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Abstract 

Various forms of cementitious materials, including shotcrete, grouts, and cemented paste backfill 

(CPB), are made with ordinary Portland cement (OPC). They are widely used for both 

underground and surface mining applications. However, due to the high carbon footprint of OPC 

production, the mining industry has shown a significant interest in using sustainable cementitious 

materials. Alkali-activated slag (AAS)-based CPB and calcium sulfoaluminate cement (CSA)-

based mixtures have emerged as promising sustainable cementitious materials for different mining 

applications, owing to their reduced carbon footprint and other advantages (i.e., high early age 

strength, improved durability, and reduced energy requirements) over OPC-based mixtures. For 

mining applications, it is required to ensure that the unconfined compressive strength (UCS) of 

these cementitious materials meets the strength requirements. The UCS of both AAS-based CPB 

and CSA cement-based mixtures are influenced by multiple features related to cement 

composition, material proportioning, curing conditions, and admixtures. Currently, those mixture 

designs depend heavily on the experimental approach, which is usually limited to a limited number 

of influential features at a given time. This has resulted in an insufficient understanding of the non-

linear relationships between multiple input features and UCS of the aforementioned sustainable 

cementitious materials. The insufficient understanding poses challenges in designing mixtures that 

can meet the specific strength requirement for mining applications. Compared with the 

experimental approach, machine learning (ML) methods can consider multiple input features 

simultaneously to build prediction models. ML is a promising alternative approach that can assist 

the mixture designs of cementitious materials efficiently by improving the understanding of 

complex non-linear relationships and by providing accurate and rapid UCS predictions. Despite 

its significance, to the best of the author’s knowledge, no studies in the current literature have 
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reported the use of ML techniques for predicting the UCS of AAS-based CPB and CSA cement-

based mixtures.  

Therefore, this study aimed to utilize ML methods to build complex relationships between multiple 

input features and the UCS, to predict the UCS of AAS-based CPB and CSA cement-based 

mixtures, and to help spread the applications of low-carbon cementitious materials in our mining 

industry. For these purposes, accurate strength prediction models were developed based on 

meaningful datasets collected from experimental literature. All ML models were evaluated for 

their performances on testing data using commonly used performance evaluation metrics. Results 

showed that the extreme gradient boosting regression (XGBR) model constructed on the optimal 

dataset suggested by the least absolute shrinkage and selection operator (LASSO) method 

produces the best results with a prediction accuracy of 95% for CSA cement-based mixtures. In 

addition, the feature importance ranking results revealed curing time, water-to-cement ratio (w/c), 

belite content, and ye’elimite content as the most influential features on the UCS of CSA cement-

based mixtures. Furthermore, the Shapely-Additive exPlanations (SHAP) method could describe 

the non-linear relationships between input features and UCS, both qualitatively and quantitatively. 

For AAS-based CPB, gradient boosting regression (GBR) outperformed the other ML models with 

a prediction accuracy of 96.7 %. The curing time, w/c ratio, and aggregate-to-cement ratio were 

ranked as the most important input features for the AAS-based CPB mixture designs. Overall, this 

study will improve the understanding of complex non-linear relationships between input features 

and the UCS of AAS-based CPB and CSA cement-based mixtures and will guide future mixture 

designs through rapid UCS predictions. Ultimately, this work will help spread the application of 

sustainable cementitious materials in the mining industry and contribute to the goal of net-zero 

mining by facilitating more efficient mixture design processes.   
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G. Huang, C. Fan, W.V. Liu, Forecasting unconfined compressive strength of calcium 

sulfoaluminate cement mixtures using ensemble machine learning techniques integrated with 

shapely-additive explanations. Construction and Building Materials. © Elsevier. (With Editor). 

In this thesis, I was responsible for conceptualization, data collection, data analysis, python 

programming, writing, review, and editing. Dr. Wei Victor Liu was my academic supervisor, who 

provided me with resources and was involved with conceptualization, supervision, review, and 

editing. In Chapters 2 and 3, Dr. Guangping Huang and Chengkai Fan assisted me with 

investigating, analyzing, reviewing, and editing. In Chapter 3, Jian Zhao contributed to collecting 

data. 

  



v 

 

Acknowledgment 

First and foremost, I would like to express my sincere gratitude to my supervisor, Dr. Wei Victor 

Liu, for providing me with the invaluable opportunity to pursue my graduate studies at the 

esteemed University of Alberta. I am profoundly grateful for his exceptional guidance, unwavering 

support, constant motivation, care and trust that he bestowed upon me during this life-changing 

journey. His mentorship has been instrumental in overcoming obstacles and passing through 

difficult situations along the way.  

I am utterly grateful to my previous mentors, Mrs. Maheshwari Wickrama, Dr. Anjula 

Dassanayake, Dr. G.V.I. Samaradivakara, Dr. Saman Illankoon, and Nimila Dushyantha, for 

encouraging me to pursue higher studies and laying the groundwork for my journey in academia.  

I would like to thank the colleagues in my research group, Dr. Guangping Huang, Dr. Linping Wu, 

Chengkai Fan, Jian Zhao, Yunting Guo, Dr. Huawei Xu, Dr. Ömer Uğurlu, Zhiqiang Feng, and 

Kourosh Gholami for their kind assistance, encouragement, and support on my studies and day to 

day life. I am fortunate to have such great friends by my side who have made me feel at home, 

despite being far away from my home country.  

Lastly, my sincere gratitude goes to my wife Veenavi Pemachandra, for her understanding, 

unwavering support, encouragement, and love. I am forever grateful to my loving mother, Indrani 

Mathota, and my dear father, Balasooriya Jayathilake, for their selfless sacrifices in shaping me 

into the person I am today. Even though they are thousands of miles away, their unconditional love 

and blessings always helped me to achieve more in this endeavor. 

  



vi 

 

Table of contents 

 
Abstract ........................................................................................................................................... ii 

Preface............................................................................................................................................ iv 

Acknowledgment ............................................................................................................................ v 

Table of contents ............................................................................................................................ vi 

List of figures ................................................................................................................................. ix 

List of tables ................................................................................................................................... xi 

Chapter 1. Introduction ................................................................................................................... 1 

1.1. Research background ........................................................................................................... 1 

1.2. Literature review .................................................................................................................. 4 

1.2.1. Introduction to artificial intelligence and machine learning ......................................... 4 

1.2.2. Categories of machine learning .................................................................................... 5 

1.2.3. Applications of machine learning in cementitious materials ........................................ 6 

1.3. Research objective ............................................................................................................... 8 

1.4. Thesis structure .................................................................................................................... 8 

Chapter 2. A machine learning model to predict unconfined compressive strength of alkali-

activated slag-based cemented paste backfill ............................................................................... 10 

2.1. Introduction ........................................................................................................................ 11 

2.2. Methodology ...................................................................................................................... 14 



vii 

 

2.2.1. Overall workflow ........................................................................................................ 14 

2.2.2. Data preparation .......................................................................................................... 15 

2.2.3. ML methods ................................................................................................................ 24 

2.2.4. Hyperparameter tuning of the ML models .................................................................. 29 

2.2.5. Performance evaluation metrics for the ML models ................................................... 31 

2.3. Results and discussion ....................................................................................................... 33 

2.3.1. Comparison between preliminary and tuned ML models ........................................... 33 

2.3.2. Selection of the best ML model .................................................................................. 36 

2.3.3. The relative importance (RI) of input parameters....................................................... 38 

2.4. Conclusions ........................................................................................................................ 43 

Chapter 3. Forecasting unconfined compressive strength of calcium sulfoaluminate cement 

mixtures using ensemble machine learning techniques integrated with shapely-additive 

explanations .................................................................................................................................. 45 

3.1. Introduction ........................................................................................................................ 46 

3.2. Methodology ...................................................................................................................... 49 

3.2.1. Overall workflow of the study .................................................................................... 49 

3.2.2. Data preparation .......................................................................................................... 51 

3.2.3. Feature selection methods ........................................................................................... 58 

3.2.4. Machine learning models ............................................................................................ 59 

3.2.5. Hyperparameter tuning ............................................................................................... 61 



viii 

 

3.2.6. Performance evaluation metrics .................................................................................. 61 

3.2.7. Interpretation of the model by SHAP analysis ........................................................... 62 

3.3. Results and discussion ....................................................................................................... 63 

3.3.1. Feature selection results .............................................................................................. 63 

3.3.2. Selection of the best ML model based on feature selection ........................................ 66 

3.3.3. Importance of input features ....................................................................................... 72 

3.3.4. Relationships between input features and UCS .......................................................... 75 

3.4. Conclusions ........................................................................................................................ 81 

Chapter 4. Conclusions and key contributions ............................................................................. 83 

4.1. Conclusions ........................................................................................................................ 83 

4.2. Key contributions ............................................................................................................... 84 

Chapter 5. Limitations and future work ........................................................................................ 86 

References ..................................................................................................................................... 89 

 

  



ix 

 

List of figures 

Figure 2.1 Overall workflow of the study. .................................................................................... 15 

Figure 2.2 Bibliographic analysis of the publications related to AAS-based CPB research. ....... 16 

Figure 2.3 Data distribution plots for input variables: (a-m) Histogram plots of input variables 

related to physical and chemical characteristics of CPB mixture, and (n) Histogram plot for curing 

days. .............................................................................................................................................. 23 

Figure 2.4 GBR model training iterative process (modified from (Baturynska and Martinsen 

2021)). ........................................................................................................................................... 26 

Figure 2.5 Illustration of RF algorithm (modified from (Kwak et al. 2022)). .............................. 27 

Figure 2.6  Optimum hyperplane in support vector machines (modified from (Tinoco et al. 2014)).

....................................................................................................................................................... 28 

Figure 2.7  Schematic representation of the ANN algorithm with input, hidden, and output layers 

(modified from (Noorani and Mehrdoust 2022)). ......................................................................... 29 

Figure 2.8 Performance comparison between preliminary and tuned ML models. ...................... 35 

Figure 2.9 Actual vs. predicted UCS values of GBR and RF ML models ................................... 37 

Figure 2.10 Actual vs. predicted UCS values of SVR and ANN models ..................................... 38 

Figure 2.11 Relative importance of features based on the GBR model........................................ 39 

Figure 3.1 Schematic diagram of the overall methodology followed in the study ....................... 49 

Figure 3.2 Distribution of data of input features........................................................................... 57 

Figure 3.3 Selection of the optimum number of input features by RFE ....................................... 64 

Figure 3.4 MI scores of input features .......................................................................................... 65 

Figure 3.5 Absolute regression coefficients of the LASSO method ............................................. 66 

Figure 3.6 Prediction performance of LASSO-ML models in terms of (a) R2 (b) error metrics.. 70 



x 

 

Figure 3.7 SHAP feature importance ............................................................................................ 72 

Figure 3.8 SHAP summary plot .................................................................................................... 76 

Figure 3.9 SHAP individual feature dependence plots (a) ye’elimite content (b) belite content (c) 

calcium sulfate content (d) w/c ratio (e) retarder dosage (f) type of retarder (1-7 represent  

molasses, sodium gluconate, a mixture of citric acid and borax, tartaric acid, borax, citric acid, and 

vitamin-C, respectively) (g) type of superplasticizer (1-4 represent polycarboxylate acid, β-

naphthalenelfonic acid, aminosulfonic acid, and powder naphthalene, respectively) (h) curing time 

(i) curing temperature ................................................................................................................... 77 

  



xi 

 

List of tables 

Table 2.1 Sources of collected data for the ML model ................................................................. 17 

Table 2.2 Description of the dataset ............................................................................................. 19 

Table 2.3  Hyperparameters of the ML model .............................................................................. 31 

Table 2.4 Performance results of preliminary and tuned ML models .......................................... 34 

Table 2.5 Model ranks based on the performance metrics ........................................................... 36 

Table 3.1 Summary of the sources of data used in the study ........................................................ 52 

Table 3.2 Statistical summary of the dataset about numerical input features ............................... 55 

Table 3.3 Performance of ML models on test data based on different feature selection methods 67 

Table 3.4 Optimal hyperparameters of the LASSO-ML models .................................................. 69 



1 

 

Chapter 1. Introduction 

1.1. Research background 

Cementitious materials (e.g., concrete, shotcrete, grout, and cemented paste backfill (CPB)) play 

a crucial role in the mining industry. In Canada, around 10% of the total cement (about 1.35 million 

tonnes) produced is consumed by the mining industry (Arcila and Beland 2023). Cementitious 

materials are widely used for both underground and surface mining applications. For example, 

concrete is commonly used for mine infrastructure construction (i.e., buildings) (Brescia-

Norambuena et al. 2021), underground support pillars (Cao et al. 2021) and underground mining 

pavements (Brescia-Norambuena et al. 2021). In addition, shotcrete and grout materials are used 

for a wide range of mining applications, including linings of tunnels and ground and rock supports 

(Chen et al. 2022). Furthermore, CPB is adopted by the mining industry to backfill mine voids, as 

it facilitates safe mining environments and effective management of mine waste (i.e., tailings) 

(Đurđevac Ignjatović et al. 2022). Overall, the continuous production of cementitious materials is 

imperative to ensure smooth mining operations.  

Ordinary Portland cement (OPC) is the most widely used cementitious material in the mining 

industry (Qi and Fourie 2019; Tao et al. 2023). However, the production of OPC is inherently 

unsustainable as it generates about 900 kg of carbon dioxide (CO2) per every tonne of OPC 

produced (Naqi and Jang 2019). To achieve the net-zero emissions goal by 2050 (Bouckaert et al. 

2021), the mining industry is facing a great challenge to reduce the CO2 emissions related to OPC 

consumption. To address this challenge, one promising solution is to use sustainable cementitious 

materials instead of OPC-based cementitious materials. Sustainable cementitious materials include 

but are not limited to mixtures based on alkali-activated slag (AAS) cement, calcium 

sulfoaluminate (CSA) cement, magnesium based-cement, carbonatable calcium silicate cement 
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(CCSC), and calcium hydro silicate-based cement (Naqi and Jang 2019). Among the list, the scope 

of this thesis is limited to AAS-based CPB and CSA cement-based mixtures, based on the industry 

need, research significance, and the author’s previous experience. AAS-based CPB contributes to 

80-90% less CO2 generation during its production when compared with OPC-based CPB (Rashad 

2013). Consequently, the global warming potential (i.e., the impact of CO2 emissions on the 

absorption of heat radiation in the atmosphere) of AAS-based CPB production is around 70% 

lower when compared with OPC-based CPB production (Weil et al. 2009). Likewise, CSA cement 

generates about 40% less CO2 during its production (Huang et al. 2020). This reduction is 

attributed to several factors, including the low limestone requirement, the lower calcination 

temperature requirement (i.e., around 1200 °C), and the porous nature of the CSA clinker (i.e., less 

energy required to grind) (Coppola et al. 2018). Therefore, both AAS-based CPB and CSA cement-

based mixtures have a significant potential to contribute toward the net-zero emissions goal with 

their applications in the mining industry.  

Despite the potential of AAS-based CPB and CSA cement-based mixtures, their mixture designs 

confront substantive challenges. The mixture design should satisfy the strength requirement of a 

particular mining application to ensure safe mining operations (Cihangir et al. 2012; Moreira  and 

Silva 2020). The unconfined compressive strength (UCS) of those mixtures is influenced by 

multiple features related to curing conditions, material proportioning, use of admixtures (i.e., 

retarders, superplasticizers, and activators), and particle size distributions of aggregate material 

(Cihangir et al. 2012; Tao et al. 2023). Currently, the mixture designs of AAS-based CPB and 

CSA cement-based mixtures depend heavily on the resource-intensive (i.e., material, cost, and 

time) experimental approach (Tran et al. 2022). Consequently, most of the previous experimental 

studies have been able to consider only a limited number of influencing features at a time in the 



3 

 

mixture designs. This limitation of experimental methods hampers the ability to capture non-linear 

relationships and subtle variations between input features and UCS, leading to an insufficient 

understanding of the relationships, which impedes the wide application of these low-carbon 

sustainable cementitious materials in the mining industry.  

Beyond experimental methods, data-driven machine learning (ML) methods have emerged as an 

invaluable tool, aiding the design of cementitious materials in the recent past (Adel et al. 2022; 

Ekanayake et al. 2022; Minaz Hossain et al. 2023; Nguyen et al. 2022; Qi et al. 2018b; Qi et al. 

2018c; Qi et al. 2019b; Zhao et al. 2023). ML refers to a collection of algorithms that can acquire 

knowledge by observing data while being able to extend itself by gathering new knowledge 

autonomously without being programmed (Woolf 2009). ML methods possess significant 

advantages over conventional experimental approaches. First, ML can provide rapid and accurate 

predictions without the need for physical testing, which can save time, cost, and material (Tran et 

al. 2022). Second, ML can build complex non-linear relationships between multiple input features 

and the output feature, which would otherwise be difficult to achieve using experimental methods 

alone (Nguyen et al. 2022). Third, some non-linear models (i.e., tree-based models) and statistical 

tools can be used alongside ML algorithms (i.e., mutual information (Liu et al. 2022)) to provide 

valuable insights into the importance of individual features for predictions (Qiu et al. 2020). 

Fourth, sophisticated tools such as the SHapely Additive exPlanations (SHAP) (Lundberg and Lee 

2017) can be integrated into the ML models to interpret complex non-linear relationships both 

qualitatively and quantitatively (Ekanayake et al. 2022). The advantages of ML methods make 

them promising candidates for providing rapid and accurate UCS predictions by establishing 

complex non-linear relationships between multiple input features and the UCS of sustainable 

cementitious materials. ML can ultimately help spread the application of sustainable cementitious 
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materials and contribute to the emission reduction of our mining industry as it allows for reduced 

costs and time, informed decision-making, and a better understanding of the overall mixture 

designs. Despite its significance and potential, no studies have been conducted to apply ML 

techniques to predict the UCS of AAS-based CPB and CSA cement-based mixtures. Therefore, it 

is of great interest to extract readily available published experimental results to compile 

meaningful databases and to construct ML models to understand the complex non-linear 

relationships while predicting the UCS of AAS-based CPB and CSA cement-based mixtures. 

1.2. Literature review 

1.2.1. Introduction to artificial intelligence and machine learning 

Artificial intelligence (AI) is a broad topic in the field of computer science. In AI applications, 

machines perform intelligent tasks by mimicking human cognitive processes (Russell 2010). ML 

is an important branch of AI, which was originally introduced by Arthur Samuel in 1959 (Kazemi 

2023). ML has the ability to utilize various algorithms to unearth complex patterns in data, with 

mathematical or statistical techniques (Mitchell 2007). Furthermore, ML can learn automatically 

and improve the knowledge without being explicitly programmed (Kazemi 2023).  

ML techniques follow a set of key steps during their application. These steps can be listed as (1) 

extracting datapoints from published documents or generating data through experimental 

techniques to compile datasets (2) applying data cleaning, data visualization, and data pre-

processing techniques (3) employing feature engineering techniques (4) selecting suitable ML 

algorithms and constructing them on the compiled datasets (5) configuring and optimizing the 

constructed models (6) testing and validating the models on test data (7) selecting the most suitable 

model (Kazemi 2023). In addition to the above, additional steps, such as ranking the features based 

on importance, and interpreting the models can also be performed (Lundberg et al. 2020). 
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1.2.2. Categories of machine learning 

ML can be categorized based on two main aspects: (1) by the process it uses to learn (2) type of 

the problem or output of interest (Edgar and Manz 2017). From the point of the first aspect, ML 

can be classified into three categories: (1) unsupervised learning; (2) supervised learning; (3) 

reinforcement learning (Bonetto and Latzko 2020). Using the second aspect, ML can further be 

categorized into four fields: (1) regression; (2) classification; (3) clustering; (4) anomaly detection 

(Edgar and Manz 2017). 

In supervised learning, labeled data are available (i.e., the outcome of a particular combination of 

values for input features is known and labeled) (Edgar and Manz 2017). The collection of 

multidimensional data can be referred to as the data set, whereas each element is a datapoint 

(Bonetto and Latzko 2020). Supervised learning deals with the construction of ML models for a 

set of data which includes input and output pairs (Bonetto and Latzko 2020). Some of the most 

popular supervised learning algorithms are multiple linear regression (MLR), artificial neural 

network (ANN), support vector machine (SVR), decision tree (DT), and ensemble learning 

(boosting and bagging methods) (Russell 2010). In contrast to supervised learning, unsupervised 

learning deals with unlabeled data to extract information and identify relationships between 

variables (Mitchell 2007). Popular unsupervised methods include but are not limited to, K-means 

clustering, self-organizing maps (SOMs), hierarchical clustering, and principal component 

analysis (PCA) (Edgar and Manz 2017). Reinforcement learning is different from both supervised 

and unsupervised learning methods, as it teaches an agent to make decisions and take actions in an 

environment by observing the environment’s current condition (Edgar and Manz 2017). Some of 

the reinforced learning models are the transductive support vector machine and the Markov 

decision process (Bonetto and Latzko 2020).  
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In classification problems, the ML algorithms learn from labeled data (i.e., discrete values) and 

classify new observations into the labels already learned. In contrast, the regression models learn 

from labeled data to predict continuous values for new observations. Clustering methods can detect 

similarities between data to define clusters of like observations. In anomaly detection, a dataset 

containing normal observations is used to train the model to identify if the new data are anomalous 

(i.e., deviated from normal) (Bonetto and Latzko 2020).  

1.2.3. Applications of machine learning in cementitious materials 

The engineering community has identified ML as a vital tool that can be used for the advancement 

of cementitious materials. According to a review by Kazemi (2023), over 450 studies have applied 

ML techniques on cementitious materials in the past decade alone (i.e., from 2013 to 2023). 

Moreover, this trend has been observed globally, with multiple studies originating from countries 

such as China, Iran, India, the United States, Australia, and Canada (Kazemi 2023). An increasing 

trend in the application of ML techniques has been noticed, as the number of publications in 2021 

and 2022 almost equaled the total number of publications from the year 2023 to 2020 (Kazemi 

2023).  The increased usage of ML techniques can be attributed to the benefits such as better time 

management and reduction of cost and resources (Tran et al. 2022). 

Among many different ML applications on cementitious materials, supervised learning regression 

models have been the most commonly used ML algorithms (Kazemi 2023). To efficiently develop 

mixtures that meet the strength requirements for engineering applications, many scholars have 

focused their research efforts on using regression ML models for predicting the UCS of different 

cementitious materials (Kazemi 2023). For example, Nazari and Sanjayan (2015) built support 

vector regression (SVR) models to predict the UCS of geopolymer pastes, using a dataset 

comprising 12 different input features collected from the literature. The best performing SVR 
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model could achieve a high prediction of 89% for testing data. Likewise, the ensemble models 

constructed by Chou and Pham (2013) could achieve accuracies over 93% when predicting the 

UCS of high-performance concrete (HPC) made with OPC and other additives (i.e., blast furnace 

slag, fly ash, and silica fume). In this study, all the ML models were constructed on a dataset 

collected from the literature which considered a total of eight input features. Similarly, Choudhary 

et al. (2021) used an experimental results-based dataset to build artificial neural network (ANN) 

models for predicting the UCS of ultra-high-performance concrete. In this study, eight input 

features were simultaneously considered, and the best performing ANN model reportedly achieved 

a very high prediction accuracy of 99% for testing data. Furthermore, an ensemble model built on 

an experimental results-based dataset comprising six input features performed excellently with an 

accuracy of 99% when predicting the UCS of calcined sludge-based cementitious materials (Zhang 

et al. 2022a). In addition, another ensemble model with an accuracy of 93% has been used to 

predict the UCS of carbon nanotube-reinforced cementitious materials (Li et al. 2022). This study 

reportedly used a dataset collected from literature comprising 11 different input features. 

Moreover, various ML models, including random forest (RF), ANN, and ensemble learning have 

been used to build models to predict the UCS of OPC-based CPB (Qi et al. 2019a; Qi et al. 2018b; 

Qi et al. 2018c; Qi et al. 2021). In these studies, the prediction models could achieve very high 

accuracies of over 90%. In addition to providing accurate and rapid UCS predictions by 

constructing complex relationships between multiple input features and UCS, the majority of the 

aforementioned studies also offer insights into feature ranking importance and provide detailed 

interpretations of the prediction results. Therefore, ML has a significant potential to guide the 

mixture designs of cementitious materials more efficiently while saving time, cost, and material. 

Despite its potential, no research efforts have been taken to employ ML techniques on AAS-based 
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CPB and CSA cement-based mixtures to guide their mixture designs through accurate UCS 

predictions. To address this research gap, an organized study should be conducted to extract 

datapoints from contemporary literature pertaining to experimental results of AAS-based CPB and 

CSA cement-based mixtures and to construct and evaluate the performance of different UCS 

prediction models.  

1.3. Research objective 

The overall objective of this study is to apply machine learning (ML) techniques to forecast the 

unconfined compressive strength (UCS) of sustainable cementitious materials that can be used in 

the mining industry.  

In pursuit of the overall objective, two sub-objectives have been identified as follows:  

(1) To build ML models on a dataset collected from literature to predict the UCS of alkali-activated 

slag-based cemented paste backfill (AAS-based CPB).  

(2) To build ML models on a dataset collected from literature to predict the UCS of calcium 

sulfoaluminate (CSA) cement-based mixtures. 

1.4. Thesis structure 

The thesis is structured to include detailed information about the two investigations mentioned in 

the main objective of this study and is presented in four chapters. Chapter 1 introduces the 

background of this research while elucidating the research problem. It further defines the main and 

sub-objectives of this study.  

Chapter 2 presents the first investigation: the application of ML techniques to forecast the UCS 

of AAS-based CPB mixtures. This chapter includes background information on AAS-based CPB 

and the research problem of its challenging mixture design. In addition, this chapter includes the 
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detailed methodology followed to achieve the objectives of this investigation and a comprehensive 

discussion of the results obtained. At the end of this chapter, the major findings of this investigation 

are listed, followed by the advantages and limitations of the study, and directions for future 

research. 

Chapter 3 presents the second investigation: the application of ML techniques to forecast the UCS 

of CSA cement mixtures. This chapter includes a more detailed introduction to the research 

background and research problem, descriptions of methodologies followed, and results obtained 

for feature selection, ML model performance evaluation, and feature importance ranking. The 

chapter further concludes the major findings of this investigation. Moreover, the advantages and 

limitations of the study, and directions for future research are listed at the end.  

Chapter 4 concludes the major findings of this work related to the two investigations. In addition, 

the key contributions of this study are listed in this chapter.   

Chapter 5 summarizes the limitations of this work while discussing the recommendations for 

future work in this area of research.  
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Chapter 2. A machine learning model to predict unconfined compressive 

strength of alkali-activated slag-based cemented paste backfill 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter has been published as C.B. Arachchilage, C. Fan, J. Zhao, G. Huang, W.V. Liu, A 

machine learning model to predict unconfined compressive strength of alkali-activated slag-based 

cemented paste backfill. Journal of Rock Mechanics and Geotechnical Engineering. © Elsevier. 

(2023).  



11 

 

2.1. Introduction 

Cemented paste backfill (CPB) is a sustainable mine backfill technology that improves the safety 

and efficiency of mining operations (Qi and Fourie 2019). CPB usually consists of mixing water, 

dewatered mine tailings, and hydraulic binder (Hewitt et al. 2009). Typical binders include but are 

not limited to, ordinary Portland cement (OPC), natural pozzolans (e.g., volcanic tuff and pumice), 

fly ash, and alkali-activated slag (AAS) (i.e., blast furnace slag activated with an alkali solution, 

such as sodium hydroxide (SH) or sodium silicate (SS)) (Tariq and Yanful 2013). Of these, AAS 

has shown advantages, such as increased early-stage strengths (Cihangir et al. 2015), enhanced 

durability (i.e., resistance against acid and sulfide attacks) (Cihangir et al. 2012), reduced heat 

discharge (Benzaazoua et al. 2004), and improved flowability (Ercikdi et al. 2009) of CPB. In 

addition, the overall cost of AAS is relatively low (i.e., 50% of the cost of OPC) because it reuses 

slag (i.e., a waste product) as the binder (Cihangir et al. 2012). Therefore, AAS-based CPB has a 

great potential to be the leading technology for mine backfill.  

Despite its great potential, the mixture design of AAS-based CPB confronts substantive 

challenges. The mixture design is required to ensure that the unconfined compressive strength 

(UCS) of AAS-based CPB satisfies the demands for safe underground mining operations (Cihangir 

et al. 2012). To understand the mixture design, scholars have investigated the influence of various 

design parameters (e.g., physical and chemical properties of tailings, binder, and alkali-activator) 

on the UCS of AAS-based CPB. Parameters considered in these investigations include but are not 

limited to, particle size distribution (PSD) of tailings (Zhang et al. 2021), binder dosage, water-to-

binder ratio, liquid-to-solid ratio (Cihangir et al. 2015; Cihangir et al. 2018; Cihangir et al. 2012), 

silicate modulus and Na2O content of the activator (Cihangir and Akyol 2018; Cihangir et al. 2012; 

Jiang et al. 2019; Jiang et al. 2022b), and curing age (Cihangir et al. 2015; Cihangir et al. 2018; 
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Jiang et al. 2020; Jiang et al. 2019). Although a multitude of experimental studies have been 

conducted to investigate various design parameters, most of the experimental studies are limited 

to understanding the relationship between only one design parameter and the UCS of the AAS-

based CPB. It is crucial to consider multiple design parameters simultaneously to understand their 

relationships with the UCS and to improve the mixture design of AAS-based CPB. 

Having the ability to build complex relationships between multiple input parameters and outputs, 

machine learning (ML) has attracted much attention in the last decade (Liang et al. 2020). ML can 

be identified as a collection of algorithms that can derive outputs automatically for a given set of 

input data (El Naqa and Murphy 2015). Prominent ML methods include but are not limited to, 

gradient boosting regression (GBR) (Jerome 2001), random forest (RF) (Breiman 2001) support 

vector regression (SVR) (Pisner and Schnyer 2020), and artificial neural network (ANN) (Sajda 

2002). These methods have previously been employed to forecast the UCS of different OPC-CPB 

mixtures. For example, Qi et al. (2018a) trained a GBR model on a dataset that included 13 

different design parameters to predict the UCS of OPC-CPB. The model achieved a prediction 

accuracy of 96.3%, while being able to investigate the effects of multiple parameters (e.g., solids 

content, cement-tailings ratio (c/t), curing time and chemical properties of tailings) on UCS. 

Likewise, Sun et al. (2020b) studied the effects of solids content, fine tailings percentage, and 

curing time on the UCS of OPC-CPB mixtures using an SVR model with a prediction accuracy of 

97.3%. Their model indicated contrasting results in strength gain rates (i.e., increasing and 

decreasing) when increasing the fine tailings content at two different solids contents in the mixture. 

Qi et al. (2018b) used an ANN model trained on a dataset comprising four different design 

parameters and reported a prediction accuracy of 97.9%. They identified a combined effect of 

curing time and tailings type on UCS, as a significant difference in the strength development trends 
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was noted for different tailings types at various curing intervals. In addition, the literature review 

reports the usage of an RF model with an accuracy of 98.9% to predict the UCS of OPC-CPB. The 

trained model described the relationships between multiple design parameters, including c/t ratio, 

solids content, and curing time and UCS of OPC-CPB. These ML models accurately predicted the 

UCS of OPC-based CPB by constructing relationships between multiple input parameters and the 

UCS of the OPC-based CPB. However, despite the existing applications for OPC-based CPB, there 

is a lack of research of using ML methods on AAS-based CPB in both the literature and 

engineering applications.  

To this end, the objective of this study was to build prediction models based on a dataset of 

experimental results from the contemporary literature to forecast UCS of AAS-based CPB 

mixtures. First, a generalized dataset comprising 307 data points was collected from publications 

of nine different experimental studies. Then, the dataset was pre-processed and divided into 

training (80%) and test (20%) sets. The training set was used to construct four different ML 

models: GBR, RF, SVR, and ANN. In the next step, comparisons were made among the trained 

models based on their performances on the test set to select the best model. After that, the relative 

importance of each mixture design parameter for the prediction model was investigated based on 

the best model. This study is the first application of the ML models to forecast the UCS of AAS-

based CPB, which can be used to replace the demanding and costly experimental approach. 
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2.2. Methodology 

2.2.1. Overall workflow 

The overall workflow of the study is depicted in Figure 2.1. A dataset comprising experimental 

results related to AAS-based CPB research was collected from the previous literature. Then, the 

collected dataset was pre-processed (normalized to be in the value range of 0 to 1). Afterward, the 

whole dataset was split into a training set (80%) and a testing set (20%) to train and evaluate the 

ML models. Next, four ML models (GBR, RF, SVR, and ANN) were built on the training set. A 

random search hyperparameter tuning method was used to tune the most critical hyperparameters 

of each model to improve the performances of the models. The performance of each preliminary 

and tuned model on the training set was evaluated using three statistical parameters: coefficient of 

determination (R2), root mean squared error (RMSE), and mean absolute error (MAE). In addition, 

each tuned model’s prediction accuracy was evaluated on the test set by using the same metrics to 

select the best model. After that, a relative importance test was carried out based on the best model. 

Relative importance can be used to interpret the data and rank the parameters based on the degree 

of influence on the prediction model (Fan et al. 2022). Finally, the ability of the model to 

understand complex relationships between multiple inputs and the UCS was investigated. The 

above ML modeling work was implemented on Jupyter Notebook using the Python language 

(version 3.8.8).  



15 

 

Data Collection

Data Pre-Processing 

(Normalizing the data using feature scaling)

Training Set (80%) Test Set (20%)

RF SVRGBR ANN

Hyperparameter Tuning

(Randomized Search)

Model Performance Evaluation 

(R2, RMSE, MAE)

Selection of the best model

Relative Importance Analysis

 

Figure 2.1 Overall workflow of the study. 

2.2.2. Data preparation 

2.2.2.1. Data collection 

A systematic bibliographic survey (Figure 2.2) was conducted to extract experimental results as 

data points. Alkali-activated slag cemented paste backfill, uniaxial compressive strength, and 

mechanical strength were used as the keywords on Web of Science and Compendex science 

databases to search for literature related to AAS-based CPB research. First, a total of 19 
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publications indexed from the year 1900-2022 had been solicited. The selected literature covered 

the studies that have been conducted in multiple countries, including China, Turkey, Canada, and 

the United States. Next, they were filtered based on the usability of the data in this study. A total 

of nine publications were found suitable for data extraction. Others were not chosen due to missing 

data, different mixture designs (i.e., use of additives), and different activators (except for different 

blends of SS and SH). Therefore, this study was limited to experimental studies conducted in China 

(five studies) and Turkey (four studies). A database was created of experimental results containing 

307 data points extracted from the above-selected literature.  

 

Figure 2.2 Bibliographic analysis of the publications related to AAS-based CPB research. 

It is worth mentioning the availability of accurate UCS prediction models for OPC-based CPB 

built using much fewer data points. Two different ML models, which have been trained 
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respectively, with only 136 data points (Qi et al. 2018c) and 132 data points (Qi et al. 2020b), an 

ANN model which uses only 51 data points (Hu et al. 2022), and an RF model built only with 144 

data points (Qiu et al. 2020) can be presented as examples. However, each of the above models 

has been built using the results of single experimental schemes. In contrast, the database used in 

this study was based on nine different experimental studies and was much larger when compared 

with the above examples. Table 2.1 summarizes the sources of data used in this study alongside 

primary information referring to the type of tailings, slag, and activators. 

The dataset represents a wide variety of tailing types, such as copper, zinc, gold, iron, and stone 

waste. In addition, blast furnace slag with variations in its chemical composition (acidic and neutral 

slags, or combinations of various proportions of silica fume) has been used as the binder in the 

cited articles. Therefore, this study was not limited to a single experimental scheme and was 

successful in collecting a more generalized data set. It was expected that the diversity of the data 

set would have a positive effect on the establishment of robust ML models. 

Table 2.1 Sources of collected data for the ML model 

Source Type of tailings Type of slag Type of activator Source 

1 Cu/Zn tailings Blast furnace slag NaOH/Na2SiO3 (Cihangir et al. 2018) 

2 Cu/Zn tailings Blast furnace slag 

(acidic/neutral) 

NaOH/Na2SiO3 (Cihangir et al. 2012) 

3 Cu/Zn tailings Blast furnace slag NaOH/Na2SiO3 (Cihangir et al. 2015) 

4 Cu/Zn tailings 

(deslimed) 

Blast furnace slag NaOH/Na2SiO3 (Cihangir and Akyol 

2018) 

5 Au tailings Blast furnace slag NaOH/Na2SiO3 (Ercikdi et al. 2009) 
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Source Type of tailings Type of slag Type of activator Source 

6 Au tailings Blast furnace slag NaOH/Na2SiO3 (Jiang et al. 2020) 

7 Stone waste Blast furnace slag NaOH/Na2SiO3 (Zhang et al. 2021) 

8 Fe tailings Blast furnace slag and 

silica fume 

NaOH/Na2SiO3 (Sun et al. 2020a) 

9 Au tailings Blast furnace slag NaOH/Na2SiO3 (Jiang et al. 2022a) 

 

2.2.2.2. Data description 

The input features were selected under five main categories, including the PSD characteristics of 

tailings, characteristics of the mixture design, chemical composition of the activator, tailings, and 

slag. A statistical summary of the input variables is presented in Table 2.2. PSD has a direct effect 

on the strength development of AAS-based CPB as the overall porosity of the CPB mixtures is 

influenced by the size gradation of tailings (Cihangir and Akyol 2020). The coefficient of 

uniformity (Cu) and coefficient of curvature (Cc) were selected as input parameters in the model, 

since they are good indicators of particle gradation (Keaton 2018). According to the extracted 

value range of Cu (3.62-43.33) and Cc (0.341-41.13), the tailings material can be classified and 

graded in the database. In practice, PSD of tailings can be measured using the laser particle size 

analyzer (Jiang et al. 2022a), and Cu and Cc can be calculated using the formulae mentioned in 

Table 2.2. 
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Table 2.2 Description of the dataset 

Category Parameter Description Minimum Maximum 

PSD 

characteristics of 

tailings 

Coefficient of 

uniformity 

D60/D10 3.62 43.33 

Coefficient of 

curvature 

D30
2/(D60×D10) 0.341 41.13 

Characteristics of 

mixture design  

Binder dosage 

(%) 

Mass of dry binder (g)/ (mass of 

dry binder (g) + mass of dry 

tailings (g)) 

5 30 

Liquid-to-solid 

ratio (%) 

Mass of total liquids (g)/mass of 

total solids (g) 

0.204 0.445 

Water-to-binder 

ratio (%) 

Mass of water (g)/mass of binder 

(g) 

1.23 5.8 

Chemical 

composition of 

activator 

Silicate modulus 

of the activator  

Mass of SiO2 (g)/mass of Na2O (g) 0 2 

Na2O content of 

the activator (%) 

As a percent of the dry weight of 

the slag  

3.1 22.55 

Chemical 

composition of 

tailings 

Mass percent of 

SiO2 (%) 

As a percent of the dry weight of 

the tailings 

4.47 62.5 

Mass percent of 

Al2O3 (%) 

As a percent of the dry weight of 

the tailings 

0.29 18.1 

Mass percent of 

CaO (%) 

As a percent of the dry weight of 

the tailings 

1.24 63.56 

Chemical 

composition of slag 

Mass percent of 

SiO2 (%) 

As a percent of the dry weight of 

the slag  

24.36 41.1 
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Category Parameter Description Minimum Maximum 

Mass percent of 

Al2O3 (%) 

As a percent of the dry weight of 

the slag  

8.06 16.2 

Mass percent of 

CaO (%) 

As a percent of the dry weight of 

the slag  

0.83 57.7 

Others 
Curing age (d) Curing time before subjecting to 

UCS tests 

7 224 

 

Binder dosage, liquid-to-solid ratio (l/s), and water-to-binder ratio (w/b) can be identified as the 

most influential mixture design parameters for the strength development of AAS-based CPB 

mixtures (Cihangir et al. 2015; Cihangir et al. 2018; Cihangir et al. 2012; Jiang et al. 2020; Jiang 

et al. 2019; Jiang et al. 2022a). Consequently, these parameters were selected as input parameters 

of the ML model to represent information on the mixture proportion (i.e., content of water, binder 

and solids). Liquid-to-solid ratio values were always less than 1, indicating solid content is higher 

than liquids in the mixture. Its range was limited when compared with other mixture design 

parameters. Binder dosage had a larger range of values between 5-30, representing a various 

number of trials by scholars. Values for these parameters can be obtained by measuring the 

individual masses of water, solids and binder contents used in a particular mixture and by using 

relevant formulas mentioned in Table 2.2.  

The selection of silicate modulus (Ms) and Na2O content of the activator as input parameters for 

the model was based on the fact that these parameters control the amount of hydration products 

formed and determine the strength of AAS-based CPB mixtures (Jiang et al. 2020). Ms was 

calculated based on the ratio of the mass of SiO2 (g)/mass of Na2O (g). Ms becomes zero when SH 
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alone is used as the activator, as SH does not contribute to the SiO2 content. In contrast, the Na2O 

content obtains non-zero values, even when SH alone is used. Based on different blends of SS and 

SH, Na2O content had a large range of values.  

Although aluminosilicate minerals are less reactive due to their crystalline form in mine tailings, 

alkali activation has been able to dissolve the above mineral compounds providing reactive 

aluminum and silica to the cement mixtures (Tian et al. 2020). In addition, many scholars have 

investigated the effect of chemical parameters of tailings on the strength development of OPC-

based CPB mixtures and have identified that the strength is dependent upon the chemical 

characteristics of tailings (e.g., content of SiO2) (Benzaazoua et al. 2002; Kesimal et al. 2005). In 

contrast, the same effect on UCS of AAS-based CPB has been barely assessed in experimental 

studies. In this study, the inclusion of data from different types of tailings material permitted the 

investigation of this effect on the UCS of AAS-based CPB. Contents of SiO2, Al2O3 and CaO in 

tailings were selected as the chemical indices of importance for hydration reactions and included 

in the model as input parameters. All of these parameters had significant value spans, representing 

different types of tailings. Next, SiO2, Al2O3 and CaO contents of slag material were included as 

input parameters in the model, as they can be considered as the most prominent constituents of 

slag material which determines the quality of the hydration reactions of AAS-based CPB, after 

being alkali-activated and mixed with tailings and water (Jiang et al. 2020). As the quality of 

cement hydration is indicative of the strength, contents of the above chemical constituents have a 

direct influence on the UCS of AAS-based CPB. All chemical composition parameters of tailings, 

binder and activator can be determined using X-ray fluorescence (XRF) (Jiang et al. 2020) test in 

practice.  
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The number of curing days was selected as the last input, as the UCS is reported to be highly 

dependent on the curing time of the mixture (Cihangir et al. 2015). Data were extracted for a wide 

range (7-224) of curing days, as the UCS has shown drastically different values when moving from 

short to long term. Finally, the UCS values extracted from experimental results were defined as 

the output. They also had a wide range of values, from 0.139 MPa to 7.965 MPa, with a mean 

value of 2.678 MPa. The data distribution characteristics of the input variables are illustrated in 

Figure 2.3, which represents the frequency of each value in each input parameter using histogram 

plots. Parameters on the categories of PSD characteristics of tailings, the chemical composition of 

tailings, and slag did not show a wide data distribution. This was because this study was limited to 

only a few different types of tailings and slags. In contrast, all other parameters had good data 

distributions between their corresponding minimum and maximum values.  
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Figure 2.3 Data distribution plots for input variables: (a-m) Histogram plots of input variables 

related to physical and chemical characteristics of CPB mixture, and (n) Histogram plot for 

curing days. 

(i)
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2.2.2.3. Data preprocessing 

The range of data distribution of each feature varied significantly in the selected data set for this 

study. For example, the value range of the liquid-to-solid ratio is between 0.204 and 0.445, whereas 

the curing age had a larger range of 7-224. If feature scaling is ignored, the vast differences in 

ranges will make the ML algorithm misjudge the superiority of the features (Juszczak et al. 2002). 

Therefore, before training the ML models, feature scaling was conducted to normalize the data 

distribution in each feature. Normalization was adopted in this study where the values were shifted 

and rescaled to be in the range of 0-1. The formula for normalization is written as 

𝑋′ =
𝑋 − 𝑋min

𝑋max − 𝑋min
 

(2-1) 

where 𝑋′ is the normalized value, 𝑋 is the actual value, 𝑋min is the minimum value of the selected 

feature distribution, and 𝑋max is the maximum value of the selected feature distribution. Data 

normalization was followed by data split into two sets: the training set (80%) and test set (20%). 

All the models were built on the training set, and their performances were evaluated on the test 

set. 

2.2.3. ML methods 

Four powerful ML models were used to address the regression problem in this study. GBR and RF 

models were selected from the tree-based ensemble learning methods category. Another two single 

learning methods, SVR and ANN, were selected for comparison purposes. All ML models were 

trained using the Scikit-learn Python package. Brief descriptions of each algorithm and the base 

of their selections in this study are presented below. 
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2.2.3.1. GBR algorithm 

The GBR algorithm has been successfully applied in previous studies related to mechanical 

strength predictions of CPB materials (Qi et al. 2020b) and OPC-based cement mixtures (Eyo and 

Abbey 2021). Their results have shown that the performance of the GBR model is superior to that 

of conventional models. Therefore, the GBR model was selected as one of the ML models in this 

study. In boosting ML algorithms, the weak learners which fail to predict the output accurately are 

given the priority and converted to strong learners. Among the available boosting methods, the 

gradient boosting method applies an additive sequential theorem. The residual errors are calculated 

in the initial step (first of many trees that are built) to identify the weak learners and can be defined 

as the observations with large residual errors. Their predictions are improved by building a second 

tree to address the residuals. The sequence is continued by building a third tree, based on the error 

calculations of the first two. This iterative process (Figure 2.4) will continue until the stopping 

criterion is fulfilled. The weighted sum of predictions will be calculated based on the results 

obtained from all the previous tree models (Jerome 2001). Although the squared error loss function 

is considered to be the simplest of the loss functions, Huber loss and absolute error functions can 

also be used whenever the usage of squared error is limited (Hastie et al. 2009). 
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Figure 2.4 GBR model training iterative process (modified from (Baturynska and Martinsen 

2021)). 

2.2.3.2. RF algorithm 

A validated RF model with very high accuracy has been used for UCS prediction of OPC-based 

CPB mixture by (Qi et al. 2019a). Due to similarities in the application between the two studies, 

the RF algorithm was selected as the second ML model in this study. RF is also an ensemble 

learning technique that obtains better performance by assembling the outputs of many different 

regression trees. In the RF algorithm, the feature space is segmented using different types of 

partitioning criteria. First, the corresponding region of an observed data point is selected. Then the 

prediction is executed based on the mean or the mode of all the data present in that region. RF 

eliminates the high variance issue involved with the decision trees algorithm, by using a bootstrap 

method to extract samples from the training set (Fan et al. 2023a). Therefore, many independent 

decision trees are built using bootstrap samples Figure 2.5. At the final stage, all the trees are 

bagged, and the predicted values are averaged (Breiman 2001). 
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Figure 2.5 Illustration of RF algorithm (modified from (Kwak et al. 2022)). 

2.2.3.3. SVR algorithm 

SVR models have been used to build accurate prediction models in various research themes, such 

as rockburst intensity monitoring, fly-rock distance modeling, and UCS estimations in 

cementitious materials (Yu et al. 2021). Therefore, SVR was chosen as an ML model to be used 

in this study due to its robustness in the application. In the SVR algorithm, the input feature space 

is split using optimum boundaries. The boundaries are defined as hyperplanes, and their simplest 

format is a line when the feature space is limited to two dimensions. However, in three-dimensional 

space, the hyperplane is a two-dimensional plane that divides the data set. The optimum 

hyperplane is constructed by the algorithm by maximizing the margin. In other terms, the optimum 

hyperplane has the smallest perpendicular distances from the data points Figure 2.6. The data 

points which are closest to the margin are called support vectors. Higher dimensional spaces are 

Input Data

 utput result of  sttree  utput result of 2ndtree  utput result of  th tree

Averaging the result

Final predicted value



28 

 

used to map the data points, whenever the data are inseparable. The mapping functions are termed 

kernel functions, i.e., radial bias, sigmoid, and polynomial functions (Boser et al. 1992). 

 

Figure 2.6  Optimum hyperplane in support vector machines (modified from (Tinoco et al. 

2014)). 

2.2.3.4. ANN algorithm 

The ANN method has been used to predict the UCS of CPB mixtures successfully in previous 

research (Yu et al. 2021). Therefore, it was used as an ML model in this study to have a wide 

variety of algorithms for comparison purposes. ANN is a computer program designed to mimic 

the human brain function, with a special relation to neurons. The architecture of ANN models 

consists of three main parts: the input layer, hidden layers, and output layer. In addition, each of 

the hidden layers has a pre-defined number of neurons. A network of connections between the 

neurons in different layers is initiated using a feed-forward algorithm (Figure 2.7).  
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Figure 2.7  Schematic representation of the ANN algorithm with input, hidden, and output layers 

(modified from (Noorani and Mehrdoust 2022)). 

However, no connections will be formed between neurons in a layer. For each connection, a weight 

will be assigned. In the training process, both input and output data will be introduced to the model, 

and the values of the hidden layer neurons will be calculated using the assigned weights. The 

algorithm uses a linear sum function followed by a nonlinear activation function to calculate these 

values. The most used activation functions are the identity, logistic, tanh, and relu functions. In the 

final step, a back-propagation algorithm will be employed, and the weights will be adjusted in an 

iterative process until the errors between the calculated and the predicted output values are 

minimized.  

2.2.4. Hyperparameter tuning of the ML models 

The main objective of hyperparameter tuning in this study was to improve the prediction 

performance of preliminary models. Hyperparameters can be defined as the set of parameters not 

directly learned inside the estimating algorithms. They must be passed as arguments to the training 
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models. The performance of the prediction models is highly dependent upon the selection of these 

hyperparameters. For example, the C value in the Support Vector Regressor contributes to the bias 

and variance trade-offs of the model. Accordingly, optimum parameters must be determined and 

used in the models to improve prediction accuracies. However, a manual approach would not be 

feasible for this purpose due to the infinite combinations (due to continuous space of the values) 

of different parameters within one estimator. Consequently, the Randomized Search method in the 

Scikit-learn model selection library was used to obtain the optimum hyperparameters of each 

model in this study. This method randomizes the search over the parameters, which reduces 

computation time. In the application of this method, an iterative k-fold cross-validation process 

was executed, and the RMSE metric was defined as the decisive parameter for the selection of the 

optimum model. The k value was set to 5, based on the recommendations by (Wu et al. 2020) and 

(Liang et al. 2020). Table 2.3 summarizes the critical hyperparameters that needed to be tuned in 

each model, and their optimum values.  
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Table 2.3  Hyperparameters of the ML model 

Model Hyperparameter Optimum value 

GBR 

learning rate 0.1 

min_samples_leaf 1 

min_samples_split 4 

n_estimators 938 

max_depth 4 

subsample 0.3323 

SVR 

C 615.69 

gamma 0.457 

epsilon 0.052 

RF 

min_samples_leaf 1 

min_samples_split 2 

n_estimators 89 

max_depth 13 

ANN 

alpha 0.0001 

hidden_layers 2 

number of neurons in a layer 200 

 

2.2.5. Performance evaluation metrics for the ML models 

The study used three performance evaluation metrics available for regression problems. Scikit-

learn python package’s metrics module was used for this purpose.  he test set portion of the 
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original data was used as the input to obtain the predictions using the trained model. The predicted 

values were compared with the actual target values in the test set to measure the prediction 

accuracies using the following metrics. 

The first metric, the R2 score, can be used to verify the degree of match between the predicted and 

true values. The best fit between the two sets corresponds to an R2 value of 1. Accordingly, the R2 

value should be close to 1 for the models to be accepted as accurate. The following formula 

(Equation 2-2) is used for the R2 calculations:  

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦�̅�)2𝑛
𝑖=1

  (2-2) 

where 𝑦𝑖 is the actual target value, 𝑦�̂� is the predicted value of the output, and 𝑦�̅� is the average 

value of the actual target values.  

RMSE can be used to determine the degree of dispersion between the original target value and the 

predicted value, and it is simply the squared version of the calculated value of mean squared error 

(MSE). Equation 2-3 represents the formula for the calculation of RMSE: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦�̂�)2𝑛

𝑖=1

𝑁
  (2-3) 

where 𝑁 is the number of samples available in the test set. When the MSE and RMSE are low, the 

prediction models are accurate. The RMSE can be used as an indicator of the average distance 

between a data point and the fitted line.  
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MAE is also an indication of the degree of fit between the actual target data and the predicted data 

since it outputs the absolute error values. MAE can be calculated by  

𝑀𝐴𝐸 =
∑ |(𝑦𝑖 − 𝑦�̂�)|𝑛

𝑖=1

𝑁
  (2-4) 

It is accepted that models with R2 scores close to 1 with very low RMSE and MAE values can 

yield better results with higher accuracy (Wu et al. 2020). After hyperparameter tuning, the 

selection of the best-performing model can be a concern since the performance results might fall 

close to each other. Therefore, a ranking system developed by Zorlu et al. (2008) was used to rank 

the ML models based on R2, RMSE and MAE values on the test set predictions. The highest 

obtainable score was 4 for each metric (because there were 4 models), where the highest R2 value 

and lowest error metric values were given equal scores of 4. Decremental scores (3, 2 and 1 for 

the next best performing models) were assigned for other low-performing models. 

2.3.  Results and discussion 

2.3.1. Comparison between preliminary and tuned ML models 

Preliminary ML models were constructed using the default hyperparameter values for each ML 

model. It was observed that all preliminary models (before tuning) exhibited overfitting problems 

because their prediction accuracies were comparatively low for new data (test set). Among all four 

preliminary models, the GBR model displayed the best performance, with an R2 score over 0.92 

for the test set (Table 2.4). Contrastingly, SVR performed poorly on both training and test data 

sets, achieving R2 scores of only 0.712 and 0.694, respectively. However, the performances of 

preliminary ANN and RF models were acceptable, obtaining R2 scores over 0.85 on the test set 

predictions.   
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Table 2.4 Performance results of preliminary and tuned ML models 

Model Type Training set Test set 

R2 score RMSE MAE R2 score RMSE MAE 

GBR 
Tuned 0.999 0.055 0.045 0.969 0.237 0.162 

Preliminary 0.966 0.272 0.199 0.928 0.361 0.296 

SVR 
Tuned 0.998 0.064 0.052 0.889 0.446 0.289 

Preliminary 0.712 0.793 0.498 0.694 0.741 0.542 

RF 
Tuned 0.979 0.213 0.144 0.907 0.408 0.335 

Preliminary 0.979 0.215 0.144 0.904 0.414 0.335 

ANN 
Tuned 0.983 0.19 0.126 0.887 0.449 0.342 

Preliminary 0.965 0.276 0.198 0.864 0.495 0.37 

 

In the next step, critical hyperparameters of each model were tuned to improve the prediction 

performances. The resulting optimum hyperparameter values from the randomized search tuning 

method are presented in Table 2.3. Updated hyperparameters reduced the overfitting issues of 

GBR, SVR and ANN models by generalizing them for new data sets. The effect was highest on 

the SVR model, as the R2 score could be improved by 28% for the test data set predictions. In 

addition, the RMSE and MAE errors could be reduced by 40% and 47%, respectively. In contrast, 

hyperparameter tuning had a minimal effect on the RF model, with no significant improvements 

noted. This insensitivity of the RF model to its hyperparameters has been previously reported in 

the literature. For example, the R2 value could only be increased by 0.01% after tuning the 

hyperparameters of an RF model, which was used to predict the UCS of OPC-based CPB (Qi et 

al. 2019a). The overall comparison between preliminary models and tuned models is illustrated in 

Figure 2.8, which shows that the hyperparameter tuning improved the prediction accuracies of 

GBR, SVR and ANN models by improving R2 score and by reducing RMSE and MAE. The 
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importance of having tuned ML models for accurate predictions in regression algorithms has been 

previously pointed out in the literature. For example, in the study by Qi et al. (2020b) to predict 

UCS of OPC-based CPB, the hyperparameter tuning improved the R2 value of the GBR model 

from 97.9% to 98.9%. Similarly, Sun et al. (2020b) reported a decrease in RMSE value of an SVR 

model (which was used to predict UCS of OPC-based CPB) from 0.259 to 0.082, when optimum 

hyperparameters were used.  

 

Figure 2.8 Performance comparison between preliminary and tuned ML models. 
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2.3.2. Selection of the best ML model 

Table 2.5 shows the scores (based on the ranking system by Zorlu et al. (2008)) that the ML models 

obtained depending on their prediction performances on the test set. The total score for each model 

was calculated by adding the scores obtained for each performance metric. Based on the total 

scores in Table 2.5, the reliability of models to predict the UCS of AAS-based CPB materials can 

be ranked as GBR > RF > SVR > ANN. The ensemble models (i.e., GBR and RF) outperformed 

the other two models by obtaining the highest scores of 12 and 8, respectively. In addition, the 

superior performance of GBR over the other ensemble ML technique of RF can be ascribed to the 

ability of the GBR algorithm to convert weak learners into strong learners in successive steps. 

Similar results can be found where GBR and RF models were used for UCS prediction of cement-

based mixtures. For example, Lu et al. (2019) reported a higher accuracy of 98% by the GBR 

model than the RF model, which had an accuracy of only 95% in predicting the UCS of OPC-

based CPB. Likewise, Qi et al. (2020a) reported a better accuracy of 0.98 for a GBR model over a 

accuracy of 0.95 for a RF model, which were constructed to predict pressure drop of pipe flow in 

OPC-based CPB. In summary, the GBR model is the best suited model for UCS predictions of 

AAS-based CPB, based on the model evaluation results in this study.  

Table 2.5 Model ranks based on the performance metrics 

Model R2 RMSE MAE Total score Rank  

Value Score Value Score Value Score 

GBR 0.969 4 0.237 4 0.162 4 12 1 

SVR 0.889 2 0.446 2 0.289 3 7 3 

RF 0.907 3 0.408 3 0.335 2 8 2 

ANN 0.887 1 0.449 1 0.342 1 3 4 
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Figure 2.9 Actual vs. predicted UCS values of GBR and RF ML models 

Scatter plots were created to visualize the agreement between actual and predicted UCS values of 

the ML models. A scatter point represents an actual value (i.e., an experimental result extracted 

from literature) of UCS in X axis and its corresponding predicted value in Y axis. It could be 

observed that scatter points of GBR and RF models in the test set predictions were closer to the 

best-fit line, indicating an excellent agreement (Figure 2.9). Comparably, multiple points were 

located far from the best-fit lines in the scatter plots of the SVR and ANN models (Figure 2.10). 

This confirmed the ability of ensemble ML techniques to outperform the single learning 
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techniques. Similar results can be found in the literature where a higher prediction performance 

(R2 of 0.99) of a RF model over an SVR model (R2 of 0.98) has been reported, when predicting 

the UCS of OPC-based CPB (Liu et al. 2020).  

 

Figure 2.10 Actual vs. predicted UCS values of SVR and ANN models 

2.3.3. The relative importance (RI) of input parameters 

Figure 2.11 illustrates the ranking of the importance of features in this study. It provides crucial 

information on each input parameter’s degree of impact on the UCS of AAS- based CPB mixtures. 
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A higher RI indicates a greater impact on the UCS Qiu et al. (2020). This information is highly 

useful for engineers to make decisions in the mixture design process, as it permits to focus only 

on the most influential parameters, when trying to achieve the desired strength in a mixture.  

2.3.3.1. Curing time  

RI results show that curing time has the highest RI (19.98%), indicating that it is the most 

influential parameter for UCS prediction of AAS-based CPB. Cihangir et al. (2018) reported that 

UCS is greatly influenced by the number of curing days, since hydration products increase with 

time. For example, when the number of curing days changed from 14 to 112, the UCS increased 

by 318% (Cihangir et al. 2018). The inclusion of curing time as a parameter in the prediction model 

provides valuable information on the required number of days to achieve the desired strength (i.e., 

UCS required to match the stability requirement of a certain mine site). It will assist engineers in 

planning production cycles (i.e., when to end the production and when to resume production after 

backfilling) to avoid ore loss and to reduce costs (Bloss 2014). 

 

Figure 2.11 Relative importance of features based on the GBR model. 
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2.3.3.2. Water-binder (w/b) ratio, liquid-to-solid ratio (l/s) and binder dosage 

The w/b ratio, l/s ratio and binder dosage are the most common physical parameters considered by 

researchers in the mixture designs of AAS-based CPB (Cihangir and Akyol 2018; Cihangir et al. 

2015). In this study, w/b ratio was the feature with the second highest overall importance (19.26%) 

for the prediction model. Jiang et al. (2020) investigated the influence of the w/b ratio on UCS and 

found that UCS dropped by 20% when the w/b ratio was increased from 3.8 to 4.4. This has been 

attributed to the increased void spaces, resulting in weaker bonding between solid particles (Jiang 

et al. 2020). Next, l/s ratio, with an importance score of 9.6%, had the third highest important 

score. Jiang et al. (2019) pointed out that decreasing the l/s ratio from 0.369 to 0.316 increased the 

28-d UCS by 31%. This can be ascribed to the lower initial porosity and ease of ability of the 

hydration products to fill the pore spaces when the solids content is high (i.e., at lower l/s ratios) 

(Pacheco-Torgal et al. 2008). Design engineers can initiate the mixture design process using the 

proposed ML model by manipulating these two parameters first. This is because the w/b ratio and 

l/s ratio are the physical mixture design parameters with the strongest influence on the prediction 

model. On the other hand, it is interesting to note that the importance of binder dosage to the model 

is relatively low (5.49%). Jiang et al. (2019) reported an increase in UCS by 79% when the binder 

dosage was increased from 8% to 12%. The same increment in binder dosage could be represented 

by a relatively lower decrement of 1.46 (i.e., from 4.39 to 2.93) in the w/b ratio. Similar to the 

above reports, RI results indicated that the w/b ratio is much more effective than the binder dosage 

to be used as a parameter in the model. Therefore, binder dosage as an input parameter can be 

removed from the model to improve the efficiency of the model and to avoid repetitiveness of the 

same parameter. This assists design engineers with considering the water content and binder 
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content simultaneously in the mixture design, instead of controlling them as two different 

parameters.  

2.3.3.3. Silicate modulus (Ms) and Na2O content of the alkali-activator 

From the literature, it is noted that the Ms and Na2O concentration are the two main chemical 

mixture design parameters that represent the characteristics of the alkali-activator (Cihangir et al. 

2015; Cihangir et al. 2012; Jiang et al. 2022a). Ms and Na2O have close and medium rankings in 

the RI results, with importance scores of 8.36% and 6.6%, respectively. In accordance with the RI 

results, literature reports that the silicate polymerization due to increased soluble Si ion 

concentration (with increasing Ms) in liquid SS-activated cement mixtures has produced higher 

compressive strengths (Duxson et al. 2005; Pacheco-Torgal 2015; Shi and Fernández-Jiménez 

2006). Furthermore, when increasing the Na2O up to 10%, an increase followed by a decrease in 

UCS has been noticed in an AAS-based CPB (Zhang et al. 2021). In addition, excess Na2O has 

resulted in undesirable amounts of Na+ cations, leading to stresses during polymerization (Xu and 

Van Deventer 2000). The UCS of a particular AAS-based CPB mixture at different Ms and Na2O 

contents can easily be determined with the inclusion of Ms and Na2O contents as parameters in the 

prediction model. This allows the design engineers to identify optimum values of the above 

parameters (i.e., Ms and Na2O values at maximum UCS) for a particular mixture which will avoid 

excess usage of chemicals.  

2.3.3.4. PSD of the tailing material 

Cu and Cc represent the PSD of the tailing material by relating to the fines content. The RI results 

proved that Cu and Cc are critical input variables in the prediction model with RI of 8.03% and 

6.12%, respectively. However, the effect of PSD of tailings on the UCS has seldom been 

investigated in experimental studies. Scholars have used the direct tailings output from processing 
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plants at mine sites without processing them further to test at different particle sizes (Cihangir et 

al. 2015; Cihangir et al. 2012; Jiang et al. 2020; Jiang et al. 2019; Jiang et al. 2022a; Xu and Van 

Deventer 2000). However, the trained model permits engineers to consider different PSDs of a 

particular tailings type to decide on further processing of the tailings.    

2.3.3.5. Chemical composition parameters of tailings and slag 

Chemical composition parameters of tailings and slag can be identified as the least influencing 

features (RI below 5%) for the prediction of UCS. Between the above, mass percentages of the 

constituents of slag had a minimal effect and can be attributed to the low mass proportion of slag 

when compared with tailings and water in the final mixture. However, the mass percent of SiO2 in 

both slag and tailings can still have an influence based on their rankings in RI results. Reports that 

the reactive SiO2 content is significant in determining the UCS of AAS-based CPBs support the 

above RI results (Papadakis et al. 2002; Walker and Pavía 2011). In addition, the RI results 

indicated that the CaO content in tailings has a similar effect on the model performance. Cihangir 

et al. (2012) reported higher compressive strengths when materials with relatively low contents of 

CaO were used. Therefore, it is advisable to include the CaO content of tailings in the ML model 

as a parameter for accurate predictions of UCS. However, the influence of Al2O3 content in tailings 

and the slag is negligible according to the RI results. This can be attributed to the comparatively 

very low mass percent of Al2O3 in the used materials. Therefore, removing the least affected 

features can improve the performance and efficiency of the ML model. In practice, this means that 

engineers can use the above information to select only the valid input parameters to predict the 

UCS of AAS-based CPB.  
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2.4. Conclusions 

This work is the first study that used advanced machine learning (ML) techniques to predict the 

unconfined compressive strength (UCS) of alkali-activated slag (AAS) based cemented paste 

backfill (CPB). The main conclusions drawn from this study are as follows: 

(1) Tree-based ensemble machine learning (ML) models (gradient boosting regression (GBR) and 

random forest (RF)) outperformed the single learning models (support vector regression (SVR) 

and artificial neural network (ANN)) in predicting the UCS of AAS-based CPB mixtures. SVR 

and ANN could only achieve prediction accuracies of 88.9% and 88.7%, respectively, on the 

test set. In contrast, both GBR and RF models obtained prediction accuracies of over 90%. 

(2) Curing time was the most important parameter (19.98%) for the prediction model. Engineers 

will benefit from the information regarding the curing time needed to obtain desired strength 

levels of a particular AAS-based CPB mixture. It will assist them in scheduling the ore 

production cycles in underground mines.  

(3) The importance of binder dosage (5.49%) for the prediction model was relatively low when 

compared with the other common physical mixture design parameters (i.e., water-to-binder 

ratio (w/b) (19.26%) and liquid-to-solid ratio (l/s) (9.6%)). This permits engineers to consider 

the water content and binder content in a single parameter, without having to control them as 

two different parameters.  

(4) Silicate modulus and the Na2O content of the alkali-activator had a significant influence on the 

prediction model, with respective importance scores of 8.36% and 6.6%. Design engineers 

would be able to determine the optimum activator content for different AAS-based CPB 

mixtures using the proposed ML model. The importance of the coefficient of uniformity (Cu) 

(8.03%) and coefficient of curvature (Cc) (6.12%) on the prediction model was equally notable. 
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The inclusion of Cu and Cc in the prediction model will provide valuable insights for engineers 

to decide on further processing of tailings to change the particle size to achieve AAS-based 

CPB mixtures with higher UCS. 

(5) Chemical composition parameters of tailings and slag had a relatively low (i.e., below 5%) 

influence on the model. Among the oxide compounds, Al2O3 had the least influence on the 

prediction model (i.e., less than 2%). Therefore, the most critical oxide compounds in both the 

tailings and slag could be identified as SiO2 and CaO.  

(6) The GBR model was proposed as the final model for UCS predictions due to its superior 

performance over the others. It showed a prediction accuracy of 96.7% (R2) on the test set, 

indicating that it has the potential to accurately predict the UCS of AAS-based CPB mixtures. 

  



45 

 

Chapter 3. Forecasting unconfined compressive strength of calcium 

sulfoaluminate cement mixtures using ensemble machine learning techniques 

integrated with shapely-additive explanations 
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3.1. Introduction 

Calcium sulfoaluminate (CSA) cement is a sustainable cement that possesses many advantages 

over ordinary Portland cement (OPC) (Shi et al. 2011), such as high early age strength (Huang et 

al. 2019), rapid setting time (Huang et al. 2019), shrinkage compensation (Yu et al. 2018), and low 

carbon footprint (Shi et al. 2011). The design of a CSA cement mixture for achieving the desired 

unconfined compressive strength (UCS) is challenging due to the influence of multiple features, 

such as the composition of the cement, curing conditions, material proportioning, and the use of 

admixtures (Tao et al. 2023). Currently, the CSA cement mixture design depends heavily on the 

traditional experimental approach, which is resource-intensive, demanding large quantities of 

materials, substantial financial investment, and significant time commitment (Tran et al. 2022). 

According to a thorough literature review, until now, most of the previous experimental studies 

have focused on assessing the influence of only a limited number of features at a time, leading to 

a less comprehensive understanding of the relationships. For example, in the study by García Maté 

et al. (2016), the primary focus was on the influence of the type of retarder on the UCS, while 

keeping the dosage of the retarders constant. Similarly, Huang et al. (2020) investigated the 

influence of retarder dosage by varying the dosage from 0% to 1%, but only for one specific type 

of retarder, namely molasses. Another study by Burris and Kurtis (2018) solely investigated the 

influence of citric acid as a retarder at varying dosages (i.e., 0% to 3%). Furthermore, Xu et al. 

(2018) studied the influence of curing temperature at different ages, but the analysis was only 

limited to a narrow range of levels (5 °C, 20 °C, and 40 °C). In addition, it is worth mentioning 

that most of the reported experimental studies, including those mentioned above, were carried out 

using fixed cement compositions, material proportions, and curing conditions. The limitations 
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associated with the experimental approach make it difficult to observe subtle variations and 

potential non-linear relationships between input features and the UCS of CSA cement. 

Based on existing experimental results, machine learning (ML) methods may be considered to 

learn the current knowledge domain of CSA mixture design. As an emerging trend, many ML 

methods, such as artificial neural network (ANN) (Mohamed et al. 2021), support vector 

regression (SVR) (Dahish et al. 2023), decision tree (DT) (Khan et al. 2023), and ensemble 

learning (Nguyen et al. 2022; Shah et al. 2022) have been documented in the literature for assisting 

the mixture design of novel cementitious materials. Of these, ensemble learning, a well-known 

category of machine learning (ML), has been paid much attention in the current literature as it 

involves the principle of combining multiple base models to create an ensemble model that can 

outperform a single base model (Erdal 2013). Ensemble models usually include but are not limited 

to, gradient boosting regression (GBR) (Friedman 2001), extreme gradient boosting regression 

(XGBR) (Chen and Guestrin 2016), light gradient boosting regression (LGBR) (Ke et al. 2017), 

and random forest (RF) (Breiman 2001). These ensemble ML methods have been frequently used 

to build accurate non-linear strength prediction models for novel cementitious mixtures, which 

typically involve multiple input features. For example, Shah et al. (2022) trained an XGBR model 

to predict the UCS of one-part alkali-activated material that could obtain a very high accuracy of 

96%. In comparison, the reported performance of the single learning ridge regression model was 

43% lower in this study. In addition, Nguyen et al. (2022) built an RF model that could produce 

excellent results for testing data, with a 94% prediction accuracy while outperforming a single 

learning k-nearest neighbors regression model by a margin of 11%. Furthermore, another XGBR 

model achieved a high accuracy of 93% on testing data when predicting the UCS of carbon 

nanotube-inserted cement paste (Li et al. 2022). In contrast, the performance of tested single-



48 

 

learning linear regression and support vector regression models was much lower, achieving only 

69% and 81% accuracies. Therefore, ensemble learning is a promising approach that can be used 

to build accurate non-linear strength prediction models involving multiple input features in the 

cement and concrete industry. However, to the best of our knowledge, no studies in the current 

literature have reported the use of ensemble learning models for predicting the UCS of CSA 

cement mixtures.  

To fill this gap, the objective of this study was to build accurate ensemble ML models using a 

dataset of experimental results extracted from literature to predict the UCS of CSA cement 

mixtures. Initially, a total of 723 unique data points could be assembled from 24 different 

publications reported worldwide. After removing irrelevant or redundant features through feature 

selection methods, the modified datasets were used to build four different ensemble ML models: 

GBR, XGBR, LGBR, and RF. Next, each ML model was evaluated on the testing data to select 

the model with the best prediction performance. Finally, to address the lack of interpretability of 

the prediction results, the SHapely Additive exPlanations (SHAP) method developed by Lundberg 

and Lee (2017) was integrated as a tool for the best-performing ML. The SHAP method was 

preferably used as it not only provides feature importance information but also elucidates the 

underlying rationale behind each prediction (Ekanayake et al. 2022).  

The novelty of this study can be expressed in three key aspects. First, a comprehensive literature 

review of the experimental studies of CSA cements was conducted to compile a diversified and 

meaningful dataset that has not been previously assembled. Second, this study is the first to 

develop ensemble ML models that enable rapid UCS predictions of CSA cement by incorporating 

multiple input features simultaneously. Third, the SHAP analysis allowed for a comprehensive 

evaluation of feature importance in the context of the strength of CSA cement, which has not been 
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previously explored. This assists engineers to make informed decisions on CSA cement mixture 

designs when aiming to achieve the desired strength for a particular application. Overall, this study 

may function as the groundwork for the efficient design and development of CSA cement mixtures 

with the application of ML modeling and its interpretations. 

3.2. Methodology 

3.2.1. Overall workflow of the study 

 

Figure 3.1 Schematic diagram of the overall methodology followed in the study 
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The overall methodology followed in this study is illustrated in Figure 3.1. Initially, experimental 

results related to the determination of UCS of CSA cement were extracted from the previous 

literature to create a dataset including multiple input features and a single output (i.e., UCS). Next, 

the collected data were normalized using a min-max scalar to convert the data values to be in the 

range of 0 to 1. Then, the pre-processed dataset was split into two separate sets: a training set (for 

model training) and a test set (for model evaluation). Afterward, three different feature selection 

methods: recursive feature elimination (RFE), mutual information (MI), and least absolute 

shrinkage and selection operator (LASSO) regression were employed on the training set to extract 

the features with the most influence to be included as input features in the ML models. Next, four 

different ML models: GBR, XGBR, LGBR, and RF were built on the modified training dataset 

(i.e., dataset constituent of only the optimum subset of input features). In addition, the performance 

of each ML model was improved by tuning the most critical hyperparameters, using a sequential 

model-based optimization method. After that, the performances of the trained models were 

evaluated on the test set using three statistical parameters: coefficient of determination (R2), root 

mean squared error (RMSE), and mean absolute error (MAE). Moreover, each ML model was 

evaluated based on the computational time as an additional metric. Finally, the ML model with the 

best prediction performance was selected as the most accurate model for the prediction of UCS of 

CSA cement and its results were interpreted using the SHAP analysis. It is important to note that 

the above methodology was carried out using the sci-kit learn package (version 1.0.2) on Jupyter 

Notebook (python programming with version 3.9.13) installed in a desktop computer 

(configurations: Intel Core i7 3.6 GHz processor, 16 GB of RAM). 
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3.2.2. Data preparation 

3.2.2.1. Data collection 

A comprehensive bibliographic survey was conducted to compile an organized dataset of 

published experimental results. Calcium sulfoaluminate cement, CSA cement, compressive 

strength, retarder, and plasticizer were applied as keywords in renowned scientific databases of the 

Web of Science and Compendex to identify articles that were compatible with data extraction. A 

total of 24 publications cataloged from the year 1900-2023 could be identified from the 

bibliographic survey. Finally, a dataset comprising 723 unique data points could be assembled 

from the extracted literature to build the prediction models. It is noteworthy to mention the 

availability of many other accurate ML models built on smaller datasets used to predict UCS of 

similar cementitious materials. An XGBR model built with only 173 data points (Shah et al. 2022), 

a GBR model constructed based on a dataset of 328 data points (Shen et al. 2022), and two RF 

models that use only 424 (Nguyen et al. 2022) and 616 data points (Zhang et al. 2023), 

respectively, can be introduced as examples. In comparison, the dataset used in this study is much 

larger and can be used to establish more generalized models.  

Table 3.1 provides a summary of the articles used in this study, including information on the source 

and country of origin. The data points originate from 10 different countries across three major 

continents: North America, Europe, and Asia. Despite the dominant representation of data 

originating from China, the reported usage of several types of CSA cement in their studies adds 

diversity to the dataset. This wide-ranging data collection ensures that the developed ML model is 

not biased toward a particular region or a specific type of CSA cement.  
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Table 3.1 Summary of the sources of data used in the study 

 Country Source 

1 Canada (Huang et al. 2020) 

2 Canada (Huang et al. 2022a) 

3 China (Hu et al. 2017) 

4 Germany (Skocek et al. 2015) 

5 United States (Burris and Kurtis 2018) 

6 China (Chen et al. 2021) 

7 China (Zou et al. 2020) 

8 China (Shen et al. 2023) 

9 China (Jing et al. 2022) 

10 China (Zhang et al. 2016) 

11 Spain (García Maté et al. 2016) 

12 China (Ke and Zhang 2020) 

13 China (Chen et al. 2018) 

14 Finland (Nguyen et al. 2019) 

15 China (Li et al. 2018b) 

16 United States (Burris and Kurtis 2022) 

17 Canada (Huang et al. 2022b) 

18 Belgium (Mohan et al. 2021) 

19 India (Shenbagam and Chaunsali 2022) 
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 Country 

 

Source 

20 Thailand (Rungchet et al. 2016) 

21 Germany (Zajac et al. 2019) 

22 France (Morin et al. 2017) 

23 China (Xu et al. 2018) 

24 China (Wang et al. 2017) 

 

3.2.2.2. Data description 

The collected dataset consists of nine numerical and three categorical input features, with the UCS 

serving as the output feature. The selected input features were chosen to represent distinct types of 

cement, experimental conditions, and curing conditions that were reported in the extracted articles. 

Out of the common mineralogical constituents available in CSA cement, ye’elimite, belite, and 

calcium sulfate can be identified as the most prominent components that contribute to cement 

hydration and consequent ultimate strength (Huang et al. 2020). Therefore, the content of these 

mineralogical constituents was chosen as input features in the dataset to represent the type of CSA 

cement used in each experiment. It is important to note that an adapted Bogue’s Equation 

(Equations 3-1 to 3-3) (Chen and Juenger 2011) was used to estimate the mineralogical 

compositions from oxide compositions, whenever the mineralogical compositions were not 

directly reported in the sources. 
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𝑦𝑒′𝑒𝑙𝑖𝑚𝑖𝑡𝑒 % = 1.995(𝐴𝑙2𝑂3%) − 1.273(𝐹𝑒2𝑂3%) (3-1) 

𝑏𝑒𝑙𝑖𝑡𝑒 % = 2.867(𝑆𝑖𝑂2%) (3-2) 

𝑐𝑎𝑙𝑐𝑖𝑢𝑚 𝑠𝑢𝑙𝑓𝑎𝑡𝑒 % = 1.700(𝑆𝑂3%) − 0.445(𝐴𝑙2𝑂3%) + 0.284(𝐹𝑒2𝑂3%) (3-3) 

The w/c and a/c were also selected as input features as they provide information about the 

quantities of added water and fine aggregates, concerning the quantity of cement. The type of 

retarder, type of superplasticizer (categorical variables), and dosages of retarder and 

superplasticizer (numerical variables) were chosen as input features in the dataset as they can be 

used to represent the type and dosage of the most commonly used admixtures in CSA cement. 

Curing temperature and time were added to the dataset as input features to include information 

about the curing conditions of the cement. An additional categorical feature, namely the type of 

test was included in the dataset to investigate the impact of the standard used to determine the UCS 

in the reported experiments. 

A statistical summary of the numerical input features and the UCS is presented in Table 3.2. The 

wide distribution of values observed in all three mineralogical compositions is due to the inclusion 

of data from a diverse range of experiments that utilized several types of CSA cement. In addition, 

the dataset included a substantial range of w/c ratio values, ranging from 0.26-0.80. This attests to 

the advantage of using data-driven methods over experimental approaches, as it allows for the 

incorporation of significant value spans that would otherwise be difficult to achieve inside a single 

experimental scheme. In contrast to the w/c ratio, the range of values of the a/c ratio was limited 

as most of the studies have used common cement preparation standards. It is important to note the 

inclusion of results from cement pastes, where the a/c ratio is 0 as a result of no aggregate usage. 

Furthermore, despite the fact that the majority of data points correspond to samples cured at room 
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temperature, data obtained from samples cured across a broad temperature range of 20°C to 80°C 

could also be included in the dataset. Similarly, both retarder and superplasticizer dosages 

exhibited significant value spans, with a value of 0 indicating pure CSA mixtures without any 

admixtures. Moreover, the dataset included data points representative of both long-term and short-

term strengths, with minimum and maximum curing times of 1 hr and 2160 hr, respectively. 

Additionally, Figure 3.2 illustrates histograms representing the dataset concerning various input 

features, which are in agreement with the statistical analysis of data, represented by Table 3.2. 

Finally, a significant distribution of values could be seen in the output feature: UCS, with a 

minimum of 0 MPa (i.e., early age strength of mixtures with higher dosages of retarders) and a 

maximum of 105.7 MPa.  

Table 3.2 Statistical summary of the dataset about numerical input features 

Input feature Mean Standard 

deviation 

Minimum Maximum 

Ye’elimite content   (w/w) 38.13 15.92 21.8 76.2 

Belite content % (w/w) 30.34 12.66 9.7 52.4 

Calcium sulfate content % (w/w) 14.63 10.02 0 45.2 

Water-to-cement ratio 0.41 0.10 0.26 0.8 

Aggregate-to-cement ratio 1.23 1.29 0 3.125 

Curing temperature (°C) 28.47 14.92 20 80 

Retarder dosage (% cement mass) 0.42 0.58 0 3 

Superplasticizer dosage (% cement 

mass) 

0.37 0.58 0 1.75 
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Input feature Mean Standard 

deviation 

 

Minimum Maximum 

Curing time (hr) 239.26 326.26 1 2160 

UCS (MPa) 44.88 20.30 0 105.7 

 

Besides the numerical input features, categorical data on the type of retarder, superplasticizer, and 

test were transformed into vectors using the label encoding method (i.e., assigning a numerical 

value to represent each category). One-hot encoding, which is another popular method, was not 

chosen because it can significantly increase the dimensionality of the features and consequently 

increase the computational cost of ML modeling (Rashid et al. 2022). For the type of retarder and 

superplasticizer, the number 0 was assigned to indicate the absence of any admixture. Within the 

retarder category, the numbers 1-7 were assigned to represent the usage of molasses, sodium 

gluconate, a mixture of citric acid and borax, tartaric acid, borax, citric acid, and vitamin C 

respectively. Similarly, the numbers 1-4 were used to represent polycarboxylate acid, β-

naphthalenelfonic acid, aminosulfonic acid, and powder naphthalene as superplasticizers. 

According to Figure 3.2, the data points were well distributed among different admixture types, 

which further improves the generalization of ML models built on the dataset. Additionally, within 

the category of test type, values 1-3 were assigned to indicate the different standards of UCS 

testing. Specifically, value 1 represented the ASTM C39/C39M-18 (ASTM) standard for testing 

cylindrical specimens, value 2 represented the testing of cubic specimens (with varying specimen 

sizes between experiments), and value 3 represented the GB/T 17671-2021  (ISO 2021) standard 

or the ISO 679: 2009 (ISO 2009) standard for testing using triple test molds. As shown in Figure 
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3.2, the final dataset included well-distributed data points that correspond to UCS results obtained 

using different testing standards.  

 

Figure 3.2 Distribution of data of input features 
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3.2.2.3. Data pre-processing 

According to Table 3.2, the range of data distribution varied across different input features. For 

example, the value range of curing time was 1-2160 hr, whereas the w/c ratio was limited to a 

value range of 0.26-0.8. In such instances, ML models could misjudge the superiority of input 

features (Arachchilage et al. 2023). Therefore, each input data value in the dataset was scaled and 

normalized to be in the range of 0 to 1, using the min-max scaling method represented by Equation 

3-4.  

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (3-4) 

where 𝑋𝑠𝑐𝑎𝑙𝑒𝑑 is the normalized value, 𝑋 is the original input value, 𝑋𝑚𝑖𝑛 is the minimum value of 

the input feature and 𝑋𝑚𝑎𝑥 is the maximum value of the input feature. The normalized dataset was 

then split into two portions: the training data set (80%) and the testing data set (20%). It is worth 

mentioning that this particular split proportion has been frequently used in studies involving a 

similar number of data points in the field of ML applications on cementitious materials (Huo et al. 

2022; Liang et al. 2022; Rahman et al. 2021) . The training data were used to build the ML models 

whereas the testing data were used to evaluate the performances of the models. 

3.2.3. Feature selection methods 

Feature selection is an essential step in ML applications that aids in the identification of input 

features that may contain redundant or irrelevant information (Li et al. 2017). This study employed 

three prominent feature selection methods to perform a comparative study to select the optimal 

subset of input features that yield the best performance in ML models. Filter methods, such as 

(mutual information) MI, employ statistical methods to score the relationship between each input 

feature and output. MI method measures the mutual dependence between two features based on 
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the amount of information acquired about a feature by observing the other (Liu et al. 2022). 

Features that exhibit a lower association with the output, as indicated by lower MI values, are 

eliminated from the datasets. In contrast to filter methods, wrapper methods integrate an ML model 

to find the optimal subset of input features, such as in RFE (Bahl et al. 2019). RFE starts with the 

full set of input features and removes the least prominent features recursively several times which 

equals the length of the original set of features. Ultimately, the subset which yields the best results 

according to the selected performance evaluation criteria is selected as the optimal subset of 

features. Embedded feature selection techniques, such as LASSO regression, conduct the feature 

selection inside the model training step, and it is less complex when compared with wrapper 

methods (Liu et al. 2022). The LASSO method introduces a penalty term to its cost function by 

setting the coefficients of redundant and irrelevant features to zero (Tibshirani 2011). The penalty 

term can be controlled to determine the number of coefficients set to zero. 

3.2.4. Machine learning models 

Ensemble learning techniques have reportedly been able to build accurate prediction models by 

establishing complex non-linear relationships between multiple input features and the strength of 

cementitious materials as output (Adel et al. 2022; Li et al. 2022; Min et al. 2023). Based on the 

learning technique, ensemble methods can be categorized into two types: boosting and bagging. 

Boosting methods involve a sequential training process, whereas the bagging methods build 

parallel models. In this study, three boosting methods (i.e., GBR, XGBR, and LGBR) and one 

bagging method (i.e., RF) were chosen, which are known to produce prediction results with high 

accuracy. 
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3.2.4.1. Gradient boosting regression  

The GBR method minimizes a loss function in an iterative process until the defined stopping 

criteria are fulfilled. In each iteration of sequential trees, the loss is minimized by identifying the 

weak learners in previous steps and assigning higher weights to those learners (Friedman 2001). 

As a result, the final output would be optimal, as the weak learners were continuously updated.  

3.2.4.2. Extreme gradient boosting regression 

XGBR algorithm, which was originally introduced by (Chen and Guestrin 2016), integrates the 

concepts of basis function and weights into the principle of gradient boosting. It is an advanced 

version of the GBR algorithm which is equipped with an additional regularization term to help 

reduce overfitting problems. In addition, the accuracy of the XGBR method is enhanced by 

applying a second-order Taylor expansion to the loss function.  

3.2.4.3. Light gradient boosting regression 

LGBR has been introduced by Microsoft in 2016, subjecting it to open-source development (Ke 

et al. 2017). LGBR can be considered an improvement of XGBR as it can address the scalability 

and efficiency issues of XGBR when handling datasets that are either large or highly dimensional 

(Li et al. 2018a). In addition, LGBR models require lesser computational time for training and are 

less prone to overfitting.  

3.2.4.4. Random forest 

RF uses a bootstrapping technique to add randomness to the sample extraction process when 

building independent decision trees (Fan et al. 2023a). This randomness contributes to better 

performances of RF when compared with the conventional decision tree method, by reducing 
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overfitting. In the final stage, all individual trees that were built are bagged and the predictions are 

averaged (Breiman 2001).  

3.2.5. Hyperparameter tuning 

A sequential-model-based optimization method named Scikit-Optimize (Head et al. 2018) was 

employed in this study to tune the hyperparameters due to its reported ability to enhance the 

performance of ensemble ML models (Nguyen et al. 2022). Sequential-model-based optimization 

efficient method that requires less computational time for identifying the optimal configuration of 

hyperparameters (Lacoste et al. 2014). 

This method is based on Gaussian process estimators where the objective function is defined in 

Equation 3-5. 

𝑓(𝜃) = √
1

𝑁
∑(𝑦𝑗 − 𝑦(𝑥𝑗))

2
𝑁

𝑗=1

 (3-5) 

where, 𝑦𝑗 is the output, 𝑦(𝑥𝑗) is the predicted value and N is the number of samples.  

3.2.6. Performance evaluation metrics 

Three commonly used statistical metrics were chosen in this study to evaluate the prediction 

performance of ensemble ML models. The selected metrics: R2, RMSE and MAE values are 

calculated using Equation 3-6, Equation 3-7, and Equation 3-8, respectively (Fan et al. 2022, 

2023b, c). 

𝑅2 = 1 −
∑ (𝑦𝑗 − 𝑦𝑖)

2𝑁
𝑖=1

∑ (𝑦𝑗 − �̅�)
2𝑁

𝑖=1

 (3-6) 
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𝑅𝑀𝑆𝐸 = √∑ (𝑦𝑗 − 𝑦𝑖)
2𝑁

𝑖=1

𝑁
 (3-7) 

𝑀𝐴𝐸 =
∑ |𝑦𝑗 − 𝑦𝑖|

𝑁
𝑖=1

𝑁
 (3-8) 

where, 𝑁 is the number of samples, 𝑦𝑗 is the actual value, 𝑦𝑖 is the predicted value, and �̅� is the 

mean of the predicted values. A model with a higher R2  and lower RMSE and MAE error values 

is considered to be accurate when compared with ML models with higher errors and lower R2 (Min 

et al. 2023).  

3.2.7. Interpretation of the model by SHAP analysis 

The SHAP analysis was originally developed by Lundberg and Lee (2017). It utilizes a game 

theory approach where each input feature is considered a player in a game and the prediction is 

the result of that game. The SHAP analysis computes the effect of including an individual feature 

on the model prediction as its marginal contribution to the model. This value is determined by 

comparing the prediction difference of two models: one built with the relevant feature included 

and another built without it. Since the effect of excluding a feature 𝑖 is dependent upon other 

features of the model, the marginal contribution of 𝑖 is calculated for all possible subsets 𝑆 ⊆

𝐹\{𝑖}, where F is the set of all input features. The final SHAP values are calculated as weighted 

averages of all the marginal contributions, according to Equation 3-9.  

∅𝑖 = ∑
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
[𝑓𝑆∪{𝑖}(𝑥𝑠∪{𝑖}) − 𝑓𝑠(𝑥𝑠)]

𝑆⊆𝐹\{𝑖}

 (3-9) 

where,  ∅𝑖 is the SHAP value of 𝑖th feature, 𝑆 is all feature subsets, F is the set of all input features, 

𝑓𝑆∪{𝑖} is the model trained excluding the 𝑖th feature, 𝑓𝑠 is the model trained including the 𝑖th feature, 
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𝑥𝑠 is the value of input features in the set S, and 𝑥𝑠∪{𝑖} is the value of input features without the 𝑖th 

feature.  

Although some feature selection methods (i.e., MI and LASSO) and the ensemble models 

employed in this study can be used for establishing feature ranking, SHAP analysis was preferably 

used due to several reasons. First, it offers consistency compared to other methods, meaning that 

if two different models produce identical predictions for a given instance, the SHAP method 

assigns the same feature importance ranking for the two models (Zhao et al. 2023). Second, the 

SHAP method calculates the impact of each feature on the prediction for every instance in the 

dataset (Feng et al. 2021). This high-level granularity improves the accuracy of results as it allows 

for a more detailed understanding of the relationships between input features and output. The 

SHAP values computed for each individual prediction can be subjected to an absolute value 

transformation, followed by averaging across corresponding input features. The resulting mean 

absolute SHAP value attributed to each input feature serves as the basis to establish feature 

importance ranking (Feng et al. 2021).  

3.3. Results and discussion 

3.3.1. Feature selection results 

Three feature selection methods: RFE, MI and LASSO were employed on the same training dataset 

to identify the optimal subset of input features to construct the ML models. Compared to other 

feature selection methods (i.e., MI and LASSO) that provide a fixed subset of selected features, 

the results of the RFE algorithm depend on the selected estimator (i.e., type of regression 

algorithm) (Liu et al. 2022). Consequently, the optimal subset selected by the RFE method can be 

different from model to model. 
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Figure 3.3 Selection of the optimum number of input features by RFE 

Figure 3.3 illustrates the behavior of the average RMSE value based on a 10-fold CV (represented 

as blue dots), with the number of input features based on the RFE method. The optimal number of 

input features could be determined by locating the point in the plot where the RMSE was a 

minimum. This point was marked on the graph with a red dashed line. The ideal number of features 

selected by the RFE method was 11 when using GBR and LGBR as estimators. The only excluded 

feature was the type of superplasticizer. In contrast, when using XGBR and RF as estimators, the 
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RMSE value increased with the removal of input features. This observation suggests that the 

original set of input features remains optimal if XGBR and RF are used as estimators.  

In the MI method, the input features: type of test, and retarder dosage were assigned with notably 

lower MI scores of 0.1 and 0.06, respectively, when compared with the other input features Figure 

3.4. Therefore, the optimal subset derived from the MI method included only 10 input features. 

Liu et al. (2022) adopted the same strategy when using MI to identify the optimal number of 

features to estimate the energy consumption of buildings.  

 

Figure 3.4 MI scores of input features 

Unlike the MI method, the LASSO method assigns a value of zero to the absolute regression 

coefficient for insignificant features, making it a straightforward process to identify important 

features (Liu et al. 2022). Superplasticizer dosage was the only input feature discarded by the 

LASSO method, with an absolute regression coefficient of zero (Figure 3.5). Consequently, the 

optimal number of input features selected by the LASSO algorithm was 11. 



66 

 

 

 

Figure 3.5 Absolute regression coefficients of the LASSO method 

3.3.2. Selection of the best ML model based on feature selection 

Four different ML models: GBR, XGBR, LGBR, and RF were constructed using the original 

training dataset as well as additional datasets modified based on the findings in Section 3.3.1. In 

addition, each model was optimized for prediction performance using the sequential-model-based 

optimization hyperparameter tuning method (Head et al. 2018). The prediction performance of 

each ML model on the testing data in terms of performance evaluation metrics and computational 

time are summarized in Table 3.3. The term Null is used to denote the absence usage of any feature 

selection method. 
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Table 3.3 Performance of ML models on test data based on different feature selection 

methods 

 

Algorithm Feature 

selection 

method 

Number of 

selected 

features 

R2 RMSE 

(MPa) 

MAE 

(MPa) 

Computational 

Time (s) 

GBR 

Null 12 0.93 5.011 3.289 14.55 

MI 10 0.90 6.169 4.286 11.32 

RFE 11 0.93 4.963 3.376 13.98 

LASSO 11 0.94 4.858 3.204 11.87 

XGBR 

Null 12 0.95 4.538 2.954 22.87 

MI 10 0.90 6.292 4.309 18.39 

RFE 12 0.95 4.538 2.954 22.87 

LASSO 11 0.95 4.365 3.087 18.18 

LGBR 

Null 12 0.94 4.908 3.616 16.19 

MI 10 0.90 6.258 4.382 11.70 

RFE 11 0.93 5.100 3.462 12.91 

LASSO 11 0.94 4.878 3.437 12.80 

RF 

Null 12 0.89 6.578 4.832 18.40 

MI 10 0.88 6.681 4.745 16.67 

RFE 12 0.89 6.578 4.832 18.40 

LASSO 11 0.92 5.581 3.886 18.10 



68 

 

According to Table 3.3, the LASSO-GBR model obtained the highest R2 of 0.94, and the smallest 

error values of 4.858 MPa and 3.204 MPa for RMSE and MAE, respectively, by outperforming 

the Null-GBR (0.93, 5.011 MPa, 3.289 MPa), the MI-GBR (0.90, 6.169 MPa, 4.286 MPa) and 

RFE-GBR (0.93, 4.963 MPa, 3.376 MPa) models. Furthermore, the computational time of the 

LASSO-GBR model was 2.68 s and 2.11 s lower than the Null-GBR model and RFE-GBR model, 

respectively, although it was 0.55 higher than the MI-GBR model. Similar observations can be 

made for LASSO-XGBR, LASSO-LGBR, and LASSO-RF models, as they exhibited superior 

prediction performances compared to the other models that utilize the same respective algorithm 

on different datasets. In summary, the results indicate that the optimal dataset suggested by the 

LASSO method contributes to the best performance in all ML algorithms selected in this study. 

The superior performance of the LASSO method can be ascribed to its regularization capability 

which selectively removes only the least important input features by assigning them zero 

coefficients (Otchere et al. 2022). Similar results can be found in the study conducted by  Otchere 

et al. (Otchere et al. 2022) to predict the water saturation level of petroleum reservoirs. In their 

study, the ensemble model built on the dataset selected by the LASSO method achieved the lowest 

errors of 0.0034 and 0.012 for MAE and RMSE, respectively, by outperforming the other models 

built based on the results of filter and wrapper feature selection methods.  

It is important to note that the sequential-model-based optimization method was employed to tune 

all the aforementioned ML models. As a representative set, the best-performing LASSO-ML 

models were selected and their optimal hyperparameters are summarized in Table 3.4.  
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Table 3.4 Optimal hyperparameters of the LASSO-ML models 

ML Model Hyperparameter Optimal value 

LASSO-GBR 

Max depth 5 

Learning rate 0.214801 

Min samples split 8 

Min samples leaf 4 

N estimators 120 

LASSO-XGBR 

Gamma 0.354712 

Max depth 19 

Min child weight 4 

Max delta step 8 

Subsample 0.324964 

Reg lambda 0.419469 

Reg alpha 0.23643 

Eta 0.184414 

N estimators 190 

LASSO-LGBR 

Max depth 14 

Min child weight 10 

Subsample 0.184890 

Reg lambda 1 

Reg alpha 1 
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ML Model Hyperparameter 

 

Optimal value 

LASSO-LGBR 

Learning rate 0.174714 

N estimators 218 

LASSO-RF 

Max depth 10 

Min samples split 2 

Min samples leaf 1 

N estimators 299 

 

 

Figure 3.6 Prediction performance of LASSO-ML models in terms of (a) R2 (b) error metrics 
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Another noteworthy finding from the results is the superior performance of the LASSO-XGBR 

model compared to the other LASSO-based models. Figure 3.6 illustrates the performance of each 

LASSO-ML model on test data in terms of the (a) R2 and (b) RMSE and MAE. Figure 3.6 (a) 

shows that the R2 of the LASSO-XGBR model was 0.01, 0.03, and 0.01 higher than the LASSO-

GBR, LASSO-RF, and LASSO-LGBR models, respectively. The superior performance of the 

LASSO-XGBR was more evident in Figure 3.6 (b) as LASSO-XGBR obtained much lower RMSE 

and MAE errors of 4.365 MPa and 3.087 MPa, respectively, when compared to LASSO-GBR 

(4.858 MPa and 3.196 MPa), LASSO-RF (5.581 MPa and 3.886 MPa), and LASSO-LGBR (4.878 

MPa and 3.437 MPa). The superiority of the LASSO-XGBR model can be attributed to its 

capability to overcome overfitting issues that will increase the performance of the model by 

penalizing complex models through regularization techniques (Zhang et al. 2022b). Several studies 

reported XGBR as the most effective model for the prediction of UCS in various cementitious 

materials. For example, an XGBR model reportedly achieved an R2 value of 0.96 on test data, 

while outperforming LGBR and RF models that only achieved R2 values of 0.93 and 0.91, 

respectively, when predicting the UCS of fly ash slag-based alkali-activated material (Shah et al. 

2022). In addition, the superiority of the XGBR model (i.e., R2 of 0.85 and RMSE of 7.478 MPa) 

over the GBR model (i.e., R2 of 0.83 and RMSE of 7.828 MPa) has also been reported when 

forecasting the UCS of concrete made with recycled concrete aggregates (Tran et al. 2022). The 

LASSO-XGBR model was selected as the best ML model in this study due to its superior 

performance. Its prediction results served as the basis for discussions in Sections 3.3.3 and 3.3.4. 
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3.3.3. Importance of input features 

 

Figure 3.7 SHAP feature importance 

Figure 3.7 shows the SHAP feature importance of different input parameters based on the 

prediction results from the LASSO-XGBR model. A higher mean absolute SHAP score indicates 

a greater influence of an input feature on the UCS. According to Figure 3.7, curing time was the 

most important input feature for the model with a score of 8.29. This can be explained by the 

significant influence of curing time on the number of hydration products formed, which directly 

impacts the strength of the cement (Tao et al. 2023). This result is in agreement with many other 

feature ranking results of ensemble models built to predict the UCS of similar cementitious 

materials: fly ash-based geopolymer (Dong et al. 2023), cement-based grouting material (Zhao et 

al. 2023) and calcium-based geopolymer (Huo et al. 2022).  
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The w/c ratio emerged as the second most significant factor, with a score of 7.01. This finding can 

be explained by the strong correlation between water content and total porosity of CSA cements, 

that affect the UCS (Ke et al. 2021). Generally, the porosity of cement paste increases significantly 

with the increase of w/c ratio, ultimately causing a notable decrease in the UCS of cement-based 

materials (Burris and Kurtis 2022). Interestingly, Ke et al. (2021) also reported a more pronounced 

impact of the w/c ratio on the porosity of CSA cement compared to that on OPC cement, when 

both were evaluated under the same w/c ratio. In their study, when the same w/c ratio was used, 

the total porosity of the CSA cement paste was 1.13 times higher than that of the OPC. 

Furthermore, when compared to the studies on alkali-activated material (Shah et al. 2022) and 

geopolymers (Huo et al. 2022), the feature importance of the w/c ratio was lower than that observed 

in this study. Therefore, the addition of water to CSA cement mixtures should be exercised with 

great caution, particularly when compared to other analogous materials.  

 he belite and ye’elimite contents were ranked as the third and fourth most influential input 

features with scores of 3.45 and 2.55, respectively. The high SHAP values of these two features 

were observed because ye’elimite and belite are the main two composites in CSA cement, which 

account for about 70 to 80% of the mass of CSA cement (Tao et al. 2023). Ye’elimite and belite 

are also the most important composites in CSA cement, as they hydrate with water at early ages 

and later ages, dominating strength development at early ages and later ages, respectively (Huang 

et al. 2022a). In contrast, calcium sulfate content had a lesser effect on the model with a lower 

ranking score of  .8 .  his can be ascribed to the capability of ye’elimite to react with free water 

to produce monosulfoaluminate in the absence of calcium sulfate, contributing to the strength 

development of CSA cement mixtures (Huang et al. 2020).  
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Retarder dosage and type of retarder were ranked closely with scores of 2 and 1.92, respectively. 

These findings suggest that both the dosage of retarder and the specific retarding mechanism it 

employs across different retarder types equally impact the strength development of CSA cement. 

Some of these mechanisms are, suppressing the precipitation of ettringite, binding calcium ions 

which reduce the rate of hydration reaction, and formation of ulexite in the presence of borax to 

cover ye’elimite surface which hinders the growth of ettringite (Tao et al. 2023). In contrast, the 

impact of the type of superplasticizer was much lower, as it obtained a score of 1.64. Consistently, 

the experimental results revealed that the effect of retarders is much more pronounced when 

compared to superplasticizers. Retarders were seen to affect both early and later age strengths 

significantly whereas only the early age strength was slightly affected by superplasticizers (Zhang 

et al. 2016). This agreement between experimental and data-driven approach further attest to the 

reliability of the presented model.  

The curing temperature was ranked seventh, with a relatively lower score of 1.61 when compared 

with the other features. This can be attributed to the ability of CSA cement to develop strengths 

rapidly, irrespective of the curing temperature (Huang et al. 2021). The type of test and a/c ratio 

were ranked as the features with the lowest influence on the model. This observation can be 

attributed to two plausible explanations. First, the type of test feature was only used to represent 

the universal standard without including the factors which add experimental variability (i.e., 

loading rate, specimen shape, size, specimen preparation methods) as separate input features in the 

model. Second, the range of a/c ratio values used in this study was limited, which reduced the 

variability in results.  
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3.3.4. Relationships between input features and UCS 

The SHAP summary plot (Figure 3.8) allows for a detailed qualitative analysis of how each input 

feature affects the output of the LASSO-XGBR model. The y-axis and x-axis represent the input 

features and their corresponding SHAP values (i.e., difference between the average value of all 

predictions and the prediction for a specific feature in a selected sample), respectively. Each point 

in the Figure 3.8 represents a sample in the collected database and the color of the point depicts 

the value of the selected input feature in that sample. In the color bar, the red color symbolizes 

larger values while the smaller values are represented in blue color. In addition, the position of a 

particular point in the x-axis is linked to the outcome of the target variable (i.e., UCS of the CSA 

cement). The vertical line at a value of zero SHAP value corresponds to the average value of the 

UCS predictions by the model. Consequently, a negative SHAP value suggests that the feature 

value contributes to a prediction that is lower than the average, while a positive SHAP value 

expresses the opposite.  

In addition to the SHAP summary plot, the individual feature dependence plots depicted in Figure 

3.9 were used to analyze the relationships quantitatively. The horizontal red dashed line represents 

the average UCS prediction whereas red circles indicate specific locations where a noticeable 

change in trend is observed (for numerical input features). It is important to note that the features: 

type of test and a/c ratio were excluded from this extended analysis as their collective influence 

(i.e., a score of 1.52) was even lower than the individual influence of the lowest ranked feature 

(i.e., a score of 1.61), as shown in Figure 3.7. The detailed discussion in Sections 3.3.4.1, 3.3.4.3, 

and 3.3.4.2 are based on Figure 3.8 and Figure 3.9. 
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Figure 3.8 SHAP summary plot 
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Figure 3.9 SHAP individual feature dependence plots (a) ye’elimite content (b) belite content (c) 

calcium sulfate content (d) w/c ratio (e) retarder dosage (f) type of retarder (1-7 represent  

molasses, sodium gluconate, a mixture of citric acid and borax, tartaric acid, borax, citric acid, 

and vitamin-C, respectively) (g) type of superplasticizer (1-4 represent polycarboxylate acid, β-
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naphthalenelfonic acid, aminosulfonic acid, and powder naphthalene, respectively) (h) curing 

time (i) curing temperature 

3.3.4.1. The effect of mineral composition  

The findings depicted in Figure 3.9 shows that the presence of excessively high or low belite 

contents in CSA cement adversely affects the resulting strengths. Conversely, higher ye’elimite 

contents contribute to strengths higher than the average, while lower ye'elimite content leads to 

lower strengths. Above observations can be attributed to the less reactivity of belite when 

compared with ye’elimite (Huang et al. 2020). Notably, the hydration reactions can be slowed 

down under exceedingly high belite and insufficient ye’elimite contents, particularly at early ages, 

thus impeding the strength development. However, it is important to note that a sufficient amount 

of belite is still necessary to ensure continued strength development of CSA cement at later stages 

(Tao et al. 2023). In addition, the results show that CSA cement with excessive amounts of calcium 

sulfate produces mixtures with strengths lower than the average. This phenomenon can be 

explained by the deficiency of ye’elimite in CSA cement with excessive calcium sulfate. Figure 

3.9 (a), (b), and (c) follows the same trends observed in Figure 3.8. It shows that CSA cement with 

mineral composition: ye'elimite content exceeding 50%, belite content ranging from 26% to 42%, 

and calcium sulfate content below 18% achieve UCS values higher than the average. However, 

the practical application of such CSA cement with very high ye’elimite content would be limited 

due to the high price of raw materials, particularly bauxite (Pimraksa and Chindaprasirt 2018).  

3.3.4.2. The effect of curing conditions  

According to the SHAP summary plot results, the UCS of CSA cement can be improved by 

increasing the curing time, as higher curing times corresponded to higher SHAP values. Although 

it can be seen that a majority of samples subjected to shorter curing times have UCS values that 
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are lower than the average, another significant portion of such samples could be found to have 

strengths that exceed the average. This can be attributed to the ability of CSA cement mixtures to 

attain a very high percentage of the ultimate strength at very early stages such as 24 h. For example, 

Burris and Kurtis (2022) reported that over 75% of the ultimate strength could be achieved within 

24 h in the tested CSA cement. Results depicted in Figure 3.9 (h) are consistent as the observed 

positive SHAP values plateaued after 176 hr (i.e., 7 days) of curing time. In addition, higher than 

the average UCS values are exhibited in samples cured for longer periods. This can be attributed 

to the ability of CSA cement to develop strength over time as the available belite usually reacts at 

later stages to produce more hydration products (Huang et al. 2022a).  

The relationship between curing temperature and the UCS of the CSA cement is plotted in Figure 

3.9 (i). It shows that the SHAP values of different temperatures are in a small range of -6 to 7. This 

means the temperatures does not make a great influence on the UCS of CSA cement-based 

mixtures. The potential reason for this observation might be that CSA cement can react fast with 

water at different temperatures (Huang et al. 2019; Wang et al. 2017). 

3.3.4.3. The effect of material proportioning features and admixtures 

The w/c ratio showed a negative correlation with the UCS, as samples with higher w/c ratios 

contributed to lower SHAP values that reduce the UCS of the samples. This can be ascribed to the 

increased formation of pores in CSA mixtures with excessive water contents, upon drying (Ke et 

al. 2021). According to Figure 3.9 (d), w/c ratios greater than 0.4 lead to a CSA cement mixture 

with a strength lower than the average.  

In addition, Figure 3.8 depicts that higher retarder dosages correspond to UCS values lower than 

the average. In contrast, CSA mixtures achieved strengths higher than the average in the absence 
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of any retarder addition (i.e., a dosage of 0%). These observations can be mainly ascribed to the 

retarding effect on the hydration reaction and strength development at early ages and the changes 

in morphology and microstructure of hydration products in cement pastes when higher dosages of 

retarders are used (Huang et al. 2022a). Figure 3.9 (e) shows that the usage of retarder dosages of 

over 0.6% produces CSA cement mixtures with strengths lower than the average.  

Figure 3.9 (f) provides some insightful observations regarding the influence of different retarders 

on the USC of CSA cement-based samples. Figure 3.9 (f) shows that the SHAP values of molasses 

(#1), sodium gluconate (#2), and Vitamin C (#7) are mostly lower than 0, meaning that these 

retarders have a higher chance to degrade the mechanical strength of CSA cement-based mixtures. 

When selecting a retarder for CSA cement, it would be wise not to select these retarders. 

Comparatively, the SHAP values of a mixture of citric acid and borax (#3), tartaric acid (#4), and 

borax (#5) are mostly higher than 0. This observation indicates that the retarders (#3 to #5) have 

the least detrimental effect on strength and selecting them instead has a higher chance of improving 

the mechanical performance of CSA cement-based mixtures. However, it is important to note that 

the evaluation of retarders should not be solely based on their influence on UCS. For example, 

Huang et al. (2022b) reported that borax only extended the setting time of a CSA cement from five 

minutes to 11.5 minutes at a dosage of 2% of cement mass, which means borax may not an 

effective retarder for some CSA cement. Therefore, when selecting a retarder, the influence of 

retarders on setting times should also be taken into consideration, as setting time extension is the 

primary purpose of the addition of a retarder. 

Figure 3.9 (g) presents the SHAP values of different superplasticizers. It shows that the SHAP 

values of different superplasticizers are in a range from -2.5 to 10, which means addition of 

superplasticizers does not pose an obvious negative effect on the UCS of CSA cement-based 
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mixtures. This is because the w/c ratio is reduced when superplasticizers are added as an 

admixture, promising a lower porosity and a higher UCS (Ke and Zhang 2020; Zhang et al. 2016). 

Figure 3.9 (g) also show that the SHAP values of β-naphthalenelfonic acid (#2), aminosulfonic 

acid (#3), and powder naphthalene (#4) are higher than polycarboxylate acid (#1). This can be 

explained by the slight retarding effect of superplasticizers, which is more prominent in (#1), than 

in (#2 to #4) (Zhang et al. 2016). Although the influence on UCS is an important factor when 

selecting a superplasticizer, the ability of a superplasticizer to improve the workability of CSA 

cement is the dominant factor deciding its suitability for a particular application (Tambara Júnior 

et al. 2023).   

3.4. Conclusions 

This study is the first to employ ensemble machine learning (ML) methods to forecast the 

unconfined compressive strength (UCS) of calcium sulfoaluminate (CSA) cement mixtures. 

Additionally, the SHapely Additive exPlanations (SHAP) analysis allowed for interpreting the 

relationships between input features and UCS. The following conclusions are drawn from this 

study.  

1) LASSO was the best feature selection method that could consistently improve the performance 

of all ML algorithms for predicting the UCS of CSA cement-based mixtures. From the 

LASSO-based models, the LASSO-XGBR model was selected as the best model as it 

outperformed the others with the highest R2 of 0.95 and lowest errors (e.g., an MAE of 3.087 

MPa).  

2) The overall feature importance ranking based on mean absolute SHAP value can be presented 

as: curing time (8.29) > w/c ratio (7.0 ) > belite content (3.4 ) > ye’elimite content (2.  ) > 
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retarder dosage (2) > type of retarder (1.92) > calcium sulfate content (1.81) > type of 

superplasticizer (1.64) > curing temperature (1.61). The overall feature importance ranking 

will assist engineers to make educated decisions about the prioritization of input features to 

achieve a desired strength of a CSA cement mixture.  

3) Higher ye’elimite content contributed to UCS values higher than the average, whereas the 

presence of higher calcium sulfate content reduced the strengths below the average in CSA 

cement mixtures. Regardless of whether the curing temperature was increased or decreased, it 

had a minimal impact on the UCS. Mixture of citric acid and borax, tartaric acid, and borax 

were identified as the retarders that exhibited the least detrimental effects on the UCS. 

Compared with retarders, superplasticizers barely had a negative effect on the UCS. This 

information will assist engineers to make well-informed decisions about the appropriate levels 

and types of input features necessary to attain a desired strength of a CSA cement mixture. 

4) In summary, this study developed an accurate ML model for predicting the UCS of CSA 

cement mixtures. This work may serve as the basis for the efficient design and development of 

CSA cement mixtures, as it paves the way for rapid UCS predictions and meaningful 

interpretations.  
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Chapter 4. Conclusions and key contributions 

4.1. Conclusions 

This work is the first to develop machine learning (ML) techniques for predicting the unconfined 

compressive strength (UCS) of alkali-activated cemented paste backfill (AAS-based CPB) and 

calcium sulfoaluminate cement (CSA)-based mixtures. The following conclusions are drawn from 

this study.  

(1) Non-linear ensemble boosting ML models outperformed the other single learning ML models. 

The least absolute shrinkage and selection operator-based extreme gradient boosting (LASSO-

XGBR) model achieved the best accuracy of 95% for predicting the UCS of CSA cement 

mixtures, with the least errors of 4.365 MPa and 3.087 MPa for root mean squared error 

(RMSE) and mean absolute error (MAE), respectively. In addition, the gradient boosting 

regression (GBR) was the best model for predicting the UCS of AAS-based CPB, with the 

highest recorded accuracy of 96.7% and the lowest errors of 0.237 MPa and 0.162 MPa for 

RMSE and MAE, respectively.  

(2) The LASSO feature selection method consistently improved the accuracies and reduced the 

computational times of all the ML models employed to predict the UCS of CSA cement 

mixtures. The LASSO-XGBR model was 4.69 s faster than the base XGBR model. In addition, 

the error values were 0.173 MPa and 0.133 MPa lower than the base XGBR model in the 

LASSO-XGBR model for RMSE and MAE, respectively.  

(3) The curing time, water-to-cement (w/c) ratio, belite content, ye’elimite content, retarder dosage 

and type of retarder were the most influential input features for the UCS prediction model in 

CSA cement mixtures. Likewise, curing time, w/c ratio, liquid-to-solid ratio, silicate modulus 
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of the activator and Na2O content of the binder could be identified as the features with the 

highest influence on the UCS of AAS-based CPB mixtures.  

(4) According to the Shapely-Additive exPlanations (SHAP), the ye’elimite content is positively 

correlated with the UCS of CSA cement, whereas the calcium sulfate content is negatively 

correlated. In addition, the SHAP results revealed that the samples cured for longer curing 

times contributed to higher UCS values. Conversely, increased w/c ratios and retarder dosages 

showed a negative impact on the UCS.  

4.2. Key contributions 

The findings of this work will be beneficial for the efficient development of sustainable 

cementitious materials for application in the mining industry. The key contributions of this study 

are listed as follows: 

(1) For the first time, meaningful and diversified datasets representing experimental studies 

performed worldwide, in relation to the AAS-based CPB and CSA cement-based mixtures 

were assembled from the literature. These datasets will enhance the knowledge of the 

engineering community by facilitating the options of results validation, comparison and 

identification of patterns.  

(2) This study is the first to apply ML methods for AAS-based CPB and CSA cement-based 

mixtures, which allowed rapid and accurate predictions of the UCS. The models comprise 

multiple input features that enable the opportunity to explore different scenarios by 

manipulating input features, without the need for conducting resource-intensive physical 

experiments.  

(3) Previously unexplored territory of feature importance ranking for both AAS-based CPB and 

CSA cement-based mixtures, was investigated in this work. This new information will assist 
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engineers in making well-informed decisions regarding the manipulation of input features by 

enabling them to prioritize specific features to achieve the desired strength of the mixtures. 

(4) Overall, this work may promote the production and application of sustainable AAS-based CPB 

and CSA cement-based mixtures by guiding their mixture designs with accurate and rapid UCS 

predictions and an improved understanding of the complex relationships. The findings of this 

study will ultimately contribute to the sustainability goal of net zero emissions in the mining 

industry through increased usage of these mixtures for mining applications due to their ML-

based efficient development.   

 

  



86 

 

Chapter 5. Limitations and future work 

The 307 groups of data collected in the first investigation (Chapter 2) from the literature review 

were limited to nine different experimental schemes. To further generalize the prediction model, 

more data will be collected from the continuously updated literature in future work. In addition, 

out of the nine studies used for data extraction, only two studies (Jiang et al. 2019; Jiang et al. 

2022a) could be found to have considered the curing temperature as a design parameter. 

Consequently, curing temperature was not selected as an input parameter in the prediction model 

due to the limited data availability. However, according to the studies of Jiang et al. (2019) and 

Jiang et al. (2022a), curing temperature has a pronounced effect on the UCS, coupled with the 

alkali-activator concentration and type of the activator. In addition, the influence of the same 

coupled effect on the rheological properties of AAS-based CPB has also been investigated and 

proved (Jiang et al. 2022b). Therefore, more data must be collected from future studies which 

would consider curing temperature in experimental designs. Then, curing temperature could be 

added as an input parameter in the future to improve the prediction model. Pore fluid chemistry 

properties (i.e., concentration of different ions and pH level) have also been identified as crucial 

parameters which define the strength development of AAS-based CPB (Jiang et al. 2022a; Jiang 

et al. 2022b). However, due to the limited data availability, pore fluid chemistry parameters were 

not considered input parameters in this study. The models could be further improved in the future 

with the addition of these parameters and relevant data. Likewise, in the second investigation 

(Chapter 3), the dataset was only limited to 723 data points. However, for generalization purposes 

of the models, more data will be collected from regularly updated literature in the future. 

Specifically, to observe more distinct relationships between curing temperature, a/c ratio, and UCS 
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of CSA cement-based mixtures, it would be necessary to collect a larger number of data points 

with a broader range of values for these features. 

It is also important to note that the UCS values utilized in this study represent average values 

obtained after conducting multiple tests, typically a minimum of three iterations, to ensure 

accuracy and reliability. While this approach is common practice in experimental research, it 

introduces a layer of variability into the dataset. As part of future improvements, the error 

associated with the averaged UCS values can be incorporated to the datasets as an additional input 

feature. This approach can potentially lead to more robust models capable of accounting for 

variability and providing more accurate predictions. 

Moreover, this study was limited to applying the sequential-model-based optimization method and 

random search method to tune the hyperparameters of ML models. However, various other 

hyperparameter tuning methods, namely, genetic algorithm (GA) (Qi et al. 2018a), particle swarm 

optimization (PSO) (Qi et al. 2018b), whale optimization algorithm (WOA) (Xi et al. 2023) have 

been used to improve the performance of ML models. Therefore, a comparative study between 

these methods would be beneficial to identify the best-suited optimization method.  

In addition, although UCS is an essential characteristic measure of any CSA cement, other 

properties such as setting time, workability, and density should also be considered for a practical 

application (Tao et al. 2023). Similarly, for AAS-based CPB, the nonlinear relationships between 

other critical characteristic parameters and their influencing variables are still not clear, such as 

workability (Ercikdi et al. 2013), yield stress (Kou et al. 2020) and Young's modulus (Kou et al. 

2020). Therefore, more efforts will be needed to investigate the relationships between these 

properties and input features using data-driven methods in the future.  
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Mixture design optimization (Sadrossadat et al. 2020) work can also be carried out on the 

prediction models using different optimization methods (i.e., PSO, GA and BO) to obtain optimum 

values of input parameters which will maximize the UCS of these cementitious mixtures. As the 

mining industry embraces sustainable cementitious materials like AAS-based CPB and CSA 

cement, it is essential to conduct a cost-benefit analysis to assess economic feasibility of their 

application. Challenges related to sourcing materials, as well as logistical concerns (i.e., 

transportation and storage) must be addressed. More complex ML models could be introduced for 

these optimization problems by considering the performance of cements, overall cost (i.e., direct, 

indirect and fixed costs), availability of material and the percentage of CO2 reduction. Finally, the 

cost-benefit analysis will help mining companies make informed decisions, optimize operations, 

and align with the industry's sustainability goals, contributing to both environmental and economic 

benefits. 
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