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Abstract 

 

Construction labour productivity (CLP), as a key performance index in the construction sector, is 

affected by various factors such as crew motivation and working conditions that are highly 

interconnected and vary on a project-by-project basis. CLP can be enhanced by properly practicing 

appropriate improvement strategies in terms of cost, duration, feasibility, and adaptability. 

Understanding factors that affect labour productivity is important for making strategic decisions 

and selecting appropriate CLP improvement strategies. However, identification of most-value-

adding CLP factors is a challenging task, because CLP is situated in a high-dimensional feature 

space where a number interconnected quantitative factors (e.g., temperature) and qualitative 

factors (e.g., team spirit of crew) affect CLP directly or indirectly. Therefore, a research gap exists 

regarding methods for identifying the key factors affecting CLP by considering the dynamics, 

interconnection, and combined impact of the factors without dependency on expert knowledge. 

Another challenging task in the process of selecting improvement strategies is that budget, time, 

and resource restrictions force companies to implement only a limited number of CLP 

improvement strategies. Therefore, research gaps exist with respect to a model’s ability to support 

selection and implementation of optimal CLP improvement strategies for a given project by 

quantifying the effect of strategies on CLP while simultaneously considering causal relationship 

among factors affecting CLP and project characteristics. 

To bridge the existing gaps, this thesis aims at proposing a novel framework for prioritizing CLP 

improvement strategies by combining two models. First, a hybrid feature selection model is 

proposed to identify the most value-adding CLP factors for a given project based on the 

interconnection of CLP factors without dependency on expert knowledge. Second, a decision-
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support model is proposed for integrating fuzzy multi-criteria decision-making and fuzzy cognitive 

maps in order to rank CLP improvement strategies based on their impact on CLP, causal 

relationships among CLP factors, and project characteristics. The top three factors most influential 

on CLP include: (1) fairness of work assignment, (2) complexity of task, and (3) repetitiveness of 

task. The top three most effective CLP improvement strategies for concrete-pouring activities in 

building projects include: (1) providing clear instructions to craftspeople on how to complete tasks 

before their execution, (2) training labourers to achieve the latest concrete-pouring techniques, and 

(3) applying preventive maintenance to heating and air-conditioning systems to make sure they are 

in working order. The contribution of this study is to provide a systematic approach for identifying 

the most-value adding CLP factors and analyzing and selecting practical CLP improvement 

strategies by modeling the relationships among the key factors affecting CLP and quantifying the 

effect of various strategies on CLP. The findings of this study are expected to support construction 

practitioners in identifying influential CLP factors and effective improvement strategies to enhance 

the level of CLP in construction projects. 
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Chapter 1. Introduction 

 

1.1. Background 

The construction industry is one of the most important sectors in the economic development of a 

country. It contributes about 10% to the economy of various countries, providing employment to 

many people and acting as a link between the economy and other industries (Dixit et al. 2018). 

Thus, sustaining construction productivity is essential to economic growth (Barbosa et al. 2017). 

Based on Gouett et al. (2011), the most widely used construction productivity metrics include (1) 

unit rate (ratio of installed quantity of output to labour cost); (2) construction labour productivity 

(CLP) (ratio of installed quantity of output to labour work-hours); and (3) productivity factor (ratio 

of scheduled hours to actual work hours). Labour is a determinant resource in the construction 

sector, as many construction activities are labour dependent. Therefore, CLP as the most 

commonly used single-factor productivity measure has significant impact on the performance and 

profitability of construction projects (Heravi and Eslamdoost 2015; Kazaz 2016). Accordingly, 

this thesis focuses on CLP, which is defined as the ratio of units of output, expressed as installed 

quantity (in cubic meters), to units of input, expressed as total labour work-hours, and shown in 

Equation (1.1). The objective of measuring CLP is to obtain higher CLP values. 

𝐶𝐿𝑃 =
𝑂𝑢𝑡𝑝𝑢𝑡 (𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦)

𝐼𝑛𝑝𝑢𝑡 (𝑙𝑎𝑏𝑜𝑟 𝑤𝑜𝑟𝑘−ℎ𝑜𝑢𝑟𝑠)
 (1.1) 

Because of the significant impact of CLP on time, cost, and quality of a construction project, 

improving CLP is pivotal for enhancing the overall performance of construction projects in 

multiple areas, such as reducing variances from the primary plan and keeping projects on time and 

within budget (Ghodrati et al. 2018). Therefore, construction companies require implementation 

of various CLP improvement strategies to enhance the level of factors influencing CLP and 

consequently improve CLP (Shan et al. 2016). In this thesis, a CLP improvement strategy is an 

individual management practice - working method, tactic or innovation - that construction 

managers use to improve CLP of their projects. Some examples of CLP improvement strategies 

include performing weekly reviews of crew compositions to ensure crew mix is per plan, providing 

clear instructions to craftspeople on how to complete tasks prior to execution, and scheduling 

regular inspections by the owner team to reduce interventions during project execution. However, 
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budget, time, and resource constraints force construction companies to carry out only a limited 

number of CLP improvement strategies (Kazerooni et al. 2020). In addition, CLP is situated in a 

complex environment where it is either directly or indirectly affected by numerous objective and 

subjective factors (e.g., crew size, crew composition, crew motivation, working conditions, 

complexity of task, co-operation among craftsperson, location of work scope, weather condition). 

Also, the affecting factors are mostly interconnected and vary on a project-by-project basis 

(Tsehayae and Fayek 2016). Thus, actual impact on CLP can be only obtained by using a 

systematic approach that models the relationships among CLP factors (Caldas et al. 2015). 

However, most construction companies apply management practices, such as changing working 

times and switching workweek, based on the experience and knowledge of their managers (Shan 

et al. 2016). 

Understanding the key factors that affects labour productivity is important for making strategic 

decisions and selecting appropriate CLP improvement strategies (Jalal and Shoar 2019). The 

factors that affect CLP are multi-level, ranging from the activity level to the project, national, and 

global levels (Gerami Seresht and Fayek 2019). Therefore, different opinions of the personnel of 

a construction company (e.g., project managers, craft workers, foremen) should be captured in 

order to determine the importance of CLP factors for CLP improvement (Tsehayae and Fayek 

2014). Many previous studies have attempted to identify the key factors that affect CLP (Heravi 

and Eslamdoost 2015; Raoufi and Fayek 2018; Alaghbari et al. 2019; Johari and Jha 2020). Among 

these studies, the dominant method for ranking CLP factors is relative importance index (RII) 

(Kazaz et al. 2016; Jalal and Shoar 2019). Van Tam et al. (2021) identified 45 critical CLP factors 

that were ranked by collecting 203 samples from project managers and contractors using a survey 

questionnaire. Almamlook et al. (2020) developed a questionnaire containing 30 factors affecting 

CLP in Libya. Their results indicated that “Lack of labour supervision” and “Experience and skill 

of labour” are the most significant factors affecting CLP in Libyan construction projects. Alaghbari 

et al. (2019) structured a survey questionnaire of 52 predefined factors that were categorized into 

four primary groups: human/labour; management; technical and technological; and external. The 

identified groups and factors were then ranked using RII method. 

Compared to CLP factor identification, very few studies have been conducted on identifying key 

CLP improvement strategies. According to the provided literature review, most techniques 
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proposed for selecting key CLP improvement strategies, such as statistical models, are not able to 

quantify the impact of strategies on CLP. However, to effectively improve CLP, it is necessary to 

know the extent to which implemented improvement strategies affect CLP. Statistical methods are 

among the most widely used techniques for quantifying the impact of various strategies on CLP 

improvement, for example t-test and regression analysis (Ghodrati et al. 2018; Shan et al. 2016). 

The major limitation of statistical methods is their inability to capture causal relationships among 

CLP factors, improvement strategies, and CLP. In addition, statistical methods are not able to 

consider project characteristics. However, key CLP improvement strategies differ from one project 

to another. Consequently, investigating the relationship among key CLP factors and strategies and 

determining the impact of each strategy on CLP are crucial for prioritizing appropriate CLP 

improvement strategies for a given project. 

1.2. Problem Statement 

To select the most effective CLP improvement strategies, it is necessary to identify the key factors 

that affect CLP. However, identification of key CLP factors is a challenging task since CLP is set 

in a high-dimensional feature space where a number of interconnected factors directly or indirectly 

affect CLP. The importance of CLP on the performance of construction projects has prompted 

extensive research on the identification of key CLP factors. The majority of previous studies have 

relied on expert knowledge collected through questionnaire surveys to establish key factors that 

affect CLP, using evaluation index methods such as RII. Very few studies have attempted to 

identify the relative importance of CLP factors through the use of a data-driven approach such as 

correlation analysis or feature selection (Moselhi and Khan 2012). Data-driven approaches are not 

dependent on expert knowledge and consider the dynamics of CLP factors and the interconnected 

relationships among them. Commonly used data-driven approaches include statistical methods 

such as regression analysis or correlation-based feature selection, which are limited by the number 

of influencing factors and their capability to determine the combined impact of the influencing 

factors (Song and AbouRizk 2008). Therefore, the first gap related to identification of factors 

affecting CLP in the current construction literature is considering the dynamics, interconnection, 

and combined impact of these factors using a model that is not dependent on expert knowledge. 

To achieve optimum productivity for projects, it is pivotal for management teams to identify the 

most effective CLP improvement strategies. Although several studies have been conducted on 
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identifying key CLP improvement strategies in the construction domain, only a few attempted to 

quantify the impact of improvement strategies on CLP, and they relied on statistical methods, such 

as regression analysis and t-test. The second gap is that the applied statistical methods in previous 

studies did not consider the causal relationship among CLP improvement parameters, which are 

the affecting factors, improvement strategies, and CLP. CLP factors are mostly interconnected and 

affect each other. Thus, it is necessary to consider causal relationships among factors and strategies 

to achieve accurate values for the quantified impact of strategies on CLP. The third gap is that 

most previous studies did not consider a given project’s characteristics when selecting CLP 

improvement strategies; they selected key improvement strategies based on previous research. 

However, CLP is a context-specific efficiency measure, as the identified factors and their degree 

of impact on CLP vary from project to project (Heravi and Eslamdoost 2015; Tsehayae and Fayek 

2016). Therefore, key CLP improvement strategies also differ from one project to another, and a 

systematic approach is needed to capture project characteristics and construct the cause-and-effect 

relationships among CLP improvement parameters in order to identify the most effective CLP 

improvement strategies. 

1.3. Research Objectives 

The overall goal of this thesis is to develop a decision-support model for identifying the most 

effective CLP improvement strategies for a given project and quantify their impact on CLP by 

developing a decision-support model that integrates feature selection, fuzzy multi-criteria 

decision-making (fuzzy MCDM), and fuzzy cognitive maps (FCM). To achieve this overall goal, 

this thesis had the following detailed modelling objectives: 

1. Identify the most value-adding factors affecting CLP by using a hybrid combination of 

two types of feature selection methods, namely filter and wrapper methods. 

2. Identify the most effective CLP improvement strategies based on strategies selection 

criteria such as implementation feasibility, impact on CLP, implementation risk, and 

workers adaption by using fuzzy MCDM methods. 

3. Quantify the impact of the most CLP effective improvement strategies by developing an 

FCM model that considers causal relationships among the most value-adding CLP 

factors as well as project characteristics. 
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1.4. Expected Contributions 

This thesis is intended to provide contributions that will positively impact the selection of 

appropriate strategies for improving labour productivity of construction projects. Results of the 

thesis are expected to make several contributions to (1) the body of knowledge (Academic 

contributions) and (2) practitioners (Industrial contributions). 

1.4.1. Academic Contributions 

The expected academic contributions of this research are: 

 Development of a combination of filter and wrapper methods as a hybrid feature 

selection (HFS) method for identifying the most value-adding factors that affect CLP. 

 Development of a list of appropriate CLP improvement strategies that correspond to 

addressing the identified most value-adding CLP factors. 

 Development of a ranking process for CLP improvement strategies with respect to 

various criteria by integrating fuzzy MCDM methods in order to determine the most 

effective CLP improvement strategies. 

 Development of an FCM model that takes into account the imprecision and 

uncertainty of CLP factors in order to capture the causal relationships among CLP 

factors and quantify the impact of selected improvement strategies. 

1.4.2. Industrial Contributions 

The expected industrial contributions of this research are: 

 Identification of the most value-adding factors affecting CLP, which helps 

construction companies accurately predict CLP and identify the corresponding 

improvement strategies that address identified CLP factors. 

 Identification of the most effective CLP improvement strategies and quantification 

of their impact on CLP, which helps construction management teams allocate limited 

budget and resources to strategies that have the greatest positive impact on CLP. 

 Development of a systematic approach for simulating the impact of various 

management practices on CLP for projects prior to their implementation. This helps 

construction companies avoid applying those management practices that have only 

subtle impact on CLP for a given project. 
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1.5. Research Methodology 

The objectives of this thesis are achieved in three main stages of the proposed framework as shown 

in Figure 1.1 and described below. 

Identifying and ranking improvement strategies

Quantifying strategies’ impact on CLP

Factors 

identification

Build initial 

FCM

Weight strategies’ 

criteria using fuzzy 

AHP 

Rank strategies 

using

fuzzy TOPSIS

Top-ranked 

strategies

Find an 

optimal

weight matrix 

FCM model

of CLP

Prioritized

strategies

With quantified

impact on CLP

calculate impact 

of each strategy 

on CLP

Use questionnaire 

about importance 

of strategies and 

their criteria

Identify 

corresponding 

strategies

Identify most 

value-adding 

factors using HFS

Data 

preparation

CLP dataset

Developing the 

HFS model

 

Figure 1.1. Framework for prioritizing CLP improvement strategies 

1.5.1. The first stage: Factors and strategies identification 

The first step in developing a CLP model and strategies selection is to determine the relevant 

factors that affect CLP within the studied context. Accordingly, for the purpose of this research, 

the most value-adding CLP factors are identified using the empirical data collected in a previous 

study by Tsehayae and Fayek (2014, 2016). First, the collected data are exposed to various 

preparation processes (i.e., normalization, removing useless factors, imputing missing values, and 

eliminating outliers) that transform the CLP data into a more informative form in order to make 

CLP modeling and analysis more efficient. Then, in order to determine the most value-adding CLP 

factors, an HFS model is developed by integrating a filter feature selection method with a wrapper 

feature selection method. 

1.5.2. The second stage: Strategies ranking 

After identifying the most influential CLP factors, an extensive literature review of past studies is 

carried out to identify various CLP improvement strategies that correspond to the determined key 

factors and have the potential to improve CLP. The most appropriate strategy among the identified 

potential strategies is then determined for addressing each CLP factor using knowledge from three 

experts involved in the project under study. Thereafter, the identified strategies are exposed to a 
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ranking process with respect to four qualitative criteria: impact on CLP, implementation 

feasibility, workers adaptation, and implementation risk. Due to advantages of fuzzy MCDM in 

dealing with qualitative criteria, the two widely used fuzzy MCDM methods of fuzzy analytic 

hierarchy process (fuzzy AHP) and fuzzy technique for order of preference by similarity to ideal 

solution (fuzzy TOPSIS) are integrated in order to rank the CLP improvement strategies per the 

mentioned criteria. The main advantages of these methods are that they mathematically represent 

uncertainty and vagueness in the decision-making process without involving cumbersome 

mathematics (Kahraman et al. 2004). Fuzzy AHP is used to determine the relative weights of SSCs 

based on fuzzy pairwise comparison, and fuzzy TOPSIS is applied to rank the strategies by 

determining the relative importance of each strategy. The inputs of the proposed decision-making 

methods are achieved by using two questionnaire surveys. 

1.5.3. The third stage: Strategies modeling 

An FCM model of CLP is developed for simulating the relationships among the most value-adding 

CLP factors and quantifying the impact on CLP of the selected top-ranked improvement strategies. 

FCM is a soft computing technique for modeling and simulating dynamic systems such as a CLP 

environment by mimicking the process of developing a cognitive map in a human mind (Ahn et 

al. 2015). When no expert is available or there is a large number of relationships within the model, 

an FCM cannot be developed through the manual process of using expert knowledge (Kokkinos 

et al. 2018). For such cases, learning processes can be applied to automatically determine near-

optimal weights of the relations. The algorithms of FCM learning can be grouped into three types 

based on their underlying learning paradigm: (1) Hebbian-based, (2) error-driven, and (3) hybrid. 

A hybrid learning algorithm is developed in this research, since hybrid learning algorithms employ 

a combination of the first two FCM learning algorithms to take advantage of the fast speed and 

effectiveness of Hebbian-based methods and the global search and generalization ability of error-

driven methods (Ren 2012). Using the developed learning algorithm, the impact of the strategies 

most effective on CLP is quantified and the strategies are prioritized accordingly. Finally, the 

developed model is evaluated using (1) structural validity, which evaluates the list of model 

parameters, and (2) extreme-conditions test that compares the generated behavior of CLP in the 

FCM model to the behavior of the real system of CLP under the same extreme conditions of CLP 

factors. 
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1.6. Thesis Organization 

Chapter 1 provides background information on CLP research and identifies the gaps in the CLP 

research regarding selecting CLP factors and improvement strategies. This chapter also presents 

the research objectives, expected academic and industrial contributions, and research methodology 

of the thesis. 

Chapter 2 presents an extensive literature review on the relevant topics, including identification of 

the factors influencing CLP, identification of CLP improvement strategies, and the utilized 

methods for quantifying the impact of strategies on CLP. 

Chapter 3 presents the methodology of the proposed HFS model, which contains (1) CLP dataset 

overview, (2) data preparation, and (3) hybrid feature selection in order to identify the most value-

adding CLP factors. 

Chapter 4 presents the developed decision-support model for ranking CLP improvement strategies 

and quantifying their impact on CLP. The model integrates fuzzy AHP and fuzzy TOPSIS methods 

with an FCM model of CLP. 

Chapter 5 describes the conclusions, contributions, and limitations of the study as well as 

recommendations for future research. 
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Chapter 2. Literature Review 

 

2.1. Identification of Factors that Affect CLP 

Due to the importance of labour productivity in the overall performance of construction projects, 

a significant amount of research has been conducted to determine the most influential CLP factors 

and improve CLP (Heravi and Eslamdoost 2015; Raoufi and Fayek 2018; Alaghbari et al. 2019; 

Kedir et al. 2019). The factors that influence CLP are multi-level, ranging from the activity level 

to the organizational, national, and global levels (Tsehayae and Fayek 2014; Gerami Seresht and 

Fayek 2019). Therefore, different perspectives of project personnel (e.g., project managers, 

supervisors, craft workers, and foremen) are required to assess the importance of each factor in 

improving CLP. Several studies incorporated the opinions of different project participants through 

interview and questionnaire surveys and categorized the CLP factors under different groups. For 

example, Van Tam et al. (2021) identified 45 critical CLP factors categorized into 5groups 

including “Manpower,” “Management,” “Work condition,” “Project,” and “External.” The factors 

were then ranked by collecting 203 samples from project managers and contractors who completed 

a survey questionnaire based on their previous participation in construction projects. Almamlook 

et al. (2020) developed a questionnaire containing 30 factors affecting CLP in Libya. Their results 

indicated that “Lack of labour supervision” and “Experience and skill of labour” are the most 

significant factors affect CLP in Libyan construction projects. Alaghbari et al. (2019) categorized 

52 factors under four groups, “Human labour,” “Technical and technological,” “External,” and 

“Management.” The factors and the groups were then ranked per the opinions of experts from 

various construction positions. Kazaz et al. (2016) attempted to capture the perspectives of craft 

workers regarding about 37 CLP factors using a questionnaire survey. The factors were grouped 

under four categories and ranked according to their importance levels. Tsehayae and Fayek (2014) 

gathered 169 CLP factors from existing literature related to North American construction projects 

and investigated their influence on CLP by developing a protocol for collecting data from several 

construction companies. They not only focused on the impact of CLP factors on labour 

productivity, but also considered another criterion, frequency/agreement, when ranking the CLP 

factors. Frequency, or agreement, evaluates the extent to which each factor exists in a project 

setting. Kazerooni et al. (2020) developed a new evaluation index method by combining the 
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previous two criteria with a new criterion, controllability, in order to rank factors with respect to 

their importance for CLP improvement. The criterion of controllability is defined as the extent to 

which each factor can be controlled by the construction company in terms of cost and time. For 

instance, a construction company has no control over oil prices, so Volatility of oil prices is an 

uncontrollable factor and no improvement strategy can improve it, whereas Job site orientation 

program for new craftspeople is a controllable factor to some extent and can be improved by 

allocating a reasonable amount of time and cost. In these studies, the most commonly used method 

for determining the rank of CLP factors is RII, which only considers one criterion, impact (I), 

when ranking factors. The main limitation of evaluation indices such as RII is their dependency 

on expert knowledge and their lack of ability to consider interconnections among CLP factors. 

Very few studies have attempted to identify the relative importance of CLP factors through the use 

of a data-driven approach such as feature selection (Moselhi and Khan 2012). Data-driven 

approaches are not dependent on expert knowledge and consider the dynamics of CLP factors and 

the interconnected relationships among them. Commonly used data-driven approaches include 

statistical methods such as regression analysis or correlation-based feature selection, which are 

limited by the number of influencing factors and their capability to determine the combined impact 

of the influencing factors (Song and AbouRizk 2008). Feature selection methods as data-driven 

approaches for identifying the relative importance of CLP factors are divided into three categories: 

filter, wrapper, and hybrid. Filter methods offer less computational time to provide results, and 

they rank and select features based on statistical measures, such as correlation and regression 

analysis. Tsehayae and Fayek (2016) applied correlation-based feature selection to establish 

context-specific key CLP factors for the purpose of modeling concrete-pouring activity. 

correlation-based feature selection has been proven to perform very well in experiments with small 

data sets (Hall 1999). Filter feature selection methods are limited by the number of influencing 

factors and their capability to determine the combined impact of influencing factors (Song and 

AbouRizk 2008). Wrapper methods use the model prediction of artificial intelligence (AI) 

techniques to determine the set of most suitable features. AI techniques, such as fuzzy inference 

system, artificial neural network (ANN), and support vector machine (SVM), are appropriate for 

the identification of key CLP factors because of their ability to manage a high-dimensional feature 

space and learn from experience to improve their performance and their capability to determine 

the combined impact of the influencing factors (Mirahadi and Zayed 2016). Song and AbouRizk 
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(2008) presented a CLP model based on ANN and discrete-event simulation that analyzes 

historical data. El-Gohary et al. (2017) used ANN and hyperbolic tangent as a transfer function to 

determine key CLP factors and to quantify and map the relationship between CLP and identified 

influencing factors. The main limitation of wrapper methods is the high computational complexity 

when feature sets are wide (Piao and Ryu 2017). 

To resolve the problem of high computational complexity, it can be helpful to merge a wrapper 

method with a suitable filter method to reduce the deficiencies of both methods, and thus HFS is 

generally more efficient than single filter or wrapper methods (Lu et al. 2017). The general HFS 

approach consists of two stages. In the first stage, a filter method refines and selects the top-n 

features, and in the second stage a wrapper method identifies the most discriminative subset of the 

top-n features (Ghosh et al. 2019). Researchers have proposed different HFS methods based on 

the problem and available data. Lee and Leu (2011) proposed a novel HFS method in microarray 

data analysis by using genetic algorithm (GA) with the χ2-test as a feature ranking method to 

generate a number of subsets of genes and select the proper number of top-ranked features. Hsu et 

al. (2011) introduced an HFS method that used F-score and information gain as filter methods and 

SVM as a wrapper method for data reduction and feature selection. Tao et al. (2019) proposed an 

approach of feature selection and parameter optimization of SVM using GA for hospitalization 

expense modeling that includes binary data sets. Venkatesh et al. (2019) presented a novel HFS 

method combining mutual information as a filter method and recursive feature elimination as a 

wrapper method. The experimental results of these hybrid methods indicate HFS have the ability 

to reduce time complexity and improve classification accuracy. 

Accordingly, this thesis proposes an HFS model for the identification of key factors affecting CLP. 

Due to the characteristics of HFS methods, the HFS model is not dependent on expert knowledge 

and is capable of modeling the dynamics of the CLP factors. In addition, the model considers the 

interconnected relationships and the combined impact of the influencing factors. 

2.2. Identification of CLP Improvement Strategies 

While new technologies and innovations provide construction companies with opportunities to 

improve CLP, their influence is insignificant if improvement strategies recognized as necessary 

for controlling and improving CLP are not utilized first (Shan et al. 2015). Consequently, project 

managers implement a wide range of improvement strategies to increase CLP in construction 
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projects (Nasir et al. 2015; Shan et al. 2011, 2015; Caldas et al. 2015). The implemented strategies 

aim to boost CLP of a project by improving the factors affecting CLP and changing the work 

systems of the project (Ghodrati et al. 2018). However, more than half of nonproductive work 

hours are caused by implementing ineffective improvement strategies, since their actual impact on 

CLP is not evident (Thomas et al. 2003). Thus, to achieve optimum productivity in a project, it is 

pivotal for the construction management team to identify the most effective CLP improvement 

strategies. Several studies have been conducted on identifying key CLP improvement strategies in 

construction domain. Gurmu and Aibinu (2017) used two questionnaires and developed a scoring 

tool to identify and prioritize construction equipment management practices that increase 

productivity. Kazerooni et al. (2020) developed a systemic framework for ranking CLP factors 

according to their importance for CLP improvement by integrating fuzzy data clustering and 

MCDM, and they suggested various improvement strategies based on the identified key factors. 

In a different study, Shoar and Banaitis (2019) applied fuzzy fault tree analysis method to identify 

critical events that cause low productivity and find appropriate response strategies for addressing 

the identified events. Agrawal and Halder (2019) conducted two survey questionnaires and used 

RII to gauge the perception of construction workers on CLP factors and the practices leading to 

CLP improvement. Kermanshachi et al. (2021) developed a system dynamics model to analyze the 

effects of change orders on CLP, and based upon sensitivity analysis, established five policies to 

lessen their effects. Kedir et al. (2019) integrated fuzzy agent-based modeling and MCDM to 

analyze the implementation of different productivity improvement policies. In contrast to previous 

studies, Al-Rubaye and Mahjoob (2020) focused on the loss of labour productivity in Iraq by 

deploying cause and effect analysis, identifying factors that cause the loss of CLP and proposing 

various management practices to lower its impact. Hwang et al. (2018) developed an activity 

analysis method for site conditions and maintenance and shutdown activities at petrochemical 

plants in Singapore. The study was conducted over two cycles to assess the current trend in labour 

productivity, identify productivity barriers, and implement improvement solutions and assess their 

effectiveness. Javed et al. (2018) identified key drivers and constraints that concern construction 

productivity in Hong Kong, explored the interdependence of these factors, and suggested five 

productivity improvement strategies. Rojas and Aramvareekul (2003) presented the results of a 

survey instrument applied to determine the relative level of relevance of CLP drivers and 

opportunities. Various experts such as owners, general contractors, electrical contractors, and 
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consultants responded to the survey. “Management skills” and “Manpower issues” were identified 

as the two areas with the greatest potential to affect productivity according to survey respondents, 

and based on that, the researchers suggested five strategies for improving CLP. Thomas et al. 

(2006) suggested various CLP improvement strategies for avoiding workspace congestion and 

increasing CLP by comparing the productivity rates measured in the field with the baseline 

productivity rates regarding historical data. 

While previous studies investigated various CLP improvement strategies, only a few attempted to 

quantify the effect of improvement strategies on CLP. For instance, Ghodrati et al. (2018) 

attempted to quantify the effectiveness of nine widely implemented management strategies to 

improve labour productivity, such as incentive programs, training, resource scheduling, and 

communication. Each management strategy entails several management practices. To assess the 

implementation level of the management strategies, they developed a management strategy 

assessment index and interviewed experts from several New Zealand construction companies. 

They employed multiple regression analyses and t-test to determine the relationship between the 

strategies and CLP. Shan et al. (2015) aimed to identify the effectiveness of seven pre-defined key 

management programs in improving CLP. Through a series of t-tests, they examined the 

relationship between the management programs and labour productivity. The result of their 

analyses showed that CLP is positively correlated to the implementation of the management 

programs. Caldas et al. (2015) developed a statistical method and metric, called the best 

productivity practices implementation index for industrial projects (BPPII Industrial), for 

identifying key construction productivity practices and quantifying the relative importance of the 

identified practices. Their results indicated that projects with higher BPPII Industrial scores have 

a greater potential to achieve better construction productivity than was originally estimated. 

The following are research gaps in the current literature of CLP improvement strategies. (1) The 

applied statistical methods do not consider the causal relationships among CLP improvement 

parameters, namely affecting factors, improvement strategies, and CLP. CLP factors are mostly 

interconnected and affect each other. Thus, it is necessary to consider the causal relationship 

among the factors and strategies in order to achieve accurate values for the quantified impact of 

strategies on CLP. (2) Most previous studies did not consider the project characteristics for 

selecting CLP improvement strategies, and instead selected the key improvement strategies based 



17 

 

on previous research. However, CLP is a context-specific efficiency measure, as the identified 

factors and their degree of impact on CLP vary from project to project (Heravi and Eslamdoost 

2015; Tsehayae and Fayek 2016). Hence, key CLP improvement strategies also differ from one 

project to another. Therefore, a systematic approach is needed to capture project characteristics 

and construct the cause-and-effect relationships among CLP improvement parameters in order to 

identify the most effective CLP improvement strategies. 

To address these gaps, this thesis proposes a decision-support model to assist selection and 

implementation of optimal CLP improvement strategies for a given project. The proposed model 

consists of: (1) fuzzy MCDM methods for capturing experts’ opinion about the ranking of 

strategies regarding various criteria in order to consider project characteristics and (2) an FCM 

model to consider the causal relationships among CLP factors for quantifying the impact of 

improvement strategies on CLP. 

2.3. Summary 

This chapter provides a literature review on the identification of key factors affecting labour 

productivity and key strategies for improving labour productivity in construction. The majority of 

previous studies relied on expert knowledge collected through questionnaire surveys to establish 

key factors that affect CLP using evaluation index methods such as RII. Very few studies have 

attempted to identify the relative importance of CLP factors through the use of a data-driven 

approach such as correlation analysis or feature selection (Moselhi and Khan 2012). Data-driven 

approaches are not dependent on expert knowledge and consider the dynamics of CLP factors and 

the interconnected relationships among them. Commonly used data-driven approaches include 

statistical methods, such as regression analysis or correlation-based feature selection, which are 

limited by the number of influencing factors and their capability to determine the combined impact 

of influencing factors (Song and AbouRizk 2008). Therefore, the first gap is that the applied 

methods in previous studies for identification of the factors affecting CLP are dependent on expert 

knowledge and not able to consider the dynamics, interconnection, and combined impact of the 

factors that affect CLP. Although several studies have been conducted on identifying key CLP 

improvement strategies in the construction domain, only a few attempted to quantify the impact of 

improvement strategies on CLP. The existing literature on quantifying the impact of CLP 

improvement strategies have relied on statistical methods, such as regression analysis and t-test. 
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The second gap related to the identification of CLP improvement strategies in current construction 

literature is the inability of applied statistical methods to consider causal relationships among CLP 

improvement parameters. The third gap is the inability of previous construction studies to capture 

characteristics of a given project when selecting CLP improvement strategies. The previous studies 

selected the key improvement strategies based on previous research and results that exist in the 

construction literature. 
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Chapter 3. Identification of the Most Value-adding CLP Factors1 

 

3.1. Introduction 

Understanding factors that affects labour productivity is important for making strategic decisions 

and selecting appropriate CLP improvement strategies (Jalal and Shoar 2019). However, 

identification of most-value CLP factors is a challenging task since CLP is set in a high-

dimensional feature space where a number of factors which are mostly interconnected affect CLP 

directly or indirectly. There is an extensive research on the identification of key CLP factors due 

to the importance of CLP on the performance of construction projects. Majority of past studies 

have relied on expert knowledge through factor surveys and a group of experts to establish key 

factors that affect CLP. The established key factors were then used to either suggest further 

improvements or to carry out further data collection for analysis and modeling. Among these 

studies, the dominating method for ranking CLP factors is RII. Very few studies have attempted 

to identify the relative importance of the CLP factors through the use of a data-driven approach 

such as correlation analysis or feature selection (Moselhi and Khan 2012). Data-driven approaches 

are not dependent on expert knowledge and consider the dynamics of CLP factors and the 

interconnected relationships among them. The commonly used data-driven approaches are 

statistical methods like regression analysis or correlation-based feature selection. The statistical 

approaches are limited by the number of influencing factors and their capability to determine the 

combined impact of the influencing factors (Song and AbouRizk 2008). Therefore, a research gap 

exists regarding methods for identifying the key factors affecting CLP by considering the 

dynamics, interconnection, and combined impact of the factors without dependency on expert 

knowledge. 

To address this gap, an HFS method is utilized to assist selection of the most value-adding CLP 

factors for a given project based on the dynamics, interconnection of CLP factors without 

dependency on expert knowledge. 

                                                 
1 The contents of this chapter have been submitted for publication Ebrahimi, S.; Kazerooni, M.; Sumati, V.; Fayek, A. 

R. (n. d.). “A predictive model for construction labour productivity using the integration of hybrid feature selection 

and PCA methods.” Canadian Journal of Civil Engineering, under review. 
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3.2. Research Methodology 

This section discusses the methodology of the proposed model for identifying the most value-

adding CLP factors in a high-dimensional feature space where numerous factors affect CLP. Fig. 

3.1 shows a general view of the proposed methodology, which includes two main phases: data 

preparation and data analysis. In the data preparation phase, the most valuable data are sorted out 

from the less important. In the data analysis phase, the HFS method is applied for analysis of the 

prepared dataset. The following sections are an overview of the CLP dataset used in this thesis and 

the stages of processing the CLP data. 
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Figure 3.1. Overview of methodology for identifying key CLP factors. 

3.2.1. CLP dataset overview 

The data used in this thesis are based on the dataset developed by Tsehayae and Fayek (2014, 

2016) for identifying the key factors affecting CLP. As a result, 112 influential factors on CLP 

were identified as shown in Appendix A and measured for a total of 92 days. Therefore, the utilized 

CLP dataset in this thesis has 10,856 tuples consisting of 92 instances and 113 attributes including 

the class attribute, which is CLP. The class attribute has positive real values due to CLP definition. 

3.2.2. Phase 1: Data preparation 

Data preparation is the initial stage of processing data, with the goal of sorting out the most 

valuable data from the less important. A CLP dataset is prepared as a raw dataset and transformed 

to a more informative form per the following data preparation stages, in order to make CLP data 

modeling and analysis more efficient. 
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3.2.2.1. Normalization 

By adjusting the value range, normalization can lead to stable convergence and prevent biases in 

predictive models (Golnaraghi et al. 2020). The normal distribution, which subtracts the mean of 

the data from all values and divides them by the standard deviation, helps preserve the original 

distribution of the data (Frigerio et al. 2019). Thus, normalization with respect to normal 

distribution is used in the developed model to scale CLP data into an organized range. 

3.2.2.2. Remove useless features 

Standard deviation as the square root of the variance is a measure of how spread out the values of 

each feature are in the dataset. In this thesis, 8 CLP features with standard deviation equal to zero 

were removed from the CLP dataset, and the total number of CLP factors was reduced to 104. 

3.2.2.3. Impute missing values 

Imputation is a technique of estimating the missing values of a dataset by applying various machine 

learning algorithms. Imputation methods based on K-nearest neighbors (KNN) use classification 

capacity to identify a subset of instances having the most similarity to the instances with missing 

values (Ma and Zhong 2016). Hence, in the presented model a KNN-based imputation method is 

utilized to impute missing values of the CLP dataset. 

3.2.2.4. Eliminate outliers 

Outliers in a dataset can significantly affect the performance of data analysis. The Tukey Test 

method is a commonly used outlier detector, in which a confidence interval is defined for each 

feature by calculating the distance between the median of the feature observations divided by the 

distance of the lower/upper Tukey Test boundary to the median (Sandbhor and Chaphalkar 2019). 

In this thesis, after applying the Tukey Test method to the CLP dataset, 10 observations were 

identified as outliers. Hence, the total number of instances in the CLP dataset was reduced to 82. 

3.2.3. Phase 2: Data analysis 

The second phase of developing a model for identifying the most value-adding CLP factor is 

analyzing the final CLP dataset resulting from phase 1. The following subsections explain the 

preliminary concepts used in the HFS method and describe the stages of key CLP factors 

identification. 
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3.2.3.1. Preliminaries 

The main concepts used in the data analysis phase of the proposed methodology are as follows. 

ReliefF algorithm (RFA): The Relief algorithm as an individual evaluation filtering feature 

selection method assigns weights to each feature based on correlation between features, and it 

selects all features with greater weight compared with the threshold. Although Relief is an efficient 

method with satisfactory results, an important limitation of this algorithm is that it can handle only 

two-class classification problems. To manage this limitation and handle multi-class problems, 

RFA was proposed by Kononenko (1994). Equation (3.1), which is ReliefF function (RFF), shows 

the evaluation criteria of RFA, where n is the total number of features, D is distance measurement, 

𝑓𝑡,𝑗 is the value of instance 𝑥𝑗 on feature 𝑓𝑗, and 𝑓𝑠(𝑥𝑗) and 𝑓𝑑(𝑥𝑗) denote the value of 𝑗th feature of 

the nearest point to 𝑥𝑗 in the same and different class, respectively. 

𝑅𝐹𝐹(𝑓𝑗) = 0.5∑ (𝐷 (𝑓𝑡,𝑗 − 𝑓𝑠(𝑥𝑗)) − 𝐷 (𝑓𝑡,𝑗 − 𝑓𝑑(𝑥𝑗)))
𝑛
𝑗=1  (3.1) 

SVM: A SVM is a supervised learning model that can solve two-class binary classification 

problems. SVMs are used for classification and regression analysis. The learning algorithm of 

SVM is based on statistical learning theory and structural risk minimization. Theoretically, SVMs 

experience less overfitting and better generalization than traditional techniques such as ANN. The 

main approach of SVM is using the maximum margins between support vectors to build an optimal 

hyperplane. SVM shows great generalization performance, which represents the desired accuracy 

in classification and prediction of unseen samples (Fernández-Delgado et al. 2014). SVM is used 

for solving linear and non-linear problems. For non-linear classification, the mapping function is 

utilized to convert low-dimensional data to a high-dimensional dataset, which changes the non-

linear problem to a linear and separable problem. Kernel functions are employed to make this 

process easier. There are various types of kernel function, namely, linear, polynomial, sigmoid, 

and Gaussian function. Gaussian function, presented in Equation (3.2), is the most common kernel 

function for solving classification problems, as it requires just one parameter, 𝛾, which is a free 

parameter and has a significant influence on classification accuracy (Pai et al. 2021). Another 

important parameter in SVM is penalty factor 𝐶, which is the cost of misclassification. Based on 

the importance of these two parameters on the result of SVM, 𝐶 and 𝛾 needed to be optimized for 

achieving the desired accuracy, which is accomplished by GA. 
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𝐾(𝑥, 𝑥′) = exp (−𝛾 ∥ 𝑥 − 𝑥′ ∥2) (3.2) 

GA optimization: GA is a stochastic searching process based on the mechanism of natural 

selection and natural genetics, thus imitating the process of natural evolution. GA is a good 

approach to exploring feature space and can produce many alternative feature subsets through 

reproduction operations to obtain the best subset that includes the most important features. GA 

uses a fitness function to evaluate each candidate solution’s fitness. The crossover and mutation 

functions randomly transfer chromosomes as two major operators with the key impact on the 

fitness value. The crossover is a randomizing mechanism that exchanges features between two 

chromosomes using single-point, two-point, or homologue crossover (RazaviAlavi and AbouRizk 

2017). The three criteria for designing a fitness function are: the number of selected features, 

classification accuracy, and cost. Based on these criteria, a chromosome with a small number of 

selected features, high classification accuracy, and low cost can produce a high fitness value. The 

GA optimization method maximizes the value of the fitness function, shown in Equation (3.3) 

where 𝑆𝑉𝑀_𝐸𝑟𝑟𝑜𝑟 is a root mean square error (RMSE) of SVM classifier, 𝑊𝑓 is a weight value 

for the number of features (𝑛𝑓), 𝑓𝑖 represents ‘1’ if the feature 𝑖 is selected or ‘0’ if the feature 𝑖 is 

not selected, and 𝑐𝑖 is cost of feature 𝑖. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = (𝑆𝑉𝑀_𝐸𝑟𝑟𝑜𝑟 × (1 +𝑊𝑓 × (∑ 𝑐𝑖 × 𝑓𝑖))
𝑛𝑓
𝑖=1

)−1 (3.3) 

3.2.3.2. HFS method 

An overview of the proposed HFS method is shown in Figure 3.2, which presents the process of 

integrating RFA as a filter method with GA and SVM as the wrapper method. 

The detailed explanation of the steps for developing the HFS method are as follows. 

Step 1 – The RFA filter method evaluates the weight of each feature according to the 

correlations between features and ranks them in terms of their weights. After the RFA process 

is complete, feature weights (𝑤𝑟) are normalized from 0 to 1 to make the wrapper process 

more effective; by using a defined threshold (τ) in the range 0–1, any features with a weight 

𝑤𝑟 ≥ τ are selected. 

Step 2 – GA generates the random initial population of chromosomes. Each chromosome in 

the population represents an available solution to the feature subset selection problem. 
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Figure 3.2. Overview of the HFS method 
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Step 3 – Selected features that have weights greater than the threshold are the inputs of SVM. 

Step 4 – The fitness calculation process is completed using the calculated RMSE for SVM 

classification, based on Equation (3.4). 

𝑆𝑉𝑀_𝐸𝑟𝑟𝑜𝑟 = √
1

𝑛
∑ (𝐴𝑖 − 𝑇𝑖)2
𝑛
𝑖=1  (3.4) 

where 𝑛 is the number of outputs, 𝐴𝑖 is the actual output value of the 𝑖th output, and 𝑇𝑖 is the 

target output value of the 𝑖th output. In this paper, there is one output, which is CLP. Note that 

a better fitness of the SVM requires a smaller error. 

Step 5 – If termination criteria are satisfied, the process ends; otherwise, the process goes to 

the next generation by GA. 

Step 6 – GA searches for better solutions by using crossover, mutation, elitism, and 

replacement. In this thesis, single-point binary crossover and binary mutation were performed. 

Also, per the elitism process the three best chromosomes are selected to be part of the 

population in the next generation. Once the final generation meets termination criteria, the 

iteration stops, and the selected feature subset is the one that has the best predictor of CLP 

among all feature subsets. The termination criteria include either the generation number 

reaches a determined value, or the fitness value does not improve during a specified number 

of generations. For this thesis, maximum generation was 150 and specified number of 

generations was 50. 

Step 7 – RFA is used one more time to rank the selected features and adjust features’ weights. 

For this thesis, features that satisfied the threshold of 0.2 in Equation (3.1) were selected as 

essential features for the next stage of HFS. Of the 110 features in the final CLP dataset, RFA 

selected 35 as essential features. The termination criteria for the GA-SVM method applied in this 

thesis were: a maximum generation of 150, or no improvement of the fitness value during the last 

50 generations. SVM parameters 𝐶 and 𝜎 were both set to 20, kernel type was radial, and kernel 

cache was 200. The parameter settings for GA were population size of 100, crossover rate of 0.7, 

mutation rate of 0.02, one-point crossover, and tournament selection scheme. To reduce bias 

selection of the optimal feature subset, 15 different local seeds were examined in order to identify 

the best possible subset of CLP factors. Considering these parameters, the proposed wrapper 
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feature selection was developed, which selected 19 factors out of the 35 CLP factors specified by 

RFA. Finally, RFA was used one more time to rank the selected features and adjust features’ 

weights. Table 3.1 shows RFA ranking of the 19 features selected as the most value-adding CLP 

factors. 

Table 3.1. RFA ranking of the most value-adding CLP factors 

Factor 

index 
CLP Factor 

Normalized 

importance 

RFA 

rank 

2 Fairness of work assignment 1.000 1 

6 Complexity of task 0.793 2 

7 Repetitiveness of task 0.706 3 

16 Owner staff on site 0.568 4 

10 Congestion of work area 0.535 5 

19 Structural element 0.527 6 

18 Concrete placement technique 0.476 7 

1 Team spirit of crew 0.295 8 

13 Weather (precipitation) 0.233 9 

3 Crew participation in foreman’s decision-making process 0.231 10 

9 Location of work scope (distance) 0.229 11 

5 Material movement practices (horizontal) 0.217 12 

17 Availability of labour 0.199 13 

12 Weather (temperature) 0.172 14 

14 Variability of weather 0.168 15 

4 Job security 0.071 16 

8 Working conditions (dust and fumes) 0.041 17 

15 Ground conditions 0.002 18 

11 Cleanliness of work area 0.000 19 

 

3.3. Summary 

This chapter presents an HFS model for identifying the most value-adding CLP factors in a high-

dimensional feature space where numerous factors affect CLP. The HFS model is consists of two 

major phases, data preparation and data analysis. In the first phase, the utilized CLP dataset is 
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prepared as a raw dataset and transformed to a more informative form in order to make CLP data 

modeling and analysis more efficient. In this manner, normalization with respect to normal 

distribution, imputing missing values with KNN, removing factors with zero deviation, and 

eliminating outliers by Tukey Test method are applied to improve the efficiency of CLP data 

analysis. In the second phase, the final CLP dataset resulting from phase 1 is analyzed in order to 

determine the key factors affecting CLP. To achieve this aim, RFA method as a filter method and 

SVM-GA as a wrapper method are integrated as an HFS model to identify the most value-adding 

CLP factors. RFA method evaluates the weight of each feature according to the correlations 

between features and ranks them in terms of their weights. GA-SVM method is utilized to search 

for an optimum solution using crossover, mutation, elitism, and replacement with respect to SVM 

error. As a result, the top three most influential factors include (1) fairness of work assignment, 

(2) complexity of task, and (3) repetitiveness of task. The most value-adding CLP factors resulting 

from this chapter is used to develop the decision-support model of improvement strategies 

selection as discussed in Chapter 4. 
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Chapter 4. Prioritizing CLP Improvement Strategies2 

4.1. Introduction 

Maximizing CLP is pivotal for enhancing the overall performance of construction projects in 

multiple areas, such as reducing variances from the primary plan and keeping the projects on time 

and within budget. So, construction companies are required to implement various CLP 

improvement strategies to enhance the level of influencing CLP factors and consequently improve 

CLP. In this thesis, a CLP improvement strategy is an individual management practice - working 

method, tactic or innovation - that construction managers use to improve CLP of their projects. 

Some examples of CLP improvement strategies include performing weekly reviews of crew 

compositions to ensure crew mix is per plan, providing clear instructions to craftspeople on how 

to complete tasks prior to execution, and scheduling regular inspections by the owner team to 

reduce interventions during project execution. However, budget, time, and resource constraints 

force construction companies to carry out only a limited number of CLP improvement strategies 

(Kazerooni et al. 2020). In addition, in the complex environment of construction, CLP is affected 

by numerous factors that are mostly interconnected (Ebrahimi et al. 2021; Tsehayae and Fayek 

2016). Thus, the actual impact of various factors on CLP can be only obtained using a systematic 

approach that models the causal relationship among them (Caldas et al. 2015). However, most 

construction companies apply management practices, such as changing working times and 

switching workweek, based on the experience and knowledge of their managers (Shan et al. 2016). 

Compared to CLP factors identification, very few studies have been conducted for identifying key 

CLP improvement strategies. According to the provided literature review, most techniques 

proposed for selecting key CLP improvement strategies lack the ability to quantify the impact of 

strategies on CLP. However, to effectively improve CLP, the extent to which the implemented 

improvement strategies affect CLP needs to be known. Widely used techniques for quantifying the 

impact of various strategies on CLP improvement include statistical methods such as t-test and 

regression analysis (Ghodrati et al. 2018; Shan et al. 2016). The major limitation of statistical 

methods is their inability to capture the causal relationships among CLP factors, improvement 

strategies, and CLP. In addition, such methods lack the ability to consider project characteristics. 

                                                 
2 The contents of this chapter have been published for publication Kazerooni, M.; Nguyen, P.; Fayek, A.R. (2021) 

“Prioritizing Construction Labor Productivity Improvement Strategies Using Fuzzy Multi-Criteria Decision Making 

and Fuzzy Cognitive Maps.” Algorithms, 14, 254. https://doi.org/10.3390/a14090254. 
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However, key CLP improvement strategies differ from one project to another. Consequently, 

determining the relationships among key CLP factors and strategies and determining the impact 

of each strategy on CLP is crucial for prioritizing appropriate CLP improvement strategies for a 

given project. 

To address the mentioned gaps, this study proposes a decision-support model to assist selection 

and implementation of optimal CLP improvement strategies for a given project. The proposed 

model consists of: (1) the combination of fuzzy AHP and fuzzy TOPSIS methods in order to deal 

with the uncertainty and vagueness in the decision-making process of selecting CLP improvement 

strategies and capture experts’ opinion about the ranking of strategies regarding various criteria in 

order to consider project characteristics and (2) an FCM model to consider the causal relationships 

among CLP factors for quantifying the impact of improvement strategies on CLP and capture the 

imprecision and uncertainty of CLP factors for CLP modeling. Accordingly, the proposed 

methodology is expected to achieve more accurate results than previous studies that utilized 

statistical methods to quantify the impact of CLP improvement strategies without taking into 

account imprecision of CLP factors, causal relationships among CLP factors, and project 

characteristics. 

4.2. Methodology 

This thesis proposes a decision-support model for identifying and prioritizing the most effective 

CLP improvement strategies by integrating fuzzy MCDM methods with FCM. Fuzzy MCDM 

methods, including fuzzy AHP and fuzzy TOPSIS, are operations research tools for ranking 

various parameters regarding multiple criteria in complex decision-making problems (Taylan et 

al. 2014). In the problem of improvement strategy selection, fuzzy AHP is used to weight the 

criteria, and fuzzy TOPSIS is used to rank the strategies based on the criteria. FCM is a causal 

cognition tool for modeling and simulating dynamic systems (Nápoles, Leon, et al. 2018). In this 

thesis, FCM is utilized to quantify the impact of strategies on CLP by modeling a CLP 

environment. Figure  shows a general view of the framework for selecting CLP improvement 

strategies, which includes three phases: identifying factors and strategies, ranking strategies, and 

quantifying strategies’ impact on CLP. 
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Figure 4.1. Overview of the decision-support model of CLP 

In the first phase, the key CLP factors were determined in chapter 3 as shown in Table 3.1. Then, 

various CLP improvement strategies that correspond to key factors (i.e., strategies that could be 

used to address each factor) are identified through a comprehensive background review of the 

literature. In the second phase, two fuzzy MCDM methods are integrated and used to rank the 

identified improvement strategies by capturing experts’ opinions of the importance of each 

strategy versus various criteria. In the third phase, an FCM model is developed based on the 

identified factors and top-ranked strategies for analyzing the effects of factors on each other and 

determining the impact of each strategy on CLP improvement. Finally, the most effective CLP 

improvement strategies are prioritized, or ranked, according to their quantified impact on CLP. 

Two validation approaches, structural validity, and behavioral validity, are used in this thesis to 

validate the developed decision-support model. The structural validity approach is utilized to 

evaluate the list of model components (factors influencing CLP and CLP improvement strategies) 

and the relationships among them. Behavioral validity of the FCM model is evaluated using the 

extreme conditions test, as utilized by Kumar and Yamaoka (2007). The extreme conditions test 

compares the behavior of a developed model to the behavior of the real system under the same 

extreme conditions of input factors (Nojedehi and Nasirzadeh 2017). According to Gerami Seresht 

and Fayek (2018), common validation tests such as the statistical hypothesis test are not suitable 

for FCM models, which simulate dynamic systems. Therefore, both utilized validation approaches 

compare the structure and behavior of the model with a real-world system empirically, using case 

studies, and theoretically, using the literature. An overview of the utilized case study is presented 

below. 
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4.2.1. Case study and CLP dataset overview 

The CLP dataset used in this research was provided from a previous study conducted by Tsehayae 

and Fayek (2014, 2016). They defined CLP as the ratio of units of output, expressed as installed 

quantity (in cubic meters), to units of input, expressed as total labour work-hours, and the data 

were collected for concrete-pouring activities in building projects in Alberta, Canada. They studied 

concrete-pouring in three data collection cycles between June 2012 and October 2014 in 

collaboration with two partnering companies. Thus, the proposed decision-support model in this 

thesis is developed for identifying, ranking, and implementing improvement strategies for the CLP 

of concrete-pouring activities in building projects. The following sections present the details of 

each phase of CLP improvement strategy selection by implementing them in the case study model. 

4.2.2. Identifying factors and strategies 

Past studies have shown that key CLP factors vary from one construction project to another (El-

Gohary et al. 2017). In this regard, the first step in developing a CLP model is to determine the 

relevant surrounding factors that affect CLP within the studied context. Accordingly, for the 

purpose of this research, the most value-adding CLP factors identified in Table 3.1 of chapter 3 

are considered since the same empirical data are utilized. 

After the most value-adding CLP factors were determined, an extensive literature review of past 

studies was conducted to identify various CLP improvement strategies that correspond to the 

determined key factors. As a result, 54 strategies with the potential to improve CLP were identified 

for 19 factors. The most appropriate strategy among the identified potential strategies were then 

determined for addressing each CLP factor using three experts involved in the project under study. 

As a result, 16 different strategies were determined. Table 4.1 shows the factors and their 

corresponding improvement strategies. The linguistic descriptors of the factors are given under the 

factors in order to give a clear understanding of the factors’ definitions. The linguistic descriptors 

of F6 are categorical, and it is not possible to replace a category (e.g., columns) with another 

category (e.g., slabs) in the project, so no improvement strategy corresponds to this factor. 

Table 4.1. Key CLP factors and their corresponding improvement strategies. 

No. Most value-adding CLP factor No. CLP improvement strategy 

F1 
Fairness of work assignment 

(Poor, Fair, Good) 
S1 

Perform weekly reviews of crew compositions to 

ensure crew mix is per plan 
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F2 
Complexity of task 

(Low, Average, High) 
S2 

Provide clear instructions to craftspeople on how to 

complete tasks prior to execution 

F3 
Repetitiveness of task 

(Low, Medium, High) 
S3 

Have the same person perform a task several times 

rather than making personnel changes along the 

way 

F4 
Owner staff on site 

(Low, Average, High) 
S4 

Schedule regular inspections by the owner team to 

reduce interventions during project execution 

F5 
Congestion of work area 

(Low, Average, High) 
S5 Establish staggered working-hours of labourers 

F6 
Structural element 

(Columns, Footings, Grade 

beams, Pile caps, Slabs, Walls) 

N/A N/A 

F7 
Concrete placement technique 

(Pump, Crane and bucket, Direct 

chute) 

S6 
Train labourers to achieve the latest concrete-

pouring techniques 

F8 
Team spirit of crew 

(Poor, Fair, Good) 
S7 Perform project team activities 

F9 
Weather – precipitation 

(Low, Medium, High) 
S8 

Cover working area to protect from wind effects 

and precipitation 

F10 

Crew participation in foreman’s 

decision-making process 

(Without explanation, Joint, 

With) 

S9 
Hold regular meetings with labourers about 

schedule and remaining tasks 

F11 
Location of work scope – 

distance 

(Very close, Close, Far) 

S10 
Design processes to eliminate repetitive motion 

and reduce manual labour 

F12 
Material movement practices – 

horizontal 

(Poor, Fair, Good) 

S11 
Develop clear instructions about the equipment 

used to transport materials 

F13 
Availability of labour  

(Low, Medium, High) 
S12 

Offer internship and scholarship programs to trade 

and vocational schools to help company's future 

workers 

F14 
Weather – temperature 

(Low, Medium, High) 
S13 

Apply preventive maintenance to heating and air-

conditioning systems to make sure they are in 

working order  

F15 
Variability of weather 

(Low, Medium, High) 
S8 

Cover working area to protect from wind effects 

and precipitation 

F16 
Job security 

(Poor, Fair, Good) 
S14 

Hold meetings during later project stages to discuss 

transfer of project team to future projects of the 

company 

F17 
Working conditions – dust and 

fumes 

(Low, Average, High) 

S13 

Apply preventive maintenance to heating and air-

conditioning systems to make sure they are in 

working order 
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F18 
Ground conditions 

(Poor, Fair, Good) 
S15 

Use a down-hole vibrator that is lowered into the 

ground to compact soils at depth 

F19 
Cleanliness of work area 

(Poor, Fair, Good) 
S16 Hire cheap labour for daily housekeeping tasks 

 

4.2.3. Ranking strategies 

In this phase, the identified 16 strategies are ranked with respect to four criteria, which were 

identified by reviewing the current literature around strategy selection (Chatterjee et al. 2018; Efe 

2016; Mathiyazhagan et al. 2019; Tamošaitiene et al. 2017; Taylan et al. 2014). These strategy 

selection criteria (SSCs) are described as follows: 

 Impact on CLP (IC) is the impact of a strategy on CLP improvement in the project under 

study. 

 Implementation feasibility (IF) is the degree to which the strategy can be implemented in 

the project with respect to economic, technical, and scheduling constraints, including 

required time and cost of implementation. 

 Workers’ adaption (WA) is the ease with which workers can adapt to each strategy. 

 Implementation risk (IR) is the potential for each strategy to encounter development or 

deployment failure. (The term describes risks related to strategy launch.) 

Due to advantages of fuzzy MCDM in dealing with qualitative criteria as stated in the introduction 

section, two widely used fuzzy MCDM methods – fuzzy AHP and fuzzy TOPSIS – are integrated 

to rank the CLP improvement strategies meeting the above criteria. The main advantages of these 

methods are that they mathematically represent uncertainty and vagueness in the decision-making 

process without involving cumbersome mathematics (Kahraman et al. 2004). According to Taylan 

et al. (2014), the combination of fuzzy AHP and fuzzy TOPSIS shows better performance 

compared to using each method separately. Accordingly, fuzzy AHP is used to determine the 

relative weights of SSCs based on fuzzy pairwise comparison, and fuzzy TOPSIS is applied to 

determine the relative importance of each strategy and rank the strategies. Figure 4.2 presents the 

hierarchical structure of the decision-making process for CLP improvement strategy selection. 

Inputs of the proposed decision-making methods are achieved by using two questionnaire surveys, 

described in the next section. The following sections demonstrate the development of fuzzy AHP 

and fuzzy TOPSIS to identify the top-ranked CLP improvement strategies. 
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Figure 4.2. Hierarchical structure of decision-making for improvement strategy selection. 

 

4.2.3.1. Questionnaire surveys 

A major task in constructing the proposed model is determining the relative importance of each 

SSC to the final goal of selecting the most effective CLP improvement strategies. How the weights 

are determined can affect the outcome of the decision-making process. A well-designed weighting 

mechanism serves two purposes: (1) it identifies the solution that best meets the decision makers’ 

needs, and (2) it quantifies the differences between the solutions. Accordingly, two questionnaire 

surveys were designed, and 10 experts with an average of 7 years of experience in construction 

responded. In the first questionnaire, as shown in Figure 4.3, experts were asked to weight SSCs 

by selecting a preference term from “Equal” to “Absolute” when comparing the relative 

importance of one criterion to another. Similar to Efe (2016), Mathiyazhagan et al. (2019), and 

Kabak et al. (2014), a symmetric triangular fuzzy number (TFN) is used to represent each 

preference term in order to compute the SSC weights in the next phase. The numbers under the 

importance levels to the left of “Equal” show that the left SCC is more important than the matching 

one on the right in the same row. The numbers to the right of “Equal” show the opposite statement. 

For example, 4 experts indicated that the relative importance of IF to the problem of selecting CLP 

improvement strategies is “Fairly Strong” compared to the relative importance of IR. However, 2 

experts responded that the importance of IR is “Fairly Strong” compared to the importance of IF. 
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Figure 4.3. Survey questionnaire for weighting SSCs. 

In the second questionnaire survey as shown in Appendix B, the same 10 experts indicated their 

opinions on the importance of the selected strategies to CLP improvement with respect to SSCs. 

They indicated their responses using the seven-value linguistic scale presented in Table . Figure 

4.4 shows the membership functions of linguistic terms, which are based on Özdağoğlu and Güler 

(2016). 

Table 4.2. Linguistic scale for ranking the improvement strategies. 

Linguistic term Membership function 

Very Low (VL) (0, 0, 1, 2) 

Low (L) (1, 2, 2, 3) 

Fairly Low (FL) (2, 3, 4, 5) 

Moderate (M) (4, 5, 5, 6) 

Fairly High (FH) (5, 6, 7, 8) 

High (H) (7, 8, 8, 9) 

Very High (VH) (8, 9, 10, 10) 
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Figure 4.4. Membership functions of the linguistic variables. 

4.2.3.2. Fuzzy AHP 

AHP is a broadly applied method for determining the weights of criteria in a structured manner 

based on pairwise comparison (Liu et al. 2020). To handle subjective judgements in comparison, 

fuzzy sets are combined with AHP. Thus, fuzzy AHP assigns membership degrees to exact 

numbers in order to describe to what extent these numbers belong to a linguistic expression. The 

relative weight of an SSC is assessed by processing the triangular fuzzy preference numbers 

elicited from the questionnaire survey of Figure 4.3, through fuzzy AHP method in a manner 

similar to that presented by Perçin and Aldalou (2018). The triangular fuzzy preference of the 𝑖th 

SSC over the 𝑗th SSC is shown as (𝐿𝑖𝑗, 𝑀𝑖𝑗, 𝑈𝑖𝑗), where the parameters 𝐿, 𝑀 and 𝑈 denote the 

smallest possible value, the most promising value, and the largest possible value that describe the 

relative importance of the 𝑖th SSC over the 𝑗th SSC, respectively. The steps of the proposed fuzzy 

AHP can be described as follows. 

Step 1: Calculate the fuzzy sum. The fuzzy sum value with respect to the 𝑖th SSC, which is a 

TFN, is defined as: 

𝐹𝑆𝑖 = (𝐿𝐹𝑆𝑖 , 𝑀𝐹𝑆𝑖
, 𝑈𝐹𝑆𝑖) = (∑ 𝐿𝑖𝑗

4
𝑗=1 , ∑ 𝑀𝑖𝑗

4
𝑗=1 , ∑ 𝑈𝑖𝑗

4
𝑗=1 ) (4.1) 

Step 2: Calculate the fuzzy synthetic extent. The S value with respect to the 𝑖th SSC, which is 

a TFN, is defined as: 

𝑆𝑖 = (𝐿𝑆𝑖 , 𝑀𝑆𝑖 , 𝑈𝑆𝑖) = (
𝐿𝐹𝑆𝑖

∑ 𝑈𝐹𝑆𝑗
4
𝑗=1

,
𝑀𝐹𝑆𝑖

∑ 𝑀𝐹𝑆𝑗
4
𝑗=1

,
𝑈𝐹𝑆𝑖

∑ 𝐿𝐹𝑆𝑗
4
𝑗=1

) (4.2) 
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where 𝑆1, 𝑆2, 𝑆3 and 𝑆4 are the fuzzy synthetic extent of IC, IF, WA, and IR, which equal 

(0.1891, 0.3092, 0.4936), (0.1697, 0.2743, 0.4317), (0.1314, 0.2120, 0.3489), and (0.1291, 

0.2046, 0.3408), respectively. 

Step 3: Calculate the degree of possibility (V). The V value with respect to the 𝑖th SSC is 

defined as: 

𝑉𝑖 = min
𝑗≠𝑖

(𝑣(𝑆𝑖 > 𝑆𝑗)) (4.3) 

where 𝑣(𝑆𝑖 > 𝑆𝑗) is calculated as follows:  

𝑣(𝑆𝑖 > 𝑆𝑗) =

{
 
 

 
 
1,                                                    𝑖𝑓 𝑀𝑆𝑖 ≥ 𝑀𝑆𝑗  

0,                                                       𝑖𝑓 𝐿𝑆𝑗 ≥ 𝑈𝑆𝑖
𝐿𝑆𝑗−𝑈𝑆𝑖

(𝑀𝑆𝑖
−𝑈𝑆𝑖)−(𝑀𝑆𝑗

−𝐿𝑆𝑗)
,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.4) 

Step 4: Calculate the relative weight of SSCs (W). The W value with respect to the 𝑖th SSC is 

determined by normalizing 𝑉𝑖 as follows: 

𝑊𝑖 = 𝑉𝑖 ∑ 𝑉𝑗
4
𝑗=1⁄      ∀𝑖 = 1 𝑡𝑜 4 (4.5) 

where 𝑊1, 𝑊2, 𝑊3 and 𝑊4 are the relative weights of IC, IF, WA, and IR, which equal 0.324, 

0.283, 0.201, and 0.192, respectively. 

Step 5: Assess the consistency ratio (CR). The consistency of the respondents’ pairwise 

comparisons in the questionnaire survey (see Figure 4.3) is assessed to determine whether any 

re-examination of the survey pairwise judgments is required. This is done by computing the 

CR of the matrix  �̃�, which includes the fuzzy preference numbers of the relative importance 

of each SSC versus another. Based on the approach used by Kazerooni et al. (2020), matrix  �̃� 

is defuzzified into two crisp matrices. The first matrix, 𝐴1, includes the most promising value 

of the fuzzy numbers of matrix  �̃�, and the second matrix, 𝐴2, includes the geometric mean of 

the lower and upper bounds of the fuzzy numbers. Then, the CR for matrices 𝐴1 and 𝐴2 is 

evaluated: 𝐶𝑅𝐴1 = 0.0155, and 𝐶𝑅𝐴2 = 0.0426. Since both CRs are less than 0.1, no re-

examination of the survey pairwise responses, shown in Figure 4.3, is required. 
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4.2.3.3. Fuzzy TOPSIS 

Fuzzy TOPSIS, as another fuzzy MCDM technique, is used for determining the relative 

importance of each strategy to CLP improvement. TOPSIS is one of the most widely used MCDM 

methods that works satisfactorily in various application areas (Yavuz 2016). However, it is often 

difficult for decision makers to assign accurate values to alternatives for the criteria under 

consideration (Perçin and Aldalou 2018). Fuzzy TOPSIS allows decision makers to assign 

linguistic performance ratings to the alternatives instead of precise numbers. This method ranks 

CLP strategies according to their distance to the fuzzy positive-ideal solution,  �̃�∗, and the fuzzy 

negative-ideal solution,  �̃�−. According to Singh et al. (Singh et al. 2016), �̃�∗ can be obtained by 

maximizing the benefit criteria IC, IF, and WA.  �̃�− can be reached by minimizing the cost 

criterion, which is IR. Considering a set of 𝐾 decision makers as {𝐷1;  𝐷2; … ; 𝐷𝐾} and a set of 𝑚 

CLP improvement strategies as {𝑆1; 𝑆2; … ; 𝑆𝑚}, the steps of fuzzy TOPSIS for determining the 

importance of the CLP improvement strategies are given below. 

 

Step 1: Construct the fuzzy decision matrix. 

The linguistic value given by the 𝑘th decision maker to each improvement strategy regarding 

each SSC is transformed into a trapezoidal fuzzy number as �̃�𝑘 = (𝑎𝑘;  𝑏𝑘;  𝑐𝑘;  𝑑𝑘), using the 

membership functions in Table 4.2. The responses of the decision makers are then aggregated 

as �̃� = (𝑎;  𝑏;  𝑐;  𝑑) using the following detailed computations: 

𝑎 = min
𝑘
{𝑎𝑘}           𝑏 =

1

𝐾
∑ 𝑏𝐾
𝑘
𝑖=1           𝑐 =

1

𝐾
∑ 𝑐𝐾
𝑘
𝑖=1          𝑑 = max

𝑘
{𝑑𝑘} (4.6) 

The fuzzy decision matrix is built with 𝑚 rows and 𝐾 columns. Each cell of the matrix is 

shown by �̃�𝑖𝑗 = (𝑟𝑖𝑗1;  𝑟𝑖𝑗2;  𝑟𝑖𝑗3;  𝑟𝑖𝑗4), which is the fuzzy number of the 𝑖th strategy with 

respect to the 𝑗th criterion. 

Step 2: Compute the normalized fuzzy decision matrix. 

For the benefit criteria IC, IF, and WA, normalized �̃�𝑖𝑗 is computed as: 

�̃�𝑖𝑗 = (
𝑟𝑖𝑗1

𝑟𝑗
∗ ;  

𝑟𝑖𝑗2

𝑟𝑗
∗ ;  

𝑟𝑖𝑗3

𝑟𝑗
∗ ;  

𝑟𝑖𝑗4

𝑟𝑗
∗ ) (4.7) 

where 𝑟𝑗
∗ is calculated as: 
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𝑟𝑗
∗ = max

𝑖
{𝑟𝑖𝑗4} (4.8) 

For the cost criterion IR, normalized �̃�𝑖𝑗 is calculated as: 

�̃�𝑖𝑗 = (
𝑟𝑗
−

𝑟𝑖𝑗4
;  
𝑟𝑗
−

𝑟𝑖𝑗3
;  
𝑟𝑗
−

𝑟𝑖𝑗2
;  
𝑟𝑗
−

𝑟𝑖𝑗1
) (4.9) 

where 𝑟𝑗
− is calculated as: 

𝑟𝑗
− = min

𝑖
{𝑟𝑖𝑗1} (4.10) 

Step 3: Weight the normalized fuzzy decision matrix. 

The weighted �̃�𝑖𝑗 is determined by following formula: 

�̃�𝑖𝑗 = 𝑊𝑗 × �̃�𝑖𝑗 (4.11) 

where �̃�𝑖𝑗 is the weighted fuzzy number of the 𝑖th strategy with respect to the 𝑗th criterion and 

is depicted as (𝑣𝑖𝑗1;  𝑣𝑖𝑗2;  𝑣𝑖𝑗3;  𝑣𝑖𝑗4). 

Step 4: Calculate the distance of each improvement strategy from  �̃�∗ and  �̃�−. 

First,  �̃�∗ and  �̃�− are determined by the following formulas: 

 �̃�∗ = (�̃�1
∗, �̃�2

∗, �̃�3
∗, �̃�4

∗) (4.12) 

 �̃�− = (�̃�1
−, �̃�2

−, �̃�3
−, �̃�4

−) (4.13) 

where �̃�𝑗
∗ and �̃�𝑗

− are trapezoidal fuzzy numbers, defined as: 

�̃�𝑗
∗ = (max

𝑖
{𝑣𝑖𝑗1};max

𝑖
{𝑣𝑖𝑗2} ;max

𝑖
{𝑣𝑖𝑗3} ;max

𝑖
{𝑣𝑖𝑗4}) (4.14) 

�̃�𝑗
− = (min

𝑖
{𝑣𝑖𝑗1};min

𝑖
{𝑣𝑖𝑗2} ;min

𝑖
{𝑣𝑖𝑗3} ;min

𝑖
{𝑣𝑖𝑗4}) (4.15) 

Then, the distance of the 𝑖th improvement strategy from  �̃�∗ and  �̃�− is calculated by: 

𝑑𝑖
∗ = ∑ 𝑑𝑣(

4
𝑗=1 �̃�𝑖𝑗, �̃�𝑗

∗),              𝑑𝑖
− = ∑ 𝑑𝑣(

4
𝑗=1 �̃�𝑖𝑗, �̃�𝑗

−) (4.16) 

where 𝑑𝑣(. , . ) is the vertex distance measurement between two trapezoidal fuzzy numbers, 

such as �̃� and �̃�, that is computed by following formula: 

𝑑𝑣(�̃�, �̃�) = √
(𝑥1−𝑦1)2+(𝑥2−𝑦2)2+(𝑥3−𝑦3)2+(𝑥4−𝑦4)2

4
 (4.17) 
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Step 5: Compute the closeness coefficient. 

The closeness coefficient of each CLP improvement strategy is computed by: 

𝐶𝐶𝑖 =
𝑑𝑖
−

𝑑𝑖
−+𝑑𝑖

∗ (4.18) 

The higher the 𝐶𝐶𝑖 of the strategy, the closer to  �̃�∗ and farther from �̃�−. Table 4.3 shows the 

closeness coefficient of the CLP improvement strategies along with their rank compared to each 

other. 

Based on the data in Table 4.3, the average closeness coefficient equals 0.7090. Therefore, the first 

seven top-ranked strategies are S11, S2, S13, S7, S6, S9, and S16, which have closeness 

coefficients greater than the average, and were selected as the most effective CLP improvement 

strategies for the project under study. 

Table 4.3. CLP improvement strategy ranking. 

Strategy Closeness coefficient Rank 

S11 0.8496 1 

S2 0.8341 2 

S13 0.8026 3 

S7 0.7899 4 

S6 0.7665 5 

S9 0.7201 6 

S16 0.7099 7 

S12 0.6991 8 

S8 0.6961 9 

S14 0.6900 10 

S1 0.6875 11 

S3 0.6644 12 

S15 0.6418 13 

S10 0.6215 14 

S5 0.6005 15 

S4 0.5704 16 
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4.2.4. Quantifying strategies’ impact on CLP 

An FCM model of CLP is developed for simulating the relationships among the most value-adding 

CLP factors and quantifying the impact on CLP of the selected top-ranked improvement strategies. 

FCM is a soft computing technique for modeling and simulating dynamic systems such as a CLP 

environment by mimicking the process of developing a cognitive map in a human mind (Ahn et 

al. 2015). Generally, the manual process for developing an FCM is using expert knowledge to 

evaluate the strength of causal relationships in terms of weights using linguistic variables such as 

“Low,” “Medium,” and “High.” During the simulation, the value of CLP factor 𝐶𝑗 at time 𝑡 is 

calculated using Equation (4.19), as proposed by Papageorgiou (2012): 

𝐴𝑗
(𝑡)
= 𝑓 (∑ 𝑤𝑖𝑗(2𝐴𝑖

(𝑡−1) − 1) +𝑀
𝑖=1
𝑗≠𝑖

(2𝐴𝑗
(𝑡−1) − 1)) (4.19) 

where 𝑤𝑖𝑗 is the strength of the casual relation between two CLP factors 𝐶𝑖 and 𝐶𝑗 and denoted via 

a causal edge from 𝐶𝑖 to 𝐶𝑗; 𝑤𝑖𝑗 ranges from -1 (absolute negative causality) to 0 (no causality) 

and 1 (absolute positive causality). 

In Equation (4.20), f(.) is an activation function that is formulated as sigmoid threshold function 

in this thesis: 

𝑓(𝑥) =
1

1+𝑒−𝜆(𝑥−ℎ)
  (4.20) 

where 𝜆 and ℎ are real positive numbers that control slope and offset of the function, respectively. 

Higher values of 𝜆 make the function more sensitive to the fluctuations of 𝑥 (Felix et al. 2017). 

When no expert is available or is the model contains a large amount of relationships, an FCM 

cannot be developed through the manual process of using expert knowledge (Kokkinos et al. 

2018). For such cases, learning processes can be applied to automatically determine near-optimal 

weights of the relationships. FCM learning algorithms can be grouped into three types based on 

their underlying learning paradigm: (1) Hebbian-based, (2) error-driven, or (3) hybrid. Hebbian-

based learning algorithms, such as nonlinear Hebbian learning (NHL), are unsupervised methods, 

which do not require historical data. Their main drawback is their dependency on expert 

knowledge, since they require initial weight of causal relationships (Stach et al. 2008). Error-

driven learning algorithms, such as the real-coded genetic algorithm (RCGA), generates weight 
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matrices by attempting to fit the FCM model to a set of historical data. Several studies illustrated 

that these algorithms increase the FCM robustness, functionality, and generalization abilities 

(Chen et al. 2015). Hybrid learning algorithms employ a combination of the other two types to 

take advantage of the fast speed and effectiveness of Hebbian-based methods and the global search 

and generalization ability of error-driven methods (Ren 2012). 

In the proposed method, an initial FCM model is developed based on the importance of the most-

value adding CLP factors, then the strength of a causal relation between two factors 𝐶𝑖 and 𝐶𝑗 is 

quantified by a numerical weight 𝑤𝑖𝑗 ∈ [−1, 1]. Three types of causal relation among the factors 

exist: (1) positive causality (𝑤𝑖𝑗 > 0), which means an increase or decrease in 𝐶𝑖 causes the same 

result in 𝐶𝑗; (2) negative causality (𝑤𝑖𝑗 < 0); and (3) no causality (𝑤𝑖𝑗 = 0). After the strengths of 

all relationships are assessed, each improvement strategy is considered in the model, one at a time, 

in order to determine the quantitative effect of each strategy on construction productivity. 

FCM Expert, developed by Nápoles, Espinosa, et al. (2018), is used as a software platform for 

modeling the proposed FCM model of CLP. Figure 4.5 shows the flow chart of the proposed 

framework of constructing the FCM model, which consists of three major tasks, described below. 

Initial FCM constructing Optimal weight searching

Optimal weight refining

Derive FCM 

components from 

RII, fuzzy MCDM, 

and surveys

Start

Generate a 

random initial 

weight matrix (W)

Apply RCGA 

algorithm to learn a 

candidate weight 

matrix

Optimal weight 

matrix

Apply NHL algorithm 

to refine the optimal 

weight matrix

End
Refined optimal 

weight matrix

Initial FCM 

model

Final FCM model

 

Figure 4.5. Flow chart of constructing the FCM model. 

Initial FCM constructing included causal relationships among the initial FCM parameters (i.e., the 

most value-adding factors and CLP) and initial states of the parameters according to the dataset, 

surveys results, and past studies. 

Optimal weight searching entails applying RCGA algorithm to find an optimal weight matrix 

based on its global search and generalization ability. The weight matrix comprises the causal 
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relationships among the factors. The data used in RCGA is based on the dataset of Tsehayae and 

Fayek (2014, 2016) discussed above in the methodology section. The dataset including the value 

of factors and CLP is normalized between 0 and 1 in order to be used in the FCM model. Figure 

4.6 shows the real-time visualization of the error curve of searching the optimal weight matrix by 

performing 50 iterations. 

Optimal weight refining applies NHL algorithm in order to fine-tune the optimal weight matrix 

and get closer to the optimized structure. The output of RCGA is used as the input of NHL 

algorithm, thus no expert knowledge is required for conducting NHL. 

 

 

Figure 4.6. Visualization of error curve in the process of finding the optimal weight matrix. 

 

Based on the refined optimal weight matrix, the final FCM model of CLP is developed as shown 

in Figure 4.7. F1, F2, and so on through F19 are the identified most value-adding CLP factors 

(listed in Table 4.1), and the directions and values of the arrows demonstrate the direction and 

strength of causalities among the factors. For example, the strength of causality from factor 4 (F4) 

“Owner staff on site” toward the factor 5 (F5) “Congestion of work area” is  0.8, which means 

F4 has a strong positive influence on F5; and the strength of causality from factor 19 (F19) 

“Cleanliness of work area” toward factor 2 (F2) “Complexity of task” is  0.2, which means F19 

has a weak negative influence on F2. 
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Figure 4.7. The FCM model of CLP with refined optimal weights. 

By considering the importance of improvement strategies derived from fuzzy TOPSIS, the 

quantified impact of each strategy on CLP is achieved through the steps shown in Figure 4.8. 

Start

Run final FCM 

model as the base 

model

Base CLP

Select the ith 

strategy in terms of 

improtance

Fuzzy TOPSIS 

output

Identify factors 

improved by the 

strategy

Run the new 

FCM model

Apply the strategy 

to the base model
Improved CLPi = 7?End Yes

Document the 

result

Set i = 0

No

Set i = i + 1

 

Figure 4.8. Flow chart of determining the impact of improvement strategies on CLP. 

 

As shown in Figure 4.8, the final FCM model is run one time without applying any strategies in 

order to determine the base CLP that equals 0.5310 for the project under study. The base CLP is 
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the current value of the project’s CLP. Then, a single strategy is applied to the model according to 

its rank as shown in Table 4.3. In the case study, strategy 11, “Develop clear instructions about the 

equipment used to transport materials,” is selected first. The model is run and the resulting CLP is 

called the “improved CLP,” since it is obtained from applying the CLP improvement strategy to 

the FCM model. The improved CLP is 0.5452 for strategy 11. Other strategies are selected one by 

one according to their rank as shown in Table 4.3, and their improved CLPs are determined, as 

shown in Table 4.4. 

Table 4.4. Quantified impact and rank of the most effective strategies. 

No. CLP improvement strategy 
Improved 

CLP 
Rank 

S2 Provide clear instructions to craftspeople on how to complete tasks before 

their execution 

0.5516 1 

S6 Train labourers to achieve the latest concrete-pouring techniques 0.5478 2 

S13 Apply preventive maintenance to heating and air-conditioning systems to 

make sure they are in working order 

0.5460 3 

S11 Develop clear instructions about the equipment used to transport materials 0.5452 4 

S9 Hold regular meetings with labourers about schedule and remaining tasks 0.5451 5 

S7 Perform project team activities 0.5446 6 

S16 Hire cheap labour for daily housekeeping tasks 0.5420 7 

 

4.3. Results and Discussion 

The case study provided the application of the presented decision-support model to identify the 

most effective CLP improvement strategies and quantify their impact on CLP for concrete-pouring 

activities in the building construction project. Experts’ opinion and historical data were collected 

to model the complex CLP environment including the relationships among the factors affecting 

CLP that are mostly interconnected. According to SSCs’ weights derived from the responses of 10 

experts to the questionnaire survey of Figure 4.3, the most critical criteria for selecting CLP 

improvement strategies for the project under study are IC and IF, respectively. It means that the 

first priority of the company is to implement strategies that have greater impact on CLP compared 

to other strategies. The second priority of the company is to implement strategies, which takes less 

time and cost compared to project’s scheduled duration and budget. 
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In Table 4.3, strategy 11, “Develop clear instructions about the equipment used to transport 

materials,” has the highest value of closeness coefficient. This strategy along with strategies – S2, 

S13, S7, S6, S9, and S16 have closeness coefficients above the average. This means these strategies 

are the most effective CLP improvement strategies with respect to SSCs. The impact of these seven 

most effective strategies was quantified by developing an FCM model for CLP, implementing each 

strategy in the model, and determining improved CLP for each strategy. According to Table 4.4, 

strategy 2, “Provide clear instructions to craftsmen on how to complete tasks before their 

execution,” improves CLP by 0.0206 and has the greatest impact on CLP. Recall that CLP is 

defined as the ratio of installed quantity (in cubic meters) to total labour work-hours, therefore if 

the concrete pouring requires 100 labour work-hours per week, implementing this improvement 

strategy will increase the installed quantity of concrete by 100 × 0.0206, or 2.06 cubic meters per 

week. This strategy is supported by Tsehayae and Fayek (2014) and Gurmu and Aibinu (2017), 

whose work identified “Availability of clear work front,” “Adequate job instruction,” and “Clear 

readability of drawings and specifications” as top strategies for improving CLP. Strategy 6, “Train 

labourers to achieve the latest concrete-pouring techniques,” improves CLP by 0.0168 and is the 

second most effective in terms of impact on CLP. This strategy is supported by Archana Menon 

and Varghese (2018) and Hammad et al. (2011) who found “Training crew” and “Expanding 

skilled labourers” to be important strategies for improving construction productivity. Strategy 13, 

“Apply preventive maintenance to heating and air-conditioning systems to make sure they are in 

working order,” strategy 11, “Develop clear instructions about the equipment used to transport 

materials,” strategy 9, “Hold regular meetings with labourers about schedule and remaining tasks,” 

strategy 7, “Perform project team activities,” and strategy 16, “Hire cheap labour for daily 

housekeeping tasks,” are the next most effective strategies, improving project CLP by 0.0150, 

0.0142, 0.0141, 0.0136, and 0.0101, respectively. 

The proposed decision-support model was evaluated using structural validity and behavioral 

validity, as discussed in the methodology section above. Structural validity was conducted by 

evaluating the list of model parameters (i.e., factors influencing CLP, CLP improvement 

strategies) with respect to the relevant literature and the panel of experts who completed surveys 

in various phases of the study. Regarding behavioral validity, behavior of the system was validated 

by the extreme-conditions test that compares the generated behavior of CLP in the FCM model 

before applying any strategies to the behavior of the real system of CLP under the same extreme 
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conditions of CLP factors. First, the upper and lower bounds of factors and CLP need to be defined. 

Since the utilized dataset was normalized between 0 and 1, the upper bound for the factors and 

CLP is 1 and the lower bound is 0. Second, the FCM model is run twice. In the first run, factors 

that positively impact CLP took the extreme high value of 1, and the factors with negative impact 

on CLP took the extreme low value of 0. In this case, the resulting CLP was 0.984, which is close 

to 1, as anticipated. In the second run, positive factors took the extreme low value of 0 and negative 

factors took the high value of 1. The resulting CLP in this case was 0.088, which is close to 0, as 

anticipated. Therefore, the FCM model of CLP revealed a logical behavior when extreme values 

were assigned to the factors affecting CLP. Accordingly, behavioral validity of the proposed FCM 

model of CLP is determined. 

Since CLP is affected by various interconnected factors, such as crew motivation and working 

conditions, it is necessary to consider the causal relationships among the factors and strategies to 

achieve accurate values for the quantified impact of strategies on CLP (Gerami Seresht and Fayek 

2019). Another issue that affects the accuracy of the quantified impact of improvement strategies 

is the consideration of project characteristics in modeling CLP. CLP is a context-specific 

efficiency measure, because the identified factors and their degrees of impact on CLP vary from 

project to project (Heravi and Eslamdoost 2015; Tsehayae and Fayek 2016). Hence, key CLP 

improvement strategies also differ from one project to another. Since statistical methods such as t-

test and regression analysis lack the ability to capture project characteristics and causal 

relationships among various factors, considering the project characteristics and the causal 

relationships among CLP factors made the results of this research more accurate than previous 

studies that used statistical methods to quantify the impact of improvement strategies on CLP. 

4.4. Summary 

This chapter presents the decision-support model for selection the most effective CLP 

improvement strategies. The proposed model is developed through the five following steps: factors 

and strategies identification, ranking strategies, quantifying the strategies’ impact on CLP. In the 

first phase, 16 CLP improvement strategies that correspond to the determined key factors of 

Chapter 3, are determined by expert knowledge. In the second phase, the identified 16 strategies 

are ranked with respect to four criteria, including IC, IF, WA, and IR by integrating two fuzzy 

MCDM methods – fuzzy AHP and fuzzy TOPSIS. In the third phase, An FCM model of CLP was 
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developed for simulating the relationships among the most value-adding CLP factors and 

quantifying the impact on CLP of the selected top-ranked improvement strategies. First, an initial 

FCM model was constructed based on the importance of the most-value adding CLP factors, then 

the strength of causal relation among the factors are quantified by applying RCGA algorithm to 

find an optimal weight matrix based on its global search and generalization ability. Then, each 

improvement strategy is considered in the model, one at a time, in order to determine the 

quantitative effect of each strategy on construction productivity. As a result, the top three most 

effective CLP improvement strategies for concrete activities in building project include (1) 

providing clear instructions to craftspeople on how to complete tasks before their execution, (2) 

training labours to achieve the latest concrete pouring techniques, and (3) applying preventive 

maintenance to heating and air-conditioning systems to make sure they are in working order. 

Finally, the decision-support model is validated by evaluates the list of model parameters, and 

extreme-conditions test. 
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Chapter 5. Conclusions and Recommendations 

 

5.1. Introduction 

This chapter provides the research summary and the academic and industrial contributions of this 

research. This chapter also discusses the limitations of this research and provides recommendations 

for future research and development. 

5.2. Research Summary 

This thesis aimed to fill gaps in construction research regarding prioritizing CLP improvement 

strategies and quantifying their impact on CLP. An extensive review of past research on 

developing systematic models for selection and quantification of CLP improvement strategies 

revealed several gaps: The majority of previous studies have relied on expert knowledge through 

questionnaire surveys and evaluation index methods such as RII to establish the factors that affect 

CLP significantly. Very few studies have attempted to identify the relative importance of CLP 

factors through the use of a data-driven approach such as correlation analysis or feature selection 

(Moselhi and Khan 2012). Data-driven approaches are not dependent on expert knowledge and do 

consider the dynamics of CLP factors and the interconnected relationships among them. Widely 

used data-driven approaches include statistical methods such as regression analysis or correlation-

based feature selection, which are limited by the number of influencing factors and their capability 

to determine the combined impact of influencing factors (Song and AbouRizk 2008). The first 

gap in the current literature of identifying factors affecting CLP is considering the dynamics, 

interconnection, and combined impact of the factors that affect CLP by developing a model which 

is independent on expert knowledge. To achieve optimum productivity in construction projects, it 

is pivotal for management teams to identify the most effective CLP improvement strategies. 

Although several studies have been conducted on identifying key CLP improvement strategies in 

the construction domain, only a few attempted to quantify the impact of improvement strategies 

on CLP. The second gap is that the statistical methods applied in previous studies, such as t-test 

and regression analysis, were not able to consider the causal relationship among CLP improvement 

parameters such as affecting factors, improvement strategies, and CLP. CLP factors are mostly 

interconnected and affect each other. Thus, it is necessary to consider the causal relationship 

among the factors and strategies to achieve accurate values for the quantified impact of strategies 
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on CLP. The third gap is that previous studies selected CLP improvement strategies without 

considering a given project’s characteristics; instead, they selected key improvement strategies 

based on previous research. However, CLP is a context-specific efficiency measure, as the 

identified factors and their degree of impact on CLP vary from project to project (Heravi and 

Eslamdoost 2015; Tsehayae and Fayek 2016). Therefore, key CLP improvement strategies also 

differ from one project to another, and a systematic approach is needed to capture the project 

characteristics and construct the cause-and-effect relationships among CLP improvement 

parameters in order to identify the most effective CLP improvement strategies for a given project. 

To fill the mentioned gaps, the objectives of this research were achieved in four stages as follows. 

5.2.1. The first stage: Literature review 

An extensive literature review was conducted on relevant topics, as described in Chapter 2. First, 

previous studies on developing different methods such as regression techniques, correlation 

analysis, evaluation index methods, and feature selection for identifying the key factors that affect 

CLP were reviewed. Then, previous studies on identifying CLP improvement strategies and 

quantifying the impact of strategies on improving CLP was reviewed. 

5.2.2. The second stage: Identifying the most value-adding CLP factors 

Understanding the factors that affect labour productivity is important for making strategic 

decisions and selecting appropriate CLP improvement strategies (Jalal and Shoar 2019). Chapter 

3first discusses how data preparation steps including normalization, imputing missing values, 

removing factors with zero deviation, and eliminating outliers were applied to improve the 

efficiency of CLP data analysis. Normalization with respect to normal distribution was used to 

scale CLP data into an organized range, and KNN-based imputation method was utilized to impute 

missing values. The Tukey test method was used to detect and eliminate outliers. After the CLP 

data were prepared, the integration of ReliefF algorithm as a filter method and SVM-GA as a 

wrapper method was presented as an HFS model for identifying the most value-adding CLP 

factors. 

5.2.3. The third stage: Identifying and ranking CLP improvement strategies 

After the most value-adding CLP factors were determined, an extensive literature review of past 

studies was conducted to identify various CLP improvement strategies that correspond to the 

determined key factors. As a result, 54 strategies with the potential to improve CLP were identified 
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for 19 factors. The most appropriate strategy among the identified potential strategies was then 

determined for addressing each CLP factor using the knowledge of three experts involved in the 

project under study. As a result, 16 different strategies were identified. These 16 strategies were 

then ranked with respect to four criteria: impact of CLP (IC); implementation feasibility (IF); 

workers’ adaptation (WA); and implementation risk (IR). Thereafter, two fuzzy MCDM methods 

– fuzzy AHP and fuzzy TOPSIS – were integrated in order to rank the CLP improvement 

strategies. Fuzzy AHP was used to determine the relative weights of the four criteria based on 

fuzzy pairwise comparison, and fuzzy TOPSIS was applied to determine the relative importance 

of each strategy and rank the strategies. The combination of fuzzy AHP and fuzzy TOPSIS 

captures experts’ opinion and represents uncertainty and vagueness in the decision-making process 

of CLP improvement strategies selection without involving cumbersome mathematics. In addition, 

the utilized fuzzy MCDM methods support FCM by reducing the number of improvement 

strategies needed for FCM modeling according to various criteria including impact on CLP, 

implementation feasibility, workers’ adaptation, and implementation risk.  

5.2.4. The fourth stage: Quantifying strategies’ impact on CLP 

An FCM model of CLP was developed for simulating the relationships among the most value-

adding CLP factors and quantifying the impact on CLP of the selected top-ranked improvement 

strategies. First, an initial FCM model was constructed based on the importance of the most-value 

adding CLP factors; the strength of causal relation among the factors were then quantified using 

numerical weights. The weights were determined by applying RCGA algorithm to find an optimal 

weight matrix based on its global search and generalization ability. After the strengths of all 

relationships were assessed, each improvement strategy was considered in the model, one at a time, 

in order to determine the quantitative effect of each strategy on construction productivity. The 

developed FCM model takes into account the imprecision and uncertainty of CLP factors as well 

as the causality among them. The proposed methodology considers the causal relationships among 

CLP improvement parameters and captures the perspective of construction experts to consider 

project characteristics and address existing gaps in the CLP improvement strategies literature. 

Therefore, the results of this research are more accurate than previous studies that used statistical 

methods to quantify the impact of improvement strategies on CLP without considering the project 

characteristics and causal relationships among CLP factors. Finally, the proposed model was 

evaluated using (1) structural validity, which evaluates the list of model parameters, and (2) 
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extreme-conditions test that compares the generated behavior of CLP in the FCM model to the 

behavior of the real system of CLP under the same extreme conditions of CLP factors.  

5.3. Research Contributions 

Results of the thesis are expected to make several contributions to (1) the body of knowledge 

(Academic contributions) and (2) practitioners (Industrial contributions), as follows. 

5.3.1. Academic contributions 

The expected academic contributions of this research are: 

 Development of an HFS model by combining ReliefF as a filter method and SVM-GA 

as a wrapper method in order to identify the most value-adding factors that affect CLP. 

The developed HFS model considers the dynamics, interconnection, and combined 

impact of the factors without dependency on expert knowledge. 

 Development of a list of appropriate CLP improvement strategies that correspond to 

addressing the identified most value-adding CLP factors through an extensive literature 

review of past studies in the construction domain. 

 Development of a ranking process for CLP improvement strategies with respect to 

various criteria by integrating two fuzzy MCDM methods – fuzzy AHP and fuzzy 

TOPSIS – in order to determine the most effective CLP improvement strategies for a 

given project. 

 Development of an FCM model that quantifies the impact of various management 

strategies on improving CLP. The proposed model takes into account project 

characteristics and the imprecision and uncertainty of CLP factors in order to capture the 

causal relationships among CLP factors. Thus, the results of this model are more accurate 

than previous studies that used statistical methods to quantify the impact of improvement 

strategies on CLP. 

5.3.2. Industrial contributions 

The expected industrial contributions of this research are: 

 Identification of the most value-adding factors affecting CLP, which helps construction 

companies identify the improvement strategies that correspond to and can address specific 
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identified CLP factors. In addition, this finding provides construction practitioners with 

information about factors that have the highest level of influence on predicting CLP. 

 Identification of the most effective CLP improvement strategies and quantification of their 

impact on CLP, which helps construction management teams allocate their limited budget 

and resources to those strategies that have the greatest impact on CLP. In addition, this 

finding assists construction managers in improving CLP for their projects in an optimum 

manner to reduce variances from the primary plan and keep projects on time and within 

budget. Quantifying the impact of an improvement strategy helps construction companies 

determine the cost savings and time savings achieved by implementing that strategy.  

 Development of a systematic approach for simulating the impact of various management 

practices on CLP of specific projects prior to their implementation. This helps construction 

companies avoid applying management practices that have only subtle impact on CLP for 

given projects. 

5.4. Research Limitations and Recommendations for Future Research 

The following limitations were encountered in the research study, and some recommendations are 

suggested for future work: 

1. The developed HFS model utilizes field data collected for concrete-pouring activities in 

building projects. However, in order to develop a generic model of CLP for different types 

of labour-dependent activities and industrial projects, new data need to be collected. 

Additional investigation with other labour-intensive activities, such as welding, piping, and 

scaffolding, is recommended to further improve the developed HFS model. 

2. The proposed decision-support model that was developed for labour-intensive activities, 

so it cannot accurately quantify the impact of management practices on improving the 

productivity of equipment-intensive activities. Therefore, future research can focus on 

using the proposed methodology to develop an FCM model of multi-factor construction 

productivity, which includes labour, equipment, and materials. 

3. The FCM model of CLP was built using FCM Expert software. Since the results depend 

on the performance of the utilized software, developing the FCM model using other 

software platforms such as Mental Modeler and FCM Tool are recommended.  
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4. Future studies may use structural simplification methods such as clustering of nodes in 

order to simplify the FCM model of CLP and reduce computational complexity.  

5. The decision-support model of this thesis determines the effect of each improvement 

strategy on CLP without considering the existence of other strategies. However, 

improvement strategies are interconnected and synergy among them is expected to exist. 

To overcome the aforementioned limitation, future research may consider the impact of 

improvement strategies on each other using simulation techniques such as fuzzy system 

dynamics to achieve results that are more precise. 

6. A limited number of experts were used to carry out various phases of the developed 

decision-support model. In order to have a more generalized and representative results, 

future studies may utilize a larger sample size in terms of experts. 

7. As a future research, more criteria, such as impact on a company’s key performance 

indicators, schedule risk, and budget risk, can be considered for ranking the CLP 

improvement strategies. Although adding more criteria increases the computational 

complexity of fuzzy MCDM methods and increases the time spent on the survey 

questionnaire, it is expected that the model delivers more accurate results for prioritizing 

improvement strategies as more criteria are considered in the strategy selection process. 

Adding more criteria can also increase the applicability of the proposed decision-support 

model within a broader context, such as the selection of the most effective improvement 

strategies on multi-factor productivity, which includes labour, equipment, and material. 

8. In a future study, researchers may implement the top-ranked improvement strategies to a 

real case study to validate and refine the FCM model of CLP by comparing the generated 

behavior of CLP in the FCM to the behavior of the real system of CLP.  

9. According to the quantified impact of strategies on CLP using the proposed model, future 

studies may focus on comparing the cost of implementing an improvement strategy and 

the cost savings achieved by implementing the same strategy.  
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Appendix A. CLP Factors of the Dataset 

Table A. CLP factors of the dataset 
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No. Factors Linguistic Descriptors Scale of Measure 

1 Crew size small, average, large Integer (Total number of crew members) 

2 Craftsperson education 

Elementary (1), High School 

(2), Technical (3), College 

(4), University (5) 

Categorical (Most frequent category) 

3 Craftsperson on job training poor, fair, good 
Real number (No. trainings attended x 

Duration of Training, hrs) 

4 
Craftsperson technical 

training 
poor, fair, good 

Real number (No. trainings attended x 

Duration of Training, hrs) 

5 Crew composition poor, fair, good 
Proportion (Ratio Journeyman to 

Apprentice to Helper) (1 JR/2 AP) 

6 Crew experience (seniority) poor, fair, good 
Real number (Crew average years of 

experience ) 

7 
Number of languages 

spoken 
low, medium, high 

Integer (Number of languages spoken, 

total for a crew) 

8 
Co-operation among 

craftsperson 
poor, fair, good 1–5 Predetermined rating 

9 
Treatment of craftsperson 

by foreman 
poor, fair, good 1–5 Predetermined rating 

10 Craftsperson motivation low, average, high 1–5 rating 

11 Craftsperson fatigue low, average, high 
Real number (Total worked hours per 

week to Regular work hour per week) 

12 
Craftsperson trust in 

foreman 
poor, fair, good 1–5 Predetermined rating 

13 Team spirit of crew poor, fair, good 1–5 Predetermined rating 

14 Level of absenteeism low, medium, high 

Percentage (% average number of absent 

crew members to total crew size, daily 

average) 

15 Crew turnover low, medium, high Turnover rate (% of crew) 

16 
Discontinuity in crew 

makeup 
small, medium, large 

Real Number (Average occurrence of 

crew member change) 

17 
Level of interruption and 

disruption 
low, medium, high 

Integer (Number of interruption and 

disruption per day) 
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18 
Fairness of work 

assignment 
poor, fair, good 1–5 Predetermined rating 

19 

Crew participation in 

foreman decision-making 

process 

Without explanation (1), 

Joint (2), With (3) 
Categorical (Decision Type) 

20 Crew flexibility low, average, high 1–5 rating 

21 Job site orientation program No (0), Yes (1) Categorical 

22 Job security poor, fair, good 
Integer (Average length of 

unemployment period, months) 

23 Availability of craftsperson poor, fair, good 
Integer (Average number of unmet 

labour demand per crew for a given task) 

24 
Availability of task 

materials 
poor, fair, good 

Real number (Average waiting time for 

getting materials, man-hours) 

25 Quality of task materials poor, fair, good 1–5 Predetermined rating 

26 
Material unloading 

practices 
poor, fair, good 

Real Number (average unloading time, 

min) 

27 
Material movement 

practices (horizontal) 
poor, fair, good Real Number (average distance, m) 

28 
Material movement 

practices (vertical) 
poor, fair, good Real Number (average distance, m) 

29 
Availability of work 

equipment (crane, forklift) 
poor, fair, good 1–5 rating 

30 
Availability of transport 

equipment (man lift) 
poor, fair, good 1–5 rating 

31 Equipment breakdown 
infrequent, frequent, very 

frequent 

Integer (Equipment Type and Average 

number of breakdown occurrence per 

week) 

32 Availability of tools poor, fair, good 
Real number (Average waiting time, 

min) 

33 Sharing of tools low, average, high 
Real number (Number of crews sharing a 

tool) 

34 Quality of tools poor, fair, good 
Real Number (Average no. of tool 

breakdown per week) 

35 Misplacement of tools 
infrequent, frequent, very 

frequent 

Real Number (Average no. of 

misplacement per day) 

36 
Availability of electric 

power 
poor, fair, good 

Real number (Average waiting time, 

min) 
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37 
Availability of extension 

cords 
poor, fair, good 

Real number (Average waiting time, 

min) 

38 Complexity of task low, average, high 1–5 Predetermined rating 

39 Repetitiveness of task low, medium, high 
Real number (ratio of identical work 

tasks qty to the total work task qty) 

40 Total work volume small, medium, large 
Real number (Approved quantity for 

construction) 

41 Level of Rework low, average, high 
Real number (Construction Filed Rework 

Index) 

42 Frequency of Rework 
infrequent, frequent, very 

frequent 

Real number (No. of rework occurrence 

per scope of work) 

43 Task change orders – Extent low, average, high 

Real number (Ratio of approved total 

volume of change order to total work 

volume) 

44 
Task change orders – 

Frequency 
few, some, many 

Real number (No. of occurrence per 

scope of work) 

45 Working condition (noise) low, average, high 1–5 Predetermined rating 

46 
Working condition (dust 

and fumes) 
low, average, high 1–5 Predetermined rating 

47 
Location of work scope 

(distance) 
very close, close, far Real number (distance, m) 

48 
Location of work scope 

(elevation) 
very close, close, far Real number (distance, m) 

49 Congestion of work area low, average, high 
Real number (ratio of actual peak 

manpower to actual average manpower) 

50 Cleanliness of work area poor, fair, good 
Integer (Number of cleaning operations 

per day) 

51 
Foreman Skill and 

Responsibility 
poor, fair, good 1–5 rating 

52 
Fairness in performance 

review of crew by foreman 
poor, fair, good 1–5 Predetermined rating 

53 Change of foremen 
infrequent, frequent, very 

frequent 

Turnover rate (No. of turnovers per 

month) 

54 Span of control low, medium, high 
Integer (Average total number of crews 

per foreman) 

55 Response rate with RFI's poor, fair, good Real number (Response time, hrs) 
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56 
Concrete placement 

technique 

Pump (1), Crane and Bucket 

(2), Direct chute (3) 
Categorical 

57 Structural element 

Columns (1), Footings (2), 

Grade Beams (3), Pile Caps 

(4), Slabs (5), Walls (6) 

Categorical 

58 Change in design drawings 
infrequent, frequent, very 

frequent 

Real number (Ratio of number of 

changed drawings to total number of 

drawings per discipline) 

59 Change in specifications 
infrequent, frequent, very 

frequent 

Real number (Ratio of number of 

changed specifications to total number of 

specification clauses on specific scope) 

60 
Changes in contract 

conditions 

infrequent, frequent, very 

frequent 

Real number (Ratio of number of 

contract conditions changes to total 

number of contract clauses on specific 

scope) 

61 Lack of information 
infrequent, frequent, very 

frequent 

Real number (Number of RFI's per 

month per discipline) 

62 
Approval for building 

permit 
poor, fair, good 

Real number (average process time for 

work or permit approval, months) 

63 
Year of construction (to 

identify relation) 
Year Integer (Year of Construction) 

64 Project level rework 
infrequent, frequent, very 

frequent 
Real number (Project Overall CFRI) 

65 Project level change order low, average, high 

Real number (Ratio approved total cost 

of change order over all project to 

original approved project cost) 

66 Weather (temperature) low, medium, high Real number (˚C) 

67 Weather (precipitation) low, medium, high Real number (mm) 

68 Weather (humidity) low, medium, high Real number (%) 

69 Weather (wind speed) low, medium, high Real number (km/hr) 

70 Variability of weather low, medium, high 1–5 rating 

71 Ground conditions poor, fair, good 1–5 Predetermined rating 

72 Site congestion low, medium, high 
Real number (Ratio free site space to 

total site area) 

73 Width of site access low, medium, high Real number (Width of access, m) 

74 Queue time to access site low, medium, high 
Real number (Average queue time to 

access time, minutes) 

75 Project work times poor, fair, good 1–5 rating 

76 Owner staff on site low, average, high 
Integer (Total number of owner staff on 

site) 
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77 
Approval of shop drawings 

and sample materials 
poor, fair, good 

Real number (Average time taken to 

approve, days) 

78 
Support and administrative 

staff 
poor, fair, good 

Real number (Ratio of support to 

technical staff) 

79 
Level of paper work for 

work approval 
low, medium, high 1–5 rating 

80 

Treatment of foremen by 

superintendent and project 

manager 

poor, fair, good 1–5 Predetermined rating 

81 
Uniformity of work rules by 

superintendent 
poor, fair, good 1–5 Predetermined rating 

82 Availability of labour low, medium, high 
Real number (Unmet labour requirement, 

for the given trade) 

83 

Labour Disputes (legal 

cases between a worker on 

a project) 

low, medium, high 
Real number (Average number of cases 

per project) 

84 Project cost control poor, fair, good 1–5 rating 

85 
Labour productivity 

measurement practice 
poor, fair, good 1–5 Predetermined rating 

86 Quality audits low, average, high 
Real number (Number of inspections per 

month) 

87 Inspection delay poor, fair, good 
Real number (Average delay for 

inspection, min) 

88 Interference poor, fair, good 
Real number (Average number of 

interruption due to interference) 

89 
Out of sequence inspection 

or survey work 
poor, fair, good 

Real number (Number of occurrence per 

week) 

90 
Project Safety plan 

execution 
poor, fair, good 1–5 rating 

91 Safety training poor, fair, good 
Real number (No. trainings attended x 

Duration of Training, hrs) 

92 Safety Inspections low, average, high 
Real number (Number of inspections per 

month) 

93 Safety Audits low, average, high 
Real number (Number of audits per 

month) 

94 Safety Incidents low, average, high 1–5 Predetermined rating 

95 
Equipment/Property 

Damage 

infrequent, frequent, very 

frequent 

Integer (Number of reported 

equipment/property damage incident per 

month) 

96 
Safety Incident 

investigation 
poor, fair, good 1–5 rating 
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97 
Project Safety 

administration and reporting 
poor, fair, good 1–5 Predetermined rating 

98 Risk monitoring and control poor, fair, good 1–5 Predetermined rating 

99 Crisis management poor, fair, good 1–5 Predetermined rating 

100 
Communication between 

different trades 
poor, fair, good 1–5 Predetermined rating 

101 
Availability of 

communication devices 
poor, fair, good 

Real number (ratio of communication 

radio to number of crews, %) 

102 
Hiring practices (open 

shop) 
poor, fair, good 1–5 Predetermined rating 

103 Project team development poor, fair, good 1–5 rating 

104 Project team closeout poor, fair, good 1–5 rating 

105 
Project Environmental 

Assurance 
poor, fair, good 1–5 Predetermined rating 

106 Environmental audits low, average, high 
Real number (Number of inspections per 

month) 

107 Sorting of waste materials poor, fair, good 1–3 Predetermined rating 

108 
Project Environmental 

Control 
poor, fair, good 1–5 Predetermined rating 
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109 Oil price low, average, high Real number (Dollar / barrel) 

110 Oil price fluctuation low, average, high Real number (Weekly price change, %) 

111 Natural gas price low, average, high Real number (Dollar / GJ) 

112 Natural gas fluctuation low, average, high Real number (Weekly price change, %) 
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Appendix B. Survey Questionnaire for Importance of Strategies 

Table B. Survey questionnaire for determining importance of the selected strategies. 

Improvement Strategy IC IF WA IR 

Perform weekly reviews of crew compositions to ensure crew mix is 

per plan 
    

Provide clear instructions to craftspeople on how to complete tasks 

before their execution 
    

Have the same person perform a task several times rather than making 

personnel changes along the way 
    

Schedule regular inspections by the owner team to reduce interventions 

during the project execution 
    

Establish staggered working-hours of labours     

Train labours to achieve the latest concrete pouring techniques     

Perform project team activities     

Cover working area to protect from wind effects and precipitation     

Hold regular meetings with labours about schedule and remained tasks     

Design the processes to eliminate repetitive motion and reduce manual 

labour 
    

Develop clear instructions about the equipment used to transport 

materials 
    

Offer internship and scholarship programs to trade and vocational 

schools to help company's future worker 
    

Apply preventive maintenance to heating and air-conditioning systems 

to make sure they are in working order 
    

Hold meetings in later project stages to discuss transfer of project team 

to future projects of the company 
    

Use a down-hole vibrator that is lowered into the ground to compact 

soils at depth 
    

Hire cheap labour for daily housekeeping tasks     

 


