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Abstract

Virtual machines (VMs) are useful mechanisms for better resource utilization, support for

special software configurations, and the movement of packaged software across systems.

Exploiting VM advantages in a production setting, however, often requires computer sys-

tems with the smallest possible disk-size footprint. Administrators and programmers who

create VMs, however, may need a robust set of tools for development. This introduces an

important conflict: Minimalism demands that packaged software be as small as possible,

while completeness demands that nothing required is missing. We present a system called

Lilliputia, which combines resource usage monitoring (through a Linux FUSE filesystem

we created called StatFS), with a filtered cloning system, which copies an existing physical

or virtual machine into a smaller clone. Finally, we show how Lilliputia can reduce the size

of the Trellis Network-Attached-Storage (NAS) Bridge Appliance and the Chemical Shift to

3D Structure protein structure predictor to 10-30% of their original size.
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Chapter 1

Introduction

1.1 Motivation

Virtual machines (VMs) are a useful mechanism to address many issues in software devel-

opment and deployment: software encapsulation, supporting legacy systems, server con-

solidation, and cloud computing. A VM can encapsulate the entire identity of a computing

system, from operating system (OS) to libraries and applications. An encapsulated machine

provides a number of benefits:

1. Multiple encapsulated machines can be deployed on a single physical server. Consol-

idating these machines in one place can improve resource utilization (via statistical

multiplexing) [3], decrease power consumption, and save physical space in server

rooms and racks. For example, many server environments will include print servers,

file servers, web servers and more, all configured and tuned from the OS-up for their

particular tasks. Each could be running a different set of software, different versions

of libraries, and incompatible operating systems. With virtualization, each one of

these servers can have its own isolated computing environment (with no more inter-

action with each other than in the regular physical networked case), but all running

on a single piece of physical computing infrastructure.

2. Legacy operating system installations can be maintained in an encapsulated machine

to support applications with specific needs, while the operating system hosting those

installations remains up-to-date. For example, a web-facing server running older

software incompatible with modern operating systems could present a security liabil-

ity. By configuring a host machine with an up-to-date operating system and software

suite, and passing only required requests in to a VM running the legacy software,

all the services can still be provided, while mitigating the security implications of
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running older code.

3. Encapsulated machines can be packaged and moved from place to place as a self-

contained unit, allowing duplicate deployments, or even mobile deployments that

migrate on demand. For example, an entire server designed to run a special-purpose

application can be packaged in a VM, and made available for download. Additionally,

long-running software inside a VM can be suspended, moved, and resumed in a new

location in response to outages or changing server resource demands.

In particular, the notion of creating a VM-based virtual appliance (VA), a purpose-specific

VM, has garnered significant attention recently [50]. A VA can potentially be customized,

tuned, and made smaller in size if it does not have to support general-purpose use. Note

that a VA is just a specific kind of a VM, therefore we also use the term VM to refer to VAs.

The basic process of taking an existing physical server and cloning it into a VM (i.e.,

Physical-to-Virtual (P2V)) is now commonplace, with both commercial (e.g., VMware

vCenter Converter [49]) and other solutions (e.g., using dd or tar in custom scripts, simi-

lar to Listing 3.1 in Subsection 3.3.1). Copying the local disk(s) of the physical server onto

the VM disk image of the VM encapsulates a full-sized version of the server into a VM

image. We say that the “output” VA encapsulates the “input” machine if it retains all the

same desired behavior of the original. For example, the disparate file servers, print servers,

and web servers from point 1 (above) can be converted one-by-one into VMs, and then de-

ployed to one physical machine. After some tweaks of the boot process and other internals

of the VM, the full-sized, virtualized server is ready. Likewise, creating a VM from scratch

(such as for a VA) via the original OS installation CD/DVD media (e.g., Windows, Ubuntu

Linux, Ubuntu JeOS) is also commonplace. In either case, the output VM is functionally

equivalent to the input physical machine, or any other machine with the same set of software

and data, with all the advantages of a VM described in Subsection 2.1.3.

Whether created via P2V or from scratch, and whether configured as a traditional server

or as a VA, the resulting VM images are often several gigabytes in size. For example, the

Chemical Shift to 3D Structure (CS23D) deployment (a bioinformatics server described

below) used throughout this project was over 30 gigabytes when provided to us, as in Ta-

ble 1.1. Naturally, removing unnecessary resources from these VAs has benefits whenever

these images are backed-up, migrated, copied, provisioned, and when installed on live CD-

s/DVDs, portable drives, or smaller devices, such as netbooks. Creating and maintaining

minimal VAs, however, presents specific practical problems when it comes to completeness,
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including all the necessary files, and minimalism, excluding all of the unnecessary files.

For example, the basic P2V process is complicated when the physical server is itself

not self-contained and uses, for example, network resources such as remotely mounted

filesystems via the Network File System (NFS). A naive approach to the P2V conversion of

a server with NFS mounts will either omit the remote NFS volumes (which would leave the

VA incomplete), or include all remote NFS volumes (which would dramatically increase the

size of the VA), or require that the VA have the ability to mount the remote NFS volumes

(which might reduce the mobility of the VA and/or create NFS security issues).

Furthermore, there might be files on both local and remote disks that are not required

for the production VM. For example, many servers have documentation files and develop-

ment environments with compilers, integrated development environments (IDEs), multiple

scripting languages, and a full suite of libraries and header files. For production use, many

of these files are not necessary.

Manually selecting which files or volumes (e.g., NFS) to encapsulate into the VM via

an include list for the P2V is possible. Similarly, creating a manual exclude list is possible.

However, as with manual versus automatic package management (e.g. apt-get and yum)

for software, manually maintaining meta-data about software, like our include and exclude

lists, is error-prone and complicated. For example, dependency information stating what

libraries are required for a given piece of software may be error-prone.

Furthermore, keeping the original server and/or a full-sized VM image for ongoing

development purposes is likely desirable. In other words, the P2V process is not necessarily

a one-time event. In fact, creating a slimmed production VM from a full-sized development

VM might be as common as an over-night rebuild of the system. Therefore, manually

updating the include and exclude lists for each production build is likely to become an

untenable chore.

The Lilliputia system is our practical solution to the problems of completeness and min-

imalism, by automatically creating the include and exclude lists. Manual, supplementary

include and exclude lists are also supported, but the bulk of the effort is automated. Our au-

tomatic encapsulation and slimming process is based on a new, simple, user-level filesystem

called StatFS, which traces and logs the actual resources (both local and network-based) ac-

cessed by the running server. Post-processing the StatFS logs automatically generates the

include and exclude lists. When in production mode, StatFS is not present at all. Even

when tracing a system (which is not the common case), the run-time overheads of StatFS

are less than 4% in our experiments (Section 4.5). Given all of the software and files that

3



Virtual Appliance Full Size Slimmed Size % savings
TNBA 591 54 92%

CS23D 31876 9366 71%
TNBA (compressed) 242 27 89%

CS23D (compressed) 9305 2054 78%

Table 1.1: Summary of slimming results for the Trellis Network-Attached-Storage (NAS)
Bridge Appliance (TNBA) and CS23D in MB

are installed by default on most servers, and given the large number of NFS volumes that

are typically mounted on servers, we have seen slimmed image sizes in the range of 10% to

30% of the size of the full-sized images (e.g., 54 MB versus 591 MB, 9.37 GB versus 31.9

GB, as in Table 1.1).

1.2 Examples

In Section 4.1, we describe a bioinformatics server to use chemical shift data to compute

3D protein structure known as CS23D [53]. The server uses bioinformatics databases that

are shared with other servers. Given the need to regularly and consistently update these

shared databases (e.g. protein databases), they are NFS mounted (a common practice) and

not replicated. Of course, tools for consistent replication are available, but the point is that

NFS mounting is common in practice. Furthermore, CS23D was developed by so many

different people (some of whom had already left the project, some of them external to the

project) and uses so many different components that it would have been impractical to try

to manually enumerate all of the network resources used by the system. The large number

of developers involved, and the large number of software components used, are typical of

many such projects.

After CS23D had been in production for months, it was decided that a VM-based

CS23D was desirable. We and other developers wanted the ability to quickly launch a

CS23D VM on a different server to maintain uptime (i.e., redundancy, availability), the abil-

ity to run multiple CS23D VMs to serve more clients (i.e., capacity, mirrors), and the ability

to continue development of CS23D within a VM without affecting the physical CS23D (or

the other CS23D VMs).

The full-sized CS23D VM, after installation of all the tools required to develop and

maintain the system, was over 30 GB in size. On the one hand, many servers now have

terabytes of disk, so the quantity of disk storage is not the issue. On the other hand, many
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researchers and developers use laptops that (currently) have much less than a terabyte of

disk. Creating each clone of the VM image for a new development branch requires a time-

consuming copy of 30 GB. In addition, 30 GB VM images are not practical for Web-based

distribution to our research partners and the use of inexpensive, dual-layer DVDs requires

the image to be less than 8.54 GB in size. Even the process of backing up tens of gigabytes

of VM image files (which may be modified frequently) may consume many resources.

Finally, the increasing use of live VM migration [11] may also benefit from decreased

initial image size, in implementations where the entire filesystem state has to be moved

from point-to-point before the migration can be considered successful.

Fortunately, using Lilliputia, our slimming techniques reduced the CS23D VM to 9.37

GB before compression, and 2.1 GB after compression, as shown in Table 1.1.

As another motivating example, in 2006, our research group created the Trellis Network-

Attached Storage (NAS) Bridge Appliance [12] (TNBA) VA for the VMware Ultimate Vir-

tual Appliance Contest (UVAC) [48], winning Second Prize. In brief, the TNBA is a server

that presents a network filesystem interface (via SMB/CIFS, or Server Message Block/Com-

mon Internet File System) to clients on the front-end, but can access files via Secure Shell

(SSH) on the back-end. Therefore, files that are not available via a traditional distributed

filesystem (e.g., due to administrative domain issues), but can be accessed via SSH, can

still be made available via the TNBA to SMB/CIFS clients. The TNBA is discussed in

more detail in Subsection 4.1.1.

Notably, one of the criteria for the UVAC was the size of the resulting image, since the

bandwidth required to distribute VAs is an understandable concern (as it is for our CS23D

VM). An earlier approach to slimming was used with the TNBA. The final, slimmed TNBA

VA size of 16 MB (compressed) was certainly a factor in the VA’s Second Prize finish. The

original slimming technique used in 2006 was based on manipulating filesystem times-

tamps, which does not work as cleanly in practice with shared, network-mounted filesys-

tems.

In this work, we re-create the slimmed TNBA with the new StatFS-based encapsulation

and slimming technique. The final, slimmed VM image is 27 MB compressed (54 MB

uncompressed), as compared to a full-sized image size of 591 MB, as shown in Table 1.1.

Note that the change from 16 MB in 2006 to 27 MB in 2009 is due to a change from Gentoo

to Ubuntu Linux for the guest OS installation, and the corresponding increases in package

size and software capabilities from 2006 to 2009.
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1.3 Contributions

The contributions of this work (modulo the caveats below) are as follows:

1. In Chapter 3, we present the Lilliputia system, which implements trace-based ap-

proach to automatically generating include and exclude lists for creating complete

and minimal VM images, and clones systems based on these lists.

2. We demonstrate the effectiveness of Lilliputia on two real-world VMs. Chapter 4

presents a case study of each: CS23D and the TNBA. With each VM, both the fresh

disk and slimming approaches were applied. We verify that the slimmed VM images

have all the functionality required for production use, but are about 29% and 9.1%

the size (uncompressed) of the full VMs, respectively.

1.4 Caveats

Some limitations of our work at this time are:

1. As with software testing, our approach to encapsulation and minimalism for VMs

depends on proper trace coverage. StatFS trace runs can be derived from the existing

test programs (assuming, optimistically, that test-suites are in place). For corner cases

not (currently) covered by the trace runs, supplementary include and exclude lists can

be manually specified. In our experiments, these supplementary lists are a few lines

for the TNBA case and a manageable page of entries for the CS23D case (for reasons

detailed in Subsection 4.5.2). Our goal is to automate the creation of include and

exclude lists as much as possible.

2. Another issue in the encapsulation of a server is user account management. Many

servers use either the Network Information Service (NIS) or some variation of the

Lightweight Directory Access Protocol (LDAP) to manage the user accounts. In

short, our encapsulation technique does not help with network-based user account

management (just network-based filesystems). All of our VMs to date have used

local user accounts, which is consistent with the notion of a VA.

3. Our metric of focus is amount of disk storage required (in megabytes (MB) or gi-

gabytes (GB)) for VM images, when not in use. Another important metric is the

resource footprint (both memory and disk) of a running VM. As we note below, VM

disk images grow over time as the VM is used, for reasons related to VM disk image
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overheads and internal fragmentation. However, resource footprints and growing disk

images are heavily dependent on the specific guest OS configurations and workloads.

Therefore, we leave these other, important metrics for future work.

4. Of course, this work’s contributions are on the practical (as opposed to conceptual

or theoretical) side of VM construction and how they can be used on resource-

constrained machines. Although our empirical experiments are based on Linux Ker-

nel Virtual Machine (KVM) the basic ideas are portable to other VM hypervisors and,

with more work, other guest OSes besides Linux.

1.5 Summary

VM-based appliances have many strengths. Automatically making the VA disk images

as small as possible, without sacrificing functionality, makes them more manageable, by

making them easier and faster to deploy, back-up, or migrate. Lilliputia, as shown through

experimental case studies, displays precisely this ability to reduce image size, producing

functional slimmed VAs.

In the following chapters, we will introduce background concepts important to our use

of virtualization and filesystems. Mechanisms for virtualization, filesystem concepts, and

existing implementations of virtualization hypervisors, profiling tools, and similar projects

will be discussed. With a good understanding of these technologies, the design and im-

plementation of Lilliputia’s trace-based filesystem and slimming system will be presented.

Finally, we will discuss our experiences using the complete Lilliputia system to create real-

world slimmed VMs with the TNBA and CS23D, and our evaluation of them for effective-

ness at reducing image size, and maintaining correctness.
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Chapter 2

Background and Related Work

In order to understand the problems of making virtual machines (VMs) as small as possible,

it is important to understand several background concepts of virtualization. Additionally,

several related research projects provide insight into the mechanisms by which we were

able to reduce the size of VMs.

2.1 Background

2.1.1 Motivations for Virtualization

Virtualization, in broad terms, is the approach of running a VM, which has all the behavior

and observable appearance of a physical machine, but as a guest process executed on an-

other host machine. Virtualization may include the ability to run different operating systems

(OSs) and different versions of OSs, generally simultaneously, on a single unit of physical

computing infrastructure. For example, a guest VM could be running Windows, inside of a

Linux-based host machine. The chief benefit of such an approach is isolation of guest be-

havior from the host. Virtualization allows software in a guest to be upgraded or modified

independently of software on the other guests or the host system, isolating them from the

effects of one another.

As with historical VMs, modern uses of VMs include allowing different OSes and dif-

ferent versions of OSes to share the same CPUs. Software did not have to be upgraded in

unison, as long as a VM could be created with the necessary OS and libraries to run systems

along-side other VMs. VMs offer greater flexibility in software packaging and configura-

tion, and remains a powerful use of the technology. For example, a guest VM running a

Red Hat distribution of Linux can be updated to a newer version, without impacting a host,

running a Debian distribution of Linux. In particular, the guest OS could be updated to a de-

velopment version without making the host unstable. A guest could even run a completely
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different base OS, such as Windows XP.

VMs allow greater flexibility in mobility of a packaged set of software, even allowing

an entire VM to be bundled together, moved to another location (possibly many different

locations simultaneously), and executed, with little modification. It is also an extension

of the time-sharing concept which was so popular with early mainframe computers: by

presenting the user with what appears to be a full privately-owned machine, virtualization

maximizes the options available to that user, without impacting others.

2.1.2 Emulation to support Virtualization

At one extreme, and not the subject of this dissertation, the goals of virtualization can be

achieved through full emulation. In an emulated environment, software simulates the state

of a machine, and alters that state iteratively. Since the process of a machine is entirely

simulated, it is even possible to execute binary code from a hardware architecture entirely

different from the hardware running the code. Assembled instructions and program coun-

ters are loaded into emulated registers on a emulated processor, and executed, causing the

emulated machine to perform load and store operations on emulated memory, and invoking

emulated I/O-calls that interact with emulated I/O controllers, emulated disks, emulated

PCI devices, and so on.

A related case where the term virtual machine is frequently used is that of the Java

Virtual Machine. The Java Virtual Machine (JVM) interprets and executes Java bytecode,

assembled instructions which typically are not intended to run on physical hardware. By

implementing the instruction set in Java bytecode, a JVM effectively emulates the Java

platform.

While the emulation approach produces the same output as a real machine for the same

input (assuming a deterministic program with no timing sensitivity), it is both infeasibly

slow for many purposes, and relatively complicated to implement.

A beneficial modification to the emulation approach is to translate binary code before

execution. Guest program text segments can be translated in bulk into equivalent instruc-

tions for the host architecture, and executed natively, provided the input and output effects

can be mapped back into the simulated machine correctly. The binary translation approach,

used in emulators like Qemu [5], as well as so-called “Just-In-Time Compilation” in JVMs,

dramatically improves performance over simulating each individual instruction indepen-

dently, limiting the comparatively hard work of full emulation to I/O device interaction,

and other privileged instructions that must be emulated.

9



2.1.3 Same-instruction-set Virtualization

Figure 2.1 provides an illustration of how components of a VM map to elements in the host

physical machine.

When the host physical architecture is the same architecture as that which a VM is

designed to run on, most instructions can be executed directly by the physical CPU and

memory without any translation at all (as in “Virtualized Instruction Execution” and “Host

Memory Region” in Figure 2.1). In cases where direct execution of guest VM code would

violate the isolation of the guest and the host from each other (or otherwise behave incor-

rectly), the offending instructions can be translated ahead-of-time as above. For example,

a guest VM running Linux for a 32-bit x86 processor (as an example instruction set archi-

tecture) can execute most of its instructions natively on a host running on a physical 32-bit

(or, as an aside, even 64-bit) x86 processor. Code in the guest VM which attempts to read

or write on a hard disk or other I/O device will be translated to instead emulate the same

effect on a virtual device (as in “VM Disk Image” and “Emulated Devices” in Figure 2.1),

and then resume native execution of the VM guest code.

Most discussions of the history of VMs begin in the 1960’s with IBM’s 360 (and re-

lated) systems that had hardware support for hypervisors and could multiplex expensive

hardware (e.g., mainframes and minicomputers). Since the 1960’s, VMs have never re-

ally gone away. However, the advent of VM technology for commodity x86 systems (e.g.,

VMware, Xen, and the Linux Kernel Virtual Machine (KVM)) has made the technology

even more accessible.

Two technologies which have made modern virtualization more effective are:

1. Hardware assisted virtualization of instructions: With the increasing use of vir-

tualization in typical computing environments, manufacturers became more inclined

to design hardware with virtualization in mind. To that end, both Intel and AMD

processors now support a series of virtualization extension instructions. VT-x and

AMD-V (from Intel and AMD respectively) provide a mechanism to pass guest code

to be executed to the CPU, in isolation from the host OS. Many of the privileged

instructions that would otherwise have to be emulated can then be trapped and em-

ulated on demand, making the “Virtualized Instruction Execution” phase faster and

simpler. Later implementations of these extensions also include virtual page table

translation facilities, allowing accelerated translation from guest virtual memory ad-

dresses to host physical memory addresses, improving speed of the “Host Memory
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Figure 2.1: Illustration of Virtualization. Above, a traditional physical computer with a
CPU, memory, hard disk, and other devices. Below, the same machine as simulated in a
VM on another host.
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Region” portion of Figure 2.1.

2. Para-virtualization: The above techniques of emulation and virtualization imple-

ment what is called full virtualization. Under full virtualization, the guest virtualized

computer is intended to be indistinguishable from a real physical machine. Full vir-

tualization has the benefit that software designed to operate on a real machine will

behave just the same under virtualization, because real-world I/O devices are fully

emulated. For example, a brand-name network adapter could be emulated to provide

a VM with access to a network.

If, however, the guest OS is aware that it is running under a virtual environment

(i.e. “paravirtualized”), it can provide faster and simpler implementations, tailored to

virtualization. For example, the Virtio project [37] provides virtual network and block

devices, which are simpler for the host hypervisor to implement. Virtio also provides

a corresponding integrated user-space driver. Effective integration between the para-

virtualized device and the para-virtualization-aware driver can limit the number of

times data must be copied to get from the hypervisor to the guest OS or vice-versa.

A more recent advance in virtualization technology is the opportunity to migrate [11]

a running guest VM from one host to another. The simplest approach to migration is to

create a complete snapshot of the state of the guest VM’s CPU, memory, disk, and other

devices. This snapshot can then be transferred to a new location, loaded into another host

virtualization environment, and resumed. Later developments in migration enable guest

VMs to be migrated live, with minimal downtime.

2.1.4 Virtual Machine Disk Images

With the above virtualization techniques, it is possible to simulate most of the behavior of

a traditional physical computer. However, the critical components that distinguish any one

computer from another are mostly in its persistent long-term state, typically as a simulated

hard disk drive, or VM disk image, in the “VM Disk Image” portion of Figure 2.1. On a host

computer, a VM disk image is typically a single, ordinary file. Inside a guest, a VM will

use standard filesystem formats Linux Extended filesystem or the NT File System (NTFS).

These filesystems treat a VM disk image just as they would a real disk, that is, they partition

the disk into volumes, allocate metadata structures such as inodes and journals, and partition

files into fixed size blocks and store the blocks on disk. Three common implementations of

VM disk images are illustrated in Figure 2.2.
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The simplest implementation of a VM disk image is a straight one-to-one mapping of

guest disk block to host file block, as in 2.2a. Each block in the VM disk image file on the

host is allocated ahead-of-time to one block of the VM’s simulated block device. Because

the file is allocated this way, the size of the disk image is fixed, and will not grow over time.

The Qemu hypervisor and supporting utilities refer to this format as raw.

Conversely, most virtualization technologies support growable disks, as illustrated in

2.2b. With a growable disk, blocks are only written to the host VM disk image file when

they’re written to inside the guest. This way, a simulated 30gigabyte disk which only con-

tains, for example, 500 megabytes of data, doesn’t necessarily need to consume 30gigabytes

of the host’s storage. As the VM disk image is used, files will be created and deleted, but

VM disk images are not automatically defragmented, so they only grow monotonically,

even though empty space may exist within the allocated portion. For example, the grow-

able VM disk image for the Chemical Shift to 3D Structure (CS23D) server was over 40

GB even though the du utility reported approximately 30 GB of files on the disk in the VM

(see Table 4.2 below). Eliminating wasted space after a VM has been created is important

if a VM is to remain portable in size.

Finally, the linked clone option, illustrated in 2.2c, provides a feature similar to version

control software, but in a VM disk image context. A VM disk image file can be used as

a parent image for a new child disk. With the linked clone feature, a VM configured to

use the child disk will be able to read any blocks present in the parent, if those blocks

are not present in the child. If data is overridden in a child disk, a copy-on-write feature

brings a copy of the parent block into the child, where it can be modified there without

affecting the parent. This feature can allow the parent image to act as a historical snapshot

of what a VM looked like at one point in time, while still allowing modifications in the

child. It also allows the sharing of VM disk images. For example, a base Linux distribution

can be installed in a parent image, common to multiple VMs. Each VM can then have

their own child image, which is a descendant of the common parent, and can have separate

configuration and application data there.

2.1.5 Filesystems as Interfaces

As the permanent mass storage of a VM is such a critical element to its behavior and imple-

mentation, it is important to understand the impact of filesystems layered on top of them.

Filesystems provide a meaningful view to the data on a large block device, partitioning the

blocks into individual files, organizing them into a directory structure, and implementing
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Figure 2.2: Illustration of VM disk image formats. (a) “Raw” non-growable format,
wherein every block in the guest virtual disk is mapped directly to a block in the VM
disk image file. (b) Growable format, wherein only blocks which have been written to in
the guest virtual disk is actually written to the VM disk image file. Here, grey indicates
unwritten guest disk region. (c) “Linked clone” copy-on-write format, wherein blocks 1, 2,
4, and 5 reside on a read-only parent VM disk image file, and blocks 3, 4’, 6, 7, and 8 reside
in a separate read-write file. In this case, block 4’ is a modified version of block 4, which
necessitates a fresh copy of that block into the clone disk.
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metadata like file names, ownership, and permission settings.

Traditional UNIX filesystems are designed with permanent storage (for example, a

rotating-disk hard drive) in mind. Optimizations are made to put data which is likely to be

accessed with close temporal locality in close physical locality, for example, on the same

cylinder on multiple storage platters. Likewise, limiting fragmentation, wherein data for a

particular resource is spread out between many places on the disk, is a major priority. These

concerns become less relevant as higher-level abstractions are layered on top of the storage

infrastructure. Network filesystems like the Andrew File System (AFS) and Network File

System (NFS) store actual file data remotely, where it can be difficult or impossible to make

optimal storage decisions.

More recently, filesystem concepts are being applied in areas that are even further re-

moved from the idea of a permanent mass-storage device. Modern pseudo-filesystems,

which generally do not involve permanent storage, act more as a POSIX-influenced inter-

face to other applications. Linux systems, for example, use proc and sys filesystems to

provide a POSIX interface to kernel and driver internals. Reading the /proc/cpuinfo

will return kernel-provided hardware information, while writing “mem” or “disk” to /sys/

power/state will cause a machine to switch to one of 2 low-power modes (suspend-to-

RAM or hibernate-to-disk, respectively).

Linux’s Filesystem in Userspace (FUSE) interface is one option for implementing both

real filesystems and pseudo-filesystems. With FUSE, read/write calls (and all other filesys-

tem operations) to the Linux Virtual File System (VFS) layer are translated into subroutine

calls to a userspace binary program (as opposed to a kernel-module for servicing filesystem

requests). As illustrated later in Figure 3.2, the VFS is a standard in-kernel interface to re-

ceive and dispatch filesystem requests. The userspace program that receives redirected VFS

calls then implements the logic that actually retrieves or stores information in the filesystem

data and metadata. By virtue of being implemented in userspace, these filesystem modules

have access to a wide range of libraries, programming languages, and scripting language

interpreters, bringing an especially rich set of potential features to a POSIX interface that is

usually limited by kernel facilities.

As a result, a wide selection of FUSE filesystem implementations have become avail-

able, from implementation of filesystems from other OSs (such as the zfs-fuse [15] and

NTFS-3g [45] projects), distributed cluster filesystems (such as GlusterFS [17] and

MooseFS [6]), to more esoteric pseudo-filesystems like BloggerFS [38], which provides

a POSIX filesystem interface to read and write online journal-entries with a standard text
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editor. Isolating FUSE filesystems in userspace means their effects on the rest of the system

are mitigated, meaning highly experimental features can be implemented without risk of

damage to other running systems. FUSE suffers, however, from a performance penalty as a

result of increased content-switching between the userspace filesystem implementation and

the kernel’s VFS layers. This is discussed in more detail in Subsection 3.3.4

2.2 Related Work

2.2.1 Virtualization Hypervisors

One of the best known commercial virtualization products is VMware [51]. VMware’s

family of virtualization software, available for a number of x86-based platforms, histori-

cally used binary translation only where necessary to provide fast VM execution. Later

versions also take advantage of hardware virtualization support.

Xen [4] and KVM [36, 23] are the leading open-source virtualization infrastructures.

Xen provides a small hypervisor OS that performs device emulation, on top of which sepa-

rate VM’s are executed. KVM, by contrast, implements virtualization within a Linux kernel

module. VMs then execute as a traditional Linux process.

Qemu [5] is one piece of software that takes advantage of the Linux KVM infrastructure.

Qemu is historically a full emulator, and still supports emulation of many different hardware

architectures on top of Linux. As a result of this heritage, Qemu has excellent support for

I/O device emulation. Coupled with KVM support, Qemu-KVM [19] is fast, easy to use,

and an excellent platform for development, and was thus used as the platform for Lilliputia

(although Lilliputia has no specific ties to any particular hypervisor).

2.2.2 Virtual Appliances and Virtual Application Appliances

A virtual appliance (VA) is defined by Sapuntzakis et al. as “like a physical appliance but

without the hardware” [39]. Put another way, a VA is a VM designed and configured for a

particular task, much like a physical server can be configured with hardware and software

with a particular use-case in mind. VAs have the usual benefits of VMs, specifically that

they are well isolated, easy to manage and deploy, and are easy to migrate. In order to make

these management and deployment tasks fast, however, it is important that the VM disk

image size of a VA be as small as possible.

The software appliance concept is an intellectual descendant of other focused small

Linux distributions. The Linux Router Project [2] (LRP), for example, took all the software
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required to operate a simple Linux-based firewall and router, and packaged it in a distribu-

tion small enough to fit on a 1.44MB floppy disk. One of the tools that made the LRP’s

ambitious goals possible was Busybox[52], a small single-binary application which (via

a number of symbolic links) provides simple and small implementations of many typical

Linux utilities like chmod, dd, grep, sed, gzip, tar, and many others. While they

save a significant amount of space, Busybox implementations of these utilities often do so

at the sacrifice of features perceived as less important or rarely used.

In our use-cases, the focus on creating a small, targeted VM image, especially from a

full-sized and full-featured physical installation, motivates the development of the virtual

application appliance (VAA) [46, 47] concept. VAA’s are largely distinguished from VAs

by their lifetime. A VAA typically starts up, and immediately performs some task (often

invoked from a startup script like /etc/rc.local), and then shuts down.

The limited scope of a VAA, in particular its focus on automatic execution from

beginning-to-end, suggests an avenue for optimization of the size of the image. Because

the application must function effectively without interacting with a user, any component of

the image that exists exclusively for interaction (e.g., a desktop window manager interface)

is redundant. Filesystem usage data that indicates which files are and are not used would

immediately allow removal of those components, and a reduction in the size of our VM

disk image.

2.2.3 Filesystems as Interfaces to Network Resources

Early network filesystems like the Andrew File System [20] relied on constant network

connectivity to retrieve resources from remote systems. As a result, any interruption in

connectivity resulted in the entire set of remote resources becoming unavailable, and dis-

rupting the work of users or automated systems using those resources. Such interruptions

can be accidental, in the case of a network infrastructure failure, or intentionally planned, as

in scheduled maintenance outages. Either way, the effect on those consuming the network

resources, and producing data to store on the network, is significant.

Coda [41] is a system designed to enable users in a mobile setting, i.e., where network

connectivity is not guaranteed, to have reliable access to remote data. Designed at Carnegie

Mellon University by some of the same developers responsible for AFS, Coda adds ag-

gressive whole-file caching to network filesystems, in the hope that server disconnection

would not prevent applications from using or storing data in the filesystem. Coda calls this

approach hoarding, wherein a selection of files is pessimistically gathered from a network-
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hosted filesystem, and stored on the local client, chiefly to enable the machine to continue

operating during a disconnection from the network. In order to achieve that goal, hoarding

grabs as much content as it predicts could be relevant from remote steerage’s, limited by

local disk storage and network bandwidth. The pessimistic approach is fundamentally dif-

ferent from our goal of a slim appliance, that contains exactly what we know is required,

and nothing more.

The Internet Suspend/Resume project (ISR) capitalizes on Coda’s focus on making net-

work resources available to mobile computers, but uses it to support mobile virtual com-

puters. Since a VM’s entire state (from in-memory data structures to simulated hardware

devices, to permanent mass storage) is limited to clearly understood regions of a host com-

puter’s storage, it is possible to pack up a snapshot of that state, move the entire state to

another physical infrastructure, and then resume it. ISR thus allows a virtual workstation to

move with a user, making the OS, applications, and data within it available, regardless of

where the user is physically located.

2.2.4 Tracing Application Behavior

Orthogonal to the background of virtualization implementation is the topic of tracing appli-

cation behavior. As discussed above, building a computing infrastructure (whether virtual

or physical) which is both efficient and correct requires good data on what resources are

used. In the larger body of tracing application behavior, analyzing resource usage is often

the responsibility of a profiling tool, such as Gprof, Oprofile, or Dtrace.

Gprof [18], perhaps the best known open-source profiling tool, works by adding instru-

mentation code at strategic locations as it is compiled by GNU C Compiler (gcc). Opro-

file [14], by contrast, implements the profiling code into the kernel. The kernel then records

events as executables run on the system, and annotates it with symbol table information

included in executables via gcc’s “-g” option.

Both of these mechanisms suffer from two major problems for our purposes:

1. Neither is designed to record file usage information.

2. Neither approach functions effectively without access to the source code of the pro-

grams for which profiling information is desired.

DTrace [10] is a profiling system originally designed to work with Solaris, which has

since been ported to Linux [9]. Dtrace introduces a C-like scripting language “D”, which

allows a developer to write comparatively complex conditions describing what events they
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want to profile, including many filesystem events. Outside of Solaris, however, support

for DTrace is still early in development. It also requires DTrace-specific kernel modifi-

cation (via a kernel module), which becomes increasingly complicated, given the simple

file-monitoring requirements we have for it.

Scruf [27] is an attempt to move logic into the filesystem. In Scruf, the filesystem can

be populated with a series of trigger scripts, each of which will be executed in response

to filesystem events. As illustrated in Figure 2.3 events filter from the user space through

Linux’s VFS, which passes events to a modified Ext2 filesystem. In the common case, the

modified Ext2 filesystem passes events to a Scruf daemon, which executes relevant scripts

based on the action, before finally servicing the request natively.

One of the simplest filesystem extensions provided with Scruf is Scruf-Trace, which

could provide us with filesystem usage statistics through its logging of all file opens. For

our purposes, trivial modification of the tracing code from Scruf could trace richer use,

differentiating between calls to read, write, readlink, and mknod (as required for

the reasons detailed in Subsection 3.3.4). Scruf, however, relies on modifications to the

in-kernel filesystem implementation of the underlying data source. Because our system

(Lilliputia) is implemented in FUSE, and takes data from another filesystem source, we can

create usage data for any underlying filesystem implementation, and do so regardless of

whether the files are local or remote.

Trigger

Scripts

.on.lseek, .on.release

.on.open, .on.read, .on.write,

application

Unmodified

open(), read(),

write(), lseek(), close()

User Space

Kernel

Daemon

Figure 2.3: Architecture of Scruf

The “ptrace” [32, 33] facility could provide an alternative mechanism for instrumenting

filesystem access. Using ptrace, every system call made by an application can be trapped

and analyzed before execution. A potential problem with this method is that all system calls
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must be trapped, resulting in overhead on all operations, instead of just the required I/O

calls. Additionally, read and write system calls (among others) operate on numeric file

descriptor values instead of filenames. Textual filenames are only used at the time the file

is opened, meaning that a system to track I/O on individual files would need to remember

the file descriptor numbers generated at open time (separately for each process), and then

correlate that integer with the number used in read and write calls. Conversely, under

FUSE the file names are provided automatically as part of normal operation.

Another alternative for instrumentation would be the modification of an existing NFS

server, and running applications within the mounted NFS filesystem. A modified NFS

server could then create a log entry for each I/O operation made by an application. This ap-

proach is, in fact, very close to the approach Lilliputia implements with FUSE. The FUSE-

based implementation, however, proved simple to construct and debug, especially given

our relative experience with the two technologies. Modification of the NFS server would

require significant understanding of NFS server internals, whereas FUSE is inherently mod-

ularized, with a well-documented API.

2.3 Summary

Existing concepts in virtualization hypervisors and filesystems, and implementations sup-

porting them, are well established and understood. In application to scientific computing

problems, these techniques can produce fully-functioning VAs. From that starting point,

the following chapters provide details on the tools we developed to trace the filesystem ac-

cess patterns of these VAs, and produce encapsulated, slimmed clones of them, which we

subsequently evaluate for effectiveness and correctness.
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Chapter 3

Design and Implementation of
Lilliputia

With an understanding of the preceding background and related work in virtualization,

filesystems in a virtual machine (VM) context, VM applications and filesystem instrumenta-

tion, we can investigate the problem of reducing the size of VM disk images. To appreciate

the Lilliputia system, and its process of slimming VMs based on data obtained from our

StatFS tracing system, we first explain and motivate our intended goals for a successful

slimmed image. In particular, output VM images should be as small as possible while

preserving identical behavior of the original machine. We also compare and contrast alter-

nate design decisions (building a VM image package-by-package from the bottom-up) to

our approach (taking a full-sized and running VM image, and then removing unnecessary

files).

Next we present an obvious and simple approach we call fresh disk, which reduces VM

size by copying files from a source image to a target.

With the fresh disk approach as a starting point, we refine the technique to include

slimming, which takes advantage of actual filesystem usage information, based on trace

data obtained from StatFS. The architecture of the entire system, which we call Lilliputia,

is discussed in detail, before we proceed to evaluate it in Chapter 4.

3.1 Goals and Design Decisions

3.1.1 Minimalism in VM Disk Images

For our purposes, the metric of a VM’s value is the size of its VM disk image, both before

and after compression. The size is important, because it can often limit the feasibility of

moving the VM (i.e., via the network, a burned DVD, or USB flash device) as well as the
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Transfer Method Transfer Time
Disk-to-disk Copy 16.9 seconds

Gigabit Ethernet 9.1 seconds
Copy to USB flash 32 minutes

Copy from USB flash 75.5 seconds
Wide-Area-Network 14.6 minutes

Table 3.1: Time to move 1GB of data (a moderate size for a VM) via different methods. In
all cases, the average of 5 runs is listed. Disk-to-disk copy was measured from a Seagate
3Gb/s ST3250620NS to a Seagate 3Gb/s ST3750330AS. Gigabit Ethernet was measured
between two 2 Gigabit Ethernet machines, with a warm cache, without writing to disk.
Copying to and from a USB flash drive was measured with a generic 2GB USB flash drive.
Wide-area network (WAN) was measured from a web host in Franklin, Ohio, US, to a web
client in Edmonton, Alberta, Canada.

time required to move it (See Table 3.1).

In particular, we measure the size of a golden master copy of a VM, which is copied

to instantiate an executable VM. Once any VM is deployed, running it will cause the cre-

ation of more files and resources, which will increase the size of the VM disk image. In

many cases, especially in the context of virtual application appliances (VAAs), growth dur-

ing execution is not an issue, as the VM will be booted, run, shutdown, and reset to its

original slimmed condition, preserving no state other than what is expressly moved out of

the machine before shut-down. For example, the standard operation of both the Amazon

Elastic Compute Cloud [1] and Eucalyptus [29] cloud-computing infrastructures creates a

new copy of a VM, runs it, and then discards the copy entirely.

3.1.2 Completeness in VM Behavior

In addition to VM disk size, the other priority for our slimmed images is completeness, that

is, its ability to perform all tasks required of it, and produce output as expected. A slimmed

VM is not useful if it cannot perform the desired tasks. A slimmed VM, however, may not

need to duplicate every function of the original. For example, a full-size VM may have

all the utilities and source code required to recompile some or all of its components. A

slimmed version of the same VM might not be expected to do so.

In order to produce a slimmed image that has only the required components, a subset of

features and behavior must be defined. The selected set of features defines what activities

must take place in a data-gathering trace run. Defining the input of a VM as the trace run

activities, we define completeness as follows:

For a VM A, let S(A) be the slimmed VM produced by our process. Let I be the set
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of all inputs we require our VMs to handle. If S(A) produces the same output as A for

all inputs i ∈ I , S(A) is complete. Put simply, a slimmed VM should produce equivalent

behavior for all relevant inputs as its source VM.

Other criteria which are usually a concern at VM execution time are memory usage and

performance. Creating VMs which perform better with respect to either of these metrics

(while important) is outside the goals of Lilliputia. In fact, if our slimmed VMs were to

execute faster or with less memory usage than an unslimmed one, it could be evidence that

we changed something unintentionally (for example, causing software to skip an impor-

tant execution stage altogether). Likewise, our implementation should not introduce any

negative effect on either performance or memory usage.

3.1.3 Top-down vs Bottom-up Construction

A key design decision that guided the implementation of Lilliputia was the “direction” of

VM construction. Two alternatives were available, as illustrated in Figure 3.1:

1. Bottom-up: First, a minimal operating system (OS) could be installed. Second, each

required component, and no more, is added one-at-a-time as needed, until the system

is complete.

2. Top-down: First, a full-size OS and application suite is installed. Second, all unnec-

essary components are removed, leaving only the required components.

The bottom-up approach is typified by small OS installations, conceptually referred to

as JeOS, or Just Enough Operating System [16]. JeOS variants of Ubuntu [8, 43], OpenSo-

laris [21], and others are available. Ubuntu JeOS is an Ubuntu Linux derivative designed

specifically for the creation of virtual appliances (VAs), consisting of the minimum set of

software packages (defined below) required to boot the system, perform basic maintenance

tasks, and to install additional software. From a minimal base, packages of software can

be added one at a time as required. For example, starting from the basic system, an ad-

ministrator might add print queue management packages and email packages (and anything

else they depend on), in order to create a print server capable of printing jobs, and emailing

users status updates. It should be noted that Ubuntu JeOS was introduced alongside Ubuntu

7.10, and only existed independently until Ubuntu 8.10, where the concept of a “minimal

system” install was integrated directly into the standard “server edition” of Ubuntu’s instal-

lation CD-ROM images.
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Minimal OS

Minimal OS

A1) B1) C1)

A2) B2) C2)

Minimal OS

Minimal OS

Minimal OS

Bottom-Up Construction

Top-Down Construction

Figure 3.1: Illustration of “top-down” vs “bottom-up” approaches. “Bottom-up”, starts with
step A1 with the creation of a minimal OS installation. In B1, additional components (in
grey) are added one-by-one, producing the final system is step C1. “Top-down” starts with
step A2, with a full-sized installation of a working systems. In B2, all components deemed
unnecessary (in grey) are removed, again producing the final system in step C2. Note that
in practice, C1 and C2 may differ.
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In the context of software installation, a package refers to a set of interrelated executa-

bles, installation scripts, and other files bundled together as a distributable unit. Prior to

package management systems like the Red Hat Package Manager (rpm) and Debian’s Ad-

vanced Package Tool (apt-get, also used in Ubuntu), the “distributable unit” of most

open-source software (even before the term open source was coined) was usually a col-

lection of source code. However, as the dependencies among common software systems

became more complicated, an automatic package manager became more important. For ex-

ample, removing or updating one library package might break executable files from several

other packages. Notably, many systems still have some software installed without a pack-

age manager, typically because a packaged version is unavailable, but most systems use

package managers for most of the software. Nonetheless, one great contribution of package

managers is automation, and our encapsulation and slimming system in Lilliputia attempts

to automate another tedious task.

A limitation in package-manager-based software installation is that, while installation

of software becomes more automated, the list of package dependencies are at least par-

tially documented by a human package maintainer. Hand-generated dependency meta-data

presents the following challenges:

1. Human error: Like any manually generated meta-data, package dependencies may

contain errors. Packages may list dependencies that are not actually required, which

can cause the system to include extra files that bloat the size of a disk image. Worse,

dependency information may be missing. As a result, an application that is known to

work on one installation may fail when installed from scratch in a new location. A

missing dependency can cause a failure which is especially difficult to diagnose.

2. Specific use-cases: A dependency stating that package X depends on package Y

may not be strict, but instead based on general usage. For example, the “network-

manager” package in Ubuntu depends on the “ppp” package. Network Manager is

responsible for controlling network connections, and PPP is required for dial-up In-

ternet connections. However, if the only use-case an administrator is concerned with

is high-speed Ethernet or wireless Internet connection, Network Manager can func-

tion perfectly without the PPP package being installed at all. In this case (while the

dependency may make sense in general), it may cause unnecessary bloat to the size

of a disk image in a specific case.
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3. Package atomicity: Package managers typically treat a package as an indivisible,

atomic unit, which is either completely installed, or completely uninstalled. For ex-

ample, in Ubuntu’s sed package (Version 4.2.1-6), the actual sed executable is 72

kilobytes (as reported by du -s). The rest of the package (which consists entirely

of documentation) is 176 kilobytes. In use-cases where the documentation is not re-

quired (for example, automatically executing VAA environments), 71% of the pack-

age is entirely overhead.

In addition to package-based installation, these challenges often apply equally to man-

ual bottom-up installation of applications (i.e., without relying on a package manager). Re-

dundant software and libraries may be installed, or critical software may be missed during

re-installation.

In the sense that bottom-up VM construction requires detailed knowledge of software

behavior, and possibly even internal program logic, it is analogous to white-box develop-

ment. Construction of a small VM disk image without detailed internal knowledge would

thus be analogous to a black-box development model, which we call top-down.

The top-down approach, unlike bottom-up, takes a fully installed, configured, and work-

ing, but potentially unmanageably large installation, and removes elements that are unnec-

essary just before distribution. For example, a full workstation installation might include

everything required to function as a print server, as well as a full suite of other user-oriented

applications. Removing all the files related to web browsing, development, and office pro-

ductivity software would produce a slimmer system, potentially useful as a print server

alone. The top-down approach has the advantage of allowing a full-size image to be con-

verted into a slimmed image, instead of creating the slimmed image from scratch.

An analogous example of the bottom-up vs top-down approach is debugging symbols

in compiled executables. At compile time, a user executing gcc can optionally choose

to include descriptive symbol tables inside the executable file with the -g flag. Including

debugging symbols allows tools like the GNU Debugger (gdb), as well as profiling tools

discussed earlier, to relate the execution of the binary to the original source code, mak-

ing it easier to diagnose problems. When it comes time to distribute the binary, it may

be reconstructed by gcc from scratch, without including these symbols. Omitting the de-

bugging symbols is analogous to the bottom-up approach. Alternatively, the binaries can

always be constructed including the debugging symbols. In this case, when the size of the

executable is an issue, a tool like Unix’s strip command can remove the symbols (and

optionally other data) after the fact. Removing the symbols at this late stage is analogous
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to the top-down approach.

Another example of the top-down approach is the Internet Suspend/Resume [40] project,

by way of hoarding [26] in the Coda [42] filesystem. Using Coda, a selection of files is pes-

simistically gathered from a network-hosted full-size filesystem, and stored on the local

client, chiefly to enable the machine to continue operating during a disconnection from the

network. In order to achieve that goal, hoarding grabs as much content as it predicts could

be relevant from full remote storage, limited by local disk storage and network bandwidth.

The pessimistic approach of copying everything possible however, is fundamentally

different from our goal of a slim appliance which contains just what we know is required. It

should be noted that the slimming process of Lilliputia, the hoarding solutions in Coda and

Internet Suspend/Resume, as well as package-manager systems, all suffer from the same

main problem: poor quality or insufficient data and meta-data limits the effectiveness of the

solution. Specifically for slimming, incorrect include and exclude lists will either cause the

machine to be too large, or incomplete. Our goal then is to easily obtain more complete,

high-quality data for a particular user-specific situation. With the limited domain afforded

by the context of a VA, we found that we could obtain sufficient data to successfully produce

a VA which has everything it needed to function, and still maintain a much smaller disk

image size.

3.2 Use-Cases

Although the applications of VM technologies has grown, our work on encapsulation and

slimming are mainly targeting the following use-case scenarios:

1. Physical to Virtual Conversions (P2V). Many datacentres are converting physical

servers into VMs for server consolidation, to support legacy systems when the orig-

inal hardware needs to be replaced or if the original server build procedure cannot

be recreated (e.g., when the procedure has been forgotten or the original employee

is no longer available), and to take advantage of cloud computing options. Once a

P2V VM is created, systems administrators can also easy replicate the VM instance

to maintain server availability or to create mirrors of the server.

For a stand-alone or self-contained server with only local disks, the P2V process is

relatively straightforward: copy the contents of physical disks onto VM disk image

in the VM image, then tweak elements like the boot process, device drivers, network

configuration, and user accounts.
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However, many servers (in our experience) have many network filesystem mounts

(e.g., NFS, SMB/CIFS, Andrew File System; we colloquially use NFS as the rep-

resentative network filesystem). If files on the NFS volumes are used, they must be

encapsulated in the VM for completeness. Allowing a VM to NFS-mount a volume is

possible (and we have taken this option in some cases), but brings up a large number

of security issues and complicates VM migration, especially across administrative

domains as in some cloud computing scenarios. In practice, many NFS filesystems

may be present, each with many large files and databases. Therefore, including every

file which could possibly be used on the entire network would create significantly

bloated VM images.

2. Development VM vs. Production VM. VMs are useful to encapsulate development

environments: special OS versions (either historical or experimental) can be used

as the guest OS without affecting the production or host OSes. Similarly, special

versions of software libraries or components can be inside the VM without affecting

other users or other services. As a development environment, full suites of compilers,

tools, libraries, documentation, test harnesses, and header files would be required.

Such full-sized environments quickly grow into multiple gigabytes of files, and for

production use, the development environment is mostly unnecessary baggage.

Option 1 would be to reinstall the final software into a production VM (possibly via a

version control system) for release. This option is similar to how software is currently

deployed in the non-VM world. Often, however, the testing of the software is also

done in the development VM. Therefore option 2, slimming the development VM to

create the production VM instead of maintaining separate images, has many practical

advantages. For example, unforeseen differences (e.g., version of software, paths to

software) between VMs can be eliminated since there is only one source VM (i.e.,

the development VM). Also, if Option 2 is automated (as in the case with our tools),

slimming a development VM into production VM is just another step in the build

process, after testing.

For the first weeks of the Trellis Network-Attached-Storage (NAS) Bridge Appliance

(TNBA) project in 2006, the developers used Option 1. Predictably, they wasted

many hours tracking down why the system worked when testing, but not when they

created the production VM. For the later versions of the project, the developers used

an early version of the top-down slimming approach. Our contribution is an updated
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slimming solution to Option 2.

Of course, the basic idea of tracing file accesses to determine what software is needed

(or not) is obvious, and the idea of removing data that is only needed during the development

phase goes back at least as far as the aforementioned strip command. Our contribution is

in finding a practical solution to the completeness (of encapsulation) and minimalism (via

slimming) problems and quantifying the benefits with actual VAs. As the implementation

details in Section 3.3.4 show, there are also a variety of non-trivial special cases to catch.

3.3 Encapsulation and Slimming

As discussed, the size of a VM disk image is the metric that we are interested in, as it

is one of the most important factors in the portability of a VM. The VM disk images(s)

store the filesystems that constitute the VM including the guest OS, libraries, applications

and data. With default installations of modern OSs ranging from hundreds of megabytes to

gigabytes in size, keeping VM disk images within a portable range (e.g., a size conducive to

transport via network or portable media) can be difficult and is an ongoing challenge as data

and applications are added to the VM over its lifetime. Large VM disk images are slower

to copy and provision, as shown in Table 3.1. Importantly, even as device capacity and

bandwidth increase in future, disk images will continue to increase in size with increasing

demand for features.

Before discussing more complicated techniques of slimming, we will discuss existing

methods for reducing VM image size, some of which we will quantify later in Chapter 4.

3.3.1 Existing techniques: Fresh disk and Timestamps

Growable VM disk images formats, like those of VMware and Qemu, accumulate deallo-

cated and fragmented blocks as files are modified and deleted. Therefore, the size of the

VM disk images on the host increase over time. VM disk image implementations may

provide tools for removing these unused blocks, however, such features are not universal.

Some VM disk image implementations do not support reclaiming space at all (e.g., Qemu’s

“qcow2” format).

A more universal technique we tested, which we call fresh disk, was to create a new

VM disk image and then clone the filesystem by copying the existing files to the new VM

disk image. The idea behind the approach is that creating a fresh copy would not carry with

it blocks from deleted files and other overhead that filesystems acquire over time.
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The fresh disk approach is not a particularly new or innovative idea. Cloning a disk this

way is a common way of eliminating file fragmentation. However, we have found it to be

simple and effective in all disk formats, especially when the VM has been in use for some

time.

An example cloning script for creating a fresh disk is shown in Listing 3.1. Tools like

dump/restore and tar can be used, but the standard cp program also works. In either case,

a few issues must be handled. For example, when duplicating a Linux filesystem, there

are two important exclusions: pseudo-filesystems like /proc, /dev, /sys and network-

mounted filesystems (as they can be mounted into the cloned VM). Temporary or scratch

directories that store transient data may also be excluded depending on the VM’s intended

use. To exclude these particular directories, the tar program supports options for both ex-

cluding files (-X) and not descending into mounted directories (--one-file-system).

1 #!/bin/bash
2 # Interactively create a single partition (sdb1) spanning the entire disk.
3 cfdisk /dev/sdb
4
5 # Create filesystem on /dev/sdb1
6 mkfs.ext3 /dev/sdb1
7
8 # Mount filesystem for clone (may need to create mount-point)
9 mount /dev/sdb1 /mnt/clone

10 # directories that should not be copied are written to /tmp/skip
11 echo ’/dev/*
12 /sys/*
13 /proc/*’ > /tmp/skip
14
15 # clone the root to /mnt/clone excluding certain files
16 tar --one-file-system -cpf - -C / /* -X /tmp/skip \
17 | tar -xpf - -C /mnt/clone
18
19 # install grub on clone by running chroot
20 mount -o bind /dev /mnt/clone/dev
21 mount -o bind /proc /mnt/clone/proc
22 mount -o bind /sys /mnt/clone/sys
23
24 chroot /mnt/clone grub-install

Listing 3.1: Interactive Linux script “fresh-disk.sh” to clone /dev/sda to /dev/sdb for
fresh disk

In more detail, our fresh-disk.sh script (Listing 3.1) is a tool to perform the fresh-

disk cloning operation. fresh-disk.sh (where lines starting with “#” are comments)

expects a new, unallocated disk has been added to the VM that is assigned the device file

/dev/sdb. On line 3, the cfdisk command is an interactive program to partition the new

disk that will be the destination of the clone image of the existing disk (/dev/sda). Within

cfdisk the user must create a partition and set its bootable flag. In Linux, partitions are

named with an appended number beginning with 1, so the created partition on the clone
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disk is named /dev/sdb1. Next on line 6, a filesystem is formatted on the partition of

type Ext3, and mounted to the mount point /mnt/clone on line 9. The echo command

on lines 11 through 13 creates a list of files not to be cloned (i.e., any files under /dev/,

/sys/ or /proc). Line 16 (using the tar utility) creates an archive from the root (/)

partition, excluding the files in our list (the -X parameter), and passes it to a second tar

command on line 17, which extracts the archive files into the /mnt/clone filesystem.

Once all necessary files are copied to the new VM disk image, the clone disk must have

the grub bootloader installed. On line 24, grub is installed into the new VM disk im-

age’s Master Boot Record (MBR) by calling grub-install within a chroot (change

root), using the new disk as the root partition. Special filesystems are remounted inside the

chroot environment on lines 20 through 22 to allow grub to function correctly.

When executed, fresh-disk.sh creates a new filesystem on a new VM disk im-

age, with precisely the same files as the original, but with the accumulated overhead of

a growable disk removed. Specifically, the size of the VM disk image on the host is ap-

proximately the same as the sum of all data-files contained inside the filesystem seen in the

virtual guest. For example, consider Tables 4.1 and 4.2. In both tables, the “Host Image”

size is notably larger than the “Guest Filesystem” as indicated in the “/” row. After run-

ning “fresh-disk.sh”, the “Post-fresh disk” row indicates that the “Host Image” and Guest

Filesystem” sizes are much closer. The same effect also applies as a part of Lilliputia’s

slimming approach (described later).

3.3.2 Timestamp Mark-and-sweep

For the original slimmed version of the TNBA in 2006, Michael Closson used a timestamp-

based approach to get information on file usage. The access time (atime) of all files on

the system was set to an arbitrarily old “flag” value, as a “mark” phase. In a following

“sweep phase”, software is run. Afterward, the filesystem was searched for all files with an

atime listed that was different from the “flag”. In our experience however, modifying and

then querying these timestamps proved to be too intrusive. For example, in the NFS case,

modifying atime values across a network may also have implications for other systems

sharing the same files, and administrative controls may actually make it impossible. Chang-

ing the access time of a file has implications for filesystem backups (which use atime) and

depends on filesystem support, which can be especially difficult in shared network filesys-

tems. Consequently, we designed Lilliputia’s trace-based approach to be less intrusive than

the timestamp-based approach.
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3.3.3 Compression

Once the VM disk images are as small as possible, compression using established tools like

gzip is a natural next step. Table 1.1 shows the effect of compression both before and after

Lilliputia was used to slim VM disk images.

3.3.4 StatFS: Filesystem Instrumentation with FUSE

In order to create slimmed VMs that exhibit the same behavior and capabilities as input

VMs, we need trace information about what filesystem resources are used. If we include

all resources which are used, and ignore everything else, the slimmed VM will exhibit

completeness, as discussed in Subsection 3.1.2.

To gather trace logs of file usage within a VM, we developed StatFS to instrument a

running Linux system. StatFS is a virtual filesystem implemented via the Linux facility

Filesystem in Userspace (FUSE) [44], as previously introduced in Subsection 2.1.5. FUSE

allows the binding of a mount-point, for example /mnt/statfs, to a userspace process,

passing the normal Virtual Filesystem (VFS) calls into userspace, where it is significantly

easier to implement new features without in-depth knowledge of kernel internals.

Figure 3.2 illustrates the architecture of FUSE-based systems. A typical FUSE filesys-

tem application uses the libfuse2 library for utility functions that interact with the FUSE

kernel module via the /dev/fuse device. The Linux VFS then provides the connection

to userspace applications to access the FUSE filesystem. A FUSE filesystem appears and

behaves transparently just like a traditional filesystem, making it ideal for tracing without

modifying the software we are trying to observe. Implementing filesystems in user space

instead of in-kernel also makes changing filesystem logic comparatively easy to implement,

develop, and test.

StatFS is based on a simple loopback filesystem included in the examples for the Perl

FUSE bindings [34]. The original Perl implementation simply simulates normal VFS calls

on virtual files, by performing precisely the same operation on the real files at a different

location. In addition to performing the requested operation, StatFS logs the details of read,

write, readlink, and mknod calls. A simple approach might be to simply catch the

open calls to determine what resources were used. However (for the reasons detailed

later), differentiating between read and write calls enables us to create a slimmer image.

Additionally, readlink instrumentation and mknod modifications are also required, as

detailed later.

The loopback filesystem, with modifications to read, write, readlink, and
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Figure 3.2: Architecture diagram illustrating the interaction between applications, the ker-
nel, the FUSE kernel module, and a FUSE-implementing application (in our case, StatFS).
Solid arrows indicate the request from a running application to the FUSE executable, and
dashed arrows indicate the response from the FUSE executable to the running program.

Figure 3.3: Architecture diagram illustrating the implementation of StatFS. Solid arrows
indicate the request from a running application through StatFS to the real filesystem, and
dashed arrows indicate the response from the real filesystem, through StatFS to the running
program.
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mknod, (as well as other minor modifications) became StatFS, as illustrated in Figure 3.3.

For example, consider an application reading a file at /cs23d/gafolder/2d3d.

pdb. The application will contact the kernel’s VFS read function (via glibc), which

calls a corresponding function in the Linux FUSE module. The FUSE module calls a

userspace function (for example, our statfs_read function) in an executable, typically

via the libfuse2 library. Our statfs_read then performs the identical operation

on the actual filesystem (again, via glibc) and the kernel’s VFS. The result of the call

on the actual file is returned in reverse from the VFS, through glibc, statfs_read,

libfuse2, the Linux FUSE module, VFS, and finally to the calling application. The

only StatFS-specific modification (in this example) is that the statfs_read records the

operation to a log file on disk (if the operation was successful).

In detail, the most significant modifications to the loopback filesystem, required to

gather desired traces are as follows:

1. read call: Instrumentation of the read calls is the most obvious and common situ-

ation for most VMs. If the application ever reads a file, that file must be represented

later in the slimmed/cloned system if the application is to run equivalently. The re-

quested resource is recorded in the STATFSLOG file, if and only if the requested

resource was successfully opened. Instrumentation of the read call is show in List-

ing 3.2.

1 sub statfs_read {
2 my ($file,$bufsize,$off) = @_;
3 # Return an error if the application is trying to read from where we’re
4 # mounted (global $mountpoint) ,as this may cause a hall-of-mirrors
5 # effect, in some cases even resulting in an infinite loop.
6 return -ENOENT() if $file =˜ /ˆ$mountpoint/;
7
8 return -ENOENT() unless -e ($file = fixup($file));
9 my ($handle) = new IO::File;

10 my ($rv) = -ENOSYS();
11 my ($fsize) = -s $file;
12 return -ENOSYS() unless open($handle,$file);
13 if(seek($handle,$off,SEEK_SET)) {
14 read($handle,$rv,$bufsize);
15 }
16
17 # Log that a file read occured.
18 print STATFSLOG ’read ’ . length($rv) . " bytes from $file\n";
19 return $rv;
20 }

Listing 3.2: “statfs read” FUSE call code

2. write call: The need to instrument write calls is slightly more subtle. If the

application writes to a file, but never actually reads from it, it is not necessary to
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include the file for completeness. It is, however, important to make sure that the

directory the file exists in is recreated, so that the application does not fail if it tries to

create that file. It may also be necessary to create an empty file, since the existence

or non-existence of the file is an observable difference in a slimmed system. Instead

of copying in a complete file that is never read, we could simply create an empty file

in its place. In our experiments so far, we have not found a case where recreating

empty files was necessary. In either event, the data gathered by StatFS is sufficient

to implement the creation of empty files as required. As with the read call, the

requested resource is recorded in the STATFSLOG file, if and only if the requested

resource was successfully written. Instrumentation of the write call is show in

Listing 3.3.

For example, if the output phase of an application creates a file called

result14523.pdb in the directory /home/cs23d/output_files/, we do

not need to recreate result14523.pdb in order to maintain completeness in the

behavior of the slimmed VM. However, we do need to recreate the /home/cs23d/

output_files/, directory, or the slimmed VM will produce an error when it at-

tempts to write to that file.

1 sub statfs_write {
2 my ($file,$buf,$off) = @_;
3 # Return an error if the application is trying to read from where we’re
4 # mounted (global $mountpoint) ,as this may cause a hall-of-mirrors
5 # effect, in some cases even resulting in an infinite loop.
6 return -ENOENT() if $file =˜ /ˆ$mountpoint/;
7 my ($rv);
8 return -ENOENT() unless -e ($file = fixup($file));
9 my ($fsize) = -s $file;

10 return -ENOSYS() unless open(FILE,’+<’,$file);
11 if($rv = seek(FILE,$off,SEEK_SET)) {
12 $rv = print(FILE $buf);
13 }
14 $rv = -ENOSYS() unless $rv;
15 close(FILE);
16
17 # Log that a file write occured.
18 print STATFSLOG ’wrote ’ . length($buf) . " bytes to $file\n";
19 return length($buf);
20 }

Listing 3.3: “statfs write” FUSE call code

3. readlink call: If an application should access a resource via a symbolic link,

instead of the file directly, StatFS’s output will reflect the I/O operations on the actual

files. However, without catching all means by which the application accesses those

resources, including symbolic links, the application would not be able to access those
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resources without modification. Therefore, we record the usage of a symbolic link as

well. Instrumentation of the readlink call is show in Listing 3.4.

For example, if an application uses the jvm Java Virtual Machine, it may invoke the

executable /usr/bin/java. However, /usr/bin/java (under Debian/Ubuntu

systems at least), is a symbolic link to /etc/alternatives/java. The De-

bian/Ubuntu alternatives system [22] allows several packages to be installed which

provide the same executable. As a result, /etc/alternatives/java can point

to any implementation of the Java Virtual Machine, for example, /usr/lib/jvm/

java-6-openjdk/jre/bin/java from the OpenJDK [31] project. While the

previously discussed instrumentation of the read call will tell our slimming system

that it needs to copy /usr/lib/jvm/java-6-openjdk/jre/bin/java, it

will not tell us that we need to copy /etc/alternatives/java or /usr/bin/

java. Therefore, instrumentation of the readlink call allows us to know which

symbolic links to include.

1 sub statfs_readlink {
2 my $ln = fixup(shift);
3 # Return an error if the application is trying to read from where we’re
4 # mounted (global $mountpoint) ,as this may cause a hall-of-mirrors
5 # effect, in some cases even resulting in an infinite loop.
6 return -ENOENT() if $ln =˜ /ˆ$mountpoint/;
7 print STATFSLOG "readlink: $ln\n";
8 return readlink($ln);
9 }

Listing 3.4: “statfs readlink” FUSE call code

4. mknod call: No instrumentation of the mknod call is required, however, we did

need to modify the call’s behavior. Normally, when an application creates a file, the

file’s ownership is determined by the user identity of the process that initiated the

file creation. With a FUSE filesystem, however, the process that actually creates the

file is the userspace FUSE filesystem, and the ownership of the file is accordingly

determined by the user identity running the FUSE system. Therefore, while no in-

strumentation of the mknod call is required, it is critical that the file’s ownership be

changed according to the user identity of the process that initiated the VFS call, so as

to ensure that the file is correctly available later on. Modification of the mknod call

is show in Listing 3.5.

For example, if an application is run by the user “cs23d” under StatFS, and the ap-

plication creates a file called /tmp/intermediate14523.pdb, it may need to
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read the file again later to create output file /home/cs23d/output_files/

result14523.pdb. However, the file may be created with permissions settings

configured such that only the owner of the file may read it. Because the file is cre-

ated by StatFS, and StatFS is typically run under the administrator or “root” account,

/tmp/intermediate14523.pdb will be owned by “root”, and thus, be unread-

able to the user who actually requested that the file be created. Therefore, we change

the ownership of the file to “cs23d” immediately after creating the file, and before

returning the “successful” result to the application. The same modification is also

applied to the “group” permissions on the file.

1 sub statfs_mknod {
2 return -ENOSYS() if ! ($can_syscall;
3 my ($file, $modes, $dev) = @_;
4 $file = fixup($file);
5 # Return an error if the application is trying to read from where we’re
6 # mounted (global $mountpoint) ,as this may cause a hall-of-mirrors
7 # effect, in some cases even resulting in an infinite loop.
8 return -ENOENT() if $file =˜ /ˆ$mountpoint/;
9 $! = 0;

10
11 syscall(&SYS_mknod,$file,$modes,$dev);
12 return $! if $!;
13
14 # Workaround: Because new files are created by the user running this
15 # perl script, other users will see their files owned by someone else.
16 # Whenever we create a file therefore, we chown it to the user that
17 # initiated the FUSE system call.
18 # This approach comes from loggedfs: http://loggedfs.sourceforge.net/
19
20 syscall(
21 &SYS_lchown,
22 $file,
23 fuse_get_context()->{"uid"},
24 fuse_get_context()->{"gid"},
25 $file
26 );
27 return $!;
28 }

Listing 3.5: “statfs mknod” FUSE call code

Finally (and while not currently used by Lilliputia) “open” calls are also instrumented

for potential future use.

3.3.5 Tracing Environment

With an implemented trace-gathering filesystem available, it is now possible to actually

execute an application within that framework to actually produce useful knowledge about

the system. For simple cases, it is possible to “mount” the instrumented filesystem, and

then execute the application within it. Two major obstacles present themselves:
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1. The application may access files outside the mount-point in the course of its execution

2. Files accessed by the OS before the application is executed will not be noticed.

To gather the most complete picture possible of what resources are used by an appli-

cation, and the OS that supports it, the entire system (as much as possible) should be run

within the trace-gathering framework. We run virtually all system software in our tracing

environment via a Linux chroot call, wherein the “root” of the observable filesystem

is changed for the initial process of the OS (typically /sbin/init), and by extension,

all child processes. It is possible (via a series of specialized calls [7]) to “escape” from a

chroot environment, which can limit chroot’s effectiveness as a security mechanism.

In our case however, we are not using it for security. In the unlikely event that someone

wrote into a scientific application the obscure steps required to escape, the only side effect

would be accessing resources without recording trace logs.

By directing all filesystem requests inside the chroot to our StatFS program, we cap-

ture as much of the hosted application’s usage patterns as possible. We force almost all

software to execute within our chroot environment by passing to the Linux kernel at boot

time an alternate init= option, pointing at a short script, start.sh. The start.sh

script, shown in Listing 3.6, performs a small number of initialization tasks (see below),

mounts our tracing filesystem in a new location, performs a few more tasks for compati-

bility purposes (see below), before executing the system’s normal init process within a

chroot into the newly mounted system. The exec function in the shell (which is anal-

ogous to the POSIX exec function) replaces the current process (which, because it is by

definition the first process, has a PID or Process ID of 1), with the target process, which

obtains the same PID. Making the system init process and its children run in our chroot

environment limits the amount of information that the normal OS init process has which

would indicate that it is running within anything but a normal filesystem.

1 #!/bin/sh
2
3 STATFS=/slimming/statfs.pl
4 STATFSMNT=/tmp/statfs/mnt
5 FALLBACK=/bin/bash
6 PATH=/sbin:/usr/sbin:/usr/local/sbin:/bin:/usr/bin:/usr/local/bin
7 STATFSPID=""
8
9 # list of directories to remount under statfs

10 SPECIALDIRS=’/dev /proc /sys /tmp’;
11
12 # In the event of something catastrophic, start a shell
13 fallback() {
14 echo $1
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15 echo "Starting fallback shell:"
16 exec $FALLBACK
17 }
18
19 if [ $$ -ne "1" ]; then
20 echo ’This script is intended to run as an init process only (PID=1)’
21 echo ’Exiting...’
22 exit
23 fi
24
25 # Make sure the root filesystem is read-write, and set up FUSE
26 mount -o remount,rw / || fallback "Failed to remount / as read-write"
27 modprobe fuse || fallback "Failed to load FUSE module"
28 if [ ! -c /dev/fuse ]; then
29 mknod /dev/fuse c 10 229 || fallback "Failed to create /dev/fuse"
30 fi
31
32 # Start gathering statistics from / by mounting on $STATFSMNT, and recording

the PID of the statistic tracker fuse application
33 mkdir -p $STATFSMNT || fallback "Failed to create directory $STATFSMNT for

statfs mountpoint"
34 $STATFS / $STATFSMNT & STATFSPID=$!
35 [ -n "$STATFSPID" ] || fallback "Failed to start \"$STATFS\""
36
37 # Because statfs runs in the background, we’ll wait to be sure
38 # that it’s up and running before we proceed.
39 while [ ! -e $STATFSMNT/statfs/mpt ]; do
40 echo "Waiting for mountpoint to be up by checking for existence of /statfs/

mpt"
41 ps $STATFSPID &> /dev/null || fallback "Statfs process died prematurely."
42 sleep 0.5;
43 done
44
45 # Read all the modules in use at this point to catch things statfs may miss
46 for MOD in $(lsmod | awk ’{print $1}’ | grep -v ’ˆModule$’); do
47 cat $STATFSMNT$(modinfo -n $MOD) > /dev/null
48 done
49
50 # Remount special directories to ensure that they’re accessed directly
51 # by future applications, and so we don’t see their usage in our log
52 # output anyways.
53 for DIR in $SPECIALDIRS; do
54 mount --rbind $DIR $STATFSMNT$DIR || fallback "Failed to remount $DIR inside

statfs"
55 done
56
57 # Pass off execution to the system’s normal init process
58 exec /usr/sbin/chroot $STATFSMNT /sbin/init || fallback "Failed to chroot and/

or run init"

Listing 3.6: start.sh

The details of allowing a full and ordinary OS within such a chroot environment pre-

sented a few minor difficulties. One is that the FUSE infrastructure must be prepared, by

loading the FUSE device driver into the Linux kernel, and (in systems where it is not done

automatically), creating the /dev/fuse character device through which user-space FUSE

filesystems communicate with the kernel’s VFS. Another simple problem is that files may

be touched even before the normal init process starts. Most modern Linux systems utilize

a small “initrd” or “initial-ram-disk” filesystem, which performs the bare-minimum tasks

of getting access to the normal root filesystem. These tasks can include obtaining access to
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a network filesystem, or simply mounting a local disk. These actions may result in the load-

ing of a small set of drivers into the kernel. To be sure that drivers are seen as “in use” by

the trace system, every module loaded in the kernel at this stage is manually read out of the

trace-gathering mount-point. Lastly, applications running within the chroot may expect

to access certain “special” filesystems, notably /dev, /proc and /sys. In modern Linux

distributions, these do not represent actual files on any physical disk or network resource.

Instead, they are either virtual filesystems which expose an interface for communication

with the kernel (for example, getting system information, or setting device driver parame-

ters), or (in the case of /dev) in-memory RAM filesystems, managed by other userspace

software like udev [25]. These special filesystems should not be monitored for usage,

and instead are exposed directly within the chroot filesystem hierarchy, via calls to the

Linux mount option --rbind. Mounting with --rbind attaches views of these special

filesystems to points within the trace gathering system.

The key tasks of the start-up script can be summarized as follows:

1. Load kernel modules

2. Create /dev/fuse (if not automatically created)

3. Mount the trace filesystem at a known location

4. Manually read loaded module files from inside the trace filesystem

5. Re-mount (bind) special filesystems to their corresponding locations within the trace

filesystem

6. Pass off execution to the OS’s normal init process, within a chroot call to the trace

filesystem’s mount-point

With the monitoring system in place, the system can continue its normal boot process.

With the OS loaded and ready, in whatever configuration is implemented, the applications

can be started, in whatever means are desired. Interactive applications may be started by a

human operator. In VAAs, it may mean that applications are automatically executed at the

end of a system’s normal boot process.

Alternatively (if available), a comprehensive test-suite may be executed. The key to

getting a complete trace of application usage is that the system should be stressed in such

a way that every resource the administrator expects to be used is touched. In particular,

every function of a program should be executed. Given a good test-suite or a simple enough
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program, fully stressing the system can be straightforward. In some cases, however, com-

pletely stressing every resource of a system may require a significant or even unreasonable

amount of effort. In such cases, it may be important to do one of the following:

1. Ensure programs will continue to function acceptably if they are unable to access a

file later.

2. Have access to “missing” files via some other method. One implementation of this

approach is illustrated in Figure 3.5.

3.3.6 Processing Trace Data

Finally, once the application has been run, and the system shuts itself down, we can actually

do something with the trace data we have collected.

First, the raw log produced by the StatFS tracing run is an operation-by-operation log.

The log is passed through a perl script, aggregate.pl (as shown in Listing 3.7), which builds

an “sqlite” database table of file usage statistics. Each row of the table represents an individ-

ual file, including the name of the file, the total amount of read and write I/O (in bytes), the

number of opens, the number of times the file was used as a symbolic link (if applicable),

and the size of the file.

1 # Database Handle
2 my $dbh =DBI->connect("dbi:SQLite:dbname=statdb", "", "", { RaiseError => 1,

AutoCommit => 0);
3 # SQL to check if we’ve seen a file
4 my $exist = $dbh->prepare("select filename from access_log where filename=?");
5 # SQL to update a file’s statistics
6 my $inc = $dbh->prepare("update access_log set read = read + ?, write = write

+ ?, open = open + ?, link = link + ? where filename=?");
7 # SQL to initialize a file’s statistics, including its size (as read by perl’s

’-s’ function)
8 my $init = $dbh->prepare("insert into access_log (read, write, open, link,

filename, size) values(0, 0, 0, 0, ?, ?)");
9

10 while (<>) {
11 chomp; s/#.*$//; # Remove comments and newlines
12 if ( /ˆread ([0-9]*) bytes from (.*)$/ ) {
13 $exist->execute($2);
14 $exist->fetchrow_array() or $init->execute($2, (-s "$2" || 0));
15 $inc->execute($1, 0, 0, 0, $2);
16 } elsif ( /ˆwrote ([0-9]*) bytes to (.*)$ /) {
17 $exist->execute($2);
18 $exist->fetchrow_array() or $init->execute($2, (-s "$2" || 0));
19 $inc->execute(0, $1, 0, 0, $2);
20 } elsif ( /ˆopened (.*)$ /) {
21 $exist->execute($1);
22 $exist->fetchrow_array() or $init->execute($2, (-s "$2" || 0));
23 $inc->execute(0, 0, 1, 0, $1);
24 } elsif ( /ˆreadlink: (.*)$ /) {
25 $exist->execute($1);
26 $exist->fetchrow_array() or $init->execute($2, (-s "$2" || 0));
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27 $inc->execute(0, 0, 0, 1, $1);
28 } elsif ( /.+/ ) {
29 print STDERR "Malformed input\n";
30 }
31 $dbh->commit;

Listing 3.7: aggregate.pl

Second, we use this database to generate two include lists. The first, “sysfiles” (gen-

erated by the SQL query in Listing 3.8), is a list of all files which were read, and all sym-

bolic links used, as recorded by the read and readlink instrumentation from Subsec-

tion 3.3.4. The second “sysfiles-all”, (generated by the SQL query in Listing 3.9), is a list

of all files used, which includes the instrumented write calls, in addition to read and

readlink. “sysfiles-all” includes files which may not need to be copied, but do need

their parent directories to exist, in case they are written to.

select filename from access_log where read > 0 or link > 0;

Listing 3.8: SQL query to retrieve files which were read from, as well as all links

select filename from access_log;

Listing 3.9: SQL query to retrieve all files and links ever used

Our include lists are filtered against an administrator-provided exclude list, which is a

list of regular expression patterns that will not be automatically included. For example,

the regular expression “\.bak$” files would instruct Lilliputia to avoid copying certain

backup files, even if trace data suggests they were necessary. Likewise, the log file /var/

log/syslog could be excluded with the simple pattern “ˆ/var/log/syslog$”.

Additionally, a number of files may be selectively included, according to a similar set of

regular expression patterns. The manual include list in particular allows files to be included

even if not observed in the trace data. For example, files used before or after the tracing

system is active (i.e., boot-up and shutdown files) can be copied expressly. These typically

include:

1. /etc/rc0.d: Scripts involved in shutting down a Linux system. Included with the

regular expression: “ˆ/etc/rc0\.d/”

2. /etc/rc6.d: Scripts involved in rebooting a Linux system. Included with the

regular expression: “ˆ/etc/rc6\.d/”

3. /boot: Kernel images, “initial ram-disk” images, and other boot-related files like

grubmodules and configuration. Included with the regular expression: “ˆ/boot/”
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Shutdown and reboot scripts are necessary to copy because the tracing system may be

terminated by the shutdown and reboot processes themselves, therefore it is impossible for

the trace system to monitor their use. Likewise, files in /boot are generally loaded into

memory by the boot loader before the OS kernel even starts, so we have no opportunity

to trace their usage. Note that we do not have to manually include the init binary (/bin/

init), or the startup scripts, because these files are all called inside the chroot, after

StatFS is active and recording resource usage.

In applying the include list, we also include the targets of any symbolic links matched

by the manual include list. For example, (similarly to an example in Subsection 3.3.4) un-

der our Ubuntu installs /usr/bin/java is a symbolic link to /etc/alternatives/

java, which is itself a symbolic link to the actual executable, located at /usr/lib/jvm/

java-6-openjdk/jre/bin/java. If the manual include-list matches /usr/bin/

java, both /etc/alternatives/java and /usr/lib/jvm/java-6-openjdk/

jre/bin/java would also included regardless of whether they were present in the trace

data.

Finally, we copy the source VM disk to the slimmed target in the actual slimming pro-

cess. Slimming is similar to the fresh disk procedure from Subsection 3.3.1. The main

difference is that only resources in the include lists, and no resources from the exclude lists,

are actually copied.

3.3.7 Sandboxing Network Trace Runs

A broader problem we worked on solving was the issue of how to create slimmed VM

images when network resources are present. Our goal was to create a slimmed VM which

could function identically to the “online” version, but with all required resources, and no

more, stored locally within the VM disk image. In order to create a “offline”, slimmed VM,

we need to run our tracing operations, as discussed in Subsection 3.3.5, and create an image

that contains files used locally and remotely.

When tracing a development VM that is entirely within one VM, the effects of our

tracing operation are, likewise, limited to inside the VM. In the network case, however,

applications being observed by our tracing operation may modify data on the network,

which could impact other machines. For example, running the development system with

tracing may leave data in world-viewable output directories in the production system. In

order to protect the rest of the network from the effects of our development VM, we wish

to maintain a “sandbox”, wherein the development VM can run, make changes to files, and
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be successfully traced, without producing any changes to the rest of the network.

To avoid modification of files we want to preserve, we have examined the use of stack-

ing filesystems [54]. Such filesystems can combine several different directories, or branches

on a system into a single, unified view of files. Each branch can have different character-

istics, and in particular may permit or deny changes independent of the other branches.

For example, consider one directory at the location /directory1, containing the files in

Listing 3.10, and another directory at the location /directory2, containing the files in

Listing 3.11.

-rw-r--r-- 1 nickurak csusers 23770 2010-08-10 11:57 /directory1/datafileA
-rw-r--r-- 1 nickurak csusers 492871 2010-08-10 11:57 /directory1/datafileB
-rwxr-xr-x 1 nickurak csusers 3452 2010-08-10 11:56 /directory1/executableA

Listing 3.10: /directory1

-rw-r--r-- 1 nickurak csusers 532531 2010-08-10 11:58 /directory2/datafileB
-rw-r--r-- 1 nickurak csusers 1386 2010-08-10 11:57 /directory2/datafileC
-rwxr-xr-x 1 nickurak csusers 363 2010-08-10 11:56 /directory2/executableB

Listing 3.11: /directory2

If /directory2 is stacked on top of /directory1, the unified view, as mounted

at /mnt/union, would be as in Listing 3.12.

-rw-r--r-- 1 nickurak csusers 23770 2010-08-10 11:57 /mnt/union/datafileA
-rw-r--r-- 1 nickurak csusers 532531 2010-08-10 11:58 /mnt/union/datafileB
-rw-r--r-- 1 nickurak csusers 1386 2010-08-10 11:57 /mnt/union/datafileC
-rwxr-xr-x 1 nickurak csusers 3452 2010-08-10 11:56 /mnt/union/executableA
-rwxr-xr-x 1 nickurak csusers 363 2010-08-10 11:56 /mnt/union/executableB

Listing 3.12: Unified view of /directory1 and /directory2 in /mnt/union

Note that the unified view contains files present in either source directory. Where a file

exists in both source directories (in this case, datafileB) the version from the “top” of

the stack is presented in the unified view (distinguishable here by its size).

Further, assume that /directory1 was configured in the stacked filesystem to be

read-only, while /directory2 was read-write. If an attempt is made to modify /mnt/

union/datafileA, because /directory1/datafileA is read-only, the changes

occur in the read-write branch directory2, where the changes will still be visible in the

unified view. Since the file does not exist in

/directory2, it will first be copied there, and then modified.

For example, the command in Listing 3.13 will make no changes to /directory1,

but will cause /directory2 to be updated as in Listing 3.14, and cause the unified view
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to be updated as in Listing 3.15. Note that datafileA now appears with its updated size

in both the unified view and in /directory2, while directory1 still contains the

unaltered datafileA.

echo "One-more-data-line" >> /mnt/union/datafileA

Listing 3.13: Modifying /mnt/union/datafileA

-rw-r--r-- 1 nickurak csusers 23789 2010-08-10 13:27 /directory2/datafileA
-rw-r--r-- 1 nickurak csusers 532531 2010-08-10 11:58 /directory2/datafileB
-rw-r--r-- 1 nickurak csusers 1386 2010-08-10 11:57 /directory2/datafileC
-rwxr-xr-x 1 nickurak csusers 363 2010-08-10 11:56 /directory2/executableB

Listing 3.14: /directory2 after modifications

-rw-r--r-- 1 nickurak csusers 23789 2010-08-10 13:27 /mnt/union/datafileA
-rw-r--r-- 1 nickurak csusers 532531 2010-08-10 11:58 /mnt/union/datafileB
-rw-r--r-- 1 nickurak csusers 1386 2010-08-10 11:57 /mnt/union/datafileC
-rwxr-xr-x 1 nickurak csusers 3452 2010-08-10 11:56 /mnt/union/executableA
-rwxr-xr-x 1 nickurak csusers 363 2010-08-10 11:56 /mnt/union/executableB

Listing 3.15: Unified view of /directory1 and /directory2 in /mnt/union after
modifications

The stacking filesystem approach, in our case provided by the FUSE-based “unionfs-

fuse” [35] implementation, can thus be used to sandbox the effects of our tracing system on

the network. directory1 above corresponds to network filesystems, which are treated

as read-only, while a VM-local writable region is used to store changes. This configuration

is outlined in Figure 3.4, which shows the flow of I/O requests. Note that Figure 3.4 is

not an architectural diagram since, for example, StatFS and the stacked filesystem live in

user-space and the OS (of course) and network live in kernel space.

The command invoked to set up the stacked filesystem in these examples is in List-

ing 3.16. The “=ro” and “=rw” options tell whether the branches are read-only or read-

write, and the “-ocow” enables the “copy-on-write” option.

unionfs-fuse -ocow /directory2=rw:/directory1=ro /mnt/union

Listing 3.16: Command line to mount unionfs-fuse for the previous examples

3.3.8 StatFS Pseudo-filesystem Interface

One commonly used function throughout StatFS is redirect, shown in Listing 3.17,

which alters a requested file path to point at the same file in a different location. For ex-

ample, if StatFS was configured to provide the contents of /home/userdata under the
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Figure 3.4: Flow diagram of I/O requests with StatFS and stacked filesystems.

mount-point /mnt/statfs, redirect might translate a request for /mnt/statfs/

directory/file to /home/userdata/directory/file. The code maps re-

quests by pre-pending the requested filename (directory/file) with another location,

stored in StatFS in $source_path. When StatFS is configured to provide the contents

of the entire system (/), this has no effect. The function is, nonetheless, useful when only a

part of a filesystem needs to be monitored.

redirect also maps special reserved-word filenames to files in the StatFS installa-

tion directory (in this code indicated by $statfsdir/io), which can be used to interact

with StatFS. Accessing /statfs/io/cleanup inside the StatFS mount-point, for ex-

ample, instructs StatFS to synchronize its log files to disk. Likewise, /statfs/pid and

/statfs/mpt can be used to read the PID and mount point of StatFS, respectively.

1 sub redirect {
2 my $path = shift;
3 if ($path =˜ /ˆ\/statfs/) {
4 if ($path eq ’/statfs/cleanup’) {
5 $path = "$statfsdir/io/cleanup";
6 sync_log(*STATFSLOG);
7 return $path;
8 } elsif ($path eq ’/statfs/pid’) {
9 $path = "$statfsdir/io/pid";

10 open TMP, ">$statfsdir/io/pid";
11 print TMP "$$";
12 close TMP;
13 return $path;
14 } elsif ($path eq ’/statfs/mpt’) {
15 $path = "$statfsdir/io/mpt";
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16 open TMP, ">$statfsdir/io/mpt";
17 # Save the global $mountpoint into the file
18 print TMP "$mountpoint";
19 close TMP;
20 return $path;
21 }
22 }
23
24 $path = $source_path . $path;
25 # Remove extraneous slashes and dots from the new path
26 do {} while ($path =˜ s/\/\.*\//\//g > 0);
27
28 return $path;
29 }

Listing 3.17: “redirect” function code

In regular use of the StatFS system, we discovered certain scenarios where it would

be beneficial to catch certain requested behaviors of the system, and replace them with

modified actions. In Section 3.3.8, for example, requests for the “/statfs/pid” file (which

does not exist on the filesystem) are mapped to a file which returns the process id of the

StatFS FUSE process.

Another case is the ability to replace binaries on the running system entirely. For exam-

ple, a straightforward modification to the statfs_read call (from Listing 3.2) rewrites

requests for the /bin/umount and /bin/kill programs to a wrapper script inside

the StatFS installation directory, /usr/local/statfs/umount-wrapper.pl and

/usr/local/statfs/kill-wrapper.pl, respectively, as seen in Listing 3.18.

1 if ($file =˜ /ˆ\/bin\/(umount|kill)$/ ) {
2 $file = "$statfsdir" . "/$1-wrapper.pl";
3 print STDERR "Sensitive call, substituting for: $file\n";
4 }

Listing 3.18: Modifying file requests for the “umount” and “kill” binaries

1 if ($pid == ‘cat /statfs/pid‘) {
2 stat_log("Attempt to kill statfs:")
3 stat_log("Telling statfs to sync our log to disk");
4 system ’touch’, "$statfsmnt" . ’/statfs/cleanup’;
5 exit 0;
6 }

Listing 3.19: Catching and responding to request to kill StatFS via “/bin/kill” in the
“/usr/local/statfs/kill-wrapper” script

Rewriting requests to unmount the filesystem or kill processes proved useful later in

experiments, when it was deemed useful to synchronize data (for example, our StatFS log

file) when the system attempted to kill the StatFS program or unmount its filesystem. In

this case, the /bin/kill program is replaced with a wrapper, partly represented in List-

ing 3.19, which uses the earlier discussed “cleanup” function of StatFS, and subsequently
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ignore the kill call. A similar wrapper call can be used to ignore a request to unmount the

FUSE StatFS filesystem. These particular choices for wrapped calls are mostly illustrative.

This approach only catches requests to kill or unmount the StatFS filesystem via the stan-

dard binary executables at /bin/kill and /bin/umount. Notably, it does not catch

attempts to kill or unmount StatFS via syscalls. In our experience, this limitation is not

significant, as the typical approach to killing processes or unmounting filesystems is for a

script to call the binary in /bin, and not execute the syscall directly.

3.3.9 On-Demand Resources for Incomplete Virtual Machines

Lilliputia, as implemented, is able to construct a VM that contains everything indicated by

a complete trace run. In some scenarios, however, it may be necessary to knowingly create

an incomplete slimmed VM, which is missing components. For example:

1. It may be impossible or infeasible to produce trace runs with complete coverage. If

so, files which may eventually be needed in production use may never be detected in

a tracing run.

2. A complete image, even after slimming, may still be too large for some use-cases.

Lilliputia’s output database indicates the total amount of I/O used for each file, and

can therefore suggest files which, although used, are only used rarely.

In either case, files which may still be required eventually, but cannot be included in

the slimmed image, may still be made available in the network. Stacked filesystems (as

described in Subsection 3.3.7) can use these network resources to fill in the gaps in an

incomplete VM, as illustrated in Figure 3.5. If a file is required by an application, but not

present in the slimmed image, the filesystem can transparently fail-over to retrieving the file

over the network, with the usual speed penalties of retrieving those missing files.

3.4 Summary

In order to create VMs that can be easily and quickly provisioned, deployed, and migrated,

it is important to keep the VM disk images as small as possible. Minimizing the size of

these images from large development installations dictates a top-down approach, which

requires an ability to detect which resources within the VMs disks are important to their

functionality. StatFS, as implemented and documented above, gives us the ability to gener-

ate appropriate trace data, which we can then use to clone the important parts of an input

VM, producing a slimmed VM in the complete Lilliputia system.
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Figure 3.5: Flow diagram of I/O requests with a slimmed image and network fail-over.

In order to establish the effectiveness and correctness of Lilliputia, Chapter 4 details our

empirical evaluation methods and results.
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Chapter 4

Empirical Evaluation

As discussed in Section 3.1, the goal the slimming approach in Lilliputia is to minimize

the size of a virtual machine (VM) disk image, without sacrificing the completeness of its

functionality. In this chapter, we present a case study of our experiences applying Lilliputia

to two different VM and virtual appliance (VA) systems, the Trellis Network-Attached-

Storage (NAS) Bridge Appliance (TNBA), and the Chemical Shift to 3D Structure (CS23D)

server.

The main results of our evaluation show a significant reduction in VM image size,

and verify that VM functionality remains intact. In particular, the size of our VM disk

images (after compression) was reduced by 95% in the case of the TNBA (from 591 to 27

megabytes), 94% in the case of the CS23D appliance (from 32 GB to 2GB), as mentioned

earlier in Table 1.1, and detailed in Tables 4.1 and 4.2. These slimmed images should be

markedly faster and easier to move across the network, or via physical media (i.e., USB

flash drives or writable DVD).

All experiments were performed on a 2.4GHz Intel Core 2 Quad CPU machine with

8 GB of RAM and a Seagate 3GB/s ST3750330AS, running Linux 2.6.30 on Fedora 11

(within our department named codesa.cs.ualberta.ca). However, with the excep-

tion of the timing details in Section 4.5, all the VM image size results in this chapter are

independent of host system performance.

4.1 Case Study Appliances

To evaluate the effectiveness and correctness of Lilliputia’s slimming in diverse settings, we

applied it to two VA environments we discussed earlier. First, the TNBA, a VA for making

it easy to access network resources, was developed by our research group in 2006, and was

well understood by our group. Second, CS23D, a web server for protein structure predic-
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tion, was provided to us by a collaborating research group. The TNBA and CS23D VM

disk images were also constructed using different approaches, increasing confidence that

the slimming procedure of Lilliputia is effective and correct in a wide range of applications.

4.1.1 TrellisNBA

The TNBA is a VA designed to easily connect to remote filesystems across different ad-

ministrative domains. The basic architecture and flow of control of the TNBA is illustrated

in Figure 4.1. The appliance presents a Server Message Block/Common Internet Filesystem

(SMB/CIFS, the protocol for network filesystems typically used in Windows networks) in-

terface for accessing files available under other SMB/CIFS domains, as well as Secure Shell

(SSH) file systems. The TNBA uses the Trellis Filesystem to present a unified POSIX-like

front-end to cached copies of remote files. The files can be accessed via a SMB/CIFS

back-end to make access to these resources simple under any system with support for both

virtualization and normal Windows file-sharing protocols. It also provides a web-based

configuration and management interface.

Web

Browser

Web Server

(lighttpd)

TNBA PHP

CIFS

Client
Samba

Trellis

samba_vfs

Module

trellisfs

SFTP

Server

CIFS

Server

Trellis

configuration

files

User Trellis NAS Bridge Appliance Remote

Shares

Figure 4.1: Flow diagram of the Trellis Network-Attached-Storage (NAS) Bridge Appli-
ance

The deployment of the TNBA used in our experiments was built from the bottom up

(as discussed in Section 3.1.3). The initial operating system was a JeOS [8] installation of

Ubuntu Linux 8.04. Ubuntu JeOS contains only the bare minimum packages required to

boot the operating system and provide basic support for hardware (or in this case, virtual-

ized or emulated hardware). A baseline JeOS installation is under 500 MB installed, and

approximately 100 MB compressed. On top of that, hand-picked packages are added one at

a time to support the compilation and installation of the TNBA. Our additions include a web
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server (lighttpd [24]), a file-sharing service (Samba), and supporting libraries and utilities.

The full list of packages added to support installation and execution of the TrellisNBA was:

php5-cgi, lighttpd, libc6-dev, gcc, make, libgamin-dev, libdb4.5-dev, libssl-dev, zlib1g-dev,

wget, automake, autoconf, libtool, tcsh, libsmbclient, libdumbnet-dev, libproc-dev, libicu-

dev, apache2-utils, openssh-client, openssh-server, fuse-utils, and sshfs.

The TNBA was originally developed within our research group as a modification of the

FreeNAS [13] appliance. As such, we had a significant amount of knowledge of its com-

ponents and behavior. Accordingly, the TNBA was an ideal environment for development,

debugging, and fine-tuning of our Lilliputia system.

Because the construction of the TNBA was a bottom-up process, it is normally an ide-

ally situation for VA creation:

1. The TNBA installation is relatively simple, with a small number of components

2. The TNBA installation was built by a single administrator, with in-depth knowledge

of what is required and what isn’t.

3. All development and debugging work was performed before installing and configur-

ing the system

As a result, the TNBA is naturally a small appliance. Conversely, its small size means

that the TNBA is a challenging case for Lilliputia – the bottom-up approach implies that

there should be fewer opportunities to remove unrequired resources, since a large number

of extraneous packages was never installed in the first place.

4.1.2 CS23D

CS23D [53], by contrast, is a significantly larger and more complicated service and applica-

tion suite. CS23D is a protein structure predictor, developed by a number of bioinformatics

researchers. The VM we worked with required over 2 months to configure all the com-

ponents to work together, with input from a number of developers. Notably, creating the

initial CS23D VM differed from the TNBA case in that it was not a bottom-up process:

many development packages and multiple versions of libraries and utilities were included

over its lifetime before it was completed.

Among the applications included in CS23D are Proteus2, Preditor, Rosetta, SFAssem-

bler, GAfolder, and PatterNOE. Many of these applications have their own collection of

large protein databases. These applications and the CS23D framework include interpreted
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and compiled code in many languages (C, Java, Perl, Python), meaning that large and di-

verse development environments are required to work with and deploy the system as a

whole.

For its user interface, CS23D uses a Web-browser based front-end. Users supply an

input “chemical shift” file in .str format to an HTTP CGI application, which stores the

input file, creates a job in a database, and processes the input to create an output file in

.pdb format, which is finally emailed to the user who requested it.

The various components were also produced by a large group of developers external to

our group over several years, each with different goals and environment preferences. In the

over 2 months developers required to get everything to interact correctly, many different

tools, libraries, and even versions of software were installed and configured separately.

Since our group did not have experience with the wide range of distinct components, or

indeed the completed VM provided to us, CS23D was an ideal “black box” for evaluating

how applicable Lilliputia would be in general.

The large suite of applications also means a significantly varied set of file access be-

haviors. Applications use traditional MySQL databases, as well as direct access to files of

many different sizes, making it a challenging test for the correctness of Lilliputia.

Finally, because of the complexity of CS23D, it is often infeasible to hand-pick which

parts of the installed base contribute to the execution of the appliance, as compared to those

parts which are simply required for its compilation and configuration before deployment.

As such, the image of CS23D we began work with was a complete development environ-

ment with many tools and utilities, as installed under a full installation of Fedora 11 Linux.

After including all the applications, databases, and supporting libraries, tools, and de-

velopment environments, CS23D requires a 42 gigabyte VM disk image.

4.2 Evaluation Criteria

The criteria by which we evaluated our slimmed VMs was the size of their VM disk image,

as measured while shut down, as described in Subsections 3.1.1 and 3.1.2, since that met-

ric limits our ability to move and provision the VMs. As discussed in those subsections,

other performance metrics like execution time and memory footprint are important, how-

ever, they are not the focus of this evaluation. In particular, we do not attempt to reduce

any virtualization-related overheads, as the filesystem calls in our slimmed VMs will be

identical to those in the original unslimmed VMs.
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In comparing VM disk images in this chapter, we take care to compare our final post-

slimming results to the results of fresh-disk version of their original VM disk images. The

fresh-disk versions were used because the fresh-disk approach is an obvious technique, and

it was our desire to evaluate Lilliputia’s slimming process independently.

It should be noted that in all cases, “swap” devices for all VMs were maintained as

separate VM disk images, and since they do not store any actual content between VM invo-

cations, they can be deleted and recreated as a blank, unused disk image, which consumes

virtually no space. As such, the swap devices are not included in totals before or after

slimming.

4.3 Experimental Methodology

The above applications were tested with Lilliputia by means of the following methodology:

1. Installation:

In the case of the TNBA, we build the input VM disk image bottom-up. The base

Ubuntu JeOS install was performed on a blank VM disk. Supporting packages were

installed via apt-get as discussed above, including a compiler, web server envi-

ronment, and libraries. Finally, the TNBA (including Samba components) was com-

piled, installed, and configured. Before slimming, the TNBA image was 591 MB

uncompressed, and 242 MB compressed, as in Table 1.1.

For CS23D, a complete Fedora 11-based VM image was provided to us by an exter-

nal developer. This image included a number of applications and libraries installed

with the yum package manager, and a large suite of manually compiled and installed

bioinformatics software. Before slimming, the CS23D image was 32 GB uncom-

pressed, and 9.3 GB compressed, as in Table 1.1.

In both cases, the VM images were confirmed to be working correctly, as per the

verification section discussed later.

2. System booting: The installed systems were booted under StatFS, via the kernel

init option, discussed in Section 3.3.5.

3. Tracing: The systems were run through their normal operating process, to create

trace information for the application.

For the TNBA, trace execution involved using every feature in the system, through

both its web front-end and its SMB/CIFS interface. The web front-end was used to

54



configure user accounts and groups (creating, reading, updating, and deleting them),

configure remote Secure File Transfer Protocol (SFTP) and SMB/CIFS shares (cre-

ating, reading, updating, and deleting them), use the TNBA’s diagnostic tools (ping,

traceroute, log file access), read TNBA documentation, and eventually, shut down the

VA. Before shutting down the VA, the configured shares were also accessed remotely

via TNBA’s CIFS interface (again, creating, reading, updating, and deleting files).

For CS23D, the process was much simpler: Because CS23D operates largely non-

interactively, we manually provided an input file to CS23D, and retrieved the output

file when it was finished. The system was then shut-down via the normal shut-down

facility, /usr/bin/halt.

4. Slimming and Cloning: After tracing was complete, the data processing and actual

cloning processes from Section 3.3.6 were applied.

First, the trace log from StatFS was retrieved, and copied into a copy of the original

source VM, which had the StatFS system, but had not had tracing steps run on it, to

make sure that the final output VM did not show evidence of the trace system having

been run on it. Additionally, a new, unformatted and unpartitioned VM disk image

is added to the VM. aggregate.pl is run on the trace log, which generates the

database of file resource use. Finally, this database is used to select which files to

copy from the original, unaltered system, to the blank disk, which is configured to

boot with grub. After this step, the new VM disk image is a complete, slimmed,

bootable clone of the original input disk.

5. Compression: The final output disk images were compressed using the gzip utility.

For completeness, the same compression process was applied to the unslimmed VM

disk image as well, as in Table 1.1.

6. Validation: The slimmed disk image was executed and checked for completeness, as

described below in Section 4.4.

4.4 Validation

In order to confirm the completeness of the final slimmed images from both the TNBA and

CS23D, several inputs were used with both non-slimmed and slimmed VMs to check if they

produced the same output or behavior for the same input. The main validation steps were
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Full Size Slimmed
Stage Guest Filesystem Host Image Guest Filesystem Host Image
/ 581 767 49 76
/usr 272 27
bin 23 7.2
lib 118 12
local 47 7.1
share 71 0.094
(other) 11 0.81

/boot 14 12
/home 110 0.0039
/var 137 0.32
/lib 35 5.6
/etc 6.3 1.1
/bin 3.8 2.2
/sbin 3.5 1.2
(other) 2.2 0.062
Post-fresh disk 581 591 49 54
Compressed 241 242 26 27

Table 4.1: Trellis Network-Attached-Storage (NAS) Bridge Appliance Slimming. All sizes
are in MB, as reported by du -s, and compression is via gzip

effectively the same actions as the tracing steps from Section 4.3: if the tracing steps were

complete enough, and the behavior of the slimmed VMs matched that of the unslimmed

VMs for all inputs, the slimmed VMs could be considered valid.

As stated in Section 1.4, our approach to encapsulation and minimalism for VMs de-

pends on proper trace coverage. In scenarios where tracing data is incomplete, the slimmed

VM will be in one of three states:

1. Manual include lists will be required to make the slimmed VM complete

2. On-demand access to missing resources must be configured, for example, over a

network-filesystem, as discussed later in 4.5.2

3. The VM will be incomplete, and produce incorrect behavior

Note that for this phase, the tracing system was inactive, since the tracing data had

already been collected and processed.

4.4.1 TrellisNBA

Since the TNBA tracing steps were straightforward, the exact same steps were taken in the

unslimmed and slimmed TNBA VMs. Again, this involved using the TNBA’s web front
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Full Size Slimmed
Stage Guest Filesystem Host Image Guest Filesystem Host Image
/ 30666 42823 8234 9800
/cs23d 24750 7972
/usr 3331 121
share 1578 4.1
lib 1393 111
bin 177 1.6
include 70 0
libexec 50 0.39
sbin 28 4.0
local 0.54 0.055
(other) 0.48 0.0039

/var 1642 42
/home 509 0.66
/opt 178 66
/etc 92 3.1
/lib 84 15
/root 18 0.031
/tmp 17 0.0039
/sbin 14 4.2
/boot 8.3 8.3
/bin 6.8 3.8
(other) 16 0.0039

Post-fresh disk 30666 31876 8234 9366
Compressed 9226 9305 2025 2054

Table 4.2: CS23D Slimming. All sizes are in MB, as reported by du -s, and compression
is via gzip
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end to configure user accounts and groups (creating, reading, updating, and deleting them),

configure remote SFTP and SMB/CIFS shares (creating, reading, updating, and deleting

them), use the TNBA’s diagnostic tools (ping, traceroute, log file access), read TNBA doc-

umentation, then accessing configured shares remotely via TNBA’s CIFS interface (again,

creating, reading, updating, and deleting files), and finally, shutting down the VA.

Identical behavior was noted in the both unslimmed and slimmed TNBA VMs.

4.4.2 CS23D

Similarly to the TNBA, our slimmed and unslimmed CS23D VMs were executed with the

same inputs as in the tracing stage, and their outputs compared.

Validation of correctness for CS23D is complicated by the use of random number seeds

in a number of the fundamental algorithms of its constituent applications. The usual ap-

proach of manually selecting seeds is also less feasible, due to the large number of distinct

pieces of software, and the breadth of programming languages, tools, and expertise required

to effectively manage it. Therefore two approaches were taken to confirm correctness. First,

execution of the process was monitored via log files to observe the same programs being

executed in the same way on the same input. Second, the final outputs were examined by

a CS23D developer (external to our group) to confirm that an acceptable quality was pro-

duced by the tool chain. Given the design of CS23D, wherein each program contributes to

making a better output file, we conclude that it is unlikely a removal of normally included

functionality would improve the final result.

4.5 Discussion of Results

As shown in detail in Tables 4.1 and 4.2, the size of our VM disk images (after compres-

sion) was reduced by 95% in the case of the TNBA (from 591 to 27 megabytes), and 94%

in the case of the CS23D appliance (from 32 GB to 2GB), as originally illustrated in Ta-

ble 1.1. While the overall space-saving results are similar, it is informative to consider the

distinctions in where space was saved in the TNBA and CS23D cases.

4.5.1 TrellisNBA

The results of applying the Lilliputia slimming process to the TNBA are shown in Table 4.1,

including a breakdown of which sub-folders of the appliance contributed to the size of

the image, both before and after slimming. As mentioned, the bottom-up construction of

the TNBA represents a challenging scenario for Lilliputia. Nonetheless, the results of our
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experiments show it to still be successful. This results from a combination of removing

parts of normally atomic packages, removal of packages irrelevant to our use case, and

potentially erroneous dependencies, as discussed in Subsection 3.1.3

The main conclusion and observation is that Lilliputia reduced the TNBA from a 591

MB virtual image, down to a 54 MB uncompressed image, for a savings of over 91%. For

actual distribution, the files would typically be compressed down to 27 MB through use of

gzip.

Some major sources of unnecessary files indicated by Table 4.1 are a large number

of libraries under /usr/lib, where 90% of content was removed, and the almost com-

plete removal of cache and log files under /var, which were either not accessed when the

appliance was used, or were only used in a write-only capacity, and were therefore not re-

quired to maintain normal application function. Another major location of slimmed-away

resources was /usr/share, which was also almost completely removed. /usr/share,

as defined by the UNIX Filesystem Hierarchy Standard, includes architecture-independent

data files, such as textual data or images, as well as locale and timezone information. It

also typically includes a large amount of documentation. Because virtually none of these

resources were relevant to the successful operation of the TNBA (documentation is largely

for the benefit of a user logged into the system directly, and the only locale and timezone

information relevant was that which the system was actually configured to use), it should

not come as a surprise that they presented a substantial opportunity for image size savings.

The other major opportunities for savings were in files not used to operate the appliance,

but simply to deploy it. These include source code, statically-linked libraries in /usr/lib

and /lib, compilers, and all the supporting development tools required to operate even

a simple Linux system. Once the applications are deployed, however, none of these are

required again. /home was also almost completely removed, as it was mostly used simply

for initial installation of the TNBA (for example, the TNBA source code).

4.5.2 CS23D

Likewise, results of applying Lilliputia to CS23D are shown in Table 4.2, again including a

breakdown of the major contributors to image size.

A notable addition to Table 4.2 table as compared to Table 4.1 is that CS23D stores

many of its application and data files in a /cs23d directory, which was reduced in size by

68%. Similarly to the TNBA case, large savings were also observed in /usr/lib (92%

savings) and /usr/share (over 99% savings).
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An important difference in the way CS23D operates is that it is meant to handle a par-

ticular input file, provided as a query, and return a result. While in the TNBA we were able

to exhaustively enumerate all the possible configurations of feature usage, it is impossible

to assemble all possible input files that could ever be supplied to CS23D at any time in the

future. Doing so would require an infeasible amount of time to execute each query indepen-

dently. Worse, validation of each of the possible results would require an incredible amount

of manual effort. Due to time constraints on availability of researchers in the domain, we

were in fact only able to confirm the correctness of a single input file.

To ensure correctness of the output VM, we followed the flow of a single input file

through all phases of CS23D’s operation, and (as discussed in Subsection 4.4.2) confirmed

that the result met the same standard of quality as the original system. This confirmed

that the slimmed appliance was able to successfully process that input file, but did not

necessarily imply its usefulness to other queries. When faced with such a limited range of

inputs, two approaches we considered were as follows:

1. Randomly generate more inputs: Where possible, “fuzzing” [28, 30] might be used

to generate more candidate inputs for the VM tracing process. Fuzzing is an approach

typically used in software testing and security, wherein a number of randomized in-

puts are generated and fed into a system. The results of these inputs can be observed

for potential faults in the implementation of a system, or even potential security vul-

nerabilities. Two constraints made this difficult in the CS23D case. First, randomly

generating inputs might produce invalid or highly unusual inputs, which would never

be encountered in real-world usage. Such inputs could cause the VM image size to

bloat beyond the size actually required. Second, we did not have the expertise to tell

how to successfully generate or evaluate CS23D input files for correctness.

2. Manual include lists: By observing the execution of CS23D, we were able to gen-

erate a manual include list that should broaden the applicability of our slimmed VM,

and avoid under-reporting the size of an appliance required to handle general inputs.

To do so, we manually added files to our include-list that would be necessary for other

inputs. Our include list was created by examining the resources used in the process

of solving the one input, and broadening the list of included files. In particular, if the

input was found to use even one small part of a large database, the entire database

was added to our include-list. Thus, erring on the side of caution, it is possible we

actually included more database files than would likely ever be used.
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Alternatively, in the event a comprehensive test-suite is not available, and no manual

intervention can be applied, a similar stacked-filesystem approach to that illustrated earlier

can be used, as in Figure 3.5. As discussed in Subsection 3.3.9, stacked filesystems can

transparently layer in files that are available over the network, even if they are not available

in the slimmed image. Stacking filesystems can allow an administrator to leave out files in

the slimmed image that would only be used occasionally (either through manual exclude

lists, or by limited tracing), but still have them available where necessary.

In general, an automated and comprehensive test-suite is always highly desirable, and

is particularly beneficial when deriving file usage. Had one been available at the time,

a complete test-suite would have yielded a more specific set of file resources needed for

execution of the appliance than manual inclusion would provide. Having verified the cor-

rectness (but not the optimality) of our slimmed appliance, we can consider how well the

slimming process performed. As in the case of the TNBA above, a significant portion of the

files removed from the appliance were development tools, compilers, libraries, and source

code. The prevalence of such files in CS23D was a result of the fact that CS23D utilizes

a much broader range of development tools, for a comparatively large number of distinct

components, as built by a large number of independent research groups, each with different

goals and development styles.

Nonetheless, a relatively large amount of the original application remains, as the appli-

ance only changed from 31.1 GB to 9.4 GB, a savings of only 70%, which while significant,

is not nearly as impressive as in the TNBA case. By examining the slimming process with-

out the discussed manual include-list above, we found that the slimmed image would have

been just over 400 MB. The difference between 9.4 GB and 400 MB means that the vast

majority of the slimmed image’s heft is a result of the manually included database files,

which we were unable at this time to avoid cloning. However, the format of these files was

large plain-text databases of protein information, meaning that the effect of compression

in the final step was dramatic. As a result, the final savings overall from 31.1 gigabytes to

2.1 gigabytes is over 93%, which is comparable to the 95% overall savings observed in the

TNBA case.

4.5.3 Performance Results

Some discussion is warranted regarding the effect of Lilliputia, and StatFS instrumentation

method on the performance of a system. Measuring time in the TNBA case was not par-

ticular useful, as the application was primarily interactive, meaning the user response time
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vastly overwhelmed any difference in application performance caused by the trace opera-

tion. CS23D, by contrast, is an entirely non-interactive application. A single CS23D trace

run within an instrumented, local filesystem, required 113 minutes to execute. The same

invocation without any instrumentation required 109 minutes, an overhead of 3.7%. At this

stage, we have focused on correctness more than performance of the system, as the instru-

mented runs are not intended to be run at production time. However, these results suggest

that, at least for CPU-bound scientific applications, instrumentation has little overhead, and

may be feasible for use in production systems as well. Including StatFS at production time

would have the advantage of producing live traces of an application’s resource usage, which

could in future work be used for additional performance tuning.

Finally, the process of actually producing a cloned image from the traces gathered also

takes a small amount of time. In the relatively complex case of CS23D, the plain-text trace

file came to 10 megabytes. Producing aggregate per-file statistics required 13.2 seconds (an

average of 5 runs) to build a 357 KB statistics database. Producing the list of files to include

from this database alone was virtually instantaneous. However, the rich regular-expression

rules for hand-coded include/exclude lists requires a full scan of the source system’s filesys-

tem hierarchy for matching names. Comparing each of these to all the hand-written rules

is therefore more taxing. In the case of CS23D searching the filesystem for matching files

took approximately 5 minutes, producing a 187 KB list of files to copy, and a 231 KB list of

all files read or written (required as discussed in Section 3.3.4 under instrumentation of the

“write” call). The final stage of copying the selected files into the new clone is then bound

only by how long it takes to copy data from one VM disk image to another. Producing a

CS23D clone required approximately an hour.

4.6 Summary

The observations of this section, in particular the 95% and 94% reductions in size for the

TNBA and CS23D cases (respectively), and the verification that our slimmed software still

functioned correctly, confirms that we met the goals of minimalism and completeness we set

out to achieve in Section 3.1. By applying Lilliputia to two different software packages with

distinct construction methodologies, we showed that the VM disk image reduction strategy

in Lilliputia can be successful in a broad range of applications.
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Chapter 5

Concluding Remarks

Moving software into virtual machines (VMs) can improve their usefulness, by making

them portable, self-contained, and easier to back-up and maintain. Reducing their size as

much as possible makes moving and deploying them faster and easier.

We showed in detail our implementation of Lilliputia, which is an automated system for

determining what resources are critical in a VM (by monitoring file access with StatFS), and

cloning the important files into a new VM. While monitoring file access with a solution like

StatFS is obvious, we show that the implementation details of a system are non-trivial, (e.g.,

read vs write access, and creation of empty directories). We also showed how monitoring in

a network filesystem context is complicated, and solutions to the problems of completeness

and minimalism in a network context.

Empirical evaluation of Lilliputia shows its ability to reduce VM image size signifi-

cantly. Reductions in size of 95% (from 591 to 27 megabytes) and 94% (from 32 GB to

2GB) in the Trellis Network-Attached-Storage (NAS) Bridge Appliance and Chemical Shift

to 3D Structure case studies (respectively) means they are easier and faster to move and de-

ploy. This achieves our goal of minimalism. Verification of the slimmed VM’s correctness

confirms that we achieved our goal of completeness.
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