n(2 + 2|q|+ ıβ)n

zn

=
4e−ıβ ln 4Γ(2ıβ)2(1− ıβ)2|q|
(1 + ıβ)2Γ(ıβ)4(2 + ıβ)2|q|

3F2(1− ıβ, 1 + 2|q| − ıβ, 1; 2+

+ ıβ, 2 + 2|q|+ ıβ; z)z1+|q|;

here the standard notation for (generalized) hypergeometric functions has been used, see e.g.

[23, Ch.II]. Recall that 3F2 really is an analytic function on C\{z : ℜz ≥ 1,ℑz = 0}, that is,
on the entire complex plane minus a cut from 1 to ∞ along the positive real axis. Hence H

as given by (A.8) can be extended analytically to C \ {z : ℜz ≥ 1,ℑz = 0} as well. Observe

now that

H(e2πiτκ) +H(e−2πiτκ) = 2
∞∑

n=1+|q|
cn cos(2πnτ)κ

n = 2
∞∑

n=1+|q|
cnT2n (cos(πτ))κ

n

= h (cos(πτ), κ) , ∀τ ∈ R, |κ| < 1.

It follows that, for all t ∈ [−1, 1],

ιq,β(t) = c0 + 2

|q|∑

n=1

cnT2n(t) + lim
κ↑1

{
H
(
(2t2 − 1 + 2ıt

√
1− t2)κ

)
+

+H
(
(2t2 − 1− 2ıt

√
1− t2)k

)}

= c0 + 2

|q|∑

n=1

cnT2n(t) +H
(
2t2 − 1 + 2ıt

√
1− t2

)
+

+H
(
2t2 − 1− 2ıt

√
1− t2

)
.

This in turn shows that t 7→ ιq,β(t) is real-analytic on (−1, 1) because t 7→ 2t2−1±2ıt
√
1− t2

is real-analytic on (−1, 1), and 2t2 − 1 ± 2ıt
√
1− t2 = 1 only if |t| = 1. In fact, ιq,β(t) =

∞∑

n=0

ι
(n)
q,β(0)t

n/n! for all t ∈ (−1, 1).
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For every d ∈ N, define a non-empty open subset of Rd as

Ed :=

{
ξ ∈ Rd : ∃j0 ∈ {1, ..., d} s.t. |ξj0 | >

∑

j 6=j0

|ξj|
}
.

In order to utilize Lemma A.9 for a proof of Theorem A.4, given any d ∈ N, p1, . . . , pd ∈ Z

and α ∈ R \ {0}, recall the map Tξ from (A.2) and consider the function I : Rd → C defined

as

I(ξ) = ̂λd ◦ T−1
ξ (2) =

∫

T

e4πixdλd ◦ T−1
ξ (x)

=

∫

Td

e4πı(p1x1+...pdxd+α ln |ξ1 cos(2πx1)+...+ξd cos(2πxd)|)dλd(x1, ..., xd).

(A.9)

An important consequence of Lemma A.9 is

Lemma A.10. For every p1, ..., pd ∈ Z and α ∈ R \ {0}, the function I = I(ξ) given by

(A.9) is real-analytic and non-constant on Ed.

Proof. If d = 1 then, as seen already in the proof of Lemma A.7,

I(ξ) =

∫

T

e4πıp1x+4πıα ln |ξ1 cos(2πx)| dx = e4πıα ln |ξ1|J(p1, 2πα)

is clearly real-analytic and non-constant on R1 \ {0} = E1.

Assume in turn that d ≥ 2. As the roles of ξ1, ..., ξd can be interchanged in (A.9), assume

w.l.o.g. that ξd 6= 0. Since I(±ξ1, ...,±ξd) = I(ξ1, ..., ξd) for all ξ ∈ Rd and every possible

combination of + and − signs, and since also

I(ξ) = e4πıα ln |ξd|I

(
ξ1
ξd
, ...,

ξd−1

ξd
, 1

)
,

it suffices to show that ξ 7→ I(ξ1, ..., ξd−1, 1) is real-analytic on Ẽd−1 := {ξ ∈ Rd−1 : |ξ1| +
...+ |ξd−1| < 1}. To this end, recall that ιpd,2πα is real-analytic on (−1, 1) by Lemma A.9 and

note that

Ĩ(ξ) =

∫

Td−1

e4πı(p1x1+···+pd−1xd−1)ιpd,2πα (ξ1 cos(2πx1) + · · ·+ ξd−1 cos(2πxd−1)) dx.

With Lemma A.8 and the Dominated Convergence Theorem, it is clear that Ĩ is continuous

on Rd−1. Recall from the proof of Lemma A.9 that ιp,α(t) =
∞∑

n=0

ι(n)p,α(0)t
n/n! for all p ∈ Z,

α ∈ R and |t| < 1. For every ξ ∈ Ẽd−1, therefore,

Ĩ(ξ) =

∫

Td−1

e4πı(p1x1+···+pd−1xd−1)

∞∑

n=0

ι
(n)
pd,2πα

(0)

n!
(ξ1 cos(2πx1) + · · ·+ ξd−1 cos(2πxd−1))

n dx

=
∞∑

n=0

2−2nι
(2n)
pd,2πα

(0)
∑

|ν|=n

{
d−1∏

j=1

ξ
2νj
j

(2νj)!

(
2νj

νj + |pj|

)}
;

(A.10)
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here the standard notation for multiindices ν = (ν1, ..., νd−1) ∈ (N0)
d−1 has been used.

It remains to demonstrate that Ĩ is not constant (on Ẽd−1). Consider first the case d = 2,

for which (A.10) takes the form

Ĩ(ξ1, 1) =
∞∑

n=|p1|
2−2nι

(2n)
pd,2πα

(0)

(
2n

n+ |p1|

)
ξ2n1
(2n)!

. (A.11)

As has been shown above, ξ1 7→ Ĩ(ξ1, 1) is real-analytic for |ξ1| < 1. If p1 6= 0 then Ĩ(0, 1) = 0,

whereas

Ĩ(1, 1) =

∫

T2

e4πı(p1x1+p2x2+α ln | cos(2πx1)+cos(2πx2)|) dx

=

∫

T2

e4πı(p1(x1−x2)+p2(x1+x2)+α ln |2 cos(2πx1) cos(2πx2)|) dx

= e4πıα ln 2J(p1 + p2, 2πα)J(p1 − p2, 2πα) 6= 0,

because α 6= 0. If, on the other hand, p1 = 0 then Ĩ(0, 1) = J(p2, 2πα), while Ĩ(1, 1) =

e4πıα log 2J(p2, 2πα)
2 6= Ĩ(0, 1). In either case, therefore, ξ1 7→ Ĩ(ξ1, 1) is not constant. This

concludes the proof for d = 2.

Finally, to deal with the case d ≥ 3 note first that the above argument for d = 2 really

shows that, given any q ∈ Z and α ∈ R \ {0}, the number ι
(2n)
p2,πα(0) is non-zero for infinitely

many n ∈ N0. (Otherwise, by (A.11), the function ξ1 7→ I(ξ1, 1) would be constant for all

|p1| sufficiently large, which has just been shown not to be the case.) But then

Ĩ(ξ) =
∞∑

n=|p1|+...+|pd−1|
2−2nι

(2n)
pd,2πα

(0)
∑

|ν|=n

{
d−1∏

j=1

ξ
2νj
j

(2νj)!

(
2νj

νj + |pj|

)}
,

is obviously not constant on Ẽd−1.

Given p1, ..., pd ∈ Z and α ∈ R \ {0}, denote by Dd the set of all ξ for which λd ◦ T−1
ξ

coincides with λ1, i.e.

Dd = {ξ ∈ Rd : λd ◦ T−1
ξ = λ1}.

An immediate consequence of Lemma A.10 is

Lemma A.11. For every p1, ..., pd ∈ Z and α ∈ R \ {0} the set Dd ∩ Ed is nowhere dense

and has Lebesgue measure zero.

Proof. This is clear from the fact that Dd ∩ Ed ⊂ {ξ ∈ Ed : I(ξ) = 0}, and the real-analytic

function I is not constant on any component of Ed. Hence the zero-locus of I on Ed is

nowhere dense and has Lebesgue measure zero, see e.g. [5, Lem.19].

At long last, it is now easy to give the Proof of Theorem A.4: Since Dd ∩ Ed is nowhere

dense, Ed \Dd 6= ∅, and λd ◦ T−1
ξ 6= λd for every ξ ∈ Ed \Dd, by the definition of Dd.
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