1	Effect of acceptor carbohydrates on oligosaccharide and polysaccharide synthesis by
2	dextransucrase DsrM from Weissella cibaria
3	Ying Hu ^{a,b)} , Verena Winter ^{a)} , Xiao Yan Chen ^{a)} , Michael G. Gänzle ^{a,b)*}
4	^{a)} University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
5	^{b)} Hubei University of Technology, College of Bioengineering and Food Science, Wuhan, China
6	
7	
8	
9	* corresponding author,
10	Michael Gänzle
11	University of Alberta, Dept. of Agricultural, Food and Nutritional Science
12	4-10 Ag/For Centre
13	Edmonton, AB, Canada, T6G 2P5
14	tel: + 1 780 492 0774
15	e-mail: mgaenzle@ualberta.ca
16	

17 Abstract

18 The digestibility of isomalto-oligosaccharides (IMO) as well as their metabolism by gut microbiota 19 depends on the degree of polymerization and the ratio of α -(1 \rightarrow 4) to α -(1 \rightarrow 6) linkages. Both 20 parameters are influenced by the method of production. Commercial IMO are produced by 21 transglycosylation of starch hydrolysates, or by transglycosylation with dextransucrase and 22 sucrose as glucosyl-donor and maltose as glucosyl-acceptor. This study aimed to quantitatively 23 and qualitatively assess the acceptor reaction with dextransucrase. α -Glucans were selected by 24 systematic variation of degree of polymerization and linkage type; the dextransucrase DsrM from Weissella cibaria 10M was used as biocatalyst. The efficiency of α -glucans as acceptor 25 carbohydrates decreased in the order DP2 > DP3 > DP1; among disaccharides, the efficiency 26 27 decreased in the order α -(1 \rightarrow 6) > α -(1 \rightarrow 4) > α -(1 \rightarrow 3); the α -(1 \rightarrow 2) linked kojibiose did not 28 support oligosaccharide formation. Equimolar addition of efficient acceptor molecules and sucrose 29 shifted the dextransucrase reaction to oligosaccharides as virtually exclusive product. DsrM 30 readily extended a commercial IMO preparation by adding α -(1 \rightarrow 6)-linked glucose moieties. 31 Conversion of commercial IMO by dextransucrase reduced their *in vitro* digestibility as analysed 32 by two different protocols. This study facilitates the synthesis of oligosaccharides produced in the 33 acceptor reaction with dextransucrase with controlled yields and degree of polymerization, and 34 hence with optimal functional properties in food applications.

Keywords. Dextransucrase, dextran, isomalto-oligosaccharides, panose, isomaltose, prebiotic, *in vitro* digestibility.

37

38 Highlights

- **39** α-Glucans are efficient acceptor carbohydrates for dextransucrase DrsM.
- The efficiency of acceptors for DsrM decreased in the order DP2 > DP3 > DP1
- Among disaccharides, the efficiency decreased $\alpha (1 \rightarrow 6) > \alpha (1 \rightarrow 4) > \alpha (1 \rightarrow 3)$
- Equimolar addition of isomaltose and sucrose yielded only oligosaccharides.
- 43 Conversion of commercial IMO by dextransucrase reduced their *in vitro* digestibility

44

45 **1.** Introduction

Non-digestible oligosaccharides are functional food ingredients that confer health benefits through 46 47 metabolism by the gastrointestinal microbiota (Bindels, Delzenne, Cani, & Walter, 2015). 48 Commercial oligosaccharides including fructo-oligosaccharides, galacto-oligosaccharides, xylo-49 oligosaccharides and isomalto-oligosaccharides (IMO) are extracted from natural sources or 50 synthesized by enzymatic methods (Courtois, 2009). IMO consisting of α -(1 \rightarrow 6) linked glucose 51 moieties are the most significant contributor to the global oligosaccharide market (Nakakuki, 52 2002); commercial IMO preparations additionally contain oligosaccharides with mixed α -(1 \rightarrow 4) 53 and α -(1 \rightarrow 6) linkages (Hu, Ketabi, Buchko, & Gänzle, 2013; Goffin et al, 2011; Madsen, Stanley, 54 Swann, & Oswald, 2017).

55 The digestibility of IMO as well as the metabolism by the gut microbiota depend on the degree of 56 polymerization (DP) and the linkage type (Ryan, Fitzgerald, & van Sinderen, 2006; Ketabi, 57 Dieleman & Gänzle, 2011; Gänzle & Follador, 2012; Iwaya et al., 2012, Hu et al., 2013). The 58 method of production determines DP and the linkage type in IMO, and hence the digestibility. 59 Commercial IMO are produced by enzymatic hydrolysis of starch to resistant maltodextrins (van 60 der Maarel, 2002), by enzymatic transglycosylation of starch hydrolysates with α -glucosidase (Pan 61 & Lee, 2005), or by enzymatic transglycosylation with dextransucrase using maltose as glycosyl 62 acceptor (Chen & Gänzle, 2016; Goulas, Cooper, Grandison & Rastall, 2004). In addition to non-63 digestible oligosaccharides, commercial IMO contain the digestible isomaltose and trisaccharides 64 including panose and isomaltotriose for which the digestibility is poorly documented (McCleary, 65 Sloane, Draga, & Lazewska, 2013). Prebiotic properties of commercial IMO, however, were 66 consistently demonstrated in animal and human studies (Ketabi, Dieleman & Gänzle, 2011; Goffin, 67 et al, 2011; Likotrafiti, Tuohy, Gibson & Rastall, 2014; Wang, 2009). IMO are hydrolysed by

brush border isomaltase and digestion depends on oligosaccharide transport across membranes (Hooton, Lentle, Monro, Wickham, & Simpson, 2015). *In vitro* digestibility assays, however, employ amyloglucosidase (McCleary, 2014), which hydrolyses oligosaccharides with α-(1→4) and α-(1→6) linkages (Pazur & Ando, 1960).

72 Transglycosylation of starch hydrolysates allows control of the DP by controlling the extent of 73 starch hydrolysis; however, this also results in an increased ratio of α -(1 \rightarrow 4) linkages. In 74 transglycosylation reactions with dextransucrase as biocatalyst and sucrose and maltose as 75 substrates, the DP is controlled by the choice of the biocatalyst and by the ratio of glycosyl-76 acceptor and glycosyl-donors (Robyt & Eklund, 1983; Shi et al., 2016). Suitable acceptor 77 carbohydrates compete with water and dextran for transfer of the glucose moiety in a 78 concentration-dependent manner (van Hijum, Kralj, Ozimek, Dijkhuizen, & van Geel-Schutten, 79 2006). Reactions with dextransucrase as biocatalyst, sucrose as donor and maltose as acceptor 80 predominantly produce α -(1 \rightarrow 6) linked panose-series oligosaccharides (Shi et al., 2016). In 81 addition to maltose, isomaltose is a suitable acceptor carbohydrate for oligosaccharide synthesis 82 by dextransucrases (Robyt & Eklund, 1983; Shi et al., 2016). Few studies, however, quantified the 83 oligosaccharide yield and acceptor preference of dextransucrase; moreover, oligosaccharide 84 synthesis by combination of starch-based and sucrose-based oligosaccharide synthesis has not 85 been reported. This study therefore aimed to quantitatively and qualitatively assess the acceptor 86 reaction with the dextransucrase DsrM from W. cibaria, which was characterized previously with 87 respect to catalytic properties, dextran formation, and technological functionality of the dextran 88 (Chen et al., 2016; Chen & Gänzle, 2016). α -Glucans were selected by systematic variation of DP 89 and linkage type; moreover, commercial IMO were included in the analysis. Products were 90 analysed by ion exchange chromatography and size exclusion chromatography to characterize

91 products of the reaction. The molecular weight (M_w) of polysaccharides was measured by 92 asymmetric field-flow fractionation (AF4) coupled to multi-angle laser light scattering and the 93 digestibility of oligosaccharides was determined *in vitro* by two methods.

94 **2. Materials and Methods**

95 2.1 Materials

96 Mono- di,- and trisaccharides and dextran standards were purchased from Sigma Aldrich (Oakville,

97 ON, Canada). Escherichia coli BL21 (DE3) was purchased from Invitrogen Co (Carlsbad, US).

98 The commercial isomaltooligosaccharide (IMO) preparation Vitafiber® was provided by

99 BioNeutra Inc. (Edmonton, Canada).

100 2.2 Expression and purification of the recombinant his-tagged DsrM from W. cibaria

101 E. coli BL21 Star (DE3) (Invitrogen) harboring pET28a⁺-dsrM from W. cibaria 10M (Chen et al., 102 2016, Chen & Gänzle, 2016) was cultivated aerobically at 37°C in Luria-Bertani (LB) broth 103 containing 50 mg L⁻¹ kanamycin (Invitrogen). Isopropyl- β -D-thiogalactopyranoside (IPTG) was 104 added to a concentration of 0.2 mM when cultures grew to an OD_{600nm} of 0.6. Cultivation was 105 continued for another 20 h at 20°C and 200 rpm. Cells were harvested by centrifugation, 106 resuspended in phosphate buffered saline (PBS, pH 7.4), and disrupted by ultrasonication. Cell 107 debris was removed by centrifugation at $12,000 \times g$ for 20 min and the supernatant was loaded to 108 a Ni-NTA Spin column (Qiagen) equilibrated with 10mM imidazole in 100 mM PBS and 300 mM 109 NaCl (pH 8.0). The column was washed with 100 mM imidazole in 100 mM PBS and 300 mM 110 NaCl (pH 8.0); DsrM was eluted with elution buffer containing 500 mM imidazole in 100 mM 111 PBS and 300 mM NaCl (pH 8.0). Protein identity was verified by SDS-PAGE analysis of the crude 112 cellular extract and purified DsrM (Figure S1 of the online supplementary material). The protein 113 content was measured by Bradford method using bovine serum albumin as standard.

114 2.3 Dextransucrase enzyme activity assay and optimization of temperature and pH for the

115 acceptor reaction of sucrose and maltose

116 DsrM activity was determined as follows: Purified enzyme was incubated in 25 mM sodium 117 acetate buffer (pH 5.2) containing 1 mM CaCl₂ and 100 mM sucrose. Unless stated otherwise, 118 $1 \,\mu\text{M}$ enzyme was added to reactions. Samples were taken at 5 min intervals and the reaction was 119 stopped by heating to 90°C for 10 min. The concentration of glucose and fructose was determined 120 enzymatically by glucose assay reagent and the Fructose Assay Kit (Sigma-Aldrich). The amount 121 of free glucose represents hydrolysis activity and the amount of fructose represents the total 122 activity of the enzyme. One unit (U) of hydrolysis or total activity corresponds to the release of 1 123 µmol glucose or fructose from 100 mM sucrose in 25 mM sodium acetate (pH 5.2) and 1 mM 124 CaCl₂ at 37 °C, respectively. Transferase activity was calculated as difference between total and 125 hydrolysis activity.

To determine the effect of temperature on the transfer reaction of DsrM with sucrose and maltose as acceptor carbohydrate, enzymatic activities were assayed at pH 5.2 and temperatures ranging from 6 to 42°C. To determine the effect of pH on the transfer reaction of DsrM, the reaction was performed at 30°C in sodium acetate buffers adjusted to pH ranging from 4.0 to 5.2, or in buffer containing 50 mM citric acid and 100 mM Na₂HPO₄ with the pH adjusted to 5.6 to 8.4.

131 2.4 Oligosaccharides synthesis by DsrM with different acceptor carbohydrates

DsrM was incubated with sucrose, melibiose, arabinose, raffinose, galactose, lactose, or the glucose-series acceptors glucose, maltose, isomaltose, nigerose, kojibiose, maltotriose, isomaltotriose as acceptor carbohydrates at 30°C in 25 mM sodium acetate buffer (pH 5.2) containing 1 mM CaCl₂ for 24 h. The enzyme was inactivated by heating at 90°C for 10 min. All enzymatic syntheses and analyses were carried out in duplicate or triplicate biological repeats.

137 2.5 Analysis of oligosaccharides

138 Qualitative analysis of oligosaccharides was performed with high-performance anion-exchange 139 chromatography with pulsed amperometric detection (HPAEC-PAD). Samples were diluted 140 100-fold with water and separated on a Carbopac PA20 column coupled to an ED40 chemical 141 detector (Dionex, Oakville, Canada). Water (A), 0.2M NaOH (B) and 1M NaAc (C) were used as 142 solvents with the following gradient: 0 min, 68.3% A, 30.4% B and 1.3% C; 25 min, 54.6% A, 30.4% 143 B and 15.0% C; 28min, 50% A and 50% C; 31min, 10% A, 73% B and 17% C; followed by re-144 equilibration. Galactose, glucose, fructose, melibiose, sucrose, isomaltose, lactose, kojibiose, 145 nigerose, maltose, raffinose, isomaltotriose, panose, and maltotriose were used as external 146 standards (Table S1 of the online supplementary material). Consistent with IUPAC nomenclature, 147 all oligosaccharides that could be assigned a precise DP by HPAEC-PAD, i.e. oligosaccharides 148 with a DP up to 30, were termed oligosaccharides to differentiate these from polymeric dextran.

Quantification of oligosaccharides was achieved by an Agilent 1200 series LC system (Agilent Technologies, Palo Alto, CA) equipped with a Supelcosil LC-NH₂ column (250mm×4.6mm, 5 μ m, Sigma Aldrich) and coupled to a refractive index (RI) detector. Samples were diluted with acetonitrile / water (50:50, v/v) and eluted with acetonitrile/water 70: 30 (v/v) at a flow rate of 0.8 mL min⁻¹ and 30°C. The reaction products were quantified by using isomaltotriose as external standard. The oligosaccharide yield was calculated as:

155
$$Yield (\%) = 100 \times \frac{mol \ glucose \ transferred \ to \ oligosaccharides}{mol \ glucose \ in \ the \ initial \ substrate \ sucrose}$$

156 2.6 Size distribution of oligosaccharides and polysaccharides produced by DsrM

157 The distribution of oligosaccharides and polysaccharides was analyzed by size exclusion
158 chromatography (SEC) using a Superdex peptide column (GE Healthcare Life Sciences,

159 Mississauga, ON, Canada) that was eluted with water and coupled to a RI detector. The column 160 was calibrated with mono, di, and trisaccharides, and with dextran preparations (Sigma-Aldrich) 161 with a relative M_W of 2800 and 8000. Molar mass determination of dextran was performed with 162 AF4 coupled to multi-angle light scattering (MALS) and RI detectors (Postnova, Salt Lake City, 163 UT, USA). The cellulose membrane (Postnova) of the accumulation wall had a M_W cut off of 10 164 kDa. Poly-styrolsulphonate standard and BSA were used for calibration of detectors. Samples were diluted with 10mM NaCl and injected at a flow rate of 0.2 mL min⁻¹ and a cross flow of 1 mL min⁻ 165 166 ¹ for 6 min. After injection of 50 μ l, the cross flow rate remained constant for 2 min, linearly decreased to 0.1 mL min⁻¹ over 10 min, and was maintained at 0.1 mL min⁻¹ for 10 min. The molar 167 168 mass was determined from the laser scattering signals and RI signal by AF 2000 software (Postnova). The refractive index increment (dn/dc) value of 0.146 ml g⁻¹ was employed (Vilaplana 169 170 & Gilbert, 2010).

171 2.7 Production of oligosaccharides by DsrM with commercial IMO as acceptor

Purified DsrM was incubated with 250 mM sucrose and 3.75%, 7.5%, 15% or 30% (w/v) of a commercial IMO preparation mixture in 25 mM sodium acetate buffer (pH 5.2) containing 1 mM CaCl₂ for 24 h. The enzyme was inactivated and the formation of oligosaccharides was analyzed by HPAEC-PAD. Size distribution of oligosaccharides and dextran was performed by SEC and the molar mass of dextran was measured by AF4 as described above.

177 2.8 In vitro digestibility of oligosaccharides

178 Oligosaccharides were produced with maltose or a commercial IMO as acceptor and 179 dextransucrase was inactivated by heating to 90° C for 10 min. Sucrose, maltose, glucose, and 180 fructose were removed by addition of 10% (v/v) alginate-immobilized commercial baker's yeast 181 (*Saccharomyces cerevisiae*), representing 1% dry yeast biomass, followed by incubation for 24 h 182 at 30°C. Alginate encapsulated yeasts were employed to facilitate removal of yeast by 183 centrifugation at 7000 x g; the supernatant containing oligosaccharides was collected and freeze-184 dried. Removal of monosaccharides, sucrose, and maltose was verified by HPAEC-PAD. The in 185 *vitro* digestibility was determined with two methods. The first method employs pancreatic amylase 186 and amyloglucosidase and was validated to quantify starch digestibility in swine (van Kempen, 187 Regmi, Matte & Zijlstra, 2010). The second method employs brush border enzymes present in the 188 rat intestinal mucosa and was previously used to determine digestibility of IMO in rats (Tsunehiro, 189 Okamoto, Furuyama, Yatake & Kaneko, 1999).

190 2.8.1 Digestion with an enzyme mixture of pancreatin, invertase and amyloglucosidase

191 Freeze dried oligosaccharides (1.000 g) were transferred to a 50-mL tube containing 10 mL pepsin 192 solution, containing 50 mg pepsin (250U/mg), and 50 mg guar gum in 0.05 M HCl (Englyst et al. 193 1999; van Kempen et al, 2010); 5-10 glass beads with 5 mm diameter were also added to the tube. 194 The first digestion step, mimicking the gastric digestion, lasted 30 min at 37°C with agitation at 195 200 rpm. Then 10 mL of 0.25 M sodium acetate solution and 5 mL of enzyme mixture containing 196 0.7 g pancreatin from porcine pancreas (Sigma-Aldrich) (45 U/mg lipase, 42 U/mg amylase and 197 3.0 U/mg protease), 3 mg invertase (Sigma-Aldrich) and 50 µL amyloglucosidase from Aspergillus 198 niger (~300U/mL) (Sigma-Aldrich) were added. The solution was further incubated for 4 h 199 (Englyst et al. 1996; van Kempen et al. 2010). After 4 h, 500 µL of sample was removed, reactions 200 were stopped by addition of 0.5 mL absolute ethanol, and the glucose concentration was measured 201 with a glucose oxidase kit (Megazyme, Bray, Ireland).

202 2.8.2. Digestion with rat intestinal extract

203 This digestion method employs an acetone extract of the rat intestinal mucosa (Sigma-Aldrich).

204 The reaction mixture containing 1 mL sample dissolved in water to 10 g/L, 1 mL of 50 mM sodium

maleate buffer (pH 6.0) with 1 % rat enzyme mixture (Tadashi et al, 2005), and 3-7 glass beads with 5 mm diameter was incubated at 37 °C for 4 h with agitation at 200 rpm. The reaction was stopped by heating to 90 °C for 5 min. The samples were cooled on ice and subsequently centrifuged at 7000 x g for 3 min. The glucose concentration was measured with a glucose oxidase kit (Megazyme).

210 2.9 Statistical analysis

211 Oligosaccharide synthesis and analysis was carried out in duplicate or triplicate independent 212 experiments; results are expressed as means \pm standard deviation, or shown as representative 213 chromatograms. The *in vitro* digestibility was determined in at least 6 independent experiments; 214 results are expressed as means \pm standard error of the mean. Significant differences of the 215 oligosaccharide yield with different acceptor carbohydrates were evaluated by one way analysis 216 of variance (ANOVA) and the Holm-Sidak post hoc analysis and assessed at a 5% probability of 217 error (P < 0.05). Significant differences of the *in vitro* digestibility of oligosaccharides were 218 determined by two way ANOVA and the Holm-Sidak post hoc analysis (P < 0.05).

219 **3. Results**

220 3.1 Effect of pH and temperature on the acceptor reaction of maltose and sucrose by DsrM

To confirm that the optimum pH and temperature for oligosaccharide synthesis correspond to the optimum pH and temperature values for overall enzyme activity (Chen et al., 2016; Chen & Gänzle, 2016), oligosaccharide formation by DsrM was evaluated with sucrose and maltose as glucosylacceptor under different incubation conditions. The concentrations of the sucrose and maltose remaining after 24 h of reaction was lowest after incubation at pH ranging from 4.4 to 5.2. This pH range corresponded to the highest concentration of panose-series oligosaccharides (Fig. S2 of the online supplementary material). Variation of the incubation temperature from 10 to 40°C had no major influence on the yield of panose-series oligosaccharides (Fig. S2B). Sodium acetate
buffer at pH of 5.2 and 30°C were used in all subsequent reactions to match the optimum of DsrM
activity (Chen et al., 2016; Chen & Gänzle, 2016).

231 *3.2 Determination of the efficacy of glucosyl acceptor carbohydrates*

232 To determine the preferred glucosyl-acceptor for DsrM, acceptor reactions were performed with 500 mmol L⁻¹ sucrose and glucose, isomaltose, isomaltotriose, maltose, maltotriose, kojibiose, and 233 234 nigerose as acceptors. Qualitative analysis to obtain information on DP and linkage type of 235 acceptor products was achieved with HPAEC-PAD (Fig. 1 and 2); quantification of the 236 oligosaccharide yields was achieved by HPLC-RI (Table 1). Sucrose consumption was dependent 237 on the acceptor carbohydrate; unreacted sucrose remained in reactions with glucose or kojibiose 238 as acceptors (Fig. 1). Homologous oligosaccharide series were obtained with all acceptor 239 carbohydrates except kojibiose; high oligosaccharide yields were obtained with isomaltose and 240 maltose whereas the lowest oligosaccharides yields were obtained with glucose (Fig. 1 and Table 241 1). Plotting the log(DP) versus the retention time demonstrated linear relationships for all acceptor 242 carbohydrates (Fig. 2). The retention times (Rt) order of disaccharides with different α -linkage 243 types increases in the order α -(1,6), α -(1,2), α -(1,3), and α -(1,4) (Koizumi et al, 1989) (Table S1). 244 Compared with trisaccharides with different α -linkage types, the Rt difference between α -(1 \rightarrow 6)- α -(1 \rightarrow 6) and α -(1 \rightarrow 6)- α -(1 \rightarrow 4) is 3.7 min. The Rt difference between α -(1 \rightarrow 6)- α -(1 \rightarrow 4) and α -245 $(1 \rightarrow 4) - \alpha - (1 \rightarrow 4)$ was 1.9 min. The use of isomaltose, isomaltotriose, and panose as external 246 247 standards and the log-linear relationship of Rt and DP demonstrated that homologous series of 248 oligosaccharides are obtained by α -(1 \rightarrow 6) extension of the acceptor carbohydrate.

The acceptor reaction with glucose showed IMO with DP of 2 - 5 as main products but oligosaccharides with Mw up to DP 30 were also detected (Fig. 1 and 2). With glucose, isomaltose, 251 and isomaltotriose as acceptors, the di-acceptor products were obtained with the highest yield (Fig. 252 1 and Table 1). Products of the acceptor reaction were quantified on a Supelcosil-NH₂-column 253 with RI detection (Table 1). The oligosaccharide yield with isomaltose as acceptor was virtually 254 quantitative, indicating that oligosaccharides are the predominant product of catalysis. The 255 oligosaccharide yield with maltose was 95%, maltotriose and isomaltotriose yielded 39 and 49%, 256 respectively. A yield of 25% was obtained with glucose (Table 1). DsrM thus preferred DP2>DP3>DP1 and disaccharides with linkage type α -(1 \rightarrow 6) > α -(1 \rightarrow 4) > α -(1 \rightarrow 3) > α -(1 \rightarrow 2) 257 258 as acceptor carbohydrates.

259 3.2 Determination of the efficacy of other acceptor carbohydrates

260 Fructose, galactose, lactose, melibiose, raffinose, xylose, and arabinose were also employed in the 261 acceptor reaction. In all these acceptor reactions, small amounts of leucrose, an isomer of sucrose, 262 D-glu- α -(1,5)-D-fructopyranose eluting at 9.4 min, and of IMO were formed, reflecting the 263 availability of fructose and glucose, respectively, as acceptor carbohydrates (Fig. 1, 2, and Fig. S3 264 of the online supplementary data). The formation of leucrose increased in reactions with fructose 265 as acceptor (Fig. S3). Using other non-glucan acceptor carbohydrates, monosaccharides (arabinose, 266 galactose, and xylose) were not effective glucosyl acceptors. Small peaks that possibly reflect 267 monoglycosylation were observed with raffinose, galactose, and arabinose as acceptors; small 268 peaks indicating glucosylation of lactose and melibiose were observed at 13.9 and 13.5 min, 269 respectively. Reactions with sucrose (Figure 2), as well as xylose, galactose, lactose, and melibiose 270 (data not shown) also yielded small amounts of IMO with a DP ranging from 7 to > 25, 271 demonstrating that glucose was a predominant acceptor in these reactions.

272 3.3 Effect of acceptor carbohydrates on yield and size of polysaccharides produced by DsrM.

273 To investigate the effect of different molar ratios of sucrose to maltose or glucose on the DP of the 274 products, the size distribution of poly- and oligosaccharides was analyzed by SEC and AF4. These 275 two methods provide complementary information. Separation on SEC with the Superdex peptide column separates oligosaccharides with a M_W ranging from 10^2 to 10^4 ; AF4 separates 276 polysaccharides with a M_W higher than 10⁴. DsrM reactions with sucrose as sole substrate 277 produced almost exclusively polysaccharides with a relative M_w higher than 10⁴ (Chen et al., 2016 278 279 and data not shown). Addition of maltose or glucose increased the ratio of oligosaccharides to 280 polysaccharides in a dose- and acceptor dependent manner (Figure 3). Oligosaccharides with a M_w 281 lower than 2800 were the main products of sucrose conversion when equimolar concentrations of 282 maltose were present (Fig. 2 and Fig. 3A). Products obtained with glucose had a higher M_W , 283 oligosaccharides with a DP of 7 - 17 were the main products when sucrose and glucose were 284 present in equimolar concentrations (Fig. 1 and 3B).

The size distribution of polysaccharides produced in presence or absence of acceptor carbohydrates was analyzed with AF4-MALS. In the absence of acceptor carbohydrates, DsrM produced dextran with a relative M_W of 2 x 10⁸ (Fig. 4). Addition of glucose as acceptor reduced the yield but not the average M_W of dextran (Fig. 4). In contrast, the relative M_W of dextran produced in presence of maltose acceptor ranged from 10⁵ to 10⁷, demonstrating that the yield as well as the M_W of dextran was reduced.

291 *3.4 Oligosaccharide formation with a commercial IMO preparation as acceptors*

292 Commercial IMO preparations produced from starch consist predominantly of isomaltose-series 293 oligosaccharides with a DP of 2 - 4, and panose series oligosaccharides with a DP of 3 - 5 294 (Goffin et al., 2011; Hu et al., 2013) and are thus partially digestible. To determine whether the 295 M_w of commercial IMO is modified by DsrM, IMO were incubated with 500 mM sucrose and 296 DsrM, and the resulting pattern and yield of oligosaccharides were determined by HPAEC-PAD 297 and SEC, respectively (Fig. 5 and 6). The ratio of IMO to sucrose ranged from 2.5 % w/v IMO to 298 20 % w/v IMO. All reactions produced predominantly oligosaccharides; polymeric dextran was 299 present only at low concentrations, or below the detection limit (Fig. 6). At a low concentration of 300 IMO (2.5%), the main products obtained were IMO (Fig. 5) with a relative M_W higher than 2800 301 (Fig. 5 and 6). With increasing IMO concentration, the average M_W of products was reduced and 302 panose-series oligosaccharides were more prominent products (Fig. 5 and 6). This pattern of 303 products reflect the preferential glycosylation of α -(1 \rightarrow 6) over α -(1 \rightarrow 4) linked disaccharides, and 304 of disaccharides over trisaccharides that was observed with pure compounds (Table 1). When 20% commercial IMO were added as acceptor, IMO-series oligosaccharides with DP of 3 - 7 and 305 panose-series oligosaccharides with DP of 4 - 7 were the major components (Fig. 5 and 6). 306 307 Oligosaccharide analysis by HPAEC-PAD and SEC thus consistently demonstrated that the 308 conversion of commercial IMO with DsrM and sucrose allows the controlled extension of the DP 309 by 2 - 5; the increase of the M_W can be controlled by the ratio of IMO to sucrose.

310 *3.4* In vitro *digestibility of oligosaccharides produced by dextransucrase*

311 Sucrose, maltose, and isomaltose are digestible disaccharides but the digestibility of IMO and 312 panose-series oligosaccharides with a DP of 3 or higher is unknown. The *in vitro* digestibility of 313 acceptor products obtained with maltose and the commercial IMO was compared to the acceptor 314 carbohydrates with two in vitro methods (Figure 7). Maltose and resistant maltodextrins were used 315 as digestible and non-digestible controls, respectively (Figure 7). Commercial IMO were partially 316 digestible with both methods. Extension of the commercial IMO with DsrM significantly reduced 317 their digestibility (P=0.011). Remarkably, the digestibility of panose-series oligosaccharides was 318 not different from maltose when amyloglucosidase was present but the same oligosaccharides were

319 only partially digestible when intestinal brush border enzymes α -glucosidases were used to 320 simulate digestion (Figure 7).

321 **4. Discussion**

This study qualitatively and qualitatively assessed the acceptor reaction of DsrM from *W. cibaria* through systematic variation of acceptor carbohydrates differing in DP and linkage type. Multiple chromatographic methods identified and quantified oligosaccharides and polysaccharides produced by DsrM, and determined their DP. The digestibility of reaction products was evaluated *in vitro*. Results extend current knowledge on the acceptor reaction of dextransucrases, and improve the toolset for tailored production of oligosaccharides with specific molecular weight distribution and digestibility.

329 The transfer reaction of dextransucrase yields polysaccharides or oligosaccharides depending on 330 the type and concentration of acceptor carbohydrates. Dextransucrase activity in presence of 331 sucrose only yields predominantly dextran; suitable acceptor carbohydrates shift the reaction to 332 oligosaccharides (Robyt and Eklund, 1983; Demuth et al., 2002; Shi et al., 2016). Accordingly, 333 glucose and α -linked disaccharides composed of glucose were suitable acceptors for DsrM. 334 Quantitation of oligosaccharides after systematic variation of linkage type and DP of acceptor 335 products, and assessment of the molecular weight distribution of oligo- and polysaccharides 336 demonstrated that isomaltose was the most efficient acceptor carbohydrate for oligosaccharide 337 synthesis. This contrasts prior observations with dextransucrases from *Leuconostoc* spp. (Robyt 338 and Eklund, 1983; Demuth et al., 2002; Shi et al., 2016) and may relate to differences between 339 dextransucrases from W. cibaria and L. mesenteroides (Chen & Gänzle, 2016). The use of 340 trisaccharides as acceptors decreased the transglycosylation efficiency. Conditions that match the 341 optimum of the maltose acceptor reaction rate for L. mesenteroides dextransucrase, 0.5 M maltose

and 0.5 M sucrose (Robyt and Eklund, 1983, Heincke, Demuthy, Jördening & Buchholz, 1999;
Shi et al, 2016), allowed fast conversion of sucrose; however, a residue of the acceptor
carbohydrate remained.

Separation of homologous series of gluco-oligosaccharides by HPAEC-PAD provides a log-linear relationship of degree of polymerization and the retention factor k (the ratio of the adjusted retention time and the void volume) (Koizumi, Kubota, Tanimoto, & Okada, 1989; Demuth et al., 2002). Corresponding analysis demonstrated that DsrM synthesizes homologous series of oligosaccharides with different acceptors with minimal formation of branched oligosaccharides that were observed with the recombinant dextransucrase E392-rDSR from *W. confusa* (Shi et al., 2016).

352 The efficient acceptors maltose and isomaltose produced oligosaccharides with a DP ranging from 353 3-10 with a high yield while maltotriose, isomaltotriose, glucose, and nigerose generated lower 354 oligosaccharide yields but generated oligosaccharides with a higher DP (Table 1, Fig 1 and Fig. 355 2). The molecular weight of dextran produced by DsrM was not only related to the type of acceptor 356 but also to its concentration. The use of maltose and sucrose in equimolar concentrations virtually 357 abolished dextran formation and resulted in a strongly reduced molecular weight of the dextran 358 formed; in contrast, the use of glucose and sucrose in equimolar concentrations decreased the yield 359 of dextran formation but not the molecular weight of the polysaccharide (Fig. 3 and Fig. 4). Taken 360 together, our analyses provide an unprecedented control of the yield and DP of poly- and 361 oligosaccharides produced in the acceptor reaction with dextransucrase, and hence their functional 362 properties in food applications.

The use of starch as a relatively cheap substrate in commercial production of IMO leads to products with a substantial proportion of disaccharides (Hu et al., 2013; Madsen et al., 2017) which are

17

365 excluded from the U.S. definition of dietary fibre and are partially digestible (Hooton et al., 2015; 366 Anonymous, 2016). Moreover, the current AOAC method for quantification of dietary fibre in 367 foods does not account for (commercial) IMO because amyloglucosidase degrades α -(1 \rightarrow 4) as 368 well as α -(1 \rightarrow 6) linked gluco-oligosaccharides (McCleary et al., 2013; McCleary, 2014). The 369 combination of the conversion of starch and sucrose as substrates for IMO production may be 370 advantageous because it includes starch as a cheap carbohydrate source but additionally allows 371 modification of DP and linkage type through the dextransucrase acceptor reaction. This study 372 provided proof of concept for this approach by employing a commercial IMO preparation as 373 acceptor for DsrM (Hu et al., 2013; Madsen et al., 2017). Because isomaltose and panose are 374 efficient acceptor carbohydrates for dextransucrases (Shi et al., 2016; Table 1 and Fig. 2), 375 commercial IMO were efficient as acceptors for DsrM. Addition of 30% commercial IMO as 376 acceptor minimized dextran synthesis and yielded isomaltose-series oligosaccharides with DP of 3 - 7 and panose-series oligosaccharides with DP of 4 - 7 as major components (Fig. 5 and 6). 377 378 Human studies on the digestibility of commercial IMO demonstrate that these are partially digested 379 and absorbed in the small intestine while other components are fermented by the intestinal 380 microbiota (Kohmoto et al, 1992; Oku & Nakamura, 2003), however, the digestibility of individual 381 components of commercial IMO remains poorly documented. Current methods for determination 382 of starch digestibility *in vitro* employ amyloglucosidase in addition to pancreatic enzymes (Englyst 383 et al., 1996; van Kempen et al., 2010) and may thus not be suitable for IMO. The use of intestinal 384 extracts from pigs or rats in *in vitro* digestion protocols was proposed to more accurately reflect 385 the digestibility of IMO by brush border α -glucosidases (Tsunehiro et al., 1999; McCleary et al., 386 2013; Tanabe, Nakamura & Oku, 2014). α -Glucosidases from pancreatin are highly specific for α -387 $(1\rightarrow 4)$ linked glucosides (Champ, Martin, Noah, & Gratas, 1999) while brush border

388 α -glucosidases also recognize isomaltose as a substrate (Tsunehiro et al., 1999; Tanabe et al., 2014). 389 This study compared the digestibility of commercial IMO and panose-series oligosaccharides by 390 two *in vitro* methods employing pancreatic enzymes and amyloglucosidase, or intestinal α -391 glucosidases. In keeping with prior observations, maltose and resistant maltodextrins were 392 digestible and indigestible, respectively. Commercial IMO were approximately 50% digestible; 393 when accounting for differences in product composition, this value conforms reasonably well to 394 the digestibility of commercial IMO that was observed in human volunteers (Kohmoto et al, 1992; 395 Oku & Nakamura, 2003). The digestibility of the dextransucrase-extended commercial IMO was 396 significantly reduced in comparison to commercial IMO. The discrepancy between the *in vitro* 397 digestibility of commercial and experimental IMO in protocols employing pancreatic enzymes and 398 amyloglucosidase, or intestinal enzymes, was related to the digestibility of panose-series 399 oligosaccharides. Panose and panose series oligosaccharides are hydrolysed by amyloglucosidase 400 but are digested more slowly than maltose by α -glucosidases from the pig or rat intestine 401 (McCleary et al., 2013; this study). Moreover, both amyloglucosidase and brush border enzymes 402 hydrolyze α -(1 \rightarrow 6) linked oligosaccharides, however, brush border isomaltase is confined to 403 membrane vesicles and their activity is limited by the membrane permeability of the substrates 404 (Hooton et al., 2015; Tanabe et al., 2014). The *in vivo* digestibility of oligosaccharides with defined 405 molecular weight, however, remains to be determined.

In conclusion, the efficiency of α -glucans as acceptor carbohydrates for DsrM of *W. cibaria* decreases in the order DP2 > DP3 > DP1; among disaccharides, the efficiency decreases in the order α -(1 \rightarrow 6) > α -(1 \rightarrow 4) > α -(1 \rightarrow 3); the α -(1 \rightarrow 2) linked kojibiose does not support oligosaccharide formation in the acceptor reaction of DsrM. Equimolar addition of efficient acceptor molecules and sucrose shifted the dextransucrase reaction to oligosaccharides as virtually 411 exclusive product. In keeping with the observation that α -(1 \rightarrow 6) linked di- and trisaccharides are 412 efficient acceptor carbohydrates, DsrM readily extended commercial IMO by adding one to three 413 α -(1 \rightarrow 6)-linked glucose moieties. Conversion of commercial IMO by dextransucrase reduced their 414 *in vitro* digestibility. However, *in vivo* data on the digestibility of tri- and tetrasaccharides with α -415 (1 \rightarrow 6) is insufficient (Kohmoto et al, 1992; Oku & Nakamura, 2003) and *in vitro* protocols to 416 determine digestibility provide conflicting results depending on the enzyme source.

417 Acknowledgements. The National Science and Engineering Research Council of Canada
418 (NSERC) and BioNeutra Inc. are acknowledged for financial support under the Collaborative
419 Research and Development program.

420 **References**

- 421 Anonymous, 2016. *Code of Federal Regulations Title 21, Volume 2* 21CFR101.9.
- Bindels, L.B., Delzenne, N.M., Cani, P.D., & Walter, J. (2015) Towards a more comprehensive
 concept for prebiotics. *Nature Reviews Gastroenterology & Hepatology 12*, 303–310.
- 424 Champ, M., Martin, L., Noah, L., & Gratas, M. (1999). Analytical Methods for Resistant Starch.
- 425 In Susan Sungsoo Cho, Leon Prosky, & Mark Dreher (Eds.), Complex Carbohydrates in Foods
- 426 (pp. 159–175). Marcel Dekker, Inc.
- 427 Chen, X.Y. & Gänzle, M.G. (2016). Site directed mutagenesis of dextransucrase DsrM from
 428 Weissella cibaria: Transformation to a reuteransucrase. Journal of Agricultural and Food
 429 Chemistry, 64, 6848-6855.
- 430 Chen, X.Y., Levy, C. & Gänzle, M.G. (2016). Structure-function relationships of bacterial and
- 431 enzymatically produced reuterans and dextran in sourdough bread baking application.
- 432 International Journal of Food Microbiology 239, 95-102.

20

- 433 Courtois, J. (2009). Oligosaccharides from land plants and algae: production and applications in
 434 therapeutics and biotechnology. *Current Opinion in Microbiology*, *12*, 261-73.
- 435 Demuth, K., Jördening, H.J., & Buchholz, K. (2002) Oligosaccharide synthesis by dextransucrase:
- 436 new unconventional acceptors. *Carbohydrate Research*, 337, 1811-1820.
- 437 Englyst, H. N., Veenstra, J., & Hudson, G. J. (1996). Measurement of rapidly available glucose (RAG)
- 438 in plant foods: a potential in vitro predictor of the glycaemic response. *The British Journal of Nutrition*,
 439 75, 327–337.
- 440 Gänzle, M.G., & Follador, R. (2012). Metabolism of oligosaccharides in lactobacilli: a review.
- 441 Frontiers in Microbiology, 3, 340.
- 442 Goffin, D., Delzenne, N., Blecker, C., Hanon, E., Deroanne, C., & Paquot, M. (2011) Will
- 443 isomalto-oligosaccharides, a well-established functional food in Asia, break through the European
- 444 and American market? The status of knowledge on these prebiotics. *Critical Reviews in Food*
- 445 *Science and Nutrition*, *51*, 394–409.
- 446 Goulas, A.K., Cooper, J.M., Grandison, A.S., Rastall, R.A. (2004). Synthesis of
- 447 isomaltooligosaccharides and oligodextrans in a recycle membrane bioreactor by the combined use of
- 448 dextransucrase and dextranase. *Biotechnology and Bioengineering*, 88, 778-787.
- 449 Heincke, K., Demuthy, B., Jördening, H.J., & Buchholz, B. (1999). Kinetics of the
- 450 dextransucrase acceptor reaction with maltose experimental results and modeling. *Enzyme and*
- 451 Microbial Technology, 24, 523-534.
- 452 Hooton, D., Lentle, R., Monro, J., Wickham, M., & Simpson, R. (2015). The secretion and action
- 453 of brush border enzymes in the mammalian small intestine. *Reviews in Physiology, Biochemistry*
- 454 *and Pharmacology*, *168*, 59-118.

- Hu, Y., Ketabi, A., Buchko, A., & Gänzle, M.G. (2013). Metabolism of isomalto-oligosaccharides
 by *Lactobacillus reuteri* and bifidobacteria. *57*, 108-114.
- 457 Iwaya, H., Lee, J.S., Yamagishi, S., Shinoki, A., Lang, W., Thawornkuno, C., Kang, H.K.,
- 458 Kumagai, Y., Suzuki, S., Kitamura, S., Hara, H., Okuyama, M., Mori, H., Kimura, A., & Ishizuka,
- 459 S. (2012). The delay in the development of experimental colitis from isomaltosyloligosaccharides
- 460 in rats is dependent on the degree of polymerization. *PLoS One*, *7*, e50658.
- 461 Ketabi, A., Dieleman, L.A., & Gänzle, M.G. (2011) Influence of isomalto-oligosaccharides on
- 462 intestinal microbiota in rats. *Journal of Applied Microbiology*, *110*, 1297-1306.
- 463 Kohmoto, T., Tsuji, K., Kaneko, T., Shiota, M., Fukui, F., Takaku, H., Nakagawa, Y., Ichikawa,
- 464 T., & Kobayash, S. (1992). Metabolism of ¹³C-isomaltooligosaccharides in healthy men.
- 465 Bioscience, Biotechnology and Biochemistry, 56, 937-940.
- 466 Koizumi, K., Kubota, Y., Tanimoto, T., & Okada Y. (1989). High-performance anion-exchange
- 467 chromatography of homogeneous D-gluco-oligosaccharides and -polysaccharides
- 468 (polymerization degree greater than or equal to 50) with pulsed amperometric detection. *Journal*
- 469 *of Chromatography*, 464, 365-373.
- 470 Likotrafiti, E., Tuohy, K.M., Gibson, G.R., Rastall, R.A. (2014) An in vitro study of the effect of
- 471 probiotics, prebiotics and synbiotics on the elderly faecal microbiota. *Anaerobe*, 27, 50-55.
- 472 Madsen, L.R., Stanley, S., Swann, P., & Oswald, J. (2017). A survey of commercially available
- 473 isomaltooligosaccharide-based food ingredients. *Journal of Food Science*, 82, 401-408.
- 474 McCleary, B.V., DeVries, J.W., Rader, J.I., Cohen, G., Prosky, L., Mugford, D.C., & Okuma, K.
- 475 (2012). Determination of insoluble, soluble, and total dietary fiber (CODEX definition) by

- 476 enzymatic-gravimetric method and liquid chromatography: collaborative study. *Journal of the*
- 477 Association of Analytical Chemists International, 95, 824-844.
- 478 McCleary, B.V., Sloane, N., Draga, A., & Lazewska, I. (2013). Measurement of total dietary
- 479 fiber using AOAC Method 2009.01 (AACC International Approved Method 32-45.01):
- 480 Evaluation and updates. *Cereal Chemistry*, 90, 396–414
- 481 McCleary, B.V. (2014) Modification to AOAC official methods 2009.01 and 2011.25 to allow for
- 482 minor overestimation of low molecular weight soluble dietary fiber in samples containing starch
- 483 Journal of the Association of Analytical Chemists International, 97, 896-901.
- 484 Nakakuki, T. (2002). Present status and future of functional oligosaccharide development in Japan.
- 485 *Pure Applied Chemistry*, *74*, 1245–1251.
- 486 Oku, T. & Nakamura, S. (2003). Comparison of digestibility and breath hydrogen gas excretion
- 487 of fructo-oligosaccharide, galactosylsucrose, and isomalto-oligosaccharide in healthy human
- 488 subjects. *European Journal of Clinical Nutrition*, 57, 1150–1156.
- 489 Pan, Y.C., & Lee, W.C. (2005) Production of high-purity isomalto-oligosaccharides syrup by the
- 490 enzymatic conversion of transglucosidase and fermentation of yeast cells. *Biotechnology and*491 *Bioengineering*, 89, 797-804.
- 492 Pazur, J.H., & Ando, T. (1960). The hydrolysis of glucosyl oligosaccharides with α -D-(1 \rightarrow 4) and
- 493 α -D-(1 \rightarrow 4) bonds by fungal amyloglucosidase. *Journal of Biological Chemistry*, 235, 297-302.
- 494 Robyt, J.F., & Eklund, S.H. (1983). Relative, quantitative effects of acceptors in the reaction of
- 495 *Leuconostoc mesenteroides* B-512F dextransucrase. *Carbohydrate Research, 16, 279-286.*
- 496 Ryan, S.M., Fitzgerald, G.F., &van Sinderen, D. (2006). Screening for and identification of starch-,
- 497 amylopectin-, and pullulan-degrading activities in bifidobacterial strains. Applied and
- 498 Environmental Microbiology 72, 5289–5296.

- 499 Shi, Q., Hou, Y., Juvonen, M., Tuomainen, P., Kajala, I., Shukla, S., Goyal, A., Maaheimo, H.,
- 500 Katina, K., & Tenkanen, M (2016). Optimization of isomaltooligosaccharide size distribution by
- 501 acceptor reaction of *Weissella confusa* dextransucrase and characterization of novel α -(1 \rightarrow 2)-
- 502 branched isomaltooligosaccharides. *Journal of Agricultural and Food Chemistry*, 64, 3276-3286.
- 503 Tanabe, K., Nakamura, S., & Oku T. (2014). Inaccuracy of AOAC method 2009.01 with
- 504 amyloglucosidase for measuring non-digestible oligosaccharides and proposal for an
- 505 improvement of the method. *Food Chemistry 151*, 539-546.
- 506 Tsunehiro, J., Okamoto, K., Furuyama, Y., Yatake, T. & Kaneko, T. (1999). Digestibility of the
- 507 hydrogenated derivative of an isomaltooligosaccharide mixture by rats. *Bioscience Biotechnology*
- 508 Biochemistry, 63, 1515-1521.
- 509 Van der Maarel, M.J.E.C., van der Veen, B., Uitdehaag, J.C.M., Leemhuis, H., & Dijkhuizen, L.
- 510 (2002). Properties and applications of starch-converting enzymes of the α-amylase family. *Journal*
- 511 of Biotechnology, 94, 137-155.
- 512 van Hijum, S.A., Kralj, S., Ozimek, L.K., Dijkhuizen, L., & van Geel-Schutten, I.G. (2006).
- 513 Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid
- 514 bacteria. *Microbiology and Molecular Biology Reviews* 70, 157-176.
- 515 van Kempen, T.A.T.G., Regmi, P.R., Matte, J.J. & Zijlstra, R.T. (2010). In vitro starch digestion
- 516 kinetics, corrected for estimated gastric emptying, predict portal glucose appearance in pigs. Journal
- 517 *of Nutrition, 140, 1227–1233.*
- 518 Vilaplana, F., & Gilbert, R.G. (2010). Characterization of branched polysaccharides using multiple-
- 519 detection size separation techniques. *Journal of Separation Science*. 33, 3537–3554.
- 520 Wang, Y. (2009). Prebiotics: Present and future in food science and technology. Food Research
- 521 *International*, 42, 8-12.

Figure legends.

Figure 1. Analysis of gluco-oligosaccharides produced by recombinant dextransucrase DsrM by HPAEC-PAD. Oligosaccharides were produced by incubation of DsrM for 24 h with 500 mM of sucrose and 500 mM of acceptor carbohydrates indicated in the panels. Peaks that were identified by external standards are labeled; arrows indicate oligosaccharides that were obtained by successive α -(1 \rightarrow 6)-glucosyl transfer. Minor peaks are amplified fourfold as gray inlets. The chromatograms represent two biological repeats.

Figure 2. HPAEC-PAD analysis of oligosaccharides produced by recombinant dextransucrase DsrM. The log-transformed degree of polymerization is plotted against K. Lines were obtained by linear regression; all correlation coefficients (r^2) were greater than 0.999. Identical graphs were obtained with glucose, isomaltose, or isomaltotriose as acceptors and only one representative graph is shown. The product with the smallest molecular weight represents the mono-acceptor product of the series with DP2, 3, or 4 depending on the acceptor carbohydrate. Acceptor products obtained with glucose.

Figure 3. Effect of maltose (Panels A and C) and glucose (Panels B and D) on the size distribution of isomaltooligosaccharides (Panels A and B) and α -glucans (Panels C and D) produced in enzymatic reactions with DsrM for 24 h. Reactions were conducted with 500 mM sucrose and the acceptor concentration indicated on the x-axis. Enzymatic reactions were analysed by HPSEC-RI with glucose, lactose, raffinose and dextrans as external standards; peaks were integrated as α -glucans with M_w of more than 8000 (\bullet/\Box), as α -glucans with Mw of 2800 to 8000 (\bullet/\odot), and as oligosaccharides with M_w between 500 to 2800 (\bullet) or 300 to 2800 (Δ). Data are shown as means \pm standard deviation of two independent experiments analyzed in duplicate.

Figure 4. Cumulative weight distribution of dextran produced by DsrM with 500 mM sucrose and no acceptor sugar (\bigcirc), 500 mM maltose (\blacktriangle), or 500 mM glucose (\bigcirc) for 24 h in the presence of 500 mM sucrose. The molecular weight distribution was analyzed by asymmetric field-flow fractionation coupled with multi angle laser scattering detector.

Figure 5. Effect of the concentration of isomaltooligosaccharides on the formation of oligosaccharides. Enzymatic reactions used DsrM for 24 h in the presence of 500 mM sucrose and different concentrations of a commercial IMO preparation as acceptor carbohydrate. Separation of the IMO preparation is shown in the upper panel as reference. Enzymatic reactions were analyzed by HPAEC-PAD. Peaks that were identified by external standards are indicated. Chromatograms are representative of two independent experiments.

Figure 6. Size distribution of isomaltooligosaccharides (**Panel A**) and α -glucans (**Panel B**) produced in enzymatic reactions with DsrM for 24 h. Reactions were conducted with 500 mM sucrose and a commercial IMO preparation as acceptor at concentration indicated on the x-axis. Enzymatic reactions were analysed by HPSEC-RI with glucose, lactose, raffinose and dextrans as external standards; peaks were integrated as α -glucans with M_w of more than 8000 (**•**), as α -glucans with Mw of 2800 to 8000 (**•**), and as oligosaccharides with M_w between 500 to 2800 (**△**). Data are shown as means \pm standard deviation of two independent experiments analyzed in duplicate.

Figure 7. Digestibility of commercial isomaltooligosaccharides, panose-series oligosaccharides, and commercial IMO after $(1\rightarrow 6)$ -extension in the dextransucrase acceptor reaction. Maltose and resistant maltodextrin were used as digestible and non-digestible controls, respectively. The digestibility was determined using two *in vitro* methods employing α -glucosidases derived from a rat intestinal extract (black bars) or pancreatic enzymes and amyloglycosidase (gray bars). Values

for different oligosaccharides that were obtained with the same *in vitro* protocols and do not share a common superscript differ significantly (P < 0.05). Values for the same oligosaccharides that were obtained with the two *in vitro* protocols differ significantly (P < 0.05) if marked by an asterisk.

Table 1. Effect of acceptor carbohydrates on the yield of oligosaccharides in the acceptor
reaction analyzed by HPLC. Data are shown as means \pm standard deviation of two biological
repeats. Values in the same row differ significantly ($P < 0.05$) if they do not share a common
superscript.

(mM) ^a	glucose	maltose	isomaltose	nigerose	maltotriose	isomaltotriose
DP3	7.2 ± 1.3^{d}	31.9 ± 3.8^{b}	46.0 ± 2.3^{a}	$18.6 \pm 1.0^{\circ}$	n/a	n/a
DP4	6.4 ± 0.5^{e}	$29.8 \pm 2.6^{\text{b}}$	50.2 ± 2.5^{a}	28.6 ± 0.3^{b}	$23.4 \pm 0.3^{\circ}$	12.7 ± 0.5^{d}
DP5	4.8 ± 0.5^{e}	27.4 ± 1.9^{b}	40.5 ± 1.9^{a}	26.6 ± 0.2^{b}	12.0 ± 0.1^{d}	$16.5 \pm 0.2^{\circ}$
DP6	1.7 ± 0.7^{e}	28.2 ± 0.8^{a}	24.9 ± 1.0^{b}	10.7 ± 0.2^{d}	$13.2 \pm 0.3^{\circ}$	$12.8 \pm 0.3^{\circ}$
DP7	1.7 ± 0.6^{e}	19.2 ± 0.1^{a}	16.7 ± 0.5^{b}	6.2 ± 0.1^{d}	$10.5 \pm 0.4^{\circ}$	$11.1 \pm 0.0^{\circ}$
DP8	$2.7 \pm 0.2^{\rm f}$	$8.5 \pm 0.4^{\circ}$	10.4 ± 0.2^{a}	4.5 ± 0.1^{e}	5.5 ± 0.2^{d}	9.3 ± 0.0^{b}
DP9	2.1 ± 0.2^{d}	$4.3 \pm 0.3^{b,c}$	7.7 ± 0.8^{a}	4.8 ± 0.0^{b}	$3.7 \pm 0.0^{\circ}$	7.5 ± 0.1^{a}
DP10	2.1 ± 0.4^{b}	2.1 ± 0.1^{b}	2.3 ± 0.5^{b}	$0.7 \pm 0.0^{\circ}$	$2.8 \pm 0.1^{a,b}$	3.3±0.1ª
Yield of OS (%) ^b	25 %	95%	110 %	59 %	39%	49%

^a The dn/dc obtained for isomaltotriose was used to calculate the concentration of other α -glucooligosaccharides.

^bThe oligosaccharide yield was calculated as

 $Yield \ (\%) = 100 \frac{mol \ glucose \ transferred \ to \ oligosaccharides}{mol \ glucose \ in \ the \ initial \ substrate \ sucrose}$

Figure 1. Analysis of gluco-oligosaccharides produced by recombinant dextransucrase DsrM by HPAEC-PAD. Oligosaccharides were produced by incubation of DsrM for 24 h with 500 mM of sucrose and 500 mM of acceptor carbohydrates indicated in the panels. Peaks that were identified by external standards are labeled; arrows indicate oligosaccharides that were obtained by successive α -(1 \rightarrow 6)-glucosyl transfer. Minor peaks are amplified fourfold as gray inlets. The chromatograms represent two biological repeats.

Figure 2. HPAEC-PAD analysis of oligosaccharides produced by recombinant dextransucrase DsrM. The log-transformed degree of polymerization is plotted against K. Lines were obtained by linear regression; all correlation coefficients (r^2) were greater than 0.999. Identical graphs were obtained with glucose, isomaltose, or isomaltotriose as acceptors and only one representative graph is shown. Acceptor products obtained with sucrose were superimposed with acceptor products obtained with glucose.

Figure 3. Effect of maltose (**Panels A and C**) and glucose (**Panels B and D**) on the size distribution of isomaltooligosaccharides (**Panels A and B**) and α -glucans (**Panels C and D**) produced in enzymatic reactions with DsrM for 24 h. Reactions were conducted with 500 mM sucrose and the acceptor concentration indicated on the x-axis. Enzymatic reactions were analysed by HPSEC-RI with glucose, lactose, raffinose and dextrans as external standards; peaks were integrated as α -glucans with M_W of more than 8000 (\blacksquare/\Box), as α -glucans with Mw of 2800 to 8000 (\bullet/\circ), and as oligosaccharides with M_W between 500 to 2800 (\blacktriangle) or 300 to 2800 (Δ). Data are shown as means \pm standard deviation of two independent experiments analyzed in duplicate.

Figure 4. Cumulative weight distribution of dextran produced by DsrM with 500 mM sucrose and no acceptor sugar (\bigcirc), 500 mM maltose (\blacktriangle), or 500 mM glucose (\bigcirc) for 24 h in the presence of 500 mM sucrose. The molecular weight distribution was analyzed by asymmetric field-flow fractionation coupled with multi angle laser scattering detector.

Figure 5. Effect of the concentration of isomaltooligosaccharides on the formation of oligosaccharides. Enzymatic reactions used DsrM for 24 h in the presence of 500 mM sucrose and different concentrations of a commercial IMO preparation as acceptor carbohydrate. Separation of the IMO preparation is shown in the upper panel as reference. Enzymatic reactions were analyzed by HPAEC-PAD. Peaks that were identified by external standards are indicated. Chromatograms are representative of two independent experiments.

Figure 6. Size distribution of isomaltooligosaccharides (**Panel A**) and α -glucans (**Panel B**) produced in enzymatic reactions with DsrM for 24 h. Reactions were conducted with 500 mM sucrose and a commercial IMO preparation as acceptor at concentration indicated on the x-axis. Enzymatic reactions were analysed by HPSEC-RI with glucose, lactose, raffinose and dextrans as external standards; peaks were integrated as α -glucans with M_W of more than 8000 (**■**), as α -glucans with Mw of 2800 to 8000 (**●**), and as oligosaccharides with M_W between 500 to 2800 (**▲**). Data are shown as means \pm standard deviation of two independent experiments analyzed in duplicate.

Figure 7. Digestibility of commercial isomaltooligosaccharides, panose-series oligosaccharides, and commercial IMO after $(1\rightarrow 6)$ -extension in the dextransucrase acceptor reaction. Maltose and resistant maltodextrin were used as digestible and non-digestible controls, respectively. The digestibility was determined using two *in vitro* methods employing α -glucosidases derived from a rat intestinal extract (black bars) or pancreatic enzymes and amyloglycosidase (gray bars). Values for different oligosaccharides that were obtained with the same *in vitro* protocols and do not share a common superscript differ significantly (P < 0.05). Values for the same oligosaccharides that were obtained with the two *in vitro* protocols differ significantly (P < 0.05) if marked by an asterisk.