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analysed by qRT‒PCR using PrimeTime Gene Expression Master Mix (IDT, Newark, NJ, USA)



(IDT). The results are presented as the ΔCT relative to the GAPDH level as previous studies with 
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histamine (0.1 μM – 1000 μM) or 

were stimulated by histamine (10 μM, 100 μM, or 1000 
μM) LPS (1 μg/mL), or left untreated for 24 h

way ANOVA and Dunnett’s multiple comparison post
. p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***), p ≤ 0.0001 (****). 
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HMC3 cells were treated with 100 μM of histamine, HTMT (an HRH1 
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way ANOVA with Tukey’s post hoc analysis ≤ 0.01 (**), ≤ 0.0001 



stimulating them with 100 μM histamine

μM of histamine receptor antagonists. We used clemastine, ranitidine, 

JNJ-5207852, and JNJ-7777120 to block HRH1, HRH2, HRH3, and HRH4, respectively. Using a 

hemacytometer, we indicated that HMC3 cells treated with 50 or 100 μM of each of these 

compounds did not significantly alter their cellular viability (Supplementary 3.7A-C) or 

proliferation (Supplementary 3.7E-G), whereas 500 μM significantly decreased both viability 

(Supplementary 3.7D) and cell proliferation (Supplementary 3.7H).

μM histamine receptor antagonis treatments and 24 hours of 100 μM histamine



Histamine acts via the HRH2 receptor to upregulate surface PrPC expression. 
HMC3 cells were treated with 100 μM (A) clemastine (an HRH1 antagonist), (B) ranitidine (an 
HRH2 antagonist), (C) JNJ-5207852 (an HRH3 antagonist), or (D) JNJ-7777120 (an HRH4 
antagonist) for 1 h, and then treated with 100 μM histamine for 24 hours, after which PrPC 
expression was measured by flow cytometry. Statistical significance was calculated using one-way 
ANOVA with Tukey’s post hoc analysis, p ≤ 0.01 (**), p ≤ 0.001 (***), p ≤ 0.0001 (****). (N=4).
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