
Lightweight AIP Structure and Workflow
Draft 2017-04-24 pbinkley

Demo script
https://gist.github.com/pbinkley/060ed60fb580c8c26324d07048ea1518

Populating the AIP
A lightweight AIP will contain three directories: object, thumbnail, and logs. Metadata is
stored in object/metadata. This structure is modelled on Archivematica’s AIP structure.

This describes an AIP for an ERA item, drawn from a Fedora object. For these items, all of
these files are required.

● Metadata: normally an rdf dump of the related Fedora objects. May include other
structured metadata when available. Files:

○ Main Fedora object as ​objects/metadata/object_metadata.n3​ (from
$FEDORA_URL/rest/prod/$FEDORA_PATH)

https://gist.github.com/pbinkley/060ed60fb580c8c26324d07048ea1518

○ Datastream metadata as ​objects/metadata/content_fcr_metadata.n3 ​(from
$FEDORA_OBJECT/content/fcr:metadata)

○ Content versions as ​objects/metadata/content_versions.n3 ​(from objects,
discovered by Solr query)$FEDORA_OBJECT/content/fcr:versions)

○ Permissions as ​objects/metadata/permission_<uuid>.n3 (​from permission
● Datastreams: normally the file associated with an ERA object (in current pre-PCDM

HydraNorth, where an item can have only one file). May include arbitrary subdirectory
structure if required by the content (e.g. for non-ERA digitized items) File:

○ Content datastream (e.g. PDF) as ​objects/<filename> ​(from
$FEDORA_OBJECT/content, saved with the filename from
<model:downloadFilename> in object_metadata.n3)

○ Thumbnail datastream as ​thumbnails/thumbnail ​(from
$FEDORA_OBJECT/thumbnail)

● Logs: any logs from the creation of the AIP
○ Characterization (PREMIS) as ​logs/content_characterization.xml ​(from

$FEDORA_OBJECT/characterization)
○ Fedora fixity report: ​logs/content_fixity_report.n3 ​(from

$FEDORA_OBJECT/content/fcr:fixity)
○ Log of creation process: ​logs/aipcreation.log ​(stdout from ingest script)

A typical AIP will therefore look like this:

● ./logs
○ /aipcreation.log
○ /content_characterization.xml
○ /content_fixity_report.n3

● ./objects
○ /metadata

■ /content_fcr_metadata.n3
■ /content_versions.n3
■ /object_metadata.n3
■ /permission_93195c08-4770-4f46-80d9-b03321086b7d.n3
■ /permission_a135db45-600f-4bdc-8f6c-568e4084c736.n3
■ /permission_e0cc8677-ed61-42ce-9491-8906a9a532dc.n3

○ /NSERC Roundtable Talk - Dr. Funk.pdf
● ./thumbnails

○ /thumbnail

For non-Fedora objects, the same structure is used but the only required file is the content
file in the objects directory, and a metadata file in objects/metadata; other files may or may
not be present, and may or may not be in n3 format. (We will establish the rules in
consultation with the Metadata Team as we move beyond the ERA content).

Packaging
This content will be bagged, producing a Bagit manifest and other artifacts. The contents of
the AIP will end up in the “data” directory of the bag. The bag directory will be tarred
(uncompressed) and pushed into Swift using Swift’s REST API. The bag file will be named
“aip.tar”. A checksum for the bag file will be generated and used to validate the upload Swift
if possible, or we’ll calculate a checksum on the fly as the tar is uploaded and compare it
with Swift’s checksum at the end.

Ingest to Swift
Swift container: “ERA”
Swift path: <NOID>

The identifier in Swift will normally be the NOID generated in ERA. It may be some other
identifier for non-ERA content (an identifier used in that project, or a UUID if nothing else is
available). Swift X-Object-Meta name-value pairs will be populated:

● project: normally “ERA” (this may become redundant if we always use a container per
project, but we haven’t determined that yet)

● Project_id: (i.e. the id of this object within the project) - normally the NOID
● promise: a label for the level of preservation promised

○ This will ultimately cover various levels of preservation as defined in the UAL
Digital Preservation Plan (gold, silver, bronze). For lightweight AIPS this will
always be “bronze”.

● retention: (optional) a timestamp indicating when some action expressed by the
promise will be taken

○ Not applicable to ERA content, but for other content we might use it to trigger
a review after 10 years etc.

● depositor: (optional) name of a non-UAL depositor
● AIPversion: 1.0

The Swift container will have versioning enabled, so that all versions of the object are
preserved. The consequences for storage usage will be evaluated after we’ve populated
Swift, and we may institute policies for version retention.

Return flow of information (Swift to Fedora):
After ingest into Swift, we will capture information about the Swift object (using Swift’s API)
and store it in the ERA Fedora object (using Fedora’s API). This information should be
stored in a way that meshes with Fedora’s audit trail (determining the appropriate place to
store these properties and the property names is a TODO). This information would include:

● Swift path
● Ingest timestamp

● Swift checksum (object level, i.e. for the tar)

Validation Scenarios
● Pre-fetch

○ Validate fixity using Fedora API ($FEDORA_OBJECT/content/fcr:fixity)
○ if this fails, the object is already corrupt in Fedora, so it should not be ingested

until the problem has been resolved
● Pre-bag (after the content has been gathered)

○ Validate checksums for datastreams against checksums in the Fedora
metadata and in the characterization datastream (i.e. the FITS output)

■ characterization: /fits/fileinfo/md5checksum
■ content_fcr_metadata: <.../content> fedora:digest <urn:sha1:xxxxx>

○ If this fails, the object was corrupted in the retrieval process (and may have
been corrupt in Fedora). Do not ingest, resolve manually for now.

● Post-bag
○ Validate the bag
○ If this fails, the bagging process corrupted the object. Resolve manually for

now.
● On Swift ingest

○ Provide the bag-level checksum with the PUT into Swift, so that Swift will
reject it if it doesn’t match

○ If this fails, either Swift had a problem or the calculated checksum was
corrupt. Resolve manually for now.

● Periodic Post-ingest Audit
○ Verify the bag-level checksum stored in Fedora against the Swift object
○ Extract the Swift object and validate the bag
○ Verify Fedora’s datastream checksums against the extracted checksums

Light-weight AIP Creation
(This is partially obsolete but kept for reference)

Micro-Service Description

Initiate Transfer Once the transfer folder has all the its digital objects and has been
formatted for processing, a user or “system” initiates the AIP creation
process

Verify transfer Verifies that the transfer conforms to the folder structure required for
processing. The structure should be ...

Validate
Integrity

Validate fixity using Fedora API. Validate checksums for datastreams
against checksums in the Fedora metadata and in the characterization
datastream

Assign NOID Assign a unique NOID to the folder (if necessary)

Extract
Packages

Extracts objects from any zipped files or other packages

Scan for Viruses
(not applicable
to ERA)

Uses an anti-virus software to scan for viruses, if found move the
package to

Characterize
and extract
metadata

Identifies and validates formats and extracts object metadata using the
File Information Tool Set (FITS). Adds output to the PREMIS metadata.

Add rights
statement

Add rights statement to the PREMIS

Assign
checksums and
filesizes

assign md5, sha1 and sha2 to each file in the submission.

Prepare AIP Packages the SIP into an AIP using BagIt

Compress AIP Losslessly compresses the AIP for storage

