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Youth

Youth is not a time of life ~ it is a state of mind. It is not a matter of rosy cheeks, red lips and supple
knees: it is an attitude, a quality of the imagination, a vigor of the emotions.
Youth means a predominance of courage over timidity, a preference for adventure over love of ease.
Years wrinkle the skin, but to give up enthusiasm wrinkles the soul.
Whether seventy or sixteen, there can be in every being's heart a sense of wonder,
the sweet amazement at the stars, the challenge of new events, childlike curiosity, and the joy of
living.
You are as young as your faith, as old as your doubt: as young as your self-confidence, as old as your
fears; as young as your hope, as old as your despair.
So long as your heart is warmed by the message of beauty, hope, cheer, courage, and meaning in life,
you will remain young.

- Ananymous
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to my parents, who gifted me a splendid world by their love;
to my brothers and sisters, who enriched my life with their wisdom;
to my past lover, who left me a beautiful, dolourous and everlasting memory;
and to him, my beloved in the world, who were my dream, my heart, and my soul ......



ABSTRACT

Very large size image databases are being built for different application such as digital
libraries. museum object management, individual picture and photograph collections.
With the fast development of Internet and mass storage devices, these image archives are
made publicly accessible, and there is an increasing demand on techniques for searching
and retrieving the images from the databases. The classical method of using keywords to
represent images is impractical due to the substantial manual work involved. Hence,
content-based image indexing methods have become popular in the last decade. Current
research on image indexing concentrates on the techniques in the compressed domain in
order to reduce the storage cost and computational complexity arising from the large

image database size.

In this thesis, the indexing techniques from the classical text-based to the latest
compressed domain content-based are critically reviewed. It is widely known that
wavelet-based techniques have great potential to provide superior coding and indexing
performance in the compressed domain. In this thesis, several indexing techniques in the
wavelet domain are proposed. First, two techniques are proposed in the embedded
zerotree wavelet framework. These techniques are based on the histogram of the number
of significant wavelet coefficients. Four indexing techniques in the JPEG2000 framework
are then proposed. These techniques are based primarily on bit-plane and the packet
header of JPEG2000 bitstreams. Experimental resuits show that the proposed techniques
can achieve retrieval efficiency of up to 93%. These techniques can be integrated easily

with the recently established MPEG-4 and JPEG2000 standards.
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Chapter 1 INTRODUCTION

Very large digital image archives have been created and used in a number of applications.
such as archives for museum objects, trademarks, and photos from daily life. Furthermore,
these large image archives are made publicly accessible due to the explosion of the World
Wide Web (WWW), benefiting from the availability of inexpensive mass storage devices
such as large hard disks, CDROMs, and DVDs. Consequently, there is an increasing
demand on the methods by which users can retrieve pictorial entities from the large

image archives.

The existing image indexing and retrieval techniques for image databases are still very
limited in scope. In the early image storage and collections, the representation of the
image by its content was done manually. This becomes impractical with large-size image
databases. The method to describe the images by keywords [I] cannot fulfill the
requirement of users anymore. As we know, today’s images are stored in compressed
formats. ¢.g.. JPEG [2]. to reduce the storage cost. This requires two main tasks for image
retrieval system: (1) automatic indexing and retrieval by computer to reduce manual
interaction; (2) possible approaches to indexing and retrieval in the compressed domain
to enhance the retrieval efficiency. Therefore. the term “Content Based Image Retrieval
(CBIR)™ was coined, which means image indexing and retrieval by its content, or so-
called “query by content”. Research in this field involves different related areas, such as
transform (¢.g., Fourier, Cosine and Wavelet) and compression, feature extraction and
analysis and similarity. Especially, the wavelet transform has become more popular due

to its many useful features for image processing.

1.1 Objectives

This thesis aims to explore the feasibility of realizing CBIR progressively in the

embedded wavelet domain and the possibility of improving the retrieval performance.



This project implements indexing and retrieval algorithms based on significant wavelet
coefticients in an embedded zerotree wavelet framework. and based on the wavelet-

coefTicients bit-plane and packet headers in JPEG2000 standard [3] framework.
More specifically, the main objectives of this thesis are as follows:

® Introduce the existing CBIR techniques and address the problems through a
detailed review.

*  Explore the possibility of overcoming these problems in the discrete wavelet
transform domain by comparing several available techniques.

®  Propose new algorithms which enhance the retrieval performance compared
with the results in the literature based on the wavelet transform (in both
embedded zerotree wavelet and JPEG2000 frameworks), and research into the
proposed techniques to obtain good query performance with possibly lower

computation complexity.

1.2 Novelty

This work considers CBIR techniques in the wavelet transform domain. With increasing
image database sizes. CBIR techniques in the compressed domain dominate this field.
Wavelet transform compression has become popular recently due to many advantages,
such as multi-resolution and high compression efficiency [4]. It is also adapted into the
JPEG2000 image format standard and the MPEG-4 [5] video coding standard. The first
part of this thesis deals with the techniques based on an embedded zerotree wavelet. The
novelty of this work also lies on the first implementation of indexing and retrieval

directly in the JPEG2000 framework, which was finally drafted early last year.

1.3 Outline

The organization of the thesis is as follows. A review of background work is presented in

Chapter 2. Different research work in text-based techniques and CBIR techniques is



reviewed. The review highlights the significance of the techniques in compressed domain,
especially the wavelet-based compressed domain. A brief introduction of wavelet

concepts is given for a better understanding of this thesis.
In Chapter 3. the working environments for testing and evaluation are outlined.

Several existing wavelet-based indexing techniques, which are related to this research.

are critically evaluated in Chapter 4.

Indexing techniques in the embedded zerotree wavelet (EZW) domain is presented in
Chapter 5. The evaluation results of the proposed techniques are then compared to those
of the techniques reviewed. A discussion on the best choice for CBIR based on EZW is

presented.

In Chapter 6. the proposed techniques for the JPEG2000 framework are presented along
with an overview of the JPEG2000 standard. The factors influencing the retrieval

efficiency are analyzed to get a good performance.

Chapter 7 summarizes the overall work in this thesis. Possible future research directions

for extending the proposed techniques are also discussed.



Chapter 2 REVIEW OF WAVELET AND IMAGE

This chapter presents a comprehensive introduction and review of the latest approaches
proposed in the field of image indexing and retrieval. There are several methods to
classify image indexing techniques. Here we would like to divide these techniques into
two groups: text-based and content-based. Text-based techniques are traditional retrieval
methods. They are not quite popular as before and will be briefly reviewed. For the
content-based image retrieval (CBIR) techniques, substantial work has been done in two
domains: pixel (non-compression) and compressed. Depending on the compression
techniques used, CBIR techniques in compression domains can also be divided into
several groups. e.g., discreet cosine transform (DCT)-based and wavelet-based. We will
focus on techniques in the wavelet-based compression domain because wavelet
compression has been adapted into the JPEG2000 still image format standard and the
MPEG-4 video coding standard. For better understanding of wavelet-based indexing
techniques. basic knowledge on wavelet is given prior to the review of image indexing

techniques.

2.1 Wavelet Transform

From Fourier theory, we know that a signal can be expressed as a linear combination of a
possibly infinite series of sines and cosines, also known as the Fourier expansion. The

main shortcoming in Fourier expansion is that it has only effective frequency resolution

and no time resolution. For example, a raw signal in the time domain x(r), its

corresponding Fourier transform of a time domain signal .\'(f') is defined as:

X(f)= _r x(t)e™"dy 2.1
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Figure 2-1 Two different signals having the same Fourier spectrum. (a) The first

signal is from the function of x(r)=cos(20x7)+ cos(507¢)+ cos(100x1)
+c0s(2007¢) ; (b) the second signal is not a stationary signal. In the interval 0 to

250 ms it has a 100 Hz sinusoid, 50 Hz sinusoid in 250 to 500 ms interval, 25 Hz
sinusoid in 500 to 750 interval and finally 10 Hz in the 750 to 1000 ms interval.
Their Fourier spectra both have the same peaks at 10, 25, 50 and 100 Hz.

Fourier transform cannot give any time information.

X(f) is a function of only the frequency £, not function of time r. Therefore, it is

difticult to distinguish such two signals (Figure 2-1 (a) and (b)) in the frequency domain.

In the past decades several solutions have been developed to solve this problem of
representing a signal in the time and frequency domain simultaneously. The underlying
idea here is to cut the signal into several parts and then analyze these parts separately,
where a fully scalable modulated window is used. The window is shifted along the signal

and the spectrum is calculated for every position. Then this process is repeated many

5



many times with a slightly shorter or longer window for every new cycle. This leads to
the transform into a collection of both time and frequency representations, all with
different resolutions. In general, scale instead of frequency is used in wavelet analysis.
Large scale means the big picture while small scale shows details of the picture. While

changing from large scale to small scale, the picture is enlarged or zoomed in.

2.1.1  Continuous Wavelet Transform and Wavelet Properties

Wavelet analysis as described above is known as continuous wavelet transform (CWT).

Mathematically, it can be written as:

sty = [£()W, ()
f0= [[rs.on, (0)drds

where * denotes complex conjugation. According to this equation, the original raw signal

Jt) is decomposed into a set of basis function ¥ ,(¢), and s,z are the new dimensions:

scale and translation. The wavelets, whose name suggests “small wave™, are generated

from a so-called “mother wavelet™ ¥(¢) by scaling and translation:
1 -t
%,(1):——‘!‘(——) (2.3)
.z J; s

. . . 1. .
where s is the scaling factor and r the translation factor. 7- is used to normalize the
s
energy to 1.

So we can see that the wavelet transform is different from the Fourier transform and other
transforms in that the mother wavelet is not specified. But at the same time, the wavelets
cannot be anything, they should obey some rules, which are also their properties. Based
on these properties, efficient wavelets can be built. The most important property of

wavelets is admissibility:



C‘V = IM{{Q)<+@ 2.4)

|@]

where ‘¥(w) is the Fourier transform of W(¢). This equation was derived by Grossman

and Morlet in 1984 [6].

The admissibility condition implies that the Fourier transform of W(r) vanishes at zero

frequency. That is.

Y(@),, = [¥uui=0 2.3)

2.1.2 Discrete Wavelet Transform
Before wavelet transform can be used in practice, three problems should be solved.

I. Redundancy in CWT. As described above, the CWT is calculated by shifting a
continuous scalable function over a signal and calculating the correlation between the
two. These scalable functions are far away from orthogonal and the resuited wavelet

transform coefTicients are quite redundant.

t9

The number of wavelets basis functions derived from the mother wavelet needed to
construct a raw signal is infinite and it is desirable to reduce this number to a more
manageable count.

3. Fast algorithms are required because most of the wavelet transform functions do not

have analytical solutions and can only be solved numerically.

The first problem can be solved by introducing discrete wavelets. This is achieved by

modifying the wavelet representation in Eq. (2.3) to:

t—kroso’] (2.6)

!
‘l’lik(l)=——‘l’( -
NEX o



where /. k are integers and so > 1 is a fixed dilation step. s is usually chosen as 2 because
it is very easy to implement by computers. This sampling of frequency is also called

dyvadic sampling (Figure 2-2).

sl\
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Figure 2-2 lilustration of dyadic sampling for discrete wavelets.

The problem now is whether it is possible to reconstruct the original signal from the
discrete wavelet coefficients. As pointed out by Daubechies [7] in 1992, the necessary
and sufTicient conditions for stable reconstruction is that the energy of the wavelet must

lie between two positive bounds, i.e.,

Al Z:.Kf ) < Bl @7

where || f”2 is the energy of the raw signal f{r), 0<.4< B < and both A and B are
independent of f{r). If this condition is satisfied, then the family of wavelet basis
functions ‘¥, (¢) with integers j and & is referred to as a frame with frame bounds A and
B. When A =B the frame is tight and the discrete wavelets behave exactly like
orthogonal basis functions. When A= B exact reconstruction is still possible at the

expense of a dual frame. In a dual frame discrete wavelet transform, the decomposition

wavelet is different from the reconstruction wavelet. The next step is to make these

8



discrete wavelets orthogonal by special selection of the mother wavelet. Finally, an
arbitrary signal can be the sum of the orthogonal wavelet basis functions weighted by

discrete wavelet transtorms (DWT) coefficients:

SO=Y y(j k)WY, (1) (2.8)
1.k

To address the second problem. we can look at the wavelet in another way: as a band-
pass filter. Then a series of dilated wavelets with the same ratio (also called fidelity factor
0) between the center frequency and the width of the wavelet spectrum can be seen as a
band-pass filter bank. But this still needs infinite wavelets to construct the filter bank in
order to cover the spectrum all the way down to zero; the solution is simply not to cover
the entire spectrum. but to use a cork to plug the hole when it is small enough. This cork
is a low-pass spectrum and is called a scaling function. The scaling function is sometimes
also called an averaging filter due to its low-pass nature. Since we only need to use the
wavelets up to the scale j and use the scaling function to fill the remaining part not
covered by the wavelets. only a finite number () of wavelets is used. Now the wavelet
transform of a signal results from passing the signal through the filter bank (both the
wavelet filter bank and the scaling function low-pass filter). The outputs of the different
filter stages are the coeflicients of the wavelet transform and the scaling function
transform. This process is similar in nature to the subband coding used in computer

vision applications.

The filter bank needed here can be built in several ways. One is to build many band-pass
filters to split the spectrum into frequency bands. This method allows us to select the
band width freely, but at the same time we have to design the filters separately and this is
very time-consuming. Another way is to split the signal spectrum into two equal parts
(low-pass and high-pass). The low-pass part still contains many details, which can be
equally split again. Iterating this process results in an iterated filter bank. In this method
we only need to design two filters, but the problem in the covered spectrum region is

fixed.



2.1.3 Some Popular Wavelets

Here. some wavelet functions are introduced below. Among the four wavelet bases, the

first basis set is non-orthogonal, while the other three basis sets are orthogonal [7].

1. Mexico Hat Wavelets

7 L il
Y(t)y=—=r*(1-)e ° (2.9)

V3

9

Haar Wavelets
. 0<t<I2

Y()={-L 1R2<t < (2.10)
0, others

Shannon Wavelets

[¥¥)

sin(t —%)—sinlzr(l -%)
w(r) = . 2 @.11)
ﬂ'(l '—;)

4. Daubechies Wavelets

Daubechies wavelets cannot be expressed in closed analytical form. A set of

refinement coefficients A, can be used to generate the scaling function:
2N-1
@) =2 hp(2-n) @.12)
n=0
The wavelets functions can be generated from the following equation:

2N -1

=2 > g.0(2t-n) (2.13)



Table 2-1

g, =(=1)'hyy_,

(2.14)

shows Daubechies wavelets for N=24.8 and [2 taps. and the

corresponding mother wavelets are plotted in Figure 2-3.

Table 2-1 Minimum-phase Daubechies wavelets for N=2,4,8, and 12 taps.

Taps n h[n} Taps n h[n]

N2 0 0.70710678
! 0.70710678 0 0.111540743350000
0 0482962913144 1 0.494623890398000

Nes 1 0.836516303737 2 0.751133908021000
2 0.224133868042 3 0.315250351709000
3 -0.129409522551 3 -0.2262646939635000
0 0230377813308 etz | ° -0.129766867567000
1 0.714846570552 6 0.097501605587000
2 0.630880767939 7 0.027522865530000

g 3 -0.027983769416 8 -0.031582039318000
3 -0.18703481171 9 0.000553842201000
5 0.030841381835 10 0.004777257511000
6 0.032883011666 1 -0.001077301085000
7 -0.010597401785

Vd

Figure 2-3 A few selected Daubechies mother wavelets. The wavelets correspond

to the refinement coefficients shown in Table 2-1. N is the number of coefficients

for the mother wavelet.




2.2 Text-based Indexing and Retrieval

Traditional databases use text keywords as labels to quickly search large quantities of text
data. A human indexer who builds the image database describes the images according to
the image content. the caption or the background information. To retrieve a desired image,

a user constructs queries using keywords to match the annotations made by the indexer.

Since the annotations of the images in the database depend on the human indexer, the
keywords input by a user may have poor retrieval results or cannot find the desired
images. In the last decades. considerable attention has been paid to develop thesauruses
of keywords as standard query keyword databases. Most of the terms required to
understand the text-based indexing and retrieval techniques have been discussed by van
den Berg [1]. who presented an overview of the features of ICONCLASS (a system that
contains approximately 24,000 definitions of objects, events, situations and abstract ideas,

see http://www.iconclass.nl/)

We note that text-based techniques are simple and efficient. However, the representation
of an image with keywords requires a large amount of manual processing and entails
extra storage. For example, it has been pointed out [8] that ICONCLASS is well suited
for dealing with the traditional iconography of art history, but it is less satisfactory when
dealing with the description of common objects. such as tables, rivers and houses.
Furthermore, the retrieval results might not be satisfactory because the query is based on

features that may not reflect the visual content.

2.3 Content-based Image Indexing and Retrieval

As suggested from the name, a content-based image retrieval (CBIR) system is able to
retrieve relevant images based on their semantic and visual contents rather than by using
keywords assigned to them [9]. Because of the extreme difficulty in image understanding,

the interpretation of various features of an image is fuzzy; the emphasis of CBIR systems



at present is supporting query and browsing capabilities instead of precise search, which

is still a long-term research area.

CBIR techniques have been reviewed by several researchers [10-14]. A block schematic
of a typical CBIR system in the pixel domain is shown in Figure 2-4. For each image in
the image database, features such as color [135, 16], texture [17, 18] and shape [19, 20] are
extracted and stored. The features are matched between the query image and images in

the database. The processes involved in the CBIR include:

e understanding user needs and their searching behaviors

e identifying the important features of the images

e extracting such features

e matching query and candidate images by similarity measures
o efficiently accessing stored images by image content

e user-friendly interface

Obviously. the key issue in CBIR is how to represent image contents using an extracted
feature vector (i.e., index), and to compare the similarities of images using the feature

vectors (i.e., indices).

IMAGI
COLLECTION
v
SINMIARITY
RESUL T INMAGES MEASURE

A

FEATURES

QUERY FEATUREN

A

(= = O - = o

FEATURE

QUERY IMAGE EXTRACTION

Figure 2-4 Schematic diagram of a typical CBIR system |21}
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2.3.1 Image Indexing in the Pixel Domain

Classical visual image indexing techniques are based on features such as color, texture
and shape. as mentioned above. In such techniques, the image features are extracted
directly from the image pixels. We categorize these existing approaches on CBIR based

on the types of features that have been utilized to express the content of images.

2.3.1.1 Color

The color feature is probably the most visible feature for most humans. It provides
powerful information for image retrieval because a color feature is relatively robust to
background complication and different image orientations. Each image in the database is
analysed to compute a color histogram which shows the proportion of pixels of each

color within the image.

A histogram is an alternative style of statistical diagram, like a probability density
tunction (pdf) without normalization. It presents discrete frequency distribution for a
grouped data set which has different discrete values grouped into a number of intervals.

Below is an example diagram of histogram for the score distribution of a class (Figure

2-5).

Exam Marks Histogram

No. of Students

0-29 - - 80-89  90-99

Figure 2-§ Histogram of student exam marks



In Figure 2-5 the value (i.e., height) of each bin in the histogram is the count of scores
within that interval. The width of each bin may be equal or unequal, depending on the

application.

Assume that the color of any pixel may be represented in terms of component R(red),
G(green), B(blue) values. A color histogram consists of three independent histograms,
each corresponding to a color component. It denotes the joint probabilities of the
intensities of RGB components. An example of color histogram is given in Figure 2-6. In
the figure, the Lena image is stored in RGB color space. Hence, the color histogram for

; R SR tasogeion of Red Camponant of Lana image

Lena image includes 3 histograms for color component R, G and B, respectively.
=

) .l“llullll“””“ll.
4 L] ° AL x e 12

- G S Farogram of Green Camponent of Lana mege
a0 |
=l 0y

B S Mewgram of Bae Camponent of Lana image |

= e,

(a) (b)

2

Figure 2-6 Color histograms for the Lena image. (2) Three channel color Lena
image; (b) Histogram for each channel in RGB color space. The intensity value,
ranging from 0 to 2585, of each color component is quantized with a quantization
step of 8, resulting in 32 bins in the corresponding histogram.

In color histogram based indexing, the similarity of two images is obtained by calculating
the similarity of the corresponding histograms. The similarity of histograms is generally
estimated using one of the three metrics discussed below.

1) Histogram Euclidean Distance

The L? Euclidean distance between two color histograms A and g is given by:
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M-

d(h.g)=Y_(h[m]- g[m])’ (2.15)

m=0

where M is the total number of bins, and m denotes the index of a bin.

In this distance formula there is only comparison between corresponding bins in the
respective histograms. Two neighboring bins may represent perceptually similar colors,
but this is not considered in Eq. (2.15). For example, light red and deep red are
perceptually similar colors, but they may fall in different histogram bins and produce a

large difference when matching two indices.
2) Histogram huersection

The color histogram intersection was first developed by Swain and Ballard [16]. Variants
of this technique are now used in a high proportion of current CBIR systems. The

intersection of histograms / and g is given by:

"ZI min (A[m], g[m])
d(h.g) = —m0 (2.16)

min( f h{m,], E glm, ]]

my =0

Colors not present in the user's query image do not contribute to the intersection.
Compared to Euclidean distance, Eq. (2.16) has an improvement in reducing the
difference of perceptual similarity and mathematical similarity, but the problem sitill

exists.
3) Histogram Quadratic Distance

The color histogram quadratic distance is used by the QBIC (Query by Image Content)

system [22]. The quadratic distance between histograms / and g is given by:



M-l M-1
d(hvg)= Z Z(h[mn]_g[mo])'am,,,,l '(h[mll_g[mll)

m,-0m, =0 5
2.17
M- M- ( )

= —Z Z(/’[mo]_g[mo])'dn,,m, '(h[mll_g[mll)

m, z0 my =0

The quadratic distance formula uses the cross-correlation between histogram bins based
on the perceptual similarity of the colors mo and m;. One appropriate value for the cross-
correlation is given by a, , =1-d, where d, . is the distance between color my

m,.m °
and m normalized with respect to the maximum distance. In this case the histogram

quadratic distance formula reduces to the form on the right.

Color distribution. as a global property that does not require knowledge of how an image
is composed of component objects, is more suitable in textured images and other images

that are not particularly amenable to segmentation.

However, when an image is transformed into a histogram, all spatial information is lost
[23]. Indexing using color histograms has significant limitations due to this lack of spatial
information [24]. To overcome this problem, several methods to combine color
histograms with spatial information have been proposed. Sticker and Dimai [24]
proposed a method of dividing an image into “five fuzzy regions™ and claimed the
regions are natural for encoding of minimal spatial information. Pass er al. [25] presented
a method called color coherence vectors (CCV) which partitions pixels based on spatial
coherence. Huang et al. [26] presented another method to incorporate color and spatial
information, called color correlogram that represents how the spatial correlation of color

pairs change with distance.

Human color perception issue is another problem in the usage of color histogram to index
images. The RGB color space is not perceptually uniform, and the proximity of colors in
this color space does not indicate color similarity. Therefore, linear or non-linear
transformation of color space is often used, such as YIQ and YUV. The IBM QBIC [22]
system utilizes the Munsell color order system, which organizes the colors according to

more natural attributes. In addition, the HSV color space is a natural color space and
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approximately perceptually uniform. Currently there is still no consensus about which

color space is most suitable for color histogram-based image indexing and retrieval.
2.3.1.2  Texture

Texture is an important attribute of an image. Texture based indexing is also useful where
the color of an object is not important. The texture features can be employed to
distinguish between two areas with similar color, ¢.g., blue hue in sea and sky, green hue
in leaves and grass. It is difficult to define a texture precisely. However, a major
characteristic of texture is the repetition of a pattern over a region [27]. The usage of
texture features to retrieve images is based on the assumption that an image can be
considered as a mosaic of different texture regions. Although the precise definition of
texture has been elusive, the notion of texture generally refers to the presence of a spatial
pattern that has some properties of homogeneity. Figure 2-7 gives some examples of

textures.

Water | Water 2 Fabric 1 Fabric 2

Figure 2-7 Examples of texture [28].

The texture analysis techniques, which have been developed and are most extensively

used, involve three main categories: structural, statistical and spectral [29].

Among various techniques. three approaches have been demonstrated to be particularly
effective in image retrieval. The Tamura features [30] includes several readily perceived
properties of a texture, such as contrast, directionality and coarseness. A modified set of
the Tamura features has been used in the QBIC project. The simultaneous autoregressive
(SAR) model [31] provides a description of each pixel in terms of its neighboring pixels
when a gray-level image is given. The Wold features are based on the decomposition of a

two-dimensional regular and homogeneous random field. The decomposition provides
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another approach to describing textures in terms of perceptual properties: periodicity,
directionality and randomness [32]. Each of these properties is associated with
dominance of a different Wold component: Periodic textures have a strong harmonic
component, highly directional textures have a strong evanescent component, and less

structured textures tend to be strongest in the indeterministic component.

Since the introduction of wavelet transform in the early 1990's. many researchers have
tried to use the wavelet transform in texture representation. Smith and Chang [33] used
the statistics extracted from wavelet subbands as the texture representation. This

approach achieved over 90% accuracy on the 112 Brotadz texture images.
2.3.1.3  Shape

Among the direct features of images, shape may be the most important criterion for
matching objects based on their profile and physical structure. The ability to retrieve
images by shape is possibly the most obvious requirement at the primitive level in this
field. Unlike texture, shape is a well-defined concept. It is widely believed that the
humans recognize natural objects by their shape. For the present image retrieval
techniques, two main types of shape features are commonly used - boundary-based and
region-based. In boundary-based techniques, the outline of the objects is obtained by
edge detection, thinning and shrinking algorithms, and is used as the index. In region-
based techniques, the region inside the object boundary is extracted as the index.
Examples for boundary-based and region-based methods are presented in Figure 2-8 and

Figure 2-9, respectively.

Loncaric [34] presented a survey of shape analysis techniques. Different classifications
of shape-based indexing techniques were also discussed in this paper. The goals for shape
similarity retrieval are to design efficient shape descriptors, and a proper similarity
measure associated with these descriptors. Sometimes these descriptors are required to

rotate and translate.
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Figure 2-9 Region-based representation of shape features.

A promising approach was proposed by Sclaroff and Pentland [353] in which shapes are
represented as canonical deformations of prototype objects. In this method, a “physical”
model of the 2D shape is built using a new form of Galerkin's interpolation method
(finite-element discretization) and the possible deformation modes are analyzed using
Karhunen-Loeve (KL) transform. This yields an ordered list of deformation modes
corresponding to rigid body modes, low-frequency non-rigid modes (global deformations)

and high-frequency modes (localized deformations).

The most successful representatives in image feature extraction for boundary-based and
region-based categories are Fourier Descriptor and Moment Invariant, respectively [14].
In the Fourier Descriptor method, the Fourier transformed boundary is used as the shape
feature, whereas in the Moment Invariant method, the region-based moments that are
invariant to transformations are used as the shape features. It is generally difficult to
employ L'/L*> metric for shape index matching. Gadi and Benslimane [19] proposed a

new measure based on fuzzy logic, a fuzzy similarity measure, for shapes described by

20



Fourier Descriptors. In this approach, images are represented by an N-dimensional
feature vectors. The similarity measure is calculated for each component of the feature
vectors. Hence, for each pair of images, N similarity measures will be obtained. The
global similarity measure is obtained by using a fuzzy IF-THEN rule or considering each

similarity measure obtained between two components as an opinion.

Experiment shows that the retrieval system is robust to the rotation. scaling, translation
and reflection (RSTN), and the retrieved images can be in different positions and

orientations (as shown in Figure 2-10).

-

N

(a)

Figure 2-10 [llustration of shape retrieval (a) Target Image (b) Retrieved images

(19].

ta) th) wh (d)

Figure 2-11 Examples of shape retrieval from the shape database of plant leaf

images |[19].



Nishida [36] presents another efficient, robust method for shape retrieval from image
databases composed of boundary contours of objects. The method is mainly based on an
indexing technique for structural features, along with a voting technique for ranking
model images in terms of extracted features from the query image. In particular, shape
feature generation techniques are incorporated into structural indexing to improve the
accuracy and robustness of shape classification against noise and local shape

transformations.

Experimental trials with large image databases of boundary contours have shown that the
shape feature generation method significantly improves the robustness, and efficiency of

shape retrieval (as shown in Figure 2-11).
2.3.1.4  Spatial Relationship

The positions of objects and their spatial relationships in an image can be used to
represent the content of the image. Enser [37] and De Marsicoi et al. [38] reviewed
several different methods based on spatial relationship. The objects in an image are first
segmented and recognized. The image is then converted into a symbolic picture that is
encoded using 2D strings. This step is computationally intensive, which is a major

disadvantage.

2.3.2 Image Indexing in the Compressed Domain

With the explosive of Internet use, and increasing volume of image databases, images
must be stored in compressed format. The indexing techniques in the compressed domain
refer to those methods of retrieving images from the database without decoding the
images back to their pixel format. The advantages of these techniques include: 1) it is
unnecessary to decode the compressed images in the process of image feature extraction;
2) less computing cost due to small computation complexity. Therefore, indexing

techniques in the compressed domain are believed to be the mainstream in this field.

Indexing in the compressed domain involves some challenging issues. For example, each

compression technique poses addition constraints, e.g., non-linear process, rigid data



structure syntax. and resolution reduction. Also, there exists some unique information
available in the compressed domain, such as bi-directional optical flows and bit rate. The
key issue on how to explore and develop new compression techniques with maximal
content accessibility for good retrieval performance is still feature extraction. Features in
the compressed domain are not as visual as those in pixel domain, ¢.g., color and shape,
but rather may be possibly the coefficients of a transform, e.g., Fourier transform,

Karhunen-Loeve transform.

Image indexing techniques in the compressed domain have been critically reviewed by
Mandal er al. [12). Here we will follow the classification of these techniques based on the
compression techniques: DFT (discrete Fourier transform), DCT (discrete cosine
transform, used in the JPEG standard), KLT (Karhunen-Loeve transform), DWT (discrete
wavelet transform, used in the JPEG2000 standard), vector quantization (VQ) and fractal
compression. Wavelet-based techniques have some special advantages versus other
compression techniques and the indexing techniques proposed in this thesis are also

wavelet-based.
2.3.2.1 Discrete Fourier Transform

The Discrete Fourier transform is very important in image and signal processing. For 2D

images, the DFT of an image f(x,y) is defined as:

NotAM -

Fu,v)= Z Zewm?ﬁ’f(x._v) (2.18)

=0 y=0
foru=0,1,2....N-landv=0, 1.2, ..., M-1. Eq. (2.18) is a separable transform and
properties of the 1D case are directly applicable here. If M =N then the DFT power

spectrum of f(x, y) is also invariant with rotation.

Stone and Li [39] have proposed an image indexing algorithm in the Fourier domain. The
algorithm has two thresholds that allow the user to adjust independently the closeness of
a match. One threshold controls an intensity match and the other controls a texture match.

The thresholds are correlations that can be computed efficiently in the Fourier transform



domain of an image, and are particularly efficient to compute when the Fourier

coefticients are mostly zero.

Evaluation of the image retrieval in the Fourier compressed domain has been studied by
Augusteijn ef al. [40], and Celantano and Lecce [41). The former used several texture
measures for classification of satellite images, based on the magnitude of the Fourier
spectra of an image, including maximum magnitude, average magnitude, energy of
magnitude and variance of magnitude of the Fourier coefficients. The author also studied
the retrieval performance based on the radial and angular distribution of Fourier
coefficients, which correspond to the texture coarseness and directionality, respectively.
These kinds of measures gave a satisfactory performance. In the paper by Celantano and
Lecce. the angular distribution of Fourier coefficients in image indexing has been
evaluated. Before DFT, the images were pre-processed with a low-pass filter. An angular
histogram, calculated by computing the sum of image component contributions, for each

angle, is used as the feature vector for indexing.
2.3.2.2  Karhunen-Loeve Transform

The principal component analysis (PCA) or Karhunen-Loeve transform (KLT) is a
mathematical way to determine the linear transformation of a sample of points in N-
dimensional space which exhibits the properties of the sample most clearly along the
coordinate axes. Along the new axes the sample variances are extremes (maxima and
minima), and uncorrelated. For image processing, the KLT uses the eigenvectors of the
autocorrelation matrix of the set of image features, i.e., it uses the principal components
of the distribution of image features. These eigenvectors can be thought as a set of
parametric variations from the mean or prototypical appearance. Therefore, before the
KLT is applied, the image data are always mean centered. Normally only a few of the
eigenvectors with the largest eigenvalues are employed. The KLT has in practice been
used to reduce the dimensionality of problems, and to transform interdependent
coordinates into significant and independent ones. For example, an image consists of
RGB (three) components and they are inter-correlated. By employing the KLT these

three components can be decorrelated and then analyzed or matched separately. Since the
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KLT basis functions are image adaptive, good indexing performance can be obtained by

projecting the images in KL space and comparing the KLT coefficients.

The KLT was adapted into the image indexing system Photobook for face recognition
[42]. A set of optimal basis images, also called eigenfaces, is created based on a
randomly chosen subset of face images. A query image is then transformed into its
eigenimage representation, e.g., projected into eigenfaces. Similarity matching between
two images are based on the Euclidean distance between the KLT coefficients. The KLT
is also applied for the color representation of images to improve the performance on color
histogram features. A straightforward application of the KLT to color histograms gives
poor results since the KLT treats the color histogram as an ordinary vector and ignores
the properties of the underlying color distribution. Early study has used coarser
historgram to avoid these problems [43]. Y. Deng et al. [44] proposed a method to match
the similarity between the query image and the database using quadratic color histogram
for each dominant color and then to combine the matches from all of the query colors to
obtain the final retrievals. In L.V. Tran's paper [45], two different spaces, color
histogram and local differences histogram, were both considered to measure similarity
with Euclidean metric and metrics based on quadratic forms between histogram bins. For
each of these four types of metric spaces a set of basis vectors by PCA-based methods
were computed. The expansion coefficients computed from these basis vectors are then

used as compact descriptors for the color historgram.

An eigenspace approach to multiple image registration was proposed by H. Schweitzer
[46]. The idea consists of the iteration of these two steps: 1) Eigenfeatures are computed
from the images and 2) new images are computed by registering the images on the
eigenfeatures subspace. The KLT has also been applied to reduce the dimensionality of

features derived from a texture for classfication [47].

The KLT or PCA method has the potential to provide good performance on image
retrieval. However, a detailed investigation on how to generate feature vectors for a large

database with widely varying characteristics is still under research. Furthermore, it is
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worth mentioning that the KLT is generally not used in traditional image coding because

of its high complexity.
2.3.23 Discrete Cosine Transform

The DCT is a derivative of the DFT. It employs real-valued sinusoidal basis functions
and has energy compaction efficiency close to the optimal KLT for most natural images.
Hence, most recent international image and video compression standards. such as JPEG,

MPEG 1 and 2. H.261/H.263, adapt DCT as the compression kernel.

In JPEG, the original image is divided into 8x8 blocks, then, each block is transformed
independently by the DCT. The transformed coefficients are quantized and Huffman

coded. The quantization step is lossy and thus compression is achieved. The DCT is

defined as
] L Qi+Dur  2j+Vun . .
F,.==CC, cos cos i 219
=17 ZZ ¥ S )) 2.19)
L foru.v =0
where C,.C.={\2 )
]

otherwise

and F, is the 2D DCT coefficient, and f(i, j) the image spatial value. F,, is normally

uy

called the DC component while the rest 63 are AC or high-frequency coefficients. The

basis vectors ot the DCT are linear and orthogonal.

As mentioned above, the JPEG still image format uses the DCT compression as its kernel.
Hence, several image indexing techniques have been proposed in the DCT domain.
Chang [48] reported several possible ways of extracting low level features in the DCT
domain. For example, the texture feature is formed by computing the statistical measures
of the DCT coetticients. To reduce the dimensionality of the feature space, one can
employ the Fisher Discriminant techniques to maximize the separability among the

known texture classes.
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Furht and Saksobhavivat [49] proposed an algorithm to calculate the DC coefficients of
this image and then to create the histogram of DC coefTicients. Then, the algorithm
compares the DC histogram of the submitted image with the DC histograms of the
images stored in the database using a histogram similarity metric. Several histogram
similarity metrics: weighted Euclidean distance, square difference, and absolute
difference have been used to evaluate the retrieving results. in which the absolute
difference seems to be the most reliable. This method of indexing depends largely on the
number of bins used. A smaller bin number might deteriorate the performance, while a

large bin number has a larger computation complexity.

Shen and Sethi [50] proposed a technique to locate areas of interest and also to detect the
edge in the images using the AC coetficients of DCT. The authors tried to relate three
edge parameters: edge orientation, edge strength and edge offset from center with the
DCT coefficients from the JPEG/DCT standard size block (8x8). Performance was
compared to the Sobel operator and it was suggested this technique is good enough for
some coarse classification or feature based scene detection in video sequence, in which
edge detection has to be applied on each (key) frame and fast process for each frame is

desired.

In the approach by Ngo er al. [51], ten DCT coefficients (from F,, to F,,) were

extracted from each 8x8 JPEG image block. By applying the Mandala transformation,
these coefticients were grouped to form ten blocks, each of which represents a particular
frequency content of the original image. The first block conveys color information and so
it was used to compute color histograms. The second and third blocks were used to
extract shape information. The first nine AC coefficients were used for texture
description. These result in a much smaller computing and analysis cost. The

performance was found to be acceptable and very fast.

Shenier and Mottaleb [52] proposed a technique for image retrieval using JPEG. Their
indexing and retrieval method is also based on quantized DCT coefficients. They used
coefficients of some selected image windows to avoid the problem when the number of

DCT coefficients is equal to the number of pixels. In such situations, the index or
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representation would not be compact. This method brought out another problem: the
choice of windows will affect the performance dramatically and it is very important to

choose the windows appropriately.
2.3.24  Discrete Wavelet Transform

The basic idea of the wavelet transform is similar to that of the Fourier transform:
approximating a signal through a set of component basis functions. The main difference
between wavelet and Fourier transforms is that wavelet functions are able to give a multi-
resolution representation of the signal since each frequency component is analyzed at a
different resolution and scale, whereas the Fourier transform divides the time-frequency

domain in a homogeneous way.

Image indexing and retrieval based on the wavelet transform has become popular in the
last ten years. Jacobs er al. [53] have proposed an algorithm based on direct comparison
of the number of significant wavelet coefticients. Three color spaces., RGB, HSV and
YIQ. were evaluated and YIQ was found to be the most effective. The authors
demonstrated that this algorithm performs much faster than traditional algorithms, with
accuracy comparable to traditional algorithms when the query is a hand sketch or a low-

quality image scan.

In the Wavelet-Based Image Indexing and Searching (WBIIS) project by Wang er al. [54].
the wavelet coetticients in the lowest few frequency bands and their variances are
considered as feature vectors. Two steps of the similarity matching are employed:
standard deviation comparison and a mask-weighted variation of the Euclidean distance.
It was reported that the retrieval performance provided improvement over the technique
proposed by Jacobs et al. [53]. On the other hand, WBIIS is not robust to high degrees of

rotation and translation, a problem shared by Jacobs’ algorithm.

You et al. [55] proposed a hierarchical image matching scheme. The interesting points of
an image were detected at each level based on optimal thresholding via fuzzy

compactness. The technique includes a guided searching strategy for the best matching



from coarse to fine level. It was implemented in a parallel virtual machine environment

(PVM).

Sebe er al. [56] proposed a wavelet-based color salient points extraction algorithm. It was
shown that extracting the color information at the locations of these salient points
provides significantly improved retrieval results as compared to global color feature
approaches. The salient points extracted were those coefficients with the highest gradient

in the tracing algorithm and color moments were used to retrieve the similar images.

Albuz er al [57] presented a scalable CBIR technique based on the vector wavelet
coefficients of color images. Highly decorrelated wavelet coefficient planes were used to
acquire a search-etficient feature space. It was claimed that the feature key of an image in
this approach corresponds to not only the image itself but also how much the image is
different from other images in the database. Query searching time was found to be less

than 30 msec for a 5000-image database.

Regentova, Latifi et al. [58] proposed a method to evaluate the similarity of wavelet
compressed images. Two features that describe the image structural content, edge point
locations and edge density, were computed directly from multi-scale data. Depending on
the image type and the feature selections for processing, the distance between two images
was computed in one or two-dimensional space. The measurements were performed

using blocks of image data.

Ardizzoni et al [59] proposed WINDSURF (Wavelet-based Indexing of Image Using
Region Fragmentation), which uses the wavelet transform to extract color and texture
features from an image and applies a clustering technique to partition the image into a set
of “homogeneous™ regions. Similarity between images is assessed by using the
Bhattacharyya distance to compare region descriptors, and then combining the results at

the image level.

Despite the methods described above, there are still many techniques, based on the DWT,
proposed in the last few years. Three kinds of them, which have close relationship with

this thesis, will be overviewed in much more detail in the next chapter.
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2.3.2.5  Vector Quantization

Vector quantization (VQ) has been used for image compression for many years. It
compresses images by coding vectors instead of scalars, leading to better performance.
Here, a block of image pixels, called an image vector, is represented by an identification
number. For image decompression, this identification number is mapped back to its
corresponding image vector, which approximates the original image vector. Vector
quantization can be defined as a mapping Q of K-dimensional Euclidean space R¥ into a

finite into a finite subset Y of R*:
Q:R¥DY

where Y = (x'; i = 1,2,...N). X, is the i vector in Y and N is the number of codewords
in the codebook. Y is the set of reproduction vectors and is called the VQ codebook or

VQ table.

A complete VQ compression and decompression consists of these processes: (1)
Codebook generation. with each entry of the codebook identified by its index number.
Similar types of images may share the same codebook to achieve a high compression
ratio. (2) Dividing the image into blocks - vectors. (3) For each vector, find its best
matching entry in codebook and the compressed bitstream is obtained as a sequence of
index numbers. (4) Transmission of the codebook and also the compressed bitstream to

the decoder which can then reconstruct the original image.

Two image indexing techniques were proposed by Idris and Panchanathan [60] using
vector quantization. In the first technique. for each codeword in the codebook, a
histogram is generated and stored along with the codeword. The superposition of the
histograms of the codewords is considered to be a close approximation of the histogram
of the image and thus these histograms are used as indices to store and retrieve the
images. In the second technique, the histogram of the labels of an image is used as an
index. The average retrieval efficiencies are 95% and 94% at compression ratios of 16:1
and 64:1, respectively. The performance of the second technique was also compared with

the histogram of the DC coefficients in JPEG-compressed images.
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Vellaikal et al. [61] applied the VQ technique for content-based retrieval of remote
sensed images. The feature representation used is formed by clustering spatial-local
pixels. and the cluster features are used to process several types of queries which are

expected to occur frequently in the context of remote sensing image retrieval.

Zhu [62] proposed an approach, called kevblock, generated by clustering algorithms.
Each image is encoded as 1-D index codes of the keyblocks in the codebook. The
keyblocks are selected by expanding the approaches developed in VQ for compression
purpose. The keyblock-based approach is arguably the first work towards establishing a

general framework of information retrieval in the image domain.
2.3.2.6  Fractal Compression

Fractal image compression is based on the mathematical results of iterated function
systems (IFS) [63, 64]. The image is partitioned into a collection of non-overlapping
regions, called range blocks. For each such image block, the encoder finds a larger block
within the same image (termed the domain block) such that a transformation of this block
is the best approximation of the range block, according to a certain criterion of similarity
calculation. The fractal code contains the geometrical positions of both the range block
and the domain block, and the transformation as well. The original image can be
reconstructed approximately from a finite number of iterations from its fractal codes.
Since the fractal codes used to represent the image pixel data are much more compact, the
fraction image representation can reach a high compression ratio. The transformations of

an IFS have the following general form:

xi |a b O]x| le
wiyli=lc, d  0l|lvi+]s (2.20)
z 0 0 alf=] 15

where w, is the transformation, (x, y. =) is a region point to be encoded, with x, y being
the spatial coordinates and : the grey level; the coefficient q, represents the grayscale

factor, ¢, and s, translate the point in the spatial domain, whereas 3, translates it in the
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grayscale domain. The coefficientsa,, b,, ¢, . and d, represent both the geometric

contraction and the isometric transformation, including identity, orthogonal retlections

(about axis and diagonals), and rotations around center of block through different angles.

Vissac [65] er al presented a fractals-inspired approach for CBIR, in which similarity of
images is measured by block matching after optimal (geometric, photometric, etc.)
transformation. This block matching method consists of localized optimization and
Viterbi algorithm is further employed to ensure the continuity and coherence of the
localized block matching results. The preliminary evaluation on a logo subset of MPEG-7

database was performed.

Nappi et al [66, 67] proposed an image index based upon the fractal framework of the
IFS. The image index is represented through a vector of numeric features, corresponding
to Contractive Functions (CF) of the IFS framework. In order to improve performance
during index construction and image retrieval, index dimensionality is reduced by using

the DFT.

Zhang et ul [68) introduced a joint coding approach between images to cluster images.
The similarity between two images (M, and M>) is identified by performing the fractal.
texture-based coding of one image (M;) using both two images (M, and M-). They also
compared the performance of wavelet and fractals in image retrieval [69]. Mean absolute
value and variance of different subbands are used as the image features for the wavelet
domain. Based on the simulation results, it was concluded that wavelets are more
effective for images which contain strong texture features, while fractals perform

relatively well for various types of images.
2.3.2.7  Hybrid Schemes

Hybrid schemes here refer to a combination of two or more basic coding schemes (e.g.,
DCT and VQ). Idris and Panchanathan [70] proposed a new technique based on wavelet
vector quantization for the storage and retrieval of compressed images. The images were

first decomposed using DWT followed by vector quantization of the transform
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coefficients. The codebook labels corresponding to an image constitute a feature vector

that can be used as an index to store and retrieve the image.

Sabharwal and Subramanya [71] have proposed a hybrid technique using the
compression power of wavelet transform and RSTN invariance of Fourier transform
spectrum. This hybrid scheme is shown to be faster and more robust than the separate use

of the DFT and DWT.

2.3.3 Comments

It is difficult to comment and compare so many techniques in the CBIR field. Techniques
in the pixel domain are not very popular because of their high computational complexity.
Direct feature extraction from the compressed image contents is preferred. The
compression techniques used in some degree determine the success and popularity of an
indexing technique. KLT or PCA, which is statistically optimal. is computationally
intensive. The DCT in JPEG and the DFT have some disadvantages (already mentioned
before) compared to the DWT. DWT-based techniques are promising for indexing
applications because of (1) inherent multi-resolution capability; (2) simple edge and
shape detection; and (3) readily available direction information. The author believes that
popularity of DWT will increase in future because of its adaptation into the JPEG2000

standard.
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Chapter 3 EXPERIMENTAL SET UP

In this chapter, the experimental environment, in which image indexing performance is to
be evaluated, is introduced. These include the image database used to test all the indexing
techniques and the program run-time environment. Meanwhile, necessary assumptions,
detinitions and annotations needed for index extraction and retrieval evaluation is also

stated here so that the indexing techniques can be represented clearly and intelligibly.

3.1 Experimental Environments

The experimental image database, which is a subset of MPEG-7 test database, contains
3000 color images. The images are in BPPM format which represents images using

interleaved RGB color components.

It is difficult to set an objective criterion for performance evaluation with respect to a
given indexing technique since the similarity between two images is subjective. The best
way to evaluate an indexing technique is to present a query image and verify manually
that the retrieved images are indeed similar to the query image. However, for a system-
wide evaluation, the above method is too time consuming, and we need a better criteria to

evaluate all the techniques we have.

In this thesis, a simple method is used. The database was created such that each image
has two similar images in the database. This is done by cropping three smaller copies of
an original image with different offsets against the upper-left corner of the original image.
The three cropped images have the same dimensions in both width and height. The
created database contains all the cropped images but omits the original images. Figure
3-1 illustrates the establishment of the experimental database. The images in the first
column are the original images from the MPEG-7 test database, they are of size
384 x 256, while all their cropped copies are of size 256 x 256 . The images in the 2™

column are cropped from those in the 1¥ column with offset (0,0), the 3" column with
Pp
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offset (64,0). and the 4™ columns with offset (128,0). At last, the images in column 2, 3,

and 4 are combined to construct the experimental database. Hence, in this database, each
image has two similar copies, as mentioned above. When any image in this database is
used as a query image, if one or both of its similar copies appear in the retrieved image

list, then this set retrieval can be regarded as partial or complete success, respectively.

Meanwhile, for the evaluation, each color component of any image in the database is

decomposed using Daubechies-6 orthogonal wavelets.

Original Image Cropped Copy 1| Cropped Copy 2 Cropped Copy 3

(a) 384 x256 (b) 256 x256 (c) 256 x256 (d) 256 x 256

Figure 3-1 [lustration of establishment of experimental database. Original

images were cropped to generate a series of cropped copies. (a) original images

in size of 384 x 256 ; (b) cropped copy 1 with offset (0.0) ; (c) cropped copy 1

with offset (64,0) ; (d) cropped copy 1 with offset (128.0) ;
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The indexing techniques were evaluated on two Linux machines: one is a PIH-500 MHz

and the other is a PI11-2x750 MHz (dual 750 MHz), both using 256 MB memory.

3.2 Definitions and Annotations

3.2.1  Wavelet Decomposition Level and Resolution
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Figure 3-2 Illustration of resolution and subband. The wavelet decomposition
level is 17 . r denotes resolution, where » =0 corresponds to the lowest

(coarsest) resolution (subband LL), and r = 1 — the highest (finest) resolution,

Assume that an image is an n-level wavelet decomposed, as shown in Figure 3-2. There

will be n +1 resolutions:

[0, r,-- 0] (0<r<n) (.1)
r =0 - the lowest (coarsest) resolution (subband LL)

r=n — the highest (finest) resolution

and 3n +1 subbands:
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[0.---.b,---.3n] (0<H<3n) 3.2)

where the value of subband index 4 increases from HL—-LH—HH in that order within a
resolution and from lower resolution to higher resolution, 5 =0 corresponds the subband
in the lowest resolution (LL), and b = 3n corresponds to the HH subband in the highest
resolution. Hereafter, let DL denote the largest wavelet decomposition level for

convenience, i.e., DL =n in this assumption.

3.2.2 Distance Metric for Image Retrieval

For image retrieval. an index of a query image is compared with the corresponding

indices of all candidate images from the database.

In this work, for distance calculation between indices which are histograms or vectors,
the L' Euclidian distance is employed. which is defined as follows. Assume a query

image Q and a candidate image C . the distance metric:
H-1 .
D(Q.C) =Y w(k)[n¢ (k)-h (k)| (3.3)
k-0

B — the number of elements in the index.

w(k) — the weight for element & .

Eq. (3.3) is useful for indices such as histograms and vectors. However, when a “bit map™,
which is a 2-D matrix composed of *0" and 1" values, is used as an index of an image,
the similarity metric is different from Eq. (3.3). It can be obtained by applying a bitwise
exclusive OR (XOR) operation on two bit maps I'," and I, followed by counting the
number of *1" from the result of XOR (see Figure 3-3). Assume a bit map is denoted as

", where .Y is query image Q or candidate image C, mathematically:

D(Q,C) =countof 'I's after (F* &) (3.4)

37
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0 0 1 0 0 0 1 0 0 0 0 0
(a)index Q (b)index C (c) distance

Figure 3-3 Illustration of XOR operations of two bit maps. (8) bit map for image
Q; (b) bit map for image C; (c) bit map after bit map Q exclusive OR bit map C

3.2.3 Computational Complexity for Distance Calculation

One criterion to evaluate the efficiency of an algorithm is to find out the computational
complexity of the algorithm. Due to the various types and performance of current
computers, it is difficult to judge an algorithm in time units. In this thesis, to compare the
computational complexity and retrieval efficiency of all the proposed algorithms, we use
the average number of operations in each distance calculation (i.e., distance calculation

between two image indices).

Because the running time for additions/subtractions multiplications and bitwise exclusive

OR are different, for Index-a, we denote the number of multiplication operations as

0, (x), addition/subtraction as O, () (an addition operation is regarded as costly as a
subtraction operation), and bitwise exclusive OR (XOR) as O, (®). Simultaneously, the

algorithm running time for each query image with 60 images retrieved from a 3000-
image database, in which 3-level wavelet decomposition is applied to all images, will be

given as well for illustration.

3.2.4 Retrieval Efficiency and Tolerance

The performance of each reviewed or proposed technique is expressed in terms of the

retrieval efficiency, 7, as defined below. For each image x in a database of size K , let
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M, . 1<x<K. be the number of images known to be similar to image x. An image ¢ is
considered the query image. and T images are retrieved from the database. If m, is the

number of successfully retrieved images, the retrieval efficiency 7 is defined as:

LY

2m,

= (3.5)
M

q9

-

]’=

-

£
n
o

where m_ is equal to or less than the total number of images similar to the query one.

During the experiments, the query image is chosen arbitrarily from the database, while all
other images in the database are considered to be candidate images to be matched with
the query image. No indexing technique is perfect. Given a query image, a specified
percent T of the number of images are retrieved using the smallest distance criterion.
Here, T can be considered as a tolerance factor due to the imperfection of the indexing
technique. It there are two similar copies for each image, the retrieval is considered 100%,
50%. or 0% successful if the retrieved image set (consisting of T percent of the image

number) contains both, only one, or none of the similar images, respectively.
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Chapter 4 REVIEW OF INDEXING TECHNIQUES IN

THE WAVELET DOMAIN

As introduced in Chapter 2, the wavelet transform provides many useful features for
image processing. For example, 1) not only frequency but also spatial information can be
exploited in the wavelet coefficients; 2) most of the power in the wavelet coefficients is
concentrated in a few lower subbands for most of natural images; 3) the subbands of
wavelet-decomposed image progressively represent the image. Meanwhile, image
indexing techniques in the wavelet domain provides one solution to index images in large
volume databases which must be compressed in order to save space. Therefore, many

indexing techniques have been proposed by exploiting these features.

In this chapter, three indexing techniques previously proposed in the wavelet domain,
which related to the proposed techniques or useful as references in evaluating the

proposed ones, are discussed and reviewed below.

4.1 Histogram of the Number of Significant Coefficients

Liang and Kuo [72] proposed an indexing technique in the embedded zerotree wavelet
framework, in which the histogram of the number of significant coefficients (henceforth
referred to as Index-NSCH) is used as an index. Embedded zerotree wavelet coding is a
popularly used compression algorithm in the wavelet domain. In this section, this

algorithm will be briefly reviewed first followed by the introduction of Index-NSCH.
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4.1.1 Embedded Zerotree Wavelet Coding

The embedded zerotree wavelet (EZW) technique originated from Shapiro [73] for image
compression. Two main concepts in the EZW algorithm should be emphasized here:

progressive encoding and zerotree encoding.

Progressive encoding, also known as embedded encoding, is used to compress an image
into a bit stream with increasing accuracy. That is. when more bits are added to the
stream, the decoded image contains more detail. Progressive encoding makes it possible

to represent the coded image in multi-resolution.

The concept of zerotree encoding is based on the following two assumptions: First,
natural images have a low-pass spectrum, i.¢., the energy of a wavelet-transformed image
is concentrated in coarser scales. Second, larger wavelet coefficients are more important
than the smaller coefficients irrespective of the scales where they occur. The significance
of a wavelet coefficient Coef is determined by comparing it with a specified threshold
TH . Here, only the absolute value of Coef , without considering its sign, is compared to

TH . It ICoeflzTH . Coef is considered to be significant; otherwise insignificant

(coefticients are possibly negative if the original pixel values of an image are normalized
to their mean before applying the wavelet transform). Consequently, only the significant
coetTicients (SC) are stored, while all the other coefficients are discarded, to achieve high

compression.

In EZW encoding, the choice of thresholds to determine SCs is crucial to the quality of
the reconstructed image at various resolutions. Because the term resolution has been used
for denoting wavelet decomposition level, here we use threshold-level to represent the
quality level of the reconstructed image, resulting from using different levels of
thresholds for filtering away insignificant coefficients. Each threshold-level is applied to
output the corresponding one of the successive approximate representations of the
reconstructed image. Higher threshold leads to fewer SCs, thus a poor quality

reconstructed image, and vice versa (see Figure 4-1). Assume the threshold-level
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(referred to as TL hereafter) has the value of i, where i is an positive integer. Then the

thresholds, one for each TL . are calculated as follows:

&
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Figure 4-1 Represcntation of a reconstructed Lena image with respect to four

successive threshold levels.

TH, =|Coef|m‘/2

4.1)
TH,=TH, /2 (i>1)

— maximum value of the DWT coefficients

max

lCoef

TH, - threshold for i* threshold-level

Due to the high proportion of insignificant coefficients in practice, image compression
using EZW encoding generally provides reconstructed images ot good subjective quality

even at a high compressior ratio.

In EZW coding, an image is represented by wavelet SC maps at various threshold-levels.
These SC maps are used progressively (from lower to higher threshold-level), or jointly

to reconstruct an image. Since the SC maps refer to the location of high-magnitude DWT
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coefficients, they provide key features of an image. Hence, an SC map can be employed
to generate an index of an image. In order to exploit the multi-resolution capability of
wavelets for progressive retrieval, SC maps of different successive threshold-levels are

employed to generate the image index.

4.1.2 Index-NSCH Generation
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Figure 4-2 Relationship of histogram bin and threshold in Index-NSCH. There
are three histograms, each corresponding to a threshold-level. For

TL = 1.2 and 3, the number of bins in the histograms is 2.3.4, respectively. SC:

significant coefficients; ISC: insignificant coefficients.

Index-NSCH, proposed in {72}, is a histogram of the number of significant/insignificant
wavelet coefficients with respect to a series of successively decreased thresholds. The

number of bins of a histogram corresponding to threshold TH, , or equivalently, TL = .,

is illustrated in Figure 4-2. From the figure, the number of bins is equal to i/ + 1. For any
bin b other than b=i+1 (ie., 1 b i), its vertical value is the number of SCs which

fall in the range [TH, ,,TH,]. For bin b=i+1, its vertical value is the number of total
insignificant coefficients. Therefore, for threshold-level TL = i, the index histogram

Indez,,,'"' can be expressed as follows:
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hy

Indez, "' = (Psc‘mf”'~psc -"'-pscm-Plsc) (4.2)

psc" — number of SCs forbin b, 1<b<i

P15 — number of ISCs for bin i + 1

Table 4-1 shows an example of Index-NSCH using a series of thresholds (7 thresholds
used here). As defined in Subsection 4.1.1, each threshold corresponds to an threshold-
level. The index is extracted from the Lena image with RGB color components in size of
256 x 256 . in each of which 5-level wavelet decomposition is applied. The indices shown

in Table 4-1 were obtained from color component G.

This method allows the number of bins of any histogram to be set as small as down to 2
at TL = 1. at which the retrieval can be finished very quickly. On the other hand, from
Table 4-1, we can see that the number of insignificant coefficients is far more than the
number of significant coefficients (about 25 times as large as the largest number of SCs

for threshold TH, ), and the large number of insignificant coefficients may interfere with

the calculation of distances, resulting in a poor similarity measurement.

Table 4-1 Relationship between the number of histogram bins and the threshold-
level for Index-NSCH, which was extracted from the color component G of the
Lena image. Here, 7 histograms, each corresponding to a threshold-level, are
illustrated in the following. SC: significant coefficient; ISC: insignificant

coefficient. (DL =35)

TL=i # of SCs # of ISCs
I 14 65522
2 14 39 65483
3 14 39 115 65368
4 14 39 115 221 65147
5 14 39 115 221 581 64566
6 4 39 115 221 581 1190 63376
7 14 39 115 221 581 1190 | 2413 60963
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4.1.3 Computational Complexity

The distance for Index-NSCH, D

nch

(Q.C) . between the query image, Q, and a

candidate image, C, of Index-NSCH is calculated using Eq. (3.3). The computational
complexity includes subtraction, addition and multiplication operations. For threshold-
level TL =1, it requires ! + 1 subtractions, : additions and : + 1 multiplications for each
color component. For the three color components RGB, the total number of operations

comes to:

Ouuh“'(:t) =6i+5
Onu.h“)(x) = 3’ + 3

The NSCH indexing technique is a fast retrieval technique, though, from Eq. (4.3), the
computational complexity increases linearly with the number of threshold levels. The
average running time at DL =3 and TL = 3 for a query image with 2% images retrieved

in a 3000-image database is 23.09 ms.
4.1.4 Performance

The retrieval performance of Index-NSCH is shown in Figure 4-3 for different tolerance

T (T=1%.2%and3% , and DL=3 ) and Figure 4-4 for different wavelet
decomposition levels DL (DL=3,4and5,and T =2%).

From Figure 4-3 it is clear that the retrieval efficiency n has a same trend with the
increase of threshold at a fixed decomposition level, e.g., DL=3. When TL<3,
increases and the slope is steep, while with further increases in TL, i.e., when TL>3, p

starts to decrease and drops to a low value at 7L = 7. This trend occurs because the small
number of bins in the first two threshold-levels cannot help to distinguish indices
thoroughly. For example, at 7L =1, the number of bins for the index histogram is only

two, which cannot exhibit the actual SC distribution of an image. With the increases in
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Figure 4-3 Retrieval performance of the NSCH technique. Wavelet

decomposition DL = 3, tolerance T = 1% 2% and 3% respectively.
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Figure 4-4 Retrieval performance of the NSCH technique. Tolerance 7 = 2%,

wavelet decomposition level DL =1~ 4.
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TL . the number of bins increases as well which enriches the features available for
indexing so as to improve the retrieval efficiency. However, since 7L > 3. from Table 4-1,
the values for new coming bins are much larger values than previously. For instance, at
TL =7, the value for bin 7 is 1190, which is 10 times more than the value, 1135, for bin 3.
The of SCs in bin 7 is less significant than in bin 3. This explains why the performance

degrades when 7L > 3.

In addition, from Figure 4-3, for a certain threshold, n is enhanced about 7-8% with

every 1% increase of tolerance, which is reasonable.

On the other hand, ;7 decreases when the decomposition level increases at a fixed

tolerance, e.g.. T =2% (Figure 4-4).

&

It should be noted that when DL =3 and T =2%, the maximum retrieval efficiency is
about 74% at TL =3. This technique still leaves room for improvement, which will be

discussed in the next chapter.

4.2 Moment of Wavelet Coefficients

“Moments are commonly used in statistics to characterize the distribution of random
variables. and, similarly, in mechanics to characterize bodies by their spatial distribution
of mass”[74]. The method of moments provides the capability to transform an arbitrary
shape into a finite set of characteristic features. It has been widely used for image

analysis due to its mathematical simplicity and versatility.

Wang er al. [54] and Mandal er al. [75] have proposed techniques in which statistical
properties of subbands of wavelet coefficients are used as indices. Here, the first-order
moment (i.e., mean) and the second-order moment (i.¢.. standard deviation) derived from
the wavelet coefticients with respect to each subband are used to buiid an image index.
This index, which to be referred to as Index-WMV hereafter, is a moment vector based

on the coetTicients in every wavelet subband.
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Assuming that subband b includes x, coefficients, and 4,,., and o,,,, denote the

mean and standard deviation of the coefficients in subband b, respectively, we have:

< Coef,
#nmv.h = (44)
-1 K
, & (Coef, = )
o’umv_h- = Z( K 2 ) (4-5)
1=t

b

4.2.1 Index-WMYV Generation

Because the wavelet coetficients are distributed in 317 + 1 subbands, and each subband is
associated with a pairof x4, and o,,,,.atotal of 3n+1 pairsof ., and o,,,, can
be used to construct an index. Index-WMV is actually a moment vector consisting of a

mean vector and a standard deviation vector. Let v, and v, denote vectors of

means and vector of standard deviations, respectively. For decomposition level DL = n,

they can be expressed as follows:

(n}

Vumv,;: (.llumr‘O' #umv,l T /‘ullll'_h LR yumv,)n ) (46)

{n)
’
4 wmv o

(0-“"""(” aumv,l o a.um\'_h’ LER dum\'_]n ) (47)

The Index-WMYV at DL = n is then the concatenation of them:

Index,, " = {vu.,,,‘.‘ L v,,.,,,‘._,‘"'} (4.8)

Here we give an index example extracted from the wavelet coefticients of the Lena color
image comprised of color RGB component planes of size of 256 x 256. 5-level wavelet
decomposition is applied to each component (R, G, B) independently, leading to 16
subbands for each component. The generated Lena Index-WMVs are showed in Table
4-2. From the table, we find that both the mean and standard deviation are generally

descending from lower subbands (in coarser resolutions) to higher subbands (in finer
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resolutions). It is likely that if multi-subbands are used to generate an index. the higher

subbands could contribute less information than the lower subbands.

Table 4-2 Index-WMYV extraction from the Lena image with § decomposition
levels, whereas, the number of subbands: 5 x3+ 1 =16. STDEV: standard

deviation; R: red, G: green, B: blue.

Subband 2 s 8
Mean STDEV Mecan STDEV Mecan STDEV

0 71 1020 -5 988 -32 627
1 -33 574 -19 648 -12 370
2 -30 246 -3 303 -2 207
3 19 219 16 286 31 193
4 -6 254 -14 276 -6 164
5 -1 96 -3 117 -5 83
6 9 124 9 139 7 89
7 1 93 0 99 0 67
8 0 58 0 59 1 43
9 0 57 0 62 0 44
10 0 46 0 51 0 36
i 0 33 0 35 0 29
12 -1 31 -2 36 -1 26
13 0 23 0 27 0 21
4 0 20 0 21 0 18
15 0 15 0 17 0 15

4.2.2 Computational Complexity

For Index-WMV at DL = n, the distance D,,, (Q.C) is the difference between the

mean and deviation of the query image Q and a candidate image C, which can be

computed from Eq. (3.3).

Again, the computational complexity of Index-WMYV can be analyzed. All the calculating

consists of subtraction, addition and multiplication operations. Different from Index-
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NSCH, the number of operations is wavelet-decomposition-level dependent. When DL =
n. it requires 2(3n + 1) subtractions, 6n + 1 additions and 2(3n + 1) multiplications for
a single color component. The total number of operations for 3 color components can be

obtained using the following equation:

{Om‘_‘"’(t)= 36n+11
(4.9)

Oumv“" (X) = 6" + 2

It is observed from the Eq. (4.9) that the WMV indexing technique is still a relatively fast
retrieval technique though the computational complexity increases linearly with the
number of decomposition levels. The average running time at DL =3 for a query image

with 60 images retrieved from a 3000-image database is about 71 ms.

4.2.3 Performance

The retrieval performance of Index-WMYV is shown in Table 4-3 for different tolerances

' (T=1%2%and3% , and DL=3 ) and for different decomposition levels

(DL=3 4and5,at T=2%).

Table 4-3 Retrieval efficiency of Index-WMV for various decomposition levels

and tolerances.

Index-WMYV Retrieval Efficiency (%)

DL =3 T=2%
T=1% T'=2% T =3% DL=2 DL=3 DL=4
93.7333 95.4833 96.1333 93.0667 95.4833 96.1

For a certain DL values, the retrieval efficiency is always enhanced with increases in
tolerance. On the other hand, the retrieval performance increases when the DL increases

at a fixed tolerance, ¢.g., T =2% as shown in Table 4-3.

It should be noted that when DL =3 and T =2%, the retrieval efficiency is about 95%,
which is much higher than that of Index-NSCH.



4.3 Binary Map of Low-Pass Subband

In the wavelet decomposition, the LL subband is a coarse version of the original image.
For most natural images, this subband can represent the original image roughly, i.e., it
can be regarded as a sub-image of the original one in smaller scale and lower resolution.
It is expected that if a binarization with respect to a specific threshold be applied to this
sub-image, the binarized map with feature of the original image can be employed to
construct an index [72]. This index, referred to as Index-LLBM, generated from LL
subband is in the format of 2-D binary map, and so it is a binary representation of the
lowest frequency subband LL. Figure 4-5 shows a binarization example generated from
the original color Lena image. The outline the image is clear and we can still recognize it

clearly.

(a) Color Len; l;nage (b) Binarized Lena Image

Figure 4-5 Illustration of Image Binarization: (a) color Lena image; (b) Lena
image after binarization. It is observed that the binarized image is actually a
black and white image here.

4.3.1 Index-LLBM Generation

Assume the value of any coefficient [Coef| , (here |Coef]_ <|Coef|, <|Coef|_ ), fora
given threshold TH, , (also |Coef|  <TH, <|Coef| _ ), in the LL-subband can be
binarized as follows. By comparing [Coef| within the LL-subband with threshold TH,,
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if |Coef . 2TH,, Coef, is set to 1, otherwise, 0. Figure 4-6 shows an example of the

process of binarization. In the figure, threshold TH =15 is assumed to apply to a LL

band. so that for those coefficients greater than 15 are to *1”, otherwise, to 0.

The binarization map of wavelet LL subband is strongly threshold-dependent. The higher
threshold, the fewer SCs will be found. leading to fewer *1's after binarization. On the
other hand, the lower the threshold, the more SCs. resulting in more *1’s. For thresholds
smaller than a certain value, which is image-dependent, the binarization map of LL
subband may probably composed by nothing but ‘1°'s which means that such kind of
binarization map will lose ability to distinguish the difference from others. Figure 4-7
shows an example of LL band binarization map with different thresholds applying to a 3-

level decomposed Lena image. The 4 thresholds are obtained from Eq.(4.1), in the order

TH,>TH,>TH,>TH, .

For example, if an image of size 512 x512 is wavelet decomposed, for 3 levels, the LL
subband will have a size of 64 x64 . The binary map corresponding to the LL subband

will be:

b(0.0) b(0.1) - - 5(0.63)
b(1.0) : 1
r,= : b(x.y) (.10)
b(63.0) - e e 5(63.63) |
where b(x.y) is the binary value at coordinate (x,y) of the map.
Then. T, is used as an index of LLBM technique:
Indez,,'"' =T, (4.11)

n — the number of decomposition levels

[, — LL subband binarization map with respectto DL = n
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Figure 4-6 Binarization process, a threshold of 15 is used. For those original
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Figure 4-7 LL band binarization map with respect to successive thresholds. Here,
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To more conveniently compare the proposed techniques to the LLBM technique in the
EZW framework, we apply multiple thresholds obtained in Eq. (4.1) to wavelet
coeflicients, and generate LL subband binarization maps with respect to each threshold.

Thus 7 sets of indices are generated corresponding to 7-level thresholds.

4.3.2 Calculation Complexity

Index-LLBM is a “bit-map™, and therefore its distance can be obtained using Eq. (3.4).
The calculation of index distance for Index-LLBM includes addition and bit-wise
exclusive OR (XOR) operations. The number of operations depends on both wavelet
decomposition level and image dimension. Assume the dimensions of an image are

X, xY, . For DL = n, the complexity is calculated as follows for 3 color components:

Ollhm(m(i)=3(-‘(":22x):fu )
\ 4.12)
n X, xY,
Oupm )(69):3( (:'Z: P ]

From Eq. (4.12), the number of operations increases in the power of 2° with the decrease
of decomposition-level DL. When DL =1, the size of the LL subband sub-image is one-

fourth of the original one, which takes a considerably longer time to calculate.

The average running time at DL =3 for a query image with 60-image retrieved in a

3000-image database is about 2370 ms.

4.3.3 Performance

The retrieval performance of Index-LLBM is shown in Figure 4-8 for different tolerances

T (T=1%, 2%, and 3% , and DL=3 ) and Figure 4-9 for different wavelet
decomposition levels DL (DL =3, 4and 5,and T =2%).
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Figure 4-8 Retrieval performance of Index-LLBM. Wavelet decompesition
DL=3, and tolerance T=1%, 2% and 3%, respectively.
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Figure 4-9 Retrieval performance of Index-LLBM. Tolerance T=2%, and DL=3,
4 and S, respectively.
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From Figure 4-8, it is clear that for a given decomposition level DL and tolerance T,

with increasing threshold-level 7L, the retrieval efficiency 7 increases when TL<2.

When TL > 2. 1 drops sharply even down to no more than 10%, which proves the

analysis in Subsection 4.3.1, i.e. the lower the threshold, the more SCs so that all *1's

occupy the binarization map. All |

* binarization maps make images indistinguishable

from each other so that the retrieval performance becomes meaningless.

Again, for a certain DL and 7L, the retrieval efficiency is always enhanced with the

increase of tolerance (Figure 4-8). On the other hand, the retrieval performance is almost

independent on the DL at a fixed tolerance. e.g.. T = 2% as shown in Figure 4-9,

In addition, at DL =3 and T =2%  the maximum retrieval efficiency is about 70%.

4.4 Comparison and Summary
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Figure 4-10 Retrieval performance comparison of Index-NSCH, Index-WMV,
and Index-LLBM. Here, DL =3 and T =2%.
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Table 4-4 Computational complexity of Index-NSCH, Index-WMYV and index-

WMVat DL = 3,and TL = :,where : = | - 7, image size is 256 x 236
i 1 2 3 4 5 6 7
0,.() t 1 17 23 29 35 41 47
o...( ) t 119 119 19 119 119 119 19

o * 3096 3096 3096 3096 3096 3096 3096
Otipm ( )

@ 3096 3096 3096 3096 3096 3096 3096

So far, we have introduced 3 indexing techniques in the wavelet-based framework. The

indexing performance of these techniques is evaluated below.

Figure 4-10 shows the retrieval performance for the 3 indices at DL =3 and T =2%.
Index-WMV provides the best performance over the other two. It can be used as
reference to evaluate the proposed techniques. Index-LLBM has retrieval efficiency close
to Index-NSCH only at the first 2 threshold-levels. Due to the large complexity and low
retrieval efficiency, Index-LLBM is not suitable to be employed independently for the
purpose of retrieval. However, it might be helpful to improve the performance by using
Index-LLBM jointly with other indices. On the other hand. Index-NSCH can also be

improved to achieve higher performance.

For the computational complexity. we set weights for all indices to " 1" so that there is no
multiplication operation considered in the process of analysis for simplicity. The
computational complexity, at DL =3 and T =2%, and from 7L =1 through TL =7, for
all the techniques is tabulated in Table 4-4. From Table 4-4, when the decomposition
level is fixed, the complexity for Index-NSCH is the smallest but increases linearly with
TL . For Index-WMV, it is small enough though a little higher than that for Index-NSCH.
Finally, for Index-LLBM, the complexity is considerably larger compared to the former
two (about one magnitude higher at DL =3). Additionally, the complexity for both
Index-NSCH and Index-LL.BM is independent of T'L. From the viewpoint of complexity.
both Index-NSCH and Index-WMYV are selectable under most situations; however, Index-
LLBM is practical only for large DL (how large the quantitive value of DL is

determined by the actual image size).
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Chapter 5 INDEXING IN THE EMBEDDED

WAVELET FRAMEWORK

We have reviewed the EZW coding algorithm proposed by Shapiro [73], in which the
progressive coding is implemented by setting a series of monotonically decreasing
thresholds. More details are added to the coding sequence with each decrease of the
threshold. A lower threshold decreases the noise and therefore increases the signal-noise-
ratio (SNR). For a reconstructed image. the lower the threshold used, the better the
quality that can be obtained. In another word, the EZW coding algorithm embeds an SNR

progression.

Liang and Kuo [72] proposed the Index-NSCH for indexing in the EZW framework. Here.
the number of significant coefticients with respect to a threshold is used to generate an
index of the image. The generation of Index-NSCH has taken advantage of the
progressive property of EZW. However. there is further scope for improvement. In this
chapter, two individual indices based on the EZW framework are presented in Section 5.1
and 3.2. respectively. followed by analysis of the combination indices in Section 5.3. In
Section 5.4, a comparison of all indices mentioned in this chapter will be given, followed

by a summary in the end.

5.1 Modified Histogram of the Number of Significant
Coefficients

The Index-NSCH proposed by Liang and Kuo [72] is a relatively coarse-resolution
histogram which has only a few bins (see Section 4.1). For example, there exists only 4
bins when using a 3-level threshold TH,, which is not enough to describe the feature of
an image. In this section, a new index, a modified version of Index-NSCH (referred to as

Index-MNSCH) is proposed below [76].
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5.1.1 Index-MNSCH Generation
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Figure 5-1 Number of histogram bins with respect to threshold-level 7L =i .

Here, i = | ~ 3. SC: significant coefficients; ISC: insignificant coefficients.

P=1 IsC + SC EE—
L — S —— §2 —
0 T'H, \mun of S1 C,m"

Figure 5-2 lllustration of the segmentation of SCs. For wavelet coeflicients fall in

two adjacent thresholds 7// and C_ , where TH, = C_ /2, they are divided

Y

into two groups further, i.e., the group 1 is in the range of [7// .(TH +C_)/2],

and the group 2 is in the range of [(7H, +C_)/2.C__].

Index-MNSCH, derived from the overall significant wavelet coefticients, is a histogram

of the number of significant coefficients. The histogram bin for insignificant coefticients

in Index-MNSCH is taken away because the relatively large number of insignificant

coefficients compared to SCs (especially when threshold is higher) can interfere with

accuracy of the distance calculation.

For threshold-level TL =i, the range of absolute values of SCs, which is [TH,,Coef,,.].

(see Section 4.1), is divided into several non-overlapping segments such that there are
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always two segments with equal interval between every two adjacent thresholds (Figure
5-1). Thus, the number of segments of the range of SCs is related to the value of TL .
From Figure 5-1, the number of segments is always twice the threshold-level i, ie., 2i.
These segments obtained as above are used as bins of the SC histogram now so that the
number of bins for the SC histogram corresponding to threshold-level i is identical to 2;.
The interval size of each segment is the width of a bin. The number of histogram bins
obtained in such a way is always larger than that of Index-NSCH except at i =1. For
example, when i =1, there are two histogram bins. For second threshold-level (i =2),
there are 4 bins in Index-MNSCH instead of 3 bins in Index-NSCH. Hence, it is expected

that the indexing performance could be enhanced.

Unlike the NSCH technique, in which the sign of coefficients are ignored in the course of
finding ISCs/SCs, the MNSCH technique uses two parallel histograms with exactly the
same division and number of bins: one for positive SCs and the other for negative ones.

We call the two histograms the positive histogram H and the negative histogram

mnsch.p

H respectively. For example, in Figure 5-2, only one threshold is used to identify

muhon ®

SCs. The both positive and negative histograms include 2 bins named S, and S,. If a

positive coefficient falls in bin S;. the count for bin S, in A, , , is increased by I. Ifits

<o p

absolute value of a negative coefficient falls in bin S, , the count for bin S, in H,, ,  is

increased by 1.

and H at threshold-level TL =i are defined as:

mmch.n

The H

mnsch . p

Hmmch,p“) (h,"(’)W"»hI"(r),‘ . ‘,h,;l(Zi))

(5.1
Hmmch.n“) = (hm(l)"' '.h,"(r)., o '~h,,,(2i))
where #,(r) is the number SCs in the 7 binand | <r<2i.
Index-MNSCH at 7L =i is defined as:
Indexmmch“) = {Hmmch,p“)‘ Hmmch.ﬂ“) } (52)
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Figure 5-3 Index-MNSCH histograms for threshold-level (a) 7L =3 and (b)
TL=4.

The SC histograms for 7L =3 and 7L =4 obtained from the Lena image are illustrated
in Figure 5-3. We know that the first 6 bins at 7L =4 are exactly the same as the bins at
TL =3 in order and value, and the histogram at TL =4 is comprised of histogram at

TL =3 with 2 bins appended.
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5.1.2 Computational Complexity

Considering one color component, the distance of indices between the query image Q
and the candidate image C for threshold-level i is the summation of distance for

H

mnh, p

and distance for H . using Eq. (3.3).

mmch.n

The computational complexity of retrieval depends only on the number of bins of SC
histogram for Index-MNSCH. which is determined by TL. Therefore, the complexity is
considered to depend on TL only. For each component, when TL =i, we require 23
subtractions, £ + 3 —1 additions and 28 multiplications to calculate the distance
between the query image and the candidate image. For all 3 components, the total number
of operations (i.e., additions/subtractions and multiplications) corresponding to a

threshold-level i is:

It

24§
12i

Ommr.'h( K ( i)
Ommch“ ) ( x )

The computational complexity increases linearly with i, and if the weights are set to be

unity, O, """ (x) can be reduced to 0. However, similar to Index-NSCH, the complexity
even for higher TL is still not large. for example, only 168 addition operations are
needed at 7L =7, and therefore, the computational complexity of Index-MNSCH can be
considered always small. At TL =3 and DL =3, the running time for a query image with

60 images retrieved from a 3000-image database is approximately 44.08 ms.

5.1.3 Performance

The retrieval performance of Index-MNSCH is shown in Figure 5-4 for different

tolerances T (T =1%,2% and 3% at DL=3) and Figure 5-5 for different wavelet

decomposition levels DL (DL=3.4and5 at T =2%).



The retrieval efficiency n follows the same trend with increases in threshold at a fixed
decomposition level. When TL <3, n increases with a steep slope, while with further
increases in TL . i.e., when TL >3, n starts to decrease and drops to a bottom line at
TL =7. The reason for this trend is similar to Index-NSCH, that is, when 7L is low, the
number of bins of a corresponding histogram is small as well, the difference between two
images can be just compared roughly and results in a low retrieval efficiency. With
increases in 7L . more bins are added to the histogram such that more details are brought
in. However. a higher 7L means a lower threshold, and the number of SCs increases
exponentially (Figure 5-3). while the increased SCs is less significant than the SCs in the
previous bins. Hence. when 7L increases to some extent, the predominance of more bins
are overwhelmed by interference from a large number of increased SCs. This trend
suggests that the threshold-level has to be selected carefully to achieve the best

performance.

On the other hand, for a certain 7L, 5 is enhanced on average by 2-3% for every one
more percent in the number of retrieved images (Figure 5-4). At a fixed tolerance,
decreases when the decomposition level increases. From Figure 5-5, when DL =5, the
performance degrades heavily compared to DL =3,4. This means that Index-MNSCH
works effectively just for lower decomposition level DL <4. The maximum retrieval

efficiency is about 85% foundat DL =3 and T =2%.

In Figure 5-6, the retrieval performance for both Index-NSCH and Index-MNSCH at
decomposition level DL =3 and tolerance T =2% is illustrated. It shows that Index-
MNSCH has an average of 10% improvement in the retrieval efficiency over Index-

NSCH. Both of them follow similar trends with increases in TL . Retrieval efficiency 7
increases when TL is small and reaches maximum at 7L =3 or 7L =4 . After that, 7

starts to decrease monotonically.
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Figure 5-4 Retrieval performance of Index-MNSCH with DL =3 and
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Figure 5-6 Comparison of retrieval performance of Index-MNSCH and Index-

NSHC. Here, wavelet decomposition level DL =3 and T = 2%,

5.2 Histogram of Differences in the Number of Subband
Significant Coefficients

Subbands corresponding to different resolutions can represent an image in a progressive
way, i.e., subbands in lower resolutions can represent an image coarsely, and the quality
of the image can be improved by adding more subbands corresponding to higher
resolutions. This is called a resolution progression. In the EZW algorithm, when using a
lower threshold, the number of SCs increases not only in all wavelet domains but also in
each of subband obviously. In this section, a new index, a histogram of difference in the
number of subband significant coefficients (referred as to Index-DNSSCH), is presented

below.
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5.2.1 Index-DNSSCH Generation

Index-DNSSCH is a histogram of differences in the number of subband-SCs (DNSSC
histogram). Each bin corresponds to a wavelet subband. The value for bin & (i.¢. subband
k) is the difference in the number of SCs for subband & in current 7L =i from the
previous TL =i -1 except TL =1, while for 7L =1. the value of bin & is the number of
SCs in subband & itself. The difference instead of the number of SCs itself is used as the
bin value because the number of SCs for a subband of higher resolution will increase
considerably with the lowering of the threshold and result in huge interference in the
distance calculation. The significance of using the difterence in the number of SCs is that
it can degrade. to some degree. such kinds of interterence. The interference can be

reduced further by introducing weighting.

Figure 5-7 is the DNSSC histogram at TL =3 extracted from the Lena image. The
number of bins for the DNSSC histogram is only dependent on the wavelet

decomposition level. For the same DL, a higher TL provides more SCs for each bin.
Let g (k) be the value of bin & at 7L =i from TL=i~-1 when DL=n:

14 (k)

= ( l <k <3n 5
g'(k)_{p,(’f)-p,..(k) ("22)} (0<k<3n) oY

where p, (k) is the number of SCs in subband & at 7L =i.

Then, the Index-DNSSCH for 7L =i and DL = n can be expressed as:

[”de-"dmm.“m =H um_ {g,(O)-"’vg,(k)""g:(:;")} (5.3)

dnswh
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Figure 5-7 Index-DNSSCH histogram at 7L = 3. (a) No. of SCs in each subband
at 7L = 3 ; (b) No. of SCs in each subband at 7L = 2 ; (c) Difference no. of SCs in
each subband for 7L =3 from 7L =2 ;(d) Histogram obtained from (c).

5.2.2 Computational Complexity

For TL =i and DL = n. the distance of indices between the color query image O and

candidate image C can be determined using the L' metric as shown in Eq. (3.3). The
computational complexity of retrieval depends on the number of bins in the DNSSC
histogram, which is determined only by DL . We have assumed that DL =n, and
consequently, there exists 3n + | subbands, i.e., 3n+1 bins in the DNSSC histogram. For

each color component at each 7L, we require 3n+1 subtractions, 3n additions and

3n +1 multiplications to calculate the distance D, ., (Q,C). For color images including

3 components, the total number of operations (i.e., additions/subtractions and

multiplications) corresponding to an threshold-level is:
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0,."(£)=18n+5
{ dnssch ( ) (5.6)

O™ (x) =91 +3

dnasch

The retrieval complexity is fixed when the decomposition level is given. If the weights
are set to be unity, O, "' (x) can be reduced to 0. From Eq. (5.6), the complexity of
Index-DNSCH depends on the decomposition level rather than the threshold-level. For a
fixed DL, the number of mathematical operations, which is very small (only 113 even
for DL =6). is the same for all threshold-levels. Hence, Index-DNSCH can achieve a fast

retrieval as well as Index-MNSCH and Index-NSCH.

For TL =3 and DL =3. the running time for a query image with 60 images retrieved

from a 3000-image database is approximately 68.21 ms.

5.23 Performance

The retrieval performance of Index-DNSSCH is shown in Figure 5-8 for different

tolerances 7 ( T =1%, 2% and3% at DL=3) and Figure 5-9 for different DL
(DL=3, 4and5 at T =2%).

The retrieval efficiency 7 also follows the same trend with increases in threshold at a
fixed decomposition level. When TL <4,  increases and the slope is steep, while with

turther increases in TL , i.e., when TL > 4, p starts to decrease monotonously.

This evaluation performance is reasonable. It can be explained in a similar way as the
trend in Index-MNSCH. That is, when TL is low, the number of SCs in each subband
(histogram bin) is small even down to zero due to the high threshold: the difference
between two images can be just compared roughly and result in a low efficiency. With
increasing 7L, more SCs are found in each bin as more details are brought in. However,
the number of total coefficients of subbands in finer resolutions are multiplied by that in
coarser resolutions by the power of 2°. With further increases in 7L, i.e., lowering the

threshold, the number of SCs in subbands at finer resolutions
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Figure 5-8 Retrieval performance of Index-DNSSCH at DL =3 and
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increases exponentially in contrast with the number at coarser resolutions, while the
increased SCs at finer resolutions are less significant than those at coarser resolutions.
When TL increases to some extent, exponentially increasing in less significant SCs
appears as noise right now to interfere with the results. Therefore. similar to [ndex-
MNSCH. Index-DNSCH works etfectively just for some threshold-levels which have to

be selected carefully.

For a certain TL . 5 also increases with larger tolerances (Figure 5-8). While, for a fixed
tolerance (Figure 5-9). n keeps approximately unchanged at DL =3 and DL=4, and
decreases slightly at DL =35. By the way. at DL =3 and T = 2%, the maximum retrieval

efficiency reaches 86.5% at TL =4 .

5.3 Joint EZW-Based Indexing Techniques

[n this section, the combined use of indices, including those which have been introduced
in Chapter 4 and Section 5.1 and 5.2, will be also analyzed. The combinations include: 1)
MNSCH and DNSSCH (Index-CMD); 2) MNSCH and LLBM (Index-CML); 3)
DNSSCH and LLBM (Index-CDL); and 4) MNSCH, DNSSCH and LLBM (Index-
CMDL). The computational complexity for distance for these combinations is the
summation of that of the combined indices. and hence, the analysis for it will not be

repeated here.

5.3.1 Combination of MNSCH and DNSSCH

Index-CML is the combination of Index-MNSCH and Index-LLBM. The retrieval
performance of Index-CMD is shown in Figure 5-10 for differemt T

(T =1%, 2% and 3% at DL =3) and Figure 3-11 for different DL (DL =2, 3, 4and 5

aT=2%)

From Figure 5-10 it is clear that the retrieval efficiency n has a same trend with the

increase of threshold at a fixed decomposition level. When TL <3, # increases and the

70



slope is steep, while with further increases in 7L, i.e., when TL >3, n starts to decrease
smoothly. The reason for this observation is similar to that of Index-MNSCH and Index-
DNSSCH, i.¢., when TL is low, the increase in the number of SCs with respect to the
lowering of threshold contributes more detail to the difference between two images so
that it leads to increase in retrieval efficiency. However, when TL is high, the benefit
brought by the more SCs becomes to disappear and it converts to noise in computing the

distance between two images.

Again, for a certain TL, n is enhanced with the increases in tolerance (see Figure 5-10),
while at a fixed tolerance, 1 decreases when the decomposition level increases (see

Figure 5-11). When DL =3 and T =2%, the maximum retrieval efficiency is about 90%.

In addition, Figure 5-12 shows the retrieval efficiency of Index-MNSCH, Index-
DNSSCH and Index-CMD at decomposition level DL =3 and tolerance T =2%. We
find that Index-CMD provides an average 6% improvement over the former two

techniques.
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Figure 5-10 Retrieval performance of Index-CMD at DL=3 and

T =1%. 2% and 3%
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Figure 5-12 Comparison of retrieval performance among Index-NSCH, Index-
MNSCH. Index-DNSSCH and Index-CMD, at DL =3 and T = 2%

72



5.3.2 Combination of MNSCH and LLBM

The retrieval performance of Index-CML, the combination of index-MNSCH and Index-

LLBM. is shown in Figure 5-13 for different tolerances T (7T =1%, 2% and 3% at

DL = 3) and Figure 5-14 for different DL (DL =3, 4and5 at T =2%).

The maximum retrieval efficiency at DL =3 and T =2% is 90%. The trend is similar to
that of Index-MNSCH and so does the explanation. Additionally, as described in Section
4.3, a binarization map of the LL subband helps to improve the retrieval efficiency when

TL <3, and becomes useless since TL > 3.

On the other hand, for a certain TL . 5 is enhanced with the increase of tolerance (Figure

5-13), while at a fixed tolerance, 57 decreases when the decomposition level increases

(Figure 5-14).

MNSCH+LLBM (DL=3)
—8—T=1% ® T=2% —&—T=3%

94

92 ] /\
.®
oo & e
p ¢ : .\
86 /l/ BN

84 4
82

80 H ‘/
78 ] '
76
74
72 +
70 o
68

Retrieval Efficiency n (%)

T T T T M

] 1 2 3 4 s 6 7
Threshold Level i

Figure 5-13 Retrieval performance of Index-CML at DL=3 and

T =1%. 2% and 3%
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Figure 5-15 Comparison of retrieval performance among Index-LLBM, Index-
MNSCH, index-CML, at DL =3 and T =2%
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Compared to Index-MNSCH (Figure 5-15), Index-CML provides an average 6%
improvement over Index-MNSCH. However. the cost for this improvement is the
considerably larger complexity of Index-CML over Index-MNSCH. The best
pertormance is achieved at TL=3 for both Index-MNSCH and Index-CML with
n=85% and 7=91% . respectively. Between the two. which should be chosen for
retrievai is determined by the retrieval conditions and requirements. ie.. if the
decomposition level is high, ¢.g., DL =35, and the computer system in which the retrieval

program is running is fast enough, Index-CML might be a better choice and vice versus.

5.3.3 Combination of DNSSCH and LLBM

The retrieval performance of Index-CDL is shown in Figure 5-16 for different T

(T =1%. 2% and 3% at DL =3) and Figure 5-17 for different DL (DL =3, 4and 5 at
T=2%).

The maximum retrieval efficiency is about 89%, at DL =3 and T =2% . The result is
similar to that of Index-DNSSCH (see Section 5.2.3) and Index-LLBM (see Section 4.3)

and can be explained in the same way.

Figure 5-18 shows the comparison of Index-LLBM, Index-DNSSCH and Index-CDL.
Index-CDL has average 10% improvement over Index-DNSSCH with the help of Index-
LLBM when 7L <4, while the two curves overlap after TL > 4. The cost for this 10%
improvement is the considerable large complexity introduced by Index-LLBM.
Obviously, the selection between Index-DNSSCH and Index-CDL depends on which
threshold-level is applied. For TL <4, Index-CDL is a better choice, while for 7L >4,
Index-DNSSCH is better than Index-CDL due to its lower complexity than Index-CDL.
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Figure 5-16 Retrieval performance of Index-CDL at DL =3 and

T =1%,2% and 3%
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Figure 5-17 Retrieval performance of Index-CDL at 7 =2% and
DL=34and5
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Figure 5-18 Comparison of retrieval performance among Index-LLBM, Index-
DNSSCH and Index-CDL,at DL =3 and T = 2%

5.3.4 Combination of MNSCH, DNSSCH and LLBM

The retrieval performance of Index-CML is shown in Figure 5-19 for different tolerances
T (T =1%, 2% and 3% at DL =3) and Figure 5-20 for different DL (DL =3, 4 and 5

at 7 =2%).

The maximum retrieval efficiency is about 92%, at DL =3 and T =2% . No different

evaluation trend from Index-CMD and Index-MNSCH is observed.

For retrieval performance, it is shown from Figure 5-21 that Index-CMDL has average
2% improvement over Index-CDM when 7L <4, while the two curves overlap after

TL> 4.
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Figure 5-19 Retrieval performance of Index-CMDL at DL=3 and

T =1%. 2% and 3%
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Figure 5-20 Retrieval performance of Index-CMDL at 7 =2% and
DL =3, 4and$5
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Figure 5-21 Comparison of retrieval performance among Index-LLBM, Index-
CMD and Index-CMDL, at DL =3 and 7 = 2%

5.4 Comparison of EZW-Based Indexing Techniques

So far, we have introduced all EZW-related image indexing techniques, including the
previous related works, ¢.g.. NSCH technique, and the proposed ones, such as MNSCH,
DNSSCH techniques and their combinations. In the last section, the analysis of retrieval
performance was done among several technique groups, i.e., 1) MNSCH, DNSSCH and
CMD; 2) MNSCH and CML; 3) DNSSCH and CDL; and 4) CMD and CMDL.
Meanwhile, the comparisons were also done within each group. In this section. we would
like to do more comparisons among techniques which have not been covered in the last
section, i.e., CMD, CML, CDL, CMDL and WMV, in both retrieval efficiency and

computational complexity. Here, we use the results at DL =3 and T =2% for all indices.

For simplicity, we set the weights for all indices to ‘1’ so that multiplication is not

considered in the analysis of computational complexity. Meanwhile, the computational
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complexity., at DL=3 and T=2% and from 7L =1 through 7L =7 for the all

techniques to be compared. re-tabulated in Table 5-1.

Table 5-1 Computational Complexity for all EZW-based indexing techniques
introduced in Chapters $andSat DL =3 and 7 =2% from TL=1~7

TL 1 2 3 4 5 6 7 8
0,.,"() | + 1 17 23 29 35 N 47 53
0.,."() | 119 19 19 19 19 19 119 19
O™ ( ) £ | 3070 | 3071 | 3071 | 307t | 307t | 30711 | 3071 | 3071

@ | 3072 | 3072 | 3072 | 3072 | 3072 | 3072 | 3072 | 3072

0. () | £ 23 47 71 95 119 143 167 191
O, () | % 59 59 59 59 59 59 59 59
o, ' "()| * 83 107 131 155 179 203 227 251
- + | 3095 | 3119 | 3143 | 3167 | 3191 | 3215 | 3239 | 3263
() @ | 3072 ] 3012 [ 3072 [ 3072 | 3072 | 3072 | 3072 | 3072
0."( ) £ | 3130 | 3030 | 33t | 33t | 3130 | 330 | 331 | 3431
@ | 3072 | 3072 | 3072 | 3072 | 3072 | 3012 | 3072 | 3072

o + | 3155 | 3179 | 3203 | 3227 | 3251 | 3275 [ 3299 [ 3323
O™ (1) ® [ 3072 | 3072 | 3072 | 3072 [ 3072 | 3072 | 3072 [ 3072

For retrieval performance, it is shown in Figure 5-22 that the curves for Index-CML,
Index-CDL. Index-CMD and Index-CDML are close for each TL, and that they all

follow the same trend: with increasing 7L, retrieval efficiency 7 increases when TL is
small and climbs to the peak at TL =3, after that,  starts to decrease monotonically.

Among them, Index-CMDL provides marginally better retrieval efficiency over the

others.

However, from Table 5-1, when DL =3, the complexity cost for Index-CML, Index-
CDL and Index-CMDL is almost 30 times large of that for Index-CMD. The extra
complexity for each of the former three over Index-CMD is all due to the contribution of
Index-LLBM. Because the complexity of Index-LLBM is strongly DL -dependent,
Index-LLBM and all indices in which Index-LLBM joins have considerably larger

complexity when DL <3 (see details in Section 4.3) and their complexity is close
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because the complexity of other indices, such as Index-NSCH, Index-MNSCH and
Index-DNSCH. can be ignored compared to that of Index-LLBM.
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Figure 5-22 Comparison of retrieval performance among Index-CMD, Index-
CML, Index-CDL, Index-CMD and Index-WMV,at DL =3 and 7 =2%.

Considering both the retrieval efficiency and the computational complexity, obviously,
Index-CMD is preferred for retrieval due to its low complexity and similar retrieval
performance compared to the others. The best performance is achieved at TL=3 for

Index-CML with 7=91% . for Index-CDL 5 =88%, for Index-CMD with 7=91%,
and for Index-CDML with 7=93%.

On the other hand, Index-WMYV is also compared in Figure 5-22. Index-WMV is a non-
EZW-based indexing technique. This technique has good retrieval performance in the
wavelet domain. Compared to Index-WMYV, Index-CDML has close retrieval efficiency

when 7L =3. The best retrieval performance is 7 =93% for Index-CMDL and n =96%
for Index-WMV.
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5.5 Summary

In this chapter, the proposed EZW-based indices were introduced, and all indices
including those introduced in Chapter 4 were compared. It was found that for all EZW-
based indexing techniques, the trend in retrieval performance is similar, i.e., when 7L is
small, 77 increases with the increase of 7L . On the other hand, when TL increases to
some extent, 7 decreases with the increase of TL . In other words, the best performance
of EZW-based techniques is always achieved in the middle range of TL. Among all
EZW-based techniques. Index-CDML can achieve the best performance. but with
considerably larger complexity. Index-CDM can achieve good performance that is
marginally lower than that of Index-CDML but with a much smaller computational
complexity. For fast retrieval requirement, Index-CMD is the best choice among all

EZW-based indexing techniques.



Chapter 6 INDEXING IN THE JPEG2000

STANDARD FRAMEWORK

JPEG2000 is the new advanced standard for still image compression being developed
(now in its final-processing) by the ISO [3]. It is intended to provide low bit-rate
operation with rate-distortion optimization and subjective image quality performance
superior to the current existing standards (e.g. JPEG) without sacrificing performance at
the higher bit-rates. With the increasing use of muitimedia technologies, JPEG2000 is
expected to be used in many applications, e.g.. Internet. color facsimile, printing,
scanning, digital photography. remote sensing, mobile applications, medical imagery.
digital library and E-commerce. Therefore, it is important to develop indexing techniques

based on the JPEG2000 standard algorithm.

In this chapter, the JPEG2000 standard algorithms will be introduced first. The proposed

indexing techniques are then presented.

6.1 Review of the JPEG2000 Standard

The kernel of JPEG2000 is primarily based on the Embedded Block Coding With
Optimized Truncation of the bitstream (EBCOT) [77]. The EBCOT algorithm provides
superior compression performance with modest complexity while producing a bit-stream
with a rich set of features, including resolution and SNR scalability together with a

“random access” property.

In JPEG2000, an image to be encoded is independently partitioned into non-overlapping
blocks (tiles) in the same dimension, to reduce the memory requirements and efficiently
process the regions of interest in the image. A block schematic of the JPEG2000 encoder
is shown in Figure 6-1. Various operations, such as wavelet transform, scanning,

quantization and entropy encoding, are performed independently on all blocks of the
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image. For each block, the discrete wavelet transform is applied on the source image data.
The wavelet coefficients are then scanned by a scanning algorithm and quantized. A rate-
control mechanism is used along with the quantizer to satisfy the rate requirements by
truncating the quantized coefticients. An entropy coding is then performed to generate

the output bitstream.

: Input Original | ' Output '
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transform

Rate
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Figure 6-1 Block diagram of the JPEG2000 encoding process.

We note that the entropy coding in JPEG2000 employs a bit-modeling algorithm. Here,
the wavelet coefficients are represented in the form of combinations of bits that are
distributed in different bit-planes. Further more, these bits are reassembled in coding
passes according to their significance status. The use of bit modeling provides a
hierarchical representation of wavelet coefficients by ordering the bit-planes of wavelet
coetticients from the MSB to the LSB. Hence, the formed bitstreams with inherent
hierarchy can be stored or transferred at any bit rate without destroying the completeness

of the content of the image.

Compared to the current JPEG still image compression standard — JPEG, JPEG2000 has

the following features [78. 79}:

e Superior low bit-rate performance without sacrificing performance on the rest of
the rate-distortion spectrum.

e The DWT is used as the basis instead of discrete cosine transform.
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o It provides the following features: (a) embedded lossy to lossless, (b) multiple-
component images. (c) static/dynamic region-of-interest, (d) error resilience, (e)
spatial/quality scalability, and (f) rate-control.

e It is expected that JPEG2000 will provide more than 20% improved performance

over JPEG for most images.

Because the ideas for constructing indices in the JPEG2000 framework come from the
compressed JPEG2000 bitstream structure, brief explanations on necessary
concepts/terms related to the JPEG2000 standard will be helpful for understanding the

principle, and the process of index generation.

6.1.1 Bit-Plane

Table 6-1 Illustration of bit-planes. “bp” in the table refers to bit-plane.

CoefTicients bp5 (MSB) bp4 bp3 bp2 bpl (LSB)
21 | 0 1 0 1
| 0 0 0 0 l
0 0 0 0 0 0
10 0 | 0 | 0

A number can be represented in several formats, (¢.g.. decimal and hexadecimal). The
most popular format in digital signal processing is the binary representation. The order of
the bits of the number descends from the most significant bit (MSB) to the least
significant bit (LSB). A bit-plane is the decomposition of the binary representation for a
given set of decimal numbers. An example is given in Table 6-1. The four decimal
numbers (21. 1. 0. 10) are expressed in binary representations (rows). The binary
representations are then arranged so that the bits corresponding to a particular weight are
in the same column. The rows represent the original decimal number and the columns
construct the bit-planes. For a set of data, the number of bit-planes is determined by the

absolute maximum value in the data set.
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6.1.2 Significance of Bits

The significance of bits refers to whether a bit (*1° or *0°) involved in a coefficient is
significant or not. The significance status of a coefficient changes from insignificant to
significant at the bit-plane where the first *1° bit of the coefficient is found. This *1" bit
Just found is recorded as significant. The remaining *I's appearing in the binary
representation of the coefficients are regarded as insignificant. In the example shown in
Table 6-1. the significant * 1" bit for coefficient 21 is at bit-plane 5, this bit is recorded as
significant; the second and the fourth *1' bits appear at bit-plane 3 and bit-plane 1,
respectively; they will not be recorded as significant because they are not the significant
bits of 21. Similarly, for coefficient 10, the *1° bit showing up at the’bit-plane 4 is

recorded as significant while the * 1" in bit-plane 2 is insignificant.

6.1.3 Code-Block
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Figure 6-2 Illustration of sub-bands and code-blocks (CB)

Each sub-band in the wavelet domain is partitioned into non-overlapping rectangular
blocks, code-blocks. The code-block is the smallest independent unit in the JPEG2000
standard. Partitioning the wavelet coefficients into code-blocks facilitates coefficient
modeling and coding, and makes the processing more efficient and flexible in organizing

the output compressed bitstream. That is, DWT coefficients are sliced into bit-planes in
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units of code-blocks, and the bit-planes are coded to generate the output bitstreams with
respect to the required order. It is noted that the bit-plane coding order descends from
MSB to LSB. Note that the size of each code-block is the same for all sub-bands at the

same resolution.

6.1.4 Packet and Packet Header

As mentioned above, after dividing the wavelet coefficients into code-blocks and slicing
the code-blocks into bit-planes, the arithmetic entropy encoding is applied to all bit-
planes in the required order. The output of arithmetic encoder and the necessary
information constitute the final output bitstream, in which consists of main header and

data body. i.e., multiple so-called packets.

A packet, according to the JPEG2000 standard, comprises a packet header and a part of
the bitstream from an entropy-coded binary image. The packet header is a portion of a
packet that provides auxiliary information about the binary data that follows, and the
coded binary data of each packet comes from the bit-planes sliced from at least one
complete code-block. Hence, it is expected that the necessary and concise information
about a code-block can be extracted from a packet header directly without decompressed

the coded binary data.

One important information contained in a packet header is the number of the bit-planes

for each code-block involved in the corresponding packet.

6.1.5 The Number of Bit-Planes

Typically, as shown in Figure 6-3, the number of the bit-planes for a given data set is
determined by the number with maximum value in the data set. In the JPEG2000
standard, such a data set refers, in particular, to the wavelet coefficients either from a
subband or a code-block. The number of bit-planes available for the representation of

coefficients in any sub-band b is given by M,, and in any code-block by P . As

mentioned before (see “code-block™ part above), any sub-band may include one or more
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code-blocks. Hence, obviously, for those code-blocks from a subband, the value of any
F, for the code-blocks will not exceed the M, for that subband. This M, with respect to

a subband can be calculated from the main header of the coded image data, while P,s for

code-blocks within the subband can be obtained from packet headers. In general, the
number of actual bit-planes P, may vary from code-block to code-block in the sub-band.

It has to be noted that, with a known M, of a subband, (M, - B,) instead of P, for each

code-block within the subband is preserved in the corresponding packet header. This
(M, - B,), annotated as P in the standard, is actually the number of MSB bit-planes that

are all zeros.
coefficients | bpé bp5 bp4 | bp3 bp2 bp1 # of significant
bit-planes
21 0 1 0 1 0 1 5
0 0 0 0 0 1 1
0 0 0 0 0 0 0 0
10 0 0 * 0 1 0 4
set . # of bit-planes of a data set
a daty se # of bit: for P :
" inciuding 4 of bit planas lor is decided by the one
numbers absolute value
= V
21 1 5 l
5
0 10 0 4

Figure 6-3 Illustration of the number of bit-planes and significance of bit ‘1°. The
bit ‘1’ in red is the most significant over the other ‘1’s.

6.1.6 Layer

The term /ayer used in this work refers to a collection of contiguous bit-planes. A layer
may contain a fraction of a bit-plane, or may contain multiple bit-planes. However, in this

thesis, we assume for simplicity that a layer contains just one bit-plane. The number of
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layers is determined by the maximum value of wavelet coefficients, which equals to A/, .
For layer / =1. it refers to the MSB bit-plane M, . layer / =2, refers to the second most

significant bit-plane. i.e., M, -1, and so on. For example, layer | is bit-plane 5 in Table

6-1.
6.1.7 Stage
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Figure 6-4 lllustration of resolutions and stages. 2-level decomposition is applied
(DL =2).(@)r=0:LL2; r=1:LL2+LH2+HL2+HH2; r=2:LL2+LH2+
HL2 + HH2 + LHI + HL1 + HHI; (b) s =0: LL2; s =1: LH2 + HL2 + HH2;
s=2:LHI+HLI + HHL.

In the JPEG2000 standard, if an image is wavelet transformed with n decomposition
levels, the image will have n +1 distinct resolutions, denoted by =0, 1, ---. n, with a
total of 3n +1 sub-bands. As shown in Figure 6-4-(a), the lowest resolution (r =0) is
represented by the LL band. For the rest. resolution r is obtained by discarding sub-
bands HHj HL/, LHj from j=1 to n—r, and reconstructing the image from the
remaining sub-bands. The dimensions of different resolutions will differ each other by

powers of two.

Here, a stage is defined as another representation of resolution. That is, there are total

n+1 distinct stages, denoted as s =0, 1, ---, n. The lowest stage, which is denoted by
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s=0. is represented by the LL band. Any other stage s is equal to the resolution s
without the subbands in resolution s — . In other words, stage s is the composition of

the LHs, HLs, and HHs sub-bands, as shown in Figure 6-4-(b).

6.2 Significant Bit Map

In the JPEG2000 standard, wavelet coefTicients are processed in the basis of bit-planes,
and the generated bitstream is also organized on this basis with significance descending
to achieve SNR scalability. In other words, the bit-planes. i.e., layers, in the packets are
organized in descending order from the MSB to the LSB. This suggests that the layers

can be used to construct a new index, significant bit map (referred to as Index-SBM).

6.2.1 Index-SBM Generation

Iindex-SBM is composed of a set of significant-bit-maps (SBM) derived from the LL
subband at specified layers. Recall that Index-LLBM (refers to Section 4.3) is a
binarization map of LL subband coetficients with respect to a given threshold. It is found
that Index-SBM is also in the style of a binarization map which is similar to Index-LLBM.
However, unlike Index-LLBM, Index-SBM is obtained by slicing coefficients into bit-
planes instead of applying a threshold, and therefore it includes multiple binarization
maps due to the multiple bit-planes. Hence, Index-SBM is actually a 1-D array of such
binarization maps. Each component of the array is an SBM derived from a bit-plane at
layer /. The dimension of the array is L, where L is the number of layers used, which
starts from layer | to layer L, for the purpose of retrieval. However, the SBM is not bit-
plane itself. A bit-plane consists of *1's and *0’s, where the " 1's are either significant *1's
or insignificant " 1's (refers to explanation of bit significance in Subsection 6.1.2). The
insignificant *1°s are just used to refine the coefficients that their significance status have
already been significant, instead of recognizing their significance, their existence may
interfere with the extraction of the main feature for the image. Therefore, the insignificant

"I's in a layer will be regarded as *0’s and only the significant *1's left in SBMs.
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Table 6-2 An example of Index-SBM derived from the R color component of

Lena color image in size of 256 x 256, which is S-level wavelet decomposed. Only

the red ‘1’ contributes to SBMs.
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Figure 6-5 The first 6 layers of Index-BPM derived from Table 6-2.
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Here we still use ', to denote the binarization map under the assumption that an image is
in size of 384 x256 and 3 -level decomposed, and I',(/) the SBM component in the

array at L=/, [ (/) is expressed as:

5(0.0) 5(0.1) - - 5(0.31)
5(1.0) :

r)=| b(x.v) 6.1)
b(-l70) b(-"/.'.3l)

where 0 < x <47, 0< y<31. and b(x,y) is the binary value in the coordinate (z.y) of

the map.

Now, the Index-SBM is array of ', (/) at DL=n:
Index,,,," (x)=[T,(1).T,(2)..F,(L)] 6.2)
where 1< L <M, .

As shown in Eq. (6.2), Index-SBM can be generated using different values of L The

maximum value of L can reach the total number of bit-planes M, .

Table 6-2 shows an example of Index-SBM derived from the R color component of the
Lena color image of size of 256x256 . Here, the Lena image is 3-level wavelet

decomposed to generate a §x8 LL subband. The maximum absolute value is |—2137|,

which is represented by 12 bits with non-zero MSB, so that the number of bit-planes is 12
and so is that of layers. To illustrate more clearly, bit-plane 11 through bit-plane 6 (layer
1-6) are drawn in Figure 6-5. From the figure, it is found that the * 1’s in each layer do not
overwhelm the ‘0’s in number statistically, which overcomes the drawback of Index-
LLBM when a lower threshold is applied. Thereiore it can be expected that the retrieval
performance using LSB layers will be better than that of Index-LLBM for a lower

threshold-level. It is also found that most of significant bits are typically found in the first



several layers, leaving fewer significant bits in the remaining layers. Therefore, we can
surmise that the layers corresponding to LSB bit-planes may not influence the retrieval

results.

6.2.2 Computational Complexity

For Index-SBM. differences of SBMs between the query image Q and the candidate

image C for various layers can be employed to determine the similarities. Since any
SBM corresponding to a layer is a binarization map (bit-map), similar to Index-LLBM, a
bitwise exclusive OR operation between the two indices corresponding to each layer is
employed to obtain the distance for each layer as shown in Eq. (3.4). The total distance

for multi-layers is the summation of distance for each layer.

The magnitude of computational complexity of Index-SBM is the same as that of Index-
LLBM because both depend on the image dimension and decomposition level. As
introduced in Subsection 6.2.1, the Index-SBM includes multiple SBMs, each of them is
equivalent to Index-LLBM in size. For a given L, the computational complexity of
Index-SBM is about as L times as that of Index-LLBM. The operations include additions,
multiplications and XORs. At given L. the complexity can be expressed as follows with

n -level decomposition and image size in .Y _xY, :

‘Yu: Y\l:
O, (%)= 3L’<2—""2—,.+ 18L

‘hm(®)=3Lx",—‘,"x"—" (6.3)

1 ‘,"
- -

O
O\hm(x) = 3XL

From the Eq. (6.3), the complexity increases linearly with L, ie., the smaller the

decomposition levels and image dimension, the lower the computational complexity.

At DL=4, L=4 and T =2%, the average running time for a query image with 60-

image retrieved in a 3000-image database is about 3474 ms.

93



6.2.3 Performance

The retrieval performance of Index-SBM versus the number of layers used is shown in

Figure 6-6 for different tolerances T (T =1%. 2% and 3% at DL =35) and Figure 6-7

for different wavelet decomposition levels DL (DL =3, 4and 5 at T =2%).

In Figure 6-6, wavelet coefficients contains total of 12 layers, and so Index-SBM can be

generated using |~12 layers. The retrieval efficiency n has a same trend with
increasing L at a fixed decomposition level. When T is fixed and L is increasing, n has

a step increase at first for small L (about 13% increase for L =2 over L =1), then the

increasing tendency slows down and saturates at L =5. Since then, 7 keeps at a steady
level until L =12 with a tiny decrease. The reason for the trend of the 7 curve is that,

when L =1, ie., when only layer | is used as the index, the number of " 1's in layer 1 is
small and it cannot provide enough details for retrieval. When L is increased by |
(L=2), ie., both layer | and layer 2 are jointly used to generate Index-SBM, more
significant coefficients are found. More details are provided by layer 2 to refine the
retrieval. With further increase’s L, more layers are added on and provide more details.
However, as we know, the significance of layers descends from layer | to layer 12; in
other words, layer | is the most significant and then layer 2, layer 3, ..., until layer 2.
For the last layers, their signiticance becomes more and more insignificant with respect to
that of the first layers. When L is increasing, the number of less significant layers is
increasing as well. For example, for L =10, we have 5 layers after layer 5. When finding
the difference between any two indices, these layers with less significance will influence
the resulted distance, and therefore leads to the degrading in retrieval performance.
However, Index-SBM is only constructed from the LL subband, and the coefficients of
LL subbands are generally large for natural images. It is possible that the significance
status of the all coefficients has been changed from insignificant to significant in the first
layers, and therefore, the last layers may consist of almost full ‘0’s (Figure 6-5 shows a
typical example) such that they may not impact on the distance calculation too much.

This explains why 7 has a neglectable degrading since L>5.
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Figure 6-6 Retrieval performance of Index-SBM when DL is fixed (7 vs. L).

Here, DL=5, T =1%~3%,and L =1~12.
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Figure 6-7 Retrieval performance of Index-SBM when 7 is fixed (7 vs. L).
Here, T =2%, DL =3~5,and L=1~12.
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In a word, for a fixed decomposition level and a fixed tolerance T , the best performance
is achieved at L=35 . Considering the computational complexity, the analysis in
Subsection 6.2.2 exhibits a conclusion in opposition to that for retrieval performance, that
is, the index in larger L provides good retrieval performance, while complexity

computational is increased as well.

On the other hand, when L is fixed,  has an average 5% improvement with every 1%
increase in tolerance T (Figure 6-6), which is obvious, whereas when T is fixed, n
degrades with decomposition level DL (Figure 6-7). However, the results shown in the
figures, in which the best performance is 60% reached at T =2%, DL=5 and L=4,

tell that Index-SBM is not an efficient technique.

6.3 Histogram of the Number of Bits in Bit-Plane

In JPEG2000 standard, the packets involved in the final output bitstream are not only
organized in order of layers, but also in order of stages (refers to Section 6.1) descending
from stage O to stage n if n -level wavelet decomposition is applied. to achieve
resolution scalability. That is, when receiving JPEG2000-compressed image, the first
received bits are from lower stages, which provide more significant information but less
detail than the others. With more bits coming, details with less significance are reinforced
to refine the quality of the reconstructed image. This implies us that retrieval can be done
progressively in a similar manner if using different number of stages to construct an new

index. histogram of the number of bits, which is referred to as index-NBH [80].

6.3.1 Index-NBH Generation

Although Index-NBH is designed based on stages, it cannot be constructed without layers
because the JPEG2000-compressed bitstream is progressive on both layers and stages.
Hence, Index-NBH is actually a 2-D histogram of the number of ‘1's in the bit-plane. The
value of each bin is equal to the number of ‘1’ bits derived from a bit-plane for a

specified layer / and a specified stage s. Let /ndex,,, denote the Index-NBH of image
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x,and p,, the number of ‘1’s of the bit-plane in current layer and stage, is the bin value

of the histogram. Index-NBH is defined as follows:

[ Poo Poy " 0 Posa
Po :
Index,, (x)=| : P : 6.4)
-pL_l‘o ese ens see pL_I‘S_l_

where 1ISL<M, and 1<S<n+1.

Table 6-3 Illustration of Index-NBH. The index is extracted from component R
of the Lena color image in size of 256 x 256 . DL = 5. sb: subband; bp: bit-plane

bpil | bpl0 | bp9 | bp8 | bp7 | bpé | bpS | bpd | bp3 | bp2 | bpl | bpo
sb0 3 16 30 34 34 26 30 29 27 ]| 39 34
sbl 0 6 17 25 23 27 42 34 36 32 30 29
sb2 0 0 4 1 18 32 33 22 36 3o 36 2
sb3 0 0 2 12 16 26 36 30 38 28 3 31
sb4 0 0 7 55 67 103 116 120 114 130 19 131
sbS 0 0 0 25 52 86 99 117 127 19 136
sbé 0 0 1 6 45 59 72 93 128 121 124 133
sb? 0 0 0 12 100 199 273 342 405 | 438 504 494
sb8 0 0 0 1 19 69 144 226 325 411 444 496
sb9 0 0 0 1 17 78 153 223 297 357 | 45§ 488
sb10 0 (1] 0 0 23 209 465 744 | 1030 | 1405 | 1725 | 1865
sbil 0 0 0 0 1 LX] 183 3713 671 | 1097 | 1465 | 1775
sb12 0 0 0 0 0 38 174 389 | 608 956 | 1413 | 1744
sbi3 0 0 0 0 0 8 224 837 | 1670 | 3033 | $335 | 6966
sbl4 0 0 0 0 0 3 69 367 927 | 2068 | 4164 | 6183
sbi1s 0 0 0 0 0 0 2 134 615 | 1548 | 3308 | 5721

Eq. (6.4) shows that the value of L and S for Index-NBH may be different. The

maximum value of L and § can reach the number of total bit-planes M, in subband b

and the number of total stages n + 1, respectively. On the other hand, M, may vary from
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subband to subband due to the asymmetric energy distribution in different subbands.
Typically, A, is larger for subbands in lower resolutions and vice verse. Namely, the
first layer for different subband may locate in different bit-plane. For instance, in Table
6-3. M, =12 for subband 0 (LL subband), 11 for subband I, and 10 for subband 2, 3,
and 4. therefore, layer 1 means bit-plane 11 for subband 0, bit-plane 10 for subband I,
and bit-plane 9 for subband 2, 3, and 4, and so on for the remaining layers. Hence, when
more than one stages are used to construct Index-NBH, a same layer for different
subbands is not necessary from the same bit-plane. In Table 6-3, the cells covered in gray

are layer 1. in pink layer 2.

6.3.2 Distance Metric

For Index-NBH. the L' metric is used to derive the difference of histograms between the

query image Q and the candidate image C when DL=n:

3 L oS-

D,(0.C)=Y>|p.-p. | (1sLEM,1$S<n+1) (6.5)

ozt -l =0

6.3.3 Computational Complexity

The computational complexity includes L xS subtractions, L x S -1 additions and L xS
multiplications for each color component. For the distance calculation with 3 color

components, the total number of computational operations is given as follows:

{o"h,.(t)=6ms o

0,,,,,,(><)=3XLXS

From the Eq. (6.6), the computational complexity increases with both L and S.

At DL=3, L=2, and S =4, the average running time for a query image with 60-

images retrieved in a 3000-image database is about 61.33 ms.
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6.3.4 Performance

The retrieval performance of Index-NBH is shown in Figure 6-8 and Figure 6-9 for
different L and S at DL =3 and T =2%. Figure 6-10 and Figure 6-11 for different
wavelet decomposition level DL at L =3 and T =2%, and Figure 6-12 and Figure 6-13

for difterent tolerance 7 at DL =3..

From Figure 6-9, there are 4 stages and 11 layers with respect to DL =3. The retrieval
efficiency n has a similar trend with increases in either S or L at a fixed decomposition
level. When T is fixed, if L is fixed as well (Figure 6-8). n increases with S when
S <2 or S<3 and then decreases slightly after that, except that ;7 increases linearly at
L =1. The curves follow this trend because the wavelet coefficients in first several stages
(lower frequencies) are more significant for natural images but small number, while those
in the final one or two stages (highest frequencies) are least significant but in much larger
number. For example, a n -level decomposed image has n +1 stages, in which the first n
stages contributes one-fourth of the overall coefficients, and the remaining three-fourths
belong to stage n+1. Hence, in the first several stages. the increase in the number of
stages contributes more detail with less number of coefficients involved so as to
distinguish indices among images more efficiently. For the last 1 or 2 stages, however,
the details (highest frequencies of images) are provided with much larger number of
coefTicients than that of the first stages, and so the indices constructed by all stages may
fail to tell the main difference among images. The curves shown in Figure 6-10 illustrate
this observation. When L =3 and T =2%, the best performance for each DL is always
achieved at the last second or third stage, ie.. S=3 for DL=3, S=3 for DL=4, and
S=4 for DL=35. In addition, Figure 6-10 and Figure 6-11 indicates that the best

performance achieved is almost independent of wavelet decomposition level.

On the other hand, if both T and S are fixed (Figure 6-9), n increases when L <3 and
saturates after L > 3. The reason for this is the same as that for Index-SBM, and so it will

not be repeated here.
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Figure 6-8 Retrieval performance of Index-NBH at a fixed DL and 7 (77 vs. S).
Here, DL =5, T =2%,and L=1~6
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Figure 6-9 Retrieval performance of Index-NBH at a fixed DL and 7 (5 vs. L).
Here, DL =5,T =2%,and S=1-~4



NBH (T=2%, L=3)
—8—DL=3 -@-DL=4 —-&—DL=S

100 ~

©w
o
I

80 +

70 4

60 4

50 + “

Retrieval Efficiency 5 (%)
o

40 1

=T T 14

2 3 4
Number of Stages Used S

o

Figure 6-10 Retrieval performance of Index-NBH at a fixed 7 and L (5 vs. S).
Here, L =3, T=2%,DL=3~5,and S=1~6
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Figure 6-11 Retrieval performance of Index-NBH at a fixed 7 and S (7 vs.
L) T=2,DL=3~5,8S=DL, and L=1~12
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Figure 6-12 Retrieval performance of Index-NBH at a fixed DL and L (7 vs.
S)Here, DL=3,L=3,T=1%~3%,and S=1-6
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Figure 6-13 Retrieval performance of Index-NBH at a fixed DL and S (7 vs.
L).Here, DL=3,5=3,T=1%~3%,and L=1~11



At last. the curves in both Figure 6-12 and Figure 6-13 show that 7 will increase with
tolerance T. It is found that the best performance is about 91% achieved at S =3 and

L=3.

6.4 Joint Indexing of SBM and NBH

In this section, we discuss the combination of Index-SBM and Index-NBH, which is

referred to as Index-CSN.

6.4.1  Computational complexity

The distance calculation for Index-CSN is the summation of the distance for Index-SBM
and Index-NBH. Likewise, its computational complexity is also the summation of that for

the later two. which is expressed as follows:

- “'u' )'\I'
0., (x)=3L x—zn" x—zT'+6L x(S+3)
‘\,u: Yu:
..‘,.(63):31"‘?"‘27 (6.7

0
OL'.\"

(x)=3xLx(S+1)

\

Eq. (6.7) shows that the computational complexity of Index-CSN is determined by four
factors: size of the image, wavelet decomposition level, number of layers used, and

number of stages used.

6.4.2 Performance

The retrieval performance of Index-CSN will be analyzed from three aspects, i.e.,
influence of 1) the number of layers or stages (Figure 6-14 and Figure 6-15); 2) tolerance
(Figure 6-16 and Figure 6-17); 3) decomposition level (Figure 6-18 and Figure 6-19). In

each case. the other parameters are fixed.
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Figure 6-14 Retrieval performance of Index-CSN at a fixed DL and T (7 vs.
L).Here, DL=5,T=2%,S=1~6,and L=1~13
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Figure 6-15 Retrieval performance of Index-CSN at a fixed DL and 7 (7 vs.
S)Here, DL=5,T=2%,L=1~5,and 5=1~6
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Figure 6-16 Retrieval performance of Index-CSN at a fixed DL and s (7 vs.
L) Here, DL=5,5=4,T=1%~3%.,and L =1~13
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Figure 6-17 Retrieval performance of Index-CSN at a fixed DL and L (7 vs.
S). Here, DL =5,L=2,T=1%~3%,and S=1~6.
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Figure 6-18 Retrieval performance of Index-CSN at a fixed L and T (757 vs.
S)Here, L=2,T=2%,DL=4~6,and S=1~7.
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Figure 6-19 Retrieval performance of Index-CSN at a fixed S and 7 (77 vs.
l)Here, 7=2%,DL=4~6,S=DL,and L=1~13.
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When decomposition level and tolerance are fixed, with increasing L. n has an average
10~15% jump from L=1to L=2. and is relatively independent of L for L>2. While,
with the increase of S, 17 improves rapidly at average 15% increase for each higher S
over the previous S when S <3, and reaches a maximum at the last second or third S
for a given DL. When DL, and L or S are fixed, 5 has an average 3~5% improvement
with every one percent increase in tolerance. Meanwhile, when tolerance is fixed. 7

decreases with the increase of DL at first several S (typically, when S < DL, refers to
Figure 6-18), reaches the maximum value at § = DL , and degrades slightly at S = DL +1.
Interestingly, the maximum 57 achieved at S = DL for different DL are very close. This

can be observed more clearly in Figure 6-19 that ;7 curves are almost overlapped each

other for ditfferent DL when S is chosen to be the value of DL .

The observations above and their reasons are similar to Index-NBH and they will not be
repeated. When the JPEG2000-based bitstream is organized in layers, Index-CSN can
obtain good retrieval performance by using the first several layers (typically the first 2 or

3 layers) because 7 is almost saturated when L >3 or L > 4. Moreover, the performance

is independent of decomposition level.

From Figure 6-14, when T =2%, DL=5, §=35, and L =2, the retrieval efficiency can

achieve as high as 91%.

6.5 Moment of Packet Headers

So far, we have introduced two JEGP2000-based indexing techniques by extracting
image features from wavelet coefTicients after entropy decoding. As mentioned in Section
6.1, the packet header of a packet provides complete and concise information about the
code-blocks included in the packet, and can be extracted without decompressing the
bitstream. A useful information concerns the actual number P, of bit-planes of each

code-block. These P,s represent the significance of the corresponding code-block in

subbands. This inspired us to consider taking advantage of the information inside of
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packet headers to construct an index for the purpose of retrieval, which is a vector of

moments of packet headers (referred as to Index-PHMV) [81].

6.5.1 Index-PHMV Generation

It is known from Section 6.1 that packet headers do not store P, for each code-block.
Instead, with previously known M, for each subband. M, - P,, ie., P, for each code-
block in the corresponding sub-band is stored. Hence, M, for each subband and P for

each code-block have to be extracted first in order to obtain P,.

In the following, n -level wavelet decomposition is assumed for all images. and the

number of sub-bands will be (3n+1). The index generation includes two steps, P,

collection and index calculation. The details are as follows.
P, Collection

1) Collect all packet headers from a coded image bitstream.

2) Extract the values of M, for each subband from main header.

3) Extractthe P values for code-blocks in all sub-bands.

4) Calculate P, from M, -P.

Index Calculation

1) Calculate mean and variance of P, for each subband.

If the image is n-level wavelet decomposed, there will be a total of (3n+1) pairs of
mean and variance. Assume that sub-band b is divided into ¢, code-blocks, let £, ,

and o denote the mean and variance, respectively:

phmv b

hHh-i PO
i

€phmvs = Z

10 lh

(6.8)
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N

—_ (6.9)

aphm".h

2 _IA'I(PO.I _8phn".h)

2) Vector of means and vector of standard deviation are stored as an index

Because the wavelet coefficients have the inherent hierarchical property, the distribution
of the numbers of bit-planes in all subbands will also appear hierarchically in the form of
resolution. To take advantage of this point, the vectors can be constructed progressively.
Hence. the dimension of each vector is determined by the wavelet decomposition level of
images and the number of levels to be used. We have assumed an » -level decomposition
whereas S -stages will be used for retrieval (1< S<n+1, S=1 equivalent to the lowest

resolution in DWT). Therefore. the vector size will be (3(S—1)+1). Let v, " and

v “) denote vector of means and vector of standard deviations. respectively:

" phmyv o

(5 _ .
VMlm'.l: - (gphmr_o' gphmv,l L gphmv.h' T Ephms-,](.\'Al) ) (6 1 0)
LT P G, o 6.11
l'/7Ium',fr - phmv.0°* ™" phmy | 'aphmv‘h' 7 phmy 3(N-1) ( )
where b denotes a sub-band (b =0 refers to the lowest resolution sub-band).
1mjo|8:91716 ;7. 8 11}10 (1 ]
8.75 0.43
9lwiot9|7i718 8 91|10 0]0
743 0.60
8:9{819)7 . 8/8.7
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(a) P, of each code-block (b) Mean of P, in each subband (c) STDEV of P, in each subband

Figure 6-20 Illustration of Index-PHMV. The index was extracted from

component R of the Lena color image. DL = 3,i.e., 3 x3+ 1 =10 subbands.
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And. when S -stages are used, Index-PHMYV is the combination of them:

5)

Sy _ (5)
Index . —{v,,,,m'[ Vhma } (6.12)

Figure 6-20 shows an example of Index-PHMV. The index is extracted from component
R of the Lena color image. Here, wavelet decomposition level is 3, ie.. there are

3x3+1=10 subbands. so as to result in 10 pairs of means and variances in the index.

6.5.2 Computational Complexity

Assume that S -stages be used to generate an index, the distance of indices between the

query image Q and the candidate image C is the summation of distance for vector mean

and vector variation, each of them is determined using the L' metric as shown in Eq. (3.3).

The computational complexity is only decided by the number of stages used, which is the

same as Index-WMYV in this aspect. When DL =n, if S stages are used to construct the
index. where 1<S<n+l , the computational complexity includes 2(3S-2)
subtractions, 6S —35 additions and 2(3S -2) multiplications for each color component.

For distance calculation with 3 color components, the complexity is 3 times of that for

one component, which is given as follows:

0, (+)=358+11
{ pos (£) (6.13)

O e (x) =118 +6

phmy (

From the Eq. (6.13), the computational complexity increases with only S and

independent of the number of wavelet coetticients.

For DL =3, S =4, the average running time for a query image with 60-image retrieved

in a 3000-image database is about 152 ms.
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Figure 6-21 Retrieval performance of Index-PHMV. 17 vs. S at DL =5, and

T =1% ~ 3%.
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Figure 6-22 Retrieval performance of Index-PHMV. 17 vs. S at 7 = 2%, and
DL=3-~5.
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6.5.3 Performance

The retrieval efficiency of Index-PHMV versus S is shown in Figure 6-21 for different

T at DL=3, and Figure 6-22 for different wavelet decomposition level DL at T =2%.

From Figure 6-21, the retrieval efficiency n follows the same trend with increasing S at
a fixed decomposition level. When T is fixed, n increases with S in a big slope, the
improvement even reaches 30% from S=2 to S =3. This is because, when S <2, the
number of code-blocks in each subband is very small (even down to | for subband 0~3 if
the size of code-block is right the size of LL subband), resulting in the same small
number of . The mean and variance using a data set in such small size may generate
large bias from the actually statistical characteristics of the corresponding code-block.
When §> 2, the number of code-blocks increases exponentially so as that the mean and

variance calculated from P, can approach the actually statistical characteristics, and the

retrieval performance is improved as well.

On the other hand. for different T and fixed DL (Figure 6-21),  is improved with the
increase of T', which is obvious. While for different DL and fixed T (Figure 6-22), the
curve for each DL makes little difference from the others so that ;7 can similarly

regarded as independent of” DL .

6.6 Comparison of JPEG2000-based Techniques

So far, three JPEG2000-based and one derived indexing techniques have been introduced.
In this section, both the computational complexity and retrieval performance of the 4
techniques and related previous work WMV technique will be compared in the following.
To clearly state the difference of the techniques, they will be divided into two groups, i.e.,
group one, SBM, NBH and CSN, and group two, NBH vs. PHMV vs. WMV. For
simplicity, the weights for all indices are set to unity so that the computational

complexity due to the multiplication operations does not have to be considered.



6.6.1 SBMvs. NBH vs. CSN

In this group, both SBM and NBH indexing techniques extract indices from the decoded
bit-planes of wavelet coetTicients, and CSN technique was derived from the both. It is

useful to compare these bit-plane-based indexing techniques.

As introduced in the earlier sections, the computational complexity of Index-SBM and
Index-CSN is dependent on not only the number of layers used, but also image-size and
decomposition level. Therefore, if the size of retrieved images is too large, e¢.g., larger
than 256 x256, or the decomposition level is too low, e.g.. DL =2, the running time for
retrieving a set of images with respect to a query image will increase in the order of the
power of 4. Hence, it is unpractical to apply SBM and CSN techniques in such case. On
the other hand, the complexity for Index-NBH is just dependent on the number of layers
and stages used. and independent on the size of image and decomposition level. As
analyzed before, the best performance is typically achieved at the first several layers but
in higher stages, however, the number of stages is very small compared to the size of the
image. consequently, Index-NBH is suitable for variable size of images and
decomposition level from the viewpoint of the computational complexity. Table 6-4
shows an example of the complexity for the 3 techniques at DL =5, S =4, and image
size in 256x 256 . Even for DL as large as 5 in the example, the complexity for Index-

SBM is still considerably high compared to Index-NBH when L is large.

Table 6-4 Computational complexity of Index-SBM, Index-NBH and Index-CSN
at DL =5,T =1%,and S =4 if necessary. (Image size: 256 x 256)

L ] 2 3 n 5 6 7 8
0. 7( )£ 206 | 416 | 626 | 836 | 1046 | 1256 | 1466 | 1676
® | 192 | 384 | 576 | 768 | 960 | 1152 | 1344 | 1536

0, ()] £ ] 23 47 7 95 119 | 143 | 167 | 101
0.() 2] 230 | 464 [ 698 | 032 | ti66 | 1400 | 1634 | 1868
o @ | 192 | 384 | 576 | 768 | 960 | 1152 | 1344 | 1536

Concerning the retrieval performance, we first compare Index-NBH and Index-CSN.
Index-NBH is a subset of Index-CSN. It is expected that the latter could provide

improvement over the former. However, from Figure 6-23, in which the decomposition
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level and the number of layers used are fixed, it is found that Index-CSN only has
improvement over Index-NBH at lower S (§<2), and the two curves are almost
overlapped since S > 3. The reason for this is that Index-CSN is a combination of Index-
SBM and Index-NBH. Because Index-SBM is from just LL subband, when S <2, the
contribution from Index-SBM helps Index-CSN to achieve higher retrieval efficiency
over Index-NBH, for S 23, however, it is no longer to provide more details on the higher

stages. and consequently, 77 of Index-CSN tends to go together with that of Index-NBH.

Figure 6-24 and Figure 6-25 show the performance comparison among Index-SBM,
Index-NBH and Index-CSN when the decomposition level and the number of stages used
are given. As analyzed before, SBM technique is relatively low efficient whereas NBH is

high, n of Index-CSN always provides improvement over Index-SBM, but only

improves over Index-NBH at lower S, which is in consistent with the observation from

Figure 6-23.
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Figure 6-23 Retrieval performance comparison between Index-NBH and Index-
CSN.Here, DL =5, L=2,and T =2%
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Figure 6-24 Retrieval performance comparison among Index-SBM, Index-NBH
and Index-CSN. Here, DL =5, S=2,and T = 2%
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Figure 6-25 Retrieval performance comparison among Index-SBM, Index-NBH
and Index-CSN. Here, DL =5, S=5,and T =2%
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Compared to Index-NBH. Index-CSN provides the better retrieval performance at lower
S and is not superior when S is large, whereas, its complexity is considerably higher
especially for large image sizes and low decomposition level. Hence, Index-CSN is only
suitable to apply when the information needed to construct an index can be only extracted
from the first one or two stages, while Index-NBH can be chosen if the information can
be obtained from more stages. As for Index-SBM, it is better not to be used

independently but jointly with Index-NBH due to its relatively low retrieval efficiency.

6.6.2 NBH vs. PHMV vs. WMV

In this group. both Index-PHMV and Index-WMV consist of mean and standard
deviation pairs with respect to each subband, namely. their structure is exactly the same
except the process of generating the mean and standard deviation pair. For Index-WMV,
the moment pairs corresponding to each subband are calculated directly from the wavelet
coefficients inside the subband, while, for Index-PHMYV, they are derived from P,s (the
numbers of bit-planes of code-blocks within the subband). It is worth comparing the two
techniques. Meanwhile, we still want to compare bit-plane-based techniques and packet-
header-based technique. Because Index-NBH is a good one among the previous bit-

plane-based techniques, it is selected to compare with Index-PHMV as well.

The computational complexity of each technique is shown in Table 6-5 at DL =35 and
L=2.1tis found that all indices have comparable low complexities. Therefore, they all

can be employed for retrieving in large size database.

Table 6-5 Computational complexity of Index-NBH, Index-PHMV and [ndex-
WMVat DL =5, T =2%,and L =2 if necessary. (Image size: 256 x 256 )

S I 2 3 4 5
0., () t 1 23 35 47 59
O™ () + 47 83 119 | 155 | 191
0,.'"() + 47 83 119 | 155 191
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Figure 6-26 Retrieval performance comparison among Index-NBH, Index-
PHMYV and Index-\WVMV,at DL =5,T =2%

Figure 6-26 shows the retrieval performance for the 3 techniques. All the techniques
provide better performance at higher S. Index-WMYV has the best performance at all S's,
which is obvious because the moment pairs of the index are calculated using fully
lossless wavelet coefficients inside each subband. Interestingly. the performance of
Index-NBH when S <4 and of Index-PHMV when S >4 is close to Index-WMV. This
is because when S <4, Index-NBH can provide enough details to calculate index
distance, but for Index-PHMYV, the moment pairs are calculated from a small number of

P, s, which expresses the distribution corresponding to the subbands far from statistically

and resulting in large bias in statistical calculation, while, the situation is inverse when
S 24 and leads to the above observation. That is, from the view point of performance,
Index-NBH may be a better choice unless all stages can be used to generate Index-PHMV.
However, Index-NBH has to be extracted after decoding JPEG2000 bitstream while
Index-PHMYV does not because it uses packet header directly. Typically, the decoding of
JPEG2000 bitstream is time-consuming, and this implies that the generation of bit-plane-

based indices including Index-NBH be time-consuming as well even though the
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computational complexity for distance may be quite small. On the other hand, according
to JPEG2000 standard, the packet headers are allowed to be included in the main header
such that the information needed for all stages can be extracted without decoding the

bitstream. At this point, Index-PHMYV is much better than Index-NBH.

6.7 Summary

In this chapter, four indexing techniques in the JPEG2000 framework, i.e.. Index-SBM,
Index-NBH. and their combination Index-CSN, and Index-PHMYV, were proposed and
analyzed. From the view point of feature extraction, Index-SBM, Index-NBH and Index-
CSN belong to bit-plane based techniques, while Index-PHMYV is based on the packet
header. Index-SBM presents the precise spatial information but lacks robustness in
translation and rotation. Instead of using it independently, it is suitable to retrieve images
jointly with other techniques to provide auxiliary location information. Except Index-

SBM. all the other three can achieve retrieval efficiency of over 90%.

With respect to the computational complexity, Index-CSN has the largest complexity.
Index-NBH and Index-PHMYV have comparable complexity for index matching lower
than Index-CSN. However, for index generation, Index-PHMV has lowest complexity.
So, when the index has to be calculated in real-time, Index-PHMV will be a better choice

among JPEG2000-based indexing techniques.
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Chapter 7 CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In this thesis. two classes of wavelet-based image indexing techniques are proposed and
analyzed. One class is developed in the embedded zerotree wavelet framework while the

other class is in the JPEG2000 framework.

In the EZW framework. two basic techniques, Index-MNSCH and Index-DNSSCH, and
their combinations, i.e., Index-CMD, Index-CML, Index-CDL and Index-CMDL, are
discussed. analyzed and evaluated. These techniques are based on the histogram of
significant wavelet coefficients with respect to different thresholds. Experimental results
show that these techniques can achieve good retrieval performance. Among them, Index-
CMDL provides the best retrieval performance, but it has a large computational
complexity. Index-CMD provides the 2™-best retrieval performance, e.g. over 90%;
however, its complexity is independent of image size and relatively small. Considering
both the retrieval-efficiency and the complexity, Index-CMD might be a better choice

than Index-CMDL in the EZW framework.

In the JPEG2000 framework, four indexing techniques, i.¢., Index-SBM, Index-NBH.
Index-CSN and Index-PHMV, have been proposed and analyzed. Among them. the first
three techniques are bit-plane based. and the last technique is packet header based. Here,
“bit-plane based™ and “packet header based™ refer to how indices are extracted instead of
how indices are compared. The three bit-plane-based techniques generate indices from
the bit-planes decomposed out of wavelet coefficients which are decoded from
JPEG2000 bitstream. In this category, Index-SBM is a 2-D significant-bit-map array,
which can provide good local information for an image; Index-NBH is a 2-D histogram
of the number of significant bits found in bit-planes; and Index-CSN is a combination of
Index-SBM and Index-NBH. On the other hand, the packet header based technique,

Index-PHMV, extracts indices from, as the name suggested, the packet-header, which can
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be obtained without decoding the JPEG2000 bitstream. Experimental results show that
three of the four techniques, Index-NBH, Index-CSN, and Index-PHMV can provide
good retrieval performance with respect to different conditions: each of them can achieve
over 90% with appropriate parameter settings. Overall, Index-CSN has the best retrieval
etficiency but it also has a high computational complexity. Index-NBH and Index-PHMV
provide similar performance with respect to both retrieval efficiency and computational
complexity. However, the index generation time for Index-NBH is considerably longer
than for Index-PHMYV because of the need to decode the JPEG2000 bitstream. Hence, for
JPEG2000-based retrieval systems. the technique to be selected for indexing depends on
the format of input JPEG2000 bitstream. If the detailed packet headers are prefixed to the
JPEG2000 bitstream, Index-PHMYV is a better choice; otherwise Index-NBH is probably

a better alternative.

7.2 Future Work

The work in this thesis can be extended in many different directions. First, as discussed
earlier, the wavelet transform is not RSTN (ie. rotation, scaling. translation and
reflection) invariant. Hence, the indexing and retrieval techniques based on wavelet
transform are not robust to rotation and translation. It is expected that a hybrid scheme,
for example, DWT combined with DFT, which is RSTN invariant might solve this

problem.

Second, a detailed investigation needs to be carried out for large-size databases, ¢.g.,
natural images, trademarks and hand-drawings. This is because while one CBIR
technique works very well in one image database, it might have a poor performance on
another database. Similarly, one technique might have high retrieval efficiency in a
smaller-size image database, but not in a large-size one. In this thesis, the database used
to evaluate the proposed indexing techniques consists of 3000 natural images. It is

necessary to further evaluate them using other databases in different categories and sizes.
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Meanwhile, a complete image retrieval system requires a user-friendly interface, which
was not implemented in this work. Perl. CGl or JAVA might be good choices to realize

this.
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