
Aggregation Convergecast Scheduling
in Wireless Sensor Networks

Baljeet Malhotra
Computing Science Department
University of Alberta, Canada
Email: baljeet@cs.ualberta.ca

Ioanis Nikolaidis
Computing Science Department
University of Alberta, Canada
Email: yannis@cs.ualberta.ca

Mario A. Nascimento
Computing Science Department
University of Alberta, Canada

Email: mn@cs.ualberta.ca

Abstract—We consider the problem of aggregation converge-
cast scheduling in wireless sensor networks. Aggregation con-
vergecast differs from regular convergecast in that it accom-
modates transmission dependencies that allow in-network ag-
gregation to be performed. We formulate the abstract problem
of aggregation convergecast and review the existing literature.
We observe that existing schemes adopt essentially a two phase
approach, consisting of, first, a tree construction and, second, a
scheduling phase. Following a similar approach, we propose two
new improvements, one to each of the two phases. Starting with
a new lower bound on the schedule length, we make use of it
in the tree construction step. The tree construction step consists
of solutions to instances of bipartite graph semi-matching. The
scheduling step is a weight-based priority scheme that obeys
dependency (tree) and interference constraints. The combination
of both improvements is demonstrated to outperform all existing
solutions in the literature. We also study the impact of each of
the two improvements alone and pay attention to cases where
the tree construction is obviated due to the existence of extrinsic
dependency constraints.

I. INTRODUCTION

Data gathering is a basic capability expected of any wireless
sensor network. The usual means of performing data gathering
is to have all nodes send their measurements (possibly over
multiple hops) to a particular node, the sink. The correspond-
ing many-to-one “funnel” type of communication is called
convergecast. Convergecast usually operates by building a
logical tree on top of the physical topology with the sink
located at the root, and subsequently by routing packets along
this tree. The problem thus becomes how to schedule trans-
missions to avoid interference and collisions. One approach is
to rely on an underlying Medium Access Protocol to handle
contention and retransmissions. Another is to construct a
TDMA schedule (including possible combinations of TDMA
with CDMA scheduling etc.). The advantage of a TDMA
schedule for wireless sensors is that the transceivers can be
turned on only when the schedule stipulates that they must
either receive or transmit, thus scheduling saves energy that
would have gone to idle listening. It is well known that idle
listening, as required by many MAC protocols, consumes
significant amount of energy [1], therefore, TDMA scheduling
is seen as the energy efficient alternative.

There exist several algorithms for convergecasting in multi-
hop radio networks [2] that can be used for wireless sensor
networks. A common trait of most of those algorithms is

the decomposition of the problem into two and independent
subproblems: first a logical tree construction, followed by
the scheduling of transmissions along the constructed tree.
The common objective of scheduling algorithms is to use the
least number of time slots. We will see a similar approach is
followed in aggregation convergecast.

Aggregation convergecast is defined as the routing and
the en-route aggregation of data as they travel to the sink
(plus of course interference constraints as in regular con-
vergecast). Aggregation is a means to achieve energy effi-
ciency by reducing the transmitted traffic volume. TAG is
one such aggregation approach that can be used for either
data or message aggregation [3]. Another example of using
aggregation is top-k query processing to determine the k

highest values sensed across all the network nodes [4]. In
its simplest definition, aggregation operates by ensuring that a
node receives a specific number of incoming (fan-in) messages
(from a correspondingly specific number of nodes from its
neighbors), then combines the received data along with its
own, and it generates a single output message that describes
collectively the received and its own data together. Naturally,
this definition can be applied recursively all the way to the
sink. Aggregation convergecasting has been studied under
various names such as Data Aggregation Monitoring and TAG,
and it possesses subtle, but important, differences compared
to regular convergecasting.

Specifically, a regular convergecast solution cannot be ap-
plied to the aggregation convergecast problem. On the surface,
a regular convergecast requires more slots than an aggregation
convergecast, since there is no aggregation and therefore the
volume of traffic is not reduced en-route to the sink. A more
important difference (assuming we did not mind as much
about the extra slots) that makes aggregation convergecast
intrinsically different, is that the order of transmissions in
regular convergecast is not observing any dependency con-
straints. As one extreme example consider a regular converge-
cast solution in which the nodes close to the sink happen
to transmit early in the schedule. This very same schedule
solution (assuming it was applied to accommodate aggregation
convergecast) would mean that the nodes close to the sink
have no chance of aggregating their data prior to sending
them to the sink, because they did not get the chance to
receive data from nodes from further away. Thus, using a

2

solution from a regular convergecast scheduler to schedule
aggregation convergecast seriously curtails the potential for
aggregation. Clearly, aggregation convergecast deserves its
own crisp problem formulation and scheduling algorithms.

The aggregation order, expressed as tree–structured de-
pendency constraints, is part of the overall solution to the
aggregation convergecast scheduling problem. In other words,
it is up to the aggregation convergecast schedule construction
to also determine the order of aggregation. While this approach
is acceptable for simple aggregation operations, e.g., such as
finding the maximum of all sensed values in a network, there
could be reasons to force a particular aggregation order. Such
extrinsic constraint on the dependency tree is application–
dependent, but not uncommon. For example, a specific tree
consisting of connected clusters may be required because of
the cluster formation logic, e.g., by the need to rotate the role
of clusterheads, and hence have a specific cluster structures
over periods of time. Another reason to force the use of a
particular tree is because it might be more effective in terms
of the traffic volume reduction, i.e., more effective in terms of
aggregation.

Fortunately, same with regular convergecast, most algo-
rithms for aggregation convergecast consists of two phases,
and the second one (scheduling) can be used even when a
specific, externally provided, dependency constraint (in the
form of a tree) is provided. The use of externally provided
aggregation trees to the scheduling problem has been noted
in the data management literature, [5], but the applicable
literature is much wider because any paper following a two–
phase approach is trivially applicable (using only its second
phase) to the case where a specific tree is given as part of
the input. For this reason, the performance study presented
in this paper considers “mix-and-match” combinations of first
and second phases to evaluate our new original contributions
on the tree construction and scheduling phases.

In this paper, through a study of the structure and limitations
of existing aggregation convergecast schemes, we propose a
new competitive aggregation convergecast scheduling algo-
rithm which outperforms the existing schemes. Specifically,
in section II, we formally define the aggregation convergecast
problem and provide some insights into its solution process.
In section III we review the shortcomings of the existing
literature and argue that there is potential for improvement,
leveraging also observations already made by other authors.
In section IV we address the tree construction phase (when
no extrinsic constraint on the aggregation tree is supplied).
By first proving a lower bound on the schedule length, we
show how to use this bound to guide the construction of an
aggregation tree. In section V we describe a simple, yet pow-
erful, weight-based priority scheme to schedule transmissions
subject to dependency (tree) and interference constraints. The
combination of both improvements is studied in Section VI by
presenting performance results. A special quality of Section
VI is that, in our simulations, we study the behavior of the
competing schemes using the widest range of node density
values compared to what has been used in the literature so

far.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Throughout this paper, we assume a slotted system and that
all nodes have adequate synchronization capabilities to follow
a slot-by-slot schedule. The purpose of the schedule is to
instruct each node when to: receive, transmit, or deactivate
the transceiver (thus avoiding idle listening). The schedule
is defined for a single round/epoch and we can assume that
the same schedule is repeated for each round. The suggested
mode of operation is consistent with the execution model of,
the so called, continuous queries. Extensions to multiple (pre-
computed) schedules are possible but outside the scope of the
paper.

The important characteristic of aggregation convergecast is
that a node transmits only once per round. This transmission
can happen only after the node has collected data from other
nodes on which to perform aggregation (including its own
data). The aggregated data is subsequently received by another
node that performs further aggregation along with those from
other nodes, and so on, until the aggregated data arrives at
the sink. We assume that a single slot period is sufficient to
transmit data in its original (source) form or in its aggregated
form. For example, in the case of top-k query processing some
nodes may forward exactly k values and some nodes may
forward less than k values depending on the number of values
collected [4]. The slot size should be tailored to “fit” the worst
case size of k values (inclusive of header and other overheads).
For the purpose of this paper we will assume that all slots have
the same fixed duration, which is sufficient to transmit/receive
the largest packet/message required by the application.

We consider a network of N sensor nodes, with node 1
in the role of the sink. For each node i, the set of nodes
denoted by N (i) are the “neighboring” nodes, i.e., within
one hop of node i. To formally define the aggregation
convergecasting problem, we assume that we are given T

time slots and we introduce the binary decision variables
at
(i,j) to denote link activation events. Namely, at

(i,j) denotes
whether a transmission takes place from node i in timeslot t

destined for node j. Hence, at
(i,j) is the “activation” of the

(directed) link (i, j) at time t. For notational convenience, for
each node i (other than the sink) we define two additional
variables r(i) and t(i) to stand for the transmission’s
recipient and the time slot which has been assigned for
the transmission by node i, i.e., a

t(i)
(i,r(i)) = 1 (with all the

remaining at
(i,j) = 0). The decision problem is whether for

a given T the following four constraints can be satisfied.
C1:

∑
k∈N (i)

∑T
t=1 at

(i,k) = 1, i ∈ {2, . . . , N}

C2:
∑

k∈N (i)

∑T
t=t(i) at

(k,i) = 0, i ∈ {2, . . . , N}

C3:
∑

j∈N (r(i)) a
t(i)
(r(i),j) = 0, i ∈ {1, . . . , N}

C4:
∑

j∈N (r(i)),j 6=i

∑
k∈N (j) a

t(i)
(j,k) = 0, i ∈ {1, . . . , N}

Constraint C1 enforces a single transmission per node
(except for the sink, for which at

(1,j) = 0 ∀j, t). Constraint C2
ensures that, once a node transmits, it can no longer be the
destination for any transmission (since transmission implies

3

F

A

H

G

DB C

E F

A

H

G

DB C

E

1

65

7

4

3 2 F

A

H

G

DB C

E

51 1

4

2 6 3

3

F

A

H

G

DB C

E

51 1

4

6

2

(a) Network (b) DST+Schedule (c) SPT+Schedule (d) Tree+Schedule [6]

Fig. 1. Example network and three aggregation convergecast schedules. a
t(i)

(i,r(i))
is represented by an arrow (i, r(i)) labeled with the corresponding t(i).

completion of the aggregation performed by that node in the
round). Constraint C3 ensures that a recipient does not transmit
in the same slot in which it has been assigned to receive, i.e.,
half–duplex operation. Constraint C4 captures the requirement
that there be no interference at the recipient node.

Unfortunately, the problem defined above has been found
to be NP-complete [6] even if restricted to Unit Disk Graphs
(UDGs). Therefore, the existing solutions in the literature are
heuristic approximations, and will be reviewed in the next
section. An important observation is that the combination of
C1 and C2 means that the edges (i, j) activated (that is, those
where at

(i,j) = 1), regardless of when they are activated, form
a subgraph of the network topology graph which is a tree. The
property follows from the fact that this subgraph (a) contains
exactly N − 1 edges (to satisfy C1) and (b) is directed and
acyclic (to satisfy C2). As it is well-known, a subgraph
satisfying those two characteristics must be a tree. In other
words, a byproduct of solving the aggregation convergecast is
a tree that represents a dependency of transmissions dictating
the order in which aggregation is performed. This fact has
been recognized by algorithms that structure their heuristics as
consisting of two phases: first a phase to build a dependency
tree (based on a variety of criteria), and then a second phase
to construct a schedule. Let us capture the first phase (of
tree construction) as an association between each node i

and its parent node, p(i), as its recipient, i.e., r(i) = p(i).
Then, the second phase (scheduling sans tree construction)
consists of constraints C1-C4 plus a fifth constraint:

C5: at
(i,j) = 0,

i ∈ {2, . . . , N} ,

j ∈ {1, . . . , p(i) − 1, p(i) + 1, . . . , N}
We observe that C5 restricts the set of feasible solutions that
were previously achievable according to C1-C4 as there is no
longer freedom in the choice of r(i) but the timing, t(i), of
those transmissions is still open to optimization.

The tacit assumption of two–phase heuristics is that a “well–
chosen” tree would be quite close (ideally, the exact same)
as the one that would have resulted by C1-C4. Yet another
benefit of decomposing the problem into two phases is that
the first phase could be obviated if there are reasons to use a

specific tree to begin with, i.e., if a particular tree is required,
and hence provided as input to the aggregation convergecast
problem.

III. PREVIOUS WORK

To put the question of aggregation convergecast scheduling
in some concrete perspective, we will consider the example of
Figure 1. The one hop communication of the eight nodes is
depicted by Figure 1(a). Let node A be the sink. Figures 1(b)
to 1(d) depict alternative aggregation/dependency trees and
corresponding schedules. Specifically, a

t(i)
(i,r(i)) are represented

as directed edges from i to r(i) and each edge is annotated
with the timeslot t(i) in which it will be activated in order for
dependency and interference constraints to be met. We show
in Figure 1(b) a dependency tree constructed as a Dominating
Set Tree (DST) [4], akin to what would have been created to
observe cluster-based neighborhood formations (here C and
F are clusterheads). We also show, in Figure 1(c) the much
more common and well known Shortest Path Tree (SPT) [3],
[6] used as an aggregation tree. As a first observation, note that
DST is not necessarily providing a short schedule, compared
to SPT. DST requires seven slots instead of the six of the
SPT example. This is partly to be expected because the DST’s
paths from nodes to sink are not necessarily optimal. On
the other hand, given sufficiently rich connectivity, there also
exist multiple alternative SPTs for the same physical topology.
Hence, we would like to know what features make an SPT
better than another SPT; a question we address in section IV.

If the scheduling algorithm is defined independently of the
aggregation tree, then naturally the performance will vary
greatly depending on the aggregation tree supplied. Such is
the case of the scheme called PAS by Yu et al. [5]. Another
(and more often) approach is for a scheme to prescribe both the
tree construction as well as the scheduling algorithm. Within
this category, there are those algorithms that retain the tree
constructed in the first phase, and others that do not. In the
latter category we find SDA by Chen et al. [6] and First–Fit
by Huang et al. [7]. Unfortunately, the second of those papers
produces schedules with possible conflicts, the resolution of

4

which is not addressed in [7]. This leaves SDA as the main
example in this category.

SDA constructs an SPT in the first phase. It then incre-
mentally schedules the nodes but also assigns them a parent,
possibly different than in the one in the original SPT. The
examples shown in Figures 1(c) and 1(d) are in fact two
possible (distinct) trees/schedules that are generated by SDA
algorithm with the input of SPT shown in Figure 1(c). Note
the change of parents for nodes E and D in Figure 1(d) that
is different than the original parents as shown in Figure 1(c).
As we will later see, SDA is a well performing scheme but its
drawback is the “distortion” caused by the scheduling phase,
which means we cannot apply SDA’s scheduler when we need
to retain the aggregation tree exactly as supplied.

In contrast to SDA, the scheme called DAS by Yu et al. [8]
retains the tree constructed in the first phase. The shortcoming
of DAS is that its first phase constructs a DST (based on
[9]) An example of such a tree is shown in Figures 1(b).
Unfortunately, a DST is not necessarily a good selection
for producing a better schedule, which has already been
demonstrated through our examples. The reason is that DST
tends to cluster many (children) nodes, with the rest of the
nodes being a (smaller) set of clusterhead (parent) nodes,
resulting in a large number of dependency constraints. That
is, a clusterhead cannot aggregate before it receives from
its children, and therefore its transmission cannot take place
earlier than all of its (typically many) children transmissions.
The result is long schedules.

Finally, other examples of two-phase approaches are
the DST-based (via Maximal Independent Set construction)
scheme by Wan et al. [10], and the SPT-based scheme by An-
namalai et al. [11] (which has been exceeded in performance
by [6]). Certain other efforts, such as [12], result in schedules
that are potentially not conflict free, and have been left out of
consideration for obvious reasons.

IV. BOUNDS AND TREE CONSTRUCTION

We note that a tree construction phase, whether SPT, DST
or any other kind of tree, ought to be guided by the potential
it has to generate a short schedule. Until now, the two–phase
schemes produced a tree based on topological properties alone.
To the best of our knowledge, we are the first to perform
the tree construction in a manner that is “informed” by the
potential it has to result in a short schedule. To this end, and
in contrast to the existing approaches, our tree construction
specifically targets at “relaxing” the logical dependency con-
straints of the tree. The intuition being that the less constrained
in terms of dependencies is the aggregation tree, the fewer
the additional constraints (on top of the conflict freedom
constraints), hence the potentially shorter the schedule.

We start by establishing, for a given tree, a lower bound on
the schedule length. Then, we restrict ourselves to SPT trees
and produce an SPT that follows this lower bound. As a side
note, [10] provides an upper bound on the schedule length.
But from the performance of their algorithm it is evident that
this upper bound is far too pessimistic compared to the typical

practical behavior of their algorithm. We take a different view
of trying to squeeze the performance as close as possible
to the lower bound corresponding to the constructed tree.
Nevertheless, for comparison purposes, we will also evaluate
the performance of [10] in our performance study Section VI.

A lower bound specifies the minimum number of slots that
are required for convergecasting. Chen et. al. proposed the
lower bound to be max{h, log2N}, where h is the longest
path in a logical tree [6]. Similarly, Huang et. al. also argue
that the data aggregation latency cannot be less than the
network radius [7]. It basically means that the lower bound
is the longest shortest path between the sink and a node in
the network, i.e., h. Unfortunately, these lower bounds are
loose. Consider the DST shown in Figure 1(b). Chen’s and
Huang’s lower bound for this particular DST is 3, i.e., this
particular DST can not be scheduled with less than three
slots. However, it is very clear from the DST structure that
node F will need at least 5 slots to send across its data to
the root. In particular, three different slots are required by
its children, i.e., nodes E, G and H. (That is because all of
them have the same parent and therefore, there cannot be any
concurrent transmissions among themselves.) Finally, since
F is two-hop away from the root, it will need at-least two
more slots (after receiving data from its children) to send
across the aggregated data to the root, e.g., node F can use
fourth slot and node C can use fifth slot. To generalize this
observation, we introduce the following theorem.

Theorem 1: Given a logical tree the lower bound, Tmin, for
the aggregation convergecast scheduling problem is max{ξi +
hi : i = 1, 2, ...N}, where ξi and hi, respectively, are the
children-count and hop-count (from the root) of node i in the
given tree.

Proof: Let k be a node having the maximum sum of
the children and hop count, i.e., ξk + hk = max{ξi + hi : i =
1, 2, ...N}. We will prove by contradiction that T ≥ max{ξi+
hi : i = 1, 2, ...N} for any schedule1, T , of the given tree.

Assume that T < max{ξi + hi : i = 1, 2, ...N}. If k has
been assigned the slot number t(k), then it must be less than
or equal to the total number of slots used i.e., t(k) ≤ T .
Since our assumption is T < max{ξi + hi : i = 1, 2, ...N},
therefore, t(k) < max{ξi +hi : i = 1, 2, ...N}. It also means
that t(k) < ξk + hk, which we get by replacing max{ξi +
hi : i = 1, 2, ...N} with ξk + hk. (Recall that k is the node
with the maximum sum of the children and hop count, i.e.,
ξk + hk = max{ξi + hi : i = 1, 2, ...N}.) However, t(k) <

ξk + hk contradicts the fact that k needs at least ξk slots for
its children (for them to transmit first) and another hk slots to
send across its data to the root. It means that our assumption T

< max{ξi + hi : i = 1, 2, ...N} must be incorrect. Therefore,
T ≥ max{ξi + hi : i = 1, 2, ...N}, and hence the proof that
Tmin = max{ξi + hi : i = 1, 2, ...N}.

Next, we describe our procedure for constructing the aggre-
gation tree based on the bound established by Theorem 1.

1That meets the criteria set-forth in Section II.

5

B

FE

A

WU

V X

Y

C

Z

depth d+2

depth d−1

D

depth d

depth d+1

B

FE

A

WU

V X

Y

C

Z

depth d+2

depth d−1

D

depth d

depth d+1

B

FE

A

WU

V X

Y

C

Z

depth d+2

depth d−1

D

depth d

depth d+1

B

FE

A

WU

V X

Y

C

Z

depth d+2

depth d−1

D

depth d

depth d+1

(a) Graph (b) Children assignments (c) Bipartite graph (d) Optimal Semi-matching

Fig. 2. Parent-children assignment during SPT construction. Rectangles contain nodes at a particular depth (from root) of the tree under construction. Dashed
lines represent the graph (adjacency) edges. Solid lines represent parent-children assignments and also represent potential edges that can be selected in the
tree construction. Dashed very-thick lines represent the edges in the bipartite graph formed between two consecutive depths of the tree. Solid very-thick lines
represent the optimal semi-matching of the bipartite graph.

A. Balanced Shortest Path Tree

A tree that minimizes the lower bound potentially uses a
lesser number of slots for scheduling N nodes. Consider the
trees shown in Figures 1(b) and 1(c) that have a lower bound
of 5 and 3 slots, respectively, as computed according to The-
orem 1. In accordance with their respective lower bound, SPT
used 6 slots as compared to 7 slots used by DST. This scenario
exemplifies our observation that a tree, which “relaxes” the
logical constraints, i.e., ξi and hi, can indeed reduce the total
number of slots that are required for scheduling the nodes.
An obvious question now is how to construct such a tree that
minimizes max{ξi + hi : i = 1, 2, ...N}.

hi for every node can be minimized by ensuring that every
node is connected to the root using a shortest path, i.e., by con-
structing an SPT. A shortest path tree can be constructed using
a standard Breadth First Search (BFS) algorithm. However,
minimizing ξi is non-trivial. Consider the scenario of a shortest
path tree construction as shown in Figure 2. A set of 12 nodes
have been shown in Figure 2(a) at two consecutive “depths”,
d and d+1, of the tree. In particular, nodes from A to F are at
distance d, and nodes from U to Z are at distance d+1 from the
root (not shown in the figures). A possible scenario of parent-
children assignments are shown in Figure 2(b). In this example
children-count for nodes B and C have been minimized by
assigning only one child to each one of them, i.e., nodes U
and Z, respectively. However, this parent-children assignment
has resulted in the assignment of four children to node B. In
fact, the parent-children assignment shown in Figure 2(b) has
maximized the “local” lower bound at depth d of the tree, i.e.,
max{ξA, ξB , ξC} = 4. (All the nodes at depth d will have
the same hop-count, i.e., hA = hB = hC , therefore, their
respective children-count will actually determine the lower
bound at depth d of the tree.) An increase in the lower bound at
depth d of the tree may indeed result in the increased “global”
lower bound of the tree. In general, we have the following sub-
problem that needs to be solved.

Definition 1: If ξk,d is the children-count of a node at depth
d, the parent-children assignment problem then is to assign
children to the nodes at depth d from the nodes at depth d+1
such that max{ξk,d : ∀k ≥ 1} is minimum.

Interestingly, the parent-children assignment problem de-

fined above is equivalent to the problem of finding an optimal2

semi-matching (with respect to L∞ norm) for bipartite graphs
[13]. A bipartite graph consisting of nodes from A to C and
nodes from U to Z is shown in Figure 2(c). (Since nodes D,
E and F do not have any neighbors from the nodes at depth
d+1, they can not become parents and hence they are ignored.
However, they will eventually become leaves of the shortest
path tree). An optimal semi-matching is shown in Figure 2(d).
It is optimal with respect to the number of assigned children,
i.e., max{ξA, ξB , ξC} = 2 is minimum.

Using the basic idea depicted in Figure 2(d) we construct
a “special” SPT in which optimal semi-matchings are ob-
tained by constructing bipartite graphs with nodes at every
two consecutive depths of SPT. Of-course that results in the
minimization of max{ξk,d : ∀k ≥ 1} at every depth of SPT,
which we will prove shortly in this section. We call an SPT for
which parent-children assignments are balanced using optimal
semi-matchings as a Balanced SPT (BSPT).

The pseudo code for BSPT is shown in Algorithm 1.
ConstructBSPT is essentially a breadth first search algorithm
with two new additions. As shown in Algorithm 1 at line 12
a bipartite graph is created from the nodes of two consecutive
depth of the tree. At line 13 an optimal semi-matching is
found for the corresponding bipartite graph using an algorithm
from Harvey et. al. [13]. Parent-children assignments obtained
through the semi-matchings, which will eventually become
edges of the desired tree, are then added in the edge set of the
tree under construction at line 14. This procedure is repeated
until all possible parents are exhausted, i.e., the while loop at
line 5. Finally the desired tree, BSPT, is produced at line 16.

Lemma 1: Given a graph, G(V, E), ConstructBSPT pro-
duces an SPT with a minimum lower bound (as defined in
Theorem 1) across all SPTs of G.

Proof: ConstructBSPT traverses the graph in a breadth
first search manner, therefore, it minimizes the hop-count
for every node, and hence produces an SPT. All parents at
depth d of the SPT are assigned children from nodes at depth
d+1 through an optimal semi-matching for the bipartite graph

2In the rest of the paper whenever we mention an optimal semi-matching,
we mean that the semi-matching is optimal with respect to L∞ norm.

6

Algorithm 1: ConstructBSPT ()

Input: G(V, E), sr ∈ V

Output: G′(V, E′)
begin

P = {sr}; /*Initialize the parent set with root*/1

E′ = ∅; /*An empty edge set for tree graph*/2

G′ = (V, E′); /*Initialize an empty tree graph*/3

∀v ∈ V Mark(v) = False; /*Unmark all nodes*/4

while P 6= ∅; do5

C = ∅; /*Initialize an empty children set*/6

∀m ∈ P Mark(m) = True; /*Mark nodes that7

are being assigned*/
for all m ∈ P do8

for all n ∈ N (m) do9

/*Include every unmarked node in the
children set*/
if Mark(n) = False then10

C = C ∪ {n};11

/*Create the bipartite graph with the set of
parent and children nodes*/
Gb = BipartiteGraph(P, C);12

/*Find an optimal semi-matching [13]*/
Z = FindSemiMatchings(Gb);13

E′ = E′ ∪ Z; /*Update tree’s edge set*/14

P = C; /*Make the current children set as the15

next parent set*/

G′ = (V, E′); /*Output the BSPT*/16

end

formed by the nodes at depth d and d + 1 of the SPT. An op-
timal semi-matching with respect to the L∞ norm minimizes
the maximum load [13]. It also means that if ξk,d is the load
of a node at depth d then max{ξk,d : ∀k ≥ 1} is minimum at
depth d of the SPT. Because the hop-count for every node at
depth d is same, therefore, max{ξk,d +hk,d : ∀k ≥ 1} is also
minimum at depth d of the SPT. Since optimal semi-matching
is performed at every depth of the SPT, max{ξi+hi : ∀i ≥ 1}
is minimum for the SPT produced, and hence the proof.

It is worth noting that for a given graph ConstructBSPT
generates an optimal SPT that has a lower bound as defined in
Theorem 1, which is guaranteed to be minimum with respect
to all possible SPTs that can be generated from that given
graph. However, it does not guarantee a minimum lower bound
(as defined in Theorem 1) with respect to trees that are not
SPTs. It is conceivable that a tree can be constructed in which
the paths of the nodes can be elongated, hence increasing
their hop-count (compared to the shortest possible path) while
possibly decreasing their children-count to potentially achieve
an optimal lower bound as defined in Theorem 1. A more
detailed study on this topic is part of our future study.

V. A RANKING BASED SCHEDULING ALGORITHM

In this section we present an algorithm for scheduling the
tree produced in section IV. As a matter of fact our algorithm
can be used for any given tree to produce a conflict free
schedule. Unlike some other proposals, e.g., SDA [6], our
algorithm retains the structure of the input tree.

Our scheduling algorithm is fairly simple as compared to
many other proposals. It takes a tree as input for which a
schedule is desired and starts by considering all nodes in the
tree that are eligible to be scheduled. Let Ej denote the eligible
nodes for slot j. It is easy to understand that for the first slot
all leaf nodes of the input tree are eligible to be scheduled.
However, only a subset of the eligible nodes can actually be
chosen for that particular slot in order to meet the conflict-free
criterion, C4, set-forth in section II. How to choose a subset
of nodes from all eligible nodes, so that the total number of
slots being used can eventually be reduced, is a key step in
our scheduling algorithm. The basic idea is to rank all eligible
nodes in decreasing order of weight. We denote the sorted set
of eligible nodes by SEj

. We then check every eligible node
(in the order it appears in SEj

) if it can be scheduled in the
given slot in a conflict-free manner. The chosen nodes are
then removed from the tree. This procedure continues with
the new set of eligible nodes (which may contain the nodes
that have recently become eligible nodes and also the nodes
that were previously eligible nodes but not yet scheduled) on
the resulting tree until all nodes are scheduled. The ability
of this process to generate good schedules in terms of length
depends of course on the way the weights are assigned. We
have experimented with many alternative weights and in the
following we suggest which one works the best and the reasons
behind it.

Let us denote by sk,j the k–th node in sorted order with
respect to weights in SEj

in the j–th slot. Let w(sk,j) represent
its weight. The higher weight gives a higher relative priority
to a node to be scheduled in the current slot over other eligible
nodes. If Sj represents the senders in the j–th slot, then for
each slot we start with Sj = ∅, and add to it first s1,j (the
highest weight, i.e., priority). After that, the second node s2,j

is considered and added to Sj : iff by adding it to Sj we
do not violate the conflict freedom constraint, C4, set-forth
in section II. All other nodes (up to the |SEj

|th node) are
checked in the same fashion and added to Sj if they do not
violate the conflict-free criterion. Finally, all nodes from Sj

are assigned to transmit in the jth slot. The scheduled nodes
are then removed from the tree, and the process repeats with
the next set of eligible nodes until all nodes are scheduled.

In the rest of the paper we will call this framework for
ranking and incremental scheduling as Weighted Incremental
Ranking for convergEcast with aggregation Scheduling
(WIRES). A concrete implementation of WIRES requires that
we define a particular means to assign weights/priorities to
eligible nodes.

A particular weight assignment that we use in WIRES is
that of non-leaf neighbor count, η(sk,j) ⊆ N (sk,j) of an

7

Algorithm 2: WIRES()

Input: G′(V, E′), sr ∈ V

Output: T
begin

V ′ = V ; /*Initialize set of nodes in the current tree*/1

∀v ∈ V ′ t(v) = 0; /*Initialize slots in T */2

j = 1; /*Initialize slot number*/3

while t(sr) = 0; do4

Ej = ∅; /*Initialization the set of eligible nodes*/5

for all v ∈ V ′ do6

if ξv = 0 then7

Ej = Ej ∪ {v}; /*Update the set*/8

/*Compute the weights*/
for all e ∈ Ej do9

η(e) = ∅;10

for all e′ ∈ N (e) do11

if e′ ∈ V ′
and ξe′ 6= 0 then12

η(e) = η(e) ∪ {e′};13

w(e) = |η(e)|; /*Assign weight (see text)*/14

SEj
= SortDecreasing(Ej); /*Do ranking*/15

Sj = ∅; /*Initialize senders for the jth slot*/16

Rj = ∅; /*Initialize receivers for the jth slot*/17

F lagC4a = True; F lagC4b = True;1819

for all e ∈ SEj
do20

for all s ∈ Sj do21

if e ∈ N (p(s)) then22

F lagC4a = False;23

break; /*Exit “for” loop*/24

if F lagC4a = True then25

for all r ∈ Rj do26

if p(e) ∈ N (r) then27

F lagC4b = False;28

break; /*Exit “for” loop*/29

/*Schedule only if C4 is satisfied*/
if F lagC4a = True and F lagC3b = True30

then
t(e) = j; /*Update the schedule T */31

Sj = Sj ∪ e; /*Update the senders*/32

Rj = Rj ∪ p(e); /*Update the receivers*/33

V ′ = V ′ \ {e}; /*Update nodes*/34

E′ = E′ \ {(e, p(e))}; /*Update edges*/35

T = j;36

j = j + 1;37

return T ;38

end

eligible node, sk,j in the resulting tree. Recall that as the
eligible nodes are scheduled they are removed from the tree
creating a new tree in which the non-leaf neighbors of a
node may change. If G′(V ′, E′) is the current new tree, then

η(sk,j) = {e : e ∈ N (sk,j), e ∈ V ′ and ξe 6= 0}. Intuitively,
SEj

= {sk,j : |η(sk,j)| ≥ |η(sk+1,j)| ∀k ≥ 1} ranks the
eligible nodes in such a way that the most “constrained”
nodes are scheduled first enabling many other nodes to become
eligible nodes for the next available slots. A simple yet
powerful feature of WIRES is that it considers many (eligible)
nodes simultaneously to schedule for particular slots while
increasing the probability of concurrent transmissions, and
hence increasing the probability of using a lesser number of
slots.

The pseudo code for WIRES is shown in Algorithm 2. All
nodes are initialized with slot number 0 at line 2. The set of
eligible nodes for the jth slot, and the weights are computed
at lines 5∼14. After sorting the eligible nodes according to
weight at line 15, each one of them is considered for the
jthslot (lines 20∼35). Only those eligible nodes are finally
allocated the jth slot (line 31) that do not violate the conflict-
free criteria (line 30). The eligible nodes that are finally
scheduled are removed from the tree (lines 34- 35). This
procedure continues until the root is scheduled (line 4). (The
root, sr, transmission in the j–th slot is a pseudo-transmission,
which is not needed, it just signifies that the schedule was
completed in j − 1 slots.)

Lemma 2: A schedule produced by WIRES is conflict-free.
Proof: Every slot in WIRES is allocated in an incremental

fashion, i.e., Sj is initiated as an empty set and then eligible
nodes are added into it incrementally. Since any node is added
to Sj only if that node meets the conflict-free criteria, Sj will
contain the set of nodes that do not interfere with each other’s
transmissions. Because this procedure is repeated for every
slot, j ≥ 1, Sj will always contain nodes that do not interfere
with each other’s transmissions, and hence the proof.

VI. PERFORMANCE EVALUATION

To evaluate our proposal we implemented SDA [6], PAS [5],
DAS [8], SAS [10] and First-Fit [7] algorithms to compare
their performance with WIRES-BSPT. We discovered that
First-Fit algorithm does not produce a conflict-free schedule,
which has also been noted in [8]. Therefore, in our evaluations
we omit the results of First-Fit algorithm. It is interesting
to note that all existing proposals have been tested under
drastically different simulation setups. For example, Chen et.
al. [6] assumed a network of 100 nodes in a 200m×200m
area. Various topological scenarios were created by varying
the transmission range of nodes between 21.7m and 40m. In
contrast, Yu et. al. [8] used 1000 to 2000 nodes, with a radio
range of 25m, in an area of 200m×200m area. These two
scenarios exemplify the extreme variations in the simulation
setups being used by various studies. Choosing a particular
“representative” setup for our study was problematic. To solve
this problem we used the density metric to provide a “common
platform” to test all algorithms as fairly as possible. More
specifically we define the density to be: Ψ = πρ2N

L2 , where
N is the number of nodes, ρ is the transmission range of
nodes and L is the length of a square area. By varying density
we have essentially captured the “essence” of various setups

8

20 40 60 80
20

40

60

80

100

120

140

Synthetic dataset (L = 200m, ρ = 25m)

Ψ (8.6/10.4, 26.0/41.7, 43.5/93.5, 61.1/164.3, 87.4/305.8)

 T
 (

m
ax

im
um

 n
um

be
r

of
 s

lo
ts

 u
se

d)

WIRES−BSPT
SDA
SAS
DAS
PAS

20 40 60 80

20

40

60

80

100

120

Synthetic dataset (L = 200m, ρ = 25m)

Ψ (8.6/10.4, 26.0/41.7, 43.5/93.5, 61.1/164.3, 87.4/305.8)

 T
 (

m
ax

im
um

 n
um

be
r

of
 s

lo
ts

 u
se

d)

 T

min

WIRES−BSPT
SDA−BSPT
DAS−BSPT
PAS−BSPT

2 3 4 5 6 7 8 9 1011121314151617181920
0

50

100

150

200

250

300

350

400
Synthetic dataset (L = 200m, ρ = 25m)

N (× 100)

N
um

be
r

of
 n

od
es

 w
ith

 n
ew

 p
ar

en
t

(a) Comparison of all algorithms (b) Comparison with respect to BSPT (c) Change of parents in SDA-BSPT

Fig. 3. Synthetic dataset. In the “()” with Ψ we have provided average-degree/degree-variance of the nodes.

being used in other studies. In our experiments we kept ρ

and L fixed at 25m and 200m, respectively, while varied N

to change the density. The reported results are an average of
10 runs. A unique node is chosen randomly as the root in
each of these runs. As a side note, even though we conduct
the performance evaluation using UDGs, the choice is purely
motivated for comparison purposes with existing literature
that already assumes UDGs. With very few exceptions the
algorithms in the literature are applicable to general topology
graphs and not to UDGs alone.

We also performed experiments with real
data by using the Intel Berkeley dataset
(http://db.csail.mit.edu/labdata/labdata.html). This dataset
contains of approximately 3.5 million readings from 54
sensors deployed in the Intel Berkeley Research lab. Though
the sensor readings are of no use for this study, we used
sensors’ positions, which were available along with the
original dataset, to create various topologies. A few sensors
for which the location was not know were removed from
the dataset. Since the number of sensors was fixed in the
Intel dataset, ρ is varied to create scenarios with various
densities. In each of these scenarios one unique node is
chosen randomly as the root. Again, the reported results are
an average of 10 runs. To the best of our knowledge none of
the previously proposed algorithms have been evaluated using
real sensor location positions, such as the Intel Berkeley
setup.

The first set of results from the synthetic dataset are shown
in Figure 3. As shown in Figure 3(a) we can see that WIRES-
BSPT outperforms all other solutions by 10∼30%, which
means that our solution will require that much less time for
its schedule. More interestingly, as the density increases, the
performance of WIRES-BSPT is improved compared to other
approaches. The reason for this improved performance is that
as the density increases the underlying tree, BSPT, becomes
more “bushy”. It also means that, on average, the number of
children per parent is increased substantially. The way BSPT
is constructed it tends to spread the load (children) among the
parents evenly which in turn “relaxes” the logical constraint
for these parents. That results in two prominent affects for
WIRES. (1) It increases the probability that a parent may

become eligible node much faster. (2) As more parents become
eligible, they significantly increase the “pool” of eligible nodes
providing more opportunity for concurrent transmissions.

Since SDA, DAS and PAS can work independently as
standalone algorithms for scheduling, we ought to evaluate
their performance with respect to BSPT. We provided BSPT
as input tree to each one of these algorithms, i.e., SDA-BSPT,
DAS-BSPT and PAS-BSPT are compared with WIRES-BSPT.
The results are shown in Figure 3(b). These result confirm
that the choice of the tree is important. We can see that
SDA, DAS and PAS are able to schedule the nodes using a
lesser number of slots. Their performance is improved by just
replacing the tree with which they were originally proposed
and evaluated, by BSPT ! In addition, the combined WIRES-
BSPT still performs better than the all the rest. However, as
Ψ increases the performance gap between WIRES-BSPT and
SDA-BSPT shrinks. At a very high density, i.e., Ψ ≥ 80 the
difference between WIRES-BSPT and SDA-BSPT becomes
negligible. However, SDA-BSPT has its own limitation, i.e.,
it does not retain the input tree.

Figure 3(c) summarizes the “side affects” of SDA-BSPT
solution. In this figure we show the average number of nodes
that have been assigned new parent, which are different from
the parents in the original BSPT. In particular, when the total
number of nodes are 200, then more than 50% of the nodes are
assigned new parent. When the node density increases (as the
number of nodes increases) the total number of nodes with new
parents also increase. These results suggest that the changes
inflicted by SDA algorithm on the input trees are substantial.

The second set of results from Intel dataset are summarized
in Figure 4. Here again the qualitative behavior of the results
remain same as seen in the results from the synthetic dataset.
However, their quantitative behavior has changed. As shown
in Figure 4(a) we can see that WIRES-BSPT outperforms
all other solutions but by slightly smaller margin, i.e., by
10∼18%. Figure 4(c) summarizes the performance of the
algorithms when BSPT is the input tree.

An interesting result that did not appear in the synthetic
dataset is that performance gain of SDA with respect to DAS
and PAS is negligible. As a matter of fact it is outperformed,
though slightly, by DAS and PAS when density is beyond

9

10 15 20 25 30
12

14

16

18

20

22

24

26

28
Intel dataset (N = 54, L = 35m)

Ψ (5.6/3.2, 8.9/4.5, 10.5/6.7, 13.8/11.0, 17.1/19.5)

 T
 (

m
ax

im
um

 n
um

be
r

of
 s

lo
ts

 u
se

d)

WIRES−BSPT
SDA
SAS
DAS
PAS

10 15 20 25 30

10

15

20

25

30

Intel dataset (N = 54, L = 35m)

Ψ (5.6/3.2, 8.9/4.5, 10.5/6.7, 13.8/11.0, 17.1/19.5)

 T
 (

m
ax

im
um

 n
um

be
r

of
 s

lo
ts

 u
se

d)

 T

min

WIRES−BSPT
SDA−BSPT
DAS−BSPT
PAS−BSPT

8.3 13.1 18.9 25.7 33.6
0

5

10

15

20

25

30

35
Intel dataset (N = 54, L = 35m)

Ψ

N
um

be
r

of
 n

od
es

 w
ith

 n
ew

 p
ar

en
t

(a) Comparison of all algorithms (b) Comparison with respect to BSPT (c) Change of parents in SDA-BSPT

Fig. 4. Intel dataset. In the “()” with Ψ we have provided average-degree/degree-variance of the nodes.

25. This experiment reveals SDA’s sensitivity towards particu-
lar topologies. However, WIRES-BSPT consistently performs
better than all other approaches. Figure 4(c) summarizes the
performance of SDA with respect to the changes in the output
tree. As shown in these results, SDA retains only 50% (on
average 27 nodes out of total 54 nodes) of the original parents
in the output tree.

The summary of these results is that if the underlying
tree is not important and the only objective is to reduce the
number of slots, then WIRES-BSPT performs better in most
of the cases. Though at higher densities WIRES-BSPT and
SDA-BST offered equally good solutions. Nevertheless, if the
underlying tree is important (i.e., if we have constructed a
tree that is important from the application’s perspective), then
WIRES is the most efficient solution. Another note here is that
Figure 3(b) and Figure 4(b) also show the results of the lower
bound on BSPT computed in accordance with Theorem 1.
These experimental results verify the correctness of the proof.

VII. CONCLUSION

Previous aggregation convergecast scheduling solutions rely
on ad-hoc approaches to create the aggregation dependency
tree before applying their scheduling algorithms. Some of
the proposed solutions even change the tree, hence their
usefulness is not obvious to applications that wish to retain
the aggregation tree intact. Some of the previously proposed
solutions are not even conflict-free. We have presented sev-
eral contributions in this paper. First, we proposed a tighter
lower bound to the tree scheduling problem, and proved its
correctness. Second, we proposed an algorithm to construct a
logical tree, BSPT, guided by the lower bound, allowing the
generation of schedules with fewer slots. Third, we proposed
a ranking/priority–based scheduling algorithm, WIRES, that
produces schedules, that are guaranteed to be conflict-free. Our
proposal was evaluated extensively using synthetic and real
datasets. Our proposed algorithms are efficient and can save
up to 15% of the scheduling time. Future directions include
increasing the robustness of in-network aggregation, i.e., to
produce reliable aggregation convergecast. Another extension
is that of considering aggregation queries on subsets of the
nodes, instead of on all the nodes in the network.

ACKNOWLEDGMENT

Thanks are due to Xujin [6], Bo [8], Jianming [12], Scott [7]
and Nicholas [13] for providing some important clarifications
regarding their work to the authors of this paper. This research
is partially supported by NSERC.

REFERENCES

[1] W. H. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
efficient communication protocol for wireless microsensor networks,”
Proc. of the 33rd Annual Hawaii Intl. Conf. on System Sciences, vol. 2,
pp. 1–10, 2000.

[2] A. Kesselman and D. R. Kowalski, “Fast distributed algorithm for
convergecast in ad hoc geometric radio networks,” Journal of Parallel
and Distributed Computing, vol. 66, no. 4, pp. 578–585, 2006.

[3] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TAG: a
tiny aggregation service for ad-hoc sensor networks,” Proc. of the 5th
symposium on Operating systems design and implementation (OSDI’02),
vol. 36, pp. 131–146, 2002.

[4] B. Malhotra, M. A. Nascimento, and I. Nikolaidis, “Monitoring exact
top-k values in wireless sensor networks using dominating set trees,”
Computing Science, Univ. of Alberta, Tech. Rep. TR09-01, 2009.

[5] X. Yu, S. Mehrotra, and N. Venkatasubramanian, “Sensor scheduling for
aggregate monitoring in wireless sensor networks,” Proc. of the 19th Int.
Conf. on Scientific and Statistical Database Management (SSDBM’07),
p. 24, 2007.

[6] X. Chen, X. Hu, and J. Zhu, “Minimum data aggregation time problem
in wireless sensor networks,” Lecture Notes in Computer Sciences, vol.
3794, pp. 133–142, 2005.

[7] S. C.-H. Huang, P.-J. Wan, C. T. Vu, Y. Li, and F. Yao, “Nearly
constant approximation for data aggregation scheduling in wireless
sensor networks,” Proc. of the 26th Conf. on Computer Communications
(INFOCOM’07), pp. 366–372, 2007.

[8] B. Yu, J. Li, and Y. Li, “Distributed data aggregation scheduling
in wireless sensor networks,” Proc. of the 28th Conf. on Computer
Communications (INFOCOM’09), 2009.

[9] P. J. Wan, K. M. Alzoubi, and O. Frieder, “Distributed construction of
connected dominating set in wireless ad hoc networks,” Mobile Networks
and Applications, vol. 9, no. 2, pp. 141–149, 2004.

[10] P.-J. Wan, S. C.-H. Huang, L. Wang, Z. Wan, and X. Jia, “Minimum-
latency aggregation scheduling in multihop wireless networks,” Proc.
of the 10th ACM Int. Symposium on Mobile Ad Hoc Networking and
Computing (MOBIHOC’09), pp. 185–194, 2009.

[11] V. Annamalai, S. Gupta, and L. Schwiebert, “On tree-based converge-
casting in wireless sensor networks,” Proc. of the IEEE Conf. on Wireless
Comm. and Networking (WCNC’03), vol. 3, pp. 1942–1947, 2003.

[12] J. Zhu and X. Hu, “Improved algorithm for minimum data aggregation
time problem in wireless sensor networks,” Jour. of Systems Science and
Complexity, vol. 21, no. 4, pp. 626–636, 2008.

[13] N. J. A. Harvey, R. E. Ladner, L. Lovász, and T. Tamir, “Semi-matchings
for bipartite graphs and load balancing,” Jour. of Algorithms, vol. 59,
no. 1, pp. 53–78, 2006.

