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ABSTRACT

Interferometric measurements using a traveling wave
excited N, laser have been made of 1.5 ns Brillouin
compressed 0.248 um KrF laser-produced aluminum plasma. The
main laser is focvsed onto a slab target using £ / 2 optics
producing a 35 um diameter focal spot and giving
intensities up to 1 x 10'* W em™®. The N, laser was used at
a filling pressure of 1 atm producing a pulse having a FWHM
of 600 ps. The interferometry was done using a Jamin
interferometer and the interferogram was recorded as a
digitized video image.

The results of the experiment are compared to results
obtained from 1D Medusa and 2D Castor numerical simulation.
In addition, The data is analyzed using analytic techniques
which include planar and spherical self-similar expansion,
self-regulating model of planar expansion and a spherical
stationary flow model developed in this thesis. The early
self-similar planar expansion may be modeled using the
self-regulating model by taking into account the lateral
‘expansion of the plasma. This is followed by a
predominantly l/r2 density profile indicating spherical
stationary flow. The presence of axial jets and late-time

conical e:ructures observed are also discussed.
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VARIABLES, CONSTANTS AND SYMBOLS
Following is a 1list giving the symbols for physical

constants used in this thesis:

c - Speed of light in vacuum.

e - Elementary electric charge.
kb - Boltzmann constant.

m - Electron mass.

mp - Proton mass.

e - Permittivity of vacuum.

U - Permeability of vacuum.

The variables used in this thesis are defined as they
are introduced. Variable names have in general been chosen
to avoid confusion. Following 1is a 1list of variable
conventions, symbols and abbreviations used consistently

throughout the thesis:

a - Particle acceleration vector.

.| - Plasma absc.option coefficient.

Ajk - Inversion matrix coefficients.

B - Magnetic field vector.

B - Magnetic field magnitude.

c. - Icn acoustic velocity.

Cp - Heat capacity at constant pressure.
c, - Heat capacity at constant volume.

E - Electric field vector.

E - Electric field magnitude.
£V~ one body distribution function.
£

- Two body distribution function.



£/ - Ooptical f number = focal length / beam diameter.

FWHM - Full width half maximum.

H - Kinetic energy heat flux.

I - Laser intensity.

J - Electric current.

L - Plasma density scale-lengti.

m - Particle mass.

m. - Electron rest mass.

m.o = Ion rest mass.

n - Particle density.

n, - Electron density.

n. - Ion density.

n, - Particle density at the plasma absorption surface.

n_ - Plasma critical density.

n_ - Plasma refractive index.

P - Pressure tensor.

P - Scalar pressure.

p, - Plasma ablation pressure.

Q - Heat flux.

Q - Magnitude of heat flux.

q -~ Electric charge.

r - Radial dimension in «cylindrical or spherical
geometry.

R - Maximum radius of axially symmetric plasma.

t ~ Time.

T - Temperature.

T -~ Electron temperature.
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Ion temperature.

Self-similar parameter V/cs.

Defined as -tn(n/n ).

Macroscopic plasma velocity.

Particle velocity vector.

Position vector.

Plasma axis perpendicular to probe and main laser.
Axial dimension (laser axis).

Average ion charge state.

Ratio of kinetic to magnetic field pressure.
Perturbation to optical path length of prowve ray in
units of A.

Ratio of heat capacities Cp/Cv.

Wavelength.

Debye length of plasma.

Coulomb logarithn.

Frequency.

Electron ion collision frequency.

Angle.

Density.

Electric charge density.

Mass density at the plasma absorption surface.
Uncertainty (single standard deviation).
Self-similar parameter z/c_t.

Angular frequency.

Plasma frequency.



CHAPTER 1
INTRODUCTICN

The study of laser plasma interaction at high
intensities is important both to obtain a Dbetter
understanding of the basic processes taking place and to
utilize such plasmas in a number of application areas. In
the past the motivation for much of this resezrch has been
the goal of inertial confinement fusion where fusion is
initiated by compression of a fuel pellet by laser ablation
of its surface. Inertial confinement fusion has been
proposed as one possible inexhaustible energy source for
the future.

The results of research in this area are also useful
for the production of ion and Xx - ray sources. The
development of x - ray lasers could in the future become
extremely important in applications such as biological and
surface probes.

In typical laser heated plasma systems short, intense,
laser pulses are focused onto various types of targets. The
laser beam ionizes the target producing a plasma. The laser
then interacts with the plasma, the plasma serving to
absorb and couple the laser energy to the target. Studies
outlined in this thesis were carried out to determine the
evolution of the density profile of the plasma with time
and thus elucidate some of the details of its interaction

with the laser.



1.1 KrF Laser Facility

Over the past number of years the University of
Alberta’s laser plasma interaction group has developed a
short wavelength KrF laser system and is engaged in laser
target interaction experiments. At the Krypton Fluoride
Laser Facility experiments are done with 1.5 ns Brillouin
compressed 0.248 um KrF laser pulses on planar targets. To
date, most studies at short wavelengths have been conducted
using harmonically converted Nd lasers but only a few of
these have been at the fourth harmonic of 0.26 um and a
detailed characterization of the density profile of the
ablated plasma for this irradiation wavelength has not yet
been reported.

These studies are important because efficient energy
coupling of radiation to the target is achievable in the
ultraviolet region and are particularly interesting because
of the possibility of using high efficiency KrF lasers as

inertial confinement fusion drivers.

1.2 Description of the Experiment

This work will deal with an interferometric study of
the electron density profile within the plasma. The KrF
laser-produced-plasma is probed parallel to the target
surface with a short ©pulse 1laser. Using a Jamin
interferometer the probe beam 1is split with one half
passing through the plasma and the other half missing the

plasma. These are then recombined producing an interference

89



pattern between the two beams and the plasma is imaged onto
a vidicon producing an interferogram of the plasma. The
image on the vidicon is digitized and stored on computer
disk for further analysis.

With the assumption that the plasma is radially
symmetric, the interferogram can be deconvolved to obtain
the electron density as a function of position within the
plasma. By using a ~hort laser pulse probing at various
times this technique gives a picture of the time evolution
of the plasma density profile.

A nitrogen laser was used to generate the probe pulse
for this experiment. The nitrogen laser transition is self
quenching meaning that the lasing action is terminated very
shortly after it begins. This laser therefore naturally
produces a short pulse. The pulse is in the UV with a
wavelength of 337 nm which is necessary for probing plasmas
up to electrcn densities of 10®° to 107 cm™>. Typical
parameters for a transversely excited N2 laser operating at
atmospheric pressure are a pulse of one to several hundred
uJ and a pulse length of 0.5 to 1.0 ns [1,2]. By the use of
travelling wave excitation and by operation at higher
pressures of up to 6 atm, pulses as short as 50 ps have
been achieved [3,4]. Plasma interferometry has been done in
the past with this type of laser [5,6] and as part of this
thesis project a nitrogen laser was built as an optical

probe pulse source.



1.3 Previous Research

In the past, because of the availability of high power
short pulse CO2 lasers [7-10] and Nd glass lasers (11-13]
many plasma interaction studies have been carried out in
the infrared wavelength range of 1.06 - 10.6 um. Lately,
because of increasing interest in the laser plasma
interaction at shorter wavelengths a number of studies have
been done with Nd 1lasers operating at their harmonic
wavelengths at 0.53 um, 0.35 um, and 0.26 um. These two
types of laser systems comprise much of the work that has
been done although some work has been done with Krf lasers
at Rutherford [14] and the University of Alberta [15-19]
and with iodine lasers at the Max-Planck Institute [20-23].

Interferometric studies of the plasma density profile
have been much more limited, focusing on steepening of the
density profile at high intensities [(24-28], and small
scale structures [29-33]. Recently, detailed measurements
of the plasma density structure have become important in
order to understand and optimize x - ray laser systems and
some new measurements have been carried out with this aim

(34-37].

1.4 Goals of the Present Study

As density profiles for laser produced plasma are
generally exponential in nature, a characteristic
measurement of laser produced plasma 1is the e-folding

gradient scalelength of the electron density profiles. This



study will concentrate primarily on the axial scalelengths
of the plasma and will study its variation with time and
dependence on laser energy. The scalelength of the plasma
will be compared with the results of simple analytic theory
as well as with the results from two different numerical
simulations.

A brief examination will also be made of the lateral
expansion of the plasma. The question of self-generated
magnetic fields will be examined as to their ability to
explain certain anomalecus features which are observed.

The outline of the thesis is as follows: Chapter 2
presents a discussion on the background theory, Chapter 3
outlines the experimental details, Chapter 4 presents the
experimental results and the methods of analysis, Chapter 5
discusses the experimental results in detail and caiapires
them to the theoretical models, and Chapter 6, the

conclusion, provides a brief summary.



CHAPTER 2
BACKGROUND AND THEORY
2.1 Plasma Equations of Motion
Due to the large number of degrees of freedom present
in a plasma its description requires a statistical
approach. 2 plasma of N particles can be described by the

probability distribution function of phase space:
F(xl,xz,...,xu,vl,vz,...,vN,t) (2.1)

The coordinates X and v, representing the position and
velocity of particle i. The distribution function F obeys

the Liouville equation given by [38]:

aF aF aFr T

—_ — —_— e = >
3t ? 5% v T av. "~ 0 (2.2)
Where: alT = the total acceleration of particle 1i.

2.1.a Plasma kinetic equation of motion

In practice F cannot be calculated and a reduced
description must be obtained. By ‘ntegrating the
distribution function over all the coc'dinates of phase
space except those corresponding to a single particle one
obtains the one body distributicn iunction which for a

particle of type a is given by [Z.;°

— (1)
nf
a

a

(xl,vl,t) = Na J F dku-'-de dvn---va (2.3)

2

n =
a

<ls



Where N_ is the total number of particles of type a and V
is the volume occupied by the plasma.

The dynamical behavior of the one body distribution is
obtained by integrating the Liouville equation. The
particle acceleration in the Liouville equation may be
separated into that caused by external forces and that
caused by forces between the particles. The external forces
acting on a particle depend only on the coordinates of that
particular particle. While the exact interparticle forces
depend on the coordinates of all of the particles it 1is
possible tc calculate an average interparticle force which
may be separated out and treated the same as an external
force. The remaining acceleration caused by interparticle
forces will be mostly due to the few nearest neighbors and
is referred to as the collision term. If all forces are

electromagnetic the integrated Liouville equation becomes:

q
d (1) a (1) a J (1)
B—E a N av a + E— E + le B> —_— f (2-4)

1 a

This equation is referred to as the kinetic or
Boltzmann equation and there is a separate equation for
each particle species. Any particle source or sink terms
due to ionization or recombination would appear on the
right side of the equation with the collision term. The
electric and magnetic fields in the equation are the sum of

the external fields and the average fields of the particles

~]



and satisfy the average Maxwell equations [38]:

V « < E >=—X >
Eo pq
(2.5)
_ _ 3B
V x < E > = 3t
assuming zero polarization. And:
U x <B>=yu <3 >+ EZ
-] o Gt
(2.6)

v «+ <B>=20

assuming zero magnetization.
The collision term on the right side of the equation is
given by:

of (1)

a

at

=-3Yn I (a - <a > + —f
b b 1b 1b L)l

(2)
dx dv (2.7)
ab b b

c

where I is the acceleration of particle 1 due to a

particle of type b and <a > is the acceleration of

particle 1 due to particle b averaged over the
(2)

distribution. The expression f is the two body

distribution function given by:
(Vo) (2.8)
= NN F dx_ dx ---dx_ dv_dv ---dv
b 3 4 N 3 4 N
The collision term indicates that the kinetic equation

for the one body distribution function is not closed but

depends on higher order distribution functions. To close



the kinetic equation some collision model must be used
which will necessarily cause some degree of approximation.
The simplest model, valid in many cases, is to assume that
the plasma is collisionless and that all collision terms
are approximately zero. The kinetic equation then becomes

the Vlassov equation.

2.1.b Plasma fluid equations of motion

While the one body distribution function generally
represents the most complex description of a plasma which
can be analyzed it does not represent a macroscopic
observable. Macroscopic observables are obtained by taking
velocity moments of the one body distribution function.

The density of a particle species at a point in space

is given by:
na(x,t) =n, I fa(x,v,t) av (2.9)

Other quantities related to number density such as charge
density are obtained by multiplying by the appropriate
factors.

The macroscopic velocity of a species is defined from
the particle flux obtained by integrating the first

velocity moment of the distribution over v and is given by:
n_(x,t) V_(x,t) =7 fv £ (x,v,t) dv (2.10)

From this expression current density for a species is

obtained by multiplying by the charge of the species:



J_(x,t) =q.n_(x,t) V_(x,t) (2.11)
The total kinetic energy flux of a species, H , is
given by:
= 1= .
H (x,t) = 2 nm I v (vov) £_(x,v,t) dv (2.12)

The partial pressure of a particle species is described

using the pressure tensor defined by:
P (x,t) =nm I (v-V)(v=-V)f (xvt)d (2.13)

It is also possible to describe a scalar pressure for a

particle species given by:

nm
p_(x,t) = =22 J (Vv =V )e(v - V) £ (x,v,t) dv  (2.14)

A temperature for a species can be defined from equation

2.14 as:

T = 2 (2.15)

When the distribution function f is symmetric in velocity
about Va The pressure tensor reduces to the diagonal tensor
paI. In other cases the pressure tensor can be expressed as
the sum of p I and a non-diagonal tensor with a zero trace.

The time rate of change of the kinetic energy of a
particle species due to the average electromagnetic fields

is given by:

10



naFa-Va = J nq, E + VxB>-v dv = nq.< E >-Va (2.16)

From which it is observed that the macroscopic force, F_,
is given by F_ =g < E >.

Equations relating the macroscopic variables are
obtained by taking velocity moments of the kinetic equation
to obtain what are termed the fluid equations for a
particle species [38]. The continuity or particle
conservation equation is obtained by integrating the
kinetic equation over velocity space. Integrating the
product of the kinetic equation with the particle momentum,
m v, one obtains the equation of momentum conservation. The
energy transfer equation is obtained by integrating the
product of the particle kinetic energy, 1/2 mavz, with the
kinetic equation.

The equation of continuity is given by:

n_(x,t) + V~(na(x,t) Va(x,t)) = 0 (2.17)

Q)lQJ
Py

The equatior of momentum conservation is given by:

a
nm ==V +nmv, W - n g E+ VONB> + VP (2.18)
af
=m J nv —>{dv=-Yam((V -V )y >
a a a a a b ab
dt |ec b

Where the collision term has been approximated using a

collision frequency v _ .
a

The equation of energy conservation is given by:

11



+ ] -nF -V +V-H (2.19)
a a a a
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In cases where the pressure tensor may be represented
by paI the term V-Pa in the momentum equation becomes Vp_ -
Due to momentum being conserved in particle collisions the
momentum equation is independent of collisions between like
particles.

All three of these equations assume that the total
number of particles remains constant. Any change in the
particle number due to ionization or recombination gives
rise to source or sink terms on the right hand side of the
equations.

These moments of the kinetic equation represent a
reduced form of the kinetic equation implying a necessary
loss of information. They do not give a full description of
the plasma shown by the fact that there are always more
variables than equations. In ordar to close the equations
and obtain solutions one must supply a collision model and
a physically relevant equation of state relating, for
example, partial pressure to particle number density. In
addition, solutions to the fluid equations often involve

using further physically appropriate approximations.



2.2 Analytic Model of Laser Plasma Expansion

While a complete treatment requires numerical
simulation, it is possible to construct simple analytical
models of the interaction of a laser with a slab target.
Such models are useful as they help isolate the dominant
physical processes giving useful scaling laws and a means
for understanding the results of more complicated computer

simulations.

2.2.a Planar self-similar rarefaction into vacuum
The s.m lest plasma flow model is the one dimensional
planar expansion of plasma into vacuum, it is possible to
obtain analytic solutions once the plasma has expanded
sufficiently for the Debye length, AD, given by:
172

€, ka
A= [ — ] (2.20)
n

e

to be considered insignificant compared to the density
scale lengths [39,41]. In these cases there are no a priori
characteristic lengths or times and the problem falls into
a class of self similar problems in fluid mechanics ([42],
where the quantities of distance and time can only appear
in the form z/t.

The solution to this problem has been discussed by
many authors using both the kinetic and fluid approach
(39-41,43-45]. It is usual to assume that the plasma is

collisionless and that the electron temperature |is

13



isothermal. One finds an exponential density profile with
scale-length given by c_t, where c_ is the 1ion acoustic
velocity for the plasma. The plasma flow is sonic relative
to a surface of constant density. The density and flow

velocity are given for -c t < 2z <w by:

-z
n = n_ exp [ =t " 1 } (2.21)
S

VvV =c +-§- (2.22)

Assuming cold ions (due to expansion cooling) the plasma
ion acoustic velocity c, is given by the expression:

172

Z kT
c = [———5] (2.23)

m
i

Where Z = the average charge state of the plasma.
Te the electron temperature of the plasma.
m = the mass of the ions.

The expansion is modeled as a rarefaction wave into
undisturbed hot plasma as shown in Fig. 2.1. The leading
edge of the rarefaction wave propagates into the plasma at
the sonic velocity.

These equations give a density profile extending to
infinity. In reality the self-similar equations are not
valid at densities such that the debye length becomes
comparable to the plasma scale length and so the plasma

will in fact be terminated by a region of charge

separation. The characteristics of this region have been

14
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Fig. 2.1. Planar isothermal self-similar expansion

of plasma into vacuum.
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explored in references [45,46].

2.2.b Self-similar solutions with non-planar 1D geometry

In addition, it has been possible to find partial
solutions to the more general case of one-dimensional
expansion with either planar, cylindrical, or spherical
geometry with various values for the thermodynamic variable
7 m(%/cv, the ratio of the heat capacities. The value ¥
usually ranges from 1 for an isothermal expansion to 5/2
for adiabatic expansion (43].

The one dimensional isothermal self-similar equations

of motion may be written in the following form:

éu -1 4 .
(u - T) = =" ¥ new 3T (in ne) (2.24)
(u—‘t)g—t—(enne)+-g%+—(—q—%—l—)u=0 (2.25)

Where: u the self-similar parameter V/c .

T the self similar parameter z/cst.
The parameter a is determined by the particular type of one
dimensional geometry:
oo = 1: planar geometry.
o = 2: cylindrical geometry.
a = 3: spherical geometry.
When both « = 1 and ¥ = 1 the above equations revert to the

usual self-similar equations as discussed in section 2.2.

For the case when ¥ = 1 (isothermal) these equations of



motion have the following asymptotic solution valid for all

values of a:

u=71t+ vad (2.26)

n_=n, exp (- va T) (2.27)

When o« = 1 the solution reverts to the previous
solution as it should where n_ is now the density of the
sonic point. In the case of « # 1, the sclutions are
asymptotic solutions valid only when T >> vad. When valid,
this solution indicates that non planar self-similar
expansion would generate plasma scale-lengths which are

shorter by a factor V.

2.2.c Self-regulating flow models

The self regulating model provides a more complete
treatment of one dimensional laser target ablation [47,48].
This model divides the process into four distinct regions,
as shown in Fig. 2.2, and is self regulating in the sense
that the four regions, which are each physically simple,
satisfy the conservation laws of fluid mechanics while
staying in balance with each other and with the absorbed
laser energy.

Region I 1is the plasma corona. Region II 1is the
conduction zone where energy penetrates the plasma solely
by heat conduction. Region III is the compressed solid

behind the shock propagating into the undisturbed solid of
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region IV. This thesis will make use of tho wdul developed
by Patrick Mora (reference {47)) to model :tifi2 anTnrption of
laser energy and the coronal expansion.

The corona is charactsrized by a plasma rur s faction
into vacuum. Since the electron thermal velncicy is much
higher than the expansion velocity and the resuliznt
electron thermal conductivity is quite high, the eiectrc.
temperature is usually assumi:d isothermal. The ions are
taken to be cold due to expan: ion cooling but as long as
the number of electrons greatly exceeds the number of ions,
the ion temperature has little importance.

As the laser propagates it is absorbed by the plasma
corona. The density surface of maximum laser penetration is
termed the absorption surface. If the laser is intense
enough it may penetrate to the critical density where the
dispersion relations will prevent  the light from
penetrating further. In this case some portion of the light
may be absorbed at the critical density by resonance
absorption and the remainder will be reflected. In the
latter cases the degree of absorption depends on the amount
of resonance absorption which typically is on the order of

50 $. If the laser is not intense enough to penetrate to

o

the critical density it will be completely absorbed by
inverse bremsstrahlung. The absorption surface is placed at
some density n, which is calculated in different manners
but is usually taken to be at an optical depth of 2

e-foldings [47]. One should remember that the sharp
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dividing 1line between this region of plasma and the
conduction zone is not real.

Because of the high electron thermal conductivity it is
not very important where the laser light is abscrbed. It is
usual to assume that the laser is absorbed totally at the
absorption surface but this is purely for convenience.
Under these conditions the corona may be modeled using the
solution for self-similar isothermal rarefaction. The
density n_ to which +the laser penetrates, given an

exponential profile, is given by the expression ([47]:

c 172
“o=2“c[vL] (2.28)

[o

the critical density defined by:

2
eom w
n =[———‘-’—} (2.29)

Where: nc

w = the angular frequency of the radiation
under consideration.

v = the electron ion collision frequency at
the critical density which is given by [47]:

4
2 5 Y172 che iIn A )
V. T3 | 7 172 372 (2.30)
€ 8n e, kT,

e

The 1length L is the characteristic 1length of the
plasma. For times t =7t such that c_t is 1less than the
plasma radius which is initially the laser spot size, the

flow may be considered planar and one can take L =c¢ <.



When T is too large for the flow to be considered planar
the expansion will become spherical and L = a« R where R is
the focal spot radius. The factor « is a constant of order
unity.

The absorption surface is the boundary between the
corona and the conduction zcne. As the laser does not
penetrate into this region its only source of energy is
heat conduction from the corona. Its temperature therefore
varies from a few eV (the shock heated temperature) at the
boundary with the compressed solid to the temperature of
the corona at the opposite oundary. The plasma in this
region is accelerated from the ablation surface and ends up
with sonic velocity relative to the absorption surface,
necessary for a cons stent boundary with the corona. This
region will tend towards steady state with the energy
outflow across the absorption surface equal to the inward
conduction of heat from this surface. Once the conduction
zone has reached a steady state the ablation and absorption
surface will have a constant velocity v . There 1s,
therefore, no difficulty connecting the conduction zone to
the solution for a self-similar isothermal rarefaction. The
only condition being that the plasma has sonic velocity
relative to the absorption surface.

The velocity V. is greater than the fluid flow velocity
in region III of shock compressed material but is close
enough for them to be considered equal. These velocities

are much less than the flow velocity in the coronal region
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and thus for the calculation of energy and momentum balance
can be approximated as zero. Assuming this, the ablation
pressure p_ is determined by integrating the momentum
equation over the conduction zone and is given by the

common expression [47]:

p, = 2 p, Cq (2.31)
Where p, = the material density at the absorption
surface.

The only source of energy for this process is from the
laser itself. The absorbed laser energy must equal the
energy needed to maintain the plasma flow in both the
conduction and coronal region. The energy absorbed by the
corona is modeled as an outward heat flow from the
absorpiion surface, and equal to the energy necessary to
maintain the isothermal expansion. The energy absorbed by
the conduction zone is modeled as an inward heat flow. By
balancing these heat flows a self consistent model is
obtained which in turn gives the corona temperature.

If A represents the fraction of the laser energy
absorbed and I the laser intensity then heat flow is give

by [47]:

AI =0 +20 (2.32)

out in

Where . the heat flow into the corona.

Q
ou
Qln = the heat flow into the conduction zane.

Assuming a steady state conduction zone and assuming

o8
to



the energy content of the shock propagating into the target
is insignificant the net energy flow into the conduction
sone is zero and the deposited laser energy must balance
the total energy in the corona. Integrating the energy

content of a planar self-similar flow gives:
Al = 4 p cC_ (2.33)

As mentioned above, when the laser intensity is intense
enough to reach the critical density, the determination of
A depends on the degree of resonance absorption present and
is handled differently by different authors ([47,48]. When
the laser intensity is below this point (the case in this
study) it is usual to take 4 = 1.

The most inner perturbed region is a shock driven into
the target giving a region of compressed solid which is
moving into the unperturbed solid with velocity V.- The
energy input to the shock can be calculated using the
equation:

3E )
L =p V=2p c°V (2.34)

at a ¢s o s cs

Estimates of the shock velocity show that V __ is much
less than the plasma sonic velocity c_ indicating that the
energy content of the shock is negligible in the energy
balance as was assumed earlier.

In deriving expressions for laser penetration and
electron temperature Mora’s model assumes a laser profile

with constant intensity (square pulse). In this thesis the
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scaling laws of the model will be used primarily to medel
the plasma expansion during the leading edge of the laser
pulse. As the intensity is not constant the calculation at
a particular point in time is done using the average laser
intensity up to that time. The assumption is thus made that
the plasma evolution depends most heavily on the total time
since the laser turn-on and the total energy absorbed by
the plasma up to that time. The plasma evolution is assumed
to depend only secondarily on the detailed intensity
profile.

The model described here, while 1limited by its
simplicity has the advantage of offering a simple fully
determined picture of the lase ©plasma interaction. There
are many ways in which details of this model cculd be
improved but it is felt that they detract from the
simplicity of the model making the model more complex and
obscure without greatly improving its accuracy. The scaling
laws derived from this model are often still reasonable
even in cases where some of the det2.ls may not be
completely valid. When greater detail is required it is
preferable to use numerical simulations for a full
treatment. The simple analytic model then gives a simple
easily pictured comparison which helps a great deal in
interpreting the features of the much more complex

numerical solution.

[£9]



2.2.d Stationary flow

Self-similar models of plasma flow with non planar
geometry usually run into difficulty because the plasma
usually has some characteristic length such as the radius
of the focal spot in the present case. Tt is, however,
possible to look for stationary (time independent)
solutions to the one dimensional fluid equations which are
useful in describing laser plasma.

The stationary flow model developed for use in this
thesis assumes an isothermal plasma in which there is some
point r having electron density n_ such that the plasma
flow is sonic, v = c_- This model will prove useful for
modeling stationary spherical flow which results after the
laser plasma makes the transition from the initial planar
self-similar flow to spherical flow.

Setting time derivatives equal to zero and normalizing

the velocity to the ion acoustic velocity,c_ , the 1D

fluid equations (equations 2.17 and 2.18) becone:

(a - 1) dln n v _
— VvV +V 3r +t3F = 0 (2.35)
av dtn n _
14 3r + 37 =0 (2.36)

Where « is a parameter represanting the particular one

dimensional geometry present. The value of o« =2quals 1, 2 or

3 respectively for planar, cylindrical, or spherical flow.
By examining the equation for momentum conservation

(equation 2.36) at points r >r one arrives at the

o
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following condition for the flow velocity:
v o=(1+ 2w (2.37)

Where: U = - én (n/n ).
Using this result for velocity the continuity equation

(equation 2.35) becomes:

aU (¢ - 1)

2U0 == = (1 + 2U) = (2.38)

ITn the case where a« = 1 the only stationary solution is the
case of constant density as expected. For a > 1 solution is
obtained by examining two cases.

As r approaches r so that 2U « 1 the solution to the

equation is given by:

172
U= [ (@ - 1) ta =— (2.39)
This solution gives a derivative for n_ which for o 21
becomes infinite at r =r .

In the other 1limit as r 1increases such that
(2U+1)/2U = 1, the case which will be more applicable to

the measurements presented in this thesis, the solution

becomnes:

U= (¢ - 1) tn — (2.40)

which may be rewritten as:



ry(a - 1)
n =n, [ ] (2.41)

The effect of the term dropped from the differential
equation in making this approximation serves to hasten the
increase of U with r and so hasten the point where it
becomes insignificant and where this solution becomes

valid.

2.3 Computer Simulation of Laser Plasma Expansion

Detailed simulation of laser plasma interactions
requires the use of numerical techniques. This work will
use the results of two different simulation codes, Medusa
and Castor. The simulation codes and 2D simulation results
were provided by Dr. Rankin and Dr. Capjack within the
Department of Electrical Engineering.

Medusa is a one dimension Lagrangian simulation code
and is described in detail in reference [49]. As usad for
the present studies, this code did not include radiation
transport of energy. In addition, laser produced magnetic
fields can not be simulated by one dimensional codes.
Because of its one dimensional characteristic this code is
limited in its ability to reproduce laser target
experiments but its results should be useful in those
limiting cases where the expansion may be considered one
dimensional, either planar or spherical. It is also useful

for comparison with the results of simple one dimensional
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analytic theory where it gives a measure of the validity of
the assumptions used in the simple analytic model.

Castor is a two dimensional hydrodynamics code using
Eulerian coordinates [50], which has been modified to run
at the University of Alberta. It assumes that the plasma is
radially symmetric and so 1is suitable for many laser plasma
simulations. Like Medusa it does not take into account
radiation transport of energy. The code as run also ignores
any effects caused by magnetic fields within the plasma.
Within the limit of radially symmetric plasmas it should be
capable of reasonable simulations of laser target

experiments.

2.4 Magnetic Field Production in Laser Plasma
The development of a magnetic field is governed by

Faraday’s law:

3B

oz = —(V x E) (2.42)

Assuming that there is no polarization o: magnetization
in the plasma the fields E and B are due to charge and
current distributions only. There are two main components
to the electric field within an expanding laser plasma. The
first component is derived from the charge separation
needed to balance the electron pressure in the expanding

plasma and may be given approximately by ([51]:



E=_—=V (n Kk T) (2.43)

e

L]
=]

It leads to a generating term for the magnetic field given

by:

Q

B 1l
-éf - —é—-ﬁev nex v (kb Te) (2-44)

I

This allows for the development of a self generated
magnetic field whenever the electron density gradient does
not coincide in direction with the temperature gradient.
The second main component of the magnetic field within an
expanding plasma is due to the Lorentz force acting on the

expanding plasma and is given by [52]:

=V x (V x B) (2.45)

m‘m
ot

Where: V = the fluid velocity vector of the plasma.
In this term V x B may be thought of as a radial electric
field which develops from the charge separation as the
plasma moves through the magnetic field.

In the case of two dimensional radially symmetric
plasma expansion, which may only generate toroidal magnetic
fields, this term may be broken into the following two

ternms:

V. (VxB)=-B (V- V)e, - (VB V) e (2.46)

Where: V?D = the two dimensional divergence 1in the
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axial (z) and radial (r) directions.
B = the magnitude of B.
ey = unit vector in the e e direction.

The first of these two terms gives rise to a saturation
of the magnetic field as it generally gives g% proportional
to but in the opposite direction té B. The effect of the
second term is to cause any field present to be dragged
with the plasma at the plasma velocity.

Magnetic fields become important to plasma
hydrodynamics when the ratio, g, of the ideal gas pressure
to the effective magnetic field pressure becomes less than
one. B is given by the expression:

2u°nekb Te

(3:—-—3—2—— (2.47)

The presence of large self-generated magnetic fields has
been shown in the past to be consistent with structural
anomalies observed 1in 1laser plasmas [53,33]. Direct
measurement of these fields using Faraday rotation has been
possible in the past but these measurements are usually
difficult because the magnetic fields must be extremely
strong in order to be observable. |

The effects of magnetic fields with B << 1 on laser
plasmas has been measured directly by applying an external
transverse magnetic field to the expansion of very low

14

density (1 x 10" cm™’) laser plasmas [54]. Finally, even

in high B plasmas where the magnetic field is not strong
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enough to affect the plasma hydrodynamics directly it can
still have a significant indirect effect by reducing the

heat conduction within the plasma [52].

2.5 Refractive Index of a Plasma

In a highly ionized plasma the primary contribution to
the index of refraction arises from the free electron gas.
As well there can be contributions to the index of
reiraction from bound electrons near the frequencies which
correspond to transitions within the ions. If the plasma is
dilute enough that one may neglect interactions between the
ions, a valid approximation for most plasmas, the
refractivity from the various sources are additive [55].

That is:

(n- 1)=F (n_ - 1) + (n_ - 1) (2.48)
i

Where: n_ = the total index of refraction at a point.
n = the refractivity of the free electron gas.
n_ = the individual refractivities from various
ion sources.
When there are no external magnetic field present the

expression for the index of refraction becomes [56]:

2 172
(5]

n = |1-— P (2.49)
Wil + i(vc/ w) ]

Where: w, = plasma frequency and is defined as:
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De e
w = {8 = ] (2.50)

The electron collision frequency, v_, may be approximated
using equation 2.30.

In hot plasmas at low density the collisional term can
generally be neglected in which case a simpler expression

for the refractive index is obtained:
2 172
w
n=[1—-—"—] (2.51)

Due to the much larger mass of the ion and because the
number density is usually comparable to or less than the
electron density, the contribution of free icns to the
refractive index is usually much smaller than the electron
contribution and can be ignored.

The background contribution of the different ion
transitions is directly proportional to the ion
concentration and generally decreases as the state of
ionization of the atom increases ([56]. In practice ground
state ions generally have transitions energies well above
visible light. Upper states are usually considered to have
no significant population while those transitions which do
occur are usually Stark broadened and have small oscillator
strengths. Thus, for hot highly ionized plasmas, the free

electron contribution dominates.



2.6 Interferometry of 2D Plasmas

In general, interferometry uses the interference
properties of light to measure optical path length. 1In
amplitude splitting interferometry a beam of light is split
by dividing its amplitude, as with a half silvered mirror,
to produce two beams with identical phase information. One
beam is used as a reference beam while the other is used as
a probe to pass through the sample to be measured. When the
probe beam 1is recombined with the reference beam the
interference pattern produced provides a record of the
phase difference between the two beams and thus the optical
path length through the sample being studied. Optical path
length is equal to the integrated index of refraction along
the beam path.

Probing hot plasmas with subnanosecond laser radiation
whose frequency 1is well above the plasma frequency
encountered provides a useful diagnostic of the refractive
index and thus electron density since it is capable of good

time resolution and does not perturb the »>lasma.

2.6.a Interferometry of 2D plasma

To obtain the phase deviation of one position oI the
probe wavefront from its unperturbed form (ie: 1in the
absence of plasma), (nr— 1) is integrated along the path
of the ray associated with that point. Fig. 2.3 depicts the
case of an axially symmetric plasma, n =rh(r,z), probed

transversely to the axis of symmetry where the path of a
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ray is assumed to be undeviated by the plasma. Under these

conditions the integral along the path of a ray becomes:

R
2 r
d(x,z) = X J [nr(r,z) - 1] > v dr (2.52)
T Yx (r° - x7)
Where: & = the deviation of the wave front in
wavelengths.

z = the position along the axis of the plasma.

x = the perpendicular distance of the light ray
from the symmetry axis of the plasma.

r = the radial distance from the axis of
symmetry.

R = the maximum radius of the plasma past which
electron density is negligible.

% = the wavelength of the probe laser.

This is an example of Abel’s integral equation and may
pe inverted to give the following expression for the index
of refraction at a point as a function of the distortion of
the wavefront:

A (foas(x,z) 1

n dx 2 2,172
r (x* = r7)

(n (r,z) - 1] = - dx (2.53)

A particular interferogram of a plasma will include
both halves of the plasma. This is a practical necessity as
it allows for the determination of the plasma axis from the
interferogram. It also aids in Jjudging the actual
cylindrical symmetry of the plasma. Finally, with both

halves of an interferogram present it is possible to take
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in“o account an extra cosine(8) term to the refractive

index such that:
nr(r,e) = no(r) + nl(r) cos (8) {(2.54)

Where: 6 is the angle relative to the x - axis.

The wvalue of n(r,z,8) is determined by using an
appropriately weighted average of &(x,z) and &(-x,z) in the
deconvolution.

One does not have to be limited to the case of
cylindrically symmetric plasmas. Previous authors have used
similar methods to investigate plasmas with other two
dimensional symmetries. The particular symmetry must of

course be known in advance [57-63].

2.6.b Routines for calculating Abel’s integral

Many routines have been developed for solving Abel’s
integral using a given data set [64-69]. Many of these
methods have been developed not for interferometry but for
analyzing the light emission from optically thin plasmas
which give rise to similar equations. All the methods
considered here fit some piecewise function form to the
data for which the integration «can be carried out
analytically. Most methods reduce the task to an equation

of the form
n. =Y 4., N (2.55)

Where: nj = the refractive i dex at j.



Nk = the fringe shift data at different points.
A

3k = an inversion coefficient matrix produced
in the derivation of the method.

There is not just one correct set of Ajk but .&any, the
particular Ajk depending on the factors and assumptions
puilt into the derivation. The different methods have
different properties in terms of accuracy and
susceptibility to scatter in the data.

One of the earliest and simplest method is that of O.H.
Nestor and H.N. Olsen [66]. This method uses what are
perhaps the simplest and most natural assumptions to make.
First the change of variables, r’=y and x°=u is made and
the integral becomes:

R2

A ds 1
-2 J e — du (2.56)
v (u - v)

nr(V,z) -1

The assumption is then made that the quantity dd/du
between two points k and k+1 is constant and equal to the
slope between the two pocints. This method 1s therefore
equivalent to fitting a quadratic of the form ax® + b
between two points. Once the integrals are performed
analytically the result may be rearranged into a sum over
the different Sk corresponding to the data.

A more advanced method is the method of Bockasten [67].
Bockasten’s method is the method that will be used in this

work. It involves the fitting of a cubic to successive sets

of four data points and then substituting the fitted
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function directly into the integral in place of & and
integrating the resulting integral analytically between the
two interior points. Thus the problem breaks up into a sum
of integrals. At the point r = 0 where there is only 3 data
points available for the first integral of the sum, the
cubic is fitted by using the condition that d8/dx at r =0
is equal to zero. This condition is necessary for the
integral to converge and is a necessary condition of any
smooth axially symmetric distribution of the quantity
nr(r,z)-l. For the integral at the extreme of the data
where there is no point past r = R a gquadratic is fitted to
the three points available. The resulting curves can be
found as functions of the data points and the resulting
integrals separated into the contributions from the
individual data points. The solution can then be rearranged
into a sum over the data points with a set of coefficients
derived from the above procedure.

There are several sources of error in this method of
ipversion. The first source of error 1is caused by
inaccuracy in the inversion coefficient values, Ajk' This
evrnt can be made arbitrarily small by increasing the
precision of the Ajk values.

The second source of error is due to the finite grid
size of the inversion. This source of error is difficult to
specify exactly ‘nce it depends on the specific function
being inverted. Tue error can however be characterized to

some extent. Bockasten examined the error in three test



functions of different shape and noted that the errors were
similar and generally were quite small although it can
become significant at the extremes where 3 goes to zero.
This source of error can be kept under control by chcosing
a small enough grid.

The final source of error in the method is caused by
the error in the measured values themselves. This source of
error is usually the most significant. It may be given by
the expression:

5y 1/2
c = A Os [ Zk(Ajk) ] (2.57)

n

Where: o= the estimated absolute error in the values
of nj obtained from the inversion.
05 = the experimental error in the measured
values of 8 in wavelencgths.
A = the wavelength of the probe laser.

This source of error is worst near the axis of the
inversion and becomes worse as the grid size is reduced.
For this reason it is important to <choose grid size
carefully in order to balance the sources of error. This
usually comes down to choosing a grid size just small
enough to cover the scale size of features in the data
which are considered real.

This method has the advantage of producing very

accurate results provided there is little scatter in the

data. It is however very susceptible to scatter
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particularly in the region near the axis and some method of
smoothing the raw data is normally considered essential.
Bockasten recommends smoothing by least square fitting of a
cubic to seven successive points and using this curve to
provide a smoothed value for the middle point of the seven.
The resulting smoothed value of 3§ , gk, is given by a
weighted average of points around 6k [67].

Two other methods will be mentioned briefly as they
provide interesting alternatives to Bockasten’s method. The
first is the method of William L. Barr [68]. Barr begins by
using an alternate solution of Abel’s integral equation
which places the derivative outside of the integral. Barr
notes that in this way the integral is made much less
susceptible to scatter in the data. For the purpose of the
integration he makes th2 same approximation for the data as
that made by Nestor and Olsen and arrives at a set of
coefficients for the integration. For the purpose of taking
the derivative of the resulting integrals which is where
the susceptibility to scatter will come into play, Barr
fits a least square polynomial to the data which provides
the necessary smoothing. Barr points out that by this
method smoothing is performed on values which are already
fairly accurate with very little scatter. Once again the
result is in the form of a sum over a set of data points
using a matrix of coefficients.The method is shown to be
very accurate. It has the advantage or disadvantage that

the smoothing of the data is contained explicitly within

10



the coefficients.

The last method considered here was developed more
recently and published in 1978 by J.Glasser ,J.Chapelle,
and J.C.Boettner ([69]. This method makes use of third
degree spline functions fitted to the data and has the
advantage of being able to process unevenly spaced data
points (an important consideration in some work). The
spline is made up by requiring the individual cubics as
well as their first two derivatives to be continuous at
their junctions. Smoothing of the spline is achieved by
means of a parameter in the fitting expression which is
related to the estimated accuracy of the data.

The authors applied the method to plasma spectroscopy
and set up the system so that the selected spline could be
viewed and the quality of the fit determined interactively.
In the authors’ tests of their method on analytic test
functions they were able to achieve better results then
with all other methods tested. Good results combined with
smoothing which <can be fairly well related to the
experimental erreor make this method seem desirable.

In the present work there was no need to analyze
unevenly spaced data points. In addition, as many
inversions were required to process one interferogram, it
was felt to be beneficial to avoid any active fitting by
the operator. Thus the standard Bockasten method was chosen

for processing the data.



CHAPTER 3
EXPERIMENTAL SETUP
Fig. 3.1 shows the schematic layout of the
experimental setup used to obtain the data for this

thesis. The experimental setup consists of 5 basic

systems.
1. = Main KrF Laser System
2. = Target System
3 - Probe Laser System
4. - Interferometer Systen
5. =~ Timing Monitor

The main laser system produces a nanosecond, 248 nm
wavelength laser pulse which is focused onto & target.
This system includes calorimeter monitors of the laser
energy, streak camera monitoring of the pulse shape and
digitized video monitoring of the equivalent plane focal
spot. To avoid breakdown in air the target is mounted in a
vacuum chamber. Digitized translator systems are used for
moving it and cortrolling its alignment. The main laser
also delivers a trigger pulse to the probe laser system at
which time this system delivers a subnanosecond pulse for
optically probing the plasma. The interferometry system
includes an interferometer, a lens for imaging the plasma
and a vidicon and a video digitizing system for recording
the interferogram. For the interferogram to be useful it
is also necessary to have an accurate measure of the
relative timing of the probe pulse to the main laser
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pulse. These various systems are described in the rest of

the chapter.

3. KrF Laser System

The experiments were performed using the Krypton
Fluoride Laser Facility in the Department of Electrical
Engineering. The front end of the KrF laser system
produces a pulse which is 20 ns long. This pulse is split
into three pulses which are then used to sequentially
extract the final stage electron beam amplifier producing
three 20 ns pulses. Part of the initial 20 ns pulse |is
compressed using Brillouin back scattering to produce a
short pulse which in turn extracts the energy from the
20 ns pulses in a large aperture Brillouin cell to produce
a final pulse with a wavelength of 248 nm, a duration of
1.5 ns and energy up to 2 J

The laser pulse produced by the system is focused on
to the target using a 10 cm diameter 18 cm focal length
lens. This lens is an aspheric doublet which is necessary
to correct for spherical aberration when used at its
unstopped aperture of f / 2. The focal spot thus produced
has been characterized and the focal spot for this system
is nominally considered to have 70 % of its energy inside
a 35 um diameter spot.

The contribution of beam divergence to the focal spot
is monitored by splitting off a small fraction of the main

beam, focusing it with a longer 70 cm focal length lens
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and then imaging the focus onto a video digitizing system.
The digitized image corresponds to the actual focal spot
except for a scale factor of 4 times given by the ratio of
the focal lengths iiced in the monitor and used to focus
the beam ontc tne target. The actual focal spot on target
includes the residual aberrations of the 18 cm aspheric
lens.

The energy of the main laser pulse was monitored by
imaging a small fraction of the beam onto a pyroelectric
calorimeter with the trace read directly off of an
oscilloscope. The system was calibrated by comparing it to
a calorimeter set within the target chamber. The Pulse
shape of the main laser was monitored using a Hamamatsu

€979 streak camera system.

3.2 Target System

Targets for this experiment were mounted within a
vacuum target chamber kept at 1less than 3 x 10—5 torr
during the experiment. The target must be in vacuum as any
substantial background gas pressure would interfere with
both the laser pulse as it is brought to focus and with
the expansion of the plasma.

The target position is controlled by a digital three
axis positioning system contrclled from outside of the
target chamber. The surface of the target is adjusted to
the best focus of the main laser, which was determined as

the point with the highest keV energy x - ray production.
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The position of the target surface is subsequently
controlled by means of a He ke laser alignment system. The
He Ne laser beam is paraliel to and is cut by the target
surface. The cut beam is then reimaged with enough
magnification so that the target position may be
controlled with an uncertainty less than the depth of
focus of the main laser.

For the present experiments plane targets of high
purity aluminum were used. The target surface was prepared
with a micro surface lath which avoids adding impurities
to the surface by polishing. The targets used were one
eighth of an inch thick and the data for this thesis was
collected by firing on the rarget edge to minimize shadow
effects in the interferometer.

Accurate alignment of the direction of the target
normal was required to avoid shadowing effects in the
interferometer. The target was aligned by reflecting a
He Ne laser, which was set up parallel to the main laser
beam, from the target surface. By using this method to
control the rotation of the target, the probe laser could

be kept parallel to the target surface within 10 mRad.

3.3 Nitrogen Laser

Probe pulses for this experiment were produced with a
transversely excited nitrogen laser. The physics of
nitrogen lasers is dealt with extensively by Willett in

the book Introduction to Gas Lasers ([70]. Fig. 3.2 depicts
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the energy level diagram. The predominant laser 1line of
molecular nitrogen is the transition from the first
vibrational 1level of the C%% state to the first
vibrational level of the B%% state and oscillates with a
wavelength of 337 nm. The life time of the upper C state
is about 40 ns while the lifetime of the lower B state is
about 10 us. The laser transition thus is self quenching
and inherently provides short pulses, the duration
depending on the nitrogen pressure. The medium has high
enough gain for the laser to be operated as an amplified
spontaneous emission laser without cavity mirrors.

Shown in Fig. 3.3 is the electrical schematic of the
laser develcped for this thesis. The transient nature of
the laser pulse means that inversion can only be obtained
by exciting the system within the lifetime of the upper
level. Electrical pumping must therefore be done by using
a high voltage pulse with current rise time less than
about 40 ns [70]. This 1laser operates by the double
discharge process [71] characterized by a relatively slow
discharge through the spark gap, the current limited by
the inductance of the circuit, (Lx) followed by a
discharge between the electrodes which is fast enough (due
to inductance L, being low) that it is independent of the
discharge through the spark gap.

The design for this laser was based on the paper by
H. Strohwald and H. Salzmann (4] and is shown

schematically in Fig. 3.4. The discharge through the spark
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gap is slow enocugh (about 50 ns) that the voltage of the
discharging electrode is kept constant along its length.
During this time the Blumlein acts as a capacitor. The
formation time for the discharge between the electrodes is
varied along its length by varying the gap between the
electrodes. By setting the electrodes closer at one end of
the discharge than the other a travelling wave discharge
is produced in the gap, the blumlein now behaving as a
transmission line. The discharge can be made to move down
the electrodes with about the velocity of 1light giving
preferential amplification to a pulse moving with the
discharge. This mode of operation was demonstrated at
atmospheric pressure. With the electrodes parallel the
pulse from each end of the laser is approximately equal.
As the gap is wedged the pulse energy increases from one
end of the laser while decreasing from the other. A ratio
of about 4 to 1 may be achieved as shown by Fig. 3.5. At
higher filling pressures predicting shorter pulse lengths
a travelling discharge is necessary as the length of the
cavity is much longer than that of the pulse. The ratio
between the energy of two pulses is expected to become
progressively higher with increasing filling pressure.
This dependence on a traveling discharge at higher
pressures was in fact observed as a pulse could only be
detected from one end at a time.

The pulse length of the laser is varied by altering

the nitrogen pressure in the cavity from 1 to 6 atm. Using
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a streak camera the pulse width (FWHM) was demonstrated to
vary from about 600 ps at a filling pressure of 1 atm to
about 300 ps at 3 atm the exact pulse width depending on
the alignment of the electrodes. Fig. 3.6 shows an example
streak trace of the nitrogen laser pulse.

The energy of the laser was measured using a biplanar
photodiode calibrated against a pyroelectric calorimeter.
The energy increases with the charging voltage and has a
value of about 200 uJ at = ~arging voltage of 20 kv.

The laser is triggeres by means of a 5 kV pulse to a
trigatron spark gap. The trigger pulse is produced by
another blumlein circuit triggered by a krytron. Aan
avalanche transistor circuit was used to trigger the
krytron giving a total jitter in the timing of the laser

output of about 2 ns when the system is optimized. This is

sufficient for timing the probe laser to the main KrF

laser discharge. The avalanche transistor circuit itself
was triggered by means of a semiconductor photodiode
signal from the main laser. The timing was adjusted by

means of changing an electrical delay cable in this line.

3.4 Jamin Interferometer

The plasma interferometry was done with a Jamin
interferometer developed for this project. Fig. 3.7 shows
the optical setup. The interferometer consists of 2 cm
thick quartz plates set parallel at some angle to the

probe beam. The splitting and subsequent recombining of

53



-
[
E g
e B
w0
S
| \ 2
Sunoey)oy _ mﬁﬁoom%wm
% 00T % 08
o { wesyg 9qoJad \///IIIII\ Lvy
T Twwg Z/ awiadlxXy
- HA > wesg soualajay
Furjoayay A mﬁﬂwmzwm
% 0C % 001

approximately

Drawing is
to scale

Main Laser

3.7. Jamin interferometer.

Fig.



the probe is accomplished by partially reflecting coatings
on the surface of the quartz plater.

The Jamin interferomete:: LS an excellent
interferometer for applications where the reference beam
can be routed near to the probe beam. The interferometer
has the advantage of being very easy to align as the
quartz plates only serve to shift the beam pulse in a
transverse direction and do not alter the beam direction.
The only other limitation to this interferometer 1is the
limitation to its resclution due to the necessity of
imaging through a thick plate.

The interferometer developed for this thesis may be
used with a plate angle from 7.5 deg to 15 deg giving a
separation between the probe and the reference beam of
Smm to 10 mm. A 5 mm beam separation was considered
sufficient to ensure that the plasma density in the region
of the reference beam is insignificant. The interferometer
was designed to keep the optical elements as far as
possible from the plasma consistent with the use of f / 10
collecting optics, ensuring that the beam size (as
collected by the 1lens) could be handled by the quartz
interferometer plates (diameter 1less than the beam
separation). The probe beam is routed through the target
chamber at 15° to the horizontal and the interferometer
designed so as not to interfere with the target alignment
beam.

The alignment of the interferometer plates is done by
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using the probe laser. Alignment consists of adjusting the
angle of one of the plates until the spatial position of
the probe and the reference beams, upon recombination,
ccincide exactly. Due to the divergence of the probe laser
and the corresponding curvature of 1its wavefront any
misalignment shows itself by producing a series of
fringes. the plate is adjusted until the fringe spacing
becomes infinite (fringes larger than the field of view).
A back ground fringe pattern is produced by placing a
thin wedged plate into the beam path betwecn the first
interferometer plate and the target. The wedged plate
causes a small deflection to the beam paths introducing a
small asymmetry into the interferometer. The overall
optical path 1length of the probe and reference beams
remains equal. However, the wavefronts of the beams, which
are curved due to the beam transport optics, are distorted
2o that when recombined they form a series of parallel
fringes.This method of producing fringes has the advantage
that the fringe spacing 1is independent of the exact
positioning of the wedged plate itself and so is an easy
nethod of producing very stable reproducible fringes.

The wedged plate is placed into the beam path atter
the interferometer is aligned. Since the probe passes
through the wedged plate before passing through the plasma
it has a negligible effect on the imaging accuracy of the

system.



3.5 Imaging and Digitization

The plasma is imaged onto the vidicon with a 2.5 cm
diameter, 25 cm focal length lens. The lens was placed for
this experirent to give approximately a ten to one
magnification. There are three main sources of aberration
in this imaging system, that due to diffraction depending
on the f nurber of the optics and increasing as the
diameter of the 1lens is reduced, spherical aberration
which increases as the diameter of the lens increases, and
the aberration due to imaging through a thick plate which
depends on the angle of the plate and the f number.

The f number of the lens should be chosen in order to
minimize the total aberration of the imaging system. The
spot sizes due to diffraction and spherical aberration
were estimated using standard formulas. The spot size due
to imaging through a thick plate was estimated by ray
tracing using the extreme rays. The ideal f number was
determined to be about f / 16 and the lens was stopped
down accordingly. The resolution of the total system was
estimated as the root of the sum of the squares of the
three contributions giving a figure of about 10 um.

The resolution and magnification of the system was
measured by imaging a resolution test chart placed at the
point of main laser focus. The finest line spacing which
could be determined was about 12 um, which is in
reasonable agreement with the estimated resolution as

given above.
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The system is focused by firing the main laser onto
the end of a 56 um diameter wire, Fig. 3.8, with the end
of the wire kept on the focal plane of the main laser. The
target position is adjusted laterally until the laser is
observed to be hitting the end of the wire. The laser
could be observed hitting the wire over a range of
movement cf 110 - 150 pgm. This measurement is in agreement
with the outer wings of the 35 um diameter focal spot.

The interferometer imaging lens is then focused on
the wire to produce the sharpest image on the video
digitizer. As features on the end of the wire could be
focused to within the radius of the wire, the focusing
error relative to the main laser is estimated at * 60 um.

The plasma light and any stray KrF radiation was
filtered from the interferogram by using thin (1.6mm)
quartz plates coated with a thin film of silver which acts
as a reasonably narrow band pass filter centered close to
the nitrogen laser wavelength.

The interferogram was imaged onto an Hamamatsu C1675,
type 13, ultraviolet sensitive camera head and the signal
was digitized using an Imaging Technology Inc. FG-100-AT

video digitizing board inside an AT computer.

3.6 Timing and Calibration
It is essential that the timing between the main
laser and the probe laser be known accurately. This was

accomplished by imaging a small fraction of both pulses
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onto Hamamatsu R1193U-02 uv sensitive biplanar
photodiodes. The signals were added and observed on a
tektronics 7104 oscilloscope. The time base of the scope
was calibrated to 1 % accuracy using a 100.0000 MHz signal
from a tektronics time mark generator. The relative timing
of the two pulses could be measured with this system to
within 100 ps.

To calibrate the system a thin quartz plate was placed
at the main laser focus at such an angle as to reflect
part of the main laser down the same path as the probe
laser. The resulting signal was observed on a third
photodicde giving an absolute timing which was compared to
the relative timing of the monitoring system.

For consistency, as the position of the start and peak
of the main laser pulse is usually indeterminate, all
reported timings for the probe pulse in this thesis were
measured from the half maximum point in the rise of both
pulses. Streak traces of the KrF laser pulse show an
average rise time of about 1.2 ns for the KrF shots used
in this thesis. Thus taking a probe pulse width of 600 ps,
a timing given as 0.0 ns nominally corresponds to a probe
pulse centered 900 ps after the beginning of the main

laser pulse.
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CHAPTER 4
EXPERIMENTAL RESULTS

The raw data analyzed in this experiment consists of
digitized interferograms which are deconvolved to produce
taples of electron density as a function of positiocn. This
chapter presents the raw data obtained from the experiment
and discusses the methods used to process it. Deconvolution
from interferogram to electron density is illustrated using
a sample interferogram. Electron density is in turn
analyzed to obtain values for the axial scale-length, the
time and energy dependence of which forms the primary
investigation of this thesis. Sources of error are
identified and calculations made of the overall accuracy of
the results. This chapter also describes the lateral
expansion features of the plasma which will be important in
connection with a discussion of the possible presence of

strong magnetic fields within the plasma.

4.1 Experimental Data

Interferograms were obtained with probe timings ranging
from - 1.3 ns to 12.0 ns and main laser energy ranging from
190 mJ to 1650 mJ. A few interferograms were obtained at
lower energies but the pulse timing is not measurable. The
following table, Table 4.1, lists the statistics for the

interferograms analyzed in this thesis.
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Shot Probe Laser Pulse Focal spot
number timing enerqy duration digitized
(ns) (mJ) (ns)
21078822 -1.3 640 1.5 yes
22078811 -1.1 840 1.8 yes
21078827 -1.0 580 2.4 yes
22072810 -0.9 560 1.4 yes
22078812 -0.6 870 1.6 ves
21078823 -0.4 540 2.4 yes
14108807 -0.3 353 _ no
21078813 -0.1 240 1.6 yes
22078818 0.1 670 1.6 yes
22078820 0.1 610 1.5 yes
Shot Probe Laser Pulse Focal spot
number timing energy duration digitized
(ns) (mJ) (ns)
14108804 0.1 1140 1.5 no
21078811 0.3 230 _ no
21078830 0.3 190 1.9 yes
22078815 0.3 810 1.6 yes
22078813 0.6 680 1.8 yes
22078824 0.7 270 2.4 no
14108805 0.7 1630 1.7 no
14108803 1.3 1430 1.5 ves
12108807 1.5 190 1.5 no
14108808 1.5 1150 1.7 no
Shot Probe Laser Pulse Focal spot
number timing energy duration digitized
(ns) (mJ) (ns)
12108809 1.6 390 1.6 no
12108808 1.8 720 2.5 no
14108802 2.2 1650 e ves
20078818 2.3-2. 230 1.7 no
28078801 2.4 280 2.5 yes
20078812 2.5 260 1.4 no
21078815 2.5 480 1.9 yes
21078819 2.5 520 1.5 ves
21078816 2.6 550 1.7 yes
22078804 2.6 230 2.2 yes
Table 4.1. Interferogram shot statistics.



Shot Probe Laser Pulse Focal spot
number timing energy duration digitized
(ns) (mJ) (ns) |
27078801 2.6 —_— 3.0 no
20078815 2.8 260 1.6 no
25078803 2.8 960 sat yes
12108811 3.2 650 2.¢ no
21078809 3.3 470 1.5 YES
21078814 3.5 650 _— no
12108810 3.7 1160 3.0 no
20078817 3.9 400 1.6 yes
22078823 4.7 620 1.4 yes
22078826 4.9 — _ no
Shot Probe Laser Pulse Focal spot
number timing energy duration digitized
(ns) (mJ) (ns)
22078808 5.2 940 1.9 yes
22078821 5.2 840 2.0 yes
22078806 5.7 1030 2.1 yes
22078807 6.3 1070 1.9 yes
20078813 7.2-7.9 230 1.5 no
21078807 7.5 750 1.7 yes
21078808 8.3 720 1.6 yes
20078809 8.5 521 1.6 yes
20078808 9.4 400 1.6 yes
21078805 9.7 510 1.8 yes
Shot Probe Laser Pulse Focal spot
number timing energy duration digitized
(ns) (mJ) (ns)
20078804 12.0 430 —_— no
22078805 _— 530 1.5 yes
12108806 —_ 70 _ no
12108812 —_— 240 —_— no
12108813 — 100 _— no
12108815 — 230 _ no
Table 4.1. Interferogram shot statistics.
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As the relative timing between the probe and main laser
pulse is measured from the half maximum point in the rise
of both laser pulses, plasma is expected to form at about
- 0.9 ns with the exact time depending on the energy of the
main laser pulse and the shape of its leading edge. The
earliest indication of plasma was observed to be at
- 1.1 ns with a main laser enerqgy of 840 mJ. In general,
initial plasma formation is observed at later times for
main laser pulses of lower energy as expected. A pulse of
559 mJy at -0.9 ns shows a slight indication of plasma
scattering of the probe pulse but no decernable fringe
shift. These observations are consistent with the shape of
the leading edge of the main laser pulse which shows some
energy on target before -0.9 ns and lends confidence in the
calibration of the timing system.

Fig. 4.1 shows a sampling of interferograms obtained at
a variety of times in the main laser pulse. At early times
the plasma is observed to expand both outwards and
laterally. At later times after the peak of the laser pulse
an expanding high density cone of plasma surrounding the
lower density axial region is observed. (A fringe which
curves inwards on axis indicates lower density). The cone
exhibits a sharp discontinuity at its outer surface marking
the limits of the plasmas lateral expansion. This feature
of the plasma will be referenced in this thesis as the

expansion cone and is described in section 4.8.
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4.2 Interferogram Deconvolution

The first step in deconvolving the interferogram to
obtain electron densities is to determine the position of
the fringe maxima and minima. The digitized video image is
analyzed in vertical slices which are approximately
perpendicular to the undisturbed fringes. In crder to be
recognized as a fringe maximum the increase in brightness
compared to the fringe minimum must exceed a visibility
ratio which is set by the programmer. The positions of
fringe maxima and minima as determined by the first stage
of the program are then edited to correct any incorrectly

identified fringes. This editing includes continuing the

fringe cov . 7 short sections where the computer routine
failed *o Sire: i1t, deleting any false fringes caused by
noise in .. Jata, and cleaning up the ends of the fringes

particularly in interferograms with sharp discontinuities
in the fringes or areas where the fringes double back on
themselves. The best that may be done on any fringe which
doubles back on itself is to indicate a vertical drop.
The result is a table giving the position of each fringe
along the vertical axis of the video image as a function of
the horizontal axis.

once the fringes have been properly identified along
their lengths they may be smoothed. Smoothing is important
as the inversion routine is very susceptible to any random
scatter in the fringe positions but care must be used as

smoothing can cause loss of information.
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Numerical inversion requires an axis of symmetry which
is defined by a line through the center of the plasma
image chosen so as to best divide the interferogram into
two similar halves. Determining the best position may
involve «choosing an initial position, inverting the
interferogram and then choosing a new axial position from
the inversion. Such an iteration will guickly determine the
best axis position.

The fringe shift & at a point as required for Abel
inversion is determined by finding the number of additional
fringe shifts at a particular point in the interferogram
compared to a reference shot of background fringes with no
plasma present.

In order to simplify the calculations the background

fringes were fit by an analytic function given by:

iy = 4 + FS n + DELFS n° + AX ix + AXX ix° (4.1)

+ DELAX n ix + GAMMAX n° ix

horizontal position in video pixels units

1l

Where: ix

iy vertical position in video pixel units
n = background fringe number
The coefficients which determine the function are
obtained by fitting the function to a set of undis*urbed
fringes. The function may be fit to either the undisturbed
portion of the interferogram being deconvoluted (if this

portion is sufficiently large) or to a separate

interferogram showing the undisturbed fringes. The accuracy
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of the deconvolution is determined in part by the accuracy
with which the analytic function represents the fringes.
The actual fringe shift at a point 1is determined by
calculating the fringe shift at the positions of the
nearest fringe maximum and minimum and interpolating for
the desired point.

Once the fringe shifts are determined at the specified
points along one radial cut across the interferogram they
are smoothed using the least square cubic fit prescribed by
Bockasten and described in section 2.6. The effect of the
smoothing was checked for a few test cases where it was
observed to produce better results, particularly on axis,
without affecting the overall values obtained for the
electron density of the plasma. The inversion was carried
out by inverting both halves separately and alsoc by using a
weighted inversion which allows for the cos(8) asymmetry in
the electron density. The Bockasten inversion produces a
table of electron densities. In most cases a 20 point
inversion was used and was carried out for 24 slices at
25 ym intervals along the plasma axis. A few of the very
small plasmas were inverted using a 10 point inversion with
the slices closer together as dictated by the
interferogram. Once the inversion has been carried out the
electron densities may be contour plotted to get an overail
picture of the plasma structure and line outs through the

plasma may be plotted and their scale-lengths measured.



4.3 Determination of Scale-Lengths

This thesis is concerned primarily with the time ard
energy dependence of the axial scale-length or e-folding
distance of the electron density of the plasma. Because a
Bockasten inversion gives least accurate values on axis the
axial electron density profile used for determining the
scale-lengths was obtained by averaging the density on axis
with those at the next 2 inversion points on each side of
the axis which have much less error. As the plasma density
does not vary much over the central 5 inversion points the
above average gives a better representation of the plasmas
axial profile.

The values for the scale-length are then calculated by
least square fitting a straight 1line <o the natural
logarithms of the electron densities. The srcale-length is
the inverse of the slope of this line. In general the axial
profile of the iogs of the electron density are not
straight lines as expected from simple planar expansion
theory but are smooth curves which become less steep with
increasing z. For consistency it is necessary to measure
the scale lengths over the same density range for all the
profiles. Most of the scale lengths oauoted here were
measured over ore decade between electron densities of
6 < 10'® and 6 x 10'° cm™ which was judged from the data
to be the most accurate region encompassing most of the
interferograms obtained. Scale-lengths measured at higher

densities would in general be shcrter and those at lower



densities longer.

For interferograms obtained early in the main laser
pulse (before 0.3 ns) the scale-lengths were obtained by
using all available points above 1 . 10" em™” below which
the data becomes very inaccurate. This was necessary as the
plasma was steep enough that there are generally only 3 or
4 points available. The density range generally included
the range from 6 x 10'® to 6 - 10'° cm ’ wused at later
times.

The accuracy of the least square fit represents a
combination of the random error in the electron density
- 1am~s and the accuracy with which the profile in question
may e fitted with a straight line. The accuracy of the
scale-lengths is obtained by combining the error to the
scale-length obtained from the fit with any error expe:cted
from systematic effects as described in section 4.7.b.

Table 4.2 gives the scale-lengths obtained from
Bockasten inversion of the data. Also presented is o the
accuracy of the fit determining the scale-length, o the
estimated error in the scale~lengtn cdue to misfocus of the
imaging system, and o the total error resulting from
these sourcas calculated as the root of the sum of the
squares. For this experiment the calculation for ¢
resulting strictly from the curved path of the probe beam

through the plasma gives a value of 1.2 $ and 1is not

included as it is much smaller than the other sources.
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Shot Timing Energy scale- o o o,
number (ns) (mJ) length (um) (um) (um)
I I I I
21078823 -0.4 540 38.4 8.0 2.2 8.2
14108807 -0.3 353 42.0 2.9 2.2 3.7
21078813 -0.1 240 43.0 4.4 2.3 4.9
141088304 0.1 1140 65.5 8.6 2.3 8.9
Table 4.2 (a). Scale-lengths (early time). Electron
densities from Bockasten inversion.
Shot Timing Energy scale- o o o,
number (ns) (mJ) length (um) (um) (um)
| I I |
21078811 0.3 230 51.0 7.4 2.3 7.7
21078830 0.3 190 76.3 9.2 2.3 9.5
22078813 0.6 680 114.0 4.3 2.3 4.9
22078824 0.7 270 60.3 3.9 2.3 4.5
14108805 0.7 1630 191.5 9.5 2.4 9.8
14100803 1.3 1430 142.% 10.3 2.3 10.6
14108808 1.5 1150 211.5 13.3 2.4 13.5
12108809 1.6 390 94.1 5.7 2.3 6.2
12108808 1.8 720 107.2 7.0 2.3 7.4
14108802 2.2 1650 216.5 17.4 2.3 17.6
Shot Timing Energy scale- o o, o,
number (ns) (mJ) length (um) {(m) (um)
I I | I |
20078818 2.3-2.6 230 65.0 4.5 2.3 5.1
28078801 2.4 280 96.4 7.1 2.3 7.5
20078812 2.5 260 76.8 5.5 2.3 6.0
21078815 2.5 480 131.5 7.8 2.3 8.1
21078819 2.5 520 107.6 G.6 2.3 7.0
21078816 2.6 550 145.2 5.8 2.3 6.3
22078804 2.6 230 101.0 5.9 2.3 6.2
20078815 2.8 260 86.4 6.1 2.3 6.5
12108811 3.2 650 89.8 4.6 2.3 5.2
21078809 3.3 470 130.3 8.3 2.3 8.6

Table 4.2 (b).

Bockasten inversion.

between 6 x 10

Scale-lengths measured

18 and 6 x 1019.

Electron densities obtained from
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Shot Timing Energy scale- o o, o,
r

number (ns) (mJ) length (um) {(um) (um)
| I I | I
21078814 3.5 650 87.0 1.2 2.3 2.6
12108810 3.7 1160 141.1 5.9 2.3 6.3
20078817 3.9 400 111.3 8.2 2.3 8.5
22078823 4.7 620 91.8 4.5 2.3 5.1
22078826 4.9 e 108.7 7.8 2.3 8.1
22078808 5.2 940 100.9 6.8 2.3 7.2
22078821 5.2 840 89.8 5.7 2.3 6.2
22078806 5.7 1030 91.5 5.1 2.3 5.6
22078807 6.3 1070 114.0 5.0 2.3 5.5
20¢78813 7.2-7.9 230 134.4 3.3 2.3 4.0

Shot Timing Energy scale- o o o,

r

number (ns) _ (mJ) length (um) (pm) (m)
| I | | I | |
21078807 7.5 750 108.1 8.3 2.3 8.6
20078809 8.5 21 100.4 2.7 2.3 3.6
200788508 9.4 AN 74.5 2.4 2.3 3.3
2107:805 9.7 R 79.9 2.7 2.3 3.6
22078805 —_ -0 80.2 2.4 2.3 3.3

Table 4.2 (b). Electron densities obtained from
Bockasten inversion. Scale-lengths measured

Q
between 6 x 1018 and 6 x 101’.

4.4 Quick Axial Ipversion

Not all interferograms are suitable for Bockasten
inversion particularly those obtained very early in the
main laser pulse when the plasma is very small. Also the
highest density regions of some interferograms are not
invertible using Bockasten inversion as the fringes are not
complete. In these cases it 1is often still possible to
obtain some information about the axial density and scale
length of the plasma. The following method has the

advantage that it works best for small plasmas with well



defined boundaries where the fringe shift is often only
determinable on the plasma axis, which is just the sort of
interferogram where Bockasten inversion becomes impossible
or very inaccurate. Because of its simplicity and
directness the method also serves as a very useful check on
the results of Bockasten inversion especially at low
densities where gquestions can arise as to the validity of
the results obtained.

The index of refracticn on the axis of a symmetrical

plasma is given by:

8§(0,2) (4.2)

ol >

1
nr(o,z) 1 = 3 F

where F is a factor which depends on the function for the
radial dependence of the electron density. A plasma of
constant density would have F =1. A plasma with a
parabolic radial density profile would have F = 3/2 while a
linear density variation from 0 at R to a maximum on axis

would have F = 2. A plasma with a gaussian radial profile

n'’? if R is taken as the gaussian e-folding

would have F
distance. Thus the accuracy of this method depends on the
accuracy cf the choice of F but for mns*® well behaved
plasmas with maximum density on axis (smooth arcs for
fringes) F appears tc lie bketween 1 and Z. This method
should therefore be able to give densities within a factor
of two. If the radial shape is the same at various axial
distances the factor F is then a constant. From tche

irterferogram this often appears to be the case since the
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fringe shapes have the same characteristic appearance for
different axial positions. In this case the scale-length
of the plasma is independent of the factor F. This
inversion technique is thus most useful for obtaining
estimates of axial scale-lengths. Most of the results used
in this thesis were obtained by deing a full deconvolution,
however, the scale-lengths in table 4.3 were obtained using
the quick method. Shot number 12108809 was used as a check

on the method.

Shot Timing Energy scale- o o, o,
number (ns) (mJ) length (um) (um) (um)
l I | l
22078812 -0.6 870 18.8 2.6 2.1 3.3
21078813 -0.1 241 50.0 1.2 2.3 2.6
12108807 1.5 190 85.8 16.6 2.3 16.8
12108809 1.6 390 95.5 1i.8 2.3 12.0

Table 4.3. Scale-~lengths obtained from quick inversion.

4.5 Deconvolution Example

Fig. 4.2 shows a streak trace qf the main laser pulse
for shot number 22078821 which had an energy of 840 mJ on
target. The timing of the probe was determined to be 5.2 ns
and Fig. 4.3 shows a photograph of the interferogram
obtained for shot. The interferogram represents a typical
interferogram obtained at later times in the main laser
pulse featuring a sharp expansion cone.

Fig. 4.3 also shows the digitized fringes obtained from

the interferogram along with the focal spot position and
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168 um

SHOT # 22878821 T =5.2 ns, E = 848 nd

Fig. 4.3. Interferogram and corresponding digitized

fringes for shot 22078821,



inversion axis used in the deconvolution. The backg-ound
fringes used in the deconvolution were determined by
fitting to a background interferogram obtained on that day
during the same experimental run. The fringes were inverted
using both separate inversions for each side and using the
weighted inversion. Fig. 4.4 shows the averaged axial
profile of the electron density giving a scale-length of
89.8 um. Fig. 4.5 shows a contour plot of the resultant

electron densities obtained from the inversion process.

4.6 Deconvolution Accuracy

It is important tc estimate the accuracy of the results
obtained from the deconvolution of an interferogram and in
particular the accuracy of the derived scale-lengths. Error
in the results arises from a number of sources and includes
both random and systematic contributions. In addition the
operation of the deconvolution routines themselves must be
checked in order to give confidence in the results. An
account of the testing of the deconvolution routines is

given in appendix A.

4.6.a Random contridutions to deconvolution error

Random error in the derived velues for electron density
is generally due to inaccuracy in determining the values of
$(x,2) from the interferogram. There are two main
contributions. The first is determined by the accuracy of

the method of determining fringe position from the
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interferogram and the second 1s due to the accuracy with
which the background fringe positions are represented by
the analytic function used in the inversion.

As the inverted Abel integral (equation 2.53)
integrates 385/8x, random scattering in the values of o is
the most sensitive source of error in n. It is minimized
by smoothing the fringes ws mentioned in section 2.6. While
it is important to minimize this source of error to obtain
accurate results wi*h low noise, it is not the worst source
of error since it generally shows itself as scattering in
the final results.

The absolute error in the values of n_ obtained from

Bockasten inversion is governed by the equation:

g = s (2.

[$1]
~3
—

Where Os is the absolute error in the values of 4. The
factor s varies greatly with the radial position in the
plasma, becoming particularly large near the plasma axis.
In this thesis the error associated with axial data was
minimized by averaging over the five central inversion
points. Except for a few of the very early, very small
plasmas a 20 point inversion was used as it seemed to be
the most suitable considering the accuracy of the data. The

factor s, on axis has a value of 19.219, however the valuc
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arrived at by averaging over the central 5 inversion
points, signified here by s, is 10.308 thus cutting the
error in half.

The random scatter of the data was assumed to be within
the space of one digitized video pixel sinc=a it is
difficult to determine fringe position more accur:ni.’y than
this. This gives a value for the standard deviation of
0.85 um or 1/4 of a pixel. In order to determine values for
o5 @ fringe spacing of 5 pixels was used for an electron

density of 102° em™?, 10 pixels for 10'% cm™® and 25 pixels

for 10'% em™?

These values were characteristic of the daca
for plasmas with a radius of about 400 um.

The use of an analytic function to represent the
background fringes also introduces a contribution to the
random noise 1level of the inversion. As the inversion
equations are lin=zar this noise level is independent of the
plasma and so may be estimated by performing an inversion
of a set of background fringes. The RMS error was
determined to be 5 x 10} cm™> for the plasma as a whole
and twice this value for the averaged axial data.

rable 4.H gives estimates of the random error
associated with the average axial electron densities. For
the calrulation, R was taken as 400 um which was the usual
value used in the inversions and A was 0.3371 um. The
variable Ty is the estimated accuracy of the measured

fringe shifts and o is the corresponding error 1in the

electron denzity. o is the error due to the analytic

b
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function for background fringes and o, is the total random

error given as a fraction.

. -3
electron |fringe|error components (Cm ") |error
density Ts o o o

a o) t
102° cm™? |o.05 |[8.5 x 10'° |1.0 «x 10'® {o0.086
10'® em”® |o0.025 |4.25 x 10"%]1.0 x 10'® lo0.44
10'® em™? |o0.01 [1.7 x 10'° ]1.0 x 10'® |2.0

Table 4.4. Random error in electron density.

The increase in the error at low densities indicated in
the table was observed in the data. The above values are
average estimates. The error associated with early time
plasmas of small radius will generally be larger than the
above numbers particularly at low density. When evaluating
a particular shot the quality of the interferogram should

also be taken into account.

4.6.b Systematic limitations to deconvolution accuracy

In general the plasma has large density gradients
transverse to the path of the probe laser causing the rays
of the probe laser to follow a curved path through the
plasma. This leads to systematic errors in the
deconvolution accuracy of the interferograms. The curved
paths of the probe rays cause in essence a systematic
shifting of the fringes from their expected position using

the assumption that the rays follow straight paths through
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the plasma.

The problem of estimating the inversion accur .y in the
case of high densities and steep gradients, causing large
deviations to the probe path is difficult and has been
examined by a number of authors [72-75]. The problem is
much less severe in the experiment considered here and
simpler calculations are used to deal with the error.

The error is estimated by considering two main
components. First is the innate error caused by the ray
following a curved path. Second is the error caused by
misfocus of the imaging optics of the interferometer
combined with the curved path of the probe rays. The
estimates will be made for the axial region of the plasma
where the effects are most severe.

Both sources of systematic error are estimated by
calculating the resulting shift, Az, in the interferogram’s
axial fringe positions. On axis where the 1index of
refraction is given by equation 4.2 the fractional error in

the derived electron densities is given by:

A8
5

where 8 is the fringe shift on axis and AS is the error in

Ao = (4.3)
the fringe shift due to shifting the fringe pattern by an
amount Az. Assuming an exponential axial profile with
scale-length L, one obtains A8 = -(8/L) Az and the
fractional error in the measured value for the electron
density becomes:

Ao = 2= (4.4)
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The shift for the fringes on axis, Az, will vary along
the profile but is always in the same direction with the
maximum values occurring at higher densities. The maximum
er.or induced into the measured values of scale-length is
estimated by applying the maximum possible error to the
high end of the density range used in determining the
scale-length and no error to the low end. The resulting

error in the measured scale-lengths is then given by:

o=%en[1+é§] (4.5)

Where h is the difference in the natural logarithms of the
extremes of the range over which scale-length is measured
and for the results quoted here which were measured between
6 x 10°® em™® and 6 x 10" cm™®, h=2.3. Expression 4.11
is fairly general. Using it requires estimating the value
of Az caused by the particular source of error under
consideration which for curved rays depends on the degree
to which the plasma deflects the probe.

The angle of deflection for the probe rays, 6, is
estimated by considering the deflection of a ray probing a
plasma of radius R having constant refractive index along
the probe path but with an exponential transverse profile
characterized by the scale-length L. Assuming small angle

deflection the resulting deflection angle is given by the

expression:
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_ . R
e =27 (n - 1) (4.6)

The maximum deflection angle recordable by the
interferogram is limited by the size of the imaging optics
and is given by the inverse of the f nunmrer. Assuming that
the plasma radius is given by R = 3L, a good approximation
for the plasmas studied here, equation 4.6 gives densities
for the maximum deflection angle which correspond
approximately to the density at which the interferogranms
pecome dark. Thus the deflection of the probe beam
determines the maximum density which could be probed in
this experiment.

Fig. 4.6 shows the case for an exactly focused
interferogram. The curved path taken by the proke causes a
ray to effectively probe less deep then the theoretical ray
used to interpret the interferogram. This shift will vary
from zero for rays just grazing the plasma to a maximum for
the rays of deepest penetration. The error s calculated by
estimating the distance, Az, between the theoretical ray
and the position of a straight ray, referred to in the
diagram as the equivalent ray, having the same optical path
length as the real ray. This distance then gives the shift
in the resulting fringe position from where it would be
expected if the rays followed straight paths and so gives
Az used in the expressions for systematic error (equations

4.4and 4.5). Calculating Az requires detailed knowledge of
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the plasma electron density distribution but an upper bound
may be estimated and, assuming small deflection angle, \is

given by:

AZ < ge (4.7)

where R is the radius of the plasma and 6 is the maximum
deflection angle.

Fccusing error in the plasma imaging system can greatiy
increase the amount of error caused by the curved path of
the rays. Misfocus of straight rays causes the fringes to
lose visibility but does not change their position. As
shown in Fig. 4.7 the amount of error caused by mistocus
depends on the angle of deflection of the probe ray. The
degree to which the imaging system is misfocused causes a
shift in the position where the ray is re-imaged in the
interferogram and therefore a shift in the position of the
fringe corresponding to that ray. For small angle
deflection the shift, Az, is given by:

Ltz = Ay 6 (4.3)

Where: Ay = the misfocus of the imaging system

Although the interferometer could be initially focused
to within 60 um, the focal spot of the main laser was
observed to drift 200 - 300 um over the course of a day’s
data collection. In addition the focal spot was observed to
shift by up to 300 um on subsequent days owing to

realignment of the laser. The imaging system somaztimes had
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to go 2 days without refocusing. With these considerations
an average error of 300 um was assumed for this experiment.
For this amount of misfocus and an f number of 16 as used
in this experiment one arrives at a maximum value for Az of
19 um. This is the maximum amount of error and would only
apply to the most dense visible regions of the plasma.

There are a few other sources of error which should be
considered. As the plasma is probed with a beam whose path
is parallel to the target surface any misalignment of the
target will cause shadowing of the probe beam and an error
in the determination of the surface of the target in the
deconvolution. As the data was obtained by focusing the
main laser approximately in the center of an eighth 1inch
thick target which was aligned to within 10 mRad the
maximum error in determining the target surface is about
16 um. This should be kept in mind when examining the
absoluce expansion of the profiles but makes no difference
to the derived scale-lengths.

Any deviation of the plasma from being axially
symmetric will provide another source of error. This errcs
must be evaluated shot by shot. The result of inverting a
non symmetric plasma is essentially to find a symmetric
average of what is present with the total integrated number

of electrons remaining essentially constant.
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4.7 Lateral Expansion

The lateral expansion of the plasma at late times
appears to be inhibited, forming the expansion core which
is visible in the interferograms and in the contour plocs
of electron density. The expansion cone appears to
originate as a small discontinuity in density very close to
the target surface outside of the main focal spot. The
feature develops following the end of heating by the laser
pulse and is observed to expand out from the target surface
and laterally away from the plasma axis forming a <one
which includes an angle of about 60 deg. It appears to
develop as a surface of discontinuity which acquires
thickness as it expands. This feature has been observed 1in
previous laser plasma experiments [531.

Fig. 4.8 shows the method used to measure the diameter
of the expansion cone. First lines are drawn tangent to the
contours in the manner depicted in the figure (1). Then the
angle formed by the tangents is bisected and the bisector
is projected back to the target surface (2). The results
using this technique are very reproducible and are
approximately equivalent to finding the intersection with
the target surface of a curve through the center of the
thickness of the cone.

Fig. 4.9 shows the diameter of the expansion cone at
the target surface as a function of time with error bars
representing the accuracy of the measurement technique.

Data from the july 20/88 shots is offset from the other
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(2) Intersection point of angular
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LATERAL EXPANSION
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data although the rate of growth is approximately the same.

This may
day. Ti:~
cone was
about 2 x

The

indicate that the focal spot was larger on this

rate of change of the diameter of the expansion

determined by least square fit and found to be
6

10" cm/s.

discussion in chapter 5 will examine the

possibility that the expansion cone indicates tlhe presence

of a large toroicdial magnetic field which traps the late

time cooling plasma.



CHAPTER 5
DISCUSSION

This chapter will compare the results of the experiment
to different analytic and numerical laser plasma models.
The goal 1is to provide a consistent description of the
results 1leading to an understanding of the dominant
processes involved in the plasmas evolution. The discussion
centers on the time development of the axial scale-length
of the plasma but will conclude with a brief discussion of
additional axial and conical features also observed within
tiie plasma.

Fig. 5.1 shows the measurements of the axial scale
length obtained from the experiment plotted against time
and divided into three energy bands which will be referred
to as low, medium and high energy. Low energy is from
190 mJ to 300 mJ, medium energy is from 300 mJ to 800 mJ
and high energy is from 800 mJ to 1650 mJ. The graph
includes a plot of the time dependence of the laser power
of a typical laser pulse. The power is shown in arbitrary
units and is given here to provide a visual timing
reference. The discussion here will show that the plasma’s
time development is divided into three main regimes.

The first regime is the initial expansion of the plasma
and lasts approximately one nanosecond from the onset of
the main laser pulse, up to 0.6 ns on the graph. In this
regime the plasma on axis is characterized by an
approximately planar expansion. This regime of plasma flow
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is examined wusing the self-regulating model of planar
expansion, a Medusa 1D planar expansion simulation and two
Castoz 2D simulations.

The next reéion extends from 0.6 ns to around 4.0 ns
and is characterized by a stationary spherical plasma flow.

The time 4.0 ns corresponds closely with the absolute
turn off of the laser energy and in the final region from
4.0 ns onward the plasma flow begins to collapse as the

target cools.

5.1 Spherical Smoothing of Data Points

All of the 1low and medium energy shots analyzed
exhibited smooth plasma profiles for which the scale-length
on axis was representative of the average scale-length of
the plasma. However, three of the high energy shots over
the time period 0.6 ns to 2.2 ns (shots 14108802, 14108805
and 14108808) exhibited a high density jet of plasma on
axis. For the purpose of the analysis here, which will
compare the scale-length data in this time regime to
spherically symmetric models, the scale-lengths for these
three points were taken from an average of the axial
scale-length with those at an angle of m/8 on each side of
axis. This gives an average scale-length over a cone angle
of m/4 centered on the axis giving values which are more
suitable for comparing to spherical expansion theory.

Fig. 5.2 shows a contour plot depicting the axial

plasma jet for shot 14108808. Lines are drawn showing the
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position of the three averaged lineouts. Fig. 5.3 compares
the averaged scale-lengths which are used in the subsequent
discussion in this chapter to the axial scale-length for

these three shots.

5.2 Main Laser Pulse Shape

Modeling of laser plasma first requires a model of the
spatial and temporal distribution of the laser energy. Fig.
5.4 shows a streak trace giving the temporal distribution
of a typical main laser pulse. The pulse features a sharp
rise in pulse intensity followed by a curved decay which
leads into a long tail. This gives a pulse which in this
case has a total pulse length on the base of about 4.6 ns
while having a FWHM of 1.6 ns. Most of the pulses adhere to
this shape having widths ranging from 1.4 ns to about
2.0 ns, with 1.6 ns being the most representative value.
The few pulses analyzed which were longer than 2.0 ns had
slightly longer rise and fall times. Spatially the laser
pulse is modeled as a Gaussian radial profile with 70 % of
the energy within a 35 um diameter focal spot.

In the interest of simplicity the modeling was done
with one of two pulses having a triangular profile which
may be defined by their FWHM and the rise-time of their
leading edge as shown in Fig. 5.4. Both had a FWHM of
1.5 ns. The first with a rise time of 0.6 ns was used 1in
the numerical simulations and some of the self-regulating

model calculations. A second having a rise-time of 1.2 ns,

98



o
(3}

(su) ENILL

0'€ Gg'e 0¢ c'1 0’1 60 00

asnd Jasu| 1eo1dl] —

i y3duaj—2180s pafeiaay @
qjfuai—areds ey O

” ®

X d. T L

b . .

J l 1

i T

, 4 5
I 0

! O 1

: L

1 s N Y " 1 1 A i a 1 L A L 2 1 . M L : 1

Lir TVIXV HLIM VASVId

0
0S
)]
=
001
=
=z
(]
=
0gT =
=
8
002
0Ge

5.3. Comparison of axial scale-lengths to

Fig.

averaged scale-lengths.



100

(su) HNIL

osmnd JemBuurr) 28X ST Z°T -
oduys asmd JemBuuoLny Icise]y - -
(reord4y; +« nd Ja80] ST —

[P TP U NPT S TN T N ST G SN S NS S WY VS 1

AdVHS dSTNd TVYOdWHL 48

81

1 %9

821

962

SINNO0D VEINVD JMVHEYLS

Typical main laser pulse.

5.14.

Fig.



considered to be a better representation of the actual
pulse, was used for some of the self regulating model
calculations. Simple triangular pulses do not do a good job
of representing the tail of the real pulse which still
contains a significant amount of laser energy and slows
down the decay of the plasma after the main part of the
pulse.

In order to keep the timing consistent with that of the
data all laser pulses used in this discussion have the half

maximum point in their rise set at -0.3 ns.

5.3 Castor 2D Simulation

This thesis compares with two available Castor
simulations of laser irradiation of a planar aluminum
target, Run:All which has a total laser energy of 1.0 J and
run:Al7 with an energy of 0.1 J. These simulation runs were
carried out by Drs. Capjack and Rankin and were primarily
designed to model features of the 1ion expansion and
recombination of the plasma in support of another
experimental investigation. The simulation used a
triangular pulse with a rise time of 0.6 ns. The focal spot
used in the simulations had 70 % of its energy inside a
diameter of 70 um which is twice that of the focal spot
used for this experiment. The front surface of the target
in the simulation is not a hard discontinuity but a smooth
density profile having an initial scale-length of about

4 um. The exact position of the front face of the target is
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therefore to a small degree arbitrary.

The simulation reproduces many but not all of the
features of the experimental plasma. In particular, the
simulation does not reproduce the expansion cone observed
at late time in the experimental plasma, possibly due to
magnetic effects not being included in the simulation. Fig
5.5 compares electron density contour plots from Castor and
the experiment. The plots represent similar stages in the
plasma development put as the laser pulse used in the
experiment is not identical to that used in the simulation
time cannot be compared exactly.

Fig. 5.6 shows the axial scale-lengths obtained from
the two simulations. The simulation reproduces the jeneral
features of the data in particular the leveling off of the
scale-length after approximately 1.0 ns. The simulation
also illustrates the correlation between the scale-length
and the laser energy, higher energies having generally
longer scale-lengths at a given time. However, the
simulation lags the observed plasma expansion by - 0.4 ns
which is related to the overly steep rise time.

The large fluctuation in the scale-length of run:All as
the laser turns off at 2.4 ns is caused by the collapse of
the plasma and is partially an artifact of the method of
measuring scale-length used in this work. Fig. 5.7 shows
the sequence of the electron density profiles as the plasma
collapses for run:All. Marked on the plot is the range over

which scale-length was measured. The collapse starts near
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the target surface and progresses outward. The measurement
technique manages to Jjust catch a low density foot at
3.15 ns leading to a large scale-length. The low energy
run:Al7 (0.1 J) exhibits a much smoother collapse, an
interesting point in itself as it relates to the question

of plasma instability at higiter irradiances.

5.4 Initial Plasma Expansion

As the laser focal spot is not a point, the initial
expansion of the plasma is expected to be planar except
near its edge. Until the plasma expands outwards
perpendicular to the target to a distance equivalent to its
lateral radius at the target surface, it should be
reasonably described by planar expansion models. This
radius will initially be the focal spot of the laser system
used in the experiment which is nominally 17.5 um. However,
the plasma is also expected to expand laterally as well as
outwards as time progresses. Because of this 1lateral
expansion the plasma cannot be completely described by
one~-dimensional model.

The earliest and consequently smallest plasmas able to
cause a discernible fringe shift in the interferograms
occur at -0.6 ns and have a scale-length of about 20 um.
The diameter of the earliest observed plasma is 70 um or
twice the focal spot diameter. This early expansion
diameter is consistent with the result of the Castor

simulation which uses a laser focal spot diameter of 70 um
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and indicates that the initial plasma expansion with
comparable electron density to that detectable 1in this
experiment has a diameter of about 140 um.

The large size of the initial expansion can be
understood with the realization that the heat conductivity
of a hot plasma is very high and that the low intensity
wings of the laser spot are still intense enough to ionize
a large surrounding region of the target surface. Because
of the high heat conductivity heat is transported to the
edge of a plasma quickly even at very low electron
densities causing the diameter of the plasma to increase
from a very early point in its evolution. Fig. 5.8 plots
the radius of the plasma for medium and high energy laser
shots during the early stages of its development. The edge
of the plasma radius is defined as the point where the
fringe shift becomes essentially zero (electron density

approximately 1 x 10'%em”?

) The error bars represent the
accuracy with which the radius could be measured from the
interferograms. The plot indicates a linear expansion with
a rate of growth of 7.2 x 10% cm s~ ' which should coincide
approximately with the ion acoustic velocity at the plasma
edge.

It is important to note that due to the high
conductivity, lateral growth of the plasma is not
inconsistent with planar flow. The target 1is ablated

everywhere within the radius of the plasma as if the spot

size of the laser was increasing with time and the dominant
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flow excluding the 1laterally moving edge may still be
planar. The actual flow geometry is controlled by the
overall shape of the plasma with lateral growth acting to
maintain planar flow longer than would be otherwise
expected.

The increasing radius of the plasma may be thought of
as giving an effective focal spot. An understanding of the
plasma in this time regime depends on both the actual
intensity of the laser as determined by the actual focal
spot and an effective intensity which is defined using the

plasma radius as an effective focal spot radius.

5.4.a Self-similar expansion of the plasma

The initial expansion of the plasma may be analyzed
using the simple isothermal self-similar expansion model.
According to the model the scale-length of the plasma is
given by the expression L =c_t. By measuring the slope ol
the rise in the plasma scale-length one may determine a
value of c and hence the average electron temperature of
the expanding plasma. A least square fit to the medium and
high energy data up to t = 0.7 ns, over which time the data
exhibits an approximately linear increase in scale-length
with time, <gives a value for ¢ of 7.8 . 10"
+ .4 x 10° cm s”!

The average ionization, Z, as a function of electron

temperature and density can be obktained using a

co. _isional-radiative model for aluminum {76]. The model

109



gives an ionization which varies from 9.04 at 100 eV and

n =1x10'%em™? to 10.98 at 316 eV and

e

n =1x10°'cm”

e

3. As Z varies only slightly over this
range it was generally assumed to have a constant value of
10.0 in the calculations carried out in the analysis. Using
this value an electron temperature corresponding to

self-similar plasma expansion of 171 t 17 eV is obtained

from t'.. self-similar expansion velocity above.

5.4.b Plasma temperature

Plasma temperature can be determined by experimentally
measuring the ratios of x-rays transmitted through foils of
different thickness. Temperatures measured by another
student during the course of this experiment ranged from
approximately 250 to 430 eV for laser energies of 350 to
750 mJ on target [77]. These temperatures agree well with
the intensity scaling measured previously [15]. The
temperature measurements indicate a temperature for a 1J
laser pulse of 450 - 500 eV which is much higher than
indicated Yy the expansion profile. This apparent
discrepancy is explained by the fact that the foil
filter temperature measurement technique measures the
maximum temperature which occurs at the laser focus while
the plasma hydrodynamics depends more on the average plasma
temperature over the effective plasma radius.

Temperature distribution profiles of the Castor 1J

simulation, run:All, are shown in Fig. 5.9 (a) and (b). The
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temperature profile very quickly takes the shape shown for
time 0.276 ns which corresponds to the simulation’s peak
temperature. The maximum temperature at the laser focus is
370 eV which coincides very closely with the temperature
given by the published scaling law at the same intensity
(2 = 10! wem™?). The figure also shows & radial
temperature profile 45 um in front of the initial target
surface. The overall average temperature of plasma over the
effective plasma radius would be closer to 200 eV which is

more consistent with the measured axial expansion of the

plasma.

5.4.c Medusa 1D simulation

Fig. 5.10 shows the results of the medusa simulation
carried out with a laser intensity as a function of time
equal to the axial intensity used in Castor run:All
(2 x 1007w cm ? at the peak of the pulse). It is plotted
along with the result from the self-regulating model
carried out with the same intensity profile. This plot
shows that the coronal scale-lengths obtained from the
Medusa simulation are similar to those obtained from the
analytic calculation. Although the laser pulse in both
cases begins at -0.6 ns the development of the plasma in
Medusa falls behind that of the self-regulating model by
- 0.15 ns very early in the plasma’s development. This may
be a result of the self-regulating model not taking into

account the initial ionization energy of the plasma.
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COMPARISON BETWEEN DATA AND MEDUSA 1D SIMULATION

Fig.

o
] T AN | ch
EQl
o -
—e— reod- r<H
44 FQH
— o |
i TR=
o
[ o
1
e :
—0—1 PR B !
—0— ’ ~
I n
=
" o le
o1 -
¥ =
S £
~— ~
i 7z.3 ~O |l e
gﬁ'é ~ o
.3—53,,5“5 -
§s§3§§g LT
L = © - i
v 1 8533 T N
 88833F4 o -3
ced |,
o
| 1 Lo '_‘
o o (@) o o |
) Yol o Ts)
o i !

5.

(wr) HIONTT TIVOS

10. Scale-length from Medusa 1 J simulation
and comparable self-regulating

model calculation.

113



The intensity used in the calculations is equivalent to
the axial intensity obtained from the main laser when the
pulse energy is 250 mJ. While the calculations give an
approximately linear rise in the scale-length the slope of
the rise is much steeper than in the experiment indicating
that the overall temperature of the simulated plasma 1is too
high even compared to the high energy data. This is
probably a result of the 1D models not taking into account
the increase in the lateral effective size of the plasma

which consequently reduces the average plasma temperature.

5.4.d Self-regulating model with lateral expansion

In order to estimate the effect of the 1lateral
expansion the self-regulating model was recalculated by
replacing the actual laser intensity with an effective
intensity obtained by dividing the laser power by the
effective radius of the plasma. While not strictly valid
this model allows one to take into account the 1lateral
growth of the plasma and use the energy balancing feature
of the self-regulating model.

Fig. 5.11 shows the result of the self-regulating model
calculated using the effective laser intensity. The laser
power was given by the triangular pulse shape with 1.2 ns
rise time. The intensity at a given time was calculated by
dividing the power by the area, 7 RZ, with R given by
R+ Esr, where Es is the expansion velocity measured from

the interferograms, R, is the first measured radius (35 um)
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of the plasma and T =1 + 0.9 ns. 7Thie de) . redicts a
rise of the scale-length whose slope acr2es ceousely with
the medium and high energy data.

The model predicts an electron temperature an: rence
ion acoustic velocity, = which increases with time
reaching a value at the end 2f the planar expansicn phase
(0.6 ns) of about 180 eV for a 1.0 J laser pulse. However
as C_ depends on the square root of the temperature it
quickly reaches a fairly constant value. After the first
0.3 ns of the expansion, corresponding to the range over

which the lateral expansion velocity of the plasma was

-1

measured c_ varies from €.14 < 10° cm s to
7.56 x 10° cm s™ . The average value of c_ is
7.0 x 10° cm s~! which corresponds closely to the measured

lateral expansion velocity of the plasma.

It is noted that when making a calculation at any point
in time the self-regulating model used here assumes
implicitly in its derivation that the intensity has been
constant and the calculation is carried out with an average
intensity based on the energy absorbed up to that point.
This makes the calculation particularly appropriate for
modeling the plasma produced in this experiment as the
leading edge of the laser intensity profile Kkeeps the
effective intensity used in the calculation approximately
constant.

Fig. 5.12 shows the previous result along with the

castor 1 J simulation. oOnly the medium and high energy
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chots are shown for clarity. The initial rise of the Castor
result may now be seen to be fairly close to the data and
to the predictions from the self-regulating model -:xcept
for its starting point which is translated due to the
different shape of the leading edge of the laser pulse. The
large focal spot size used in the Castor simulation will
only have an effect very early in the plasma development
where it will result in lower effective laser intensity. As
the plasma develops the faster rise time of the Castor
laser pulse will tend to compensate for the initial focal
spot size, the effect of which decreases as the plasma
expands. As tim- progresses after the peak of the laser
pulse the Fplasma should become less dependent on the
initial laser spot size or the shape of the leading edge
and depend more on the total energy deposited.

These comparisons suggest a theoretical model of the
early expansion characterized by a planar self-similar
expansion. The average temperature of the expansion may be
calculated using the effective laser intensity as
determined by the radius of the plasma. The radius is given
inicially by the focal spot size and is increased at a rate
equal to the ion acoustic velocity. The actual energy is
deposited in the center of the plasma to the laser’s
penetration depth giving a peak temperature fairly
consistent with that calculated using the self-regulating

model with the actual laser intensity.
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5.4.e Transition from planar to spherical flow

The laser plasma expansion on axis should remain
approximately planar in form as long as its forward
expansion remains less than the lateral radius of the
plasma. As the forward expansion approaches the lateral
radius the plasma should make a smooth transition from
planar to spherical flow with a corresponding roll over 1in
the scale-length. Assuming that lateral expansion Kkeeps up
with forward expansion a limit on planar expansion may be
set to where cstézz Df, where Dr is the diameter of the
laser focal spot. At this point the plasma has become
essentially a hemisphere and a transition to spherical flow

should have taken place.

5.5 Stationary Spherical Flow

Beginning at about 0.6 ns the experimentally measured
axial scale-length levels off indicating that a stationary
flow pattern has developed. The overall flow is expect~i by
this time to be dominated by spherical hydrodynamics. he
plasma in this region is modeled using the solution for
stationary flow developed in section 2.2.d. Provided that
(1+2U)/2U0 = 1, where U equals £n(ng/n), the electron

density is given by:

r, (x-1)
n =n, [ 7 ] (2.39)

where o = 3 for spherical geometry. As n is the electron
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density at the solution boundcry where the plasma flow is
assumed to be sonic, it is equivalent to the absorption
surface in the previous self-regulating model. The self
regulating model gives predictions for the density of the
absorption surface of about 2 x 102! cm”? which is also in
good agreement with Castor. As scale-lengths for this
thesis were measured between 6 x 10'°® cm” > and
6 « 10'° cn~® the approximation is well satisfied with
(2U+1) /20U = 1.1.

As the stationary profile 1is not exponential it
predicts a scale-length which is not constant but with a

value depending on the position at which it is measured and

is given by:

L= g1y (5.1)

5.5.a Transition to stationary flow

Shown in Fig. 5.13 are three plasma density profiles
which are considered to be representative of the transition
from self-similar to stationary flow. The early time
profile shows the characteristic profile of self-similar
expansion. The negative curvature to the profile indicates
that the plasma has a finite heat conductivity and thus the
plasma is not completely isothermal but is hotter near the
target surface. The late time profile shows the very
characteristic shape observed in the later time data

exhibiting a gentle <curve with positive curvature
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corresponding to the 1/r2 profile. At intermediate times a
sharp transition from stationary flow nc-> the target to
self-similar flow far from the target is observed with a
transition shelf like profile as shown in the figure. The
transition between flow patterns progresses from th:z high
density region towards lower densities.

This interpretation is supported by Castor which helps
clarify the details. Fig. 5.14 shows plots of the axial
electron density from Castor run:All before the transition.
The corona, with its characteristic negative curvature, can
be clearly seen expanding away from the target.

Fig. 5.15 (note different scales on plot axis) shows
the transition from self-similar to stationary flow
illustrating the progress of the transition point from the
target surface outwards. At the absorption surface where
the zolution connects to the conduction zone of the plasma
the stationary flow soluticn 1is similar to that of
self-regulating expansion. Thus a smooth transition from
self-regulating to stationary flow is possible at least for
energies up to 1 J. The plasma adapts smoothly to the
spherical stationary flow solution with the plasma ahead of
the stationary flow undergoing isothermal self-similar

expansion modified by finite heat conductivity.

5.5.b Comparison of data to stationary flow model
Fig. 5.16 shows a log-log plot of the axial profile for

shot 21078816 obtained at t = 2.6 ns and a plot of a
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stationary profile from Castor run:All. The linear nature
of the plots clearly indicates the power nature of the
profiles.

The stationary flow model predicts that the measured
scale-lengths obtained from the data should equal the value
r/2. Fig. 5.17 shows the scale-length plotted against r/2
(where r is taken as the midpoint of the range of z over
which the scale-length was measured) for the data 1in the
time regime from 0.6 ns to 4.0 ns. The graph shows both the
line representing the least square fit to the data and the
theoretical line having slope = 1 and passing through the
origin. The slope of the linear regression fit is
1.03 £ 0.08 with an intercept on the scale-length axis of
-8 + 9 um. The data agrees with equation 5.1 within the
error of the fit.

The standard deviation of the points from the
regression line is 10 um which is in reasonable agreement
but larger than the average estimated error in the measured
scale-length. The scatter of the data indicates that the
stationary solution tends to control the plasma profile
without necessarily describing the exact flow of a
particular plasma which must adjust for variations in laser
intensity as a function of time.

While the scale-length of the stationary profile
depends only on the position where it is measured, the
magnitude of the electron density depends on the magnitude

of n and r . The variable n_ increases with laser

o
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intensity explaining the correlation between measured
scale-length and laser energy-. The scale-length is always
measured over the same density range which at higher energy
is thus further from the target surface.

The degree to which the individual electron density
profiles follow an inverse square law is examined with the
use of a least square straight line fit to the log-log
density profiles from both the data and the Castor
simulation. The result of such a fit depends on the
absolute position of the zero point for r. For lack of any
pbetter value it is assumed that r = 2z (center of spherical
expansion is at target surface). The fit was carried out
over the same range of density used to measure
scale-length. For the data in the stationary flow region,
excluding the three high energy points exhibiting plasma
jets, the average power for the best fit power law is -1.99
with a standard error of (.05 making the result consistent
with a power law of -2. The standard deviation of the
individual points from the average is 0.25. Thus the
average power law profile appears to follow the 1/r2
dependence of the stationary flow but with shot to shot
variations. Individual profiles are not necessarily exactly
inverse square curves as mentioned before. The variation
could also be explained by small shifts, - 20 um, in the
plasma’s expansion center.

In applying th= analysis to the Castor simulations a

position for the target surface and hence r = 0 is defined
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so as to be as consistent as possible with the experiment.
As the initial position of the target surface in Castor is
not well defined the point r =0 1is equated with the
earliest (t = -0.47 ns) position of the absorption
surface, which was defined as the point of maximum
temperature in the axial temperature profile, available.
The fit is applied to the results from Castor in the time
interval where the profile is stationary (after the initial
expansion but before the collapse). The average power of
the best fit power law is =-2.18 with a standard error of
0.04. The standard deviation of the individual profiles
from the average is 0.08. The result shows reasonable

agreement with the experimental data.

5.6 Plasma Collapse Following Laser Turn-Off

The laser pulse has a fairly long tail which turns offt
completely at about 4 ns. After 4.0 ns the scale-length of
the plasma shows a slow decline as would be expected as the
target cools. The collapse of the plasma 1is clearly
identified when scale-length is plotted against /2, the
scale-length corresponding to stationary flow, as shown in
Fig. 5.18. The figure indicates that there 1s still a
correlation between scale-length and the pcsition at which
it is measured but the scale-length is consistently shorter
than r/2.

In the Castor simulation the collapse of the plasma

away from its stationary flow profile begins at about
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5.75 ns which is consistent with the experimental data
considering that the turn-off of the laser in the
simulation is at 3.0 ns. Profiles of the collapsing plasma
from the Castor simulation were shown is section 5.3 Fig.

5.7.

5.7 Self-Generated Magnetic Fields

At late times conical structures where observed in the
lateral wings of the plasma. These structures follow a
consistent development and have a distinctive appearance.
However, they have not been observed to develop in the 2D
Ccastor hydrodynamic simulations. These features could
perhaps be explained by the presence of toroidal magnetic
fields.

The main generation term for self-generated magnetic
fields is due to electron density gradients which are not
aligned with temperature gradients and is given by equation
2.44. This generation term may give large results at the
edge of the focal spot where primarily axial density
gradients combine with large radial temperature gradients.
In order to estimate the rate of development of these
fields equation 2.44 may be rewritten using convenient
units and is given by:

2
AB_ ) _ At T 1um .
[ MG ] = 10 [ Ins ] [ Tev ] [ LL ] sin 6 (5-2)

where L and L. are the electron density and electron
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temperature scale-lengths and 6 is the angle between the
density and temperature gradients and may approach m/2 just
outside the focal spot of the main laser. Values for L may
be obtained from the data. Here we use the value of 70 um
which corresponds to the state of the plasma at about a
1 ns following the first arrival of laser energy on target
and makes a good average number for the initial expansion
of the plasma. From the data one may infer that 200 eV is a
reasonable value for the electron temperature and this
value is in good agreement with the Castor simulation. The
transverse electron temperature gradient scale-length may
be estimated from the Castor simulation which indicates a
value of about 60 um. The actual temperature gradients
should be even steeper as the real focal spot is
significantly smaller than w3&d in the simulation. These
values indicate a magnetic field formation of about a
megagauss per nanosecond.

The magnetic field will tend to reach a saturation
value due to the saturation term given in equation 2.46.
This saturation value may be estimated by equations 2.44

and 2.46 and gives rise to the following expression:
172 172

B T
_S = e lumR A .
[1MG] = 2.04 [1eV] [Z_L—] [Z»_l] F(e)  (5.3)

where F(8) is a factor due to all the angular depandencies

of the original equation but is expected to be of order

unity. For aluminum A is 27 and Z is taken to be about 10
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Taking R, the distance from the laser axis, as 100 um and
keeping the temperature and various scale-lengths the same
as the previous calculation indicates that magnetic field
production should saturate at about a megagauss. Thus it is
reasonable to expect that magnetic fields of 1 MG could be
generated after one or two nanoseconds from the start of
the laser pulse.

The ratio of Xinetic pressure to magnetic pressure, (3,
is given by equation 2.47. At an electron temperature of
200 eV and at electron densities of 1 .10°%nm™?, a
magnetic field of 1 MG gives a value of 0.8 for g
indicating that magnetic fields could be strong enough to
affect the plasma hydrodynamics.

Strong off axis toroidal magnetic fields would tend to
trap the cooler off axis plasma. 1In addition they would
tend to decrease the transverse heat capacity of the plasma
which could further steepen the transverse temperature
gradient of the plasma. Any magnetic fields produced near
the target surface would be carried out from the target
with the plasma as indicated by equation 2.46. As the
expansion cone structure observed in the later time plasmas
seems to originate from the region where magnetic field
production is expected to be strongest it is possible that
this structure is a result of potentially strong magnetic

fields in the plasma.
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CHAPTER 6
CONCLUSION

An interferometric study of the time development of KrF
laser-produced~-plasma has been carried out focusing
primarily on the time development of the axial scale-length
of the plasma. Data was collected from the start of the
laser pulse through to the collapse of the plasma following
laser turn-off.

The N, laser has been shown to be suitable for
laser-produced-plasma interferometry. The pulse length
produce by the N2 laser used here may be shortened by
operating the laser at higher filling pressures which would
improve the measurements particularly during the initial
expansion period during which the electron density
distribution is changing rapidly.

Analysis of the experimental data showed that at
early-time the plasma could be modeled as a planar
expansion but that, due to the small size of the focal spot
used in this experiment, 1D calculations predict
unreasonably high plasma temperatures unless some method is
employed to take into account the plasma’s lateral
expansion.

The Castor 2D simulation was shown to do a fair job of
simulating the plasma with many of the differences between
the simulation and the experimental data attributable to
differences in the characteristics of the 1laser pulces
used. The simulation does a particularly good Jjob of
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illustrating the transition from self-similar type flow to
spherical stationary flow. The simulation does not
reproduce the late-time structures observed in the lateral
wings of the plasma nor the the axial jets observed in the
experimental plasma during a few of the high energy shots.

From the experimental data it was found that the
lateral size of the plasma increased at a rate close to the
average ion acoustic velocity in the plasma. Taking this
into account, the early planar expansion of the plasma
could be well modeled using the self-regulating model and a
time dependant effective intensity defined as the laser
power divided by the area of the plasma as a function of
time.

At a time of approximately 0.6 ns the flow undergoes a
transition from planar to spherical geometry. The
scale~length of the resultant stationary spherical plasma
flow was analyzed with the aid of a stationary analytic
wodel for spherical flow. The experimental data was shown
»5 be in reasonable agreement with the predicted 1/rn
density profile making scale-length purely a function of
the position where it is measured.

The stationary flow model developed and used here can
be easily ext  ‘ded to the case of a transition from planar
to cylindric. ' flow such as may be achieved using a lin2
focus on a solid target. Plasma hydrodynamics in
cylindrical geometries are of interest to x - ray laser

studies particularly when preformed plasma systems are

(W3}



desired.

In summary, the experimental measurements have helped
to clarify the different flow regimes which occur in
nanosecond ultraviolet wavelength laser-produced-plasmas.
The measurements establish the overall validity of the 2D
flow patterns predicted by numerical simulations though
some detailed features are not reproduced. The different
flow regimes can be modeled in a simple fashion using 1D

analytic models.
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APPENDIX A
NUMERICAL TESTS OF DECONVOLUTION ROUTINES

A.1 Testing of Deconvolution Routines

it is important to test the deconvolution routines 1in
order to check their accuracy and to give confidence that
the programming is correct (check that the inversion gives
correct results). For this purpose analytic test functions
for n_ were developed which could Dbe integrated
analytically in Abel’s integral equation (equation 2.32).
These functions were integrated and the results used to
produce tes® fringes which were generated as video images
in the video digitizer system and put through the complete
deconvolution process. The resulting values for electron
density were then compared with the starting function. All
of the test functions were given an exponential decay in
the z direction, similar to the real plasma.

The first function, which will be referenced as

test function #1 was a simple linear profile given by:

n -~ 1= _ I z/L
n 1 e A
r ro ( R ] (

Where: L = the scale-length of the plasma in the =
direction.
The next function called test function #2 was parabo..

in nature and given by:

n -1=n 1 - L | e7Z/E (A.2)
ro
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It should be noted that these two test functions,
unlike the real plasma, have a sharp boundary at r = R. The
third test function called test function #3 uses a gaussian
profile. The analytic integration is carried out to
infinity much as a real probe pulse would do (infinity
being a distance much larger than the dimensions of the
interferogram). The resulting test fringe patterns are
shown in Fig. A.1 (a). The deconvolution is finite and so
this test function provides a useful check on the accuracy

associated with finite deconvolution. It is given by:

2 2
n -1=n [ e T/ 1 ] e~2/L (A.3)

r ro

The fourth test function called test function #4 1is a
cubic. It is used to check the deconvolution of a profile
which, like some of the data, has an off axis maximum. The

function is given by:

b 3 e-z/L (A.4)

3 d
a =
2 -3d
2
b =
2 -3d

where r = d-R is the radial position of maximum electron
density. Positive values for a and b are desired requiring

that d < 2/3. The ratio of the maximum electron density to
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Fig. A.1 (b). Fringes produced by test function #4

with a 30 degree expansion angle.
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the axial density is completely determined by the choice of

d with the value of n at r = d*R given by:

d3
n—1=nr0[1+-—-———} (A.5)
2 -3d

This function was used as is and with R increasing
linearly from R, according to the relation
R=Ro+ztan(9) causing a lateral expansion with z in
order to test the error introduced by deconvoluting
interferograms where the fringes double back on themselves.
A value of 30° was used to give an effect much like the
real interferograms as may be seen in Fig. A.l (b). The
integrated form of these four test functions 1is given at
tiwe end of this appendix.

Test functions #1 and #2 where tested with a radius
R = 200 um and a scale-length L = 100 um. Test function #3
was implemented with gaussian width parameter 1 = 200 um
and the axial scale-length L = 150 um. Test function #4
with the off axis maximum was implemented with a radius
R = 200 um, an axial scale-length of 100 um, and d= .596
corresponding to an maximum electron density of twice the
value on axis. All of the test functions were given an
axial density at 2z =0 of 1 x 10%% cm™®  and assumed
A=0.337 um. They were processed using 20 point Bockasten
inversions and test functions 1 and 2 were inverted with
and without smoothing. All test functions were inverted

along six slices from z = 0 um to z = 500 um.
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Test functions 1 and 2 inverted very accurately as

shown in table A.1 and A.2 and Fig. A.2 (a) and (b). As

z density no smggthing smog%hing
(um) mean (cm )| o (cm 7) |0 % o (cm ") o %
0 5.25 el9 6.61 el8 |12.6| 3.99 els8 7.6
100 1.94 elS 3.12 el?7 1.6 3.11 el? 1.6
200 7.12 el8 3.00 el? 4.2] 2.22 el7 3.1
300 2.62 els 1.60 el?7 6.1} 1.20 el7 4.0
400 9.64 el? 9.13 elé6 9.5 6.09 elo6 6.3
500 3.55 el?7 6.99 el6 [19.7] 4.01 el6 |11.3
Table A.1. Inversion accuracy for test function #1.

z density no smoothing smoothing

%3 -3 e -3

(¢4m) mean (cm )| o (cm ") |0 % g (cm 7)) |o %
0 6.92 eld 3.99 el8 5.8| 3.24 el8 4.7
100 2.55 el9 5.01 el? 2.0] 4.57 el? 1.8
200 9.38 el8 2.74 el? 2.91 1.86 el?7 2.0
300 3.45 els8 2.11 el7?7 6.1 1.63 el7 4.7
4290 1.27 els8 9.72 elé6 7.7} 9.88 elé6 7.8
500 4,67 el? 7.60 el6 |16.3| 6.14 el6 113.2

Table A.2. Inversion accuracy for test function #2.
expected, the accuracy becomes less with falling density
due to increasing relative error in determining the fringe
shift {the total fringe shift is much smaller). In addition
the slice at O um also shows an increase in error. This
reflects the fact that the target cuts off the fringes at
this point and the inversion routine is forced to dc some
extra extrapolation. This increase in error is the price of
being able to invert to the target face. The accuracy of
the inversions improved by an average of 22 % when

smoothing was applied to the fringe shifts. This 1is a
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considerable improvement considering the guality cf the
fringes being inverted and illustrates the importance of
smoothing when doing Bockasten inversion.

Test function #3 was inverted out to 500 um from the
plasma axis where the fringe shift was almost imperceptible
similar to the case with a real interferogram. It inverted
accurately with slight inaccuracy at the limits of the
inversion. The inaccuracy at the extremes of the inversion
increased as the maximum radius of the inversion was
drastically reduced. Fig. A.3 (a) and (b) shows the effect
cn the inversion with R = 200 pm which represents an
extreme cutting of the fringes. The accuracy of the
inversion on axis remains unaffected by the finiteness of

the inversion. Table A.3 sunmarizes the results.

z 33= 500 I 83= 400
(um) Imean (cm ") |o (cm ") lo % |mean (cm ") |o (cm ") |0 %

0 3.80 el9 |1.61 el8] 4.2 4.66 €19 (1.58 el8| 3.4
100 1.95 el9 |2.80 el7}| 1.4 2.39 el9 (5.38 el7} 2.3
200 1.00 el2 [1.15 el7] 1.2 1.23 el9 |2.27 el7| 1.8
300 5,15 el8 }9.99 el6]| 1.9 6.32 el18 |1.22 el7| 1.9
400 2.64 el8 |8.37 ele} 3.2 3.24 el8 |1.21 el7y 3.7
500 1.36 el8 |5.01 el6| 3.7 1.66 el8 |9.92 elG} 6.0
z R = 300 R_= 200

-3 -3 o -3 -3,

(um) [mean (cm ") |o (cm ") |oc % (mean (cm ")lo (cm ") |0 %

0 5.93 el9 13.86 el8| 6.5 7.63 €19 [1.93 el9]25.3
100 3,05 e19 |1.82 el8| 6.0 3.92 €19 |1.02 el9(26.0
200 1.57 el9 |8.88 el7} 5.7 2.01 el9 |5.29 el8}26.3
300 8.04 el8 [4.82 el7}] 6.0 1.03 el9 |2.75 el8]|26.7
400 4.13 el8 12.67 el7}| 6.5 5.31 el8 |1.40 el18]26.4
500 2.12 e18 |1.43 el7] 6.7 2.73 el18 |7.12 el7}]26.1

Table A.3. Inversion accuracy for test function #3

with different cutoff points.
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INVERSIGx OF TEST FUNCTION # 3
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Fig. A.3 (a). Inversion accuracy of test function #3.
Inversion carried out to 500 microns
from the inversion axis.
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Fig. A.3 (b). Inversion accuracy of test funtion #3.
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Test function $4 inverted as well as the others when
the expansion angle was set at 0 deg. Fig. A.4 (a) and (b)
shows the result when an expansion angle of 30 deg was
given to the test function to simulate the effect of
inverting fringes which double back on themselves. The only
significant error introduced is to smooth out the extreme
edge of the plasma where the density drops abruptly to
zero. Thus plasmas with well defined expansion cones will
have the shock like edge of the cone smoothed somewhat 1in
the deconvolution. Table A.4 gives the accuracy of the
results for test function #4 for expansion angles of 0 and
30 deg. No smoothing was applied to either function %3 or

function #4.

Z density. 6 = Q deg e = 30 deg

(um) mean (cm °)| o (em™’) |o¢ % | o (cm™ ) |o %

0 1.48 e20 9.47 el8 6.4 1.40 el9 9.5
100 5.45 el9 1.77 el8 3.2 9.82 el7 1.8
200 2.0 els 4.29 el? 2.1] 1.65 el8 8.2
300 7.38 el8 2.01 el? 2.71 3.46 el7 4.7
400 2.72 els l.46 el7 5.4 1.13 el?7 4.2
500 9.99 el7 8.79 elo 8.8| 1.20 el7 J12.0

Table A.4. Inversion accuracy of test function #4

with and without 30 degree expansion angle.
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INVERSION OF TEST FUNCTION # 4
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A.2 Abel Integrated Test Functions

Following is the integrated form of test function #1:

§(x,2) = -n__ % e /L (A.G)
[[%(Rz_x2)1/2 . g% en(R+(R2;x2)l/2) N
(Rz-xz)] X <R, x 20
8(0,2z) = n__ % e Z/L

Following is the integrated form of test function

i}
o

_ 2 _-z/L
8(x,2) =-n__ x € (A.7)

2 el
[ —£E(R2-X2)3/2 + EE (Rz_xz)lxa N (R2~X2)1/h]
3R

X

Following is the integrated form of test function #3:

172 2 2
_ 1 o -z/L -x“/ 1 -
d(x,z) = n_, e [e ] (A.8)
Following is the integrated form of test function #4:
_ 2 -z/L 2 2y172
d(x,z) =n__ 5 € [ (R°- x ) (A.8)

+ i? [%(RZ- x2)3/2 . xz(Rz_ Xz)x/z]

_3b [(Rz_ x2)1/2 (sz . RJ) .
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APPENDIX B
CONTOURS OF KrF LASER-PLASMA
Following are the electron density contour plots for

alli of the fully analysable interferograms obtained for

this thesis. The electron density was determined by 20

point weighted assymmetrical Bockasten inversion with

smoothing and the contours represent the logarithm, base

ten, of the density in units of cm >
on the plots "TIME" refers to the probing time as

defined in chapter 3, "FWHM" refers to the width of the

main laser pulse, and "ENERGY" refers to the energy of the

main laser pulse. A value of -99 for any of these indicates

that the particular information is unknown.
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SHOT # 21078819
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SHOT # 21078807
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SHOT # 21078808
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