

National Library of Canada

Acquisitions and Bibliographic Services Branch

395 Wellington Street Ottawa, Ontario K1A 0N4 Bibliothèque nationale du Canada

Direction des acquisitions et des services bibliographiques

395, rue Wellington Ottawa (Ontario) K1A 0N4

Your No. Votre reference

Our Me - Notre reference

AVIS

NOTICE

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and subsequent amendments. La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30, et ses amendements subséquents.

Canadä

UNIVERSITY OF ALBERTA

ANALYSIS OF RESIDENCE TIME DISTRIBUTIONS IN WATER TREATMENT PROCESSES AS RELATED TO THE CT CONCEPT

BY

LEONARDUS E. LIEM

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE.

IN

ENVIRONMENTAL ENGINEERING

DEPARTMENT OF CIVIL ENGINEERING

EDMONTON, ALBERTA FALL, 1994

National Library of Canada Bibliothèque nationale du Canada

Direction des acquisitions et

des services bibliographiques

Acquisitions and Bibliographic Services Branch

395 Wellington Street Ottawa, Ontario K1A 0N4 395, rue Wellington Ottawa (Ontario) K1A 0N4

Your file. Volte merence

Our rile - Notre reference

The author has granted an irrevocable non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

L'auteur a accordé une licence irrévocable et non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without his/her permission.

Canadä

L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

ISBN 0-315-95068-4

Name <u>LECIVARDUS</u> <u>EDUIN</u> <u>LIEN</u> Dissertation Abstracts International is arranged by broad, general subject categories. Please select the one subject which most nearly describes the content of your dissertation. Enter the corresponding four-digit code in the spaces provided.

ENGINEERING - CIVIL

Subject Categories

THE HUMANITIES AND SOCIAL SCIENCES

COMMUNICATIONS AND THE A	
Architecture	.0729
Art History	.0377
Cinema	. 0900
Donce	0378
Fine Arts	
Information Science	0723
Journalism	.0391
Library Science	0399
Mass Communications	
Music	0413
Speech Communication	0459
Theorer	0465

EDUCATION

EDUCATION	
General	0515
Administration Adult and Continuing	0514
Adult and Continuina	0516
Agricultural	0517
Art	0273
Art Bilingual and Multicultural	0282
BUSINESS	0088
Community College	02/5
Curriculum and Instruction .	0727
Early Childhood	0518
Elementary	0524
Finance Guidance and Counseling	
Guidance and Counseling	0519
neqim .	0680
Higher History of	0745
History of	0520
Home Economics	0278
Industrial	0521
Language and Literature	0279
Industrial Language and Literature Mathematics	0280
Music	0522
Philosophy of	0998
Physical	0523
,	

Psychology	0525
Rending	0535
Religious	0527
Sciences	
Secondary Social Sciences	
Social Sciences	0534
Sociology of Special	
Special	0529
Teacher Training	0530
Technology	
Tests and Measurements	
Vocational	0747
LANGUAGE, LITERATURE AN	ND

RATURE AND

LINGUISTICS

General Ancient Linguistics Modern	0289
Literature General Classical Comparative Medieval Modern African American Asian Canadian (English) Canadian (French) English Germanic Latin American Middle Eastern Romance Slavic and East European	0294 0295 0297 0298 0316 0591 0305 0355 0593 0311 0312 0315 0313
sidvic and Easi European	0314

PHILOSOPHY, RELIGION AND	
THEOLOGY Philosophy	0422
Religion General Biblical Studies Clergy History of Philosophy of Theology	0319 0320 0322
SOCIAL SCIENCES American Studies	0323
	0323
Anthropology Archaeology Cultural Physical Business Administration	0324 0326 0327
General Accounting Banking Management Marketing Canadian Studies Economics	0272
General Agricultural Commerce-Business Finance History Labor Theory Folklore Geography Geronto ogy History General	0510

Anciei † Medievul Modern Black African Asia, Australia and Oceanic Canadian European Lotin American Middle Eastern United States History of Science	.0581 .0582 .0328 .0331 .0332 .0334 .0335 .0336 .0333 .0337 .0585
Low	0398
Law Political Science	0/15
General International Law and	0015
Polational Low and	0616
Relations Public Administration	0617
Recreation	0814
Social Work	0452
Sociology	
General	.0626
Criminclogy and Penology Demography Ethnic and Racial Studies	0627
Demography	0936
Ethnic and Kacial Studies	.0631
Individual and Family Studies	0429
Industrial and Labor	0020
Relations	0629
Relations Public and Social Welfare	0630
Social Structure and	
Devel pment Theory and Methods	0700
_ Theory and Methods	0344
Transportation Urban and Regional Planning	0709
Urban and Regional Planning	0999
Women's Studies	0453

THE SCIENCES AND ENGINEERING

BIOLOGICAL SCIENCES Agriculture General Agronomy Animal Culture and Nutrition Animal Pathology Food Science and	0473 0285 0475 0476 0359	Geodesy 0370 Geology 0372 Geophysics 0373 Hydrology 0388 Mineralogy 0411 Paleobatany 0345 Paleoecology 0426 Paleontology 0418 Paleoacology 0418	Sperich Pathology 0460 Tox.cology 0383 Home Economics 0386 PHYSICAL SCIENCES Pure Sciences Chemistry 0485	Engineering General 0537 Aerospace 0538 Agricultural 0539 Automotive 0540 Biomadical 0541 Chemical 0542 Civil 0543
Technology Forestry and Wildlife Plant Culture Plant Pathology Plant Physiology Range Management	0478 0479 0480 0817 0777	Paleozoológy 0985 Palynology 0427 Physical Geography 0368 Physical Oceanography 0415 HEALTH AND ENVIRONMENTAL	Biochemistry 0487 Inorganic 0488 Nuclear 0738	Electronics and Electrical 0544 Heat and Thermodynamics 0348 Hydraulic 0545 Industrial 0546 Marine 0547 Materials Science 0794
Wood Technology Biology	0746	SCIENCES Environmental Sciences 0768	Organic 0490 Pharmaceutical 0491	Mechanical 0744 Mechanical 0548 Metallurgy 0743
General Anatomy Biostatistics Botany Cell Ecology Entomology Genetics Limnology Microbiology Molecular Neuroscience Oceonography	0306 0287 0308 0309 0329 0329 0353 0369 0793 0410 0307 0317 0317 0416	Environmental Sciences 0768 Health Sciences 0566 Audiology 0300 Chemotherapy 0992 Dentistry 0567 Education 0350 Hospital Management 0769 Human Development 0758 Immunology 0982 Medicine and Surgery 0564 Mental Health 0347 Nursing 0569	Physical 0494 Polymer 0495 Radiation 0754 Mathematics 0405 Physics 0605 Acoustics 0986 Astronomy and 0406 Astrophysics 0606 Atomic 0748 Electronics and Electricity 0607 Elementary Particles and Hiab Energy Hiab Energy 0798	Mining 0551 Nuclear 0552 Packaging 0549 Petroleum 0765 Sanitary and Municipal 0554 System Science 0.790 Geotechnology 0.428 Operations Research 0796 Plastics Technology 0795 Textile Technology 0994 PSYCHOLOGY 0621
Physiology Radiation Veterinary Science Zoology Biophysics	0433 0821 0778 0472 0786	Obstetrics and Gynecology 0380 Occupational Health and Therapy 0354 Ophthalmology 0381 Pathology 0571	High Energy 0798 Fluid and Plasma 0759 Molecular 0609 Nuclear 0610 Optics 0752 Radiation 0755	Behavioral 0384 Clinical 0622 Developmental 0620 Experimental 0623 Industrial 0624
General Medical	0788 0760	Pharmacology 0419 Pharmacy 0572 Physical Therapy 0382	Solid State	Personality 0625 Physiological 0989 Psychobiology 0349
EARTH SCIENCES Biogeochemistry Geochemistry	0425 0996	Public Health 0573 Radiology 0574 Recreation 0575	Applied Sciences Applied Mechanics 0346 Computer Science 0984	Psychometrics 0632 Social 0451

UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Leonardus E. Liem

TITLE OF THESES: Analysis of Residence Time Distributions in Water Treatment Processes as Related to the CT Concept

DEGREE: Master of Science

YEAR THIS DEGREE GRANTED: 1994

Permission is hereby granted to the University of Alberta Library to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly scientific research purposes only.

The author reserves all other publication and other rights in association with the copyright in the thesis, and except as hereinbefore provided neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material without the author's prior written permission.

Anna-

4242 - 49 St Vegreville, AB T9C - 1B5

September 30, 1994

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommended to the Faculty of Graduate Studies and Research for acceptance, a thesis entitled ANALYSIS OF RESIDENCE TIME DISTRIBUTIONS IN WATER TREATMENT PROCESSES AS RELATED TO THE CT CONCEPT submitted by LEONARDUS E. LIEM in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in ENVIRONMENTAL ENGINEERING.

Chand W 7m

D. W. Smith - Supervisor

S. J. Stanley - Co Supervisor

Beana J. J. Lephard - Committee Member

Date: July 27, 1994.

ABSTRACT

The assessment of the disinfection practice in water treatment has moved away from total reliance on the analysis of microbial contaminants in the finished water to the incorporation of disinfection kinetics concept to determine the adequacy of the disinfection process. The movement is highlighted by the promulgation of the Surface Water Treatment Rule (SWTR) in 1989 in the United States. Among other things, the SWTR requires the assessment of disinfection process based on the CT concept (disinfectant concentration multiplied by effective contact time). For the effective contact time, the t_{10} (time for 10% of the water to pass through the process) is stipulated by the SWTR. In most cases, the t_{10} must be determined through tracer tests.

The primary objective of this study is to determine the hydraulic characteristics of various treatment components of the E. L. Smith Water Treatment Plant in Edmonton, Alberta. Since the use of disinfection materials is associated with the SWTR / CT concept, the emphasis is given to the effective contact time (t_{10}) determination.

Ten tracer tests were conducted using NaCl solution (131,000 mg/L) in a step input at different flow rates (141 to 230 ML/d) and different sampling periods (3 to 52 hours). There were about 2,700 samples taken with the tracer recoveries of 84 to 107 %. Sodium ions in the samples were measured using a flame emission photometer.

The F curves were then generated, in which the t_{10} , t_{90} , Morril's index, and Baffle parameter values were directly obtained. Based on the baffle parameter, the filters are classed as "superior", clarifier no.2 is "poor", and the three reservoirs are "poor" and "unbaffled". Modification is necessary for reservoirs nos. 2 and 3 by constructing baffles or diffusers. Reservoir no. 1 and clarifier no. 2 may need some modification. The filters do not require modification. The tracer concentration curves were analyzed using the common models found in the literature including the Wolf - Resnick, CMRs - in - series, and Rebhun -Argaman models that based on empirical approaches. For the reservoir without baffle, it was found that early portions of the tracer appeared earlier than predicted. Since the t_{10} is located in that part of the curve, its prediction using the models may not be reliable and will over predict the actual t_{10} . The cause of the extremely low t_{10} values for reservoirs nos. 2 and 3 were thought to be the result of the momentum from the inlet to the outlet. Subsequently, early portions of the residence time distributions were modelled as if they were caused by a jet.

The jet model was found to be adequate in predicting the t_{10} for this situation. The model seemed to indicate that the aberration was caused by the momentum dominant effect in the reservoir. This finding highlights the need to minimize the momentum from the inlet in order to obtain acceptable t_{10} values. Although these two reservoirs are relatively new and would be considered well designed according to traditional design guidelines, the lack of consideration of minimizing the momentum from the inlet has resulted in these two reservoirs to be classed as "poor" for effective contact time.

ACKNOWLEDGEMENT

I would thank Prof. D. W. Smith for his guidance and support throughout this research project. I would also appreciate Prof. S. J. Stanley who provided a great deal of help for completion this work.

I also wish to thank Mr. N. Chernuka, Mr. D. S. Prince, and Mr. B. Yaremko of the Environmental Engineering group for their invaluable help during the field samplings and laboratory analyses. The assistance of Mr T. Lee of the Water Plants Fingineering, Water Branch, Public Works, City of Edmonton and the E. L. Smith Water Treatment Plant operators during the testing periods is very appreciated as well.

I also extend a great thank you to the Water Plants Engineering, Water Branch, Public Works, City of Edmonton for the research funding provided throughout this research project. Lastly, I would appreciate friends and others who provided help and support to make this research work a success.

TABLE OF CONTENTS

1.0 INTRODUCTION 1
1.1 Background 1
2.2 Scope of Study
2.0 LITERATURE REVIEW
2.1 SWTR and CT Concept
2.2 Residence Time Distributions 11
2.2.1 Reactor Types 11
2.2.2 E and F Curves Development
2.2.3 Single Stage with Closed - Closed System
2.2.3.1 E(t) vs. t Curve Interpretation
2.2.3.2 $E(\theta)$ vs. θ Curve Interpretation
2.2.3.3 $F(\theta)$ vs. θ Curve Interpretation
2.2.4 Multi Stage with Closed - Closed System
2.3 Jet Model
2.3.1 Basic Assumptions
2.3.2 Circular Submerged Turbulent Jet
2.3.4 Circular Surface Turbulent Jet 40
2.3.5 Application to CT Concept 45
2.3.6 Simplified Jet Model 49
2.4 t ₁₀ Values for Different Flow Rates
3.0 CASE STUDY
3.1 Treatment Plant Operation
3.2 Previous Study 56
3.3 Research Objectives

page

4.0 METHODS AND MATERIAL
4.1 Tracer Input 58
4.2 Tracer Compound 59
4.3 Measurement Method 61
4.4 Tracer Recovery 62
5.0 TEST PROCEDURES AND RESULTS
5.1 Test Procedures
5.2 Curves Development and Error Factors
6.0 DISCUSSION
6.1 t ₁₀ and System Performance
6.1.1 Filters and Clearwell Tests
6.1.2 Clarifier No. 2 Test
6.1.3 Individual Reservoir Tests
6.1.4 Combined Reservoir Test
6.2 Residence Time Distribution Analyses
6.2.1 Wolf - Resnick Model 91
6.2.2 CMRs - in - Series Model 104
6.2.3 Rebhun - Argaman Model 104
6.2.4 Morril's Index and Baffle Parameter 115
6.2.5 Jet Model 116
6.2.6 Simplified Jet Model 118
6.3 Suggestions for System Modification 123
7.0 CONCLUSIONS 124
8.0 LIST OF REFERENCES 127
9.0 APPENDICES 136
APPENDIX 1: F CURVE DEVELOPMENT 137

APPENDIX	2:	WOLF - RESNICK MODEL	190
APPENDIX	3:	REBHUN - ARGAMAN MODEL	201
APPENDIX	4:	JET MODEL	215
APPENDIX	5:	FLOW SPLIT CALCULATION	2 40
APPENDIX	6:	INSTRUMENT STANDARD DEVIATION	242

LIST OF TABLES

Table 2.1:	Inactivation Levels (adapted from AWWARF, 1993)	8
Table 2.2:	CT Values for Inactivation of Viruses by Chlorine Dioxide for pH 6 to 9	
((adapted from the Guidance Manual, 1989)	10
Table 2.3:	Baffle Parameters (adapted from the Guidance Manual, 1989)	23
Table 3.1: '	Treated Water Quality Values (adapted from Simpson, 1989)	55
Table 5.1:	Samples Taken	64
Table 5.2: '	Test Data	66
Table 6.1:	Time Parameter Values	85
Table 6.2:	Residence Time Distribution Analyses	92

LIST OF FIGURES

Figure 2.1:	E and F Curves (adapted from Levenspiel, 1963) 18
Figure 2.2:	Time Parameters in the E Curve (adapted from Levenspiel, 1963) 20
Figure 2.3:	F Curves for Multi Stage System 27
Figure 2.4:	Jet Control Area (adapted from Blevins, 1984)
Figure 2.5:	Circular Submerged Turbulent Jet (adapted from Rajaratnam, 1983) 32
Figure 2.6:	Shear Layer (adapted from Rajaratnam, 1976) 38
Figure 2.7:	Circular Surface Turbulent Jet 41
Figure 2.8:	Total Flux
Figure 2.9:	t ₁₀ Values vs. Flow Rates (adapted from the Guidance Manual, 1989)
Figure 3.1:	E. L. Smith Water Treatment Plant Layout (adapted from Stanley et al,
	1993)
Figure 5.1:	Brine Input System (adapted from Stanley et al, 1993) 67
Figure 5.2:	Sampling Locations for Filters and Clearwell (Tests Nos. 1 and 2) 69
Figure 5.3:	Sampling Locations for Clarifier No. 2 (Test No. 3) 70
Figure 5.4:	Sampling Locations for Reservoir (Tests Nos. 4 - 10) 71
Figure 5.5:	Test No.1 - Filters and Clearwell at 180 ML/d 73
Figure 5.6:	Test No.2 - Filters and Clearwell at 140 ML/d 74
Figure 5.7:	Test No.3 - Clarifier No. 2 at 180 ML/d 75
Figure 5.8:	Test No.4 - Reservoir No. 1 at 180 ML/d 76
Figure 5.9:	Test No.5 - Reservoir No. 2 at 167 ML/d 77
Figure 5.10:	Test No.6 - Reservoir No. 2 at 141 ML/d 78
Figure 5.11:	Test No.7 - Reservoir No. 3 at 179 ML/d 79

Figure 5.12:	Test No.8 - Reservoir No. 1 at 230 ML/d	80
Figure 5.13:	Test No.9 - Reservoir No. 3 at 198 ML/d	81
Figure 5.14:	Test No.10 - Reservoirs Nos. 1,2, and 3 at 170 ML/d	82
Figure 6.1:	Reservoirs Nos. 1, 2, and 3 Layout	87
Figure 6.2:	L/W Ratio vs. t_{10}/T_d (adapted from CH2MHILL, 1993)	88
Figure 6.3:	Filters + Clearwell at 140 ML/d (Wolf-Resnick and CMRs - in - Series	S
	Models)	94
Figure 6.4:	Filters + Clearwell at 180 ML/d (Wolf-Resnick and CMRs - in - Series	S
	Models)	95
Figure 6.5:	Clarifier No.2 at 180 ML/d (Wolf-Resnick and CMRs - in - Series	
	Models)	96
Figure 6.6:	Reservoir No.1 at 180 ML/d (Wolf-Resnick and CMRs - in - Series	
	Models)	97
Figure 6.7:	Reservoir No.1 at 230 ML/d (Wolf-Resnick and CMRs - in - Series	
	Models)	98
Figure 6.8:	Reservoir No.2 at 141 ML/d (Wolf-Resnick and CMRs - in - Series	
	Models)	99
Figure 6.9:	Reservoir No.2 at 167 ML/d (Wolf-Resnick and CMRs - in - Series	
	Models)	100
Figure 6.10:	Reservoir No.3 at 179 ML/d (Wolf-Resnick and CMRs - in - Series	
	Models)	101
Figure 6.11:	Reservoir No.3 at 198 ML/d.(Wolf-Resnick and CMRs - in - Series	
	Models)	102
Figure 6.12:	Combined Reservoirs at 170 ML/d (Wolf-Resnick and CMRs - in -	
	Series Models)	103

Figure 6.13:	Filters + Clearwell at 140 ML/d (Rebhun - Argaman Model)	105
Figure 6.14:	Filters + Clearwell at 180 ML/d (Rebhun - Argaman Model)	106
Figure 6.15:	Clarifier No.2 at 180 ML/d (Rebhun - Argaman Model)	107
Figure 6.16:	Reservoir No.1 at 180 ML/d (Rebhun - Argaman Model)	108
Figure 6.17:	Reservoir No.1 at 230 ML/d (Rebhun - Argaman Model)	109
Figure 6.18:	Reservoir No.2 at 141 ML/d (Rebhun - Argaman Model)	110
Figure 6.19:	Reservoir No.2 at 167 ML/d (Rebhun - Argaman Model)	111
Figure 6.20:	Reservoir No.3 at 179 ML/d (Rebhun - Argaman Model)	112
Figure 6.21:	Reservoir No.3 at 198 ML/d (Rebhun - Argaman Model)	113
Figure 6.22:	Combined Reservoirs at 170 ML/d (Rebhun - Argaman Model)	114
Figure 6.23:	Surface Turbulent Jet Profile	117
Figure 6.24:	Reservoir No. 2 at 141 ML/d (Jet Model)	119
Figure 6.25:	Reservoir No. 2 at 167 ML/d (Jet Model)	120
Figure 6.26:	Reservoir No. 3 at 179 ML/d (Jet Model)	121
Figure 6.27:	Reservoir No. 3 at 198 ML/d (Jet Model)	122

ABBREVIATIONS

A	= area (m ²)
a	= degree of CMR (%)
α	= exponential coefficient, or regression parameter
α1	= shear layer inner angle (°)
α2	= shear layer outer angle (°)
α_c	= entrainment velocity coefficient
AFR	= arbitrary flow reactor
Ao	= nozzle area (m^2)
A _s	= surface control area (m^2)
b	= r value when u = 0 (m)
b	= r value when $u = 0.5 \times u_m (m)$
β	= time shift coefficient (min.), or b/b, or regression parameter
b _y	= distance when $u_s = 0.5 u_m$ (m)
bz	= distance when $u = 0.5 u_s (m)$
C or c	= chemical concentration (mg/L)
C ₁	= experimental parameter
C _f	= final concentration at steady state including background (mg/L)
c _m	= maximum chemical concentration (mg)
CMR	= complete mixed reactor
Co	= initial chemical concentration (mg/L)
c _p	= peak chemical concentration (kg/m ³)
c _s	= chemical concentration at X-Z plane (mg/L)
СТ	= disinfectant concentration times effective contact time (mg/L.min.)

Ct	= tracer concentration (mg/L)
d	= fraction of dead space (%), or day
DBP	= disinfection byproduct
do	= nozzle diameter (m)
D _x	= axial dispersion coefficient (m/min. ²)
d _x	= axial dispersion index
ε	= eddy diffusivity
F	= constant
f	= degree of short circuiting (%)
f, g, h	= function of
η	= r/b
HPC	= heterothropic plate count
H ₂ SiF ₆	= hydrofluosilicic acid
i	= suffix
ICP	= inductively coupled plasma
k	= experimental coefficient
kg	= kilogram
L	= lag (min.), or liter
1	= length of travel (m)
М	= total tracer mass (kg)
m	= lag factor, or meter
mg	= milligram
min	= minute
ML	= megaliter
N	= number of CMRs in series, or number of microorganisms
ν	= fluid kinematic viscosity (m ² /min.)

n	= suffix, or coefficient of dilution
NaCl	= sodium chloride
nm	= nanometer
No	= number of initial microorganisms
NTU	= nephelometric turbidity unit
р	= degree of PFR (%)
PFR	= plug flow reactor
ppb	= part per billion
Q	= water flow (ML/d)
θ	= non dimensional time
Qd	= desired flow (ML/d)
Q	= tracer study flow (ML/d)
q t	= tracer flow (L/s)
qy, qz	= exponential parameters
r	= detention time correction factor, or radial distance from jet axis (m)
ρ	= fluid density (kg/m^3)
ρ r1	= fluid density (kg/m ³) = inner shear layer radius (m)
rı	= inner shear layer radius (m)
r ₁ r ₂	= inner shear layer radius (m)= outer shear layer radius (m)
r ₁ r ₂ r _A	 = inner shear layer radius (m) = outer shear layer radius (m) = chemical reaction rate (mg/L s)
r ₁ r ₂ r _A R _e	 = inner shear layer radius (m) = outer shear layer radius (m) = chemical reaction rate (mg/L s) = Reynold number
r_1 r_2 r_A R_e R_i	 = inner shear layer radius (m) = outer shear layer radius (m) = chemical reaction rate (mg/L s) = Reynold number = Richardson number
r_1 r_2 r_A R_e R_i r_o	 = inner shear layer radius (m) = outer shear layer radius (m) = chemical reaction rate (mg/L s) = Reynold number = Richardson number = nozzle radius (m)
r_1 r_2 r_A R_e R_i r_o σ	 = inner shear layer radius (m) = outer shear layer radius (m) = chemical reaction rate (mg/L s) = Reynold number = Richardson number = nozzle radius (m) = E curve standard deviation

τ	= turbulent shear stress (kg/m min. ²)
t10,50,90	= time when certain percentages of flow have passed (min.)
t10a	= desired t_{10} (min.)
t101	= tracer study t ₁₀ (min.)
t _a	= actual residence time = time to reach curve centroid (min.)
եթ	= time or width of E curve at 10% C_0 (min.)
tc	= time or width of E curve at 50% C_0 (min.)
TCU	= true color unit
Td	= theoretical residence time (min.)
TaTat	= total theoretical residence time for CMRs in series (min.)
THM	= trihalomethane (CH-X ₃)
t _p	= time to reach peak concentration (min.)
tz	= time when first tracer is monitored (min.)
u	= mean axial velocity (m/min.)
u _m	= maximum axial velocity (m/min.)
Uo	= initial axial velocity (m/min.)
us	= maximum axial velocity at X-Z plane (m/min.)
USEPA	= the United States Environmental Protection Agency
V	= volume (m ³)
ν	= mean radial velocity, or mean vertical velocity (m/min.)
ve	= entrainment velocity (m/min.)
v _{ey}	= vertical entrainment velocity (m/min.)
v _{ez}	= perpendicular entrainment velocity (m/min.)
ω	= experimental parameter
w	= mean perpendicular velocity (m/min.)
x	= axial distance along jet axis (m)

Ψ	= experimental parameter
у	= vertical distance from jet axis (m)
Z	= perpendicular distance from jet axis (m)

1.0 INTRODUCTION

1.1 Background

Health risks due to microorganism contamination in drinking water have become critical issues in North America with the emergence of newly - recognized waterborne disease - causing organisms in the last two decades. It was not until 1976 that people started to pay attention to protozoan types of microorganisms (e.g., <u>Giardia lamblia</u> and <u>Cryptosporidium parvum</u>), bacterial type of microorganism (e.g., <u>Legionella</u> <u>pneumophila</u>), and enteric viruses as the causes of many outbreaks of waterborne diseases in the United States (Marroco, 1987, Reasoner, 1991, and Herwaldt et al, 1992). Even helminths were also suspected of causing outbreaks (Philpot, 1989).

The conventional disinfection practice that was able to handle common bacterial outbreaks in the past, such as typhoid and cholera by employing chlorine (in the form of chloride of lime, sodium hypochlorite, Cl₂, and chloramines) needs to be improved since these new types of microorganisms seem to be more formidable to inactivate (White, 1992).

Indicators of microbial quality, such as turbidity, coliform bacteria, and heterothropic plate count bacteria (HPC) that used to be the most common parameters to identify the possible presence of pathogenic organisms should be used cautiously as well. Several studies have proven that these indicators do not correlate well with the occurrence of these more newly recognized organisms (Le Chevallier and Norton, 1992).

Increasing or modifying the conventional disinfection practice is necessary to reduce health risks. Still, it is not only expensive but it also has a potential to produce other health risks such as carcinogenecity of disinfection byproducts (DBPs) (Sobsey et

1

al, 1993). During studies conducted in 1974, chloroform, one type of trihalomethane (THM), was identified in a chlorinated drinking water as a DBP produced from reactions between chlorine and organic materials (Bellar et al, 1974). By 1991, there have been more than 700 types of DBPs identified by the United States Environmental Protection Agency (USEPA) (Moser, 1991).

Reducing the health risk associated with waterborne disease outbreaks needs broader knowledge to be able to determine the method that yields the best risk reduction. Developing and applying an overall health risk assessment for microbial and also chemical contamination are necessary in order to define a health risk management plan (Sobsey, 1993).

In order to handle these problems, a strategy has been proposed using different types of disinfectant that have higher inactivation potency but do not produce THMs directly. Inactivation steps have been improved as well by applying multi - barrier processes in the treatment plant. The first, known as primary disinfection, aims at the total inactivation of pathogenic organisms in the system. For many reasons, chlorine dioxide and ozone are gaining popularity as primary disinfectants. Secondly, baseline treatments, such as filtration and sedimentation, have been integrated into the disinfectant protocols (Bryant et al, 1992). Direct filtration, slow sand filtration, and diatomaceous earth filtration are considered as very good barriers for many kinds of organisms (Guidance Manual, 1989). A case study reported by Glicker and Edwards (1991) shows that unfiltered systems did have serious problems with Giardia. Bank filtration wells constructed near a river were proposed by Hilterbrand et al (1991) as another similar concept of filtration. The last step is secondary disinfection. It protects system from newly introduced or regrowth of pathogenic organisms. Chloramines, due to their stabilities in water, have become a very common type of secondary disinfectant in North America.

2

The Surface Water Treatment Rule (SWTR) introduced by the USEPA in 1989 sets new treatment requirements to protect all public water supplies using surface water sources and ground water sources under direct influence of surface water. For some microbial containingtions, the SWTR proposes treatment methods as a condition for compliance rather than establishing maximum contaminant levels (MCLs). The SWTR introduces the concentration multiplied by time (CT) concept as a new treatment method to reduce the health risk due to microorganism contaminations in drinking water. The emphasis is given to the inactivation of <u>Giardia lamblia</u> and enteric viruses. Basically, the concept considers disinfectant concentration C and hydraulic effective contact time T as an inseparable unit to ensure the inactivation process. Determining the contact time using tracer studies is the most common method to follow. A tracer chemical can be injected into a system in a continuous or instantaneous input. Statistical curves, the E and F curves, can be developed to represent the residence time distribution of the chemical in the system. The CT concept also gives some credits to physical processes, filtration and sedimentation, that remove unwanted particles and organisms in the water.

It is evident that disinfection is no longer as simple as "chlorination - coliform" any more. It deals not only with the quality of drinking water leaving the plant, but also with the quality of the treatment and distribution systems plus a complex knowledge of health risk concerns. As a consequence, physical processes, fluid mechanics, public health education, risk assessment, and many other areas are gaining significant roles besides other conventional disciplines, such as microbiology and chemistry. This thes.s presents a study which assesses the disinfection contact time parameter as applied to the SWTR / CT concept in a large water treatment plant.

1.2 Scope of Study

The primary objective of this study was to the determination of the hydraulic

characteristics of various treatment processes of the E. L. Smith Water Treatment Plant in Edmonton, Alberta. The main emphasis is given to determine the t₁₀ values of various systems. However, the study does not include overall calculation of the actual CT values of the treatment plant since a preliminary study was already completed by the Process Development Team in 1989 - 1990 (Process Development Team, 1991). The data obtained from this study give additional information to the previous study. It is also important to develop relations between flow rates and residence time distributions to predict the hydraulic characteristics at different flow rates rather than those tested. Confidence in this relationship is required as the City of Edmonton is planning to expand the treatment plant to a greater flow capacity.

In order to meet the objective of the study, tracer tests were conducted for one clarifier, a set of filters and clearwell, and three on - site reservoirs. Most of the tests were completed at two different flow rates. The results were analyzed using traditional residence time distributions, the E and F curves. A number of common models suggested by Marske and Boyle (1973), the Guidance Manual (1989), Thirumurthi (1969), Levenspiel and Bischoff (1963), Wolf and Resnick (1963), and Rebhun and Argaman (1965) were discussed in this study, including the direct interpretation of time values, baffle parameters, dispersion models, degree of PFR and dead space model, and CMRs - in - series model. However, most of those models are based on empirical and statistical approaches. In many cases, they do not fit well with the real data obtained from a particular test. It was therefore necessary to develop a more physically - based model that not only fits the obtained data better, but also gave more confidence in its application at different flow rates.

In the case of three reservoirs tested, it was found that the common models listed above failed to provide satisfactory results. A further investigation found that initial portions of the residence time distribution curves were mostly governed by the initial

4

momentum - dominated jet at the inlet point. The jet model was found to be the appropriate model to use to fit the real data.

Based on tracer tests and analyses of the results, it is possible to present a discussion about residence time distributions of various systems in the treatment plant. The discussion includes an overview of the analysis method using the common models and jet model, and also several comments to the SWTR / CT concept.

2.0 LITERATURE REVIEW

2.1 SWTR and CT Concept

With the promulgation of the new regulation, disinfection practice has reached its new and modern stage. For some microbial contaminants, the SWTR gives an emphasis to the treatment methods as a condition for compliance rather than establishing maximum contaminant levels (MCLs). The CT concept is proposed as the new treatment assessment technique to reduce health risks due to microorganism contamination.

The main idea of the CT concept is based on the Watson model that includes C (disinfectant concentration), T (hydraulic effective contact time), and n (parameter or coefficient of dilution). The relationship among those parameters can be described as follows (Canadian Water and Wastewater Association, 1993):

$$C^{T}T = constant$$
 (2.1)

Plotting C and T for inactivation of a certain type of microorganism in a particular time T on a log - log scale will give a straight line with a slope equal to n. Inactivation level of 99% is chosen in most cases. For the CT model, it is assumed that n equals to unity. It means that both C and T have the same importance in determining the CT product. Note: C is the important factor for n>1, while T becomes the significant factor for n<1.

Correlation between the survival of microorganisms N/N₀ and the contact time T can be expressed using the Chick model (Canadian Water and Wastewater Association, 1993):

$$\log \frac{N}{N_0} = -kT \tag{2.2}$$

where k is a constant. Ideally, a plot of log N/N₀ vs. T should yield a straight line, expressing the first order kinetics condition. However, deviations often occur in real situations such as shoulder, initial rapid, and tailing curves (Hoff, 1987).

The Guidance Manual (1989) employs the CT concept to achieve at least 3 log (99.9%) and 4 log (99.99%) inactivation levels of <u>Giardia</u> cysts and viruses, respectively (Guidance Manual, 1989). Higher inactivation levels may be necessary considering the cyst concentration, see Table 2.1 (AWWARF, 1993). The numbers are based on the annual risk of 10⁻⁴ per person. The infected dose for <u>Giardia</u> can be as low as 1 cyst only. It is assumed that a person drinks 2 L of water a day. In the case of 1 cyst / 100 L for example, it is logical to apply 3 log reduction level in order to have a risk less than 10⁻⁴. In the case of viruses, it is assumed that viruses occur at higher concentration in source waters, have more health risks, and are more infectious than <u>Giardia</u>. Therefore, it was decided to have higher inactivation levels than those for <u>Giardia</u> (Guidance Manual, 1989). The Guidance Manual (1989) also assumes that using those two microorganisms as the parameters will also provide protection to heterothropic plate count (HPC) bacteria and <u>Legionella</u>.

The Guidance Manual (1989) assumes that degree of microorganism inactivation is proportional to the product of C (disinfectant concentration used, in mg/L) and T (hydraulic effective contact time, in minutes). As will be discussed later, t_{10} or time for 10% of the flow passes through the process, is assumed to be the hydraulic effective contact time. Standard CT values have been specified for difference pes of disinfectant: free chlorine, chloramines, chlorine dioxide, ozone, and ultraviolet light, for different pH values (6 to 9), and for different temperatures (0.5° to 25° C). For example,

	Geometric Mean of Allowable Daily Average Cyst Concentration (Cysts/100L)		
Giardia	<1	1 to 10	10 to 100
Giardia cyst removal - inactivation	3 log	4 log	5 log
Virus removal - inactivation	4 log	5 log	6 log

Table 2.1: Inactivation Levels (adapted from AWWARF, 1993)

standard CT values for inactivation of viruses using chlorine dioxide can be seen in Table 2.2. Other standard CT values for different conditions can be found in the Guidance Manual (1989). Filtration gives some credits for the CT values in the range of 1 log (90%) to 2.5 log (99.3%) reductions, depending on the types of filtration used and microorganisms involved. In the case of coagulation / flocculation and filtration, a credit of 2.5 log reduction is given for <u>Giardia</u> cysts and a similar credit of 2.0 log reduction for viruses, with the remaining reduction obtained by the disinfection process (Bryant et al, 1992).

To meet the Guidance Manual (1989) criteria, CT values for a water treatment plant should be investigated. It is assumed that the plant satisfies the requirement if the value meets or exceeds the standard value. Still, standard CT values in the table were generated in perfect laboratory processes without the presence of other chemical compounds. Disinfectant dissipation, especially in the case of chlorine as it reacts with other chemical compounds in real water, should be taken into account (Teefy and Singer, 1990). The change in pH, temperature, and even sunlight penetration for open systems should be considered as well (Auckly and Borgerding, 1991). Another weakness of the CT concept is that one tends to extrapolate the standard value for a particular condition since the experimental data are relatively limited. The extrapolation is valid only if the relation between the surviving microorganisms and contact time in the Chick model (Equation 2.2) is ideal (a straight line for log N/N_0 vs. T). Another difficulty arises in the assumption that n in the Watson model (Equation 2.1) is equal to 1. For disinfectant such as ozone, studies have shown that n may be as high as 3 (Zhou and Smith, 1994). It has generally been reported for chlorine that n is close to 1. Still, even for chlorine the value of n is not always unity (Hoff, 1987).

However, in a general case, the SWTR / CT concept is still an improvement over the use of MCLs as it considers the kinetics aspect of the process leading to

Removal	Temperature (°C)					
	≤ 1	5	10	15	20	25
2 log	8.4	5.6	4.2	2.8	2.1	1.4
3 log	25.6	17.1	12.8	8.6	6.4	4.3
4 log	50.1	33.4	25.1	16.7	12.5	8.4

Table 2.2 CT Values for Inactivation of Viruses by Chlorine Dioxide forpH 6 to 9 (adapted from the Guidance Manual, 1989)

.

disinfection. As has been mentioned by Regli (1989), the CT concept allows water processors to evaluate accurately their disinfection processes and to optimize the chemical usage in achieving the desired level of performance. The Guidelines for Canadian Drinking Water Quality (1993) is considered to be somewhat behind the SWTR / CT concept as it still uses the maximum acceptable concentration (MAC) to analyze the microbiological parameters without having specific criteria for enteric viruses and protozoa. Therefore, it is a very reasonable idea to apply the CT concept as a general measure of disinfection performance for water treatment plants in Canada although the USEPA itself does not have any legal status in Canada. In recognition of this, a preliminary investigation was completed as early as 1989 - 1990 by the City of Edmonton at the E. L. Smith and Rossdale Water Treatment Plants in Edmonton, Alberta (Process Development Team, 1991).

2.2 Residence Time Distributions

In very general terms, the residence time can be defined as the time needed for fluid particles to pass through in a process. A specific time parameter, in this case the hydraulic effective contact time, can be found by determining the residence time distribution. The use of the E and F curves obtained from tracer studies is the most preferable method to use. A tracer consisting of a non - reactive and non - toxic chemical compound can be added to a system in several ways including random input, cyclic input, slug / pulse input, and step / continuous input. On the whole, slug and step inputs are the most suitable as relatively simple mathematical or statistical modeling can be derived from the results.

2.2.1 Reactor Types

It is assumed that plug flow reactors (PFRs) and complete mixed reactors

(CMRs) are the ideal reactors that describe the two limits of residence time distributions found in actual reactors. In a PFR, the fluid travels smoothly as a "piston flow" from the inlet to the outlet with complete mixing in the axial direction without any longitudinal dispersion. The particles remain in the system for a time equal to the theoretical residence time (T_d):

$$T_{d} = \frac{V}{Q}$$
(2.3)

where:

V = system volume (m³)

 $Q = \text{incoming flow } (m^3/\text{min.}).$

Flow through a long system with a high length to width ratio like a pipe and flow through granular media filters are generally assumed to have a close resemblance to this type of flow. In the case of CMRs, complete mixing is expected to occur immediately when the fluid enters the system. The particles disperse throughout the system and leave in proportion to their statistical distribution. It can be achieved only if there is perfect mixing.

Even though the two types of ideal flow reactors have found great use in defining the outer bounds of reactors, arbitrary flow reactors (AFRs) are the most common reactor types found in real situations. They represent some deviations from PFRs and CMRs in that they do not follow either the ideal flow condition. To account for this, the CT concept suggests the use of t_{10} for the contact time, i.e. time when 10% of the flow passes through the system, instead of using the theoretical residence time (T_d) (Guidance Manual, 1989). By using this, it is assumed that at least 90% of fluid in the system has been exposed to the disinfectant for a period greater than t_{10} . Still, as the standard CT values were generated from batch reactor experiments, more studies about the fluid behavior in different types of reactors must be conducted. Lev and Regli (1992) generated data based on dispersion and CMRs - in - series models. The result showed that the t_{10} was reliable only for high t_{10}/T_d values or in the case of low microorganism inactivation levels (up to 2 log reduction, but not for 4 log reduction).

2.2.2 E and F Curves Development

The E and F curves have long been used to assess the residence time distribution in real reactors. In the case of a slug input, a discrete amount of tracer is fed into the system at an instance, normally for a period less than 1/50 times T_d (Thirumurthi, 1969). The slug test residence time distribution function is given by the E curve. It can be explained in that the fraction of material at the outlet point that has been in the system for a time between t and t + dt is equal to E dt. The E(t) vs. t curve can be developed both for discrete and continuous variables as the function of C_i or C(t) (tracer concentration at a particular time in mg/L) and t (time in minutes) (Levenspiel and Bischoff, 1963):

$$E_{i} \cong \frac{C_{i}}{\Sigma C_{i}\Delta t} , \text{or}$$

$$E(t) = \frac{C(t)}{+\infty} (2.4).$$

The area under the E curve represents the complete tracer recovery and should be equal to 1:

$$\Sigma E_{i}\Delta t_{i} \cong 1$$
, or
$$\int_{0}^{+\infty} E(t) dt = 1$$
 (2.5).

Since the E curve still has dimensions (1/[time] for the vertical axis and [time] for the horizontal axis), it is also possible to use a dimensionless curve, i.e. the $E(\theta)$ vs. θ curve. It can be developed using relations among the previous parameters to define the t_a (actual residence time):

$$t_{a} \equiv \frac{\sum t_{i}C_{i}\Delta t_{i}}{\sum C_{i}\Delta t_{i}} , \text{or}$$

$$= \frac{\int_{0}^{+\infty} t C(t) dt}{\int_{0}^{+\infty} C(t) dt} (2.6)$$

$$\theta = \frac{t}{t_{a}} (2.7)$$

$$\theta E(\theta) = t E(t) , \text{then}$$

 $\mathbf{E}(\mathbf{\theta}) = \mathbf{t}_{\mathbf{a}} \mathbf{E}(\mathbf{t}) \tag{2.8}.$

For a step input, the tracer is added to the system continuously in a uniform concentration for a period of 2 to 3 times T_d or until it reaches the steady state condition (Hudson, 1975). The F(t) vs. t curve, represents the fraction of material at the outlet

point that has been in the system for a time less than t. For discrete and continuous variables, the equations are:

$$F_{i} = \frac{C_{i}}{C_{o}} , \text{or}$$

$$F(t) = \frac{C(t)}{C_{o}}$$
(2.9)

where C_0 is the initial tracer concentration of the step input in mg/L. To represent a complete tracer recovery, the value of F_i or F(t) should equal to 1 at the steady state condition. The non - dimensional curve $F(\theta)$ vs. θ , can be generated easily from the F curve as it is already dimensionless in the vertical axis. The horizontal axis can be developed by dividing t with t_a. The relation between the two vertical axes is:

$$\mathbf{F}(\mathbf{\theta}) = \mathbf{F}(\mathbf{t}) \tag{2.10}$$

After either the E or F curve has been identified, the other curve can be formed using the following equations:

$$E(t) = \frac{dF(t)}{dt} , \text{ or}$$

$$F(t) = \int_{0}^{t} E(t) dt$$
(2.11)

$$E(\theta) = \frac{dF(\theta)}{d\theta} , \text{or}$$
$$F(\theta) = \int_{0}^{\theta} E(\theta) \, d\theta \qquad (2.12).$$

General equations for PFRs and CMRs have well been developed. In the case of PFRs, the E and F curves are identified as follow (Metcalf and Eddy, 1991):

$$F(t) = \frac{C(t)}{C_0} = 1$$
 , $t \ge Td$ (2.13)

$$E(t) = \frac{C(t)}{C_0} = +\infty$$
 , $t = Td$ (2.14)

with the total area for Equation 2.14 equals to 1. For the CMR, it is necessary to develop the mass balance equation. It is expressed as follows (Metcalf and Eddy, 1991):

[Accumulation] = [Inflow] - [Outflow] + [Generation], or

$$\frac{dC}{dt}V = QC_0 - QC(t) + r_A V \quad (2.15)$$

where r_A is the rate of chemical reaction (mg/L.min.). Assuming that the tracer compound is conservative ($r_A = 0$), a new equation for the step input can be derived by integrating Equation 2.15 from C = 0 to C:

F(t)
$$= \frac{C(t)}{C_0} = 1 - \exp(-\frac{t}{T_d})$$
 (2.16).

In the case of a slug input, the value of Q.Co in Equation 2.15 is equal to 0, as no tracer

is continuously added after the first addition. The integral is taken from $C = C_0$ to C:

$$E(t) = \frac{C(t)}{C_0} = \exp(-\frac{t}{T_d})$$
 (2.17).

General equations for the AFR should be identified using tracer studies. Characteristics of the PFR, CMR, and AFR in the form of the E and F curves can be seen in Figure 2.1. Interpretation of the E and F curves is done by assessing the four characteristics listed below:

dead space:	no fluid motion in some parts of the system and	
	there is perfect mixing in other regions,	
short circuiting:	nearly instantaneously moving of the flow from the	
	input to the output,	
dispersion:	mass transport due to the velocity gradient, usually	
	only axial or longitudinal direction to be considered.	
	It characterizes the degree of back mixing during the	
	flow,	
errors factors:	some correction factors due to imperfectness of the	
	system or assumptions made.	

2.2.3 Single Stage with Closed - Closed System

The single stage system is formed by only one system. It is characterized by a straight line of the F curve when a log scale is used for the horizontal axis (Wolf and Resnick, 1963). Closed - closed system means that before and after the fluid enters the system, it acts as a PFR. Since the case study is related to reservoir systems with two pipes in the inlets and outlets, only the closed - closed system is going to be discussed.

Figure 2.1: E and F Curves (adapted from Levenspiel, 1963)

2.2.3.1 E(t) vs. t Curve Interpretation

Models developed from this curve are quite simple. The idea is based on comparisons of the time parameters obtained from the curve (see Figure 2.2). These are the most common dimensionless parameters to use (Marske and Boyle, 1973):

index of mean residence time	=	
index of average residence time	=	t50 Td
index of short circuiting	=	tz Td
Morril's dispersion index	Ξ	$\frac{t_{90}}{t_{10}}$
index of modal residence time	=	$\frac{t_p}{T_d}$

where:

- t_{10} = time for 10% of tracer to pass the system (min.)
- t_{50} = time for 50% of tracer to pass the system (min.)
- type = time for 90% of tracer to pass the system (min.)

 t_a = time to reach the curve centroid (min.)

 t_p = time to reach the peak concentration or modal value (min.)

 t_Z = time when the first tracer is monitored in the effluent (min.).

In the case of PFRs, all of those parameters should equal to 1. While Brumo

(1972) mentions three more dimensionless parameters, although traditionally they have

not frequently been used:

index of eddy diffusivity caused by turbulence

index of turbulence and recirculation eddies

index of curve eccentricity

$$= \frac{t_c}{T_d}$$
$$= \frac{t_b}{T_d}$$
$$= \frac{(t_c - t_p) - (t_p - t_z)}{T_d}$$

where:

 t_c = time or width of the curve at 50% of C_0 (min.)

 t_b = time or width of the curve at 10% of C_0 (min.).

Figure 2.2: Time Parameters in the E Curve (adapted from Levenspiel and Bischoff 1963)

The first and second parameters should equal the tracer addition time in the case of PFRs, and should be 0.7 and 2.3 respectively for CMRs. The last parameter should be 0 for PFRs and 2.3 for CMRs (determined experimentally). However, the Morril's index is assumed as the best approximation to assess the axial dispersion (Gregory and Zabel, 1990).

Another approach is given by Scheible as cited by Thampi (1989). The idea is to consider the tracer concentration as a function of the axial dispersion coefficient (D_x) :

$$c_{p} = \frac{M}{A\sqrt{4\pi D_{x}t_{p}}} e_{xp} \left[\frac{-(1-ut_{p})^{2}}{4D_{x}t_{p}}\right]$$
(2.18)

where:

 $c_{p} = peak tracer concentration (kg/m³)$ M = total mass of tracer (kg) I = length of travel (m) A = cross sectional area of the flow (m²) u = axial velocity (m/min.) $t_{p} = time to reach the peak concentration (min.)$ $D_{x} = axial dispersion coefficient (m²/min.).$

Unfortunately, this approach is valid only for long cylinder systems. A more general formula that is applicable for any type of reactor can be found as a function of the standard deviation of the non - dimensional E curve (see the next section).

The Guidance Manual (1989) suggests the use of the baffle parameter (t_{10}/Td) to investigate the system performance. Several criteria have been identified, see Table 2.3 Basically, comparisons among the time parameters do give some qualitative

t10/Td	BAFFLE PARAMETERS	DESCRIPTIONS
<0.1	mixed flow / unbaffled	agitated basin, very low length to
0.3	DOOT	width ratio, high flow velocity single or multiple unbaffled inlets
0.5	poor	and outlets, no intra - basin baffles
0.5	average	baffled inlet or outlet with some
		intra basin baffles
0.7	superior	perforated inlet baffle, serpentine
		outlet weir or perforated launders
1.0	perfect (plug flow)	very high length to width ratio
		(pipe line flow), perforated inlet,
		outlet, and intra - basin baffles

Table 2.3: Baffle Parameters (adapted from the Guidance Manual, 1989).

assessments, but not quantitative determinations, as numerical relations among them are not known.

2.2.3.2 $E(\theta)$ vs. θ Curve Interpretation

A better method has been developed by considering the dispersion in the system that can be applied in all conditions. Usually only the axial dispersion is taken into account. The axial dispersion index (d_x) should be 0 in the case of PFRs and $+\infty$ for CMRs. It can be measured as a function of the standard deviation of the non dimensional curve $E(\theta)$ vs. θ . It is considered to be a better model as it considers the entire curve, rather than only several discrete values like in the previous model. Several relations can be generated using these equations (Levenspiel and Bischoff 1963):

$$d_x = \frac{D_x}{u l}$$
(2.19)

$$\sigma^2 = \left(\frac{\Sigma t_i^2 C_i}{\Sigma C_i}\right) - t_a^2$$
(2.20)

$$\sigma_{\theta}^2 = \frac{\sigma^2}{t_a^2}$$
(2.21)

$$\sigma_{\theta^2} = 2d_x - 2d_x^2 [1 - \exp(-d_x)]$$
 (2.22)

$$E(\theta) = \frac{1}{(\pi \theta d_x)^{0.5}} \exp[-\frac{(1-\theta)^2}{4\theta d_x}]$$
(2.23)

where:

1 = length of travel (m)

 D_x = axial dispersion coefficient (m²/min.)

 d_x = axial dispersion index (no unit)

- σ = standard deviation
- σ_{θ} = standard deviation for non dimensional condition.

Correlation between the E curve and the population of microorganisms over the time is presented by Trussell and Chao (1977) as follows:

$$\frac{N}{N_{o}} = \frac{1}{T_{d}} \left[\int_{0}^{\psi/T_{d}} E(\theta) \, d\theta + \int_{\psi/T_{d}}^{+\infty} (\frac{\psi}{C_{o} t})^{\omega} E(\theta) \, d\theta \right]$$
(2.24)

where:

N = number of microorganisms at time t

 N_0 = number of initial microorganisms

ω = experimental parameter, equals to 3 for the original value, less than 3 as suggested by Hart and Vogiatzis (1982).

2.2.3.3 $F(\theta)$ vs. θ Curve Interpretation

Since the actual residence time (t_a) cannot be generated directly from the F curve, it is preferable to use the theoretical residence time (T_d) . All of the error factors and other parameters are included in the following models (Wolf and Resnick, 1963):

$$F(\theta) = 1 - \exp\{-\frac{(1-f)}{ar(1-d)T_d} [t - L - \frac{p(1-d)rT_d}{(1-f)} + mar(1-d)T_d]\},$$

,F(\theta) \ge 0 (2.25).

It is obvious that Equation 2.25 is quite complicated. Parameters p and a represent the fraction of the system that acts as a PFR and a CMR respectively, in which p + a = 1. Intercept of the curve with vertical axis represents the degree of short circuiting effect (f). Dead space fraction is measured by parameter d, while error factor for residence time can be measured using parameter r. Lag (L) and lag factor (m) represent the lag in response of the system. The model can be simplified in a different form by combining the parameters as can be seen in Equation 2.26:

$$F(\theta) = 1 \exp[-\alpha \frac{(t-\beta)}{T_d}] , F(\theta) \ge 0 \quad (2.26).$$

Parameter β represents the system phase shift or the intercept of the curve with horizontal axis, while α is the coefficient of exponent or the skewness of the entire curve. Rebhun and Argaman (1965) made a simplification by regarding only parameters p and d. Basically, this linearizes the Wolf and Resnick model:

$$F(\theta) = 1 - \exp\{-\frac{1}{(1-p)(1-d)} \left[\frac{t}{T_d} - p(1-d) \right] \}, \text{ or}$$

$$\ln \left[1 - F(\theta)\right] = -\frac{1}{(1-p)(1-d)} \frac{t}{T_d} + \frac{p}{(1-p)}$$
(2.27)

As has been mentioned above, linearization of the original equation should result in a straight line for a single system. Using slope $\frac{1}{(1-p)(1-d)}$ and intercept of the line with vertical axis $\frac{p}{(1-p)}$ obtained from the graph, p and d can be determined easily. The Guidance Manual (1989) also suggests the use of this method to assess the t₁₀. Yu et al (1991) conducted a study using basically the same method but a different sign (positive / negative) convention. Note: linearization using a log scale in place of ln scale can be used as well, adding the parameter log e to the equation.

2.2.4 Multi Stage with Closed - Closed System

This system is formed by N numbers of CMRs of the same volume in series. Unlike the single stage system, the F curve will produce a curve in place of a straight line if a log scale is used for the horizontal axis (Wolf and Resnick, 1963). The curves for a multi stage system can be seen in Figure 2.3. The equations for the E and F curves have been developed as written below (Levenspiel and Bischoff, 1963):

$$E(\theta) = \left(\frac{t}{Td}\right)^{(N-1)} x \frac{1}{(N-1)!} \exp\left(\frac{t}{Td}\right)$$
(2.28)

$$F(\theta) = 1 - \exp(\frac{-Nt}{T_{dTot}}) x [1 + \sum_{i=N-1}^{i=1} (\frac{Nt}{T_{dTot}})^{i} \frac{1}{i!}]$$
(2.29)

$$T_{dTot} = N T_d$$
(2.30)

$$N = \frac{t_a^2}{\sigma^2}$$
(2.31)

where T_{dTot} is the total theoretical residence time of the whole systems, while t_a and σ can be obtained from the E curve. It is possible to find out parameter N (the number of tanks in series) for a multi stage system that fits to the tracer study data (Teefy and Singer, 1990). Yet, there is not any general formula can be applied as everything depends on the system characteristics. Another different idea is given by Hazen as cited

by Gregory and Zabel (1990):

N =
$$\frac{t_{50} - t_p}{t_p}$$
 (2.32)

where tp is time to reach the peak concentration.

2.3 Jet Model

Jet theory has commonly been used for years. However, it is employed basically in the area of pure fluid mechanics. The main objective of this study is to introduce the jet model as an applicable tool to predict the hydraulic effective contact time parameter (t_{10}) associated with the SWTR / CT concept. Since the modeling is correlated to reservoir systems with inlet and outlet pipes, only circular types of jets are going to be discussed in this study.

2.3.1 Basic Assumptions

First of all, it is necessary to draw a distinction between jets and plumes. A jet is defined as a source of momentum and energy produced from a discharge of fluid into a large mass of the same or similar fluid. While, a plume is formed by the difference in potential energy or the density difference between the discharged and the surrounding fluid, that creates buoyancy relative to its surroundings. There are five general assumptions made to analyze the jet theory (Rajaratnam, 1976 and Blevins, 1986):

- homogeneous and Newtonian fluid (shear stress is a linear function of velocity gradient), although it is possible that the fluid carries chemical compounds,
- 2) non compressible fluid, or Mach number (= $\frac{\text{flow velocity}}{\text{speed of sound}}$) ≤ 1 ,
- 3) "slender flow" condition, or thickness of the jet is assumed to be small compared

to the distance of the section from the nozzle,

- 4) infinite system, fresh water always entrains into the jet, and
- 5) uniform static pressure, except for the jet action itself.

Due to the limited scope of this study, it is reasonable to apply six more assumptions to simplify the problem:

- 6) only circular submerged and surface jets are considered,
 7) turbulent flow, or Reynold number (Re = inertia force/viscous force) ≥ 3000 (Blevins, 1986),
- 8) no significant density difference between the jet and surrounding fluid, i.e., no buoyancy and plume effects,
- 9) total flux propagation has the same value no matter the shape of the jet,
- 10) the jet occurs relatively far from surfaces, walls, or other objects, and
- 11) constant flow through circular nozzle.

A jet with a nozzle diameter of d_0 , or radius of r_0 , will produce a flow development region. Basically, the jet development is characterized by the width of turbulent mixing and the decay rates of center line properties. When a jet is moving downstream, it mixes the surrounding fluid forming a shear layer. Turbulence created in the shear layer penetrates outwards and inwards into the jet, reducing continuously the thickness of the "potential core". The core will vanish after the jet has moved at about 9 r_0 (see the next explanation). This region is called the flow development region. Usually, it is assumed that the axial velocity (u) and chemical concentration (c) at any point in the flow development region are equal to the initial axial velocity (Uo) and initial chemical concentration (Co), respectively. Generally, most analyses are conducted in the fully developed region, the region downstream where the potential core has vanished (see Figure 2.4).

There should be three conservation conditions that exist in the fully developed region. The conservation of mass deals with u, U_0 , initial nozzle area (A₀), entrainment

Figure 2.4: Jet Control Area (adapted from Blevins, 1984)

velocity (v_e) , and area of the control surface (A_s) :

$$U_0 A_0 + v_e A_s = \bigwedge_A u \, dA \tag{2.33}.$$

Chemical concentration C and C_0 , are included in the species conservation:

$$\mathbf{C}_{\mathbf{0}}\mathbf{U}_{\mathbf{0}}\mathbf{A}_{\mathbf{0}} = \int_{\mathbf{A}} \mathbf{c}\mathbf{u} \, \mathbf{d}\mathbf{A} \tag{2.34}.$$

It is obvious that entrainment must exist in order to achieve the validity between those two equations. Conservation of momentum in the jet is the last condition that must be fulfilled:

$$U_0^2 A_0 = \int_A u^2 dA$$
 (2.35).

As the jet moves along its path, it brings or entrains the surrounding water into the jet. The flow increases due to the transfer of the momentum outwards the jet, while the velocity and the concentration decrease as there is more dilution in the jet. More specific forms of the equations are presented in the following sections.

2.3.2 Circular Submerged Turbulent Jet

The flow development region of a circular submerged turbulent jet can be described using a coordinate system of r (radial distance from center line) and x (axial distance from nozzle). Theoretically, a jet always starts to propagate from a certain location behind the nozzle. Yet, for convenience, it can be assumed to occur right at the nozzle itself (Rajaratnam 1983 and 1986). See Figure 2.5 for a complete description.

Figure 2.5: Circular Submerged Turbulent Jet (adapted from Rajaratnam, 1983)

The velocity distribution profile in the fully developed region can be determined as follows. The maximum axial velocity (u_m) , which occurs at the center line, decreases continuously with the increase of x. Axial velocity (u) at any point at a radial distance r from the center line can be generated using these following equations. It is acceptable to simplify the relevant Reynold equations using axisymmetry and the slender flow condition (Rajaratnam, 1976):

$$u \frac{\delta u}{\delta x} + v \frac{\delta u}{\delta r} = \frac{1}{\rho r} \frac{\delta r \tau}{\delta r}$$
, and (2.36)

$$\frac{\delta r u}{\delta x} + \frac{\delta r v}{\delta r} = 0$$
(2.37)

where τ is the total shear at any point in the axial direction, and v is the radial velocity. In the case of turbulent jets, τ will be the same as the turbulent shear. Equation 2.37 represents continuity of the system.

Conservation of the axial momentum flux from Equation 2.35 can be developed in a more specific form by multiplying Equation 2.36 with ρr and then integrating it with respect to r from r = 0 to $+\infty$:

$$\frac{d}{dx} \int_{0}^{+\infty} 2\pi \rho r u^2 dr = 0$$
(2.38)

where ρ is the fluid density. Initial axial momentum flux at the nozzle (M₀) is given by:

$$M_{0} = \int_{0}^{+\infty} 2\pi \rho r u^{2} dr = \frac{\pi d_{0}^{2}}{4} \rho U_{0}^{2}$$
(2.39)

Using the entrainment hypothesis, it is obvious that the flow (Q) always increases along the jet path as it entrains the surrounding fluid. This can be expressed as (Rajaratnam 1983 and 1986):

$$Q = \int_{0}^{\underline{b}} 2\pi \rho r u \, dr \tag{2.40}$$

$$v_e = \alpha_e u_m$$
 , and (2.41)

$$\frac{d}{dx}\int_{0}^{\underline{b}} ur \, dr = \alpha_{e} \, \underline{b} \, u_{m}$$
(2.42)

where v_e is the entrainment velocity, <u>b</u> is the the value of r when $u \equiv 0$, and α_e is the entrainment coefficient. Equation 2.42 is basically the continuity equation in view of the entrainment hypothesis.

According to the reference, u/u_m is correlated well with $\eta = r/b$, where b is the value of r when $u = 0.5 u_m$. The axial velocity distribution profile has been proven experimentally to follow a Gaussian normal distribution curve. Several assumptions should be made:

$$\frac{u}{u_{\rm m}} = f_1(\eta) = \exp\left[-0.693 \ (\frac{r}{b})^2\right]$$
(2.43)

$$\mathbf{u}_{\mathrm{m}} = \mathbf{k}_{1} \, \mathbf{x}^{\mathrm{p}} \tag{2.44}$$

$$\mathbf{b} = \mathbf{k}_2 \, \mathbf{x}^q \tag{2.45}$$

$$\frac{d}{dx}(F_1k_1k_2^2x) = \beta \,\alpha_e \,k_1 \,k_2$$
 (2.46)

$$\mathbf{k}_1 \mathbf{k}_2 = \sqrt{\frac{\mathbf{M}_0}{2\pi\rho F_1}} \tag{2.47}$$

where $\beta = b/b$, parameters k_1 and k_2 are the x independent coefficients, p and q are the unknown exponents, and F_1 is an integral constant. Equation 2.46 is a development of Equation 2.42 considering those velocity parameters. Equation 2.47 correlates the initial momentum with those velocity parameters. Using the integral momentum and continuity equation, it is possible to calculate the exponents, q = 1 and p = -1. It is obvious that $u_m = f(1/x)$ and b = f(x), see Rajaratnam (1983 and 1986).

The chemical concentration distribution profile in the fully developed region also has a Gaussian normal distribution type of curve. The maximum chemical concentration (c_m) , which occurs in the center line, decreases continuously with the increase of x. Chemical conservation equations can be developed as follow (Rajaratnam, 1976):

$$u \frac{\delta c}{\delta x} + v \frac{\delta c}{\delta r} = \frac{1}{r} \frac{\delta}{\delta r} (r \varepsilon_r \frac{\delta c}{\delta r})$$
(2.48)

$$\frac{d}{dx}\int_{0}^{+\infty} u cr dr = 0$$
(2.49)

where c is the chemical concentration at any point, and ε_r is the eddy diffusivity for chemical transport. Chemical flux at the nozzle (P₀) can be developed using a similar approach as that used in developing the initial momentum:

$$P_{o} = \int_{0}^{+\infty} 2\pi r dr \ u \ c = \frac{\pi d^{2}}{4} U_{o} \ C_{o}$$
(2.50).

Experimental observations show that c/c_m is correlated well with $\eta = r/b$ even though it has different coefficients than that of u/u_m :

$$\frac{c}{c_{\rm m}} = f_2(\eta) = \exp[-0.693 \, (\frac{r}{\rm kb})^2]$$
(2.51)

$$\mathbf{c}_{\mathrm{m}} = \mathbf{k}_3 \, \mathbf{x}^{\mathrm{s}} \tag{2.52}$$

$$k_3 = \frac{P_0}{2\pi} \frac{1}{F_2 k_1 k_2^2}$$
(2.53)

where k, k₃, s, F₂ are constants. Equation 2.53 correlates the initial chemical flux with those chemical concentration parameters. Using the same method to solve the exponential parameters, it can be shown that s = -1, so that $c_m = f(1/x)$, see Rajaratnam (1983 and 1986).

The unknown parameters β , k, k₁, k₂, F₁, and F₂ need to be determined. Rajaratnam (1983 and 1986) suggest values of k = 1.17, k₂ = 0.097, β = 2.5, and α_c = 0.028 which yield constant F₁ = 0.361, F₂ = 0.417, and k₁ = dU₀/0.164. The new equations are:

$$\frac{u}{u_{\rm m}} = \exp\left[-74 \, (\frac{r}{x})^2\right] \tag{2.54}$$

$$\frac{\mathbf{u}_{\mathrm{m}}}{\mathbf{U}_{\mathrm{o}}} = \frac{6.1 \, \mathrm{d}_{\mathrm{o}}}{\mathrm{x}} \tag{2.55}$$

$$\frac{c}{c_{\rm m}} = \exp[-54\,(\frac{r}{x})^2\,]$$
(2.56)

$$\frac{c_{\rm m}}{C_{\rm o}} = \frac{5.3 \, d_{\rm o}}{\rm x}$$
 (2.57).

Slightly different results are suggested by Chen and Rodi (1980), $k_2 = 0.086$ (confirmed by Blevins, 1984 and Ramaprian and Chandrasekhara, 1985). Those equations change slightly in the exponential constants, -94 for the velocity profile and -57 for the chemical concentration profile (Equations 2.54 and 2.56). Parameters for maximum values are slightly different as well, 6.0 for the maximum velocity and 5.0 for the maximum chemical concentration (Equations 2.55 and 2.57). Many equations can be derived based on the empirical parameters, still the velocity and chemical concentration profiles will not change as they are obtained from mathematical solutions.

Angles that form the shear layer of a jet development region can be seen in Figure 2.6. Rajaratnam (1976) derived several equations to describe the boundary of the shear layer as follow:

$$\frac{u}{U_0} = f_3(\eta) = f_3(\frac{r-r_1}{b})$$
(2.58)

where r_1 is the inner radius of the shear layer. Combining those equations with Equation 2.36 gives:

$$\left(\frac{r_1}{r_0}\right)^2 + \left(2F_3\frac{b}{r_0}\right)\frac{r_1}{r_0} + \left[2F_4(\frac{b}{r_0})^2 - 1\right] = 0$$
(2.59)

where F_3 and F_4 are constants which approximately equal 0.31 and 0.07, respectively.

Figure 2.6: Shear Layer (adapted from Rajaratnam, 1976)

Using experimental observations (Rajaratnam, 1976), several new equations can be generated as written below:

$$\frac{r_1}{r_0} = 0.95 - 0.097 \frac{x}{r_0}$$
(2.60)

$$\frac{b}{r_0} = 0.10 + 0.111 \frac{x}{r_0}$$
(2.61)

$$\frac{\mathbf{r}_2}{\mathbf{r}_0} = 1.07 + 0.158 \,\frac{\mathbf{x}}{\mathbf{r}_0} \tag{2.62}$$

where r_2 is the outer radius of the shear layer. Length of the potential core is about 9 r_0 (see Equation 2.62). According to the experiments, α_1 (inner angle of the shear layer) is about 5.7°, while α_2 (the outer angle) is about 9° (Rajaratnam, 1976).

Another approach is given by Mih (1983):

$$\eta = \frac{r}{k_4 x}$$
(2.63)

$$\frac{u}{u_m} = \exp\left(-\eta^2\right) \tag{2.64}$$

$$\frac{1}{r} \frac{d}{dr} (r v) + \frac{du}{dx} = 0$$
(2.65)

$$\frac{v}{u_{\rm m}} = \frac{k_4}{\eta} \left\{ \exp(-\eta^2) \left[0.5 + \eta^2 \right] - 0.5 \right\}$$
(2.66)

where Equation 2.64 is another approach to the Gaussian curve. Equation 2.65 is basically the continuity equation by taking account of the mean radial velocity (v). Assuming that $v \approx 0$ at the edge of the outer layer and k₄ (an experimental parameter) = 0.103, it is found that $\frac{r}{x} = 0.115$, or $\alpha_1 = 6.6^{\circ}$.

2.3.4 Circular Surface Turbulent Jet

A circular surface jet occurs when the nozzle is located at the surface of the fluid, therefore the jet propagates along the fluid surface. It is important to figure out the behavior of this type of jet as the field testing in this study was related to reservoirs with inlet pipes at the water surface. The flow development region can be developed using a three ordinate system, x (axial distance from the nozzle), y (vertical distance from the center line), and z (transverse horizontal distance from the center line), see Figure 2.7. The continuity and Reynold equations are similar to those presented earlier (Rajaratnam 1988):

$$\frac{\delta u}{\delta x} + \frac{\delta v}{\delta y} + \frac{\delta w}{\delta z} = 0$$
(2.67)

$$u\frac{\delta u}{\delta x} + v\frac{\delta u}{\delta y} + w\frac{\delta u}{\delta z} = -\left(\frac{\delta}{\delta y} \overline{u'v'} + \frac{\delta}{\delta z} \overline{u'w'}\right)$$
(2.68)

where u, v, and w are the velocities at the axial (x), vertical (y), and perpendicular (z) directions. Under the overbar signs are the time dependent variables of the velocity. By integrating Equation 2.68 from y and z = 0 to $+\infty$, two new equations can be generated:

$$\frac{d}{dx} \int_{0}^{+\infty+\infty} \int_{0}^{\infty} ru^2 dy dz = 0 \qquad ,and \qquad (2.69)$$

$$\int_{0}^{+\infty+\infty} \int_{0}^{+\infty} ru^{2}dydz = M_{0} = \frac{\pi}{4} \frac{U_{0}^{2} x}{d}$$
(2.70)

Figure 2.7: Circular Surface Turbulent Jet

where M_0 is the initial momentum flux at the nozzle. As shown by Rajaratnam and Pani (1974), analyses for velocity profiles give:

$$\frac{u}{u_s} = f_4 \left(\frac{y}{b_y}\right) \tag{2.71}$$

$$\frac{u_s}{u_m} = f_5 \left(\frac{z}{b_z}\right)$$
(2.72)

$$u = u_m f_4 f_5$$
 (2.73)

$$u_{\rm m} = k_5 x^{\rm p} \tag{2.74}$$

$$\mathbf{b}_{\mathbf{y}} = \mathbf{k}_{\mathbf{6}} \, \mathbf{x}^{\mathbf{q}\mathbf{y}} \tag{2.75}$$

$$b_z = k_7 x^{qz}$$
 (2.76)

where u_s is the surface velocity at X-Z plane, while b_y and b_z are the values of y and z when $u = 0.5 u_s$ and when $u_z = 0.5 u_m$, respectively. Parameters p, qy, and qz are exponents, while k_5 , k_6 , and k_7 are the experimental parameters. The entrainment concept is described as:

$$\mathbf{v}_{ey} = -\boldsymbol{\alpha}_{ey} \, \mathbf{u}_m \, \mathbf{f}_4(\boldsymbol{\eta}_y) \tag{2.77}$$

$$\mathbf{v}_{ez} = -\alpha_{ez} \, \mathbf{u}_m \, \mathbf{f}_5(\boldsymbol{\eta}_z) \tag{2.78}$$

$$\frac{d}{dx} \int_{0}^{+\infty+\infty} \int_{0}^{+\infty} u \, dy \, dz = \int_{0}^{+\infty} \int_{0}^{+\infty} \int_{0}^{+\infty} \int_{0}^{+\infty} \int_{0}^{+\infty} \int_{0}^{\infty} (2.79)$$

where v_{ey} , v_{ez} , α_{ey} , and α_{ez} are the entrainment and coefficient velocities for the y and z directions, respectively. Using the same method for a circular submerged turbulent jet, the exponential parameters can be found to be $q_y = q_z = 1$, and p = -1. Rajaratnam (1985) mentions that in the case of circular surface turbulent jets, velocity profiles in the X-Y plane and in the X-Z plane follow Gaussian normal curves similar to the circular submerged turbulent jet:

$$\frac{u}{u_s} = f_4(\eta_y) = \exp\left[-0.693(\frac{y}{b_y})^2\right]$$
(2.80)

$$\frac{u_s}{u_m} = f_5(\eta_z) = \exp\left[-0.693(\frac{z}{b_z})^2\right]$$
(2.81).

Rajaratnam and Humphries (1984) found for the circular surface turbulent jet, that $b_y = 0.044x$ and $b_z = 0.09x$. So that the new equations are:

$$\frac{u}{u_s} = \exp\left[-358(\frac{y}{x})^2\right]$$
(2.82)

$$\frac{u_s}{u_m} = \exp\left[-86\left(\frac{z}{x}\right)^2\right]$$
(2.83)

where u_s is the axial velocity in the X-Z plane. Rajaratnam (1985 and 1988) show the correlation between u_m and U_o as follows:

$$\frac{\mathbf{u}_{\mathrm{m}}}{\mathbf{U}_{\mathrm{o}}} = \frac{9}{\mathrm{m}} \frac{\mathbf{d}_{\mathrm{o}}}{\mathrm{m}} \tag{2.84}.$$

It was also showed that u_s sometimes occurred at some distance under the surface. Yet, it is acceptable to assume that u_s occurs exactly at the surface, so that the Gaussian curve types (Equations 2.80 and 2.81) are still valid (Rajaratnam and Humphries, 1984 and Rajaratnam, 1985).

Basically, similar equations can be developed for the chemical concentration distribution:

$$u\frac{\delta c}{\delta x} + v\frac{\delta c}{\delta y} + w\frac{\delta c}{\delta z} = \frac{1}{y}\frac{\delta}{\delta y}(y \varepsilon_y \frac{\delta c}{\delta y}) + \frac{1}{z}\frac{\delta}{\delta z}(z \varepsilon_z \frac{\delta c}{\delta z})$$
(2.85)

$$\frac{d}{dx} \int_{0}^{+\infty+\infty} \int_{0}^{\infty} cu \, dy \, dz = 0$$
(2.86)

$$\int_{0}^{+\infty+\infty} \int_{0}^{\infty} c u \, dy \, dz = P_0 = \frac{\pi d^2}{4} U_0 C_0$$
(2.87).

difference is neglected, the Richardson number becomes very small or $\cong 0$. Rajaratnam

(1985) mentions that $b_v = 0.044$, while $b_z = 0.57 R_i^{-1/8}$ for $R_i = 0.00003$ to 0.0031.

For the smallest value (0.00003), b_z equals 0.16. So that, the new equations are:

$$\frac{c}{c_s} = \exp\left[-358(\frac{y}{x})^2\right]$$
(2.88)

$$\frac{c_{\rm s}}{c_{\rm m}} = \exp\left[-27 \, (\frac{z}{\rm x})^2\right] \tag{2.89}$$

where c_s is the chemical concentration at X-Z plane. While the maximum concentration that occurs at the surface can be found using Jen et al data (1966):

$$\frac{c_{\rm m}}{C_{\rm o}} = \frac{7 \, \rm d_o}{\rm x} \tag{2.90}$$

During the same experiment, the shear layer for z (X-Z plane) and y (X-Y plane) directions were obtained by them as well: about 13° and 20°, respectively. Tamai et al (1969) confirm those data.

2.3.5 Application to CT Concept

The use of jet hydraulics to analyze tracer test results is balanced by the desire to incorporate a more physically based model which fits the observed results better than existing empirical models. As will be discussed later, it was not until the tests were completed that it was found that for the two reservoirs, the tracer appeared at the outlet almost immediately after its addition. This indicated that momentum from the jet at the inlet might cause this phenomena. However, unlike most hydraulic studies of jets, no velocity nor concentration profiles in the jet were taken due to the closed nature of the reservoirs. As a result, the obtained data are somewhat a "black box" in nature with only the inlet and outlet measurements. The primary goal of this analysis was to determine if the inlet jet could be responsible for the very fast transport of the tracer through the reservoir. If this was found to be the case, results could be used to determine the t_{10} values at other flow rates and plant modifications to improve the residence time

distribution. The complexity of the jet analysis was therefore tempered by the lack of measurements to define the jet. Therefore, the overall purpose of this study is to determine the residence time distribution using the jet model, not to do the detailed jet hydraulic analysis.

Theoretically, the circular surface turbulent jet is the most appropriate model to use. Unfortunately, there are several difficulties in analyzing the total flux using this model. Parameters b_y and b_z for the axial velocity are obtained for X-Y and X-Z planes, therefore the use of Equation 2.73 to work out the axial velocity at any point may be a mistake. Even after each velocity and chemical concentration has been found out, the total flux will be very difficult to analyze since the axial velocity and chemical concentration profiles will not be symmetrical. It causes disparate velocity and chemical concentration at any point in the jet. A much more complex model would be required which is beyond the scope of study.

The F (C/C₀ vs. t) curve can be developed using the chemical species (total flux) conservation as shown in Equation 2.34. Basically, the flow development area formed by the jet can be divided into many small elements. Each element has a concentration and a velocity. At a certain distance (outlet point), it is assumed that there is an imaginary plane. Every element that hits the plane is assumed to be removed to the outlet point directly. Total flux (total velocity times area times chemical concentration) should be the same as that at the initial point as the chemical is conservative. As a relative concentration is used where at the steady state condition C/C₀ = 1, total flux at the outlet point should be the same as the initial flow (velocity times area). The C/C₀ vs. time curve can be developed by dividing each total flux at any time by the initial flow.

For this study, reservoirs no.2 and 3 were analyzed using the jet model (see Chapter 6.0), and it was found that the existing jet models discussed earlier seemed to fit the observed data adequately. Reservoir no.1 was not analyzed using this model as there is a baffle in front of the inlet point. During the tests, water surface for reservoirs no.2 and 3 covered some parts of the pipe inlets. An imaginary diameter can be used by assuming the equivalent diameter for the same cross section area of water in the pipe. Rajaratnam and Pani (1974) conducted experiments using several types of nozzles (square, triangle, circular, and elliptic) to analyze the three dimensional turbulent wall jet, and stated that the surface turbulent jet should behave similarly. By maintaining the initial velocity (U_0) constant, it was found that velocity profiles along the jets were roughly the same. Knowing that U_0 is basically based on the area of the nozzle (assuming that the flow is constant), it is acceptable to assume that for the same nozzle area, the shape will not affect the initial velocity behavior. The imaginary diameter was calculated for each test since the water level changed for each test.

In order to do the analysis, it is assumed that the maximum velocity and concentration profiles follow the circular surface turbulent jet (Equations 2.84 and 2.90), but the velocity and chemical concentration profiles under the water surface follow the circular submerged condition (Equations 2.54 and 2.56). As the amount of flux should be constant, it is acceptable to "flip" the top part of the jet to below the water surface forming a half - circular shape (Metcalf and Eddy, 1991). Note: in the real mathematical hydraulic problem, even the momentum flux is not constant since the ambient pressure is not constant either (Kotsovinos and Angelidis, 1991). The half - circular shape can be used to calculate the total flux. Angles of 0° to 10° from the center line of the jet with 1° increment were used. It was found that up to 10°, the total flux already reached a value of almost 100%. The velocity and chemical concentration profiles have symmetrical shapes. The average is made for the velocity and chemical concentration with the adjacent layers (say between 2° layer and 1° layer). The area of the half - circular layer can be obtained easily = $0.5 \pi (r_2 - r_1)^2$, where r_2 and r_1 are the radius of the adjacent layers (see Figure 2.8).

Figure 2.8: Total Flux

This simplification cannot be applied to figure out a particular velocity or chemical concentration at any point in the jet. Although the analysis is not ideal, it still should be valid for the total flux since basically the same total flux will travel, no matter what the velocity or chemical concentration profile 's. The analysis is supposed to be able to indicate whether the momentum effect from the inlet was responsible for the rapid travel of the tracer through the reservoir.

More studies about jet theories in shallow or confined water surfaces have been done by Johnston and Halliwell (1986), Sobey et al (1989), Johnston (1990), and Johnston and Volker (1993). Basically, they classify two types of jets travelling in shallow waters: bed and surface jets. The difference between the two is that the jet mainstream flows in the bottom part and in the top part of the water, respectively. The center line velocity decrease for the bed jet seems to be large compared to the free jet, while the surface jet's decrease is less. However, the investigations are only in preliminary stages. Exact parameters have not been identified yet, especially for the chemical concentration.

2.3.6 Simplified Jet Model

Further simplification of the jet model provides another useful tool for analysis. This assumes that the maximum axial velocity contributes the most effect to predict the t_{10} . There is a constant (C₁) that is applicable for a particular distance (1). The change in the axial velocity is given by:

$$du = \frac{dx}{dt} = \frac{U_0 C_1 d_0}{x}$$
(2.91)

set: x = 1 (length of the system) and $t = t_{10}$, the integration yields:

$$t_{10} = \frac{l^2}{d_0 U_0 C_1}$$
(2.92).

As will be shown later in Chapter 6.0, C_1 was found to be relatively constant. This simplified form is very useful to make a rough guess of the t_{10} even before the test has been undertaken. Time intervals of the sampling can be arranged to be very small near the important point (the predicted t_{10}) but rather long for other points. This relation can also be used to predict the t_{10} at different flow rates.

2.4 t10 Values for Different Flow Rates

After a particular t_{10} value has been found using either the residence time distribution methods (the E and F curves) or the jet method, the next problem is to interpret different t_{10} values from different flow rates without conducting further tracer tests. The Guidance Manual (1989) suggests conducting at least four tracer tests for each system using four flow conditions, one near, two greater, and one below the average flow. The highest one should be at least 91% of the peak flow. Correlation between the t_{10} values and the flow rates should form a curve. Still, only one test at the flow at least 91% of the peak flow is accepted due to practical limitations (Guidance Manual, 1989). Other t_{10} values for different flow rates can be predicted using this ratio:

$$\frac{t_{10t}}{t_{10d}} = \frac{Q_d}{Q_t}$$
(2.93)

where:

 $t_{10t} = t_{10}$ obtained from tracer study (min.)

 $t_{10d} = t_{10}$ at desired flow (min.)

As has been mentioned above, correlation between the t_{10} and Q values is not linear. Yu et al (1990) show that the correlation can be exponential as follows:

$$t_{10} = \alpha Q^{\beta} \tag{2.94}$$

where α and β are regression coefficients. It can be concluded that Equation 2.93 will give very conservative results. This seems to agree with another statement mentioned in the Guidance Manual (1989) that the extrapolations are allowed in lower parts of the four points given (see Figure 2.9). A slightly different approach is given by Hart and Gupta (1978) as they tried to correlate the t₅₀/T_d and t_a/T_d with the Q (flow) as a linear function with α and β as linear regression coefficients:

$$\frac{t_{50}}{T_d} \text{ or } \frac{t_a}{T_d} = \alpha Q + \beta$$
(2.95).

Figure 2.9: t₁₀ Values vs. Flow Rates (adapted from the Guidance Manual, 1989)

3.0 CASE STUDY

3.1 Treatment Plant Operation

The E. L. Smith Water Treatment Plant is located on the upstream edge of the City of Edmonton, Alberta. It was built in 1976 with a capacity of 180 - 220 ML/d. Expansion of the plant is currently planned to achieve a capacity of 360 ML/d. The plant, shown in Figure 3.1, uses the following processes: alum coagulation, clarification, chlorine dioxide disinfection, fluoridation, partial softening with lime and recarbonation, rapid sand filtration, and chloramine disinfection to provide a residual.

Under normal operating conditions, the plant is operated in a split flow configuration. Raw water enters the plant from the North Saskatchewan River through low lift pumps. Flow rate is measured using a venturi device meter. The water is dosed with alum and ammonia and then split between the first two clarifiers (C1 and C2) where flocculation and clarification occurs. The effluent from both clarifiers is contacted with the primary disinfectant, chlorine dioxide, prior to its entering the third clarifier (C3) where lime softening takes place. Effluent from C3 is dosed with chlorine which reacts with previously added ammonia to form chloramines. The water is then sent to the recarbonation chamber for pH adjustment and then distributed to the filters. The filtered water is distributed to three on - site reservoirs. High lift pumps send the final water to the distribution system.

The treatment plant operates under a licence from the province of Alberta. This license requires the plant to stay within the Guidelines for Canadian Drinking Water Quality and sets out some additional water quality requirements that should be fulfilled. The treated water quality values including the plant operating ranges can be seen in Table 3.1 (Simpson, 1989).

Figure 3.1: E. L. Smith Water Treatment Plant Layout (adapted from Stanley et al, 1993)

Parameter	Operating Range	Objective Range	Licence Requirement
Turbidity	≤ 0.5 NTU	≤ 1.0 NTU	≤ 1.0 NTU
Color	≤ 2 TCU	≤ 5 TCU	≤ 15 TCU
pH	8.0 to 8.4	6.5 to 8.5	6.5 to 8.5
Combined Cl Residual ¹	1.8 to 2.2 mg/L	1.8 to 2.4 mg/L	≥ 1.8 mg/L
Fluoride	0.9 to 1.1 mg/L	0.8 to 1.2 mg/L	0.8 to 1.2 mg/L
Total ClO ₂ Oxidants ²	0.2 to 0.4 mg/L	0.2 to 0.5 mg/L	$\leq 0.5 \text{ mg/L}$
THMs	≤ 0.005 mg/L	≤ 0.01 mg/L	≤ 0.35 mg/L
Total Coliform	$\leq 1/100 \text{ mL}$	≤ 1/100 mL	$\leq 10/100 \text{ mL}$
Fecal Coliform	0	0	0
Aggressiveness Index	≥ 11.5	≥ 11.5	
Total Hardness ³	110 to120	105 to 125	
Volatile Organics	0 to 0.005 mg/L	0 to 0.01 mg/L	
UV Absorbances ⁴	0 to 5 mg/L	0 to 10 mg/L	

Table 3.1: Treated Water Quality Values (adapted from Simpson, 1989)

mostly monochloramine
mostly chlorite
in mg CaCO₃ /L
as humic acid equivalents

3.2 Previous Study

The Process Development Team undertook tracer studies for the E. L. Smith and Rossdale Water Treatment Plants in 1989 - 1990. The objective of the study was to investigate the compliance of the systems to the SWTR / CT concept. These studies showed that both treatment plants were likely to meet the overall inactivation of <u>Giardia</u> cysts and viruses in summer conditions but not in winter conditions.

In the case of the E. L. Smith Water Treatment Plant, sodium chloride and fluoride were used as the tracers. However, the tests were relatively limited since not all of the E or F curves reached the steady or balance conditions (shorter sampling times) and less sampling points were taken. Only the effluent points were monitored. Therefore, in the case of reservoir test, only the combined result was obtained, not for the single process. Chlorine dioxide was collected from clarifier no. 3 effluent to get the CT value for the clarifier, while chloramine was monitored in the combined reservoir effluent to obtain the CT value for the reservoirs (Process Development Team, 1991).

3.3 Research Objectives

Based on the Process Development Team results, it was recommended that additional tests be conducted to improve the accuracy of the results. Since their tests assessed the overall performance of the plant, but not individual components, it was almost impossible to determine what components should be modified to most efficiently improve the overall contact time of the plant. Finally, the City of Edmonton also wanted to assess the effect of plant expansion on disinfection contact time.

With the above points in mind, research objectives of this study are as listed below:

 develop accurate residence time distributions for components of the E. L. Smith Water Treatment Plant, 2) determine the residence time distribution for each component to prioritize possible modifications, and

-

 develop models that are capable of predicting the residence time distribution in view of plant expansion.

4.0 METHODS AND MATERIAL

4.1 Tracer Input

Step and slug inputs are the most common methods of injecting the tracer to the system. They have been used as early as the 19th century. The step input, known as the "Lawrence continuous method", was introduced for the first time in 1890, while Clifford suggested the addition of a momentary high dose of tracer in 1905 (Taras, 1956). Theoretically, both of them give the same results with the same accuracy. Still, in a practical situation, a decision should be made to choose the most appropriate method.

The slug input has two advantages, relatively shorter time is spent and relatively small amount of tracer is used in the test. It can lower the cost and health concerns. Unfortunately, the slug input has a number of disadvantages both during the test and the data analysis. The tracer should be added as fast as possible. As has been mentioned in the previous chapter, it should be added in a period less than $T_d/50$ (Thirumurthi, 1969). While Joost et al (1991) suggest to add the tracer in less than one minute. In the case of sodium chloride, when a very high salt concentration is needed, a very intensive mixing is required. Otherwise the high density salt solution will diffuse slowly in the water, or will settle to the bottom of the system (Taras, 1956). Hudson (1975) found that during his tests, the slug input never gave good tracer recoveries. There are many problems found in the data analyses as well. More mathematical manipulations are needed, including normalization of the E curve using Equation 2.4 and a material balance check using Equation 2.5.

The step input has a primary benefit that there is no mathematical manipulation required. As t_a cannot be obtained directly from the F curve (it should be transposed back to the E curve using Equation 2.12), usually T_d is used to avoid the manipulation.

One disadvantage of the step input is that the tracer should be added over a relatively long period of time. As has been mentioned in the previous chapter, at least 2 or 3 times T_d (Hudson, 1975). As a consequence, it needs feed equipment that is capable of distributing the tracer continuously in a constant flow for hours or even days. Concerns like cost and health are not significant as many inexpensive and safe chemical compounds are available. Overall, the step input is considered to be better than the slug input, and it is therefore recommended by the Guidance Manual (1989).

4.2 Tracer Compound

Many chemical compounds have been tried as tracers. However, fluoride, Rhodamine WT[®], and sodium chloride seem to be the most popular ones. The Guidance Manual (1989) and Joost et al (1991) give some explanations about selecting chemical compounds. Basically it has to follow certain criteria, including:

- 1) readily available and inexpensive,
- 2) conservative or stable, not removed nor consumed in the water process,
- 3) easily analyzed, and
- 4) acceptable to use in potable water supplies. Dyes or radio active compounds that may be harmful for health are not recommended, for example: Rhodamine B.

Fluoride is a very popular choice. However, it is a relatively hazardous material in its most commonly used form, H_2SiF_6 (hydrofluosilicic acid). Gloves and face shields are required to handle it. The use of fluoride can be very convenient if the treatment plant has already added it for health reasons. A relatively easy analysis can be done using a specific ion probe for fluoride. As the maximum contaminant level (MCL) for this chemical compound is only 4 mg/L, some water with relatively high fluoride concentration will prevent the use it. One disadvantage of using fluoride is its difficulty to monitor at concentrations less than 0.05 mg/L (Dunn et al, 1991). However, VandeVenter et al (1991) who used an Orion model 1809 on - line fluoride analyzer were able to measure the fluoride concentration in the range of 0.01 to 100 mg/L directly on site. However, the reaction of fluoride with alum is a concern which limits the use of this chemical compound (Hudson, 1975 and Teefy and Singer, 1990).

Rhodamine $WT^{\textcircled{0}}$ is one type of fluorescent dye which is commonly used as a tracer. The MCL in drinking water is 0.1 µg/L. Only a small concentration is needed as there is not any fluorescence background in most source water. A fluorometer can be used to measure the concentration accurately and rapidly. Hart (1975) considers it as a good tracer, since it is detectable at low concentration (0.01 ppb) using a Turner Model III Fluorometer, turbidity has very little effect on the fluorosence response, and it is very stable especially in the pH range of 5 to 10. However, Rhodamine $WT^{\textcircled{0}}$ reacts with free chlorine which may prevent the use of this type of tracer.

Sodium chloride is probably the best type of tracer to use. As a common salt (NaCl), it is available in very high concentrations at a relatively low cost. It is very conservative, easy to use (it freezes below -20° C) and measure, and not generally considered toxic (the Merck Index, 1989). Probably the only problem is that sodium chloride is a very common chemical compound found in natural water. A very high background concentration may prevent the use of it. The MCL in receiving water is 250 mg/L, however Alberta Environmental Protection stipulates a maximum concentration of only 20 mg/L.

Another type of chloride salt like lithium chloride is mentioned by Joost et al (1991) as an expensive chemical compound which is slightly difficult to analyze, while Leland et al (1990) tried to use calcium chloride in their experiments. Kennedy et al (1993) do not recommend the use of chlorine as it reacts with other chemical compounds in water. Qualls and Johnson (1983) explain the formulae for chlorine decay due to fulvic acids. Similar to fluoride, chlorine can be somewhat convenient to use if it is

already added to the system as disinfectant. However, unlike fluoride, direct measurement of chlorine is necessary to avoid its decay rate (Kennedy et al, 1990).

Other types of tracer have been used as well, however they do not seem suitable to apply in drinking water studies due to health concerns. Biological tracer like coliform bacteria is one idea. A study conducted by Polpraset and Bhattarai (1985) shows that coliform decay in the system can be well correlated with the dispersion index. Agunwamba (1992) used coliform bacteria to measure the dispersion number in a waste stabilization pond. Bromide has been tried as well by Hagerman et al (1989), while Sawyer and King (1969) and Mitha and Mohsen (1990) used methylene blue dye to analyze the hydraulic performance of small - scale pilot tanks.

4.3 Measurement Method

Standard Methods (1992) gives three methods to measure sodium ions in samples. The atomic absorption spectrometric method basically measures the amount of light absorbed. The light is directed to the flame, into a monochromator, and then measured by a detector. The flame emission photometer method uses a similar concept, but the sample is aspirated and atomized, and then the amount of light emitted is measured directly. The trace of sodium can be determined at a wave length of 589 nm. The third choice is the ICP emission spectroscopy method. It utilizes of a flowing stream of argon gas that is ionized by an applied radio frequency field. The sample is injected into the ICP and dissociates into atoms due to the high temperature. The light wave length emitted from the ICP is examined by a spectrometer. Complete descriptions for those three methods can be found in the Standard Methods for the Examination of Water and Wastewater (1992).

Among these three methods, the flame emission photometer method seems to be the most suitable one. It is easy, inexpensive, and fast to analyze. It needs less chemical preparation and gives good results. Interference from other ions is probably the main concern. However, in the case of tracer studies for water treatment plants, this concern is not significant as the water analyzed is generally in an excellent quality.

4.4 Tracer Recovery

In the case of conservative tracer compounds, 100% tracer recovery should be obtained for every single test. However, problems are encountered in real situations that may affect the recovery, such as losing some amount of tracer in the system or imperfection of the modeling. The Guidance Manual (1989) suggests that at least 90% tracer recovery should be obtained in each test. Basically, the recovery can be found using this equation:

$$\% \text{ Recovery} = \frac{C_f Q}{C_b Q + C_t q_t}$$
(4.1)

where:

- C_f = final concentration at steady state, including background (mg/L)
- C_t = tracer concentration (mg/L)
- C_b = background concentration (mg/L)
- $q_t = tracer flow (L/min.)$
- Q = water flow (L/min.).

5.0 TEST PROCEDURES AND RESULTS

5.1 Test Procedures

The samples were taken at the treatment plant for filters nos. 1 to 6, clarifier no. 2, and all of the three reservoirs. In total, there were ten tests conducted from February 16, 1993 until June 30, 1993 for different periods of time (3 to 52 hours) and in different types of flow (141 to 230 ML/d or 64% to 105% of the peak flow). The tracer recoveries ranged from 84% to 107% (see Tables 5.1 and 5.2).

Food grade sodium chloride (NaCl) in a saturated solution (131,000 mg/L) was added to the system in a step input. Since the background concentration was about 4 mg/L, the tracer feed was set to add about 15 mg/L of brine in order not to violate the 20 mg/L maximum concentration of salt in the receiving water. A constant head tank was used to maintain the continuity and stability of the tracer flow during the tests. The brine was pumped from a 60,000 L outdoor storage tank to a 2,500 L indoor storage tank. The brine then was circulated to the constant head tank using another pump before being added to the inductor. Since the brine flow was only in the range of about 0.2 to 0.3 L/s, potable water was needed to flush it into the system (see Figure 5.1).

More than 2,700 samples were taken in several locations. In the case of filter test no. 1, six inlet sampling points were chosen right in the beginning of the filters nos. 1 to 6, six cutlet sampling points were located at the end of the six filters before the clearwell, and one sampling was taken in the end of the clearwell. The same sampling points were taken during test no. 2, but the inlet points were not taken as the previous test indicated that the flow was evenly distributed to each filter. Test no. 3 was conducted in clarifier no. 2. Two sampling points were located at the top and bottom of the draft tube, four sampling points at the top parts of the clarifier, one point in the

Ta	ble 5.	1: Sar	nples '	Taken

TEST #	1	TEST #	2
Location	Filters+Clearwell	Location	Filters+Clearwell
Date	16-Feb-93	Date	24-Feb-93
Sampling Time	03:05:00	Sampling Time	03:06:30
Flow (ML/d)	180	Flow (ML/d)	140
SAMPLE	NUMBER	SAMPLE	NUMBER
Filter 1 Inlet	26	Filter 1 Outlet	34
Filter 2 Inlet	26	Filter 2 Outlet	35
Filter 3 Inlet	23	Filter 3 Outlet	31
Filter 4 Inlet	24	Filter 4 Outlet	31
Filter 5 Inlet	23	Filter 5 Outlet	35
Filter 6 Inlet	22	Filter 6 Outlet	36 54
Filter 1 Outlet	31	End of Clearwells	54
Filter 2 Outlet	29	Tracer	257
Filter 3 Outlet	29	Total	257
Filter 4 Outlet	29		
Filter 5 Outlet	33 33		
Filter 6 Outlet End of Clearwells	55		
End of Clearwells Tracer	1		
Total	384]		
TEST #	3	TEST #	4
Location	Clarifier 2	Location	Reservoir 1
Date	05-Mar-93	Date	24-Mar-93
Sampling Time	03:04:00	Sampling Time	12:35:00
Flow (ML/d)	180	Flow (ML/d)	160
SAMPLE	NUMBER	SAMPLE	NUMBER
Effluent	44	Inlet	49
Bottom Clarifier 1	43	Outlet	78
Bottom Clarifier 2	43	Backround	6
Manhole	46	Tracer	4
Point 1	45	Total	137
Point 2	45		
Point 3	45		
Point 4	45		
Tracer	1		
Total	357		

(cont'd)

TEST#	5	TEST #	6
Location	Reservoir 2	Location	Reservoir 2
Date	06-Apr-93	Date	20-Apr-93
Sampling Time	15:00:00	Sampling Time	14:16:00
Flow (ML/d)	167	Flow (ML/d)	141
SAMPLE	NUMBER	SAMPLE	NUMBER
Inlet	55	Inlet	45
Outlet	90	Outlet	85
Backround	13	Backround	14
Tracer		Tracer	7
Total	165	Total	151
TEST #	7	TEST #	8
Location	Reservoir 3	Location	Reservoir 1
Date	28-Apr-93	Date	18-Jun-93
Sampling Time	14:00:00	Sampling Time	09:00:00
Flow (ML/d)	179	Flow (ML/d)	230
SAMPLE	NUMBER	SAMPLE	NUMBER
Inlet	52	inlet	45
Outlet	84	Outlet	53
Backround	14	Backround	10
Tracer	7	Tracer	6
Total	157	Total	114
TEST#	9	TEST #	10
Location	Reservoir 3	Location	Reservoir 1,2,3
Date	25-Jun-93	Date	30-Jun-93 until 02-Jul-93
Sampling Time	09:30:00	Sampling Time	52:25:00
Flow (ML/d)	198	Flow (ML/d)	170
SAMPLE	NUMBER	SAMPLE	NUMBER
Inlet	46	Inlet 1	83
Outlet	63	Inlet 2	33
Backround	11	Outlet 1	138
Tracer	6	Outlet 2	126
Total	126	Outlet 3	131
		Convergence	309
		Background	50
		Tracer	27
		Total	897

GRAND TOTAL=

2745

I

65

Location	Water	Water	Water	Na	Na	Tracer ¹	Tracer ²	Td
	Flow	Level	Volume	: Baci	igr Fiual	Flow	Recovery	
	(MIL/d)	(m)	(m ³)	(mg/L)	(mg/L.)	(L/s)	(%)	(min.)
Filters+Clearwell	180	-	3642	3.72	14.58	0.27	88	29
Filters+Clearwell	140	-	3642	2.62	12.48	0.19	84	37
Clarifier No. 2	180	-	10700	3.59	09.61	0.14	107	86
Reservoir No.1	180	4.1	37140	4.04	12.68	0.22	94	297
Reservoir No.1	230	3.9	35120	3.08	13.57	0.32	86	220
Reservoir No.2	141	3.6	28570	3.92	14.08	0.19	94	292
Reservoir No.2	167	4.0	32050	4.87	12.48	0.18	102	276
Reservoir No.3	179	3.6	35178	4.39	12.07	0.19	100	283
Reservoir No.3	198	4.4	43762	3.47	13.31	0.28	86	318
Reservoirs Nos.1,2,3	170	-	106640	4.52	13.88	0.26	84	926 ³
Reservoir No.1=20%	34	3.9	35120	-	-			-
Reservoir No.2=38%	65	4.0	32050	-	-		-	-
Reservoir No.3=42%	71	4.0	39470		<u> </u>	<u> </u>		•

Table 5.2: Test Data

1) Sodium chloride (NaCl) in a step input was used for all tests.

2) Brine concentration = 131,000 mg/L Na.

1

3) Including 760 m pipe system with diameter = 2.1 m, assuming PFR.

Figure 5.1: Brine Input System (adapted from Stanley et al, 1993)

manhole, and one point at the effluent. For single reservoir tests, (tests nos. 4 to 9), only the inlet and outlet of each reservoir were taken. The last test (test no.10) was conducted for all of those three reservoirs operating in parallel. Two inlet points at reservoirs nos.1 and 2, three outlet points at all of the reservoirs, and one point at the convergence point were chosen as the sampling points. Initial samples were taken for all of the tests, while background samples were taken for tests nos. 4 to 10. Figures 5.2 to 5.4 show the sampling locations for all the tests.

It is important to consider the injection location of the tracer. For all of the ten tests, the points were located at good locations where immediate mixing would occur to avoid the slow diffusing of brine in water. In the case of filters and clearwell tests, the brine was injected at the OG weir at the end of the recarbonation chamber. For the clarifier test, the injection point was located at the rapid mixing point of the raw water in the influent line of the clarifier. In the case of reservoir tests, the brine was flushed right into the clearwell where there is complete mixing (see Figures 5.2 to 5.4). It is possible to calculate the amount of brine needed for all tests after knowing the duration and the tracer velocity for each test (Tables 5.1 and 5.2). There was about 150,500 L of brine required for all of the tests.

Although 2 to 5 minute sampling intervals (from when the first tracer is monitored until the steady condition) are recommended by the Guidance Manual (1989), it was found that the most efficient use of samples were to concentrate them near the expected t_{10} . As a result, early in the test, a sample interval of 1 to 5 minutes was used. After the curve was almost or had already reached the steady state condition (based on estimation), 10 to 20, or even 60 minute sample intervals were used. The samples were taken both manually and automatically using three auto - samplers. Large plastic bottles (250 mL) were used to collect samples in the first test. As the analyses required only a small amount of water, 20 mL small teflon bottles were used for the other tests.

X = Sampling Points

Figure 5.2: Sampling Locations for Filters and Clearwell (Tests Nos. 1 and 2)

X = Sampling Locations

Figure 5.3: Sampling Locations for Clarifier No. 2 (Test No. 3)

Figure 5.4: Sampling Locations for Reservoir (Tests Nos. 4 to 10)

Analyses were done at the Environmental Engineering and Science Laboratory located at the University of Alberta using a flame emission photometer according to the Standard Method 3500-Na D (Standard Methods, 1992).

Several standard solutions of sodium in the range of 0 mg/L to 20 mg/L were made. The instrument readings were calibrated from the scale of 0 to 100. It is assumed that the correlation between the readings and the standard concentrations is linear. The linear regression method was used to determine the linear equation.

5.2 Curve Development and Error Factors

The final tracer concentration, or equal to the initial amount of tracer added (C_0), was chosen from the steady condition of the inlet / influent concentration. All the inlets / influents reached the steady conditions, but not all the outlets / effluents. Tracer concentration at the clearwell point from tests nos. 1 and 2 did not reach steady conditions. The reason is that there was some water coming into the sampling point in the clearwell from the other filter bank (see Figure 3.1 above). This may explain the noise at the end of clearwell sampling points (see Figures 5.5 and 5.6). Test no. 9 did not last long enough to reach the steady condition for the outlet. Probably two more hours would give a better result. Some judgements should be made when the background increased for test no. 4. The steady condition for the inlet was assumed to happen before the noise.

It was assumed that the end points of the curves became the steady state values, while the initial values were found from the background samples. The F(t) vs. t curves were generated using Equation 2.9 (see Appendix 1). The theoretical residence time (T_d) can be determined based on the incoming flow and the system volume using Equation 2.3. All of the F curves can be seen in Figures 5.5 to 5.14.

Figure 5.5: Test No.1 - Filters and Clearwell at 180 ML/d

Figure 5.6: Test No.2 - Filters and Clearwell at 140 ML/d

Figure 5.7: Test No.3 - Clarifier No. 2 at 180 ML/d

Figure 5.8: Test No.4 - Reservoir No. 1 at 180 ML/d

Figure 5.9: Test No.5 - Reservoir No. 2 at 167 ML/d

Figure 5.10: Test No.6 - Reservoir No. 2 at 141 ML/d

Figure 5.11: Test No.7 - Reservoir No. 3 at 179 ML/d

Figure 5.12: Test No.8 - Reservoir No. 1 at 230 ML/d

Figure 5.13: Test No.9 - Reservoir No. 3 at 198 ML/d

Figure 5.14: Test No.10 - Combined Reservoirs at 170 ML/d

The instrument reading error was found out by testing 30 times for each Na standard solution of 0, 5, 10, 15, and 20 mg/L. The average readings for the samples were 0.0, 33.1, 58.7, 81.0, and 99.0, respectively. While the standard deviations were found to be small: 0.00, 0.36, 0.36, 0.43, and 0.43, respectively. It is evident that the instrument error due to its floating can be neglected (see Appendix 6).

The tracer concentration was found easily by diluting the tracer samples for 1:10,000 in order to set the readings in the range of 0 to 100. The brine was found to be saturated and constant throughout the tests with the Na concentration equal to 131,000 mg/L.

Tracer recoveries are presented in Table 5.2. As indicated by the table, recoveries varied from 84% to 107%. The Guidance Manual (1989) recommends a recovery of at least 90%. Possible sources of errors in the recovery include: sodium analysis errors, loss of tracer to dead zones, inaccuracy in the plant flow rate and system volume, and errors in dose of tracer.

6.0 **DISCUSSION**

6.1 t₁₀ and System Performance

Table 6.1 presents the tracer test results. Included in the table are the t_{10} , t_{90} , T_d , t_{10}/T_d , and t_{94}/t_{10} . From the table, it can be seen that the values of t_{10}/T_d vary from component to component. Time parameters t_{10} and t_{90} can be compared directly with the T_d . In most cases, this following condition must be fulfilled: $t_{10} \le T_d \le t_{90}$. The table shows that comparison among those three parameters is satisfied for all tests.

6.1.1 Filters and Clearwell Tests

As more than one inlet points were taken during filters and clearwell tests (tests nos. 1 and 2), the values of t_{10} and t_{90} were determined directly from the outlet points. As a result, the t_{10} and t_{90} values for those systems also include pipes and channels. Reasonable results were obtained from the tests, the decreased the flow the increased the values of t_{10} and t_{90} . The Guidance Manual (1989) considers filters as systems with a high percentage of uniform flow. It is possible to figure out the T_d based on the incoming flow and the effective water volume. In this case, there are two layers of filter media, 0.45 m of anthracite and 0.30 m c² and with porosity numbers of 0.58 and 0.44 respectively, yielding a total effective w_w are volume for the six filters and the clearwell of 3642 m³ (E. L. Smith Water Treatment Plant, 1993). Ratios of the t_{10} and T_d can be calculated (0.75 for 180 ML/d and 0.81 for 140 ML/d), that are categorized as "superior". Those values are very close to the value of 0.70 mentioned by the Guidance Manual (1989) for filter performance.

System	Flow (ML/d)	Water Volume (m ³)	t90 (min.)		T _d	Td	110_	Baffle rameter
Filters + Clearwell	180	3642	91	22	29		4.1	superior
Filters + Clearwell	140	3642	100	30	37	0.81	3.3	superior
Clarifier No. 2	180	10700	125	25	86	0.29	5.0	poor
Reservoir 1.0. 1	180	37140	494	79	297	0.27	6.3	poor
Reservoir No. 1	230	35120	265	41	220	0.19	6.5	poor
Reservoir No. 2	141	28570	503	16	292	0.05	31.4	nobaffic
Reservoir No. 2	167	32050	447	08	276	0.03	55.9	nobaffle
Reservoir No. 3	179	35178	394	12	283	0.04	32.8	nobaffle
Reservoir No. 3	198	43762	452	10	318	0.03	45.2	nobaffle
Reservoir No. 1,2,3	170	106640	1260	137	926 ¹	0.15	9.2	poor
Reservoir Split: 20% Reservoir No.1	34	35120	-	-	-	-	-	-
38% Reservoir No.2	2 65	32050	-	-	-	-	-	-
42% Reservoir No.3	71	39470	-		-	-		

Table 6.1: Time Parameter Values

1) Including 760 m pipe system with diameter = 2.1 m, assuming PFR.

6.1.2 Clarifier No. 2 Test

For clarifier no. 2 test (test no. 2), the outlet t_{10} and t_{90} are applied as the time parameters that include pipes and channels. Since there was only one test conducted for clarifier test, it is not possible to make any comparison for the t_{10} or t_{90} . The baffle parameter was found to be about 0.3 or classified as "poor".

6.1.3 Individual Reservoir Tests

In the case of individual reservoir tests (tests nos. 4 to 9), the individual value of t_{10} for each system can be calculated by taking the difference between the outlet t_{10} and the inlet t_{10} . Higher flow rates result in decreased values the t_{10} and t_{90} for each system with the exception of reservoir no.3 at 198 ML/d. The greater water level (water volume) in that system might have had a more dominant effect on the time parameters. The baffle parameters were found to be "poor" for reservoir no. 1 (t_{10}/T_d values range from about 0.2 to 0.3) and "no baffle" for the other two reservoirs (t_{10}/T_d values about 0.0). These values seem logical in consideration of the real physical condition of the reservoirs where one simple baffle was installed for reservoir no.1 and no baffle at all was constructed for reservoirs nos. 2 and 3. See Figure 6.1.

An interesting comparison can be made between the length to width (L/W) ratio vs. t_{10}/T_d results provided by the CH2MHILL (1993) (see Figure 6.2). The figure is based on numerous data collected from many systems. In the case of reservoir no. 1 with a L/W ratio of about 4, the t_{10}/T_d values should be in the range of 0.15 to 0.50 which are higher than the test results. For reservoirs no. 2 and 3 with L/W ratio values about 2.5 to 3, the t_{10}/T_d values given by Figure 6.2 should be in the range of 0.10 to 0.45 which are also greater than those of the real data. It is evident that those reservoirs have poor performance in consideration to the L/W ratio.

Several studies have been done to find out the correlation between the shape or

Figure 6.1: Reservoirs Nos. 1, 2, and 3 Layout

Figure 6.2: L/W Ratio vs. t_{10}/T_d (adapted from CH2MHILL, 1993)

geometric factor of the system and the degree of mixing. They show that an increase of L/W of the system results in a decrease of the mixing degree, but the correlation is poor. Other factors like depth to width ratio, outlet characteristics, turbulence, baffle conditions, and even wind also make differences. In general, a high length to width ratio system, with a depth to width ratio equals to 1 or less, plus one longitudinal baffle will be in a good resemblance with a PFR (Marske and Boyle, 1973). Two studies conducted by Kennedy et al (1991 and 1993) seemed to agree with those results. The first study found that a shallow system with a large surface area gave a nearly complete mixing. While the second study concluded that the system geometry has only little effect on the mixing behavior. The size of the system also makes a difference. The smaller the size, the more sensitive the dispersion number (Mitha and Mohsen, 1990).

Numerous tracer studies have set art to obtain values of t_{10}/T_d , such as Teefy and Singer (1990), Bishop et al (1990 and 1993), Dunn, et al (1991), Kennedy et al (1991), Process Development Team (1991), and Yu et al (1991). The Guidance Manual (1989) has also identified several types of systems to have some correlation with the baffle parameter. Rectangular and circular basins without baffle, with simple baffles, and complex baffles are interpreted as poor, average, and superior baffle conditions, respectively. Bishop et al (1991 and 1993) completed studies to verify those correlations using small pilot - scale circular and rectangular basins. While Hart (1975) used perforated baffles in order to avoid solid buildups in the corner areas. In general, all of those studies seem to agree each other. Still, more intensive hydraulic experiments beyond tracer studies are necessary to acquire such information about flow pattern in the system.

6.1.4 Combined Reservoir Test

The t_{10} and t_{90} obtained from the combined reservoirs in parallel test (test no.

10) were found directly from the outlet F curve, therefore they include all pipes and channels in the whole system. No comparison of the t_{10} and t_{90} values can be made for different flow rates, since there was only one test conducted. The baffle parameter was found to be "poor" with a t_{10}/T_d ratio of about 0.2.

The Process Development Team conducted a similar test for the combined reservoirs in parallel including filters. The total t_{10} was found to be 178 minutes at 160 ML/d, or about 148 minutes excluding the filters. While, the current study found the t_{10} equal to 137 minutes at 170 ML/d. Using Equation 4.1, the t_{10} for 160 ML/d can be predicted to be 146 minutes, with a difference of 6%. A complete investigation of all systems in the treatment plant using the CT concept will not t_2 discussed as it has been done in the previous study (Process Development Team, 1991). After knowing the t_{10} for each system, the required CT value can be obtained from the standard CT tables. A more comprehensive discussion can be found in Andrews et al (1992).

Using the convergence point from test no. 10, it is possible to work out the flow split of the three reservoirs. Reservoirs nos. 1, 2, and 3 receive 20, 38, and 42% of the total flow, respectively (see Appendix 5). It is evident that reservoirs nos. 2 and 3 contribute the most impact on contact time in the disinfection process. Some modification, if any, should be prioritized for those two reservoirs.

6.2 Residence Time Distribution Analyses

The Morril's Index and baffle parameter, CMRs - in - series model, Wolf -Resnick model, Rebhun - Argaman model are the most common models used to analyze the residence time distribution performance. The dispersion model suggested by Thirumurthi and Levenspiel will not be covered as it deals with the E curve (the slug input). The jet model will be used to analyze reservoirs nos. 2 and 3, but not reservoir no. 1 due to its physical condition that makes it difficult to develop the model. As has been mentioned above, the filters and clearwell, clarifier, and combined reservoirs are assumed as combined systems. The outlet F curves can be interpreted as the system residence time distribution. In the case of single reservoir tests, the residence time distribution curves can be worked out by taking difference of the outlet and inlet points (see Appendix 1). Summary of the results can be seen in Table 6.2.

6.2.1 Wolf - Resnick Model

This model in its simplified form (Equation 2.26) represents the entire residence time distribution. As a result, it gives a good estimation to the nature of the F curve. Parameter β indicates the time shift of the curve, while parameter α gives an estimation to the curve slope / skewness.

Interesting results can be seen in Table 6.2. From a comparison between tests on the two filters and the clearwell, it can be seen that for the low flow test (test no. 2 at 140 ML/d), it seems that the flow behaves more like a PFR than that for the high flow (test no. 1 at 180 ML/d). Note: in the case of PFR, parameter α should equal to 1, while parameter β should be + ∞ to form a vertical line right on $t/T_d = 1$. A reasonable explanation can be drawn that there is a smaller momentum effect in the system and the flow is distributed evenly over the filter media. This can be seen from parameters α and β ; the lower the flow the bigger the β (intercept with x axis) and the bigger the α (slope) as well. For clarifier and combined reservoir tests, no comparison can be made since only one type of flow test was undertaken for each system.

Some interesting results were obtained from single reservoir tests (tests nos. 4 to 9). Generally, the higher the flow, the lower the β , and the higher the α , with the exception of reservoir no.3. It can be explained by assuming that inside the reservoirs momentum effects are dominant. The higher the flow, the less the β as the water travels faster and appears earlier at the outlet point, hence the lower the time delay. The faster

Analyses
Distribution
Time
Residence
Table 6.2:

				2.2							
Data											
-	(MU(d)	180	140	180	180	230	141	167	179	196	21
Water Level	Ê	•		•	4.1	3.9	3.6	4.0	3.6	4.4	•
ume	(E^m)	3642	3642	10700	37140	35120	28570	32050	3517 8	43762	109271
Td (r	min.)	29	37	%	297	220	262	276	283	318	926
Direct Measurement											
	min.)	22	8	25	62	41	16	æ	1	ç	127
	ĺ	1 8	Ę	, t	VOV	765	2		į	2	
	fam	5	33	3		207			3	704	
Morrifs Index: 130/110		4.1	3.3	5.0	6.3	6.5	31.4	55.9	32.8	45.2	9.2
Baffie Parameter: 110/Td		0.76	0.80	0.29	0.27	0.19	0.05	0.03	0.04	0.03	0.15
Baffe Description		superior	superior	poor	poor	poor	no baffle	no baffle	no baffie	no baffle	poor
Wolf - Resnick Model: C/Co = 1-Exp		-α•(T-β))									
α		1.19	1.81	1.61	1.87	2.22	1.54	1.59	1.68	1.62	1.60
β		0.62	0.73	0.22	0.22	0.16	0.04	0.02	0.01	0.01	0.11
Rebhun - Argaman Model: ام(۲-	C(Co) = -	b-1)(q-1)(1)	ii: ln(1-C/Co) = {1/(1-p)(1-d)] t/Td + p/(1-p)	(0							
Np (degree of PFR)	8	41.2	58.9		27.4	25.9	4.5	2.4	2.1	3.7	13.8
d (dead space)	£	-50.5	-23.8	18.7	19.3	36.7	21.2	25.6	33.3	29.0	27.7
110 (1	min.)	20	28	24	83	46	32	23	20	22	139
CMRs in Series											
z		25	37	Ð	e	e	-	-	-	-	7
Jet Model											
l (length of travel)	Ē	ı		•		,	145	145	175	175	•
do(imaginary diameter)	Ē	,		•	•	•	1.0	1.1	0.7	1.2	,
	min.)	•		•		•	13	12	₽	14	•
Morril's Index		•	•	•	•	,	38.7	37.3	39.4	32.3	•
Baffle Parameter: t10/Td			•		•		0.045	0.043	0.035	0.044	•
Baffle Description				•			no baffie	no baffie	no baffle	no baffle	•
Uo (m/	(m/min.)	•	•	,	•	•	124.73	122.10	323.17	122.25	•
C1 (simplified form: t10=I^2/Uo do C1)	°C1)	•	•		•		13.0	13.0	13.5	14.9	•

the water travels, the steeper the slope, and the bigger the α . For reservoir no. 3 at 198 ML/d parameter β equals to that at 179 ML/d, but parameter α is smaller. This aberration can be explained by considering the difference of the water levels for these two tests. As reservoir no.3 at 198 ML/d has a higher water level than that at 179 ML/d (4.4 m vs. 3.6 m), it is logical to make a conclusion that the increase in water level (water volume) is more dominant than the increase of flow that gives rise to the decrease of α .

Other interesting points are shown in Figures 6.6 to 6.11 for single reservoir tests. It is clear that the Wolf - Resnick model does not fit the curves obtained from the tracer studies, especially for the early points which are important in determining the value of t_{10} in the CT concept. The most logical explanation is that this model is basically derived from mass balance of the system. It also appears that the model fits reservoir no.1, especially at a low flow rate, better than reservoirs nos. 2 and 3. Reservoir no.1 has only one simple baffle while reservoirs nos. 2 and 3 do not have baffles at all, the momentum / jet effect seems to be more dominant in the latter reservoirs as the water flows almost directly from the inlet to the outlet, so that the early real points from the tests come faster than those from the model.

In the case of filters + clearwell and clarifier tests (Figures 6.3 to 6.5), the model seems to match the whole curve. The same result also occurs for the combined reservoir test (Figure 6.12). This means that basically the momentum effect does not dominate these systems. The fluid does not travel directly from the inlet to the outlet point due to physical conditions in the case of filter and clarifier tests, and due to the low flow (split flow) for the combined reservoir test.

Still, although this model does not fit the real data well, it is still valid to compare the general pattern of one curve with another. For example, if the first curve is steeper (having a bigger α) than the second curve but has the same time shift (the

Figure 6.3: Filters + Clearwell at 140 ML/d for Wolf-Resnick and CMRs - in - Series Models

Figure 6.4: Filters + Clearwell at 180 ML/d for Wolf-Resnick and CMRs - in - Series Models

Figure 6.5: Clarifier No.2 at 180 ML/d for Wolf-Resnick and CMRs - in - Series Models

Figure 6.6: Reservoir No.1 at 180 ML/d for Wolf-Resnick and CMRs in - Series Models

Figure 6.7: Reservoir No.1 at 230 ML/d for Wolf-Resnick and CMRs in - Series Models

Figure 6.8: Reservoir No.2 at 141 ML/d for Wolf-Resnick and CMRs in - Series Models

Figure 6.9: Reservoir No.2 at 167 ML/d for Wolf-Resnick and CMRs in - Series Models

Figure 6.10: Reservoir No.3 at 179 ML/d for Wolf-Resnick and CMRs in - Series Models

Figure 6.11: Reservoir No.3 at 198 ML/d for Wolf-Resnick and CMRs in - Series Models

Figure 6.12: Combined Reservoirs at 170 ML/d for Wolf-Resnick and CMRs - in - Series Models

same β), the t₁₀ for the first curve must be less than the second one.

6.2.2 CMRs - in - Series Model

This model does not fit the observed data. Again, the greatest difference occurs in the early stage of the curves. The jet effects are dominant in the case of single reservoir tests which are not represented by the model. Figures 6.3 to 6.12 show that after trying several values of N, there is no one that fits the data well.

6.2.3 Rebhun - Argaman Model

This model basically linearizes the Wolf - Resnick equation using a log or ln scale for the horizontal axis. Parameter p indicates the degree of PFR; the higher the p, the bigger the time shift and the steeper the line. Parameter d represents the dead space fraction; the bigger the d, the steeper the line but does not affect the time shift.

Because of a high level of noise in the filters and clearwell data, reliability of the results is questionable (see Figures 6.13 to 6.14). As shown in Table 6.2 above, the dead space fraction should not be less than 0%. In the case of clarifier and combined reservoir tests, the model fits the observed data very well (see Figure 6.15 and 6.22). Once again, no comparison can be made to assess the effect of the flow rate as only one flow rate test conducted for each system.

Interesting results were found in the case of single reservoir tests (tests nos. 4 to 9). Considering data obtained from the tracer studies, it seems that higher flow rates will give rise to a decrease in the p (degree of PFR) and an increase in the d (degree of dead space). But, as can be seen in Table 6.1, the exception occurs aga^{i-1} for reservoir no. 3. The same argument can be used: the increase of the reservoir water level (volume) is more dominant than the increase of the flow that affects the t_{10} for reservoir

Figure 6.13: Filters + Clearwell at 140 ML/d for Rebhun-Argaman Model

Figure 6.14: Filters + Clearwell at 180 ML/d for Rebhun-Argaman Model

Figure 6.15: Clarifier No.2 at 180 ML/d for Rebhun - Argaman Model

Figure 6.16: Reservoir No.1 at 180 ML/d for Rebhun-Argaman Model

Figure 6.17: Reservoir No.1 at 230 ML/d for Rebhun-Argaman Model

Figure 6.18: Reservoir No.2 at 141 ML/d for Rebhun-Argaman Model

Figure 6.19: Reservoir No.2 at 167 ML/d for Rebhun-Argaman Model

Figure 6.20: Reservoir No.3 at 179 ML/d for Rebhun-Argaman Model

Figure 6.21: Reservoir No.3 at 198 ML/d for Rebhun-Argaman Model

Figure 6.22: Combined Reservoirs at 170 ML/d for Rebhun-Argaman Model

no. 3. See Figures 6.16 to 6.21 above.

The same problem occurs for the early points of the curves for single reservoir tests (tests nos. 4 to 9) but not for the other tests (tests nos. 1, 2, 3, and 10). The same explanation can be given, momentum effects seem dominant for single reservoir tests. Table 6.2 shows that using this model to predict the t_{10} values for reservoirs nos. 2 and 3 can result an over prediction in the order of about 50%. While, in the case of other systems without the momentum effect, prediction using this model seems very good with the maximum difference of about 5% only.

6.2.4 Morril's Index and Baffle Parameter.

The main weakness of the Morril's index (t_{90}/t_{10}) is that it basically depends only on discrete points in the F curve rather than considering the whole residence time distribution. It also does not give a direct qualitative assessment to the SWTR / CT concept. The baffle parameter (t_{10}/T_d) suggested by the Guidance Manual (1989) has the same problem, notwithstanding the fact that it is the only parameter that gives a direct qualitative assessment of a system relative to the SWTR / CT concept. The Morril's index has a slight advantage over the baffle parameter, because the two time parameters $(t_{10}$ and t_{90}) can be found directly from the F curve. In the case of the baffle parameter, T_d needs to be calculated. This means field data such as incoming flow and system volume must be to obtained.

Table 6.2 shows that in the case of filters + clearwell tests and reservoir no. 1 test, both parameters do not seem to be affected by the change of flow rates. In general, the Morril's index tends to increase with the flow, while the baffle parameter does the opposite. The change for the Morril's index due to the flow rate seems to be greater than that for the baffle parameter. From this point of view, the baffle parameter is considered to be better than the Morril's index as it appears to be more constant for different flow

rate changes.

6.2.5 Jet Model

As indicated in the previous section, the empirical models do not tend to fit the observed data well for reservoirs nos. 2 and 3. The poorest fit is in the initial portions of the curve which is important in determining the t_{10} . As these reservoirs have unbaffled inlets and the results indicate that the tracer appeared at the outlet much sooner than expected, it is hypothesized that momentum from the inlet may be responsible for this phenomena.

Flow through the reservoir then was modelled as if there was a jet from the inlet. If velocity and concentration values based on the jet hydraulics tended to match the observed tracer results, it would indicate that the hypothesis could be correct. However, if the jet model indicated that the tracer should arrive much sooner or later than what was observed, doubt would be cast on the hypothesis. Further investigation would be required to determine why the tracer traveled so fast through the reservoir.

The model is based on the standard jet equations that have been explained in chapter 2. A half circular - shape of jet is used which is divided into layers from 0° to 10° from the center line with increments of 1° . Since reservoirs nos. 2 and 3 have the shape of trapezoid, it is assumed that the imaginary planes lie in the middle distances of the diagonal parts, or in the distances of 145 and 175 m, respectively (see Figure 6.23). Each flux that hits the plane is assumed to be removed directly to the outlet point. As the jet model is generated from the inlet profile, it is logical to choose the height of water in each reservoir by taking an average of the water level data for the first hour only, as the inlet profiles reach the steady state before 1 hour (see Figure 6.23). The imaginary diameter can be developed, then the initial velocity of the jet (U₀) can be worked out. The total flux for each layer can be obtained by multiplying the chemical

Note: imaginary plane for Reservoir no. 2 = 145 m imaginary plane for Reservoir no. 3 = 175 m

Figure 6.23: Surface Turbulent Jet Profile

concentration by the velocity. The C/C_0 values for each system can be found by dividing the total flux by the incoming flow as has been explained in the previous chapter. The detail calculation can be found in Appendix 4.

It was found that all of the C/C₀ values almost reached 1 (about 0.98), representing the total recovery of the tracer. Different calculation was done assuming that only the core of the jet contributed the most flux of the jet. Note: the jet core means the portion of the jet that does not come into contact with the bottom. It has a radius equal to the reservoir depth at the outlet end of the reservoir. It was assumed that the core had an angle of 2° from the center line. Similar calculation was completed considering only up to 2° degree layers that gave a value of C/C₀ of about 0.15 (see Appendix 4).

Figures 6.24 to 6.27 show that the curves obtained from the jet model fit with the real data up to about $C/C_0 = 0.20$ only. This is as expected as the core of the jet has a total tracer (C/C_0) of about 0.15. As the t₁₀ lies on the area where the jet model fits to the observed data, it is possible to predict the t₁₀ using this model. The estimation is considered to be good (see Table 6.2).

In order to verify the turbulent assumption of the jet, the lowest Reynold number can be obtained for reservoir no. 2 at 141 ML/d. The Reynold number was found to be 1.6×10^6 , or much greater than 3,000 for the turbulent flow criterion (Blevins, 1984).

6.2.6 Simplified Jet Model

This model is a development of the previous model. Using Equation 2.92, it is interesting to notice that the constant C_1 seems to be constant in the range of 13.0 and 14.9 (determined experimentally) or which it should be if the jet effect is dominant (see Table 6.2). This model can be used as a base to determine the t_{10} at other flow rates.

Figure 6.24 Reservoir No. 2 at 141ML/d for Jet Model

Figure 6.25 Reservoir No. 2 at 167 ML/d for Jet Model

Figure 6.26: Reservoir No. 3 at 179 ML/d for Jet Model

Figure 6.27: Reservoir No. 3 at 198 ML/d for Jet Model

6.3 Suggestions for System Modification

The modeling seems to indicate that jet effect is dominant in the case of reservoirs nos. 2 and 3. t_{10} can be increased by decreasing or eliminating the jet effect. The first alternative is to construct baffles inside the reservoir. Reservoir no. 1 has a baffle that reduces the jet effect. It can be seen from the parameters t_{10}/T_d that are greater compared with those for reservoirs nos. 2 and 3.

Another option is to install diffusers in the inlet. The idea is to spread the momentum across the whole width of the reservoir. In addition, momentum from a jet will dominate the flow for approximately 100 diameters of the jet out from the discharge point. By diffusing the water with many small jets, the momentum dominated distance is greatly reduced. Using a well designed diffuser should result in flow that closely resembles a PFR plus dispersion. Interesting results were recently obtained in another study by the University of Alberta (University of Alberta, 1994). Tracer studies were conducted at the Rossdale Water Treatment Plant in Edmonton, Alberta. Two of the tests were conducted at two identical rectangular stilling basins (6700 L each). The inlet has many weirs to distribute the flow evenly across the inlet of the basin. There was no jet effect found in this case, the t_{10} values are quite large (73 minutes for 55 ML/d and 58 minutes for 75 ML/d), and the output profiles are very close to the PFR with small dispersion.

In the case of filters + clearwell, no modification is required since the system is classified as "superior" already. Clarifier no.2 and reservoir no.1 with the baffle parameters of about 0.3 may also need some modification.

123
7.0 CONCLUSIONS

The first three conclusions given are related to the general test results for the case study (E. L. Smith Water Treatment Plant performance). While, the second five conclusions relate generally to the residence time distribution in water treatment plants. Three last comments are related to the SWTR / CT concept (1989).

- The t₁₀ values obtained from the tests can be applied to investigate the system compliance to the CT concept. According to the baffle parameter suggested by the Guidance Manual (1989), the mixing quality classification for all reservoirs are "poor" and "no baffle", while clarifier no. 2 is "poor", and the filters + clearwell are "superior". Modification is necessary for reservoirs nos. 2 and 3 by constructing baffle walls or installing diffusers in front of the inlet pipes. Reservoir no. 1 and clarifier no. 2 may need some modification as well. The filters and clearwell combination does not require modification.
- 2). Overall, the use of sodium chloride, step input, and flame emission photometer gives very good results.
- 3). A smaller sampling time interval, say 1 minute, is probably necessary as the prediction of the t_{10} is based on discrete points in the F curve.
- 4). The Morril's index and baffle parameter are based on discrete points in the F curve, therefore they give less accuracy to the estimation. Still, the baffle parameter is the only parameter to give a direct assessment for the CT concept.
- 5). The Wolf Resnick, Rebhun Argaman, and CMRs in series models are based on empirical parameters. These models are better than those based on discrete points as they consider the whole curve. However, these models may not always give good estimations of the t₁₀, especially for a system without baffles. In a

system without baffles, the momentum may be dominant, and in that case the jet model seems to give better estimations of the t_{10} .

- 6). The jet model was applied to determine if the momentum from the inlet was the cause of the very small t_{10} values for reservoirs nos. 2 and 3. The jet model appeared to indicate that the inlet jet was responsible to the fast passage of the tracer through the reservoir. Early portions of the residence time distribution were predicted using the jet model without calibration (parameters were taken directly from the references). Application of the jet model may be possible at other sites with similar unbaffled conditions. The model is only applicable, in this case, up to $C/C_0 = 0.2$ which is about the flux associated with the core of the jet. For a well designed reservoir, when the momentum is not dominant, the model is not applicable. The major finding of using the jet model is showing the importance of momentum dissipating of the inlet if long residence times are desired.
- 7). The simplified jet model is another method to assess the t_{10} . As the constant C_1 was found to be relatively constant, it provides another indication that early portions of the residence time distribution were dominated by the jet / momentum effect for reservoirs nos. 2 and 3.
- 8). All models described can provide valuable information in assessing the residence time distribution. However, limitation of each must be considered when they are applied.
- 9). Three comments are addressed to the Guidance Manual (1989) / the SWTR:
- a) the assessment of other t_{10} values at different flow rates, which is based only on the flow rates and the t_{10} values, may not be correct as it does not consider the water level (volume) and other factors,
- b) suggestion to use the baffle parameter (t_{10}/T_d) to classify the performance of a system might not be correct since it is based on discrete points only. A small error

in the critical area may give a significant error in the system performance prediction, and

c) the Rebhun - Argaman model that is suggested to predict the t_{10} should be used cautiously. This model cannot be applied in a system which is dominated by the momentum effect.

8.0 LIST OF REFERENCES

- ------. 1989. The Merck Index: an Encyclopedia of Chemicals, Drugs, and Biologicals, 11th edition. S. Budavari, editor. Merck, Rahway, New Jersey. pp. 8545 - 8546.
- ------. 1992. Standard Methods for the Examination of Water and Wastewater, 18th edition. A. E. Greenberg, L. S. Clesceri, and A. D. Eaton, editors. APHA - AWWA - WED, Washington, District of Columbia. pp. 3-93 -3-95.
- ------. 1993. Guidelines for Canadian Drinking Water Quality, 5th edition. The Minister of National Health and Welfare, Ottawa. pp. 9 - 13.
- 6. ------. 1993. Recycle Stream Effects on Water Treatment. Report No. 90629. AWWA Research Foundation, Denver, Colorado. pp. 1.
- ------. 1994. Test Results from Tracer Studies at Rossdale Water Treatment Plant. The University of Alberta, Edmonton, Alberta.
- Agunwamba, J. C. 1992. A New Method for Dispersion Number Determination in Waste Stabilization Pond. <u>Water, Air, and Soil Pollution</u>. 63 : 361 - 369.
- Andrews, R. C., Ferguson, M., Lee, T., and Reske, J. 1992. Evaluation and Optimization of Conventional Disinfectants using the CT Concept. City of Edmonton, Public Works Department, Edmonton, Alberta. pp. 1 - 26.

- Auckly, C. and Borgerding, J. 1991. C.T. Disinfection Practice in Open Chlorine Contact Basins. (In) Environmental Engineering: Proceedings of the 1991 Specialty Conference. P. A. Krenkel, editor. ASCE, Reno, Nevada. pp. 661 - 666.
- Bellar, T. A., Lichtenberg, J. J., and Kroner, R. C. 1974. The Occurrence of Organohalides in Chlorinated Water. Journal AWWA. 66 (12): 703 - 706.
- Bishop, M. M., Morgan, J. M., Cornwell, B. L., and Jamison, D. K. 1990. Evaluation of CxT in Water Plants and Methods to Improve Detention Time Characteristics. (In) 1990 Annual Conference Proceedings. AWWA, Cincinnati, Ohio. pp.1559 - 1577.
- Bishop, M. M., Morgan, J. M., Cornwell, B., and Jamison, D. K. 1993.
 Improving the Disinfection Detention Time of a Water Plant Clearwell. Journal AWWA. 85 (3): 68 - 75.
- Blevins, R. D. 1984. Applied Fluid Dynamics Handbook. Van Nostrand Reinhold, New York, New York. pp. 1 - 4 and 229 - 278.
- Brumo, G. W. 1972. Interpretation of Tracer Tests on Sedimentation Tanks.
 Journal TAPPI. 55 (7): 1097 1102.
- Bryant, E. A., Fulton, G. P., and Budd, G. C. 1992. Disinfection Alternatives for Save Drinking Water. Van Nostrand Reinhold, New York, New York. pp. 1 - 40.
- Canadian Water and Wastewater Association. 1993. Guidelines for Canadian Drinking Water Quality: Water Treatment Principles and Applications, a Manual for the Production of Drinking Water. Minister of National Health and Welfare, Ottawa. pp. 125 - 127.
- Chen, J. C. and Rodi, W. 1980. Vertical Turbulent Buoyant Jets: A Review of Experimental Data. Pergamon Press, New York, New York. pp. 31 - 32.

- CH2MHILL. 1993. Draft Final Report: City of Edmonton Reservoir Circulation Study. CH2MHILL Engineering Ltd. Edmonton, Alberta. pp. 4-5 - 4-7.
- Dunn, H. J., Pinsky, D. E., and Mahadevan P. 1991. A Hydraulic Investigation of Flow Patterns and Disinfection Requirements for a Circular Clearwell. (In) 1991 Annual Conference Proceedings. AWWA, Philadelphia, Pennsylvania. pp. 323 - 344.
- Glicker, J. L. and Edwards, R. A. 1991. Giardiasis Risk from an Unfiltered, Protected Surface Water Surface. Journal AWWA. 83 (11): 46 - 51.
- Gregory, R. and Zabel, T. F. 1990. Sedimentation and Flotation. (In) Water Quality and Treatment. F. W. Pontius, editor. McGraw - Hill, New York, New York. pp. 367 - 450.
- Hagerman, J. R., Pickering, N. B., Ritter, W. F., and Steenhuis, T. S. 1989.
 In Situ Measurement of Preferential Flow. (In) National Water Conference. T.
 A. Austin, editor. ASCE, Newark, Delaware. pp. 117 126.
- Hart, F. L. 1975. Modifications Improve Chlorine Contact Chamber
 Performance: Part I. Journal of Water and Sewage Works. 121 (7): 73 75.
- Hart, F. L. and Gupta, S. K. 1978. Hydraulic Analysis of Model Treatment Units. Journal of the Environmental Engineering Division. 104 (8): 785 - 798.
- Hart, F. L. and Vogiatzis, Z. 1982. Performance of Modified Chlorine Contact Chamber. Journal of the Environmental Engineering Division. Proceedings of the American Society of Civil Engineers. 108 (6): 549 - 561.
- Hart, F. L., Allen, R., DiAlesio, J., and Dzialo, J. 1979. Improving Hydraulic Performance of Chlorine Contact Chamber. <u>Journal WPCF</u>. 51 (12): 2868 -2875.
- 28. Herwaldt, B. L., Craun, G. F., Stokes, S. L., and Juranek, D. D. 1992.
 Outbreaks of Waterborne Disease in the United States: 1989-90. Journal

<u>AWWA</u>. 84 (4) : 129 - 135.

- Hilterbrand, D. J., Tiliman, G. M., and Chowdury, Z. K., and Welch, D. K. 1991. Reducing Treatment Requirements with Bank Filtration Wells. (In) 1991 Annual Conference Proceedings. AWWA, Philadelphia, Pennsylvania. pp. 421 - 432.
- Hoff, J. C. 1987. Strengths and Weaknesses of using C.t Values to Evaluate Disinfection Practice. (In) AWWA Seminar Proceedings. Assurance of Adequate Disinfection, C-T or Not C-T. AWWA, Denver, Colorado. pp. 49 -66.
- Hudson, H. E. Jr. 1975. Residence Times in Pretreatment. Journal AWWA. 67
 : 45 52.
- Jen, Y., Wiegel, R. L., and Mobarek, I. 1966. Surface Discharge of Horizontal Warm - Water Jet. Journal of the Power Division: Proceedings of the American Society of Civil Engineers. 4: 1 - 31.
- Johnston, A. J. 1990. Jet Outfalls Entering Shallow Tailwaters. (In) Encyclopedia of Fluid Mechanics, Vol 10. N. P. Cheremisinoff, editor. Gulf Publishing, Houston, Texas. pp. 267 - 294.
- Johnston, A. J. and Halliwell, A. R. 1986. Jet Behavior in Shallow Receiving Water. <u>Proceedings of the Institutional of Civil Engineers</u>, Part 2. 81 (12): 549
 568.
- Johnston, A. J. and Volker, R. E. 1993. Round Buoyant Jet Entering Shallow Water. Journal of Hydraulic Research. 31 (1): 121 - 138.
- Joost, R., Chowdhury Z. K., and Francis, T. 1990. Plant-Scale Tracer Studies: an Assessment of Actual Detention Times for Primary Disinfection. (In) 1990 Annual Conference Proceedings. AWWA, Cincinnati, Ohio, pp. 1583 - 1600.
- 37. Kennedy, M. S., Moegling, S., Sarikelle, S., and Suravallop, K. 1993.

Assessing the Effects of Storage Tank Design on Water Quality. Journal AWWA. 85 (7): 78 - 88.

- Kennedy, M. S., Sarikelle, S., and Suravallop, K. 1990. Calibration of Water Quality Models for Potable Distribution Systems (In) 1990 Annual Conference Proceedings. AWWA, Cincinnati, Ohio, pp. 93 - 108.
- Kennedy, M. S., Sarikelle, S., Moegling, S., and Suravallop, K. 1991. Mixing Characteristics in Distribution System Storage Reservoirs. (In) 1991 Annual Conference Proceedings. AWWA, Philadelphia, Pennsylvania. pp. 139 - 155.
- Kotsovinos, N. E. and Angelidis, P. B. 1991. The Momentum Flux in Turbulent Submerged Jets. Journal of Fluid Mechanics. 229 : 453 - 470.
- 41. LeChevallier, M. W. and Norton, W. D. 1992. Examining Relationships
 between Particle Counts and Giardia, Cryptosporidium, and Turbidity. Journal
 AWWA. 84 (12) : 54 60.
- Leland, D. E. and Damewood, M. III. 1990. Slow Sand Filtration in Small Systems in Oregon. Journal AWWA. 82 (6): 50 - 59.
- 43. Lev, O. and Regli, S. 1992. Evaluation of Ozone Disinfection Systems:
 Characteristic Time T. Journal of Environmental Engineering. 118 : 268 285.
- Levenspiel, O. and Bischoff, K. B. 1963. Patterns of Flow in Channel Process Vessels. (In) Advances in Chemical Engineering. T. B. Drew, J. W. Hoopes, Jr., and T. Vermeulen, editors. Academic Press, New York, New York. pp. 95 - 192.
- 45. Marroco, F. A. 1987. Application of CT Factors in Pennsylvania Surface Water Supplies. (In) AWWA Seminar Proceedings. Assurance of Adequate Disinfection, C-T or Not C-T. AWWA, Denver, Colorado. pp. 11 - 20.
- Marske, D. M. and Boyle, J. D. 1973. Chlorine Contact Chamber Design.
 Journal of Water and Sewage Works. 120 (1): 70 -77.

- Metcalf & Eddy, Inc. 1991. Wastewater Engineering: Treatment, Disposal, and Reuse. McGraw - Hill, New York, New York. pp.1221 - 1222 and 1265 -1273.
- 48. Mih, W. C. 1989. Equations for Axisymmetric and Two Dimensional Turbulent Jets. Journal of Hydraulics Engineering. 115 (12) : 1715 - 1719.
- 49. Mitha, S. A. and Mohsen, M. F. N. 1990. Scale Effect on Dispersion in Chlorine Contact Chambers. <u>Canadian Journal of Civil Engineering</u>. 17: 156 -165.
- Moser, R. H. 1991. Overview of the Disinfection By Product Problem. (In) 1991 Annual Conference Proceedings. AWWA, Philadelphia, Pennsylvania.
 pp. 1 - 4.
- 51. Philpot, L. 1989. Nematodes Discovered in Private Distribution System: Are Biological Standards Appropriate? (In) 1989 Water Quality Technology Conference. AWWA, Philadelphia, Pennsylvania. pp. 1127 - 1140.
- 52. Pinsky, D. E., Dunn, H. J., and Hess, A. F. 1991. CT Compliance Strategies: Three Case Studies. (In) 1991 Annual Conference Proceedings. AWWA, Philadelphia, Pennsylvania. pp. 303 - 344.
- Polpraset, C. and Bhattarai, K. K. 1985. Dispersion Model for Waste
 Stabilization Ponds. Journal of Environmental Engineering. 1 (45): 45 59.
- 54. Process Development Team. 1991. Evaluation of CT Values for Disinfection at Edmonton's Water Treatment Plants. The City of Edmonton, Edmonton, Alberta. pp. 1 - 30.
- Qualls, R. C. and Johnson, J. D. 1983. Kinetics of the Short Term Consumption of Chlorine by Fulvic Acid. <u>Environmental Science and</u> <u>Technology</u>. 17 (11): 692 - 698.
- 56. Rajaratnam, N. 1976. Turbulent Jet. Elsevier, New York, New York. pp.27 -

49, 115 - 129, and 267 - 294.

- 57. Rajaratnam, N. 1983. Theory of Turbulent Jets. (In) Handbook of Fluids in Motion. N. P. Cheremisinoff and R. Gupta, editors. Ann - Arbor Science, Ann
 - Arbor, Michigan. pp. 251 - 278.
- Rajaratnam, N. 1985. An Experimental Study of Bluff Surface Discharges with Small Richardson Number. Journal of Hydraulic Research. 23 (1): 47 - 54.
- S9. Rajaratnam, N. 1986. Turbulent Mixing and Diffusion of Jets. (In) Dynamics of Single - Fluid Flows and Mixing: Encyclopedia of Fluid Mechanics, Vol. 2. N.
 P. Cheremisinoff, editor. Gulf Publishing, Houston, Texas. pp. 391 - 405.
- 60. Rajaratnam, N. 1988. Turbulent Surface Jets in Stagnant and Moving Ambients.
 (In) Civil Engineering Practice: 2 / Hydraulics / Mechanics. P. N.
 Cheremisinoff, N. P. Cheremisinoff, and S. L. Cheng, editors. Technomic
 Publishing, Lancaster, Pennsylvania. pp. 629 658.
- 61. Rajaratnam, N. and Humphries, J. A. 1984. Turbulent of Non Buoyant Surface Jets. Journal of Hydraulic Research. 22 (2) : 103 - 115.
- 62. Rajaratnam, N. and Pani, B. S. 1974. Three Dimensional Turbulent Wall Jets. Journal of Hydraulic Division. 100 (1): 69-83.
- Ramaprian, B. R. and Chandrasekhara, M. S. 1985. LDA Measurements in Plane Turbulent Jets. Journal of Fluids Engineering Transactions: ASME. 107 : 264 - 271.
- 64. Reasoner, D. J. 1991. Pathogens in Drinking Water Are There any New Ones?
 (In) 1991 Water Technology Conference. AWWA, Orlando, Florida. pp. 509 530.
- 65. Rebhun, M.and Argaman, Y. 1965. Evaluation of Hydraulic Efficiency of Sedimentation Basins. Journal of the Sanitary Engineering Division. 91 (5): 37
 - 45.

- Regli, S. 1987. USEPA Disinfection Regulations. (In) AWWA Seminar
 Proceedings. Assurance of Adequate Disinfection, C-T or Not C-T. AWWA,
 Denver, Colorado. pp. 1 10.
- 67. Regli, S. 1989. Hows and Whys of CTs. (In) 1989 Annual Conference Proceedings. AWWA, Los Angeles, California. pp. 945 - 966.
- 68. Sawyer, C. M. and King, P. H. 1969. The Hydraulic Performance of Chlorine Contact Tanks. (In) Proceedings of the 24th Industrial Waste Conference.
 Purdue University, Lafayette, Indiana. pp. 1151 - 1167.
- 69. Simpson, K. A. 1989. Quality Assurance for Operations: A Case Study. (In)
 Water Quality Technology Conference. AWWA, Philadelphia, Pennsylvania.
 pp. 349 363.
- Sobey, R. J., Johnston, A. J. and Keane, R. D. 1988. Horizontal Round Buoyant Jet in Shallow Water. <u>Journal of Hydraulic Engineering</u>. 114 (8): 910
 926.
- Sobsey, M. D., Dufour, A. P., Alfred, P., Gerba, C. P., LeChevallier, M. W., and Payment, P. 1993. Using a Conceptual Framework for Assessing Risks to Health form Microbes in Drinking Water. Journal AWWA. 85 (3): 44 48.
- Stanley, S. J., Smith, D. W., and Prince, D. 1993. Determination of CT Values to Measure the adequacy of Water Treatment Disinfection. (In) Canadian Society of Civil Engineering Annual Conference. CSCE, Fredericton, New Brunswick. pp. 403 - 412.
- 73. Tamai, N., Wiegel, R. L., and Tornberg, G. F. 1969. Horizontal Surface
 Discharge of Warm Water Jets. Journal of the Power Division: ASCE. 10: 253
 275.
- 74. Taras, M. 1956. Estimation of Flow Through Time by Continuous Dose

Method. Journal AWWA. 48 (6) : 700 - 712.

- Teefy, S. M. and Singer, P. C. 1990. Performance and Analysis of Tracer Tests to Determine Compliance of a Disinfection Scheme with the SWTR. Journal <u>AWWA</u>. 82 (12): 88 98.
- 76. Thampi, M. V. 1990. Basic Guidelines for Specifying the Design of Ultraviolet
 Disinfection Systems. Journal of Water Pollution Engineering. 22 (5): 65 -69.
- Thirumurthi, D. 1969. A Break Through in the Tracer Studies of Sedimentation
 Tanks. Journal WPCF. 6 (11): R405 R418.
- Trussel, R. R. and Chao, J. L. 1977. Rational Design of Chlorine Contact Facilities. Journal WPCF. 49 (4): 659 - 667.
- 79. Vande Venter, L. W., Marston, T. R., and Murphy, L. A. 1991. T₁₀
 Determination in a Variety of Clearwells and Standpipes Using Fluoride as a Tracer. (In) 1991 Annual Conference Proceedings. AWWA, Philadelphia, Pennsylvania. pp. 345 - 369.
- White, G. C. 1992. The Handbook of Chlorination, 3rd edition. Van Nostrand Reinhold, New York, New York. pp. 291 - 323 and 479 - 481.
- Wolf, D. and Resnick, W. 1963. Residence Time Distribution in Real System.
 Journal Industrial and Engineering Chemical Fundamentals. 2 (4): 287 293.
- Yu, C. H., Hattig, B. J., and O'Connel, M. J. 1991. Tracer Study for C*T Compliance Evaluation. (In) Environmental Engineering: Proceedings of the 1991 Specialty Conference. P. A. Krenkel, editor. ASCE, Reno, Nevada. pp. 649 - 654.
- Zhou, H. and Smith, D. W. 1994. Kinetics of Ozone Disinfection in a Completely Mixed System. Journal of Environmental Engineering. 120 (4).

9.0 APPENDICES

APPENDIX 1: F CURVE DEVELOPMENT

SAMPLING NO:	1
LOCATION	Filters & Clearwell
FLOW (ML/d)	180
SAMPLING DATE	16-Feb-93
TESTING DATE	20-Feb-93
STANDARD MADE	10-Feb-93

mg/L Na 0.0 5.0 10.0 15.0	Initial Reading 0.0 32 5 58 5 81 0	Final Reading 0 0 32.5 59.0 82.0	Average 0.0 32.5 58 8 81.5			
200	100 0	100 5	100.3			
Repression Statistics						
Multiple R	0.994					
R Square	0 969					
Adjusted R Square	0.985					
Standard Error	0 958					
Observations	5					
Analysis of Verlance						
	<u>d</u>	Sum of Squares	Meen Squere	F	Significance F	-
Regression	1	247.248	247.248	269.482	0 000	
Residual	3	2.752	0.917			
Total	4	250,000				
TOTAL	-					
iotai	Coefficients	Stenderd Error	t Støbstic	P-vsiue	Lower #5%	Upper \$5%
Intercept	-		I Statistic	P-value 0.355	-3.323	Upper 95%

General Equation y=0 198x-0.821

TEST NO. 1 FILTERS & CLEARWELL (190 ML/d)

NaBack(mg/L)= 3.72 NaFina(mg/L)= 18.33 NaTracar(mg/L)= 14.39		بري 19	0.2 -1.3			8- 5-	0.2 -1.0			8 -	02 -1.3
		Pfter #1 Igir	4	I		ter #1 Out	let			ter #3 Inte	н
	Time	Reading Conc. No	C/Co	Time	Renting	Conc. No	C/Co	Time	Rendered	Conc Na	CCo

mun 0.6 2 1.8 2 3.7 5 4.7 6 5.7 6 6.7 6 7.7 6 9.6 7 10.7 11.7	ating 5:0 5:0 8:0 4:5 6:5 7:0 9:5 7:0 4:0 4:0	Conc. Ng mg/L 3.7 4.3 7.6 10.0 12.1 12.1 12.1 12.6 12.1	0.00 0.04 0.27 0.43 0.57 0.57	Time Bun 0.0 1.3 2.4 3.5 4.7 5.8	23.0 23.0 23.0 23.0 23.0 23.0 23.0	Cons. No mg/L 3.7 3.7 3.7 3.7 3.7 3.7	000 000 000 000 000 000	Tame Min 0.0 1.3 2.8 3.2	24.5 24 0 47 0 63 0	Conc) mg/L 3.0 3.7 84 11.7
0.6 2 1.8 2 2.8 4 3.7 5 4.7 6 5.7 6 6.7 6 7.7 6 8.8 7 9.6 7 10.7 8 11.7 8	100 4.5 6.5 7.0 7.0 9.5 7.0 4.0	3.7 4.3 7.6 10.0 12.1 12.1 12.1 12.6	0.04 0.27 0.43 0.57 0.57	0.0 1.3 2.4 3.5 4.7	23.0 23.0 23.0 23.0 23.0	3.7 3.7 3.7 3.7 3.7	0 00 0 00 0 00	0.0 1.3 2.8 3.2	24 0 47 0 63 0	3.0 3.7 8.4
1.8 2 2.8 4 3.7 5 4.7 6 5.7 6 7.7 6 8.8 7 9.6 7 10.7 8 11.7 8	100 4.5 6.5 7.0 7.0 9.5 7.0 4.0	4.3 7.6 10.0 12.1 12.1 12.6	0.04 0.27 0.43 0.57 0.57	1.3 2.4 3.5 4.7	23.0 23.0 23.0 23.0 23.0	37 37 37	0 00 0 00 0 00	1.3 2.8 3 2	24 0 47 0 63 0	3.7 84
28 4 3.7 5 4.7 6 5.7 6 6.7 6 7.7 6 88 7 9.6 7 10.7 8	4.5 6.5 7.0 7.0 9.5 7.0 4.0	7.6 10.0 12.1 12.1 12.6	0.27 0.43 0.57 0.57	2.4 3.5 4.7	23.0 23.0 23.0	37 37	0 00 0 00	2.8 3 2	47 0 63 0	
3.7 5 4.7 6 5.7 6 6.7 6 7.7 6 8.8 7 9.6 7 10.7 8	6.5 7.0 7.0 9.5 7.0 4.0	10.0 12.1 12.1 12.6	0.43 0.57 0.57	3.5 4.7	23 0 23 0	37	0 00	32	63 0	
4.7 6 5.7 6 6.7 6 7.7 6 8.8 7 9.6 7 10.7 8	7.0 7.0 9.5 7.0 4.0	12.1 12.1 12.6	0.57 0.57	4.7	23.0					11.7
S.7 6 6.7 6 7.7 6 8.8 7 9.6 7 10.7 8 11.7 8	7.0 9.5 7.0 4.0	12.1 12.6	0.57			3.7	A 00			
6.7 6 7.7 6 8.8 7 9.6 7 10.7 8 11.7 8	9.5 7.0 4.0	12.6		1 58				4.2	65.0	12 2
7.7 6 8.8 7 9.6 7 10.7 8 11.7 8	7.0				23 5	3.8	0.01	52	58 0	10 7
8.8 7 9.6 7 10.7 8 11.7 8	4.0	12.1	0.61	7.0	26.5	4.4	0.05	6.2	69 0	13 0
9.6 7 10.7 1 11.7 1			0.57	8.3	30.0	5.1	0.10	7.3	63 5	11.9
10.7 1 11.7 1	4.0	13.5	0.67	9.3	35.0	6.2	0.17	#3	65 0	12 2
11.7 8		13.5	0.67	10.3	39.0	7.0	0.22	9.2	72.0	136
	5.0	15.7	0 82	11.5	43.0	7.8	0.28	10.2	\$0 0	15 3
13.0	1.5	15.0	9,77	12.6	46 0	8.4	0.32	11.2	82.0	15 7
	7.0	15.1	0.78	13.7	SO.5	9.3	0.38	12.2	82.0	15.7
	6.0	15.9	0.83	14.8	54.0	10 0	0.43	14.5	780	14 9
	5.5	15.8	0.83	16.5	58.0	10 8	0.49	16.0	\$5.0	16 3
	9.0	16 5	0 17	18.3	64.5	12.2	0.58	18.5	86 0	16 5
	7.0	16.1	0.85	20.3	69.0	13.1	0.64	20.5	17 0	16 7
23 0 9	00	16.6	0 89	22.3	73.0	13 9	0 70	22 0	85.0	16 3
	4.5	17.5	0.95	24.3	77.0	14.7	0.75	340	90.0	17 3
45.0 9	5.0	17.6	0.95	26.3	79.5	15.2	0.79	44 0	93 0	10 0
55.0 9	9.0	18.4	1.01	31.3	84.0	16.1	0 85	540	93 0	18 0
65.0 9	75	18.1	0.99	36.3	85 0	16 9	0.91	64 0	94 0	18 2
95.0 9	180	18.2	1.00	41.3	90.0	17.4	0.93	94 0	93 5	18 1
124.6 9	85	18.3	1.00	46.3	910	17.6	0 95	123.5	94 0	18 2
1500 9	195	18.3	1.00	51.3	96.0	186	1.02	1510	95 0	18 4
175.0 9	NB 0	18.2	1.00	56.3	96.0	18 6	1.02	176.0	95 0	18 4
				65.0	97.0	18.8	1 03			
				95.0	94 0	18.2	0 99			
				125 0	95 0	18.4	1 00			
				155.0	94.0	182	0.99			
				180.0	95 0	18.4	1.00			

Gnri Eqn	
Na start:	

Na finish: Inital Steady

22.83 96.15

(average of 3 first samples) (average of 8 last samples from OUTLET) (assumed Steady for inlet = Outlet)

-	0.2	-	0.2	100 ⁻⁰	0.2		0.2
b		b ••	-1.2	-	-1.5	-	-1.1

Tume Real min	mg/L 0 3.6 5 3.7 0 3.8 5 3.7 5 3.7 5 4.1 5 4.1 5 4.7	40.01 40.01 6.00 6.01 6.01 6.02 6.02	Time Min 0.5 1.7 2.8 4.0	25.0 25.0 62.0 56.0	Conc. Ng <u>mg/L</u> 3.7 3.7 11.0	0.00 0.00 0.00 0.50	Time min 0.8 3.0	25.0 25.0	Canc No mg/L 3.7 3.7	0.00	Time min 0.2 1.2	28.0 23.0	Conc. Ne mg/L 4.6 3.6	0.06 -0.01
min 0.7 22 1.9 22 2.9 23 4.0 22 5.3 22 6.5 24 7.6 27 8.8 31 9.8 34	mg/L 0 3.6 5 3.7 0 3.8 5 3.7 5 3.7 5 4.1 5 4.1 5 4.7	0.00 0.01 0.00 0.02	0.5 1.7 2.8 4.0	25.0 25.0 62.0	3.7 3.7 3.7 11.0	0.00	0. 8 3.0	25.0	3.7		0.2		4.6	
0.7 22. 1.9 22. 2.9 23. 4.0 22. 5.3 22. 6.5 24. 7.6 27. 8.8 31. 9.8 34.	3.6 3.7 3.8 3.7 3.7 3.7 4.1 4.7	0.00 0.01 0.00 0.02	1.7 2.8 4.0	25.0 62.0	3.7 11.0	0.00	3.0	25.0						
2.9 23 4.0 22 5.3 22 6.5 24 7.6 27 8.8 31 9.8 34	3.8 5 3.7 5 3.7 5 4.1 5 4.7	0.01 0.00 0.09	2.8 4.0	62.0	11.0				3.7	0.00	1.2	23.0	3.6	-0.01
4.0 22. 5.3 22. 6.5 24. 7.6 27. 8.8 31. 9.8 34.	s 3.7 s 3.7 s 4.1 s 4.7	0.00	4.0			0.50								
4.0 22. 5.3 22. 6.5 24. 7.6 27. 8.8 31. 9.8 34.	5 3.7 5 4.1 5 4.7	0.09		66.0			4.7	25.5	3.8	0.00	2.2	24.0	3.8	0.01
6 5 24. 7 6 27. 8.8 31. 9.8 34.	5 4.1 5 4.7	-			9.9	0.42	6.1	25.0	3.7	0.00	3.3	54.0	10.0	0.43
7.6 27. 8.8 31. 9.8 34.	4.7		5.0	30.0	6.5	0.19	7.6	27.5	4.2	0.03	4.5	\$2.0	15.7	0.82
8.8 31. 9.8 34.		0.03	6.1	66.0	11.0	0.56	8.9	33.0	5.4	0.11	5.6	\$0.0	9.2	0.37
9.8 34.		0.07	7.2	\$1.0	8.9	0.35	10.4	39.0	6.6	0.20	6.7	66.0	12.4	0.60
	54	0.12	8.3	69.0	12.4	0.60	11.0	43.0	7.4	0.25	7,7	70.5	13.4	0.66
10.9 38.	5 6.1	0.16	9.5	77.0	14.0	0.71	13.3	49.5	8.0	0.35	9.0	65.0	12.2	0.58
	5 6.9	0.22	10.6	\$1.0	14.8	0.76	14.7	56.0	9.7	0.41	10.1	69.0	13.0	0.64
12.0 42	5 7.7	0.27	13.0	\$3.0	15.2	0.79	17.0	62.0	11.4	0.53	12.0	\$8 .0	16.9	0.91
13.2 46.	5 \$.5	0.33	15.0	74.0	13.4	0.67	18.5	65.5	12.1	0.58	14.0	81.5	15.6	0.81
14.3 47	8.6	0.33	17.0	79.0	14.4	0.73	19.7	70.0	13.1	0.64	16.0	\$1.0	15.5	0.81
15.2 56.	5 EO.S	0.46	19.0	\$3.0	15.2	0.79	22.0	74.0	13.9	0.70	18.0	\$2.0	15.7	0.82
17.3 63.	5 11.8	0.55	21.0	∎7.0	16.0	0.84	24.0	78.0	14.7	0.75	20.0	\$4.0	16.1	0.85
19.3 68.	12.8	0 62	33.0	91.0	16.8	0.90	26.0	81.5	15.5	0.80	30.0	9 1 -	17.6	0.95
21 3 73	3.7	0.69	43.0	98.0	18.2	0.99	280	83.0	15.8	0.83	32.0	90.5	17.5	0.94
23.3 77.) 14.5	0.74	\$3.0	99.0	18.4	1.00	30.0	85.5	16.3	0.86	42.0	92.5	17.9	0.97
25 3 80) 15.1	0.78	63.0	100.0	18.6	1.02	38.0	91.5	17.5	0.95	\$3.0	94.0	18.2	0.99
30.3 86) 16.3	0.86	93.0	98 .0	18.2	0.99	43.0	92.0	17.6	0.95	62.0	94.0	18.2	0.99
35.3 90.) 17.1	0.92	122.6	98.O	18.2	0.99	48.0	92.0	17.6	0.95	90.0	93.5	18.1	0.98
40.3 92	175	0.95	152.0	99 0	18.4	1.00	\$3.0	92.0	17.6	0.95	121.6	95.0	18.4	1.90
45.3 92		0.95	174.8	99 .0	18.4	1.00	58.0	95.0	18.3	1.00	151.7	94.0	18.2	0.99
50 3 94		0.98					63.0	95.0	18.3	1.00	176.7	95 0	18.4	1.00
55 7 98.		1.03					67.0	98.0	18.9	1.04				
66.0 96		1.00					97.0	96.0	18.5	1.01				
960 97		1.01					127.0	95.5	18.4	1.00				
1260 96		100					157.0	95.0	18.3	1.00				
181.0 95) 181	0 99					182.0	95.0	18.3	1.00				

-	0.2	38 =	0.2	-	0.2		02
b	-0.5		-0.6	-	-0.6	-	-09

		ler 84 Opt	r t			Mer #5 Lub	rt			ter #5 Out	H		1	Mer 46 lab	н
Time	Reading	Conc. No	C/Co	Time	Renting	Conc. No	C/Co	Time	Lending	Conc. No	C/Co	Tune		Conc No	C/Co
min		mg/1 .		min		ma/L_		win.	[]	R 1	_	TRUA_			
0.0	22.0	3.7	0.00	0.7	22.0	3.1	0.00	0.0	22.5	3.8	0.00	0.0	23.0	3.7	0.00
2.0	22.0	3.7	0.00	1.8	21.0	3.6	-0.01	2.0	22.0	3.7	0.00	1.2	22.5	3.6	-0.01
3.7	22.5	3.8	0.00	2.9	22.0	3.8	0.00	3.2	22.5	3.8	0.00	2.4	36.0	3.9	0.01
5.3	22.5	3.8	0.00	3.9	59.0	10.9	0.49	4.4	22.5	3.0	0.00	3.4	22.0	3.5	-0.02
6.9	25.0	4.3	0.04	4.7	84.0	16.0	0.84	5.5	23.0	3.9	0.01	4.3	300	5.L	0.09
8.3	29.0	5.0	0.09	6.0	56.0	10.5	0.47	6.9	23.5	3.9	0.02	\$.5	45 0	8.1	0.30
9.7	34.5	6.1	0.16	7.0	\$1.0	15.4	0.90	0.0	34.0	4.0	0.02	6.5	83.0	15.7	0 82
11.2	40.0	7.2	0.24	8.7	\$4 .0	£0 1	0.44	9.3	27.0	4.6	0.06	7.5	73.5	13 8	0 69
12.5	44.5	8.0	0.29	10.2	\$7.0	10.7	0.48	10.5	30.5	5.3	0.11	9.6	52.0	9.5	0.39
13.8	49.5	9.0	0.36	12.0	70.0	13.3	0.65	11.5	35.0	6.2	0.17	11.3	67.5	12.6	0 61
15.3	54.5	9.9	0.43	13.5	70.0	13.3	0.65	12.5	39 0	6.8	0.21	12.0	64.0	119	0.56
17.8	61.5	11.3	0.52	15.3	78.0	14.8	0.76	13.5	41.5	7.4	0.25	14.5	810	15.3	0 79
19.0	67.0	12.3	0.59	17.3	88.0	16.0	0.90	16.5	45.0	8.1	0.30	16.4	78.5	14 B	0.76
21.0	71.5	13.2	0.65	19.2	88 .0	16.8	0.90	16.0	49.5	9.0	0.36	18.2	78 0	14 7	0.75
23.0	77.5	14.4	0.73	21.3	91.0	17.4	0.94	17.5	54 0	9.9	0.42	204	79.0	14.9	0 76
25.0	80.5	14.9	0.77	31.0	96.0	18.4	1.01	18.5	56 5	10.3	0.45	22.5	86.0	16.3	0 66
27.0	82.5	15.3	0.00	41.0	95.0	18.2	0.99	19.5	59.0	10.8	0.49	40.0	89.0	16.9	0 90
29.0	\$5.0	15.8	0.83	51.0	95.0	18.2	0.99	21.0	64.5	11.9	0.56	500	910	17.3	0.93
35.0	90.5	16.9	0.90	61.0	95.5	18.3	1.00	23.0	71.0	13.1	0 65	600	930	17.7	0.96
40.0	91.0	17.0	0.91	91.0	95.0	18.2	0.99	25.0	75.0	13.9	0.70	120.0	98.0	18 7	1 03
45.0	91.5	17.1	0.91	120.9	95.5	18.3	1.00	27.0	84.0	15.7	0.82	149.L	97.0	18 5	1.01
\$0.0	94 0	17.5	0.95	150.5	96.0	18.4	1.01	29.0	82.0	15.3	0.79	1781	93.5	178	0 %6
\$5.0	96.0	17.9	0.97	177.0	95.0	18.2	0.99	31.0	83.0	15.5	0.81				
60.0	97.0	18.1	0.99					36.0	\$6.5	16.1	0.85				
68.0	98.0	18.3	1.00	i				41.0	89.0	16.6	0.88				
98.0	96.0	18.3	1.00					46.0	90.0	16.8	0.90				
128.0	98.0	18.3	1.00	1				51.0	92.0	17.2	0.92				
158.0	98.0	18.3	1.00					\$5.0	94.0	17.6	0.95				
183.0	98.0	18.3	1.00					60.0	96 0	18.0	0.98				
								\$5.0	97.0	18.2	0.99	1			
1								1150	98.0	18.4	1.00	1			
								145.0	97.0	L8.2	0.99	I			
								175 0	98 0	18.4	00				
L						<u> </u>							. <u> </u>		

0.2	
-0.7	

31 **	0 2
-	-1.0

			0.2				0.2	
		b -	-0.7			-	-1.0	
		ter #6 Out	Pt .			E.	d of Cirer	
Time	Renting	Canc. No	C/Co	Time	1/14	Reating	Conc. Na	C/Co
min		mg/1.		min	T6-29		mg/L	
0.0	22.0	3.0	0.00	0.0	0.00	26.0	3.8	0.01
1.0	21.5	3.7	0.00	2.0	0.07	24.0	3.8	0.01
2.7	22.0	3.0	0.00	4.0	0.14	23.5	3.7	0.00
3.7	22.0	3.8	0.00	6.0	0.21	23.5	3.7	0.00
5.0	22.0	3.8	0.00	8.0	0.25	23.0	3.6	-0.01
6.2	22.0	3.8	0.00	10.0	0.34	23.0	3.6	-0.01
7.5	22.0	3.8	0.00	12.0	0.41	23.0	3.6	-0.01
8.8	22.5	3.9	0.03	14.0	0.48	23.5	3.7	0.00
10.0	25.0	4.4	0.04	16.0	0.55	23.5	3.7	0.00
11.0	29.0	5.2	0.10	18.0	0.62	24.5	3.9	0.01
12.0	320	5.8	0.14	20.0	0.69	27.0	4.4	0.05
13.0	34.0	6.2	0.17	22.0	0.76	31.5	5.3 6.2	0.11 0.17
14.0	38.0	7.0	0.22	24.0	0.83	36.0 37.0	6.4	0.17
15.5	430	8.0	0.29 0.33	26.0 28.0	0.90 0.97	44.5	7.9	0.19
16.8	46.0 51.0	8.6 9.6	0.33	30.0	1.03	51.5	9.4	0.39
18.0		10.5	0.46	32.0	1.10	58.0	10.7	0.48
19.0	55 5	11.1	0.40	34.0	1.17	\$7.0	10.5	0.46
20.0	59.5	12.4	0.60	36.0	1.24	66.0	12.3	0.59
22.0	65.0 70.0	13.4	0.66	38.0	1.31	68.0	12.7	0.61
240	74.0	14.2	0.72	40.0	1.34	72.0	13.5	0.67
2460 22900	77.0	34.8	0.76	42.0	1.45	66.5	12.4	0.59
30.0	76.0	15.0	0.77	44.0	1.52	77.0	14.5	0.74
35 0	83.0	16.0	0.84	46.0	1.59	81.0	15.3	0.79
40.0	88 0	17.0	0.91	48.0	1.66	72.5	13.6	0.67
45 0	93.0	18.0	0.98	50.0	1.72	77.5	14.6	0.74
50.0	92 0	17.8	0.97	52.0	1.79	83.0	15.7	0.82
55.0	92.0	17.8	0.97	34.0	1.86	\$3.0	15.7	0.82
60 0	94 0	18.2	1.00	56.0	1.93	\$1.0	15.3	0.79
85.0	950	18.4	1.01	58 0	2 00	82.5	156	0 81
115 0	93.0	18 0	0.98	60.0	2.07	82.5	15.6	0.81
1450	94 0	18.2	1.00	65 0	2.24	87.0	16.5	0.87
175.0	960	18 6	1.02	70 0	2.41	07.5	16.6	0 88
				75 0	2.59	83.5	15 8	0.83
				105.0	3 62	87.0	16.5	0.87
				110.0	3.79	∎7.0	16.5	0.87
				115.0	3.97	89.0	16.9	0.90
				120.0	4.14	90.0	17.1	0.92
				125.0	4.31	85.5	16.2	0.85
				130.0	4.48	90.0	17.1	0.92
				135.0	4.66	92.5	17.6	0.95
				140.0	4.83	93.0	17.7	0.96
				145.0	5.00	93.0	17.7	0.96
				150.0	5.17	90.0	17.1	0.92
				155.0	5.34	95 0	18.1	0.98
				160.0	5 52	89.0	16.9	0.90
				165.0	5.69	91.5	17.4	0.94
				170 0	5.86	89.0	16.9	0.90
				175 0	6.03	86.5	16.4	0.87
				180 0		85 0	16.1	0 85

SAMPLING NO:	2
LOCATION.	Filters & Clearwell
FLOW (ML/d)	140
SAMPLING DATE	24-Feb-93
TESTING DATE:	25-Feb-93
STANDARD MADE:	22-Feb-93

mg/L Na 2.0 5.0 7.0 10.0 12.0	Initial Reading 13.5 32.5 44.5 59.5 68.0	Final Reading 13.0 32.0 43.0 58.0 67.0	Average 13.3 32.3 43.8 58.8 67.5			
15.0	80.5	80.0	80.3			
17.0	88 0	88.0	88.0			
20.0	100.0	100.0	100.0			
Regression Statistics						
Multiple R	0 996					
R Square	0 992					
Adjusted R Square	0 990					
Standard Error	0.616					
Observations	8					
Analysis of Variance						
	Ø!	Sum of Squeres	Meen Square	F	Significance F	_
Regression	1	265 725	265 725	700 872	0 000	-
Residual	6 7	2 275	0.379			
Total	7	258.000				
	Conflictents	Standard Error	t Shevata:	P-vilue	Lower #5%	Upper #5%
Intercept	-1.652	0 525	-3 148	0.016	-2 937	-0 367
x1	0.209	0 008	26 474	0 000	0 190	0 229
General Equation	y=0.209x-1.652					

TEST NO. 2	
FILTERS & CLEARWELL (140 ML/d)

NaBeck(mgA.)* 262	-	02	m-	0.2
NoFinet mg/L)# 15 10	-	-17	b=	-1.5
NaTracer(mg/L)= 12.48				

		Her #1 Out	tlet		I	Fiter #2 Outlet						
Tume	i	Renting	Conc. No	C/Co	Time		Rending	Conc. No.	C/Co			
man	mun		mg/L		min	min .]	mg/L	_			
00:05:00	0.0	20.5	2.6	0.00	00:05:35	0.6	19.0	2.5	-0.01			
00:00:00	3.0	20.5	2.5	0.00	00:07:15	2.3	19.5	2.6	0.00			
60.09.00	4.0	21.0	27	0.01	00:08:30	3.5	20.0	2.7	0.01			
00:10:00	5.0	21.0	27	0.01	00:09:30	4.5	20.5	2.9	0.02			
00.11:00	60	21.0	27	0.01	00:10:30	5.5	20.0	2.7	0.01			
00:12:00	7.0	22.0	2.9	0.02	00:11:30	6.5	20.0	2.7	0.01			
00:13:00	8.0	22.5	3.0	0.03	00:12.30	7.5	22.0	3.1	0.04			
00:14.00	9.0	25.5	3.6	0.08	00.13:25	8.4	24.0	3.6	0.08			
00.15:00	10.0	27.5	4.0	0.11	00.14:30	9.5	27.0	4.2	0.13			
00:16 00	11.0	31.0	48	0.17	00:15:30	10.5	30.5	4.9	0.19			
00 17 00	12.0	32.5	5.1	0.20	00:16:30	11.5	33.5	5.6	0.24			
00.19.00	13.0	35.5	5.7	0.25	00:17:30	12.5	34.5	5.8	0.25			
00:19:00	14.0	37.5	6.1	0.28	00:18.30	13.5	38 0	6.5	0.31			
00:20:00	15.0	41.5	6.9	0.35	00:19:30	14.5	41.0	7.2	0 36			
00-21-00	16.0	43.5	7.4	0.38	00:20:30	15.5	42.5	7.5	0.39			
00:22:00	17.0	47.0	8.1	0.44	00.21:30	16.5	45.0	8.0	0.43			
00:23.00	18 0	50.0	8.7	0.49	00:22.30	17.5	47.5	8.5	0.47			
00 24 00	19.0	51 5	9.0	0.51	00 23 30	18.5	48.5	8.8	0.49			
00:25:00	200	\$3.0	9.3	0.54	00:24.30	19.5	52 5	9.6	0.56			
00 27 00	22.0	57.0	10.2	0.60	00:25.30	20.5	55.0	10.1	0.60			
00:29:00	24.0	61.0	11.0	0.67	00.28.00	23.0	59.5	11.1	0.68			
00.31 00	26.0	62.5	11.3	0 70	00.30:00	25 0	61 5	11.5	0.71			
00.33 09	28.2	65.0	11.8	0.74	00:32:00	27.0	66.0	12.5	0 79			
00.35:00	300	67.5	12 3	0.78	00:34:00	29.0	67.5	12.8	0.81			
n0 40:00	350	71.0	13.1	0.84	00:36:00	31.0	69.5	13.2	0.85			
00 45.00	40.0	77.5	14.4	0.94	00:41:00	36.0	75 0	14-4	094			
00.50 06	451	77.5	14.4	0.94	00:46:00	41.0	77.5	14.9	0.98			
00.55.00	50 0	78.0	14.5	0.95	00:51:00	46 0	78.5	15.1	1.00			
01:00:00	55 0	79.0	14.7	0.97	00:56:00	\$1.0	79.5	15.3	1.02			
01:05:00	60.0	79.5	14.8	0.98	01:01:00	\$6.0	81.5	157	1.05			
01 36.30	91.5	80.5	15.0	0.99	01:06:00	61.0	82 0	15.8	1.06			
02:06.30	121.5	82.0	15.3	1 02	01:36:00	91.0	77 7	14.9	0.99			
02.36.30	151.5	\$1.5	15.2	1.01	02 06 00	121.0	78.5	15.1	1.00			
03 06 30	181 5	79 0	14 7	0 97	02.36 00	151.0	78.5	15.1	1.00			
					03:06:00	181 0	78.5	151	1.00			

General Egn Ne start Ne finish Initial Steady

y=0 209x-1 652 2 52 15 10

 10
 10

 20.4
 (averge of 3 first samples from each location except End of Clearwel)

 80.1
 (averge of 3 last samples from each location except End of Clearwel)

.

144

m=	0 2	m-	0.2	me	0 2
b=	-14	b	-17	b ••	-16

Pyter #3 Outlet							Her 14 Out	let			Piter #5 Outlet			
Tume		Reading	Conc_Na	C/Co	Tume		Reading	Conc Ns	C/Co	Tune		Reading	Conc Na	C/Ce
min	min	Ι	mg/L		ສາມກ	min		mg/L		mach	mun	I	mg1.	
00:05:45	0.8	19.0	2.6	0.00	00:05:00	00	19 5	24	-0.01	00 05 30	0.5	20 0	23	-0 01
00:07:16	2.3	19.0	2.6	0.00	00:06:33	1.6	23 0	32	0.05	00 06 30	1.5	210	27	0 01
00:08.33	3.6	19.0	2.6	Ģ.00	00:07:53	2.9	18.5	22	-0.03	00.07.30	2.5	20 5	26	0 00
00:09:53	4.9	19.0	2.6	0.00	00:09:15	4.3	18 5	22	-0.03	00:00 30	35	20 5	26	0.00
00:11.27	6.5	18 5	2.5	-0.01	00:10:33	56	18 0	2.1	-0.04	00:09.30	45	20.0	23	-0 01
00:12:25	7.4	19.5	2.7	0.01	00:11:43	67	19.0	2.3	-0 02	00 10 30	55	20.0	25	-0 01
00:13:39	8.7	21.0	3.0	0.03	00 13:02	8.0	20.5	2.7	0.00	00:11.30	65	20 5	26	0.00
00:14:56	9.9	24.5	3.8	0.09	00:14:19	9.3	24 0	34	0.06	00 12 30	75	20 5	26	0.00
00:16:10	11.2	29 0	4.7	0 17	00:15:34	10.6	27.5	4.1	0 12	00 13 30	8.5	210	27	0 01
30:17:29	12.5	31.5	5.2	0.21	00:16:52	11.9	31.5	5.0	0.19	00 14 30	9.5	22 0	29	0 02
00:18:43	13.7	34.5	5.9	0.26	00:18 06	13.1	33 0	5.3	0 22	00.15.30	10.5	25 0	36	0 07
00:19:58	15.0	38.0	6.6	0.32	00:19:19	14.3	36.0	60	0 27	00.16.30	11.5	27 5	41	012
00:21:15	16.3	41.5	73	0.38	00.20.36	156	39.5	6.7	0 33	00.17.30	12.5	30 5	4 7	017
00:22:32	17.5	44.5	8.0	0.43	00.21:55	16.9	43 0	74	0.39	00 18 30	13.5	32 0	50	0 19
0:23:55	18.9	48 0	8.7	0.49	00.23.17	18.3	47.0	8.3	0 45	00 19 30	14 5	360	5 8	0 26
00:25:01	20.0	50.5	92	0.53	00:24:30	19.5	49.0	87	0 49	00 20 30	15.5	38 5	64	0.30
0:27:30	22.5	56 0	10 4	0.62	00.27:00	22.0	54 0	98	0.57	00 21 30	16 5	43 0	73	0 17
10:29:30	24.5	58.5	10.9	0 66	00:29:00	24 0	\$7.5	10 5	0.63	00.23.30	18.5	46 0	79	0 4 2
30 31 30	26.5	61.0	11.4	0.71	00.31:00	260	59 5	110	0 67	00 24 30	19 5	47 0	8 I	0 44
0.33:30	28.5	63 5	120	0.75	00.33.00	2900	61 5	11.4	0 70	00.25.30	20 5	510	89	0.51
00 35.30	30.5	66.5	12.6	0 80	00:35.00	30 0	62.5	116	0 72	00 27.30	22.5	56 0	10.6	0.59
00.40:30	35.5	70 0	13.3	0.86	00.40.00	35 0	69 5	13.1	0 14	00 29 30	24.5	60 0	10 8	0.66
0 45 30	40.5	730	14.0	0.91	00:45:00	40 0	70 5	13 3	0 86	00 31 30	26.5	63 0	114	071
00.50.30	45.5	74.5	14 3	0 93	00.50.00	45.0	74 0	14 0	0.91	00.33.30	28.5	65 0	119	0 74
00:55:30	\$0.5	75 0	14.4	0 94	00 55 00	50 0	74 5	14.1	0 92	00 35 30	30 5	69 0	127	0 #1
31:00:30	55.5	75.5	14.5	0 95	01.00.00	55 0	74 0	14 0	091	00 40 30	35.5	76 0	14-1	0.92
01:05:30	60.5	78 0	150	0.99	01:05:00	60 0	74 0	14 0	0 91	00 45 30	40.5	75 5	14 0	0 91
01:35 30	90.5	785	15.1	1 00	01.35 00	90.0	750	14 3	0 93	00 50 30	45.5	31.0	15 2	101
2 05 30	120.5	78 5	15 1	1.00	02 05 00	1200	780	14 9	0.98	00 55 30	50 5	815	153	1.01
2 35 30	150.5	78.5	15 1	1 00	02 35 00	150 0	79 5	152	101	01 00 30	51 5	81 0	15 2	1 01
03 05 30	180.5	78.5	151	1 00	03 05 00	180.0	79 4	15.2	1 01	01 05 30	60.5	80 0	15.0	0.99
										01 35 30	90.5	80.5	15.1	1.00
										02 05 30	120.5	80 5	15.1	1.00
										02.35.30	150.5	815	153	1 01
										03 05 30	180.5	80 0	15.0	0 99

mr≃ 02 b== -23

		ter #6 Out	let.		r — —	I	d of	r eli		
Tume		Rendung	Conc Na	C/Co	Tune		T/Td	Reading	Conc Na	C/Co
min	ការព		mg1		min	97137 1	Td=37		mg1.	
00 05 00	0.0	22.0	2.5	-0.01	00.05.00	0.0	0.00	230	2.7	0.00
00 06 00	10	22.5	2.6	0.00	00 07 00	7.0	0 19	23 0	27	0.00
00 07 00	20	23 0	2.7	0.01	00 09 00	9.0	0.24	23 0	27	0.00
00 08 00	30	23.0	2.7	0.01	00 11 00	11.0	0.30	23.0	2.7	0.00
00 09 00	40	23 0	27	0.01	00 13 00	13.0	0.35	22 5	26	0.00
00 10 00	50	23 0	27	0.01	00 15:00	15 0	041	22 5	26	0.00
00 11 00	60	23 0	27	0.01	00.17.00	170	0 46	22 5	2.6	0.00
00 12 00	70	200	27	0.01	00 19 00	190	0.51	23.0	2.7	0.00
00 13 00		23 0	27	0 01	00 21 00	21.0	0.57	23 0	2.7	0.00
00 14 00	90	23 5	2.8	0 02	00 23 00	23.0	0.62	23 0	2.7	0.00
0 15 00	100	23 5	28	0 02	00 25 00	25.0	0.68	22.5	26	0.00
00 16 00	110	25 5	32	0.05	00 27:00	27.0	0 73	24 0	2.9	0.02
00 17 00	120	28 5	39	0 10	00 29 00	29.0	0.78	25 0	31	0.04
	130	310	44	0 14	00 31 00	31 0	0 84	31.0	4.4	0 14
	14 0	32 5	47	017	00 33 00	33 0	0.89	31.0	4.4	0 14
00 19 00	150	37 5	57	0.25	00.35 00	35 0	0 95	33 0	4.8	0.18
0 20 00		39 5	61	0.25	00 37.00	37.0	1.00	38.5	60	0.27
10 21 00	16 0	44 0	71	0.36	00.39 00	390	1 05	42.0	68	0.33
0 22 00	170		74	0.38	00 41 00	41.0	111	49.5	84	0.46
0 23 00	180	45.5	79	0.38	00.43 00	43 0	1 16	55 0	96	0.56
0 24 00	19.0	48 0			00:45:00	450	1.22	56 5	99	0.54
0 25 00	200	50 5	84	0.46	00 47 00	470	1.27	610	10.9	0.66
0 27 00	22 0	56 0	9.5		00 49 00	49.0	1.32	62 5	11.2	0 69
0 29 00	24 U	60 5	10 5	0 63			1 38	55.0	96	0.54
0 31 00	26 0	64 0	11.2	0 69	00 51 00	510	143	65 5	118	0.74
0 33 00	29 0	67.0	11.8	0 74	00 53 00	530	1.49	710	130	0 8
0 35 00	30 0	69 0	12 2	0.77	00 55 00	55 0		66 5	121	0.76
20 40 00	35 0	76 0	13 7	0 88	00.57.00	570	1.54			0.70
0 45 00	40 0	80 5	14 6	096	00.59 00	59 O	1.59	75.0	13.9	0.81
0 50 00	450	\$2.0	14 9	0.9%	01 01 00	610	1.65	73 0 77,5		
0 55 00	50 0	82.0	14 9	0.98	01:03:00	63 0	1.70		14.4	0.95
1 00 00	55 0	83.5	15 2	1 01	01:05:00	650	1.76	77 0	14.3	0.94
1 05 00	60 0	83.5	152	1 01	01.10.00	70 0	1.89	77.5	14.4	0.95
13400	#9 0	83.5	15.2	101	01.15.00	75 0	2 03	73.0	13.5	0.87
2 05 00	120 0	\$4 0	15 3	1 02	01:20:00	80.0	2.16	72 0	13.3	0 85
2 34 00	149 0	82.5	150	0 99	01 25 00	85 0	2.36	810	15 2	1 01
3 04 00	179.0	82.5	15.0	0 99	01.30.90	90.0	2.43	785	14.7	0.96
					01 45 00	105 0	2 84	\$1.5	15 3	1.02
					01:50:00	110 0	2 97	79.5	14 9	0.98
					01.57.00	117.0	3 16	75.5	14.0	0.91
					02 00 00	120.0	3.24	795	14 9	0 91
					02 05.00	125.0	3.38	77.5	14.4	0.95
					02 15 00	135 0	3 65	78 5	14 7	0.96
					02 20 00	140 0	3 78	79.0	14 8	0.97
					02 25 00	145.0	3 92	84 5	16 0	1 07
					02 30 00	150 0	4 05	85 0	16 1	1 08
					02 33 30	153 5	4 15	850	16 1	1.08
					02 40 00	160 0	4.32	86 0	16 3	1 .19
					02 45 00	165 0	4.46	74 0	13 7	0.89
					02 50 00	170 0	4 59	80.5	151	1 00
					03 00 00	180 0	4 86	80 5	15.1	1 00
					03 04 90	184 0	4 97	830	15.6	1 04

SAMPLING NO	3	
LOCATION	Clarifier 2	
FLOW (ML/d)	180	
SAMPLING DATE	05-Mar-93	
TESTING DATE	08-Mar-93	(use these data)
	09-Mar-93	(check the data)
	19-Mar-93	(check the sludge effect)
	21-Mar-93	(check the sludge effect)
STANDARD MADE	22-Feb-93	•

mg/L Na 2.0 5.0	Initial Reading 14 0 32 5	Initial Reading 14.0 32.5	Average 14.0 32.5			
7.0	43.0	42.5	42 8			
10.0	58 5	59.0	58 8			
12.0	67.0	68 0	67.5			
17.0	88 5	89 0	88 8			
20.0	100 0	100 0	100 0			
Regression Statistics						
Mutuple R	0 996					
R Square	0.993					
Adjusted R Square	0.991					
Standard Error	0 599					
Observations	7					
Analysis of Variance						
	đ	Sum of Squares	Meen Square	F	Significance F	
Regression	1	247.918	247.918	890 140	0 000	
Residual	5	1.796	0 359			
Total	6	249 714				
	Coefficients	Standard Error	t Statistic	P-value	Lower 95%	Upper 93
		0 514	-3 309	0.016	-3 024	-0 380
Intercept	-1.702	0.014				

General Equation y≈0.210x-1 702

TEST NO. 3 CLARIFIER NO. 2 (180 ML/d)

Na back.(mg/L)= Na Final (mg/L)= Na Tracer (mg/L)	3.59 13.20 9.61		F	0.2 -1.7					0.2 -1.9		
				Effigent				Rot	los Dreft	Tube	
	Turne		T/Td	Rending	Conc. Na	C/Co	Time		Reating	Conc. Ne	
	RUT .	min	Td-66		mg/L		min	Min		mg/L	Γ

			Effierst			Bottom Draft Tahr					
Tume		T/Td	Rending	Conc. No	C/Co	Time		Reading	Canc. Ne	C/Co	
anun -	min	Td-06		mg/L		anin	Rin		mg/L		
00:03:30	0.5	0.01	25.0	3.6	0.00	00:03:00	0.0	25.0	3.5	-0.01	
00:05:50	2.8	0.03	25.0	3.6	0.00	00:04:00	1.0	260	3.7	0.01	
00:08.20	5.3	0.06	25.0	3.6	0.00	00:05:00	2.0	27.5	4.0	0.04	
00:10:00	7.0	0.06	25.5	3.7	0.01	00:06:00	3.0	28.5	4.2	0.07	
00:12:00	9.0	0.10	25.5	3.7	0.01	00:07:00	4.0	31.0	4.8	0.12	
00:14:00	11.0	0.13	25.0	3.6	0.00	00:08:00	\$.0	33.5	\$.3	0.18	
00:16:00	130	0.15	25.0	3.6	0.00	00:09:00	6.0	34.5	5.5	0.20	
00:18:00	150	0.17	25.0	3.6	0.00	00:10:00	7.0	37.5	6.2	0.27	
00:30:00	17.0	0.30	25.0	3.6	0.00	00:11:00	8.0	40.0	6.7	0.32	
00.22:00	19.0	0.22	36.0	3.8	0.02	00:12:00	9.0	42.0	7.1	0.37	
00:24:00	21.0	0.24	28.0	4.2	0.07	00:13:00	10.0	43.0	7.3	0.39	
00:26:00	23.0	0.27	28.5	4.3	0.06	00.14:00	11.0	43.0	7.3	0.39	
00:25.00	25 0	0.29	29.0	4.4	0.09	00:15:00	12.0	43.5	7.4	0.40	
00:30:00	27.0	0.31	31.0	4.9	0.13	00:16:00	13.0	45.5	7.9	0.44	
00:32:00	29.0	0.34	31.0	4.9	0.13	00:17:00	14.0	\$6.0	80	0.46	
00.34.00	31.0	0.36	33.0	5.3	0.18	00:18:00	15.0	45.5	7.9	0.44	
00 36:00	33.0	0.38	34 0	5.5	0.20	00:19:00	16.0	46.0	8.0	0 46	
00.38.00	35.0	0.41	37.5	6.2	0.27	00:20:00	17.0	47.0	82	0.48	
00:40:00	37.0	0.43	37.5	6.2	0.27	00:21:00	18.0	47.0	8.2	0.48	
00.42:00	39.0	0.45	38.5	6.4	0.30	00 22:00	19.0	48 0	8.4	0.50	
00:44:00	41.0	0.48	39.0	6.6	0.31	00 23:00	20.0	48.5	8.5	0.51	
00 46:00	43.0	0 50	40.5	6.9	0.34	00:24:00	21.0	48.0	84	0.50	
00.50:00	47.0	0.55	42.0	7.2	0.37	00:25:00	22.0	\$0 .0	8.8	0.54	
00:52:00	49 0	0.57	44.0	7.6	0.42	00:26:00	23.0	50.0	8.8	0.54	
00.54:00	\$1.0	0.59	44.5	7.7	0.43	00:27:00	24.0	\$0.5	8.9	0.56	
00:56:00	\$3.0	0.62	45.5	7.9	0.45	00:28:00	25.0	\$1.0	9.0	0.57	
00.58:00	\$5.0	0.64	47.0	8.2	0.48	00:29:00	26.0	52.5	9.4	0.60	
01:00:00	\$7.0	0.66	47.5	8.3	0.49	00:30:00	27.0	\$3.5	9.6	0.62	
01:02:00	\$9 .0	0 69	48 0	85	0.51	00:31:00	28.0	53.0	9.5	0.61	
01.07:00	64 0	0 74	50.0	8.9	0.55	00.32:00	29.0	\$3.5	9.6	0.62	
01:12:00	69 0	0.80	\$3 0	9.5	0.62	00:33:00	30.0	53.0	9.5	0.61	
01:17:00	74 0	0 86	\$3.5	9.6	0.63	00:38:00	35.0	\$5.0	99	0.66	
01:23:00	80.0	0.93	56.0	10.1	0.68	00.43:00	40.0	\$7.0	10.3	0 70	
01-27.30	84.5	0.98	\$7.5	10.5	0.71	00:48:00	45.0	\$7.0	10.3	0.70	
01:33.00	90.0	1.05	60.0	11.0	0.77	00:53:00	\$0.0	58.5	106	0 73	
01:38.00	95 0	1 10	60.0	11.0	0.77	00:58:00	55.0	60.5	11.1	0.78	
01:45 00	102.0	1.19	61.5	11.3	0.80	01:03:00	60.0	63 0	11.6	0.83	
01:50.00	107.0	1.24	62.5	11.5	0.82	01:18:00	75.0	65.0	12.0	0.88	
01:55:00	112.0	1.30	64.0	11.8	0.86	01:33:00	90.0	J7.0	12.5	0.92	
02:00:00	117.0	1.36	64.5	11.9	0.87	01:48:00	105.0	69.0	12.9	0.97	
02 15 00	132.0	1.53	67.0	12.5	0.92	02:03:00	120.0	70.0	13.1	0.99	
02.30.00	147 0	1.71	68.0	12.7	0.95	02:30:00	147.0	70.5	13 2	1.00	
02:45:00	162 0	1.85	70.5	13.2	1.00	03:00:00	177.0	70 5	13.2	1 00	
03 01 00	178.0	2 07	70.5	13 2	1.00						

General Eqn Na start Na finish Inital Stasdy

y=0 210x-1.702

25.2 (evenge of 2 first samples from each location) 71.0 (evensge of 2 last samples from each location) Note: Bottom Draft Tube is assumed as the Inlet

0.2	
-1.9	

0.2	
-2.0	

0.2 -1.7

Tep Draft Tube						Menbair		Paint #1						
Tume					C/Co	Time		Renduna	Conc. Na	C/Co				
min	min		mg/L		800	min		mg/L		min	Min	1	me/i.	
00:03:00	0.0	25.5	3.5	-0.01	00:04.30	1.5	25.0	3.4	-0.02	00-03-00	0.0	24.5	3.4	-0 02
00:04:00	1.0	26.0	3.6	0.01	00:06:55	3.9	26.0	3.6	0.00	00 04 00	1.0	260	3.7	0 02
00:05:00	2.0	37.0	6.0	0.25	00:08.55	5.9	26.0	3.6	0.00	00:05:00	2.0	25 0	3.5	-0 01
00:06:00	3.0	41.0	6.9	0.34	00:10:55	7.9	34 0	5.3	0.18	00:06 00	3.0	25 5	3.6	0 01
00:07:00	4.0	46.0	7.9	0.45	00:13:00	10.0	25.0	3.4	-0.02	00.07.00	4.0	29.0	4.4	0.08
00:07:00	4.U 5.O	\$0.5	8.9	0.55	00:15:00	12.0	27.0	3.8	0.02	00:00 00	50	300	46	0 10
30:09:00	6.0	500	1.1	0.54	00:17:00	14.0	26.0	3.6	0.00	00:09:00	60	32.0	50	015
00:10:00	7.0	47.5	1.3	0.49	00 19:00	16.0	29.0	4.2	0.07	00 10 00	7.0	32 5	51	0.16
00:11:00	7.0 1.0	\$0.0	1.3 1.1	0.54	00.21:00	18.0	25.0	3.6	0.00	00:11:00	8.0	36.0	58	0 23
00:12:00	9.0	\$1.0	9.0	0.54	00 23:00	20.0	26.0	3.6	0.00	00:12:00	90	37.0	60	0.25
00:12:00	10.0	51.5	9.1	0.58	00.25.00	22.0	27.0	3.8	0 02	00:13:00	10 0	348.0	6.2	0.28
00:14:00	11.0	51.5 580	10.5	0.72	00.27:00	24.0	28.0	4.0	0.04	00:14:00	11.0	37.5	61	0.26
00.15:00		57.0	10.3	0.72	00:29:00	26.0	280	40	0.04	00 15:00	12.0	39.0	6.5	0.30
	12.0				00:31:00	280	280	40	0.04	00 16.00	13.0	40 0	67	0.32
00.16:00	13.0	\$7.5	10.4	0.71		30.0	29.0	4.2	0.07	00 17:00	14 0	39.5	66	0.34
00:17:00	14.0	59.0	10.7	0.74	00.33:00	32.0	30.5	4.6	0.10	00.18.00	150	420	7.1	0.36
00.18 00	15.0	58 0	10.5	0.72	00.35.00		34.0		0.10	00.19.00	16.0	42.5	7.2	0.37
00:19:00	16.0	60.0	10.9	0.77	00.37:00	340		5.3		00:20:00	17.0	420	7.1	0.36
00:20:00	17.0	58.5	10.6	0.73	00:39:00	36.0	33.0	5.1	0.16		10 0	43.5	74	0.39
20.21:00	18 0	\$7.5	10.4	071	00:41:00	38.0	34.0	5.3	0.18	00:21:00			76	
0:22:00	190	60.0	10.9	0.77	00:43:00	40 0	35.5	5.6	0.21	00.22.00	19.0	44.5		0 42
00:23:00	20 0	62.0	11.4	0.81	00:47:00	44.0	40 0	66	0.31	60.23 GO	20.0	44 0	7.5	0 41
00:24:00	21.0	59.5	10.8	0.75	00:49:00	46.0	40.5	6.7	0.33	00 24 00	21 0	46 0	7.9	0.41
00.25.00	22.0	58.0	10.5	0.72	00:51:00	48.0	43.0	7.3	0.38	00.25:00	22 0	48 0	83	0 49
00:26:00	23.0	60.0	10.9	0.77	00.53 00	\$0 .0	45.0	7.7	0.43	00:26.00	23 0	46 0	79	0 45
00:27.00	24.0	57.0	10.3	0.70	00.55:00	\$2.0	45.0	7.7	0.43	00.27.00	34.0	46 5		0 46
00:28:00	25.0	\$9.0	10.7	0.74	00:57:00	54.0	46 0	7.9	0.45	00.28 00	25.0	48 0	83	0 49
00.29:00	260	60.0	10.9	0.77	00.59 00	56.0	47.0	8 3	0.47	00.29.00	260	48 5	84	0.50
00:30:00	27 0	61.0	11.2	0.79	01:01:00	58 .0	48.0	8.3	0.49	00.30:00	27.0	47 0		941
00.31.00	28.0	\$9.0	10 7	0.74	01:03:00	60.0	\$0.5	8.9	0.55	00:31:00	28 0	49 0	8.5	0 51
00:32:00	29.0	610	11.2	0 79	01:05:00	62 0	\$0.5	89	0 55	00:32:00	29.0	48.5	84	0 50
00.33.00	30 0	60 0	10 9	0 77	01:07.00	64.0	510	9.0	0.56	00.33.00	30 0	50 0	87	0.54
00:38:00	35 0	61.5	11.3	0.80	01.09.00	66.0	\$1.0	90	0.56	00.30.00	35 0	53 0	94	0 60
00 43 00	40 0	66 0	12.2	0 90	01.14.00	710	\$6.0	10.1	0.67	00.43.00	40 0	54.5	97	0 63
DO 48 DO	45.0	67.5	126	0.93	01.19:00	76 0	55 0	9.9	0.65	00.48.00	450	610	11.0	0 77
00:53:00	\$0.0	67.0	12.5	0.92	01:24.00	#1.0	56.5	10.2	0 69	00:53:00	\$0.0	58 0	10 4	0 71
00.58:00	55 0	68 0	12.7	0.94	01 29 00	86.0	59.0	10 7	0 74	00.58.00	55 O	59 0	10 6	0 73
01.03:00	60 0	68.5	12.8	0.96	01.35.41	927	610	11.2	0 79	01 03 00	60 0	59 5	10 7	0 74
01.18.00	75 0	70 0	13.1	0.99	01-40-00	97.0	61 0	11.2	0.79	01:18:00	75.0	64 0	11.6	0 👪
01.33 00	90.0	70.5	13.2	1.00	01:46:00	103.0	630	11.6	0 \$3	01.33.00	90.0	68 0	12.5	0 92
01:48:00	105.0	69 0	12.9	0.97	01:51:00	108.0	63.0	116	0.83	01.48.00	105 0	69 0	127	0 95
02:03:00	120 0	70.5	13.2	1.00	01:56:00	113.0	65 0	12.0	0.88	02 03 00	120.0	70 0	129	0 97
02 30 00	1470	70.5	13.2	1 00	02:04:35	1216	65 0	12.0	0.85	02.18.00	135.0	70 5	130	0.98
03 00 00	177.0	70 5	13 2	1.00	02 17.00	134.0	67.0	12.4	0.92	02.33.00	1500	710	13.1	0 99
					02:32:00	149.0	70 0	13.1	0.99	02 48 00	165.0	71 5	13.2	1.00
					02.47.00	164 0	70.0	13.1	0.99	03 03 00	1800	71 5	13.2	1.00
					03.04.00	1810	710	13.3	1 01					

0	2
-1	5

0.2 -1.6

-		Palat #2	· · · · · · · ·		r		Palet #3			1		Point #4		
Turne		Reging	Conc No	C/Co	Tume		Rending	Conc. Na	C/Co	Time		Rendering	Conc. Ns	C/Co_
	ສາມກ		mg/L	0.00	(mm	man	-	mg/L		min I	mun		mg/L	
00 03 00	00	250	3.6	0.00	00.03.00	0.0	25.0	3.6	0.00	00 03 30	0.5	24.5	3.6	0.01
00 04 00	10	250	36	0.00	00:04:00	1.0	25.0	3.6	0.00	00:04:30	1.5	24.0	3.5	-0.01
00 05 00	20	42.5	72	0.37	00:05:00	2.0	25.0	3.6	0.00	00:05:30	2.5	24.5	3.6	0.01
00 06 00	3.0	430	7.3	0.30	00:06:00	3.0	27.5	4.1	0.05	00:05:30	3.5	24.0	3.5	-0.01
00 07 00	40	46 5		0 46	00:07.00	4.0	28.0	4.2	0.06	00 07 30	4.5	25.0	3.7	0.02
00 08 00	50	53 5	94	0.61	00.08.00	50	29.0	4.4	0.09	00:08:30	5.5	27.5	4.3	0.07
00 09 00	60	550	97	0.64	00.09.00	6.0	33.0	5.2	0.17	00 09 30	6.5	29.5	4.5	0.09
00 10 00	70	580	10.3	0.70	00:10:00	7.0	33.0	5.2	0.17	00:10:30	7.5	31 0	5.0	0.15
00 11 00		550	9.7	0.64	00.11:00	8.0	360	5.9	0.24	00:11:30	8.5	34.0	5.6	0.21
00 12 00	90	56.0	9.9	0 66	00:12:00	9.0	40.0	6.7	0.32	00:12:30	9.5	34.5	5.7	0.22
00 13 00	100	58 5	104	0.71	00:13:00	10.0	40.0	6.7	0.32	00 13:30	10.5	38.0	6.4	C 30
00 14 00	110	590	10 5	0.72	00.14.00	11.0	42.0	7.1	0.37	00:14:30	11.5	35.5	5.9	0.24
00 15 00	120	61.0	11.0	0.77	00:15:00	12.0	46.0	7.9	0.45	00:15:30	12.5	36.5	6.1	0.26
	130	595	10.6	0.73	00.16.00	13.0	43.0	7.3	0.39	00:16:30	13.5	37.0	6.2	0.27
00 16 00		59.0	10 5	0.72	00 17:00	14 0	44.5	7.6	0.42	00 17:30	14.5	340	6.4	0.30
00 17 00	14.0	610	110	0.72	00:18:00	15.0	45.0	7.7	0.43	00:18:30	15.5	38.5	6.5	0.31
00 18 00	150	610	11.0	0 77	00:19:00	16.0	47.0	*.i	0.47	00:19:30	16.5	41.0	7.1	0.36
00 19 00	160 170	620	11.2	0.79	00.20 00	17.0	500		0.54	00 20 30	17.5	39 5	6.7	0.33
00.20.00		590	10.5	0.72	00.21 00	18.0	47.5	8.2	0.48	00:21:30	18.5	43.0	7.5	0.40
30 21 00	180	630	10.5	0.72	00.22.00	19.0	49.0	8.6	0.52	00 22 30	19.5	42.0	7.3	0.38
00 22 00	190			079	00 23.00	200	49.0	86	0.52	00:23:30	20.5	44.0	7.7	0.42
00 23.00	20.9	620 610	112 110	077	00 24 00	21.0	50.5	8.9	0.55	00:24:30	21.5	42.0	7.3	0.38
00 24 00	21 0			0 81	00 25 00	22.0	51.0	90	0.56	00:25:30	22.5	43.5	7.6	0 4 1
00 25 00	22 0	630 620	11.4 11.2	0.79	00.25 00	230	\$1.0	9.0	0.56	00.26.30	23.5	45.0	7.9	0.45
00 26 00	230			0.81	00.27 00	240	52.0	92	0.58	00 27 30	24.5	47.5	8.4	0.50
00.27 00	24 0	630	11.4		00:28:00	25 0	52.5	9.3	0.59	00:28:30	25.5	49.5	2.8	0.54
00 28 00	250	62 0	11.2	079	00.29 00	-	52.0	9.2	0.55	00 29 30	26.5	49 5	8.8	0.54
00 29 00	26 0	630	11.4	0.81		260 27.0	510	9.0	0.56	00.30.30	27.5	500	89	0.55
00 30 00	27 0	63.0	11.4	0.91	00:30:00	-	52.0	9.2	0.58	00.31.30	28.5	\$1.0	91	0.58
00 31 00	250	630	11.4	0.81	00.31:00	28.0			0.58	00.32.30	29.5	52.0	9.3	0.60
00.32.00	29.0	630	114	0.91	00.32.00	29 0	52 0	9.2		00:32:30	30.5	52.0	9.3	0.60
003300	30 0	615	11.1	0.78	00 33 00	30 0	53 0	94	0.60	00:33:30	35.5	53.0	9.5	0.62
203800	35 0	66 0	12.0	0 87	00 38 00	35.0	53.5	9.5	0.61	00.38.30	40.5	53.0 54.0	9.3 9.7	0.64
30 43 00	40 0	68.0	124	0 91	00 43 00	40 0	55 0	9.8	0.65	00 48 30	40.5	54.0	9.7	0.64
00 48 00	450	68 5	12.5	0.93	00:48:00	45.0	57 5	10.3	0.70	00.53 30	43.5 50.5	58.0	10.6	0.73
00.53.00	50 0	68 5	12.5	0.93	00:53.00	50.0	58.0	10.4	0.71			548.0 59.0	10.8	0.75
30 541 00	550	66.5	12.1	0.88	00:59 00	55.0	610	11.0	0.77	00.58:30	55.5			0.78
01 03 00	60 0	66 0	12 0	0.87	01:03:00	60 0	63 0	11.4	0.82	01:03:30	60 5	60.5	11.1	0.98
01 18 00	750	69 5	127	0 95	01:18:00	75.0	65 0	11.9	0.86	01:18:30	75.5	64.0	11.8	0.85
01 33 00	90 0	70 5	129	0.97	01 33:00	90 0	67.0	12.3	0.90	01:33:30	90.5	650	12.0	
01 48 00	105 0	710	130	0.98	01 48 00	105 0	68.5	12.6	0.94	01:48 30	105.5	68 0	126	0 94
02 03 00	120.0	710	130	0 98	02 03 00	120 0	76 0	12.9	0 97	02:03:30	120.5	68.0	12.6	0 94
02 18 00	135.0	720	13.2	1 00	02 18 00	135 0	70 5	13.0	0.98	02:18:30	135.5	68.0	126	0.94
02 33 00	150 0	720	13 2	100	02 33 00	150.0	710	13.1	0 99	02:33:30	150.5	69.0	12 8	0.96
02 48 00	165.0	720	13 2	1 00	02 48 00	165 0	715	13 2	1 00	02 48 30	165 5	71.0	13 3	1.01
00 10 10	180.0	76 5	14.1	1.10	03 03 00	180 0	715	13.2	1 00	03 03 30	180.5	70 5	13.1	0 99

SAMPLING NO:	4	
LOCATION	Reservoir 1	
FLOW (ML/d).	180	
SAMPLING DATE	24-Mar-93	
TESTING DATE	30-Mar-93	(omit these data)
	09-Apr-93	(use these data)
STANDARD MADE:	22-Feb-93	(old standard)
	09-Apr-93	(new standrad)

mg/L Na 2.5 50 100 150 175 20.0	Initial Reading 18.5 35.0 61.5 83.0 91.0 100.0	Initial Reading 17.5 34 5 60 5 81.5 91.0 98 0	Average 16 0 34 6 61 0 82 3 91 0 99 0			
Regression Statistics						
Multiple R	0.995					
R Square	0.989					
Adjusted R Square	0.986					
Standard Error	0819					
Observations	6					
Analysis of Variance						
-	đ	Sum of Squares	Mean Square	F	Significance F	_
Regression	1	243 152	243.152	362 681	0 000	•
Residual	4	2.682	0 670			
Total	5	245 833				
	Coefficients	Standard Error	t Statistic	P-velue	Lower 95%	Upper 95%
Intercept	-2.156	0.799	-2 698	0 043	-4 375	0.063
x1	0 215	0 01 1	19 044	0 000	0 184	0 246
Consel Equation						

General Equation y=0 215x-2 156

TEST NO. 4 RESERVOIR NO. 1 (180 ML/d)

NaBack(mg/L)=	4 04
NaFinal(mg/L)=	16 72
NaTracer(mg/L)=	12 68

m 02 b -22 mr≕ 0.2 b≕ -1.6

			Lairt	,		<u> </u>			Outlet		010
Time		UTd	Renting	Conc. No	C/Co	Time		VTd	Reading	Conc. Na	C/Co
min		16-297		mg/L		πίσ	min	Td=297		mg/L	0.00
0.05.00	0.0	0.00	20.5	4.0	-0.01	00:05:00	0.0	0.00	27.0	4.0	
0:06:00	1.0	0.00	29.5	4.0	-0.01	00 15:00	10.0	0.03	27.0	4.0	0.00
0.07:00	20	0 01	29.5	4.2	0.01	00:25:00	20.0	0.07	27.0	4.0	0.00
0:08:00	3.0	0.01	28.0	3.9	-0.01	00:35:00	30.0	0.10	27.0	4.0	0.00
0.09:00	4.0	0.01	29.0	4.1	0.00	00:45:00	40.0	0.13	27.0	4.0	0.00
0.10.00	5.0	0 02	28.5	4.0	-0.01	00:55:00	\$0.0	0.17	27.0	4.0	0.00
0 11 00	6.0	0 02	29.0	4.1	0.00	01:00:00	\$5.0	0.19	28.0	4.3	0.02
0.12:00	7.0	0.02	29.0	4.1	0.00	01:05:00	60.0	0.20	27.0	4.0	0.00
0 13 00		0.03	29.0	4.1	0.00	01:10:00	65.0	0.22	27.5	4.1	0.01
	9.0	0.03	28.5	6.0	-0.01	01:15:00	70.0	0.24	210	4.3	0.02
10.14:00	10 0	0.03	28.5	4.0	-0.01	01:25:00	80.0	0.27	28.0	4.3	0.02
			30 5	4.4	0.03	01:35:00	90.0	G.30	31.0	4.9	0.07
0 16 00	11.0	0.04	29.5	4.2	0.01	01:40:00	95.0	0.32	33.5	5.4	0.11
0:17 00	12.0	0.04			0.02	01:45:00	100.0	0.34	36.0	5.9	0.15
x0 I∎:00	130	0.04	29 0	4.1			100.0	0.37	40.5	6.9	0.22
0 19 00	14.0	0 05	29.5	4.2	0.01	01:55:00				7.5	0.27
0.20.00	15.0	0.05	30.5	4.4	0.03	02:05:00	120.0	0.40	43.5	7.5 8.4	0.35
0.21.00	16.0	0.05	38.0	60	0.16	02:15:00	130.0	0.44	48.0		
0.22.00	17.0	0.06	43.0	7.1	0.24	02:25:00	140.0	0.47	47.5	8.3	0.34
0.23.00	18 0	0.06	\$0.5	87	0.37	02:35:00	150.0	0.51	50.5	8.9	0.39
0.24:00	19.0	0.06	55.5	9.8	0.45	02:45:00	160.0	0.54	55.5	10 0	0 47
0 25 00	20 0	0.07	61.0	11.0	0.55	02:55:00	170.0	0.57	54.5	9.8	0.45
0 26 00	21 0	0 07	69 5	12.8	0.69	03:05:00	180.0	0.61	\$7.0	10.3	0.49
0 27 00	22.0	0.07	660	12.0	0.03	03:15:00	190.0	0.64	\$7.5	10.4	0.50
0 28 00	23.0	0.08	65.5	11.9	0.62	03:25:00	200.0	0.67	61.0	11.1	0.56
0 29.00	24 0	0.02	66.0	12.0	0.63	03 38:00	213.0	0 72	63.0	11.5	0.59
		0.08	70.0	12.9	0.70	03.45:00	220.0	0.74	62.5	11.4	0.58
0 30.00	25.0			12.9	0.70	03:55:00	230.0	0.77	63.0	11.5	0.59
0.31.00	26 0	0.09	71.0				240.0	0.81	63.5	11.7	0.60
0 32:00	27.0	0.09	73.0	13.5	0.75	04:05:00			650	12.0	0.62
0:33:00	28 0	0.09	75.0	14.0	0.78	04:15:00	250.0	0.84			0.63
0 34 00	29 0	0 10	79.0	14 %	0 85	04:25:00	260.0	0.85	65.5	12.1	
03500	300	0.10	78.5	14 7	0.84	06:35.00	270.0	0.91	66.5	12.3	0.65
0.40 00	35 0	0 12	85 0	16 1	0.95	04:45:00	290.0	0.94	67.0	12.4	0.66
10:45 00 L	40.0	0.13	\$4.0	15.9	0.94	04:55:00	290.0	0.99	71.0	13.2	0.72
0 50 00	45.0	0.15	85.5	16.2	0.96	05.05:00	300 0	1.01	71.0	13.2	0.72
0.58 23	53 4	0.18	84 5	16 0	0.94	05:15:00	310 0	1.04	72.0	13.4	0.74
1 01 40	56 7	0 19	90.0	17 2	1.04	05 25:00	320.0	1.08	73 0	13.6	0.76
1.06 00	610	0.21	84.5	160	0.94	05.35:00	3300	1.11	74.5	13.9	0.78
1 10 00	65.0	0.22	90.5	17.3	1.05	05:45:00	340.0	1.14	75.0	14.1	0.79
2.12.00	127 0	0.43	87.5	16 7	0 99	05 55 00	350 0	1.18	75.5	14.2	0.80
3.05 00	180 0	0.61	88 0	16.8	1 00	06.05.00	360 0	1.21	73.0	13.6	0.76
4 05 00	240 0	0.81	\$7.0	16.5	0.99	06 15:00	370.0	1.25	74.5	13.9	0.78
		1 01	\$4.0	15.9	0.94	06:25:00	380.0	1.28	76.0	14.3	0.81
5 05 00	300.0	1.21	83.5	15.8	0.93	06.35.00	390.0	1.31	76.5	14.4	0.81
6 05 00	3460 0				0.96	06:45:00	400.0	1.35	78.5	14.8	0.85
7 05 00	420.0	1 41	85.5	16 2				1.35	79.0	14.9	0.86
8.05.00	480.0	1 62	90.5	17.3	1 05	06:55 00	410 0				0.87
9.05.00	540.0	1 82	910	17.4	1.05	07.05 W	420.0	141	80.0	15.1	
0 05.00	600.0	2 02	94.5	18.2	1.11	07:19:00	434.0	1.46	79 0	14.9	0 86
1 05 00	660 0	2.22	91.5	17.5	1.06	07:25:00	440.0	1.48	80.0	15.1	0.87
2 05 00	720 0	2 42	97.0	18 7	1.16	07:35:00	450 0	1.52	\$0.5	15.2	0 88
						07:55:00	470.0	1.58	10.5	15.2	0.28
						08.05:00	480 0	1.62	81.0	15.3	0 89
						08:15:00	490.0	1.65	80 0	15.1	0.87
						08:25:00	500.0	1.68	80.0	151	0.87
						08.35:00	\$10.0	1.72	\$1.0	15.3	0.89
						08.45:00	520.0	1.75	\$1.0	15.3	0.89
						00.55.00	530 0	1.78	82.5	15.6	0.91
						09:05:00	5400	1.82	\$2.0	15.5	0.90
						09:15:00	550.0	1.85	83 5	15.8	0.93
							560.0	1.89	14 0	15.0	0.94
						09:25:00		1.89	84.0 84.5	16 0	0.95
						09.35:00	570.0				
						09.45:00	580 0	1.95	83.5	15.8	0.93
						09:55:00	590.0	1.99	85.0	16.1	0.95
						10:05:00	600.0	2.02	85 0	16.1	0.95
						10:15:00	610.0	2.05	85.0	16.1	0.95
						10.25:00	620 0	2.09	\$5.0	16.1	0.95
						10.35:00	630 0	2.12	\$5.0	16.1	0.95
						10.45.00	640 0	2.15	85.0	16 1	0.95
							6500	2.19	86 5	16.5	0.98
						10:55:00	660.0	2.19	16.5	16.5	0.98
						11:15:00	670 0	2.26	90.0	17.2	1.04
						11:25.00	680 0	2.29	88.5	16.9	
						11:35:00	690.0	2.32	88.5	16 9	1.01
						11.45.00	700 0	2.36	88 5	169	1.01

11:55:00	710 0	2.39	\$7.5	16 7	0 99 '
12 05:00	7300	2.42	87.5	16 7	0.99
12 15 00	730 0	2 46	86 5	16 5	0.98
12:25:00	740 0	2 49	88 0	16 #	1.00
12:35:00	750 0	2 53	87 5	167	0 99

Gnil Egn	y=0.215x-2		
	(INLET) (OUTLET	1
No stort	4.04	3.65	1
Na firesh.	16.72	16.72	
inital.	28.8	27.0	(everge of 3 first semples)
Steedy:	07.8	87.8	(average of 8 last samples from OUTLET)
-			(assumed Steady for Inist + Cultat)

								ja. Na	0.2 -2.2	
		System						lockgroup		
Turne In	TOU-TIN	7/74	Turne Cor C/Co	Tamp(mp)	Tome min	anger.	VTd T4=297	Rending	Canc. No mg/L	C/Co
Egv1 14.0	0.0	T4-397 0.00	0.00	14.0	00:05:00	0.0	0.00	27.5	3.8	0.0
14.0	0.0	0.00	0.05	15.0	02:05:00	120.0	0.40	27.5	3.8	0.0
14.0	6.0	0.02	0.10	15.5	04:05:00	240.0	0.81	27.5	3.8	0.0
14.0	16.0	0.05	0.15	16.0	06:05:00	360.0	1.21	27.5	3.8	0.0
14.0	26.0	0.09	0.20	16.5	08:05:00	480.0	1.62	31.0	4.5	0.0 0.1
14.0	36.0	0.12	0.25	17.0 17.5	10:05:00	600.0	2.02	36.5	5.7	0.1
14.3 14.0	40 7 46.0	0.14 0.15	0.35	17.3						
14 2	50.8	0.17	0 40	18.5						
14.3	55.7	0.19	0.45	19.0						
14.3	65 7	0.22	0.50	19.5						
15.2	74.8	0.25	0.55	20.0						
15.6	79.4	0.27	0.60	20.5 22.0						
16.0 16 7	84.0 93.3	0.28 0.31	0.05	25.0						
17.2	102.8	0.35	0.75	27.0						
18.0	1120	0.38	0.00	28.0						
17.9	122.1	0.41	0.85	29.0						
18.4	131.6	0.44	0.90	33.0						
19.2	140.8	0 47	0.95	35.0						
19.0	151.0	0.51	1.00	55 0						
19.4 19.5	160.6 170.5	0.54 0.57								
20.1	179.9	0.61								
20.4	192.6	0.65	1							
20.3	199.7	0.67								
20.4	209.6	0.71								
20.5	219.5	0.74								
21.2	228 8	0.77								
21.5 22.0	238 5 248 0	0.80 0.84								
22.5	257.5	0 87								
25.9	264 1	0 89								
25 9	274.1	0.92								
26.6	283.4	0.95								
27.1	292.9	0.99								
27.6	302.4	1.02								
27.8 28.0	312.2 322 0	1.05 1.08								
27.1	332 9	1.12								
27.6	342.4	1.15								
28.1	351.9	1.18								
28.3	361 7	1.22								
28.9	3711	1 25								
29.4	380 6	1.28								
307 294	389.3	1.31 1.36								
307	409.3	1.30								
31.4	418 6	1.41								
31.4	438 6	1.48								
32 0	448.0	1.51								
30 7	459 3	1.55								
30.7	469.3	1.58								
32.0	478.0 488.0	1.61 1.64	l							
32.0 33.5	496.5	1.65								
33.2	506.8	1.71								
34.2	515 8	1.74	1							
34.5	525 5	1.77								
34 8	535.2	1.80								
34.2	545 8	1.84								
36.5	553.5	1.86	ł							
365 36.5	563.5 573.5	1.90 1.93								
36.5	5/3.5 583.5	1.95								
36 5	593.5	2.00								
36.5	603 5	2.03								
46 4	603.6	2.03								
46.4	613.6	2.07								
550	615.0	2.07								
55.0 55.0	625 0 635 0	2.10 2.14								
33.0	0330	4.37								

52.9	657.1	2.21
52.9	667.1	2.25
46.4	683.6	2.30
55 n	685.0	2.31
52.9	697.1	2.35

SAMPLING NO:	5
LOCATION	Reservoir 2
FLOW (ML/d)	167
SAMPLING DATE	06-Apr-93
TESTING DATE:	09-Apr-93
STANDARD MADE:	09-Apr-93

mg/L Na	Initial Reading	Final Reading	Average
2.5	18.5	18.5	18.5
5.0	35.0	35.0	35.0
10.0	61.5	61.5	61.5
15.0	63 0	83.0	83.0
17.5	91.0	91.0	91.0
20.0	100.0	100.0	100.0

Regression Statistics

Multiple R	0.995
R Square	0.990
Adjusted R Square	0 987
Standard Error	0.800
Observations	6
Analysis of Veriance	

	df	Sum of Squares	Meen Squere	F	Significance F	
Regression	1	243.270	243.270	379.677	0.000	•
Residual	4	2.563	0.641			
Total	5	245.833				
	Coefficients	Standard Error	t Statistic	P-velue	Lower 95%	Upper 95%
Intercept	-2.224	0.784	-2 836	0.036	-4.402	-0.047
xt	0.214	0 011	19.485	0.000	0.184	0.245
General Equation	y=0.214x-2.224					

156

TEST NO. 5 RESERVOIR NO.2 (167 ML/d)

NeBack(mg/L)= 4.87 NeFinat(mg/L)= 17.35 NeTrecer(mg/L)= 12.48 br − 2 2

aa⊷ 02 b⊷ -21

	_		luirt						Optint		
Time		VT6	Reading	Canc. No	C/Co	Time		erta]	Rendere	Conc No	C/Co
min	min	Td=276		mg/L	Dete	the later	mán	T#=276		ma/L	Date
0:05:00	0.0	0.00	33.0	4.8	0.00	1 • 1	0.0	0.00	•	•	0.00
0:06:00	1.0	0.00	33.5	4.9	0.01	00:10:00	S.O	0 02	32.5	4.9	0.00
0:07:00 0:08:00	2.0	0.01 0.01	33.0 33.0	4.8 4.8	0.00 0.00	00:30:00	15 0 25.0	0.05	32.5 32.5	4.9 4.9	0.00 0.00
0:09:00	4.0	0.01	33.0	4.8	0.00	00:40.00	35.0	0.13	42.0	69	0 16
0:10:00	5.0	0.02	33.0	4.8	0.00	00:50:00	45.0	0.16	45.5	7.7	0 22
0:11:00	6.0	0.02	33.0	4.8	0.00	01:00:00	\$5.0	0.20	50.5	8.7	0 31
0:12:00	7.0	0.03	33.0	4.8	0.00	01:10:00	65.0	0.24	\$2.0	9.0	0 33
0:13.00	0.0	0.03	33.0	4.8	0.00	01:20:00	75 0	0.27	52.5 56.5	92	0 34
0:14:00 0:15:00	9.0 10.0	0.03 0.04	32.5 33.5	4.7 4.9	-0.01 0.01	01:30:00	85.0 95.0	0.31	59.5	10.0	041
0:16:00	11.0	0.04	33.0	4.8	0.00	01:50 00	105.0	0.34	60 0	10.8	0 47
0:17:00	12.0	0.04	32.0	4.6	-0.02	02:00:00	115.0	0.42	59 0	10.5	0.45
0:18:00	13.0	0.05	32.5	47	-0.01	02:10:00	125.0	0.45	61.0	11 0	0 49
0:19:00	14.0	0.05	32.5	4.7	-0.01	02:20:00	135 0	0 49	61.5	11.1	0.50
10:20:00	15.0	0.05	32.5	4.7	-0.01	02:30:00	145.0	0.53	64 0	11.6	0.54
0:21:00	16.0	0.06	33.0 33.0	4.8	0.00	02:40:00	1550	0.56	62 0 64 5	11.2	0.51
0:22:00	11.0	0.06	33.5	4.9	0.01	03:00:00	175.0	0.63	67.5	12.4	0 60
0:24:00	19.0	0.07	34.0	5.1	0.01	03:13.30	188.5	0.68	67.5	12.4	0 60
0 25:00	20.0	0.07	33.5	4.9	0.01	03:30.00	195.0	0.71	68 0	12 5	0.61
0:26:00	21.0	0.08	34.0	5.1	0.01	03:30:00	205.0	0 74	69 0	127	0 63
0.27:00	22.0	0.08	35.0	5.3	0.03	03 40:00	215.0	0.78	71.0	13.1	0 66
0:28:00 0.29:00	23.0 24.0	0.08	39.0 44.0	6.1 7.2	0.10 0.19	03:50:00	225.0 235.0	0.82	740 730	138	0 71
0:30:00	25.0	0.09	46.5	77	0.23	04:10:00	2450	0.89	730	13 5	0 69
0.31:00	26.0	0.09	59.5	10.5	0.45	04:20:00	255.0	0 92	730	13.5	0 69
0.32:00	27.0	0.10	68.5	124	0.61	04:30.00	265.0	0.96	73 0	13.5	0 69
0.33:00	290	0.10	74.5	137	0.71	04.40.00	275 0	1.00	73.0	13 5	0 69
0:34:00	29.0	0.11	79.0	14 7	0.79	04.50 00	285.0	1.03	75 0	14 0	0 73
0:35:00	30.0	011	79.0 17.0	14 7 16 4	0.79 0.92	05:00:00	295.0 305 0	1.07	75.5 77.5	14 1 14 5	074 077
0.40.00 D:45.00	35.0 40 0	0.13	90.0	170	0.92	05.20.00	3150	1.14	77.5	14 5	0 77
0:50:00	45.0	0.14	91.0	17.3	0.99	05:30.00	325 0	1.18	780	14 6	0.78
6.55:45	50.8	0.18	90.5	17.1	0.98	05.40.00	335 0	1.21	79 0	14 8	0 80
1:90:00	55.0	0.20	93 0	17.7	1.03	05:50:00	345.0	1.25	810	15 3	0 83
1:06:00	61.0	0.22	93.0	17.7	1.03	06.03.00	358 0	1.30	\$10	15 3	0 83
1:10:00	65.0	0.24	92.5	17.6	1.02	06:14.30	369.5	1.34	81.5	15.4	0 \$4
1:15:00	700 750	0.25	91.0	17.3	0.99 1.00	06:22:00	377.0 386.5	1.37	815 800	154 150	084
1:20:00	75.0	0.27	91.5 89.5	17.4 16.9	0.97	06:40:00	395.0	1.40	810	153	0.83
1:30:00	\$5.0	0.31	900	17.0	0.97	06 50.00	405 0	1.47	\$1.0	15 3	0 83
2:00.00	115.0	0.42	90 5	17.1	0.98	07.00.00	4150	1.50	81.5	15.4	0 84
3 00 00	175.0	0.63	88.5	16.7	0.95	07.11.30	426.5	1.55	81.5	15.4	0 14
4:00:00	235 0	0.85	910	17.3	0 99	07:20 00	435 0	2.58	115	154	0 84
5.00.00	295.0	1.07	89.5	169 173	0.97	07:30:00	4450	1.61 1.65	830 830	157	087 087
6:00.00 7.00.00	355 0 415.0	1.29	91.0 90.5	17.3	0.9%	07:40.00	4650	1.65	830	157	087
1.00.00	475.0	1.30	91.5	17.4	1.00	08.01:30	476.5	1.73	84.5	16 0	0 89
9:00:00	535 0	1.94	91.0	17.3	0.99	08.11:00	486 0	1 76	\$5.0	16 1	0.90
9:54:30	589.5	2.14	91.0	17.3	0.99	08.20.00	495 0	1.79	86 0	16 3	0 92
54:30	649.5	2.35	92.5	176	1.02	08.30.00	505 0	1 83	84 0	15.9	0 89
:54:00	709.0 775.0	2.57	92.0 91.0	17.5	1.01 0.99	08.42.30	517.5 525.0	1.88	84 0 85.0	159	0.63
00:00		281 303	91.0 91.5	17.3	100	09:00:00	525.0 535.0	1.90	85.5	16 2	0.90
	835.0	3.03	9 13		1,00	09.13.00	548 0	1 99	850	16 1	0.90
						09:20.00	\$55.0	201	850	16.1	0.90
						09:30.00	565 0	2.05	85.5	16.2	0 91
						09.40.00	\$75 0	2 08	87.0	16 5	0 \$3
						09:50:00	585.0	2.12	870	16 5	0 93
						10 00 00	595 0 607 0	2 16 2 20	1875 18115	166 169	0.94
						10:12:00	6150	2.23	100.5 100 0	16 8	0.95
						10.30 00	625 0	2.26	890	17.0	0 97
						10.40 00	635 0	2.30	83.0	16 8	0.95
						10:50.00	6450	2 34	86 0	16 8	0 95
						11:03:00	6580	2.38	86 5	F6 4	0 93
						11:10.00	64650	2.41	113 0	16 8	0 95
						11:20:00	675 0 685 0	245	880 890	16 8	095
						11:30:00	6950	2.52	900	17 2	0.99
						11.50 60	705 0	2 55	900	17 2	0 99

12:10:00	725.0	2.63	90.5	17.3	0.99
12:20:00	735.0	2.66	90.0	17.2	0.99
12:30:00	745.0	2.70	90 0	17.2	0.99
12:40:00	755.0	2.74	90.5	17.3	0.99
12:50:00	765 0	2.77	89 0	17.0	0.97
13:00:00	775.0	2.81	88.5	16.9	0.96
13:10:00	785.0	2.84	88.5	16.9	0 96
13:30:00	7950	2.88	88.5	16.9	0.96
13:30:00	805.0	2.92	88.0	16.8	0.95
13:40:00	\$15.0	2 95	89.0	17.0	0.97
13:50:00	825 0	2.99	89.0	17.0	0.97
14:00:00	835.0	3.03	90.0	17.2	0.99
14:10:00	845.0	3.06	90.5	17.3	0.99
14:20:00	855.0	3.10	90.5	17.3	0.99
14:30:00	865.0	3.13	90.0	17.2	L 91
14:40:00	875.0	3.17	90.5	17.3	0.49
14:50:00	\$85.0	3.21	91.0	17.4	1.0
15:00:00	895 0	3 24	91.0	17.4	1.00

Gruf Eqn. Na start. Na finish. Initial Steady y=0.214x-2.224 (IALET) (OUTLET) 4.87 4.73 17.36 17.21 33.2 32.5 (everage of 3 first set 91.5 90.8 (everage of 3 first set

m =	02
b	-22

						<u>هم</u> ۱۹۹۰	02 -22			
					<u> </u>			.		
ume in	TOut-Tin	System T/Td	Time Can	rection	Time		VTd	Reading	Conc No	C/Co
Eqv1.	min.	Td=276	C/Co	Tume(mun)	min	min	Td=276		mg/1.	
20.0	0.0	0.00	0.00	200	00:05:00	0.0	0.00	32.5	4.7	-0 01
20.0	00	0.00	0.05	22.0	01:45:00	100.0	0.36	32.5	47	-001
20.0	0.0	0.00	0.10	23.0	03:00:00	175.0	0.63	32.5	47	-0 01
20.0 23.6	5.0 11.4	0.02 0.04	0.15	23.5 24.0	04:00:00	235 0	0.85	33.0 33.0	4.8 4 8	000
24.2	20.8	0.06	0.25	24.5	06:00:00	295.0 355.0	1.29	33 5	4.9	0.01
25.1	29.9	0.11	0.30	25.0	07:00:00	415.0	1.50	34.0	5.1	0 01
25.3	39.7	0.14	0.35	25 5	09:00:00	\$35.0	1.94	33.5	49	0.01
25.4	49.6	0.18	0.40	26.0	10:00:00	595.0	2.16	33.5	4.9	0 01
26.0	59.0	0.21	0.45	26.0	11:00:00	655 0	2.37	34.0	5 1	0 01
26.1	68 9	0.25	0.50	26.5	12:00:00	715.0	2.59	33.5	49	0 01
26.2 26.0	78.8 89.0	0.29 0.32	0.55	26.5 27.0	13:00:00	775.0 135.0	2.81	33.5	49	001
26.4	98.6	0.36	0.65	27.5	14.00.00					
26.5	108 5	0.39	0.70	28.0						
26.5	118.5	0 43	0.75	28.5						
26.5	128.5	047	0.80	30.0						
26.5	138.5	0.50	0.85	32.0						
27.0	148 0	0.54	0.90	34.0						
27.0	161.5	0.59	0.95	37.5						
27.1 27.3	167.9 177 7	0.61 0.64	1 00	45.0	I					
27.6	187.4	0.68								
28.1	196.9	0.71								
27.9	207.1	0.75								
27.9	217.1	0.79								
27 9	227.1	0.82								
27.9	237.1	0.86								
27.9	247.1	0.90								
283 284	256.7 266.6	093 097								
29.1	275.9	1.00								
29.1	285.9	1.04								
29.4	295 6	1 07								
29 9	305.1	1.11								
31.3	313.7	1.14								
31.3	326 7	1.18								
31.6 31.6	337.9 345.4	1.22	1							
30.6	355.9	1.29								
31.3	363 7	1.32								
31.3	373 7	1 35								
31.6	383 4	1.39								
31.6	394.9	1.43								
31.6	403.4	1.46	1							
32.6	412.4	1.49								
32.6 32.6	422.4 432.4	1.53 1.57								
33.7	442.8	1.60								
34.0	452 0	1.64								
35.2	459.8	1.67								
33.3	471.7	1.71								
33.3	484.2	1.75	ł							
34.0	491 0	1.78								
34.6 34.0	500.4 514.0	1.81 1.86								
34.0	521.0	1.89								
34.6	530.4	1.92								
36.4	538.6	1.95								
36.4	548 6	1.99								
37.0	558.0	2 02	i							
39 0	568.0	2.06								
37,7	577.3	2.09	1							
40.3 37.7	584.7 597.3	2.12	1							
37.7	597.3 607.3	2.16								
35.8	622.2	2.25								
37.7	627.3	2.27								
37.7	637.3	2.31	ł							
	644.7	2.34								
40.3										
40.3 42 9 42.9	652.1 662.1	2 36 2 40								
1	44.1	680.9	2.47							
---	------	--------	------							
l	42 9	692.1	2.51							
	42.9	702.1	2.54							
	44.1	710.9	2.58							
	40.3	724 7	2.63							
	39.0	736.0	2.67							
	39.0	746.0	2.70							
i	39.0	756 0	2.74							
ļ	37.7	767.3	2.78							
l	40.3	776.7	2.81							
ł	40.3	784.7	2.84							
ŀ	42.9	792.1	2.87							
l	44.1	800.9	2.90							
ĺ	44.1	\$10.9	2.94							
l	42.9	822.1	2.96							
1	44.1	\$30.9	3.01							
1	45.0	840.0	3.04							
1	45.0	850.0	3.06							

SAMPLING NO:	6
LOCATION:	Reservoir 2
FLOW (ML/d):	141
SAMPLING DATE:	20-Apr-93
TESTING DATE:	22-Apr-93
STANDARD MADE:	09-Apr-93

STANDARDIZATION

mg/L Na 25 5.0 10.0 15.0 17.5 20.0	Initial Reading 17.5 32.5 58 5 80 5 89.5 100.0	Final Reading 17.5 32.5 58.0 80.0 89.0 98.0	Average 17.5 32.5 58.3 80.3 89.3 99.0			
Regression Statistics						
Multiple R	0.997					
R Square	0.995					
Adjusted R Square	0 993					
Standard Error	0.575					
Observations	6					
Analysis of Veriance						
	đ	Sum of Squares	Meen Square	F	Significance F	
Regression	1	244.509	244.509	738.661	0 000	•
Charles and the second s						
Residual	4	1.324	0.331			
Total	4 5	1.324 245.833	0.331			
	4 5 <i>Coefficients</i>		t Statistic	P-veiue	Lower 95%	Upper 95%
	-	245.833		<i>P-veiue</i>	Lower 95%	<i>Upper 95%</i> -0.290
Total	Coefficients	245.833 Standard Error	t Statistic			

TEST NO. 6 RESERVOIR NO.2 (141 ML/d)

3 92			m -	02					m=	0.2	
18.00	1		bm	-1.8					b =	-2.0	
14.08	}										
			Intel	· _ · · · · · · · · · · · · · · · · · ·					Outlet		
Tune		VTd	Reating	Conc. Na	C/Co	Time		bT4	Reading	Conc. Na	C/Co
min	min	T6-292		mu/L	Dete	min	min	Td-292		<u>mg1</u>	_Dea_
00.05.00	0.0	0.00	27.0 26.5	4.0 3.9	0.01 0.00	00:13:30	0.0 8.5	0.00	26.5	3.9	0.00
00 07 00	2.0	0.01	26.5	3.9	0.00	00:20:20	15.3	0.05	26.5	3.9	0 00
00.08.00	3.0	0.01	26.5	3.9	0.00	00:31:15	26.3	0.09	26.5	3.9	0.00
00.09.00	40	0.01	26 5	3.9	0.00	00:41:30	36.5	0.13	26.5	3.9	0.00
00.10.00	50	0 02 0.02	26.5 26.5	3.9 3.9	0.00 0.00	00:52:00 01:01:50	47.0 56.8	0.16 0.19	37.0 43.5	6.3 7.7	0.17
00 11:00	6.0 10.0	0.02	27.0	4.0	0.01	01:10:00	65.0	0.22	43.5	7.7	0.27
00 16 00	11.0	0.04	27.0	4.0	0.01	01:22:00	77.0	0.26	44.5	7.9	0.29
00 17:00	12.0	0.04	27.0	4.0	0.01	01:30.00	85.0	0.29	45.5	8.2	0.30
00:18:00	13.0	0.04	27.0	4.0	0.01	01:40:00	95.0	0.33	47.5	8.6	0.33
00:19:00	14.0 15.0	0.05	27.0 27.0	4.0 4.0	0.01 0.01	01:50:00 02:00:00	105.0 115.0	0.36 0.39	54.5 53.5	10 2 10.0	0.44
00.23 00	18.0	0.06	27.0	4.0	0.01	02.10:00	125.0	0.43	54.0	10.1	0.44
00 24 00	19.0	0.07	27.0	4.0	0.01	02:20:00	135.0	0.46	\$5.0	10.3	0.45
00 25 00	20.0	0.07	28.0	4.2	0.02	02:30:00	145.0	0.50	56.0	10.5	0.47
00:26:00	21.0	0.07	27.0	4.0	0.01	02:40:00	155.0	0.53	58 5	11.1	0.51
00.27:00 00.28:00	22.0	0.08	27.0 27.0	4.0 4.0	0.01 0.01	02:50:00 03:00:00	165.0 175.0	0.57 0.60	59 5 61.0	11.3 11.6	0.52 0.55
90 28 00 00 29 00	23.0 24.0	0.041 0.041	27.0 27.0	4.0 4.0	0.01	03:00:00	175.0	0.60	62.0	11.6	0.55
00.30 00	25 0	0.09	27.0	4.0	0.01	03:20:00	195.0	0.67	63.0	12 1	0.58
00 33 00	28 0	0 10	37.5	62	0.17	03:31:30	206.5	0.71	64 0	12.3	0 60
09.34.00	29 0	0.10	45 5	80	0.29	03:40:00	215.0	0.74	64.5	12.4	0.60
00.35.00	30.0	0.10	49.0	87	0.34	03:50:00	225.0	0.77	65 .0	12.5 12.7	0.61
00.40.00	35.0 40.0	0.12	760 260	14.5 16.7	0.75 0.91	04:00:00 04:10:00	235 0 245.0	0.90	66 0 66.0	12.7	0.63 0.63
00 50 00	45.0	0.15	91.0	17.8	0.98	04 20:00	255 0	0.87	67.5	13.1	0.65
00 55:45	50.8	0 17	92.5	18.1	1.01	04:30.00	265.0	0.91	67 5	13.1	0.65
01.00 00	55 0	0.19	93.5	19.3	1.02	04:40:00	275.0	0.94	68.5	13.3	0 67
01:05:00	60 0	0.21	90.5	17.6	0.97	04:50:00	285.0	0.98	69.0	13.4	0 67
01 12 30	67 5	0.23	915	17.9	0.99	05.00.00	295.0	1.01	71.0	13.9	071
01:25:00	80 0 89.0	0.27 0.30	92.0 94.5	18.0 18.5	1.00 1.04	05.26:00	321.0 325.0	1.10	73.0 73.0	14.3 14.3	0.74 0.74
02 02 20	117.3	0.40	93.5	18.3	1.02	05:40.00	335.0	1.15	73.5	14.4	0.75
02:55:00	170 0	0.58	92.5	18.1	1.01	05:50:00	345.0	1 18	74.5	14.6	0.76
03.55.00	230 0	0.79	91.0	17.8	0.98	06:00:00	355.0	1.22	74.5	14.6	0 76
64.55'00	290 0	0.99	92.0	18.0	1.00	06 13:00	368.0	1.26	75.5	14.9	0.78
03 55 00	350.0	1 20	930	18.2	1.01	06 20:00	375.0	1.28	76.0	15.0 15.1	0.79 0.79
06.55.00 07.53.00	410.0	1.40 1.60	92.0 90.5	18.0 17.6	1.00 0.97	06:30:30	385.5 395.0	1.37	76.5 76.5	15.1	0.79
08.55.00	530 0	1 82	960	18 8	1.06	06:50.00	405.0	1.39	76.5	15.1	0.79
09.55 00	590 0	2.02	85.5	16.6	0.90	07:00:00	415.0	1.42	77 0	15.2	0.80
10.53 00	649 0	2 22	102.0	20.1	1.15	07:10:00	425 0	1.46	7190	15.4	0.82
11 54 00 12 53 00	709 0 768 0	2 43 2 63	915 880	17.9 17 1	0.99	07:20:00	435 0 445.0	1.49	780 790	15.4 15.7	0.82 0.83
12 33 00 1	/08 0	203		1/1		07:40:00	453 0	1.56	780	15.4	0.82
						07:50:00	465.0	1.39	790	15.7	0.83
						08.00:00	475.0	1.63	78.5	15.5	0.83
						08:13:00	488 0	1.67	80 5	16 0	086
						C48:20:00 C48:30:00	495 0 505 0	1.70	81.5 81.0	16 2 16 1	0.87 0.87
						08:40:00	515.0	1.76	79.0	15.7	0.83
						08:50:00	525.0	1.80	79.5	15.8	0.84
						09:00:00	\$35.0	1.83	81.0	16.1	0.87
					1	09:10:00	545.0	187	84.0	16.8	0.91
						09:20:00	555.0 565.0	1.90 1.93	84.5 84.0	16 9 16 8	0.92
						09 40 00	575.0	1.93	85.5	17.1	0.94
						09:50:00	585.0	2.00	86.0	17.2	0.94
						10:00:00	595.0	2.04	85.0	17.0	0.93
						10.15:00	607.0	2.08	96 0	17.2	0.94
					í	10:20:00	615.0	2.11	87.0	17.4 17.6	0.96
						10:30:00	625 0 615 0	2.14 2.17	87.5 86 0	176	0.97 0.94
						10:50:00	645.0	2.21	850	17.0	0.93
						10:58:00	653.0	2.24	88.0	17.7	0.98
						11:10:00	665.0	2.28	89.5	18.0	1.00
						11:20:00	675 0	2.31	88.5	17.8	0 98
						11.32.00	687 0	2.35	88.0	17.7	0.98
						11:40:00	695.0	2.38	890	17.9	0.99
						11:50:00 12:03:00	705.0 718 0	2.41 2.46	90.0 88.5	18.1 17.8	1.01 0.98
						12.10:00	725 0	2.48	900	18 1	1.(1 -
						•					

eBeckimgl = 392

NaBack(mg/L)= NaFinal(mg/L)= NaTracar(mg/L)=

12 20 00	735 0	2.52	89 0	179	0 94
12.30 00	745 0	2.55	87 5	17 6	0 97
12 40 00	755.0	2.59	67.5	176	0 97
12 50 00	765 0	2.62	88.0	177	0 91
13.00.00	775 0	2 65	89 5	180	1 00
13:13:00	788 0	2.70	59.0	17.9	0 94
13:20:00	795.0	2 72	89.5	18 0	1 00
13.30.00	805.0	2.76	89 5	18 0	1 00
13:40.00	815 0	2.79	89 5	18 0	1 00
13:50:00	825.0	2.83	89.5	18.0	1.00
14:00:00	\$35.0	2.86	89.5	18 0	1.00
14:10:00	845.0	2.89	39 5	18 0	1.00
16:16:00	851.0	2 91	89 5	180	1 00

Gnt Eqn:

Na start: Na finish Initial: Steady:

92.1

9=0.215x-1.813 (INLET) (OUTLET) 3.92 3.88 7.6 a (everge of 3 fort samples) (everge of 3 tot samples) (essumed Staedy intet =before noises started at 08 55)) 89.5

н-Б-

Time In Eqvi 25.0 29.2 29.2 29.2 29.3 31.4 31.5 32.6 33.0 33.1 33.5 33.6 33.5 34.0	TOU-TIA mun 0.0 0.0 0.0 1.3 11.5 18 9 27.6 55.2 73.6 83.7 93.6 103.5 113.3 122.9 132.2 142.5 155.9 162.2 173.5 185.9 162.5 191.8 201.5 221.0	System T/1d Td=292 0.00 0.16 0.16 0.15 0.35 0.35 0.35 0.35 0.45 0.55 0.55 0.45 0.55	Tone Carr C/Co 0.00 0.05 0.10 0.25 0.30 0.35 0.40 0.45 0.55 0.60 0.65 0.70 0.75 0.80 0.75 0.80 0.75 0.80 0.95 0.90 0.95 1.00	iction Trme(min) 25 0 26 0 27 0 28 0 29 5 30 0 29 5 31 0 31.5 32 0 31.3 32 0 33.5 33.0 34 5 35 0 37 0 48 0 48 0	Tone min 00 05 00 0144 00 72.05.00 03.05.00 04.08.00 05.17.00 05.07.05 06.04.00 07.15.00 05.07.00 05.05.00 10.05.00 11.02.30 12.00.00 13.03.00	Intin 0.0 99.0 120.0 120.0 120.0 120.0 1312.0 3112.0 3112.0 359.0 430.0 430.0 637.5 715.0 778.0	VTd Td=292 0.00 0.34 0.62 0.83 1.07 1.23 1.47 1.65 1.83 2.05 2.25 2.45 2.66	Backgroup Reading 25.5 25.0 24.5 25.0 25.0 25.0 25.0 25.0 25.5 25.5 26.5 26.5 26.5 27.0 27.0 27.0	d Conc. Nis mg/L 3.7 3.6 3.5 3.6 3.7 3.7 3.7 3.7 3.6 3.6 3.7 3.7 3.9 3.9 3.9 3.9 4.0 4.0 4.0 4.0	C/Co 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Eqvt 25.0 25.0 25.0 25.0 25.0 29.2 29.2 29.2 29.2 29.2 29.2 29.5 29.8 31.4 31.7 32.1 33.7 32.5 32.6 33.0 33.1 33.2 33.5 33.5 33.6	wan 0.0 0.0 0.0 0.0 11.5 18.9 27.6 55.5 65.2 73.6 93.6 103.5 113.3 122.9 132.8 142.5 155.9 162.2 170.5 181.9 191.8 201.5	1/7d 7d-392 6.00 0.00 0.00 0.04 0.04 0.12 0.12 0.12 0.12 0.25 0.29 0.35 0.39 0.45 0.45 0.45 0.45 0.45 0.56 0.59 0.45 0.56 0.59 0.45 0.56 0.59 0.45 0.56 0.59 0.45 0.56 0.59 0.45 0.56 0.59 0.45 0.56 0.55 0.55 0.55 0.55 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.55 0.55 0.55 0.55 0.55 0.56 0	C/Co 0.00 0.05 0.10 0.25 0.20 0.25 0.30 0.35 0.40 0.45 0.55 0.60 0.65 0.65 0.65 0.80 0.85 0.80 0.85	Trans(man) 25 0 26 0 27 0 28 0 29 0 29 0 29 0 29 0 29 0 29 0 31 0 31 0 31 0 31 0 31 0 32 0 32 0 32 0 32 0 32 5 33 0 34 0 34 5 35 0 37 0 34 0 37 0 34 0 37 0 34 0 37 0 38 0 43 0	min 00 05 00 01 44 00 02 05 00 03 05 00 04 08 00 05 17 00 06 04 00 07 15 00 07 15 00 08 06 00 09 00 00 10 05 00 11 02 30 12 00 00	0.0 99.0 120.0 180.0 243.0 311.0 359.0 430.0 481.0 535.0 600.0 657.5 715.0		Reading 25.5 25.0 24.5 25.0 25.0 25.0 25.5 25.5 26.0 26.5 26.5 26.5 27.0 27.0	Conc. Ns mg/L 3.7 3.6 3.6 3.6 3.6 3.6 3.6 3.7 3.1 3.9 3.9 3.9 3.9 4.0 4.0	
Eqvt 25.0 25.0 25.0 25.0 25.0 29.2 29.2 29.2 29.2 29.2 29.2 29.5 29.8 31.4 31.7 32.1 31.7 32.1 31.7 32.1 32.5 32.6 33.0 33.1 33.2 33.5 33.5 33.6	wan 0.0 0.0 0.0 0.0 11.5 18.9 27.6 55.5 65.2 73.6 93.6 103.5 113.3 122.9 132.8 142.5 155.9 162.2 170.5 181.9 191.8 201.5	T6-292 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	C/Co 0.00 0.05 0.10 0.25 0.20 0.25 0.30 0.35 0.40 0.45 0.55 0.60 0.65 0.65 0.65 0.80 0.85 0.80 0.85	Trans(man) 25 0 26 0 27 0 28 0 29 0 29 0 29 0 29 0 29 0 29 0 31 0 31 0 31 0 31 0 31 0 32 0 32 0 32 0 32 0 32 5 33 0 34 0 34 5 35 0 37 0 34 0 37 0 34 0 37 0 34 0 37 0 38 0 43 0	min 00 05 00 01 44 00 02 05 00 03 05 00 04 08 00 05 17 00 06 04 00 07 15 00 07 15 00 08 06 00 09 00 00 10 05 00 11 02 30 12 00 00	0.0 99.0 120.0 180.0 243.0 311.0 359.0 430.0 481.0 535.0 600.0 657.5 715.0	Td=292 0.00 0.34 0.41 0.62 0.83 1.07 1.23 1.47 1.65 1.83 2.05 2.25 2.45	25.5 25.0 24.5 25.0 25.0 25.5 25.5 26.0 26.5 26.5 26.5 27.0 27.0	<u>mg/L</u> 3.7 3.6 3.5 3.6 3.6 3.7 3.7 3.7 3.8 3.9 3.9 4.0 4.0	
25.0 25.0 25.0 25.0 25.0 28.2 29.2 29.2 29.2 29.4 29.5 31.4 31.5 31.4 31.5 31.7 32.1 32.2 32.5 32.6 33.0 33.1 33.2 33.5 33.5 33.6	0.0 0.0 0.0 1.3 11.5 18.9 27.6 35.8 47.6 55.3 47.6 55.3 47.6 55.3 47.6 103.5 113.3 122.9 132.8 142.5 155.9 162.2 173.5 155.9 162.2 173.8 155.9 162.2 173.9 162.2 173.8 162.2 173.8 162.2 173.8 162.2 173.8 162.2 173.8 162.2 173.8 175.9 162.2 173.8 162.2 173.8 175.9 162.2 173.8 175.9 162.2 173.8 175.9 162.2 173.8 175.9 1	0.00 0.00 0.00 0.00 0.04 0.06 0.06 0.06 0.06 0.06 0.06 0.09 0.25 0.25 0.35 0.35 0.35 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.59 0.59 0.56 0.59 0.66 0.59 0.66 0.59 0.66 0.59 0.66 0.59 0.55 0	0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.65 0.60 0.65 0.70 0.75 0.80 0.85 0.95	250 260 270 280 280 295 295 295 300 315 320 315 320 325 330 340 345 350 370 340 345 350 370 340 345 350 340 345 350 340 345 350 340 345 350 350 350 350 350 350 350 350 350 35	00.05.00 01.44.00 02.05.00 03.05.00 04.08.00 05.17.00 06.04.00 07.15.00 08.06.00 09.00.00 10.05.00 11.02.30 12.00.00	0.0 99.0 120.0 180.0 243.0 311.0 359.0 430.0 481.0 535.0 600.0 657.5 715.0	0.00 0.34 0.41 0.62 0.83 1.07 1.23 1.47 1.65 1.83 2.05 2.25 2.45	25.0 24.5 25.0 25.0 25.5 25.5 26.0 26.5 26.5 26.5 27.0 27.0	3.7 3.6 3.5 3.6 3.6 3.6 3.7 3.7 3.7 3.8 3.9 3.9 4.0 4.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
25 0 25 0 25 0 25 0 29 2 29 2 29 2 29 2 29 2 29 3 31.3 31.4 31.3 31.4 31.5 31.7 32.2 32.5 32.6 33.0 33.1 33.2 33.5 34.0	0.0 0.0 1.3 11.5 27.6 35.8 47.6 55.5 65.2 55.5 65.2 73.6 83.7 93.6 103.5 113.3 122.9 132.8 142.5 155.9 162.2 173.5 162.2 173.5 163.9 175.9 163.9 175.9 163.9 175.9	0.00 0.00 0.04 0.06 0.12 0.12 0.22 0.22 0.22 0.32 0.32 0.32 0.32 0.3	0.05 0.10 0.25 0.20 0.25 0.30 0.40 0.45 0.50 0.60 0.65 0.75 0.80 0.75 0.80 0.85 0.85	260 270 280 295 295 295 295 295 300 310 310 310 313 320 323 325 320 325 340 345 350 340 345 370 380 400 430	01:44:00 02:05:00 03:05:00 04:08:00 05:17:00 06:04:00 07:15:00 08:06:00 09:00:00 10:05:00 11:02:30 12:00:00	99.0 120.0 180.0 243.0 311.0 359.0 430.0 481.0 535.0 600.0 657.5 715.0	0.34 0.41 0.62 0.83 1.07 1.23 1.47 1.65 1.83 2.05 2.25 2.45	25.0 24.5 25.0 25.0 25.5 25.5 26.0 26.5 26.5 26.5 27.0 27.0	3.6 3.5 3.6 3.6 3.7 3.7 3.7 3.8 3.9 3.9 4.0 4.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
25.0 25.0 25.0 29.2 29.2 29.4 29.4 29.4 31.4 31.3 31.5 31.7 32.2 32.5 32.6 33.0 33.1 33.2 33.5 33.5 34.0	0 0 1.3 11.5 18 8 27.6 35.8 47.6 55.5 65 2 73.6 83.7 93.6 10.5 113.3 1122 9 132.8 142.2 155.9 162.2 173.5 162.2 173.9 162.2 173.9 162.2 173.9 162.2 173.9 162.2 173.9 16	0.00 0.00 0.04 0.06 0.02 0.12 0.16 0.12 0.25 0.25 0.29 0.32 0.35 0.39 0.42 0.45 0.49 0.56 0.59 0.56 0.59 0.62 0.66	0 10 0 15 0 25 0 30 0 40 0 45 0 50 0 60 0 65 0 70 0 85 0 90 0 85 0 995	27.0 28.0 29.0 29.5 30.0 31.0 31.5 32.0 32.0 33.0 34.0 34.0 35.0 37.0 36.0 40.0 43.0	02:05:00 03:05:00 04:08:00 05:17:00 06:04:00 07:15:00 08:06:00 09:00:00 10:05:00 11:02:30 12:00:00	120.0 180.0 243.0 311.0 359.0 430.0 481.0 535.0 600.0 657.5 715.0	0.41 0.62 0.83 1.07 1.23 1.47 1.65 1.83 2.05 2.25 2.45	24.5 25.0 25.0 25.5 25.5 26.0 26.5 26.5 26.5 27.0 27.0	3.5 3.6 3.6 3.7 3.7 3.8 3.9 3.9 4.0 4.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
25.0 25.0 29.2 29.2 29.4 29.5 29.4 31.4 31.3 31.4 31.5 31.7 32.1 32.2 32.5 32.6 33.0 33.1 33.2 33.5 33.5 34.0	1.3 11.5 18 8 27.6 35.8 47.6 55.5 65 2 73.6 83.7 93.6 103.5 113.3 93.6 103.5 1122.9 132.8 142.5 155.9 162.2 173.5 151.9 162.2 173.5	0.00 0.04 0.05 0.12 0.12 0.12 0.12 0.22 0.29 0.32 0.35 0.39 0.42 0.45 0.45 0.45 0.59 0.53 0.56 0.59 0.62 0.66	0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.55 0.55 0.60 0.75 0.70 0.75 0.80 0.85 0.90 0.95	28.0 28.5 29.0 31.0 31.5 32.0 32.5 33.0 34.0 35.0 37.0 38.0 37.0 38.0 37.0 38.0 37.0 38.0 37.0 38.0 37.0 38.0 37.0 38.0 37.0 38.0 37.0 38.0 37.0 38.0 37.0 38.0 37.0 38.0 37.0 37.0 37.0 37.0 37.0 37.0 37.0 37	03:05:00 04:08:00 05:17:00 06:04:00 07:15:00 08:06:00 09:00:00 10:05:00 11:02:30 12:00:00	180.0 243.0 311.0 359.0 430.0 481.0 535.0 600.0 657.5 715.0	0.62 0.83 1.07 1.23 1.47 1.65 1.83 2.05 2.25 2.45	25.0 25.0 25.5 25.5 26.0 26.5 26.5 26.5 27.0 27.0	36 3.6 3.7 3.7 3.8 3.9 3.9 4.0 4.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
25 0 28:2 29:2 29:2 29:4 29:5 29:8 31:4 31:3 31:4 31:5 31:7 32:1 32:1 32:1 32:6 32:8 33:0 33:1 33:5 33:5 34:0	11.5 18 0 27.6 35.8 47.6 55.5 65.2 73.6 83.7 93.6 103.5 113.3 122.9 162.2 173.5 162.2 173.5 162.2 173.9 162.2 174.9 191.8 201.5	0.04 0.06 0.12 0.16 0.12 0.25 0.29 0.35 0.39 0.42 0.42 0.43 0.49 0.53 0.56 0.59 0.56 0.59	0.20 0.25 0.30 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95	28.5 29.0 29.5 30.0 31.5 32.0 32.5 33.0 34.0 34.0 34.0 35.0 37.0 38.0 40.0 43.0	04:08:00 05:17:00 06:04:00 07:15:00 08:06:00 09:00:00 10:05:00 11:02:30 12:00:00	243.0 311.0 359.0 430.0 481.0 535.0 600.0 657.5 715.0	0.83 1.07 1.23 1.47 1.65 1.83 2.05 2.25 2.45	25.0 25.5 25.5 26.0 26.5 26.5 26.5 27.0 27.0	3.6 3.6 3.7 3.7 3.8 3.9 3.9 4.0 4.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
28.2 29.2 29.4 29.5 29.4 31.4 31.3 31.4 31.5 31.7 32.1 32.5 32.6 32.0 33.1 33.2 33.5 33.5 33.6	188 276 358 47.6 55.5 65 2 73 6 83.7 93 6 103.5 113.3 93 6 103.5 1122 9 132 8 142 5 155 9 162 2 173.5 151.9 162 2 173.5	0.06 0.09 0.12 0.16 0.19 0.25 0.29 0.32 0.39 0.39 0.42 0.45 0.49 0.53 0.56 0.59 0.52 0.66	0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95	29.0 29.5 30.0 31.5 32.0 32.5 33.0 34.0 34.5 35.0 37.0 38.0 40.0 43.0	05:17:00 06:04:00 07:15:00 08:06:00 09:00:00 10:05:00 11:02:30 12:00:00	311.0 359.0 430.0 481.0 535.0 600.0 657.5 715.0	1.07 1.23 1.47 1.65 1.83 2.05 2.25 2.45	25.0 25.5 26.0 26.5 26.5 26.5 27.0 27.0	3.7 3.7 3.9 3.9 4.0 4.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0
29.2 29.2 29.4 29.5 29.8 31.4 31.3 31.4 31.7 32.1 32.2 32.6 32.6 32.8 33.0 33.1 33.2 33.5 33.5 33.5	27.6 358 47.6 55.5 65.2 73.6 83.7 93.6 103.5 113.3 122.9 132.8 142.5 155.9 162.2 173.5 181.9 191.8 201.5 211.5	0.09 0.12 0.16 0.19 0.22 0.25 0.29 0.32 0.35 0.39 0.42 0.45 0.49 0.53 0.56 0.56 0.66	0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.80 0.85 0.90	29.5 30 0 31.0 32.5 33.0 34.0 34.5 35.0 37.0 38.0 40.0 43.0	06:04:00 07:15:00 08:06:00 09:00:00 10:05:00 11:02:30 12:00:00	359.0 430.0 481.0 535.0 600.0 657.5 715.0	1.23 1.47 1.65 1.83 2.05 2.25 2.45	25.5 25.5 26.0 26.5 26.5 27.0 27.0	3.7 3.7 3.9 3.9 4.0 4.0	0.0 0.0 0.0 0.0 0.0 0.0
29.2 29.4 29.5 31.4 31.3 31.4 31.5 31.7 32.1 32.5 32.5 32.6 32.0 33.0 33.1 33.2 33.5 33.5 34.0	35.8 47.6 55.5 65.2 73.6 83.7 93.6 103.3 113.3 1122.9 132.8 142.5 155.9 162.2 175.9 162.2 171.5	0.12 0.16 0.19 0.22 0.25 0.29 0.32 0.35 0.49 0.45 0.49 0.53 0.59 0.62 0.66	0.35 0.40 0.45 0.50 0.65 0.65 0.65 0.70 0.75 0.80 0.85 0.85 0.95	30 0 31.0 32.0 32.5 33.0 34.0 34.5 35.0 37.0 38.0 40.0 43.0	07:15:00 08:06:00 09:00:00 10:05:00 11:02:30 12:00:00	430.0 481.0 535.0 600.0 657.5 715.0	1.65 1.83 2.05 2.25 2.45	26.0 26.5 26.5 27.0 27.0	3.8 3.9 3.9 4.0 4.0	0.0 0.0 0.0 0.0 0.0
29.4 29.5 29.5 31.4 31.3 31.4 31.5 31.7 32.1 32.2 32.5 32.6 32.8 33.0 33.1 33.2 33.5 33.5 33.5	47.6 55.5 65.2 73.6 83.7 93.6 103.5 113.3 122.9 132.8 142.5 155.9 162.2 173.5 181.9 191.8 201.5 211.5	0.16 0.19 0.22 0.25 0.32 0.35 0.32 0.42 0.45 0.49 0.53 0.59 0.62 0.66	0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95	31.0 31.5 32.0 32.5 33.0 34.0 34.5 35.0 37.0 38.0 40.0 43.0	09:00:00 10:05:00 11:02:30 12:00:00	535.0 600.0 657.5 715.0	1.83 2.05 2.25 2.45	26.5 26.5 27.0 27.0	3.9 3 9 4.0 4.0	0.0 0.0 0.0 0.0
29.5 29.8 31.4 31.3 31.4 31.5 31.7 32.1 32.2 32.5 32.6 32.0 33.0 33.1 33.2 33.5 33.5 33.5	55.5 65.2 73.6 83.7 93.6 103.5 113.3 122.9 132.8 142.5 155.9 162.2 173.5 161.9 162.2 173.5 161.9 191.8 201.5	0 19 0.22 0 25 0.32 0.35 0.39 0.42 0.45 0.49 0.53 0.56 0.59 0.62 0.66	0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95	32.0 32.5 33.0 34.0 34.5 35.0 37.0 38.0 40.0 43.0	10:05:00 11:02:30 12:00:00	600.0 657.5 715.0	2.05 2.25 2.45	26.5 27.0 27.0	39 4.0 4.0	0.0 0.0 0.0
31.4 31.3 31.4 31.5 32.1 32.2 32.5 32.6 32.0 33.0 33.1 33.2 33.5 33.5 34.0	73 6 83 7 93 6 103 5 113 3 122 9 132 8 142 5 155 9 162 2 173 5 181 9 191 8 201 5 211 5	0 25 0.29 0.32 0.35 0.39 0.42 0.45 0.49 0.53 0.59 0.62 0.66	0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95	32.5 33.0 34.0 34.5 35.0 37.0 38.0 40.0 43.0	11:02:30 12:00:00	657.5 715.0	2.25 2.45	27.0 27.0	4.0 4.0	0.0 0.0
31.3 31.4 31.5 31.7 32.1 32.2 32.5 32.6 32.0 33.0 33.1 33.2 33.5 33.5 34.0	83.7 93.6 103.5 113.3 122.9 132.8 142.5 155.9 162.2 173.5 181.9 191.8 201.5 211.5	0.29 0.32 0.35 0.39 0.42 0.45 0.49 0.53 0.56 0.59 0.62 0.66	0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95	33.0 34.0 34.5 35.0 37.0 38.0 40.0 43.0	12:00:00	715.0	2.45	27.0	4.0	0.0
31.4 31.5 31.7 32.1 32.2 32.5 32.6 32.0 33.0 33.1 33.2 33.5 33.5 33.5 34.0	93.6 103.5 113.3 122.9 132.8 142.5 155.9 162.2 173.5 181.9 191.8 201.5 211.5	0.32 0.35 0.39 0.42 0.45 0.49 0.53 0.56 0.59 0.62 0.66	0.65 0.70 0.75 0.80 0.85 0.90 0.95	34.0 34.5 35.0 37.0 38.0 40.0 43.0						
31.5 31.7 32.1 32.2 32.5 32.6 32.0 33.0 33.1 33.2 33.5 33.5 33.5 33.5	103.5 113.3 122.9 132.8 142.5 155.9 162.2 173.5 141.9 191.8 201.5 211.5	0.35 0.39 0.42 0.45 0.49 0.53 0.56 0.59 0.62 0.66	0.70 0.75 0.80 0.85 0.90 0.95	34.5 35.0 37.0 38.0 40.0 43.0	13:03:00	778.0	2.66	270	<u> 4.0 </u>	0
31.7 32.1 32.2 32.5 32.6 32.0 33.0 33.1 33.2 33.5 33.5 33.5 33.5	113.3 122.9 132.8 142.5 155.9 162.2 173.5 181.9 191.8 201.5 211.5	0.39 0.42 0.45 0.49 0.53 0.56 0.59 0.62 0.66	0.75 0.80 0.85 0.90 0.95	35.0 37.0 38.0 40.0 43.0						
32.1 32.2 32.5 32.6 32.0 33.0 33.1 33.2 33.5 33.5 33.5 34.0	122.9 132.8 142.5 155.9 162.2 173.5 181.9 191.8 201.5 211.5	0.42 0.45 0.49 0.53 0.56 0.59 0.62 0.66	0.80 0.85 0.90 0.95	37.0 38.0 40.0 43.0						
32.2 32.5 32.6 32.0 33.0 33.1 33.2 33.5 33.5 33.5 34.0	132 8 142 5 155.9 162 2 173.5 181.9 191.8 201.5 211.5	0.45 0.49 0.53 0.56 0.59 0.62 0.66	0.85 0.90 0.95	38.0 40.0 43.0						
32.5 32.6 32.0 33.0 33.1 33.2 33.5 33.5 33.5 34.0	142 5 155.9 162 2 173.5 181.9 191.8 201.5 211.5	0.49 0.53 0.56 0.59 0.62 0.66	0.90 0.95	40.0 43.0						
32.6 32.0 33.0 33.1 33.2 33.5 33.5 34.0	155.9 162.2 173.5 181.9 191.8 201.5 211.5	0.53 0.56 0.59 0.62 0.66	0.95	43.0						
32.8 33.0 33.1 33.2 33.5 33.5 33.5 34.0	162 2 173.5 181.9 191.8 201.5 211.5	0.56 0.59 0.62 0.66			•					
33.0 33 1 33 2 33.5 33.5 34.0	173.5 181.9 191.8 201.5 211.5	0.59 0.62 0.66	100	48.0						
33 1 33 2 33.5 33.5 34.0	181.9 191.8 201.5 211.5	0.62 0.66			I					
33 2 33.5 33.5 34.0	191.8 201.5 211.5	0.66								
33.5 33.5 34.0	201.5 211.5									
33.5 34.0	211.5	0.69								
34.0		0.72								
		0.76								
	231.0	0.79								
34 2	240 8	0.82								
34 2	250.8	0.86								
34 6	260 4	0.89								
34.9	236 1	0.98								
34.9	290.1	0.99								
35 0	300.0	1.03								
35 5	309.5	1.06								
35.5	319.5	1.09								
36.1	331.9	1.14								
364 367	338 6 348.8	L 16 1 19								
36.7	358 3	1.23								
36.7	368.3	1.26								
370	378.0	1.29								
37.3	387 7	1.33								
37.3	397.7	1.36								
37 7	407.3	1.39								
37.3	417.7	1.43	}							
37.7	427.3	1.46								
37 5	437.5	1.50								
38 3	449 7	1.54	l							
38.9	456 1	1.56								
110	466.4	1.60								
37.7	477.3	1.63								
37.8	487 2 496 4	1 67 1.70	[
386 408	496.4 504.2	1 73								
41 2	513.8	1.76	ł							
40.8	524 2	1.90	ł							
42.2	532.8	1.82								
42.7	542.3	1.86								
41.7	553.3	1.89								
42.7	564.3	1.93								
44.0	571.0	1.96								
44.8	580.2	1.99	1							
42 7	592.3	2.03								
41.7	603.3	2.07								
45 6	607 4	2.08	I							
48.0	6170	2.11								
46 4	628.6	2.15	l							
45.6	641.4	2.20								
47.2	647 8	2 22	l							
480	657 0	2.25								
464 480	6716 6770	2.30 2.32								

47.2	687.8	2.36
44.8	700.2	2.40
44.8	710.2	2.43
45.6	719.4	2.46
48.0	727.0	2.49
47.2	740.8	2.54
480	747.0	2.56
48.0	757.0	2.59
48.0	767.0	2.63
480	777.0	2.66
48.0	787.0	2.70
48.0	797.0	2.73
48.0	803.0	2.75

SAMPLING NO:	7
LOCATION	Reservoir 3
FLOW (ML/d)	179
SAMPLING DATE	28-Apr-93
TESTING DATE	02-May-93
STANDARD MADE	09-Apr-93

STANDARDIZATION

mg/L Na 2 5 5 0 10 0 15 0 17 5 20 0 Regression Statistics	Initial Reading 18:5 33:5 59:0 81:0 91:0 100:0	Final Reading 18.5 34.0 59.5 81.5 91.5 101.0	Average 18 5 33.8 59.3 81.3 91.3 100.5			
Multiple R R Square Adjusted R Square Standard Error Observations	0.998 0.995 0.994 0.543 6					
Analysis of Vanance		Sum of Squeres	Meen Squere	F	Significance F	
Regression Residual Total	1 4 5	244.652 1 181 245 833	244 652 0.295	828.319	0.000	
	Coefficients	Standard Error	1 Statutic	P-veka	Lower 85%	Upper 95%
Intercept x1	-1. 99 9 0.213	0 524 0 007	-3.814 28.781	0.012 0.000	-3.454 0.193	-0.544 0.234
General Equation	y=0.213x-1.999					

TEST NO. 7 RESERVOIR NO. 3 (179 ML/d)

NaBack(mg/L)= 4.39 NaFinal(mg/L)= 16.45 NaTracer(mg/L)= 12.07 m= 0.2 b= -2.0 ∎- 02 b- -2.1

Time		VTd	Iniet Reading	Conc. Na	C/Co	Time		UTd	Outlet Repting	Conc No	C/Co
mun	min	Td-283		mg/L	Deta	min	min	Td-283		mg/L	Inda
05:00	0.0	0.00	30.0	4.4	0.00	00:10:00	5.0	0.02	29.5	44	0 00
0:06:00	1.0	0.00	300	4.4	0.00	00:20:00	15.0	0.05	29.5	44	0 00
0:07:00	2.0	0.01	30.0	4.4	0 00	00:30:00	25.0	0.09	29.5	4.4	0.00
0:08:00	3.0	0.01	30.0	4.4	0.00	00:40:00	35.0	0.12	35 0	56	0 10
0:09:00	4.0	0.01	29.5	4.3	-0.01	00:50.00	45 0 55 0	0.16	43.0	74 7.6	025
0:10:00	\$.0	0.02	31.0 29.5	4.6 4.3	0.02 -0.01	01:00:00	55.0	0.19	43.5	7.5	0.26
0:11:00 0:12:00	6.0 7.0	0.02	29.5	4.3	-0.01	01:20:00	75.0	0.27	470	8.2	0.32
0:13:00	1.0	0.03	29.0	4.2	-0.02	01:30:00	15.0	0.30	49.0	87	0 36
0:14:00	9.0	0.03	29.0	4.2	-0.02	01:40:00	95.0	0.34	53 0		0 43
0:15:00	10.0	0.04	30.0	4.4	0.00	01:50:00	105.0	0.37	53 0	9.6	0 43
0:16:00	11.0	0.04	29.0	4.2	-0 02	02:00:00	115.0	0.41	55 0	10 0	0 47
0:17:00	12.0	0.04	29.0	4.2	-0.02	02:11:30	126.5	0 45	\$7.0	10.4	0 50
0:18:00	13.0	0.05	28.5	4.1	-0.03	02:30:00	135.0	0.48	58.5	10.8	0 53
0:19:00	14 0	0.05	29.0	4.2	-0.02	02:30:00	145.0	0.51	58.5 58.0	10 8 10 7	0 53
0:20:00	15.0	0.05	29.0 29.0	4.2	-0.02 -0.02	02:40:00	155.0	0.55	600	11 1	0.52
0:21:00	16.0	0.06	29.5	4.3	-0.01	03 00 00	175 0	0.62	610	113	0 57
0.23.00	18.0	0.06	29.0	4.2	-0.02	03.10.00	185 0	0.65	620	11.5	0 59
0:24:00	19.0	0.07	29.0	4.2	-0.02	03:20:00	195.0	0 69	63 0	118	0 61
0:25:00	20.0	0.07	29.0	4.2	-0 02	03.30 00	205 0	0 72	64.5	12.1	0.64
0:26:00	21.0	0 07	29.5	4.3	-0.01	03:40.00	215 0	0.76	66 5	12.5	0.61
0:27:00	22.0	0.08	33.0	50	0.05	03.50 00	225 0	0 🗰	67.5	12 8	0 61
0:28.00	23.0	0.08	38.5	6.2	0.15	04:00:00	235.0	0.83	67 0	126	0 61
0:29.00	24.0	0 05	44.5	7.5	0.26	04:10:00	245 0	0.87	63 0	129	0 70
0:30.00	25.0	0.09	51.0	8.9	0.37	04.21:00	256 0	0 90	69 0	131	07
0:31:00	26.0	0 09	60 0	10.8	0.53	04:35:00	270.0 275.0	0.95	69.3 70.0	13 2	07
0.32:00	27.0	0.10	65 0 71.0	11.8	0.62 0.72	04:40:00 04:50:00	2/5.0	1.01	720	13.7	07
0.33.00	280 290	010	75.0	13.1	0.72	05 00 00	2950	1.01	710	13.5	07
0:34:00 0:35.00	300	011	785	14.7	0.86	05:10:00	305.0	1.08	710	13 5	07
0.40.00	35.0	0 12	84.0	15.9	0.95	05.20.00	315 0	1.11	71.0	13.5	0 7
0 46:20	41.3	0.15	84.5	16 0	0.96	05 30 00	325.0	1.15	71 5	13.6	07
0.50.00	450	0.16	85.5	16 2	0 98	05 40 00	335 0	1.18	72 5	13.9	07
0:55 00	\$0.0	0 18	870	16 5	1.01	05:50:00	345 0	1.22	74 5	14 3	0 8
1:03:00	580	0.20	87.0	16 5	1.01	06 00 00	355 0	1.25	730	14 0	0 7
1:15:00	70.0	0 25	\$7.0	16 5	1.01	06:11:30	366.5	1.30	72 5	139	07
1 25 00	\$0.0	0.28	88 5	16 9	1.03	06:20:00	375 0	1 33	73 0	14 0	07
1:35.00	90.0	0.32	88.5	16.9	1.03	06.30 00	34150	1.36	76.5	14 7	08
1.55:00	110.0	0.39	88.5	16 9	1.03	06.40.00	395 0 405 0	1 40 1 43	770 780	14 8 15 L	01
2.55:00	1700 2300	0.60	88.5 89.0	16 9 17.0	1 03	07:00:00	415.0	1.47	780	151	0.0
3:55:00 4:55:00	290.0	1.02	890	17.0	1.04	07.11:00	426 0	1.51	790	153	6.9
5.55 (+-	350.0	1.24	870	16 5	1 01	07 22 00	437.0	1.54	780	151	0 8
6:55 (***	410 0	1.45	850	16.1	0 97	07.30.00	4450	1 57	78 5	15 2	0 8
7 53:00	468 0	1.65	89 0	17.0	1.04	07.40 00	455.0	1 61	77 5	150	0 8
8:55:00	530 0	1.87	93 .0	16 7	1.02	07:50:00	465 0	1.64	78 0	151	0 🕷
9.55:00	590 0	2.08	92.5	17 7	1.10	GE 00 00	475.0	1 68	80.0	15.5	09
0 55 00	650 0	2.30	87 5	16 6	1.01	06 10 00	485.0	171	790	15 3	0 9
1:55:00	710.0	2.51	86 0	16 3	0.99	08:20.00	495 0	1 75	79 0	153	09
2:55.00	770.0	2.72	88 5	16.9	1 03	08 30 00	505 0	1.78	79 5	15.4	09
00 00	\$35.0	2.95	85.5	16 2	0.94	08 40.00	\$15.0	1 82	795 1120	154	09 09
						08.50:00	525 0 535 0	1.80	82.5	16 1	0,0
						09 10 00	5450	1.93	82.5	16 1	09
						09 20 00	555 0	1 96	82 5	16 1	0 9
						09 30.00	565 0	2 00	83.0	16 2	0 9
						09 40.00	575 0	2 03	83.0	16 2	0 9
						09:50:00	585.0	2.07	83.5	16 3	09
						10 00 00	\$95.0	2 10	85.0	16 6	10
						10:10:00	605.0	2.14	84.0	16 4	09
						10:20:00	6150	2 17	84 0	16 4	09
						10 30 00	625 0	2 21	84 5	16 5	10
						10:40 00	635 0	2.24	850	16 6	10
						10.50 00	6450	2 28	850	16 6 16 3	10
						11:00:00	655.0	2.31	835 830	16 2	0.9
						11.10.00	6650 6750	2.35	830	16 2	0.9
						11:20:00	6450	2.39	840	16 4	09
						11:40:00	6950	2.46	84 0	36.4	0 9
						11 50.00	705 0	2 49	83.5	163	0.9
						12 00 00	7150	2 53	84 5	16.5	10

12:20:00	735 0	2.60	85.5	16 7	1.02
12:30 00	745 0	2 63	85.5	16.7	1.05
12 40 00	755 0	2 67	85.5	16 7	1.02
12:50:00	765 0	2.70	86 0	16.8	1 03
13:00:00	775.0	2 74	86 0	16.8	1.01
13.10.00	7850	2.77	86.5	16.9	1.04
13 20 00	7950	2.81	86 0	16.8	1.01
13:30:00	805.0	2.84	85.5	16.7	1.02
13 40 00	8150	2.88	83.0	16.2	0.91
13:50:00	\$25.0	2.92	85.0	16.6	1.01
14:00:00	8350	2 95	85 0	16 6	1.01

Gnif Egn	0 213x-1.99		1
Na start	4.39	4 39	
Na finish	16 46	16 46]
First condition	300	20.5	(eveerge of 3 first samples)
Steady condition	467	84 3	(average of 3 last samples)

								81 12	02 -20	
	System							Reckground		
Tune In	TOU TIN	T/Td	Time Corr	action	Turve		VTd	Reeding	Canc No	C/C
Eqvi	min	Td=283	C/Co	Time(min)	min	WLO	Td=283		- mg/L	
21.0	0.0	0.00 0.00	0.00	21.0	00 05:00	0.0	0.00	28.5	41	00
21.0 21.0	0.0 4.0	0.00	0.05	22.0 22.5	01:00:00 02:00.00	55.0 115.0	0 19	28 5 28 5	4.1	00
22.5	12.5	0.04	0.15	23.0	03:00:00	175.0	9.62	28.5	4.1	0
24 0	21.0	0.07	0.20	23.5	06:00.00	235.0	0.83	29 0	42	0 (
24.1	30.9	0.11	0.25	24.0	05:00:00	295 0	1.04	29 0	42	0.0
24.1	414	0.15	0.30	24.5	046:00:00 07.00.00	355.0	1.25	29.0	4.2	01
24 7 25.0	\$0.3 60.0	0.18 0.21	035	25 0 25 0	07.00.00	415 0 475 0	1.68	290 295	42	00
25.3	69.7	0.25	0.45	25.5	09.00.00	535 0	1.89	29.5	43	00
25 3	79.7	0.28	0.50	26 0	10.00.00	595 0	2 10	29.5	43	0 (
25.7	89.3	0.32	0.55	26 5	11:00:00	655 0	2 31	29 5	4.3	0 (
26.0	100.5	0.346 0.348	0 60	270	12.00 00 13.07 00	715.0	2 53	30.0	44	0.
26.3 263	108.7 118.7	0.42	0.65	27.5 28 0	13.07.00	7820	2 76		4.5	0.
26.2	128.8	0.46	0.75	28 5						
26.6	138.4	0.49	0.80	29.0						
26.7	148.3	0 52	0 25	30.0						
26 9	158 1	ن\$0	0.90	32.0						
27.1 27.4	167.9 177.6	0.59	0.95	350 480						
27.7	187.3	0.66			1					
27.9	197.1	0.70								
27.8	207.2	0.73	}							
28 0	217.0	0.77								
28.2	227 8 241.7	080 085	ŀ							
28.3 28.4	246.6	0 87								
28 1	256 2	0 9 1	l I							
28 6	266 4	0 94								
28 6	276 4	0 98								
286	286 4	1 01								
287 288	296 3 306 2	105								
29.4	315 6	1.12								
28 9	326 ,	1 15								
28 8	337 7	1 19	1							
289	346.1	1 22								
30.3 30.7	354.7 364.3	1.25								
314	373 6	1.32								
31.4	383 6	1.36	ļ							
32 2	393 8	1.39	•							
314 317	405.6 413.3	1.43								
31.0	424 0	1.40								
314	433 6	1.53								
33 3	4417	1.56	1							
32 2	452 8	1.60								
322 327	462 8 472 3	164 167								
32 7	482.3	1.70								
36.9	488 1	1.72								
39.3	495 7	1.75								
39 3	505 7	1.79								
39.3 41.7	515 7 523 3	1 82 1.85	i i							
417	533 3	1 88	1							
44 0	5410	1 91								
48.0	5470	1 93								
46 4	558 6	1 97								
46 4 48 0	5686 5770	2 01 2 04								
480	5870	204								
48 0	597 0	2.11	1							
44 0	611 0	2 10								
417	623 3	2 20								
417	633 3	2.24 2.26								
46 4 46 4	6386 6486	2 29								
44 0	6610	2 34								
		2 36	1							
48 0 48 0	6670 6770	2 39								

48.0	6870	24
48 0	697 0	24
48 0	707 0	2 5
48 0	717 0	2 5
48 0	727 0	2 5
48 0	737 0	2.6
48 0	747 0	26
48 0	757 0	26
417	773.3	2 7
48 0	777 0	2.7
48 0	7870	2 7

SAMPLING NO:	
LOCATION.	Reservoir 1
FLOW (ML/d)	230
SAMPLING DATE	18-Jun-93
TESTING DATE	19-Jun-93
STANDARD MADE	19-Jun-93

STANCARDIZATION

mg/L Na 2 5	Initial Reading 18.5	Initial Reading 18 0	Average 18 3			
.0	33.0	32 5	32.8			
10.0	61.0	585	598			
15.0	825	805	81.5			
17.5	91.5	90.0	90.8			
20.0	100 0	99.0	995			
Repression Statistics						
Multiple R	0.997					
R Square	0 993					
Adjusted R Square	0.992					
Standard Fror	0.645					
Obs: 15	6					
Anelysi sence						
	Øf	Sum of Squeres	Meen Squere	F	Significance F	_
Rey, ession	1	244 167	244 167	586 172	0 000	
Residual	4	1 666	0 417			
Total	5	245.833				
	Coefficients	Standard Error	t Statistic	P-velue	Lower \$5%	Upper 95%
intercept		Stenderd Error	-3 108	P-veke 0 027	-3 650	-0 206
Intercept x1	-1 928 0.213					

TEST NO. 8 RESERVOIR NO. 1 (230 ML/d)

NaBack(mg/L)= 3 05 NaFinal(mg/L)= 16 65 NaTracer(mg/L)= 13 37

m 0.2 b -1.9 m= 0.2 b= -1.7

Iniri						Outlet						
Time		VTd	Rendung	Conc. Ne	C/Co	Turne		UTd .	Reading	Conc Na	C/Co	
mun	min	Td=220		mg/1.	Initial	mun	min	Td=220		mg/L	Initia	
00 05 00	0.0	0.00	23.5	3.1	0.00	00:05.00	0.0	0.0	22.5	3.0	0 00	
00 06 00	1.0	0.00	23 5	3.1	0.00	00:10:00	5.0	0.0	22.5	3.0	0.00	
00 07:00	2.0	0.01	23.5	3.1	0 00	00:20.00	15.0	0.1	23.0	3.1	0.01	
00.08:00	3.0	0 01	23.5	31	0.00	00:30:00	25.0	0.1	22.5	3.0	0.00	
00.09.00	4.0	0.02	23.5	3.1	0.00	00:40:00	35 0	0.2	22.5	3.0	0.00	
10.10.00	5.0	0.02	23 5	31	0.00	00:50:00	45.0	0.2	22.5	3.0	0.00	
00:11:00	60	0 03	23.5	3.1	0.00	01:00.00	\$5.0	0.3	34.0	5.5	0.18	
00:12:00	7.0	0.03	23 5	3.1	0.00	01:10:00	65 0	0.3	48.5	8.5	0.40	
00:13:00	8.0	0.04	23.5	3.1	0.00	01:25:00	80.0	0.4	46.5	8.1	0.37	
00.14 00	9.0	0.04	24.0	32	0.01	01:40:00	95.0	0.4	49.0	8.6	0.41	
00:15:00	10.0	0.05	28.5	4.2	0.08	01:50.00	105.0	0.5	52.5	9.3	0 46	
00:16:00	11.0	0.05	39.0	6.2	0.23	02:00.00	115.0	0.5	55.5	10.0	0.51	
00 17.00	120	0.05	47.5	8.2	0.38	02:10:00	125.0	0.6	57.0	10.3	0.53	
00:18:00	13.0	0.06	70.5	13 1	0.74	02.20.00	135.0	0.6	62.0	11.3	0.61	
00-19-00	14.0	0.06	70.5	13.1	0.74	02:30.00	145.0	0.7	63.5	11.7	0 63	
00:20:00	15.0	0.07	77.5	14.6	0.85	02:40:00	155.0	0.7	64.0	11.8	0.64	
0.21 00	16.0	0.07	76.5	14.4	0.83	02:50:00	165.0	0.8	65.0	12.0	0.66	
0.22.00	17.0	0.016	78.5	14 8	0.86	03 00.00	175 0	0 8	66.5	12.3	0.68	
0 23 00	18.0	0.04	86 0	164	0.98	03:10.00	185.0	0.8	69.0	12.8	0.72	
0.24 00	19 0	0.09	85.5	16.3	0.97	03:20:00	195.0	09	71.0	13.2	0.75	
0 25 00	20 0	0.09	82.0	15 5	0.92	03:30:00	205.0	0.9	72.0	13.4	0 76	
0.26.00	21 0	0 10	86 0	164	0.98	03:40.00	215.0	1.0	73.0	137	0.78	
0.27.00	22.0	0.10	870	16.6	1.00	03:50:00	225.0	1.0	77.0	14.5	0.84	
0 28 00	23 0	0.10	820	15 5	0.92	04:10:00	245.0	1.1	77.5	14.6	0.85	
0 29 00	24 0	0.11	860	164	0.98	04 20:00	255.0	1.2	71.5	14.6	0.85	
0 30 00	25.0	0.11	82.5	15.6	0.73	04.30:00	265.0	1.2	75.0	14.7	0.86	
0.31:00	26.0	0 12	86 5	16.5	0.99	04:40.00	275.0	1.3	800	15.1	0.89	
0 32 00	27.0	0.12	84 0	16.0	0.93	04:50.00	285.0	1.3	810	15.3	0.90	
0 33 00	28.0	0.13	850	16.2	0.97	05.00.00	295.0	1.3	80 5	15 2	0.90	
0.34 00	29 0	0.13	84 0	16 0	0.95	05:10:00	305.0	1.5	82.5	15.7	0.93	
0.35.00	30 0	0.14	84.5	16 1	0.96	05 20 00	3150	1.4	84.0	16.0	0.95	
0 40 00	35.0	0.16	84 S	16 1	0.96	05 30 00	325.0		84.0	16.0	0.95	
0 45 00	40.0	0 18	170	16.6	1.00	05 40:01	335.0	1.5	83.0	15.8	0.93	
0 50 00	450	0 20	875	16.7	1.00	05 50 00	345.0	1.5	140			
0 55 00	500	0.23	88 5	16.9	1 02	06 00 00	355 0	1.6 1.6	10 10	16.0	0.95	
1 00 00	550	0.25	870	16 6	1.00	06.10.00	365.0			15.3	0.90	
1.05 00	60 0	0.27	32 5	156	0.93	06:20:00	375.0	1.7	R3.0	15 8	0.93	
2 00 00	1150	0.52	87.5	16.7	1.90	06:30:00	385.0	17	84.0	16.0	0.95	
3 00 00	1750	0 80	88.5	16.9	1 02	06.40.00		1.8	84 0	16 0	0 95	
00 00	235 0	107	\$7.0	16 6	1.00	06:50:00	395.0 405.0	18	84.5	16 1	0.96	
3 40 00	335 0	1 52	890	170	1.03	07:00:00	4030	1.8	85.5	16.3	0 97	
5 00 00	355.0	161	91.0	17.5	1.05	07:10.00		1.9	1150	16 2	0 97	
7 00 00	415.0	189	91.0	17.5	1.06	07:20:00	425.0	1.9	860	16 4	0 98	
00.00	475.0	216					435.0	20	86.5	16 5	0.99	
8 55 00			870	16 6	1.00	07:30:00	445.0	2.0	87.0	16 6	1.00	
13500 1	530.0	2.41	910	115	1 06	07.40.00	455.0	2.1	87.5	16.7	1.00	
						07:50 00	465.0	2.1	88.0	46.8	1.01	
					- 1	08 00 00	475 0	2.2	87.5	16 7	1.00	
						08:10:00	485.0	2.2	87.0	16 6	1 00	
					1	08:20:00	495 0	2.3	87 5	16.7	1.00	
						08.30.00	\$05.0	2.3	\$7.0	16 6	1.00	
						08.44.00	519.0	2.4	87.0	16.6	1.00	
						08:50:00	525.0	2.4	87.0	16 6	1.00	
					L	09 00 00	535.0	24	86.5	16.5	0 99	

Gnt Eqn	0 213x-1.9 (INLET)	28 (OUTLET)
Ne start Ne finish	3 08 16 65	2 90 16 65	1
First condition Steady condition	23 5 87 2	22.7 87.2	(everage of 3 first samples) (average of 10 last samples) (assumed steady state for inlet = Outlet)

								m	02	
								b-	-19	
		System						Recturous	4	
Turne In	TOul-Tin	T/Td	Time Cor	rection	Time		6/Td	Reading	Conc Na	CICo
Eqvi	ការដា	Td=230	C/Co	Tome(min)	mun	min	Td=220		me 1	-
9.0	0.0	Ú 00	0.00	90	00 05.00	00	00	23 5	31	00
9.0	0.0	0.00	0.05	9.5	01.00.00	55 0	0.3	24 0	3 2	00
9.1	5.9	0.03	0.10	10 0	02.00.00	1150	0.5	24 0	32	0.0
9.0	16.0	0.07	0.15	10 5	03:00:00	175 0	0.8	24 5 24 0	3 N 3 2	00
90 90	26.0 36.0	0.12 0.16	0.20	11 0 11.5	05.00.00	235.0 295.0	1.3	23.5	31	00
10.8	44.2	0.20	0.30	11.5	06.00 00	- 5.0	1.5	24 5	33	00
12.0	53.0	0.24	0.35	12.0	07.00 00	415.0	19	24 5	33	00
12.0	68.0	0.31	0 40	12.0	08 00 00	475 0	2.2	24 0	32	00
12.0	\$3.0	0.38	045	12.0	09.00.00	535 0	24	24	33	0.0
12.1	92.9	0.42	0.50	12 5						
12.5	102.5	0.47	0.55	12 5						
12.5	112.5	0.51	0.60	130						
13.0	122.0	0.55	0 65	13.0						
13.0	132.0	0.60	0.70	130						
13.0	142 0	0.65	0 75	14.0						
130	152.0	0.69	080	14.5	1					
13.0	162.0	0 74	0 85	150	1					
13.4 14.0	171.6 191.0	0.78 0.82	0.90	175 180						
14.1	190.9	0.82	1.00	22 0						
14.3	200.7	0.91	1.00		J					
14.9	210.1	0 95	1							
150	230 0	1 05	1							
15 0	240.0	1 09	1							
15.4	249.6	1.13								
16 9	258 1	1.17								
17.5	267.5	1 22								
17.3	277.7	1 26								
17.8	285.2	1 31								
18 0	297 0	1 35								
18 0	3070	140								
17 8	317.2	1.44								
180	327.0	1 49								
175	337.5 347.2	1.53 1.58								
1/8	357.0	1 62	1							
180	367.0	1 67	1							
187	376.3	1.71								
19.9	385.1	1.75								
19.3	395 7	1.80								
20.5	404.5	1 94								
21.1	413.9	1.88								
21.8	423 2	1 92								
22 0	433.0	1 97								
22.0	443.0	2 01								
22 0	453 0	2.06	1							
218	463 2	2 11								
22.0	473.0	2 15	1							
21.8	483.2	2 20								
21.8	497 2	2 26								
21.8	503 2	2.29								
211	513.9	2.34	J							

SAMPLING NO:	9
LOCATION	Reservoir 3
FLOW (ML/d):	198
SAMPLING DATE	25-Jun-93
TESTING DATE:	26-Jun-93
STANDARD MADE	19-Jun-93

STANDARDIZATION

mg/L Na 2.5 5.0 10.0 15.0 17.5	Initial Reading 19.0 33.0 59.5 80.0 89.5	Initial Reading 19 0 33 U 58 5 80 5 89 5	Average 19:0 33:0 59:5 80:3 89:5			
20.0	100.0	100.0	100.0			
Regression Statistics						
Multiple R	0 998					
R Square	0 995					
Adjusted R Square	0.994					
Standard Error	0.542					
Observations	6					
Analysis of Vanance						
	đ	Sum of Squares	Meen Squere	F	Significance F	_
Regression	1	244.657	244 657	831.705	0 000	-
Residual	4	1 177	0 294			
Total	5	245 833				
	Coefficients	Standard Error	t Statustic	P-velue	Lower \$5%	Upper 95%
Intercept	-2.096	0 526	-3.984	0.010	-3 556	-0 635
x1	0.217	0 008	28.839	0 000	0 196	0 237
General Equation	y=0 217x-2 096					

TEST NO. RESERVOIR NO. 3 (198 ML/d)

NaBack(mg/L)= 344 NaFinal(mg/L)= 1708 NaTracer(mg/L)= 1364

m=	
b∗	

0.2 -2 1

mr≭ 0.2 b= -2.6

Time		VT4	Tuirt Readung	Conc. Na	C/Co	Tume		VT6	Outlet Reading	Conc. Na	Cr
	mun	Td=318		mg/L		min	min	TG-318		mu/L	
00.05.00	0.0	0.00	25.5	3.4	0.00	00:05:00	0.0	0.00	27.0	3.4	0.0
00:06:00	1.0	0.00	25.5	3.4	0.00	00:10:00	5.0	0.02	27.0	3.4	0.0
00.07:00	2.0	0.01	25.5	3.4	0.00	00:15:00	10.0	0.03	27.0	3.4	0.0
	3.0	0.01	26.0	3.5	0.01	00:20:00	15.0	0.05	27.0	3.4	0.0
00.08.00			26.0	3.5	0.01	00.25.00	200	0.06	27.0	3.4	0.0
00:09:00	4.0	0.01				00:30:00	25.0	0.08	27.5	3.5	0.0
00:10:00	\$.0	0.02	28 5	4.1	0.05						
00.11:00	6.0	0.02	27.0	3.8	0.02	00:35:00	30.0	0.09	29.0	3.9	0.0
00.12:00	7.0	0 02	28.0	4.0	0.04	00:40:00	35.0	0.11	36.0	5.4	0.1
00:13:00	8.0	0.03	27.0	3.8	0.02	00:45:00	40.0	0.13	41.5	6.7	0.2
00.14:00	9.0	0.03	27.0	3.8	0 02	00:50:00	45.0	0.14	42.0	6.1	0.2
00:15:00	10.0	0.03	27.0	3.8	0.02	00:55:00	50.0	0.16	43.0	7.0	0.1
00.16:00	11.0	0.03	26.5	3.7	0.02	01:00:00	55.0	0.17	43.5	7.1	0.7
00:17:00	12.0	0.04	27.0	3.8	0.02	01:10:00	65.0	0.20	43.5	7.1	0.2
00.18.00	13.0	0.04	26.5	3.7	0.02	01:20:00	75.0	0.24	45.0	7.4	0.2
00:19:00	14.0	0.04	27.0	3.8	0.02	01:30:00	85.0	0.27	47.0	7.9	0.3
		0.05	28.0	4.0	0.04	01.42.00	97.0	0.31	51.5	8.9	0.4
00 20 00	15.0									8.8	
00 21 00	16.0	0.05	27.0	3.8	0.02	01.52:00	107 0	0.34	51.0		0.3
00.22.00	17.0	0.05	27.5	3.9	0.03	01:55:00	110.9	0.35	\$2.0	9.0	0.4
00:23:00	18 0	0.06	27.5	3.9	0.03	02:15:00	130.0	0.41	\$2.5	9.1	0.4
00:24:00	19.0	0.06	26.5	3.7	0.02	02:20:00	135.0	0.42	\$5.5	9.8	0.4
00.25:00	20.0	0.06	26 5	3.7	0.02	02:30:00	145.0	0.46	59.0	10.6	0.5
00 26:00	21.0	0.07	26 5	3.7	0.02	02:40:00	155.0	0.49	\$9.5	10.7	0.5
00:27:00	22.0	0.07	27 0	38	0.02	02:50:00	165.0	0.52	60.0	10.8	0.5
	23.0	0.07	31.5	4.7	0.10	02:55:00	170.0	0.53	60.5	10.9	0.5
00.28.00		0.03	41.0	6.8	0.25	02:33:00	185.0	0.55	62.5	11.3	0.5
00:29:00	24 0				0.25	03.20.00	195.0	0.61	63.0	31.4	0.5
00.30.00	25 0	0.08	48 0	8.3							
00 31 00	26 0	0.048	57.5	10.4	0.51	03:30:00	205.0	0.64	65.0	\$1.9 11.8	0.6
00.32.00	27.0	0.08	67 0	12.4	0.66	03:40:00	215.0	0.68	64.5		
00.33 00	28.0	0.09	72.0	13.5	0.74	03:50:00	225 0	0.71	65.5	12.0	0.6
00.34 00	29 0	0.09	73.5	139	0.76	03:55:00	230.0	0.72	65.5	12.0	0.6
00:35:00	30 0	0.09	780	14 8	0.83	04:10:00	245.0	0.77	67.0	12.3	0.6
00 40 00	35.0	0 11	850	16.3	0.95	04:20:00	255.0	0 80	68 5	12.7	0.6
00 45.00	40.0	0.13	\$4.0	16 1	0.93	04:30.00	265.0	0.83	67.5	12.4	0.6
00:50.00	45 0	0.14	87 5	16.9	0.99	04:40:00	275.0	0.86	69.0	12.8	0.6
00 55 00	\$0.0	0 16	890	17.2	1.01	04:50.00	285.0	0.90	71.0	13.2	0.7
	55.0	0.17	86.5	16.7	0.97	05:00.00	295.0	0.93	70.0	13.0	0.7
01:00:00							310.0	0.93	71.0	13.2	0.7
01:05:00	60 0	0.19	86.5	16.7	0.97	05:15:00					
02:00:00	115 0	0.36	870	16.8	0.98	05:20:00	315.0	0.99	72.0	13.4	0.7
03:00:00	175.0	0.55	88.5	17.1	1.00	05:30:00	325.0	1.02	74.0	13.9	0.7
04:00:00	235.0	0 74	92.0	179	1.06	05:40:00	335.0	1.05	73.5	13.8	0.7
05.05:00	300.0	0.94	\$7.5	16.9	0.99	05:50:00	345.0	1.08	73.5	138	07
06 00 00	355.0	1 12	87.5	16.9	0.99	06:00:00	355.0	1.12	75.0	14.1	07
07:00:00	415 0	1.31	87.5	16 9	0.99	06:15:00	370.0	1.16	76.0	14.3	0.8
08 05 00	480.0	1.51	87.5	16.9	0.99	06:20:00	375.0	1.18	75.5	14.2	0.7
09 00 00	535 0	1 68	87.5	16.9	0.99	06:30:00	385.0	1.21	75.5	14.2	07
09 30 00	565.0	178	890	17.2	1.01	06 40:00	395.0	1.24	76.0	14.3	0.8
09 30 00 1		/	870			06:50:00	405.0	1.27	76.0	14.3	0.8
						07:00.00			77.0	14.6	0.8
							415.0 425.0	1.31	77.0	14.6	0.8
						07.10:00		1.34			
						07:20.00	435.0	1.37	78.0	14.8	0.8
						07:30:00	445.0	1.40	78.0	14.8	0.8
						07:40:00	455.0	1.43	78 5	14.9	0 8
						07;50:00	465 0	1.46	79.0	15.0	0.8
						08.00:00	475.0	1.49	79.0	15.0	0.8
						08:10:00	485.0	1.53	0.18	15.4	08
						08:20:00	495.0	1.56	81.0	15.4	0.8
						08:30:00	505.0	1.59	81.0	15.4	0.8
						08:30:00	515.0		81.5	15.6	0.8
								1.62			
						08;50:00	525.0	1.65	81.5	15.6	0.8
						09:00:00	\$35.0	1.68	82.0	15.7	0.9
						09:15:00	\$50.0	1.73	\$1.5	156	0.8
						09.20:00 09:27:00	555.0 562.0	1.75	82.0 81.5	15.7 15.6	0.9

Grint Egn

Na start Na finish First condition Steedy condition

1 1 1=	0.2
bn	-2 1

		System						Reckground	1	
Ture In	TOur-Tin	T/Td	Time Corre	ction	Tune		VTd	Reading.	Conc Na	C/Co
-	mun	Td=318	C/Co	Tume(man)	min	min	Td-318		mg/1.	
್ ಸೇ	0.0	0.09	0.00	20.0	00:05:00	00	0.00	27.0	38	0.0
7.14	0.0	0.00	0.05	22.5	01:00:00	\$5.0	0 17	27.0	3 #	0.0
20.0	0.0	0.00	0.10	23.0	02:00:00	115.0	0.36	27.0	38	00
20.5	0.0	0.00	0.15	23.5	03:00:00	175.0	0.55	28.5	4.1	00
X (0.0	0.00	0.20	24.0	04:00:00	235.0	0.74	27.5	3.9	0.0
× 4	4.6	0.01	0.25	24 0	05:00:00	295.0	0.93	27.5	3.9	00
21.6	8.4	0.03	0.30	24.5	06:00:00	355.0	1 12	27.5	3.5	00
23.5	11.5	0.04	0.35	25.0	07:00:00	415.0	1.31	27.5	3.9	00
24.0	16.0	0.05	0.40	25.5	08.00:00	475.0	1.49	27.5	3.9	0.0
24.0	21.0	0.07	0.45	25.5	09.00.00	535.0	1.68	27.5	39	00
24.1	25.9	0.08	0.50	26.0	09:30:00	565.0	1 78	28.0	40	00
24.2	30.8 40.8	0.10	0.55 0.60	260 265						
24.2 24.4	\$0.6	0.13 0.16	0.65	26.5						
24.8	60.2	0.19	0.70	27.5						
25.5	71.5	0.22	0.75	28 0						
25.4	81.6	0.26	0.80	29.0						
25.5	84.5	0.27	0.85	300						
25.5	104.5	0.33	0.90	32.0						
25.6	109.4	0.34	0.95	34 0						
260	119.0	0.37	1.00	44.0						
26.0	129.0	0.41								
26.0	139.0	0.44								
26 0	144.0	0.45								
263	158 7	0.50								
26.4	168.6	0.53								
26.7	178.3	0.56								
26.6	188 4	0.59								
26.8	198.2	0.62								
26.8	203.2 218.0	0.69 0.69								
27.0 27.3	227.7	0 72								
27.1	237.9	0 75								
27.3	247.7	0.78								
27 7	257.3	0.81	}							
27.5	267.5	0.84								
277	282.3	0.89								
27.8	287 2	0 90								
28.3	296 7	0.93								
28.2	306 8	0 96	1							
28 2	316.8	1.00								
286	326.4	1.03	1							
29.0	341.0	1.07	1							
28.8	346.2	1.09								
28.8	356 2	1.12								
290	366 0	1.15								
290	376.0	1.18								
293 293	385 7 395 7	1.21 1.24								
296	405 4	1.24								
296	415.4	1.31								
29.8	425 2	1.34								
29.9	435.1	1.37								
29 9	445.1	1 40								
312	453.8	1 43								
31.2	463.8	1.46								
31.2	473 8	1.49								
31.5	483.5	1.52								
31.5	493.5	1.55								
31.8	503.2	1.58								
31 5	518.5	1.63								
31.8	523.2	1.65								
31.5	530 5	1 67								

BAMPLING NO: LOCATION	10 Reservoirs 1-2-	3				
FLOW (ML/d)	170					
SAMPLING DATE	30-Jun-93	until	02-Jul-93			
TESTING DATE	03-Jul-93	anú	06-Jul-93			
STANDARD MADE	19-Jun-93					
	(BACKGROUND	A.				
			A			
mg/L Na	Initial Reading 18 5	Final Reading 19.0	Average 18.8			
2.5 5.0	32.5	33.0	32.8			
			59.3			
10.0	59.5	59.0	50.0			
150	80 0	80.0	89.5			
17.5	89 5	89.5	89.5			
20.0	100.0	100.0	100 0			
Regression Statistics	<u></u>					
Multiple R	0.998					
R Square	0 995					
Adjusted R Square	0 994					
Standard Error	0 526					
Observations	6					
Analysis of Variance	-	6 	the front	F	Discritica and F	
D		Sum of Squares 244.725	Meen Squere 244.725	883.159	Significance F 0.000	-
Regression Residual	1	1.108	0.277	000.100	0.000	
Total	• 5	245.833	0.211			
(CILE)	5	240.000				
	Configurate	Standard Error	1 Statutic	P-velue	Lower 95%	Upper 85
Intercept	-2.021	0.508	-3.976	0.011	-3.432	-0 610
x1	0.216	0 007	29 718	0.000	0.196	0.238
STANDARDIZATION	(INLET CELL#1)					
mg/L Na	Initial Reading	Final Reading	Ave Rdg			
25	19.5	19.5	19.5			
5.0	340	33.0	33 5			
	600	59.0	595			
10.0	81.0	795	803			
150	900	88.0	890			
17 5	1000	98.0	99.0			
20 0	100 0	9 0.0				
Regression Statistics						
Multiple R	0 997					
R Square	0 995					
Adjusted R Square	0 993					
Standard Error	0.577					
Observations	6.000					
Analysis of Vanance						
	٢	Sum of Squeres	Meen Squere	F	Significance F	-
Regression	1.000	244.500	244.500	733.384	C.000	
Residual	4.000	1.334	0.333			
Total	5.000	245.833				
	Coefficients	Standard Error	1 Statistic	P-vekue	Lower \$5%	Upper 85
	2 208	0 567	-4.065	0.010	-3.881	0.731
Intercept	-2.300			0.000	0.198	0.243
Intercept x1	-2.308 0.220	0 008	27.081	0.000	0.100	0.2.10
		0 008	27.081	0.000	0.100	0.240
		0 008	27.081 Ave Rdg	0.000	0.00	0.2.10

 Initial Reading
 Final Reading
 Ave Rd

 2.5
 19.0
 19.5
 19.3

 5.0
 33.0
 34.0
 33.5

 10.0
 59.5
 60.5
 60.0

 15.0
 81.5
 81.5
 81.5

 17.5
 90.0
 91.0
 90.5

20.0 Repression Statistics	100.0	100 0	100 0			
Multiple R	0.997					
R Square	0.994					
Adjusted R Square	0.993					
Standard Error Observations	0.595					
	0.000					
Analysis of Venence	đ	Sum of Squares	Meen Squere	F	Significance F	_
Regression	1.000	244.416	244.416	689.936	0 000	•
Residual	4.000	1.417	0.354			
Total	5.000	245.833				
	Coefficients	Standard Error	t Statutur	P-velue	Lower #5%	Upper 15%
Intercept	-2.165	0.580	-3 733	0.014	-3 775	-0 555
x1	0.216	0.008	26.267	0.000	0.193	0 239
STANDARDIZATION		¥1)				
mg/L Na	Initial Reading	Final Reading	Ave Rdg			
25	19.0	18.0	18.5			
5.0	33.0	31.5	32 3			
10.0	59.0	58.0	58.5			
15.0	79.5	79.5	79 5			
17.5	88.0	87.0	87.5			
20.0	98.0	98 5	98.3			
Regression Statistics						
Multiple R	0 997					
R Square	0.994					
Adjusted R Square	0.993					
Standard Error	0 587					
Observations	6.000					
Analysis of Variance	đ	Sum of Squeres	Meen Squere	F	Signticence F	
Regression	1.000	244 457	244 457	710 562	0 000	-
Residual	4.000	1.376	0.344			
Totai	5.000	245 833				
	Coefficients	Standard Error	1 Statustic	P-vek-s	Lower 95%	Upper 95%
Intercept	-2.054	0.568	-3.618	0 015	-3 630	-0 478
x1	0.220	0 008	26 656	0 000	0 197	0 243
STANDARDIZATION		¥2)				
mg/L Na	Initial Reading	Final Reading	Ave Rdg			
2.5	19.5	195	19.5			
5.7	33.5	340	33.8			
10.1	60.0	60 5	60 3			
156	81.0 90.0	81.5 90.5	81.3 90.3			
17.5 20.0	100.0	101.0	100 5			
Regression Statistics						
Multiple R	0 997					
R Square	0.995					
Adjusted R Square	0.993					
Standard Error	0.573					
Observations	6.000					
Analysis of Variance			·····	F	Significance F	
Regression	1.000	Sum of Squeres	Meen Square 244 519	743.957	0.000	-
Residual	4 000	1.315	0.329			
Total	5.000	245 833				
	Coefficients	Standard Error	t Statuatic	P-yekue	Lower \$5%	Upper \$9%

intercept x1	-2 229 0 216	0.561 0.008	-3 975 27.276	0 011 0 000	-3.785 0.194	-0 672 0.238
STANDARDIZATION	OUTLET CELL	13)				
	Initial Reading	Final Reading	Ave Rdg			
mg/L Na	19.0	19.0	19.0			
2.5		33 5	33.3			
50	33 0	33.5 59.5	59.3			
10 0	59.0		59.5 80.8			
15 0	80.5	81.0				
17.5	89.0	89.5	89.3			
20.0	100 0	1 0 0 0	100.0			
Regression Statutics						
Multiple R	0.998					
R Square	0.995					
Adjusted R Square	0.994					
Standard Error	0.548					
Observations	6.000					
Analysis of Vanance				F		
		Sum of Squares 244,632	Meen Squere 244.632	814.684	Significance F 0.000	-
Regression	1.000	1.201	0.300	014.004	0.000	
Residual Total	5 000	245 833	0.300			
(Clar	3 000	240 000				
	Coefficients	Standard Error	t Stabstic	P-veiue	Lower \$5%	Upper 95
Intercept	-2.116	0 532	-3.976	0.011	-3.594	-0 639
x1	0 217	0 008	28.543	0.000	0.196	0.238
STANDARDIZATION	OUTLET CONV	ERGENCE)				
mg/L Na	Initial Reading	Final Reading	Ave Rdg			
25	18.5	18 5	18.5			
50	32 0	32.5	32.3			
100	58 5	59 0	58.8			
150	795	800	79.8			
17.5	890	885	88 8			
200	100 0	9990	995			
200	1000		000			
Regression Statistics						
Multiple R	0 998					
R Square	n 995					
Adjusted R Square	U 994					
Standard Error	0 527					
Observations	6 000					
Analysis of Vanance		Sum of Squares	Maan Square	F	Significance F	
Regression	1 000	244 721	244.721	879.820	0.000	•
Residual	4.000	1 113	0.278			
Total	5 000	245.833				
			A Plant of -	0	Lower 95%	Upper 95
	Coefficients	Standard Error	t Statistic	P-velue		
	-1.956	0.507	-3.857	0.012	-3.365	-0.548
Intercept		0.007	29.662	0.000	0.196	0.237
intercept x1	0.217					
x1						
	Background	y=0.216x-2.021				
x1	Background Inlet Cell 1.	y=0.220x-2.306				
x1	Background Inlet Cell 1. Inlet Cell 2.	y=0.220x-2.306 y=0.216x-2.165				
x1	Background Inlet Cell 1. Inlet Cell 2. Outlet Cell 1:	y=0.220x-2.308 y=0.218x-2.165 y=0.220x-2.054				
x1	Background Inlet Cell 1. Inlet Cell 2. Outlet Cell 1: Outlet Cell 2	y=0.220x-2 308 y=0.218x-2 165 y=0.220x-2 054 y=0.216x-2.229				
x1	Background Inlet Cell 1. Inlet Cell 2. Outlet Cell 1:	y=0.220x-2.308 y=0.218x-2.165 y=0.220x-2.054				

TEST NO. 10 RESERVOIR NOS. 1,2,3 (170 ML/d)

			,							
Slope			m*	0 2				m-	0 2	
intercept			b	-21				b-	-23	
Gnri Egn			y=0.220x-2 (INLET1)	.306				y=0.216x-2 (INLET2)	2 165	
Ne.beck.(mg/L)=		1	4 44					4 60		
Ne Final (mg/L)=			18 48					18 32		
a Tracer (mg/L)=			14.04					13 72		
First condition			30 67					313		
Steady condition			94 5 Inle11					94 8 Inlet2		·1
	Time		Renting	Conc Na	C/Co	Turse		Reading	Conc. Na	C/Cu
	min	ការព		mg/L	Instal	ភាព	nun		mgʻl .	Instal
	00:05:00	0.0	30.5 31.0	4.5 4.6	0.00	00:05:00	00 1.0	310	44	-001 000
	00.06:00	1.0	30.5	4.5	0 00	00.08.00	2.0	31.5	46	0.00
	00.08.00	3.0	31.0	46	0.01	00.08.00	30	31.5	4.6	0.00
	00:09.00	4.0	31.5	47	0 01	00 09.00	4.0	31 5	46	0 00
	00:10.00 00:11:00	5.0	310 32.5	4.6 4.9	0.01	00:10:00 00:11:00	50 60	32 0 32 0	47	0.01
	00.11.00	6.0 7.0	31.5	47	0.03	00.12:00	70	31.5	46	0.00
	00.13 00	80	32 0	48	0 02	00.13.00	80	31.5	46	0.00
	00 14 00	9.0	33 0	50	0 04	00.14:00	9.0	M 0	51	0.04
	00:15:00	10.0	360	57 7.1	0.08	00:15:00	10 0	330	49 47	0.03
	00:16:00 00:17:00	11.0	42 5 48 0	7.1 8.3	0.19 0.27	00:16:00	11 0 12 0	32.0 32.0	47	001 001
	00.18.00	13.0	54 0	9.6	0.37	00.18.00	13.0	32 0	47	C 0 I
	00 19:00	14.0	63.0	116	0.51	00:19:00	14 0	32 0	47	0.01
	00:20:00	15.0	680	12.6	0.58	00:20:00	150	31.5	46 47	0.00 '
	00:21:00	16 0 17 0	74.0 82.0	13.9 15 7	0.68	00 21 00 00:22 00	160 170	32 0 31.5	46	0.01
	00:23:00	18.0	85.5	16.4	0.86	00 23 00	18 0	31.5	46	0.00
	00.24:00	19 0	86 0	16.6	0.87	00.24 00	19 0	315	46	0.00
	00 25 00	200	870 900	16 R 17 4	0.88 0.93	00.25.00	200 210	31 0 31 5	44	-001 000
	00 26.00 00:27:00	21.0 22.0	930	181	098	00 26 00 00.27 00	210	300	42	-0.02
	00.28.00	23 0	94.0	18.3	0 99	00.28.00	23 0	30.0	4 2	-0.02
	00 29 00	24 0	94.0	18.3	0.99	00.29.00	24 0	30.0	4 2	-0.02
	00.30 00	25 0	950 940	18.5	101 0.99	00.30.00	25.0 26.0	31 C 48 0	44 82	-001
	00.35.00	30.0 35.0	945	18.3 18.4	1 00	00.32.00	200	500	15 2	077
	00:45.00	40.0	93.5	18 2	0.98	00.33.00	28 0	94 0	18 2	0.99
	00:50:00	45 0	95 0	18.5	1.01	00.34.00	29 0	94.5	18.3	0 99
	00:55:00	50.0 55.0	94 5 95.5	184 186	1.00	00.3500	30 0 31 0	950 945	18-4 18-3	1.00
	01:05:00	60.0	95.0	18 5	1.01	00 37.00	32 0	950	18 4	1 00
1	03.10.00	185 0	94 5	18 4	1.00	04 08 00	3123.0			1 00
	04:05:00	240 0	94.5	18.4	1.00					
	05:05:00	300 0 360 0	93.5 91.5	18 2 17 7	0.98					
	07.05:00	420 0	838 0	170	0.59					
i	08:05:00	480.0	95 0	18 5	1 01					
	09 05 00	540 0	95.0	18 5	1.01					
	10:05:00 11:05:00	600 0 660 0	94 5 94 5	184 184	1.00 1.00					
	12.05.00	720.0	94.5	18.4	1 00					
	13:05:00	780 0	96 0	18.7	1 02					
	14:05:00	\$40.0 900.0	95.0 104 0	18 5 20 5	1.01					
	16:05:00	960.0	970	18.9	1.04					
	17:05:00	1020 0	94 5	18.4	1.00					
	18.08.00	1083 0	940	18.3	0 99					
	19.05.00 20:07.00	1140.0 1202.0	920 650	17.9	0.96 0.54					
	21:07:00	1262.0	920	179	0.96					
	22:08:00	1323.0	94.5	184	1 00					
	23.08.00	1383.0	94.5	18.4	1.00					
	00.08.00	1443 0 1503 0	93.5 94.5	18.2 18.4	0.98 1.00					
	02.08.00	1563.0	950	18 5	1 01					
	03.08.00	1623.0	94.5	18 4	1.00					
	04 08:00	1683 0	930	18 1	0.98					
	05:08:00	1743.0 1903.0	94.0 94.0	18 3 18 3	0.99 0.99					
	07.08.00	1863.0	90.5	17.5	0.94					
	08:08:00	1923 0	93.5	18 2	0 98					
1	09.08.00	1983 0	92 0	17.9	0 96	1				

10 08 00	2043 0	97 0	18 9	1 04
12 08 00	21630	94 5	18.4	1.00
13 05 0C	2220 0	92 0	17.9	0.96
14 05 00	2280 0	92 5	18.0	0.97
15 05 00	23400	93 0	18 1	0.98
16 18 00	2413.0	96 0	15 7	1 02
17 30 00	2485 0	95 0	18 5	1 01
18 02 00	2517.0	95 5	18.6	1.02
18 30 00	2543.0	95 0	18.5	1.01
19 08 00	2583.0	94 5	18.4	1.00
20.08.00	26430	94 0	18.3	0.99
21.08.00	2703 0	92 0	17.9	0.96
22 08 00	2763 0	96.5	18.8	1 03
23 08 00	2823.0	94.0	18.3	0.99
00 68 00	2883 0	95 0	18.5	1.01
01 08:00	2943.0	94 0	18.3	0.99
02 08 00	3003.0	94.5	18.4	1.00
03.08.00	3063.0	94.0	18.3	0.99
04 08 00	3123 0	95.0	18.5	1.01

02 -21 m-b-

y=0.216x-2.021 (BACKGROUND) 4.57 18.46 13.90

y=0.220x-2.054 (OUTLET1) 4.65 18.85 14.19

		30.5	•				30.5		
		94.8			,		96.0		,
Time		Background Reading	Conc Na	C/Co	Time		Outlet1 Reading	Conc. Na	C/Co
mun	ការរា	Propagating _	me/L		man	ពាយា		mg/L	
00:05:00	0.0	30.5	4.5	0.00	01:58:00	113.0	30.5	4.5	0.00
01:05:00	60.0	30.5	4.5	0.00	02:18 00	133.0	31.0	4.6	0.01
02:30:00	145.0	30.5	4.5	0.00	02.38 00	153 0	33.5	5.2	0.05
03:05:00	180.0 240 0	30.5 30.5	4.5	0.00	07:58:00	173.0	40 0 41.5	66 69	015
04:05:00	300.0	30.5	4.5 4.5	0.00 0.00	03 30 00	193.0 213.0	43.0	7.2	0 19
06:05:00	360.0	30.5	4.5	0.00	03:58:00	233 0	490	8.5	0.29
07:05:00	420.0	30.5	4.5	0.00	04:18.00	253.0	510	89	0 32
08:05:00	480.0	31.5	4.7	0.02	04:38.00	273.0	53 0	94	0.35
09 05 00	540 0	31.5	4.7	0.02	04:58:00	293.0	48.0	8.3	0 27
09:50:00	585.0	31.5	4.7	0.02	05:18.00	313 0	61.0 580	11 1	0.47
110 11:57:00	660.0 712 0	31.5 31.5	47 4.7	0.02	05.30:00	332 0 353 0	61.0	10 4 11 1	043
13:05:00	780.0	31.5	4.7	0.02	06:18:00	373.0	62.5	114	0.50
13.57:00	\$32.0	31.5	47	0 02	06:38:00	393 0	62.5	114	0.50
15:00:00	895 0	32.0	4.8	0 02	06:58:00	413.0	64.0	117	0 52
16:00:00	955.0	34.0	5.3	0.05	07:18:00	433.0	69 0	12 8	0 60
17:05:00	1020.0	31.5	4.7	0 02	07:38:00	453.0	69 0	12.8	0.60
18:05:00	1080.0	34 0	5.3	0.05	07:58:00	473 0	69.5	12 9	0 60
18:57:00	1132.0	32.0	4.8 4.5	0.02	06 18:00	493.0 513.0	730 740	137 139	064 067
19:57:00 20.53:00	1192.0 1248.0	305	4.5	0.00	06 58 00	5330	750	14 1	069
21:52:00	1307.0	30.5	4.5	0.00	09 18 00	553 0	75 0	14.1	0.69
22.50.00	1365.0	32 0	4.8	0 02	09.38 00	573 0	76 0	14.3	0 71
23:50:00	1425 0	32.5	5.0	0.03	12:20:00	7350	82 0	156	0 80
00.50.00	1485.0	40 5	67	0 15	12.50 00	765.0	830	15.8	0 81
01 50 00	1545 0	35 0	55	0 07	13 19 00	794 0	84.5 85.0	16 1	0 84
04:05:00 05:05:00	1680.0 1740.0	340 0 340 0	4.4	-0.01 -0.01	13.48 00 14 08 00	\$230 \$430	860	16 2 16 5	0 86
06 05 00	1800.0	300	44	-0.01	14.27 00	862.0	860	16 5	0 86
07.05.00	1860 0	30.5	4.5	0.00	14:28:00	863.0	\$70	16 7	0 88
08.05 00	1920 0	30 0	4.4	-0 01	14:48:00	8830	87 0	16 7	0 88
09:05:00	1980 0	30 0	4.4	-0 01	15 06 00	903.0	87.0	16 7	0 88
10 05 00	2040.0	30.0	4.4	-0.01	15.28 00	923 0	89.0	17 1	091
11:05:00	2100.0	60.0	10.9	0 46	15 48 00	943.0 963.0	890 890	171	091 091
11.49 00 12.37 00	2144.0 2192.0	30.0 29.5	4.3	-0.01 -0.02	16:06:00 16:28:00	9113.0	895	17 2	091
13 21:00	2236 0	300	4.4	-0 01	16 48 00	1003.0	90.0	173	0 92
15:05:00	2340 0	29.5	4.3	-0 02	17.08 00	1023 0	91.5	17.6	0 95
18:50:00	2565 0	29 5	4.3	-0.02	17:28:00	1043.0	91 5	176	0.95
19:52:00	2627.0	29.5	4.3	-0.02	17:55.00	1070 0	91.0	17 5	0 94
20:00:00	2635.0	29.5	4.3	-0 02	18 08 00	1083.0	915 910	176	0 9 5
20 50 00 21:50 00	2685 0 2745.0	29.5 29.5	4.3	-0 02 -0 02	17:55:00	1070.0	91.5	17.5	0 94 0 95
22,50.00	2745.0	29.5	43	-0.02	19 17.00	1152.0	91.0	17.5	094
23.50 00	2865 0	29.5	4.3	-0 02	19:17:00	1152.0	92 0	178	0 95
00:51:00	2926 0	30 0	44	-0 01	19.37.00	1172 0	92 0	17.8	0 95
01:50.00	2985.0	29 5	4.3	-0 02	19.59.00	1124 0	92 5	179	0 %6
02:50:00	3045.0	29 5	43	-0.02	20 17:00	12120	930 925	180	097 096
03:50:00	3105.0	30 0	44	-001	20:37:00	1232 0 1252 0	930	179	097
					21:17:00	1272.0	925	179	0.96
					21:37:00	1292 0	93 5	18 1	0.98
					21:57:00	1312 0	93.0	18 0	0 97
					22 17 00	1332 0	93.0	18 0	0 97
					22:37.00	1352 0	930	18 0	0 97
					22.57.00	1372 0	925 940	179	0.96
					23:17.00	1392 0 1412 0	94.0 93.5	182 181	0918 0918
					23:57.00	1432.0	93.5	18 1	0.98
					00:17:00	1452.0	93 5	10 1	0 98
					00 37:00	1472 0	94 0	18 2	0.98
					00.57.00	1492 0	93 5	18 J	0 918
					01:17:00	1512 0	93 5	18 1	0 98

182

	01.37 00	1 10000	94 0	18 2	0.98	
		1532.0	945			
	01 57 00	1552 0		18.3	0 99	i
	02.17.00	1572.0	94 5	18 3	099	1
	02:37.00	1592.0	93.5	18.1	0.98	ł
	02 57.00	1612.0	94.0	18.7	0.98	i
	03.17.00	1632.0	94.5	18.3	0.99	i
			94.5	18.3		'
	03.37.00	1652.0			0.99	ł
	03.57.00	1672.0	95.0	18.4	1.00	i
	64.17:00	1692.0	95.0	18.4	1.00	ļ
	04.37:00	1712.0	94 5	18 3	0.99	ţ
	04.57.00	1732.0	94.5	18.3	0.99	ļ
			95.0	18.4		!
	05.17.00	1752 0				
	05:37:00	17720	95 0	18 4		ì
	05:57:00	1792.0	95 0	18 4	1.00	
	06 17:00	1812.0	95.0	18.4	1.00	ļ
	06 37.00	1832.0	95.0	18.4	1.00	
	06 57 00	1852.0	950	18.4	1.00	
						•
	07:17:00	1872.0	94 5	18 3	0.99	
	07:37:00	1892.0	94.5	18.3	0.99	
	07:57:00	1912.0	94 5	18.3	0.99	•
	08:17:00	1932.0	95	18.4	1.00	
	08:37:00	1952 0	95	18.4	1.00	
			25	18.4	1.00	ł
	08.57:00	1972.0				
	09:17:00	1992.0	95	18.4	1.00	
	09:37:00	2012.0	95	18.4	1.00	
	09:57:00	2032.0	95.5	18 5	1 01	
	10:17:00	2052 0	95	18.4	1.00	
	10.37.00	2072.0	95.5	18.5	1.01	
			95			
	10:57:00	2092.0		18.4	1.00	
	11:17.00	2112.0	95	15 4	1.00	
	11:37:00	2132.0	95	18.4	1.00	
	11:57:00	2152.0	95	18.4	100	
	12 00 00	2155.0	95	18.4	1 00	
	12:17 00	2172.0	95	18.4	1.00	
	12.17 00	2197 0	95	18 4	100	
	12 42 00					
	00:57:00	1492.0	95	18.4	1.00	
	13.18:00	2233.0	95	18.4	1 00	
	13:44:00	2259.0	94.5	18.3	0.99	
	13:59 (0	2274.0	95	18.4	1.00	
	14.59	2334.0	95	13.4	1.00	
	15:20:00	2355 0	95	18 4	1.00	
	15.30.00	2365.0	94	18.2	0.98	
	16:15:00	24100	95	18.4	1.00	
	16.45 00	2440.0	95	18.4	1.00	
	17:28:00	2483 0	95	18.4	1 00	
1						
	17:58.00	2513.0	95	18.4	1.00	
	18:23:00	2538.0	95	18.4	1.00	
	18.37:00	2552.0	95	18 4	1.00	
	18.57 00	2572.0	95	18.4	1.00	
	19:17.00	2592.0	955	18.5	1.01	
j			95	18.4	1.00	
	19.37.00	2612.0		18.4		
1	19.57.00	2632 0	95		1.00	
ļ	20.17:00	2652.0	95	18.4	1.00	
	20.37:00	2672 0	95	18 4	1.00	
	20:57:00	2692.0	95	18.4	1 00	
	21:17:00	2712.0	94.5	18.3	0.99	
	21:37:00	2732.0	95	18.4	1 00	
			95			
	21.57.00	2752.0		18.4	1.00	
ļ	22:17:00	2772.0	94 5	18.3	0.99	
	22.37:00	2792 0	95	18.4	1.00	
	22:57:00	2812.0	94.5	18.3	0.99	
	23 17 00	2932.0	96	18.4	1.00	
			95	18.4	1.00	
	23:37:00	2852.0				
	23:57.00	2872.0	95	18.4	1.00	
	00:17:00	2892.0	95	18.4	1 00	
	00:37:00	2912.0	95	18.4	1.00	
	00.57:00	2932.0	95.5	18.5	1.01 1.00 1.00 1.00	
	01:17:00	2952.0	95	18.4	1 00	
		2972.0	95	18 4	1.00	
	01:37:00				1.00	
	01:57:00	2992.0	95	18.4		
	02.17 00	3012.0	95	18.4	1.00	
	02.37:00	3032.0	95	18.4	1.00 1.00 1.00	
	02 57 00	3052.0	95	18.4	1.00	
1	03 17:00	3072 0	95	18 4	1 00	
1	05 17.00	30740			<u></u>	

0.2 -2 C m= 5=

02 -22 191-Der

y=0.216x-2.229 (OUTLET2) 4.50

y=0.217x-2.116 (OUTLET3)	
4.54	
13.74	
30.7	

		94.5					94 0		
		Outlet2					Outero		
Time		Reading	Conc. No	C/Co	Time		Reading	Conc Na	0.00
mun	min		me/L_		min	antin 🖉		mg/L	
00:05:00	0.0	31.0	4.5	0.00	00:05:00	0.0	30.5	4.5	0.00
00:10:00	5.0	31.5	4.6	0.01	00:10:00	5.0	30.5	4.5	0.00
00:15:00	10 0	31.0	4.5	0.00	00.15:00	10 0	31.0	46	0 01
00:20:00	150	31.0	45	0.00	00:20:00 00:25:00	15.0 20.0	30 5 31.0	45	000 091
09:25:00	20.0	31.5 31.0	4.6	0.00	00 30 00	25.0	31.0	46	0.01
00:30:00	25.0	31.0	4.5	0.00	00.35 00	30 0	31.0	46	0 01
00.35'00 00.40:00	30.0 35.0	31.5	46	0.01	00:40:00	350	31.0	46	001
00:50:00	450	32.0	47	0 01		67.5	5.0		0.00
01:00:00	\$5.0	32.5	4.8	0 02	01.45.00	100 0	470		0 26
01:05:00	60.0	33 0	4.9	0.03	01:50:00	105 0	470	81	0 26
01:10:00	65.0	360	56	0.08	02:10:00	125 0	47.5	8.2	0 27
01:15:00	70.0	43.0	7.1	0 19	02.40.00	155.0	45.5	7.8	0 23
01:20:00	75 0	42.0	6.9	0.17	03 00 00	175.0	49.0	8.5	0 29
01.25:00	80.0	42.5	7.0	0.18	03:15:00	190 0	48.5	8.4	0 29
01:30:00	\$5.0	45 0	7.6	0 22	03:20:00	195.0	48.5	14	0 28
01:35:00	90.0	47.0	8.0	0.25	03 40 00	215 0	49 0	8.5	0 29
01:50:00	105.0	49 0	8.4	028	04:00:00	235.0	48.5	84	0 28
02 10 00	125.0	51.0	8.9	0.31	04:20:00	255.0	51 5	91	0 33
02:32:00	147.0	51.5	9.0	0.32	04:40:00	275.0	\$3.0	94	0 35
02:54:00	169.0	50 5		0.31	05:00:00	295.0	\$5.0	99	0 38
03:16:00	191 0	510	8.9	0.31	05 20 00	315.0	55 0	99	0 38
03.38.00	213.0	50.5	8.8	0.31	05.40:00	335.0	58 5	10.6	0 44
04:00:00	235 0	52 0	91	0 33	06-00-00	355 0	64 0	11.0	0 53
04:22:00	2570	56 5	10 1	0 40	09 59 00	594 0	63 5	117	0 52
04:44:00	279.0	590	10.6	0.44	10 23 00	618 0	64.5	119	0 53
05:06:00	301 0	51.0	11.1	0 47	10 47.00	642 0	65 5	12 2	0.55
05:28:00	323 0	59 5	10 7	0.45	11 11:00	666.0	65 5	12 2	0 55 0 57
05 50 00	3450	61.0	11.1	0.47 0.49	11:35:00	690 C 714 D	66.5 67.0	12 5	0.57
06 12 00	3670	620	11.3	0 49	12 23 00	7380	680	12 7	0.59
06.34:00	389.0 411.0	62.5 66.5	11.4	0.56	12.47 00	762.0	690	12.9	0 61
06:56:00	433.0	65.5	12.0	0.54	13.11:00	7360	70 5	13.3	0 63
07.40.00	455 0	67.0	12.4	0.57	13 35 00	8100	710	13.4	0.64
08:02:00	477.0	68 0	12 6	0.58	13:59:00	\$34.0	710	13.4	0 64
08.24.00	499.0	69.5	12.9	0.61	14:23:00	858 0	71 0	13.4	0.64
08 46:00	521.0	69.5	12.9	0 61	14:47:00	#82 0	720	136	0.65
09 08 00	543 0	69.5	12.9	0.61	15:11:00	906.0	71 5	13.5	0.64
09:30:00	565 0	70 0	13.0	0 61	15:35:00	930 0	74.0	14 0	0.68
09:52:00	587.0	70.5	13.1	0.62	15:59.00	954.0	73 5	13.9	0.68
10.39 00	634.0	83.0	15.9	0.82	16:23:00	978 0	74.5	14-1	0 69
10.59:00	654 0	72 0	13.5	0 64	16:47:00	1002.0	750	14.2	0 70
11:19:00	674.0	77.0	14.6	0.72	17:11:00	1026 0	75 0	14 2	0 70
11:39.00	694.0	75.5	14 2	0 70	17.35 00	1050 0	750	14 2	0 70
11:59.00	714.0	75.5	14.2	0.70	17:59:00	1074 0	735	139	0.68
12:19.00	734.0	780	14.8	0.74	18.23 00	10918 0	750 755	14.2	070 U71
12.39.00	754.0	760	14.3	071	18:56:00	1131.0	75 5 76 0	14 3 14 5	071
12:59:00	774.0	76.0	14.3	071	19:17:00	1152 0 1173 0	77 0	14 7	073
13:19:00	794.0	77.0 78.5	14-6 14.9	0.72	19:59:00	1154.0	77 0	14 7	073
13:39:00	814 0 834.0	785	14.9	0.75	20:20:00	1215.0	77 5	14 8	0.74
13.59:00 14:19:00	\$54.0	79.0	15.0	0.76	20 41 00	1236 0	780	14.9	0 75
14:19:00	874.0	79.5	15.0	0.76	21.02:00	1257 0	73 0	13 8	0 67
14.59.00	194.0	78.0	14.8	0.74	21:23.00	1278 0	780	14.5	0 72
15:19.00	914.0	79.0	15.0	0.76	21:44 00	1299 0	77.5	14 8	0.74
15:39:00	934.0	810	15.4	0.79	22.05.00	1320.0	78.0	14.9	0.75
15:59:00	954.0	82.0	15.7	0.80	22:26:00	1341.0	78 5	150	0 76
16:19.00	974 0	810	15.4	0.79	22.47.00	1362.0	790	15.1	0 76
16:39:00	994.0	81.5	15.6	0 79	23 08.00	1383.0	80.0	15.3	0 78
16:59.00	1014 0	82.5	15.8	0.81	23.29 00	1404.0	82.5	15 9	0.82
17.19:00	1034.0	830	15.9	0 82	23 50 00	1425.0	81 0	15.6	0 79
17.39 00	1054.0	8 3 O	15.9	0 82	00:11:00	1446 0	810	156	0 79
19:35:00	1170 0	84.5	16 2	0 84	00 32 00	1467.0	79 5	15 2	0 77
		85 0	16 3	0 85	00:53.00	14880	79 5	15 2	0 77

21 15 00	1270 0	870	16 8	0.83	01.14.00	1509 0	81.0	156	6 79
21.35 00	1290 0	850	16 3	0 85	01 45,00	1540 0	81.5	157	0.80
21 55 00	13100	790	150	0 76	02 05 00	1560 0	815	15 7	0 80
22 15 00	1330 0	82 0	15 7	0 80	02.25 00	1580 0	83 0	16 0	0 83
22 35 00	1350 0	85 0	16.3	0 85	02 45 00	1600 0	82 0	15.8	6.81
22 55 00	1370 0	860	16 5	0.87	03 05 00	1620 0	830	16.0	0 83
23 15 00	1390 0	86 5	16 6	0.87	03.25.00	1640.0	835	16 1	0 83
23 35 00	14100	850	163	0 85	03.45.00	1660 0	815	15.7	0 80
		870	16 8	0 88	04.05 00	1680 0	830	16 0	0.83
23 55 00	1430 0	870	16.8	0.85	04 25 00	1700 0	84 0	16 2	0.84
00-15-00 00-35-00 i	1450 0	860	16.5	0 87	04 45 00	1720 0	83.5	16 1	0 83
		880	17.0	0.90	05 05 00	1740 0	830	16 0	0 83
00 55 00	1490.0			0.94	05 25.00		82.0	15.8	0.81
02 30.00	15850	910	17.6		05 45 00	17600	84.5	16.3	0.85
02 50 00	1605.0	90.0	17.4	0 93	06.05.00	12000	840	16.2	0.84
03 10 00	1625 0	90 5	17.5	0 94			835	161	083
03 30 00	1645 0	89 5	17.3	0.92	06:25:00	1820 0			
03 50 00	1665.0	89 5	173	0.92	06 45 00	1840 0	84 0	16 2	0 84
04 10 00	16850	89	17 2	6 91	07 05 00	1860.0	84 0	16 2	0.84
04 30 00	1705.0	90	17.4	0 93	07:25:00	1880-0	85.0	16.4	0.86
n5-10-00	1745.0	89 5	173	0.92	07:45:00	1900 0	85 0	16.4	0 86
05.30.00	1765 0	89 5	17.3	0.92	>05.00	1920.0	86 0	166	6.87
05.50.00	1785.0	90	17 4	0.93	08:25.00	1940 0	85.5	16 5	0.87
06 10 00	1805.0	90	17.4	0 93	08.45:00	1960 0	86 0	16.6	0.87
06 30 00	1825 0	90	17.4	0.93	10 47:00	2082.0	86 C	16 6	0.87
06 50.00	1845 0	90	17.4	0 93	11:07:00	2102.0	87 0	16 9	0 89
07 10 00	1865 0	90	17.4	0 93	11:27.00	2122.0	88 0	17.1	0.91
07 340 040	1885.0	90	17.4	0 93	11:47:00	2142.0	88 0	17 1	0 91
7 50 00	1905.0	91	17.6	0 94	12 07:00	2162.0	90.0	17 5	0 94
00 01 80	1925 0	90	17.4	0 93	12 27.00	2182 0	89 5	17.4	0 93
08.30.00	1945 0	90	17.4	0 93	12 47 00	2202 0	90.0	17 5	0.94
09 30 00	2005.0	91	176	0.94	13 07.00	2222 0	89 5	17.4	0.93
09 50 00	2025 0	91	176	0 94	13:27:00	2242.0	900	17.5	0 94
10 10 00	2045 0	91	17.6	0 94	13 47:00	2262 0	89 5	174	0 93
11 24 00	2119 0	86	:4 5	0.87	14:07:00	2282.0	910	177	0 95
1 44 00	2139.0	92	179	0.96	14.27.00	2302.0	90.5	17.6	0.94
12 04 00	2159 0	92	179	0.96	14 47 00	2322.0	905	17.6	0 94
12 24 00	2179 0	91	176	0.94	15:07:00	2342.0	91.0	17.7	0.95
12 44 00	2199.0	92	179	0.96	15 27 00	2362.0	91.0	17.7	0.95
		92 915	177	0.95	15 47 00	2382.0	915	179	0 96
13 04 00	2219 0				16 07 00	2402.0	905	17.6	0.94
3 24 00	2239 0	92 5	18 0	0 97			910		0 95
3 44 00	2259 0	92 5	18 0	0.97	16 27 00	2422 0		17.7	
4 04 00	2279 0	95	18 5	101	16 47:00	2442 0	91.5	17.9	0.96
8 26 00	2541.0	93 5	18.2	0.98	17 07;00	2462 0	940	18 4	1 00
8 54 00	2569 0	94	18 3	0 99	18 17 00	2532 0	920	18 0	0 97
9 14 00	2589 0	94 5	18 4	1.00	18.37.00	2552 0	910	17.7	0 95
9 34 00	2609 0	94 5	18 4	1.00	18 57 00	2372 0	910	177	0.95
9.54 00	2629.0	94 5	18 4	1 60	19 17:00	2592 0	920	18 0	0 97
0 14 00	2649 0	94	18 3	0 99	19.37 00	2612.0	915	179	0.96
0 34 00	2669 0	94 5	18 4	1.00	19.57.00	2632 0	92 0	18 0	0 97
0 54 00	2689 0	95	18.5	1.01	20 17.00	2652 0	915	179	0 96
21 14 00	2709 0	95	18.5	1 01	20 37 00	2672 0	92 0	18 0	0 97
1 34 00	2729 0	94 5	18 4	1.00	20 57.00	2692 0	920	18 0	0 97
21 54 00	2749 0	94.5	18 4	1 00	21 17 00	2712 0	92 5	18 1	0.98
2 14 90	2769 0	95	18.5	1 01	21 37 00	2732.0	930	18 2	0 98
22 34 00	2789 0	95	18 5	1 01	21 57 00	2752.0	925	18.1	0 98
22 54 00	2809.0	94 5	18 4	1.00	22 17 00	2772.0	92 5	18.1	0 98
23 14 00	2809 0	95	18 5	1.01	22.37.00	2792.0	930	18.2	0 98
3 34 00	28490	945	18.5	1.01	22.57.00	2/92 0	930	18 2	0.98
		94 5	18 4	1 00	23.17.00	28120	92.5	18 1	0.98
	2869 0				23 37.00		93.0	18.2	098
23 54 00	2889 0	94 5	18 4	1.00		2852 0			
00 14 00		94 5	18 4	1.00	23 57 00	2872 0	930	18 2	0.98
x0 14 00 x0 34 00	2909 0			100	00 17 00	2892.0	93.5	18.3	0.99
x0 14 00 x0 34 00	2909 0 3115 0	94.5	18 4				•• •		
23 54 00 00 14 00 00 34 00 04 00 00		94 5	18 4		00.37:00	2912 0	93.5	18.3	0.99
00 14 00 00 34 00		94 5	18_4		01:52:00	2987.0	94.5	18 5	1.01
0 14 00 0 34 00		94 5	18 4		01:52:00 02:12:00	2987.0 3007 0	94.5 94 0	18 5 18 4	1.01
0 14 00 0 34 00		94.5	18 4		01:52:00	2987.0	94.5	18 5	1.01

		•⊀ \$2)	(AVERAG	E FROM IN	LET 18 2; 4 52 18 40 13 88								
30 2													
945 Convergence													
H	Tune T/Td Reading Conc No C/Co												
	สามก	ຕາມກ	Td=926		mg.2.								
	00 05 00	00	0.00	342 S 342 D	46	001	ł						
	00 15 00 00 25 00	100 200	0 01	300	45	0.00	1						
	00 35 00	300	0 03	300	4.5	0.00	1						
1	00.45 00	40.0	0.04	30 5	4.6	0.01							
	00.55 00	50.0	0.05	30 5	46	001	1						
	01.05.00	60 0	0.06	30 5	46	0.01							
	01.17.00	72.0 180.0	0.08	3400 301	45 46	0.00	}						
	01 25 00	900	0 09 0 10	100	45	0.00							
	01 45 00	100.0	0 11	30 0	4.5	0.00							
ł	02 01 00	116 0	0 13	33 0	51	0.04	1						
	02 05 00	120 0	0 13	32 5	50	0.04							
	02 15 00	130.0	0 14	350	56	80.0							
	02 25 00 02 35 00	140 0 150 0	015 016	370 360	60 58	011							
	02 35 00	160 0	015	375	61	011							
	02 55 00	170 0	0.18	37 5	61	011							
	03 05 00	180 0	0 19	37.5	61	0 11							
	03 15 00	1900 2000	0 21	346 1 349 0	59 64	010							
1	03 25 00	200 0	0 22 0 23	390 390	64	014							
	034500	220 0	0 24	42 0	71	018							
ł	03 55 00	230 0	0 25	4J O	73	0.20	1						
Í	04 05.00	240.0	0 26	43 0	73	0 20							
	04 15 00	250 0	0 27	44 0 44 5	75 76	0 22 0 22	1						
	04 25 00 04 35 00	260 0	028	410	77	0 23	Ì						
	04 45 00	280 0	030	45 0	77	0 23							
1	04 55 00	290.0	0.31	44.0	84	0 28							
	05 05 00	300.0	0.32	42 0	84	0 28	1						
1	05 15 00	310 0	0 33	490 490	86 86	029							
	05 25 00 05 35 00	3300	035	520	92	0.34							
	05 45 00	340.0	0.37	52 0	92	0.34							
	05 55 00	350 0	0.38	47.0	99	0.39	1						
	06 05 00	360.0	0 39	** *	10 0	039 039	i						
	06 15 00 06 25 00	3700	040	55 D	99 99	0.39							
	06 35 00	390.0	0 42	54 5	10 2	0.41]						
	06 45 00	400.0	0.43	5# 0	10.5	043							
	06 55 00	410.0	0 44	50 C	10 5	0.43							
	07 05 00	420.0	0.45	58 5 58 0	10 6 10 5	044							
	07 15 00	430 0	046 048	540	10.5	043							
i	07.35 00	450 0	0 49	58 5	10.6	0 44							
1	07 45 00	460.0	0.50	58 0	10.5	0 43	Ì						
1	07 55 00	470 0	0 51	60 5	11.1	047							
	08 05 00	480 0 490 0	0.52	610 625	11 2 11 5	048							
	08 15 00 08 25 00	500 0	0 53	62 0	11.4	049							
	08 35 00	510.0	0 55	62 5	11.5	0.50							
	08 45 00	520 0	0 56	63 0	116	0 51							
	08 55 00	530.0	0 57	63 5	117	0 52 0 53							
	09 05 00 09 15 00	540 0 550 0	0 58 0 59	44 0 63 0	11 B 11 6	053	1						
	09 25 00	5600	0.59	115	117	0 52							
	09 35.00	570 0	0 62	¥4 0	118	0 53							
	09 45 00	5800	0 63	68 0	12 0	0 54	1						
	09 55 00	590.0	0 64	68 0	127	059							
	10 05 00	600 0 610 0	0.65	69 0 69 C	129	0.60							
	10 15 00	620 0	0.67	69 5	130	061	1						
	10 35 00	630 0	0.68	C# 5	130	061	l						

104500	640 0	0 69	69 5	13 0	061
		070	70.0	131	0 62
10 55 00	650 0				
110600	6610	071	70 \$	13 2	0 63
11 18 00	6730	0 73	70 \$	13 2	063
11 27 00	682.0	0.74	710	13 3	0 63
11 35 00	6900	0.75	71.0	13.3	063
11 45 00	700.0	0 76	72 8	13.5	0 65
11 55 00	710 0	0 77	72 8	13.5	0.65
		-	71 8		
12 06 00	7210	078		13.4	0.64
12 18 00	7330	0 79	73.0	13 8	0 67
12 20 00	7430	0 20	76.0	14 0	0.68
12 35 00	7500	0.83	74.6	14 0	0.68
12.45 00	7600	0 82	74 \$	14.1	0.69
12.55 00	770 0	0.83	78.0	14 2	070
	7800	0 84	76 0	14 2	070
13 05 00					
13 15.00	7900	0 85	78.8	14.3	0.70
13 25 00	800 0	0.86	76.0	14-4	0.71
13.35.00	810.0	0 87	76.0	14.4	071
13 45 00	\$200	0 89	76.0	14.4	0.71
13 55 00	830 0	0 90	76 5	14.5	0 72
14.05.00	840 6	0 9 1	77.0	14 6	0.73
14 15 00	850 0	0 92	76.0	14.4	071
		0.93	78.0	14 8	0.74
14 25 00	860 0				
14 35 00	\$70.0	0.94	78 0	14 8	0 74
14 45 00	8800	0 95	77 0	14 6	073
14 55 00	8900	0 96	78.0	14 8	0 74
15 05 00	900.0	097	79 5	15 2	0 77
15 25 00	9200	0 99	81.0	15 5	079
15 35 00	930 0	1.00	81.0	15.5	0 79
15 45 00	940.0	1 02	80.0	15.3	0 77
				15.4	0.78
15 55 00	950.0	1 03	80 5		
16 05 00	960 0	1.04	810	15 5	079
16 15 00	970 0	1 05	\$1 0	15.5	079
16.25.00	9180 0	106	\$1.0	15 5	079
16 35 00	9900	107	620	157	0 81
16 45 00	1000 0	1.08	\$3.0	139	0 82
16 55 00	1010.0	1 09	83 0	15.9	0 82
17 05 00			83.0	15.9	0 12
	1020 0	1 10	•		
17 15 00	1030 0	111	83.0	159	0.82
17 25 00	1040.0	112	83 5	16 0	0 83
17.35.00	1050 0	1.13	63 0	159	0 82
17 45 00	1060 0	1.14	84 0	16 1	0 84
17 55 00	1070 0	1 16	86.0	16 4	0 85
18 05 00	10800	117	86 0	16.4	0 85
18 15 00	1090.0	118	83.5	160	0 83
		1 19		16 1	0.84
18 25 00	1100.0		84 0		
18 35 00	11100	1.20	84 0	16 1	0 84
18 45 00	1120.0	1 21	84 5	16 2	0 84
18 55 00	1130 0	1.22	96 O	16 4	0.85
19 05 00	1140 0	1 23	84 0	16 1	0 84
19 15 00	1150 0	1 24	83 5	16 0	0 83
19 25 00	1160.0	1 25	85 0	16.4	0 85
19 35 00	1170 0	1 26	64 0	16 1	0.84
19 45 00	1180 0	1.27	85 0	16 4	0.85
19 55 00	1190 0	1 29	0.40	16 1	0 84
20 05 00	1200 0	1.30	96 0	16 4	0 85
20 15 00	1210.0	1 31	8 5 5	16 5	086
20 25.00	1220 0	1.32	86 5	16 7	0.88
20.35 00	1230.0	1.33	870	16 8	0.88
20 45 00	1240 0	1.34	87.0	16 9	0.88
20 55 00	1250 0	1 35	86.0	16 6	0 87
			66.5	167	0.88
21 05 00	1260 0	1 36			
21:15:00	1270 0	1.37	86 0	16 6	0 87
21 25 00	12800	1 38	85 .0	16 4	0 85
21 35 00	1290.0	1 39	86.0	16.4	0 85
21 45 00	1300 0	1.40	85 0	16 4	0.85
21 55 00	1310.0	141	86 0	16 6	0 87
22 05 00	1320.0	143	86 5	16 7	0 88
22 15 00	1330 0	144	86.5	16 7	0 88
					0 88
22 25 00	1340 0	145	87.0	16 8	
22 35 00	1350 0	1 46	87.0	16.8	0.88
22:45:00	1360 0	147	87.0	16 8	0.88
22,55.00	1370 0	1.48	\$7.0	16 8	0.88
23 05 00	1380 0	1 4 9	87.0	16 8	0.88
23 15 00	1390 0	1 50	87.0	16 8	0.818
23.25 00	1400 0	1 51	87.0	16 8	0 88
				16.8	0 #8
23 35.00	1410 0	1 52	070		
23 45 00	1420 0	1.53	\$7.C	16 8	0.85
23.55.00	1430.0	1.54	ØT.0	16 8	0.88
00.02.00	1440 0	1 56	86 0	170	0.80
00 15 00	1450.0	1 57	88 0	17.0	0 90
00 25 00	1460.0	1.58	87 0	16 8	0 88
00 35 00	1470 0	1 59	.70	16 8	0 88
00 45 00	1480 0	1 60	86.0	170	0 90
1	1400 0				

00.55-00	1490.0	161	87.5	16 9	0 89
01 05 00	15000	1 62	87 5	16 9	0 89
01:15:00	15100	1 63	87 0	16 1	0 10
01 25 00	15200	1 64	87 8	16 9	0 89
01 35 00	1530 0	165		17.0	0.90
01 45 00	1540 0	1 66		170	0 90
01:55:00	1550 0	167		17.2	0 91
02:05:00	15600	1.63	60 a	17.2	0.91
02 15 00	1570 0	1 70		17.0	0.90
02 23 00	15800	171		171	0 91
02 35 00	1590 0	1 72		17.2	0 91
0245-00	1600.0	173	88.0	17.2	0 91
02.55:00	16100	4.74	99 0	17 2	0 91
03:05:00	16200	1 75	99 0	17.2	0 91
03.25:00	16400	1.77	\$0 0	17.4	0 93
03 35 00	16500	178	100	174	0 93
03 45.00	1660 0	1.79	88.5	17 3	0 92
03:55:00	1670 0	1 80	891	17.3	0 92
04:05:00	16800	1.81	88 5	17.3	0.92
04:15:00	1690.0	1.83	88.5	17.3	0.92
04:25:00	1700.0	1.84		17.0	0 90
04.35:00	1710.0	1.85		17.2	0 91
04 45:00	1720 0	1 16	90.0	17.4	0.93
04.55 00	1730.0	1 87	90 0	17.4	0 93
05.05.00	1740 0	1 82	80 0	17.4	0.93
05.15 00	1750 0	1 89	89 L	17.3	0 92
05 25 00	1760 0	1 90	66 5	17.3	0.92
05:35:00	1770 0	1.91	99.5	17 3	0 92
05 45 00	17500	1.92	90 0	17.4	0 93
05 55:00	1790.0	1.93	89 5	17.3	0 92
06 05 00	180 N	1.94	90.5	17 5	0 94
06.10.00	12050	195	90.5	17.5	094
06.25.00	18200	197	90 5	17.5	0 94
06:35:00	1830 0	1 98	91 D	17.6	0.95
06.45.00	1840.0	1.99	90 5	17 5	0 94
06 55 00	1850 0	2 00	910	17.6	0.95
07.05 00	1860 0	201	90 5	17 5	0 94
07:15:00	1870.0	2 02	\$1 B	176	0.95
07.25 00	1880 0	2 03	91 D	17.6	0.95
07.35 00	1890 0	204	910	176	0.95
I I					094
07.45:00	1900 0	2 05	90 5	17 5	
07 55 00	1910.0	2 06	90 0	17 4	0 93
08.05.00	19200	2 07	910	176	0.95
081500	1930.0	2.06	\$10	176	0 95
08.25 00	19400	210	91 0	176	0 95
04.35.00	19500	2 1 1	91.0	176	0 95
08 45 00	1960.0	212	91 0	176	0.95
08.55.00	1970 0	2 13	12 0	179	0 96
09 05 00	1980 0	2 14	910	17.6	0 95
09 15 00	1990 0	2 15	80 5	17 5	0 94
09.25 00	2000.0	216	\$10	176	0 95
09.35:00	2010 0	2 17	910	176	0 95
09.45.00	20200	2 18	\$10	176	0 95
09.55.00	2030.0	2 19	910	176	0 95
10 05 00	2040 0	2 20	910	17.6	0 95
10 15 00	2050.0	2 21	910	17.6	0.95
	2050.0	2.22	910	176	0 95
10 25.00	20700		910	176	0.95
10 35 00		2 24 2.25			0.95
10 45 00	20600		\$1.D	176	
10.55.00	2090 0	2 26	81.5	178	0.95
11:05:00	2100 0	2 27	91 5	17.8	0.95
11.15:00	21100	2 28	\$1.5	17.8	0 95
11:25:00	2120.0	2.29	81.0	17.6	0.95
11.35:00	2130.0	2.30	\$1.5	178	0 95
11.45.00	2140 0	231	91.8	17.8	0 95
11:55 00	2150.0	2.32	81.5	17.8	0 95
12 05.00	2160 0	2 33	91.5	17.8	0 95
12 15 00	2170.0	2 34	\$1.5	17 🛢	0.95
12 25 00	2180 0	2.35	82.0	17.9	0 96
12.35.00	2190 0	2 37	87.0	17.9	0 96
12:45:00	2200 0	2 38	82 0	17.9	0 %6
12:55:00	2210 0	2.39	91.5	17 8	0.95
13 05 00	2220 0	2.40	82.0	179	0 %
13 15 00	22300	241	92 0	17.9	0 96
13.25:00	22400	2 4 2	82 0	17.9	0.96
	1			17.9	0.96
13 36 00	22510	2.43	92.0	17.9	096
13 45.00	2260 0		92 0		
13 55 00	2270 0	2.45	92.0	17.9	096
14:05:00	2280 0	2.46	\$2.0	179	0.96
14:15:00	2290 0	2.47	92.5	18.0	0 97
14.32.00	2307.0	2 49	\$2.0	179	0 96
14:39:00	2314.0	2 50	92.0	179	0 96
14.46:00	23210	2.51	¥2.0	179	0 %
15:00:00	23350	2 52	92 6	18 0	0 97

15 10 00 245 0 255 72.5 17.9 0.65 15 25 00 2570 2.56 72.5 18.0 0.97 15 35 00 2280 0 2.57 88.8 18.1 0.98 15 25 00 2280 0 2.51 88.8 18.1 0.98 16 12 00 2407 0 2.60 88.8 18.1 0.98 16 35 00 2420 0 2.61 89.8 18.1 0.98 16 35 00 2440 0 2.65 88.8 18.1 0.98 17 35 00 2460 0 2.66 89.8 18.1 0.98 17 35 00 2460 0 2.66 89.8 18.1 0.98 17 35 00 250 0 2.71 89.8 18.1 0.98 17 35 00 250 0 2.75 89.8 18.2 0.98 18 35 00 250 0 2.76 89.8 18.2 0.98 18 35 00 250 0 2.76 89.8 18.2 0.98						
15 25 00 2300 0 235 978 180 0.97 15 35 00 2300 0 257 818 181 0.98 15 15 00 2300 0 2.51 818 181 0.98 16 12 00 2407 0 2.60 818 181 0.98 16 12 00 2407 0 2.60 818 181 0.98 16 35 00 2400 0 2.61 828 181 0.98 17 05 00 2460 0 2.65 818 181 0.98 17 05 00 2460 0 2.66 818 181 0.98 17 35 00 2500 0 2.77 818 181 0.98 17 35 00 2500 0 2.77 818 181 0.98 18 35 00 2500 0 2.76 818 182 0.98 18 35 00 2500 0 2.78 818 182 0.98 18 35 00 2500 0 2.78 818 182 0.98 18 35 00 2500 0 2.78 818 182 0.98 18 35 00	1 15 10 00	1 1145.0	2 53	97 A	179	0.96
13 35 00 2370 0 2.36 92.8 18 0 0.97 13 5 200 2370 0 2.40 83.8 18 1 0.98 15 5 200 2400 0 2.61 92.8 18 1 0.98 16 25 00 2400 0 2.61 92.8 18 1 0.98 16 45 00 2400 0 2.63 83.8 18 1 0.98 17 05 00 2460 0 2.64 83.8 18 1 0.98 17 15 00 2460 0 2.66 83.8 18 1 0.98 17 35 00 2460 0 2.66 83.8 18 1 0.98 17 45 00 250 0 2.71 83.6 18 1 0.98 17 45 00 250 0 2.75 83.8 18 2 0.98 18 15 00 250 0 2.76 83.8 18 2 0.98 18 35 00 250 0 2.78 83.8 18 2 0.98 18 35 00 250 0 2.81 83.8 18 2 0.98					18.0	0.07
13 97:00 2392.0 2.57 94.9 18 1 0.98 15 35 00 2407.0 2.60 94.9 18 1 0.98 16 12 00 2407.0 2.61 97.8 18 1 0.98 16 35 00 2400.0 2.61 97.8 18 0 0.97 16 45 00 2400.0 2.63 93.8 18 1 0.98 17 05 00 2460.0 2.65 93.8 18 1 0.98 17 15 00 2460.0 2.66 92.8 18 0 0.97 17 35 00 2460.0 2.66 92.8 18 0 0.97 17 35 00 250.0 2.71 93.8 18 1 0.98 18 05 00 250.0 2.73 93.8 18 1 0.98 18 35 00 250.0 2.74 83.8 18 1 0.98 18 35 00 250.0 2.75 93.8 18 1 0.98 19 500 250.0 2.75 93.8 18 1 0.98 19 500 250.0 2.75 93.8 18 1 0.98						
13 58 00 293 0 2 58 94 8 18 1 0.98 16 12 00 2420 0 2 61 97 16 9 0.95 16 35 00 2420 0 2 61 97 0.96 16 35 00 2420 0 2 61 97 0.96 16 35 00 2460 0 2 63 93 8 18 1 0.97 16 45 00 2460 0 2 67 97 8 18 0 0.97 17 35 00 2500 0 2 70 93 8 18 1 0.98 17 45 00 2500 0 2 71 93 8 18 1 0.98 18 15 00 2500 0 2 71 93 8 18 1 0.98 18 15 00 2500 0 2 73 94 8 18 2 0.98 18 350 2500 0 2 76 93 8 18 2 0.98 18 350 2500 0 2 78 94 8 18 2 0.98 19 50 0 2500 0 2 78 94 8 18 2 0.98 19 50 0 2 500 0						
16 12.00 2.40 0 2.60 18.1 0.99 16 12.00 2.61 17.9 0.96 16 15.00 2400 2.63 83.8 18.1 0.99 16 15.00 2450 2.65 83.8 18.1 0.99 17 15.00 2460 2.65 83.8 18.1 0.99 17 15.00 2460 2.67 83.8 18.1 0.99 17 15.00 2460 2.67 83.8 18.1 0.99 17 15.00 2500 2.71 83.8 18.1 0.99 1805.00 2520 2.72 83.8 18.1 0.99 1805.00 250.0 2.73 83.8 18.2 0.99 1805.00 2550.0 2.76 83.8 18.2 0.99 1805.00 2550.0 2.79 64.8 18.2 0.99 19.55.00 2550.0 2.71 63.8 18.2 0.99 19.55.00 2550.0 2.83 18.2						
16.25 00 2420 0 2.61 978 17.9 0.96 16.35 00 2400 0 2.65 93.8 18.1 0.97 16.55 00 2450 0 2.65 93.8 18.1 0.97 17.15 00 2400 0 2.66 93.8 18.1 0.97 17.25 00 2400 0 2.67 93.8 18.1 0.97 17.35 00 2400 0 2.69 93.8 18.1 0.98 17.45 00 2500 0 2.70 93.8 18.1 0.98 18.00 2500 0 2.73 93.8 18.2 0.98 18.15 00 2500 0 2.76 93.8 18.2 0.98 18.35 00 2500 0 2.76 93.8 18.2 0.98 18.35 00 2500 0 2.76 93.8 18.2 0.98 19.35 00 2500 0 2.81 93.8 18.2 0.98 19.35 00 2500 0 2.81 93.8 18.2 0.98 <tr< td=""><td>15.58 00</td><td>2393.0</td><td></td><td>93.8</td><td>18-1</td><td>0.98</td></tr<>	15.58 00	2393.0		93.8	18-1	0.98
16.25 00 2420 0 2.61 978 17.9 0.96 16.35 00 2400 0 2.65 93.8 18.1 0.97 16.55 00 2450 0 2.65 93.8 18.1 0.97 17.15 00 2400 0 2.66 93.8 18.1 0.97 17.25 00 2400 0 2.67 93.8 18.1 0.97 17.35 00 2400 0 2.69 93.8 18.1 0.98 17.45 00 2500 0 2.70 93.8 18.1 0.98 18.00 2500 0 2.73 93.8 18.2 0.98 18.15 00 2500 0 2.76 93.8 18.2 0.98 18.35 00 2500 0 2.76 93.8 18.2 0.98 18.35 00 2500 0 2.76 93.8 18.2 0.98 19.35 00 2500 0 2.81 93.8 18.2 0.98 19.35 00 2500 0 2.81 93.8 18.2 0.98 <tr< td=""><td>16:12:00</td><td>2407.0</td><td>2 60</td><td>13.0</td><td>18.1</td><td>0.98</td></tr<>	16:12:00	2407.0	2 60	13.0	18.1	0.98
16.35 00 2430 0 2 62 974 18 0 0.97 16.45 00 2450 0 2.65 83.8 18.1 0.98 17 05 00 2460 0 2.66 83.8 18.1 0.97 17 05 00 2460 0 2.66 83.8 18.1 0.97 17 35 00 2460 0 2.66 83.8 18.1 0.97 17 35 00 2460 0 2.67 83.8 18.1 0.98 17 45 00 2500 0 2.70 83.8 18.1 0.98 18 15 00 2550 0 2.73 83.8 18.1 0.98 18 25 00 2500 0 2.76 83.8 18.2 0.98 18 35 00 2500 0 2.80 18.3 0.99 19.35 0.2500 2.80 18.3 0.99 19 35 00 2600 0 2.81 83.8 18.2 0.98 18 45 00 2650 0 2.85 83.8 18.2 0.98 19 35 00 2660 0 <td< td=""><td></td><td></td><td></td><td>47.6</td><td></td><td>0.96</td></td<>				47.6		0.96
16 45 00 240 0 2 63 83.8 18.1 0.98 16 55 00 2450 0 2 65 83.8 18.1 0.98 17 05 00 2460 0 2 67 87.8 18.0 0.97 17 35 00 2460 0 2 68 97.8 18.0 0.97 17 35 00 2460 0 2 69 81.8 10 0.98 17 45 00 2500 0 2.70 83.8 18.1 0.98 17 45 00 2500 0 2.71 83.8 18.1 0.98 18 05 00 2500 0 2.76 83.8 18.2 0.98 18 15 00 2500 0 2.76 83.8 18.2 0.98 18 35 00 2500 0 2.78 63.8 18.2 0.98 19 05 00 2500 0 2.79 64.8 18.3 0.99 19 05 00 2500 0 2.81 63.8 18.2 0.98 19 35 00 2500 0 2.81 63.8 18.2 0.98 19 35 00 2500 0 2.85 63.8 18.2 0.98 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></tr<>						
16 55 00 2500 2600 265 800 18.1 0.98 17 05 00 2460 0 2 64 800 18.1 0.97 17 15 00 2400 0 2 69 800 18.1 0.97 17 35 00 2400 0 2 69 800 18.1 0.98 17 45 00 2500 0 2.70 80.0 18.1 0.98 17 35 00 2500 0 2.73 80.0 18.1 0.98 18 15 00 2500 0 2.74 80.8 18.2 0.98 18 450 0 2500 0 2.76 80.8 18.2 0.98 18 450 0 2500 0 2.77 80.8 18.2 0.98 19 50 0 2500 0 2.80 80.8 18.2 0.98 19 50 0 2500 0 2.80 80.8 18.2 0.99 19 50 0 2600 0 2.81 80.8 18.2 0.98 20 50 0 2.60 2.85 80.8 18.2 0.98						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16 45 00	2440.0	2 63	83.8		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16:55 00	2450 0	2.65	\$3.8	18.1	0.98
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3460.0	246	83.8	18.1	0.98
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2430.0				0.97
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17:35 00	2490 0	2 69	\$3.8		
18 0 5002320 02.7280.018.10.9818 1 5002500 02.7380.018.10.9818 2 5002550 02.7480.818.20.9818 35002550 02.7680.818.20.9818 45002570 02.7960.818.10.9619 05002500 02.7960.818.10.9619 25002500 02.8160.818.10.9619 25002500 02.8160.818.20.9619 35002500 02.8460.818.20.9620 15002500 02.8460.818.20.9620 15002500 02.8560.818.20.9620 25002560 02.8760.818.10.9620 25002560 02.8661.818.20.9620 35002570 02.9780.818.10.9620 35002560 02.9981.818.20.9620 35002560 02.9066.818.30.9921 15002710 02.9385.818.20.9621 25002700 02.9681.819.20.9621 35002750 02.9785.818.20.9621 35002750 02.9785.818.20.9621 35002760 02.9681.81.9921.55021 35002760 02.9785.818.20.96	17:45:00	2500.0	2,70	10.0	18.1	0.98
1805 00 2530 0 2.72 830 18.1 0.98 1815 00 2530 0 2.73 830 18.1 0.98 1825 00 2560 0 2.75 833 18.2 0.98 1845 00 2560 0 2.76 833 18.2 0.98 1845 00 2560 0 2.79 640 18.3 0.99 1950 00 2560 0 2.81 633 18.1 0.98 1955 00 2560 0 2.83 66 13.3 0.99 195 300 2560 0 2.85 633 18.2 0.98 20 1500 2560 0 2.85 633 18.2 0.98 20 1500 2560 0 2.85 633 18.2 0.98 20 1500 2560 0 2.85 633 18.2 0.98 20 1500 2560 0 2.85 633 18.2 0.98 20 1500 2560 0 2.85 633 18.2 0.98 21 0500 </td <td>17 45 00</td> <td>2510.0</td> <td>2.71</td> <td>83.0</td> <td>18.1</td> <td>0.96</td>	17 45 00	2510.0	2.71	83.0	18.1	0.96
18 15 002330 02.7363.018 10.9618 25 002550.02.7463.818.20.9618 45 002560.02.7653.818.20.9618 45 002560.02.7653.818.20.9619 05 002560.02.7763.018.10.9619 15 002560.02.7763.018.10.9619 15 002560.02.8063.818.10.9619 35 002600.02.8163.818.20.9619 35 002600.02.8163.818.20.9619 35 002640.02.8563.818.20.9620 15 002640.02.8563.818.20.9620 15 002660.02.8563.818.20.9620 15 002660.02.8663.818.20.9620 35 002660.02.9064.818.30.9921 05 00270.02.9264.018.30.9921 15 00270.02.9264.018.30.9921 15 00270.02.9464.818.10.9621 15 00270.02.9464.818.10.9621 15 00270.02.9565.818.10.9621 15 00270.02.9665.818.20.9621 15 00270.02.9665.818.20.9621 15 00270.02.9665.818.20.96 <td></td> <td></td> <td></td> <td></td> <td>19.1</td> <td>0.98</td>					19.1	0.98
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
18.35 002550 02.7583.818.20.9818.45 002570 02.7883.818.20.9819.05 002500 02.7964.818.30.9919.15 002500 02.8063.818.10.9819.25 002500 02.8164.818.30.9919.35 002600 02.8164.818.30.9919.35 002600 02.8364.818.20.9820.05 002640 02.8564.818.20.9820.15 002640 02.8564.818.20.9820.35 002640 02.8564.818.20.9820.35 002640 02.8564.818.20.9820.35 002640 02.8664.818.20.9820.35 002640 02.8664.818.20.9820.45 002670 02.9964.818.30.9921.15 002710 02.9385.818.20.9821.25 002740 02.9664.818.30.9921.35 002760 02.9785.818.20.9821.45 002760 02.9685.818.20.9821.45 002760 02.9685.818.20.9821.45 002760 02.9785.818.20.9821.45 002760 03.0185.818.20.9821.45 002760 03.0686.818.41.00<						
18 4500 2260.0 2.76 83.1 11.2 0.98 18 4500 2500.0 2.77 83.0 18.1 0.98 19 0500 2580.0 2.80 63.8 18.1 0.98 19 3500 2580.0 2.80 63.8 18.1 0.98 19 3500 2600.0 2.81 63.8 18.2 0.98 19 3500 2630.0 2.83 66.8 18.3 0.99 19 3500 2650.0 2.85 63.8 18.2 0.98 20 1500 2650.0 2.86 63.8 18.2 0.98 20 1500 2660.0 2.90 63.8 18.2 0.98 20 1500 2660.0 2.90 64.8 18.3 0.99 21 0500 2700.0 2.92 96.8 18.2 0.98 20 1500 2700.0 2.92 96.8 18.3 0.99 21 1500 2700.0 2.92 96.8 18.1 0.98 21 1500 2700.0 2.95 63.8 18.2 0.98 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
18 55.00 2270 0 2.70 85.0 18.1 0.96 19 05.00 2280 0 2.70 85.0 18.1 0.96 19 15.00 2500 0 2.80 65.0 18.3 0.96 19 25.00 2600 0 2.81 65.8 18.2 0.96 19 35.00 2600 0 2.83 66.0 18.3 0.96 20 55.00 2660 0 2.85 65.8 18.2 0.96 20 55.00 2660 0 2.87 65.8 18.2 0.96 20 55.00 2660 0 2.87 65.8 18.2 0.96 20 55.00 2660 0 2.87 65.8 18.2 0.96 20 55.00 2680 0 2.89 85.8 18.2 0.96 20 45.00 2580 0 2.90 85.8 18.2 0.96 21 05 00 2700 0 2.93 85.8 18.2 0.96 21 15 00 2710 0 2.93 85.8 18.2 0.96 21 15 00 2700 0 2.96 85.8 18.2 0.96	18.35.00	2550.0	2.75	10.1	18.2	0.98
185500 23700 2.78 83.8 18.1 0.98 190500 23800 2.79 84.8 18.3 0.98 191500 23800 2.80 65.8 18.3 0.99 193500 2600 2.81 84.8 18.2 0.98 193500 2600 2.83 84.8 18.2 0.99 193500 2600 2.84 85.8 18.2 0.98 201500 26500 2.86 85.8 18.2 0.98 202500 26600 2.87 93.5 18.1 0.98 203500 26600 2.87 93.5 18.2 0.98 203500 2690.0 2.99 85.8 18.2 0.98 203500 2690.0 2.90 86.8 18.2 0.98 210500 2700.0 2.92 86.8 18.2 0.98 213500 2710.0 2.93 85.8 18.2 0.98 214500 2760.0 2.96 85.8 18.2 0.98 214500 27	114500	2560.0	2.76	\$3.5	18.2	0.98
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				83.6	18.1	0.96
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
19 25:00 2600.0 2.81 63.8 18.2 0.98 19 35:00 2610.0 2.82 98.5 18.3 0.99 19 35:00 2620.0 2.83 98.5 18.3 0.99 20 05:00 2650.0 2.85 68.8 18.2 0.98 20 05:00 2660.0 2.87 69.5 18.1 0.98 20 25:00 2660.0 2.87 69.5 18.1 0.98 20 25:00 2660.0 2.87 69.5 18.1 0.98 20 25:00 2660.0 2.89 69.8 18.2 0.98 20 35:00 2690.0 2.90 69.8 18.3 0.99 21 05:00 2700.0 2.93 69.8 18.2 0.98 21 15:00 2710.0 2.93 69.8 18.1 0.99 21 15:00 2760.0 2.98 68.8 18.2 0.98 21 15:00 2760.0 2.98 68.8 18.2 0.98						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19.35.00	2610 0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2.83		18.3	0.99
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3630.0			18.2	0.98
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20:35:00	2670.0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20.45:00	2680.0	2.89	93. <u>5</u>	18.2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20:55:00	2690.0	2.90	94.0	18.3	0.99
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21:05:00	2700.0	2.92	94 0	18.3	0 99
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.98
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22:05.00	2760 0		83.5		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22.15 00	2770 0	2.99	83.6	18.2	0.98
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22:25:00	27800	3.00	63 0	18 1	0.98
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3 01	83.5	18.2	0 98
22 55 00 22 10 0 3 03 94 6 18 3 0 99 23 05 00 22 20 0 3 05 94 0 18 3 0 99 23 05 00 22 30 0 3 05 94 0 18 3 0 99 23 15 00 22 00 3 05 94 0 18 3 0 99 23 15 00 22 00 3 07 94 8 18 4 1 00 23 15 00 22 00 3 07 94 8 18 4 1 00 23 45 00 22 00 3 07 94 8 18 4 1 00 0 05 00 22 00 3 10 94 5 18 4 1 00 0 05 00 29 00 3 13 94 5 18 4 1 00 0 05 300 29 10 3 15 94 5 18 4 1 00 0 05 300 29 20 0 3 15 94 5 18 4 1 00 0 05 300 29 20 0 3 17 94 5 18 4 1 00 0 15 300 29 20 0 3 19 94 5 18 4 1 00 <t< td=""><td></td><td></td><td></td><td></td><td>18.3</td><td>0 99</td></t<>					18.3	0 99
23 05 00 2820 0 3 05 60 18 3 0.99 23 15 00 2800 0 3 06 64 5 164 1 00 23 25 00 2800 0 3 07 64 5 164 1 00 23 35 00 2800 0 3 07 64 5 184 1 00 23 45 00 2800 0 3 07 64 5 184 1 00 23 45 00 2800 0 3 10 64 5 184 1 00 00 55 00 2800 0 3 11 64 5 184 1 00 00 55 00 2800 0 3 12 64 5 184 1 00 00 55 00 2900 0 3 12 64 5 184 1 00 00 55 00 2900 0 3 14 64 5 184 1 00 00 55 00 2900 0 3 17 64 5 184 1 00 01 55 00 2900 0 3 21 64 5 184 1 00 01 55 00 2970 0 3 21 64 5 184 1 00						0.99
23.1500 2300 3.66 95 184 1.00 23.2300 2400 3.07 95 184 1.00 23.3500 2460 3.07 95 184 1.00 23.3500 2460 3.07 95 184 1.00 23.5500 2460 3.09 96 18.3 0.99 23.5500 2460 3.09 96 18.3 0.99 23.5500 2460 3.11 95 18.4 1.00 00.5500 2460 3.11 95 18.4 1.00 00.2500 2920 3.15 95 18.4 1.00 00.5500 2920 3.15 95 18.4 1.00 01.500 2960 3.17 95 18.4 1.00 01.500 2960 3.21 95 18.4 1.00 01.500 2960 3.22 95 18.4 1.00 01.500 2960 3.22 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
23 35 00 23 50 0 3 08 94.8 18.4 1.00 23 45 00 2860 0 3 09 90 18.3 0.99 23 55 00 2870 0 3 10 94.5 18.4 1.00 00 05 00 2880 0 3 11 94.5 18.4 1.00 00 15 00 2890 0 3 12 94.5 18.4 1.00 00 25 00 2900 0 3 12 94.5 18.4 1.00 00 35 00 2910 0 3 14 94.5 18.4 1.00 00 35 00 2920 0 3 15 94.5 18.4 1.00 00 45 00 2920 0 3 16 94.5 18.4 1.00 01 50 0 2920 0 3 17 94.5 18.4 1.00 01 15 00 2960 0 3 22 94.5 18.4 1.00 01 35 00 2970 0 3 21 94.5 18.4 1.00 01 45 00 2990 0 3 22 94.5 18.4 1.00 <	23.15.00					
23 45 00 2860 0 3 09 96 0 18 3 0 99 23 55 00 2870 0 3 10 64.8 18.4 1.00 00 05 00 2880 0 3 11 64.8 18.4 1.00 00 15 00 2890 0 3 12 54.8 18.4 1.00 00 25 00 2900 0 3 13 64.8 18.4 1.00 00 35 00 2910 0 3 13 64.8 18.4 1.00 00 35 00 2920 0 3 15 54.8 18.4 1.00 00 45 00 2920 0 3 15 54.8 18.4 1.00 01 55 00 2960 0 3 19 64.5 18.4 1.00 01 15 00 2960 0 3 22 64.8 18.4 1.00 01 35 00 2960 0 3 22 64.8 18.4 1.00 01 55 00 2960 0 3 22 64.8 18.4 1.00 01 55 00 2960 0 3 23 64.8 18.4 1.00	23:25:00	2540 0	3 07	94.5		
23 45 00 23 65 00 3 09 96 0 18 3 0 99 23 55 00 2870 0 3 10 94 5 18 4 1.00 00 55 00 2860 0 3 11 96 5 18 4 1.00 00 15 00 2860 0 3 12 96 5 18 4 1.00 00 25 00 2800 0 3 12 96 5 18 4 1.00 00 25 00 2900 0 3 13 96 5 18 4 1.00 00 35 00 2920 0 3 15 96 5 18 4 1.00 00 55 00 2920 0 3 15 96 5 18 4 1.00 01 55 00 2960 0 3 19 96 5 18 4 1.00 01 15 00 2960 0 3 22 96 5 18 4 1.00 01 35 00 2960 0 3 22 96 5 18 4 1.00 01 55 00 2960 0 3 22 96 5 18 4 1.00 01 55 00 2960 0 3 22 96 5 18 4 1.00	23 35 00	2150.0	3.08	94.5	18.4	1.00
23 55 00 2870 0 3.10 94.5 18.4 1.00 00 55 00 2860 0 3.11 94.5 18.4 1.00 00 15 00 2860 0 3.12 94.5 18.4 1.00 00 15 00 2900 0 3.12 94.5 18.4 1.00 00 25 00 2900 0 3.13 94.5 18.4 1.00 00 35 00 2910 0 3.14 94.5 18.4 1.00 00 45 00 2920 0 3.15 94.5 18.4 1.00 00 45 00 2920 0 3.17 94.5 18.4 1.00 01 50 0 2920 0 3.17 94.5 18.4 1.00 01 15 00 2960 0 3.21 94.5 18.4 1.00 01 35 00 2970 0 3.21 94.5 18.4 1.00 01 45 00 2990 0 3.22 94.5 18.4 1.00 01 45 00 2990 0 3.23 94.5 18.4 1.00		2860.0	3.09	94 D	18.3	0.99
00 05 00 2280 0 3.11 84 5 18.4 1.00 00 15 00 2990 0 3.12 84 5 18.4 1.00 00 25 00 2900 0 3.12 84 5 18.4 1.00 00 25 00 2910 0 3.14 84 5 18.4 1.00 00 35 00 2920 0 3.15 84 5 18.4 1.00 00 45 00 2920 0 3.15 84 5 18.4 1.00 00 45 00 2920 0 3.16 84 5 18.4 1.00 01 50 0 2940 0 3.17 84 5 18.4 1.00 01 15 00 2960 0 3.22 84 5 18.4 1.00 01 35 00 2970 0 3.21 84 5 18.4 1.00 01 45 00 2990 0 3.23 84 5 18.4 1.00 01 45 00 2990 0 3.24 84 5 18.4 1.00 02 15 00 3020 0 3.26 84 5 18.4 1.00						
00 15 00 2290 0 3 12 94 5 18.4 1.00 00 25 00 290 0 3 13 94 5 18.4 1.00 00 35 00 291 0 3 14 94 5 18.4 1.00 00 35 00 292 0 3 15 94 5 18.4 1.00 00 45 00 292 0 3 15 94 5 18.4 1.00 01 55 00 293 0 3 16 94 5 18.4 1.00 01 55 00 295 0 3 17 94 5 18.4 1.00 01 15 00 295 0 3 21 94 5 18.4 1.00 01 25 00 296 0 3 22 94 5 18.4 1.00 01 45 00 2990 0 3 22 94 5 18.4 1.00 01 45 00 2990 0 3 23 94 5 18.4 1.00 02 15 00 3020 0 3 24 94 5 18.4 1.00 02 15 00 3020 0 3 27 94 5 18.4 1.00						
00 25 00 2900 0 3 13 94.8 18.4 1.00 00 35 00 2910 0 3 14 94.8 18.4 1.00 00 45 00 2920 0 3 15 94.8 18.4 1.00 00 55 00 2920 0 3 15 94.8 18.4 1.00 00 55 00 2930 0 3 17 94.8 18.4 1.00 01 15 00 2960 0 3 17 94.5 18.4 1.00 01 15 00 2960 0 3 20 94.5 18.4 1.00 01 13 00 2960 0 3 22 94.5 18.4 1.00 01 45 00 2990 0 3 22 94.5 18.4 1.00 01 45 00 2990 0 3 22 94.5 18.4 1.00 01 45 00 2990 0 3 23 94.5 18.4 1.00 02 15 00 3010 0 3 25 94.5 18.4 1.00 02 25 00 3020 0 3 25 94.5 18.4 1.00						
00.3500 2910.0 314 94.5 18.4 1.00 00.4500 2920.0 3.15 94.5 18.4 1.00 00.5500 2920.0 3.15 94.5 18.4 1.00 00.5500 2930.0 3.16 94.5 18.4 1.00 01.05.00 2940.0 3.17 94.5 18.4 1.00 01.15.00 2960.0 3.20 94.5 18.4 1.00 01.35.00 2970.0 3.21 94.5 18.4 1.00 01.45.00 2960.0 3.22 94.5 18.4 1.00 01.45.00 2960.0 3.22 94.5 18.4 1.00 01.45.00 2960.0 3.23 94.5 18.4 1.00 02.05.00 3000.0 3.24 94.5 18.4 1.00 02.15.00 3020.0 3.27 94.5 18.4 1.00 02.35.00 3050.0 3.27 94.5 18.4 1.00						
00.45 00 2920 0 3.15 94.8 18.4 1.00 00.55 00 2930 0 3.16 94.8 18.4 1.00 01.05 00 2940 0 3.17 94.8 18.4 1.00 01.15 00 2920 0 3.17 94.5 18.4 1.00 01.15 00 2920 0 3.19 94.5 18.4 1.00 01.25 00 2960 0 3.20 94.5 18.4 1.00 01.35 00 2970 0 3.21 94.5 18.4 1.00 01.45 00 2990 0 3.22 94.5 18.4 1.00 02.05 00 3.22 94.5 18.4 1.00 02.05 00 3.24 94.5 18.4 1.00 02.15 00 3020 0 3.27 94.5 18.4 1.00 02.25 00 3050 0 3.27 94.5 18.4 1.00 02.25 00 3050 0 3.27 94.5 18.4 1.00 03.05 00 3.26 94.5 18.4		2900.0	3.13	94.5		
00 45 00 2920 0 3 15 94.5 18.4 1.00 00 55 00 2930 0 3 16 94.5 18.4 1.00 01 55 00 2940 0 3 17 94.5 18.4 1.00 01 15 00 2960 0 3 19 94.5 18.4 1.00 01 15 00 2960 0 3 20 94.5 18.4 1.00 01 25 00 2960 0 3 22 94.5 18.4 1.00 01 45 00 2960 0 3 22 94.5 18.4 1.00 01 45 00 2960 0 3 22 94.5 18.4 1.00 01 55 00 2960 0 3 22 94.5 18.4 1.00 02 15 00 3000 0 3 23 94.5 18.4 1.00 02 15 00 3020 0 3 27 94.5 18.4 1.00 02 25 00 3020 0 3 27 94.5 18.4 1.00 02 55 00 3050 0 3 27 94.5 18.4 1.00	00.35:00	2910 0	3.14	94.5	18.4	1.00
00 55 00 2930 0 3 16 94.8 18.4 1.00 01 15 00 2960 0 3 17 94.5 18.4 1.00 01 15 00 2960 0 3 17 94.5 18.4 1.00 01 125 00 2960 0 3 20 94.5 18.4 1.00 01 25 00 2960 0 3 20 94.5 18.4 1.00 01 35 00 2970 0 3 21 94.5 18.4 1.00 01 45 00 2990 0 3 23 94.5 18.4 1.00 01 55 00 2990 0 3 23 94.5 18.4 1.00 02 55 00 300 0 3 24 94.5 18.4 1.00 02 25 00 302 0 3 26 94.5 18.4 1.00 02 35 00 3040 0 3 27 94.5 18.4 1.00 02 35 00 3050 0 3 29 94.5 18.4 1.00 03 35 00 3050 0 3 32 94.5 18.4 1.00					18.4	1.00
01.05.00 2940.0 3.17 94.5 18.4 1.00 01.15.00 2960.0 3.19 94.5 18.4 1.00 01.25.00 2960.0 3.20 94.5 18.4 1.00 01.35.00 2970.0 3.21 94.5 18.4 1.00 01.35.00 2970.0 3.21 94.5 18.4 1.00 01.45.00 2960.0 3.22 94.5 18.4 1.00 01.45.00 2960.0 3.22 94.5 18.4 1.00 02.05.00 300.0 3.24 94.5 18.4 1.00 02.05.00 3020.0 3.26 94.5 18.4 1.00 02.15.00 3020.0 3.27 94.5 18.4 1.00 02.35.00 3050.0 3.27 94.5 18.4 1.00 02.45.00 3050.0 3.29 94.5 18.4 1.00 03.05.00 3.30 94.5 18.4 1.00 03.50.0						1.00
011500 2900 319 95 114 100 012500 2960.0 320 95 114 100 012500 2960.0 320 95 114 100 013500 2970.0 321 95 114 100 013500 2970.0 321 95 114 100 015500 2990.0 323 95 118 100 021500 3000.0 324 95.5 118 100 021500 3020.0 326 95.5 118 100 023500 3020.0 326 95.5 118 100 023500 3020.0 326 95.5 118 100 023500 3050.0 3.29 95.5 118 100 031500 3050.0 3.29 95.5 118 100 031500 3060.0 3.30 95.5 18.4 100 032500 3060.0 3.33						•
01 250 250 51 64 114 1.00 01 2500 2500 3.20 64.5 18.4 1.00 01 3500 2970 3.21 64.5 18.4 1.00 01 45.00 2990 0 3.22 64.5 18.4 1.00 01 55.00 2990 0 3.22 64.5 18.4 1.00 02 55.00 300.0 3.24 64.5 18.4 1.00 02 150.0 301.0 3.25 64.5 18.4 1.00 02 350.0 3.26 64.5 18.4 1.00 02 350.0 3.27 64.5 18.4 1.00 02 350.0 3.28 64.5 18.4 1.00 02 350.0 3.28 64.5 18.4 1.00 03 550.0 3.30 64.5 18.4 1.00 03 350.0						
013500 29700 3.21 945 184 1.00 014500 29600 3.22 945 184 1.00 014500 29600 3.22 945 184 1.00 015500 29600 3.23 945 184 1.00 020500 30000 3.24 945 184 1.00 021500 30100 3.25 943 184 1.00 021500 30200 3.26 945 184 1.00 023500 30200 3.27 945 184 1.00 024500 30400 3.27 945 184 1.00 025500 30500 3.26 945 184 1.00 03500 30500 3.30 945 184 1.00 031500 30600 3.30 945 184 1.00 031500 3300 3.34 945 184 1.00 033500 3000 3.3						
01 + 5 + 00 2980 0 3 + 22 95 % 18 4 1.00 01 + 5 + 00 2990 0 3 + 23 96 % 18 4 1.00 02 + 5 + 00 3000 0 3 + 24 96 % 18 4 1.00 02 + 5 + 00 3000 0 3 + 25 96 % 18 4 1.00 02 + 5 + 00 3020 0 3 + 25 96 % 18 4 1.00 02 + 5 + 00 3020 0 3 + 25 96 % 18 4 1.00 02 + 5 + 00 3020 0 3 + 25 96 % 18 4 1.00 02 + 5 + 00 3040 0 3 + 28 96 % 18 4 1.00 02 + 5 + 00 3050 0 3 + 28 96 % 18 4 1.00 03 + 5 + 00 3050 0 3 + 30 96 % 18 4 1.00 03 + 15 + 00 3 + 18 1.00 3 + 18 1.00 0 + 18 1.00 03 + 5 + 00 3 + 5 18 4 1.00 3 + 5 18 4 1.00 03 + 5 + 00 3 + 5		2960.0	3.20			
014500 2990.0 3.22 #4.5 18.4 1.00 015500 2990.0 3.23 #4.5 18.4 1.00 020500 3000.0 3.24 #4.5 18.4 1.00 021500 3000.0 3.25 #4.5 18.4 1.00 021500 3020.0 3.25 #4.5 18.4 1.00 022500 3020.0 3.27 #4.5 18.4 1.00 023500 3030.0 3.27 #4.5 18.4 1.00 024500 3050.0 3.28 #4.5 18.4 1.00 030500 3050.0 3.27 #4.5 18.4 1.00 031500 3050.0 3.30 #5.5 18.4 1.00 031500 3060.0 3.30 #5.5 18.4 1.00 033500 3060.0 3.33 #5.5 18.4 1.00 033500 3060.0 3.34 #5.5 18.4 1.00 034500 </td <td>01:35:00</td> <td>2970.0</td> <td>3.21</td> <td></td> <td>18 4</td> <td>1.00</td>	01:35:00	2970.0	3.21		18 4	1.00
01.55 00 2990.0 3 23 945 18.4 1.00 02.05 00 3000.0 3 24 94.5 18.4 1.00 02.15 00 3010.0 3 25 94.5 18.4 1.00 02.25 00 3020.0 3 26 94.5 18.4 1.00 02.25 00 3020.0 3 26 94.5 18.4 1.00 02.35 00 3040.0 3 27 94.5 18.4 1.00 02.45 00 3040.0 3 27 94.5 18.4 1.00 03.50 0 3050.0 3 29 94.5 18.4 1.00 03.50 0 3050.0 3 32 94.5 18.4 1.00 03.50 0 3050.0 3 33 94.5 18.4 1.00 03.50 0 3080.0 3 33 94.5 18.4 1.00 03.50 0 3090.0 3 33 94.5 18.4 1.00 03.50 0 3090.0 3.35 94.5 18.4 1.00		29100	3.22	\$4.5	18.4	1.00
02 05 00 3000 0 3 24 94.8 18.4 1.00 02 15 00 3010 0 3 25 94.3 18.4 1.00 02 15 00 3020 0 3 25 94.3 18.4 1.00 02 25 00 3020 0 3 27 94.8 18.4 1.00 02 35 00 3040 0 3 27 94.8 18.4 1.00 02 45 00 3040 0 3 27 94.8 18.4 1.00 02 55 00 3050 0 3 27 94.8 18.4 1.00 03 05 00 3050 0 3 27 94.8 18.4 1.00 03 15 00 3050 0 3 30 94.5 18.4 1.00 03 15 00 3060 0 3 33 94.5 18.4 1.00 03 35.00 3060 0 3 34 94.5 18.4 1.00 03 35.00 3000 0 3 35 94.8 18.4 1.00 03 45.00 3100 0 3 35 94.8 18.4 1.00						
02 15 00 3010 0 3 25 94.8 18.4 1.00 02 25 00 3020 0 3 26 94.8 18.4 1.00 02 35 00 3000 0 3 27 94.8 18.4 1.00 02 35 00 3000 0 3 27 94.8 18.4 1.00 02 45 00 3060 0 3.28 94.8 18.4 1.00 02 55 00 3050 0 3.29 94.5 18.4 1.00 03 50 0 3060 0 3.30 94.5 18.4 1.00 03 15 00 3070 0 3.32 94.5 18.4 1.00 03 25 00 3080 0 3.33 94.5 18.4 1.00 03 35.00 3090 0 3.34 94.5 18.4 1.00 03 45.00 3100 0 3.35 94.8 18.4 1.00 03 45.00 3100 0 3.35 94.8 18.4 1.00 03 45.00 3100 0 3.35 94.8 18.4 1.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.00</td>						1.00
02 25 00 3020 0 3 26 94 8 18 4 1.00 02 35 00 3030 0 3 27 94 5 18 4 1.00 02 45 00 3040 0 3 27 94 5 18 4 1.00 02 45 00 3050 0 3 28 94 5 18 4 1.00 03 55 00 3050 0 3 29 94 5 18 4 1.00 03 55 00 3050 0 3 29 94 5 18 4 1.00 03 55 00 3060 0 3.30 94 5 18 4 1.00 03 15 00 3070 0 3.32 94 5 18 4 1.00 03 25 00 3090 0 3.34 94 5 18 4 1.00 03 35 00 3090 0 3.34 94 5 18 4 1.00 03 45 00 3100 0 3.35 94 8 18 4 1.00 03 45 00 3100 0 3.36 94 8 18 4 1.00						
02 35 00 3030 0 3 27 94 8 18 4 1.00 02 45 00 3060 0 3.28 94 5 18 4 1.00 02 55 00 3050 0 3.28 94 5 18 4 1.00 03 05 00 3050 0 3.30 94 5 18 4 1.00 03 05 00 3060 0 3.30 94 5 18 4 1.00 03 15 00 3060 0 3.32 94 5 18 4 1.00 03 15 00 3060 0 3.32 94 5 18 4 1.00 03 35 00 3060 0 3.34 94 5 18 4 1.00 03 35 00 3060 0 3.34 94 5 18 4 1.00 03 45 00 310 0 3.35 94 8 18 4 1.00 03 45 00 310 0 3.36 94 8 18 4 1.00						
02 45 00 3040 0 3.28 94.5 18.4 1 00 02 55 00 3050 0 3.29 94.5 18.4 1 00 03 05 00 3060 0 3.30 94.5 18.4 1 00 03 15 00 3060 0 3.30 94.5 18.4 1 00 03 15 00 3070 0 3.32 94.5 18.4 1 00 03 25 00 3080 0 3 33 94.5 18.4 1 00 03 35 00 3090 0 3.34 94.5 18.4 1 00 03 45 00 3100 0 3.35 94.5 18.4 1 00 03 45 00 3100 0 3.36 94.5 18.4 1 00						
023500 30500 3.29 94.5 114 1.00 030500 30500 3.29 94.5 114 1.00 031500 30500 3.29 94.5 114 1.00 031500 30700 3.32 94.5 118.4 1.00 032500 30800 3.33 94.5 118.4 1.00 0335.00 30800 3.34 94.5 118.4 1.00 034500 31000 3.35 94.5 118.4 1.00 034500 3100 3.35 94.5 118.4 1.00						
03 05 00 3660 0 3.30 54 8 18.4 1.00 03 15 00 3070 0 3.32 56 8 18.4 1.00 03 25 00 3080 0 3.33 56 8 18.4 1.00 03 35 00 3090 0 3.34 56 8 18.4 1.00 03 45 00 3000 0 3.35 66 8 18.4 1.00 03 45 00 3100 0 3.35 66 8 18.4 1.00 03 55 00 3110 0 3.36 564.8 18.4 1.00						
03 15 00 3.72 94.5 18.4 1.00 03.25 00 3090 0 3.33 94.5 18.4 1.00 03.35.00 3090 0 3.34 94.5 18.4 1.00 03.45.00 3100 0 3.35 94.5 18.4 1.00 03.45.00 3100 3.35 94.5 18.4 1.00 03.45.00 3100 3.36 94.5 18.4 1.00						
03 15 00 3070 0 3.32 94.8 18.4 1.00 03 25 00 3080 0 3.33 94.8 18.4 1.00 03 25 00 3.00 0 3.34 94.8 18.4 1.00 03 45.00 3000 3.34 94.8 18.4 1.00 03 45.00 3100 3.35 94.8 18.4 1.00 03 55 00 3110 3.36 94.8 18.4 1.00	03 05 00					
03.25.00 3080.0 3.33 94.5 18.4 1.00 03.35.00 3090.0 3.34 94.5 18.4 1.00 03.45.00 3100.0 3.35 94.8 18.4 1.00 03.45.00 3100.0 3.35 94.8 18.4 1.00		3070.0	3.32	94.5	18.4	1.00
03:35:00 3090 0 3.34 94.5 18.4 1.00 03:45:00 3100 0 3.35 94.5 18.4 1.00 03:55:00 3110 0 3.36 94.5 18.4 1.00					18.4	1.00
03:45:00 3100 0 3.35 94.6 18.4 1.00 03:55:00 3110.0 3.36 94.6 18.4 1.00						
03.55.00 3110.0 3.36 \$4.5 18.4 1.00		20100				
04 25 00 3140 0 3.39 \$4.5 19.4 1 00						
	04 25.00	3140.0	3.39	94.5	18.4	1 00

APPENDIX 2: WOLF - RESNICK MODEL

FILTERS AND CLEARWELL (140 ML/d) WOLF-RESHICK MODEL: C/Co=1-exp(-A*(T-B))

ITERATION	LOSS	PARAMETER	VALUES
0	0.6302559D+00	0.1200D+01	
ī	0.2539767D+00	0.2086D+01	
2	0.2079244D+00		
3	0.2076854D+00		
i i	0.2076588D+00		
5	0.2076588D+00	0.1807D+01	
6	0.2076588D+00		

DEPENDENT VAL	RIABLE IS	c/co		•
SOURCE	SUM-OF-SQUARES	DF	MEAN-SQUARE	
REGRESSION	27.999	1	27.999	
RESIDUAL	0.208	41	0.005	
TOTAL	29.008	42		
CORRECTED	4.137	41		

•

RAW R-SQUARED (1-RESIDUAL/TOTAL) = 0.993 CORRECTED R-SQUARED (1-RESIDUAL/CORRECTED) = 0.950

PARAMETER	ESTIMATE	
λ	1.807	(NON LINEAR REGRESSION)
В	0.73	(DETERNIDE GRAPHICALLY)

FILTERS AND CLEARWELL (180 ML/d) WOLF-RESNICK NODEL: C/Co=1-exp(-A*(T-B))

ITERATION	LOSS	PARAMETER	VALUES	
0	0.2041478D+00	0.1200D+01		
-	0.2041135D+00	0.1191D+01		
1 2	0.20409870+00			
3	0.2040987D+00			
DEPENDENT VAR	LABLE IS	C/Co		
SOURCE	SUN-OF-SQUARES	d t m	lan-square	
REGRESSION	29.776	1	29.776	
RESIDUAL	0.204	45	0.005	
TOTAL	27.329	46		
CORRECTED	3.266	45		
RAW R	-SQUARED (1-RES)	DUAL/TOTAL)	=	0.993
	SQUARED (1-RESI		MED) =	0.938
PARAMETER	estinate			

PARARETER	ESTIMATE	
λ	1.194	(NON LINEAR REGRESSION)
В	0.62	(DETERMINED GRAPHICALLY)

CLARIFIER NO WOLF-RESNICK		exp (- λ *	(T-B))	
ITERATION 0	LOSS 0.2672162D-01		er values Di	
	0.2669448D-01			
1 2 3	0.2669416D-01			
3	0.2669416D-01	0.1605D+0	01	
dependent var	LABLE IS	c/Co		
SOURCE	SUM-OF-SQUARES	DF	Mean-Square	•
REGRESSION	11.397	1	11.397	
RESIDUAL	0.027	34	0.001	
TOTAL	11.799	35		
CORRECTED	3.049	34		
RAN R Corrected R-S	-Squared (1-res) Squared (1-res)	DUAL/TOTA	L) = ICTED) =	0.998 0.991

PARAMETER	estinate	
λ	1.605	(NON LINEAR REGRESSION)
В	0.22	(DETERMINED GRAPHICALLY)

RESERVOIR NO.2 (141 ML/d) WOLF-RESNICK MODEL: C/Co=1-exp(-A*(T-B))

ITERATION	LOSS	PARAMETER	VALUES
0	0.2541460D+00	0.1530D+01	
1	0.2541207D+00	0.1542D+01	
2	0.2540645D+00	0.1537D+01	
3	0.2540638D+00	0.1537D+01	
4	0.2540638D+00	0.1537D+01	

DEPENDENT VARIABLE IS C/Co

SOURCE	SUM-OF-SQUARES	D₽	MEAN-SQUARE	
REGRESSION	52.801	1	52.801	
RESIDUAL	0.254	81	0.003	
TOTAL	52.409	82		
CORRECTED	4.466	81		

RAW R-SQUARED (1-RESIDUAL/TOTAL) = 0.995 CORRECTED R-SQUARED (1-RESIDUAL/CORRECTED) = 0.943

.

.

PARAMETER	estimate		
A	1.537	(NON LINEAR	
B	0.04	(DETERMINED	GRAPHICALLY)

RESERVOIR NO.2 (167 ML/d) WOLF-RESNICK MODEL: C/Co=1-exp(-A*(T-B))						
ITERATION	LOSS	PARAMETER	VALUES			
0	0.2472576D+00	0.1580D+01				
	0.2471727D+00					
2	0.2471364D+00					
1 2 3	0.2471364D+00					
DEPENDENT VAF	ALABLE IS	c/co				
SOURCE	SUM-OF-SQUARES	DF ME	an-square	•		
REGRESSION	60.743	1	60.743			
RESIDUAL	0.247	87	0.003			
TOTAL	59.209	88				
CORRECTED	4.272	87				
RAW R	-SQUARED (1-RES	IDUAL/TOTAL)	=	0.996		
CORRECTED R-S	SQUARED (1-RESI	DUAL/CORRECT	ED) =	0.942		
	estimate					
PARAMETER	1.58		EAR REGRESSION)			
X			NED GRAPHICALL			
В	0.02	(DETERMI	and grownichth	• /		

В	0.02	(DETERMINED	GRAPHICALLI
RESERVOIR NO.1 (180 ML/d) WOLF-RESNICK NODEL: C/Co=1-exp(-A*(T-B))

ITERATION	LOSS	PARAMETER	VALUES
0	0.74374400-01	0.18700+01	
1	0.7436906D-01	0.1868D+01	
2	0.74369000-01	0.1868D+01	
3	0.7436900D-01	0.1868D+01	

DEPENDENT VARIABLE IS C/Co

SOURCE	SUM-OF-SQUARES	DF	MEAN-SQUARE
REGRESSION	42.291	1	42.291
RESIDUAL	0.074	67	0.001
total	42.030	68	
Corrected	4.526	67	

RAW R-SQUARED (1-RESIDUAL/TOTAL)0.998CORRECTED R-SQUARED (1-RESIDUAL/CORRECTED)0.984

•

PARAMETER	estinate		
*	1.868	(NON LINEAR	REGRESSION)
В	0.22	(DETERMINED	GRAPHICALLY)

RESERVOIR NO WOLF-RESNICK	.1 (230 ML/d) MODEL: C/Co=1	-exp(-&*(T-	-8))	
ITERATION	LOSS	PARAMETER	VALUES	
0	0.9053236D-01			
1	0.9052473D-01			
1 2 3	0.9052469D-01	0.2224D+01		
3	0.90524690-01			
DEPENDENT VAR	IABLE IS	C/Co		
SOURCE	SUM-OF-SQUARES	DF ME	an-square	•
REGRESSION	33.572	1	33.572	
RESIDUAL	0.091	47	0.002	
TOTAL	33.557	48		
CORRECTED	2.693	47		
RAW R	-SQUARED (1-RESI	DUAL/TOTAL)	=	0.997
CORRECTED R-S	SQUARED (1-RESID	UAL/CORRECT	'ED) =	0.966
PARAMETER	estimate			
λ	2.224	(NON LI	NEAR REGRESSION)	

A B	0.16	(DETERMINED	GRAPHICALLY)

RESERVOIR NO	.3 (179	ML/d)
WOLF-RESNICK	MODEL:	$C/Co=1-exp(-A^{*}(T-B))$

ITERATION	LOSS	PARAMETER	VALUES
0	0.1457287D+00	0.1680D+01	
1	0.1457164D+00	0.1685D+01	
2	0.1457131D+00	0.1683D+01	
3	0.1457131D+00	0.1683D+01	

DEPENDENT VARIABLE IS C/Co

SOURCE	SUM-OF-	SQUARES	DF	MEAN-SQUARE	•
REGRESSION		55.877	1	55.877	
RESIDUAL		0.146	81	0.002	
TOTAL		56.396	82		
CORRECTED		4.808	81		
RAW R	-SQUARED	(1-RESID	AL/TOT	'AL) =	0.9
				•	0.01

RAW	R-SOUARED	(1-RESIDUAL/TOTAL)	=	0.997
		(1-RESIDUAL/CORRECTED)	=	0.970

PARAMETER	ESTIMATE		
A	1.683	(NON LINEAR	REGRESSION)
В	0.01	(DETERMINED	GRAPHICALLY)

RESERVOIR NO WOLF-RESNICK	.3 (198 ML/d) MODEL: C/Co=3	l-ezp (- A *	(T-B))	
ITERATION	LOSS	PARAME	ER VALUES	
0	0.20355370+00	0.1590D+	01	
1	0.2029091D+00	0.1632D+	01	
1 2	0.2025005D+00	0.1616D+	01	
3	0.2025001D+00			
4	0.2025001D+00			
DEPENDENT VAL	RIABLE IS	C/Co		•
SOURCE	SUN-OF-SQUARES	DF	MEAN-SQUARE	
REGRESSION	26.949	1	26.949	
RESIDUAL	0.203	57	0.004	
TOTAL	26.113	58		
CORRECTED	3.294	57		
RAW R	-SQUARED (1-RES)	DUAL/TOT	L) =	0.992
	SQUARED (1-RESIL			0.939

PARAMETER	estinate		
λ	1.616	(NON LINEAR	REGRESSION)
B	0.01	(DETERMINED	(PAPTICALLY)

RESERVOIRS NOS. 1,2,3 (170 ML/d) WOLF-RESNICE MODEL: C/Co=1-exp(-A*(T-B))

ITERATION	LOSS	PARAMETER	VALUES
0	0.7016456D-01	0.1600D+01	
1	0.70085120-01	0.1596D+01	
2	0.70084900-01	0.1596D+01	
3	0.70084900-01	0.1596D+01	

DEPENDENT VAS			
SOURCE	SUN-OF-SQUARES	DF	MEAN-SQUARE
REGRESSION	212.603	1	212.603
RESIDUAL	0.070	298	0.000
TOTAL	210.994	299	
CORRECTED	17.934	298	

	(1-RESIDUAL/TOTAL) (1-RESIDUAL/CORRECTED)	=	1.000
CORRECTED R-SQUARED	(1-KESIDUAL/CORRECTED)	-	0.990

PARAMETER	estinate	
λ.	1.596	(NON LINEAR REGRESSION)
B	0.11	(DETERNINED GRAPHICALLY)

APPENDIX 3: REBHUN - ARGAMAN MODEL

FILTERS+CLEARWELL (140 ML/d) - REBHUN-ARGAMAN MODEL

REAL			CORRECTI	ON
200	(To-Ti)/Td	log(1-C/Co)	(To-Ti)/Td	log(C/Co)
0.00	0.00	0.00	-0.73	0 62
0.00	0.19	0.00	-0.54	0 46
0.00	0.24	0.00	- C . S *	0.42
0.00	0 30	0.00	-6.C	0.37
0 00	0.35	0 00	-0 36	0.32
0.00	0.41	0.00	-0.32	0.28
0.00	0.46	0.00	-0.27	0.23
0.00	0.51	0.00	-0.22	0.18
0.00	0.57	0.00	-0.16	0.14
0.00	0 62	0.00	-0.11	0.09
0.00	0.68	0.00	-0.05	0.05
0.02	0 73	-0.01	0.00	-0.05
0.04	0.78	-0.02	0.11	-0.09
0.14	0.89	-0.07	0.16	-0.14
0.18	0.95	-0.08	0 22	-0 18
0.27	1.00	-0.14	0.27	-0.23
0.33	1.05	-0.18	0 32	-0 28
0.46	1.11	-027	0.38	-0 32
0.56	1.16	-0.35	0.43	-0.37
0 58	1.22	-038	0.49	-0 42
0.66	1.27	-0.47	0 54	-0 46
0.69	1.32	-0.50	0.59	-0.51
0.56	1 38	-0.35	0.65	-0 55
074	1 43	-0 58	0.70	-0.60
0.83	1.49	-078	0.76	-0 65
0.76	1.54	-0.61	081	-0 69
0 90	1.59		0.86	-0.74
0 87	1.65	-0.88	0.92	-0 78
0 95	1.70	-1.27	0.97	-0 83
0 94	176 -	-1.21	1.03	-0 88
095	1.89	-1.27	1 16	-0 99
087	2 03	-0 68	1 30 1 43	-1.11 -1.22
0.85	2 16	-0.82	1 43	-1 34
1.01 0.96	2.30 2.43	-3 00 -1 44	1 70	-1 45
102	2 57	-1 44	1 84	-1.57
1 02	2.70	-3 00	1 97	-1.68
1 02	2 84	-3.00	2 11	-1.80
098	2 97	-173	2 24	-1 91
091	3 16	-106	2 43	-2 08
0 98	3 24	-1.73	2 51	-2 15
0.95	3 38	-1.27	2 65	-2 26
0 96	3 65	-1.44	2 92	-2 49
0 97	3 78	-1.56	3 05	-2 61
1 07	3 92	-3 00	3 19	-272
1 08	4 05	-3 00	3 32	-2 84
1.08	4 15	-3 00	3 42	-2 92
1.09	4.32	-3.00	3.59	-3 07
0 89	4 46	-0 94	3 73	-3.18
1 00	4 59	-2.87	3 86	-3 30
1 00	4 86	-2.87	4 14	-3 53
1.04	4 97	-3 00	4.24	-3 62

CALCULATION

Regression: About 90% of the Data (Log 0 1=-1) The Non-Zero C/Co Started at 0 03 Intercept=loge p/(1-p 0 6228 >>>> p= 58 9% slope=(-)loge /(1-d)(1-p)= -0 8536 >>>> d= -23 8%

Regression Statistics	
Multiple R	0 93
R Square	0.86
Adjusted R Squar	0.80
Standard Error	0 11
Observations	17.00

najusieu in oquai	
Standard Error	
Observations	

Analysis of Variance

	đ	um of Square	Meen Square	F	ionificance l	F
Regression	1 00	1.15	1 15	101 46	4.54E-08	•
Residual	16 00	0.18	0.01			
Total	17.00	1.33				
	Coefficients	Standard Error	t Statuto	P-velue	Lower 95%	Upper 95%
Intercept	0.00	#N/A	#N/A	#N/A	#N/A	#N/A
xi	-0 85	0 05	-16 76	C 00	-0 96158	-0 74569

FILTERS+CLEARWELL (180 ML/d) - REBHUN-ARGAMAN MODEL

		-			
REAL			CORRECTA		CALCULAT
CICo	(To Ti)/Td			log(C/Co)	
0.01	0 00	0.00	-0.62	0.30	Regression
001	0.07	0.00 0.00	-0.55 -0.48	0.27	The Non-Ze Intercept=k
0 00 0 00	0.14 0.21	0.00	-0.41	0.20	slope=(-)loge /(
-0 01	0 28	0.00	-0.34	0.17	
-0 01	0 34	0.00	-0.28	0.14	
-0.01	0.41	0 00	-0.21	0 10	
000	0.48	0.00	-0.14	0.07	
0.00	0.55	0.00	-0.07	0.03	
0.05	0.69	-0.02	0.07	-0 03	
0 11	0.76	-0.05	0.14	-0.07	
0 17	0.83	-0.08	0.21	-0.10	
0.19	0.90	-0.09	0 28	-0.14	
0.29	097	-0.15	0.34 0.41	-0.17	
0.48	1 03 1.10	-0.21 -0.28	0 48	-0.24	
046	1.17	-0.27	0.55	-0.27	
0 59	1 24	-0 38	0 62	-0.30	
0 61	1.31	-0.41	0.69	-034	
0 67	1.38	-0.48	0.76	-0 37	
0 59 0 74	1 45 1.52	-0.39 -0.58	083 090	-0 44	
0.79	1.59	-0 68	0.97	-0 47	
0 67	1 66	-0 49	1 03	-0 51	
074	1 72	-0 59	1 10	-054	
0 82 0 82	1.79 1.86	-0.74	1.17 1.24	-0.58	
0 79	1.93	-0.68	1.31	-0.64	
0.81	2 00	-073	1.38	-0 68	
0 81	2.07	-0 73	1.45	-071	
0 87	2 24	-0.90	1.62	-0.80	
0.88	2 41 2 59	-0.92	1 79 1.97	-0 88 -0.97	
0 83 0 89	2 76	-0.98	2.14	-1.05	
0 85	2 93	-0 83	2 31	-1 13	
0 93	3 10	-1 15	2.48	-1.22	
0 93	3.28	-1 15	2 66	-1.30	
0 93	3 45	-1.15	283 300	-1.39 -1.47	
0 87 0 87	3.62	-0 90 -0 90	3 17	-1 56	
0.90	3 97	-1.01	3.34	-1 64	
0 92	4 14	-1.07	3 52	-1 73	
0 85	4 31	-0.83	3 69	-1.81	
0.92 0.95	4 48 4 66	-1.07 -1 30	3.86 4.03	-1.90 -1.98	
096	4.83	-1.36	4 21	2 07	
0.96	5.00	-1 36	4 38	-2 15	
0 92	5 17	-1.07	4 55	-2 24	
0 98	5 34	-179	472	-2 32	
0 90 0 94	5.52 5.69	-1 01 -1.19	490 507	-2 41 -2 49	
0 90	5.86	-1 01	5.24	-2 57	
0 87	6 03	-0 88	5 41	-2 66	
0 85	6 21	-0 81	5 59	-2.74	
On an an internation					
Repression Statistics		-			
Muttiple R	0.94				
R Square	0 88				
Adjusted R Squar	0 84				
Standard Error Observations	0.11 27.00				
Observations	21.00				
Analysis of Vallance					
	đ	Sum of Squere	Meen Squere	F	ignificance F
Regression	1 00 26 00	2 11 0 29	211	186 82	0.00
Residual Total	27 00	2 40	0.01		
	Confficients	Standard Error	t Stabatic	P-veixe	Lower #5% Upper #5%
=+=====+	0.00		#N/A	#N/A	#N/A #N/A
Intercept x1	-0 00 -0 49	#N/A 0.02	-27 51	0.00	-053 -045

CALCULATION

Regression: About 90	to of the l	Deta (Log 0.1	=-1)
The Non-Zero C/Co S	tarted at I	0.03	
Intercept=loge p/(1-p	0 3049	>>>> bz	41.2%
slope=(-)loge /(1-d)(1-p)=	-0.4913	>>>> d=	-50.5%

054			CORRECTIO	
REAL C/Co	(To-Ti)/Td	log(1-C/Co)	(To-Ti)/Td	log(C/Co)
0.00	0.01	0 00	-0.22	0.16
	the second s	0.00	-0.19	0.14
0.00	0.03	0.00	-0.19	
0.00	0.06 0.08	0.00	-0.14	0.12 0.10
0.01 0.01	0.08	0.00	-0.14	0.08
0.00	0.13	0.00	-0.09	0.07
0.00	0.15	0.00	-0.07	0.05
0.00	0.17	0.00	-0.05	0.03
0.00	0.20	0.00	-0.02	0.02
0.02	0.22	-0.01	0.00	0.00
0.07	0.24	-0.03	0.02	-0.02
0.08	0.27	-0.03	0.05	-0 03
0 09	0.29	-0.04	0.07	-0.05
0.13	0 31	-0.06	0 09	-0.07
0.13	0.34	-0.06	0.12	-0.08
0.18	0.36	-0.08	0.14	-0.10
0.20	0 38	-0.10	0.16	-0.12
0.27	0.41	-0 14	0.19	-014
0.27	0.43	-0.14	0.21	-0 15
0.30	0.45	-0.15	0.23	-0 17
0.31	0.48	-0.16	0.26	-0.19
0.34	0 50	-0.18	0.28	-0.20
0.37	0.55	-0.20	0 33	-0.24
0.42	0 57	-0.23	0.35	-0.25
0.43	0.59	-0.24	0.37	-0.27
0.45	0.62	-0.26	0.40	-0.29
0.48	0.64	-0 29	0 42	-0.30
0.49	0 66	-0.30	0 44	-0 32
0.51	0.69	-0.31	0 47	-034
0.55	0 74	-0 35	0 52	-0.38
0 62	0 80	-0.41	0 58	-0 42
0 63	0 86	-0 43	0.64	-0 46
0 68	0.93	-0 50	0.71	-0.52
071	0.98	-0.54	0.76	-0.55
0 77	1 05	-0 64	083	-0 60
0 77	1.10	-0.64 -0.70	0 88 0 97	-0.64 -0.70
0 80 0 82	1.19 1.24	-0.70	1.02	-0.74
0.86	1.24	-0 75	1.02	-0.79
0.87	1.30	-0 88	1.14	-0.83
0.92	1.53	-1 11	1 31	-0.95
0.95	1.71	-1 26	1.49	-1 08
1.00	1 88	-3 00	1.66	-1 21
1.00	2 07	-3 00	1 85	-1 34
Regression Statistics				
Multiple R	1.00			
R Square	0.99			
Adjusted R Squar	0 96			
Standard Error	0 03			
Obconvations	31 00			

Observations

Analysis of Variance

Regression

Residual Total

Intercept x1 31.00

đ

1.00

30.00

31.00

Coefficients

0 00 -0.73 Sum of Squares Meen Square

1 96

0 00

t Statustic

#N/A

-88 52

1.96 0.02

1.98

Standard Error

#N/A

0 01

CLARIFIER NO.2 (180 ML/d) - REBHUN-ARGAMAN MODEL

CALCULATION

Regression: About 90% of the Data (Log 0 1=-1) The Non-Zero C/Co Started at 0.03 Intercept=loge p/(1-p 0.1562 >>>> p= 26.5% slope=(-)loge /(1-d)(1-p)= -0.7263 >>>> G= 18.7%

anificance F 0.00

#N/A

-0 74

Lower 95% Upper 95%

#N/A

-0 71

F

3066 87

P-velue

#N/A

0 00

RESERVOIR NO.2 (141 MUG) - REBHUN-ARGAMAN MODEL

RESERVUI	C 140.2 (1		* KGBM			
WEAL DATA CACO	(7+1)/1	-	CONNECT	NON F IMME1-C/Co	,	CALCILI
6 00	1.00		-8 84 -0 84	9.87		The North
0 00	9 80		-0.84			-
600				15		nn(-1000 f.
017	1.8	1 :::	0.83 0.06	-0.03		
0.37	0 12	-0.14	4 89	4.05		
6 79 6 30	8 16 8 19	-415	8 12 8 15	-0.07		
0.33	0.22		8.18	-0.12		
9 44 6 43	124	435	8.21 8.26	-0.14		
0.44	0.32 0.36	475	0.20 0.31	-0.16		
0 47	8.39 0.42	-0.27 -0.31	8.36 8.38	-0.30		
0 5J 0 52	9.45	-0.32	847	-8.24		
0 55	849	434	9.45 9.49	-0.26		
0.58	1.56 1.51	-0.30 -0.30	0.52 0.55	-0.30		
0 60	¥ 62	-8.40	0.56	-0.34		
0.61 0.63	0 66	-0.41	0.62 0.64	-0.36		
0.63	8 72 8 76	-043	8.60 0.72	-0.39		
0.47 0.45	079	4.44	878	-043		
0.67	0 92 0 96	-0.48	6 79 0 82	-0.45		
071 074	0 99 9 W	-0 63	0.06	-0.49		
0 74	0 99	-0 54	0 96	-0.56		
0.75	1 03	-0.60	0.99	-0.57		
076 076	1 00	-0.62	1.06	-0.61		
0 70	1.16	-0 67	1.12	-0.65		
079 079	1 10	-0 61	1.15	-0 67		
0.70	1.26	-0 69	1.22	-0 70		
0 82	1.33	-0 74	1.20	-0 74		
082	136	-0.74 -0.70	1.32	-0.76		
0 82	143	-0 74	1.39	-6 80		
0 81	1.50	-0 76	1.46	-0 64		
0.925	1 %4 1.56	-0.96	1.60	-0.97		
087	160	-0 97 -0 79	1.56	-0 10		
0 84	1 67	-0 80	1.63	-0 14		
0 87 0 91	1.70	-0.87	1.66	-0.96		
0 92	176	-1 10 -1 05	172	-0 99		
0.94	1 82	-1.20	178	-1.03		
0 94 0 93	1 86	-1.26	1.82 1.85 1.99	-1.06 -1.07		
0 94 0 96	193	-1.26 -1.40	1.89 1.92	-1 09 -1 10		
0 97	1 99	-1.50	1 95	-1 12		
0 94 0 93	203	-1.26 -1.15	1.99	-1 15		
0 100	2 08	-1.62 -3.00	204 207	-1.10		
0 100	2 15	-1 80	2 1 1	-1.22		
0.98	2 20 2 22	-1 62 -2 10	2 16 2 18	-1.24		
101 098	2 26 2 30	-3 00 -1.60	2.21	-1.27		
1 01	2 32	-3 00	2 26	-1 31		
0.997	236	-2 10 -1.50	2 32 2 36	-1.34 -1.36		
0.97 0 90	243	-1.90 -1.62	2 38	-1.30		
1 00	249	-3 00	2.45	-1.41		
0 90 1 00	2 14	-2 10	2 82	-1.45		
100	263	-3 00 -3 00	2.66	-147 -149		
100	2 66 2 70	-3 00 -3.00	2 62 2 64	-1.81 -1.83		
1.000 1.000	273	-3 00	269	-1.85		
	• • •	- e une	• • •	-,		
Augression Statistics						
Multiple R R Squart	0 97 0 93					
Adjusted R Squar Standard Error	0 91					
Observations	\$1 80					
Analysis of Venetice						
Regression	1 00	<u>2.96</u>	2.56	64 2.13	0.00	
Raslaud Tatat	\$0 10 \$1 00	0.22 3 17	6 60			
		Sanara Ino	1 Serenc	A mar	Laur 95%	
biercepi	0 30			-		PNA
*1	-0 54	0.01	-41.21	0 00	-0 60	-0.56

CALCULATION Represent Assoc 10% of the Date (Log 8 11-1) The Nex-Zere CACe Barl of 0.83 electophologi 011 - 01202 - 013-02 - 013-02 photocophologi 011 - 01202 - 013-02 - 013-02 photocophologi 01-012 - 013765 - 00000 - 011.05%

RESERVOIR NO.2 (167 ML/d) - RESHUN-ARGAMAN MODEL

REAL DATA C/Co	(To-Ti)/Td	tog 1-C/Co)	CORRECT:		•	CALCULATION
0.00	0.00	000	-0 02	001		Regression About 90% of the Date (Log 0.1 ~ 1) The Non-Zero CrCo Start at 0.03
0 œ	600	0 an	-0.02	- Q Q 1	3	Intercept+toge pit 1-p1 0 0108 >>>> p= 243%
0.00	6 G2	-000	0.00	-0.01	900	ape≈(-1poge/(1-d⊻1-p)= -0.5979 >>>> d≭ 25.55%s.
0 22	0.08	-011 -016	0.06	-0 03		
0 33	C 14	-018	0 13	-0.08		
034	0 18 0 21	-018	0 16 0 20	-010		
048	0.25	-0 27 -0 2#	0 23	-0 16		
045	0 29 0 32	-0.76	0 27 0 30	-018		
043 050	0 38 0 39	-0.29	034	-0 20		
0.54	043	-034	041	-0 25		
0.55	0 50	-0 35	048	-029		
C 60 D 60	054	-040	052	-031		
0 6 1 0 6 3	0.61 0.64	-041	0 59	-0 35 -0 37		
0.66	0.64	-047	0.66	-0.40		
071	071 075	-054 -051	070 073	-0 42		
0 69 0 69	G 79 0 82	-051	077	-0 46 -0 48		
0 69 0	0 🗰	-051	0 84	-050		
0 69 0 73	090	-0.51	0.88 0.91	-0.52		
074	0.97	-056	0.95	-0.57		
0 77	104	-064	1 02	-0.61		
0.76	107	-0.65	105	-0.63		
0 63 0 63	1 14	-0 77 -0 77	1 12	-0 67		
0 64	1 22	-0 80	121	-072		
0.64	1 25	-0 80	1 23	-0 74		
0.62	1 32	-0 77	130	-0.78		
0 84	1 39	-080	1 37	-080 -082		
0.64	143	-0.80	141	-0.64		
0.87	149	-0 #7	148	-0 #8 -0 90		
08/ 087	1 53	-087 -087	151	-0 93		
089 090	1 60	-092 -100	1 59	-0.95		
0 92	167	102	165	-0.99		
086 086	1 71	-0 93 -0 93	169	-101 -104		
0.94	176	-100	176	105		
0.00	1 86	-1 00	1 84	-1 10		
C 90 0 91	189	-100	197	-1 12		
0.93	195	-1 18	193	-116		
C 94	2 62	-1 24	200	-1.20		
0 94 0 94	2 0f 2 09	-14C -131	204	1 22		
0.97 0.95	2 12 2 16	-1 50	2 10 2 15	-1 26		
0.95	2.20	-1.31	2 16	-1 30		
0.95	2 25 2 27	-1 13 -1 31	2 24	-134		
0.95	231	-1 31	2 29 2 32	-1 27		
0 99	2.36	-1.85	2 34	-1.40		
099	2 40 2 43	-1 85	2 38 2 41	-1 42		
0 99 0 99	2.47 2.51	-2 24 -1 85	245	-146 -149		
0.96	2.54	-185	2 53	-151		
0.95 0.97	2 54	-2.24	256	-153		
096 096	267	-140	265 268	-158		
0.95	2 74	-140	2 72 2 76	-1 63		
0 97	2.61	-1 50	2 79	-167		
097	2 84 2 87	-1.60	2 83	-159 -171		
0 99	290	-2 24 -2 24	2 68 2 92	-172		
0 09	2.98	-1.85	2.96	-177		
099 100	301	-2 24 -3 00	299 303	-181		
1 60	3 08	-3 00	3.00	-183		
Augresson Seres						
Multipes P	0 97					
R Square Aquisted R Square	094					
Starvsland Ernor Observations	0.07					
	3700					
			4 30		0 00	
Regression	1 00 54 00	4 39	4 39 0 01	957 30	0.00	
Total	55 00	4 67				
<u></u>		Strage free	19842	Publit		upper 074
intercept ±1	0.00 -0.60	0 01	●¥A -66 25	0 00	-0.62	₩¥7. -0 \$8

RESERVOIR NO.1 (180 ML/d) - REBHUH-ARGAMAN MODEL

REAL			CORRECT	KON .		CALCULAT
CICo	(1+1)/14		(T+T)/Td	Ing(CICo))	_
6.00	0.00	0.00	-0.22	0 10	-	Regression
6 00	0.00	0.00	-0.22	014	1	The Hun-Ze
8 GD	0 02	0.00	-0.20	0.16		Intercepted
9.00	0.06	0 00	-0 17	0.12		en(-)inge #1
8.40	0.00 0.12	0.00	-013	0.10		
9.00 9.02	0.14	-0.01	-0.00	0.06		
8 00	0.16	0.00	0.07	0.06		
0.01	0 17	0.00	-0.06	0.04		
0.07	0.10	-0.01	-0 03	0.02		
0 07	0.22	-0.01	0.00	0.00		
0.07	0.26	-0.03	0.03	-0.02		
0.11	0.27	-0.06	0.06	-0.03		
015	0.20	-0.07	0.00	-0.06		
0.22	0.31	-0.11	0.00	-0.07		
0.27	0.36	-0.14	0.12	-0.09		
0.33	0.30	-0.18	0.16	-0.14		
ML.0	0.44	-0.21	0.22	-0.18		
0.1	0.47	-027	0.26	-0.19		
0.45	0.51	-0.24	0.29	-0.21		
0.40	0 54	-0.30	0.32	-0.24		
0 30	0.57	-0.30	0.36	-0.26		
0.56	0.61			-0.20		
0.99	0 86	-0.38	0.43	-0.32		
0.58	0.07	-0.30	0.46	-0.33		
0 50	0.71	-0.30	040	-0.36		
0.40	0.74 0.77	-043	0.66	-041		
0.62	0.80	-044	0.60	-0 43		
0.63	0.84	-0.46	0.61	-0 46		
0.66	0.07	-0.47	0 66	-0.40		
0.72	0.00	-0.56	6.67	-0.50		
0 72	0.02	-0.54	0 70	-0 52		
0.74	0.96	-050	0 73	-054		
0.76		-0.61	0.70	-0.67		
0 76	1 02	-0.66	0.00	-0 69		
0 79	106	-0.68	0.86	-0 64		
0.00	100	-0 61	0 00	-0 87		
0 78	1.16	-0 66	0 83	-0.69		
0.81	1 10	-0.71	0 96	-071		
0.61	1.22	-0.73	1.00	-074		
0 85	1.26	-0.81	1.03	-076		
0 66	1.28	-0 64	1.00	-0.79		
0 87	1.31	-0 89	1 09	-0 81		
0 14	1.30	-0 84 -0 89 -0 92	1.14	-0.85		
0 87	1.30	-0.00	1.10	-0 86		
0 68	141	-0 0Z	1.10 1.20	-0.96		
0 68	1 48 1.51	-0.92	1.20	-0.93		
0 80	1.56	-0.96 -0.99 -0.99	1.33	-0 96		
087	1.50	-0.00	1.30	-1.01		
0.00	1.61	-0 96	1.30	-1 03		
0 10	1.64	-0.96	1 42	-106		
0.91	1.07	-106	1.45	-108		
0 10	1.71	-1 02	149	-1 10		
0 93	1.74	-1.16	1.62	-1.12		
0 14	1.77	-1.20 -1.26	1.55 1.59	-1.15		
0 95	1.80	-1.15	1 62	-1.20		
095	1.96	1.33	1.64	-1.22		
093	190	1.33	1 69	-14		
0 85	1 93	-1.33	1 71	-1 27		
0 *3	1 56	-1.33	1.74	-1.29		
0 * 5	2 00	-1.33	1.78	-1.32		
0 95	2 03	-1.33	1.01	-1.34		
0.98 0.99	203	-1.67 -1.67	1.81	-1.34 -1.37		
0.94	207 207	-3.00	1.96	-1.37		
1 01	2 10	-3.00	1.80	-1.40		
1 01	2 14	-3.00	1.82	-1.42		
1 01	2 17	-3 00	1.96	-1.45		
0 99	2.21	-2.29	1.89	-1.48		
0.99	2 26	-2.29	2 02	-1 \$0		
0 96	2.30	-1.67	2.08	-1.54		
1.00	2.31 2.36	-3 00 -2 29	2.09	-1 55 -1 58		
0.99	2.36	-4.49	2.13	- 1.000		
Regresson State	lei					
		-				
Nullipie R	0.00					
R Square	0.97					
Adjunted R Sq Standard Err	uaar 0.945 var 0.05					
Observation						
Analysis of Vana						
		Sum of Severy	4.21	1	0.00	
Regression	1 1 00	4.21	4.21	1519 30	0.00	
Residual	46 00	0.13	0.00			
Total	47.00	33				
	Conficients	Standard Error	I Sawe	Prese	Longe 85%	Upper 87%
intercept.	0.00	BN/A	SN/A	OVA	BN/A	SN'A
x1	-0 74	0.01	-81 19	0.00	-076	-0.72

CALCULATION			
Regression: About 00 The New-Zero CACe 1			I ●-1)
Intercentrings of 1-	01830	>>>>> 🔊	27.4%
ant(-)age £1-d)(1-p)=	-0.7411		18.3%

RESERVOIR NO.3 (179 ML/d) - REBHUN-ARGAMAN MODEL

	·	-				
REAL DATA C/Ca	-	Ing(1-C/Ce)	CORRECTI (T+TI/Td	ON Mail 1-C/Co)		CALCULATION
0.00	0.00	0.00	40.01	0.01		Regression: About 99% of the Date (Log # 14-1)
0.00	0 60	0.00	-0.01	101		The Nen-Zero C/Co Mart at 8.83
0.00	001	0.00	6.00	0.80		000/000/0000 01/0 01000 33335 pr 2126
0.10	0.04	- 4.85 - 4 .12	0.03	-0.82	-	04(-jage £1-0)(1-0)# -0.0000 +++++ 0 33.30%
0.36	0.11	-8.13	0.09	4.86		
0.34	0.15	-0.13	6.13	-0.00		
0.32	0.19 0.31	-0.17 -0.19	0.16 0.30	-8.11		
9.43	0.25	-0.36	6.22	-0.15		
0.43	0.38	4.24	8.37	41		
0.47 0.30	0.32 9.36	-8.27 -8.30	6.30 0.34	-8.20		
0.53	0.30	4.33	0.37	4.26		
0.53	0.42	-0.33	• 4	-0.27		
0.52	0.46	-0.32 -0.38	0.44 0.45	-4.29 -4.32		
0.57	0.52	-0.37	0.51	-0.34		
0.59	0.56	-0.39	0.54	-0.56		
0.61	0.59	-0.41	0.50	-0.38		
0.67	0.66	-0.41	0 65	-043		
0.69	0.70	-0.51	0.65	-0.45		
0.68	0.73	-0.50	0.72	-0.48		
0.72	0.00	-0.56	0.79	-0.83		
0.73	0 85	-0.57	0.84	-0.96		
0.74	0.87	-0.50	0.86	-0.57		
0.78	0.91	-065 -061	0.99	-0.69		
0.76	0.98	-0 61	0.96	-0 64		
0.76	1.01	-0.61	1.00	-0.66		
0.77 0.78	1.05	-0.63 -0.67	1.03	-0.69		
0.82	1.12	-8.76	1.10	-0.73		
0.79	1.15	-0.68	1.14	-0.76		
0.78	1.19	-0.67	1.18 1.21	-0.80		
0.96	1.25	-0.96	1.24	-0.82		
0.87	1 29	-0.87 -0.94	1.27	-0.86		
0 100	1.32	-0.96	1.31 1.34	-0.00		
0.90	1.39	-1.01	1.38	-0 12		
0.90	1.43	-0.94	1.42	-0.94		
0.99 0.85	L-46 1.50	-0.117	1 45 1.40	-0.96		
0 80	1.55	-0.94	1.52	-1.01		
0 92	1.56	-1.10	1.55	-1.03		
0.90	1.60	-1.01	1.99	-1.06 -1.08		
0.91	1.67	-1.06	1.65	-1.10		
0 91	170	-1.06	1.69	-1 12		
0.96	1.72	-1.37 -1.40	1.71	-1.14 -1 16		
0.97	179	-1.48	1.77	-1 10		
0.97	1.82	-1.48	1.81	-1.20		
0.98	1.05	-1.61	114	-1.22		
0.98 0.98	1.00	-1.61 -1.07	1.87 1.90	-1.26		
1 01	193	-3.00	1.92	-1.29		
6.99 6.99	2.01	-2 22 -2 22	1.96	+1.30 +1.33		
1.00	104	-3.00	2 02	-1 36		
1.01	1.07	-3.00	3 06	-1.37		
101	211	-3.00	2.10	-1.39 -1.43		
0.96	2.20	-1.61	2.19	-1.46		
0 98	2.14	-1 61	2.22	-1.48		
0 99	2 26 2.29	-2 22 -2 22	2.24	-149 -1 \$1		
0.99	2.34	-1.82	2.32	-1.54		
1.00	2.36	-3 00	2.34	-1.56		
1.00	2.39 2.43	-3 00 -3 00	2.30 2.41	-1.50 -1.61		
1.02	2.46	-3.00	2.45	-1 63		
1.02	2 50	-3.00	2.48	-1.66		
1.03	2 53 2.57	-3 00 -3 00	2.52	-1.60 -1.70		
1.04	2.60	-3 00	2 59	-1.72		
1.00	2.64	-3.00	263	-1.75		
102	2.67	-3.00 -1.61	2.56	-1.77		
1.01	2.75	-3.00	2.73	-1.82		
1.01	2.78	-3.00	277	-1.84		
Auguston Saturca						
MLEIDIO R. R Squara	0.90					
Adjusted R Squar	0.94					
Standard Error	0 06 48 00					
Ceservations	48 00					
Analysis of Venerce	~	Sum of Square		,	gritcence /	
Regression	1.00	4.00	4.00	1221 79	0.00	
Residual	47.00	0.16	0.00			
Telal	48.00	••				
Tetal		Serana Loro	13444	A-set o	Longr 90%	Cepter 97%
Piercept	Comicionis		874 A			I NUA
	Conficients	Sec. 10				

RESERVOIR NO. 1 (230 ML/d) - REBHUN-ARGAMAN MODEL

		• • • • •				
REAL DATA			CORRECT			CALCULAT
C.C.e	(Te-T0/Te 9 00	0.00	(Te-T0/Td 414	0.15	D)	Legresum
6.60	2.90	1 000	416	816		The New-Ze
0.01	0.03	0.00	46.14	0.13	-	intercepteda
0.00	6.07	0.00	- 4-09 - 4-0 5	0.08		ion(-)inge i(1
8 GD	012	T 0.00	600	0.00		
	0.20	-0.00	8.04	-0.03		
9.40	0 24	-0.22	0.00	-0.07		
0.37	0.31 0.30	-0.20	0.15 0.21	-0.13		
0.40 0.46	0.42	027	0.24	-0.24		
0 51	0.47	-0.31	0.30	-0.20		
0 53	0.51	-0.33	0.35	-0.32		
0.61	0.55	-044	0.64	-0.40		
0.44	0.65	-0.44	0.41	-046		
0 44	0.69	-0.40	6.13	-040		
0 48	0 74 0 75	-0.49	0.57 0.62	-0.63		
075	6 42	-0 60	0.66	-0.61		
0 76	6.67	-0 63	0.70	-0 66		
070	0 91	-0.60	0.75	-0.60		
0.65	1.05	-0.82	0.00	-0.82		
0 65	1.00	-0 82	0.93	-0 86		
0.66	113	-0 96	0.97 1.01	-0 90		
0.99	1.17	-1.02	1.01	-0.97		
0 10	1.26	-0.90	1 10	-1.02		
0 93	1.31	-1 14	1.14	-1.06		
0 95	1.35	-1.30 -1.30	1.19	-1.10		
0 93	1.44	-1.10	1.28	-1.10		
0.95	149	-1 30	1.22	-1.22		
0.90	1.53	-1.02 -1.19	1.37	-1.27 -1.31		
0.93	1.62	-1.30	1.46	-1.36		
0 93	1.67	-1.30	1 50	-1.30		
0.96	171	-1.58 -1.58	1 55	-1 43 -1.47		
0 97	1.00	-1.47	1.64	-1.61		
0 95	1.64	-1 73	1.67	-1.65		
0 99	1 87	-1.90	1.72	-1.59		
100	1.92	-2.61 -3.00	176 1.00	-1 83		
1 01	2 01	-3 00	1 65	-1.71		
1.00	2.06	-3 00	1.10	-1.75		
100	213	-2.61	1.94	-1.04		
100	1.20	-251	2.03	-1 80		
1 00	2.36	-2 51	2.10	-1 94		
100	3.39 2.34	-2 61 -1.90	212	-198 -201		
•••	•		••	•••		
Regression Statelies		•				
Multiple R R Square	0 89					
Aduated R Source	0 93					
Standard Error	0.06					
Observations	24 00					
Analysis of Vanarice		Sum at Squares	Mean Square	,	Sentence F	
Regression	1 00	1.02	1.92	062.22	0.00	
Residual Total	23 00 24 00	0.06	0.00			
	Contents	Standard Frey	1 Statete	P.+84.7	LOUIS AND	Capper 60%
intercept	0 00	BNA	env a	SN/A	SNA	M WA
" 1	-0 92	0.02	-\$1.49	0.00	-0.86	-0.80

Regressen: Abeut 80% of the Date (Leg 0 1+1) The New-Zee CCO Start of 0 03 Interceptriage pt1-p 0.1614 >>>> pr 26 86% Upper(Jarge (L-m)(1-p) - 0.8246 >>>> mr 36 66%

RESERVOIR NO. 3 (198 MI.H) - REBHUN-ARGAMAN MODEL

REAL DATA	(7+-70/74	lege 1-C/Ce)	CONNECT	CN Mag1-C/Ce		CALCULATION
0 00	9.60	1.00	4.03	0.87		Regression Lip to
0.00 0.00	0.00 0.00	8.00 8.00	400	8.87 9.87		The New-Zere CA
0.00	0 00	0.80	-0.03	0.02	-	
000	0.00	0.00	-0.03	1 1 1 1 1]	-
9.00	0.00	0.00	-0.03	9.00		
0.15	0.04	-6.07	0.01	-0.01		
0.34	0.05	-0.12	0.02	-6.62		
0.26	0.07	-0.13	0.06	-0.83		
0.27	0.10	-8.14	0.07	-406		
0.27	0.13	-0.16	0.10	-1.00		
CC0	0.19	-8 17	0.16	-4 10		
0.40 0.39	0.22 0.26	-021 -071	0.30 9.33	-0.13		
0.43	0.37	-8.23	0.34	-0.16		
0.42	0.33 0.34	-8.23 -0.27	0.30 0.32	-0.19		
0.52	0.37	-0.32	0.39	-4.22		
0.53 0.54	0.4L 0.44	-0.33 -0.36	6.30 0.41	434		
0.55	0.45	-0.34	0.43	-8 27		
0.58 0.59	0.50	-0.38	9.47 0.30	-0.32		
0.62	0.56	-0.42	0.53	-4.36		
0.61	0.99	-8.41	0.57	-0.36		
0.63	0 64	-043	0.61	-8 39		
0.63	0.60	-0.46	0.445	-0.42		
0 46	0 75	-047	0.72	-0.46		
0.40 0.72	0.78	-0.50	0.75 0.76	-0.40		
0.10	0 84	-0.52	0.81	-0.82		
0.72 0.73	0.00	-0.55	0.86	-0.56		
0.77	0.93	-0.63	0.91	-0.56		
0.76	0.96	-0.62	0.94	-0 60		
0.76	100	-0.92	1.00	-0 63		
0.80	1.07	-0.70	1.05	-0.66		
0.79 0.79	1.90	-068 -068	3.04 1.00	-0.67		
0.80	1.15	-0.70	1.12	-0.71		
0.00	1.18	-0.70	1.16 1.19	-0.73		
0.81	1.24	-0.73	1.22	-0 77		
0.83 0.83	1.27	-6.77 -0.77	1.25	-0.19		
0.84	1.34	-0.79	1.31	-0.03		
0.85	1.37 1.40	-0.82 -0.82	1.34	-0.95		
0.00	143	-0.92	3.40	-0.91		
0.89	1.46	-0 92	143	-0.91		
0.89	1.52	-0.96	1.49	-0.96		
0 99	1.65	-0 96 -0 99	1.53	-0.97		
0 89	1.63	-0 96	1.40	-1.02		
0.90	1.65	-0.99	1.42	-1 03 -1.06		
Regresson Statelics						
Likalipie R	0.90					
R Square Adjusted R Squar	0.96					
Standard Error	0.06					
Observations	58.00					
Analysis of variance		Sum of Square	New Source	,	griturer f	
Regression	1.00	4 55	4.53	1466 10	0.00	
Rosidual Talai	67 00 68.00	0 17 4 71	0.00			
	Conficents	Server bro	1 2 000 c		LONG 970	Upper 00%
						
intercept z1	0.00	0.01	-81 13	0 00	-0 66	-0 62

Represent Lp to 10% of the Data (Leg 9 1=-1) The New-Zory CLC Baset of 8.03 Warraphilage p(1-p. 0.0197 =>>>> pr. 3.71%, perclarge (-1-s) = -0.5340 =>>>> m. 30 97%.

RESERVOIRS NOS, 1,2,3 (170 ML/d) - REBHUN-ARGAMAN MODEL

REAL			CORRECT	
0.01	(To-Ti)/Td 000	000	(To-Ti)/Td -0 10	0 07
0 00 0 00	6 01] 000 000	-0 10 -0 09	0.05
0 00	0.02	000	-0.08	0.06
001	0.03	0 00	-0 05	0 03
001	0.06	0 00 0 00	-0.04	0 03 0 02
0.01	0.06	000	-0 02 -0 01	0.01
000	0.09	0 00	0.00] 000
0 04	0.12	-0 02	0.02	-0.01
0 08	0 13	-0.04	0 03	-0 02
011 009	0 14 0 15	-0.05	0.05	-0 03
0 11 0 11	0 16 0 17	-0.05	0.06	-0.04
0 11	0 18	-0.05	0.08	-0.06
0 10	0.19 0.20	-0.05	0 09 0 10	-0 06
0 14 0 18	0.22 0.23	-0.07	0.12	-0.08
0 20	0 24	-0 10	0.14	-0 10
0 20 0 22	0.25 0.26	-0 10	015 016	-0 10 -0 11
0 22	027	-011	017	-0 12 -0.13
0 23 0 23	0.29	-011	0.19	-0 13
0 28 0 28	030	-016	0.20	-0 14
0 29	0.32	-0 15	0.22	-0 15
0 29 0 34	0.33 0.34	-0 15 -0 18	0.23 0.24	-0 16 -0 17
0 34 0 39	0 35 0.36	-0.18	0.25 0.26	-017
0 39	0 37	-021	0 27	-019
0 39 0 39	0 39 0 40	-0 21 -0 21	0.29 0.30	-0.20
0 41 0 43	0.41 0.42	-0.23 -0.24	0 31 0 32	-022 -022
0 43	0 43	-024	0.33	-0 23
0 44 0 43	0 44 0 45	-0 25 -0 24	0.34 0.35	-0.24 -0.24
0 43 0 44	0.46 0.47	-0 24 -0 25	0 36 0.37	-0 25 -0 26
0 43	0.48	-0.24	0 38	-0.26
0 47 0 48	0.49 0.50	-0.28 -0.28	0 39 0 40	-0.27 -0.28
0.50	0.51 0.52	-030 -029	041 042	-0.29 -0.29
0 50	0.54	-0 30	0.44	-0.31
0.51	0.55	-0 31 -0.32	0 45 0 46	-0.31 -0.32
0 53 0 51	0.57 0.58	-0.33 -0.31	0.47 0.48	-0.33 -0.33
0 52	0.59	-0 32	0.49	-0 34
0 53 0 54	0.60	-0 33	0.50	-035 -036
0 59 0 60	0.62	-0 39 -0 40	0 52 0.53	-0.36 -0.37
0 61	0.64	-0.41	0.54	-0 38
061	065 066	-0 4 1 -0 4 1	0.55 0.56	-038 -039
061 062	0 67 0 69	-041 -042	0.57 0.59	-0 40 -0 41
0 63	070	-0.43	0 60	-0 42
0 63 0 63	0.71 0.72	-0 43 -0 43	0.61 0.62	-0 42 -0 43
0 63 0 65	073 074	-0 43	0.63 0.64	-0 44 -0 45
0 65	0.75	-0 46 -0 46	0 65	-0 45
0 64 0 67	076 077	-0 44 -0 48	066 067	-0 46 -0 47
0 68	079	-0 49	0 69	-0 48 -0 48
0 68 0 69	079 080	-0 49 -0 51	0 69 0 70	-0 49
070 070	081	-052 -052	071 073	-0 49 -0 51
070	0 84	-0 52	074 075	-0 52 -0 52
071	085	-0 54 -0 54	076	-0 53

CALCULATION			
Regression About 90 The Non-Zero C/Co S	is of the D terted at 1	lete (Log 0 1 0 03	=-1)
Intercept+toge p4(1-p) stope=(-yloge 4(1-d)(1-p)=	0 0697	>>>> p=	13 8% 27 7%

		_			
071	0 87	-0.54	077	j -054	
072	0 88	-0 55	078	-054	
0.73	0 89	-0 57	0 79	-0 55	
071	0 90	-0.54	0 80	-0 56	
074	091	-0 59	081	-0 56	
074	0 92	-0 59	0.82	-0 57	
073	0.93	-0 57	0 83	-0.58	
074	0.94	-0 59	0.84	-0.59	
0.77	0.95	-064	0 85	-0.59	
079	0 98	-068	0 68	-061	
0.79	0.99	-0.68	0 89	-0 62	
077	1.00	-0 64	0.90	-063	
072	101	-0 66	0.91	-0.63	
0 79	1.02	-0 68	0 92	-064	
0 79	1.03	-0 68	0 93	-0.65	
0.79	1.04	-0 68	0.94	-0.65	
081	1.05	-072	0.95	-066	
0 82	1 06	-074	0.95	-067	
0.82	1.07	-074	097	-0.68	
0 82	1.08	-076	0.98	-0.68	
0.82	1.09	-0.74	0 99	-0.69	
0 83	1.10	-077	1 00	-0.70	
		-0.74	1.02	-071	
0.82	1.12				
0 84	1.13	-0 80	1.03	-0.72	
0.85	1 14	-0 62	1.04	-0.72	
0.85	1 15	-0 82	1.05	-073	
0 83	1.16	-077	1.06	-074	
0.84	1.17	-080	1.07	-0.75	
0 84	1 18	-0.60	1 08	-075	
0 84	1 19	-0 80	109	-076	
0 85	1 20	-0 82	1 10	-0.77	
0 84	1.21	-0 80	1 11	-0.77	
0 83	1.22	-0 77	1.12	-0.78	
0.85	1 23	-0 82	1 13	-0 79	
0 84	1.24	-0 80	1 14	-0.79	
0.85	1.25	-0.82	1.15	-0 80	
0.84	1 27	-0 80	1.17	-082	
0 85	1 28	-0 82	1 18	-082	
0.86	1 29	-0 85	1 19	-0.63	
0.88	1 30	-0 92	1.20	-0.84	
0.88	131	-0 92	1.21	-0.64	
0 88	1 32	-0 92	1.22	-0 85	
0.87	1.33	-0 89	1.23	-0 86	
0 88	134	-0.92	1.24	-0.86	
0.87	135	-0 89	1.25	-087	
0 85	136	-0 82	1.26	-0.88	
0.85	1.37	-0.82	1.27	-0.88	
0.85	1.38	-0 82	1.28	-0.89	
0 87	1.39	-0 89	1.29	-0.90	
0 88	140	-0 92	1 30	-091	
0.88	1.42	-0 92	1.32	-0 92	
0 88	1 43	-0.92	1.33	-0.93	
0.88	1 4 4	-0 92	1.34	-0.93	
88.0	145 [-0 92	1.35	-0.94	
0.88	145	-0.92	1.36	-0.95	
0.88	1 47	-0.92	1.37	-0.95	
0.88	1 48	-0 92	1.38	-0.96	
0.88	1.49	-0 92	1.39	-0.97	
0 88	1 50	-0 92	1 40	-0.90	
0.88	1.51	-0 92	141	-0.98	
0 88					
0.90	1 52	-0.92	142	-099	
	1.53	-1 00		-1.00	
0.90	154	-1 00	1 44	+1.00	
0 88 0	1.56	-0 92	1 46	-1.02	
0 88 0	1.57	-0.92	1.47	-1.02	
0.90	1.58	-1.00	1.48	-1.03	
0.89	1 59	-0.96	1.49	-1.04	
0 89	1 60	-0 96	1.50	-1.05	
0.88	161	-0.92	151	-1.05	
0 89	1.62	-0.96	1.52	-1.06	
090	1 63	-1 00	153	-1.07	
0.90		-1.00	1.54	-1.07	
	164				
091	1.65	-105	1.55	-1.08	
0 91	1 66	-1.05	1 56	-1.09	
090	1.67	-1.00	1.57	-1 09	
0.91	1 68	-105	1.58	-1.10	
0.91	1 69	-1 05	1.59	-1 11	
0 9 1	171	-1 05	161	-1 12	
0.91	1 72	-1.05	1.62	-1.13	
0.91	1.73	-1 05	1.63	-1.14	
093		-1 15	1.65	-1.14	
	1 75				
0.93	1.76	-1 15	1.65	-1.16	
0 92	1 77	-1 10	1 67	-1.16	
0.92	1.78	-1 10	1.68	-1 17	
0.92	1 79	-1 10	1.69	-1 18	
0 92	1 60	-1 10	1 70	-1 18	
0 90	1 81	-1 00	171	-1 19	
• • •				· ·•	

0 91 0 93 0 92 0 92 0 92 0 92 0 92 0 94 0 94 0 95 0 94 0 95 0 95 0 95 0 95 0 95 0 95 0 95 0 95	1 82 1 83 1 85 1 86 1 87 1 89 1 99 1 99 1 99 2 00 2 00 2 00 2 00 2 00 2 00 2 00 2	-1 05 -1 15 -1 15 -1 15 -1 10 -1 10 -1 10 -1 22 -1 30 -1 30	1 72 1 73 1 76 1 77 1 76 1 77 1 78 1 80 1 81 1 82 1 83 1 84 1 85 1 84 1 90 1 92 1 93 1 99 1 99 1 99 2 00 2 203 2 04 5 206 2 205 2 20	$\begin{array}{c} -120\\ -121\\ -122\\ -123\\ -124\\ -125\\ -127\\ -126\\ -127\\ -126\\ -127\\ -126\\ -127\\ -126\\ -130\\ -132\\ -130\\ -132\\ -130\\ -132\\ -130\\ -132\\ -130\\ -132\\ -136\\ -1$
0 97 0 97 0 98 0 98 0 98 0 98	2 64 2 65 2 66 2 68 2 69 2 70	-1 52 -1 52 -1 70 -1 70 -1 70 -1 70	2 54 2 55 2 56 2 58 2 59 2 59 2 60	-177 -178 -178 -180 -180 -181

0 98	275	-1 70	2 68	-187		
0.99	2 79	-2 00	2 69	-1 87		
0.99	2 80	-2 00	2 70	-1 55		
0 98	2 82	-170	2 72	-1 89		
0.98	2 83	-1 70	2 73	-1.90		
098 .	2 84	-1 70	2 74	-1 91		
0.96	285	-1 70	2 75	-1.92		
0 98	286	-1 70	2 76	-1.92		
0 98	287	-1.70	2 77	-1.93		
099	2 88	-2 00	2 78	-1.94		
0 99	289 290	-2 00 -1 70	279 280	-1.94 -1.95		
0 99	2.91	-2 00	280	-1.95		
0 98	2 92	-1.70	2 82	-1.96		
0.98	2 93	-170	2 83	-197		
0 98	2 95	-1 70	2 85	-1 99		
0 98	2.96	-1.70	2 86	-1 99		
0 98	2 97	-1 70	2 87	-2.00		
0 98	2 98	-1 70	2 88	-201		
0.98	2 99	-1 70	2 89	-201		
0 99	3 00	-2 00	2 90	-2 02		
0 99	301	-2 00	2 91	-2 03		
0.99 1.00	3 02	-200 -300	2 92 2.93	-2 03		
100	3 03 3 04	-300	2.94	-2 04 -2 05		
100	305	-3.00	295	-206		
0 99	3 06	-2 00	2 96	-2 06		
1 00	3 07	-3 00	2 97	-207		
1 00	3 09	-3 00	2 99	-2 08		
1 00	3 10	-3 00	3 00	-2 09		
1 00	311	-3 00	3 0 1	-2 10		
1 00	3 12	-3 00	3 02	-2 10		
1 00	3 13	-3 00	3 03	-2 11		
100	3 14	-3 00	3 04	-2 12		
1 00	3 15	-3 00	3 05	-2 12		
1 00	3 16	-3 00	3 06	-2 13		
1 00	3 17	-3 00	3.07	-2 14		
1 00	3 18	-3 00	3 08	-2 15		
1 00	A A A		2 00	7 46		
1 00	3 19	-3 00	3.09	-2.15		
1 00	3 20	-3 00 -3 00	3 10	-2 16		
1 00 1 00	320 321	-3 00 -3 00 -3 00	3 10 3 11	-2 16 -2 17		
1 00 1 00 1 00	3 20 3 21 3 23	-3 00 -3 00 -3 00 -3 00	3 10 3 11 3 13	-2 16 -2 17 -2 18		
1 00 1 00 1 00 1 00	3 20 3 21 3 23 3 24	-3 00 -3 00 -3 00 -3 00 -3 00	3 10 3 11 3 13 3 14	-2 16 -2 17 -2 18 -2 19		
1 00 1 00 1 00 1 00 1 00	3 20 3 21 3 23 3 24 3 25	-3 00 -3 00 -3 00 -3 00	3 10 3 11 3 13	-2 16 -2 17 -2 18		
1 00 1 00 1 00 1 00	3 20 3 21 3 23 3 24	-300 -300 -300 -300 -300 -300	3 10 3 11 3 13 3 14 3 15 3 16 3 17	-2 16 -2 17 -2 18 -2 19 -2 19		
1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	3 20 3 21 3 23 3 24 3 25 3 26 3 27 3 28	-3 00 -3 00 -3 00 -3 00 -3 00 -3 00 -3 00 -3 00 -3 00	3 10 3 11 3 13 3 14 3 15 3 16 3 17 3 18	-2 16 -2 17 -2 18 -2 19 -2 19 -2 20 -2 21 -2 22		
1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	3 20 3 21 3 23 3 24 3 25 3 26 3 27 3 28 3 29	-3 00 -3 00	3 10 3 11 3 13 3 14 3 15 3 16 3 17 3 18 3 19	-2 16 -2 17 -2 18 -2 19 -2 19 -2 20 -2 21 -2 22 -2 22 -2 22		
1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	3 20 3 21 3 23 3 24 3 25 3 26 3 27 3 28 3 29 3 30	-3 00 -3 00	3 10 3 11 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3.20	-2 16 -2 17 -2 18 -2 19 -2 19 -2 20 -2 21 -2 22 -2 22 -2 22 -2 23		
1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	3 20 3 21 3 23 3 24 3 25 3 26 3 27 3 28 3 29 3 30 3 31	-3 00 -3 00	3 10 3 11 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3.20 3 21	-2 16 -2 17 -2 18 -2 19 -2 20 -2 21 -2 22 -2 22 -2 22 -2 23 -2 24		
1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	3 20 3 21 3 23 3 24 3 25 3 26 3 27 3 28 3 29 3 30 3 31 3 32	-3 00 -3 00	3 10 3 11 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3.20 3 21 3 22	-2 16 -2 17 -2 18 -2 19 -2 29 -2 20 -2 21 -2 22 -2 22 -2 22 -2 23 -2 24 -2 24		
1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	3 20 3 21 3 23 3 24 3 25 3 26 3 27 3 28 3 29 3 30 3 31 3 32 3 33	-3 00 -3 00	3 10 3 11 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23	-2 16 -2 17 -2 18 -2 19 -2 20 -2 21 -2 22 -2 22 -2 22 -2 23 -2 24 -2 24 -2 25		
1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	3 20 3 21 3 23 3 24 3 25 3 26 3 27 3 28 3 29 3 30 3 31 3 32	-3 00 -3 00	3 10 3 11 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3.20 3 21 3 22	-2 16 -2 17 -2 18 -2 19 -2 29 -2 20 -2 21 -2 22 -2 22 -2 22 -2 23 -2 24 -2 24		
1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	3 20 3 21 3 23 3 24 3 25 3 26 3 27 3 28 3 29 3 30 3 31 3 32 3 33	-3 00 -3 00	3 10 3 11 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23	-2 16 -2 17 -2 18 -2 19 -2 20 -2 21 -2 22 -2 22 -2 22 -2 23 -2 24 -2 24 -2 25		
1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	3 20 3 21 3 23 3 24 3 25 3 26 3 27 3 28 3 29 3 30 3 31 3 32 3 33 3 37	-3 00 -3 00	3 10 3 11 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23	-2 16 -2 17 -2 18 -2 19 -2 20 -2 21 -2 22 -2 22 -2 22 -2 23 -2 24 -2 24 -2 25		
1 00 1 00	3 20 3 21 3 23 3 24 3 25 3 26 3 27 3 28 3 29 3 30 3 31 3 32 3 33 3 37	-3 00 -3 00	3 10 3 11 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23	-2 16 -2 17 -2 18 -2 19 -2 20 -2 21 -2 22 -2 22 -2 22 -2 23 -2 24 -2 24 -2 25		
1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	3 20 3 21 3 23 3 24 3 25 3 26 3 27 3 28 3 29 3 30 3 31 3 32 3 33 3 37	-3 00 -3 00	3 10 3 11 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23	-2 16 -2 17 -2 18 -2 19 -2 20 -2 21 -2 22 -2 22 -2 22 -2 23 -2 24 -2 24 -2 25		
1 00 1 00	3 20 3 21 3 23 3 24 3 25 3 26 3 27 3 28 3 29 3 30 3 31 3 32 3 33 3 37 0 99 0 98 0 98 0 94	-3 00 -3 00	3 10 3 11 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23	-2 16 -2 17 -2 18 -2 19 -2 20 -2 21 -2 22 -2 22 -2 22 -2 23 -2 24 -2 24 -2 25		
1 00 1 00	3 20 3 21 3 23 3 24 3 25 3 26 3 27 3 28 3 27 3 30 3 31 3 32 3 33 3 33 3 37 0 99 0 98 0 98	-3 00 -3 00	3 10 3 11 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23	-2 16 -2 17 -2 18 -2 19 -2 20 -2 21 -2 22 -2 22 -2 22 -2 23 -2 24 -2 24 -2 25		
1 00 1 00	3 20 3 21 3 23 3 24 3 25 3 26 3 27 3 28 3 29 3 30 3 31 3 32 3 33 3 37 0 99 0 98 0 98 0 94	-3 00 -3 00	3 10 3 11 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23	-2 16 -2 17 -2 18 -2 19 -2 20 -2 21 -2 22 -2 22 -2 22 -2 23 -2 24 -2 24 -2 25		
1 00 1 00	3 20 3 21 3 23 3 24 3 25 3 26 3 27 3 28 3 29 3 30 3 31 3 32 3 33 3 37 0 99 0 98 0 98 0 94	-3 00 -3 00	3 10 3 11 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23	-2 16 -2 17 -2 18 -2 19 -2 20 -2 21 -2 22 -2 22 -2 22 -2 23 -2 24 -2 24 -2 25	golfcare f	
1 00 1 00	3 20 3 21 3 23 3 24 3 25 3 26 3 29 3 30 3 31 3 32 3 33 3 33 3 37 0 99 0 98 0 98 0 94 1 44 00 4 1 00	-3 00 -3 00 -3 -3 -3 00 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	3 10 3 11 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 27 Mode Spath 13 46	-2 16 -2 17 -2 18 -2 19 -2 20 -2 21 -2 22 -2 22 -2 22 -2 23 -2 24 -2 24 -2 25		
1 00 1 00	3 20 3 21 3 23 3 24 3 25 3 26 3 27 3 27 3 28 3 29 3 30 3 31 3 32 3 33 3 37 0 99 0 98 0 98	-3 00 -3 00 -3 -3 -3 00 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	3 10 3 11 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 27 8 27	-2 16 -2 17 -2 18 -2 19 -2 19 -2 20 -2 21 -2 22 -2 22 -2 22 -2 22 -2 22 -2 22 -2 23 -2 24 -2 24 -2 25 -2 28		
1 00 1 00	3 20 3 21 3 23 3 24 3 25 3 26 3 29 3 30 3 31 3 32 3 33 3 33 3 37 0 99 0 98 0 98 0 94 1 44 00 4 1 00	-3 00 -3 00 -3 -3 -3 00 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	3 10 3 11 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 27 Mode Spath 13 46	-2 16 -2 17 -2 18 -2 19 -2 19 -2 20 -2 21 -2 22 -2 22 -2 22 -2 22 -2 22 -2 22 -2 23 -2 24 -2 24 -2 25 -2 28	Apartic area of	
1 00 1 00	3 20 3 21 3 23 3 24 3 25 3 26 3 27 3 27 3 28 3 29 3 30 3 31 3 32 3 33 3 37 0 99 0 98 0 98	-3 00 -3 00 -3 -3 -3 00 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	3 10 3 11 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 27 Mode Spath 13 46	-2 16 -2 17 -2 18 -2 19 -2 19 -2 20 -2 21 -2 22 -2 22 -2 22 -2 22 -2 22 -2 22 -2 23 -2 24 -2 24 -2 25 -2 28	Apartic ance F 0 00	
1 00 1 00	3 20 3 21 3 23 3 24 3 25 3 26 3 27 3 29 3 30 3 31 3 32 3 33 3 37 0 99 0 144 000 144 000 145 000 145 000 145 000 145 000 145 000 145 000 145 0000 145 000000000000000000000000000000000000	-3 00 -3	3 10 3 11 3 13 3 14 3 15 3 16 3 17 3 16 3 17 3 20 3 21 3 22 3 23 3 27 3 23 3 27 4 4 6 0 0 0 7 Denate	-2 16 -2 17 -2 18 -2 19 -2 19 -2 20 -2 21 -2 22 -2 22 -2 22 -2 22 -2 22 -2 23 -2 24 -2 24 -2 24 -2 25 -2 28	Lawer SPh	
1 00 1 00	3 20 3 21 3 23 3 24 3 25 3 26 3 27 3 28 3 29 3 30 3 31 3 32 3 33 3 33 3 37 0 99 0 98 0 08 0 00 0 00 000 000 000 000 000 00000000	-3 00 -3	3 10 3 11 3 13 3 14 3 15 3 16 3 17 3 21 3 22 3 21 3 22 3 27 44cct Sparty 13 46 0 00 1 Densk PN/A	-2 16 -2 17 -2 18 -2 19 -2 20 -2 21 -2 22 -2 22 -2 22 -2 22 -2 22 -2 22 -2 24 -2 24 -2 24 -2 24 -2 24 -2 24 -2 25 -2 28 -2 28 	Lawy Str.	SH-I/A
1 00 1 00	3 20 3 21 3 23 3 24 3 25 3 26 3 27 3 29 3 30 3 31 3 32 3 33 3 37 0 99 0 144 000 144 000 145 000 145 000 145 000 145 000 145 000 145 000 145 0000 145 000000000000000000000000000000000000	-3 00 -3	3 10 3 11 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 21 3 22 3 23 3 27 4 4 4 6 0 00 7 Denate	-2 16 -2 17 -2 18 -2 19 -2 19 -2 20 -2 21 -2 22 -2 22 -2 22 -2 22 -2 22 -2 23 -2 24 -2 24 -2 24 -2 25 -2 28	Lawer SPh	

APPENDIX 4: JET MODEL

RESERVOIR			5) - J	ET M	ODEL													
val. of tenk ga(initial flow)		1570 m3 7.92 m3/mm																
solimegnery pipe		.00 m																
		79 m*2																
io(initial velocity) JETS	-	4.73 mimin																
(1 (core length) = 1	870 9	.00 m																
metimery plane=	1	45 m																
ratar laval=	3	3.9 m																
engle for jet core =		2																
ux = 🕈 (da/x l'uo																		
Cx =Co* 7* (da/x)	* exp(-54*	(r/x)^2) x (m)#		18	15	20	ĸ	30	35	40	45	50	55		65	78	75	
angle (deg)	0.0	¥*(m)=	0.0	10.8	15.0	20.0	25.0	36.0	35	40	45	50	55	-	65	78	75	10
		r(m)=	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0	00	00	0.0	0.0	0.0	00	00
		uad(myhten)=	124 7	112.3	74.8	56.1	44.9	37.4	32.1	28.1	24.9	22.5	20.4	18.7	173	16 0	15 0	14 0
		di s(min)=	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3	03
		ta(min)=	0.0	0.1	0.1	0.2	0.3	04	0.6	0.7	0.9	1.1	1.4	1.6	1.0	2.2	2.5	29
	1.0	x.(w)=	0	10	15	50	25	30	35	48	45	\$0	55		63	70	75	
		r(m)=	0.0	0.2	0.3	0.3	04	0.5	06	0.7	0.8	0.9	1.0	1.0	1.1	1.2	13	1.4
		un(mvimm)=	124.7	109.6	73.2	54.9	43.9	36.6	31.4	27.4	24.4	22 0	20 0	18.3	16 9	157	16.6	137
		(# #(min)=	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2	02	0.2	0.3	03	0.3	0.3	04
		DI(min)=	00	0.1	0.1	0.2	0.3	04	0.6	08	1.0	1.2	1.4	1.7	2.0	2.3	26	29
	2.0	s.(w)=	0	10	15	20	25 0 9	300 10	35	40	45	\$0	55 1 P		65 2.3	70	75	100 2 #
		f(ft)=	00	102.6	684	0.7	41.0	342	1.2	25.6	1.8	1.7	18.7	21	15.8	2.4	26 137	12.8
		*(nimhm)## #(mm)#	1247	0.1	0.1	0.1	01	340.2 01	02	0.2	02	0.2	03	0.3	03	0.3	04	12 8
		tagingin)#	00	0.1	0.1	0.1	03	05	0.6	0.2	1.0	1.2	15	1.8	2.1	24	28	31
	3.0			10	15	20	25	30	35	40	45	50	55	60	65	70	75	80
	3.0	r(m)=	00	0.5	0.8	1.0	1.3	1.6	1.8	2.1	24	2.6	29	31	34	37	3.9	42
		upp(m/mm)=	124 7	91.6	611	45.8	36.7	30.5	26.2	22.9	20.4	18.3	167	15.3	14 1	13.1	12.2	11.5
		di x(min)=	00	0.1	0.1	01	0.1	01	0.2	0.2	0.2	0.3	0.3	0.3	03	0.4	0.4	0.4
		Di(min)=	00	0.1	0.2	0.3	04	0.5	07	0.9	1.1	14	1.7	20	23	27	31	35
	4.0	Simi*	0	10	15	20	25	30	35	40	45	50	\$5	80	65	70	75	80
		r(m)=	00	07	1.0	1.4	1.7	2.1	24	2.8	31	35	38	4.2	45	49	52	56
		up (mvimin)≈	124.7	78.2	52 1	39.1	313	26 1	22.3	196	17.4	15.6	14.2	13.0	120	11.2	10 4	98
		dî x(min)≖	00	01	0.1	01	01	0.2	0.2	0.2	0.3	0.3	0.3	04	04	04	05	05
		to(m rc)=	00	0.1	0.2	0.3	04	06	08	1.0	1.3	1.6	20	23	27	32	36	4 1
	5.0	¥'(m)≠	0	10	15	20	25	30	35	40	45	\$0	\$5	60	65	70	75	80
		r(m)=	0.0	09	13	17	22	26	3.1	3.5	3.9	4.4	48	52	57	61	6.6	70
		un(m/min)=	124.7	63 8	425	31 9	25.5	21.3	18 2	15.9	14.2	12 6	11.6	10.6	9.8	91	85	80
		di ±(min)=	0.0	01	0.1	01	0.2	0.2	0.3	0.3	03	0.4	04	05	05	05	06	06
		br(mm)=	0.0	0.1	02	0.3	05	0.7	1.0	1.3	16	2.0	24	28	33	39	4.4	50
	6.0	¥(m)#	0	10	15	20	25	30	35	40	45	50	\$5	60	65	70	75	80
		r(m)=	00	11	1.6	2.1	26	32	3.7	42	4.7	5.3	58	63	6.6 7.6	74	79	84
		upr(m/min)=	124.7	49 6	33.1	24 8	19.8	16.5	14.2	124	11.0	99	90 05	83	26	71	66 07	62
		d∎ x(min)≠	00	01	01	0.2	0.2	0.3	0.3	04		0.5	31	••	43	50	57	65
	7.0	=(nin)= 2'(n)=	00	01	0.2	04 20	0.6 25	0.9	1.2	1.6 40	2 0 45	2 5 50	55	36	4 3 88	50 71	57 76	81
	7.0	• •	00	12	15	2.5	31	37	4.3	49	47 55	50 61	33 67	74		86	92	9.8
		ד(m)= במנותאיתות)=	124.7	36.8	246	18.4	14.7	12.3	10.5	92	82	7.4	67	61	57	53	49	46
		di x(min)=	00	01	0.2	02	0.3	04	0.4	05	0.6	0.6	07	0.8	0.9	0.9	10	11
		bx(man)=	0.0	01	0.3	0.5	0.8	1.2	1.6	2.2	27	34	41	4.9	57	67	77	87
	8.0	x'(m)#	0.0	10	15	20	25	30	35	40	45	51	56		- 64	71	76	
	•.•	r(m)=	00	14	21	2.8	3.5	4.2	4.9	56	63	70	17		91	98	105	11 2
		ua:(m/min)=	124 7	124 7	17.4	13.0	10.4	87	7.4	6.5	58	52	47	43	40	37	35	33
		di x(min)=	00	0.1	0.1	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	12	1.3	1.4	1.5
		tx(mm)=	0.0	0.1	0.2	0.5	0.9	1.4	2.1	28	3.6	45	55	67	79	92	10 6	12 1
	1.0	1(m)=	0	10	15	20	25	30	35	41	46	51	56	61		71	76	81
		=(m)=	00	1.6	24	3.2	4.0	4.7	5.5	6.3	7.1	7.9	87	95	10.3	11 1	11.9	127
		uar(m/mm)=	124 7	17.6	117	6.8	7.0	5.9	5.0	4.4	39	35	3.2	29	27	25	23	22
		diatman)≓	00	0.1	03	05	0.6	0.8	09	11	1.2	1.4	1.5	17	18	19	21	22
		be(min)=	0.0	01	0.5	1.0	16	2.4	3.3	44	56	70	8.5	10.2	120	139	18 0	18 2
	10.0	#'(m)=	0	10	15	20	25	30	38	41	46	51	56	81	66	71	76	- 81
				18	26	35	44	53	62	7.0	7.9		97	10.6	11.5	123	13 2	14.1
		r(m)=	0.0	1.0	4.0	3.5		33	02			••	•••					
		r(m)= uau(πvhmin)≈	124.7	113	7.5	56	45	38	32	28	2.5	23	2.0	19	17	16	15	14
							• •											14 35

85	80	95	100	105	110	115	120	125	130	135	140	145
85	80	95	100	105	110	115	120	125	130	135	140	145
00	0.0	0.0	0.0	00	00	0.0	00	0.0	0 00	0.0	0.0	00
13.2	12 5	11.8	11.2	10 7	10.2		9.4	9.0	8.64	8.3	80	7.7
04	04	0.4	04	0.5	0.5	0.5	0.5	0.5	0.57	0.6	0.6	0.6
3.2	3.6	4.0	4.5	4.9	54	5.9	6.4	7.0	7.6	81	8.8	9.4
85	180 16	95 1.7	100	105	110	115	120	125	130 2.27	135	140	145 2.5
15	12.2	11.6	11.0	10.5	1.9 10.0	8.5	91	1.1	8.44	₽.¥ 8.1	7.8	2.5 7.6
0.4	04	04	0.4	0.5	0.5	0.5	0.5	0.6	0.58	0.6	0.6	0.6
3.3	37	41	4.6	5.0	5.5	6.1	6.6	7.1	7.7	8.3	9.0	9.6
85	80		100	105	110	115	120	125	130	135	140	145
30	3.1	3.3	3.5	37	3.	4.0	4.2	4.4	4.54	4.7	4.9	5.1
12 1	11.4	10.8	10.3	9.8	9.3	8.9	8.5	8.2	7.89	7.6	7.3	7.1
0.4	04	0.5	0.5	05	0.5	0.5	0.6	0.6	0.62	0.6	0.7	0.7
36	40	4.4	49	5.4	5.9	6.5	7.0	7.6	8.3	8.9	9.6	10.3
85	80	85	100	105	110	115	120	125	130	135	140	145
4.5	47	5.0	5.2	5.5	58	6.0	6.3	6.5	6.81	7.1	7.3	7.6
10 8	10.2	98	9.2	8.7	83		7.6	7.3	7 05	6.8	6.5	6.3
05	05	05	0.5	06	0.6	0.6 7.2	0.6 7.9	07 86	0.70 9.3	0.7 10.0	0.8 10.7	0.8 11.5
40	44	5.0	55 100	60 105	110	115	120	125	v.s 130	135	140	11.5
85 59	90 63	95 66	70	7.3	7.7	8.0	8.4	8.7	9.09	9.4	9.8	10.1
92	87	82	7.8	7.4	7.1	6.6	65	6.3	6 02	5.8	56	5.4
0.5	06	0.6	0.6	07	07	07	0.8	0.8	0.82	0.8	0.9	0.9
46	5.2	5.8	64	71	7.8	8.5	9.2	10.0	10.8	11.7	12.6	13.5
85	80	85	100	105	110	115	120	126	131	136	141	146
74	79	83	87	9.2	96	10.1	10.5	10.9	11.37	11.8	12 2	127
75	71	67	64	61	5.8	5.5	5.3	5.1	4.90	47	4.6	4.4
06	07	0.7	08	08	0.8	09	0.9	1.0	1.00	1.0	11	11
57	64	7.1	79	87	95	10.4	11.3	12.3	13.3	14.4	15.4	16 6
85	\$1	- 14	101	105	111	118	121	126	131	138	141	146
89	95	100	10.5	110	11.6	12.1	12 6	13.1	13.66	14.2	14.7	15.2
58	5.5	52	5.0	4.7 1.0	4.5 1 1	4.3 1.1	4.1 1.2	4.0	3.82 1.29	3.7 1.3	3.5 1.4	3.4 1.4
0.8 7.3	09 6.2	0.9 9 1	1.0	11 2	12.3	13.4	14.6	1.2 15.8	17.1	18.5	19.9	21.3
7.3 86	81 1		101	106	111	116	121	126	131	136	141	148
10.4	11.0	117	123	12.9	13.5	14.1	14.7	15.3	15.95	16.6	17.2	17.8
43	41	39	37	3.5	33	32	3.1	2.9	2.83	27	2.6	2.5
11	1.2	13	1,3	14	1.5	1.5	1.6	1.7	1.74	1.8	1.9	1.9
98	11.0	123	136	15 0	16.5	18.0	197	21.3	23 1	24.9	26.8	28.7
86	\$1	96	101	105	111	116	121	126	131	136	141	147
119	126	13.3	14 0	14 7	15.5	16.2	16.9	17.6	18 26	190	19.7	20.4
31	29	27	26	25	24	23	2.2	2.1	2.01	1.9	1.9	1.8
1.6	17	18	19	2.0	21	2.2	2.3	2.4	2 47	26	27	2.8
137	15.4	17.2	19 1 101	21 0 106	23 1 111	25.3 117	27.6	29.9	32.4	35.0 137	37.6 142	40.4 147
85 13.5	81 14.2	96 150	101	16.6	111	18 2	122 19.0	127 19.8	132 20.58	21.4	22.2	23.0
2.1	20	18	18	1.7	1.6	1.5	1.5	1.4	1.35	1.3	1.3	1.2
24	2.5	27	28	3.0	31	3.2	34	35	3.67	3.8	4.0	4.1
20 6	23 1	25.8	26 6	31.6	34.7	37.9	41.3	44.8	48.5	52.3	56.3	60.4
	- 11	87	102	107	112	117	122	127	132	137	142	147
15 0	15 9	167	17.6	18.5	19.4	20.3	21.1	22.0	22 91	23 8	24.7	25.6
13	13	1.2	1.1	1.1	1.0	1.0	0.9	09	0.87	0.6	0.8	0.8
37	39	4.2	44	4.6	4.8	5.1	5.3	5.5	5.75	6.0	6.2	6.4
32.1	36 1	40 3	44 6	49.3	54 1	59.2	64.5	70.0	75.7	81.7	87.9	94.3

Intel			Outline at 145m															
			engle (deg)=		0.0			1.0			20			30			40	
			r(m)= 1/2 A(m*2)=		0.0 0.1	ĺ		2.5 10.0			51 302	1		7.6 50.4	1		10 1 70 7	
			1/2 AUTO		7.7			7.6			7.1			63			54	
			be(min)=		9.4			9.6			10 3			11.5			13 5	
T inlet	CICo	Toutiet		ŝ	Tout	Mass	ŝ	Tout	Mass	CCo	Toul	Mass	CICo	Tout	Mass	CICo	Tau	Moss
17	0.00 0.00	26 27		0.00	26	0.00	0.00	27	-0 01	0.00	27	-0.03						
18 19	0.00	28		0.00	28	0.00	0.00	28	-0.01	0.00	28	-0 03						
20	0.00	29		0.00	3	0.00	0.00	29	-0.01	0.00	29	-0.03	0.00	29	-0.04			
21	0.00	30		0.00	30	0.00	0.00	30	-0.01	0.00	30	-0.03	0.00	30	-0.04	0.00	30	-0.05
22	0.00	31		0.00	31	0.00	0.00	31	-0.01	0.00	31	-0.03	0.00	31	-0.06	0.00	31	-0.05
23 24	0.00	32 33		0.00	32 33	0.00	0.00	32 33	-0.01	0.00	22 25	-0.03 -0.03	0.00	33 35	-0.04	0.00	32 33	-0.05
25	0.00	34		0.00	34	0.00	0.00	34	-0.01	0.00	34	-0.03	000	34	-0.04	0.00	34	-0 05
26	0.06	35		0.00	35	0.00	0.00	35	0.11	0.00	35	-0.03	0 00	35	-0 04	0 00	35	-0.05
27	0.12	36		0.01	36	0.00	0.00	36	0.34	0.00	36	0.63	0.00	36	0.45	0.00	36	-0.05
28 29	0.17 0.29	37 38		0.01	37 38	0.00	0.01	37 38	0.55	0.01	37 38	1.27	0.00	37 38	0.92	0.00	37 38	-0.05
30	0.34	39		0.02	39	0.01	0.01	39	1.20	0.01	39	3.07	0.01	39	3.14	0.00	39	1 53
31	0.42	40		0.02	40	0.01	0.02	40	1.45	0.02	40	3.59	0.01	40	3.69	0.00	40	2.44
32	0.50	41		0.03	41	0.01	0.02	41	1.75	0.02	41	4.44	0 01	41	5 39	0.01	41	3 69
33 34	0.60	42 43		0.03	42 43	0.01	0.02	42 43	2.09 2.44	0.02	42 43	5.29 6.34	0.01	42 43	6.37 7.73	0.01	42 43	5.26 6.36
35	0.76	44		0.04	44	0.01	0.03	44	2.74	0.03	44	7.19	0 02	44	8.94	0.02	44	7 69
36	0.78	45		0.04	45	0.02	0.04	45	2.93	0.04	45	8.03	0.03	45	10 29	0 02	45	0.19
37	0.82	45		0.04	46	0.02	0.04	46	3.04	0.04	48	8.25	0 03	46	11.02	0 02	46	10 68
38	0 84	47		0.04	47	0.02	0.04	47 48	3 16	0.04	47 48	8.67 8.65	0.03	47 48	11.91 12.21	0.03	47 48	12 01 12 81
39 40	0.88	48 49		0.04	48 49	0.02	0.04	49	3.27	0.04	49	9.30	0.03	19	12.81	0 03	49	13 32
41	0 92	50		0.05	50	0.02	0.04	50	34	0.04	50	9.62	0.04	50	13.19	0 03	50	13 81
42	0 92	51		0.05	51	0.02	0.05	51	3.50	0.04	51	9.73	0 04	51	13.56	0 03	51	14 32
43	0.96	52		0.05	52	0.02	0.05	52	3.58	0.04	52	9.73	0.04	52	13 77	0.03	52	14.89
44 45	0.97 0.98	53 54		0.05	53 54	0.02	0.05	53 54	3.67 : 3.71	0.04	53 54	10.15 10.25	0.04	53 54	14 16 14.24	0 03	53 54	15 22 15 29
46	0.99	55		0.05	55	0.02	0.05	55	3 75	0.05	55	10.36	0.04	55	14 60	0 03	55	15 65
47	0 99	56		0.05	56	0.02	0.05	56	3.76	0.05	56	10 47	0.04	56	14 75	0.04	56	18 05
4 B	1 00	57		0.05	57	0.02	0.05	57	3.78	0.05	57	10 47	0.04	57	14 83	0.04	57	16 21
49	100	58		0.05	58 59	0.02	0.05	58 59	3 80	0.05	58 59	10 57 10 57	004	58 59	14.98 14.98	0.04	58 59	16 38 16 46
50 51	1.00	59 60		0.05	5¥ 60	0.02	0.05	50 60	3.80	0.05	50 60	10.57	0.04	60	15.05	0.04	60	16 55
52	1.00	61		0.05	61	0 02	0.05	61	3.80	0.05	61	10 57	0.04	61	15 05	0.04	61	16 62
53	1.00	62		0.05	62	0.02	0.05	62	3.80	0.05	62	10 57	0.04	62	15 05	0.04	#2	16 62
END		63		0.05		0.02	0.05	63	380	0.05	63	10.57 10.57	0.04	63 64	15 05 15 05	004	63 64	16 62 16 62
		64 65		0.05		0.02	0.05		3 80	0.05		10.57	0.04	65	15 05	0.04	65	16 62
		66		0.05		0.02	0.05		3 80	0.05		10 57	0.04		15 05	0.04	46	16 62
		67		0.05		0.02	0.05		3.60	0.05		10.57	0.04		15 05	0.04		16 62
		68		0.05		0.02	0.05		3.60	0.05		10 57	0.04		15 05	0.04		16 62
		69 70		0.05		0.02	0.05		3.60	0.05		10.57	0.04		15 05 15 05	004		16 62 16 62
		71		0.05		0.02	0.05		3.80	0.05		10.57	0.04		15 05	0.04		16 62
		72		0.05		0 02	0.05		3.60	0.05		10 57	0.04		15 05	0.04		16 62
		73		0.05		0.02	0.05		3 80	0.05		10 57	004		15 05	004		16 62 16 62
		74 75		0.05		0.02	0.05		3.80	0.05		10.57 10.57	0.04		15 05	0.04		16 62
		76		0.05		0.02	0.05		3 80	0.05		10 5	0.04		15 05	0.04		16 62
		77		0.05		0.02	0.05		3.80	0.05		10 57	0.04		15 05	0.04		16 62
		78		0.05		0.02	0.05		3.60	0.05		10 57	0.04		15 05 15 05	004		16 62 16 62
		79 80		0.05		0.02	0.05		3.80	0.05		10 57 10 57	0.04		15 05	0.04		18 62
		80 81		0.05		0.02	0.05		3.80	0.05		10.57	0.04		15 05	0.04		16 62
		82		0.05		0.02	0.05		3.80	0 05		10.57	0.04		15 05	0.04		16 62
		83		0.05		0.02	0.05		3.80	0.05		10 57	0.04		15 05	0.04		16 62
		84 85		0.05		0.02	0.05		3 80	0.05		10.57 10.57	0.04		15 05 15 05	0.04		18 62 18 62
		85 86		0.05		0.02	0.05		3.80	0.05		10.57	0.04		15 05	0.04		18 62
		67		0.05		0.02	0.05		3.80	0.05		10.57	0.04		15 05	0 04		16 62
		88		0.05		0.02	0.05		3.80	0.05		10.57	0.04		15.05	0.04		16 62
		89		0.05		0.02 0.02	0.05		3.80	0.05		10 57 10 57	0.04		15.05 15.05	0.04		16 62 16 62
		90 91		0.05		0.02	0.05		3.80	0.05		10.57	0.04		15.05	0.04		16 62
		92		0.05		0.02	0.05		3.60	0.05		10 57	0.04		15 05	0.04		16 62
		93		0.05		0.02	0.05		3.60	0.05		10.57	0.04		15 05	0.04		16 62
		94		0.05		0.02	0.05		3.60	0.05		10.57	004		15 05 15 05	004		16 62
		95 96		0.05		0.02	0.05		3.60	0.05		10.57	0.04		15 05	0.04		16 62
		97		0.05		0.02				0.05		10 57			15 05			16 62
				-														

0.05	0.02	0.05	3.80	0.05	10.57	0.04	15.05	0.04	16.62
0.05	0.02	0.05	3.80	0.05	10.57	0.04	15.05	0.04	16.62
0.05	0.02	0.05	3.80	0.05	10.57	0.04	15.05	0.04	16.62
0.05	0.02	0.05	3.80	0.05	10.57	0.04	15.05	0.04	16.62
0.05	0.02	0.05	3.80	0.05	10.57	0.04	15.05	0.04	16.62
0.05	0.02	0.05	3.80	0.05	10.57	0.04	15.05	0.04	16 62
0.05	0.02	0.05	3.80	0.05	10.57	0.04	15.05	0.04	16.62
0.05	0.02	0.05	3.00	0.05	10.57	0.04	15.05	0.04	16.62
0.05	0.02	0.05	3.60	0.05	10.57	0.04	15 06	0.04	16.62
0.05	0.02	0.05	3.80	0.05	10.57	0.04	15.05	0.04	16.62
0.06	0.02	0.05	3.80	0.05	10.57	0.04	15.05	0.04	16.62
0.05	0.02	0.05	3.80	0.05	10.57	0.04	15.05	0.04	16.62
0.05	0.02	0.05	3.80	0.05	10.57	0.04	15.05	0.04	16.62
0.05	0.02	0.05	3.80	0.05	10.57	0.04	15.05	0.04	16.62
0.05	0.02	0.05	3.80	0.05	10.57	0.04	15.06	0.04	16.62
05	0.02	0.05	3.80	0.05	10.57	0.04	15.05	0.04	16.62
0.05	0.02	0.05	3.80	0.05	10.57	0.04	15.05	0.04	16.62
0.05	0.07	0.05	3.80	0.05	10.57	0.04	15.05	0.04	16.62
0.05	0.02	0.05	3.80	0.05	10.57	0.04	15.05	0.04	16.62
0.05	0.02	0.05	3.80	0.05	10.57	0.04	15.05	0.04	16.62
0.05	0 02	0.05	3.80	0.05	10.57	0.04	15.05	0.04	16.62
0.05	0.02	0.05	3.80	0.05	10.57	0.04	15.05	0.04	16.62
0.05	0.02	0.06	3.80	0.05	10.57	0.04	15.05	0.04	16.62
0.05	0.02	0.05	3.80	0.05	10.57	0.04	15.05	0.04	16.62
0.05	0.02	0.05	3.80	0.05	10.57	0.04	15.05	0.04	16 62
0.05	0.02	0.05	3.80	0.05	10.57	0.04	15.05	0.04	16.62
0.05	0.02	0.05	3.60	0.05	10.57	0.04	15.05	0.04	16 62
0.05	0.02	0.05	3.80	0.05	10.57	0.04	15.05	0.04	16 62
0.05	0.02	0 05	3.80	0.05	10.57	0.04	15.05	0.04	16.62
0.05	0.02	0.05	3.60	0.05	10.57	0.04	15.05	0.04	16.62
0.05	0.02	0.05	3.60	0.05	10.57	0.04	15.05	0.04	16.62
0.05	0.02	0.05	3.60	0.05	10.57	0.04	15.05	0.04	16.62
0.05	0.02	0.05	3.60	0.05	10.57	0.04	15.05	0.04	16.62
0.05	0.02	0.05	3.80	0.05	10.57	0.04	15.05	0.04	16 62
0.05	0.02	0.05	3.80	0.05	10.57	0.04	15.05	0.04	16 62
0.05	0.02	0.05	3.60	0.05	10.57	0.04	15.05	0.04	16.62
0.05	0.02	0.05	3.60	0.05	10.57	0.04	15.05	0.04	16 62
0.05	0.02	0.05	3.80	0.05	10.57	0.04	15 05	0.04	16.62
0.05	0.02	0.05	3.60	0.05	10.57	0.04	15.05	0.04	16.62
0.05	0 02	0.05	3.80	0.05	10.57	0.04	15.05	0.04	16.62
0 05	0 02	0.05	3.60	0.05	10.57	0.04	15.05	0.04	16.62
0.05	0.02	0.05	3 80	0.05	10.57	0.04	15.05	0.04	16 62

	5.0 12.7			6.0 15.2			7.0 17.8			8.0 20.4			9.0 23.0		10 0 25 6				
	91.2			111.9			132.9			154.2			175.9		108 0	Comple Total Fi		Jel Co Total F	· ·
	44 16.6			34 21.3			2.5 28 7			1.8 40-4			1.2 #0.4		0.6	10.2			-
CC0	Tout	Mess	C/Co	Tout	Mass	C/Co	Tout	Mass	CCo	Taut	Mass		Taul	Mass			Mass	CICo	Mass
														T		0.00	0.0	0.00	-0 00
														ł		0.00	0.0	0.00	-004
																0.00	-0.1	0.00	-0.04
																0 00	-0.1	0.00	-0.04
																0.00	-01 -01	000	-0.04
																0.00	-01	0.00	-0.04
0.00	34	-0.04														0.00	-02	0 00	-0.04
0.00	35	-0.04														0.00	-01 1.3	0 00	0.048
0.00	36 37	-0.04 -0.04														0.03	27	0 02	1 82
0.00	38	-0.04	0.00	38	-0.04											0.05	49	0 03	2 66
0.00	39	0.48	0.00	39	-0.04											0.10	94	0.04	4.27
0.00	40	0.99	0.00	40	-0.04											0.13	123 168	0.05	5 05 6 20
0.00	41 42	1.41 2.42	0.00	41 42	-0.04						i					0.22	21.4	0.04	7 39
0.00	43	3.29	0.00	43	0.40										1	0.27	26.6	0.09	8 79
0.00	44	4 39	0 00	44	0.83											0.32	31.8 37.1	0 10	994
0.01	45 46	5.42 7.12	0.00	45 48	1.18	0 00	46	-0.03								0 43	42 1	0 12	11 30
0.01	47	8.15	0.00	47	2.73	0.00	47	0.30								0 48	46.9	0 12	11 84
0.01	48	9.40	0.00	48	3.64	0.00	48	0.62								0.52	50 8	0 12	12 17
0.02	49 50	10.14 11.19	0 00	49 50	4.49 5.89	0.00	49 50	0.66								0 56	544 587	0 13	12 72
0 02	51	11.93	0.01	51	5.55	0.00	51	1.76								0 63	61 5	0 14	13 24
0.02	52	12.84	0.01	52	7.76	0.00	52	2.18								0 66	64 8	0.14	13 32
0.03	53	13.24	0.01	53	8.36	0.00	53	2.60								0.69	67 4 69 5	014	13 84 13 98
0.03	54 55	13.61 13.75	0.02	54 55	9.22 9.82	0.00	54 55	3.12 3.80								073	71.7	0 14	14 12
0.03	55 56	14.37	0.02	56	10.56	0.00	56	4,47								0 76	74 5	0 15	14.25
0.03	57	14.67	0.02	57	10 59	0.00	57	4.78	0 00	57	0.59					0.78	76 2	0 15	16 27
0 03	58	14.83	0.02	58	11.19	0.01	58	5.48	0.00	58 59	1.01					0.60	783 790	0 15	14 39 14 39
0.03	59 60	14.91 15.20	0.02	59 60	11.30 11.82	0.01	59 60	5.80 6 34	0.00	59 60	1.46					0 63	80 8	0 15	14 39
0 03	61	15.36	0.02	61	12 06	0.01	61	6.82	0.00	61	1.74					0 84	82 0	0 15	14 39
0.03	62	15.43	0.02	62	12.19	0.01	62	7 29	0 00	62	2.09					0 65	83 1 83 8	0 15	14 39
0 03	63	15.50	0.02	63 64	12.26 12.49	0.01	63 64	7.62 8.16	0.00	63 64	2.37 2.65					0.65	84.9	0 15	14.39
0 03	64 65	15.50 15.57	0.03	65	12.62	0.02	65	8.30	0.00	65	2.72					0 87	85 3	0 15	14 39
0 03	66	15.57	0 03	66	12.67	0.02	66	8.51	0.00	66	3.03					0 48	85 8	0 15	14 39
0.03	67	15.57	0.03	67	12.73	0.02	67	8.65	0.00	67 68	3.25 3.53					088	863 867	0 15	14 39 14 39
0.03	68 69	15.57 15.57	0.03	68 69	12.73 12.79	0.02	68 69	6.81 8.99	0.00	69	3.95					0 89	87.4	0 15	14 39
0.03	70	15.57	0.03	70	12.79	0.02	70	9.03	0.01	70	4.12	1				0 89	87 6	0 15	14 39
0.03		15.57	0.03	71	12.79	0.02	71	9 03	0 01	71	4.33					0.90	878 883	0 15	14 39
0.03		15.57	0.03	72	1279	0.02	72 73	9.20 9.24	0.01	72 73	4.69					0.90	88 7	0 15	14 39
0.03		15.57 15.57	0.03	73 74	12.79 12.79	0.02	74	9 28	0.01	74	5.24					0.91	88 9	0 15	14 39
0.03		15.57	0.03		12.79	0 02	75	9.32	0.01	75	5.49				1	0 91	89.2	0 15	14 39
0.03		15.57	0.03		12.79	0.02	76	9.32	0.01	76	5.54		77	1.73		091	893 91.2	0 15	14 39
0.03		15.57 15.57	0.03		12.79 12.79	0.02	77 78	9.36 9.36	0.01	77 78	5.68 5.73	0.00	77 78	1.73		0 93	91.3	0 15	14 39
0.03		15.57	0.03		12.79	0.02	79	9.36	0.01	79	5.84	0.00	79	1.85		0 93	91 5	0 15	14 39
0.03		15.57	0.03		12.79	0.02	80	9.36	0.01	80	5.92	0.00	80	1 92		0 94	916	0 15	14 39
0.03		15.57	0.03		12.79	0.02	81 82	9.36 9.36	0.01	81 82	5.95 5.95	0.00	#1 #2	1.94		0.94	91.7 91.7	0 15	14.39
0.03		15.57 15.57	0.03		12.79 12.79	0.02	92	9.36 9.36	0 02	83	6.05	0.00	83	2.02	1	0.94	91.9	0 15	14.39
0.03		15.57	0.03		12.79	0.02		9.36	0 02	84	6.08	0.00	84	2.04	1	0.94	91.9	0 15	
0 03		15.57	0.03		12.79	0.02		9.36	0.02	85	6.11	0.00	85 88	205		094	92 0 92 1	0.15	14 39 14 39
0 03		15.57 15.57	0.03		12.79 12.79	0.02		9.36 9.36	0.02	86 87	6 13 6 13	0.00	86 87	2.18	ļ	0.94	92 2	0 15	14 39
0 03		15.57	0 03		12.79	0.02		9.35	0.02	88	6.16	0.00	64	2 37		0 94	92 3	0 15	14 39
0.03		15.57	0.03		12.79	0 02		9 36	0.02	89	6.16	0.00	89	2.56		0 94	92 5	0 15	14 39
0.03		15.57	0.03		12.79			9.36	0.02	90	6.16	0.00	90 91	2.64 2.76	1	0.95	92.6 92.7	0 15	14 39 14 39
0.03		15.57 15.57	0.03		12.79	0.02		9.36 9.36	0 02	91 92	6 16 6 16	0 00	92	2.68		0.95	92.6	0 15	14 39
0.03		15.57	0.03		12.79	0 02		9.36	0 02	93	6.16	0 01	93	3.04		0.95	\$ 3 0	0 15	14 39
0.03		15.57	0.03		12.79	0.02		9 36	0 02		6.16	0 01	94	3.16		0 95	931	015	14 39
0.03		15.57	0.03			0.02		936	0.02		6 16 6.16	0.01	95 95	3 29 3 32		0.95	93 2 93 3	0 15	
0.03		15 57	0.03			0.02		9.36 9.36	0.02		6 16		97	3.38	1	0.95			14 39
1 0.03		13.37	1 0.05												•	•		·	

	1 0 03	15 57	0.03	12.79	0 02	9.36	0.02	€.16	0.01		3.41	1			0 95	83 4	0 15	14.39	
	0.03	15 57	0 03	12.79	0.02	9.36	0.02	6 16	0.01	10	3.47				0.95	93.4	0.15	14.39	
	0 03	15 57	0 03	12.79	0 02	9.36	0 02	6.16	0.01	100	3.52				0.95	93.5	0.15	14.39	
	0 03	15 57	0 03	12.79	0 02	9.36	0.02	\$ 16	0.01	101	3 54				0.95	83.5	0.15	14.39	
	0 03	15 57	0 03	12.79	0.02	9 36	0 02	6.16	0.01	102	3 54				0.96	93.5	0 15	14.39	
	0 03	15 57	0.03	12.79	0.02	9.36	0.02	6.16	0.01	103	3.60				0.95	83.5	0.15	14.39	
	0 03	15.57	0 03	12 79	0.02	9.36	0.02	6.16	0.01	104	3.61				0.86	83.6	0.15	14.39	
	0 03	15.57	0 03	12.79	0 02	9.36	0.02	6.16	0.01	105	3.63				0.96	\$3.6	0.15	14.39	
	0 03	15.57	0 03	12.79	0 02	9.36	0.02	6.16	0.01		3.63				0.96	83.6	0.15	14.39	
	0.03	15.57	0 03	12.79	0.02	9.36	0.02	6 16	0.01		3.63			-	0.96	\$3.6	0.15	14.39	
	0 03	15.57	0.03	12.79	0.02	9.36	0 02	6.16	0.01		3.63			1	0.96	\$3.6	0.15	14.39	
	0 03	15 57	0.03	12.79	0.02	9.36	0.02	6.16	0.01		3.63				0.96	83 6	0.15	14.39	
	0.03	15 57	0 03	12.79	0 02	9.36	0 02	6.16	0.01		3.63			i	0.96	93.5	0.15	14.39	
	0 03	15.57	0 03	12.70	0.02	0.36	0 02	6 16	0 01		3.63	0.00	111	1.13	0.97	94 7	0.15	14.39	
	0.03	15 57	0 03	12 79	0.02	9.36	0.02	6.16	0.01		3.63	0.00	112	1.13	0.97	94.7	0.15	14.39	
	0.03	15.57	0.03	12.79	0.02	1.36	0 02	6.16	0.01		3.63	0.00	113	1.13	0 97	94.7	0.15	14 39	
	0.03	15.57	0.03	12.79	0.02	9.36	0.02	6.16	0 01		3.63	000	114	1.13	0.97	94.7	0.15	14.39	
	0.03	15.57	0 03	12.79	0.02	9.36	0.02	6.16	0.01		3.63	0.00	115	1.13	0.97	94.7	0.15	14.39	
- 1	0.03	15.57	0.03	12.79	0.02	9.36	0.02	6.16	0.01		3 63	0.00	116	1.13	0.97	94.7	0.15	14.39	
	0 03	15 57	0.03	12.79	0.02	9.36	0.02	6.16	0.01		3.63	0.00	117	1.13	0.97	94.7	0.15	14.39	
1	0 03	15.57	0.03	12.79	0.02	9.38	0.02	6.16	0.01		3.63	0.00	118	1.13	0.97	94.7	0.15	14.39	
	0.03	15.57	0.03	12.70	0.02	9.36	0.02	6.16	0.01		3.63	0.00	119	1.13	0.97	\$4.7	0.15	14.39	
1	0.03	15.57	0.03	12.79	0.02	9.36	0.02	6.16	0.01		3.63	0.00	120	1.18	0.97	94 8	0.15	14.39	
1	0 03	15.57	0.03	12.79	0.02	9.36	0.02	6.16	0.01		3 63	0.00	121	1.23	0.97	94.8	0.15	14.39	
1	0.03	15.57	0 03	12.79	0 02	9.36	0 02	6.16	0.01		3.63	0.00	122	1.27	0.97	54.8	0.15	14.39	
	0 03	15.57	0 03	12 79	0 02	9.36	0.02	6.16	0.01		3.63	0.00	123	1.37	0.97	94.9	0.15	14 39	
	0 03	15 57	0.03	12 79	0.02	9.36	0.02	6.16	0.01		3.63	0.00	124 125	1.41	0.97	95.0 95.1	0.15	14.39	
	0 03	15.57	0 03	12 79	0.02	9.36	0 02	6.16	0.01		3.63					951			
	0 03	15 57	0 03	12.79	0 02	9.36	0.02	6.16	0 01		3.63	0.00	126	1.54	0.97	95.2	0.15	14.39	
	0 03	15 57	0 03	12 79	0.02	\$.36	0.02	6.16	0.01		3.63	0.01	127 126	1.62	0.97	95.3	0.15	14.39	
	0 03	15 57	0 03	12.79	0 02	9.36	0 02	6.16	0.01		3.63	0.01	129	1.75	0.97	95.3	0.15	14.39	
	0 03	15 57	0.03	12.79	0.02	9.36	0 02	6.16			3.63	0.01	130	1.77	0.97	95.3	0.15	14.39	
	0 03	15 57	0 03	12.79	0 02	9.36	0.02	6.16	0.01		3.63	0.01	130	1.00	0.97	95.4	0 15	14.39	
	0 03	15 57	0 03	12.79	0 02	9.36	0 02	6.16	0.01		3.63	0.01	132	1.81	0.97	95.4	0.15	16.39	
	0 03	15 57	0 03	12.79	0.02	9 36	0 02	6.16	0.01			0.01	-		0.97	95.4	0.15	14.39	
	0.03	15 57	0 03	12 79	0.02	9.36	0.02	6 16	0.01		363	0.01	133 134	1.85	0.97	95.4	0.15	14.39	
	0 03	15 57	0.03	12.79	0.02	9.36	0.02	6 16	0.01		3.63	0.01	134	1.67	0.97	95.5	0.15	14 39	
	0 03	15 57	0 03	12.79	0 02	9.36	0 02	6.18	0.01						097	955	0.15	14.39	
	0 03	15 57	0 03	12.79	0.02	9.36	0.02	6.16	0.01		3.63	0 01	136	1.65	09/	95.5	0.15	14.39	
	0 03	15.57	0 03	12.79	0 02	9.36	0 02	6.16	0.01		3.63	0 01	137	1.91		95.5	0.15		
	0 03	15 57	0 03	12 79	0 02	9.36	0.02	6.16	0.01		3.63	0.01	138	1.92	0.98	955	0 15	14.39	
- 1	0 03	15 57	0 03	12 79	0 02	9.36	0.02	6 16	0.01	_	3.63	0.01	139	1 93	0 98	800	015	14 28	

`

	diam)																		
la(#*2)																			
m(initial valuality)		122.10 #	vinen.																
ETS																			
1 (core length) = 1	18'10 =																		
negnery plane=																			
reter level= Ingle for jet oare =			•																
	096 xm²2 seboRy) 12210 m/men ng(h)=18*ro=990 m plane= 165 m j= 4.0 m store= 2 a/s %uo*sup(-74*(r/s)*2) *(do/s)*sup(-44*(r/s)*2) *(do/s)*sup(-44*(r/s)*2) x (m)= 0 10 15 20 25 30 35 48 45 50 55 60 65 70 75 90																		
			z (m)#	0	10	15	30	26	30	35	48	45	60	55	60	65	70	75	
ngia (dag)			w'/ en la		18.6	15.0	20.0	26.0	30.0	36	40	45	54	66	60	-	70	76	
	0.0								0.0	0.0	00	0.0	0.0		0.0		00		
			un(mimin)#	122.1	122.1	80.0	60.4	48.3	40.3	34.5	30.2	20.9	24.2	22.0	20 1	18.6	17.3	18 1	15
			đ x(min) #																
								-											
	1.0			-							•	••							
											-						-		
				00	0.1	0.1	0.2	0.3	04	0.6	07	0.9	1.1	13	1.6	1.8	21	24	27
	2.0		z'(m)#	0	10	15	20	25		35	40		50	55	60			75	80
					•••		-		-			-			• •		-	•••	
						•••		•			••			••	•••	••		•••	
	10													• •				• -	
	4.4														-				
			un(m/msn)=	122.1				39 5		28 2			19.7		18.4	152	14.1	13.2	
			đ z(min)=	0.0	0.1	0.1	01	0.1	01	0.2	0.2	0.2	02	0.3	03	0.3	03	04	04
			ta(min)≠	0.0	0.1	0.1	02	0.3	0.5	08	0.8	1.0	1.3	1.5	18	22	25	29	3 3
	4.0		z'(m)#	-		•••	30											• •	
										•		-							
											••••								
					-		-						• •			•••			
	6.0							-							• •	• -			
	4.4			-				÷-											
			uat(m/min)=			45.8	34 3			19.8	17.2	15 3	137	12 5	11.4	10.6		82	
			đ x(mm)=	0.0	0.1	0.1	0.1	02	02	0.2	0.3	03	03	04	04	05	05	05	C e
			ta(min)=	00	0.1	0.1	0.3	•••			• •			••	•••	• •		• •	
	6.0			-															
												• •						•••	
							-	- · ·						• ·					
					÷														
	70							••							••		••		
	1.0						•••											02	91
			uat(m/man)≖	122.1	122.1	28.4	19.8	15.0	13.2	11.3			79	7.2	66	61	57	53	5 (
					0.1	01	0.2	03	03	04	05	05	08	07	07	06	09	09	10
			br(men)=	00	-	0.2								-			• •		
	8.0		s'(m)=	-						••					•••				
																-			
															• •				
	9 .0				-				• •	•		• •						• •	
										**	63	71	7.9	87	95	10 3	11 1	11.9	12
				122.1	122 1	126	95	7.6	8.3	54		42	3.8	34	32	29	27	25	24
			di x(min)=	00	01		0.5	06							-		-	-	-
			b:(min)=	0.0	•		••	•••				•••		•••	• •				
	10.0			-			•••						•••		•				
			r(m)=	00	1.8									• ·					•••
							• •		•••										

85	80		100	106	110	115	120	125	130	135	140	145
85	80		100	105	110	115	120	125	130	135	140	145
00	00	00	00	00	00	0.0	0.0	0.0	00	0.0	0.0	00
14.2	134	12.7	12.1	11.5	11.0	10.5	10.1	07	9.3	0.0	8.6	8.3
0.3	0.4	0.4	04	04	04	0.5	0.5	0.5	05	0.5	0.6	0.0
30	3.4	3.8	4.2	46	50	5.5	6.0	1.5	7.0	7.6	8.1	8.7
86	80		100	106	110	115	120	125	130	135	148	145 2.5
1.5 13.9	1.6 13.1	1.7	1.7 11.8	1.8 11.3	1.9	2.0 10.3	4.1 9.8	9.5	2.J 91	8.8		8.2
03	0.4	0.4	0.4	0.6	0.5	0.5	0.5	0.5	0.5	0.0	0.0	0.6
3.1	3.5	3.8	4.3	4.7	51	5.0			7.2	7.7	83	8.9
85	90	- 95	100	106	110	115	120	125	130	135	140	145
30	3.1	3.3	3.5	37	38	4.0	4.2	4.4	45	4.7	4.9	\$.1
13 0	123	11.8	11.0	10.5	10.0		92	8.8	8.5	8.2	7.9	7.6
04	0.4	04	04	05	05	0.5	05	06	0.6	06	0.6	0.6
33	3.7	41	48	5.0	5.5		6.5	71	7.7	8.3	89	9.5
85	80	95	100	105	110	115	120	125	130	135	140	145
4 5	47	\$ 0	5.2	5.5	\$.8	0.0	6.3	0.5	9.8	7.1	7.3	7.6
11.6	110	10.4	9.9	94	90		8.2	7.9	7.6	7.3	7.0	6.6
04	04	05	05	05	0.5	06	06	0.6	0.6	0.7	0.7	0.7
37	4.1	4.8	51	56	• 1	67	73	7.9 125	86 130	93 135	10 0 140	10.7 145
85	80	95 6 6	100 7.0	106 73	110	115 8.0	84	8.7	91	9.4	9.8	10 1
59 90	03 94		8.4	80	17	73	70	6.7	65	6.2		5.8
05	05	0.6	0.6	0.0	0.6	0.7	07	07	0.8	0.8	0.8	0.8
43	48	54	59	6.6	72	7.9		9.3	10.0	10.8	11.7	12.5
85	80	95	100	105	110	115	120	128	131	138	141	148
7.4	7.0	#3	87	9.2	9.0	10 1	10 5	10.9	11.4	11.8	12.2	12.7
	7.6	7.2		65	.2		57	55	5.3	51	49	4.7
08	06	07	07	0.7	0.8	08	0.9	0.0	0.9	1.0	1.0	1.0
52	59		73	80		98	10 5	11 4	12.3	13.3	16.3	15.3
85	91		101	105	111	115	121	126	131	136	141	146
89	95	10.0	10 5	11.0	11.6	12.1	12 B	13.1	13.7	14.2	14.7	15.2
83	5.9	5.6	53	51	49	4.6	4.5	4.3	4.1	4.0	3.8	37
0.8	08	09	09	10	1.0	1,1	1.1	12	1.2	1.2	1.3	1.3
67	75 81	8.4	9.3 101	10 3 105	11.3	12.4	13 5 121	14 6 126	15 8 131	17 1 138	18.4 141	19 7 146
85 10 4	110	11.7	123	12.9	135	14.1	14 7	15.3	100	16.6	17.2	17.6
47	44	4.2	40	38	36	34	3.3	3.2	3:	2.9	2.8	2.7
10	11	12	1.2	13	1.4	14	1.5	1.8	16	1.7	1.7	1.8
90	10.1	11.3	12.5	13.8	15.2	18.8	18.1	19.7	21.3	23.0	24.7	28.5
	91		101	106	111	118	121	126	131	138	141	147
11.9	12.6	133	14 0	147	15.5	16.2	18.9	17.6	18.3	19.0	19.7	20.4
33	31	3.0	28	2.7	2.6	2.4	2.3	2.2	2.2	2.1	2.0	1.9
15	1.6	1.7	1.8	1.8	1.9	2.0	21	2.2	2.3	2.4	2.5	28
127	14.3	18.0	177	19 8	21.5	23.5	25.6	27.8	30 1	32.5	35.0	37.5
	91		101	106	111	117	122	127	132	137	142	147
13 5	14 2	15 0	158	16.6	17.4	18.2	19.0	19.8	20.6	21.4	22.2	23.0
22	21	2.0	1.9	1.8	17	1.6	16	1.5	1.5	1.4	1.4	1.3
22	2.3	2.5	20	2.7	2.9	3.0	3.1	3.3 41.3	3.4 44.7	3.5 48.3	3.7 52.0	3.8 55.8
18.8	21 2	23 7 97	26.3 102	29 0 107	31 9 112	34.9	38 0 122	41.3	44 7	48.3	52.0 142	55 8 147
150	15 P	167	17.6	18.5	19.4	20.3	21 1	22 0	22.9	23.8	24.7	25 6
14	1.3	13	12	1.2	1.1	1.1	10	10	0.9	0.9	0.9	0.8
35	37	39	41	4.3	4.5	47	49	51	53	5.5	5.8	6.0
29.4	33.0	36.9	41.0	45 3	49.8	54.5	59.4	64.5	69.9	75.4	81.2	87.1
	-	-										

inter			Cullet et 145m															
			argie (dag)*	<u> </u>	0.0			10		_	2.0	_		30	<u> </u>		•0	
			(m)		0.0			25			51			7.0			10 1	
			1/2 A(m²2)= (a(m/min)=		01 8.3			10.0			30.2 7.0		1	\$04 88			70 7 \$.\$	
			tal non)=								1.5			10.7			12 5	
Tinlet 17	0.00	Toutlet 26		0.00	Tour 26	0.00	0.00	<u>Taut</u> 20	-0.01	C/Co	Tout	Mase	C/Co	Taul	Mass	C/Co	Test	. Maree
18	0.01	27		0.00	27	0.00	0.00	27	0.03	0.00	27	0.02						
19 20	0.01 0.01	28 29		0.00	28 29	0.00	0.00	28 29	0.05	0.00	28 29	0.13 0.12	0.00	76 28	0.03 0.16			
21	0.01	30		0.00	30	0.00	0.00	30	0.06	0.00	30	0.13	0.00	30	0.17	0.00	30	0.12
22	0.03 0.11	31 32		0.00	31 32	0.00	0.00	31	0.14	0.00	31 32	0.20 0.00	0 00 0.00	31 37	0.10 0.41	0.00	31	011
23 24	0.19	33		0.01	32	0.00	0.01	23 25	0.49 0.84	0.01	33	1.80	0.00	33	1.28	0.00	32 33	026
25	0.23	34		0.01	34	0.01	0.01	34	1.03	0.01	34	2.00	0.01	34	2.85	0.00	34	177
28 27	0.45 0.61	35 36		0.02	36 36	0.01	0.02	20 26	2 03 2 73	0.01	36 38	4.20	0.01	36 30	3.71 6.15	0.00	30	2 23 3 39
28	0.71	37		0.04	37	0.02	0.04	37	3.19	0.03	37	8.24	0.02	37	9.48	0.01	37	. 43
29 30	0.79 0.79	38 39		0.04	20 21	0.02	0.04	20 20	3.54 3.54	0.04	30 30	9.37 9.84	0.03	38 39	11.75	0 01	39 39	11.50
31	0.81	40		0.04	40	0.02	0.04	60	3.65	0.04	40		0.04	40	14.00	0 03	40	13 81
32 33	0.84	41 42		0.05	41 42	0.02	0.06	41 42	3.78	0.04	41 42	10 33 10.71	0.04	41 42	14.23 14.72	0 03	41 42	14 76 15 72
34	0.90	43		0.06	43	0.02	0.06	43	4.06	0.04	43	11.09	0.04	43	15 25	0 03	43	10.04
35	0.92	44		0.06	44	0.02	0.06	64	4.14	0.06	44	11.40	0.04	44	15.79	0 03	44	10 58
36 37	0.93	45 48		0.06	45 48	0.02	0.05	45 46	4.19 4.23	0.06	45 48	11.58 11.71	0.04	45 48	18.23	0 03	45 48	17 17
34	0 95	47		0.05	47	0.02	0.06	47	4.28	0 06	47	11 83	0.04	47	18 87	0.04	47	18 03
39 40	0.96 0.97	48 40		0.06	48 49	0.02	0.06	48 40	4.32 4.37	0.06	48 49	11.00 12.00	0.04	48 49	10 85	0.04	48 49	18 32
41	0.98	50		0.05	50	0.02	0.05	50	4.41	0.06	80	12.21	0.06	50	17 20	0.04	50	18 72
42	88.0	51		0.05	51	0 02	0.05	51	4 41	0.06	51	12.27	0.05	51	17.38	0.04	51	18.91
43	0.98	52		0.06	52	0.02	0.05	52	4.41	0.06	52	12.27	0.06	52	17.47	0.04	52	19 11
44	0 99	53		0.05	53	0.02	0.05	53	4 46	0.06	53	12.33	0.06	\$3	17 47	0.04	83	19 20
45 46	0.99	54 55		0.05	54 55	0.02	0.05	54 55	4 48	0.05	54 55	12 40 12 4G	0.05	54 55	17 56	0.04	54 55	19 30 19 40
47	0.99	55		0.05	56	0.02	0.05	56	4 48	0.06	56	12 40	0.05	56	17 65	0.04	58	19 40
48	0.99	57		0.05	57	0 02	0.05	57	4.46	0.06	\$7	12 40	0.06	57	17 65	0.04	57	19 49
49	0 99	54		0.05	58	0.02	0.05	58	4.60	0.06	58	12 40	0.05	58	17.65	0.04	56	19 49
50 51	0.99	59 60		0.05	59 60	0.02	0.06	59 60	4.48 4.48	0.05	549 660	12.40	0.05	59 60	17 65	0.04	59 60	19 49 19 49
52	0.99	61		0.05	61	0.07	0.05	61	4.68	0.06	61	12 40	0.06	61	17 65	0.04	61	18 49
53 END	1.00	62 63		0.06	62	0.02	0.05	62	4.50 4.50	0.06	62 63	12.48	0.05	82 83	17.65	0.04	62 63	10 40
210		84		0.06		0.02	0.06		4.50	0.06		12 52	0.06	64	17.82	0.04	64	19 40
		65 66		0.08		0.02	0.05		4.50	0.05		12.52	0.06		17.82	0.04	46 68	19 60 19 69
		87		0.08		0.02	0.06		4.50	0.06		12 52	0.06		17 82	0.04		19 69
		68 69		0.08		0 02	0.05		4.50	0.06		12.52 12.52	0.05		17 82 17 82	004		19 49
		70		0.08		0 02	0.05		4.50	0.06		12 52	0.05		17 82	0.04		19 69
		71 72		0.08		0.02	0.05		4 50 4 50	0.06		12.52 12.52	0.05		17.82 17.82	0.04		19 69 19 69
		73		0.08		0.02	0.05		4.50 4.50	0.05		12.52 12 52	0.06		17 82 17 82	0.04		19 49
		74 75		0.06		0.02 0.02	0.06		4.50	0.06		12.52	0.06		17 82	0.04		10 40
		78 77		0.08		0.02	0.06		4.50 4.50	0.05		12 52 12 52	0.06		17.82	0.04		19 49
		78		0.06		0.02	0.06		4.50	0.06		12 52	0.06		17.82	0.04		19 69
		79 80		0.08		0.02	0.05		4.50	0.05		12.52 12.52			17.82			10 40 18 40
		81		0.08		0.02	0.05		4.50	0.06		12.52	0.06		17.82	0.04		19 89
		62 83		0.06		0.02	0.06		4.50	0.05		12 52 12 52			17.82			19 60 19 60
		84		0.08		0.02	0.05		4.50	0.06		12 52	0.05		17 82	0.04		10 66
		85 86		0.08		0.02	0.05		4.50	0.05		12 52 12 52	0.05		17 82 17 82			19 69 19 59
		87		0.08		0.02	0.06		4.50	0.05		12.52	0.05		17 82	0.04		10 60
		86 89		0.06		0.02	0.06		4.50	0.06		12.52 12.52	0.06		17.82			19 40 19 40
		90		0.06		0.02	0.05		4.50	0.05		12 52	0.06		17.82	0.04		19 49
		91 92		0.045		0.02	0.05		4 5k 4.50	005		12.52 12.52	0.05		17.82 17.82			10 00
		93		0.06		0.02	0.05		4.50	0.06		12 52	0.05		17.82	0.04		19 60
		94		0.08		0 02	0.06		4.50	0.05		12.52	1006		17.82	1004		19 19

	0.00	0.02	0.06	4.50	0.06	12.52	0.06	17.82	0.04	19.69
	0.00	0.02	0.06	4.50	0.06	12.82	0.06	17.62	0.04	19.69
	0.06	0.02	0.06	4.50	0.06	12.52	0.05	17.82	0.04	12.69
	0.06	0.02	0.05	4.50	0.06	12.57	0.05	17.82	0.04	18.89
	0.06	0.02	0.06	4.50	0.06	12.52	0.05	17.82	0.04	19.60
	0.06	0.02	0.06	4.50	0.06	12.52	0.06	17.62	0.04	18.69
	0.06	0.02	0.06	4.50	0.06	12.62	0.05	17.82	0.04	19.69
	0.06	0.02	0.06	4.50	0.06	12.82	0.06	17.82	0.04	19.00
	0.06	0.02	0.06	4.50	0.06	12.62	0.05	17.82	0.04	19.09
	0.046	0.02	0.06	4.50	0.06	12.52	0.06	17.82	0.04	18.88
	0.00	0.02	0.06	4.50	0.05	12.52	0.06	17.82	0.04	18.60
	0.06	0.02	0.06	4.50	0.06	12.52	0.06	17.82	0.04	19.60
	0.00	0.02	0.06	4.50	0.06	12.62	0.06	17.82	0.04	19.69
	0.06	0.02	0.06	4.50	0.06	12.62	0.06	17.82	0.04	19.60
	0.08	0.07	0.06	4.50	0.06	12.52	0.06	17.82	0.04	10.00
	0.08	0.02	0.06	4.50	0.06	12.82	0.05	17.82	0.04	19.60
	0.04	0.02	0.06	4.50	0.06	12.52	0.06	17.82	0.04	19.69
	0.06	0.02	0.06	4.50	0.06	12.62	0.06	17.62	0.94	19.60
	0.06	0.02	0.06	4.60	0.06	12.52	0.06	17.82	0.04	19.69
	0.06	0.03	0.06	4.50	0.06	12.62	0.06	17.82	0.04	19.09
	0.045	0.02	0.06	4.50	0.06	12.52	0.06	17.82	0.04	19.69
	0.00	0.03	0.06	4.50	0.06	12.52	0.06	17.82	0.04	19.69
	0.08	0.03	0.06	4.50	0.36	12.82	0.06	17.82	004	19.60
	0.046	0.03	0.06	4.50	0.06	12.52	0.06	17.82	0.04	19.69
	0.06	0.02	0.06	4.50	0.06	12.52	0.06	17.82	0 24	19.69
	0.04	0.02	0.06	4.50	0.06	12.52	0.06	17.82	0.04	19.69
	0.06	0.02	0.06	4 50	0.06	12.52	0.06	17.82	0.04	19.69
	0.046	0.02	0.06	4.50	0.06	12.52	0.06	17.82	0.04	19.69
	0.06	0.02	0.05	4.50	0.06	12.52	0.05	17.62	0.04	19.69
1	0.06	0.02	0.05	4.50	0.05	12.52	0.06	17.82	0.04	19 69

	\$0			60			7.0			80				_		100					
	122			15.2			17 8			20.4			23.0			25.0			-		
	74.1 4.9			1290		ŀ	132.0			154.2 1.9			175.0			186.0		Compile Talgé P		Jasi Ca Tatal P	
	14.3			19.7			28.5			37.5			55 8						-		-
)Co	Tout	Moss	C/Co	Taul	Mass	CICo	Taut	Mess	C/Co	Tout	Mass	C/Co	Taut	Mass	C/Co	Teul	Man	CICo	Mass	C/Co	
																		0.00	0.0	0.00	00
					1													0.00	0.0	0.00	00
																		0.00	0.3	0.00	0
																		0.00	0.5	0 00	0
00.00	31	0.03																0.01	0.0	000	0
00.00 1.00	32 33	0.10																0.02	2.2	0 01	1 - 2 -
.00	34	0.16																0.07	7.7	003	3
00	35	0.36																0.11	12.6	0.05	
.00	36	1.12																0 17	200	0.08	
000	37 38	2.31 3.22	0.00	37 34	1.07 1.92													0.27	30 8	010	11
01	39	5 36	0.00	39	2.42													0.40	48.1	0 12	13
02	40	8.24	0.00	40	4.60													0.47	\$4.3	0 12	13
02	41	10 19	0.00	41	6.22													0 \$1	50 5	0 12	14
03	42 43	11.57 12 13	0.00	42 43	7.39 8.79													055	64 1 67 4	013	14
03	44	12 33	0.01	44	9.41	0 00	44	1 14										0.01	70 8	0 13	15
03	45	12 75	0.01	45	10 00	0 00	45	1.44										0 03	734	0 14	15
.03	46	13.21	0 01	48	12 09	0.00	46	2.65										0 17	78 3	014	18
03	47 48	13.67 14.08	0.02	47	13.63 14.76	000	47 48	3.78										071	81 D 84 7	014	18
.03	49	14.28	0.02	49	15.59	000	49	5 02										0 75	44.9	0 14	16
03	50	14 44	0.02	50	15.69	0.00	50	5 39										0.78	88.1	0.14	10
03	51	14.50	0.02	51	15.98	0 00	51	5.92										0 77	69 5	0 14	16
03	52	14.75	0.02	52	16.32	0 0 1	52	6.32										078	90.7	014	16
03	53	14 90	0.03	53	16 67	0.01	53	7.60										0.80	92.6	0 15	16
.04	54	15 05	0 03	54	17.01	0.01	54	8 54										0.81	94 3	0 15	16
04	55	15.13	0 03	55	17.27	0 02	55	9 17	0.00	55	2.92							0 85	98.4	0 15	16
04	58	15 13	0 03	56	17.35	0 02	58	9.61	0.00	58	3.27				1			0 86	99 3	0 15	16
04	57	15.21	0.03	57	17.43	0 02	57	9 67	0.00	57	3.30							0 80	99 6	0 15	18
04	58	15.28	0 03	58	17.61	0 02	58	9 85	0.00	58	3.37							0 80	1001	0 15	16
04	59	15 28	0 03	59	17.69	0.02	59	10.05	0.00	59	3.52							0 87	100 6	0 15	18
04	60 61	15.28 15.26	0.03	60 61	17 77 17.85	0.02	60 61	10 27	0.00	60 61	3.70	í						0.40	101 7	0 15	18
04	62	15.28	0 03	62	17.85	0 02	62	10.57	0.00	62	4 39							0 84	102 2	0 15	17
04	63	15.28	0 03	83	17.85	0 02	83	10 82	0 00	63	4.57							0.68	102 6	0 15	17
04	64	15 28	0.03	64	17.93	0.02	64	10.73	0.01	64	5.32							0 89	103 7 104 3	0 15	17
04	65 66	15.28 15.36	0.03	65 68	17 93 17.90	0 02	65 68	10.78	0.01	65 66	5.84 6.21				1			090	104.9	0 15	17
.04	67	15 43	0.03	67	18 03	0 02	67	10.88	0.01	67	6.50				1			0.91	105 4	0 15	17
04		15 43	ົນ. 03	68	18.03	0.02		10.93	0.01	66	6.54				1			0.91	106 5	0 15	17
04		15.43 15.43	0.03	69 70	18.03 18.03	0.02	69 70	10 93 10 93	0.01	69 70	8 61 6 71							0.91	106 7	0 15	17
04		15.43	0.03	71	18 03	0 02	71	10 98	0 02	71	0.84	l						0.91	105 9	0 15	17
04		15 43	0.03	72	18.03	0.02	72	10 98	0 02	72	6.94							0.01	105.9	0 15	17
04		15.43 15.43	0.03	73	18 11 18.11	0.02	73 74	11.04	0.02	73 74	700	0.00	73 74	2 29				0.94	108 5	0 15	17
.04		15 43	0.03		18 11	0.02	75	11.04	0 02	75	7.08	0.00	75	2 38				0.94	108 8	0 15	17
04		15.43	0.03		18.11	0.02	76	11.04	0 02	76	7.10	0 00	76	2 38				094	108.0	0 15	17
04		15.43 15.43	0.03		18.11 18.11	0 02	77 78	11.04	0 02	77	7 13	0.00	77 78	2 43				0.94	108.8	0 15	17
.04		15.43	0 03		18.11	0 02	79	11.04	0.02	79	7 19	0.00	79	2 65	1			0 94	109.0	0 15	•.
04		15.43			18.11		80	11.09		80	7.23	0.00	80	2 79				0.94	109.2	0 15	17
04		15 43 15 43	0.03		18.11 18.11	0.02		11.09	0.02	#1 #2	7.23	0.00	81 82	2 87				0.94	109.3 109.8	015	
04		15 43	0.03		18.11	0.02		11.09	0.02	43	7.26	0.01	83	3 59	1			0.95	110 0	0 15	17
.04		15 43	0.03		18.11	0.02		11.09	0 02	84	7.26	0.01	84	3 77	1			0.95	110 2		17
04		15.43	0.03		18 11 15.11	0.02		11.09	0.02	85 86	7 26	0.01	\$5 \$6	3.92 3.92				0.95	110 4	015	17
0.04		15.43 15.43	0.03		16.11	0 02		11.09	0.02	47	7.26	0.01	87	3 96	1			0.96	110 4		11
.04		15.43	0.03		18.11	0.02		11.09	0 02	84	7.26	0.01	84	4.02				0.96	1105		17
0.04		15.43	0.03		18.11	0.02		11.09	0.02	49	7.26	0.01	89	4 07				0.95	110 5		17
)04)04		15.43 15.43	0.03		18.11 18.11			11.09	0.02	90 91	7.26	0.01	90 91	4.13				095	110 7		17
04		15.43			18.11			11.09	0.02		7 30	0 01	92	4 21				0.95	1107	0 15	17
C4		15 43	0.03		18 11	0.02			0 02		7 30	0.01	83	4.22	ļ			0.96	1107		17
04		15 43	0.03		18.11	0.02		11 09	0 02		7.30	0.01	94	4 24	I .			0.96	1107	1015	13

0.04	15 43	0 03	18 11	0.02	11.09	0 02	730	0.01	95	4.28				0.96	110.8	0.15	17.0
0.04	15 43	0.03	18 11	0 02	11.09	0.02	7.30	0.01	90	4.28				0.96	110.8	0.15	17.0
0.04	15 43	003	18 11	0 02	11 09	0 02	730	0.01	97	4.30				0.94	110.8	0 15	17.0
0.04	15 43	003	18 11	0.05	11.09	0.03	7.30	0.01	-	4.30	-			0.96	110.6	0 15	17.0
0.04	15 43	0 03	16 11	0 02	11 09	0 02	7.30	0.01	80	4.30				0.94	110.8	0.15	17.0
0.04	15 43	0.03	18.11	0 02	11.00	0.02	7.30	0.01	100	4.32				0.96	110.8	0.15	17.0
0.04	15 43	0 03	18 11	0.05	11.00	0 02	7.30	0.01	101	4.32				0.96	310.8	0 15	17.0
0.04	15 43	0 03	18 11	0 02	11.09	0 02	7.30	0.01	102	4.32				0.00	110.8	0.15	17.0
0.04	15 43	0 03	18 11	0 02	11.09	0.02	7.30	0.01	103	4.32				0.86	110.8	0.15	17.0
0.04	15.43	0 03	18 11	0.02	11 00	0 02	7.30	0.01	104	4.32	0.00	104	1.35	0.97	112.2	0.15	17.0
0.04	15 43	0 03	18 11	0.03	11.00	0.05	7.30	0.01	105	4.32	0 00	106	1.36	0.97	112.2	0.15	17.0
0.04	15 43	0 03	18 11	0 02	11.00	0.02	7.30	0.01	108	4.32	0.00	106	1.37	0.07	112.2	0.15	17.0
0.04	15.43	0 03	18 11	0 02	11.09	0.02	7.30	0.01	107	4.32	0.00	107	1.38	0.07	112.2	0.15	17.0
0.04	16 43	0 03	18 11	0.05	11 00	0.05	7.30	0.01	106	4.32	0.00	105	1.37	0.97	112.2	0.15	17.0
0.04	15 43	0 03	18 11	0.05	11.CD	0 02	7.30	0 01	109	4.33	0.00	109	1.40	0.97	112.2	0 15	17.0
0.04	15 43	0.03	18-11	0.03	11.00	0 02	7.30	0.01		4.33	0.00	110	1.47	0.97	112.3	0.15	17.0
0.04	15 43	0 03	18 11	0.05	11.09	0.02	7.30	0.01		4.33	0.00	111	1.55	0.97	112.4	0.15	17.0
0.04	15 43	0 03	18 11	0 02	11.09	0.05	7.30	0.01		4.33	0 00	112	1.59	0.97	113.4	0.15	17.0
0.04	15 43	0 03	18 11	0 02	11.09	0.02	7.30	0.01		4.33	0.00	113	1.80	0.97	112.0	0.15	17.0
0.04	15 43	0 03	18.11	0.02	11 09	0.02	7.30	0.01		4.33	0.01	114	1.96	0.97	112.8	0.15	17.0
0.04	15 43	0 03	18.11	0.05	11 09	0 02	7.30	0.01		4.33	0.01	115	2 05	0.97	112.9	0.15	17.0
0.04	15 43	0.03	16 11	0.02	11.09	0.02	7.30	0.01		4.33	0.01	116	2.12	0.97	113.0	0.15	17.0
0.04	15 43	0 03	18-11	0.02	11.09	0 02	7.30	0.01		4.33	0.01	117	2.12	0.97	113.0	0.15	17.0
0.04	15 43	0 03	18 11	0.05	11.09	0.02	7.30	0 01		4.33	0.01	118	2.15	0.97	113.0	0 15	170
0.04	15 43	0 03	18.11	0 02	11.09	0.02	7.30	0 01		4.33	0.01	119	2.18	0.97	113.0	0 15	17.0
0.04	15 43	0.03	18.11	0.02	11.09	0.02	7.30	0.01		4 33	0 01	120	2.21	0.97	113.0	0.15	17.0
0.04	15 43	0 03	18-11	0 02	11.09	0.02	7.30	0.01		4.33	0.01	121	2.23	0.97	113.1	0 15	17.0
0.04	15 43	0 03	18.11	0.02	. 1.09	0.02	7.30	0 01		4.33	0 01	122	2.25	0.98	113.1	0 15	17.0
0.04	15 43	0 03	18.11	0 02	11.09	0.02	7.30	0.01		4.33	0.01	123	2.26	0.98	113 1	0.15	17.0
0.04	15 43	0 03	18 11	0 02	11.09	0 02	7.30	0 01		4.33	0 01	124	2.27	0.98	113 1	0.15	17.0

n(withal flow)																				
		124 31																		
io(imeginery pipi	e dam)	0.70																		
o(m²2)		0.38																		
o(What velocity ETS	r)	323 17	million .																	
ure 1 (core langth) :	- 18700	6 30	-																	
Telenery planer		175	m																	
nter invels		36																		
ngle for jet care		2																		
u = P (da/s)*.		74 • (r/u	(*Z)																	
a -Co" 7" (do/																				
			# (m)#	0	18	15	70	25	30	35	40	45	50	55	60	65	70	75	80	
ngle (deg)	6.0		x.(w)=		10.0	15.0	20.0	26.0	38.6	35	40	45	60	66	60	65	78	75	-	81
			r(m)=		0.0	0.0	00 101 8	00	0.0 67 P	0.0	00 509	00 452	00	00	00	00	00	00	00	00
			n(nymbra) ni ni ni ni ni ni		2036	138 /	00	814 01	0.1	58 2 0.1	500 9 0 1	45 2	407 01	370	33 9 0 1	313	291	27 1	264	24
			tational)=		00	01	01	02	0.1	03	04	0.5	0.	0.	0.9	10	12	14	1.6	11
	1.0		z'(m)=		10	15	20	25	30	35	40	45	50	65		-	70	75	-	
			r(m)=		02	0.3	03	0.4	0.5	0.0	07	0.8	0.0	10	10	11	12	13	14	1.5
			Lac(million)#		100 1	1327	895	79.8		58.9	40.8	44.2	39.8	38.2	33 2	30 6	28.4	28.5	24.9	23
			đ s(men)=		00	00	00	0.1	01	0.1	01	01	01	01	01	02	02	02	02	0.
			ta(men)#	00	00	01	01	02	02	03	04	05	08	0.	09	11	12	14	18	14
	2.0		x*(m)#		10	15	20	26	30	35	40	45	50	55	60	65	70	75	80	85
			r(m)=		03	05	07	0.0	10	12	14	18	17	19	21	23	24	26	28	3 (
			L <u>oc(177</u> /1711)=		168.0	124 0	93 0	74 4	62 0	53 2	48 5	413	37 2	33 8	31 0	28 6	26.6	24 8	23 3	21
			d≣x(men)=		00	00	00	01	01	01	01	01	01	01	02	02	02	02	02	a :
			ta(mn)=	-	00	01	01	0.2	0.3	03	04	0.6	07	08	10	11	13	15	17	11
	3.0		±'(m)≠		10	15	20	26	30	35	40	45	50	\$5	80	45	76	75	80	
			ד(m)= עמו(תאלוועה)=		05	08	10 831	1.3 66.5	16 554	18	21 41.5	24	26 352	29 302	31 277	34 256	37 237	39 222	47	4
			vatimenae ≊(nemenae		00	0.0	01	01	55 4 0 1	e/.5 0.1	41.5 0.1	0.1	01	302	07	236	237	02	0.2	19
			tatimen)#		00	01	01	02	03	0.4	05	0.6	0.4	0.0	11	13	15	17	19	2
	4.0		z*(m)=		10	15	20	25	30	35	40	45	50	55	60	65	70	76	80	
			r(m)=	00	07	10	14	17	21	24	2.8	31	3.5	3.8	42	4.5	4.9	52	5.6	5
			un(mimin)#	323 2	141.8	94 6	70 9	56 7	47 3	40 5	35 5	31 5	28.4	25 8	23 6	21.8	20.3	18.9	17.7	18
			dt±(man)=	00	00	00	01	01	01	01	01	01	02	02	02	02	02	03	03	0
			tat(min)#	00	00	01	01	02	03	04	06	07	09	11	13	15	17	20	23	2
	5.0		x'(m)=		10	15	20	25	30	35	40	45	\$0	\$5	60	85	70	75	80	
			r(m)=		09	13	17	22	28	31	35	39	44	48	52	57	61		70	7
			ux(mmin)=		115 8	77 1	578	46 2	38.5	33 0	28.9	25 7	23 1	21 0	19.3	17 8	195	15.4	14.5	13
			dî x(min)≓		00	01	01	01	01	01	02	02	02	02	0 2	03	03	03	03	0
			tx(men)≖		10	15	02 20	03 25	04	05 35	07	09 45	11 50	13	16	18	2 1 70	24	28 80	3
	6.0		¥`(m)# r(m)=	-	11	16	21	26	30	35	40 4 2	43	53	58	6.3	64	74	76 79	8.4	
			-(m)- ⊔oc/πe/men)=		800	80.0	450	360	32 300	257	22 5	200	18.0	18 4	150	13 8	12.9	120	112	10
			⊸(mmmu) =(nem)x 10		00	01	01	01	0.2	02	07	02	03	03	03	03	04	0.4	04	0
			br(min)=		00	01	02	03	05	07	09	; 1	14	17	20	23	27	31	36	4
	7.0		x'(m)=		10	15	20	25	30	35	40	45	50	55	80		71	78	81	
			r(m)=		12	1.8	25	31	37	43	4.9	55	6 1	67	74	80	8.0	02		10
			Lox(m/men)=	323 2	66 8	44 5	33 4	267	22 3	19 1	16 7	14.8	13.4	12.1	11 1	10 3	85		83	7
			d£±(min)≠	0.0	01	01	01	02	02	02	03	03	04	04	04	05	05	05	08	0
			ta⊄men)≓		01	01	03	04	06	09	12	15	18	22	27	31	37	4 2	4.8	5
	8.0		z (m)=	0	10	15	20	25	30	35	40	45	51	56	#1	66	71	78	81	
			r(m)=		14	2.1	28	35	42	4 0	56	63	70	77	84	Q 1		10 5	11.2	11
			uq(m/men)#		47.3	31 5	23.6	18.9	15.8	13 5	11.8	10.5	95		70	73		83	50	5
			d≣ ±(min)=		01	01	02	02	03	03	04	05	05	06	00	07	07	0.8	08	0
			ba(mun)≍	0 O 0	0 1 10	02 15	04 20	06 25	09 30	12	16	2 1 48	20	32	38 61	44	52	59 78	8 8 8 1	7
	9.0		=(m)= =		10	24	210 3.2	25 40	30 4.7	35	41 63	48 71	79	87	95	10.3	11.1	31.9	127	13
			ະ(m)າ ພະນາກາໃຫານກ)ະ		31.9	21.2	3.2 15 P	127	10.6	91	80	71	84	58	53	4.0	46	42	40	3
			dix(men)≓	00	01	02	03	04	04	05	06	07	0.	0.8	0.0	10	11	12	12	1
			tac(min)≍	00	01	02	05	0.9	13	18	24	31	38	47	54	6 8	78		100	11
	10.0		x'(m)#	õ	10	15	20	25	30	36	41	48	51	56	81	84	71	76	81	
			r(m)=	00	1.8	26	35	4.4	53	8.2	70	79		97	10 6	11 5	12.3	13 2	14.1	15
			uc(m/min)≖		11.9	13.6	10 2	82	6.8	58	51	45	41	37	34	31	29	27	28	2
			dix(min)=		01	0.4	04	0.6	07		• •									2
				00	0,		••	0.0	07	08	09	11	12	13	14	18	17	18	1.0	

90		100	105	118	115	130	125	130	135	140	145	150	155	160	165	170	175
90	56	100	105	110	\$15	120	125	130	135	140	145	150	155	180	165	170	175
00	00	00	00	00	0 ئ	00	00	00	00	00	00	60	0.0	0.0	0.0	00	0.0
22 8	21.4	20.4	194	18.5	177	17.0	18.3	15 7	15 1	14 5	14 0	13.6	13.1	127	12.3	12.0	11.6
02	02	02	03	03	0.3	03	03	0.3	0.3	0.3	0.3	04	04	04	04	04	04
\$0	22	25	27	3.0	33	35	3.8	4.2	4.5	48	5.2	8.5	59	8.3	67	71	7.5 175
	96 17	100	106	110 1.9	115 20	120 21	125	130	135	140	145 2.5	150	115	180 2.8	165 2.9	3.0	3.1
1 6 22 1	210	10.0	190	18.1	17.3	16.6	15.0	153	14.7	14.2	13.7	13.3	12.8	12.4	12 1	11.7	11.4
02	02	0 2	03	03	03	03	03	03	03	0.3	0.4	0.4	0.4	0.4	0.4	0.4	04
20	23	25	28	30	33	36	39	43	4.8	4.9	53	57		8.4	6.6	7.3	7.7
80	96	100	105	110	115	120	125	130	135	140	145	150	155	160	165	170	175
31	33	35	37	38	40	42	4.4	4 5	47	4.9	51	5.2	54	56	5.8	5.9	61
207	196	18 6	177	169	16 2	15.5	14.9	14 3	13.8	13 3	128	12.4	12 0	116	113	10 ý	10 6
02	02	03	03	03	03	03	03	03	04	04	04	04	04	0.4	0.4	05	05
22	24	27	30	33	36	39	42	45	49	53	57	6 1	65	6.9	7.3	7.8	82
80	86	100	105	110	115	120	125	130	135	140	145	150	155	160	165	170	175 92
47	50	52	55	58	60	63	85	88	71	7.3	7.6	79 11 1	8 1 10 7	84 104	8.6 10.1	9.8	9.5
18.5	175	188 03	158 03	15 1 0 3	14 5 0.3	13 8 0 4	133 04	12.8	04	0.4	0.4	04	0.5	05	0.5	0.5	0.5
03 24	27	30	33	36	4.0	43	47	51	55	59	63	6.8	7.2	7.7	6.2	87	92
80	56	100	106	110	115	120	125	130	135	140	145	150	155	180	165	170	175
	8.6	70	7.3	77	80	84	\$7	91	9.4	9.8	10 1	10.5	10.8	11.2	11.5	11.9	12.2
15 8	14.9	14.2	13 5	12.9	123	11.8	11.3	10.9	10 5	10 1		95	92			8.3	81
0.3	03	03	04	0.4	04	64	04	05	05	05	05	05	05	06		08	06
29	32	35	39	43	47	51	55		64	69	7.4	7.9	85	90	96	10.2	10.8
80	85	100	105	110	115	120	126	131	138	141	146	151	158	161	166	171	176
79	83	87	92	96	10 1	10 5	10 9	11 4	11.8	122	127	13 1	13 5	14.0	14 4	14.9	15 3
128	12 2	116	11 0	10 5	10 1	96	92	89	8.6	83		7.7	75	72	7.0	6.8	
04	04	04	04	05	05	05	05	06	0.6	08	0.6	08	07	07	07	07	07
35	39	43	4.8	52	57	62		73	79	85 141	9 1 148	98 151	10 4 156	11 1 181	11.8	12 5 171	13 3 176
91	10 0	101 105	1088 110	111 116	116 12 1	121 12.6	126 13 1	131 137	136 14 2	147	148	15.8	150	18.8	17.3	17.9	18.4
95 100	95	90		32	7.8	75	72	69	67	64	82	60	58	56	5.5	5.3	51
05	05	05	08	0.0	0.6	07	07	07	07	0.8	0.8	0.8	0.9	0.9	0.9	0.9	10
45	50	56	61	67	74	80	47	94	10 2	10.9	11.7	12.6	13.4	14.3	15 2	18 1	17 1
	- 16	101	106	111	118	121	126	131	136	141	146	151	158	161	166	171	176
110	117	12 3	129	135	14.1	14 7	15 3	16 0	16 6	17 2	17.8	18 4	19 0	196	20.2	20.9	21 5
74	70	67	64	61	5.8	56	53	51	49	48	46	4.5	43	4.2	40	39	38
07	07	07	8 0	08	08	0.9	0 1	10	10	10	11	11	1.2	1.2	1.2	13	13
61	63	75	83	91	99	10.8	11.7	127	137	14 7	15 8	16 9	18 1	19 3	20.5	21 B	23 1
91	-	101	106	111	116	121	126	131	136	141	147	152	157	182	167	172	177
126	13 3	14.0	14.7	155	16.2	18.9	17 6	18 3	19.0	197	20.4	21 1	21.8	22.5	23 2	23 9 2.8	24 6 2 7
53	50	47	45	43	41	39	38	36	35 14	34 1.5	3.3 1.5	32	31	30 17	2.9 1.7	1.8	1.8
0.0	10 98	10 106	11	11 128	12 140	13 153	13 166	18.0	19.4	209	22.4	24.0	25.6	27 3	29.0	30.8	32.6
8 G 81	86	101	108	111	117	122	127	132	137	142	147	152	157	162	187	172	177
14.2	15 0	15.8	18.8	17.4	18.2	19 0	19.8	20.6	21.4	22.2	23.0	237	24.5	25 3	26 1	26.9	27 7
35	34	32	30	29	2.8	27	2.5	25	24	2.3	22	21	21	20	1.9	1.9	18
14	15	15	18	1.7	1.8	19	19	20	21	22	23	23	24	2.5	2.6	27	27
127	14 2	157	17.4	191	20 9	22 7	24 7	267	28 8	310	33 3	35 6	38 0	40 5	43 1	45 B	48 5
81	87	102	107	112	117	122	127	132	137	142	147	152	158	183	168	173	178
15 P	16 7	176	18 5	194	20.3	21.1	22 0	22.9	23 8	24 7	25 6	26.4	27.3	28.2	291	300	30.8
2 ?	22	20	19	19	18	17	1.6	16	1.5	15	14	14	1.3	1.3	12	1.2	1.2
22	23	24	25	27	28	29	30	32	33	34	35	37	38	3.9	40	4.2	43
20 0	22 3	24 7	27 2	29 9	32 7	35 6	387	41.£	45 1	48 5	52 1	55 8	59 S	63 5	67 5	71.7	75.9

229

triet			Outlet of 175m					_	_						_				
			engle (deç)= r(m)=		00			10			20			30			40		
			1/2 A(m*2)=		01			14 8			43 8			73 4			102 9		
			tit(min)= (tit(min)=		11 8 7.5			11.4			10.6			#5 #2			81 108		
T migt	с <i>к</i> о	Toutlet		C/Co	Tas	Mest	C/Co	Tout	Mass	C/Co	Taul	Mass	C/Co	Tout	Mess	CICo	Tout	Mass	CICo
17 18	0.00	25 28		0.00	25	0.00	0.00	25 26	0.00	0.00	26 28	000	0 00	28	000				
19	0.00	27		0.00	27	0.00	0 00	27	0.00	0 00	7	0.00	0 00	27	0.00				
 21	0.00	28 29		0.00	21 29	0.00	0.00	78 28	0.00 0.00	000	28	0.00	000	28 29	0.00	000	28 29	000	
22	0.05	30		0.00	30	0 00	0.00	30	0.26	0.00	30	0.69	0.00	30	0 51	0 00	30	0 00	0 00
23 24	0.15	31 32		0.000	31 32	0.00	000	31 32	0.74	0.00	31 32	2 06 3 67	0.00	31 32	1.90	000	31 32	0 57	000
25	0.36	33		0.01	33	0.00	0.01	33	1.78	0.01	33	4.94	9.01	33	0.08	0 00	33	3 48	0.00
26 27	0.50	34 35		0.01	34 35	0.00	0.01	34 35	2 47 3 07	0.01	34 35	8.85	0.01	34 35	8 43 10 96	0 000	34 35	5 80 8 29	000
28	0.72	36		0.02	36	0.01	0 02	36	3.58	0.02	36	0 87	0 02	36	13 08	0.01	36	10 68	0.00
29 30	080	37 38		0.02	37 38	0.01	0.02	37 38	3.86	0 02	37 38	10.97	0 02	37 38	14 82 16 18	0 01	37 38	13 20 15 31	0.00
31	0 88	39		0.03	39	0.01	0 03	39	4.35	0.02	39	12.07	0.02	39	18.94	0.02	39	18 99	0.01
32 33	090	40 41		0.03	40 41	0.01	0.03	40 41	4.45	0.02	40 41	12.34	0.02	40 41	17. 33 17.71	0 02	40 41	18 02 18 85	001
34	0.94	42		0.03	42	0.01	0 03	42	4.65	0 03	42	12.89	0 02	42	18 10	0 02	42	19 27	0 01
35 38	0.95	43 44		0.03	43 44	0.01	0.03	43 44	4.70 4.70	0.03	43 44	13 03 13.03	0.02	43 44	18 39 18 48	0 02	43 44	19 70 20 02	0 02
37	0.96	45		003	45	0.01	0.03	45	4 75	0.03	45	13 17	0 02	45	18 59	0.02	45	20 22	0 02
38 39	098 098	48 47		0.03	48 47	0.01 0.01	0.03	48 47	4 75	0.03	48 47	13 17 13 17	0 02	48 47	18 68 18 68	0 02	48 47	20 43 20 43	0 02 0 02
40	0.96	48		0 03	48	0.01	0.03	48	4 75	0.03	48	13 17	0 02	48 40	18.48	0 02	48 49	20 53 20 53	0 02
41 42	098 097	49 50		0.03	49 50	0.01	0.03	49 50	4.75	0 03	49 50	13.17	0 02	50	18 68 18 78	0.02	50	20 53	0 02
43	097	51		0.03	51	0.01	0.03	51	4.80	0.03	51	13 30	0.02	51	18 87 18 98	0.02	51	20 64	0 02
44 45	,98 098	52 53		0.03	52 53	001	0.03	52 53	4.85	0 03	\$2 53	13 44 13 44	0.02	52 53	19 07	0 02	52 53	20 88	0 02
46	0 99	54		0 03	54	0.01	0 03	54	4.90	0.03	54	13.58	0.02	54 55	19 17 19 28	0 02	54 55	20 85	0 02
47 48	0990	55 56		0 03	55 58	0 01 0 01	0 03	55 56	490	0 03	55 56	13.58 13.58	0 02	55 56	19 26	0 02	58	21 07	0 02
49	1 00	57		0 03	57	0 01	0 03	57	4.95	0.03	57	13 71	0 02	57	19 36	0.02	57 58	21 17	0 02
50 51	100	58 59		0 03	58 59	0 01	003	58 59	4.95	0 03	58 59	13 71 13 71	0 03	58 59	19 46 19 46	0 02	59	21 28	0 02
52	1 00	90		0 03	60	0.01	003	60	4.95	0.03	8 0	13 71	0.03	•0	19 48	0 02	60 61	21 38	0 02
53 END	100	61 62		0 03	61	0.01	003	61	4.95 4.95	0.03	61	1371 1373	0 03	61 62	19 48 19 48	0 02	62	21 38	0 02
		83		0 03		0.01	0.03		4.96	0.03		13.73	0.03		19 48 19 48	0 02	63 64	21.38	0 02
		64 65		0.03		0.01	003		4 95 4.96	0.03		13.73 13.73	0 03		19 48	0 02	-	21.38	0 02
		66		0.03		0.01	003		4.95	0.03		13.73 13.73	003		19.48 19.48	0 02		21 38	0 02
		67 68		0.03		0.01	003		4.95	0 03		13 73	0 03		19 48	0 02		21 38	0.02
		69		0 03		0.01	003		4.95	003		13 73 13 73	0 03		19 48 19 48	0 02		21 38	0 02
		70 71		0 03		0 01 0 01	0 03		4.95	003		13 73	0 03		19 48	0 02		21 38	0 02
		72		0 03		0.01	0.03		4 95 4 95	0 03		13 73 13 73	0 03		19 48 19 46	0 02		21 38	0 02
		73 74		0.03		0.01	0 03		4 95	0 03		13.73	0 03		19.48	0 02		21 38	0 02
		75		0.03		001	0 03		4.95	0 03		13 73 13 73	0 03		19 48 19 48	0 02		21 34 21 34	0 02
		76 77		0.03		0.01	003		4.95	0.03		13 73	0 03		19.48	0.02		21.38	0 02
		78		0.03		0.01	0.03		4.95	0.03		13 73	0 03		19 46 19 46	0 02		21 38	0 02
		79 80		0 03		0.01	003		4.95	0.03		13 73	0 03		19 48	0 02		21 38	0 02
		81		0 03		0.01	0.03		4.95	0.03		13 73 13 73	0 03		19 46	0 02		21 38	0 02
		82 83		0.03		0.01	0.03		4 95	000		13.73	0 03		19 48	0 02		21 38	0 02
		84		0.03		0 01 0 01	0.03		4 95 4 95	0.03		13 73			19 46 19 46	0 02		21 38	0 02
		85 86		0 03		0.01	003		4.95	003		13 73	003		19 46	0 02		21 38	0.02
		87		0 03		0 01 0 01	003		4.95	0.03		13 73			19 48	0 02		21 38	0 02
		88 80		0.03		0.01	0 03		4 95	0 03		13 73	0 03		19 48	0 02		21 38	C 02
		90		003		0.01	0.03		4 95 4 95	0.03		1373 1373			19 46	0 02		21.38	0 02
		91 92		0 03		0.01	0 03		4 95	0 03		13 73	0 03		19 48	0 02		21 38	0.02
		93		0 03		0.01	003		4 95	003		13 73 13 73			19 48	0 02		21 34 21 34	0 02
		94 95		0.03		0 01	003		4 95	0.03		13 73	0 03		19 48	0 02		21 38	0 02
		96		0 03		0 01 0 01	003		4 95	003		13 73			19 48 19 48	0 02		21 34	0 02
		97 98		0 03		0 01				0 03			0 03			0 02			0 02

80	1003	0.01	0.03	6.95	003	13.73	0.03	19.48	0.02	21.38	0.02									
100	0.03	0.01	0.03	4.96	0 03	13.73	0.03	19.48	0.02	21.38	0 02									
101	0.03	0.01	0 03	4.96	0 03	13.73	0.03	19 46	0.02	21.38	0.02									
102	0 03	0.01	0.03	4.95	003	13.73	0.03	19.46	0.02	21.38	0.02									
103	0 03	0 01	0.03	4 95	003	13.73	0.03	19.46	0 07	21.38	0.02									
						7.0		·							10.0					
------------	----------------	------------------	-------------	----------------	------	----------	----------------	------	-----------	--------------	------	-------------	--------------	------	-------------	------	---------	----------------	---------	--------------
\$0 153			6.0 18-4			21.5			24.6			27 7			30.0					
132 8			163.0			193.5			224.6			258.2		:	28.0 5		Comple		Jat Co	
68 133			5.1 17.1			38			27 326			1.8 48.5			1.2 75 9		Tatal F		Tatal F	~
Tout	Mass	CICo	Tout	Mass	C/Co	Tout	Mess	C/Co	Taul	Mess	CICo	Taut	Mass	C/Co		Mass	C/Co		C/Co	
																	0.00	0.0	0.00	00
																	0.00	0.0	0.00	00
																	0.00	0.0	0.00	00
30	0.00																0.00	0.0 1.4	0.00	00
30	0.00																0.04	54	0 02	28
32	0.00									i							0.00	10.8	0.04	49
33 34	0.54	0.00	34	0.00													0.20	25 0	0.06	83
35	3.26	0.00	35	0.45													0.28	34.5	0.09	11.0
36 37	5.26 7.76	0.00	38 37	1.34 2.32													0.35	43.8 \$3.0	0.11	13.4
34	9.98	0.00	38	3.22													040	QD.7	0 13	18.1
39	12.32	1 / 00 0 / 00	39	4.83 8.83	0.00	40	0.99										0.54	\$7.5 74.0	013	18.4
40 41	14.27 15.85	0.00	40 41	8.32	0.00	41	1.71										0 64	79.8	0 14	17 2
42	16 78	0.01	42	9.76	0.00	42	2.37										0.67	83 8	0 14	17.5
43 44	17.54 17.94	0.01	43 44	11.32 12.37	0.00	43 44	3.29 4.08										071	88.0 90 6	014	17 7
45	18.34	0.01	45	13.27	0.00	45	5.00						İ	ł			0 75	93 3	0 14	17.9
46	18.63	0.01	46	14.03	0.00	46	6.04										0.77	95.7 97.5	0 14	179 179
47 48	18.81 19.01	0.01	47 48	14.85 14.88	0.00	47 48	7.00 7.65										0.70	98.7	0 14	17.9
49	19.01	0.01	40	15 03	0.01	49	8.50										0.00	807	0 14	17.9
50 51	19.10	0.01	50 51	15.26 15.41	0.01	50 51	9.25 9.90	0.00	50 51	2.70							0 83	103 7		18 1
52	19.10	0.01	52	15.48	0.01	52	10.38	0.00	52	3.46							0.66	105 4	0 15	18.3
53	19.21	0.01	\$3	15.48	0.01	53	10.69	0.00	53 54	3.74							0 84	107.3		183
54 55	19.21 19.41	0.01	54 55	15.55 15.64	0.01	54 55	10.88	0.00	34 55	3.83							0.88	108 9		18.5
56	19.41	0.01	58	15.64	0.01	56	11.06	0.00	56	4.50							0.60	109 4		18.5
57 58	19.60 19.60	0.01	57 58	15.73 15.73	0.01	57 58	11.17	0.00	57 53	4.94 5.32				[0.90	110.7		18 7 18 7
59	19.70	0.01	59	15.90	0.01	59	11.28	0.00	59	5.78							0 90	112 1		18 7
60	19 80	0.01	60	15.90	0.01	60	11.34	0.01	60 61	6.21 6.54							091	112.6		187
61 62	19.80 19.89	0.01	61 62	15.97 16.08	0.01	61 62	11.40	0 01	62	6.54							0.01	1137		18.7
63	19.89	0.02	63	16 13	0.01	63	11 47	0.01	63	7.00]			0.92	114 0		18 7
64 65	19.89 19.89	0.02	64 65	18.13	0.01	64 65	11.47	0.01	64 65	7.06							092	114.1		187 187
66	19 89	0.02	66	16.20	0.01	66	11.59	0.01	66	7.24	0.00	66	2 39				0.94	118 4		187
	19.89	0.02	67	18.20	0.01	87	11.64	0.01	67	7.35	0.00	67	2.44				0.94	117.0		187
	19.89	0.02	68 69	18.20 16.20	0.01	68 69	11.64	0.01	68 69	7.42	0.00	64 60	2.48				0.94	117.2		18.7
	19.89	0.02	70	16 20	0.01	70	11.69	0.01	70	7.48	0.00	70	2.49				0.94	117 3	r	187
	19.69	0.02		16.20	0.01	71 72	11.69 11.74	0.01	71 72	7.48	0.00	71 72	2.58				0.94	117 4		187 187
	19 89	0.02		16.20	0.01	73	11.74	0.01	73	7.50	0.00	73	2 98				0 95	117.4		18.7
	19.89	0.02		16.20	0.01	74 75	11.74	0.01	74 75	7.50	0.00	74 75	3.17				0.95	118 (118 -		187 187
	19.89 19.89	0.02		16.20	0.01	75 76	11.74 11.74	0.01	78	7.53	0.00	76	3 68	l I			0 95	118.0	0 15	18.7
	19.69	0.02		16.20	0.01		11.74	0.01	77	7.57	0.00	77	3.69	ł			0.96	118.0		18 7 18 7
	19.89	0.02		16.20	0.01		11.74	0.01	78 79	7.57	0.01	78 79	4.04	l			0.96	110		18.7
	19 89	0.02		16.20	0.01		11.74	0.01	80	7.60	0.01	80	4.22				0.96	110 2		187
	19 89	0.02		16.20 16.20	0 01		11.74 11.74	0.01	81 62	7 60 7.63	0.01	81 82	4.20	Į			0.96	1192		187
	19.89	0.02		16.20	0.01		11.74	0.01	83	7.63	0.01	43	4.38				0.96	119 4	0 15	187
	19.69	0.02		16.20	0.01			0.01	84		0.01	84	4.38	1					0.15	
	19.89 19.89	0.02		18.20			11.74 11.74		85 80	7.63 7.63		45 40	4.38						0 15	
	19.89	0.02		16.20	0.01		11.74	0.01	•	7.63	0.01	87	4 40	1					0 15	
	19.89	0.02		16.20			11.74			7.63		88 89	4 40						0 15	
	19.89 19.86	0.02		16.20			11.74 11.74			7.63	E .	90	4.40	Į			0.00	119	0 15	18.7
	19.69	0.02		16.20	0.01		11.74	0.01		7.63		91	4 42	1			096		0 15	
	19.89	0.02		16.20 16.20			11.74 11.74			7.63		92 93	4 42 4 43		93	1 37			0 15	
	19.89				0.01		11 74	0.01		7.63	0 01	94	4.43	0.00	94	1.37	0.97	120 8	0 15	18.7
	19 89				0.01		11.74	0 01		7.63		95 96	4 45		95 95	1.34			0 15	
	19 89 19 89				0 01			0 01		7.63		97		0.00	97	1 34	0 97	120 (I 0 15	18.7
		0 02			0.01			0.01			0 01	96	4 47	0.00	98	1.45	0 97	120 (0 15	187

18.60	0.02	16 30	0.01	11 74	0.01	7.63	0 01				90					
19.80	0 02	16.20	0 01	31.74				100						121.1		
19.80	0 02	16.20	0.01	11.74			0.01	101	4.47	000	101	1.75	0.96	121.2	0.15	18.7
19 80	0 02	16.20	0 01	11 74				102								
19 89	0 02	16 20	0 01	11.74	0.01	7.63	0 01		4 47	0.00	103	2.00	0.90	121.5	015	18.7

RESERVOIR NO. 3 (198 ML/d) - JET MODEL val. of tank 43762 m3 opinutusi floop 137.50 m3/mm dolimaginery pipe 6am 1.20 m Ac(m2) 1.13 m² usinstal valuoity 1.14 m² usinstal valuoity 1.15 m² usinstal valuoity 10.80 m usits longeny stans= 175 m value for jat core = 2 usits efforty for espect-74 * (rtrs)=7; usits efforty for espect-74 * (rtrs)=7; usits efforty for espect-74 * (rtrs)=7;

Cz =Co*7* (de/	s) * exp(-64* (r/s)*2	n																	
		= (m)=		10	15	30	25	30	35	40	45	60	55	60	65	78	75	80	85
engle (deg)	0.0	x'(m)#	8.0	18.0	15.0	20.0	25.0	38.0	35	40	45	50		60		78	75		85
		r(m)=	0.0	0.0	00	0.0	0.0	0.0	0.0	0.0	00	00	00	00	0.0	0.0	00	00	00
		un(mimin)#	121.6	121.6	87.6	65.7	52.5	43.8	37.5	32.8	29.2	26.3	23 9	21.0	20 2	18.8	17.8	18.4	15 5
		đ x(min)#	00	0.1	0.0	0.1	0.1	0.1	0.1	0.1	0.2	0.2	02	02	0.2	0.3	0.3	03	03
		ta(men)#	00	0.1	0.1	0.2	0.3	0.4	05	8 8	0.8	10	1.2	14	1.0	1.8	22	25	28
	1.0	1'(m)#	0	10	15	20	25	30	35	40	45	50	\$6	60	65	70	76	80	85
		r(m)= uutminin)=	0.0	0.2	0.3	0.3	04 51.4	0.5 42.8	0.6	0.7 32 1	0.8	09 257	1.0	1.0 21.4	1.1 108	12	1.3	14	15
		et a(min)=	0.0	0.1	0.0	01	01	01	348 /	0.1	0.2	0.2	02	02	62	183	03	03	15 1 0 3
		ta(min)=	00	01	01	0.2	0.3	04	0.5	07	0.8	10	12	14	17	19	22	28	28
	2.0	z'(m)#	0	10	15	20	25	30	35	40	45	\$0	54	60	85	70	75	80	85
		r(m)=	00	0.3	0.5	0.7	09	1.0	1.2	14	1.0	1.7	19	2.1	23	24	2.6	2.8	30
		uat(milmin)=	121.0	121.0	80.0	60 0	48 0	40.0	34.3	30.0	26.7	24 0	21 8	20 0	18.5	17 1	180	150	14-1
		di x(min)=	0.0	01	0.0	01	0.1	0.1	0.1	0.2	02	02	02	03	03	03	03	03	03
		ta(min)=	0.0	0.1	0.1	0.2	0.3	04	05	0.7	0.9	1.1	13	1.5	1.8	21	24	27	30
	3.0	s,(w)=	0	10	15	20	25	30	36	40	45	50	55	60	65	70	75	80	85
		r(m)=	00	0.5	0.8	1.0	1.3	1.6	1.8	2.1	2.4	26	2.9	31	34	37	39	4.2	45
		=(nijm/mjn)= =(nijm/sc @	121.6	121.6 0.1	0.1	53.8 0.1	42.9	35.7 0.1	0.2	26.6 0.2	238	0.2	19.5	179	03	153	03	04	126
		be(men)#	0.0	0.1	01	0.2	0.3	0.4	0.6	0.8	10	1.2	1.4	1.7	20	23	28	30	34
	4.0	5'(m)#		10	15	20	26	30	36	40	45	50	66	80	65	70	76	80	85
		r(m)=	0.0	07	1.0	1.4	1.7	2.1	24	2.6	3.1	3.5	3.8	42	4.5	49	6.2	56	59
		us(m/men)=	121.0	121 6	61.0	45.8	36.6	30 5	26.1	22 9	20.3	18.3	18.8	15 3	14.1	13.1	12 2	114	10.8
		dix(man)≠	00	0.1	01	01	0.1	01	02	0.2	0.2	0.3	0.3	03	03	04	04	04	05
		b:(min)=	00	0.1	01	02	04	0.5	0.7	0.9	1.1	14	17	20	23	27	31	35	40
	5.0	z'(m)#	0	10	15	20	25	30	35	40	45	50	\$5	60	65 57	70	75 6 6	50 70	85 74
		r(m)≠ עצ(תעתנה)≠	0.0	0.9	1.3	1.7	2.2	2.6 24.9	3.1 21.3	35	3.9	4.4 14 B	4.8	52 12.4	11.5	6 1 10 7		93	
		d x(min)=	00	01	0.1	01	01	0.2	02	0.3	03	03	0.4	0.4	0.4	0.5	0.5	0.5	06
		be(min)=	00	0.1	01	03	04	0.6	0.8	1.1	13	17	20	24	28	33	3.8	43	4.8
	6.0	x'(m)=	0	10	15	20	25	30	35	40	45	\$0	\$5	\$0	65	70	75	80	85
		r(m)=	00	1.1	1.6	2.1	2.0	3.2	37	4.2	47	5.3	58	63	68	7.4	7.9	84	
		uu(m/men)=	121 6	121.6	347	29 0	23.2	19.4	16.6	14.5	12 9	11 6	10 6	97		# 3	77	73	
		di x(#3n)=	00	01	01	0.1	0.2	0.2	0.3	0.3	04	04	05	05	05	0.6	08	07	07
		tz(men)=	00	01	0.1	0.3	05	07	1.0	1.3	1.7	2.1	2.6	31	3.6	42	4.	55	62
	7.0	z'(m)#	0	10	15	20	25	30	35	40 4 9	45 55	50 6.1	55 67	60 74	86 8 0	71	76 9 2	81 9.8	86 10-4
		r(m)= >(m/min)=	00	1.2	1.6	2.5	3.1	3.7	4.3	10.8	80	8.0	7 8	72		62	57	54	51
		di s(min)=	00	01	01	0.2	0.3	03	0.4	0.4	0.5	06	0.6	07	07	0.8	0.8	0.0	10
		(tat(min)#	0.0	01	0.1	0.4	0.6	0.9	1.3	1.7	22	2.8	34	41	4.8	58	64	73	63
	8.0	¥'(m)≠	0	10	15	20	25	30	35	40	45	61	56	61	66	71	76	81	86
		r(m)=	00	1.4	2.1	28	35	42	4.9	56	63	70	77	84	B 1	68	10 5	11 2	11.9
		ux(m/min)=	121 6	121.6	20.3	15.3	12.2	10 2	87	7.6	0.8	6.1	55	51	47	44	41	38	30
		CE x(mun)≠	0.0	0.1	01	03	04	05	05	0.6	07 31	08 39	09	10 57	10	11	12	13	14 117
		b(min)×	00	01	02 15	04 20	0.8 25	1.3	18	24	46	51		11	84	71	76	81	
	9.0	#(m)# ≠(m)#	0.0	1.6	24	32	4.0	4.7	55	83	7.1	7.0	17	95	10 3	111	11.9	127	13.5
		un(m/min)=	121.6	121.6	137	103	8.2	6.9	5.0	51	4.6	41	37	34	32	29	2.7	28	2.4
		đi x(min)≠	00	01	01	0.4	05	07	0.8	0.9	10	12	• 3	14	15	17	18	19	20
		to(men)#	00	0.1	0.2	08	11	18	26	35	4.6	57	73	84	100	11 6	13.4	15 3	17 3
	10.0	x'(m)=	0	10	15	20	25	30	36	41	46	51	56	61	4	71	76	81	80
		r(m)=	00	1.8	2.6	35	4.4	53	6.2	7.0	79		97	10 6	115	12 3	13 2	14.1	15 0
		voq nvimen)≖	121.6	121.6	8.8	6.6	5.3	44	38	3.3	29	26	24	22	20	1.9	1.	1.0	18
		dix(men)≖	0.0	01	01	07	09	11	1.2	5.4	18 7.0	1.8	20	22	24	20	28 209	30 239	32 270
		bg(men)=	00	01	02	08	17	27	40	54	7.0	••	10 9	13 1	15 5	18 1	20 4	2J Ø	410

80	*	100	106	110	115	120	125	130	135	140	145	150	155	160	165	170	175
90	96	180	106	110	115	120	125	130	135	148	145	150	155	160	165	170	175
00	00	00	00	00	00	0.0	0.0	0.0	00	00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
14 0	13 6	13.1	12.5	11.9	11.4	10.9	10.5	10.1	0.7	9.4	0.1	8.8	8.5	8.2	8.0	7.7	7.5
0.3	04	04	04	04	04	0.4	0.5	0.5	0.5	0.5	05	0.6	0.6	0.6	0.6	0.6	0.7
31	3.6	38	4.2	4.6	5.1 115	5 5 120	6.0 125	9.5 130	7.0	7.5	8.0 145	8 8 150	9.2 155	0.8 180	10.4 165	11.0	11.7 175
90 1.0	96 17	100	106	1.0	2.0	21	2.2	23	24	2.4	2.5	2.0	2.7	2.8	2.9	3.0	3.1
14.3	13 5	12.8	12.2	11.7	11.2	10 7	10.3	9.9	9.5	.2	8.9	1.6	8.3	8.0	7.8	7.0	7.3
03	04	0.4	04	64	04	0.5	0.5	0.5	0.5	0.5	0.6	0.	0.6	0.0	0.6	0.7	07
32	35	30	43	47	5.2	5 8	61		7.1	7.7	82		94	10.0	10 6	11.3	12.0
80	95	100	106	110	115	120	125	130	135	140	145	150	155	160	185	170	175
31	3.3	35	37	3.8	40	4.2	44	4.5	47	4.9	51	5.2	5.4	5.6	5.8	5.9	61
13.3	12 6	120	11.4	10 9	10.4	10 C	98	9.2	8.9	8.6	8.3	80	7.7	7.5	7.3	7.1	6.9
04	04	04	04	04	05	0.5	05	G.5	06	06	0.6	0.6	0.6	0.7	0.7	0.7	0.7
3.4	3.8	4.2	4.6	51	55	60	6.5	7.1	7.6	8.2	0.0	94	10.0	10.7	11.4	12.1	12.8
90	96	100	106	110	115	120	125	130	135 7.1	140 7.3	145 7.8	150 7.9	155 8.1	160	165 8.5	170 8.9	175 9.2
47 11.9	\$0 11.3	\$.2 10.7	55 102	58 9.7	6.0 9.3	6.3 8 9	8.6	8.2	7.1	7.7	7.4	7.1		0.7	6.5	6.3	0.2
04	04	05	0.5	0.5	0.5	0.5	0.6	0.0	0.6	0.8	0.7	0.7	0.7	0.7	0.8	0.8	0.6
38	42	4.7	5.2	5.7	62	67	7.3	7.9	8.5	92	9.6	10.5	11.2	12.0	12.7	13.5	14.3
-		100	106	110	115	120	125	130	135	140	145	150	155	180	165	170	175
6.3		7.0	7.3	7.7	8.0	8.4	87	9.1	9.4	9.8	10.1	10.5	10.8	11.2	11.5	11.0	12.2
10.2	9.6	9.2	\$7	8.3		7.6	7.3	7.0		8.5	6.3	8.1	59	5.7	\$.5	5.4	5.2
05	05	05			0.	0.0	07	07	07	0.8	0.8		0.8	09	0.9	09	0.0
44	49	5.5			72	79	86	9.3	10.0	10.7	11.5	12 3	13.2	14.D	14.0	15 8	16.8
80	96	100	105	110	115	120	126	131	136	161	146	151	155	181	166	171	176
79	8.3	87	9.2	94	10 1	10 5	10 9	11.4	11.8	12.2	12.7	13.1	136	14.0	14.4	14.9	15.3
83	79	7.5	7.1	6.5	6 5	8.2	60	57	55	5.3	5.1	5.0	4.8	47	45	44	4.3
0.0	06	07	07	07	D.8	0.8	0.8	0.9	0.9	09	1.0	10	10	1.1	1.1	1.1	1.2
5.4	60	67 101	74	81	8 9 118	07 121	10 5 126	11.3 131	12.2	13 2 141	14 1 148	15 1 151	16 1 155	17.2 161	18.3 166	19.4 171	20.6 178
91 9.5	96 10 0	10 5	11.0	11.6	12.1	12.6	13.1	137	14.2	14.7	15 2	15.8	16.3	16.8	17.3	17.9	18.4
0.5		58	65	5.3	5.0	4.8	4.6	4.5	4.3	4.1	4.0	3.0	37	36	3.5	3.4	3.3
08	0.8	0.8	6.0	0.9	10	1.0	11	11	1.1	1.2	1.2	1.3	1.3	1.4	1.4	1.5	1.5
	77		0.5	10.4	114	12.4	13 5	14.6	157	18.9	18.1	19.4	207	22.1	23.5	25.0	28.5
		101	106	111	116	121	126	131	136	141	146	151	156	181	165	171	176
11 0	11.7	123	12.9	13 5	14.5	14 7	15.3	16.0	18.6	17.2	17.8	18.4	19.0	19.6	20.2	20.9	21.5
48	4 5	43	4.1	39	3.7	3.6	34	3.3	3.2	31	30	2.9	2.8	2.7	26	2.5	2.5
10	1.1	1.1	1.2	1.3	1.3	1.4	1.4	1.5	1.5	1.6	1.7	1.7	1.8	1.8	1.9	2.0	20
93	10.4	116	12.8	14.0	15.3	167	18.1	196	21.2	228	24.4	26.2	27.9	29.8	31.7	33.6	35.7
91		101	106	111	116	121	126	131	135	141	547	152	157	182	167	172 23.9	177 24.6
12 6 3 4	13 3 3.2	14 0 3 1	14.7 2.9	15 5 2.8	18.2 2.7	16 9 2.5	17.6 2.4	18.3 2.3	19.0 2.3	19.7	20.4 2.1	21.1 2.0	21.8 2.0	22.5 1.9	23.2	1.8	1.7
14	15	1.0	1.7	-∡.e 1.8	1.9	1.9	2.0	2.1	2.2	2.3	2.4	2.4	2.5	2.6	27	2.8	2.9
13 2	14.7	16.3	180	19.8	21.6	23.6	25.6	27.7	29.9	32.2	34.8	37.0	39.5	42.1	44.8	47.8	50.5
91		101	106	111	117	122	127	132	137	142	147	152	157	162	187	172	177
14.2	15 0	15.8	18 6	17.4	18.2	190	10.8	20.6	21 4	22.2	23 0	237	24.5	25 3	26.1	26.9	27.7
23	22	21	20	1.9	1.8	1.7	18	1.6	1.5	1.5	1.4	1.4	1.3	1.3	1.2	1.2	1.2
22	23	24	25	26	28	2.9	30	31	33	3.4	3.5	3.6	3.8	3.9	4.0	4.1	4.2
19.5	21 8	24.2	26.7	29.4	32.1	35.0	38.0	41.2	44.4	47.8	51.3	55.0	58.7	62.6	66.6	70.7	75.0
81	97	102	107	112	117	122	127	132	137	142	147	152	158	163	168	173	178
15.9	167	17 8	18.5	19.4	20.3	21 1	22 0	22.9	23.8	24.7	25.6	26.4	27 3	28 2	29.1	300	30.8
15	14	1.3	1.3	1.2	1.1	11	1.1	1.0	1.0	0.9	0.9	09	0.9	0.8	0.8	0.8	08
3.4	36	38	39	41	4.3	45	47 594	4.9 64.3	51 694	53 747	5.5 60.2	57 859	5 P 91.7	6.1 97.8	6.3 104.1	6.5 110.5	66
30 4	34 0	37.7	41.7	45 8	50.1	54.7	5¥ 4	-04.3	0 0 4	/ • /	6U.2	60 ¥	9 1.7	₩7.G	104.1	110.5	117.4

1 -1-1			Ouglas as 17 fam																
iniat			angle (dag)=		0.0			1.0			2.0			30			40		
			1(m)= 1/2 A(m*2)=		0.0 0.1			3.1 14 8			6.1 43.9			87 734			12.2 102.9		
			us(minin)#		7.5 11.7			7.3 12.0			69 128			#1 14.3			8.2 18 8		
T intel	6000	Toutlet	(1646v)a	CÆO	Taut	Mese		Taul	Mase	C/Co	Taut	Mase	C/Ce	Taul	Mess	CICo	Tout	Mess	C/Co
17 18	0.03	29 30		0.00	8 2	8 8 8 8	0.00	28	0.18	0.00	30	0 48							
19	0.02	31	1	0.00	31	0 00	0.00	31	0.11	0 00	31	0.38	0 00	31	0 65				
20 21	0.02	32 33		10.00 0.00	72 35	0.00	0.00	33 32	0.11	0.00	32 33	0.30	0.00	72 25	0.63				
22	0.02	34		0.00	34	0.00	0.00	34	0.11	0.00	34	0.30	0 00	34	0 43	3 00 G	34	0 60	
23 24	0.10 0.25	35 36		0.01	36 38	0.00	0.00	36 36	0.50	0.00	36 36	0.93 2.60	0.00	30 30	0.43	0.00	36 38	058	
25	0.30	37		0.02	37	0.00	0.02	37	2.00	0.01	37	4 96	0.00	37	3.84	0.00	37	148	
26 27	0.50	38 39		0.03	34 39	0.00	0.02	38 39	2.78	0.02	20 20	6.56 8.91	0.01	34 39	8 67 8.37	0.00	78 24	3.37	000
28	0.76	40		0.04	40	0.01	0.04	40	4.22	0 03	40	10.67	0.02	40	12.66	0 00	40	7.40	0.00
29 30	0.78	41 42		0.04	41 42	0.01 0.01	0.04	41 42	4.33 4.72	0.04	41 42	11.68 12.38	003	41 42	18 43 16.58	0 01	41 42	11 20 13 55	0 00
31	0.65	43		0.05	43	0.01	0.04	43	4.89 5.00	0.04 0.04	43 44	13.13	0.03	43 44	17.68	0 03	43 44	18.35 18.12	000
32 33	0.90 0.86	44 45		0.05	44 45	0.01	0.04	44 45	4.78	0.04	45	13.34	0.04	45	19 16	0.03	45	19 49	0.01
34	0.94	48		0.05	48 47	0.01	0.05	48 47	5.22 5.30	0.04	48 47	13.07 14.49	0.04	48 47	18.92	003	48 47	19 98 20 23	0 01
35 38	0.97 0.96	47 48		0.06	48	0.01	0.06	44	\$.33	0.06	48	14.64	0.04	48	20 57	0.03	48	21 57	0 02
37 38	0.96 0.95	49 50		0.05	49 50	0.01	0.06	49 50	5.33 5.33	0.06	49 50	14.50 14.56	0.04	49 50	20.78 20.68	0 03	49 50	22 17 21 60	002
39	0.95	51		0.05	\$1	0.01	0.06	51	5.28	0.06	61	14.48	0.04	51	20.88	0.04	51	22 49	0 03
40 41	0.95 0.95	52 53		0.06	52 53	0.01	0.05	52 53	5.28 5.33	0.04	52 53	14-41 14.40	0.04	62 53	20 55 20 45	0.04	62 53	22 82 22 58	0 03
42	0.97	54		0.05	54	0.01	0.05	54	5.39	0.05	54	14.84	0.04	54	20 56	0.04	54	22 58	0 03
43 44	0.98	55 56		0.05	55 56	001	0.06	\$5 58	5.45 5.56	0.06	56 56	14.79	0.04	55 58	20 77	0.04	55 58	22 71	003
45	1.00	57		0.05	57	0 01	0.05	57	5.56	0.06	\$7	15 17	0.04	57	21.32	0.04	57	22.65	0.03
46 47	1.00	58 59		0.05	58 59	0.01	0.06	58 50	5.56	0.05	58 59	15.17 15.17	0.04	54 59	21.52	0.04	54 59	23 21	0 03
48	1.00	60		0.05	80	0 01	0.06	60	5 58	0.06		15.17	0.04	•0	21.52	0.04	•0	23 43	0 03
49 50	1.00	61 62		0.05	61 62	0.01	0.06	61 62	\$.58 5.56	0.05	61 62	15.17 15.17	0.04	61 62	21.52	0 04	61 62	23 65 23 65	0 03
51	1.00	63		0.05	63	0.01	0.05	63	\$.56	0.06	63	15.17	0.04	63 64	21.52 21.52	0.04	83 84	23 65 23 65	0 03
52 53	1.00	84 65		0.05	64 65	0.01	0.05	64 85	5.58 5.56	0.06	64 65	18 17 15 17	0.04	65	21.62	0.04	65	23 65	0 03
END		65 67		0.05		0.01 0.01	0.05		5.56 5.56	0.05	66	15.17	004	65 67	21.52	0.04	66 67	23 65	0 03
		64		0.05		0 01	0.06		5.56	0.05		15 17	0.04	•	21 52	0.04	66	23 85	003
		69 70		0.05		0.01	0.05		5.56 5.58	0.05		15.17	0.04		21.52	0.04	69 70	23 65 23 65	0 03
		71		0.05		0.01	0.05		5.56	0.06		15.17	0.04		21 52	0.04		23 65	0 03
		72 73		0.05		0.01	0.05		5.56	0.05		15 17 15 17	0.04		21.62	0.04		23 66 23 65	0 03
		74		0.05		0 01	0.05		5.58	0.05		15.17	0.04		21.52	0.04		23.66 23.65	0 03
		75 76		0.05		0.01	0.05		5 58	0.05		15.17	0.04		21.52	0.04		23 65	0 03
		77		0.05		0 01	0.05		5.56	0.06		15 17	0.04		21 52 21 52			23 65 23 65	0 03
		78 79		0.05		0.01	0.05		5 56 5 56	0.05		15 17 15 17	0.04		21 52	0.04		23 65	0 03
		80		0.05		0.01	0.05		5.56	0.05		15 17 15.17	0.04		21 62	0.04		23 65 23 65	0 03
		81 82		0.05		0.01	0.06		5.56 5.56	0.05		15.17	0.04		21.52	1		23 66	0 03
		83		0.06		0.01	0.05		5.58 5.58	0.05		15.17	0.04		21.62	0.04		23 66 23 66	0 03
		84 85		0.05		0.01	0.05		5.56	0.05		15.17	0.04		21 52	0.04		23 65	0 03
		85 87		0.05		0.01	0.05		5 56 5 56	0.05		15 17 15.17	0.04		21.52			23 66 23 65	0 03
		44		0.05		0 01	0.05		5 56	0.05		15 17	0.04		21.52	0.04		23 65	0 03
		89 90		0.06		001	0.05		5.56 5.56	0.05		15 17 15 17	0 04		21.52			23 66 23 65	0 03
		91		0.05		0 01	0.05		5 56	0.05		15 17	0.04		21 52	0.04		23 65	0 03
		92 93		0.05		0.01	0.05		5.56	0.05		15 17 15 17	0.04		21.52			23 65 23 65	
		94		0.05		0.01	0.05		5 58	0.05		15 17	0.04		21 52			23 65 23 65	
		95 96		0.05		0.01	0.05		5 56 5 56	0.05		15 17 15 17			21.52			23 65	
		97		0.05		0 01	0.06		5.56	0.06		15 17	0.04		21.52			23 66 23 66	
		98 99		0.05		0.01	0.06		5.56	0.05		15.17			21.52			23 65	0 03
		100		0.05		0.01	0.05		5.54	0.05		15.17	0.04		21 52 21 52			23 66 23 66	
		101 102		0.05		0 01	0.05		5.56 5.56	0.05		16 17 15 17	0.04			0.04			003
				,			•			•			·						

Index

	0.06	0.01	0.06	5.56	0.05	15.17	0.04	21.52	0.04	23.65	0.03
	0.06	0.01	0.06	5.56	0.06	18.17	0.04	21.52	0.04	23.66	0.03
	0.06	0.01	0.06	5.56	0.06	15.17	0.04	21.52	0.04	23.65	0.03
	0.06	0.01	0.06	1 56	0.06	15.17	0.04	21.52	0.04	23 66	0.03
	0.06	0 01	0.06	5.56	0.06	18.17	0.04	21.62	0.04	23.64	0.03
	0.06	0.01	0.06	5.50	0.06	15.17	0.04	21.52	0.04	23.62	0.03
	0.06	0 01	0.06	6.50	0.06	15.17	0.04	21.82	6.04	23.66	0.03
	0.06	0.01	0.06	5.60	0.06	18.17	0.04	\$1.62	0.04	23.66	0.03
	0.06	0.01	0.06	6.50	0.06	18.17	0.04	21.52	0.04	23.65	0 03
	0.06	0.01	0.05	5.50	0.06	15.17	0.04	21.62	0.04	23.65	0.03
	0.06	0.01	0.05	5.50	0.06	18.17	0.04	21.62	0.04	23.0-	0.03
	0.05	0.01	0.06	5.50	0.06	15.17	0.04	21.52	0.04	23.65	0.03
	0.06	0.01	0.06	5.55	0.06	15.17	0.04	31.62	0.04	23.65	0.03
	0.06	0.01	0.06	5.56	0.06	18.17	0.04	21.52	0.04	23.65	0.03
	0.06	0.01	0.06	5.56	0.06	15.17	0.04	21.52	0.04	23.65	0.03
	0.06	0.01	0.05	5. 56	0.05	15.17	0.04	21.52	0.04	23.65	0.03
	0.06	0 01	0.06	5.50	0.06	15.17	0.04	21.52	0.04	23.65	0.03
	0.06	0.01	0.06	6.50	0.06	15.17	0.04	21.52	0.04	23.65	0.03
	0.05	0.01	0.06	1.50	0.05	15.17	0.04	21.52	0.04	23.65	0.03
	0.05	0.01	0.06	5.56	0.06	15.17	0.04	21.52	0.04	23.65	0.03
	0.06	0.01	0.06	6.56	0.06	15.17	0.04	21.62	0.04	23.65	0.03
	0.06	0.01	0.06	5.56	0.06	15.17	0.04	21.52	0.04	23.66	0.03
	0.06	0.01	0.06	6.50	0.05	16.17	0.04	21.52	0.04	23.66	0.03
	0.06	0.01	0.06	5.56	0.06	15.17	0.04	21.52	0.04	23.66	0.03
	0.06	0.01	0.06	5.56	0.06	15.17	0.04	21.62	0.04	23.65	0.03
	0.06	0 01	0.06	5.56	0.06	15.17	0.04	21.52	0.04	23.65	0.03
	0.06	0.01	0.06	5.50	0.06	15.17	0.04	21.52	0.04	23.65	0.03
	0.05	0.01	0.06	5.50	0.06	15.17	0.04	21.52	0.04	23.65	0.03
	0.05	0.01	0.06	5.56	0.05	15.17	0.04	21 52	0.04	23 65	0.03
	0.06	0.01	0.06	5.56	0.06	15.17	0.04	21.52	0.04	23 65	0.03
	0.05	0 01	0.06	5.56	0.06	15.17	0.04	21.52	0.04	23.45	0.03
	0.05	0 01	0.06	5.56	0.05	15.17	0.04	21.52	0.04	23 65	0.03
	0.05	0.01	0.05	5.56	0.06	15.17	0.04	21.52	0.04	23.65	0 03
	0.06	0 01	0.06	5.56	0.06	15.17	0.04	21.52	0.04	23.65	0 03
	0.05	0.01	0.05	5.54	0.05	15.17	0.04	21.52	0.04	23.65	0 03
	0.05	0.01	0.06	5.56	0.05	15.17	0.04	21.52	0.04	23.65	0.03
	0.05	0.01	0.05	5.56	0.05	15.17	0.04	21.52	0.04	23.65	0.03
	0.05	0.01	0.06	\$.58	0.06	15 17	0.04	21 52	0.04	23.65	0.03
	0.05	0.01	0 05	5.50	0.05	15.17	0.04	21.52	0.04	23.65	0.03
	0.05	0.01	0.05	5.56	0.06	15.17	0.04	21.52	0.04	23.65	0.03
1	0.05	0.01	0.05	5.56	0.05	15.17	0.04	21.52	0.04	23.65	0 03
l	0.05	0 01	0.05	5 56	0.05	15 17	0.04	21 52	0.04	23.65	0.03

50			60			7.0			8.0					10.0		
15.3 132 8			18.4			21.5 183.5			24.6 224.6			27.7 256 2		30 s 268 5	Complete	Jet Care (2 ')
43			3.3			2.5			1.7			1.2		0.6	Tatal Plan	Total Plan
20.6 Tour	4011	C/Co	28 5 Tout	Mase	C/Co	367 Taul	Mass	C/Co	SO S Taul	Mees	C/Co	75.0 Teud	Mpes	117 2 C/Co Taul Marco	C/Co Mase	CACo Mase
															0 00 0.2	0.00 0.7
															0.00 0.0	0.00 05
															0.01 0.0	0.00 04
															001 1.4	000 04
															0.02 2.5	001 15
															0.00 12.0	0.05 07
38 39	0.54														014 189	007 03
40	1.39									j					0.27 38 8	011 151
41 42	3.18 4.49														033 458 038 51.7	012 100
43	6.18	0 00	43	0 44											0 42 57 8	013 180
44 45	9.00 11.58	0.00	44 45	1.23											048 665	013 185
46	12.93	0.00	48	3.72											0.54 744	014 189
47 48	15.18 17.25	000	47 48	5.10 678							[0.58 798	014 199
49	18.39	0.00	49	8.31											0 85 89 5	014 199
50 51	18 12 19 78	0.01	50 51	9.72 11.29											046 900	014 199
52	20.44	0.01	\$2	12.72											0.70 98 2	014 197
53 54	20.52 20.12	0.02	53 54	14.28 14.61	0.00	53 54	5.05 5.71								0.75 1027	
55	20.92	0 02	\$5	15.58	0 00	55	5.79								0 77 106 0	0 15 20 2
58 57	21.11 21.01	0.02	56 57	16.42 16.55	0.00	58 57	6.30 6.52								079 1081	
58	21.13	0.02	58	16.72	0.00	58	6.87								0 80 1100	0 15 20 7
59 60	21.24 21.26	0 02	59 60	18 40 18 95	0.00	59 60	6.83 8.27								0 82 112	
61	21.50	0 03	61	17.19	0.01	61	9.12								0 83 1137	015 207
62 63	21 60 21.70	0.02	62 63	17.21 17.30	0.01	62 63	9 84 10 81								083 1144	
64	21.80	0.02	64	17 40	0.02	64	11 33								0.85 116	015 207
65 66	22.01 22.01	0.02	65 66	17.52 17.52	0.02	65 68	11.37 11.77			1					0 85 110 0	
67	22 01	0.02	67	17.60	0 02	87	12.01	0 00	67	4.35					0 89 121 1	015 207
68 69	22.01 22.01	0 03	68 69	17 88 17.76	0.02	64 69	12.20 12.04	0.00	68 69	4.44					0 89 122 2	
70	22 01	0 03	70	17.92	0.02	70	12 64	0 00	70	4 60					0 90 123 1	015 207
71 72	22.01 22.01	0 03	71 72	17.92 17.92	0.02	71 72	12 81 12.76	0.00	71 72	4 74 4 70					0 90 123 0	
73	22.01	0 03	73	17.92	0 02	73	12.76	0.00	73	4.99					0 80 123 0	015 207
74	22 01 22 01	0 03	74 75	17.92 17.92	0 02	74 75	12 76 12.70	0.00	74 75	5.53 5.88					090 124 1	
	22.01	C 03	78	17.92	0 02	76	12 70	0 01	78	6.39					0 01 124 0	
	22 01 22.01	0 03	77 78	17.92 17.92	0.02	77 78	12 76 12 81	0.01	77 78	7.05					091 1257	
	22.01	0.03	79	17.92	0.02	79	12.87	0.01	70	7.55					0 82 126 3	
	22.01 22.01	0.03		17.92 17.92	0.02	80 81	12.99 12.99	0 01	80 81	7.90 8.01					092 1287	
	22.01	0.03		17.92	0 02	87	12.99	0.01	82	8 08					0 92 126 6	015 207
	22.01 22.01	0.03		17.92 17.92	0.02	83 84	12.90 12.99	0.01	43 44	7.93					092 1288	
	22.01	0.03		17 92	0.02	85	12.99	0.01	45	8.33					0 92 127 2	015 207
	22.01 22.01	0.03		17.92 17.92	0.02	86 87	12.99 12.99	0.01	86 87	8.30 8.30					092 127 1 092 127 1	
	22.01	0.03		17.92	0.02		12.99	0.01	44	8.30					0 92 127 1	0 15 207
	22 01 22 01	0.03		17.92	0 02	89	12.99 12.99	0.01	49 90	8.26 8.26			i		092 127 1 092 127 1	
	22 01	0 03		17.92	0 02		12.99	0.01	91	8.30		-			0 92 127 1	
	22 01 22 01	0.03		17.92 17.92	0.02		12.99 12.99	0.01	92 93	8 33 8 37	0.00	92 93	2.85		095 1300	
	22.01	0.03		17.92	0 02		12 99	0 02	94	8.44	0 00	94	291		0.96 130 2	
	22.01 22.01	0.03		17.92 17.92	0.02		12 99 12.90	0.02	95 96	8 44 8 44	000	95 96	2.91		095 1302	
	22.01	0.03		17 92	0.02		12.99	0.02	97	8 44	0.00	97	2.91		0 95 130 2	0 15 207
	22.01 22.01	0.03		17.92 17.92	0.02		12.99 12.99	0.02	94 99	8 44 8 44	0.00	98 99	3 08		0.95 1307	
	22 01	0 03		17 92	0 02		12.99	0 02	100	8.44	0 00	100	3 62		0 95 130 5	015 207
	22.01 22.01			17 92 17 92			12 99 12 99		101 102	8 44	0.01	101 102	3 91 4 26		0.95 1312	
	44.91	,						,		• • •				•		•

22 01	0 03	17.82	0 02	12 80	0 02	103	8 44	0 01	103	4 45	1			0.96	131.7	0.15	207	I
22 01	0 03	17.92	0 02	12.00	0 02		8 44	0.01	104	4.49				0.95	131.8	0.15	20.7	I
22 01	6.03	17.82	0 02	12.99	0 02		8.44	0.01	105	4.64				0.96	131.0	0.15	207	ł
22 01	0 03	17.02	0 02	12 99	0.02		8.44	0.01	108	4 70				0.95	132 0	0.15	207	ł
22 01	0 03	17.82	0 02	12.90	0 02		8 44	0 01	107	4.74				0.00	132.0	0.15	20.7	l
22 01	0 03	17 82	0 02	12.99	0.02		8.44	0 01	106	4.65				0.98	131.9	0.15	20.7	l
22 61	0 03	17.02	0.02	12 80	0.02		8 44	0.01	109	4.82				0.96	132 1	0.15	20.7	l
22 01	003	17.02	0.02	12.00	0.02		8.44	0.01	110	4.68				0.95	132.2	0.15	20.7	ł
22 01	0 03	17.02	0.02	12.88	0.02		8.44	0.01	111	4.88			Ĩ	0.96	132.1	0.15	20.7	l
22 01	0 03	17.02	0 02	12.99	0.02		8.44	0.01	112	4.86				0.95	132.1	0.15	20.7	l
22.01		17.82		12.00	0.02		8.44	0.01	113	4.86				0.96	132.1	0.15	20.7	l
22.01		17.82	0 02	12.00	0.02		8.44	0.01	114	4.84				0.96	132.1	0.15	20.7	ĺ
22.01		17.82	0.02	12.00	0.02		8.44	0.01	115	4.64				0.95	132.1	0.15	207	
22 01		17.92		12.90	0.02		144	0.01	110	4.60				0.66	132.1	0 15	20.7	l
22 01		17.62	0 02	12.99	0.02		8.44	0.01	117	4.44				0.00	132.2	0.15	20.7	l
22.01		17.82		12.00	0.02		8.44	0.01	118	4.91				0.96	132.2	0.15	20.7	l
22.01		17.92		12 99	0.02			0 01	119	4.96				0.96	132.2	0.15	20.7	l
22 01		17.82		12 00	0.02		8.44	0.01	120	4.95				0.00	132.2	0.15	20.7	l
22 01		17.92		12.09	0.02		8.44	0.01	121	4.95				0.96	132.2	0.15	20.7 20.7	ł
22 01		17.82		12.89	0 02		8.44	0.01	122	4.95				0.96	132.2	0.15	20.7	l
22 01		17 92		12 99	0 02		.44	0.01	123	4.96				0.06	132.2	0.15	20.7	l
22 01		17 92		12.99	0.02		8.44	0.01	124	4.96					132.2	0.15	20.7	l
22 01		17.92		12 99	0.02		1.44	0.01	125	4.95				0.98	132.2	0.15	20.7	ĺ
22 01		17.82		12 00	0.02		144	0.01	126 127	4.95				0.04	132.2	0.15	207	l
22 01		17.92 17.92		12 99	0.02			0.01	127	4.96				0.96	132.2	0.15	207	l
22 01		17.02		12 99	0.02		1.44	0.01	140	4.95				0.04	132.2	0.15	20.7	l
22 01		17.02		12.90	0.02			0.01		4.95				0.08	132.2	0.15	20.7	l
22 01 22 01		17.92		12.90	0.02		1.44	0.01		4.96				0.00	132.2	0.15	20.7	l
22 01		17.92		12.00	0.02		8.44	0.01		4.96				0.06	132.2	0.15	20.7	
22 01		17.92		12.00	0.02			0.01		4.96				0.86	132.2	0.15	20.7	l
22.01		17.02		12.99	0.02		8 44	0.01		4.95	0.00	134	1.58	0 97	133.6	0.15	20.7	l
22 01		7.92		12.00	0.02		8 44	0.01		4.95	0.00	135	1.58	0 97	133.8	0.15	20.7	
22 01		17 92		12 99	0.02		8.44	0.01		4.95	0.00	136	1.57	0.07	133.8	0.15	20.7	l
22 01		17.92		12.99	0.02		8.44	0.01		4.95	0.00	137	1 57	0.97	133.8	0.15	20.7	
22 01		17.92		12.99	0 02		8.44	0.01		4.95	0.00	138	1.57	0.97	133.8	0 15	20.7	
22 01		17 92		12 99	0 02		8.44	0 01		4.95	0 00	139	1.57	0.97	133.8	0.15	207	l
22 01		17 92		12.90	0 02		8.44	0 01		4 95	000	140	1.65	0.97	133.9	0 15	20.7	l
22 01		17.02		12 99	0.02		8 44	0.01		4.95	0.00	141	1.81	0.97	134.0	0.15	20 7	l
22 01		7 82		12 00	0.02		8.44	0.01		4 95	0 00	142	1.93	0.98	134.1	0.15	207	l
22 01		17 92	0 02	12 99	0 02		8.44	0.01		4.95	0.00	143	2.08	0.98	134.3	0.15	207	L
22 01		17 92	0 02	12 99	0 02		8 44	0.01		4.95	0.01	144	2.26	0.98	134.5	0.15	207	l
										_								۰.

APPENDIX 5: FLOW SPLIT CALCULATION

FLOW SPLIT ANALYSES FOR RESERVOIR NOS. 1, 2, AND 3. 1) all of measurements for Length and Area are based on site plan drawing 2) travel time based on 150 Note INLET ANALYSES inlet1 Flow= 170 0 ML/d 118.1 m*3/min iniet 2 L of pipes 340 m (from inlet1 to inlet2) 2.1 m 3.5 m⁴2 12.5 min. 27.2 m/min 94.2 m⁴3/min D of pipe= A of pipe= Time travel= (150 Inlet2 - 150 Inlet1) Velocity= Flow Flow Spilt Cell 1= Cell 283= 23 9 m*3/min. 94 2 m*3/min. 20 % 80 % 1) split Cell 263 = 30% & 42% (check the assumption later) 2) inlet profile 3= inlet profile 2 with shift Assume= iniet 3 50 m 21 m 35 m*2 496 m*3/min. L of pipe= D of pipe= (from inlet2 to inlet3) A of pipe= Flow-14.3 m/min 0.3 min Velocity= Time travel= (shift of inlet 2 and inlet 3) Time Analyses T10 from Convergence Time Travel = 137 min Pipe System-Inlet1 70 m Total Volume= 2631 m^3 22.3 min Pipe System-Intel1 Pipe Intel1-Ottel2 Pipe Outlet 2&3-Outlet1 Pipe Outlet 1-Convergence 340 270 m Pipe Td= m 80 m Τđ = 903.3 Total= 926 min OUTLET ANALYSES (CHECK THE ASSUMPTION) Convergence t50= 488 min Outlet 1 (from Outlet1 to Convergence) L of pipe= A of pipe= Flow= 80 m 3 5 m*2 23.6 m⁴3/min (assumed Flow Inlet = Outlet) 68 m/min 11.7 min Velocity= Time travel= 488 0 mm Checking Time= 476 3 min - C/Co= 0 61 Correction Time= Outlet 2 L of pipe= A of pipe= Flow= (from Outlet 2 to Convergence) 340 m 2 1 m⁴2 44 9 m⁴3/min 21.4 m/min Velocity= Time travel= 159 min Checking Time= Correction Time= 488 C min 472 1 min ---- C/Co= 0.57 Outlet 3 L of pipe= A of pipe= Flow= 350 m (from Outlet 3 to Convergence) 21 m*2 49.3 m*3/min Veloc#y= 23.5 m/min Time travel* 14.9 mm 488 min Checking Time= 473 1 min ----- C/Co= 0.52 Connection Time= or 0.48 Note assuming an error data at t=355 min , taking interpolation for data between t=335 min (C/Co=0 44) and 594 min (C/Co=0 53)at t=47 7 Total C/Co= = totte % 241

APPENDIX 6: INSTRUMENT STANDARD DEVIATION

STANDARD Na SOLUTION TEST

Reading No.	0 mg/L Na	5 mg/ L Na	10 mg/ L Na	16 mg/ L. Na	20 mg/ L Na
1	0.0	32.5	58.5	81.5	98 .5
2	0.0	32.5	58.5	80.5	99 .0
3	0.0	33.0	58.5	81.0	99 .0
4	0.0	33.0	58.0	81.0	98.5
5	0.0	32.5	58.5	80.5	99.5
6	0.0	33.0	58.0	80.5	99 .5
7	0.0	32.5	59.0	81.5	99 .0
8	0.0	33.0	58.5	81.0	9 9.5
9	0.0	33.0	58.5	81.0	98.5
10	0.C	33.5	58.5	81.0	99.0
11	0.0	33.0	58.5	80.5	98.5
12	0.0	33.0	59.0	80.0	99 .0
13	0.0	33.0	58.5	81.0	98.5
14	0.0	33.5	59.0	81.0	99.5
15	0.0	33.5	58.5	81.0	99.0
16	0.0	33.5	58.5	81.5	98.5
17	0.0	33.0	58.5	80.5	99 .5
18	0.0	33.0	59.0	81.0	99.5
19	0.0	32.5	59.0	81.5	99.5
20	0.0	33.5	59.5	81.0	99.0
21	0.0	33.5	59.0	81.5	99.5
22	0.0	33.0	59.0	81.5	9 9.0
23	0.0	33.5	59.0	81.5	100.0
24	0.0	33.0	58.5	82.0	99 .0
25	0.0	33.0	59.0	81.0	98.5
26	0.0	32.5	58 .5	81.0	98 .5
27	0.0	33.0	58.5	80.5	98 .5
28	0.0	33.0	59.0	81.0	9 9.0
29	0.0	33.5	59.0	81.0	99.0
30	0.0	33.5	59.5	81.0	99.5
Average	0.0	33.1	58.7	81.0	99.0
Stand. Dev	0.00	0.36	0.36	0.43	0.43

National Library of Canada

Acquisitions and Bibliographic Services Branch

395 Wellington Street Ottawa, Ontario K1A 0N4 Bibliothèque nationale du Canada

Direction des acquisitions et des services bibliographiques

395, rue Wellington Ottawa (Ontario) K1A 0N4

Your life Votre réle. nce

Our lile Notre référence

AVIS

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

NOTICE

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and subsequent amendments. La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut iaisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30, et ses amendements subséquents.

Canadä

UNIVERSITY OF ALBERTA

A Methodology for Designing Local Area ATM Networks

By

Chu-Kiat Lim

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science

Department of Computing Science

Edmonton, Alberta Fall 1994

National Library of Canada

Acquisitions and Bibliographic Services Branch

395 Wellington Street Ottawa, Ontario K1A 0N4 Bibliothèque nationale du Canada

Direction des acquisitions et des services bibliographiques

395, rue Wellington Ottawa (Ontario) K1A 0N4

Your file Volre référence

Our file Notre relevence

The author has granted an irrevocable non-exclusive licence allowing the National Library of Canada to reproduce, loan. distribute or copies sell of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

L'auteur a accordé une licence et non exclusive irrévocable la Bibliothèque permettant à Canada nationale du de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette à disposition des thèse la personnes intéressées.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without his/her permission. L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

ISBN 0-315-95069-2

Canadä

CHU-KAT LIM Nome

Dissertation Abstracts International is arranged by broad, general subject categories. Please select the one subject which most nearly describes the content of your dissertation. Enter the corresponding four-digit code in the spaces provided.

SCIENCE (OM PUTER

SUBJECT TERM

Subject Categories

THE HUMANITIES AND SOCIAL SCIENCES

COMMUNICATIONS AND THE	ARTS
Architecture	0729
Cinema Dance	
Fine Arts Information Science	0357
lournalism	0391
Library Science	0399
Munic	0413
Speech Communication	

FOUCATION

TUCATIS	
General	0515
Administration Adult and Castinuing Agricultural	0514
Adult and Costinuing	0514
Amin drug Country	0617
ST	
A7 Bilingual and Multicultural Business	
Business	0688
Community College	0275
Community College Curriculum and Instruction	0727
Early Childhood	0518
Elementary	0524
	0077
Finance Guidance and Counseling Health	
Guidance and Counseling	
Heglih	0680
Hidooy of	0520
Home Economics	0278
Industrial	0521
	0270
Language and Literature	
ANDIMOTICITICS	
Music Philosophy of	0522
Philosophy of	0998
Physical	0523

Psychology 0525 Reading 0535 Religious 0537 Sciences 0714 Secondary 0533 Sacial Sciences 0534 Sacialagy of 0340 Special Training 0530 Technology 0710 Technology 0710 Technology 0710 Technology 0710 LANGUAGE, LITERATURE AND LINGUISTICS

L

Language General Ancient	
General	06/9
Linguistics	0290
Modern	0291
Literature	
General	0401
Classical	0204
	0274
Comparative	0293
Medieval	0297
Modern	0298
African	031 <i>6</i>
American	0591
Asian	0305
Canadian (English)	0352
Canadian (French)	0366
Condoion (mench)	
English	
Germanic	
Latin American	0312
Middle Eastern	0315
Romance	0313
Slavic and East European	0314

PHILOSOPHY, RELIGION AND				
THEOLOGY Philosophy	.0422			
Religion General Biblical Studies	.0318			
Clergy History of Philosophy of	.0319			
Theology	.0469			
SOCIAL SCIENCES American Studies	.0323			
Anthropology Archaeology Cultural	.0324			
Physical Business Administration	.0327			
General	.0272			
Banking Management Marketing	.0454			
Markeling Canadian Studies Economics				
General Agricultural Commerce-Business	.0503			
Finance History	0508			
Labor Theory	.0510 .0511			
Folklore Geography Gerantology	.0366			
History General				

Ancient	.0579
Mediaval Modern	.0581
Black	0328
African Asia, Australia and Oceania Canadian	.0331
Asia, Australia and Oceania	0332
European	0334
atin American	.0336
Atiddle Eastern	.0333
United States	.0337
History of Science	0262
Law Political Science	. 03/0
General International Law and	.0615
International Law and	~~~
Relations Public Administration	.0010
Recreption	0814
Social Work	0452
Sociology	A / A /
General	.0020
Demography	09.38
General Criminology and Penology Demography Ethnic and Racial Stydies	0631
Individual and Family Studies	~ ~ ~ ~
Industrial and Labor	. 0629
Relations	0629
Relations Public and Social Welfare	0630
Social Structure and	
Development Theory and Methods	0/00
Transportation	0709
Transportation Urban and Regional Planning	0999
Womeri's Studies	.0453

THE SCIENCES AND ENGINEERING

BIOLOGICAL SCIENCES

Aariculture	
General	0473
Aaronomy	0285
Agronomy Animal Culture and	
Nutrition	0475
Animal Pathology	0474
Food Science and	
rapa science and	0250
lechnology	
Technology Forestry and Wildlife	04/8
Plant Culture	
Plant Pathology	0480
Plant Physiology	0817
Range Management	0777
Wood Technology	0746
Biology	
General	0306
	0387
Anatomy	
Biostatistics	
Bolany	
Cell	0379
Ecology	0329
Entomology	0353
Genetics	0369
Limnology	0793
Microbiology	0410
Molecular	0307
Neuroscience	0317
Oceanography	0416
Division in the second se	
Physiology	0433
Rediation	Ud 21
Veterinary Science	0//8
Zoology	0472
Biophysics	
General	
Medical	0760
EARTH SCIENCES	
Biogeochemistry	0425
Geochemistry	0004

Geodesy	0370
Geodesy	
Geology	04/2
Geophysics	0373
Hydrology	
Mineralogy	0411
Mineralogy	
Paleobotany	
Paleoscology	0426
Paleontology	0418
Paleozoology	0005
Palynology Physical Geography Physical Oceanography	
Physical Geography	0368
Physical Oceanoaraphy	0415
· · · · · · · · · · · · · · · · · · ·	
HEALTH AND ENVIRONMENTA	
	•
SCIENCES	
Environmental Sciences	0740
Environmental actences	
Health Sciences	
General	0566
Audiology	0300
Chemotheropy	0992
Dentistry	0547
Cerinsity	
Education	0330
Hospital Management	0769
Hospital Management Human Development	0758
Immunology	0082
Immunology Medicine and Surgery	0544
Medicine and Surgery	
Mental Health	034/
Nursing	0569
Nutrition	0570
Obstetrics and Gynecology	ÓREÓ
Occupational Health and	
	0264
Therapy	
Ophthalmology	0381
Pathology	0571
Pathology Pharmacology	0410
Diamana.	0572

Pharmacology 0572 Physical Therapy 0573 Public Health 0573 Radiology 0574

Speech Pathology Taxicology Home Economics	0460 0383 0386
PHYSICAL SCIENCES	
Pure Sciences Chemistry	
General	0495
Agricultural	0749
Analytical	0486
Biochamistry	0497
biocressitistry	0407
Inorganic	0729
	0/30
Organic Pharmaceutical	
Physical	
Polymer	
Rodiction	
Mathematics	
Physics	
General	
Acoustics	0986
Astronomy and	
Astrophysics	0606

Biochanistry	
Inorganic	0499
Nuclear	0729
Nuclear	0/30
Organic	
Pharmaceutical	
Physical	
Polymer	
Radiction	0/54
Mathematics	0405
Physics	
General	0605
Acoustics	0986
Astronomy and	
Astrophysics	0606
Atmospheric Science	0608
Atomic	0748
Electronics and Electricity .	0607
Elementary Particles and	
High Energy	0798
High Energy Fluid and Plasma	0750
Molecular	
Nuclear	
Optics	0/52
Rodiation	
Solid State	
Statistics	
Applied Sciences	
Applied Mechanics	0346
Computer Science	0004
Composer science	

Engineering	
Engineering General	0537
General	053/
Aerospace	0538
Agricultural	0539
Automotive	0.540
Biomedical	0541
Chemical	
Civil	0543
Electronics and Electrical	
Heat and The modynamics.	0348
Hydraulic	0545
Industrial	0546
Marine	034/
Materials Science	0794
Mechanical	0548
Metallurgy	0743
Mining	0551
Nuclear	05.52
D de la	0552
Packaging	0549
Petroleum	0765
Sanitary and Municipal	0554
System Science	.0790
Geotechnology	0428
Geotechnology Operations Research	0704
Operations research	
Plastics Technology	0/95
Textile Technology	0994
0.	
PSYCHOLOGY	

PSYCHOLOGY

PSYCHOLOGY	
General	
Behavioral	0384
Clinicel	
Developmental	
Experimental	
Industrial	
Personality	0625
Physiological	0989
Psychobiology	0349
Psychobiology Psychometrics	0632
Social	0451
	-

UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Chu-Kiat Lim

TITLE OF THESIS: A Methodology for Designing Local Area ATM Networks

DEGREE: Master of Science

YEAR THIS DEGREE GRANTED: 1994

Permission is hereby granted to the University of Alberta Library to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

The author reserves all other publication and other rights in association with the copyright in the thesis, and except as hereinbefore provided neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatever without the author's prior written permission.

(Signed) Linchuftigt

Permanent Address: 20, Solok Piggot, Pulau Pinang, 10450, Malaysia

Date: Oct 411+ 1994

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and Research for acceptance, a thesis entitled A Methodology for Designing Local Area ATM Networks submitted by Chu-Kiat Lim in partial fulfillment of the requirements for the degree of Masters of Science.

9. Klanns
Supervisor: J. Harms
P
Examiner: P. Gburzynski
Bow ch .
External: B. Schmyland (Mathematical Sciences)
of Shin
Charperson: R Flig

Chahrperson: R. Elio

Date: Oct 4TH, 1994

To my parents Mr. and Mrs. Lim Yoke Kwai,

My brothers Lim Chu-Keong, Lim Chu-Kim, and Lim Chu-Wai

> and All my friends in Edmonton

> > .

Abstract

In a local area Asynchronous Transfer Mode network (LATM), interconnections of switches using high-speed links make up the topology of the network. As the number of variables involved is quite large and the interconnection of these switches is quite complex, a method has to be devised so that a topology that satisfies traffic requirements and is cost effective can be obtained.

This thesis describes a method for devigning the topology of a local area ATM network. The method is based on the concept of an ATM pipe. Using these ATM pipes, a logical LATM topology is first created, from which the final physical LATM topology is derived. An advantage of this method is that it produces a topology that satisfies given traffic requirements while trying to minimize the cost of the network. This method consists of two parts. The first part involves the calculation of the ATM pipe sizes. A Multiclass Heterogeneous On/Off Sources Fluid Flow model (MCFF) is used for this calculation. The second part is the derivation of the actual physical topology. The main technique used here is heuristic-based algorithms. The effectiveness of both part one and two are examined, and their results presented.

This method successfully generates network topologies for LATM networks.

Acknowledgements

I would like to extend my greatest gratitude to my supervisor Dr. Janelle Harms, for her guidance and support (especially financially!). Without her unfailing support, this thesis would not be possible. Thank you Janelle.

I am also grateful to the members of my examining committee: Dr. Pawel Gburzy ski, Dr B. Schmuland and Dr. Renee Elio for their precious time spent in reviewing this work. I am also indebted to the members of the network group, especially Srinivasan Ramaswamy, Kannan Thiruvengadam, and Xiaofan Guo for their valuable suggestions and support.

I would like to thank all my friends in the Computing Science Department, especially Vikas Nehru (we have been friends for a long time), Sydney Lee, Collins Chien, Kacheong Yeung, Magued Fahim, Lettice Tse (thank you for all the conversations). Special thanks also to Dr. Hong Zhang and Dr. Ahmed Kamal for their encouragements that led to my graduate studies. Also to Prof. Ursula Maydell for her guidance and support in publishing my first paper.

Thank you all.

Contents

1	Int	troduction 1					
	1.1	Network Planning and Design Issues	2				
		1.1.1 Justification	2				
		1.1.2 Security	2				
		1.1.3 Network Architecture	3				
		1.1.4 Manageability	4				
		1.1.5 Reliability	4				
		1.1.6 Cost	5				
	1.2	Network Planning and Design Life-cycle	6				
		1.2.1 Long Term Planning and Design	6				
		1.2.2 Short Term Planning and Design	8				
	1.3	ATM: The Asynchronous Transfer Mode	9				
		1.3.1 The ATM Layers	9				
		1.3.2 Quality of Service	10				
		1.3.3 ATM Hardware	10				
		1.3.4 Local Area ATM Networks	11				
	1.4	Thesis Objective	11				
		1.4.1 Problem Formulation	12				
	1.5	Thesis Organization	13				
	1,6	Summary	14				
2	Rel	ated Work	15				
	2.1 Topology Design using the Steepest Descent Method 1						

		2.1.1 Analysis
	2.2	The Mentor Algorithm for Topology Design
		2.2.1 Analysis
	2.3	The Simulated Annealing Optimization Technique
		2.3.1 Analysis
	2.4	The Add Heuristic and Cluster Heuristic for Topology Design 20
		2.4.1 Analysis
	2.5	Summary
3	The	Pipe Based LATM Topology Design Methodology 24
	3.1	Introduction
	3.2	The ATM Pipe, What is It? 25
	3.3	PHASE I: Generating the ATM Pipe Network
	3.4	The MCFF Fluid-flow Model 29
		3.4.1 The Mathematical Analysis of MCFF
		3.4.2 The Computation of MCFF 39
	3.5	Simulation Study
		3.5.1 Simulation Parameters
		3.5.2 Class Parameters
	3.6	Simulation Results
		3.6.1 Single Class Traffic
		3.6.2 Effects of Pipe Multiplexing
	3.7	Limitations of the Verification
	3.8	Summary 50
4	Pha	se II: Physical Topology Construction 51
	4.1	Introduction
	4.2	Overview of Phase II
		4.2.1 Switched ATM Network Requirement
		4.2.2 The Cost Function
	4.3	PART I: Initial Topology Construction
		4.3.1 Choosing which pipes to combine
	4.4	PART II: Topology Improvement

		4.4.1	Savings Through Switch Combination	64		
		4.4.2	Topology Improvement Algorithms	67		
	4.5	PART	III: Topology Location	68		
	4.6	Exper	Experiments for Phase II			
		4.6.1	Parameters	70		
	4.7 Experimental Results					
		4.7.1	Part I: The Initial Topology Construction	73		
		4.7.2	Effects of Skewness On the Initial Topology	73		
		4.7.3	Part II: Topology Improvement	75		
		4.7.4	Repeated Calculation	76		
		4.7.5	Part III: Topology Location	76		
		4.7.6	Algorithm Running Time	83		
		4.7.7	Compatibility of Part II and Part III	83		
	4.8	Summ	ary	85		
5	Cor	clusior	1	87		
	5.1	Summa	ary	87		
	5.2	Conclu	isions and Future Work	88		
A	Tuc	ker's H	lomogeneous On/Off Sources Fluid-Flow Model	90		
Bi	Bibliography					

List of Figures

1	The Network Planing and Design Life-cycie	7
2	A Conceptual Diagram of an ATM Switch with Output Buffering	11
1	The ATM Pipe Concept	26
2	A 4 Host ATM Pipe Network	27
3	A Corresponding LATM Network	27
4	The Fluid-Flow Model	30
5	The General Heterogeneous On/Off Sources Markov Chain	33
6	Loss Probability vs Pipe Size for Multiclass Traffic (6 sources)	-1-1
7	Loss Probability vs Pipe Size for Multiclass Traffic (10 sources) .	44
8	Loss Probability vs Pipe Size for Single Class Traffic (File Transfer)	46
9	Loss Probability vs Pipe Size for Single Class Traffic (CBR Voice)	46
10	Loss Probability vs Pipe Size for Single Class Traffic (Video Trans-	
	$f\epsilon r)$.17
11	Loss Probability vs Pipe Size for Single Class Traffic (Video Re-	
	trieval)	47
12	Loss Probability vs Savings (5 sources)	48
13	Loss Probability vs Savings (10 sources)	48
1	Host 1 on a five host network needs to send traffic to the four other	
	hosts (assuming no traffic to itself)	56
2	Host 1 is attached to switch 1 and algorithm attempts to assign the	
	each output pipe to a single link.	56

3	The number of links required exceeds the maximum switch size, therefore a pipe combination heuristic is applied to combine some pipes together. A new switch is attached to the link that carries the	
	<i>combined pipe.</i>	5
4	Algorithm attempts to assign the output pipes to a single link and succeeds.	5'
5	The resultant subtopology for source host 1	5
6	The resultant subtopology for destination host 2	58
7	Combining subtopologies together.	59
8	A fully combined 5 host initial topology. Source hosts are labeled with numbers preceded with an 'S', destinations hosts with a 'D',	
~	and switches with an 'SW'	6
9	Algorithm finds the pipe size (1.9) with the biggest fraction. This pipe is discarded as no other pipe can be combined with this	63
10	Algorithm finds the pipe with the next biggest fraction (0.7). Two	0.
10		63
11	other pipes can be combined with this pipe (pipes 4 and 5) Algorithm chooses pipe 4 as it has the bigger fraction among the	0.
* *	two. The two pipes are combined.	63
12	Since desired total savings is not reached. Algorithm looks for the	0.
	biggest combinable pipe.	63
13	Only one pipe (pipe 5) can be combined with the chosen pipe (pipe	0.2
	2), therefore combine them. \ldots	64
14	A total of 2 savings is achieved. Therefore algorithm exits	64
15	Link capacities reduced when switches that have the same descen-	
	dants combine.	65
16	Links eliminated when switches combine with immediate ancestors	
	or descendants	66
17	Reduction of link size and elimination of links as a result of switches	
	<i>combining.</i>	66
18	The Initial Topology for the 5 Hosts, Set 2, Skewed Traffic Run	74
19	The Improved Topology Using the Random Algorithm	77
20	The Improved Topology Using the Exhaustive Algorithm	78

21	The Improved Topology Using the Neighborhood Algorithm	79
22	Comparisons of the Topology Improvement algorithms for a 5 Host	
	Network with Skewed Traffic	80
23	Comparisons of the Topology Improvement Algorithms for a 5 Host	
	Network with Non-Skewed Traffic	80
24	Comparisons of the Topology Improvement Algorithms for a 15	
	Host Network with Skewed Traffic	81
25	Comparisons of the Topology Improvement Algorithms for a 15	
	Host Network with Non-Skewed Traffic	81
26	Comparisons of the Topology Location Algorithms for a 10 Host	
	Network with Skewed Traffic	82
27	Comparisons of the Topology Location Algorithms for a 5 Host Net-	
	work with Non-Skewed Traffic	82
28	Average Execution Time for the Topology Improvement Algorithms	
	(in Seconds)	84
29	Average Execution Time for the Topology Location Algorithms (in	
	Milliseconds)	84
1	The Talker Activity Model Markov Chain	90

List of Tables

3.1	The Four Traffic Classes	42
3.2	Set One Multiclass Traffic Mixes (6 sources)	42
3.3	Set Two Multiclass Traffic Mixes (10 sources)	43
3.4	The Effective Intensities for the Four Classes	45
4.1	Pipe Mean and Skewness (5 and 10 Hosts)	72
4.2	Pipe Mean and Skewness (15 Hosts)	72
4.3	The Initial Topology Cost (The Bigger Cost is in Brackets)	75
4.4	Results of the Three Topology Improvement Algorithms Before and	
	After Anchoring	85

Chapter 1

Introduction

Since the invention of the telephone, the world has taken a great leap forward in communications. At present, millions of miles of communication lines span the entire globe serving billions of people in hundreds of countries. And with the advent of present day technologies in digital computing, the world of communication is witnessing a transition from the old low-bandwidth voice-based networks to high-bandwidth multipurpose all digital networks. No longer are the networks carrying only voice traffic; data, still images, and video as well as other multimedia traffic is becoming a vital and integral part of everyday traffic that is being sent over communication networks. This is evident as the number of voice network users grow at an annual rate of 3% whereas data network users increase at an astonishing 20% annually [37].

With this explosion in the number of new users and thus new networks, present day communication networks are getting more and more complex as more and more networks of different technologies and functionalities are being deployed. Network planning and designing is no longer an exclusive role to large corporations or telephone service providers, but an important and vital part to all organizations however big or small, that envisage the use of communication networks. Foresight, expertise, and careful planning is indispensable so that the communication network that results satisfies not only present day requirements but future usages and/or expansions as well.

This thesis is about network design, specifically for obtaining the topology for

local area Asynchronous Transfer Mode (LATM) networks. We shall begin with this chapter, by discussing some general topics on network design. Next, a brief overview on Asynchronous Transfer Mode is given. Finally, the problem definition and an objective to this thesis will be presented.

1.1 Network Planning and Design Issues

The role of network design involves various issues. Although every organization is different in terms of size, usages and requirements, several issues are common to many of them. A good reference that discusses these issues can be found in [16]. We present a brief discussion of the network planning and design issues here.

1.1.1 Justification

Before a new network is installed, it is important that the need for such a network is justified. Various facts needs to be considered to justify owning a new network, including costs of hardware, installation, network maintenance technicians and administrator, as well as the forecasted network usage. For example, it might be more economical for certain organizations to lease services or lines from common carrier companies, instead of owning one themselves. This is especially true for organizations that are geographically wide-spread; installing long distance cables and equipment just to serve a single organization may very well be too expensive.

Often alternative solutions exit in lieu of installing a network. A network designer should always forecast the would-be traffic usage for the new network carefully. If the projected traffic is too small, applying alternative solutions might be better than purchasing a new network. For example, for rare transfers of small amounts of data, one can download them with a modem or even transfer them physically in magnetic tapes or diskettes.

1.1.2 Security

As organizations put more and more computers onto their network, unauthorized individuals no longer need to have access physically to a machine to gain access

to restricted information. Information theft may cause serious harm to the wellbeing of a company, for example, a financial institution. A culprit may log on to a machine from far away, or even out of the country to attempt to gain unauthorized access into the system. It becomes harder to bring the culprits to justice, even if they have been discovered in their act, since they are physically far away.

Therefore, security measurements have to be taken to ensure the privacy of the networks. For example, more stringent access validation systems can be employed, and traffic to and from network gateways can be monitored. Repeated login failures should flag an alert to the system administrators for possible unauthorized entry.

In addition, care has to be exercised in choosing the type of network that is acquired. Some types of networks are more susceptible to unauthorized access than others. As a rule of thumb, networks that broadcasts wirelessly, for example radio networks and satellite links can be eaves-dropped easily, and thus is more susceptible to security problems.

1.1.3 Network Architecture

As there are a wide variety of network technologies in the market, it becomes hard to choose a network architecture to use. Each of the network architecture has advantages and disadvantages of their own. Each of them differs in functionality and price.

As to which architecture is the most suitable, there is no specific answer to this question. Some applications can only run on certain types of network architecture, while others work on a wide range of different networks. For example, constant bit rate voice works best with networks that support synchronous transfers such as the Fiber Distributed Data Interface II Network (FDDI-II); it does not work well with networks that exhibit variable delays (for example, Ethernet).

Another factor to consider is expandability of the network architecture. Some networks can be expanded (scaled) more easily than others with increase demands on traffic. One such network is the switched Asynchronous Transfer Mode (ATM) networks, where the aggregate bandwidth of the network can be expanded easily by adding in new switches and links, as compared to a DQDB network where the extension of bandwidth can only be done by obtaining another network and connecting these networks by bridges.

1.1.4 Manageability

As networks grow bigger and more complex, the need for a network architecture that is manageable becomes crucial to the everyday operations of the network. A network that is assembled from too many types of equipment from multiple vendors with different standards and formats may become too complex in order to function effectively. Segmentation and assembly of packets may be performed more often than necessary due to the different formats and standards of different equipment. Hence, the increase in overhead, and subsequently the degrading in network performance. A network having too many different types of equipment also needs more staff to maintain the network, since more people need to be trained to handle different types of network components. This represents more cost to maintaining the network.

1.1.5 Reliability

While most networks sold today are relatively reliable compared to a couple of decades back, questions of reliability of networks are still important for certain kinds of networks. In fact, reliability in local networks is becoming a more and more important consideration [25]. As an example, airline flight control equipment requires availability 99.99999% of the time. That means communication networks for flight control equipment has to achieve a downtime of less than 4 seconds per year. Other organizations that rely heavily on the usage of networks may find that reliability of their networks is important. A network failure can possibly result in a loss of thousands or even millions of dollars in business.

Some networks on the market are more reliable than others. For example, FDDI with its dual ring architecture is able to reconfigure the secondary ring in case the primary ring fails. Also, mesh networks can be more reliable than fixed topology networks (ring or star) since a link failure in a mesh network can be easily coped by rerouting the traffic via other paths to the destination. It is up to the network designer to determine which level of reliability is needed, and hence which network is more suitable.

1.1.6 Cost

Perhaps the one of the most important factors in influencing the decision of purchasing which type of network is cost. It is one of the major issues in network design [28]. The actual cost of acquiring a network can be quite complex. However, the cost can be divided into the following categories:

- Hardware Cost. Depending on the technology in use, this can be the cost for switches, multiplexers, concentrators, terminators, diagnostic equipment, copper wire, fiber-optic cables, coaxial cable bridges and gateways, etc.
- Software Cost. To have the network operational, certain software has to be installed. For example, communication software, network monitoring software, network administration software, etc.
- Installation Cost. Included in this category is the cost related for installing hardware and links. This includes labor cost as well as other costs related to installation. For example, putting up conduits or special encasements for fiber-optic cables, or installing fire-proof material to protect communication lines.
- Facility Cost. This category includes the cost for locating hardware or links at premises. For example, a room with special ventilation for locating switches, or wiring closets for link distribution. Sometimes, this cost can be the dominant cost for the network. An example is if rights of way over other peoples property have to be purchased in order to install links/equipment.
- Maintenance Cost With the network in place, regular maintenance is required to keep the network functioning effectively. The maintenance cost includes the cost of employing/training maintenance technicians as well as replacements of failed or unfunctional equipment.

1.2 Network Planning and Design Life-cycle

Figure 1 shows a diagram of the life-cycle of network planning and design. This life-cycle can be divided into two parts: long term planning and design, and short term planning and design. Long term planning and design involves planning and designing aspects of the network that exerts long lasting effects to the operations or structure of the network, whereas short term planning and design mainly deals with semi-temporary redesigning or reconfiguration of the network to satisfy short term changing traffic usage requirements.

1.2.1 Long Term Planning and Design

Long term network planning and design starts with forecasting the usage characteristics of the network in the long term. Usage characteristics include what applications will be used, and the type and amount of bandwidth that is required to run these applications as well as any other service requirements associated with these applications. Usage characteristics also include the expected number of users in the long run. Other issues such as reliability, security and manageability are considered as well.

After the long term forecasting or planning stage, the network designer surveys the available technologies or soon to be available technologies (for reasons of future compatibility). Information on prices and functions of each types of technology is collected and considered. Questions to be considered include compatibility between existing standards and equipment and/or future standards and equipment.

With one or a collection of desired technologies in mind, the network designer sets out to design the network. Simple networks such as a token ring network or an ethernet network do not require much designing except for the wiring plan for terminals and peripherals that connect onto the network. Other more complex networks such as switched ATM networks or interconnection of networks require more designing to yield a network with the desired functions. Various tools and techniques such as simulation tools, queueing theory and optimization techniques are applied to assist in the designing process. The focus of this thesis is here,

specifically on topology design for switched LATM networks.

Next, the actual purchasing, implementation and installation of the network is done. Some testing is also done in this phase to ensure that the newly installed network is functioning properly.

1.2.2 Short Term Planning and Design

Short term network planning and design, on the other hand is performed in an ongoing basis. This process begins with the regular monitoring or short term forecast of network usage statistics. Changes in usage statistics or network requirements are mostly short-lived but the need to fine tune the network persists.

The short term network planning and design process can be divided to the following:

- Software Update. By updating or fine-tuning of the software in the topology, some improvements in network performance is achievable. For example, by using software to changing the buffer configuration or cell priority scheme, network efficiency can be improved.
- Topology Tuning/Reconfiguration This involves a small change to the network topology, physical or logical. Physical changes include non-major rewiring of the topology. Logical changes include optimization and rerouting traffic to new paths. Some work has been done in this area for ATM networks. Interested readers can refer to [24, 32]
- Short Term Hardware Upgrade/Installation Work in this category involves putting in temporary hardware to support short-term increase in traffic or workload. For example, additional multiplexers and concentrators can be installed in to improve link utilization, or adding in additional links to increase bandwidth. Typically, this involves a minor reconfiguration of the topology as well.
1.3 ATM: The Asynchronous Transfer Mode

The Asynchronous Transfer Mode (ATM) is a fast packet switching transfer mode promising great flexibility and support for future bandwidth demanding applications. Since the CCITT (The International Consultative Committee for Telecommunications and Telegraphy) adopted it as the transfer mode for Broadband Integrated Services Digital Networks (B-ISDN) [6], much attention has been focused on research in this area.

B-ISDN is perceived to be an all purpose network [31], promising support for traffic of all bandwidths, including low bandwidth traffic (e.g., voice, telefax, low-speed data, etc.), medium bandwidth traffic (e.g., video telephony, hi-fi sound, etc.) and high bandwidth traffic (e.g.,medical imaging [27], high-quality video distribution, etc).

A characteristic of ATM is its small cell size (53 bytes). Having a small cell size permits statistical multiplexing, hence more efficient utilization of the links. Also, small cell size reduces packetization delay. Another characteristic of ATM is that it is connection-oriented, that is, prior to sending traffic, a virtual channel (VC) is set-up between the source host and the destination host. A virtual channel identifier (VCI) is allocated, and switches route cells based on this VCI. Another identifier is also used along with the VCI. It is the virtual path identifier (VPI). A virtual path is essentially a predefined path in an ATM network. Virtual channels can join in a virtual path so that they can be switched more efficiently as one.

1.3.1 The ATM Layers

The ATM functionality can be divided into three layers [5]:

- 1. The Physical Layer. The first function of the physical layer is to ensure that bits are transmitted correctly onto or received correctly from the physical medium while the second function involves mapping the reconstructed bits to the transmission system used.
- 2. The ATM Layer. This layer is responsible for multiplexing and demultiplexing of cells, cell header addition and extraction, VCI translation and

access flow control.

3. The ATM Adaption Layer The main function of the adaptation layer is to provide additional service on top of that already provided by the lower layers. The main aim is to be able to provide different quality of services for different traffic.

1.3.2 Quality of Service

One of the most powerful features of ATM is its ability to provide different quality of services (QOS), that is providing different levels of services for different traffic. For example, voice traffic which is more tolerant to cell loss can specify a higher degree of cell loss, as compared to data traffic. In addition, some traffic requires slightly different services than others. For example, video or voice traffic are sensitive to cell delay jitter, whereas users of data traffic may not care about the jitter in cell delay as long as all the cells arrive within a reasonable time. Basically, QOS can belong to one of three types [3]: deterministic (e.g., maximum delay time to be 500ms), statistical (e.g., cell loss rate to be 10^{-6}) and best effort (e.g., unguaranteed cell delivery).

1.3.3 ATM Hardware

ATM is mainly a switched network, although some proposals have been made for a ring ATM network [34]. Links connect switches with hosts or other switches. ATM links transmit at a certain fixed speed, for example 155Mbps. However, multiples of the link speed can be achieved by combining more than one links together. Each ATM switch contains a number of input ports, where cells arrive, and a number of output ports where cells are sent. At the heart of the switch is the switch fabric that takes care of routing which cell to which output port. Since more than one cell can contend for the same output port, buffers are built in to temporarily store the cells that awaits their turns to be sent. Figure 2 shows a conceptual diagram of an ATM switch with output buffering. For a good introduction to ATM switches, interested readers can refer to [37, 33].

Figure 2: A Conceptual Diagram of an ATM Switch with Output Buffering

1.3.4 Local Area ATM Networks

The ATM standard is still evolving. With many aspects of ATM still being unclear it is not surprising that the earliest deployment of ATM networks will be in the local area. As local area networks are usually owned by a single organization, certain functions of the network can be relaxed, for example, congestion control or traffic policing. In addition, the number of users in a local area network environment is smaller, and the amount of traffic is less. Therefore, implementations in a smaller scale are usually done first in a local area environment prior to the metropolitan or wide area networks environments. Because of this, local area ATM Networks are receiving considerable attention, and some first-generation LATM products have already appeared in the market.

1.4 Thesis Objective

Consider the following scenario:

A network designer is faced with the challenge of designing a local area network. Due to the flexibility and power of ATM he has decided to use ATM as the transfer mode for his local area network. With past usage statistics and careful forecast, he has projected the would-be

traffic requirements (most traffic are multimedia, each with different QOS requirements). He has also obtained information about the cost and characteristics of the LATM switches and links currently on the market. After much consideration, he has decided that the 16x16 and 32x32 switches from company x, and the 64x64 switches from company y are the best buy, and therefore should be used. He has also found out other information on costs, such as labor cost for installing links, and cost for putting in conduits to protect the fiber-optic links. His company has also allocated a few locations specifically for locating the switches for this new network. Under direct orders from the Chief Executive Officer, his network must cost as little as possible while satisfying all traffic requirements. He sits down and begins to ponder on some questions in his mind: How many switches shall he purchase, and which ones? How can he connect the switches so that the desired traffic requirements can be satisfied? And the most important of all, how can the resultant topology be both functional and as cheap as possible? After a while, he realizes he has the answer to the above questions in one of the books on his shelf. He walks to the shelf, reaches out and pulls out the thesis entitled 'A Methodology for Designing Local Area ATM Networks'.

The objective of this thesis is to propose a methodology for solving such a problem. Specifically, this method enables a designer to design a LATM topology that is cost effective while satisfying the requirements of complex ATM traffic.

1.4.1 Problem Formulation

Given the above objective, we can formulate the LATM network design problem as an optimization problem as follows:

Given:

- 1. Network traffic requirements.
- 2. Information on usable ATM switches, for example, the switch sizes and costs.

- 3. Information on ATM transmission links.
- 4. Locations of user sites.
- 5. Candidate location sites for switches.
- 6. The cost associated with installing these switches and links.

Minimize:

 Total Topology Cost z, where z is the cost of switches and links in the topology plus the cost of installing these switches and links.

Over The Variables:

- 1. Switch number and their corresponding sizes.
- 2. The location of these switches.
- 3. The number of links in the network and the interconnection of the switches with these links.
- 4. The paths that route the traffic.

1.5 Thesis Organization

This thesis is organized as follows. In the following chapter, Chapter 2, a review on some past literature in the area of topology design is given. Several distinctive methods of topology design are outlined there. Next, Chapter 3 presents an outline of our proposed method for LATM topology design. Phase I of our proposed method is included in that chapter. Some results of verifying our Phase I method is presented and discussed. In Chapter 4, the second half of our proposed method, Phase II is presented. The effectiveness of our Phase II method is also examined in this chapter by the discussion of experimental results that we have performed. The conclusions arrived at due to this work are presented in Chapter 5. The pros and cons of our proposed method is discussed along with possible improvements and future works. Finally, appendices are included at the end of this thesis for interested readers.

1.6 Summary

In this chapter, an introduction to network planning and design was given. Various aspects and issues of network planning and design were discussed. We have also given an overview of the Asynchronous Transfer Mode, which is the type of transfer mode used in the networks targeted in this thesis. The scope and objective of this thesis was also presented alongside a formulation of the problem to be solved in this thesis.

Chapter 2

Related Work

While there is little literature for topology design in LATM, much literature exists in the area of topology design in general. In this chapter, we present an overview of several papers that include a wide variety of approaches and techniques for topology design. A brief discussion of each paper is done in relation to their suitability for usage in designing switched LATM networks.

2.1 Topology Design using the Steepest Descent Method

In [11], Gerla, Monteiro and Pazos proposed a method for designing a packetswitched network embedded in a backbone network, and later for reconfiguration of ATM networks [32]. This method involves a concept called "express pipes". An "express pipe" is a logical concatenation of several links that carries traffic from a source node and a destination node. These pipes are derived from the underlying backbone network.

The problem is formulated as an optimization problem, where the variables are the routing of the "express pipes" and the capacities of these pipes, subject to the capacity constraints imposed by the underlying facility network. Gerla, Monteiro and Pazos chose to optimize the average delay of packets in the network. In doing so, they used an M/M/1 model for modeling both the trunk queuing delays and switch delays. By modeling the switches as two nodes of infinite capacity joined by a link of capacity equal to the switch capacity multiplied by the average packet length, the average delay of the topology is approximated by

$$z = \frac{1}{\lambda} \sum_{u=1}^{\bar{M}} \frac{\bar{f}}{\bar{C}_u - \bar{f}_u}$$
(2.1)

where \overline{M} is the number "express pipes", \overline{f}_u is the flow on pipe u, and \overline{C}_u is the capacity of pipe u. This objective function is minimized with the the constraints imposed by the underlying backbone. Using Frank-Wolfe's steepest descent method [29], the best feasible direction of descent can be found taking the gradient of the objective function, that is

$$\min \nabla_{\boldsymbol{z}} \left(\bar{C}^1, \bar{f}^1 \right) \cdot \left(\bar{C}, \bar{f} \right) \tag{2.2}$$

where $(\bar{C}^{K-1}, \bar{f}^{K-1})$ is an initial solution of pipe capacities \bar{C} and pipe flow \bar{f} . The gradient [30] of a function is the vector of partial derivatives of that function. By rewriting the equation with the constraints, the problem boils down to a minimum path problem. Gerla, Monteiro and Pazos subsequently applies a modified version of Dijkstra's [2, 14] minimum path algorithm to solve the problem.

2.1.1 Analysis

Using the Steepest Descent optimization technique, Gerla, Monteiro and Pazos in [11] succeed in deriving a logical ATM network (Express Pipe) topology from an underlying ATM backbone network while minimizing the total delay for the network. The delay is calculated from the delays in the links and switches. Although this work deals with ATM topology design, it does not build a network from scratch since they assume that there is an underlying backbone network on which the new topology is derived.

A major drawback of their work is that the links and switches in the network are modeled using M/M/1 queues in order to make the problem more tractable. This is inaccurate for ATM traffic, as ATM traffic is highly complex. The delay in most ATM switches are more accurately modeled by M/D/1, G/D/1 or other queueing models as found in [33, 22, 8, 7, 20, 38, 13, 4, 36]. Another downside to this work is that there is no exact concept of virtual circuits being incorporated into the design process. The traffic from one host can travel to another host via more than one route. As mentioned in the previous chapter, ATM is a connection oriented protocol, cells belong to a single session are not allowed to travel by multiple routes to the destination. This is necessary so that the cell arrival sequence can be maintained.

In general, this work produces topologies that are optimal. However, due to some of the assumptions that are made, their method is not suitable for our ATM networks.

2.2 The Mentor Algorithm for Topology Design

Kershenbaum, Kermani and Grover in [17] provide a different, more heuristic approach to topology design. Although the solution is not specifically for ATM networks, it is for mesh networks and ATM networks that utilize switches do turn out to be meshes in general. Given the locations of the nodes and the traffic requirements between each source and destination, the algorithm comes up with a minimal cost topology. Unlike the work of Gerla, Monteiro and Pazos in their work in the previous section, who chose to optimize on a performance measure. Kershenbaum, Kermani and Grover try to minimize the cost of the topology instead, assuming that the performance of the network is 'satisfied' by allowing the capacity of the links to be utilized up to a certain level as defined by the topology designer. The reason is that bottlenecks occur and performance deteriorates when links are over-utilized. By keeping the traffic flowing in the links under an acceptable level, reasonably good network performance can be expected.

The first step of Kershenbaum, Kermani and Grover's method is to come up with an initial topology. This topology is an appropriate spanning tree that results in the total link lengths of the network as well as the individual path lengths of destinations being reasonably low. As pointed out by the authors, the networks with the shortest total lengths (minimum spanning trees) will usually result in networks that have longer individual path lengths [16, 17]. while networks with the shortest individual path lengths will usually have a higher shortest total lengths. A special heuristic algorithm has been devised to balance out these two effects, so that both individual path lengths and shortest total lengths of a network can be kept low at the same time. The heuristic algorithm is a modification of Prim's Minimum Spanning Tree (MST) [2, 14] algorithm and Dijkstra's minimum path algorithm. Given a node as the center of the topology, the algorithm selects candidate nodes to be included into the tree starting at the center node like the Prim's MST algorithm. However, instead of including nodes that have the shortest link *l* from the edge of the tree, the algorithm includes the node that has the shortest link plus α times the distance from the center node. The center node is determined as the node having the least center of mass

$$M_i = \sum_j c_{ij} w_j \tag{2.3}$$

where c_{ij} is the cost of connecting nodes i and j, and

$$w_j = \sum_k r_{jk} + r_{kj} \tag{2.4}$$

is defined as the total traffic requirements in and out of node j.

The next step involves changing the topology by putting in direct links. A direct link between a source and destination is warranted if the total traffic that flows between this source and destination (link utilization) reaches a minimal level, defined as a portion of a link capacity. If the flows exceed a certain level, more links will be added or alternately a portion of the traffic will be routed by another path. However, since the utilization levels of links depends on the routes of many source-destination pairs, the traffic requirements are sequenced by using a dependency matrix [17].

2.2.1 Analysis

In this work, a heuristic method is applied to successfully create a topology that attempts to minimize both the shortest total lengths and individual path lengths at the same time. The heuristic that they apply is a modification of Prim's MST algorithm and Dijkstra's minimum path algorithm.

While this work manages to generate a topology that is low cost, the cost function in [17] is a little too simple, as it considers the cost of the links as the

only cost. Other cost such as switching components, or installation costs are not considered. Another downside to this work is that the authors assume that the switches in the network can be connected with any number of links, that is the switches have unlimited capacity. In reality, we know that this is impossible. Furthermore, like the previous paper, the traffic from one host to a destination can travel through multiple paths to a destination.

In conclusion, this work utilizes a simple heuristic method to design a network topology. However, since the method is not specifically geared for ATM networks, we can not apply this work to solve our problem.

2.3 The Simulated Annealing Optimization Technique

In [9], Ersoy and Panwar propose a method for designing interconnected LAN-MAN networks. The objective is to find a minimum delay spanning tree topology for interconnected networks. Instead of using M/M/1 to model the delay of the network, Ersoy and Panwar use $M^x/M/1$ queues [12] with batch Poisson Arrivals. The objective function to minimize is

$$T = \frac{1}{\gamma} (\sum_{i=1}^{N} \lambda_i X E[T_i] + \sum_{i=1}^{N} \sum_{j=1}^{N} x_{ij} \lambda_{ij} X E[T_{ij}])$$
(2.5)

where $E[T_i]$ is the expected delay in LAN *i*, $E[T_{ij}]$ is the expected delay in the bridge connecting LAN *i* and LAN *j*, and $x_{ij} = 1$ if LAN *i* and *j* is connected and equals to zero otherwise. X is mean number of packets in a batch arrival. The expected value of delay for each $M^x/M/1$ queue is

$$E[T] = \frac{X}{\mu(1 - \frac{\lambda X}{\mu})}$$
(2.6)

where λ and μ are the arrival rate and service rate respectively.

Ersoy and Panwar proposed the Simulated Annealing Optimization Technique to be used for searching for the solution to this problem. Annealing is a thermal process for obtaining low energy states of a melted solid by slowly cooling the solid. Kirkpatrik, Gelatt and Vecchi [18] first applied an algorithm simulating the annealing process to a combinatorial algorithm. The advantage of the simulated annealing technique is that it avoids getting caught in a local minima by accepting a cost-increasing transition in the search process. That is, in searching for the global minima, a transition from solution i to j is accepted with probability

$$p = \exp(\frac{-[\operatorname{Cost}(j) - \operatorname{Cost}(i)]}{c})$$
(2.7)

where c is a control parameter that regulates the probability of acceptance. By reducing c towards zero gradually, the probability of accepting a cost-increasing solution decreases. The stopping criterion for simulated annealing is that when the cost does not change after decrementing the control parameter a fixed number of times. This number has to be large enough so that a good part of the search space has been visited.

2.3.1 Analysis

Ersoy and Panwar in their work [9] provide a very elegant method to avoid getting stuck in local minimas using the Simulated Annealing method. This method is generally applicable to any problem that involves searching through a state space to locate a solution. However, like [11] a major downside to their method is the usage of a batch arrival $M^{x}/M/1$ queue instead of more complex ATM queueing models [33, 22, 8, 7, 20, 38, 13, 4, 36] to model the traffic behavior in the network.

In, short, since this work is mainly for interconnection of MAN LANs with bridges, it cannot be applied directly to solve our problem. However, the Simulated Annealing method is a general search algorithm. Therefore the chances of adapting it into a design problem, including that for ATM networks, is promising.

2.4 The Add Heuristic and Cluster Heuristic for Topology Design

The Add algorithm [16] is a classic algorithm for topology design, initially for attacking the celebrated warehouse location problem. Hsieh, Gerla, McGregor and Eckl adopted and modified this algorithm in [15] for designing the backbone of large packet networks. Specifically, it was used for optimal location of backbone switches in these networks. Given the location of user sites and relevant traffic requirements for each user site, the problem involves determining the number and location of switches to which user sites connect so that the cost of the backbone topology is minimized. The cost function given by [15] is:

$$D = \sum_{i} \sum_{j} \frac{cr_{ij}R(1+b)}{\rho} + N \times F$$
(2.8)

where c is the cost per mile per unit bandwidth per month, r_{ij} is the traffic requirement from i to j, b is the line overhead (protocols, etc.), R is an estimate of the average link length, ρ is average utilization, N the number of switches, and F is the average fixed cost per switch.

The modified add algorithm works by weighing the savings achievable by homing a user site to a switch candidate location, instead of homing the user site to an imaginary site which is the center of mass[16] (COM) of the un-homed sites. At each iteration, a new center of mass is calculated, and with it the sites that have positive savings are homed to a new switch which is located at the switch candidate location that achieves the most savings. The homing process during an iteration of the add algorithm will stop when the switch to which the homing is done, is full. The center of mass of two sites[16] is calculated by:

$$x_{k} = \frac{w_{i}x_{i} + w_{j}x_{j}}{w_{i} + w_{j}}$$
$$y_{k} = \frac{w_{i}y_{i} + w_{j}y_{j}}{w_{i} + w_{j}}$$
(2.9)

where (x_k, y_k) denotes the COM location of sites located at (x_i, y_i) and (x_j, y_j) . w_r denotes the traffic weight of site r, which is simply the total traffic that flows in and out of site r.

A second algorithm that is proposed in [15] is the cluster algorithm. The cluster algorithm attempts to minimize the cost of the whole backbone topology by minimizing the local access cost of each site. By partitioning the user sites into N clusters, the sites can be homed to a switch located at the COM of the partition containing the sites. At the beginning of the algorithm, the two sites that are closest together are clustered and located at the COM of the two sites, then at each iteration, the same process is applied to the clusters that are closest

together. To avoid having clusters that are too big or too small, a threshold Z is defined. The merging of clusters is only allowed if the merging does not exceed a threshold Z. At the end of the algorithm, sites that are belong to one cluster will be served by a switch dedicated to that cluster.

2.4.1 Analysis

In this work [15], Hsieh, Gerla, McGregor and Eckl used two very simple heuristics to produce the topology of a network. The Add Heuristic incrementally chooses the best location to home a switch, whereas the Cluster Heuristic attempts to produce a low cost backbone network by minimizing the local access cost for each site. These algorithms are good for their simplicity. However, this is also the downside. This is especially true for the cluster algorithm, where sites are homed to switches without really considering where the traffic needs to be sent.

Unlike the work from the previous sections [11, 9, 17], The authors utilize a more realistic cost function that takes into consideration link and switch costs. However, like [17, 11, 9] a drawback of [15] is that the traffic is too simple compared to current ATM traffic. Traffic is merely specified as some amounts of bandwidth. Another drawback to this work is that the links that they assumed are bidirectional, which is not true for ATM networks.

In general, this work has some good points, specifically the relatively realistic cost function, and simple heuristical algorithms. However, problems do exist for applying this method to an ATM environment.

2.5 Summary

In this chapter, we have presented some research work in the area of topology design each with their own distinctive solution techniques. The solutions presented in these related works are not immediately applicable to the problem that we are pursuing because

• The topology design methods are based on either very simple traffic requirements or none at all. Most papers assume that some r traffic units are needed for some source-destination pairs without really providing any reason. This is not adequate as traffic that flows in an ATM network consists of different traffic types each with its distinct requirement.

- Traffic behaviors in the networks are approximated using M/M/1 queueing models which is inaccurate in the ATM environment. This is especially undesirable when the objective cost function which is based on the M/M/1 model is optimized to produce the final topology.
- Non-ATM specific hardware is assumed. Most papers assume that switches have infinite capacity, that is, infinite number of links can be connected to the switch. Some methods assume that the links are bidirectional, which is untrue in ATM networks.
- Possible multiple paths exists for ATM traffic. In ATM, to maintain correct sequence of delivery, traffic belonging to one session is required to travel in a single path. Most papers in topology design have no mechanism to incorporate this requirement, hence allowing more than one path to carry traffic of one session to the destination.

Nevertheless, these works are valuable to us, as we have learnt many fundamental ideas from them. Specifically we adopted the idea of a pipe logical network as the starting point for topology design. We also design our heuristic programs to be greedy, similar to the heuristics in the previous work.

Chapter 3

The Pipe Based LATM Topology Design Methodology

3.1 Introduction

Using the problem formulation in Chapter 1 we present here a novel approach for designing a switched local area ATM network topology. This approach is unique compared to past related work in that it produces a low-cost LATM network while guaranteeing certain quality of service requirements much needed by complex multimedia ATM traffic.

There are two phases to our method. Phase I of our method deals with determining the effective multiplexed traffic for each source host-destination host pair. With the knowledge of the effective multiplexed traffic, the quality of service requirements can be guaranteed. The main QOS measurement that we use is cell loss probability. Each source-destination host pair sends traffic down a logical channel, which we termed an ATM pipe. A network of these ATM pipes will be fed into Phase II as input. Phase II generates the actual switched ATM network. It consists of three heuristic-based optimization techniques which attempt to minimize the cost of the final topology.

In Section 3.3, we will describe Phase I of our Pipe-based LATM Design Methodology. This is an analytical method and we call this the Multiclass Heterogeneous On/Off Sources Fluid-flow Model. We will present the details of this method in Section 3.4. We will also present the results of the simulation study that we have carried out to verify the correctness of this analytical method.

3.2 The ATM Pipe, What is It?

An ATM pipe is a logical, unidirectional pipe that delivers ATM traffic from one host machine to another (Figure 1). It is analogous to a water pipe in everyday life. At one end of this pipe, water (ATM traffic) enters the pipe through the opening and exits at the other end. Since there is only one opening, the amount of fluid in the pipe is directly proportional to the rate of inflow into the pipe. Let's say that congestion in the pipe will cause leakage and hence fluid loss. With knowledge of the pipe size and rate of inflow, the amount of fluid loss will be determinable. Therefore, by using pipes with the right sizes, we can determine the exact fluid loss that may occur.

Using this concept, we can assign an¹ ATM pipe to each source-destination pair to carry traffic. Since the amount of traffic that travels in the pipes is unique to each source-destination pair, the pipe sizes are also different for each sourcedestination pair. Similarly each source-destination pair may have a different loss rate. An example of a network consisting of ATM pipes is shown in Figure 2. This is a network that consists of 4 hosts, and each host communicates with each other, hence, the fully connected graph.

Before the ATM pipe network can be used, a corresponding physical LATM network has to be designed (Figure 3). Since more than one physical network can be created from a single ATM pipe logical network (using different combinations of switches and wiring of the links, etc.), techniques have to be applied is that the physical network that is created is both functionally equivalent to the logical network and cost effective. In devising this physical LATM network, special attention is made to utilize ATM-specific components (for example, ATM switches and point to point links). This is essential as our aim is to produce a truly ATM network.

In the physical LATM network, the logical ATM pipes are essentially imple-

¹Theoretically, more than one pipe can be assigned to each source-destination host pair

Figure 1: The ATM Pipe Concept

Figure 2: A 4 Host ATM Pipe Network

Figure 3: A Corresponding LATM Network

mented as permanent virtual paths. With these virtual paths, a set of links or a concatenation of links and switch ports are dedicated to serving each virtual path, so that the effective bandwidth is equivalent to the pipe size. Hence, given the ATM pipe network, the physical topology construction algorithm then decides on the number and dimensions of the switches and the interconnection of these switches with other switches/hosts. The routing of the virtual paths are also computed alongside.

The Power of the ATM Pipe Concept

The power of the ATM pipe concept is its ability to separate the performance aspects and the topology optimization aspects for building a network. While it is not uncommon for topology designers to optimize on performance [16, 9] rather than the cost of hardware, we have chosen the latter as it is hard to optimize on both performance and cost at the same time. By having a pipe between a source and destination, and producing a network based on these pipes, we are essentially producing a 'no wait' network since there is always enough bandwidth (because of the pipes) to handle the traffic, as long as all the hosts do not transmit beyond their pipe sizes. Since all traffic goes in its own pipe, there will essentially be no congestion at all. Furthermore, some other QOS requirements can be implicitly solved. For example, the delay jitter (that is caused by cells' contention for the same output port) will be virtually eliminated. Within the network, delay is limited to fixed delays of switching time and propagation delay in the links.

In this work, we will adopt the traffic loss probability as our main QOS requirement (as our network is a local area network, we assume that the end-to-end delay is satisfied, since it is extremely small). This loss probability will be specified by the network designer when he/she calculates the required pipe sizes.

3.3 PHASE I: Generating the ATM Pipe Network

The ATM pipe Network is simple. It can be represented by a graph $G = \langle V, E \rangle$, where $V = \{v_i | i = 1, 2, ...N\}$ is the set of vertices, and $E = \{e_j | j = 1, 2, ...M\}$ is the set of directed edges for graph G. Each vertex v_i corresponds to a host machine, and each edge e_j corresponds to an ATM pipe that flows from a source $s(e_j)$ to a destination $d(e_j)$. Each ATM pipe e_j has a capacity denoted by $c(e_j)$. In practice, graph G will most likely turn out to be a fully connected graph, since all hosts will most likely wish to communicate with all other hosts. Figure 2 is an example of a fully connected ATM pipe network G.

To complicate things a little, the traffic from a host machine to a destination machine is a multiplexed stream of traffic produced by possibly more than one process in that host. Also each stream of traffic generated by these processes are non-identical. In order to produce the right pipe size for the edges, we propose an analytical method to determine the pipe sizes. We call this method the Multiclass Heterogeneous On/Off Fluid Flow Model.

3.4 The MCFF Fluid-flow Model

The Multiclass Heterogeneous On/Off Sources Fluid Flow Model (hereinafter referred to in short form as MCFF) is a burst scale model of traffic generated by multiple sources. It approximates the arrival of data cells as continuous streams of fluid which arrive at fixed rates. The fluid is then 'drained', at a rate determined by the size of the pipe through which these streams of fluid flow². Since the arrival and service rate of this fluid is fixed, the Fluid-Flow Model is also known as the Uniform Arrival and Service (UAS) model.

The UAS Fluid-Flow model was first introduced in a paper by Kosten [20] in 1974, and later improved upon by Anick, Mitra and Sondhi in [1]. Since then, it has gradually gained popularity as a method for modelling traffic in communication networks, including ATM networks. Examples of such efforts can be found in [4, 39, 21, 26, 7].

In 1988, Tucker [39] applied the UAS Fluid-Flow model to model the effects of a speech multiplexer, specifically for obtaining the loss probability as well as the cumulative distribution function of the buffer queue-length. In Tucker's paper, a number of identical speech sources generate data that are fed into a multiplexer. We have adopted and modified Tucker's method to model the effects

²Hence, the name Fluid-Flow Model

of multiplexed ATM communication sessions, rather than that of multiplexed short talk-spurts as originally done by Tucker. During a communication session, a source transmits its data at a fixed rate. We call this rate of arrival the intensity of the flow. The major advantage of our method over Tucker's method is that sources can be non-identical, that is, heterogeneous instead of homogeneous. Essentially what that means is that sources can possess different traffic characteristics instead of being uniform. For comparison, a summary of Tucker's method is included in Appendix A.

Figure 4: The Fluid-Flow Model

Figure 4 shows a conceptual diagram of the MCFF fluid-flow model. Sources at the entry end of the ATM pipe alternate between two states, that is the On state, and the Off state. We assume that the On and Off periods are exponentially distributed. During the On period, traffic flows through a policing mechanism, into a buffer, and then is transmitted onto an ATM pipe en route to the destination station. The function of these policing mechanisms is to ensure that sources do not violate the maximum bandwidth that they are supposed to transmit.

3.4.1 The Mathematical Analysis of MCFF

The main objective for the analysis of MCFF is to find out the size of the ATM pipe c that is just large enough to satisfy the usages of the traffic sources. With knowledge of the parameters for the sources and the classes to which they belong, and a particular c, we are then able to calculate the loss probability using MCFF. Ideally, we want to be able to calculate the pipe size given a loss probability, however through experimentations, we can find pairs of c and loss to obtain our desired pipe size.

This loss probability is expressed as a quality of service requirement by the pipe designers. Since MCFF approximates the traffic as fluid, there is no concept of packetization. Hence it cannot model the short-term fluctuations in the buffer into which cells arrive.

As shown by Tucker in [39], state equations that form Markov Chains are first derived while taking into account the fluid change in the buffer. At equilibrium probability, these state equations generate differential equations. These differential equations are then solved, and subsequently used to calculate the loss probability of the fluid.

Parameters

Given N traffic sources, each of which belongs to one of R classes such as voice, video and data, we can model the arrival of the traffic from these sources as individual bursts with the following parameters:

Mean on period = μ_u^{-1} (3.1)

Mean off period =
$$\lambda_u^{-1}$$
 (3.2)

Flow intensity =
$$i_u$$
 (3.3)

where u is the class to which each these sources belong. Note that a burst is actually a communication session and the intensity of the flow denotes the amount

of bandwidth (in Mbps) dedicated for use by that session.

The MCFF Markov Chain

The Markov Chain [19] has been used widely to study exponentially distributed analytic problems. Figure 5 shows a diagram of the transitions in and out of a state in the Markov Chain used in MCFF. The Markov chain models the On/Off sources as a birth-death process, where a state in the Markov chain describing the number of On sources in each class can move to another state with certain rates, prompted by an arrival (birth) and departure (death) of an On period. Let

$$S = \{s_1, s_2, s_3, \dots, s_R\}$$
(3.4)

be a state S where $s_u, 1 \le u \le R$ denotes the number of traffic sources in class u that are in the On period. Relative to S, we define adjacent states to S as

$$S(s_u+) = \{s_1, s_2, \dots, s_u+1, \dots, s_R\}, \quad 1 \le u \le R$$

$$S(s_u-) = \{s_1, s_2, \dots, s_u-1, \dots, s_R\}, \quad 1 \le u \le R$$
(3.5)

Let $r\{S_i, S_j\}$ =transition rate from state S_i to state S_j . Since the inverse of a mean is the rate, the birth and death rates of the Markov Chain can be defined as

$$r\{S(s_u+), S\} = (s_u+1)\mu_u$$

$$r\{S(s_u-), S\} = (v_u - s_u + 1)\lambda_u$$

or alternately,

$$r\{S, S(s_u-)\} = s_u \mu_u$$

$$r\{S, S(s_u+)\} = (w_u - s_u)\lambda_u$$

where w_u denotes the number of sources belonging to class u. The flow rate out of state S would be the summation of all rates moving out of state S.

$$r^*\{S\} = \sum_{u=1}^{R} \{s_u \mu_u + (w_u - s_u)\lambda_u\}$$

Figure 5: The General Heterogeneous On/Off Sources Markov Chain

Note that the birth and death rates prevent S from moving to an invalid state, that is a state where $(s_u-1) \in S(s_u-)$ is less than zero or where $(s_u+1) \in S(s_u+)$ is greater than w_u . This is so because the transition rates $r\{S, S(s_u-)\} = 0$ when $s_u = 0$ and $r\{S, S(s_u+)\} = 0$ when $s_u = w_u$.

Deriving the State Equations

As mentioned in [39], the state equations are set by noting the buffer queue behaves in the following manner

- 1. If the fluid inflow rate > the outflow rate c, the buffer queue increases steadily at a rate of (inflow rate - c). When the queue limit m is reached, the queue will remain at its limit.
- 2. If the fluid inflow rate < the outflow rate c, the buffer queue decreases steadily at a rate of (c inflow rate). When the queue reaches empty, it will stay empty.
- 3. If the fluid inflow = the outflow rate c, the queue level in the buffer does not change.

Define $P_S(t,x), \forall s_u \in S, 0 \leq s_u \leq w_u, 1 \leq u \leq R; t \geq 0; m > x > 0$ be the probability that given that the number of sources in the On state are S, the content of the buffer is not more than x at time t, with a buffer limit of m, we obtain,

$$P_{S}(t + \Delta t, x) = \sum_{u=1}^{R} [P_{S(s_{u}-)}\{t, x - (B(S(s_{u}-)) - c)\Delta t\}r\{S(s_{u}-), S)\}\Delta t + P_{S(s_{u}+)}\{t, x - (B(S(s_{u}+)) - c)\Delta t\}r\{S(s_{u}+), S)\}\Delta t] + P_{S}\{t, x - (B(S) - c)\Delta t\}(1 - r^{*}\{S\}\Delta t) + o(\Delta t) + 0 < x < m$$

$$(3.6)$$

where B(S) is the aggregate rate of input fluid. That is

$$B(S) = \sum_{u=1}^{R} s_u(i_u), s_u \in S$$

From (3.6). moving the $P_S\{t, x - (B(S) - c) \Delta t\}$ term to the left hand side, dividing both sides by Δt ,

$$\frac{P_{S}(t + \Delta t, x)}{\Delta t} - \frac{P_{S}\{t, x - (B(S) - c)\Delta t\}}{\Delta t} = \sum_{u=1}^{R} [P_{S(s_{u}-)}\{t, x - (B(S(s_{u}-)) - c)\Delta t\}r\{S(s_{u}-), S)\} + P_{S(s_{u}+)}\{t, x - (B(S(s_{u}+)) - c)\Delta t\}r\{S(s_{u}+), S)\}] - P_{S}\{t, x - (B(S) - c)\Delta t\}r^{*}\{S\} \\ 0 < x < m$$
(3.7)

approximating the L.H.S. and letting $\Delta t \rightarrow 0$, Equation (3.7) becomes

$$\frac{\delta P_{S}(t,x)}{\delta t} + \frac{(B(S)-c)P_{S}(t,x)}{\delta x} = \sum_{u=1}^{R} [P_{S(s_{u}+)}(t,x)r\{S(s_{u}+),S\} + P_{S(s_{u}-)}(t,x)r\{S(s_{u}-),S\}] - P_{S}(t,x)r^{*}\{S\} \\ 0 < x < m$$
(3.8)

At equilibrium probability $(t \to \infty)$, the first term on the L.H.S is equal to zero. Defining $F_S(x)$ as the equilibrium probability that with the number of On sources in each class $= s_u, s_u \in S$, the buffer content is less than or equal to x,

$$(B(S) - c)dF_S/dx = \sum_{u=1}^{R} [F_{S(s_u+)}(x)r\{S(s_u+), S\} + F_{S(s_u-)}(x)r\{S(s_u-), S\}] - F_S(x)r^*\{S\} \\ 0 < x < m$$
(3.9)

State Equations in Matrix Form

Since the number of On sources in class $u, 1 \le u \le R$ can take a value from 0 to w_u , the total number of possible values for S is $z = \prod_{u=1}^{R} (w_u + 1)$. Therefore, we have a total of z differential equations. We can write the differential equations in matrix form,

$$\mathbf{D}d\mathbf{F}(x)/dx = \mathbf{M}\mathbf{F}(x) \quad 0 < x < m \tag{3.10}$$

where $\mathbf{D} = \text{diag}(\mathbf{TH} - c)$. T is defined as a $z \times R$ matrix of all possible values for S. Each Column $\mathbf{T}_{.j}$ in T corresponds to class j of S. Hence, each row is a possible set S. Later, we shall use $\mathbf{T}_{i.}$ as a value of S interchangeably. We call the matrix T a Truth Matrix. One example for T can be

$$\mathbf{T} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ \vdots & \cdots & \vdots \\ w_1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots \\ w_1 & w_2 & w_3 & \cdots & w_R \end{bmatrix}$$
(3.11)

H is an $R \times 1$ column matrix of intensities, i.e. $(i_1, i_2, \ldots, i_R)^T$, and c is the outflow rate.

M, which is evident from equation (3.9) is a $z \times z$ matrix of inflow transition rates, that is

$$\mathbf{M}_{ij} = \begin{cases} r\{S(s_u-), S\}, & \text{if } \mathbf{T}_{i.} = S, \mathbf{T}_{j.} = S(s_u-) \\ r\{S(s_u+), S\}, & \text{if } \mathbf{T}_{i.} = S, \mathbf{T}_{j.} = S(s_u+) \\ -r^{*}(\mathbf{T}_{i.}), & \text{if } i = j \\ 0 & \text{otherwise} \\ 1 \le u \le R \end{cases}$$
(3.12)

We can then use the eigenvalues and eigenvectors method to solve for \mathbf{F} .

Solving the State Equations

Eigenvalues and Eigenvectors An eigenvalue α is said to be a value that when multiplied with a vector **k** of size *n*, produces a result which is the product of an $n \times n$ matrix **A** multiplied with the vector **k**. That is,

$$\alpha \mathbf{k} = \mathbf{A}\mathbf{k} \tag{3.13}$$

By rearranging (3.13) to

$$(\mathbf{A} - \alpha \mathbf{I})\mathbf{k} = \mathbf{0} \tag{3.14}$$

where I is an identity matrix of size $n \times n$, we can find values for α and hence k, by solving for the roots of the characteristic polynomial of equation (3.14), which is obtained from solving

$$\det(\mathbf{A} - \alpha \mathbf{I}) = 0 \tag{3.15}$$

The roots of the characteristic polynomial are the eigenvalues for (3.14). With each of these eigenvalue, a vector **k** can be computed from equation (3.14). This vector **k** is known as the eigenvector corresponding to the eigenvalue from which **k** is computed.

We rewrite equation (3.10) as

$$d\mathbf{F}(x)/dx = \mathbf{D}^{-1}\mathbf{M}\mathbf{F}(x) \quad 0 < x < m$$
(3.16)

By assuming F to be of the form $e^{\alpha x}\mathbf{k}$, we can obtain the eigenvalues and their corresponding eigenvectors by solving the characteristic equation

$$\det(\mathbf{D}^{-1}\mathbf{M} - \alpha \mathbf{I}) = 0 \tag{3.17}$$

The general solution as shown in [39] will be in the form of

$$\mathbf{F}(x) = a_1 e^{\alpha_1 x} \mathbf{k}_1 + a_2 e^{\alpha_2 x} \mathbf{k}_2 + a_3 e^{\alpha_3 x} \mathbf{k}_3 + \dots + a_z e^{\alpha_z x} \mathbf{k}_z \quad 0 < x < m \quad (3.18)$$

By setting the proper values for the system of $\mathbf{F}(x)$'s, the coefficients $a_j, 1 \leq j \leq z$ can be found by standard numerical algorithms. These values are defined by setting boundary conditions.

The Boundary Conditions

The contents of the buffer varies according to the rate of input of fluid, that is the rate of inflow of data into the buffer. Let us define \hat{F}_S as the probability that the number of active sources in each class is S, and $\tilde{F}_S(x)$ as the probability that the contents of the buffer is greater than x, 0 < x < m, given that the number of active sources in each class is S. We also define $F_S(x)$ as the probability that the contents of the buffer is less than or equals x, 0 < x < m, given that the number of active sources in each class is S. We then get,

$$\hat{F}_S = \tilde{F}_S(x) + F_S(x) \tag{3.19}$$

 \hat{F}_S is simply

$$\hat{F}_{S} = \prod_{j=1}^{R} p_{j}^{s_{j}} q_{j}^{w_{j}-s_{j}} \begin{pmatrix} w_{j} \\ s_{j} \end{pmatrix}, \quad s_{j} \in S$$

$$(3.20)$$

where p_j is the probability that a source belonging to class j is on, and q_j is the probability that it is off, which can be specified as the ratio of the On or Off mean over the summation of the two. In other words

$$p_{j} = \frac{\lambda_{j}}{\lambda_{j} + \mu_{j}}$$

$$q_{j} = \frac{\mu_{j}}{\lambda_{j} + \mu_{j}}$$

$$= 1 - p_{j}$$
(3.21)

and $\begin{pmatrix} w_j \\ s_j \end{pmatrix}$ denotes w_j choose s_j .

By defining boundary conditions, the set of differential equations can be solved. The boundary conditions are set observing the fact that

- 1. If the rate of input is greater than the rate of output, that is $(\mathbf{T}_i, \mathbf{H} c) > 0$ then the contents of the buffer will always be increasing. The buffer in this case will never reach its empty state. Therefore we can set $F_S(0) = 0$.
- 2. If the rate of input is less than the rate of output, that is $(\mathbf{T}_i \cdot \mathbf{H} c) < 0$ then the contents of the buffer will always be decreasing. The buffer in this case will never reach its limit. $\tilde{F}_S(x)$ will be = 0, hence $F_S(m^-) = \hat{F}_S$. Stirctly speaking, since the state equations does not apply when the buffer is at its limit m, we can set the x to $m^- = \lim_{x \to m}$. Nevertheless, we are able to calculate $F_S(m^-)$ by setting x = m in (3.18).

Calculation of the Loss Probability

With the set of linear differential equations solved, the equilibrium rate of fluid loss can be obtained by simply multiplying the probability of the buffer held at its limit, for all possible combinations of S, with the net rate of inflow to the buffer.

Total Loss =
$$\sum_{j=1}^{z} (\mathbf{T}_{j} \mathbf{H} - c) \tilde{F}_{\mathbf{T}_{j}}(x)$$
 (3.22)

The loss probability is expressed as the ratio of total rate of fluid loss over total rate of fluid inflow. Since each source belonging to class j is in the active state $\lambda_j/(\lambda_j + \mu_j)$ of the time, the total rate of inflow is

Total Flow =
$$\sum_{j=1}^{R} (\frac{\lambda_j}{\lambda_j + \mu_j}) w_j i_j$$
 (3.23)

Hence, the loss probability is obtained by

Loss Probability =
$$\frac{\text{Total Loss}}{\text{Total Flow}}$$
 (3.24)

3.4.2 The Computation of MCFF

The analysis of MCFF was computed on a Sun4 computer using the MATLAB math package. As pointed out by Tucker, the $e^{\alpha_j x}$ term can overflow easily for positive eigenvalues. This can avoided by solving for $a_j e^{\alpha_j}$ instead of just a_j in equation 3.18. This is alright because we need both a_j multiplied with e^{α_j} to calculate $F_S(x)$ in equation 3.18.

An advantage to using MATLAB is that computations can be programmed easily. However, the disadvantage is that we we have no knowledge to the algorithms and implementation of the routines. Thus, results might may be less accurate for extremely large or small numbers.

3.5 Simulation Study

To verify the accuracy of the MCFF mathematical analysis, we have performed a simulation study. In the simulations, the loss probability of the ATM pipes were recorded and compared with those obtained by the MCFF analysis.

We have chosen to model the arrival of ATM traffic in our simulations as continuous streams of fluid with no concept of cell packetization. The reason for doing this is two fold: The first reason is that since we are modelling entire communication sessions as a burst, where on average up to 1.8 Gigabytes of data can be transmitted. In this case, the effects caused by packetization at the physical layer is most likely negligible. The second reason is that we do not wish to assume any particular transmission scheme for the physical layer, since the packetization in these schemes vary extensively. For example, the SONET transmission scheme packs ATM cells into its 810-byte frames whereas TAXI transmits ATM cells raw without additional packetization. In future research, if the effects on the cell-scale as well as burst-scale need to be studied, additional analytic methods can be adapted. For example, Kroner, Eberspacher and Theimer [21] applied the fluid-flow approximation in conjunction with an M/D/1-S sub-model while Liao and Mason [26] used the fluid-flow approximation with a G/D/1 queuing sub-model for modelling the effects at both the burst and cell levels.

In each simulation run, over 10 million events are generated and the resultant loss probability measured. An event is essentially an arrival of an On or Off period for any of the N sources. We have divided each run into a hundred batches, and the loss probability in each batch is recorded. Since the simulations start with all sources being off and the buffer empty, a warm-up period of 3000 events is passed before any real measurements begin. This is done so that the system reaches a state of equilibrium and the transient effects eliminated. The mean loss probability \bar{x} and its corresponding 95% confidence interval are subsequently calculated with the following formulas:

$$\bar{x} = \frac{\sum x_i}{n}$$
95% Confidence Interval = $\bar{x} \pm z_{1-\alpha/2} \cdot \frac{S_{\bar{x}}}{\sqrt{n}}$

$$S_{\bar{x}}^2 = \frac{\sum (x_i - \bar{x})^2}{n-1}$$
(3.25)

where x_i the loss probability for batch *i*, $S_{\bar{x}}$ is the standard deviation associated with the mean \bar{x} , *n* is the number of batches which is 100, and for a 95% confidence interval $z_{1-\alpha/2}$ is equals to 1.96.

3.5.1 Simulation Parameters

The parameters involved in the simulations are:

- *Pipe Sizes.* This is the rate that the input traffic are transmitted onto the links, expressed in Megabits per second (Mbps).
- Buffer Size. This is the size of the buffer that holds the traffic before being sent out to the network, expressed in seconds³.
- Number of Classes and their Related Parameters. In our case, the number of classes is 4, and the related parameters are the number of sources in a class, the mean On and Off periods in each class (in seconds), and the intensity for associated with a class(in Mbps).

The values for the pipe sizes range from 0.05 Mbps to 34 Mbps depending on the rate of inflow of the traffic. The values for the buffer size range from 0.5 to 3.0. However, since the buffer value directly determines the maximum queuing delay ⁴ possibly experienced by the traffic, we have chosen to fixed buffer size to 0.5 seconds for most simulations.

3.5.2 Class Parameters

To make our simulations as realistic as possible, we have chosen 4 of the most common types of traffic for ATM networks. They are:

- File Transfers (FT)
- Constant Bit Rate Voice (CV)
- Video Telephony (VT)
- Video Retrieval (VR)

³The equivalent buffer size in bits can be converted easily by multiplying the buffer size in seconds with the line transmission rate (i.e, the pipe size)

⁴Some traffic especially real-time traffic such as video and voice are sensitive to delays experienced in the transmission. These traffic will be rendered useless if they are kept too long in a buffer. Therefore, this value should not be too large.

The corresponding intensities and On/Off means for the above classes are presented in the following table. These parameters are taken from [35]. Note that the parameters vary greatly from one class to another. For example, the File Transfer class has a relatively short On mean of 1 second compared to the Video Retrieval class with an On mean of 3 minutes. In addition, the Video Transfer class has the highest intensity at 10Mbps, compared to the intensity for the Constant Bit Rate Voice class at 64kbps which is 156 times smaller.

Class Type	On mean (s)	Off mean (s)	Intensity (Mbps)
File Transfer (FT)	1	333.333333	2
Constant Bit Rate Voice (CV)	100	1250	0.064
Video Telephony (VT)	100	5000	10
Video Retrieval (VR)	180	1801.8018	10

Table 3.1: The Four Traffic Classes

3.6 Simulation Results

Simulations for multiclass traffic are run. A total of 8 mixes from 2 sets with different number of traffic sources are defined. Mixes in the first set contain a total of 6 traffic sources from the 4 classes, whereas the second set contains a total of 10 traffic sources. The number of sources in each of the 4 classes for set one is shown in Table 3.2, whereas the number of sources in each of the 4 classes for set two is shown in Table 3.3

Class Type	Mix 1	Mix 2	Mix 3	Mix 4
File Transfer (FT)	1	1	3	1
Constant Bit Rate Voice (CV)	1	1	1	3
Video Telephony (VT)	1	3	1	1
Video Retrieval (VR)	3	1	1	1

Table 3.2: Set One Multiclass Traffic Mixes (6 sources)

As we can see in Tables 3.2 and 3.3, the number of sources in each class are chosen so that one of the classes dominate the traffic. This is done so as to examine the effects these classes have on the loss probability.

Class Type	Mix 1	Mix 2	Mix 3	Mix 4
File Transfer (FT)	1	2	6	2
Constant Bit Rate Voice (CV)	1	1	1	6
Video Telephony (VT)	2	6	2	1
Video Retrieval (VR)	6	1	1	1

Table 3.3: Set Two Multiclass Traffic Mixes (10 sources)

The results of the simulation runs along the results obtained from the MCFF analysis for set 1 are shown in Figure 6 and set 2 in Figure 7. In these two figures, the traffic loss probability is plotted against the pipe sizes ranging from 6 Mbps to 20 Mbps. The buffer size is set at 5.0 seconds. As we can see, the graphs shows that the results from MCFF is extremely close to that obtained by simulation. All of the points generated with MCFF lie within their corresponding 95% confidence interval obtained from the simulation runs. This means that MCFF is very accurate.

It is interesting to note that in Figure 6 mixes 3 and 4 exhibit almost identical loss probabilities for the same pipe size. While Mix 3 and Mix 4 have the same composition for the VT and VR classes, Mix 3 has 3 sources in the FT class, and 1 in the CV class, whereas Mix 4 has only 1 in the FT class and 3 in the CV class (Table 3.2). With three sources in the FT class generating an intensity of 2 Mbps each, Mix 3 should exhibit more loss for the same pipe sizes as compared to Mix 4 which has three sources in the CV class generating at a mere 64kbps each. The reason lies in the lengths of the On mean and the Off means for the two classes. Although file transfers use up 2 Mbps each, their average session time is much shorter than that for the CBR Voice. In short, if we define the effective intensity of a class as the original intensity multiply by the fraction of the time a source is active, then the two mixes will show similar effective intensity. We show a calculation of this:

Effective Intensity = Original Intensity \times Fraction of On Time (3.26)

where the fraction of On time is simply the probability of a source being On,

Figure 6: Loss Probability vs Pipe Size for Multiclass Traffic (6 sources)

Figure 7: Loss Probability vs Pipe Size for Multiclass Traffic (10 sources)
which is

Fraction of On Time =
$$\frac{Mean \ On \ Period}{Mean \ On \ Period + Mean \ Off \ Period}$$
 (3.27)

The resultant fraction of on time for the FT class is 2.99×10^{-3} and that for the CV class is 0.074. Hence, the effective intensity for FT and CV are 5.98×10^{-3} and 4.74×10^{-3} respectively, which are very close. Table 3.4 shows the effective intensities for all classes. From Tables 3.2, 3.3, 3.4 and Figures 6 and 7, we can see that classes that have higher effective intensities have higher loss probabilities.

Class Type	Effective Intensities (Mbps)
File Transfer (FT)	5.982053×10^{-3}
Constant Bit Rate Voice (CV)	4.740740×10^{-3}
Video Telephony (VT)	0.1960784
Video Retrieval (VR)	0.9082644

 Table 3.4: The Effective Intensities for the Four Classes

3.6.1 Single Class Traffic

To further examine the accuracy of MCFF, we have conducted simulations for the special case of one class, that is the case of homogeneous traffic. For each of the classes FT, CV, VT and VR, two sets of simulation runs are run with different pipe sizes. The first set contains 5 sources and the second contains 10 sources in a class. Again, the traffic loss probabilities in each run are obtained and subsequently plotted with the results from the MCFF computations.

In Figures 8 to 11, the results for homogeneous FT, CV, VT and VR traffic are plotted. Again, we find that the all loss probabilities computed with MCFF lie within their corresponding 95% confidence intervals obtained from the simulations. The results suggests that the MCFF mathematical analysis is indeed very accurate.

3.6.2 Effects of Pipe Multiplexing

Figure 8: Loss Probability vs Pipe Size for Single Class Traffic (File Transfer)

Figure 9: Loss Probability vs Pipe Size for Single Class Traffic (CBR Voice)

Figure 10: Loss Probability vs Pipe Size for Single Class Traffic (Video Transfer)

Figure 11: Loss Probability vs Pipe Size for Single Class Traffic (Video Retrieval)

Figure 12: Loss Probability vs Savings (5 sources)

Figure 13: Loss Probability vs Savings (10 sources)

With the traffic from the various sources multiplexed onto the ATM pipe, the effective bandwidth will be less than that without multiplexing. This represents savings that is achieved by multiplexing traffic. We define the savings as the ratio between the multiplexed bandwidth i.e. the pipe size, and the unmultiplexed bandwidth, i.e. the aggregate intensities for all sources.

Savings from Multiplexing =
$$\frac{c}{\sum_{u=1}^{R} s_u i_u}$$
 (3.28)

where c denotes the pipe size, s_u denotes the number of sources in class u, and i_u denotes the intensity for class u. We have plotted the savings against the loss probability for the 5 source runs and the 10 source run for homogeneous traffic. They are shown in Figures 12 and 13.

As is evident from the graphs, the more savings that one desires, the more traffic losses will occur. In addition, the exponential shape of the savings curve suggests that the initial savings achieve the most reductions in traffic loss probabilities. Another interesting observation is that the more sources that share the same pipe, the more savings that one can achieve. This can be seen from the Figures 12 and 13. In Figure 12, where the traffic from 5 sources are multiplexed into a single pipe, for the loss probability of 5 % (VR traffic), the savings achieved is approximately 65%. However, at the same loss probability for the 10 source traffic multiplexing case (Figure 13), the achieved savings an increase of 10% to more at 75%. This can be explained by the individual buffer / shared buffer analogy. Multiplexing traffic sources is analogous to pooling buffers together for sharing. The more buffers that are pooled together the more efficient that the buffers can be utilized. Therefore, what this means is that unless for other reasons, one should always try to multiplex as many sources together in a single pipe, instead of multiplexing them in more than one pipe, as doing this will achieve more savings.

3.7 Limitations of the Verification

As is evident from the graphs that we have verified the loss probabilities of the MCFF model range down to about 10^{-3} , while ATM loss probabilities can be as

low as 10^{-10} . The reason for this discrepancy is twofold: The first reason is that to verify the loss at the range of 10^{-10} will probably require special rare event simulation techniques so that meaningful results can be obtained. The second and probably the more dominant reason is that the we do not have a knowledge of how the computation package that we used, MATLAB, is implemented. For a set of differential equations, MATLAB generates only one eigenvalue with its corresponding eigenvector, while a set of differential equations can have more than one set of eigenvalue and eigenvector. We find that for small loss probabilities, we have to scale the eigenvalues and eigenvectors to obtain the loss probabilities that match the simulation results, hence, defying the whole purpose of verification.

3.8 Summary

In the chapter, we have presented an overview of the Pipe Based LATM Topology Design Methodology. A detailed description of Phase I of this methodology is also described. Phase I essentially deals with the calculation of the sizes of ATM pipes, which are the fundamental building block of our topology design methodology. We presented a analytical method, the Multiclass Heterogeneous Fluid-Flow model (MCFF), for calculating the pipe sizes.

Details of simulation runs for single class and multiclass traffic for verifying the correctness of MCFF were presented. And the results suggest that the MCFF analysis is very accurate, as all points calculated with MCFF lie within the 95% confidence interval of their corresponding simulation results.

Chapter 4

Phase II: Physical Topology Construction

4.1 Introduction

Given that the pipe sizes of each source-destination pair have been computed using the method presented in the previous chapter, and hence the ATM pipe network has been derived, we are set to construct a physical LATM topology based on these pipes. We present a method in this chapter for constructing such a topology.

4.2 Overview of Phase II

Phase II of the topology construction methodology applies a heuristical algorithmic approach to constructing a feasible topology. Heuristics, loosely defined as rule-of-thumbs have long been applied to topology design problems. [16] provides a overview to some heuristics algorithm used in topology design.

The physical topology construction algorithm starts off by generating a feasible topology based on the given pipe requirements. Then, applying heuristic algorithms, we try to improve the design of the initial topology by decreasing the cost of the topology. Note that the initial topology is already a feasible topology since it satisfies the given ATM pipe network. An advantage to this approach is that the topology is kept feasible throughout the whole process of Phase II. Therefore, no time is wasted on examining topologies that are non-feasible¹. This dramatically cuts down on execution time.

Phase II can be divided into three parts. They are:

- Part I: Initial Topology Construction. In this part, an initial feasible topology is created given the pipe requirements. At this point, only the number, type and interconnections of these switches have been determined. As to the location of these switches, they will be handled by Part III.
- Part II: Topology Improvement. In this part, heuristical algorithms are applied to reduce the size of the initial topology, and hence the cost of the topology. Each iteration of the algorithm results in a topology that is feasible. We consider three different algorithms for this part. They are:
 - 1. Random.
 - 2. Exhaustive.
 - 3. Neighborhood.

Each algorithm will be discussed in detail in Section 4.4.

- Part III: Topology Location. The resultant topology from Part II is a feasible topology at the logical level, that is each component of the topology has not been assigned a location in the real world. Since the location of these components directly affect the cost and the performance of the topology, their locations must be assigned in a way that is in some sense optimal. There are two algorithms considered for Topology Location. They are:
 - 1. Random.
 - 2. Anchoring.

These algorithms will be presented in detail in Section 4.5.

¹Topologies that do not satisfy the traffic constraints as defined by the given ATM pipe network

4.2.1 Switched ATM Network Requirement

The method that we present in this chapter is specifically for LATM networks, therefore certain assumptions exist so that the topology that is generated with this method is indeed an ATM network. In particular, the main network hardware consists of ATM switches. Links connect these switches with hosts or other switches. Each port on these switches is either an input port or an output port. The traffic that travels on these links goes only in one direction. We also assume that the multiplexed lines originate from or terminate at a switch or host, since if the multiplexed lines originate from or terminate at more than one switch or host, the cell sequence will not be maintained which is a violation of the requirement of ATM. All links in our topology have the same transmission speed, so that no additional buffers need be installed in the switches to prevent cell loss.

4.2.2 The Cost Function

Like [15], we choose the cost of hardware and links as the main costs for our topology. Note that theoretically the cost function can be anything subject to the definition of the network designer.

In this thesis, we have chosen to include the four most common cost for a network topology. That is, the switch cost and the cost for installing the switch, the link cost and the cost for installing the links.

Switch cost and link cost make up the hardware cost for the network. The link costs can include the cost of fiber-optic cables or unshielded twisted pair copper wires depending on the speed of transmission and the technology in use. Costs for installing links can include fiber splicing cost, as well as purchasing and installing conduits or any facilities to hold the links.

For the first two parts of the topology construction method, we defined the following formula for calculating the cost of the topology

$$z = \sum_{s} N_{s} C_{s}^{T} + \sum_{k=1}^{K} \operatorname{cap}(l_{k}) D_{a} C^{L} + I^{L} K + I^{T} \sum_{s} N_{s}$$
(4.1)

The first two terms are the total switch and link costs, whereas the last two terms are the installation costs for the switches and links; N_s is the number of switches

of type s, C_s^T is the cost of a single unit of switch type s, $cap(l_k)$ is the capacity of link l_k , C^L is the cost per unit length per unit capacity of a link. I^L and I^T are the cost of installing a link and installing a switch respectively while K is the number of links in the whole topology, and S is the total number of switch types. A link is defined as a connection between a switch and a host machine, or in between switches. Therefore, a link can make up of physically one or more transmission lines. D_a is an approximated average length of a link in the topology. For Parts I and II, an approximation of the link lengths is used instead of the real link lengths since the locations of the switches in the topology will not be set until Part III. We define D_a to be simply the average link distance between hosts and switch candidate locations, and between switch candidate locations. It is given by :

$$D_a = \frac{\sum_h \sum_c d(h,c) + \sum_c \sum_c d(c,c)}{h \times c + c \times c}$$
(4.2)

where h is the number of hosts, c is the number of switch candidate locations, d(i, j) is the distance in between switch candidate location i and switch candidate location j. Note that d(r, r) is the distance between switches located at the same switch candidate location. In practice, this distance can never be zero, however, if the distances of $d(i, j), i \neq j$ is comparatively much larger, then we can approximate d(r, r) with 0.

At the end of Part III, since the locations of all switches in the topology have been assigned, we can calculate the cost of the topology by the following rewritten form of equation 4.2:

$$z = \sum_{s} N_{s} C_{s}^{T} + \sum_{k=1}^{K} \operatorname{cap}(l_{k}) d_{k} C^{L} + I^{L} K + I^{T} \sum_{s} N_{s}$$
(4.3)

where d_k is the real length of the link k.

4.3 PART I: Initial Topology Construction

The objective of the initial topology construction algorithm is to generate a local area ATM topology that satisfies the pipe requirements as given to it by the

network designer. It works by creating an ATM subtopology for each source host and each destination host, and joins all these subtopologies into a larger functional ATM topology. Note that a source host and a destination host can be located on the same host machine, as typically a host machine does not only receive but send information as well. The root of this sub-topology is a source host or a destination host.

The initial topology construction algorithm starts by connecting a source host to a switch with a link. Note that this link can consist of more that one physical link depending on the bandwidth of each single physical link². For example, if the total capacity needed for a link is 305 Mbps and the transmission speed for each physical link is 100 Mbps, then a total of 4 transmission lines giving a total of 400 Mbps is needed to implement this link. Inside each of these link flows the traffic of one or more pipes. The algorithm then tries to assign a separate link to each of the pipes that come out of the switch. If the number of desired output links exceeds the maximum allowable switch size, the algorithm will combine some of the pipes into a single link, attach the link to a new switch and attempt to separate the pipes there. The algorithm will repeat until all pipes are assigned to a single link. Figure 1 to 5 shows how this algorithm works.

Given that a source, say source host 1, needs to transmit traffic to all other hosts in a 5 host network, it sends its traffic in 4 ATM pipes (Figure 1). Each pipe(1,j), $2 \le j \le 5$ from source host 1 to destination host j has a size which is described in fractions of a transmission line. The algorithm first attaches a switch to the source host with a link as shown in Figure 2. Since all pipes originating from host 1 travel through this link, the capacity needed for this link is the summation of the capacities of all the pipes that flow in this link. The number of actual transmission lines required is the ceiling of the summation of all pipe sizes. In this example, the capacity required is 2.4, hence the number of transmission lines required is 3.

The algorithm then attempts to assign one link per pipe at the output ports of switch 1 (Figure 2). Since the total number of transmission lines required (summation of the ceiling of each pipe) is 5 which is greater than the largest

²to avoid confusion, we shall from now on refer to a physical link as a transmission line

Figure 1: Host 1 on a five host network needs to send traffic to the four other hosts (assuming no traffic to itself)

Figure 2: Host 1 is attached to switch 1 and algorithm attempts to assign the each output pipe to a single link.

Figure 3: The number of links required exceeds the maximum switch size, therefore a pipe combination heuristic is applied to combine some pipes together. A new switch is attached to the link that carries the combined pipe.

Figure 4: Algorithm attempts to assign the output pipes to a single link and succeeds.

Figure 5: The resultant subtopology for source host 1.

Figure 6: The resultant subtopology for destination host 2.

Figure 7: Combining subtopologies together.

available switch size (the largest allowable switch has only 4 input ports and 4 output ports), the algorithm combines more than 1 pipe into a link to reduce the number of required lines to fit switch 1. The choice of which pipes to combine is defined by an algorithm which will be described in the next subsection.

By combining pipe(1,3) with pipe(1,5), we reduce the total required output lines to 4, hence satisfying the constraint imposed by switch 1 (Figure 3). A new switch is attached to the link that contains pipe(1,3) and pipe(1,5), as shown in Figure 3. The algorithm then attempts to assign one pipe to a link for pipes (1,3) and (1,5) (Figure 4). Since the total required links is 2, which is smaller than 4, the algorithm succeeds. With only 2 input lines and 2 output lines used, switch 2 can be a 2 x 2 switch instead of a 4 x 4. The resultant subtopology is shown in Figure 5.

The algorithm is repeated for each source host and destination host. A subtopology for destination host 2 is shown in Figure 6. At the leaves of these subtopologies are links containing just one pipe each. Each of these links from a source host subtopology can be matched with a corresponding link from a destination host subtopology. In Figure 5, the leaf links containing pipe (1,2) corresponds to the leaf link containing pipe (1,2) in Figure 6. Therefore, when the topologies to which these links belong combine, these two links will be combined into one, as illustrated in Figure 7. The final combined topology for a 5 host network, can look like the topology in Figure 8. Each source host are labeled with a number preceeded by the letter 'S', each destination host by a 'D', each switch by the letters 'SW', and each link by the letters 'L'.

4.3.1 Choosing which pipes to combine

As mentioned in the previous subsection, if the number of transmission lines required exceeds the maximum allowable switch size, pipes that should normally flow separately in different links are put together in one link, so that the effective number of transmission lines fit within the maximum switch size constraint. We present the algorithm that we used to select which pipes to combine.

Figure 8: A fully combined 5 host initial topology. Source hosts are labeled with numbers preceded with an 'S', destinations hosts with a 'D', and switches with an 'SW'.

The Switch Combination Algorithm

The heuristic employed in this algorithm is that savings in the number of transmission lines can be achieved if two pipes whose fractional part of the pipe size when added together is at most one, are combined into one link. For example, given two pipes a and b, with a having pipe size 1.3 and b 2.5, if the two pipes are put into one link, then the total pipe size is 3.8, and hence the total transmission lines required will be the ceiling of 3.8. That is 4 lines. This represents a savings of one line, because if the two pipes were to put in separate links, then the effective transmission lines required will be the ceiling of 1.3 plus the ceiling of 2.5, which is 5 lines.

The algorithm starts by determining the desired savings needed. Then at each iteration, it chooses two pipes to combine. To increase its chances of combining pipes, the algorithm first chooses a pipe having the biggest fraction. It then looks for another pipe with the biggest fraction that when combined with the first pipe produces a savings of one line. The algorithm then repeats the previous procedure until the desired savings are achieved.

Figures 9 to 14 illustrates how this algorithm works. There are 5 pipes. The total number of transmission lines required is the summation of the ceilings of all the pipe sizes, that is 6 lines. Let's assume that the maximum allowable switch size is 4, a total of 2 savings are needed. The algorithm starts by looking for the pipe that has the biggest fraction. The algorithm finds pipe 1 which has size 1.9 (Figure 9). The algorithm tries to find another pipe that can be combined with pipe 1. Since none can be found, algorithm looks for the pipe that has the next biggest fraction. Pipe 3 which has a size of 0.7 is selected (Figure 10). There are two pipes, pipes 4 and 5 that can be combined with this pipe. Algorithm chooses the pipe 4 that has the bigger fraction and combines the two pipes (Figure 11). A savings of one line is achieved. The algorithm looks for a combinable pipe that has the biggest fraction. Pipe 2 is selected (Figure 12). This time only one pipe (pipe 5) can be combined. Therefore algorithm combines pipe 2 with pipe 5. A total desired savings of 2 lines are achieved. Therefore the algorithm exits.

In essence, this algorithm functions like the First-Fit Decreasing Bin Packing Algorithm [10] that packs to one unit. In general, the number of savings from

Pipes	1	2	3	4	5	
Capacity	(1.9)	0.5	0.7	0.3	0.2	

Figure 9: Algorithm finds the pipe size (1.9) with the biggest fraction. This pipe is discarded as no other pipe can be combined with this.

Pipes	1	2	3	4	5
Capacity	1.9	0.5	0.7	0.3	0.2
			•		
			Ł		

Figure 10: Algorithm finds the pipe with the next biggest fraction (0.7). Two other pipes can be combined with this pipe (pipes 4 and 5).

Pipes	1	2	3 +	4	5
Capacity	1.9	0.5	0.7	0.3	0.2
			Ĺ,		

Figure 11: Algorithm chooses pipe 4 as it has the bigger fraction among the two. The two pipes are combined.

Pipes	1	2	3 + 4	5
Capacity	1.9	05	1.0	0.2

Figure 12: Since desired total savings is not reached. Algorithm looks for the biggest combinable pipe.

Figure 13: Only one pipe (pipe 5) can be combined with the chosen pipe (pipe 2), therefore combine them.

Pipes	1	3 + 4	2 + 5
Capacity	1.9	1.0	0.7

Figure 14: A total of 2 savings is achieved. Therefore algorithm exits.

combining of pipes can be further maximized when we pack to u units, where u is a non-zero positive integer. However, we did not implement this and this is left as future improvements.

4.4 PART II: Topology Improvement

The aim of the topology improvement part is to find an equivalent topology that is less expensive than that produced by the initial topology algorithm. An equivalent topology is defined as a topology that satisfies the same pipe specifications as the topology to which it equals.

The topology improvement applies the concept of gradual improvement, that is at each iteration, the algorithm changes the topology according to some heuristics, so that some savings can be achieved. In essence, this concept is similar to the hillclimbing mathematical optimization method [30]. That is, with each iteration, the solution to the cost function gets closer to optimality. Topology changes are done through the intelligent combining of switches Savings are achieved when links rearrange or combine, and the number of switches reduces.

4.4.1 Savings Through Switch Combination

When switches combine, savings are achieved. Specifically

- Total switch cost is reduced as the total number of switches are reduced. Switches that have wasted capacity can be combined so that fewer switches are needed.
- The number of links are reduced when switches that have the same immediate descendants or ancestors combine. This can be seen in Figure 15. Switches 1 and 2 have the same immediate descendants, switches 3 and 4. The total output transmission lines required for switch 1 and 2 is 14. When the two switches 1 and 2 combine, since two of the links out of the four can be combined with the other two, the total required lines have fallen to 12

Figure 15: Link capacities reduced when switches that have the same descendants combine.

- Links are eliminated when switches combine with their immediate ancestors or descendants. For example, in Figure 16, when switch 1 combines with switch 2, the link carrying pipe a disappears. The total number links required in the topology is reduced.
- Links are eliminated and/or have their capacities reduced when self-loops that occur as a result of switches combining are stripped. This can be seen in Figure 17. When switch 1 combines with switch 3, a self-loop occurs with pipe b and c flowing out of the newly combined switch through switch 2, and back into the newly combined switch. This self loop is stripped and through stripping, links are either reduced in size or totally eliminated.

Figure 16: Links eliminated when switches combine with immediate ancestors or descendants

Figure 17: Reduction of link size and elimination of links as a result of switches combining.

4.4.2 Topology Improvement Algorithms

We have devised three algorithms to perform topology improvement. These programs each have their own way of choosing which switches to combine and hence the amount of savings achievable. Each algorithm is presented with its pseudocode.

1. **RANDOM.** The Random improvement algorithm essentially picks two switches randomly. Then it checks to see if the switches are combinable or not. If the switches are combinable, then they will be combined. The algorithm exits when x number of combining attempts results in failure.

2. **EXHAUSTIVE.** The Exhaustive algorithm in each iteration, finds the two switches that when combined will give the greatest savings. This is a greedy algorithm in that it attempts to achieve the most overall savings by maximizing on the savings in each iteration. This implies more intelligence in the algorithm for building the topology.

```
While(last iterations successfully combines 2 switches){
    Find the savings achievable by all valid combinations of
    any two switches;
    Combine the two switches;
}
```

3. NEIGHBORHOOD. The Neighborhood algorithm essentially combines a switch with another from its neighborhood that when combined will give the greatest savings. A neighborhood of a switch is defined as all immediate ancestors and descendants of the switch, as well as the immediate descendants of these ancestors, and the immediate ancestors of these descendants. A switch can not be combined with itself.

The motivation behind the neighborhood algorithm is that combining switches with its neighbors can most likely result in more links being reduced in size or eliminated (as illustrated in the last section). This facilitates further combination with other switches may result in a cheaper topology.

```
While(less than x iterations has elapsed since the last
      successful combination){
        Randomly choose a switch in the topology;
        Find all the neighbors of this switch as defined
        by the neighborhood function;
        Find the neighbor that when combined with the
            switch will give the most savings;
        If(such neighbor is found) combine them;
}
```

4.5 PART III: Topology Location

The topology generated from Part II is a feasible topology. However, this topology is logical as the actual locations of the switches are not assigned yet. The topology location algorithm takes care of allocating the switches to the switch candidate locations. As the locations of this switch directly affect the lengths of the links to which this switch connects, the total cost of the topology is directly affected by the placement of these switches. Two algorithms are devised for performing this task.

• **RANDOM.** This algorithm randomly assigns a switch to a switch candidate locations. This algorithm is run as a basis for comparison.

While(not all switches have been assigned){ Randomly choose a switch candidate location;

```
Assign the switch to that location;
```

• ANCHORING An anchored switch is a switch that has been assigned a location. At each iteration of the anchoring algorithm, a to-be-anchored switch is chosen randomly. If there are links connecting this switch to other anchored switches, the total lengths of all these links are calculated, with the to-be-anchored switch taking the location of each of the switch candidate locations in turn. Otherwise, pick another unanchored switch. Hence, the location of the switch candidate location that produces the shortest total length will be chosen as the location to which the to-be-anchored switch with the to-be-anchored switch as a superior of the switch candidate location to which the to-be-anchored switch will be chosen as the location to which the to-be-anchored switch.

```
While(not all switches have been anchored){
       Randomly choose one unanchored switch;
       If (there are at least one anchored switch
            connected to it){
            For all switch Candidate locations{
                 Find the total distances of all
                    links connecting the unanchored
                    switch with other anchored switch,
                    assuming that the unanchored
                    switch is located at the current
                    switch candidate locations;
            }
            Assign the unanchored switch to the
               location resulting in the shortest
               total distance.
        }
```

}

}

4.6 Experiments for Phase II

To evaluate the workings of the algorithms proposed for Phase II, we have implemented all of them, and combinations of them (meaning one from Part II and one from Part III) and in a program. With this program, we performed experiments to examine the effectiveness of these algorithms in accomplishing their functions.

4.6.1 Parameters

At the start of each program run, a number of parameters were read in. These parameters are:

- Number of Hosts. This is the number of hosts in the network. Values for this parameter are 5,10, or 15.
- Pipe Sizes. These are values calculated with the MCFF analytical method presented in the previous chapter. The pipes sizes are expressed in terms of multiples of the line transmission speed. For example, for a 45 Mbps pipe transmitted on a 150 Mbps link, the pipe size will be specified as 45/150=0.30. In the experiments, the smallest pipe size that we used is 0.1 and the largest is 18.3. The number of pipe sizes in a network of N hosts is $N \times (N-1)$, assuming no self traffic.
- Number of Types of Switches and Their Corresponding Sizes. Currently, the switches are all symmetrical $n \times n$ types, that is, they have the same number of input and output ports. However, this can be changed easily to accommodate $n \times m$ switches. The Switch sizes that were used in our experiments range from 14 to 200 ports.
- Switch Costs As of the time of writing, most switches in the market are listed with the price per port (about \$1000 - \$2000). We have adopted this method of pricing our switches. However since prices change so rapidly, we have decided to omit real dollars as the unit of cost. Rather, we assign the cost for a port as 1 unit and price all other costs (e.g. switch installation, link costs, etc.) relative to that.

- Switch Installation Cost. The cost of installing switches. In practice, since this cost differs from case to case (for example, if special facilities such as air-conditioning need to be installed with the switch), we simply fix this value to 0.3.
- Line Cost. This is expressed as price per transmission line per meter. Again, this value can vary depending on the type of physical medium (twisted pair, fiber optics, etc) used. Here, we fix this value to 0.005 (for a \$2000 per port switch, this works out to about \$10 per meter).
- Link Installation Cost. Like the switch installation cost and link cost, the link installation cost also varies in real life. Here, we fix this to 0.1. Recall from the previous sections that a link can consist of more than one transmission line and normally they are installed as one. Therefore, we assume that the same link installation cost applies regardless of how many lines there are within the link.
- Number of Switch Candidate Locations. These are the places where switches can be installed. The number of switch candidate locations used ranges from to 3 to 8.
- Distance Between Switches and Hosts or Other Switches. This is the length of the cable that connects a host with a switch or a switch with another switch. The network designer determines the values for these. Although alternately we can take in actual coordinates of hosts and switch candidate locations as input and let the program calculate the distance, we chose not to do that, since a link often does not take the simplest route to its destination.

4.7 Experimental Results

Experiments of our Phase II program were run on a Silicon Graphics Iris Indigo Workstation. As mentioned before, we have examined 3 sizes of networks, namely, the 5-host network, 10-host network and 15-host network. For the 5-host and 10host network, a total of 4 sets of runs were carried out. Each set contains two different classes of pipe parameters with the same mean pipe sizes. The pipe sizes in one class are skewed and the other are not skewed. This also applies for the 15-host network. The only difference is that instead of 4 sets, only 2 sets were run.

We calculate the skewness of the pipes with the following formula which was taken from [23]

$$v = \frac{E[(p_j - \bar{p})^3]}{(S^2)^{3/2}}$$
(4.4)

where p_j is a pipe size, \bar{p} is the mean pipe size and S^2 is the variance of the pipe sizes. The pipe mean and skew values for the experiments are listed in Tables 4.1 and 4.2. Note that the smallest pipe mean is 0.5 and the largest is 3.0, whereas the smallest skew value is 2.68 and the largest is 4.593.

Set	5 He	osts	10 Hosts	
1.	Mean: 1.5	Mean: 1.5	Mean: 1.5	Mean: 1.5
	Skew: 3.112	Skew: 0.0	Skew: 3.217	Skew: 0.0
2.	Mean: 3.0	Mean: 3.0	Mean: 3.5	Mean: 3.5
	Skew: 3.574	Skew: 0.0	Skew: 3.21	Skew: 0.0
3.	Mean: 2.0	Mean: 2.0	Mean: 2.0	Mean: 2.0
	Skew: 2.68	Skew: 0.0	Skew: 2.808	Skew: 0.0
4.	Mean: 0.5	Mean: 0.5	Mean: 0.5	Mean: 0.5
	Skew: 3.091	Skew: 0.0	Skew: 4.593	Skew: 0.0

Table 4.1: Pipe Mean and Skewness (5 and 10 Hosts)

Set	15 Hosts		
1.	Mean: 1.5 Skew: 3.117	Mean: 1.5 Skew: 0.0	
2.	Mean: 3.0 Skew: 3.542	Mean: 3.0 Skew: 0.0	

Table 4.2: Pipe Mean and Skewness (15 Hosts)

4.7.1 Part I: The Initial Topology Construction

In each run, we recorded the cost of the initial topology. We find that in general, the more hosts there are in a network, the bigger the initial topology will turn out to be. This is so because more links and switches will result since the initial topology construction algorithm assigns a switch to each source host and destination host by default regardless of the input pipe sizes.

Figure 18 shows an example of an initial topology generated from one of our runs, that is the 5-host, Set 2, Skewed Pipe run. Each source host and each destination host is connected to a switch. Note that switch 4, which is not attached to any host, is part of the subtopology belonging to source host number 3. It is created because the total needed lines (for the output of switch 3) exceeded the maximum switch size.

At the conclusion of each experimental run, we have also verified links and paths to make sure that the initial topology is a feasible topology. That is, it contains all pipes that were given as the input, and that the maximum number of lines required for a switch does not exceed the maximum switch size. We find that the topologies that were generated by the initial topology algorithm are indeed feasible. As our algorithm is designed to maintain the feasibility of the topology, this checking is done mostly as a check on the implementation,

4.7.2 Effects of Skewness On the Initial Topology

Table 4.3 shows the initial topology costs gathered for the 5 and 10 host runs. In there, the results of both skewed and non-skewed costs are shown. The bigger cost of the two are enclosed in brackets.

From the table, we can see that number of times that the results from the skewed runs exceeds the results from the non-skewed runs are exactly the same as the other way round. This suggests that the skewness of the pipe sizes does not appear to have a direct influence over the cost of the initial topology. This is contrary to our intuition. One explanation could be that the difference in pipe sizes (hence the skewness) is not really the main factor that influences the number of switches and links that were used in the topology. The main factor is

Figure 18: The Initial Topology for the 5 Hosts, Set 2, Skewed Traffic Run

	5	Hosts	10 Hosts	
	Skewed	Non-Skewed	Skewed	Non-Skewed
1.	36557	(37639)	179068	(183852)
2.	(38819)	36833	326597	(330553)
3.	47474	(48195)	(197312)	186395
4.	(12213)	11192	(76878)	75689

Table 4.3: The Initial Topology Cost (The Bigger Cost is in Brackets)

most likely dependent on the fractions of each pipe. For example, consider the following two sets of pipes $S_1 = \{1.0, 1.0, 1.0, 1.0, 1.0\}, S_2 = \{0.1, 0.1, 0.1, 0.1, 4.6\}$. Both sets have the same mean (1.0). The values in Set S_1 are identical (ske. ness 0), hence it has lower a skewness than Set S_2 . The number of transmission lines needed for Set S_1 will be the summation of the ceiling of each pipe value, that is 5 lines. However, the number of transmission lines needed for Set S_2 is 9 lines. The more transmission lines needed the bigger the initial topology will most likely turn out to be, since more switch expansions need to be done (For example, if the maximum switch size is 8, then Set S_1 will be able to fit into one switch while Set S_2 will not). This is an example where a set of pipes with lower skewness results in a cheaper topology.

On the other hand, if we have a set of pipes, Set $S_3 = \{3.0, 0.5, 0.5, 0.5, 0.5\}$ and Set $S_4 = \{1.1, 1.1, 1.1, 1.1, 0.6\}$. Again, both of them have the same mean (1.0). However, S_3 with a higher skewness (the minimum difference of the individual pipes with the mean is 0.5 for Set S_3 , whereas the maximum difference between the individual pipes and the mean for Set S_4 is only 0.4) requires 7 lines, whereas S_4 with a lower skewness requires a total of 9 lines. This is an example where the set of pipes with a higher skewness results in a cheaper topology. This is the opposite of the results that we get from the previous example.

4.7.3 Part II: Topology Improvement

In the experimental runs, we have examined the performance of the three topology improvement algorithms. Figures 19 to 21 show an example of the results obtained from applying these algorithms to the initial topology in Figure 18. From the figures, we can see that reduction in topology sizes have been achieved using the topology improvement algorithms. Both the Random and Exhaustive algorithms have managed to reduce the number of switches in the initial topology from a total of 11 to 6, whereas the Neighborhood algorithm managed to reduce it down to just 5 switches (Figure 21).

4.7.4 Repeated Calculation

Due to the fact that the both the Random and Neighborhood topology improvement algorithms depend on random selections of switches to combine, the resultant topologies generated with these two algorithms will vary from one run to another. Therefore to more accurately determine the performance of these two algorithms, we have applied the same algorithm a total of 70 times for each run. The mean and the 95% confidence interval of the topology cost are then obtained and plotted.

Figures 22 to 25 shows some of the plots that we have obtained. They are for the 5-host runs and 15-host runs. Since the results of the 10-host runs are identical to the 5-host runs, we chose not to include them. As evident from the figures, most of the time the Exhaustive algorithm produces the cheapest topology, followed by the Neighborhood algorithm, then the Random algorithm. This seems to confirm that the 'intelligence' that is built into the Exhaustive and Neighborhood does generate good topologies. Note that since the results in Figures 22 to 25 show that the confidence intervals of the bars in the same column do not overlap, we can be fairly sure that the differences are significant.

4.7.5 Part III: Topology Location

Like Part II, both of the topology location algorithms rely on random numbers to work. Therefore, we have run each Topology Location Algorithm 70 times for each input, so that the mean and 95% confidence interval can be obtained.

From the figures, we have found that in all cases the Anchoring algorithm produces a topology that is less costly than that produced by the Random topology location algorithm. This difference in performance can sometimes be as high as

Figure 19: The Improved Topology Using the Random Algorithm

Figure 20: The Improved Topology Using the Exhaustive Algorithm

Figure 21: The Improved Topology Using the Neighborhood Algorithm

Figure 22: Comparisons of the Topology Improvement algorithms for a 5 Host Network with Skewed Traffic

Figure 23: Comparisons of the Topology Improvement Algorithms for a 5 Host Network with Non-Skewed Traffic

Figure 24: Comparisons of the Topology Improvement Algorithms for a 15 Host Network with Skewed Traffic

Figure 25: Comparisons of the Topology Improvement Algorithms for a 15 Hear cutork with Non-Skewed Traffic