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’ - ABS!:FRACT -

That a-se~if~gra\'itating equilibrium perfect f»luid‘ in empty
space has a spherical configuration if it is rixvonrota‘ti»ng or has a
unigue configuration Ch'ara;-térize.d by.s>on;1<—' physiic-a]' parameteirs
it is slowly‘rotating.' is cénsidered p’hysicva_l‘ly evident but has |
not been rigorously d.e‘ri{'ed from Einstein's field equations
together with suit'able. a_éymptgtic conditi‘ons. We t}](’l'(;f(‘:l‘ﬁ‘

consider the equations for a general relat.vistic staticnar
- . & - -

.. specetime which is asymptotically flat ‘(and diffeomo‘}‘p‘hi(“ to &°
and consists of an exterior vacuum solutiori and an interior
perfect fluid in rigid motion wﬂh a given ‘eql‘latior; ofq%tate o)

satisfyl‘n\g' Ozp=p, given total mass m.and given surface
temperature T, . Global analysis techniques are used to show
that .ther'e is no family of suc-h static (no‘m'otavt;ng) spacetimes
which depends dirfei”entia'ol}' on a .parafneter'and CO;lt&iDS the
s;;herically symmetric: éo]utmn e}I\'cept‘for families containing
only soluticns d‘jlffeomo.rphic te the slm_er.ically symrmetric o:n«'
In the genera] sfationary (fotatin‘g) casé, il we feqtz;re that the
solutions be close to the static sphef‘icﬁa‘lly symmetric ones (in
the sense of a suitéble topology on the set .of Statibna}”‘) |
spacetime metricfs')‘we can show tha‘t’ there is at most o
one—dimensional differentiable famiiy of global axially

symmetric solutions parameterized by the value of the angular

momentum J except for those obtained by coordinate



L
trensf@rmationis A recent result of Lindblom (1976) which
shows that all such spacetimes are axisymrrietric makes the

latter result quite general -
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G, €
¢ NOMENCLATURF
‘ Throughout this dissertation we will use geometr.zed NS

in whicl: the speed of llglqlt.v c=1 'a‘ud Newtor's constant G 1
Greek “i'ndj(j:\' will ruf: from 0 to v except when they are used axo
n—tuple indices The usage will make this clear Small Latin
indllc-es will run from ! to 3 while ¢apita’ Latin 111(1]("("5' will run
from 1 to 2 Tensors will be -written sometines \\"lth‘ end
sometimes \\"ithont Iindices when no du‘ngef' of confusicn »m:;#t.\'

The set of reals will be denoted by ® ard the integers and

complex numbers by X and €, respectively

vii
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- CHAPTER | 7
EQUILIBRIOM RELATIVISTIC FLUIDS
0. . "A i
\ .
11 Introduction
. Consider a star' The word conjures up an image of &

distant, hot radiating ball of matter. A C]OQé*I look revm:%

many different types of Sta!‘: with’ radmolls dlffercnt

compositions ranging ‘fr"om ‘ ordinary" ma_ttéxv‘ stars (whicly
include t}-m‘ p]a‘m;ts) to dense.neutrlon <tar<- Amm g these there
are many different populations vuth wide variances in
lumindsity, temperature, mass, angular | utm»ntnm'ma? den-tyve
corresponding to dlfferencés in their inteﬂrnal 'SfI‘U(:t'tl‘l‘Et cuch as
~differences in compc‘)sitmn, nu@lear and Chemical r*eat:ti(>zls,
convective motion and differential rotation = Bul all the
quantities are determintfd by the star's htstor}' of rrobhution,
‘star.ting perhaps with a g;avitationally collapsing cleud of low
density metter whose vgravitational energv is converted 1nto
t.herma energy. heating up reglonq n uhlch dlffelent reactlon\
which }_:woduee more heat can take pl ce.‘ Fme higher pressure<
thereby produc.ed can slow or perhaps stop the collapse: But
how can one dete’rr-nine a star’s structure this way? Disney (1976)
has suggested that the Structure of an evol\mg protocta" is
very dependent cn the lnlt_la] condltxorm and rumerl cal analysis .
of thé gravitational.c‘o]lapse of clouds lends'crédehce te this (ef.

’

Buff et al (1979)) Yet even though there is in some sense an
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infjflite numb,ér'of such initial conditions, when we look at the:
stars"thgy seem to be very similar in their cpnfigurationsﬂ,‘ |
na.mely, they~are almost spherical For e*aﬁxple, the s'\un, with
an equatoria]bro.tafion Deriod of about 25 days ar;'d the ir‘l‘t;"ri’or
I‘Ot&ting sl\ightl}; ra‘ster,b has polar and equ6.t5r1a1 radlj,th;t'
differ by only about 1 part in-10° (‘cv;f. Hilkl and S\'tebbins (]9?:’;))}

¥ Physically, the reacon is very i'ntuitlve‘ All nucieaf a'ndb
chemical reactiéns proceed towards their cr‘xdpoinls‘ e::\' t_hre st'avr.’
'e'volves, with e]éctrom_e&%netic- radiation C‘a.x4r)'ing off any' excess
he'at Viscosity damp‘s differential rotation . Perturbational -
analysis of a spheri¢a] star indicates that gravitationalO
r:zdiat‘lon carries sway thellene’*rg)’ of all bu_ﬂ thé f=0 and ,f:]
‘sphérical harmonic Com'ponent.; o{fﬁ_the .pe‘rtur}'ation (cf ‘Thorne |
(1967)). Thus a star gradual]yhevo.lves,towar“d5. some eqluillbriun‘x',
nori—,ra‘diat“ing boidy and cen be desc—ribed adequateis' by a
r;erturbation of this equilibr‘ium‘ mode! for some _latt&* portién
of its life,\ever; though its e<v}oluticm 1s very compl!e‘x |

; o

‘But ‘what constitution of materials and what spatiali

» ) .

configurations can such an.ehdp
It is well known that there are\three main classes, thé White
.dwarfs supported by electron;Qegégneracy!pre»ssure, the 'xieut-ron
starvé supported by nei;tron .de‘g“enera@cy‘ pressure aﬁd "bl'ack holes,
the end result of f.ota]- ‘gravitatiqlna]. collapse.
Thé‘ black ﬁole éQuilibriﬁfn'c-'onf'i.g.ux:at‘ions ar"e‘vx:elll
undvérs'kto_odl. 'I‘Ih.ere is no. interna‘listructur:e to. worry about énd

L4}

the no hair

uniqueness theorems of Israel (1967) and Carter

3

roduct of stellar evolution h_a.\'_"e;’.’
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(1971) sho‘w ‘that their gravita@iongllﬁeld is uniquely givén by
their mass m and, if roteting, their "angular_ momehtum J.
(Similér fono hair theorems hold if the blackl hole has a ch.‘akrge

[
’

(c.f. Israel (1968)). quever, even though most stars probably
Ahave ma‘gneti‘c.ﬁeld‘s and are r'leut_r.al,.dealing with charged stbars
or those with maghetic.fields 1S 'ng;t a tr\i\'r’ial extensi?m of thé
present work so throughout' th'.is 'dissertéﬂion \'v‘e'willvconside-r
oﬁ]y stars with no qhérge and no magnét.ic fields)

We are here interested in th~e,non.—‘$ingijlaf eqflilibrxum
ét,eilar' models. There are no such c:ofnfigurationé for large \ }/{
masses (generally for messes greater thar about two solar - ,
masses) but ‘whet‘n‘er a star collapses iotall)' depernds on its
equation of gtate efxd 1ts history abs well ?s. it‘s mass. Sorr;ﬁe large
mass stars ejectfs?{ne masé before gext_t:in‘g}to the endpoint‘of
evol‘uti;)n‘,"ther‘éb.y avoidirlg totai _c-ollap—se‘ We will th\erefo're '
assume \t.hat {he m(al\sss bf.é_cohfi'guration is elways in [0,mi_;,)

where m_.,

corres'ponds'to the critical mass where total
gravitational collapse occurs. - We can again ask the .ques‘tion,. i
what are the equilibrium configurations of such stellar models”

To;‘det,ermine,all equilibrium solutions is quite hopeless. The

.

};u-f'péée of this dissertation is to determine the generel . : <

B propert:ies which any solution corresponding t.o a hong‘biating or
slowly rotating isolated equilibrium’ stella}‘“'{no'del m‘ust'posse'ss.-o
}j‘ortvunately, as long as the density of matter is much less

’ . . R
than lomgm/cma, which occurs for all the proposed reéli_stic
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'

-equations of state, the physical interactions in & star occur on

-

two widely differing distanc;g~ scales: the short scale nuclea_‘r and
chemical interactions and the long scale gravitational
intera»ct‘i;o—n:(c.f. Thorne (1967)). (This is not {rue for magnetic
fields but.és we noted-before, we will not be dealing with this
case.) - N | (

This enables the study of equilibrium stellar models to be
divided into two parts: one studying tlie_ﬁinter—particle

interactions on a small scale to determine the constitution of

*

cold (non~radiating) catalyzed matter, negvlecting gravitatlon
and the second studying the large scele structure of tk}“ met
and gra\ltatxonal field, treatlxg the matter as & smoothed oul
fluid distribution. A review of smell scale properties of matter
" for the first study is given in Zeldovitch and Novikov (1971). In.
the followi‘ng we take up the second study for non-rotating or
s"lo\‘le rlota'ting isolated stars. More specifically, we will |
investigate the global symmetries and the uni‘quenesé of such
configdrations, Unfortunately the problem of existence of such
confi_"gu:ration's zsee'ms to be even ‘more difficult.  This will be
mentioned océa"ﬂonally with a‘ fuller discussion of the
difficulties being given' at the end of the last chapt'er,

‘We s.tart in the next sectién, then, with an investigaticn of
’ther.modyn.am'ic ecjuilibrium, stellar models. [t will be seen that
global stationarity will be a réasbnable assumption to make for

* such st‘eilar models so we will then present some formalisms for’

stationary spacetimes which will be very useful for our later



work. (Siationarity r@les out any radiative processes.) The
appropriate boundary conditions resulting -from the assumption
that we are dealipg wilth. an i;qmlated system will also be given.

Although botﬁ non-rotating Ne\\'toﬁiér) steliar models (c.f.
'Lin_dblom (1978)) aria non-rotating black holes (Israel (1967)) are
spherically symr\hetric, 1e. they édmif‘ the greup SO(3) as o
group."of isometries with the group orbits being spacelike
2—surf/a‘ces (whichr a/re t.hen neceséaril_y ‘of c<>nst.;:.ni positive
cur\?ature), this has not been proved for non-rotating
equilibrium relativistic stellar models. 1t 1s inifljti\'ely 20
physically obvious though, especially because of the Newton:an
and black hole results, that it has been assumed and used in
_maany studies of stellar structure ((:.bf.vThQr'ne and Zytkow {(1977))
as well ac in studies Of, gravitational collapse (f:)l‘ exgmple, the
~ Zeldovitch séquence,‘ c.f. Harrison et al. (1955)). In ,‘thle slowly

rotating case the corresponcding uniqueness theorems must be

weaker in the sense that one expects uniqueness (with some

[2

physical parameters fixed) only for Config.urations ‘close to

spherical symmetry with small angular momentum. Thus they
2 ~
will be local not ngoba]” results

In chapter 2 then, we take a lock &t these historical
uniqueness theorems and see what sort of directions cne might

try to take for the relativistic stellar model case. For reasons

. ¢ 00 . 0 )
which will appear clearer later on, our results are local for

both the rotating and non-rotating cases. They are thus weaker
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than the historical umqueness theorems for the nomotatng
case but‘ are more or less equivalent to those for the slowly
rofating case. In fact our results‘are valid fer very general
equations of state but cannot be used t.o increase the ge.nerality
o‘f the Newtonian slowly rotating case because the Newtonian
case is niore degenérate than the relativistic case. This will
become clearer later.

We will therll outline the approach which we will take
to‘wards'proving that for a fixed equatidn of state, a fixed
surface temperatufe and a fixed mass t'hé corresponding isolated
equilibrium solutions of the gravitationel fievld equations are

unique. (up to coordinate trans‘formations) provided the sclution
. . , ,

is close "in a differentieble sense to a spherically symmetric
solution. The reasons for the latter condition will become more
‘a.ppar.*.en‘t later In particular, the solution will be spherically
symmetric if it is not. rotating and, if slowly rota_ti}.g.’\ wilAl' be
un‘iquely determined by the small axi:gplar m:omentu-:xl. Smce«i
we fnust be "close’ to spherical symmetry we then take a look
at spherical spacetimes. - This is f.o]]o‘w‘ed‘by ‘an investigation of
.'the c;)ndltlons on the equ@tlons of state which we must 1mpo¢e
It is seen that they are not very restrictive.

{ | |
Chapter 3 consists of an introduction to the mathematice!

techniques whi_ch'we' use to obtain our results. Chapters 4 and 5 .

present the statements and proofs of the uniqueness theorems
for thf_zv-‘\on—rotating and slowly rotating isolated equilibrium

stellat® models, respectively.

L



12 Thermodynamic equilibrium

®

Ip a fluid in\whic‘h the reaction rates are too slow to be
important on the time sc:aleg of i‘nte‘rest_ the chenlicg]
cbmposition.of the fluid can Vbe“assuméd to be fixed uniquely by
two fhermodynamie variables such as the number density of
baryons n and the entropy per baryon s This is obviously the
case for a fluid in equilibrium so let us assume that we have
such‘ a simple relativistic fluid With viscosity and heeat
conduction. The fluid ‘m'echan‘ics which we present Here is
. standafd. and can be found, for example, in Misner, Thorne and
Wheeler (1972) §32 and Wéinberg (']972) p.o31f.

The stress .energy tensor for such a fluid with unit

) . Qa ‘ a .
— - E— =
fOUI‘_ VE?lOC]t} u ( u Ua i ) 1S

7%= p uau€+(p—(6)}3°ﬁ—2 7 a°ﬁ+2q<auﬁ\" ‘ S

where p(n,s) is the total mass energy density in the rest frame
of the fluid, p(n,s) is the isotropicl'pressure in the rest frame,
{(n,s)>Q, n{n,s)>»0 are the bulk and shear viscosities

respectively,

o=V u® | (12)

¥

- - ) \
0op=V(alptUalp~ TP g _ (1.3)

are the expansion and shear deformation rates respectively,



o oB_ ef g | | |
( :==uv, ) P° ‘=€ tu u is the projection operator orthogonal
to u” and q° is the heat flux. Round }b'rackets around tensor

indices will refer to symmetrization while square b‘rackets will
refer to antisymmétrizatign. The angular velocity tynsor @ s

given‘ by —Pa#Pm;V[uuUI We assume that qa obeys the genéra]
relati\.ristic Version of the Fourier law of heat conduction, fivrst
proposed by Eckart,
” '
q“:—/;cp“ﬂ(aﬁm'ruﬂ) | o (1.4)
, ~ 1 ‘ r
where «(n,s)>0 is the coefficient of heat conduction
Furthermore, we take over the #ftandard thermodynamical
and particle conservation ]awé{ Ba.ryo‘n cons,ervation'- i‘nipl'les

’ ‘ o Vv, (nu®)=0. : (15)

while the first law of thermodynamivcs is given by
dp=n"'(p+p)dn+nTds | (e

where the.temperature T(n,s):=n-l(6p/as)n. As well as the third
law, namely if T=0 then s=0, we require that all
thérmodynamic quantities are-positive. Then the Bianchi

‘identity together with the Einstein equations

ﬁ 14 _ '
aﬁ*-?Rgaﬂ:Taﬁ ; ‘ (1.7)



\

L

yleld the conservation laws VQT"ﬁ=O which, when projected |

parallel and orthogonal to u® yield

af 2
‘ Va(pu’+q*)=-po+ 2 p Uaﬁoaﬁ(f)' -u,q"

, ¢ \
(p+p)u“=~Paﬁ66p+PZVﬁ({HPﬁ“+ ) Uﬁ“—2q(ﬁu“)l.

(The convention we use for defining the Riemann curvature

. tensor is that used in Hawking and Ellis (1973) and is such that

UH ou_ A vy
VoV =V “=R* ")

These equations correspond to the Newtonian energy
conservation law and Euler’s equatioh respectively. The first

~can be rewritten as
TVa(nsua+T_1qa)=(82+T{noaﬁoaﬁ+qn.qa/x'l" (1.8)

Defining the éntropy four-vector .to be sa::-nsu'ow‘»T_lqa the
second law of thermodynamics takes the form VasaZQ with
equality iff the fluidvvis in thermal equilibrium. (In the fluid's
rest fx;ame Vasa is the rate. at which entropy is b‘eing génerated
per unit volume.) |

As Lindblom (1976) has noted, thermal equilibrium then
implies_ the folloWing properties. Since the fluid is shear free

"and expansion free, by (1.8), it is r_xg;g_ in the sense that \
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il
i
i

PPV u,=g™ 8" 2 (g, +u u\) 0 (1.9)

A
*

»This'noiion of rigidity is equivalent tcfa- the defi‘niiion given by
Born, Herglotz and N‘oether A body is ealled I‘lgld 1if the
distance between evé’n) nelghbormg palr of de‘UC]GQ measured
with respect tQ the wor]d I;ne of either of them, remains
constant a]'ong' the world line. " (c.f. Trautman (1965)) .If in
additic;n there is. no rotat‘ioﬁ, le. waﬁ:O, then vauﬁ—uauﬁ:o S0

that u, is‘hypersurfac-e orthogonal,

‘"ulavﬂu/u]:o ‘ ,

Furthermore, q% vanishes (also by (1.8)) so the fluid is
perfect, 0,=-9_ log T and all thermodynamic variables are

¥ - o ) .
constant along u, i

. T=n=§=0 | (1.10)

S

Euler's equation then becomes

dlog T=(p+p)_1dp,_ (1.11)

1

the equatioh of h)vdro"c.iynamiC' equilib'rium." Integrating this
shows that there is an arbitrary integration parameter’ T, the

value of the temperature at the surface of the star given by
p=0, which does nothing but change the temperatur'e of the star

s

by a constant amount; so, when discussing the uniqueness of
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configurations we will always take ‘T, to be fixed.- Using (1.1}

r

in the exterior derivative of (1.6) it is easily seen that dprdp=0

so the fluid is bafotr_.opic; p=p(p). Defining 0%=T 'u" 1t is .
easily .verifieq that the rigidity condition and (110) imply thatA‘
8% is an.infinitesimal symmet:ry of the spacetime structure and
all thermodynarﬁic variables in.t‘he region occupied ‘b-ymatte.r
(but is not defined in vacuum).

An analogous resﬁlt has been obtainedf by Stewartl(]g?l)
from a statistical mech"a‘n,ics approach. Using the relativistic
Boltzman eqﬁ“ation x;vith the underlying.phys'ical assumption thet
the fluid> is nol too cold or dense, so that particles which arc
‘abtout to col‘lide ﬁave uncorrelated momenta, he s}{ows that i a
~collision dominated equilibrium; if one component of thc»‘filmdl 1%
not massless, the fluid must be rigid and the _spac-etime.is
locally stationary under E)ka. | |

| It should be noted that if T=C so that the fluid ic
trivially in the.rmodynarhic equilibrium, results analog?;us to
t.ho-se of Lindblom’s above still ﬁold, Namely, the fluid is rigid,

barotropic with an equation of hydrodynamical equilibritvm
dp=( p +p)d(log n) ' (1.12)

and  ( p4+p)_1nua is an infinitesimal sy‘mmetry of spacetime and

all thermodynamic variables. Defining Te’zn’_l(p+.p) we then see

that dp=( p +p)d(log T,) and that.ej.:Tju}"- is,an infinitesimal
symmetry of spacetime sg all our results could! be extended to

-

¢
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cold maiier at T=0 by substituting T, an~d' @, for T and ©
respectively Although Eold-m-atter 1< often assuimed 1n
astropﬁys‘ical in\}estigations, particularly of equations of state
(c.f. Zeldovitch E;‘l’l.d Novikov (1971)), this is not an expected
physical situation, especially in light of some for‘n‘]ulations of |
th¢ third law of thermodyna‘mics (cn.f. ?ippard (1957) p.51). In

the‘f‘ollowi‘ng we Wi]l assume T>0.

A s-ta'ti_gna‘r_y' spacetime is defined as one which admits &
globally timelike Killing vector field, alphg which 'a‘ll‘ ph.;'sical
fieids are Lie transported Such a non-singular spacetime which
admils a Cauchy surface and is asymptotically Euchidean (whiéh
we‘w.ill defi‘ne; preéiéely later) can be showh to be in a state of
” t}:ermodyn'amic equilibrium (Lindblom (1976)).‘ Note however
that this is n.ot q,.u-ite the converse of the preceding results sian
t?ere werhave only localhétati\oﬁarity in the region occupied by -
matter. ; o

It would seem reasonéble to conjecture t.hat for an
isolated equilibrium fluid in émpty space the _spacetime region
‘outside the matter 's]*’1.0u1d be static;nary aé well as the intelr‘iqr
region. This will Cleérly depend on the asymptotic conditions
imposed, but is not .ea.sy to pf“'ove‘ri'gorous'ly even if énp demands
pseudo-stationarity, i.e. existence of. a global Killing véctor frelc
‘which is asymptotically timelike . However, thét the conjecture
is physically reaSonable is enforced by a result of Frivedrﬁan and
Schutz (1975) which shows that stars with an érgosphere (a

region in which the asyr_nptoticélly» timelike Killing vector field

12



becomes spacelike) are unstable to a non—alxisy‘mmetric mode.
On the othér hand it‘is a strbnger conjecture than one can

: v
justify in »Newtonian‘ theory (where stationarity implies all
variables describing the flﬁid, inc‘]uding the‘vvelocity, are -
independent. of time) since the non‘~ax-’isymm(~tl‘ic- rigid rotetors
such aQ the Jacobi ellip.soids are example“ of non—»sta"’tibnary-
.therfna eqmlxbnum iflu1ds ‘Butb in géner ] relati‘vit‘y such
objects would radiate gravitational waves and hence would not
~be expected to be in thermal equilibrium. |

For solar éized black holes the time scales fo'r a’pproe‘a(‘hing
stationarity are of the. order of‘ milliseconds (Carte’r (\9 )) <O |
sta‘tionarity’is'a goOd assumption.' Also Thorne (1969) has
shown that quad*'upo e v1bratnon° in. neutron star; are damped -
.by gravitational radlatlon in the order of one second while
Langer and Cameron (1969) have argued that many other
vibr_atvions are damped via nuclear reactions, wh.ch) lehea'te“
thermal heating, on the same sort of time sc}ale‘ f. Ho“jve'v\e\r even .
after a 'stzax" has reached its final state as a white d._vx‘e;rf or
~neutron star, tﬁe rate at which chemiycal and thermal |
equilibrium is reach‘ed.and at whicﬁ differen‘tial rotation is
damped out is .veryvs.low, ‘For example, in rapid].\,' rotvating white
dwarf stars Kippenhahn and M"d’ller‘xhoff‘(iQ?_l}) have shown that
.differe_n_tial rotation is damped out in a time scale of_lOé yéars‘
This is. slightlyvfaster' t’haAr.l the time scale of 10° {éérs in which
thermal ‘equilibfium is approached. Having'-made the

assumption of thermod&namic equilibrium however, we see that -

»



little is lost in assuming statlondrlty vutb ¢ ay. being the

global timelike hl“lné vec’tor field.
The vector fleld ®" must either be'proportional to ¢°

0% and ¢ must be non-parallel commuting Ki-]ll'ng veclor

fields. In the former case we have Uiaé =0 which in the case of

a spacetime containing a perfect fluid (and obeying E:nstein's
‘equations) is equivalent to the material statifity condition.

- ~ ' i
EaRyTt,=0 | (118

L-icfmerowicz (1955) haq shown that if tlx’g:-sj)aC*etin)e is
a.sy:mptotical]y‘ flat, asymptotically scurce &fkree and topol’ogit-z;ll_,}'
Minkowskian (whiéiﬁ oﬁr st;ellar modé]s af‘e as we will see \‘«'hcjn
we discuss boundary Conditidns and spheri'cal‘};solutjons) thenrf

(1.13) is equivalent to the metric staticity condition .

€[f{vﬁfvlzo : | (1.14)

which means {a and hence 0° are everywhere orthogonal to a
'fam"xly of spacelike hyper<'urfaces by Frobenius' th’eorem‘.v
In the latter case the interior of the %tar is axisymmetric.

Lindblom (1976) has shown that by using the Cauchy‘v}\owaleskl '

D

theorem and assuming that { is C4, the spacetime is c® and
the boundary of the star is smooth enough €" can be extended
. a'n_élytically into the exterior region.  This extension is linearly

independent from and commutes with ¢ and an asymptotic

14
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ar‘gubment indicates th?t it must be a combination ofea time |
trans]ation and a fotatioq, so the spacetime is axisyﬁmmetri’c.‘ ‘
Unfortunately it:is‘difficultkto rigorously match t‘he abov‘e

. procedure with our bou&%&é"ry‘co‘nditionsgs‘o we wiﬂ take_th‘e
above result as an*indicaﬁon tfxa’t there is li_ttle' loss _in‘
-;:genéfal‘iﬁy %{hen we_'éssume é priori .tha“t our stati.onaliy, | L
‘non-static, stell@f-mc;éels» are ax_iéymrﬁetric, 1e t'herevexistvs &
global one.'—para’r.netver iéonﬁetry group w.'hose orbits are .closed'v
sp‘ace]ikAe curve's; and which comrﬁutes: With‘ the timelike |

»

isometry group. A result of éarte'r (19"70") shows that there is'no
loss in generality in assuming this commutativity. We will let
n” be the Killing vector field generator of thé.closed spacelike
orbits. | o

From now on we will consider our stellar models to be

onary thermal equilibrium solutions of Einstein's

isolated stati
_ _ .

equ'aftons. which arebe‘i'ther static or axirsymmevtric:. ~We hav.ei
seen that théy vmust' then be perfect, rigid, barotropic fluids. In
the next’séction we will present a convenient formalisrr: for
wr'it.'mg_ tﬁe equations governing such fluids and present the o,
\ bo;undary.c'onditions one imposes to ensure theat the fluid is

isolated.

1.3 Statienary spacetirries
Let (M,g) be a stationary spacetimé For simplicity let us
assume that M is C°. The differentiability of g across the

star boundary will depend on the form of the equation of state
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p(p) as p—0 and its”differenti@ility, in the interior will ,v’
depend of course on the dlfferentlablllt) of*p(p) with re<pect te -
p for p>O. We will see that-we can essume the Lichnerowicz = =

-

(1955) _]unctlon eondxtlon ) namely that g is at leest C@

_piecewise C° (the second-and third derivatives are continuous-

| except at & finite number of hypersurfeces where they have

e . . ‘

finite limits on both sides)j r‘I‘he metric will a‘\ctua]ly be .uC3 in
the exterior region so'by a result of Miibll*er zum Hagen (197@) it
can be tdken to be analytic in“the exterior. Lindbloml(1978) has '
shown that if p(p) is analytic So is g in the_inter‘ior (for rigid

o~

,rotation). We also assume that ¢ is c® piecewise C°. With the
. -~ . ] .

“Killing equatlonc this 1mp11e< thdjm € is & piecewise Cs.
The form for the metrlc g \Athh we wxll den\e belo“ V\q<
orlgmall} given by Ehler< (19:)8) but the geometn( derl\atlon '

‘{‘

presented here flrst‘appeared 1n Kunzle and Savage (1980a).
‘\

Since M is stationary the flow of the vector field § corresponds

)

~to the orbits of a one-dimensional isometry grc}up.and these

!

orbits are timelike C° sdbmanifo]pds,,diff.eo.m'orphic» to ® since
t»ﬁer_e are no closed timelike lines (causality ‘clonditio_n); Let . :
’ w - : :

v o |

){ ~g(£.0) /1)49 -

“so that ¢(UJ=0 and U is C,

ewise C .
- o - e A
- We asqume that the strong causallty D.dltl n (Hawkirig

mnls (1978) p 192), which has been shown to be valld for
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o

phyﬁ'i'cally realistic solutions, holds for our stellar moc%,els.

Namenly, for all x,&EM there exists a neigh‘borhood V of )\;o_ that
is intersected be. each ti{{)eliké‘ orb_i.t in at most one connected.‘
segment. This is true'}‘f‘or the spa'c"e"of orbits X of ¢ iff Z-”h.a'as'
a -manifold structure such that thle caﬁonical 'projéct.ion‘>‘7.': M
—z is C° (Paiaisi(lgs'r) p.20). T.hullvst M ‘is a principal fibre
bundle over T with >st~r.u>cturve group (®+). '(Seé for examplé
‘_Choque_t—Bruh;t et al. (1977b) p.:128vfor this and p.288 for the
"tl:leory of connections used b.elow.) ‘ | . .
: .We Qrthogoﬁally,decompbse TXM into'a‘: 1—dime}nsi_onal

. vertical subspace V_ parallel to ¢ and a cbm;ﬂlementary

© horizontal subspace H, by writing ¢€TM as ¢=¢"+7 with ¢%=

. e—zug-((;g) . This decomposition defines a connection since.it is »

invariant under the group actionh of (®+). It can be

equivélently characmized‘by a con'r‘lection fd_rrn, l.e,

a real valued 1-form w that satisfies

'Q(xx):0<:_>xxeax (ii1) w(¢)=1 (1.1€)

These equaiions define w‘. uniquely if the horizontal subspace is"

given. The curvature form H associated to the connection form

o

w is then |

-~ .H=duv+wrw=dw

-and ,Hz'ﬂ]‘ﬁ for a’uniquevz—form H on “I, since ¢/H=0 and



£H=0 so that H is baselike. Simflarly we have U=n 0

We define a Riemannian metric % on I by
A , F(X.Oiz=e gy (1.17)

for any x€n~1(?\‘). where x.{€T M are the unique horizontal

1ifts of '){",'EETYE, respectively. Then we find-

gz-ﬂ‘(em)w®w+ﬂ*(e—‘2%’7)4 ‘ (1.18)

If (Mg) is also static, then EAdE=0 where ?:“g(g)' by (1.14).

+ 20

Using (1.16iii) it is seen that €=-7 (e" )o so wal=0 which
| ! |

implies. H=0. The converse is alsc true.

We now drop the tilde and consider only the
three—geometries (I,y,0,U) assumed globally defined, C° in the

extefior region, c? éxcept at the st‘awgﬁndary with v a

positive definite Riemannian metric, @ a connection form on &r. .

*

/. R-principal bundle over T and UECl(ZFR). Note that there is
no reason for the closed 2-form H to be exact.

On a local neighbofhood of XEM there exist coordinates -

(t.x)=x" such that ¢=d, ie Z£,g=0<=>0,g,,=0. Lelting

)

U

] 2
Txi—€

_2U

2U - v
€oo="€ . Box™ "€ &y 8TE- Ay . (1.19)

we have that

18



w\:dt+ak_dxk Sy =7;dek®dxl Hij::ZB[iaj]. (1.20)
, .

We now use such local adapted charts to derive the

' three-gec;metry formulas. First we observe that for any vector

field y such that ££)\':O, ong(g,x) and X‘ai are a scalag and
vector field, respectively, on L. By writing all the tensorial

equations with the O index lowered and the Latin indices raisea.
the &, do not appear except through H; = We use 7y to lower
and raise all Latin indices (which will always be considered to

run from 1 to 3).

Einstein's equations for a perfect fluid,

4 4 2
M%Rga,«;:Taﬁ:(pf'p)T 0,851 PBag (1.21)

then become in the 3—dimensioneal formulation -

R=2979 U0, U+Le ' h'hi+(p+p)e *'1T%0’0’
—(2pe P+ (p+ple U T%0%) 5" (1.22)
AU::')'”ViajUzM—%e4uh2+(p+p)e~4UT262, \ (1.23)
' 4
t”kvj(ewhk)=2(p+p)e—2U'uT91, (1.24)

i i 2U

“where hi=e"H, h®=y,h'nl 6=’ 6°=y0'0" M:2L(p+3p)e”
: ‘ .
and v:=-uy>0 so that v?=e?"+1%°  On the other hand, 8" isa

symmetry of the spacetime metric and all thermodynamic

19



quantities 1ff

2020 Ly=0 2,p=d,p=2,T=0. (1.25)

)

The rigidity conditions together with Euler's equation take the

-form

]

0IH+d(vT e Y)=0 | (1.26) |
which implies thai
£9£i=d(64H)+0JdH=O whenceligh=0. (1.27)
Since H, is %id‘éed we aiso have
Vh'=0. * | (1.28)

If M is static H=0 and equation (1.24) implies 6'=0 .

Eiristein's equetions then reduce to

R,~20,U8,U-257, | (1.29)

AU= M | (1.30)

where 'ﬁ::pe;2U while (1.26) becomes

in the interior, where the subscript ¢ will always refer to the

value at the center. We will see later that for all the cases we

T=T ¢'<" o (1.31)

20



are interested in there will be a uniquely determined center.

The equation of hydrostaticl‘\gquilibrium (1.11) then becomes

dp+(p+p)dU=0 (1.32)

&
We can now state the boundary conditions which are

usually imposed to restrict to solutions which are isolated,

namely, we demand that spacetime js asymptotically flat at

spacelike infinity in the following sense (c.f Lichnerowicz 1955).
In terms of the three géometry,

(i) there exists a compact KCI and a diffeomorphism ¢ E\K—
1’R3 \B wherey B is a closed ball centered at the o'rigﬁxl;

(ii) wit}brespect to the standard coordinate system on ®°

7,=0,+00x ™) 8,7,=0(Ix"")

U=0(x")  8,U=0(x")

" h'=0(xI?) C(1.39)

. q- A o
where lx12=_21(xl)2.
=

These conditions are.implied by more sophisticated

definitionys (c.f. Geroch (1972) for the special case of $22° which.

we will see later will hold for the spacetimes w;e'ére interested
in. (We do not require any conditions at null.infinity since
stationarity has already fuléd out any dynamics.) With such
asymptotic conditions Lichnerowicz ((1955) p.126 et seq.j has

shown that in the stétic case (1.30) together with p20, p=20,

21



implies that U0 on ¥ and if there is a compact région DCL
“such that p=p=0 in V=I\D then U has no maximum or
minimum in V and no critical point in‘some neighborhood of

L4
v

00 unless the space is flat. Furthermoare DC;:SXEEIU(X')Sci is
compact for all ¢<0 and SC:BDC:UA(C) is diffeomorphic to the
Euclidean 2 sphere for ¢ sufficiently close to O ile Y is:

asymptlotically spherical.

e

If £ is homeomorphic to R (we will see later that X i

actually diffeomorphic to TRS for all the situations we aré
interested in) the Poincaré lemma (c.f. Choqﬁet—Bruhat e£ al.

- (1977b) p.213) impl.ies thavt the closed form H is exact. Thus,
even though the &, are not necessarily the components cf &
1-form on T we can find a i—fch_*m a on ¥ such that H=da.
This o 1s ‘determined uniquély up to e closed 1~fofm which by
the Poincaré lemma must be exact] ie o is détermine’d up:to'

3

the differential of & function f on I. Imposing a gauge

condition V‘ai:O ‘wouvld give us a unii.que « since then Af=0
which implies f=const. However, we will not impose this as an
extra conditioﬁ (the reason for this will be appiare'nt later).
Rather, the gauge freed‘om will bNreated in a‘manne,r
analogous to the coordinate freedom.

We nﬁow want to define the mass and angular momentum

of our isolated stellar model. There is a difficulty in general

relativity in introducing such physical quantities which describe

the structure of a gravitating system as a whole. This results

R2



from the fact that in flat space such quantities are associated

with the action of the Pdincaré group but in a curved space the

L4

corresponding "transla'tio:n subgroup is much larvge.r than the

constant vector fields one has in flat_.spac:e. This is due to the

fact that one must admit as asymptotic Killing vecter fields all

those vector fields which are linear in position with coefficients

that form a skew te_n’sof '("ro\tation") so the tfanslatior].
sgbgroﬁp includev’s a}lrli vector fields which adfled’to this do not ~
disturb its asymptotic behaviour. The faster the spd\cet'irhe
metric approaches the Minkowski metric the, c]osexi the
asymptbtic symmetry group will be to tﬁe POil’lC.'al‘éng‘OUp, but
‘-the smaller the amount of information available frorﬁ the
asymptotic behavic;ur of‘theﬁgr‘e‘xvitational field will be. The .'
general situation is therefore very difficult but in 6ur |

particular case (stationary, axisymmetric, asymptotically flet

~and I homeomo‘rphic to RS) we can def‘ir}e quantities which in
an asymptdtic eéxpansion of the metr‘ic'_'aﬁre seen to correspond to
the rphby's.ical mass arllyd angular momentu;.m (cf. ‘Misner, Thorne
and Wheeler (1972) §19).

Ehlers (1965) has shown that the total gravitational mass

of an asymptotically flat statiohary system in which ¥ is

homeomorphic to &% can be defined by

\

m=(1/4n)fw(\7"u+%e‘”H“‘ak,)ds, | (1.34)

where dsS; is the normal surface volume element of 3D and
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where D is any domain of T containing all the matter. It is
-easily verified. from Einstei‘n's.equations (1.22~l.24), the rigidity
conditions (1.26) and the asy plotic conditions that the value of

the integral is independent ofzthe choice of D as well as o In

the static case this reduces to'the usual integral

=(1/41T)fDMdV obtained from integrating the relativistic

Poisson eque{tion (1.30), Where av vis the volume element of ¥

(c.i. Ehlers et al (1962) p.68). A calculation shows that this mass

agrees with that found from the ADM four—r_n‘omen-turr‘l for an
asymptotically flat stationary spacetime (c.f. Jang (1979)) and
also agrees with the coefficient of —1/ix{ in an asymptot.c

expansidn of U, i..e.
U=-m/Ixl+0(Ix| ) o ©(1.35)

at infinity.

A general definition for the angular momentum in the
general case is somewhat trickier. (See for example Gercch (1972
“or Ashtekar and Streubel (1979).) However, in the axisymmetric
case a formula correspondmg to (1. 34) can be found ReCall that

7 is the axlsymmetrlp.vector field on Z, so
.8,77 =0, .l,’U =0, ,Zna:O whence £,‘,H=O o (136)
and in the asymptotic»region’ we can take

n=x0,-x8,+0(x| ™) (1.37)

~r>>'
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in tefms of the cartesian coordinates. By fixing 7 in this
manner we are eliminating some of the coordinate freedom so
we will ‘expect the slowly rotating isolated equilibrium

'statlonary stellar models to form a 1- parameter family rdther
than a B—parameter family. Now, %‘az(O,ni) is a 4-Killing veclor
"'field’tha't‘ commutes with' fz_(')t and is everywhere spacelike.

Defining the g_n_ggl_‘e_g m entum J by
167 —fam\/ | |V0$7’(51J2k3dx adx” :f N1 S%Ld\'lAdszdxs(l.BS)

where Iéi:det(g'w), it is clear that' J is ir;"dependeht of D as

long as D contains all the matter. This can also be written as

| J=(1/1677)f053?‘H (n,+ 46 O‘Lf‘ 7 )*0 (2n*y"-n'y )6 U%

(1.39)
which can be verified to be independent of the choice of a.

1.4‘(2+1)'—‘din‘1ensional formalisn

The formalism we present here, valid in the case where U
has onlyl one (non'degeneréte) critical point, was used by'Kﬁ’nzle
(1971) in an enalysis of. the linearized static Einstein eqbuations
because it allowed a Tesult for 2-dimensional Riemannian
manifolds of positive éu’r\)ature to be used. (Thié result, with a

corrected pr‘oof, is given in appendix 1) We need this formalism

50 that Kiinzle's analysis can be used as well as to aid in .the‘
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analysis of the linearized stationary Einstein equations. When

we look at the spherically symmetric solutions we will see that \
U then haé only one critical poi‘nt, which 1is nond_egenverate and

_ defines a uniciu‘e center x_ suchrthat U(x.)=U. 98,U(x,)=0 and |

616jU(xC):é0§ For technical reasons we will be forced to consider

only--spacetimes which are ”differentiably" close to the spherical

1

_soluti-ons.so that this will hold true for the situati.ons we are
_interested in.  We are then ablelto rewrite our equations in |
terms of the two-dimensional geometry of the equvipotentia]f

surfaces which will'all be Riemannian 2-spheres.

Let 82 be an abstract 2—splhere and i/ $* —% be the

N imbedding map of s° into T ‘such that ic(‘Sz):U_l(c)::Sc for any

c€(U,0). Then any £ l-form is characterized by Z=i o and
. =" (VUlw) (1.40)

This decompositon extends to any T-tensor field since T is
Riemannian. “An intrinsically defined normal derivative to the

S. surfaces is given by
Bo=i (VU V) o (1.41)
while the second fundamehntal form of S, is

Q;i'(V(IVU]"VU)) _ (L42).

(c.f. Kobayashi and Nomizu (1963)).



To'find the local coordinate expression let (YA.A=1,2) be a

chart of S° and ic:YA'*—*(U=C,XA=YA(c)) (using (u.x") as a chart

of ©). Then for a 1-form

‘ ?JAZwlOU/OYA+wE(‘)xB/@‘x‘A:wAI

W =i (VU0)=i"(w,y"0,U) =0 (1.43)

In partictular .

. — 00 ij : -—’2 0 ir ' . '
Yap=7aB 7 :71131U61U::“ 7A=7 0, Uy,,=0,U=0" (1.44)

~

and 7,p is used to raise and lower all indices of S—tensors. If

)

A B

‘we also write 71A=PA and P :=7A Py we obtain

(7= _ T (1.45)

Although pA does not transform as a ‘tel.'ISGI‘ on S (if. ‘YA——*‘}ATA:_. '

ﬁA(U,Y)), by treating PAaA- s a vecté/r field on & we find thet

fgr any S -tensor K (w@th possible U—depen‘dﬁence).»
DR=3,K-2,k _ (14€)

is invariaritly defined since DK-DK ‘éan be expressed in terms

of S —tensors. F‘br éxarnp]e, if T ise 1—-form, 55A~D5A=

g

W—awébnw—WqQABUB . In particular,
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D7 ,5=2W '0,, ’ (1.47)

Note though that when U has only one critical point, VU

is a vector field that Qanishes nowhere except at the center éhd ,

is §rthog0nal to the surfaces S.. It can {hﬁs be used to .
construct a global polar typ‘e‘ coordinate system (U;xA) on ¥
such that PAéO so D=g. ch> simplify mattérs we will a‘liwa_ys
consider this {o be done when dealing with- this
(2;1)-.dim’er15i0ﬂa‘1 formélism, but it is not necessary. . By
Writing the 1-indices up and the A-indices downi one gets the
same equations whicﬁh we derive below and Kiinzle's anal;\isisv,
done with P,#0, is -merrely s'implifjed a bil. .

| A'fter some work it is ‘f.ound that‘t/he Einsjt.ein equationé

-

take the form

. JPURPX
DW=~.'Q‘+M%'_1—%64U(%’f3hO +Ww'R?)

-4U 2

+{pt+p)W e *7%? | (1.48)
o hg=0 - (1.49)
DH,=0,(h°W )-4F,+2(p+p)¥ e uTT 58" (150)

' -1 C w1n w3 .
DQAB::B“» QACQB—,-W ,QQAB-—2W aAW('iBV\

. _ - -1 4U
W 2VkaBW+%W IR’}?AB"‘%W le I;AHB

(o)W e T B, T =TT ) 2P W e S0 4y (151)
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’ v,0t-0,0=4w e nm, .- (1.52)
- i~ . s o
e A2 e AB 2 4U, —2 —2-; o° ~ | :
 R-0+00 2w ~4e" (A=W "n )=—-2p ~  (1.53)

where Ezzz")"'A.B_HAHB, ?2:£7AB?—A—9'B, D:z”?ABQ'AB, TAB:;}\'EIAB
:\/76128, ‘RAE:%R7M§, and V is the'c_ova'ljiant— ‘der‘ilvat'i‘ve wi‘th
respect to th'e connec@idh defined by F,p Using 80=0i6iU=O,

_equation (1.25) becomes

£aW=0 - (154)

A = = ' '
DH -’—’0,' V(AOB):O‘ S (155)

s

fations (1.28) and (1.26) yield, respectively,

~

DRO-W hDW-W R4, W+ T, Fr e lon=0  (156)

and

D(uT e ®)=wr B E" a,(eT e *)=W T hlT 7" (157)

“and equation (1.27) translates into
\

, 2gh°=0, 2zh,=0 « (1.58)

Note that,’in fact, the Lie de'rivati}ve_ with respect to _FA of any"

dii vanishes.

ke static case Einstein's equations are just - "



<
DW=—0+MW ! R (1.59)
. 1 € -1 o3 . ‘
D, =2W 0, 0p-W 00, ;-2W 8, Wa -
AW, WA AW TR g o (1.60)
V,-3,0=0 - @

R-0%+0, 0" 2wP=—2F. - (162)



CHAPTER 1II

U.N'IQUENESS ‘THEOREMS.

I

2.1 Historical uniqueness_theorerns

Nowv' that we have developed some ‘formalisrﬁs‘te deal with
our isolated equ111br1um (stationary) stellar models \;ve would
~ like to get an 1dea of the types of approaches that may lead
"towardq the uniqueness results which we mentloned in the first
chapter-, namelys_that in the‘statl‘c case the‘solut’lonvsﬁ_must bev
sphe'rically.s‘ymmetri‘ciand in the» slowly rotétin"g: casve',‘%?fﬁor a’
giv'eh ‘mass m, surféce ’tem,p_erature T .and eduation of st_ate;
p(p) the solutlons “near sphericai -siy‘rhmetry'&fvérm a .
3 parameter family parametenzed by the angular momentum.
| 'To orient ourseres we will look at the-appro,aches used in the
historical unldueness theorems then at the ‘general features _‘
which any ‘uniqueness theorem must have and flnally, outlme -
the tvpe of approach which we w111 take : R

Prpying that a stattc_‘ pe-rfect fluid solution is spherieall’_\;.’
symmetric irl nozr_lrelativistic‘ theor)r is cdnsidérabl_y simpler,,than
in the rel‘a‘tti\'istic'theory.’(Static here rneans that the velocity
'of theﬁ fluid \‘{anishes,.}) The ~n}et_ric of Ra_(is‘assumled _to be |
Euc'lti‘dean o) thét the physics‘i's described by one functio‘n,:theu_
‘grav1tat10nal potentlal UN, which satlsfles a P01sson equatlon

i

"'and is connected to the pressure via the equatlon of hydrostat1c



equilibrium dp+ p dUy=0. The proof that the solution must be

spherical if p>0 in sor;le compact domain of ®° and if., Uy—0
as x—>% was first given by Carleman (1919) for the case of
uniform density models and by Lichtenstein':zl\QiQ) for arbi.trary
density models. Such a result can be shox;vn.to follow from the
theorem that a rotating Newtonian stellar. model must have a
plane of mirror symmetry which i"s:"’i'ort;hogonal‘ to the rotation
axis of the star. This latter theorem-was first proven by
Lichtenstein (1918,1933) for the case of uniform density stellar
models in rigid. rotation. It was generalized .by Wavre (193é) to
the case of stationary axisymmetric barotropic ideal Newtonian

. fluids ip differential rotation and further generalized byh’-

Lindblom (1977) to the case of barotropic ideal fluids which have

st're;tifie_d flows (V=.(vx,yy,‘0), say). Wavre's proof involved the
Green's function for the Laplace operator in the _gjﬁxitational
field equatioﬁs so it cannot be generalized to relati‘\éf—éistic stellar
models where the field equations are nonlinear. Lindblom (1978)
had hoped that his proof could lead to a generalization. |

However, his proof relies on constructing chords parallel to the

axis of rotation (z—axis, say) with end points.on the same level

surface of the potential Uy. Then a plane is taken through z_,

the midpoint of those chords with the maximum gz component
and all functions are dlecomposed into even and odd parts with
- respect to reflections through this plane. The maximum

principle is then used on the odd part of the gravitational

3<
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potential Uy which is shown to satisfy AUg20 for all z2z_

Such a coordinate dependent proof is clearly difficult to

geheralize and no one has yet succeeded in acheiving that end.

In the slowly rotating Newtonian-case the question of
uniqueness does not seem to be as settled. A stationary viscous
héat conducting Newtonian fluid stellar model must have a ‘
plane mirror symmetry and be axisymmetric. However most -
discussions of equilibrium configurations of slowly.rotating stars
in the N.ewtonian theory start with an assumption ab§ut t‘he
particular form of the star boundary, such as being ellipsoidél

orsperhapg more complicated, as well as with assumptions about

the equation of state such as the matter being homogeneous (c.f.

Chandrasekhar (1969)). Neither ellipsoidal configurations nor

constant density maké much sense in relativity. Lichtenstein
(1933) has shown th;\;t the Maclaurin ellipsoids are the only
constant density configurétions in a ﬁeighborhodd of the
sph_éfiéally s_ynimetric configuration.

| There is considerable hope for oblaining uniqueneés
results in general relativity as the general relativistic case is

less degenerate than the Newtonian one. In fact it is the

linearization of the 'magnetic’ part of the gravitatioﬁal field h
which does not vanish on the spherical backgfound, as we will
see, so that there is more hope of proving that there exists a
finite dimensional family of slowly ro{ating configurations with
a given equatioh of state, given mass a‘nd temperature. We will

run acr‘oss difficulties in the exilsten-ce part but we do obtain a

Y
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uniqueness theorem for small J. (The vector field h is called

vmagnetic" because it is divergenceless and its curl is related to
a mass current as is seen from equations (1.28) and (1.24)
respeétively.)

It is considered physically evident that a static general
relativistic stellar model must be spherically symmetric.
Indeed, that it is true-in the Newtqnian case suggests that a
contradiction must involve strong fields accompanied by their
significant nonlinearities.. But Israel's (1967) proocf that static
black holes must be spherical shows that the nonlinearities of
styrong fields é‘“ré unlikely to prevent the spherical symmetry of
nonsingular stellar models. Moré precisely, Isra;]’s théorem "
states that a static, asymptotically flat, regular spécetime
corre;qunding' to & vacuum solution of Einstein’s equations must
be a positive mass S}é‘hwarzschi\ld solution if (i) past and future
':«_,,‘,"'event horizons (c.f. Hawking and Ellis (1973), p.129) exist and
intersect in a connected comp~act spacelike t‘opolo-gical 2—sphere
and (ii) U has no criticél points exterior to the event horizons
Hawking (1972) showed thal condition (i) was necessarily
satisfied e‘ven in the stationary- case. Mﬁller zum Hagen (1973)
and later Robinson (197‘7), by a m‘uch} simpler and more elegant
proc‘)f,}s'howed fhat condition (iii) could be removed..

The methodology of (hese'pfoofs is to derive expressions
from the field equations with the form of a divergence equaling

a definite signed quantity. By integrating the divergences are



3.5
converted into surface integrals, the one at infinity vanishing
because of tbhe asymptotic boundary conditions and the one at
the central singularity t}}us, having a definite sign. The
' .inequaliti_es obtained then yield the desired uniquene.ss'lresult.

In ﬁarticular, Israel constructs some eﬁpressions from a
(2+1)-dimensional formulation of the vacuum Einstein equations
with the dlvergence part being the derivative of some scalar<
with respect to U. The mequalltles obtained then 1mp1\ that
8,p and _CAB—%Q?AB vanish. . Robinson used & 3-dimensional

formulation of the vacuum Einstein equations to obtain én

: . iJk .
expression contagnmg Riij where

R, =2VR 3 (7,68 R)

is the conformal tensor which vanishes iff 7y 1s conformally

flat (c.f. Eisenhart (1926) p.89). Since one can show that

ik —4Upowdim o | = AB AR, AR wea
R'iij . =e [BW (QAB-']?Q')’AB)(Q ""EQ“/ )+7 6;;“53“]

(c.f. Lindblqm (1978) p.107).a vconforr/hal]y flat solution of
Einstein’s equations must have W, the ’magﬁitude of the
gravitational field /strength, being a function of U.only. (The |
proof actually broke up into two g/asés, one yielding that Rj;
vanished and the other yielding.directly that W was e function
of U only.) |

Avez (1964) had shown using Morse theory that when W



was a function onl‘y’of U the s‘pacetibme must ‘be spherically
symmgtric'.(even for the non#acuum case). (He (haa thought tha.t
he néed ﬂgt ‘a‘ssume that U had only one (nond‘egenerate)
eriltiéal ‘point but there is an algebraic error in the proofvof his
lemma 2,'p.297. Kunzle (1971) genéral_ized his result by show’in'g‘
this assumption Cou:]d be evliminated‘)‘ln fact when W 15 a

function only of U he showed that U can have only one

(nondegenerate) critical point so that T is then diffeomorphic .

to R | -Botb of these statements rely on a result from Morse
thebry that two surfaces ‘Sc, and S, are diffeomorpﬁic if therc
\ is no critical value of U in [cil,ébz]- (Milnor (1963) p.'1\2). Thus
Robinson was done. |

The stationary black hole case was attacked by vCarter.
(1971) in a similar manner using’'an expression containing a
divergence and signed quantities but with an important
differehce. This expression‘ was obtained from théhnearized
equations, ‘not Einstein's equations, so the proof is not global as
the above black hole theorems were. In‘fact Carter’s result |
states that the possible families of solutions of Einstein’s
vacuum equalions which are stationary and axisymmetric and
depend dif!erentiably (at least Cl)_on some paramelers form
discrete families which can depend on at most 2 parameters.
Hawking (1972) sthed that.the geometry ex{erior to the event
' horizon was necessafily»axisymmetric fér stationary black holes

and Robinson (1975) then showed that only one such family

36
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exists, namely £h¢ Kerr family with J<¥nz.}

As we will see later we also approach the problem through
an analysis of the linearized equations and our resuit in the
stationary case will be of the same riéor as the stationary black
hole theorems. In other words‘,‘both are ,"loce'l” réther than
gwglot.)alM results.
| There héve‘ been W’o main attempts_té 'prové that static
~ stellar models are spherically symmeific. .Lvindblom (1980) has
attempted %o follow the approach of ob»tai'ning an a'f)pi*opriéte -

'expression from the field equétions which contained a

divergence term and R’iijijk as well as other signed, Quantities_.

This proved possible to do for the cése of constant density but 1s

&

highly dependent on this assumption as all the expressions must

contain the densit.y (ahd possibly derivatives of it) in the‘m‘ A
A.fairiy thorough search for such expressions for more generél

" equations of State has been carried out butl with no suc‘-céss
(Lindblom (1978)). The 6ther approach i.s'.t‘he'investigﬁtion of
the linearized equations in the (2+1).—dimeﬂsiona1 formalism?

done by Klinzle (1971). Here he considers the problem of .

provi'n'g that the static spherically symmetric stellar models are

isolated from other possible stellar models by proving that there
dre no non-trivial static perturbations of & static spherically |
vsymmetric stellaAr model which leaves the central pressure P,
and central gravitaional potential'}Uc unéhanged. These are

not the appropriate physical constraints®to put on the



péﬂurbati'on but it will turn out in our a‘_ppr"oach.that the
above result can be related to a .perturbat‘i.on with the physical
con'étr,ai'r.lts of constant mass. , co‘nstarjt‘svu'rfaoe temperature and
fixed éciuétioh of state p(p). |

‘Before paésing to an ou_tline of our approach we shoﬁld
- mention on'e' other paper. Marks (19?7) clalmq to prove the
general. result that static stellar models must be spherical bu:
his proof is fallacious. He assumes wlthout Justlflcatlon that
the cu'rvature of the »equi'potehtia]' surfaces is constant. We ;re
unaware of any umqueness or ex1stence re<ult< for the .ca<e of

slowly rotating, stationary stellar models.

2.2 Our approach
Let us first examine some of the general features which a

o . - ' . 0% ) 0 . - . . *
static stars are spherical theorem or &  stationary stars with

fixéd. m, J, T, and p(p) are unique' theorem must possess.
That the mét.ter r;lust be a fluid which canﬁot support.stresses

i; -'e.v.idvent from considering a siatic cubic crystal or a solid
dumbbell slowly r'cé."tating about the aiis Joining the two bulbs in |
8n aSymptotically’fiat ;spa'ce. In fact the proof must use the |
fluid matter assx'f'ni‘p;cion in some global way for s\é)me small
amount of solid matter arranged in a lattice or the shell of &
‘dumbbell can destroy vrthbé uniqueness because of the long r&hge
effects of'vthe ‘grévitational field. Thus the proof must deperAd |

on the fluid properties of the matter throughout the region

occupied by‘ it.
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~The boundary condition at spa»celi_l‘{je infinity, nafne‘ly
ésymptotic flatness, is also crucial. If it was replaced by a
non——spheri.oally éymmetri ,boﬁndary co.ndition the static
‘theorem would clearly fail va‘nd.sincg one can only expect
unigqueness in 'tvhe stationary; case for slom'l)" rotating
configurations i_«"hich are close to spherically symmetric this
type of theorem would also fail. Thuls the proof m.ust:'also use
' thelasyniptotic bo‘L‘J_nrdary conditions in an eésential way.k‘

f‘urthermore the diffe‘rentiabilitky acros's the star boundary
must play a role... If U, 9 and h are ‘“t.oo differentia}_)léM the
bound'ary conditions will be overdetermined making the
eXistence of a solution unlikely. .If they are not differentiable
ehoulgh" oneﬂmay lose the uniquénéss. It is p‘h.ysicially‘ clear
. that this differentiability must depend on the equation of state |
an‘dvlater in. this chapter we will analyze this in some detaii.

What kind of proof can fulfil these cfiteria‘? As we have

‘se‘en, the black hole uniqueness th‘edrems use the bou"ndaf}j
'condxtlonns at infinity by mtegratmg over all of .£ and umrb
‘vdlvergen‘ce terms to convert some of the 1ntegra1c into qurface :
1ntegralsf However here one does not have to deal mth star .
-boundary condltlons or propertles of the fluid. As we notec |
before anc is evident from the expressi;)ns of -.this sort obtained
by Lindblom (1978) any probf along these lines is éoing to be
heévily depén‘dent \on the equati"o.n_ of state and likely tc be
possible for very few.

Despite the ‘éom-plicativon_s due to the presence of & source,
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ho'wever, the;re Is a heuristic line of reasoning which gives some
hope‘.b f th.e> équétio’n‘ of“state is fixed and the field equations

are suppler‘nbent’ed .by_ tHe conditions for rigid motion one oblains
“a system of eq.uat_ions whose linearization may .be expected to be
elliptic, once the coordinaté freedom,;ls factorbed out The set of :
solutions of these linearized equations together with appropriatc;
boundary conditions should then be finite dimensional.

Our approacﬁ, then, is essentially a cé}ltinﬁation of the
defor‘mationhm’et.hod used by Kilinzle (1971), namely an analysis cf -
' thé linearized equations of‘a static (Istational‘y) perfect fluia:‘
with a fixed equation of stéte vp(p), fixed surfacé' temperature
T, and fixed total gravitational mass m (and fixed ba‘ngular

momentum J) orj an arbitrary background sblutiononlen ®’
and reasonably close to the uniqﬁe 'spherica"ily symmetric
solution with the s'afne p(p), T‘,L and m. This is doné in the
spirith(')f F‘is;her and Marsden's ilQ’?éa, 1975b) workv“oin
‘ lin'eari.zatlonstab’ilit}lt Linearization s’tabi]ity roughly means
that for every solution of the linearized equations on some
‘background, solution. ther.e is a corresponding solution of the. -
nonlinear eqﬁations. When this is .n‘ot true the system is said to
- bﬁmearization instable on £hat BaékgroUnd‘ | |

We give here a general indication of the argument irnz the
ste‘ltivc case since the stationary case is v-ery similar and will
wait until we have discusse;d the mathematical machinery used
be‘fvorfev we get precise. First we want td restri;-ﬁ to the S,Uf_ldy.,é_f

spacetimes with the appropriate asymptotic behaviour and the
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'differ.entiability conditions appropriate to the equation of state
p(p). whicﬁ we can consider fixed. (The gleneralitvybc-omés in
being able to use the same types of spaces for different
equations of state with a'pa;a‘m'e‘tver determininlg the
differentiabilit};.)' From the'vésyfinlptotic e‘xpénsion
'U=—m/|>£:|+0(lx|_,2') it is apparent that we can a]sd).corn.sider m to
be an asympto.t,ic..boundar.)'. éondition o) ‘tha\t' f‘we"__can restrict to
spaces which w‘i'llb contain all the;solut.ic'ms of mass‘ m- We will
-make the 'appr’op\riz;:te choice of a Banach spetéé X of 3 metvriés

" and potentials on T with the désiredl differentiability and .
asynﬁptotic behaviour ffom among fhe 'weight,‘ed"Sobt.)le\',vSpéces
(Céntor'(l&)?éa_j, (1975b))l4v Then, using Einstein’s .e’q.u'atAions to

" write .a nonlinne‘lar- diffe‘rehtial operator mapping between Ban?ch
manifolds, : "

y

~

.f;az(y',u)»—a(R,,J—‘zaanjU+2f5,AU—M>

from X into a space of symme‘tri‘C covariant tensors and
functions which will be isomorphic to some suitable weighted

:Sobole'v spaée-s, "Lvhe sélUtion set of Einstf;in.'s equ@tions with the

desit‘ed asymptotic and diffe.rentiabilitjf conditions .is just fﬂl(O)ﬁ.”'
. The coo,ﬁrdinate"freedom can then be handled by the fact that
/1\)/{6 set of aiffeomorphisms on. & that aI')proach the identity at.

infinity operate in a natural way by pull—baék on ¥ and that

the corresponding orbits are submanifolds of X. If we could

‘show that the set £7'(0) is contained in the orbit through the
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spherically symmetric solution we would have pro)ved that these
solutions are obtalned from the spherical l) symmetrlc one by
diffeomorphisms, or in other words, that the set of classes of
_ phy_sicél]y equivalent_solutioﬁS 'cons'istsfonrly of the spherically
- symmetric one. |

| We dovvnot prove ‘this general a result, however, for several
reasons‘. First, theftangéné map L of f -is not oorjecti\fe $0,
as we will oee, we are unablo to 'pr‘ove..that'f_l(O) is a
’submalnifold. We are thus unabkle‘to tackle the problem of
ex1stence of solutlons and in the Qtatlonal") case mlst absume
: that r]gld&rotatmg perfect SO]Uf.lOIlQ with nonL‘elo angulal
momentum ex1st_‘ Secondly, in order to ‘exten‘d our analysis of

the linearized eq'uations on the spherical baokground to

backgrounds away from spherical symmetry we must use a

slicing theorem for the -orbits of tﬁe difféofnorpl'lisfrx gro’op to
obtai'n an elliptic opei}*abtor frorn the tangent map £' to which(.
we can apply a tiheorerln of Nireﬁberg and Wa]kéh (1973). -"The
shce S obtamed representq the Qet of equ‘\'alence classes
locally and I\nenérg and V\all\el S theorem c}(ealQ Mth oporatom
which are dlfferentlably close to some operator so both
theorems force us to con51der on]y solutlons whxch are close, in | ‘
the Banacﬁ topology sense, to the spherically symmetric |

solution. Furthermore, s‘inoe Nir'enberg and Walker's theorem is

a proof -by' contradic,tion there is little hope,!of -obtaining an

upper bound on how.far away from spherical symmetry ,-our

result is still valid and thus little hope in finding an upper



vstationary. case, for which,the’uniQueness ‘
Bolds. There is little doubt that such an upper
4 ,hough since. we expect branch pomts as in the

au1m Jacob1 elllpsmd series.

rep’revsents"the'ph:yéical»ly disti‘nct Spac'etim'es. (1n &
orie'—.toe ':, Correspondence) Me still have & physically

" interesti-fliresult if we restrict considerstion to it. In the
- static cas e show that‘t‘her"e‘are' no non *<>1m.tant (‘1 ‘cvurves

of solutions in S going throUgh the spherically symmetric

solution in R () V\hlch have the same mass and T, (\‘»',

already c - the equatlon of state to be fixed, the mass ha
beeri fixed by the choice of Banach space and T, is Just &

‘constant which we Wilcl always consider to be fixed.) In the

&8 ‘d

f’stat.iohary’case we show that there are no non-constant ch
curves of solutions in 9 (the corresponding slice) which have &
‘constant angular momenturm- J (and where again, p(p). m and

T]D have been fixed).

The spherical solutlops are clearly very 1mportant in our

frameworx SO in the next sechon we will look at them. , “;g also
need to lnvestlgate the eouatlons of state which are ph} sically

'a'pproprlate and determme what dlfferent‘abjllt) conditions the)
impose before beginmng our study of the weighted Sobolev ‘v

spaces. ‘ s

T

11 these qualmerQ \\hat can we dCtUdll} show? Smce'
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2.3 Sphe"r""‘ic'all'y symmetric Sol'utibns

' As we: have already noted when the qtrength of the '

: grav1tatlonal field W is a function on.ly of U then U_ has only .

one (nondevgenerate)' critical noint' at the ¢entér Xq - ‘UCZU(XC'), z
is.dj.ffeornolrph'ic to ®° and the.spac'etin’;e is S_pheri"callyv
s-y'm'_rv’netri'c. [f M is spherically symmetric then W is clearly,a
{unction only of U so U ‘has‘ only on'e critical point unless M-

is flat. The stablllty of Morse functions vuth fln]te number of

~critical pomts (cf Golubltsky and Gu111em1n (19(3) p.72. ?9)

-1ndlcates that the property of 1solated nondegenerate critical

pomts is an open one. Since as we have seen above we are

- forced to restriCt to so'lutioné which are close to the sp_heriéally

symmetric solution (ln at ’léast»a c' sense of close in the
functibon.vsp‘vavce in(which U lies) ‘wé can a]i\'a')"s cnnsider U to
h‘a.ve only -Bne (n"ondegenerate) critital point and can take T to.

be diffeomorphic to &’ so standard Euc'lidean coordinates can

'bevused

- The follovung resultq about Spherlcally Q)mmetrv .‘

spacetimes are standard (cf Kunzle (1971)). The line element of

T can be written as

As®=WHU)AUEr(ae®+sin®Bayt) (2a)

5

.where 6 and ¢ are angular coordlnates r.z(U):-—-Z/T\’ and the

statlc field equatlons (1 59~ 162) 1mply
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rd(W)+4WidrzaMrdt (22)

Wdr= (1+r w2+1~3 AW2rqu o (2.3)
These can be integrated to give .

W}=m(U)/r2 o L (24)

where

(U) fu Mr v,

and m(U) égreés.with the total gvrav\'itabtional mass m in the

[

exterior region. In the vacuum region (2.3) lleleQ

Uz—sinh_l('nl/’lj)z—log (m /r+(1‘rm / 2)1/?):: . (2.6)

"' Note ,t"h’ét rois not the SCh‘."‘.'éI‘ZSChild radiél coordinate 1. In

this coordinate

U=glog (1-2m/r') 5 (27
. ' | - - ) N . .. . ) E B . .
in vacuum. We could also write the line ele‘mentxsf‘ ’
dsz=,A2(r)dr2+r2(d62+sin26d9:2) | - (2.8)

[b]

-172

 where A=W 'dU/dr so that in>vacuupﬁfA"—-.-(‘1+n(12/1'2}"_‘ or in
terms of a Rierﬁanni’an normal coordinate system (x") based at

“‘the centre’ X, which a'r)e, related to the polar""coordinat’es (r.8.¢) '

P
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in the usual way, ie.
’/”‘(A“.w

0

ds“=(6;~B(r)x;x)dx'dx’ (2.9)

e

Here Btrﬂg(l—Az) which in vacuum is
Bzmzr—4('1‘>+m2/r2‘)—1. : (2.10)

Ha\}ing chosent a function p(p) (subject to conditions
which we .will state in the next section) th\e équation of
hy;jrostatic equilibfium ap+(p»= p)duU=0 de’termines p(U) (and
henc? p(U), B(U), M(W)) uniquely. up to a constar‘lt" which carn,

for example, be chosen to be the value U, of U on the star

boundary, i.e.

o

U= Uy = [Xo(p)p)ap. (2
Since U,- dU/dr and p rﬂust be continuous, as is seen from
Eiﬁétein’s ;quations (1.29,‘1.30/) with the assumption that p(p) is
piecewise0 c’ it follows that (2.2) and (2.3) fcan be integrated for

r(U) and YV(U) in terms of their valﬁes_ ry,=-m/(sinh U,) and
Wb=mr;2 so that the whole §Qlﬁtion is determined by the twao
constants mo and U, (A subscrlpt b will always refer to the
vaI‘ue‘ofa scalar oh'{he sur‘face of the star, even in the
sctatidnary‘c‘_ase.) The center is then defined by that valiule, :Uc.k

\ . :
of U for which r vanishes. But since it is a critical point of U
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we must also have W =0 which is likely to impose an
additional condition, determining U, in terms of m.

At leaét, this is what happens for specific very simple
models,{”‘ilike the interior Schwarzschild solution ‘(wlhere p(p)=p,
=const. ). "We conjecture therefore that to‘givenfp(p) and m
there exists a unique spherically symmetric static stellar model

provided p(p) satisfies the conditions given in the next section

‘and O<m<m_.. (Clearly m must be bounded from above to

prevent the formation of a black hole, but as we noted in §1.1

the value of mcri; depends on the equation of state) A proof
albng the above lines would have to depend on a very close
~analysis of the nonlinear system (2.2, 2.3) and may not be so
easy to prove for a general equation of étate. The theorem
which we prove in chapter 4 is a lin.eani‘zed version of this
‘statement. | |

If this conjecture is true then we have for every p(p) a

curve mHUEX‘:i_%hich tends to the flat sol‘ution (71”:(51},U:O) for
m-—0 . This curve will be continuous when we tof)o]ogize X.
Unfortunately, it fails to be differentiable at m=C. This fact

_ : p

prevents us from applying to this situation a powerful

technique of Cantor (1979) which requires some elliptic operators

to be 'odifferenfiably C).IOSGN to ones with constant coefficients.
(This theorem is theorem 3.7 of the next chapter. We will
discuss this more later when we have developed the tools to do

, o
80.)
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24 Equation of state
We now want to consider the condit:ions on the equation of
"sfate p:[O;pc]——*R: p —p(p) which are sufficient to prove our
uniqueness theorems for stellar model conffgurations with fixed

m, T, p(p) and J in the static and stationary cases. In
addition to the physically obvious cond"itions 0= p <00, 0< p<O0
made in the thermodynamic argument, we also make the

standard assumption that p<p(p). This is implied by Hawking's

dominant energy condition, namely, for every timelike vector

field x° T"ﬁxaxﬁzo and Taﬂxﬁ 1s a non—épacelike vector. This
can be interpreted as saying that to all observers the energy |
“density ap.pears non-negative ana the local energy flow Vector is.
non—spaceiike (Héwking and Ellis  (19?3) p.91). Since dp/dp can
be interpreted as the inverse _squa:re of :the (adiabatic) velocity
of sound iﬁ the Newtonian limit we assume also that- dp,/dp20.
We are only interested in non-singular solutions so
equation (2.11) and the corresponding equation obtained ‘from. the

stationary hydrodynamic equilibrium equation (1.11),

log (T/Ty)= [2(p(F)+P) dp. (212)

imply that the integral on the right hand side"must be finite

for all p€[0,p.] which is true iff ]i_r%p/p=0, i.e. the highly
‘ ,, P
relativistic limit p=p cannot occur at extremely low densities,

‘as one expects. This implies that there exists ¢, d, with 0<e<1,




0<d<o® such that lim pp t=d.

Let us first look at situations in which the matter
distribution is not compaét. We do this for the spherically
‘symmetric case as we are always interestéd in solﬁtions close to

it. Assume there is no compact boundary hypersurface in ¥
given by p=0 so that p has an asymptotic expansion p=0(r_k)
at oo. Using the asymptotic boundary conditions (1.33) and the

<

equation of hydrostatic equilibrium (1.32) we find that

M=O(r—c/(1~5)) at ©o. . Together with Einstein's equation AU=A"
this implies that e24/5. (If e={/(f{+1) with {24 then

p=(mdr-—1(8+1)~1)url

+O(r_l_2) at iﬁfinity.)_ Since the physical]_\;
reasonable stellar models can be considered to have compact
métter distributions and since iﬁ our proofs we use the exact
soluti'ons‘fohvacuum obtained in the previous section, we will
have to make the a_ssumpti‘on that e'quétions of state such that
52‘4/“5 must be of a form which results in a compact matter
distribution.

Nc;m' let us look at the star boundary conditions, where
p=0. If .£'=0 p(0)>0 so p is discontinuous at the star.
boundary.. (We wil'l aiways consider p and p to be identically

zero in the vacuum region.) In order to investigate the junction

conditions further let us assume that (£-1)/¢<est/({+1) for some

4

{20 (noting that since €20 £=0 if {=0) and that p(p) is C'

piecewise ¢! on (0,p,) when ¢ is in this range. Since U, has

Y
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only ohepritiéal point and even in the stationary case we
remain clése to th‘e spherical solution T also has only one
critical point in its dorna'm which is the interior reg‘ion. A Ffom
(2‘12). we see that in the stationary case p is determined as a
fvunctio‘n of ‘T' since we cons‘ider T, given and fl}\ed Thus the
continuity of derivatives of the mass denmty across the.
boundary of the star can be investigated using U (T) in the
static (statioha\ry) case to éa-loulate the lirﬁit of these
derivatives és the star boundéry 1s approached from the

interior. If w'e assumed as much differentiability for p(p) as

belng plecemse c' on [Op] then the rlght hand side of the
equation dp/dlogT p(p)+p would be L1p<ch1tz in p on closed

intervals of [0, p] and a standard existence and uniqueness

‘theorem for first order differential equations (c.f. Hartman |

|

(1973))ﬁgwould imply that p(0)>0 (e=0) in order for p not to | ,
’v):; N . » . \\4"
venish in the interior region. Thus when p(0)=0 we must \\
3 . ' \,
‘always have that li_rp()dp/dp=0©, which is the "ngason for the \
P | .

differentia‘snility being specified only on (0,p.]. The amount of. ' \
differentiaﬁility demanded in this reénge 1s purely for

mathematical reasons; in order to have the star boundary
conditions determine the proper weighted Sobolev space there
cannot be less differeﬁtiability in the interior region than there

is ’at the star boundary. This restriction would be ver'y difficult

to remove in our formalism but it is not a very serious one as

all equations of state could be approkimated arbitrarily closely

r



by a C* 'equation of state.

Let us also assume that p™“p is ¢! in' [0.6) for ksome
"small § so that

lim(d'p/dp)p' *=de-(ei+1) for Osis{

.pf’O . . ‘

¥

- We look first at the junction conditions in the static case Let
z be a:Cw coordinate defined in a neighborhood of the star
boundary such that z=1 cor»responds'"to the p=0 hypersurface

and p(z)>0 for z<l.  The differentiability of m (and p and p)

can then be mvestlgated usmg the relatlon

t ' S s _
d M/dz = z E!(ml?'--ms!.ﬂl(i+ms_i,1)) ]
l:

8= 1m+ +m +s={ ‘ .
'd’M/dU'(((d.U/dz)d/dz)m’dU/dz‘)---(((dU/dz)d/dz)m‘dU/dz)
This, together with the following argument, will show that the

limit as z—1 of dtM/dze Is given, for (£-1)/€<e<{/({+1) bv

(dU/dz), ;)" times the limit as p—0* of the following

expression.

v

d‘M'/de‘ { 1)'fe™ [((p+p)d/dp)’ (p+p)+2((p+p)d/dp) (p+p)]

- A long calculation yields

limp “‘“)‘(d M/dUY)=(-1 1) Fe 2 e (16 - (1-1))
p— |
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for 0<isi and ((-1)/t<est/(t+1). Recall that limd"M/dz"=0

z—0" :

* for all k since M=0 in the exlerior region. Thus M (and p)

are C (piecewise ¢t ir e=t/(t+1) ) across tile star boundary.
Ve are’ .jus‘tified in using U as a coordinate like this since we
know it ‘is at least C1 SO we caﬁ Calcu]ate the first derivat,iyve of
M and find that ‘M is C° (if,.8>0 ) inn_steiri'Svequations tvﬁen{
»’irnplyb that U can ‘th‘en be taken to be c? and ¥ th Ab‘e -»Csﬁs.o
we can take the second .derivative of M, ah'd SO (_'>n.‘»ThL‘lS for,

(e-1)/t<est/(t+1) U is ¢ 9 is €% and if e=t/(f+1) then U

1s piecewis.e "% and v is piecewise CHSA The equatioh of

“hydrostatic equilibriufﬁ shows that p is as dif-fefentiable as: u.
In the siationary case -a completely analogous derivation

may be-done using lbgf in place of v, resulting in, for 0<is¢,

(6—1)/6<836/(6+1),

1ir%p‘*f1)“ie2”diM/d(1og T)'=fd e (ie-(i-1))
P— ) ,

 Using Einstein’s equations (1.22-1.24) ihe same type of argument
shows that U and 7. have the same.differentiab‘ility as in the
static case and h is C. piecewise C*'if ¢=e/(e4e1).
‘Ou.r. assumpfions on the eqUa'tion of Stéte'are theh,
(i) p(p)20 on some interval 1=[0p ],
(i) "_dp’/dpzo on I, ;

(iii) the solution is nonsingular, i.e. there exists & d with
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O'Ss<1 0<d<o©.such that\‘l)lmp fp=d

(iv) For (t- 1)/8<55€/(€+1) with e=0 if £=0, p(p) is ¢t

‘“in [0,6) for some small

pie'cewise "' on (0,p.) and p ‘pis C
§>0, | '
(v) if €24/5 the equatlon of state is such that the finite ma<<‘

§
spherical solution with thls equation of state has & compact

matter dlstrlbutlon. . |

The results obtained in this section are ls’ummari‘zed in the_

. _ \ _ | ,

following theorem. The case e=(=0 was given in K'ﬁnzlé. and
Savage (1980b) | | //J

Theorem 21 If the eqﬁatlon of state satlsfles (i) to

(iv) above then the correspOndlng stellar model

coﬁsists Of‘ a Cémpact region DCE with prZO in D

~and an exterior vacuum region. For all compaci
matter distributions the differentiability of M (and
p) across the boundary 8D of D, deflned by p= O ié

" determined by & and, for ({- 1)/8<£S€/ F+1) with F/O
M is €' (and piecewise ¢t if e=t/(+1)) while M is
piecewise C° if z=1=0, with the (" derivative normal
to 8D gomg lxke const p(m)tvt as p——>0 “'
(We are now mcludmg equatiohs of state of the form
p=qu for O€q<1, the fiﬁite stellar models in whick p. ténd’s to
0 on the bound'airy; which were excluded for mathematical |

convenience in Klinzle end Savage (1980b))
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| Lét us then denote‘b): S () (§’;(p)), or, for short s, (§p ),

the set of static (stationaf'y, axisymmetric) solutions of

Einstein's equation with a fixed equation of state p(p)

satisfying conditions (i) to (v) ab’Qve,-wi{h a fi_x_edﬁ;_urface

‘ te»mperature .Tt.) ahd such that U has only one - critical pc;int‘

Let S, ( Sp'm)

Withva given constant mass m . Eventually one would like to
~prove that S, consists only of the sphe»r_ically_‘squmetrié )
solutions and that §b.m cohsists of ;a family of solvutions which
c‘loéeb tovthe‘s\pherical solution is parameterized by t(he anéular
m‘om\éntu'm J '(and fof larger J~pe’rhaps bifurlcate in a _s_ifnilarxf

manner as the Maclaurin- Jacobi—ellipso’id sequence in

Newtonian theory). As we have already noted we do not k_now a

‘priori how 'largé these sets are or what kind of topology and
differentiable élructuré they éan be given, but they can be
reg'arded as the inverse image of a differentiable h‘lap on a
Bigger set that can bié provided with a fairly natural Banach
maniféld structure.

Un.fortuﬁately there is considerable arBitrériness in the
choice éf the Banach manifold structure for a set of tensor
fields on a no,ﬁ—c’ompact manifc*)l'd. We‘try to make the rﬁosi
appropriate- choice among thevweightedeobolev splacles which are
presented aloﬁg with some general BanaAch mabnifold theory in
the nextlchaptexj. “In'.ch‘ap'ters 4 and 5 w.ve will see that physical

and mathematical considerations combine to limit this choice
A\ : ’ . .

denote the corresponding restriction to solutions

54
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remarkably. However onéﬂcan‘not exclude the possibility that a
‘manifold of different data and field equations in a different

form might perhaps lead to stronger results than we get.
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~ CHAPTER 1II

| MATHEMATICAL PRELIMINARIES

3.1 Differential.:geom’et'r‘y in relativity . .
The use of differential topology and‘differéntjal geometry
ltechniqueslin r'elativityvtheory is. certainly not new. For |
exarnple the lncompléteness theorems of»Hawking‘.and Penrose
from which the existence of black holes may be 1nferred—v
under reasonable matnematmal assumpt1ons (cf Haw kmg and
. Ellvis (1973)‘)'—— and the geometric analysis Of.SPatlal end nu]]_
infinity by conformal mappi‘ngs‘ use techniQues from the stndy
of the topology and geometry of finite d1me’1$1oral manlfold
| Wheeler trgazj was the first to pomt out the reIeVance of
infinite dimensional ‘manifold theory to relavt_1v1ty w1,th, the
-introduct‘ion of superSpaoe S, the quotienl space of ri.arnanni..an
rnetr.icbs on a given three dimensional manifold obtained by |
identifying metrics which can be obtained one from another by
a ‘coordlnate transformation. (S is a me.tric space but doesvnot
havev a ‘manifold s,tll"u,cturev, c.f. Fischer (19?(l).) Thel universe can
| then be viewed as‘a_n evolving geometryand thus as a,cur\.fe in
>S, allowing a dynamical theor'y" of rélativity. This application is
regarded as "soitw in that infinité dime'nsional rnanifolds are
lnvblved mostly as a’ language convemence and as a guide to the

theory's structure. Brlll and Deser: (1968) gave the-first
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s’ubstan‘\nial "hardl'.“t'beor-em 'uSi‘ng'infinite dimension'al 'anal.y’sis;
albeit in an informal way, when {hej)”show'ed that any |
ﬁon—trivial-.pervturbatiojn;Of Minkowski spacezlead;s' toa
.s‘p.acetime.wi.th strictly positive total gravitational mass.  Their _ -
Atech“nique is to sbow that on the space of solutions to Ei'nstb'ein'sv
equétio‘ns the rﬁass- f>un’ction has a non~deg.enerate cfitical point

1

at Mink'ow_ski space. Later investigations of the .p’os'iti\'*e mass

Aconjectﬁre have ueed both infinite dimensional manifold theory.

‘ (Choquet—'Bruha't et al (19?9)) and finite dimehcioar;al'mariifold

- a

theoi“y (Schoen and Yau (1979) and Jang (19'?9))

Our approach also uses infinite dlmenclonal manlfolo
theory and is based On the problem of lineari’zation sta-bility '
whlch has been 1nvestxgated by Fischer ano Maereﬂ (19(0:1

1975b) The reason for thls Is as follows, where we W1ll restriect

to the static case as the reasoriing is the same in the stationmary

case. W;ecan-'-reg'ard-Sp’m as the inverse image of 0 of a
differentiéble map £:X—Y, obtained from Ein_s‘t'ein’s‘ equations,
between suitable Banach spaces X and Y where a point cEX

will uniquely specify a spaCe{ime. We also know that there is a

‘ unique spherically symm#tric solution oc?7Y0) (by.‘incl—uding‘ a

specification of 'Ub inthe space’ X if necessary) and. we want to

Wlﬁtion what does the s‘olution set .i”_l(O) look like?
restion g]obally‘is a formldable problem and

in the ébje'e'ia] case where p=const. by a

o that taken in the black hoie ’j(/heor__em.s‘ ‘

L

{



(Lindblom (1980)), as we have noted. In order to have a more

general approach (and the generality is proven by its

appiica_b’ility, to the stationary case as well) we attempt\Atfo‘

"'answer the question locall.yf, near ¢, by considering solutions in

S,m Wwhich are close to o in X. However £ is formed frbm‘\

Einstein's equaﬁidns and is -thus‘highly.n_on—lir‘;ear so a direct

épproack} is unfeasible. The usual approach in such situations is

‘to linearize the equations, solve these linearized eQuatio,ns and.

assert thét_ théy ‘are- an ap'proximati’oﬁ to the trué solution of
the non-linear equationé. Mofe explicitly, for, 0 near o ;wri»te

o(\) for a parameter A\ and expand as ’U(X)?O+>\Ul+)\202+-~~. The

af.;proximation to first order is o+Ao, where Q‘1=(da/d)\)})‘=o:

Dem‘anding that‘ O(X)Eéf—l(O)‘ ie. ;,‘f(o()\))ZO', we find that

;f(cr)a1 O where .}f(a)T X— T_f(a)Y is the tangent map.

The 1mp1101t assumptlon that the solutlon to the linearized .

equatlons 1s an approxxmatlon to the full equatxons is, however

not always v‘alid‘ In fact Fischer and Marsden (1975a) have

o8

shown that if the universe is toroidal, T°X®, wheére T° denotes

the flat 3-torus, this assurhp{ion is not, valid for the flat space

Einstein eqﬁations Rw‘(g)=0. For a mbr'e visible example of such

g

& situation consider’ f:'RZ—-H“R, (x,y)*——*ﬁcz—yz. Then :f—_l(O)

={(x.y)ly=*x! but £(0.0)h=0 for all h=(h,h,)ET 4R =R> Only
_ i v12)%T(00) |

by _gvoing to the second order condition f"(0,0)(h.h)=2th—h§)=0 N

. <—>h2 +h , do we get & true approximation. S_ituations in which



this assumptlon is vahd w1ll be called linearization Stable
Deflnltlon 31"‘L"et E- and F be topologloal vector ,

»'spaces and L:E—F a dlfferentlable mappmg We sa\

&

L is: ]meanzatlon §Lg lg at x EE iff for e\'er\ h‘:‘-“

such. thet L(xo)h 0 there exists a dlfferentlable curve

3]

: x(t)€E w1th x(O) xo, (x(t));L(XO) and -

.

,"x(o)( dx/dt]t J=h.

The vacuum Elnsteln equatlons have béen well stud ed in

: thls mannex‘ by consxdermg the lnduced metric 2 and the <econd

fundamental form i on a spacehke hypersurface of the‘
.spacetlme as initial data -which satisfy sorne nonllneal ’

oonstralnt equations, for some exolut;on equdtlonq Bs using

‘various elhptlc operator technlqueq Flscher and Marsden “(19755) _

o have proven the following theorem

Theorern 3.1 Suppose there is such a spacellke

4hypersurface N ‘of the spaoetlme w1th ¢ and 0

satisfying (i) there are no 1nf1n1te31mal mometlle\ )

~

on bot._h € and 0 '(with\ n. vanishing at infimt\' if N

~

is not compact) (11) if =0 and N is compact then g
is not flat, (111) if =0, tr(ﬁ) trace of {1 is constant
on N if N is compact and tr(ﬁ) 0 1f N is _'

, noncompact (xv) if N is noncompact g is complete-
\ ,

- and asymptotlcally flat Then near %«/ (g) 0 is

| hneanzatwn stab]e '

(See _Ch‘oqnev_t-»—Bruhavt,e;.t,al. (1‘97J7a)‘for a more recent,




simpler proof based on some results of weighted Sobolev spaces.)

"The toroidal example fails beca_"u‘se condition (ii) fails for N=T3.

The corollar'y that in Minkowski space the vacuum Einstein

v

equations are linearization sta»ble was obtained independently by

Choquet—‘Bruhat and Dese .(1%)73). (In this case the linearized
equatio'ns‘arejthe weak field approximations used to study
gravitational wave-—s‘,’.) | |

We will be follbwing the spirit and not the details of this
workson llinear,ization Stability. In fact, as we will see, our "/., )
'tanrgent map ‘i” is not surjective so we cannot show that our
equations avrue‘linear’;ization stable. However, the differential
stn\lcture“ which we choose for the Banach Spate X will allow &
slicing fé)Ir the aAction of the diffeomorphism group on X near o
which together with so.me theorems oﬁ elliptic operators‘ enazbles ‘
us to prove a theorem about the physically distinct solutions in
o‘f—l(O) near o. LX must ciearly be an infinite dimensional spac-é

so in the next section we take a look at infinite dimensiona!

Banach spaces. The following 'section will then present the

: weighted Sobolev spaces introduced by Cantor which wé use to

‘model X on as well as two theorems due to Cantor (1979) and

Nirenberg and Walker (1973) for elliptic operators which are -

"difAferentiably close - to elliptic operators with constant

coefticients which we use to 'éxténd our analysis of X'(o) to a

- neighborhood of o in X. It is these latter two theorems which

together with the slicing theorem allow us to prove our results

~
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about curves of physically distinct solutions, even though we
have not shown linearization stability (so that we cannot prove

existence). -

3.2 Banach spaces and infinite dimensional _nﬁnifol‘ds

A Banach space E is a corﬁplete normed vector space,

while a Banach manifold N is aﬂ(Hausdorff) topological space
with a maximal atlas of charts §(¢,U,} such that each ¢,
U,—V_CE wher:e V, is open in E, is a homeomorphism. In
particular a Banach space or an opeh subset of a Banach space

is a Banach manifold. SCN is a submanifold of N if we can
:write E#F®G; (topological sum) and for every x€S £here 1s a
chari ¢:UCN-—VCE of N where x€U such that |
@(UNS)=VN(FX{w}) where w&G. In other words, the <‘:hart 7
“flattens out’ S making it lie in the subspace F. When a
closed subspaqe F of E is such that E=FeG where G is
enother closed subspace of E, we say that F splits (c.f. Marsden
(1974)).

Such splittings cleafly always oécur in the case where E
is finite dimensional or a Hilbert space (where the i‘nner product

can be used to find the orthogonal complement to F). However,
‘“intuiti'on" from finite dimensional spaces sometimes fails in

infinite dimensional spaces. For example, in ®" a closed,
bounded subset with non—-empty interior is always compact
whereas in an infinite dimensional Banach space it is never

compact under the norm topology. More importantly for our
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work, as we will soon see, an arbitrary closed su‘bspace F of an
mhmte dlmensmnal Banach space does not always spllt
Fortunately, though the generalization from differential calculus
on &R" to differehti_al calculus on Banach space's'is remarkably
smooth with many theorems,‘inc.luding the inverse and implicit
function theorems, éimilar]y phrased (cf. Ch,oqt_let-Br"uhat et al.
(1977b)). These latter twh theorerrr;are importan'.t for obtaining
ma‘ny-substantial results in Banach space theory, scme of which

5 \\
are the following:

Let N and R be Banach rnarlifolds and fN—R a (' map.
We are ihterested in when Séfﬁi(}'o) is a s.ubmanifolrd of N and
when { is linearization stahle on 8 (i.e. we would like f_?(O)CX
to be a 'submanifold‘ with its tangent space at ¢ determined by
£L'(0)=0 for a in & neighborhood of o). Suitable ‘C’ondit'ions are

given by the foilowing theorem (c.f. Fischer and Marsden (1975a)).

Theorem 3.2: Let x,&N and_ f(x0)=Yy,- Suhppose that

f’(}‘(o) is surjective and that kernel f’(xb) splits. Then -

f(y,) is e C' submanifold near Xg and f(x)=y, is
‘linearization‘ stable about x,
Proof: Work in a chart UCE for N and write E=E,eE,
where E, kerf( o). Consider the map ¢, defined near x, to
E,XF (where R is modelled on the Banach space F) by #(x,, x 2)

=(x, f(x,‘ 2)) Since (fltx;xg)(xo) is-an isomorphism, 4’( o) is an

1somorph1sm so the inverse funct1on theorem 1mp11es that <I> 15



a local diffeomorphism. Thus ¢~ gives a chart for f—l(yo) near

X modelied on E, and Txof_1(y0)=k§f f'(x,). Now h€T, N is a

-—

first order deformation iff h€ker f'(x,) and since f_l(y_o-) fs a

submanifold, there exists a curve x(k)Efﬂl(yO) which is actually

tangent to h. Thus f ‘is linearization stable about x - K

There are thus two properties of i”(a):TUX—*TIw}Y in
which we are interestea, surjectivity and the s~plitting of its
kernel. Clearly surjectivity depends on the image space Y —it
must bevlarge enough but not too large. Wé wili see later that
in our case it is too large but it is by no means obvious how to
pi'cl\; a submanifold of Y which will be t.}\'{e right size. The
splitting of the kernel is not as formids‘nble. In fact much work

has been done on orthogonal decompositions of symmetric

c\ovariﬁnt tensor fields S, (of which the métrics are ah_ open
subset) over both compact and noncompact manifolds (B;rger.
and Ebin (1969), York (1974). Cantor (1979)). In the case of a
noncompact manifold though, the decémposition musl have some
dependencé on the space S, éuch as its asymptotic properties.
In the next section we will see see some spaces which are
suitable for modelling the asymptotically flat .m-etr'ics on I, but
there will be .a pr‘oblem with the rate of falloff at infinity
_recéuired for such a sPliiting. This can fortunately be resolved.
Bul why are we interested in this splitting property if we
can not show linearization stability anykway? VThe”a.nswerbis th_at

this soArt of sb]itting together with some properties of weighted
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Sobolev spaces (and in the stationary case another splitting

theorem for vector fields as well) enables one to show that near

o the orbits due to the action of the diffeomorphism group are

“stacked” in the sense that in a“neighborhood V of o there is
a submanifold Y, called & slice, which passes through ¢ and

such that all the orbits in this neighborhood V pass through ¢

only once. Thus & represents the physicslly distinct

. spacetimes which are close to ¢. Thus given any ”ph‘ysicaln

curve of solutions in £7(0)NY the behaviour of the tengent to

such a curve near ¢ can be investigated with the use of the

- theorems about elliptic operators. By choosing the space X

well, whether there is such a nonconstant curve will te!l us how

unique the spherically symmetric solution ié,'at‘least ioca]ly, in

a similar-manner to that of the stationary black hole theorem.

Before investigating spaces to model X on, we state a

similar result.to‘that of the subme.rsion result of theorem 3.2
which we use in some later prdofs.
o Th'eorer.n 3.3: Let £N—R be injective and closed. If
P(x)T,N—T, R is injective and its image splits for
éach XEN then f(N) is a submanifold of R.

Proof: (c.f. Lang (1972) p.27)

3.3 Weighted Sobolev spaces

The definitions and theorems (except theorem 3.14) in this

section come from Cantor's (1975a,19755,1979)'§vo}.1; on the



weighted Sobolevlgpaces Mf", which he introduced. (The rélevaht
norm was suggercted ny some results of Nirenberg and Walker
(1973).) As will becofne readily apparent,lthesé spac'es allow both
the asymptotic properties and the junction conditions at the
star boundary ‘t:o be readily incorpbrated into our argument.

As notéd in §2.2 this is clearly a necessary requirement ‘for any

uniqueness argument’

Let p20 and let | ”'p denote the L®-norm on the set

CZO(FRn,iRm) of C¥ maps with compact support. Then Msér

M:lé(i‘{n,i‘lm) is defin'ed'to be the completion of C;o with respect to

the norm
el o= 2 llo()Eop el (sEN 6ER) " (3.1)
CPR s P .

n

whe.réf"az(x):=1+le2, Cp=(pp e )EXNT, lul=Zu; and Df=

6"t /(ox"1-05"%) . 1t 1ECT(R"R™) then define also
ME 5 (f):=fhR"—R™(h-1)EM] 4. (3.2)

‘The M:o spaces are not just the usual Sobolev spaces WP

which are defined to be the completion of C;O with respect to

the norm

lrf|l!;'s=|“|$sl|D#f]|P." - - (33)
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Cantor originally introduced the Qeighted Sobolev spaces MY,
in order to apply the techniques of global nonlinéar analysis,
such as that used by Fischef and Marsden, to physical problems
over‘unboun‘c}ed regions in sp‘ace whére the bo>unda.r‘y: coniditions
inqlude the asyn;_ptotic béhaviour" of the solutions as 1}#?”*05,
“such as classical fluid rﬁecharlics with steady flow at infinity, or
isplated rglativis%ie— fluids: This is done by speeffy'i-ng &r. M?,d
space of solutions whic}\x satisf.ies‘the desir'ed. ésymptotic'
conditions and studyihg the behaviour of the partiéular-
differential operators given by the physical problem on these
spaces, which is what we want to cllo.‘ For bourided‘r"e'gions ana

' lccjirnpact manifolds the Sobolev 'spaces' Wé’p ayre .comr‘nvonlyi uséd
(c1. Ebin and Marsden (1970)). However the prop_ef:ties of &

differential operator can te very different on the differernt

-2

. spaces. For example vth‘e L.aplace operator from WP to Ww°© ‘*P 1S
nét surjectivue but, as we .wi.ll see, it is surjective from M:,é ‘to
-Ms—zmz for certain p, s Aand 6.

The _asymyptgtic behaviqur can be seen by letting .f admit

. . v ® o ok.k . i,k
an asymptotic expansion f(x)=lxl k‘go(lx; f(x)) with x4, =0,

%20 . Then f€M:6’ iff v>6+n/p. ’Any fEM:"‘, w/hich does not’
admit an asymptotic expansion can c'lear-ly éfay "large" as
Ix—00 on an angular portion AQ(x) which goes to zero as

Ix|—oc or on annular rings whose width approaches zero as

lx|—o0. If f .:'IS' C0 however neifher’of these situa_ti'ons can
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arise.

The inclusion maps

AN

M‘sl,d__)Msz,fS for ,51252 and MS.61—~—>MS.62 for 51252 . (3'4)

are /ea“si«ly' seen to be continuous. The Sobolev imbedding
theorem, which is one of the main hard theorems of Sobolev
spa-cé.theolry and states that WPk continu'ouslyb for

s>k+n/p (cf. Adams (1975)), shows that

MP,—C" is continuous if 620 and k+n/p<s (3.5)

since lfll, <llfl , for any feM?, Recall that " is the

completion of Cgo with respect to the norm

lfll ="max su le#.f’x\‘E.
é o<iniok Pxegrl¥ 11X

Note that a c*" and pieéewise c* function@ay still be in Mgs
for s<k (if its asymptotic properties are right) but not in
b
Mirie
It is easy to see that partial 'differentiation induces a

- continuous map

. OkZMS'G—’M:)_M,,,l' ‘ (38)
which is also linear and thus C .

"If p>!l, s>n/p, 0<k<s, 4,620 then any pointwise

+
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‘multiplication B™XR™-—-&™  induces céntipuous maps

J(Q R )G’Ms k6+k(3 i‘Qm')——)M:—k,6+k(i‘qnv‘2{m”): - (36)

s,6+6'

My (B R )oM? (R"R™)—M],

-\

Th_‘i’vs is sometimes referred to as the Schauder ring property.

Let us:'p.rove (3.8). It suffices to show that (f,g)%D"(fg)

~ continuous from M”@MS k6+k——>Mg:6+k+,#, for all Jul<s-k. Usiﬁg

Leibnitz’ rule one get.s

gt g Nip<c, £ @™ D*n) (o’ ki

IVIS‘/J'

for some .pc.)sitiveb constant C1 . I.tbbis known that if q+t>n/p

- then pointwise multiplicatioh is continuous from M’Q;pe\\’t‘p——%Lr)

(c.f. Adams (1975)). .1t is easily seen that D fEMS i é4 ! Aand that
6+k+]p—u] H—v ,s—k—l#—u],p ' . Ny | - o .' ;

o D" T gew so since s—lvl+s-k-lu-vlzs>n/p there is

a constant C, such that

” 6+k+l#lD (1g )” <C. Hf” séug [pc Lié y

Before_proceeding‘ to more theorems abou_t these spaces,
pgrhaps we shou.ld' pause to note the.,relelition between the Mf_é
spaces when "tbhe underl.ying space is a Riemannian manifold
N=(®"g) where g is complete inst}eavd"of a EucIidean épa_ce

En=(!{nq,e) where e is the Euclidean metric and to note that



these theorems can be applied to appropr\iate tensor fields.
Letting 'l be the norm generated by g on a tensor spaée T;I\
and dV be the volume element generated by g we can define

‘ 'M:S(T;N). in a natural way, to be the completion of CEO(T;N) with

respect to the norm

v ( [lle™ ogrpipguy)tr 3.9
24 0 (@9)

Il -
" for p21, s€X. S€R (Similar defln.itions_can.b'e made for W %

and Ck. tensor fields.) Replacing o(x) With (ler(x,O)z)l/2 where

d is the distance function generated by g gives an equivalent

- norm under suitable assumptions on g. In fact, from Cantor

(1979) we have the following
D ¢ . _
Lemmaea 3.4: When N is such that.

I'llim suplolm(x)DH(g—e-)(x)l=0 for |ul€m where
x|—*00 L N )

k

mz2max(k,s+2), the 'Ws'p, C” and VMzé norms gel{e rated

by g and those generated by e are equivalent.
This éllows one to treat e as a Nbackground‘W metric for

N. Cantor (1979) uses this to transfer results obtained about
the diffeomogphism grld\%s on flat space (Cantor (1975b)) to
results about the diffeomorphism group on -N. We will simply
. »:.'1- . . ; % ) . )

state the relevant definitions and theorems. .

Let ¥

$ﬁ3=2¢§126(1)l¢" exists and ¢ EMI(} - (310)

B

€9



where 1 is the identity map on #" . This is the set _éf

diffeomkorphisrms asympiotic to the identity at irif_i_nity: S‘u.ch‘
diffeomorphisms will not destroy the _a{s.ym'ptotic behaviour of
tensor fields provided they fall off fast enough as can be seen

from the following theorem“'

Theorem 3.5: Let p>1,. s>1+n/p, 620 . Then DL (NN)

is a topologica]~‘g'r-oup under compositon (right

composition is smooth) and a smooth Banach manifold

»”(,in:factvit is an-open subset of Mzé(l)). For (5126.1

'compoSi'ti.o'n from Ml}:,éle’@:.f_‘)ME,d, is continuous for all
L e s oW . 46,1 ko
k<s and if f:R"-—R™ is such that o MHETIpRE s

bounded map for all |ulss then cemposition from-

M'i,dl(f)@‘@:é_"’Mi,d‘ is continuous for all k<s .
>'Proof: This corfespdnds to theorems 1.2, 16, 1.7 and 1.9 of
" Cantor (1975b) and theorem 2.10 of Cantor (1979).

For convenience, let us denote both M:éfvector fields and

AMfé 1-forms by X:d and M:é symmetric covariant 2-tensors by’

S:é. Since specifying a spacetime involves specifying a positive
definite, asym'pt'otical'ly flat metric ¥ on TR we are éiearly

going to be interested in the set
R:ffglg—eGSf‘é and g is positive definitef, -

the set of Ri’»err‘)ann,ian Vmetrics which are asymptotic to the .
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identity. vﬂeié ha‘s a.r}atural Banach spao‘f‘e structure for sSn/p,
b‘eing’ an open“.co‘ne‘in 'S:'é(e)‘. |

Since the set of metrics gERE, w}‘n;ch satis'fy" the
conditioﬁs of lemma 3.4 for N:(:_r{“,;g) is dense and on this dense
- subset ,@fd(N,N) doéé not _dépend on g from noxv«;ion we: will/" |
consider D%, to denote @fé(E E ) (iAe. the set of’
dlffeomorphlsmq‘near the 1dent1ty with respect to e)

If we are to gain any 1n81ght into the phquall\ omtmct

solutions which correspond. to the solutlons of the lirearized

equatlon ,‘f(a) T, X— T-‘f\a)Y we must have some way of factoring
"out the 1nf1n1te dlmenalonal space of soldtlom correspondmn to
the coordmate freedom on . Recallmg that a poeltl\e definite

metrlc Y on: E is part of the spemflcatlon of a spacetime 05\
.i't is clear'that the action of the dif,fe‘om_orpﬁi%m?&% on | RY, and
'thci::irire_sultant.orbits are going to det‘ermvline the action and
§of_résponding orbiﬁ‘s.for X;. With this .in mind we will now
| pr,eseljﬁ!the relevant théorems dealing with the actio'n"‘of the
diffeomorphism group on .?336,‘ beginnih_g with the f'ol‘lowingf
theorem of Cantor (1979).

‘ .Th.e»orem.3.6: Let p>1, s>-14fn/;‘> 'ana 620.  Then D7,

_ . S P .
“has a continuous action on Re-1se1 given by

A':fD yﬁes,m %E;lléﬂz(sé.g)—w,‘(g).
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(=]

Moreover A isa C functio-n’bof' g and if g€R:ﬂ+k,6+,
~ then cp——h;p‘(g) is a c* function on Z:é
Proof Setting g e*h w1th hEQEM, we have go'(g)#cp‘(e)

+go'(h). In coordinates, 2 (e)U (agp "/ 9x )(a;s,l/ax")ék; and g;‘(h)iJ

—(6,0 /a}\ )(a¢ /6xl)(ho¢) : Using the‘chha_ﬁder" ring property
together with ¢—0¢ being'smooth'f_rom_ M:'é into Mf 5.1 SO

that <'jgor/c'5xszc$'r+Br with B~ in MP, ... it s Séen'théf’";‘g:ﬁl’—'iggp'(e)

is smooth For hGME 14Kk, 8+1 theorem 3.5 1mplies _(h,gz).*—'*hc,; as a

' .functlon from Ms L+ IYpoé**Ms_l'éﬂ is ¢ "ir'l h a,‘nd' (‘1:_ in 9«
completing the prqof, P - ; , o 4
How can thé coordinate freedom be factored out of Q’\

.‘73;) 16417 Idealh one would like to deal with the quotlent space

ﬁ.p'”le/,@ . the orblt space of the group éf d1f1‘éomorpb13m<
'actmg on the Rlemannlan metrlcs lmearlzmg the equahon< on
the quotlent space. But such quotient spaces do ,thvin genéral
b_ha‘,ve a manifold structure. In fact superspsce, tlﬁe q'uotient
_spt;ce. obtaifne’d‘_.from,the spacevof‘ 'Coov Rie:ﬁanhian metrics R
and C* &iﬁfegmorphisms‘ D on a comp}act'c;riented manifold, is
" not ‘a‘rriaxiifoid (Fischer (1970)). . This ;eSultsAbecaus‘é for
symmetr»i_c” metr‘ios——jl.vg. metrics "iAnvarrivér‘it‘u‘nder‘ some :

0

conti'nuou_s coor‘din@te, tr‘ahsformat‘ic’m——possessing a'non-trivial

_vlsometry group. I -—3¢€ﬂ/lcp (g) g§ the appropnate dxtfeomorphzsm
)

group to form the quotlent space mth 1s 2/1 _smce an PR

o



isometric metric (one of the same functlonal form as g)

generated by the: actlon of a dlffeomorphlsm is not conmdered to

'be new ¢ Thus in the quotlent space where the Cl‘bth are

id,entifjed to pomtsthe_‘nelghborhood of symmetrlc geometry

Will r‘mt.,be -hvom.eofm‘orphic to neigh;b‘orhoods.of generlc

~ geometries (geomet_ri}e.s' with no syrnmetrieS). However
‘superspaee can be VieW'ed as>a ”stratiﬁcetii‘.m”.‘of“ m-ar:i’fo]ds of
-geometries ‘v\lth glven symmetrles the more’ Qym*netrlc.

‘ ‘geo‘metrieQ formlng a rnamfold boundar, to a mamfold of.

: geornetries.of_ 1es4s symmetry. :; _ A/,
T 7.Beeauvse we are tjealvvi_ngl With difféomorphismef,asy,mptotic.
| tothe i‘-cvlentfltyvthe 'pr'ob-l'em o’fg_v ,sy_mmétrie_s'is '-('push‘ed outﬂto.
in.’fihity":end in fact _the isomé@ry gr.o‘up" |

il Q_,/

-fI»*{goEZTsél,o’(g) g for geﬂts WITLERE trxvxal s0 the aboxe pl,oblem
;does not arise. However another di?flculty resulting from the

dlfferenthblllty condltlons a’nd therefore app@arlng also a< we‘l

as the sy mmetry problem 1n the case of whP I'PCEI'IC§ an’i

: dlffeomorphlsms (Ebin (1970)) is present ThlS is releted to the
'shcmg theorems Roughly speakmg, when there are no.

nontr1v1al 1sometr1es of g a sl;ce at g is a subspace w thh is:

~

orthogonal to the orblt through g and Wl’llCh together with a

small«»nelghborhopd of the orblt f111< out an open nelghborhood

of g- ~ ‘When everythlng is ¥ the o‘rbits ‘through any gk‘_are

"Cc’o submanlfo]ds and a slice always exi sts (ben (1968)) Ifli‘,sch'er.

U” B .
: - & - -

. C e
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(1970) uses this "stacking" of orbits to show that geome\{ies

with the same S)')l‘metry form a manifold In the W"p or M:d ’

spaces of metrlcs the orbits are submanifolds but are in general

only c® su?manifolds and oﬁ]y at the more difféperiti“able
me”tric‘s does a slice exist. There thL;s seems little hope in
establishi.ng a‘l\xseful structure for the quo{ient_space

‘R:—l.oﬂ/ﬁ):é

- How then can the coordinate freedom be dealt with? It \
_turné out that by éarefﬁlly choosing the functions with which
»w'e'défine ‘the topology of X ‘we, can make the umqu'e épherical\,
solution o€X havg, enough differentiability so that a slice &
does exist at ¢ Thu< although nc global statements can be
made we can still deal Ioccxlly with a submamfo]d of physically
distinct spacetimes. ' l\

Let us begin the presentation of the appro:pri.ate slicing

theorems by stating one of the twoc main theorems about élyl‘iptic

- : v ’ . w'’ . +
operators which are differentiably close to elliptic operators
©  ,with constant coefficients that we use in our proofs. We will
refer to this theorem as Cantor’s isomorphis‘m theorem. Recall

A 3 ) \ |
first that a differential operator A= ZS a
. |pud<k

#(x)D" on ®" is an

. elliptic k" order vdi‘fferential» operator if there are no real -

. -

solutions YER" of IF a“(x)x“:o for all x&£®"
' ) pl=k , : .
Theorem 3.7: Let n>k and A= zkapp“ a
§ =
homogeneous elhpt c Operator vnth constant



coefficients on ®" and A(x)=A wt 2 b L(x)D* an elliptic

operator. Then ir p>n/(n-Xk), OScS<n—k—n/ p. s2k. .

s>n/p and b €M with b, continuous outside

s—k+luly—lyl -
a compact set on R". for I/L’Sn/p, A maps M},

conti‘nﬁ»"‘ously into Mf—k,éﬂc' with closed range and finite

dimensional kernel. Moreover, suppose that either

(1) : !ikllb“ 1ps kk-w<e for sufficiently small e, or
\ 2

(ii) There is & continuous curve ¢ frem ,[O,l] into

the space of bounded‘linear opera{ors between Mié / |
and M:_km}( such that c(0)=A,. cl{1)=A and for eéch
tb€[0,1'], c(t) is an injection and satisfies the

hypothesis of the theoréfn. : N

Then A is an isomorphism of Ms(5 onto Ms K6+k -

Proof: Let f€M:‘,. By Leibnitz' rule, for IBlss=k,

Ho"*k”‘.‘"D"(b D"r)H <C, T (o K-lul+h ”p Yo MHEIDET R ana it s

readuy seen that Db €M and

~

Mt ﬁIEMHM Bl-luls-Wi+igislt - Since (s—k=lvi+lp)+(s+vi-Igi-lul)zs>n/p

s—k—vl+lpl k—lpt+e!

multlpllcatlon from M's ~kHlplk— MXMS ! MN—-’M‘:_R.MK is continuous

»and‘ there ekxists'a constant C, such that

Ml ee (3.11)

”b D fhps l(Msc b IIps kel

L4

e e -

Thus as shown in Cantor (1979), 1f fa denotee funCtIOuS whose

.
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support is in $xIx>R} with ||fR”p'3'6=1 then Rl_ii"noo”(!\—A(,o')fR”p‘s_k"erk

<y hm”b D*f ”ps KoK= =0 and since b CC ‘for l#bn/p all

'I‘I‘k R-——00

the b“ are continuous outéide a compact set so

b#(x)|=OA This satisfies the conditions of theorem 1.4
' i

of Cantor (1979), where. b EMp “Kk-lyl ulth s>k+n/p was, assumed

the latter condition ensuring that multxphcatlon Macl’contmuouc

and that the b, were continuous. | g *
The outline of his proof is &s follows. That.A Vhas finite

dimensional kernel follows directly from theorem 4.1 of

Nirenberg and Walker (1973). ‘The closed range result is o / :
obtained by showing that for all f& M;)‘(5 \ker 4, Hf“p,s,é

SC||Afllp,;4k,a+k for some constant C, using a similar argument {o

> the one we use in the proof of theorem 3.14. The isomorphism

results (i) and (ii) follow froim lemma 1.1 of Cantor (1979) which
shov;rs that A'm:h/f,’::"(,-—’>Mf_k‘6+k is an isomorphism togéfher with (i)

: the reiation (3.11) or (ii) a lyemma essentially due to Schauder
which st-ates that for two continuous linear maps A, A,

between Banach spaces E and F such that A, is an

xsomorphlsm and such. that there is a continuous curve ¢ from

[o.l] into the ‘space of bounded operators from E to F thh
¢(0)=A,, c(1)=A; and c(t) an injection with closed range for
- each t€[0,1],"then A, is an isomorphism. ' n

This theorem is used in three ways. First, we use the

~

‘e
B,




closed range portion of the theorem directly, together with
‘theorem 3.14 (essentially due to Nirenberg and Walker) in § 4.4
to extend the results about the kernelef an elliptic |

inhomogeneous voperator which we obtain from £'(o) to the

\
kernel of the corresponding operator obtained from L'(o) for o

in a neighborhood of o. ( f’(o) is nﬁ elliptic.j Second!ly, the
‘isomorphi’sm property of some specific elliptié operators is used
to obtain the vanishing of some tensor fields which satisfy .
certain homogeneous elliptic equations. The following corollaries i
are useful in this regard.

Corollary 3.8: Let A =div,d be the L‘aplace—Be‘ltrami

-~

operator (where divgf=-—Vi$i f'foxl" a 1-form ¢ ). If
p>n/(n—-2), s22, 0<é6<n-2-n/p and gEﬁ:é then
Ag:M:a'T"Ms-z,mz is a continuous isomorphisAm. '(The _
subscript g will»rbé dropped whern the metricb':is clear.)

Proof: (Cantor (1979)) That A ML, —M; 4., is an

isomorphism was shown by Cantor (1975a) using estimates of

Nirenberg and Walker (1973). For fE€MP, A f=(div ed)f

| =—|gl—l/al‘&jd/axi(igll/zg_}jaf/azl:j) where |gl=det(g;). It is eesily

verified from this together with’ g€5(’.:6 ‘that s, satisfies th'e ’

‘hypothesis of theorem 3.4. Writing Am=1§162/6x' we find that

[,

each. A=A, +t(4,~Ay) is an elliptic operator:with no lowest

| 6rder term and therefore satisfies the_‘m_aximﬂmv,p‘rinc‘iple' (cf.



—

- which equals one on a ball of radius R and vanishes outside &

Sej

Friedman (1969) p.88). In particular, each A, has no non-trivial

'bouﬁded solution a.nd so it 15 an injection on M§d~ Thus

condition (ii) of theorem 3.7 holds and 4, is an-isomorphism.

Corollary 3.9: Let K, kp —985 16;1 be given b; L
If p>n/(nv—'2),' s>2+n/p, 0s¢6<n-2-n/p and g&€Rl;
ﬁhen divvgéKg:X:,(,——-)Xf_zla_Jrz is an isomo'i'p.‘hism o
for a s'yr;metric 2;tensor c.):

((dive) ==V

Proof: (Cantor (1979), Choquet-Bruhat et al. (1977a)) Thé

proof is similar in spirit to the ab'ove._‘ Since (divK.¢),

=0,(9;¢,+0¢, ) X EXS 25+2 has a solution given by

7/

szAzl(Xj——%aiajA; xi)€X§_2_6+2, div oK, is an isomorphism. It is

easily verified that di\’g.chgatfsfies the hypothesis of theorem |

3.4. Using a metric ggp=fpg+(1-fyp)e where fy is a ¢ function

-

bali of radius R+ Cantor shows that A, =div,ck, —diveK, in’
R, & Ex e &

the operator norm and, using some technical lemmas, that A

is an injeetion. (See Choquet—Bruhat et al. (1979) for some other

methods of proof:)

The thlrd usage of theorem 3'7 is to obtain splxttmé
theorerns or more spec1f1ca11} to obtaln a sphttmg of the

tangent space of X at o .. This splitting turn< out to gwe one
3

subspace as the tangent to the orblt through g s0 the. other ’
3 a
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’orthogonal subspaoe can be talfen to be tge tangent of a shce
subrnanlfold The two Qpllttlng theorems we reg\ire follow
~directly from corollarles 3.8 and 3.9 and'the follow1 g lemma.
Lemma 3.10: Let E, F énd G‘ be Banaoh spa‘c"e_ and
f:E—TF, h:F—G ﬁboundéd linear maps. Then if
an isomorph‘isrn, we have F=fEeker (h) " ,
Corollary 3.11: I‘f p. 6, s and g are as in corolila.ry

‘

3.8 then . Op
X’£—1,6+l=d(M§,6)6‘yg ;

where J —{fEXs 16+1|d1vgg 0l
Corollary 3.12: If p, 4,-and g are as above with

+s>2+n/p then | I {x -
- n -’A@?

Sa Le+1= Kg(xs.a)QJg

wherg J =§c€,S§_L6H|divgc=O§.

The first corollary was first given by Cantor (1979). .The

second corollary is often called the Berger- _Ebin decompoﬂ jon .

as 1t is one of the decompositions for syrnmetrlc cov ar

2-tensors on a compact manlfold that they obtalned

elliptic operator theory (Berger and Ebin (1969)) (I\ote that d1v

%
is the formal adJoxnt of Ky ). “This decompo-s1txon was used by

P

Ebin (I;B'?O) in provmg the slice- theorem for- the W ? Rxemanman

metrics on a COmpac;t mamfold in an analogous manner in

»
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whichi corollary '-3.\12 is used below. 55*' :
We axt*enow reatly to_in‘v»és’(igate the o‘rbits of‘ ‘c@:é and the
slices.(wheu they exist) of ‘%f—l.éﬂ' ;
Theorem 3.13: Let o?n/(n—Z), s>2+n,/p ‘and
0<6<n-2-n/p. Let 2P, act on .%5_1'6'“. Then
(i) For ahy‘ 86-7311,641 the on1y> isometry of g.‘ in fo;,
| is the_identit‘y I. ' '

(ii) If g€R? the orbit through g,

s— 1+k 6+1

. -$ ‘ : o
(Og=i<p»(g)l<p‘€$f.6§ s c* submanifold.

(iii) 1f gERP

sé“ there is a neighBorhood'\' of 1 in

:Zpé and a slice of the action, ie a submamfold S of

ﬂf_mﬂ containing- g such that (go,g)*-’A(cp.g) is a
homeomo‘rphism of V>¥ onto & neighborhood W of g
in 5‘@:’_1'6“' and . (O‘h.f:ig}.«t
Proof: (Cantor (1979)) (i) Since ke.r K;C_ker (divgo‘K'g)=§O§. the_ :
set of infinitesimal‘isome_tries is trivial so the isometries of g.
~are isolated. Cantor then shows that the isometry group of g

' has no nontr1v1al compact subgroup The idea behmd this

‘argument is that if there were such a subgroup it would have
finite' order so there would be an isometry ‘FEZ)s,a (qo-—']) su’ch

‘that gok=I-) for some k 'I‘he asymptotlc propertles are then

' used to show that there is an entlre ne1ghborhood of fmed
- points of ¢. But] any (:Al i‘som»etry ‘which fixes & ne_lghboxjhood-ts -

.
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'the ideﬁ-tity SO ﬁhe su'bgroup is tri‘y.ial. Thus all of the o’rbits of
any isometry go@@ P ﬁ1u<t be unbounded since otherwise ¢
wou‘ld generate a compact sub'group,(Kobayashi and NO.leLl
('196_30).p.,4‘7,48)'. Along an quit, however, the displacement
“function of an i_sor'nért_ry. remainsl‘constant.ahd thﬁls fo"r 7 the.
displacement ml}St_ vanish and ¢=1

”

This. resﬁlt"for the infinitesimal isometries generated by a

Killing vector field was obtained independently by Choquet and

Choquet—Brﬁﬁ&t (19’78) for the asymptotically flat, n=3 Casve,
requiring only that the Killing- vector field goes to zero at.
1nf1n1ty We Wlll %ave occaswn to use thls reqult as weil as
‘corollary_ 3.9 in shOng that certaln Killing vector f_1e1ds_ vanish

as this result does not require as much .differentiability.

LS

(ii) Since there are no non-trivial isometries in: D2, the

map Ay @f_é —"’ﬁS—i,aﬁ given by Ag(¢)=¢‘(g) is injective‘and for

‘gERf_'l;k.é;l it is C*. For 9,€DY; and ¢ near ¢, (pocp(—)l. is near

1 and go‘(g)=(¢°<p81)‘°<p;(g) so it is sufficient to show that for k21
Ag(D) s injebthfé and its image splits (theorem 33). Let
¢ET, DR =X7s and let 3 be the flow of . ‘1t is fairly

straightforward- to show -that then. ¢t€§D ’ .(Cantpr (1975

appendlx) Then A (I)$ (d/dt)(wt(g)) =K =28 - Fro'm the

Berger— Ebln decompomtmn (corol’lary 3.12) and ker K —3o§

folloi"s‘ that Ak.is a c* -irnb'edding S0 @s is a C° submenifold.
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(iii)vIt is 'cle'ar that there is an open neighborhood Z of 0

in J, such that g*cEfRS 1641 ‘for ¢€Z. . Then

:fg_:;igmlcéz} L (3.12)

" is an imbedded subrnanlfold of .’7?3 1641 - Definino :

A .@p ><..‘f ——*.7?.5 16+ (®s gjc‘)w(g+c) we see its tangent at (1 g)

is glven by

L

A'(Lg): X:o ‘®J2—+S§_1_6+1:(§,e)+——>K'g$+c which in view of theorem 36

and corollary 3.12 is continuous, onto and injective. The inverse
‘ s :

_fﬁnction theorem and its corollaries (c.f. Lang (1972)) give the

required homeomorphism. . ' S S

In order to investigate curvés of physically distinct
soluti_ons‘of Einsteviri':‘éqbuations i‘n thé slice we neéd to |
invesiigaté the solutions to the lineaﬂrized‘equvaft.ioﬁs off of the
sphéricalibackground. This ié clearly impossible to do direct]y;
by.so]ving the vequat'ionsﬁon all possible bac‘k‘groun,ds.

Fortunately, however, Ni‘ren.berg_ and Walker (1973) have shown

that for ellipt_ic‘épe"ragtors whic"_h are "differ'entiably close  to.

elliptic operators with constant coefficients the dimension Pof_ the

kernel is locally non—'i'n“creasinté In other words a suffiéiently
“small perturbatlon of such an operator glves an operatm vxhoce

“kernel is never larger- than the ‘kernel of the unperturbed

operator. Thus the dlmensmn'. of the solution space ker £'(ag)- |

will not increase for ¢ close enough to o  This is used
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- together with Cantor’s 'isomorphism tbh'eore-m and ‘the fact that
ker L'(o) is O—dimensiohal (l—dimensiohal) in the static |
(statienqry) case, whfir'ch‘ we prove in chapter 4 (5), to obtain the
desired uhiqu'eness‘theorerhs. | | |

| The relevant theorem, stated below, is the second ofvthe
two main. theo'rervns about such elliptic opernator's which~ we

'rEquire. It is Sssentlally an adaptation of theorem 4.2 of
et

" Nirenberg and Walker (1973) o the weighted Sobolev spaces so we
'wi‘l_l‘ refer to it as Nc"gren’berg and Walker's theorem. The proof,

given.in détail for the first time below, follows closely. the.
~.method of proof given by Nlrenberg and Walker which was also

followed by Cantor in obtalnlng the closed range resu]t of
‘theorem 3.7, R | - C
Theorem 3.14: 1f n, k, p, s, 8, A, -#nd A are as

_in theorem 3.7 then there exists an é_>0' such tha if

)3 b D
ke 'tgusx #(x)

is anothe];,ellipftic“-;‘foper;_at‘pr‘for which

=

b, Bl sxpoi<e  (ul<k)
then the dimension of ker & is l‘Jess than or eqﬁa} to
the dlmensnon of ker A. | -

Proof Denote the dlmenswn of ker A by q and SupDoc:e

the theorem 1s false Then for all 1ntegers 1>0 there ex1st° an’

“elliptic operato'rﬂ,A,:Mfd—-)Mf;kML“given}\by, A1=A;°+_I'Ekbi‘(x)1)“ -
D .. . '» . ) Lot . . ' A . N ) ‘p v .

¢

y : . R
) o |
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such that lIb,~byll o <i™ for lulsk and such that dim
ker A>q. A pesitive number ¢, ean be found such that any.
subspace of Mp6 W1th dlmensmn greater than q contains an
element of norm’ 1 whose distance from ker A .is at;least £ o
Choose such a 'fi in each ker A “fill};,s,d:l . Equ‘ation(B.ll) of

- theorem 3.7 1mp11es ”Ar |ps k6+k_H(A A, )f”ps L6+k<C1 M, ”psé for o
° :

some »Cl 50 ||Af1“ps koek 0 Therefore. if a s\ubsequex}ce of RiR »
exists which is Cauchy in M:d, since A is closed the
su.brse-que'nce converges to an element in ker A . But al] the .ifi}' '

lie a dlStanC(: £q away from ker A . Thus to prove the theorem
.;ve ne’ed cl>r¥1)V find a Cauchy subseqﬁence of §f} |

Let ch:E —91:!{ be a C* function with com‘pact. support
 such that pa(x)=1 if'lxl_SR,"sz(x)=D'if xl>2R anq iD“¢R(x)451'for
all u. Write ‘f-=goRf.+'(1?¢R)f. and note that {f} is Cauchy 1f

fppfi and $(1- goR)fi are Cauchy for some R. Let Bp={x€ ®"

.

| IxI<R}. |
’ . . oo . ‘ s
~For all R, the sequence fppf} is bounded in. W**(B,p).
This together with the Rellich- comp'actnes's theorem stated below
| klmphes it has a subsequence (taken to be all of §¢Rfi}) V\thh

converges to an element in ‘Lp(BZR) *’,

[

'Lle'm,ma 3.15: (Rellich- compécfﬁese ‘;lefhmé) Let Oir(s.
Then any bounded sequence in W*P(B,;) has a

- convergent subsequerrce in WTR(Bgp).



R21,

7~

Prooff (c.f. Friedruan (1969) p.31) B o

Now lla(paf)ll S”<pRAf” k+llA(glef) gaRAf” . and -

ps k
iA(goRf) chAf§\has support in By and is bounded in W’3 kA p(B r)

since the h)ghest derlvatlve term of f cancels. The Relhch

‘c’o’mpactness lemma together with the fact that fopAfd is -

clearly Cauchy implies §A(pgf,)} is Cauchy in 'Lp(Bz-R).

As long as 11m suplo™ ¥

x-—-)m

.»'b (x) is ,unifor'mly continuous on R" for >l,ul:k there is a

constant C, such ‘that Hf” «<C (”Af” +”f” ) {¢.f. Nirenberg ‘and"_

Walker (1973) equatlon (4. 1)) Smce the former condition is \

_ N
always satisfied (c.f. proof of theorem 3.7) (and the latter is if
s}n/p-}l since then b# is C,l for lu_,|=k) we have -~ .+

- Mot i=prtfl, sCola(ppt)-ACoat M +Hlppt =gt I )

. 8o ~§¢Rf1§~ is Cauchy in W P(B,p) én'd.'ikt.follows that figf,}

Cauchy in, M? 56 fOT each R.

Slnce Ao M “_’Ms—ko»'rk 'is an isomorphism (lemrn;a Liof |

o

\
|

Cantor (1979)) Hmesc HA fH\,,_km for all fEMP;. Thus, far'all’

A

||(1 ¢R)f,|lw,sc (HA(1 goR)fJ]P,_k6+k+||(A )(1 ch)Ilhps ,,M\

As seeh in the proof of theorem 37 llm”(A ——A)(l ¢R)f1l'ps k"m‘

b (x)l for lul<k is small enough or
# -

S ey
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»

—0 so choosingﬁ R large enough we have |
‘_,II(1L¢R)fopsdsc HA(1 ~¢p)f, ||Ps sk
SC4(”(1‘i"R)Afillﬁ,sfk,d+k+!lA(1f¢R)f1"(1‘_¢R)'Afilip,é-k.6+k).'f

~ The Qequence iA(l qu) (1 goR)Af} ‘l;a-s‘support"in B, and is

8 S]J

bounded’ i_n Wa—kﬂ'p(an), 50 is Cauchy in _3\7’_“1"1’(32Wssing |

to a subsequence we, can-assume it is Cauchy in M'ffk‘“k. Since . .

s . ’

Lt )7?\\
: . - P g

J(1-¢ At} is clearly C:a“ubc‘hy in aM‘§f§,6+k- {(1-¢p)fd is,Cauchy in ‘,":fs’é -

f

'MS.é' - . L . o ' ' K

«r



) o.-t_ .‘. .. : - CHAPTERIV i -”\ :“4 l. .

ON THE UNIQUENESS PROBLEM FOR STATIC PERFECT FLUIDS

4.1 Introduction

.The results m thls chapter for the case of a dlscontmuo.us' '

matter den31ty at the star boundary first- appeared in Khnzle
" and Savage (1980b) The extensmn to more - general equatlons of

.‘state is new. As indlcated ln §2.2 we conjecture that “the set’ "
}S.p(p) of statlc bounded pertect flu}d solutlons to Emstela;rs e
- equatlons w1th a flxed equatlon of state p(p) satxsfymg
cond)tlons (1) to .(v) of §2.4 (and flxed surﬂace tember‘awture Ty )
with U havmg only one (nondegenerate) Frltrc“hal polut conSISts

of the spherical solutlons Recall that we, are go:ng to con51der

i the set S ‘as the mverse 1mage of a d1*fferent1able map i’x——n

-

between some suitable WElghted Sobolev spaces SlnC/é all statxc |

SoluthILS can’ be descrlbed b) a posntlve dennite met/hc v and a -

4

grav1tat10nal potentnal functlon U on E

i ',by/"t».:h:e‘ o
At

5 grgum_ent about sphenoal solutlons;can,'be’, dken f{o'be A
dlffeomorphlc to il we want to cons1der S v as a subset of a;‘q o
e
IE

aﬁ})ropnate Banach space forrned from the set/ §(7 U)}

In v1ew of th% asymptotlc condxtxcms {1. 35) w‘e would expect

r{J to be in Mfd anb 7 to be in 5&‘.,6 ro,r 056<1 3/p and sor‘e

e b i
: t the hﬁﬁrlzatmn ot .‘f on a background a€S

- L - " o _.i._ . R ‘ > ‘.v; ‘ N . ’.' — ) .‘ : ,(( ,MM " » »v, ' ‘_. \ .



ie. £L(0), does not approach a system:with constant cgefficients
a ':\? .

.8s 0 tends to the trivial flat space solution. "In other words,

for a-fixed p(p) a curve m:[O;m‘Tt]—W:(y,U)ESP which tends to

the flat solution -(7”:6”,U:O) as m—0 is continuous but is not )
_ ' | » Y
differentiable at m=0. Thus Cantor’'s isomorphism theorem
. %i ' , ‘ : ,
cannot be applied, as one would expect since £'(v) is physically

expected to have a 1—dimensi‘onél'kévrnel on this larger space
. st -

corresponding to a curve Qf solutions-parameterized by the
s o )

mass. For this and 'other‘gecbvniéal reasons which will become

.apparent wh'en‘we deal with ¥he appropriate slicing theorem it °
3 - . .

is more convenient to fix the total mass and consider only the
subset S;Lm:hESplmass(o):m}. _Ther;,for any two ¢, 0,65,
the difference U-U, has a fall off rate faster than 1/Ix|

{ v
We expect dUb=U(p=O~) to be determined by m and" ng(p) .

K

but as noted in §2.3 we cannot yet be sure. Therefore we will
describe the set S,p'n; by the triples U=(7,U,Bb).... There is c]early‘rt
a8 unique spherically syr’nr_ﬁetric solution in t}"ﬂlS set, which w'e(
will denote by.. o . By choosing the appropriate Banach space
siructure for S,, we will be ébl'e to inves'tigat‘e the behaviour

of curves of~physi'cally distinct solutions to Einstein's equations
with constant mass, m, fixed equation of state p(p) and fixed

surface temperature T,.
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4.2 Choosing a Banach manifold structure on the set {(7,U,U\}

§ . ’ v
We are going to want to apply a slicing theorem based on
theorem 3.13 to the space which we pick. But for 0<4<1-3/p

theorem 3.13 is lappli_cable only for g€R:1+é (for some s and p)

whereas the asymptotic conditions (1.33) imply yERZ,. This is
- 9

due to the fact that on ®° decomposing tensors which fall off

as 1/r is usually impossible; 1/r2 fall off 1s generally réquired:

- Fortunately there is enough coordinate freedom to avoid this

2

problem. )
In cartesigfn coordinates the asymptotic conditions for the

general stationary metric give ‘-\ . ,

& ‘ -

7i=0, 71X +00x! ™), h=hllx 0™, U=—mlx!7+o(ixI )

) . _

R K, 1 o :
with x 9y7;=0, x 0,h;=0. But it is well known that for

. ‘ %

stationary spacetimes the quantities 7:,' and h: can be made to

. vanish by a suitable coordinate transforrﬁation that is

asymptotically Euclidean (i.e. consisting of a rotation and a
translation). For example 7:; ‘and h: can be shown to vanish

by d‘émanding that ft/lixe coordinates x' be harmonic so 7”1’;:0 -
(Misner, Thorneand Wheeler (1972) p.456) or, in the static case,

by demanding that the coordinates are asympvtotically harmonic,

7‘jF;=O(!xI~S) (Beig (1979)). (This latter result can probably be.



extended to the stationary case.) Choquetﬂ—Bru‘hat et al. (1979)

lirr%)ldlM/dUﬂ:OO unless e={/({+1) in which case M is C
.p— .

g0

°

have dea‘lt wit'h this problem by restricting to the set g€ ﬂ:lé

|7ijI‘ikj=O§ which‘ne_a; flat spacetime can be shc;wn to he a .
submanifold. Whether-this holds trué far from flat space®is not

obvious and we will not take this route but as we will see at the

v

end of chagter 5 this may*be one way of attempting to obtlain a
surjective map. It is not necessary to make a restriction to

harmonic coordinates since the desired falloff can;be; obtained e

exblicitly using the (‘2:+1)‘—dimensi'onlal forma!lism' whc—re U ibs\
treated"as an in:tri«nsically. defined coérdinate. This argument
deéends es‘sentia\blly on the surfaces of constant U being
topologica]ly\?—spheres and involves making & coordinate

transfermation on these 2-spheres. From now on we will

therefore consider the coordinate system of LR’ chosen in -

such a way that

71j=51j+0(|’§!—2)v higo(|X|_3>» Uz—m/lx,'+0(¥x!_2) (4.1)

Further coordinate “transformations that are asymptotic to the’

identity will then not destroy this behaviour.

Another problerh' ariqses"due to {he differentiabilit‘y at the

“

‘star boundary. . Recall that for an equation of state such that

limpp *=d>0 for (¢-1)/t<e<t/(+1) that MECK for k<! but

t-1

piecewise ¢t (theorem 21). Using the derivatives calculated in



§2.4 it is easy to’ v‘erify that

: - Let)emt | - |
”Ml‘p,c,o+¢5§1+czfgt5((.ﬂ)t P(p+7) 'dp | (4.2)

. for some positive constants C, and C, and any n>0 since the

only unbounded integral is the 8.“1 normal derivative to the
. ‘h

star boundary. The integral on the left side of (4.2) is bounded

Cif p<(l'££)/(£—(64_—1)8). In order to applv the theorems of the

preVio_us chapter we must take p>3 . Thus for ¢ such tﬁa‘t

(36-1)/(30+2)<e<t/(L+1) MEMp,,, (and MEMj, . ) for 3<p

<(1—5)/(€;(€+1)£) a‘nd for all p>'3v if s;@/(Hl)). If (f,.—l)/8.<£

<(3t-1)/(3t+2) and p>3 then MEM]_ .. (and M&M},, ). We can

now choose the equation of state,b'and thus ¢, to be fixed once

5-3.6+n’ s-2,6+n

and for all so that MeM’ MEM? for some fixed s23,
fdr any p>3 sat.i‘sfying tﬁe above conditions for an 'upper bound
" which depends on the value of ¢ and for any large n.
This is partly why we have chosen p(p) to be ¢! piecewise

¢! in the interior region. Thus even though 'p,is uniquely

determined by dp+(p+p)dU=0 when U, is given, if p(p) is
» -

piecewise ¢’ on (0.p,] our formalism does not allow the

incorporation of different differentiabilities in different regions

of I. ) The other reason is that in order to obtain a slice at the
’ (spherically symmetric solution we héve to define the topology in
2ter:ms of a smoothed out potential which is a little more

differentiable at the spherical solu}Von. Allowing less

.81 -
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.Modﬂl as can be seen from equation (1.30). Define

92

differentiability of p(p) would mean that a di‘fferent smoothing

potential would have to be co;}struc.ted for different equations

of state. This is therefore not a fundamental barrier but would
' " : \;

‘be messy to deal with. "However, as we noted before, it is not a -

.greét‘ physiceal restrictidn. to aSsume_as-rhuch differentiability as &

we want for the equation of sfate

Now, usmg the asymptotlc condltlons (4 1) and takmg 056<

1- 3/p Emstems equatlons (1.29, 1.30) and the welghted qobolev

space propertles (3.6-3. 8) indicate that UEME .6 but that we ’

could choose ‘7ER5,6+1- If we took the set 5‘@, 16+19Ms L6 ‘to model ‘

the space- {(7U)§ ‘on, the actl'on of the dlffeornorphxsm group

.@pé on thlq would then only be C ‘as we will see, eveh though

for JER. the action of .‘Z)E_é ‘on R7 4., is C'. A C° action is

not enough to bbtain a slice‘thgofem'.so we must describe the
topology of our set §{7.U)} ih terms of a modified potential 0
which we m‘ake‘;to be in M:,o for ’the spherical solution.

1 The potentiai U is not in MY, 'becauvse ‘the normal

derivative of order s-2 of M at the ‘starAboilndary is not in

k“.
O=vu-£p*" | . (4.3)
for some function f on L. Let [VyyVgu0ls= llrrll] Vou Yoyl
' b
— lim Vo Vou0.  As seen in §2.4 this is proportional to the - Ve

u—u;

~



;-

' diff_e‘rhncé in the‘ ‘s'th ‘nor'frial,'debri\%ative‘ of G ' W1th resp’ec‘t'tb_'é'

‘domvain (recell W(U, )=O) we let f= f —(2(2 {)d'v\ (U Je

'7€R§,1+é. Th‘i‘s is also "convenien.t f

determined by the unique sphericall

’We.cén- calculate with either 0 or U but the topology is .

Y D

,Cm coordmate at the star boundary D'c.S‘ing si,mi'lér‘"'.chl\culat'jo"nvs

to those of §24 usmg dp/dU "—2M one fmdc that

[Voy-v —11_% f.' +fd ~2uh- ‘(2_ NATAMAUTE T (d4)-
so that U€M:6 prdvided lim_=(2(2~ c)dW (k‘“)d 2" l1- ‘)) “and’ f’;_‘Q‘ _
' U_'Ub W ; R :

for USUb Since it is not easy to choose such an f ‘that is a

Jmple functional of U and 0 and regular in the vl*ole mter or

—2L‘b(1—z)

‘)—“:’ ‘

const: so’ thct for the Qphelrlcall} symmetnc colutlon e M

) . ‘,- .
the. statlonary case'so in’

the following we will always considef.
.syrﬁme{ri‘c ,U,ES;;.&.-‘

For the remainder of this cha ter uve"/take"osaq—s//p
determmed by the asymptotlc cond tions, 52°>2J‘rn/p‘ fixed by
the equation of state and. p>3 w1th a:1n upper bound determined

by the equatlon of statc as seen previously. Defme

o A/

501: 1641 10= (7’1,U U )IVHER: “,HU U§_M§_1,-6*1,Ubélq§ (4“..5‘)».

where U and U are defined by (4.3) in terms of U and U,
rESpec-tively, Since U and U determine each other for given

U, we will indiscriminately write o=(y.0,U}) and o=(7,U.Uy) .

@

f, to be a fixed lconstant','

[
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v

deflned in. terms. of the rormer ?f 1es1 1S c&early a Banach

manho]d uxth any asymptotlcal]) flat solutlonc of Emst@m s
équa‘ti‘ons: in f'?s;l;sﬂ' 'having the \same‘ mass since for any a,.

o 6.7’ we have found . ﬁ ”ﬁz ( =Ul_—U{2 vin’ vacuo) to fall

‘off at & rate greater then l/r ]n ,this sense the fixed mass

§— 16+l

Just becomec a boundar) condltlon which We 1ncorporate into

‘ Athe'spac'% ?f 1;?, but note {ha't ‘7):_'”” is r‘nuc‘-h Iarger' than the:
» spcce of a<)mptohca11) flat solutlo'xc . S |

V\e are now read) to inv thJg ate. the action of the -

diffeomorphism group Z’féf on ?’,5'_1641 and to see under wha!

< ’ e - ) ' . i o 7

conditiorns there is a slice of the action The following theorem -
L

a direct anslogue for the space 53:\_”*.‘ of theorems 3.6 and
) ' ’ : T s

313,
Theorem 4.1: (i) 'Z’gj’(‘, acts contir.uouély on- 5)2-1,&:1 by
| * Az’p xﬁ’i 1.6+ 1' .g):—l,éﬂj(‘;'(iy-.fj'Ub))’——_)(‘f ( )E °¢. LQ)

| _. e .. o
‘Moreover,‘ A.?.U’_"A(g&,(]) is C. and if 0% sy

* b

A&:;:—*A(%U) is ¢* for k=0 orll.

(ii)‘Ify 05‘7)::_1““’6;1 (for k=(5 or*l)‘theﬁ the orbit =
@ézziA(gp‘,a)kp‘:@:oig?g 1e.y 1S @ | Ck ~'subrr‘1anifold. '

(iivi)v If OE?E'6+£ the_re is a,neighborhooc’i V oof I in
D7, and a slice of the action, ie a submanlfold. S of

?f—i,6+1 Cant&ining o such that (go,o')-%A(zp,o’)l;ljs a _ re



S

,-G_?gé' is continuous (and.linearv whence C° 'in f' k). But if o€l.7):é,,

. Su

’ ho‘meomorphism of -V>‘<f onto a xneighborhood W of .C}TW -
in P 16;1 end U NY= 3 1

~ : . -’ \ Y
Proof: ( ) Let o= (7 U Ub)€fPP - Since 7€=7€3 Lot

theorem 3.6 gives (1) as far as the metric is con(érned The

function U is explicitly known 1n the vacuum reg'ion (from

‘(2,4)) and it is clear that, U(x)(l”w—l)D#G is bounded for 0sju'ss.

Thus theorem 35 shows that .@"(@Ms “M(U)— Mf_ M(U):(;,E)—«

then GEME(M(Q)CM:.‘, A\Thé‘refo.re 9, 0EMY_, 4., and (.9,0)—
(0,0)o¢ is continuous. Hence A, is ¢ in ¢, Since the action
o‘n'Ub is‘tr,iviél this estab]ishéé (1). I

(11) Slnce there aré no nontrnlal 1sometrleQ in f] fkle

map A_ is 1.n_]ect1ve. If k:‘l: the tangent map TAC-, et ¢=I 1s
L . . B
given by (2, 7,.& 0,0) where ¢ is an Mg, vector fielc on b

and (£,7.2,0 0)ESE. 16+19’Ms 1o1@ BT JPE ]6§ But Cantor's versior

of the Be'rger—Ebin dec‘:ompositiéh, corollary 3.12, for"yER:g*:.

gives the splitting Si_;,, ;=K (X},)el  where J ={c€S_ . div c=0}
Thus, for 065‘):6+l. given ‘(C"71)652-1,6\&199}‘15—1,6“ there are unique

¢€XL, and 1€SP .. with div 1=0 .such that c=K (¢)+1. If we

let v= .££U then (é,u)=(£67,£fﬁ')+(1,\v) which gives the direct .

decomposnlon of S 16+1‘9Ms 1441 (since (c,u)=0, d\i\y’,;l:O and

,,1=-£e§=> iv70K7(£)=O whence ¢=0 whence 1=0 and v=0). Thus

95 -
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the image of ‘T,A, splits and A, is a Cf—imbeddjhg'
) o s
(iii) Choose an open neighborhood” B of 0 1n J, such that

7+1 isngSi'thG definite fox 1€B.  Now

<

S={(y+1U+u,Ug+K)NEB, ueEM? |, . kTR

- |
is clearly an imbedded sﬁ_bmanifoéi of, 505:,;;‘? Defining
K:Z*f.éxy———»?.f_@,f(;,(7'+1,U+u,ub+}<))»~+(¢‘(7+1).¢,’(€'§u>,ub+k) we
hav‘e‘ .fﬂor,its tanéent at (Lo) T(,’;)K:)(gdw7@}\15_1‘;,]@?3—-"
| S:_l‘éﬂea\f:~1'6+1e73:(§,L,V',m)*-’(h’,,.g+L,££C'+V,m). w}'xicvh.isv 'clear]oy'

continuous and onto in view of coro]lafy 3.12.' It is 1njective, for

‘K.,f.%ll_o imp]i_es ¢=0, I=0 whence isf‘:()_ The inve;".se ftlmyctiobn

theorem a\n_d its corollarigs then imply (in1) | | o E
' Ir; particular, the tanéent spa.‘ce to _5":_.1#1 at UGP:(S-I

splits, i‘rew

T, PP =T 00T S o (4.6)

s-1,6+1

’ . .
(This theorem has & trivial extension to 0P, | 4., for all k=22

but such differentiable spacetimes cannot be in S,n. for our

fixed equation of state so we are not interested in them.))

We would like to know the differentiable structure of the

I . | |
set Sp.mﬂ?:’_l,dﬂ of static solutions of Einstein's equations with a

fixed‘mass m, fixed surface tempera'tufe T, and a fixed

‘equation of state. From Einstein's equations (1.29,1.30) it is



- clear that this set can be characterized by the inverse image of
0 ’under the rrlép - ~ T

£PP

P p .
8-1.6+1 ‘>Ss~3.6+3@Ms—3.6+3~"’9

(4.7)

(7, VU (R, 220,U0,U+257,,8U- )

recalling that P and M are uniquely idetermin'ed functiogs @
U if p(p) ‘and U, are given. o a
~ Physical intuition leads to the conjectur: tha* "J_’»I(O):('UA
e all solutiohsjn Sp'mﬂ?§_1.6ﬂ are obtainéd from a gi'\'eh .
spherically symmetric one by diffeomorphismé V According to ‘

the linearization stability technique we should show that the

14 S‘],d?;‘

ktangent map "a‘f’(o):‘Tpif:T Pr ——~>‘T‘_f(a>,9 1s surjective and itv
kernel splits at the épher,ical solution o . It would then follc}\v

| . that f—‘l(b) is a: }Subrrjxanif.old with its tangent space:gj?t o
tangent to Ithe orbité 0, ThlS -rssglt would not Be a's";strong'z as
,‘the above conjegtm:e\"’blgt would“_l/be a local ‘\v"éxfsion of 1t. Ax we
staied befére, the; exiSLence of a Berger—Ebin typé splitting gi\‘es
us the splitting of the kernel, narhely, equation (4.6). Ho'wever,_
this mép is not surj.egti_ve, as we will see. Its kernel, thel
ff.angejnt space ?‘o tHe orbit. thf'ough‘ o, is in_Sc;me, sense tco large
to -allow it to map onto ‘2, or, in some sense, 2 ‘is too large.

: But it is.by no means éi)Qious whe‘\-t. sortmof‘- a Vsu'b‘rr'lanifold.o_f Q
to pick to try and ma‘ké ZL'(0) surjective. . ‘A |

However all is not lost. The sel of equivalence classes of

*



g T _
’ ?f”ﬂ in a neighborhood of ¢ with respect to the action of

’.@:6 is in one—to—ohe;cor?esponden'ce with the slice .f thr.ough
i 0 .
0. By solving the lmearlzed equatlons on the spherical

N
background and fmqimg that keréf( 7)=0 and then usihg

" Cantor's isomorphism theorem 37 end Nirenberg and Walker's

theor'em 3.14 to conclude tha‘ the kernel is zero for o Cloqe {
o we shall show that if there was a C' —curve a(N)(-g,6)—

S, mNY such that ¢(0)=¢ then its tangent vector would have to
™ ' : '
vanish everywhere so that in fact, o(A)=¢ for all A Less

phyéical]y distinct Sol_utions~(/>,§'1Einstein's equations with fixed

v :
m, T, and p(p) which.pdss through the spherical sohution

4.3 Linearization of ¥ to find ker £ '(c) ) -
\ o
Let (cij=671j,60,k) T ‘7’: L8e =Sk 16+19M: L ©R . For- 05.7’5,‘

LS

and, in particular, for o=¢ theorem 3.13 shows,that one has the

unique decompositions

where ¢, .££7€ss oo Vo 4 UEMS 1o @nd k=6(U) (which is.
in general not equal to (cSU)b ~Since the re_lat:o_n_ between (

and U' is knoWn' we can express 60 im terms of ¢U by.

-y
. !

- 50=(1-‘4:0M§)5U42(2-:)1gf0'ﬁ“‘(m-,'5)+(6fo)ﬁ“: o (4.9)

precisely, there are no non—constant d ‘.rentieble (C') curves of

(a8
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But sir)ce the linearizeldP equations are considerably - >

simpler whe“'\expresqed in terms of 6L— u= .£ L+‘P'—J'_“L‘,lu e

‘and k we will perforav? al calqulatlons using u, ¢ and k. We

-

.‘,need only remember that the dlfferentlabl ity 'fbropertlﬁ at

U= U must be exp-re_ssed in terms of 0 R | g

bg | The variations of P end M whi'ch"havevbeen used_ alread’y.

in obtaining (4.9) are determmed in terms of U and k from

. the mtegral equatlon %329 obtamed from the equatxon of

hydrostatic equilibrium,

6$:*2M6?;+2k(M—'§), 3M=(dM/dU)6U—k(2M+dM,/dL’)‘ (4.10)
We now want to linearize & in the manner of t,he 7

linearization procedure in §3.1 where we saw .that the variations

O"dd can be thoughtlof as the tangent td a curve of sorlutions.‘ In

(

terms of. 67‘J—c .the varied Chrlstoffe] symbols are (Lh_en o

. ., v :
so that the variation of the Ricci _’tensor becomes .

. rs '
8R;=57"(29,V(ic)s~ \7chrs VerCU)
~Similarly, although ‘we do net use the variation of the volume.
i . ] : o .' ) /— v
clement until we compute the variation of the angular <

momentum in chapter 5, note that

~ | 6det(7u)=det(')"”).c:

- 89
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‘A lengthy calculation in the same manner - then gi'v'es.tba't

-‘f'(‘{r)=(¢f'1(v~).f (0)):T g)s 1,6+17 Qs 16+1‘9Ms»1é+1932“_"f 36‘*39\’15 363
is given"b)" - | SN B o S

(a)(c u, k)U~J;(v v i) UV )

1)r

r(1 ) +R Cr571)

+—LRC +c (R ———R7 ) é'ﬁclj .

-

f4Mu7ij+‘4U(i6_j)u—4k(M—b‘)y;_‘. \

le"z»('U)(C!uwl\'):Atr~(<ﬂ~4/dugu+'vl=uia,ci &

. U +k((dM/dL) M-Uite, (4 111)

e .

where Uy aU U,=TR LS vy, . ete.

Our object is to show that i’(o)(cu k)=0 for (cuk) -
tangent to the slice ¥ implies that (cuk)=0. We ‘should do

thxs flrst for o=0 and Ren extend to a nelghborhood of o by

§

-~ the use of Nirenberg and Walker’s theorem 3.14. Bli)t thx\ =

r

;fheorem is of use only for elliptic operators and 'it: is easily seen

“that the»oplera‘tor ¥'(o) ‘is not elliptic. 'However wé can reduce

G0

to an elliptic, ixi‘hov.mogve‘neous systefn if we restrict

' co‘nsid»era,ti'orr of this system to the sllce_submanifd,ld htf. . To

»

100
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this end, define
o ‘ ‘ 7

\

LI(U)(c,u):u‘é"l(o)(c;u.k)+%K,odivycmk(M#ﬁ)y (4.13a)
Lo .

and . \

4

| ' LE(U)(C,U)::&‘,”Z((/J)(C,U,R)+7(VU,div7c)—k((d1\f/dU)fQM).(4‘13b)

°

It is straightforward tg verify that L{o)=(L,(0),Ly(0)):

-

p p p ‘ : o L
Sv—x,éﬂ‘”Ms—1,6+1“"’Ss-3,6+3®M§~3,5+3 1s a second order elliptic operator

and that the equation (4.11) is ' now éguivalen£ to

[ . he

Qn

Ll(o)(c,u)—%K7,0'di\’yc:kql(q) (5%.148)

| » n
i SN
LQ(T)(C,\l)f7(VLT,di\‘vc)ékqg(c) ( \64-.}4%

where : . ) \’

Q(0)1=(q1(0),q2(0))1=(4'(M*'ﬁ)%-(d'M/dU)-?M)» >4~15)

£y

- 'We will show, for oY, that the inhomogeneous équation

P

Lo)(cu)=kq(o) . (416)

-~

o : v
for (CrU)ES:-1,6+1@MS—1,6+13’ implies ¢, “u and k vanish provided ¢
is close to ¢. This means, in view of (4.13) and (4.14), that .

£'(o) will vanish on a{lv tangeht vectors to the slice ¥, which

will immediately give us that tr;ere are no C' curves of

solutions in £7(0)NY. - | AU
First we will show this on the spherical backgroimd g,

1
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~then we will af;ply Nirenberg and Walker’s _theox.‘em 3.14 to
extend it to neighboring solutions. ’

(We will continue to Write u whven tit would be more <
_correct to use 4, keepm&_n mlnd that t‘he3 are determmed by %
| each other thl*ough (4‘9) and that u is less differentiable across»
the star boundary. Also,:in the cas‘e of equations of state which

give s=3 we will regard functions such as dM/dU as piecewise

c® functions, not as distributions.)

The spllttmg of T PL. I;H‘To@oeTUlf .al.lows' (4.16) to be
investigated on the two subspaces separately. C
Proposition 4.2: The eéuation (4.18) hag no nonzero

Solbu:tion (.c,u,k) on _Ta@o'
Proof: Since f(;o“o):;a‘a‘[(uo):o for any cp€$§5 it is clear

from (4.13) that any (cuk)ET,(_ is a solution of (4.18) iff

K7°div7oK7$‘=‘O since c=K, ¢ for a uf)ique gEde. But since there
are no Killing vector fields on ®’ that vanish at infinity

» (Choquet and Choquet— Bruhat (1978)) it follows that div o}\ é 0
“which 1mp11e< £=0. I‘mby corollary 39 'Thus. (c,u)ETaCa is- zéro i
whence L(o)(c,u)=0,' so k=0. . | j" K
Unfortunately on T 5” tﬁe situation i< considerably more
comphcated We are unable to solve equatlon 4. lé\d]rectb
even W1th the extra condition . d1v7c =0. —One approach used to

study‘second order elliptic differential equations on

asymptotically Euclidean manifolds is to make a conformal
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transformation to a compact manifold so that theorems lgnown

in the cédmpact case can be used (Ch-oq.unet—Bruhat (1977)).

However, there seems to be no such compactification of £ “which -

allows the coefficients of the ."cornpacLified"":é':tjj'vﬁa\\(“i,kons
corresponding to (4.16) to be hon»éingular. Even whe_n equeation
(4.16) is written in the (2+1)—dimensiona1‘ fél‘malisnl and a
spherical har‘morllic expansion is done;-the sphericel (t”:O) |
portion of the equations resul.ts’il in several coupled second order
equations whiqh can not be sélvéd explicit'ly even in vacuo and

- which seem to be uﬁamen’ablé to ‘atmaxirﬁum principle argumernt

except in the case k=0, where it car then be shown that all the

3

spherical variations vanish
_ _ . : ;
On the other hand, Klinzle (1971) has linéarized the static

field equations (1.59-1.71) in the (2+1)-dimensional formalisn:

with the requirement that the central value of the potential U,

and the pressure p_. remain constant. This means in our

~ present situation that k=0 since i‘t@ows from (2.9) that

k=.5UC+(pC+pc)_1épc. » (4.17)

Th.es"e iirﬁearized équations turned out to decouple into & three
dimensional scalar second order equation which could be solved -
by maximum principle arguments and into equations on the

compact equipotential surfaces which could be solved using a

lemma which is valid for Riemannian 2-manifolds with

non-negltive curvature. (An error in the proof of this lemme-
B ’ ‘ : :

R T S Y R SR
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. ; |
given in Kunzle (1971) is correct.ed in appendix 1.) The maximum
principle argun}ents which Kiinzle gave used the assumption
‘that p23p but“t:he extension to the case p>p is straightf&rw’ard
and is preéented in appen&ix‘? along with the lineérizatior;
arg.umnents of Kiinzle which we use‘a'lzlttl'e later. |

We will therefore reduce the present pfoblem tc the one

treated by Kiinzle by showing that §m=0 implies that
dU_=0=06p, or, equivaléntly in view of (417), that k=0 and V¥ _=0

since §U="¥ +4 Uly_y=¥,. To this end one could derive (for

(c,u,k)ETUJ so that div_c=0 ) from (4.16) three coupled seconc

order scalar equations involving u,

¢:=cl and ¢;:¢>—\\".1CUL”UJ_ (4.16)

° ' o,

Since only spheriéal variatioﬁs need not vanish at th_-el centler
and the genéral variation (on the spherical background) is/
obtained bvy superpositi‘on of s‘pheJrical harmonics we nee;zf/only'
look at the (=0 component, ‘iAe, we'can confine ourseI\jé"VS to
purely spherical variations. However, as we ncted abt;ve, this
system is still too complicated arid wé rﬁust proceed differently
to make some progre‘ss.

| As in \’§2.3, with a suitable choic'e of coordinates the
Einstein ehiiations f01; a sphericélly symﬁetfic static spacetime
| reduce to jusftwo first order ordi;ary differ-entia'] ‘equations for

two quantities which we é_an, for example, choose to be (2.2) and

(2.3). In these equations r denotes the curvature radius of the
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equipotential surfaces We now consider a one— parameter family
of Spherlcal perfect flu1d spacetlmee described in terms of a

fixed radial coordinate r'. We denote by r=F(A\,r') the curvature

radius, where A is the parameter of the curve in ‘7’:_1’6“ whose
tangent is the (spherioal) variation (c,u,k) at one I'Xixed solution,
given by A=0, and we choose F(O,r')=r" and \«rlte dF /o>\ f( N

The coordmate freedom 1s again eliminated’ as pre\louﬂy We

Want Rhe variations to take the form . - )

(4.19)

6U:\I/+£¢U, ‘67-ijzcij:¢ij+°—£(7jj

where again Vi¢.-:0 ‘but now ( f(dr /dr)d/dr.
f
ertmg (2.2) and (2.3) in term< of the polar coordmate r’

we get
dW*/dr'=(dF /dr)(2MWA = 4w 2FY), (4.20)°

dU/dr'=(dF /dr')WA™" 3 (4.21)

[N

where A is defi-ned through (2.61). Linearizing these and ucmg

(4.12), it turns out that f drops out and we find (after some

manipulations using \7'<I>ij=0), for A=0 Wﬁ%éré r'=r,
L
Worldv/dU-MrP9+ 3 (1+pr0)g=—kr(M—F) (4.22)

and

Wzr(dr/dU)d¢/dU+2(1+2$r2)¢—8Mr2\P=-8kr2{'M.—i§)' (4.23)
)

/
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»

where ¢:=W;24>ijUin‘ These equations are much'sim'pler than
"thosv'e that result from (4.16) ‘fpr' spherical Qariati.on‘s since f
drops out before a Lie derivative of AU haus ’Lo be su_bt.racted.
This results because here vfe are fixing th.e'coordinatelsysteni in
such a way that r remains the curvature radius. In (4.165 the
.¢ogrdinate r is'allowed to vafy er,mu the curvature radius and

then this coordinate change is factored oﬁt.'

Le'mma 4.3: 1f for variations (67“,6U,6Ub) on the
spherical backgfound the evariation of the mass
vanishes, 6m¥0, then also 6U_ cSpc’and 6Ub=l; |
vanish.

VProo'f: Equations (;1.22) and (4.23).'car'i be expiicitly ,

integrated in the vacuum region using the vaéuum sclution N

(2.4,25) and give

: ‘}'=_m_16m tanh U and ¢:-2m’_16m tanh?U (4.24)

~

where one integration constant was put equal to zero in viéw of _

fhé asymptotic conditions and the othér.identified lwit-h the ‘(’//
mass change ém. Requirir;g ¥ ‘»to be in M:—z,é;l.' however, |

forces édm to vanish, since. tanh U=m/r+0(r—2) for r*—fOir.

: Sinc’e ‘¢7ileUj.‘=d>l.j»Uin,..v¢>-7U -clee}xrlyb Has the same diffe-ren.tiab‘ility'

prope_rﬂes as -$;; so ¢EM§_M+1. (Recall that we are.on the

spherical background so 7, €R},, ) It is easily seen that \ o
. : \

¥
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{
Br EMB 2s+2 and from (2 3) that . W(dr/dU):Mp 24(1) so that all
the terms in (4. 23) are in Ms 2641 and thusin C° excépt the

term -8Mr’(¥-k). But .MéM;’_ZM‘ because of its behaviour at

the star boundary 'vghile all derivatives of ¥ up to order'-s—S :

4 N

o 'vanish at 'the star bou‘ndary so we must have k=0. By our

/« w_,___,——m.\

assumptlon (iv) of §2.4 on the dlfferentlablllty of p in the

\
.interior region, M is more dlfferentlable in the interior so we

‘see that Mr \I/€Mp _24+2 and equation (4 22). then implies . /
“ \ . ,\.
d‘P/dUGMS 251 SO YEMP . CCTE Since s23, ¥ is at least. ot
In the interior region, then, (4.22) and (4.23) fofro a .
regular linear homogeneous S)Qtem with continuous Coefr1c1entc‘
in (U U,] with zero initial condlktlo.ns at U, SO'that ¢=¥=0 |
§dent1colly (o.f._‘Hart‘m'an (1973)) 'avnd-the‘refore, in particular’ at
thé center. Equation (4.17) and the fact that 8,U(x,)=0 .now‘:
- imply tl\lat 06U, and 4p, v’an‘ish. , | | . fL 4
" In order to use Kiinzle's (‘197y1) result the relat‘-ion«of the
linearizations in the 3—dirhensionai and the (2+1)~dimensional
formalisms must be‘.detofolined, Since UEMf_m' has orly ore

critical point that is nondegeneraté the same is true for U
_sufhclent]y close to UEM!. 1‘5CC Thus any (U,y) 'sufficiently

'close to (U9) in" P, ,,, can be described in terms of (W)
the ‘(2+1)~dimensi‘ona1 formalism of §1.4 using coordinates

(Yi):z(U,YA). (Recall that ¥ is the induced metric on the
‘ : , o 4
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U=const. 2—sphere$.) , - | : ,
Now, WEM 4., and 7AB(U)CM: 16+1(/AB")' + 7ap being the

\ .
‘metric of the standard unit sphere. Now any ¢’ curve through

s

o with its tangent in T 5”8 1641 can also be represented by a-
cur\'evlin "Ma—mﬂ-:M:—2,6.+2‘9Ms—1,5+1(3'AE) thrOugh (W3) whose
tangent at (W¥) isin MP,, 05, Let (67.60.0)ET Ph,., and

{w, )QT(H)MS,M Noting that

-2

s L ‘ - i - .
/ S SR ACR STCH SYRRTCY SVEPS s SIS e

and linearizing we find that 6Uéé'5?1 and that

57ij:2w‘zu(ian5rlzw“% UgW+2 /,\La(;x "9, 0%"

where 5% and 6%, contain variations due to the ch\a‘nge in

the coordinate system (Ux ) along the curve in ./({s 16+ as well
\»‘ .
as the tangent to the curve in ./ﬂs 1641 (6F4, is not'e tensor),

namely

L SW=w(a, W)Y

= e —1 A _B |
| 6T =Ty tW Q¥ 7'}(L+2TB(K7 L)Ad X
(Recall from §j.4 that Q:?KLQKL where (U, isthe second
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fundamental form(o\f\ the U:const. topological spherés. Also,
Fgc are the Christoffel symbols of the metric 7 )
’Thusb, defining {:z(dU,dYA) in the (Yi) —coordinate system .
. ’ | %\ ‘ . . 7
so thet 6U=¢'=¢'U; and ¢€X?, we have

67ij:2v(i<-i)+ai3{xaj_i L‘EKL—2UiUjw-:gu

Siﬁce the central potential and pressure are fixed to first
order: and a variation of higher order will not affect t}:‘,e‘)first
order quaﬁtities w andr Ty the result of Kinzle (197:), given in
Aappendjx 2,_y'ie1ds w=0 and _EKLZZT(KXL) fbr so‘rln-e vector fielvd'
x"f on the U-:con_st‘. h}'pér3urfac¢s.

. . e
One can choose a coordinate system (U, X") such that
- B

7,,=0 identically. Then (£x7) :'\’(IXA):Q which 1mp11es'aU,\"‘=o.
But XA'must vanish at infinity since we réqmrev (O,XA)E.Xgé‘ SQ.
XA=O. Thds 6U and d7;; are merely Lie derivatiﬁves," hence so. is
60, and we conclude that if (éy,éf‘v',k) satzisfy (4.16) and are in
Taf they must all vanish Surnmarlzlng this we ha\e

Theorem 44 The operator equatlon

r

.L(C')(c,u)c'kq(o).

where L and q are defined by (4.13) and (4. 15)

- respectlvely, and
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(C u k>€T ‘7)5 L6417 Ss Lae1@My 5,08

-

implies (c,u k)=0.-

4.4 Curves of solutions in ¥

‘We now v'vish to extend this result to slices supposedly:
representing noh'trivi.al static deformations of the spherically
- symmetric solution i\n,order' to show that thelle are really no
(sufficiently regular) such d_beforma’ti'o’ns. It seems netlira} to
apply Nirenbergﬁ and Walker's theorem 3.14 to get this result, but
‘there are still a few probiems. In order to apply the
Berg‘er\,—Ebin' decomposition to the vardatioﬁs of the 3~metrric and
thus for the- preof of theorem 31’3 we need a fall off rate of 1/r°
or hlgher> Homever ‘the. 1somorph1<m theorem 37 and
Nlrenberg and Walker's theorem both reqmre a l/r fa]l off, the
former bemg requ1red in order to have a closed range ‘Without
the closed range result the presence of the 1nhomogeneous term

would make 1t hard to extend theorem 4.4 to a pelghborhood of -

&

0.  We must therefore now investigate the oper}ator L(o) also
on the larger space ‘S:_l_t,eME_m. .
ertlng L(o)=L,, + E b DF it is readily ver1f1ed fro*n (4.11)

and (4 13) that each b, contains derivatives of U and 7 up to

order 2 —lul for all I,UJSZ The propertles (3.6- 38) of the
welghted Sobolev spaces then easily show that for oEPa 1641

b“€M,_3+|“,'6+3_|#| for all "l,u|32. If i.n addition the b#_ are smooth



enough, (they a’ctgéllelly only need be contvinuous. for l,;tlio) in the
' _ e

as‘ymptotic‘region the conditions on bF for theorems 3.7 and

3..14 will be satisfied. This is eertain]y fhe case for any GES

since we have only Compact matter dlstrlbutlons and the

asymptotlcal]} flat solutlons to the‘fle]d equations are analytic

in the vacuum r‘eglon (Muller zum Hdgen et al. (1970))

-Appllcatlon of theorem 37 gives the following. =~ = = .. .,

Proposition 4.5: For UE?EMH S}O the map

.L(U):PE-:S:-l,o@MS—_l,o-“’SP 36+2®Ms 32— Q7 (4.25)

4
1s a continuous linear operator with finite
dimensional kernel and closed range. .

“If we try to solve
L(o)x=kq(o) for kER, x€p (4.26)

using the.method used.ln the proof of lerr;ma 4.2 we Imd‘that
¥ and ¢> for the spherlcal varlahon are unlquely determmed
by dém in the vacuum regxon They determme therefore k on
the boundary and hence the value 6U_. (:I‘hus thefe 1S a

" one-dimensional solution subbsp'ace of PeR, spann_ed By (x4.k,),
. - say, where _(Xo»ko) is the solu_tiAon‘ eorres;pon‘ding to om=m ‘in

- the vacuuni fegio'nv ’

Prop051tlon 46 For ¢ in a ne1ghborhood of o in

5)__16“ the operator L(a) P—~+Q is mJectxve

111
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'PrOof: Let first o=c. Putting k=0 in (4.23) means 6U,=C,
ie. (p, +p )6U +6p,=0 and, as we just saw abO\e 6m=0.

, A
Therefore there is no spherlcal solutlon for V\thh the central

'pressure and potential stay fixed_ Hence, just-as ;n,theorem 4.4

there are no nonspherlcal Varlatlons either. The operators L(O)v o

and L(¢) on P, however, satisfy the hypgthesis of theorem 3.14

since llg-gll 541 smalb implies Hbu(b)—'b#(a)up'é_aw,'k_l#. is small,

psl

8o that the kernel of L(o) cén_have no higher dimension than

CkerL{o)=10} - - o o .

-

But, finally, we must again consider equation \(4.16)'Afpr' X=
(c n)EP, Ss léﬂeM:_mHa and k a constant to be determined. By

(34) P, is a sub\spece of P but not a closed one. On the other

hand, for o, we know that
) -

. - .
x€P,, L(o)x=kq(o)=>x=0, k=0.

ThlS means that q(a)éL( )P . while according to the above

,

there is a uque X,EP such that

L(o)xp=q{0). | (4.27)

) . . . )

~Now suppose that ¢ is in a neighborhood of o such 'that. )

“L(a)—L(g)”<el (hp_eratqf norrn)

’ﬁndiHQ(U)_'—Q(U)hp,s—s,é+3<52 e - (4.28) o«

for some smmm. Since kerpL(c)=0 there is at most

S
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one solution +xE€P of -
. L(c)x=q(0). | ,&5(4.29)
We will show that x cannot lie in P,
Since‘ L{(g):P—™Q is injective and has closed range it has a
bounded inverse whence there exists‘; C>0 such that
. | .
) N |
“L(O’)H REyS EZCJ)JPS s for all x€P. (4.30)
From (4.27) and (4.29) we have g(0)=q(o)=L(c)(x—X,)
+(L(e)-L(o))x, which leads/ together with (4.28) and (4.30), tc
g ‘ _ ’ 0
o eyt RS |
O|Ix-—xo”ps_ws((‘—fl) (o)t x0) p 03¢
l ' k]
<(C-e)) ( HQ(U) Q(U) p.s- 36+3+HUU (0)%i lixo”p',s—x,a) “

' <(C 5;) (onlps~1é5 +82} ie the soluhon ir«'i”srarfbitrabrily close to
Xo in P for smell enough el' and e, On the other hand it is
not hard to see that \ » |

' d(xoﬁpe):=;g}{”x0‘y'IP'SL;~6?O'

. (Observe that x, is explicitly knoun in the vacuum region and
‘has an asym}txc expansion startlng thh a term proportional
to 1/r while.for y<P, the mean fialloff rate is hlgher) S e

Together with the remarks made after equatlon (4. 16) this ]eads

to 'the, following uniqueness result.for statlc spacctlmes.

Theorem 47 Let c[O 1}— fﬂS op) Pe 2 o curve such
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thet c¢(0)=0 is a spherical solution. ‘Then ¢ is
constant if the slice ¥ is contained in a small
enough ‘n'eighborhood_ of 0.

" Proof: Since ¥ is a C' Banach manifold and c(t)€s,

implies that v&fv(c(t))=0 wh?rice Jf'c(t)(dc/dt)ﬁo for gll t. Butv

‘since c is also tangent.to the slice ¥ this is equivalent to «

L(c(t))(de/dt)=kq(c(t))=0 which implies dc/dt=0 for all t -~ K

[,

0



°  CHAPTER V

: : LR
ON THE UNIQUENESS PROBLEM FOR SLOWLY ROTATING STATIQNARY

FLUIDS

P

51 Introduction ‘
In this chapter the advantage of the Banach Space

formalism deVeloped for the static case will become apparent as

it can be applled also tothe stalionary case resul tlng 1n a

similar type of uniqueness result. I\amel tﬁete are no

" ‘nonconstant differentiable (Cl) curves of rigidly rotating, perfect

Ay

fluid solutions of Eirtstetn’s equations wtth fixed mass 1, fix‘ed
surface temperature T, fixed e’quatlon of state p(p) and fixed
angular momentum J which are close to the spherically
symmetric solution, i.e. whiclh are slowly rotating s¢ that |/ 1\
small. This .result was presented for 'equatio-nt of <¢tate whieh
result. in a discontinuous matter dens&',@t the boundary of the
star by Kunzle and Savage (1980c¢) using results obt&uned from
the linearized (Q.fl)—diumlensior‘la}] formalisn ofEinstein‘s |
equation% for stationary spacetimes which was given in Kinzle
and Savage (1980a). This latter paper containe an an_alogous
investigation for the stationary case as was carried out by
Kiinzle (1971) _for the static case. In other Words, it 1s &
linearization: keeping‘ the central potential ‘U, an.d pfessure P,

flxed instead of the more physical copstralnt of f1x1ng the mass. -

>

We will be ab]e to use (he relation between these tw
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t
Al

linearizations which was obtained in the last chapter to obtain .
our result. ~ ‘ .
The extensmn to more gerneral equatlom or\?a-te which

satisfy COHdlthl’lQ (i) to (v) of §2.4 follows eaﬂl\ as m the static

case but one addltlonal restriction must be made for
: A Y

mathematical reasons. In analysing the li‘nearized equations we

N

need to make a power seriés expansion in the interior region so

&

t We

ad LIPS
n
fad)
—
T
—
”
s\
3
—
-~
—
b
N

we must slso assume that the equation of

BRI Tee

R

will assume then that gp(p) denctes the sP t of asy mptot‘ ally

Euclidean stationary axisymmetric solu‘tié@ns of Einstein's.
equations V\lth a fixed surface tempe]‘at;{le T, and s o fived

- analytic equtlon of state p(p) Qatlchlig conditions (i) to (v) of
§2.4. To-demonstrate the similarity t%fthe static case and to
avoid a proliferation of symbols we wgl use a tilde above &

J

> in the statiz cese to

symbol\used to denote a map or spa

denote the corresponding map or s@ymbel in the stationary case.

_ ¥ o
yZ Recall that Lindblom (1976)fﬁas shown that equilibrium-
fluid c‘onrigurations‘-Asat‘isr.ying ofr conditions for a stellar mode!

) > ‘ ) : . * ]
are necessarily axisymmetric.Gf,However,‘his method, which is E

: .
i 'foy:’,}}?‘ A . . ’ ' .. R N
S s1mqla}§\to Hawking’'s (1972) gtoof that stationary black holes are
’ \ fc‘
axnymm;‘tmg uses analylfc extension methods which are P
e . \”A\

somewhat dlffl(‘ult o

conditions. Neverth ess this result shows that we can ép\estrlct

as in §1.3, e a fixed vector field n on w;}‘flch behaves
5 C : . "f 7
asymptotlcalfgz in cartesian coordinates, llkgﬁ‘ n=x 62 x°8 FO(x| 1).

s/ &
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Thus we are eliminating some coordinate freedom The angular -
momentum J is then given by (1.38) (189) where a is a

1—form such that H=da (c.f. §’1.3).

/

i ;" .
Th'e slicing theorem we require in" the stationary case
again depends on the exlstence of & Be1ge1 —Ebin t)pe
, decompOSJtlon but it also depends on the dECOI'DpGQ],tIO]’l of

vector fields glven by corollary 311 However, smce we ha\’e the

v

asymptotic properties (4. 1) Wthh ng fal] off rate of l/r fer
both vy and a this creates no problemc In fact usmg the .
vacuum field equations toge*her Mth the asy mptotlc propexhe\

of n and (4 1) it is seen that ' /

J— h'=2dix! (63 N o0k T (51)

. ’ | . ’/"’ .~
while the vector potential o is given (.UP to a gradient) by

ai=2JIx!_35jk3xk+O(ix'_ (5.2)

S

i

In order tc obtain an elliptic operator to which we caﬂ
apply Cantor S 1somorphlsm theorem and Nlrenberg ancﬁ Wal ;\e B
theorem, Einstein’s equations (122-124) and t‘,he thel*nnod)vparrxic-
eqUilibrfum equations (1.25~1.28,° 1.11) must be/"!modi:‘ied 'so,£hat

. : o ‘
- the linearized system will consist only of as'many second order [

/

equations as there are unknown functions /

We use the vector potential a to do’f‘fthis. Equaﬁt'i‘on (/5,2)

-

1mp11es cx€}(s 1.1 for 0<6<1-3/p for som’é p and %f"”_which we
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will see later must satisfy s22 and p>3 so tha: corollaf}* 3.11

then implies a will be uniqueiif we require

N
div a=-V'a=0 .  (53)
Using o« instead of h, where hf=£m¢)ras, makes equation (1.24)
'into a second order equation and eli.mina.tés equation (1.28)3&5 it
is then identically satisfied.
In the matter regién D we have fr‘or‘n (127) that Jya=0
for the Unnique'.cx defined by H=doa amnd (-53) so we can integrate

the rigid rotation condition equation (1.26) and find theat
\ N : .

HJQ—vTﬂle_’ZU::—-a‘:‘cmist ' (5.4)
From the conditions that # is a symmetry of the spacetime,

(125),it follows that ‘6 vanishes at the center, whence .'l'c=€U'

(4

and therefore

a:T;le—U? o (55)
From (5.4) we then finc ) -
v=Te" (a+6.a) (5.6)
and, solving for T,
T %= (a+610)%-e 29" (5.7)

The vector field 6 is not defined in the vacuum region
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Z\D, but it is'an infinitesimal isometry in D. Since it is also

tangent to the topological 2-spheres U=econst. by (1.25) and

vanishes at the_ center it must have closed orbits and thus
represents an infinitesimal rotation. It follows in the h
axisymnﬁetric case that unless the spacetime is spherically

symmetric 8 must be proportional to the given rotational |

- generator 7, le.

fi’ | _es;bn, b=const. in D, . (58)
»since thefe .are no clolsedbé-—dimensional subgroups of the
isorﬁetry group of a Riemann.ia-n 2~sphere (c.f. Kobayashi (1972)
p.47).’ Note that b/a is essentially the angular velocify. Recall
that 7 is glo‘ba‘lly defined on ¥ and satisfies ,(1.36‘) and »(1_3'.7-)‘

Since we assurﬁe axi._a] sﬁnmetr}"it might seem reésonable

~to eliminate an angular variable and.work In the J(r,@)‘—half |
plane. However, for global ‘arguments this quotient sbace‘ is»nét

| ! particularly conﬁvenien"t aﬁd we could not imm;diately apply t.he

Banach space techniques which we us}ed in the stétic case.

Similarly, if we were to consider '77 | és a fixed veétor field ocn I

When parameterizing t set of equilibrium configurations the

strﬁcture of the group of diffeomorphisms leaving = invariant

would be more complicated  So it seems best to treat 7 also
as a variable. In view of the fact that 7 is a Killing vector

-

fiefd it satisfies the second orde: equaticn

WnpTn)dx’=0. ~ (5.9)

diV7°.£n’}'——,—-V



For the temperature T Wé have from the equation of
.hy.drostatic e’quilibrium (1.11) that in D
T=Texp [So(F)+P)4p - (5.10)
where T, is the 'temperature on the sur»facl'e dD of the étar,
defined by p=0. Since for each'different value of T, of the
surface temperature we get an otherwis_e ipdentical, mbdel w;;th
the temp'eratur.é differing at each point of D by a co‘ns'tan.tv
. factor, just as vin’ the static case, we keep T, fixed once and for
all, S |

If the tenéor fields 7, Us. a 7 and the consténts a and.
b:are gi‘ve-n then our rﬁodel will be uniquely determined since
6 is given by (5.8) in the domain D, T by (57) and finally s
and “p' as vfuncti'q.ns on D by (5.10) (or equ‘ivalently by (1.11)) |
since we also consider p as a function of p to be given. For a
fixed ma-nifol‘d = which we“tal'(e to b;z diffeomorphic to R’ and

‘which thus can be considered to be pro\;ided with a fixed *

coordinate system, we can therefore describe the set Sp(p') by a

subset of a set D of sextuples o=(7,U,d,‘n,a,b) which satisfy the
a'ppropx_‘ia‘te differentiability conditions (determined by p{p))

4

'vand' the asymptotic conditions (4.1, 1.37). o

Then, aé in the static case, we can consider §p(p) to be the

; . ) A (24 N B . . - .
inverse image of zero of a map 273 between Banach spaces.

120



We will take the map Z to be given by
~ ' o | ©4U I -4u.?
‘f:(y,U,a,n‘:a,b)——>(Rjj—2Uin+%e4 hh(p+ple r 06,
+.(l2pe'_zu+(p+p,T2628—4U)7”, AU~§1(p+3;‘>)e_2U+%e4th2

-4U, 2
h

2 . —4U
6, €

—(ptp)e

K

V(T aue” ) H{ptple  uTe,

where 6, ‘T, v, and p are defined by (5.8), (5.7), (5.6) and
(5.10), respectively. | '
" We have chosen this particular map, so as to have as

many second order equations as unknown functions. Il is clear

that the first three components of the equations

corl*esporxd to Einstein's equations (122-1.24) respectiVe]y, and
the last to (5.9). We; have nof included the s‘ftronger eqﬁ‘-ations‘
(1.36) nor the glauge condition (5.3) on al since it will turn out
that the chosen equations already determine the equilibrium
configuration uniquely up to the two ‘iritegre;tion c.onstants m..
and J and arbitrary diffeomorphisms (asymptotic to the
ideﬁti{y) and arbitrary gradiéht fields added to .cx, This occurs
because the gauge freedem of « is factofed. out by' the slice

7 theorem' we give in the nex‘t section in the sé’me way_that the
coordinate f_fgedorri is-factored out, i.e by res’tricti.ng to thé slice

i

. ‘? '
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. e ) .
5.2 A Banach manifold of nearly spherical stationary spacetimes

( B ‘ ’

As we saw in §2.4 the no;"mai derivatives of M at the star
bouri‘daryb can be investigated using ‘lirr})(diM/d(log 7)) and this
' o p—0-

has a similar behaviour to the behaviour of lim(diM,f’dUi) in the
. : . . p—0

static case. Thus, using the results of theorem 21 we can find

that for a given equation of state such that limop_[p=d'>0 with
'(8—1)/6<858/(8+1),' f2C, €20 'M has the same differentiability

properties as were determined for the static case in §4:2. Thus

we again take M€M:—3,6+n for a fixed s23 determined by the
equation of state and some p>3 (avndile_‘ss then sémg; upper
bound determined by the equation of state) and any large n.

The eqinations (511) then show that we can take L'EM;M.

s-16+1" s-1,6%

&éXp 76‘7@5_16* aynd n€Xp .(77) where we fix ’_.77=E)¢_ in
rterms of a polar éoord;nlate system related to the asymptoticelly
cartesian s'ysteni in “‘t‘he usﬁal way so that 7 has the form (187)
~ for |xi—0oc and OS5<1;3/p is fixed'b}‘ the asymptotic
conditions. |

Since the equatio‘n"o‘f state p(p) an'd tlhe‘ surface
temperat.ure are rega.lrldved as fixed, for eve»ry" value éf m (in
some interval [O,-rncn-’t)) there is a unique spherically symmetric

model (7,U.U,) since U, is also giver. Since 6=0 in the static

case we have b=0 so the first expression in (5.11) shows that

122
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'ye-ﬂséﬂu From (5.7) we see .a:T:e”Ub so that giving a is

equivalent to givihg Uy in the static case. Thus for’a given m ’
wé can.describe the unique spherigéllyvsymrnnetri_c'solution by
o=(7,U,a=0,71,3,b=0) . | Again, all of the comi.)o_nents of o have
mbre differentiability thban ,those‘of‘the gene}i‘all o's except for

- U, so we must a.gaibn make use éf G:U—»fof)“’z—t, to defiﬁc the
t.op.ology', where the coristant ‘f‘O bis' def.inedvabs in the static case
in terms of the unique sph‘éricél SOiutior}. (See the ;discx.)séion.
below equation '(4.3)f.) 'I;hl_'ls 6€M:‘é while C‘EM‘S_L,}. ,

In analogy to the static case we define

-~

PP =to=(7.0.anab)yS R, o0 TEME 4 (0),
aEX:-l;éﬂ' T)EXE_},(S(T}). a,bER] | (6.1:'2)’

where we will again use U to do the calculations but keep in
mind that it is { that defines the topology. Note that

UE‘%:—L&H ‘and again, any two solutiqns_ gy Ug‘i—fp _15-: will have
the same mass, but they do not necessarily have the same
angular momentum. - - _ ' <

The action of the diffeomorphism and gauge group on

P

s—15+1 €3N NOW be investigated. -We will see that in order to

obtain a slicin.g theorem along the seme lines as in the static
case it will be necessary to let ¢=0 but this is the largest space,

allowing the slowest fall off rate so we do not lose anything.

Let
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5

'@f,aifu@fﬁy?f§(¢,x)l¢€$§g, VEME (R ®)] (5.13)

and define ' - ’
AL PP —gr

(e (. 0.amab) (e y, Uog i ardy.gab) (5.14)

_where ¢  denotes the pull back by the diffeomorphism ¢ “of

the appropriate covariant tensbr field. Equip &5,5 with the

product differentiable structure. It also carries a group

‘structure as the semidirect product of. ﬁ":ﬁ and the Abelian

group MPs with respect to the natural action of 7, on ¥ by

pull backs.
Theorem 5.1: If p>3 and s>2+3,p (and 6=0) then

. \ . . . . Br
(i) A defines a continuous action of EQEO on -935-1,].

s

A(w.x):o“;’A((<P'X)'U) is C(1 and if ‘UE@p_'M:’,‘I’ then

A (e )™ A((p.x).0) is c* for 'k= O or 1.

(ii). If UE%‘?\H“ (for k=0 or 1) then the orbit "
@a:;SA((¢,x).q)!(ga,.x)€t9z[5§C¢:_1-'l is a C* submanifold,
(ii1) If 0€35§‘1 then there exists a neighborhood V of

(10) in %!  and a slice of the action, ie. «

submanifold & of P, containing o such that

.((go',x),d')*ﬁA((gp,x),o’). is a -homeomorphism of R
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-

onto alneighborhood‘_}'\" of o in gsf_m and @03:305
Proof: (i) The prpof 1S airialogous to th-‘eorem'féljl for 7y-and
U : Assume first that 66'['0,1—3/1;))’ 'bas'i‘n‘ that theorem. Siﬁce
x~—>dx is smooth, .(go,a)—ﬁ;pfalzagyk/é'xi(aocp)k is continuous by

‘theorem 3.5 and linear in.q, S0 ((go,x),d‘)*%ga‘o%-d,\ is C_ in a

and contijnuous in (g.a,xv}. If aCXSéT then (’)koEM:_M a_ﬁdv
(go',ako)‘—ﬂ.ofaka_ ris coni:inucﬁs, For the correspon-di‘ng pr.oof.for '
b(g:,'n)~—>cp.~'177 ‘if Is necéss’afy to sét 5=0 to éatiéfy. the covn.d\liiox.)
Uw_lzéD#n isubc‘)‘u_nded, required iﬁ theorem-&é; be_cauée of the
'asyr;lptptic béhavi'our of 7 |

(11) A, is injective since there are no non-—trivial
isonvrletr'ie_s ‘in i\':ﬁ and there are no censtants in M:,_,,. [f kzlv

the tangent map TA  at ¢=1, x=0 is given Ab.\‘

~

(f;f)é(égf?"’{zfﬁ’ifqﬁhdf’ifn'o'o)éqp1 9\{ 119)‘ 11@)‘5 109 'sz ' 505 11
where '§€X§‘O, IEME,(;. Canloﬁr’s’ version of the Bérger—Ebin'
decompositlion' (cofollar}' 3.12) .tog'ethe‘r.lv.vith the splitting given
by:corollaryl 3.11, X2 = d(Mf,o)ey7 where ,?7=§w€).(§_1’2!div7m.=0i
Aimply thatithe irﬁage of T(LO)A.(; splits S0 thet A;, isa C
| imbedding.
| (ii-i)»Ch@bose openneighborhoods V.of 0 .in J énd W of YOj

in.'f such that y+c 1s p031t1ve defenite for ¢EV . Ther, if

}
'0635

alh
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I = 3(7+c U+u O+, 7]+( atA, b+B)|C€V uEMs Ly

o ﬁE“, ¢QX8—1,0‘ A,?’Q—R;

£
,

n

',m,Meachén-nnbeddedsubnunﬁfokiof P! ... The
'homeomorphlsm is then obtamed by use of the. deoompo<1tlon

theorems as was done in theorem 41 '_ AR K

4

In partlcular the tangent space to %f 1 at UEfPP plits
so for Ko we have

T %P

sll—T & ot T y‘ | . | (5.15)

b:jecture that the set of solutions of Einstein's -
'§p in some neighborhood V ef ¢ in ﬁ’g_]_l, namely

v

F is equal to U}((C‘t,ﬂ\f where # is a one-dimensional .
: o€ _ - -

kfold of ﬁsf 1y passing through o -and p’araméterizedr by
the all€ular momentum. As in the static case, however, b

1s not surjective at g=¢ so we are unable to show

is a submanifcld. Thp"s’ we cannot show thai there

; 1( .
exist soluticns with nonzero angu]ar momentum nor obtain as

strong a uniqueness condltlon aq we would hl\e But since, in a

| neigh'borhood of o, the set of eQuixrélence classes of 3’;)_1’1 with-

- respect to the actidn of &9:6 1s in one-to-one correspondence

~with the bice J through ‘¢ we show that there can be noc
non-con t c! curve in gﬂgp. passing’ through & partioular
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e

solution (existence assumed) with some angular momentum"

unless the cﬁr'\'e\passes through solutions with different ang.u']_ar

-

momenta. This will be done by a elmllar procedure to that used
in the statlc case, solvmg the lmearlzed equatlonc cn the' -
spherical ba_ckground and extendmg the result, to a
neig'hborlléod of © by_the»use of Caﬁtor's isémorphism.theorem- ..
and Nirenberg and Wa'lker's t-héorém. ‘Since Nirj‘e‘nberg an.d- B
" Walker's theorem is prox}eﬁ by contradrction oﬁe can no't'_
determine the size of a neig'hborhood for W‘hici.h‘b this:‘extensi_on. is
Vali_d and the‘refore there is lvit’tjle ho;e of tha_i.niﬁg an 'éstimate '
for a lower boupd for ‘th;e. value of J which lea‘ds vtd >a B \§
b.i’furca‘ti‘c;n of the Soluﬁion‘ space such as one has in'.the classical -
‘Newtonian series_wheﬁ the Maclaurin sequence bifurcates to the
Jacobi ellipsoids. |
53 L'in\?;arizatio’r‘l of & tp find ker .?(a) | 11

Let (c=67,U= éUﬁ bo,¢=6n,A=6a,B= db)cT fps il  Let 'uié‘ll"v
and I_'ecall that u and @ are related through e_q.uation‘.(4:‘9)’
jmjit_h.’ u be.in‘g less di‘fferé/nt}i‘ab]'g. théﬁ' . Agdm we do all
3 calcﬂlaﬁonsﬁﬂth ‘u ke.eping 'th.is in miﬁd., The'yariation of :the

pressure can be seen to be given by

6p=(p+p)[~T(1+2€” e”Tze‘) usiT 2"9‘6 I

'—Tz(var—»Te Y )(Br, +b() T4 ]

For o=a€§5:1 we have from the proof of theorem 5.1 the
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dé.composition. K
' c=.£¢’7¢4>,.'d}iv7'(§;'v),:.o o . (5-;165 |
u:g:fl_'uw‘ S | ~(B17)
ﬁ=£5a4d£i+‘;),;di-.v.,(‘ca):o R . '(5.1,'8)’»\
et v | | (519)

where ¢€XP, o€sP . ¥eEMP,, wSXP,,. fEMP, weXE ) are
all unique. Another lengthy but standard'calcula't.ionf glves the{t

i/

~ ~ ¢ ©

L Py, PP ST e ME oXL eXPa=2 L (520)

o~

is given by . o , o .

EZ 1(0)<¢'i},'ﬁ'v§-‘A»B)iJ= o
Vi

S
N

V'V ¢, +5V, vjic;‘ V(¥ c)) +[- 3R’ 6J)+R 7137712(5’5

ru

: lnp et o4t - . ~2U . r, 5
+(R-if7]R7ii_%hthe4')7rs+e h‘rhad?ﬁ?(p*-p)e TBHUC;»"~P€ 6,6,

—(p+p)To0%e U 6T6 - Le Y (p+p)T76"0 “(4e? Yyt T 73) ~9 0.0,

1)
U u{2hh e e 2(p+3p)e e (o ple (86" 7”-*4913J
| ‘ ' - ’ %/‘ ’ V . L ’
2 4U , _4U. . 2v
+7(p'+3)(0°,-6,6))luvhe eV B+ vT{pple 267 7,

S22, g | -4V o -1 2v \
+T7(p'+3)(6 7ij—9i9j)]6.rﬂ;+(p+p)e T [211\(19,, 2(vT e Tay—36, )7

Hp+3)(vTa,-T% 20, )(6%7,-6,0 J(Bn" be )

+p']‘?e__fu(‘p+p)[-2eepT;Al'y.ij+(p'+3),T(B —-9;9,.)];4,., T S | (5.21)



L2

k3]

Z'f(0)c.u,p.0.AB)=

Au+[2h2ew+(p+3p)e_2u+(p+p)e~2U(4T292e— v ++(p! +3) )]

%
_Ur(vscsr )+[7hrhs 4U VrVSU~—%—h27rS
. 2 -4v, oy
—(p+p)T e ¢ (1+ (p +3)T)9 ) ]C +Hrs 4LV ﬁs+'1’z_(P+P)(p'+3)‘rTsve 2 Grﬁr
+(p+p)e‘2”1~[—2Te“2”e,+%(p'+3)(var~e"ZUTer)T](Bnub;f)
i N ’  —2U _
+5(p+p)(p'+3)Tvre A, (5.22)

P'(a)(cu,f.e A B) =
vy B, 2V(v B)+4U"V,.B N [1RT+(p+ p)e” TZ(1.»2(p}:-;)—ez"'),a,@"]ﬁr

N 1H“zs *19,c. +[—7e_4pVF(H )

1

2 r s,

+"(p+p)vTe_'SU(6;93+—%e—2U(p’+8x)T 66°6,)]c.~2H,9 LU

: ~(p+p)vTe (4+’r(p +3)86. u+(p+p)e [2'T—17ir+e2uarﬁi

CHu(p'+3)(Te U r—var)Bi](Bn +b¢ )—(p+p)e#6UT2((‘p’+3)1’2—92:)8XA. ‘

B " Y

:‘.’ o | ', : - Y’.v 5'23>.

Cr

Z (o)cup.t.AB)=

VTQV(r(i)+-‘;_—77rVr(Vspf)—%Vrm(V c )+V n )(VrC‘SI 1 CL )t (V 7 +¥ )T c

+(31>-VSVS'}7"T+%—R:ns)cir.—%(vr‘vsni#RriSkn )e,. L . C (5.24)

where ﬁ':=dp"/dp and T:=1+2¢ 21%°
L
As in the statlc Gase nL‘f(o) is not elhptlc but by

¢

restrlctmg .0
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P40 )(euB.¢ AB)=0 - (5.25)

4

to the slice Y we can obtain an elliptic operator to which we-

will, be able to apply Cantor’'s isomorphism and Nirenberg and

Walker's theorems. To this end define (for xi=(c,u,p.¢))

'ﬁl(o)(x)ij 1(cr)(c u,pf.¢,A,B) U+% yedivoc);,

- , _ 2
. —vT% (pﬁ+p)[2e T 7jj+(p’+3)T(9 7,,-0,8)]A

—(p+p>e ‘U [27k(19J)+2(’L’T e?a, 26,7

/)J

—-2U

+('p'+3)(vTo<k—e T%0,)(6%7,,-6,0))]n"B, (5.2€)

EQ(G)(X)%E’Z‘(U)(C,u,ﬂ,{,A,B)+Ur(di\’7c-)r

~72L(p+p)_(p'+3)TvTe—2UA
. ' 5
: .

—(p+p)e_—?UT[AETeﬂ?UB‘Iﬁ—%(p’+‘3)(var——e—v2UT9r)'r]77 B, (5.27)

Lo(0)(x);=L'5(0)(c,u,8.¢,A.B) + 30 (div_6) N

H(p+p)e T (p'+3)v° ="V ]9, A

s : ‘
—*(p+p)e_§UT2[_'UT§l'yir+ e?a Ot

v(p'+3)(Te ™ 6,~va,)6,]n'E, | T (5.28)

'ﬁ4(0)(x)i:=§’4(o)(c,u,B,(.A,B)i—%nrvr(divyc)j. b ‘ ' (5.29)

~ N N

It is easy to verify that L(o)=(L,.T,L;L)(0)is a second |

order elliptic operator. _Equétion (5.25) is now equivalent. to
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© L(o)x)- 21{ odiv,e=q (o)l aB)’  (5.30)

"ﬁz(a)(‘x)—VUJdiv7c=a’2(JS(A,B)T  (5.31)
f" -

Lo )(>~) dl\ ﬁ) ¥4(0)(a.B)" (5.32)

T (0)(x)+$7d(div,e)=q,(0)(AB)’ (5.33)

where the g, (o) are the obvious row matrices of tensor fields
obtained from equations (5.26-5.30) (g,=(0,0)) and (A,B)Fr is the
transpose of (A,B). We also write glo) for

(F4(0)84(0).3a(0). 1(0)).

32

o .
S—

We will show that for ¢S4 near o and x=(c,u,pf)Es

: ‘ | ‘
G)ME_M@X @Xs 1o the inhomogeneous equation

- 4

L) x)=3(o)AB) . G

implies that c=u=g=¢(=A=B=0 if also the variation dJ of the'
angular momentum corrésponding to (c,u,vﬁ,‘g‘,A,B\)‘\”ahishes This

—

will then imply that the solutlon of (5.25) vanishes if ‘.
&
(c, uﬁ{A B) is tangent to the slice and the correspondmg 63=0.
We will do this in the same manner as in the stat]c case,

solvmg (5. 84) first on the spherlca‘ backgrouund o and then

extending the result using the theorem< 3.7 and 3.14 about

elliptic operators

On the spherlcal background equctlon (5.34) simplifies
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greatly, decoupling intc

L, (o) eu)=q, 5(c)(4,0)"

Ly(0)(8.6)=84(0)(0.B)

where (5.35) 1s the set of équations‘(4.16) obtained

(5.3'7)

in the static

case. Theoreni 4.4 then gives us that ¢, u and A vanish.

Putting c=0 ‘in (5.37) yields the equation div76K7(j which by

corollary 3.9 implies that ¢=0.  Lefting Ki=€ijka’f3’k equation

(5.36) then becomes

ijk
8)

61-(6>4U/\',,,_)=2(p+p)TzaB7)i

with «' satisfying

(5.39)

These equations are no easier to solve in this form than

(5.36) is. However, if we write these equations in‘the

. . : L 0 i, .
(2+1)-~dimensional formalism we obtain, with « :=« U, R A=Ky,

T.=n, (A=12) and D the derivative defined by (1.46), which by

_ the choice of coordinates which makes 714=0 can be taken to be

3y . | | o
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{

DR AT, -W 0,k =2W (o+ple *'T%BT, 7" (5.40)
B, Kp=0 (5.41)
- De-W TR DWW T 'R, W4 T, e h e w0 % (542)

where all‘ the tensor fi.e]ds on the U=const. surfaces are
obtained from th.e"unique spherical solution ¢ . As is seen in
appendix 3 these equations are the same as som‘e of the |
equations obtained from_linear'izing thé field equationé
(1.48-1.58) in the V(Z—Fl)v—dimensional formalism keeping the
central potehtial U, and bressure' Pe. fixed (which b-flemma 4.3
we know is the case.here as well). The analysis of.(5.40—5.45)
which we give below was first given by Kilinzle and Savage ‘ \
(1980a). |

Since the 1-form ~FAdxA is closed on the Scr—U_l(c) spheres
by (5.41) ‘Vand‘since‘the first >Betti number of S° is zefo (c.f.‘

Goldberg (1962) p.89) Tc'AdxA is exact so that there exists a

function K(Ux") on S, determixed up to an additive function
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Since_TzT;eU°'L’. To solve for K and k w‘e'letr'ﬂ;BdXAde:

| rz(U)(d.6?+sinzéd¢2). Now expand into spherical harmonics,

K= % Kim(T)Virm(80). k= T Ky (m)Y Y, (6.6) -

where. ffthYi,c.sin GdBdgozéu,é;m_.[ Let R’=D(lqg r). Equation

%

(5.44) then becomes 0=r Dk +r W ' (20-MW )k, f (=0 ana

e

MmT

K =r2(e(e+'1'))‘1[Dk,m+(4R'+M'w‘z)k“m]_ (£=0). " (545)

Since 7=0, (5.43) yields X (DK, +4K, —W K, )2,Y, =
. T X g .

U_-6U Y—l. 2 . o . . -2, - .
2BT e W (p+p)r’sin 6 and Li(D}\Cm+4I\£mv\\' Ki)0,Y =0 so
‘that . | | |
DK, +4K,,~W "k, =0 for m=0 or (0, (546)
and

DK, +4K,~ Wk, =—2B(47/3)" 1" W l(pp) (5.47)

Note that K, is> an ax;pitrary function of U and need no! be
| knowrul to determine TC_AdXA uniquely. ‘ \

With the ubs.ve. ofeciuatioﬁs' (1.48) and (1.53) on the s‘plh‘erical
background we have, from the equatiqn f.or ke, kc‘=dWr_2 ‘for 4
“d=constant . By doing an expansion in normal coordinéte‘s (yi)

-~

) . "y .
at the center we find that W=-§Mol'yJ+O(lyls) ‘and r=lyl+0(lyl’) so
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that in order for k, to vanish at the center (since h9=h161U=0
" at the cent‘er) ¢=0, whence kOEOJ Equcxtwn (5.46) with the
o
use of: equatlon (5.45) to elxrnmate Kim and equatlorm (1. 48b and
(1.53) on the spherlcal background become
W2DDK,,, +MDR, ~F,(U)k,,=0 for m=0 or (=01  (548)
. ' ) \ . .
where &, _=rw’e®’k, and
FU)=W3(5-4R)+L(i+1)r *+2M-pe . (5.49)
Since the three—dimensional Laplacian A in the sphér‘ically'
‘symm_e"ti“ic case_has: the form Af=W°DDf+MDf+3f, equation (5.48) |
is equivalent to
AR, =F (U)K, for m=0 or 1201  (5.50) &

‘ _
We now use an argumeﬁt similar to that used bx Kﬁnzle‘ :
| (1971) in thé static .cvase'(.c.f'. appendix 2). Let u=Wr, \-'=p1"2e—2U
. z;nd x=M1f2/(3u) 'sg_ that .u,\\vr,Q(ZO in the physical domain, end
ur=const. ‘and ‘y=);=0 | in vacuo. We can sh\ow thavt '~-‘F¢(L’)ZO is
equivalent to 52(£+1)2+9u4+36u2x2+v2+2'(5€((;+1‘)—8)uié+.126((”+.1)u\
l—-2£(€+1)v+60u X— 26u v—-12uxv20 . Since p,p20, we have that
OSVSZXU so that the above 1neqUa11ty is 1mp11ed: by ¢ ( (+1)+9u*
+;¢u X 2r2(50(L+1)-8)u’+8u’x+v °20. Since 58(‘€+‘1)—822_ for (=1

this shows that F,(U)>0 for (21. The asymptotic flatness
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Conditions with ‘Einstein's‘vacuum équations give us that

U=mr +f, fEMP aﬁd 'ngr—z—kg, g€EMP, . in the asympt;:)tip'
reéion. Tégéther with the differentia‘b'i]ity“.properties‘ E\f_;l It
is then easily seen that RymEMYCC Thus llnqsupﬁ[,r';'z_b.' Also
‘k(Uc)=(/ciU-)(U )=0, so ﬁ m=0 at the center. These boundax}
‘:condltlons together with (5. 50) and F“(U)ZO for 621 yield 1\[; =0
‘fo.r rr‘l:fo‘ or 8#0,1 since k‘m is ¢! and we can a.pp]yva.
iﬁaximum a(rgument. | |

Thus the only nonvamshmg component is El:f(lo which, bv

(5 47) and (5 45), satlsfles
~ WDDk,+MDK,~F,(U)k,=~d.re *“(p+p) (5.51)

U

~1/2 ‘ : :
where dc=4B\/'47T3 /-Tce °. In vacuo one can easily show, using

" the exterior Schwarzschild solution, that Wzrn_lsinth,

r=-m sinh”'U and R'=¥co_th U. The only solution of (5.51)

satisfying the asymp'totwic conditions vi‘s then found to be
f=4ce’sink’U. , E (5.52)

(C is determined by B’through the 1ntérlor SOlut]OI’]S dlscussed
below.) Thxs agreeq with What one obtains by linearizing the Kén
so_lu,txon on a spherlcal background, in this formalism. (rlart]e
aﬁd Thorne (1968) ‘héve shown.thét the empty space metric

outside any slowly rotating perfect f}uid agrées with the Ke_rr



metric up to second order in the anguiar velocity.)

To determine the solutions in general we introduce a

o

coox_‘*dinbéte z defined by ‘éU=eU°+7222 ‘where 7>0 is chosen such
that z(surface of s_tar)#l. ‘Note that 'z behaves like a radial
polar coordinate near the center since U has a positi\f'e"definii-e

critical point. Equation (5;61) can then be written as

vd®k /dz*+ndR /dz+if+d t=C (5.53)

where ‘\uze?'U»WZ,” = 27 ze? M-z (eZU“—T424)\\'2, L:—4‘r422(2M—f>

—4w2R'+5wz+2r'?) and t-—-’8'r4zze_2Ur(M—'ﬁ). Note that since s»7,

| uEMp 2ACC it tEMs 3.1 and I\CMp 2()&(“ As we noted before, we

s—

assume thatthe equatlon of state is analytic in order to do the

ollov\ 1ng e)\pansmns near the center in terms of z. After a

B

l>gthy calculatlon an d1v1d1ng by a common factor) we obtain

\

i/=22+1/0424+0('ze) 7r=22+77323+0(z£,

1=-2+0(z")  t=tz+t5z’+0(z") (5.54)

where the coefficients depend oﬁ » U’c,‘ Pe P ~dp/dp(z=0), etc.
: kConsidvéring théz hom‘ogeneouvs' equation to-(5.53), we see thet z=0
is the only singulafity ih [0.1] and it is e .regularfsingillar
‘point, so if we make suitable power series expansions we find
that the gener‘a]‘sdlu"tion of (5-.53) satisfying the regularity |

7 conditions at the center is
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~ which 1s just a fixed constant. Thus for'small" z>0, i'<0 and o

138
k=uky+ak, | A | (5.55) -

where k 'Iis’the solution of the homogeheous“equati_on with

. =

k h(o) 0. dk, /dz(o) 1 and k, the solution of'(s 53) with K'(o):o,

dE /dz(O) 0. To determlne X and ,u we use the fact that

df:/dU is contmuous at the star boundary togethver,w_ith the

_boundary co,nditions ‘AE(I):Ce_. b(l—ezu")zzzcl, 'df{/dz{l) ,

:5272Cé b(1 —e? ")(1+3 °):V:C2.(where eVr=elers® Thus A énd Jo
are determin_ed by wk, () +ak(1)=C; and ,xd}?,']/dz(1)+>\dﬁl/dz(1)
=C,. These equations will'unique]y determine. p and A

prowded W(1)¢O where. W(z) k,dk, /dz kdk, /dz.  Now, H(2)

obeys by (55 ),

| 4 u\d"l/l'-’f/dz+777'ff"+tf{120 o (55C)
with T(0)=0 .. | ’ .
- - .
A power sei‘;eS/ex/\Hsmn glv\e\sjpg\gmque sclution for (556).
74:’5—23/5+O(z5) wah.er'e the factor t; has b}een absorbed i‘n“to d,

(¢

d;W'/dz<O Now vt>0 in (O 1] (Qee (5 54)) and E (O))O in: (O 1]

"since R a(0)=0, dﬁh/dz(o)>o and if 2,€(01] is the smallest z

-such that’ dkh/dz(z )=0, then d °k /dz :—-( /z/) ,(z,)20 since

. A\

‘L?—4T422F1(U)SO. Thus k, has no maximum in (01]. Now

‘suppose z, is the smallest .z€(0,1] such thatA 74"/(22):0. Then
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. T 3
AW fdz(z)=—t(z2)R,(2,)1 T (2,)<0 so that there exists an &>0 such

| thét‘l‘%".(z)>0 Tor 25(22—5;25) 'Wlhich, contradicts ¥ <0, .ld‘W/d2<0 :
for small z. Therefore “W(1)#0 and there exist‘u'niq’u—e ‘A and
,u solving thé éqhationsAgiving the bbtindary.éonditions of k.

" Thus there is umque k detelmmed by B with anrasymptotlc

'form given by' (5 52) and vamshmg 1dent1call) if B= O From

th1< it is readll) \erlfxed thdt there 1s a unique solution K to-
(5. 88) and (5.39) which must have the asympto{i(' form

¥

se 0 ekt 0™ (5.57)

and which van1<he< iff B=0 (iff C€=0).

Vle can now use th1< to investigate the solution B of
(5.36). (Recall 'that ¢=0.) Since T 355“ splits, ie.
TU@SA'I*-TO@O@TGZ;" (equation (5.15)), we can investiga‘t‘e f on the
two subspaces separately. Since ﬂ?££q%df on T, for so“rﬁe;
§€X 10 fEMSC and 55’<A<¢x<d>>=¢‘<2'<o>>,_-(5.32‘) implies
d(div,, odf) 0 ‘whence f= 0 bs corollary 3.8. On T J" we have
div ,B= 0 so thal ﬁ is umquel} determmed b) K _and ‘hence by
- B. This follows from.corollary 3.9 since K=O implies -B=0, dg=0
so that equatlon (5.36) becomeq 0=V Ty Bi—R; Br——(dn oK 6)
From (5 57) it is seen that B has an asymptohc expansion of
o(lxI™®) "at infin—ity'and vanishes iff B=0.

Taking a variation of (1.39) it is easily seen that the
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corrgi fetion in angular momentum is

6J=(1/16n)h}]i_r*nwfm:-constatiﬁj]nl'yikq:h, . (5:58)

and '.: fnot vanish unless ﬁ:ileO'. In fact 'K has an |

asymptJdE expansion

s =26JIx!" (6 -3lxi~ 2x1h3)+0(;’>€1{_4)1 :

—
(@]
oy
©

Sumrrrarizing the above, we have the following theorem.

Theorem _5.2: The Qperator.equ.a;tion

T(o)eup.6)=q(0)(4.B)

~ with (c, uﬁg‘AB)€T /PP .. implies that ¢, u, ¢, and
_A vanish and that 8, B are uniquely determined by

8J, vanishing iff 6J=0.

5.4 Curves -of‘:so]ution‘s. in &

Again, the presence of the inhomog6‘1’1"?'79“5?t""rmS 'CT(U)(A'B)T‘

does noyt ‘allow a d'ir,eét application of theorem 3.14 so Wevprvoceed

'analogously to the static case with the snght compllcatlor

1ntroduced by having two constant< A and B From theorem u7

it is easi'ly verified that for UE.?S:_“ﬂgp (so, in partiéular, for_o)

the fnap

'I?(o)i?-i:S 1.0®Ms 109)‘: 109X310“_’qp 329M 32‘”\: 32@X532 6 _‘ -



. Su_ppc)se ¢ isin a neighborhood of ¢ such that

<
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is a contmuous linear operauor with finite dlmenslonal kernel
e

and closed range. Just as in the static case this follows using -

propertxes (3.6— 38) of the welghted Sobolev QpaceQ togethe“ “lth -

the asymptotlc propertles of 0€S

Equation (5.35) determines ¢ and u umniquely in terms of.

dm fOr:X€fl3. while (5.36) determines BEXE, uniquely in terms

“of 6J :and c since (5.37) determines ¢ uniquely in terms of c,

‘as seen above. Thus the solution space of f(d),x—a(&)(A,B)T:O in

ﬁei‘(ei‘{ﬁ(x,'A,B)} is 2-dimensional and spanned by -;(xC,.O:.BC,) and

(yo.Ab,O) cdrresponding to the solutions with (6m,61)=(0,J) and

(m.0) respectively.

For o=0, puttlng A 0 rneane ém 0 so ¢ and u véanish,

as well as ¢ by (5.87). Puttlng B=0 g1ve< [’ 0. For ¢ in

some (qmall) nelghborhood of o Jin ﬁ’P 1 the o'per‘a‘tor"”

.L(cr) P—>Q is 1nJect1ve smce Lo ) and  T(o) then sat1<f) the

hypo‘thesis of theorem 3.14.
Thus there are unique X0y EP such that
L(o)x=F(a)(0.1)" - ~ (5.60)

»"'I?(o)yfa(d)(l,o)f - ~ (561)-

In fé‘ct'x():(o,o,ﬁo,o) ‘where ﬁo=0(lxl_2) at infinity while yO‘E:ﬁ\'I5

where ?‘ =g} ueM “e>X ,‘,e"{s 10 1S a subspace of faster fall off”

'i

v .
<y

.
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”L (0)-T U)|<8 and Hq(a q(o') bio5s3<ES" (562) -

for some small £, € >O - Then by iheorem 3.14 kergL(U) § §

and there are unlque solutions X)GD of

~T(e)x=%(a)(0.1)" o  (583) .
‘a'nd_ | 4 ’ L_}-_,‘ » : S K )
ey=a@eo’ © (564

Using the fact thqt L(or) P*‘*Q 1s 1n3ectne and hdQ eloced range

and S0 has a ,bounded inverse we can ehou xactl_y as was done

in the static¢ case, tha‘t X is arblt-rarily close to XOI and -y is

‘ ar‘bit‘rarily close to y, for ‘sr'nall.'enoug}* £ and éz _ Therefore
Yy cannot lie in 15 ‘and x= (cuﬁg‘) mth ha\e /3 O( ) at -
"1nf1n1ty and thus corresponds to a solutmn yxth cSu:éO

By theremark.below (5.34) we then have P

[ .

Theorem 5.3 'If c[O l]ﬂfﬂe po(py 15°a C curve ﬁ;

solutnons havmg all the same (srnall) angular

¥

‘momentum J then c. is constant if the slice F is

contalned in a small enough nelghbmhood of o
-Proof: Exact])vas in the _statlc cage.

Noie thet since Nifenberg and "Walker’s theorem 314 is

proven by contradlctxon thls method cannot be used to

1nvest1gate how ]arge J can become before there 1s a
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"k'.bifurcation of the solution wpace.

| 55 The problem of surJect1v1t3

Whether there is a @hysmal (non-singular) source for the
Kerr solution is a longeoutstanding qu.estion. (See Krasinski
- (1978) for a‘recent re‘view of investigations of this questionj
More partlcularly whether a I’lgldl) rotatlng perfect fluld could -
be the source is unknomn ‘Indeed, 1t has not even ‘been shown
that there ex1tst_‘r1g1d1y rotating pérfect f]uidvsolt'j“’t’ions of

Einstein's equetions. We would like to be able to answer this'’
~ latter question by showing that g(a) 1S s/ilrjective, for then we
would have shown, by theorem 3.2, /tﬁat :‘?—I(O) is a submanifold .

of dimension one in a neighborh'c;o‘d of c. (We wculd then also

-]

]
~

have that £ was lmearlzatlon stable at ¢ and the uniqueness

tl}eoremq for both the stotic and stationary cases V\ould be

stron_ger.)

o

Unfortunately, neither £'(o) nor Z'(o) are surjective. We

will show this only for z'(o) since the argu‘ment for J'(c) is
exactly analogous and can be obtained by dropping the tildes

and using equation (iﬁé) instead of equations (5.26+5.29) to

define the map ¢

.,z(o Se- 119\5 11"”':§

(c ﬁ)*—"’(z ,divoe, VUde N —Ld(dlv ) 2md(dlv c))

sot at
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.%(0)(0,11,/9,@‘.!\{B)i='LV(U)(Cyu'ﬁ’vf)~a(0)(A,B)T=z'(0)(0-u,B,¢.A,B)+g(0)(c'ﬁ)

’

for (c u,B,¢,AB)ET ?5;’ 11~ For o=g. we . have the splitting
T .7’5 17T, 4 ot T 5 and our above analysis has shown that

%(O)Ii"rﬁ;:ﬁ(a)!

lll

\1ex? N\ S, while 53(0)‘ 3«- (o)restircty 3. Thus,

if E'(a) is surjective so is %(o)‘. Now Ker %(a)zS(0,0,ﬁh(B);0,0,B)ﬁ

- is one dimensional so any ,.XI:(-£e7'£eU'£e“+d>\'°{£‘n*O’O)ETa(ﬂ& with

¢ nonzero is clearly not in ker %(0) and ‘%(g)xlzy,l;é@' If 3’"(0)

is qur_]ectlve there exists x,=(f,u,8.¢, AB)@‘T F such that

.%(O’)X2=yl SO %(o)(xl—xz):o. But then £67_.[':O with div =0
which by the Berger—Ebin type decomposition implies (=0, £€=0
which contradicts our assurri}ﬁtion.

'So what can be done? The basic problem: is clearly that
ker ;‘?’(0) is too large to allow surjéétivity onto the entire space
E, or from another point of view, , is too large.. But it is by

no means clear how to pick a submanifold of 3 of the right

-size.- In fact ﬁs: " ac too fast a fall off rate to even be able to ﬁ

apply Cantor'’s isor’norpthism theorem 3.7 to show that .%(0') and

thus ."Z"(a) have ¢losed range. However, this may not be a

fundamenteal block as McCowen (1979) has shown that’ the

<+
Laplacian on flat space E" has a finite dimensicnal kernel and

-closed range as long as 6=n-2- n/p+k for some kEX so 1t may

‘be possxble to obtain a sunllar generalization to ell1pt1c
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operators with variable coefficients. (Cantor's theorem 3.7 is a
generalization of the above result for 0<é<n-2-n/p.) McCowen is
presently working on this type of generalization. Having a

closed range. however, does not guarantee that one can find an

appropriate submanifold of 9 onto which E"(O') will be
surjective but it does suggest there is hopg'

If such a submanifold exists it 1s clear that there must Be

a splitting of the tangent space T,9=3 (recall ¥(c)=0) which

~could possibly be obtained from idetermin‘ing the kernel of the

3

adjoint of ¥'(0), ker %(o) since we could then write, for any

yEE, y=§'(o')x+y2 with y,Eker g’(o)' where x might then be >
uniquely determined since then‘:‘f’(o)'yzg'(g)'g’(g)x and the /
operator on the right hand side is fdrmally elliptic and self (‘*\\/’

adjoint and so could be expected to be invertible. However, it isc

th oo N , P
a 4 order differential operator acting on M, 5, tensor spaces

with s23 so neither the differentiabilily nor the fall off are

[\

" suitable for applying Cantor's isomorphis(r{_n' theorem (and in fact

mn

one is mapping into some wdistr‘ibution” space for small )
Only for large‘ s do we even have the use of some of the
decomposition ‘theorems, so there seems lit'tvle hope of
determinirng an.appropriaie submanifold in this fashion

Another possible avenue is to make an initial coordinate

restriction such as restricting to the set of metrics which are

such that the Euclidean coordinates are harmonic end then

hoping to find an appropriate image space o‘n“which one could
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_show surjectivity. For metrics which are close to Euclidean this

set is a subset of ‘%:}:.6 ‘b}ut it is not known if this will be true

far away from flat space and it is not known if this will lead to
¥

any simplif}ication'in tfying to obtain a suitable BanaCh"Eépace.* ,

onto which g’(o) will be surjective.’

1

In short, the problems.of existence and obtaining stronger
' \
‘uniqueness theorems are still open and require much work. .
However, the uriqueness theorems we have shown are of the

same rigor as Carter’s stationary black hole uniqueness result

and, since we have shown z"(o) is not surjective, improvements
on them will teke some additional insight into the appropriate
spaces to use for modelling stationary equilibrium relativistic

fluids.
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APPENDIX 1: A LEMMA OF AVEZ

The lemma we pr'dve here :is used to stud‘); a vdiffexvﬁe'nt"ie;\l

: opérétor_on the compact t'opdlogi’cal'é—sphere»s Uicér%st'. that

| arises i”n‘ t’h‘e‘ invéstigatidn of the‘”liriea‘ri-z.e.d (2+1)~dir.nensional'
fo'rnp\pf Eihétéi‘n_"s equa‘tliohsb .(c.f. appendix 2). Since_ail
disvcontinlii.ties in .derix;atives;ofnthelte'nsfor‘ fi_elds are“g.o;mgﬁt‘o |
aris‘e c')nly"acré;sé p:_‘cbon’stv. sﬁrfa'ces which coincide in the
sphericai case wifh .the : Ll;cohst. surfvac‘es We can assume _th;at
the U=§ons_t. surfacé.es are €% vrnf_.avni‘folds and -that ‘the tensor
fields on >them’~ are also CU thé,lr_a.t,ter c’ondit‘ivon coﬁld' bé

*rel.axed in the proof we give below. |

. Let (Ng) bea 2—dime’n$i’onél ol ,'Rieménnian manifold, A, -

i : * s v
the fibre of 1-forms and S, (Sg) the fiber of symmetric ¥

' covariant'2~f¢nsors (with null trace) oﬁ' N. The follo'wi.ng.'lernm‘a
_‘ was_gi"yen by Av‘-ez- (197.7)'(c.f. 'Kinzle (1\9"71)); 
vLem:ma‘.Al.l-: If Kécw(sz(N)') satisfies VK g, =0 and
K:=C=const-. -‘then there ;xiéts é ha‘rrnonic- 1-form ¢

such that KAB 7(C Y )gAB+¢A¢’a where ¢ ¢ gbA

Thls lemrna is equlva]ent to the follomng
',27_' KEC _(SZ(N)), v KB'A=0 implie€ that there

onic 1-form ¢ such that

Kpp=9abs— 2% Ean (A

' 164
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- Proof: {c.f. Klinzle (1971)) There exists a _function f an\'d a
1-form ¢ such that K,z=fggtd.95 Clearly. f:%‘—cf)? Now

A, AL A N : .‘ B . ’A" ’

- VK, p=R¢ V[A¢B]+(\7’A¢ )$p=0. Contracting with ¢~ implies V,¢ =0

so ¢, 1is 'co'closed‘. “-T.‘nen, ¢AV[A¢>B]:O. ,Bnt locall}" there exists a .

coordmate system such that ¢ =0, ¢ ?20. Hence V[qu”—O or

N

d¢ O S0 ¢> is closed and thus harmon ' o E
Kunzle applled Jemma Al.l to the case NS where ¢=0
because t}'lere are no hermonlc 1—_forms on th,e sphere. HowAe-v‘er,
the ppoof given is not valid beceuqe ¢, defined by (A1.1), is not
'dlfferentlable at pomt< x€N where K (orv ¢ ) vanish.
The study of the vd;fferentlal opera;torv

D;c“(sg(N))aD“(A'l(N))':K,\s%f"“AKAs

end-the ‘:rnor'e restrict_ed 1er"nma- (which 'is _etitl sufficient for our
purposes) which,we give below was first pfesented ’bngh'nzle‘and,
' Savage (1978). | | )

Lemma A13: If N is c‘o.nne'cted and is not conforr.nell.}‘f'
equlvalent to a complete mamfold of constant

negative cur_vatu_re; the‘ harmon.lc 1%fofm of‘lemm'ab

AL2 1s c”, | | |

: Proof A connected Rlemannlan manlfo]d of dlmensmn 2 is ..

conformally equlvalent to a complete mamfold of constant

: curv_ature ('Wo_lf (1v977)”p.83) It is thus suff1c1ent to prove the
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'lemvma'on “the surfacés of constaht,.no'n—negative curvature and
to show that the kernel of D is invariant L.mder'confo’rrnal

transformations. - : .

-

[

Let f:(N,g.)*%(N,'g”) b»e‘av 'di‘ffeomorphismb such that
L 2 o0 - . : co.().v '
f(8)=A"g. AEC (N,B), A(x)=C for all _xz]\. If KEC (SgN)) -one
. L . ~1* . ‘. 00 0 .
finds that R=f" (K)ECT(S3(N)) and (V3 I\BA [(x))= A~ u)(v }\BA)(;\)
- using the fact that dim N=2 and ?B‘C:PBC+25(BaC>1og A
—8pcg Oplog A. Suppose that (Ng) has a constant curvature -

o]

R=0. By lemma Al2 we can write
Rip=6,05-38 20 (2

w.hb'eré 5 is a harmonic, differentiable 1-form on

" Nz{xE'mR(x)#O; Also, $=0 on NA\XN' angd, in particular, on the

| boundary 4N’

On 'Nf one fmds that A(¢) 2(?A BNA$B+ 3) )' ince
R=0. S If 6?1 is not ernptx. then $=0 on rﬂ‘ ’I"he decompoSit‘idn ‘

(Al 2). then a]waye holds w1th a dlfferentlable smce if I\( $)=0

for one pomt x€N, R(x)#O for. all x€ AT , '.tn "

"
0

This lemma is suffxclent for our purposes since we wxll l:e

dealing with topologlcal' 2-—spheres'but let us make a few general -
rernarks about the operator D If'v_N'l_v_'Sra, d: =dim ker D=0 whlle if
N'—VT =s ><S d=2. (On the flat,t‘orus, - ds =_dx +_dy",: KEker D iff
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The method of the pfeceding proof oanrit;t be applied to
orientable surfaces which are conformally :equi.ﬂfaler;t te SL;rfaces
of co?nstax.]t_negative curvature. Ho’we\"er, it is easily verified
that D is elliptic which suggests that Temma A1.3 re‘mains valid

fplr all 2—-surfaces. The kernel of D could be investigated as

follows. Using the scalar products (K;Lﬁ::%fKABLABvolg,
K,LEC%(S;) ‘and (¢,¢)::f¢“¢,\v01g, ¢ ¥ECT(A,) the zdjoini

operator is found to be
. - (%] 4 o0 0 . c
: D:C (Al)-——>C (SZ)‘E#/AF——)‘ZV(A'&B‘)*V ¥ c8ap

Thus ker D  consists of the 1-forms 4 for which 1,!'A6A 1s the
génerato".r of the gro‘u‘p of conformal transformati;ms (the group
.o"f infinitesimal coordinate changes which leaves the conformal

/

metric szg—l 2gm, which is independent of arbitrary scale

.changes in g, invariant). By the -Atiyah—Sing‘er index theorem
. >’(c.f. Palais (1965)) the analytic index i=dim ker D-dim ker D lS a
topologiéai;invariant,wﬁich can be calculated from the
topological i)roperties. Oné finds t.ha‘t 1=-6 ‘.f‘or' the sphere (the
group of confoi"ma::l ‘t‘ransfo‘rmatio'nsA is SL(2,€)) and i=0 for the
| torus but upfor‘t:unate'ly.‘for other compact suffacés neither
ker D nor thé conforrﬁai group norvthe_topolo}gica] index aré

‘,
easy to determine. ‘



APPENDIX 2: SOLUTION OF THE LINEARIZED, (2+1)-DIMENSIONAL
STATIC FIELD EQUATIONS ON THE SPHERICAL BACKGROUND

Cnt -

| The following result was first given by Kﬁnzle‘&Q'Fl) with
the slight exceptions that he assumed 0s3p<p and that PA:71A
was not necessarily iero while below we assume that Ospsp and,
~for a slight gain in sim'plici'ty. with no loss in‘generalit}' (c.1.
§1.4), we use only coordinates fo;* which 7:“50. Frorﬂ §1.4 it is
e/vident that we can I;egalrd a static, perfect fluid spécetimei with
a fixed equation of sté.te. fixed central potential U, and fixed
central pressure p, as. characterized by the set E=4(7.0,W,p)}
where all these tensors are functions of U€_(U.C,Q) and where W;ef
will drop the bars for the rest of this appéndix since we will
always be dealing w‘ith_ ténsors ih the (2+i)—dimensioné\1
fo‘rmalisr‘n‘

In order to :sol've the linearized field equations on the
spherical backgrouhd, consider a l-parameter family E(N) where

- 6(0) is the spherically symmetric solution and follow the

" linearization procedure as described in §3.1. We will factor out

coordinate transformations in the same manner as was done for.
the three dimensional case. Specifically, we write 67,g=:Cyp.
Q

6W=w. On the compacf Riemannian manifcld UC=U-](C) there is a

Berger—Ebin ;}(1969) decomposition

. . B B :
Cap=Papl;7ap VE0a=0 (AR
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where ¢ is unique and ¢ is unique up to a Killing vector field

of 7. Since the Lie derivatives of all the equations for &

simply give the linearized equations for variations of the form

£ for {€¢&, and since £,W=0 (we are on the spherical
background) we compute the variations of (1.59-1.62, 1.32)

assuming that

. ' B ‘ \.\\
0Yap=9an  Vpd,=0. L (A2.2)

Since the central potential and pressure are fixed, 87 is

given by (4.10) with k=0 When S

. is a Euclidean sphere (so

8,0=0), equation (1.61) together with lemma A1.3 implies that
0,5=307,5 (Recall also that 0=2WD(logr) and R=2r °) The -

linearized Einstein equations (1.59-1.62) are now found to be

(MW 4+Q)w+WDw+LWDg=0 (A2:3)
QW %8, w+3,D$=0 (A2.4)
(B+4R)p++WADp=-2W (R+2F)w (A2.5)

Y

B(W 'w)-WaD(W 'w)-4BW 'w-JW°DDg-LMDp=0  (A2.)

/Using (A2.3) and its D derivative in (A2.6) one can

calculate tha-_t



Ew+W2DDw+(3M-2W?D(log r)\)Dw+(2DM—2M2w‘2+8MD(fbg r)=4P)w=0,
| (A2.7)

The three-dimensional Laplacian A has in the spherically
C Co " L34

}

symmetric case'thé form
~ At=W*DDI+MD{+&f  (Az8)

for any function f on Z. After some calculations (A2.7) can be

|

seen to be equiva’leng‘lt to

|
|
|
I

f AW=F% ' (A2.9)

|

o
where ¥=m(U)r 'w, m(U)=2ﬂI‘Mr”’dU (m(U) ‘agrees with the
gravitational mass /m in vacuo) and ‘

F(U)r——DM+2MzW_2—6MD(log r)+3p+12 (A2.10)

!
Now, (.;!1(’7“3)(U)EM“:_L(s+l since the discontinuities in

derivatives of 7,, occur only in the normal derivatives D7.5

" Thus $(UYEM? 5., and (A2.3) then implies that w(U)EMP [;., so

WEM:’_LZCC1. If F(U) were every'w’hc;re posftive it would follow
immediately from (A2._-9)‘that ¥ vanishes. H.owever this is not
-quite true due to the only negative term -6MD(logr), which
makes F negative near the center. | |

To make a'closer analysis, let
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(es

#=Z K,(U)Y (6.9)  (A2.11)
where Y, is any normalized linear combination of spherical
harmonics of order ¢ so they satisfy A‘Y¢+ﬁ(€+1)Y[=O and

¢

fSRdeQ;l where A' is'the Laplacian restricted to the unit

"sphere. - Then. —A-:,r_zA‘ and (AZ.Q) feducés to

W2rDDK +Mr°DK =[r*F+L(t+1)]K, (=012 (a212)

, We first investigate this é‘quat-i'or{ near the center. Since

Cwois ¢ W vanishes at the center and in fact must vanish at

L

least like 0(22) where z=(1/.6)L{;(U—UC)1/2. Since all our functions

are regular at the origin we can expand in terms-of at least a

few powers of z. ‘Comparing the first coefficients of the powérs

‘ Qf\,‘ Z in (12.12),shows that K,(z)—-—ao‘ze+0(zm‘) near the center S0

that K,=K,=0.

The remaining multipoles can be shown to vanish by

showing that

Fi=F+L((+1)r °>0 for all £22 . (A213)
¢ . . - . B

everywhere on I For then '(A2.1_2) implies AK?:ZK,AK.ﬁZW?(DK,)Z

_ézFle+2wa(DK¢)220' so that Kf can not have a maximum on I.

Since limK,=0 this implies that K,=0 on all of £ so' w=0.
‘ © Pp—00 ) ) L

That ¢,s then vanishes can be seen as follows. ,Equaﬁon’s'(AZ.B)-
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a;}“d (A2.5) with w=0 .imply t.hat | qu%r-qu:O or, restricted to ‘a'vny
sphere Sc .A‘¢+'¢=(.). Sinice the first nonzero eigenvaige of A" on
'ak2—-spher'e is -2 thére are no regular solutior_ls‘ of.this‘ eduétion
so. ‘it fc'allo‘ws -thét ¢=0  Since VA¢A5=O, lemma Al.é implies \thatk
¢A§50. |

It thus remains only to show (A2.13). Let

u=mr v=f§r2, xzf';Mr u . l (A2.14)
Then 0<p<p implies 0<%v<xu and (A2.13) is implied by
Fréz18x +15ux+u’-18x\/1+u+v2-6  (4215) .
. “\\; . ‘ . .

This in turn. is implied by

v (324x"-108x°+36)+ x%(486ux—324v)

+(30u°x-63x"u +54ux’)+u’+180ux+120"20. - (42.16)

\
The first term is just (18x2—6)2+108}i220 while the second is
[486u2(ux—v2/3)20 and the third is greater than

}15{(\/5'4k—\/BIOu)2+18u2x220, which provés the relation (A213).



APPENDIX 3! LINEARIZATION OF THE (2'7'1) DIMENSION»\L
STATIONARY F‘IELD EQUATIONS ON THE SPHERICAL BACKGROUND

The equations which we present here wére first given by
 Klinzle and Savage(1980a). They are mainly. of interest because
of their similarity to the linearized 3-dimensional equatiofis (on

the spherical background) invol.ving 6h' and .t‘he lineafized |

static eqixations~ in appendix 2. | |
From §1.4 it is seen that statlonary r1g1d perfect fluid

| spacet1mes with & fixed equatlon of state fixed central potentlal:

U, and flxed central pressure pc ‘can.be'characterized‘ by ‘the

set F= {(7,0,W,n° H,p,'ﬁ T)§ where all these tensors are functmns

of Ue(U, 0) and where we drop the bars from now on when
there is no danger of confusion. We writedW:w,' rSh‘o-:k,

-

Sh,=«,, 60"=v* &T=7 and as in appendix 2 we use the
Berger—Ebin decomposition to write

67AB’?¢AB+'£¢7AB» UVB¢§=O- - | | (A3.1)
where ¢' is unique and ¢ is unique up to a Killing vector field
 of. 7. Again wéi can eliminate tvhe eoofdinat'e freedom .
‘correSpondmg to Lxe derlvatlves of the neld equatlons with

5

respect to the vector field ¢ and compute the varlations of

- (1.48-1.58) assuming that

e
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,. l -. . B . . ‘ ,. 1 |
0745=0ap Vp$i=0. (A32)
‘ ‘ : AN . -
A Riemannian Q—Sphere S has no closed two“dimensional .

Suhgroup of .its 1Sometr’y group 1, and 1S 1sometr1c to the

N

Euchdean 2~ ~sphere if dim [=3 (cf Kobaya<h1 1972 p‘,'?')
Therefore in the case dim 1<3, we have that inside mattert

(.A=09 for some. cE€R. But all the . quant1t1e< are mvarldnt

under 9 'S0 all vamatlom mll then vanish under a coordmate

transformatlon Outside rnatter 6* and are no longer

defmed but we have assumed ax1symmetry S0 all varlatlons w111

~vanlsh under a ®oordinate transformatlon If S is 1sometr1c to
the Euclide,an,2—sphere (for all Uv) all quantities'become

functions of U only, o™ =h* O and all varlatlons w111 vanish
.under a coordmate transformatlon |
. :

On a sphemcal backgrm:nd we have 6" h =h°=0 and as in
appendxx 2 QAB -}Q'yw Lin'earizatjon of (157) gi. D—r+r_=0
=8,7 whence r=(*rceuf_t,}. "whi'ch \'r.anis‘hes since we are restricting
to models with the éame surfaee temperature Ty, Note alSO that

the 1ntegratlon constant c appearing in 6p (p+p)(T™ T- c) must_

then be zero (recall p‘»’i‘N‘ﬁ sn but cSpEMs 2n) since we keep. the

central pressure flxed .under the varlatlon 'Using these facts we

now find for the llnearlzed E1nste1n equations (1. 48— 153)

. (MWTHQ)w+WDw+LW D=0, (43.3)
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| 'nw‘zaAw+a;D¢=o,' | C (a34)
»(K+,}r;_>¢+%w'én¢=—zw"(n+25)w,' N (A3;5) |
’.K(W'lv.v)—WQD(W;lw)—4'§W—'lw-%szD¢—%MDg‘1>':L6, ‘(A“3A.6):

W,

DKA+4KA—“'»TzaAk¥2W_‘l(p+p)e—GUTceUTAB'ﬂ.B:O,“‘» (A3.7)

™ ‘

Oparc =0, - (a38)

‘ AB R 3 ~ o vl
where ¢=7""¢,p Linearization of the remaimning equilibrium

conditions (1.55) yields
_ b o
Vx¥p)=0 | and D1 =0, B _ .(A3.9)
when p#0, and similarly, linearization of Vrhr=0 gives
| -1 -2, A o ; '
Dk+(ROW —-MW v)k+VA/c =0. -~ (A3.10)
Equations (AB.B—AB.S) are juét those obtained in appendix 2 for

the static case while (Aé.'f——AB.lO) are so]ng in chapter 5

L
1



