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Abstract

Stochastic optimization is a field in mathematics that deals with decision making under uncertain

conditions. Traditional methods for solving stochastic optimization problems such as scenario-tree

methods usually result in large-size problems that suffer from the curse of dimensionality and

require significant amount of time and computational resources. This study aims at investigating

alternative methods referred to as decision-rule methods in order to reduce the problem size while

preserving the solution optimality.

Uncertain parameters are generally classified into two categories: exogenous and endogenous

uncertainty. Endogenous uncertain parameters are revealed by decisions taken in the course of the

problem while exogenous uncertain parameters are independent of the problem decisions. This

study investigates both types of uncertainty and employs linear decision rule to model the uncer-

tainty. Two main solution methods are used in this study: partitioning and lifting. In partitioning

method, the uncertainty set is partitioned into rectangular segments. At each partition, the binary

variable is fixed and the continuous variable is a linear combination of uncertain parameters. In

lifting method, the uncertain parameter is lifted to a higher dimensional uncertainty set. The

binary variable is formulated using 0-1 indicator functions that results in an adaptive binary vari-

able. The continuous variable is a linear combination of lifted uncertain parameters that results in

a piecewise linear solution. At each problem, after applying linear decision rule to the constraints,

duality theorem for linear problems is used to convert the constraints to their robust deterministic

counterpart.

Chapter 2 introduces a novel hybrid method that combines traditional scenario-tree method
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with linear decision rule to reduce the run time and computational expense in large-scale multistage

problems. On the other hand, when uncertain coefficients are multiplied at adaptive variables, us-

ing linear decision rules results in non-linear constraints with respect to uncertain parameters.

In such constraints, duality method for linear constraints can not be employed to convert the

constraint to its deterministic dual counterpart. The hybrid method proposed in this chapter in-

troduces a new method to resolve the described problems efficiently.

Chapter 3 addresses multistage stochastic binary problems. Two methods are presented to

solve binary problems: lifting method and partitioning method. In the lifting method, the uncer-

tain parameter is lifted to a higher dimension uncertainty set based on pre-defined breakpoints

that results in an adaptive binary solution. In the partitioning method, the original uncertain

parameters are segmented into rectangular partitions using pre-defined breakpoints. A new tech-

nique for break point location optimization is proposed for both lifting and partitioning methods

and their performance is compared using an inventory control problem.

Chapter 4 presents a novel piecewise linear decision rule for adaptive continuous variables that

results in adaptive discontinuous solution. The presented framework in this chapter can incorporate

both adaptive binary and adaptive continuous variables for multistage problems. Two methods

are studies in this chapter: lifting and partitioning. The partitioning method provides a better

solution quality for smaller problems while the lifting method provides significant computational

efficiency for large-scale problems.

Chapter 5 introduces a new general problem formulation where both continuous and binary

variables depend on both types of endogenous and exogenous uncertainty. The continuous variable

is a linear combination of both types of uncertain parameters. The binary variable is a multiplica-

tion of two binary variables, one for endogenous uncertainty formulated using partitioning method

and one for exogenous uncertainty formulated using lifting method.
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Chapter 6 presents the linear decision rule method for both endogenous and exogenous un-

certainty and applies this method to a long term problem for infrastructure construction and

production planning of an oil field. The oil price is the exogenous uncertainty and the uncertain

oil flow rate is the endogenous uncertainty that depends on oil well drilling and well exploration

decisions.
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Chapter 1

Introduction

1.1 Motivation

Stochastic programming is an important field in optimization that aims at making the best deci-

sions under uncertain conditions. It has applications in various fields of science and engineering

such as operations management [4, 5], control engineering [6, 7], finance [8, 9] and process systems

engineering [10, 11].

The traditional method in stochastic programming is referred to as scenario-tree method. In

this method, the uncertain parameters are discretized and a deterministic problem formulation is

obtained. In multistage stochastic optimization, the uncertain parameters are revealed over time

and decisions are made at each stage based on the revealed uncertainty. Traditional scenario-tree

methods result in a large problem size specially in multistage problems and require significant

amount of run time and computational resources. This research study addresses this problem by

proposing alternative methods that result in reduced problem size that require less computational

resources and consequently shorter run time while the solution quality is mainly preserved.

Decision rule method has been employed in this study as an alternative or complementary

method to traditional scenario-tree method. Decision rules are categorized as linear and non-

linear. In this study linear decision rules for continuous and binary variables have been employed.

Linear decision rules, due to their simple structure, provide the scalability required for large scale

problems. This simple structure results in a reduced problem size and shorter run time but sub-

optimal solution. In order to address the sub-optimality of the solution in linear decision rules, two

different methods are mainly used in this study: lifting and partitioning. In the lifting method,

the original uncertain parameter is lifted to a higher dimensional uncertainty set. Two different

lifting methods are utilized for binary and continuous variables that result in adaptive binary and

adaptive continuous variables. In the partitioning method, the original uncertainty set is parti-
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tioned in rectangular segments. in each partition, the binary variables are fixed and the continuous

variables are linear functions of the original uncertain parameters. The performance of lifting and

partitioning methods is evaluated in several case studies.

1.2 Literature review

The traditional method to solve stochastic optimization problmes is called scenario-tree method.

In this method, the uncertain parameters are discretized and presented as scenarios. Based on

these scenarios, the stochastic problem is reformulated as a determinisitc problem. This approach

results in a very large problem size particularly in multistage settings. In order to address this

problem, researchers have proposed the decision rule method. In decision rule method, the prob-

lem variables are formulated as functions of uncrertain parameters. Decision rules are classified

as linear and non-linear. There are two main types of uncertainty: exogenous and endogenous.

Endogenous uncertain parameters are revealed based on the decision taken in the course of the

problem while exogenous parameters are independent of the problem decisions. In multistage

stochastic problems, decisions are made sequentially at each stage based on the revealed uncer-

tainty. In the following, a comprehensive literature review about different methods in stochastic

optimization is presented.

Applications of scenario-tree method are abundant in the literature. To name a few, Ahmed et

al. [12] addressed a multi-period investment model for capacity expansion of a chemical plant un-

der uncertain demand and cost. They used a heuristic scheme and a branch and bound algorithm

to solve the problem to optimality. Birge and Rosa [13] studied the problem of greenhouse gas

policy decision-making under economic uncertainty. Escudero et al. [14] investigated production

and capacity planning problems to assist in raw material supply sourcing decision under demand

uncertainty. Takriti et al. [15] developed a model and a solution method for power generation

decision making when demand is uncertain. For a review on stochastic optimization, the reader

can refer to [16, 17, 18] .

Since scenario-based multistage problems generally suffer from the curse of dimensionality (ex-

ponential growth of model size for multistage problems), researches have tried to address this

problem using different methods. Apap and Grossmann, 2017 [19] proposed a sequential scenario

decomposition heuristic and a Lagrangean decomposition method. Goel and Grossmann, 2006

[20] presented a Lagrangean branch and bound algorithm to reduce the model size. Gupta and

Grossmann, 2014 [21] developed a new Lagrangean decomposition algorithm for solving large-scale

stochastic problems with endogenous uncertainty that can reduce the computational expense by
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reducing the number of non-anticipativity constraints. Colvin and Maravelias, 2010 [11] devel-

oped novel branch and cut algorithms where non-anticipativity constraints that are unlikely to be

active are removed from the formulation and added only if they are violated within the search tree.

Recent advances in robust optimization has enabled the researchers to use decision rule meth-

ods in the context of stochastic optimization. In decision rule methods, the adaptive variables are

functions of uncertain parameters. Among different decision rule methods, linear decision rule has

received considerable attention since it provides the scalability required for large-scale multistage

problems while solution optimality is sacrificed. In this formulation, the adaptive variables are

linear functions of uncertain parameters. Ben-Tal et al. were among the first who applied linear

decision rules in the context of adaptive robust optimization [22]. They reformulated the stochastic

problem into a robust deterministic counterpart by applying duality method for linear problems.

Some application instances for linear decision rules is reviewed here. Skaf and Boyd[7] designed a

general affine controller in which the control input is an affine function of all previous measure-

ments to minimize a convex objective. They illustrated the method with applications in supply

chain management optimization and dynamic portfolio optimization. Calafiore [8] addressed a

portfolio optimization problem using an affine parametrization of the recourse policy that pro-

vides a sub-optimal but explicit formulation that can be used to solve multistage problems with

many constraints and periods. Atamtürk and Zhang [23] presented a two-stage robust optimiza-

tion method for network flow with uncertain demand and provide applications for lot-sizing and

location transportation problems and compared the results with single-stage robust optimization

and two-stage scenario-based optimization. Decision rule based method has also received attention

in the process systems engineering community. Lappas and Gounaris [24] developed a multistage

adjustable robust optimization framework that accounts for inherent endogenous uncertainty in

process scheduling by employing decision-dependent uncertainty sets. Ning and You [25] presented

a data-driven framework for adaptive optimization using data and applied the proposed framework

on two industrial applications of process scheduling and process network planning. Zhang et al.

[26] developed a scheduling model for continuous industrial processes that provide interruptible

load. The uncertainty in the timing of the load reduction request is modeled by an adjustable

robust optimization approach that integrates recourse decisions using linear decision rules.

As described above, the simple structure of linear decision rules results in a sub-optimal so-

lution. In order to address this problem, different researchers have proposed non-linear decision

rules for adaptive real-valued variables. The purpose of non-linear decision rules is to improve

the solution optimality while preserving the scalability required for multistage problems. Chen

et al. [27] proposed new decision rule structures, segregated and deflected linear decision rules

and demonstrated that these proposed methods can outperform sampling approaches when lim-

ited information about the underlying probability distributions is available. Chen and Zhang [28]
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presented a splitting-based extended affinely adjustable formulation and showed that their method

is tractable and scalable to multistage problems. Georghiou et al. [29] proposed piecewise linear

continuous decision rule based on axial segmentation and lifting of the uncertain parameters. They

also proposed a method for piecewise linear continuous decision rule based on general segmenta-

tion. The authors recommended ideas for nonlinear continuous decision rules such as quadratic,

power, monomial, inverse monomial and multilinear liftings and compared different methods on a

dynamic inventory control problem. Goh and Sim [30] studied distributionally robust optimization

problem and applied the linear decision rule method to get tractable approximation. Bampou and

Kuhn [31] presented a polynomial decision rule to solve multistage stochastic problems. They esti-

mated the suboptimality of the decision rule by solving a dual version of the problem in polynomial

decision rule. Bertsimas et al. [32] introduced a hierarchy of near-optimal polynomial policies and

showed that these policies can be computed by solving a single semidefinite programming problem.

They evaluated the framework using three classical applications in the context of inventory man-

agement and robust regulation of a suspension system. Recently, Avraamidou and Pistikopoulos

[33] proposed a method based on generalized affine decision rules for linear mixed integer robust

optimization problems using multi-parametric programming and showed that the method can find

the exact global solution.

Although different methods have been proposed for real-valued non-linear decision rule struc-

tures, the available literature for decision rules addressing adaptive binary variables is limited.

Bertsimas and Caramanis [34] proposed a linear decision rule and approximated the semi-infinite

optimization problem using a sampling algorithm. Bertsimas and Georghiou [35] suggested a

structure that can provide near-optimal solutions but restricted scalability. Hanasusanto et al.

[36] presented a binary decision rule based on the previous work done by Bertsimans and Cara-

manis [37] that can only be applied to two-stage problems. Postek and den Hertog [38] presented

a method for iterative splitting of uncertainty set that can be used for adaptive integer variables

and demonstrated the advantage of their method on a capital budgeting and a lot sizing problem.

Recently, Bertsimas and Georghiou [39] proposed a binary decision rule that lifts the original un-

certain parameters using 0-1 indicator functions. The trade-off between the solution optimality

and scalability can be adjusted based on the segmentation resolution over the uncertainty set. The

authors suggested a scalable formulation that can be used for large-scale multistage problems. For

a comprehensive review on adaptive optimization, the reader can refer to Bertsimas et al., [40],

Gabrel et al. [41].

Most of the available studies in the literature address only exogenous or endogenous uncer-

tainty. There are few studies that address both types of uncertainty in a single framework. In the

context of stochastic programming, two notable studies deal with this type of problems. Goel and

Grossmann, 2006 [20] presented a mixed integer programming formulation and applied Lagrangean
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duality based branch and bound algorithm to reduce to number of non-anticipativity constraints.

Apap and Grossmann, 2017 [19] proposed a composite scenario tree that captures both types of

uncertainty and discussed two solution approaches to reduce the number of non-anticipativity con-

straints and solve the problem. A sequential scenario decomposition heuristic and a Lagrangean

decomposition method. Dupačová (2006) [42] provided only a general description of problems

under both types of uncertainty but did not present a solution framework or numerical results.

Although not addressed in this study, another method that has been used to solve multistage

dynamic problems is approximate dynamic programming (ADP). To mention few examples, Jay

Lee and Jong Lee [43] applied ADP method to solve Markov decision processes (MDPs) for con-

trol and scheduling of process problems. The same authors in a different study [44], proposed two

strategies based on APD method for data-driven control of non-linear processes. For a general

study of the ADP method and its applications in different contexts, the reader can refer to [45]

and for a review on applicability of ADP in process control please refer to [46].

The decision rule approach employed in this study have inherent similarities with the ADP

method in that both methods use linear combinations of basis functions to approximate nonlinear

functions. The decision rule approach applies these approximations to future adaptive decisions

while the ADP method applies the approximations to cost functions. While the ADP method has

the flexibility to solve non-convex problems, the decision rule method used in this study, can only

be applied to convex problems. Although not investigated in this study, one advantage of the de-

cision rule method is that error bounds can be calculated for the obtained solution [47, 48, 49, 50],

however studies that address similar bounds for ADP method are rare.

This thesis proposes novel solution methods for endogenous and exogenous uncertainty inde-

pendently and developes new frameworks that integrate both types of uncertainty into a signle

mathematical framewrok.

1.3 Thesis contribution

This study endeavors to address the available gap in the literature in the field of stochastic opti-

mization. In brief, chaper 2 presents a new hybrid method that combines scenario-tree and linear

decision rule. Chapter 3 proposes a new breakpoint location optimization technique for lifting and

partitioning methods. Chapter 4 combines the lifting method for binary and continuous variables

into a signle framework and proposes a new decision rule for continuous variables that results in

a piece-wise discointuous solution with significant computational efficiency. Chapter 5 proposes a

new framework that integrates the exogenous and endogenous uncertainty into a single framework

using lifting and partitioning methods. Chapter 6 applies linear decision rule to a long term case
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study about infrastrusutre construction and production planning of an oil field developed using

SAGD method. The contributions of this work are expalined in the following.

1.3.1 Multistage Adaptive Optimization Using Hybrid Scenario and

Decision Rule Rormulation

Chapter 2 introduces a new hybrid method that combines traditional scenario-tree method with

linear decision rules. The proposed method addresses problems where random coefficients are

multiplied at adaptive variables. In such cases, traditional scenario-tree method results in a very

large problem size. Decision rule method results in a non-linear problem with respect to uncertain

parameters and thus it would not be possible to apply duality method to convert the problem

into its robust deterministic counterpart. The developed hybrid method resolves these issues and

reduces the run time and computational expense in large-scale multistage problems.

1.3.2 Multistage Adaptive Binary Optimization: Uncertainty Set Lift-

ing Versus Partitioning Through Breakpoint Optimization

Chapter 3 introduces a novel breakpoint location optimization method for adaptive binary vari-

ables. The uncertainty is modeled using two different methods: lifting and partitioning. The

breakpoint optimization method can be applied to both lifting and partitioning methods. Com-

pared to fixed breakpoint formulation, it provides better solution quality using fewer number of

breakpoints for small size problems.

1.3.3 Multistage Adaptive Stochastic Mixed Integer Optimization Through

Piecewise Decision Rule Approximation

Chapter 4 proposes a novel mathematical framework that integrates adaptive continuous and adap-

tive binary variables into a single framework based on the lifting method. The proposed decision

rule for adaptive continuous variables is very flexible and can provide discontinuous piecewise lin-

ear solution. The proposed framework is compared to the partitioning method using an inventory

control case study. The results demonstrates that for large-scale multi-stage problems, the pro-

posed framework provides significant computational efficiency compared to partitioning method

while the partitioning method can provide better solution quality for small size problems.
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1.3.4 Multistage Stochastic Mixed Integer Optimization Under En-

dogenous and Exogenous Uncertainty

Chapter 5 proposes a new framework that incorporates both exogenous and endogenous uncertainty

into a single framework for both binary and continuous variables. The exogenous uncertainty is

modelled using lifting method and endogenous uncertainty is modeled using partitioning method.

The continuous variable is a linear combination of both exogenous and endogenous parameters

and the binary variable is a multiplication of two binary variables that depend on exogenous and

endogenous uncertainty independently.

1.3.5 Strategic Planning of SAGD Reservoir Development Under Reser-

voir Production and Oil Price Uncertainty

Chapter 6 presents a case study about infrastructure construction and production planning of an

oil filed extracted using the Steam Assisted Gravity Drainage (SAGD) method. In this case study,

the linear decision rule is used to model the exogenous oil price uncertainty and the endogenous

oil production uncertainty. Obtained results demonstrate that linear decision rule can successfully

be applied to multistage stochastic problems.
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Chapter 2

Multistage Adaptive Optimization Using

Hybrid Scenario and Decision Rule

Formulation

Abstract

Scenario-based stochastic programming and linear decision rule-based robust optimization are

prevalent methods for solving multistage adaptive optimization problems. In practical applications

such as capacity expansion planning of chemical processes, often multiple sources of uncertainty

affect the problem which introduces challenges to traditional stochastic optimization methods.

While a large number of uncertain parameters exist in the problem, using scenario-based method

results in very large problem size and the solution becomes computationally expensive. In addi-

tion, when the constraints include multiplication of uncertain parameters and adaptive variables,

the constraints are not linear with respect to uncertain parameters when the linear decision rule

method is used. In order to address these challenges, we propose two different hybrid methods

where scenario and decision rule methods are combined to solve the multistage adaptive optimiza-

tion problem. The paper demonstrates the computational performance of the proposed hybrid

methods using two chemical process planning examples.
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2.1 Introduction

Multistage adaptive optimization (MSAP) is an important technique for addressing dynamic deci-

sion making under uncertainty. It has received lots of applications in process systems engineering,

including planning, scheduling and supply chain management [51]. Compared to deterministic

optimization approach where the uncertainty is ignored in the problem modeling, adaptive opti-

mization accounts for uncertainty and therefore results in a more reliable solution.

Two main approaches are used in the literature to solve MSAP problems: scenario-based

stochastic programming method and decision rule-based robust optimization method. In scenario

formulation, the uncertainty is presented using scenario or scenario tree and the problem size

depends on the number of uncertain parameters [52]. The obtained solution is feasible for all

the predefined uncertainty scenarios. Different studies have used scenario-based method to solve

stochastic problems. Jonsbr̊aten [53] presented the problem of optimal development of an oil field

under uncertain future oil prices. Goel and Grossmann [54] developed an optimal investment

and operational planning algorithm for gas field development under uncertainty in gas reserves.

Gupta and Grossmann [10] proposed a strategic model for offshore oilfield development problem

where the objective is to maximize the NPV over a long-term horizon. Colvin and Maravelias

[11] discussed methods for solving a multi-stage stochastic problem in pharmaceutical research for

resource-constrained scheduling of clinical trials. In general, scenario tree-based approximation

method suffers from the issue of dimensionality. The number of scenarios may quickly increase

such that the problem is computationally intractable; on the other hand, using very few number

of scenarios can result in suboptimal or impractical solutions.

In order to address this problem in multistage adaptive optimization, linear decision rule (LDR)

technique was proposed by Ben-Tal et al. [22] as an alternative. In linear decision rule method,

uncertainty-dependent variables (adjustable variables) are modeled as affine functions of uncertain

parameters. Subsequently, the constraints are converted to their deterministic counterparts using

duality theorem. This approach reduces the problem size significantly. The solution is feasible for

any realization of uncertainty within the predefined uncertainty set.

Decision rule techniques have been successfully applied within the field of multistage adaptive

optimization. For instance, Shapiro and Nemirovski [55] presented a discussion on the complexity

of multi-stage stochastic problems using linear decision rule. Goh and Sim [30] developed new

piecewise linear decision rules that allow a more flexible reformulation of the original problem.

Kuhn et al. [56] presented methods to estimate the approximation error introduced by linear

decision rules and claimed that their method remains applicable for stochastic problems with ran-

dom recourse and can be extended to problems that include ambiguous probability distributions.
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Vayanos et al. [57] proposed a technique to solve stochastic problems where the uncertainty rev-

elation depends on the decisions. They introduced binary variables to indicate the information

revealing status and presented a method for approximating binary decisions by piecewise constant

functions and continuous decisions by piecewise linear functions of uncertainty. Ben-Tal et al.[58]

employed the affinely adjustable robust counterpart method to study a supply chain problem un-

der uncertain demand know as retailer-supplier flexible commitment problem. Lorca et al.[59]

presented a multistage adaptive optimization model for unit commitment (UC) of power systems

under uncertain electricity loads which is the most critical daily operational problem of power

systems. The authors employed the affine policy method to enable them to deal with large scale

problems and developed a solution method based on constraint generation. They demonstrated

that the proposed method can significantly outperform the deterministic and two-stage robust UC

models. Zhang et al.[26] developed a scheduling model for continuous industrial processes that

provide interruptible load. The uncertainty in the timing of load reduction request is modeled by

an adjustable robust optimization approach that integrates recourse decisions using linear decision

rules.

Various decision rule-based and scenario-based methods have been proposed for multistage

adaptive problems. Some recent research efforts in this context are summarized as in the follow-

ing. Adaptive binary or adaptive integer decisions has been addressed by some authors. Bertsimas

and Georghiou [35] discussed that the existing decision rules are restricted by their a priori design

and not incorporating adaptive binary decisions in their modeling. In order to address these short-

comings, they derived a new decision rule structure that models continuous variables as piecewise

linear and binary variables as piecewise constant. They also proposed a method for optimal design

of the decision rule that utilizes finite number of pieces and solves the problem using mixed integer

optimization. In another work, Bertsimas and Georghiou [39] proposed a linearly parametrized

binary decision rule structure that can be reformulated to its deterministic counterpart and can

be used along with real-valued continuous decision rules available in the literature. For prob-

lems where the problem size grows exponentially with respect to problem data, they proposed a

systematic method that trades off scalability and optimality. They explained that the proposed

method is highly scalable and can practically be used for large scale problems while the available

binary decision rules in the literature suffer from limited scalability and are mainly confined to

worst-case problems. Postek and Den Hertog [38] presented a method for constructing decision

rules for continuous and integer variables in multi-period linear optimization problems. They pro-

vided theoretical evidence showing that splitting the uncertainty set can improve the worst-case

objective and proposed several splitting heuristics based on this theory.

Other researchers addressed stochastic problems where uncertainty revelation is decision depen-

dent (endogenous uncertainty). Lappas and Gounaris [24] developed a multistage adjustable robust
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optimization framework that accounts for inherent endogenous uncertainty in process scheduling

by employing decision-dependent uncertainty sets. In other work [60], the same authors presented

algorithmic considerations for decision-dependent uncertainty sets to reach guaranteed optimality

and demonstrated that this approach can eliminate conservatism with respect to optimal decisions.

Data-driven approaches are addressed by other authors. Ning and You [61] presented a data-

driven approach for multistage adaptive robust optimization. The proposed framework incorpo-

rates distributional information to avoid over-conservatism. Probability distributions are extracted

from uncertain data by employing kernelized weighted least square algorithm. The uncertainty

set is data-driven such that the bounds of uncertain parameters are defined by quantile functions

to integrate the uncertainty set into the optimization framework. In a related work [25], the

same authors proposed a data-driven framework for adaptive optimization that utilizes big data

available in process industries. The authors mention that the proposed algorithm accounts for

correlation, asymmetry and multimode of uncertainty data, therefore it generates less conservative

solutions and the solution is robust to parameter variations and anomalous measurements. They

demonstrated the advantage of the proposed framework on two industrial applications of process

scheduling and process network planning.

Reducing the problem size and improving the existing techniques have been the main focus of

other authors. Christian and Cremaschi [62] proposed two variants of branch and bound algorithm

that reduces the problem size and resource requirements for solving large scale multistage stochas-

tic problems with endogenous uncertainty in order to enable their application for real-world size

problems. Bertsimas and Dunning [63] proposed a new partition-and-bound method for multistage

mixed integer problems. This method first analyses the optimal solution to a static (nonadaptive)

model of the multistage mixed integer problem in order to obtain insights into which regions of

the uncertainty set restrict the objective value. This information is used to construct partitions

in the uncertainty set that results in a finite adaptable formulation and also to determine a lower

bound on the fully adaptable solution. This procedure is repeated to improve the objective and to

reach a desired gap. Bertsimas and Caramanis [37] proposed an adaptability model with discrete

second stage variables for multistage problems. In this method, a hierarchy of increasing adapt-

ability bridges the gap between static robust formulations and the fully adaptable formulation.

For a review on recent advances in optimization under uncertainty, the reader can refer to these

references [18, 17, 16].

In practical applications, often multiple sources of uncertainty affect the problem. Uncertain

parameters can appear as the objective coefficient uncertainty, constraint left-hand-side coefficient

or right-hand-side parameter uncertainty. In such cases, using only scenario formulation can result

in a very large problem size due to the presence of multiple sources of uncertainty and the solution

can become computationally prohibitive. On the other hand, in problems where uncertain coef-
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ficients and variables are multiplied together at the constraints, the problem is non-convex with

respect to the uncertainty parameters and strong duality theorem cannot be used. Therefore, LDR

method can not be employed to solve the problem. As explained above, the presence of multiple

sources of uncertainty restricts the traditional scenario and LDR approaches used to solve multi-

stage stochastic programming problems. This type of problems that include multiplication of static

uncertain parameters and adaptive decision variables are rarely addressed in the literature [64]. In

order to address these challenges, hybrid strategies that combine scenario and LDR methods are

proposed in this study.

In the first method, time-dependent uncertainties are modeled using scenario tree and the cor-

responding adjustable variables are scenario-dependent. The remaining static (time-independent)

uncertainties are modeled using uncertainty set. The resulting semi-infinite constraints with respect

to static uncertainty, are reformulated to their deterministic counterparts using duality theorem.

In this method, both binary and continuous variables are scenario-dependent. This approach re-

sults in a scenario-dependent dynamic solution that provides a solution that is statically robust

with respect to static uncertainty at each node of the tree.

In the second hybrid method, time-dependent uncertainty is modeled using uncertainty set and

the corresponding variables are modeled using linear decision rules with respect to time-dependent

uncertainties. Static (time-independent) uncertainty is modeled as scenarios in finite sets and the

corresponding constraints are enforced for all these scenarios. Subsequently, the resulting semi-

infinite constraints are reformulated to their deterministic robust counterparts with respect to

time-dependent uncertainty. In this method, binary variables are scenario-dependent and continu-

ous variables are affine functions of time-dependent uncertainty. This method results in a dynamic

decision rule solution that is feasible for any realization of time-dependent uncertainty within the

predefined uncertainty set and for all scenarios of static uncertainty.

The paper is organized as follows. We first present the general hybrid formulation for problems

that include only adaptive continuous variables and demonstrate the application of the developed

hybrid methods on a simple problem with only adaptive continuous variables. Then, we present

the general hybrid formulation for problems that include both continuous and binary variables

and apply the developed hybrid method on a computationally demanding case. The results are

discussed and conclusions are made in the last section.
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2.2 MSAP with adaptive continuous variables

In this section, the following multistage adaptive optimization problem (MSAP) with only contin-

uous variables is studied:

min ρ

(∑
t

ct(ξ[t])
>xt(ξ[t])

)
(2.1a)

s.t.

t∑
τ=1

At,τ (ω)>xτ (ξ[τ ]) ≤ bt(ξ[t]) ∀t, ξ ∈ Ξ, ω ∈ Ω (2.1b)

where ρ(·) is a general risk measure, ω denotes uncertainty that is not modeled as a function of

time (which may happen due to practical restrictions on the information availability), ξt denotes

the uncertain parameter of time period t, and ξ[t] = [1, ξ1, ..., ξt] represents the observed uncertainty

up to time t (where element 1 is used for intercept term in linear decision rule). Notice that the

decision variables are denoted as adaptive function of the observed uncertainty ξ[t], which means

that the decisions are adjustable with respect to ξ. Also, notice that the constraints are enforced

for any possible realization of the uncertainty within predefined set. In this sense, we are searching

for an optimal solution that is adaptively robust with respect to ξ and statically robust with respect

to ω. We further made the following assumptions for the above formulation:

� Constraint coefficients on the left-hand-side are linearly dependent on static uncertainty

(time-independent uncertainty): At,τ (ω) = At,τω

� Constraint coefficients on the right-hand-side depend only on time-dependent uncertainty:

bt(ξ[t]) = Btξ[t], and ξ is independent of ω

� Objective coefficients depend on time-dependent uncertainty: ct(ξ[t]) = Ctξ[t]

Then the MSAP model can be written as:

min ρ

(∑
t

ξ>[t]C
>
t xt(ξ[t])

)
(2.2a)

s.t.

t∑
τ=1

ω>A>t,τxτ (ξ[τ ]) ≤ Btξ[t] ∀t, ξ ∈ Ξ, ω ∈ Ω (2.2b)

In the following subsections, by applying different risk measures ρ(·), the above model is cast

into two different contexts: multistage stochastic programming (MSSP) and multistage robust

optimization (MSRO).
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2.2.1 MSSP formulation

We present two hybrid scenario and decision rule formulations to address the multistage adaptive

optimization problem. In the first method (Hybrid 1), time-dependent uncertainty is modeled

using scenario tree and the corresponding adjustable variables are modeled as scenario-dependent

(i.e., node-dependent). The remaining static (time-independent) uncertainties are modeled using

uncertainty set. The resulting semi-infinite constraints with respect to static uncertainty are

reformulated to their deterministic counterparts using duality theorem. This approach results in

a node-dependent dynamic solution that is robust with respect to static uncertainty at each node

of the tree. Using the proposed Hybrid 1 method, the problem formulation can be stated as in the

following:

min
∑
s∈S

ps
∑
t

ct,sxt,s (2.3a)

s.t.
t∑

τ=1

ω>A>t,τxτ,s ≤ bt,s ∀t, s, ω ∈ Ω (2.3b)

xt,s = xt,s′ ∀{t, s, s′} ∈ SP (2.3c)

where ps is the probability of scenario s, xt,s denotes the scenario-dependent variable, ct,s and

bt,s denote the parameter values under scenario s. Set SP defines the set where non-anticipative

constraint should be applied. That is, at stage t, the decision xt is determined over scenarios s

and s′ that share the same path up to stage t.

In the second method (Hybrid 2), time-dependent uncertainty is modeled using uncertainty set

and the corresponding variables are modeled using linear decision rules. Static (time-independent)

uncertainty is modeled as samples in a finite set: l ∈ L. The corresponding constraints are enforced

for all these samples. Subsequently, the resulting semi-infinite constraints are reformulated to their

deterministic counterparts with respect to time-dependent uncertainty. This method results in a

dynamic decision rule solution that is feasible for any realization of time-dependent uncertainty

within predefined uncertainty set and for all samples of static uncertainty. In Hybrid 2 model, the

observed uncertainty is related to the vector of all uncertain parameters using observation matrix

Pt where ξ[t] = Ptξ and linear decision rule is applied to the continuous variable: xt(ξ[t]) = Xtξ[t] =

XtPtξ. It should be noted that in this work, all linear decision rules include an intercept term.

With this, the corresponding model can be written as:

min E

(∑
t

ξ>P>t C
>
t XtPtξ

)
(2.4a)

s.t.

t∑
τ=1

ω>l A
>
t,τXτPτξ ≤ BtPtξ ∀t, l, ξ ∈ Ξ (2.4b)
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where the uncertainty set Ξ can be any type (e.g., polyhedral, ellipsoidal, etc.) that makes the

linear semi-infinite constraint traceable. The model can be further equivalently rewritten as:

min Tr

(∑
t

PtE[ξξ>]P>t C
>
t Xt

)
(2.5a)

s.t.
t∑

τ=1

ω>l A
>
t,τXτPτξ ≤ BtPtξ ∀t, l, ξ ∈ Ξ (2.5b)

where E(·) and Tr(·) are the expectation and trace operator, respectively.

2.2.2 MSRO formulation

Next, we present the formulation under the worst-case performance risk measure. The correspond-

ing problem can be written as:

min max
ξ∈Ξ

(∑
t

ξ>[t]C
>
t xt(ξ[t])

)
(2.6a)

s.t.
t∑

τ=1

ω>A>t,τxτ (ξ[τ ]) ≤ Btξ[t] ∀t, ξ ∈ Ξ, ω ∈ Ω (2.6b)

It is equivalently reformulated as:

min z (2.7a)

s.t.
t∑

τ=1

ω>A>t,τxτ (ξ[τ ]) ≤ Btξ[t] ∀t, ξ ∈ Ξ, ω ∈ Ω (2.7b)∑
t

ξ>[t]C
>
t xt(ξ[t]) ≤ z ∀ξ ∈ Ξ (2.7c)

Following the same idea behind MSSP, the MSRO model in hybrid 1 method can be written as:

min z (2.8a)

s.t.
t∑

τ=1

ω>A>t,τxτ,s ≤ bt,s ∀t, s, ω ∈ Ω (2.8b)∑
t

ct,sxt,s ≤ z ∀s (2.8c)

xt,s = xt,s′ ∀{t, s, s′} ∈ SP (2.8d)

and the MSRO model in Hybrid 2 method is formulated as:

min z (2.9a)
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s.t.
t∑

τ=1

ω>l A
>
t,τXτPτξ ≤ BtPtξ ∀t, l, ξ ∈ Ξ (2.9b)∑

t

ξ>P>t C
>
t XtPtξ ≤ z ∀ξ ∈ Ξ (2.9c)

In the above models, the semi-infinite constraints can be converted to their deterministic robust

counterpart and finally the problem can be solved using a deterministic solver. Note that the sec-

ond constraint (2.9c) of the above model (9) contains a quadratic function of the uncertainty and

semi-definite programming (SDP) type of robust counterpart is available for ellipsoidal uncertainty

set.

The above two hybrid methods are summarized in Table 4.2.

Table 2.1: Summary of the proposed hybrid formulation characteristics

Method Uncertainty model Continuous Variable

Hybrid 1
Static: Set

Time-dependent: Scenario tree Scenario dependent

Hybrid 2
Static: Samples

Time-dependent: Set Decision Rule

2.3 Illustrating example

An illustrative example that includes only continuous variables is employed to demonstrate the

application of Hybrid 1 and 2 methods. In this problem, there are two technologies (T1,T2) that

produce a single product A (Fig. 2.1). A yield factor γi is associated with each technology

that indicates its contribution to production. The problem consists of two time periods. At

the beginning of each time period t, an installation decision xi,t is made. If the demand of the

corresponding time period dt is not met, then some outsourcing decision yt is made (Fig. 2.2).

There is also a restriction on the total amount of production using both technologies at each time

period. The objective is to minimize the overall cost of production and outsourcing while the

demand at each time period is met. Outsourcing cost is higher than production cost, therefore it

is preferred to use production rather than outsourcing to reduce the total cost.

The optimization model is given as follows. Eq. 2.10a is the objective function which consists

of the installation and outsourcing costs, where the expectation operator is applied to uncertainty

vector ξ. Eqs. 2.10b and 2.10c indicate the production restriction for the first and second time

periods. Eqs. 2.10d and 2.10e apply the demand constraint for the first and second time periods,
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Figure 2.1: Technology and product relationship

respectively.

min
∑
i

αixi,1 + Eξ

[∑
i

αixi,2(ξ) +
2∑
t=1

βyt(ξ)

]
(2.10a)

s.t.
2∑
i=1

xi,1 ≤ 100 (2.10b)

2∑
i=1

xi,2(ξ) ≤ 100 ∀ξ ∈ Ξ (2.10c)∑
i

γi(ω)xi,1 + y1(ξ) ≥ d1(ξ) ∀ξ ∈ Ξ, ω ∈ Ω (2.10d)∑
i

γi(ω)(xi,1 + xi,2(ξ)) + y2(ξ) ≥ d2(ξ) ∀ξ ∈ Ξ, ω ∈ Ω (2.10e)

xi,t(ξ) ≥ 0 ∀i, t,∀ξ ∈ Ξ (2.10f)

yt(ξ) ≥ 0 ∀t,∀ξ ∈ Ξ (2.10g)

Unit installation cost αi for technologies T1, T2 is 1, 3, respectively. Nominal yield factor γi for

technologies T1, T2 is 1 and 3.4, respectively. Outsourcing cost β is 7. The nominal demand at time

periods 1 and 2 is 540 and 615, respectively. In the stochastic model, the yield γi(ω) and demand

dt(ξ) parameters are considered to be uncertain. As a result, installation xi,t(ξ) and outsourcing

yt(ξ) decisions depend on uncertainty. The parameter ξ represents the uncertainty vector which

includes demand uncertainty.

The stochastic problem is solved using two different methods. In Hybrid 1, yield uncertainty is

modeled by constructing a set and demand uncertainty is modeled by generating time-dependent

scenarios. In Hybrid 2, an uncertainty set is built for demand uncertainty and time-independent

scenarios are considered for yield uncertainty. Hybrid 1 and Hybrid 2 methods are explained in

detail in sections 2.3.1 and 2.3.2, respectively.
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2.3.1 Hybrid 1 method

In this illustrating example, two sources of uncertainty exist: demand and yield. Demand is time-

dependent and yield is static. Demand uncertainty is modeled using scenario-tree representation

(Fig. 2.3a) and the decision variables (installation xi,k and outsourcing yk) are node-dependent.

Yield is a static uncertainty and it is modeled using uncertainty set.

Demand uncertainty: As Fig. 2.3a illustrates, a scenario tree is constructed to represent

demand uncertainty where each node corresponds to a demand scenario at a certain time period.

Node k = 1 corresponds to t = 0, nodes k = 2, 3, 4 correspond to t = 1 and nodes k = 5, 6, · · · , 13

correspond to t = 2. The probability of occurrence is 1
3

for the three branches of each node. Table

2.2 provides the demand values for each node of the tree.

Figure 2.2: Decision making and uncertainty revelation sequence

Table 2.2: Demand for product A at node k, dk

k 1 2 3 4 5 6 7 8 9 10 11 12 13
dk - 520 540 560 540 615 690 540 615 690 540 615 690

Yield uncertainty: The uncertain yield parameter is modeled as 10% perturbation on some

nominal yield values γi = γ̄i(1 + ωi). Eqs. 2.11 and 2.12 describe the yield uncertainty set and

Fig. 2.3b illustrates the set.

|ωi| ≤ 0.1 ∀i (2.11)∑
i

|ωi| ≤ 0.15 ∀i (2.12)

To simplify robust counterpart derivation, we use the vector notation of uncertain parameters

ω = [ω1, ω2]>. For this purpose, a truncate operator Oi is used such that Oi ω = ωi. Oi is a row

vector in which the i-th element is 1 and all the rest elements are zero (e.g. O2 = [0, 1] for i = 2 );

therefore yield can be written as:

γi = γ̄i(1 +Oiω) ∀i, ω ∈ Ω (2.13)
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Eqs. 2.11 and 2.12 can be written in the following inequality form which is a polyhedral set:

Ω = {ω : Wω ≤ V } (2.14)

Based on the above uncertainty modeling, the stochastic model can be written as:

min
∑
i

αixi,1 +
1

3

4∑
k=2

[∑
i

αixi,k + βyk

]
+

1

9

13∑
k=5

βyk (2.15a)

s.t.
2∑
i=1

xi,1 ≤ 100 (2.15b)

2∑
i=1

xi,k ≤ 100 ∀k ∈ {2, 3, 4} (2.15c)∑
i

γ̄i(1 +Oiω)xi,1 + yk ≥ dk ∀k ∈ {2, 3, 4}, ω ∈ Ω (2.15d)∑
i

γ̄i(1 +Oiω)(xi,1 + xi,a(k)) + yk ≥ dk ∀k ∈ {5, ..., 13}, ω ∈ Ω (2.15e)

xi,k ≥ 0 ∀i ∈ {1, 2}, k ∈ {1, 2, 3, 4} (2.15f)

yk ≥ 0 ∀k ∈ {2, ..., 13} (2.15g)

In the model, dk, xi,k and yk are the demand parameter, installation and outsourcing variables at

each node of the tree respectively. In this formulation, node representation of time-dependent un-

certainty is employed that inherently accounts for non-anticipativity; therefore non-anticipativity

constraint is not required. The derivation procedure for robust counterparts of semi-infinite con-

straints 2.15d and 2.15e with respect to yield uncertainty is provided in the appendix. Eqs. 2.16a

to 2.16g summarize the final Hybrid 1 formulation.

min
∑
i

αixi,1 +
1

3

4∑
k=2

[∑
i

αixi,k + β yk

]
+

1

9

13∑
k=5

βyk (2.16a)

s.t.
2∑
i=1

xi,1 ≤ 100 (2.16b)

2∑
i=1

xi,k ≤ 100 ∀k ∈ {2, 3, 4} (2.16c)∑
i

γ̄ixi,1 − V >θk + yk ≥ dk ∀k ∈ {2, 3, 4} (2.16d)

−W>θk = (
∑
i

γ̄ixi,1Oi)
> ∀k ∈ {2, 3, 4}

θk ≥ 0 ∀k ∈ {2, 3, 4}
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∑
i

γ̄i (xi,1 + xi,a(k))− V >φk + yk ≥ dk ∀k ∈ {5, ..., 13} (2.16e)

−W>φk = (
∑
i

γ̄i(xi,1 + xi,a(k))Oi)
> ∀k ∈ {5, ..., 13}

φk ≥ 0 ∀k ∈ {5, ..., 13}

xi,k ≥ 0 ∀i ∈ {1, 2}, k ∈ {1, 2, 3, 4} (2.16f)

yk ≥ 0 ∀k ∈ {2, ..., 13} (2.16g)

2.3.2 Hybrid 2 method

In hybrid 2 formulation, uncertainty is modeled in the following way: time-independent scenarios

for yield parameter γi(ω); uncertainty set for demand parameters d(ξ). Finally, linear decision rule

for adjustable decisions x(ξ), y(ξ).

(a) Demand uncertainty scenario tree (b) Yield uncertainty set

Figure 2.3: Modeling of uncertainty in Hybrid 1 method

Demand Uncertainty: Demand is a time-dependent parameter. Demand at time periods 1

and 2 is modeled as a perturbation on some nominal demand values:

d1(ξ) = d̄1(1 + ξ1) (2.17)

d2(ξ) = d̄2(1 + ξ2) (2.18)

where d̄1, d̄2 are the nominal demand values (d̄1 = 540, d̄2 = 615), and ξ1, ξ2 are demand uncer-

tainty parameters at time period 1 and 2, respectively.

For demand uncertainty, a box uncertainty set is defined as (Fig. 2.4a):

Ξ = {ξ : |ξ1| ≤ 0.037, |ξ2| ≤ 0.121} (2.19)
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The boundary values for ξ1 and ξ2 are designed so that demand uncertainty model of Hybrid 1

and 2 methods match. In Hybrid 2 method, the uncertainty vector is defined as ξ = [1, ξ1, ξ2]>,

and the uncertainty set can be formulated as a polyhedral set using the compact representation

Wξ ≤ V .

(a) Uncertainty set for demand (b) Yield uncertainty samples

Figure 2.4: Modeling of uncertainty in Hybrid 2 method

Yield uncertainty: Yield is a static (time-independent) parameter. In Hybrid 2 method,

yield uncertainty γi(ω) is defined as time-independent scenarios γi,l. For this purpose, scenarios

are sampled from the yield uncertainty set defined in the Hybrid 1 method and the samples include

all vertices of the set. Fig. 2.4b illustrates the yield uncertainty set, which includes 8 samples on

the vertices and 17 random samples inside the set. Since the samples cover the vertices of the yield

uncertainty set and the constraints are linear with respect to yield uncertainty, the inside samples

are redundant.

In this model, adaptive variables are modeled as linear decision rules (affine functions) of

demand uncertainty.

xi,1 = xi,1 ∀i (2.20a)

xi,2(ξ) = x̄i,2 + x̃i,2 ξ1 ∀i (2.20b)

y1(ξ) = ȳ1 + ỹ1 ξ1 (2.20c)

y2(ξ) = ȳ2 + ỹ2 ξ1 + ŷ2 ξ2 (2.20d)
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It should be noted that at each time period, only the demand uncertain parameters up to that

time period are observed and the future uncertainties are not revealed yet. Therefore, at each time

period, variables can only depend on uncertain parameters observed up to that time period. Thus,

at time period 1 variables can only depend on ξ1 and at time period 2 variables can depend on ξ1

and ξ2. Following this reasoning, non-anticipativity of uncertainty is enforced in the problem for-

mulation. As illustrated in Fig. 2.2, at time period 1 the installation decision xi,1 is decided before

the revelation of demand uncertainty ξ1, therefore it does not depend on ξ1, but the outsourcing

decision y1(ξ) is decided after the revelation of ξ1, therefore it depends on ξ1. The same reasoning

follows for second time period variables.

In the appendix, the derivation procedure for the robust counterpart of Hybrid 2 model with

respect to demand uncertainty is provided. Eqs. 2.21a to 2.21i present the final Hybrid 2 model.

min
∑
i

αixi,1 +

[∑
i

αix̄i,2 + β (ȳ1 + ȳ2)

]
(2.21a)

s.t.
2∑
i=1

xi,1 ≤ 100 (2.21b)

V >θ ≤ 100 (2.21c)

W>θ =
2∑
i=1

[x̄i,2 x̃i,2 0]>

θ ≥ 0∑
i

γi,l xi,1 − V >µl ≥ d̄1 ∀l (2.21d)

−W>µl = [ȳ1 ỹ1 − d̄1 0]> ∀l

µl ≥ 0 ∀l∑
i

γi,l xi,1 − V >φl ≥ d̄2 ∀l (2.21e)

−W>φl =
∑
i

γi,l[x̄i,2 x̃i,2 0]> + [ȳ2 ỹ2 ŷ2 − d̄2]> ∀l

φl ≥ 0 ∀l

xi,1 ≥ 0 ∀i (2.21f)

− V >ψi ≥ 0 ∀i (2.21g)

−W>ψi = [x̄i,2 x̃i,2 0]> ∀i

ψi ≥ 0 ∀i

− V >η ≥ 0 (2.21h)

−W>η = [ȳ1 ỹ1 0]>
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η ≥ 0

− V >δ ≥ 0 (2.21i)

−W>δ = [ȳ2 ỹ2 ŷ2]>

δ ≥ 0

Results

For this illustrating example, the original deterministic model and the prosed hybrid models are all

linear programming problems. They are solved in GAMS 26.1.0 using Cplex solver 12.8.0.0. First,

the deterministic model solution for installation (xi,t) and outsourcing (yt) decisions is studied.

Since in this problem, the yield factor for second technology (γ2 = 3.4) is greater than the first one

(γ1 = 1), it is more economical to satisfy all the demand requirement using the second technology

(P2). This is the reason that zero installation is observed for technology 1 at both time periods

t = 1 and t = 2 (x1,1 = 0, x1,2 = 0). At t = 1, in order to satisfy the demand constraint, full

capacity of installation decision is used (x2,1 = 100, x2,2 = 82.35) and the remaining demand is

satisfied using outsourcing (y1 = 200). At t = 2, since the installation capacities of both time

periods are accumulated, all the demand is satisfied using installed capacity and the outsourcing

decision is zero (y2 = 0). Objective value of 1942.64 is obtained for deterministic formulation.

Results of the hybrid 1 model are studied next. Similar to the discussion presented for deter-

ministic solution, since the yield factor for technology P2 is greater than technology P1, installation

decisions of P1 are all zero in all the times (Table 2.3). Greater yield factor means that technology

P2 can generate more products at lower cost. At node k = 1 (t = 0), only installation decision

is made and no outsourcing is required (y1 = 0), but at the remaining nodes, after demand un-

certainty is revealed in time periods 1 and 2, some outsourcing decisions are observed (Table 2.3).

The objective value for Hybrid 1 formulation is 2426.97.

Table 2.3: Hybrid 1 model solution

k 1 2 3 4 5 6 7 8 9 10 11 12 13
x1,k 0 0 0 0 - - - - - - - - -
x2,k 100 100 100 100 - - - - - - - - -
yk - 214 234 254 0 3 78 0 3 78 0 3 78

The optimal objective for the Hybrid 2 model is 2510.99. The initial installation decision

is x1,1 = 0, x2,1 = 100. The second stage installation decision is x1,2(ξ) = 0, x2,2(ξ) = 100. The

outpouring decision is y1(ξ) = 234+540ξ1, y2(ξ) = 39+319.8ξ2. Hybrid 1 method provides a better

objective value (3.46% lower cost) compared to Hybrid method 2. Similar to Hybrid 1 solution,

since the yield factor for technology P2 is greater than P1, all the installation decisions are made
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by technology P2 at both time periods 1 and 2 and the installation decisions of technology P1 are

zero (x1,1 = 0, x1,2=0). Similarly, we observe some outsourcing decisions at both time periods.

Figure 2.5: Outsourcing decisions for t = 1 (left) and t = 2 (right)

Figures 2.5 illustrates the outsourcing decisions for both hybrid methods in t = 1 and t = 2

time periods respectively. The black line represents the Hybrid 2 solution obtained using the LDR

technique and the red dots represents the Hybrid 1 solution obtained from the node-tree method.

Both figures show that at each time period, if demand increases, the outsourcing decision will

increase as well.

Table 2.4: Solution, model size, and run time

Solution Method Objective Variables Constraints Run time (sec)
Deterministic 1942.64 7 11 0.103

Hybrid 1 2426.97 277 381 0.112
Hybrid 2 2510.99 96 151 0.109

Table 2.4 summarizes the objective value, model size and computation time. Notice that only

8 samples for static uncertainty are considered for Hybrid 2 solution. In this problem, the number

of variables and constraints is in the same order for both Hybrid 1 and 2 methods and the run time

is under 0.15 seconds while Hybrid 1 method results in slightly better objective function (3.46%

lower cost) compared to Hybrid 2. It should be reminded that in both hybrid methods, the solution

is feasible with respect to demand and yield uncertainty scenarios or sets, while the deterministic

solution may result in constraint violations. While there is a minor difference in runtime for this

small problem, for problems with larger number of variables and uncertain parameters, there can

be a significant difference in run time. The difference in solution quality and run time between

hybrid methods is investigated in the case study presented in section 2.5.
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2.4 MSAP with both continuous and integer adaptive vari-

ables

In this section, we consider the following MSAP problem with both adaptive continuous and integer

variables.

min ρ

(∑
t

ct(ξ[t])
>xt(ξ[t]) +

∑
t

dt(ξ[t])
>yt(ξ[t])

)
(2.22a)

s.t.

t∑
τ=1

Et,τ (ω)>xτ (ξ[τ ]) +
t∑

τ=1

Ft,τ (ω)>yτ (ξ[τ ]) ≤ qt(ξ[t]) ∀t, ξ ∈ Ξ, ω ∈ Ω (2.22b)

t∑
τ=1

At,τ (ω)>xτ (ξ[τ ]) ≤ bt(ξ[t]) ∀t, ξ ∈ Ξ, ω ∈ Ω (2.22c)

yt(ξ[t]) ∈ {0, 1} ∀t, ξ ∈ Ξ (2.22d)

where binary variable yt is also adjustable with respect to observed uncertainty ξ. The constraints

are classified into those with only continuous variables and those with both continuous and binary

or only binary variables. We further assume the following linear model of uncertainty:

ct(ξ[t]) = Ctξ[t], dt(ξ[t]) = Dtξ[t], qt(ξ[t]) = Qtξ[t], bt(ξ[t]) = Btξ[t]

At,τ (ω) = At,τω,Et,τ (ω) = Et,τω, Ft,τ (ω) = Ft,τω

Then, the model is formulated as:

min ρ

(∑
t

ξ>[t]C
>
t xt(ξ[t]) +

∑
t

ξ>[t]D
>
t yt(ξ[t])

)
(2.23a)

s.t.
t∑

τ=1

ω>E>t,τxτ (ξ[τ ]) +
t∑

τ=1

ω>F>t,τyτ (ξ[τ ]) ≤ Qtξ[t] ∀t, ξ ∈ Ξ, ω ∈ Ω (2.23b)

t∑
τ=1

ω>A>t,τxτ (ξ[τ ]) ≤ Btξ[t] ∀t, ξ ∈ Ξ, ω ∈ Ω (2.23c)

yt(ξt) ∈ {0, 1} ∀t, ξ ∈ Ξ (2.23d)

2.4.1 MSSP formulation

With the expectation based objective, the corresponding MSSP is as follows:

min E

(∑
t

ξ>[t]C
>
t xt(ξ[t]) +

∑
t

ξ>[t]D
>
t yt(ξ[t])

)
(2.24a)
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s.t.
t∑

τ=1

ω>E>t,τxτ (ξ[τ ]) +
t∑

τ=1

ω>F>t,τyτ (ξ[τ ]) ≤ Qtξ[t] ∀t, ξ ∈ Ξ, ω ∈ Ω (2.24b)

t∑
τ=1

ω>A>t,τxτ (ξ[τ ]) ≤ Btξ[t] ∀t, ξ ∈ Ξ, ω ∈ Ω (2.24c)

yt(ξt) ∈ {0, 1} ∀t, ξ ∈ Ξ (2.24d)

In Hybrid 1 method, time dependent uncertainty is modeled with scenario tree and variables (both

binary and continuous) are scenario-dependent and the corresponding formulation is provided

below:

min
∑
s∈S

ps

(∑
t

ct,sxt,s +
∑
t

dt,syt,s

)
(2.25a)

s.t.
t∑

τ=1

ω>E>t,τxτ,s +
t∑

τ=1

ω>F>t,τyτ,s ≤ qt,s ∀t, s, ω ∈ Ω (2.25b)

t∑
τ=1

ω>A>t,τxτ,s ≤ bt,s ∀t, s, ω ∈ Ω (2.25c)

xt,s = xt,s′ ∀{t, s, s′} ∈ SP (2.25d)

yt,s = yt,s′ ∀{t, s, s′} ∈ SP (2.25e)

where ct,s, dt,s, qt,s are bt,s are parameter values under scenario s, set SP defines the set where

non-anticipativity constraint should be applied.

In Hybrid 2 method, the binary variables are scenario-dependent and the continuous variables

are linear decision rules of time-dependent uncertainty. For constraints with only continuous

variables (Eq. 2.26c), the polyhedral uncertainty set is employed to model the time-dependent

uncertainty and the linear decision rule is applied to the continuous variables. For constraints with

both binary and continuous variables (Eq. 2.26b), the binary variables are scenario-dependent and

LDR is applied to continuous variables. In this case, the time-dependent uncertainty is modeled

using scenario-tree. If the constraint includes only binary variables, it is a especial case of constraint

2.26b where all Et,τ = 0).

min E

(∑
t

ξ>P>t C
>
t XtPtξ

)
+
∑
s∈S

ps

(∑
t

dt,syt,s

)
(2.26a)

s.t.

t∑
τ=1

ω>E>t,τXτPτξs +
t∑

τ=1

ω>F>t,τyτ,s ≤ qt,s ∀t, s, ω ∈ Ω (2.26b)

t∑
τ=1

ω>l A
>
t,τXτPτξ ≤ BtPtξ ∀t, l, ξ ∈ Ξ (2.26c)
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yt,s = yt,s′ ∀{t, s, s′} ∈ SP (2.26d)

In the above formulation, Pt is the observation matrix defined in section 2.2.1. Tables 2.5 summa-

rizes the formulation characteristics of Hybrid 1 and 2 methods.

Table 2.5: Summary of the proposed hybrid formulation characteristics

Method Uncertainty model Variable model

Hybrid 1
Static: Set Integer: Scenario-dependent

Time-dependent: Scenario tree Continuous: Scenario dependent

Hybrid 2
Static: Samples Integer: Scenario-dependent

Time-dependent: Scenario tree and set Continuous: Decision Rule

2.4.2 MSRO formulation

With worst-case objective, the Hybrid 1 formulation is given below:

min z (2.27a)

s.t.

t∑
τ=1

ω>E>t,τxτ,s +
t∑

τ=1

ω>F>t,τyτ,s ≤ qt,s ∀t, s, ω ∈ Ω (2.27b)

t∑
τ=1

ω>A>t,τxτ,s ≤ bt,s ∀t, s, ω ∈ Ω (2.27c)∑
t

ct,sxt,s +
∑
t

dt,syt,s ≤ z ∀s (2.27d)

xt,s = xt,s′ ∀{t, s, s′} ∈ SP (2.27e)

yt,s = yt,s′ ∀{t, s, s′} ∈ SP (2.27f)

where the worst-case objective is evaluated over the scenarios. On the other hand, for Hybrid 2

method, the worst case objective is evaluated through both uncertainty set and scenarios.

min z1 + z2 (2.28a)

s.t.
t∑

τ=1

ω>E>t,τXτPτξs +
t∑

τ=1

ω>F>t,τyτ,s ≤ qt,s ∀t, s, ω ∈ Ω (2.28b)

t∑
τ=1

ω>l A
>
t,τXτPτξ ≤ BtPtξ ∀t, l, ξ ∈ Ξ (2.28c)∑

t

ξ>P>t C
>
t XtPtξ ≤ z1 ∀ξ ∈ Ξ (2.28d)∑

t

dt,syt,s ≤ z2 ∀s (2.28e)
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yt,s = yt,s′ ∀{t, s, s′} ∈ SP (2.28f)

In the subsequent section, an example is studied to demonstrate the MSSP with both adaptive

integer and adaptive continuous variables.

2.5 Capacity expansion planning example

This section investigates a multistage process capacity planning problem with both continuous and

integer adaptive variables. Fig. 2.6 illustrates the process network superstructure [65]. Chemicals

1, 2, 3 and 4 are purchased from external resources or produced in the network. Chemical 5 is the

final product sold to the market. The objective is to optimize the process planning and maximize

the profit of the overall process over a given number of time periods.

Figure 2.6: Process network superstructure

Multiple sources of uncertainty are considered in this process network optimization. Presence

of several sources of uncertainty introduce challenges in the solution of the stochastic optimization

problem. The uncertainties include: demand(dj,t(ξ)), price (γj,t(ξ)) and yield (ηi,j(ω)) uncertainty

of chemical 5 (j = 5). Demand and price uncertainties are time-dependent while yield uncertainty

is time-independent. Fig. 2.7 illustrates decision making and uncertainty revelation sequence. At

the beginning of each time period, demand and price uncertainties for chemical 5 are revealed

(dj,t(ξ), γj,t(ξ), j = 5); subsequently some capacity installation, operation and purchase deci-

sions for processes 1 to 6 and chemicals 1 to 4 (Xi,t(ξ),Wi,t(ξ), Pj,t(ξ)) are made. Chemical 5

(Sj,t(ξ, ω), j = 5) is sold to the market at the end of each time period. It is assumed that no

inventory is available and no product can be stored; therefore all purchased or produced amounts

of chemicals 1 to 4 have to be consumed and all the produced chemical 5 has to be sold. It should

be mentioned that the sales amount of chemical 5 depends on yield uncertainty of the process

network for chemical 5.
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Figure 2.7: Decision timing and uncertainty revelation sequence

In this case study, it is assumed that at each time period, demand and price uncertainties are

independent from the other time periods. For instance, demand and price values at time period 1

are independent of time period 2 and there is no correlation between them. In Hybrid 2, Eqs. 2.48

and 2.49 state the independency of uncertainty parameters at different time periods. In order to

have equivalent independency of uncertainty at Hybrid 1, in each time period, each cluster of the

scenario tree is independent of the other clusters (i.e., in each time period, at each cluster, the

middle node accounts for the nominal value of the corresponding time period, and the upper and

lower nodes account for +20% and -20% perturbation of the nominal value, respectively.)

The general multistage stochastic programming formulation for this problem is presented as in

the following:

max Eξ,ω[
∑
t

∑
j

(γj,t(ξ)Sj,t(ξ, ω)− Γj,tPj,t(ξ))−
∑
t

∑
i

(δi,tWi,t(ξ) + αi,tXi,t(ξ) + βi,tyi,t(ξ))]

(2.29a)

s.t. yi,t(ξ)X
L
i,t ≤ Xi,t(ξ) ≤ yi,t(ξ)X

U
i,t ∀i, t, ξ ∈ Ξ (2.29b)

Qi,t(ξ) = Qi,t−1(ξ) +Xi,t(ξ) ∀i, t, ξ ∈ Ξ (2.29c)∑
t

yi,t(ξ) ≤ NEXP
i ∀i, ξ ∈ Ξ (2.29d)∑

i

(αi,tXi,t(ξ) + βi,tyi,t(ξ)) ≤ CIt ∀t, ξ ∈ Ξ (2.29e)

Wi,t(ξ) ≤ Qi,t(ξ) ∀i, t, ξ ∈ Ξ (2.29f)

Pj,t(ξ) +
∑
i

ηi,j(ω)Wi,t(ξ) = Sj,t(ξ, ω) +
∑
i

µi,jWi,t(ξ) ∀j, t, ξ ∈ Ξ, ω ∈ Ω (2.29g)

Pj,t(ξ) ≤ aj,t ∀j, t, ξ ∈ Ξ (2.29h)

Sj,t(ξ, ω) ≥ dj,t(ξ) ∀j = 5, t, ξ ∈ Ξ (2.29i)
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Xi,t(ξ),Wi,t(ξ), Pi,t(ξ) ≥ 0 ∀i, t, ξ ∈ Ξ (2.29j)

yi,t(ξ) ∈ {0, 1} ∀i, t, ξ ∈ Ξ (2.29k)

In this formulation, indices i, j and t indicate the process, chemical and time period respec-

tively and ξ is the vector of uncertain parameters. The variable Pj,t(ξ) is the amount of chemical j

purchased at the beginning of period t, Qi,t(ξ) is the total capacity of process i in period t, Sj,t(ξ, ω)

is the amount of chemical j sold at period t, Xi,t(ξ) is the units of expansion of process i at period

t, and yi,t(ξ) is a binary variable that indicates process i is expanded or not. The parameter αi,t

is unit expansion cost of process i at period t, βi,t is fixed cost of establishing process i at period

t, γi,t(ξ) and Γi,t are selling and buying prices of chemical j in period t, δi,t is the unit operation

cost for process i in period t, ηi,j(ω) is the consumption ratio for chemical j in process i, µi,j is the

production ratio for chemical j in process i, CIt is the investment budget for period t, aj,t is the

availability of chemical j in period t, dj,t(ξ) is the demand of chemical j in period t, NEXP
i is the

allowable number of expansions for process i during all the project time horizon, XL
i,t and XU

i,t are

the lower and upper bounds for capacity expansion of process i in period t which are set as 0 and

105 tons respectively.

The objective of the stochastic formulation is to maximize the profit obtained from the process

network. Eq. 4.32a is the objective function which calculates the revenue obtained from selling

chemical 5 and deducts operation, installation and purchase costs. Constraint 4.32b means that

expansion capacity (Xi,t(ξ)) of process i at the beginning of period t is bounded between an

upper and lower bound. yi,t(ξ) is a binary variable which indicates process i is expanded at

period t or not. Eq. 4.32c calculates the total expanded capacity for each process up to time t.

Constraint 4.32d means that the total number of expansions for each process i is restricted during

the project horizon. Constraint 4.32e indicates that at each year, there is a capital restriction CIt

for expansion (αi,tXi,t(ξ)) and fixed investment (βi,tyi,t(ξ)) costs. Constraint 4.32f means that the

operation level of each process at time t, can not be more than the total installed capacity for that

process up to time t. Eq. 4.32g is a material balance equation and it means the total amount of

purchased (Pj,t(ξ)) and produced (ηi,j(ω)Wi,t(ξ)) chemicals must be equal to the total amount of

consumed (µi,jWi,t(ξ)) and sold (Sj,t(ξ, ω)) chemicals. Constraint 4.32h indicates that the amount

of purchased chemical j at time t, should be less than or equal to the available amount of that

chemical (aj,t). Constraint 4.32i describes that the amount of sold chemical j at time t (Sj,t(ξ, ω)),

should be greater than its demand (dj,t(ξ)) and constraint 4.32k indicates that problem variables

can not be negative.
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2.5.1 Hybrid 1 method

In Hybrid 1 method, time-dependent uncertainties are modeled as scenario trees and time-independent

uncertainties as static sets. Subsequently, the constraints are reformulated to their robust coun-

terparts with respect to static uncertainty. The solution is feasible for all the uncertainty scenarios

defined in the scenario tree and any realization of uncertainty within the static uncertainty set.

Time-independent uncertainty. Yield uncertainty of chemical 5 (ηi,5(ω)) is static uncer-

tainty modeled as an uncertainty set and it is assumed to be uniformly distributed within 20%

perturbation range of nominal yield values (Eqs. 2.30, 2.31). It should be noted that since only

the fifth product is sold, demand, selling price, and selling amount parameters and variables are

only defined for the fifth product; also yield of chemicals 1 to 4 is assumed to be known and there

is no yield uncertainty for chemicals 1 to 4 (ωi,j = 0, dj,t = 0, γj,t = 0, Sj,t = 0, ∀j = 1, ..., 4).

ηi,5(ω) = η̄i,5(1 + ωi,5) ∀i (2.30)

|ωi,5| ≤ 0.2 ∀i (2.31)

Eq. 2.31 can be written as an inequality on the vector of yield uncertainties ω = [ω1,5, ω2,5, · · · , ω6,5]>

which represents a polyhedral uncertainty set.

Ω = {ω : Mω ≤ V } (2.32)

Time-dependent uncertainty. In this problem, demand and price of chemical 5 (d5,t(ξ), γ5,t(ξ))

are time-dependent uncertainties modeled as scenario trees (Fig. 2.8). Fig. 2.8 illustrates the sce-

nario tree for seven time periods where each node is divided into three branches. In the scenario

tree, each path from the first node (k = 1) to the nodes at the last time period (k = 1093 to 3280)

represents an uncertainty scenario. The problem is solved for seven time periods where the tree

includes 3280 nodes and the probability of occurrence of each branch is 1
3

at each node.

Eqs. 2.33a to 2.33n represent the general stochastic Hybrid 1 model for the current problem

where node formulation is used for time-dependent uncertainties (demand and price of chemical

5) and time-dependent parameters and variables.

max
∑
k

∑
j

pkγj,kEω[Sj,k(ω)]−
∑
k

∑
j

pkΓj,kPj,k −
∑
k

∑
i

pk (δi,kWi,k + αi,kXi,k + βi,kyi,k)

(2.33a)

s.t. yi,kX
L
i,k ≤ Xi,k ≤ yi,kX

U
i,k ∀i, k ∈ K−1 (2.33b)

Qi,k = Qi,a(k) +Xi,k ∀i, k ∈ K−1 (2.33c)

Qi,k = Xi,k ∀i, k ∈ K2 (2.33d)

Ui,k ≤ NEXP
i ∀i, k ∈ KT (2.33e)
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Figure 2.8: Scenario tree for 7 time periods

Ui,k = yi,k + Ui,a(k) ∀i, k ∈ K−1 (2.33f)

Ui,1 = 0 ∀i (2.33g)∑
i

(αi,kXi,k + βi,kyi,k) ≤ CIk ∀k ∈ K−1 (2.33h)

Wi,k ≤ Qi,k ∀i, k ∈ K−1 (2.33i)

Pj,k +
∑
i

ηi,j(ω)Wi,k = Sj,k(ω) +
∑
i

µi,jWi,k ∀j, k ∈ K−1, ω ∈ Ω (2.33j)

Pj,k ≤ aj,k ∀j, k ∈ K−1 (2.33k)

Sj,k(ω) ≥ dj,k ∀j = 5, k ∈ K−1, ω ∈ Ω (2.33l)

Xi,k,Wi,k, Pi,k ≥ 0 ∀i, k ∈ K−1 (2.33m)

yi,k ∈ {0, 1} ∀i, k ∈ K−1 (2.33n)

where pk represents the probability of each node in the node-tree and Eqs. 2.33e to 2.33g corre-

spond to Eq. 4.32d. In this formulation, K−1 represents the set of all the nodes except the first

node, while K2 and KT represent the nodes of the second and last time periods, respectively.

Equation 2.33j is a material balance relation which means all the purchased and produced

materials have to consumed and sold. Only chemical 5 is sold, and since the yield of chemical 5

on the left-hand side of the equation is an uncertain parameter (ηi,5(ω)), in order to satisfy the

equality, amount of the sold chemical 5 should depend on yield uncertainty too (S5,k(ω)). For

this purpose, the variable S5,k(ω) is considered to be an affine function of yield uncertainty. Since
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each node represents a different scenario for demand and price uncertainty, it means the variable

S5,k(ω) depends on demand, price and yield uncertainties of chemical 5. Notice that the amount

of sales is dependent on multiple uncertainties including yield. The sale dependency on demand

and price uncertainty is modeled using node index of scenario tree and its dependency on static

yield uncertainty is modelled using linear decision rule.

Sj,k(ω) = S̄j,k + Ŝj,kω ∀j = 5, k ∈ K−1 (2.34)

Since only chemical 5 is sold, the variable Sj,k(ω) is zero for chemicals 1 to 4:

S̄j,k = 0,∀j ∈ {1, ..., 4}, k ∈ K−1 (2.35)

Ŝj,k,i = 0,∀i, j ∈ {1, ..., 4}, k ∈ K−1 (2.36)

Under the uniform distribution assumption, the objective can be written as

max
∑
k

∑
j

pkγkS̄j,k −
∑
k

∑
j

pkΓj,kPj,k −
∑
k

∑
i

pk(δi,kWi,k + αi,kXi,k + βi,kyi,k) (2.37)

Next, the robust form of Hybrid 1 formulation with respect to the time-independent yield

uncertainty is derived. Only equation 2.33j and inequality 2.33l depend on yield uncertainty. By

substituting the uncertainty relation for yield ηi,j = η̄i,j(1 + ωi,j), the derivation procedure for

robust form of equality 2.33j Pj,k +
∑

i ηi,j(ω)Wi,k = Sj,k(ω) +
∑

i µi,jWi,k,∀j, k ∈ K−1, ω ∈ Ω is

presented below:

Pj,k +
∑
i

η̄i,j(1 + ωi,j)Wi,k = S̄j,k +
∑
i

Ŝj,k,iωi,j +
∑
i

µi,jWi,k ∀j, k ∈ K−1, ω ∈ Ω (2.38)

In order to satisfy the equality, the coefficients of the uncertain parameter ξi,j and the terms

without parameter ξi,j are set to be equal on both sides of the equation:

Pj,k +
∑
i

η̄i,jWi,k = S̄j,k +
∑
i

µi,jWi,k ∀j, k ∈ K−1 (2.39)

η̄i,jWi,k = Ŝj,k,i ∀i, j = 5, k ∈ K−1 (2.40)

Duality theorem is used to obtain the robust deterministic counterpart of inequality 2.33l.

Inequality 2.33l Sj,k(ω) ≥ dk,∀j = 5, k ∈ K−1, ω ∈ Ω is written as:

S̄j,k + Ŝj,kω ≥ dj,k ∀j = 5, k ∈ K−1, ω ∈ Ω (2.41)
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Using uncertainty set Ω = {ω : Mω ≤ V }, the deterministic dual counterpart is obtained:

S̄j,k − V >φj,k ≥ dj,k ∀j = 5, k ∈ K−1 (2.42)

−MTφj,k = Ŝ>j,k ∀j = 5, k ∈ K−1 (2.43)

φj,k ≥ 0 ∀j = 5, k ∈ K−1 (2.44)

In summary, the Hybrid 1 model for process network of figure 2.6 is represented by objec-

tive 2.37, subject to constraints 2.33b-2.33i, 2.33k,2.33m,2.33n, 2.35-2.36, 2.39-2.40, 2.42-2.44.

In this formulation the nodal representation of dynamic uncertainty is employed, therefore non-

anticipativity constraints are not required.

2.5.2 Hybrid 2 method

In Hybrid 2 formulation, time-dependent uncertainties are modeled as uncertainty sets and the

corresponding variables as affine functions of uncertainty sets and time-independent uncertainties

are modeled as scenarios. Using duality theorem, constraints can be reformulated to robust deter-

ministic counterparts with respect to time-dependent uncertainties and constraints are enforced

with respect to time-independent uncertainty scenarios. The solution is feasible for any real-

ization of uncertainty within the time-dependent uncertainty sets and any scenario of the static

uncertainty. For this case study, uncertainty modeling for Hybrid 2 method can be summarized as:

Time-independent uncertainty. Uncertain yield parameter is modeled using samples where

ηi,5(ω) is the uncertain yield and ηi,5,l is the l-th yield scenario with probability of pl.

ηi,5(ω)→ ηi,5,l ∀i, l ∈ L (2.45)

Note that only the yield of the fifth product(j = 5) is uncertain and yield of products 1 to 4 is

assumed to be known.

Time-dependent uncertainty: Uncertain demand and price are modeled as perturbations

on nominal values:

d5,t(ξ) = d̄5,t(1 + ξdt) ∀t (2.46)

γ5,t(ξ) = γ̄5,t(1 + ξpt) ∀t (2.47)

where d̄5,t, γ̄5,t are nominal demand and price values for the fifth product. Only the fifth product is

sold, therefore there is no demand and price for chemicals 1 to 4 (dj,t = 0, γj,t = 0 ∀t, j = 1, ..., 4).

Uncertainty is defined for demand and price uncertainty as in the following:

|ξpt | ≤ bpt ∀t (2.48)
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|ξdt| ≤ bdt ∀t (2.49)

where ξdt , ξpt are demand and price uncertainty parameters at period t and bpt , bdt are the price

and demand perturbation values which are set as 20% in this problem. This bounded uncertainty

set, can be written in the following inequality form:

Ξ = {ξ : M ξ ≤ V } (2.50)

Uncertainty vector ξ is defined as the vector that includes all the uncertain demand and price

parameters: ξ = [1, ξp1 , ..., ξpT , ξd1 , ..., ξdT ]>. The uncertain demand and price can be further

written as:

d5,t = d̄5,t(1 + ξdt) = d̄5,t(1 +Odtξ) ∀t (2.51)

γ5,t = γ̄5,t(1 + ξpt) = γ̄5,t(1 +Optξ) ∀t (2.52)

where Odt and Opt are truncate operators such that: Optξ = ξpt and Odtξ = ξdt . All the elements

in Odt and Opt vectors are zero except the elements corresponding to ξdt and ξpt in ξ vector; for

instance Op1 = [0 1 0 ... 0 0 0 0].

Continuous variables are modeled as linear decision rules (affine functions) of uncertainty vector.

Xi,t(ξ) = X̄i,tξ ∀i, t (2.53a)

Wi,t(ξ) = W̄i,tξ ∀i, t (2.53b)

Pj,t(ξ) = P̄j,tξ ∀j, t (2.53c)

Qi,t(ξ) = Q̄i,tξ ∀i, t (2.53d)

Sj,t(ξ, ω) = S̄j,t,lξ ∀j, t, l (2.53e)

Non-anticipativity. At each time period t, uncertain parameters up to that time period are

revealed and future uncertain parameters are not realized yet. Therefore at each time period,

adaptive decision variables can only depend on revealed uncertain parameters. For instance, at

the fist time period, the expansion variable Xi,t can only depend on ξd1 and ξp1 . The following

equations represent the non-anticipativity constraints for the continuous decision variables.

X̄i,t,c = 0 ∀ i, t < T, t+ 2 ≤ c ≤ T, c ≥ t+ T + 2 (2.54a)

P̄j,t,c = 0 ∀ j, t < T, t+ 2 ≤ c ≤ T + 1, c ≥ t+ T + 2 (2.54b)

W̄i,t,c = 0 ∀ i, t < T, t+ 2 ≤ c ≤ T + 1, c ≥ t+ T + 2 (2.54c)

Q̄i,t,c = 0 ∀ i, t < T, t+ 2 ≤ c ≤ T + 1, c ≥ t+ T + 2 (2.54d)

Sj,t,l,c = 0, ∀j = 5, l, t < T, t+ 2 ≤ c ≤ T + 1, c ≥ t+ T + 2 (2.54e)
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The binary variables are scenario-dependent and continuous variables are linear decision rules

of dynamic demand and price uncertainty. For those constraints where only continuous variables

exist(Eqs. 4.32c, 4.32f to 4.32k), the set definition of dynamic uncertainty is used for LDR (Eqs

2.53a to 2.53e). For constraints where only binary variables exist(e.g., Eq.4.32d), the binary

variables are scenario dependent (Eq. 2.55).

yi,t(ξ) = yi,k ∀i, k (2.55)

At constraints where both binary and continuous variables exist(Eqs. 4.32b, 4.32e), the node-tree

representation of dynamic uncertainty is used in LDR where the uncertainty vector corresponding

to each node of the tree is substituted for ξk in LDR (Eqs. 2.56).

Xi,t(k) = X̄i,t(k)ξk ∀i, k (2.56)

where the subscript t(k) is the time period corresponding to node k. In constraints where only

continuous variables exist, duality theorem is used to obtain the robust counterpart of the con-

straints. Eqs. 2.57a to 2.57m represent general Hybrid 2 formulation before applying duality to

the constraints.

max Eξ[
∑
t

∑
j

(γj,t(ξ)
∑
l

plS̄j,t,lξ − Γj,tP̄j,tξ)−
∑
t

∑
i

(δi,tW̄i,tξ + αi,tX̄i,tξ)]−
∑
k

∑
i

pkβi,t(k)yi,k

(2.57a)

s.t. yi,kX
L
i,t(k) ≤ X̄i,t(k)ξk ≤ yi,kX

U
i,t(k) ∀i, k (2.57b)

Q̄i,tξ = Q̄i,t−1ξ + X̄i,tξ ∀i, t, ξ ∈ Ξ (2.57c)

Ui,k ≤ NEXP
i ∀i, k ∈ KT (2.57d)

Ui,k = yi,k + Ui,a(k) ∀i, k ∈ K−1 (2.57e)

Ui,1 = 0 ∀i (2.57f)∑
i

[αi,t(k)X̄i,t(k)ξk + βi,t(k)yi,k] ≤ CIt(k) ∀k (2.57g)

W̄i,tξ ≤ Q̄i,tξ ∀i, t, ξ ∈ Ξ (2.57h)

P̄j,tξ +
∑
i

ηi,j,lW̄i,tξ = S̄j,t,lξ +
∑
i

µi,jW̄i,tξ ∀j, t, l, ξ ∈ Ξ (2.57i)

P̄j,tξ ≤ aj,t ∀j, t, ξ ∈ Ξ (2.57j)

S̄j,tξ ≥ dj,t(ξ) ∀j, t, ξ ∈ Ξ (2.57k)

X̄i,tξ ≥ 0 ∀i, t, ξ ∈ Ξ (2.57l)

W̄i,tξ ≥ 0 ∀i, t, ξ ∈ Ξ (2.57m)

P̄i,tξ ≥ 0 ∀i, t, ξ ∈ Ξ (2.57n)

36



yi,k ∈ {0, 1} ∀i, k, ξ ∈ Ξ (2.57o)

The above definition of continuous and binary variables is substituted into the general stochas-

tic model (Eqs. 4.32a to 4.32l) to obtain the general Hybrid 2 model. The derivation procedure

for the objective is presented here:

First term:

Eξ
[∑

t

∑
j

(
γ̄j,t(1 +Optξ)

∑
l plS̄j,t,l ξ − Γj,tP̄j,tξ

)]
= Eξ

[∑
t

∑
j γ̄j,t

∑
l pl S̄j,t,l ξ

]
+ Eξ

[∑
t

∑
j γ̄j,t(Optξ)

>∑
l plS̄j,t,l ξ

]
− Eξ

[∑
t

∑
j Γj,tP̄j,tξ

]
= Eξ

[∑
t

∑
j γ̄j,t

∑
l plS̄j,t,l ξ

]
+ Eξ

[∑
t

∑
j γ̄j,tξ

>(Opt

∑
l plS̄j,t,l) ξ

]
− Eξ

[∑
t

∑
j Γj,tP̄j,tξ

]
=
∑

t

∑
j γ̄j,t

∑
l plS̄j,t,lE(ξ) +

∑
t

∑
j γ̄j,t Tr(Opt

∑
l plS̄j,t,lE(ξξ>) )−

∑
t

∑
j Γj,tP̄j,tE(ξ)

Second and third term:

Eξ
[
−
∑

t

∑
i(δi,tW̄i,tξ + αi,tX̄i,tξ)

]
−
∑

k

∑
i pkβi,t(k)yi,k

= −
∑

t

∑
i(δi,tW̄i,t + αi,tX̄i,t)E(ξ)−

∑
k

∑
i pkβi,t(k)yi,k

The derivation procedure for the semi-infinite constraints is skipped here. The final robust counter-

part for each semi-infinite constraint can be checked through the corresponding equation number.

Finally, the overall Hybrid 2 formulation is:

max
∑
t

∑
j

γ̄j,t
∑
l

plS̄j,t,lE(ξ) +
∑
t

∑
j

γ̄j,t Tr(Opt

∑
l

plS̄j,t,l E(ξξ>) ) (2.58a)

−
∑
t

∑
j

Γj,tP̄j,tE(ξ)−
∑
t

∑
i

(δi,tW̄i,t + αi,tX̄i,t)E(ξ)−
∑
k

∑
i

pkβi,t(k)yi,k

s.t. yi,kX
L
i,t(k) ≤ X̄i,t(k)ξk ≤ yi,kX

U
i,t(k) ∀i, k (2.58b)

Q̄i,t − Q̄i,t−1 = X̄i,t ∀i, t ≥ 2 (2.58c)

Q̄i,1 = X̄i,1 ∀i

Ui,k ≤ NEXP
i ∀i, k ∈ KT (2.58d)

Ui,k = yi,k + Ui,a(k) ∀i, k ∈ K−1 (2.58e)

Ui,1 = 0 ∀i (2.58f)∑
i

[αi,t(k)X̄i,t(k)ξk + βi,t(k)yi,k] ≤ CIt(k) ∀k (2.58g)

V >θ4
i,t ≤ 0 ∀i, t (2.58h)

M>θ4
i,t = (W̄i,t − Q̄i,t)

> ∀i, t

θ4
i,t ≥ 0 ∀i, t

P̄j,t +
∑
i

ηi,j,lW̄i,t = S̄j,t,l +
∑
i

µi,jW̄i,t ∀j, t, l (2.58i)

S̄j,t,l = 0 ∀t, l, j = {1, ..., 4}

P̄j,t = 0 ∀t, j = 5
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V >θ5
j,t ≤ aj,t ∀t, j = {1, ..., 4} (2.58j)

M>θ5
j,t = P̄>j,t ∀t, j = {1, ..., 4}

θ5
j,t ≥ 0 ∀t, j = {1, ..., 4}

(−V )>θ6
t,l,j ≥ d̄j,t ∀t, l, j = 5 (2.58k)

(−M)>θ6
t,l,j = S̄j,t,l − d̄j,tOdt ∀t, l, j = 5

θ6
t,l,j ≥ 0 ∀t, l, j = 5

(−V )>θ7
i,t ≥ 0 ∀i, t

(2.58l)

(−M)>θ7
i,t = X̄>i,t ∀i, t

θ7
i,t ≥ 0 ∀i, t

(−V )>θ8
j,t ≥ 0 ∀j, t (2.58m)

(−M)>θ8
j,t = W̄>

j,t ∀j, t

θ8
j,t ≥ 0 ∀j, t

(−V )>θ9
i,t ≥ 0 ∀i, t (2.58n)

(−M)>θ9
i,t = P̄>i,t ∀i, t

θ9
i,t ≥ 0 ∀i, t

yi,k ∈ {0, 1} ∀i, k (2.58o)

Eqs. 2.54a-2.54e

2.5.3 Results and discussion

In this study, the capacity expansion problem is formulated under demand, price and yield un-

certainty of chemical 5. The problem is solved for T = 7 time steps. Table 2.6 summarizes

the objective function, run time and problem size for the capacity expansion problem. Hybrid 1

method resulted in a very large problem size where the total number of variables and constraints

is greater compared to the Hybrid 2 method. The problem was submitted to a workstation (Intel

Xeon Dual 20 Core 2.0 GHz Processor, 128 GB DDR4 ECC RAM) and after 10 hours runtime,

the problem reached 1.8% optimality gap while the objective function was still slightly worse than

Hybrid 2 method (−0.43%). The Hybrid 2 method is solved using a desktop computer with much

less computational power (3.5 GHz CPU, 8 GB RAM), but resulted in a better objective and

better run time (7.38 hrs) compared to the Hybrid 1. While it is expected that Hybrid 1 to result

in a better objective value due to higher flexibility in continuous variables, its objective value is

slightly worse than Hybrid 2 since the Hybrid 1 solution did not reach 0 optimality gap within 10

hrs run time. In this case study, the problem is mixed integer linear optimization (MILP) problem.

GAMS 26.1.0 and Cplex solver 12.8.0.0 are employed to solve the problem.
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Table 2.6: Objective and run time for capacity expansion problem

Method Deterministic Hybrid 1 Hybrid 2
Objective (M$) 7173.36 7160.74 7191.78

Run time∗ 0.03 sec 10 hrs 7.38 hrs
Optimality gap(%) 0 1.8% 0
∗ Hybrid 1 method solved using Intel Xeon Dual 20 Core 2.0 GHZ Processor, 128 GB DDR4 ECC RAM.

Hybrid 2 model and deterministic model solved using desktop computer 3.5 GHz CPU, 8 GB RAM.

Table 2.7: Number of constraints and variables

Method Deterministic Hybrid 1 Hybrid 2
Binary 42 19674 19674

Continuous 197 426376 57107
Constraints 245 692030 79850

Figs. 2.9 to 2.11 compare Hybrid 1 and 2 solutions versus demand uncertainty. For instance,

Fig. 2.9 represents the capacity expansion of process 1 with respect to highest, nominal and lowest

demand paths. In these figures, Hybrid 2 solution is fixed at most of the time steps for all the

demand scenarios (LDR coefficients are zero); however Hybrid 1 solution (red circles) vary with

respect to demand uncertainty. For instance, for capacity expansion of process 1 (Fig.2.9), it can

be observed that Hybrid 1 solution is different at the third and fourth time steps for the highest

demand path compared to nominal and the lowest demand paths but the Hybrid 2 solution is fixed

or barely changed with respect to demand scenarios. Similarly for sale of chemical 5 (Fig. 2.11)

and purchase of chemical 1 (Fig.2.10), it’s observed that Hybrid 1 solution, at the third time

step, is affected by demand uncertainty at the highest demand scenario compared to nominal and

the lowest demand scenarios while Hybrid 2 solution is almost insensitive to demand variations.

Generally, it is observed that Hybrid 1 method is more sensitive to demand uncertainty compared

to Hybrid 2 method. This observation is as expected since Hybrid 1 method can accommodate the

continuous variables at each node of the tree where each node corresponds to a different uncertainty

scenario; therefore, it is more sensitive to different uncertainty scenarios compared to Hybrid 2

that uses LDR for continuous variables.
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Figure 2.9: Solution comparison for capacity expansion of process 1

Figure 2.10: Solution comparison for purchase of chemical 1
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Figure 2.11: Solution comparison for sale of chemical 5

2.6 Conclusion

This work presents novel hybrid formulations to handle adaptive decision making with simulta-

neous consideration of static and time-dependent uncertainties while scenario-based method may

result in computationally intractable formulation and LDR method results in non-convex con-

straints where strong duality cannot be applied to obtain the robust counterparts.

Comparing run time and computational expense of Hybrid 1 and 2 methods, it can be concluded

that Hybrid 2 method results in a more efficient problem formulation requiring less computational

effort while the solution quality is preserved (0.4% difference in objective value in this case study).

Hybrid 1 method has the ability to accommodate binary and continuous variables at each node

of the scenario tree. Therefore, it can capture nonlinear dependency of the binary and continuous

variables with respect to uncertain parameters while Hybrid 2 method is restricted to a linear de-

pendency of continuous variables on uncertain parameters. Thus, Hybrid 1 method is more flexible

and can result in a better objective value. However, for large scale problems, the problem size can

grow exponentially and the solution can be very time consuming and computationally prohibitive.

Therefore, for solving multistage adaptive problems with multiple sources of time-dependent

and time-independent uncertainty where uncertain parameters and adaptive variables are multi-

plied together, Hybrid 2 method is recommended as a time-efficient method while the solution

quality is preserved reliably. For applications where runtime and computational expense are not
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restrictive and it is desired to obtain better objective value and to observe the solution dependency

on uncertainty scenarios, Hybrid 1 method can be considered as a possible choice.

Finally, notice that the Hybrid 2 approach still depends on the scenario tree modeling of time-

dependent uncertainty, which suffers from the dimensionality issue while by the time stages and

the number of uncertain parameters increase. Future work will investigate decision rule approach

for both continuous and binary variables, which is a promising direction to avoid the limitation of

dimensionality issue.
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Nomenclature

Indices

t time period

s scenario

k node in scenario tree

l sample

ω static uncertainty

ξ time dependent uncertainty

Parameters of capacity planning example

αi,t Unit expansion cost of process i at the beginning of period t

βi,t Fixed cost of establishing or expanding process i at the beginning of period t

γi,t,Γi,t Selling and buying prices of chemical j in period t

δi,t Unit operating cost for process i during period t

ηi,j Input proportionality constant for chemical j in process i

µi,j Ouput proportionality constant for chemical j in process i

CIt Investment budget for period t

aj,t Availability of chemical j in period t

dj,t demand of chemical j in period t

NEXP
i Allowable number of expansions for process i

XL
i,t, X

U
i,t Lower and upper bounds for capacity expansion of process i in period t

Variables of capacity planning example

Pj,t Units of chemical j purchased at the beginning of period t

Qi,t Total capacity of process i in period t

Sj,t Units of chemical j sold at the end of period t

Wi,t Operating level of process i in period t

Xi,t Units of expansion of process i at the beginning of period t

yi,t Binary variable; if process i is expanded during period t, then yi,t = 1, otherwise yi,t = 0

Ui,k Number of expansions up to time t(k) for process i
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Chapter 3

Multistage Adaptive Binary

Optimization: Uncertainty Set Lifting

versus Partitioning through Breakpoints

Optimization

Abstract

Two methods for multistage adaptive binary optimization are investigated in this work. These

methods referred to as binary decision rule and finite adaptability inherently share similarities in

dividing the uncertainty set into subsets. In the binary decision rule method, the uncertainty is

lifted using indicator functions which result in a nonconvex lifted uncertainty set. Linear decision

rule is further applied to a convexified version of the lifted uncertainty set. In the finite adaptability

method, the uncertainty set is divided into partitions and a constant decision is applied for each

partition. In both methods, breakpoints are utilized either to define the indicator functions in the

lifting method or to partition the uncertainty set in the finite adaptability method. In this work,

we propose variable breakpoint location optimization for both methods. Extensive computational

study on an illustrating example and a larger size case study is conducted. Performance of binary

decision rule and finite adaptability methods under fixed and variable breakpoint approaches is

compared.
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3.1 Introduction

Multistage decision making under uncertainty has practical applications in many areas such as

finance, engineering, and operations management, etc. To mention a few examples, Goulart et

al. [6] applied stochastic optimization for robust control of linear discrete-time systems. Skaf and

Boyd [66] designed an affine controller for linear dynamic systems. Ben Tal et al. [4] addressed the

problem of minimizing the overall cost of a supply chain under demand uncertainty. Chuen-Teck

and Melvyn [5] proposed a robust optimization method to tackle an inventory control problem

where only limited information of demand is available. Chrysanthos et al. [8] studied the robust

vehicle routing problem to minimize the delivery costs of a product to geographically dispersed

customers using capacity-constrained vehicles. Calafoire [9] presented an affine control method for

dynamic asset allocation.

Solving multistage adaptive optimization problem faces challenges. As Alexander and Arkadi

[55] pointed out, multistage adaptive optimization problems including real-valued and binary deci-

sion variables are computationally intractable in general. Dyer and Stougie [67] have demonstrated

that obtaining the optimal solution for the class of single stage uncertain problems involving only

real-valued decisions is already P-hard. One popular solution approach to this problem is to use

decision rules where variables are modeled as functions of uncertain parameters. Application of

decision rules for real-valued functions in stochastic programming goes back to 1972 [68]. How-

ever, only recently, the decision rule-based approach has received major attention with the research

advances made in robust optimization [69, 70]. Ben-Tal et al. [22] formulated the real-valued func-

tions as affine functions of uncertain parameters. The simple structure of linear decision rules may

result in some optimality loss. However, it has the advantage of providing the required scalability

to deal with multistage stochastic adaptive problems. It should be mentioned that linear decision

rules are shown to be optimal in some problem instances. For instance, Iancu and Parrilo [71]

have shown the optimality of affine control policies in one-dimensional uncertainty within robust

optimization context. The reader can refer to [72, 66] for other cases.

In order to reduce the loss of optimality due to linear decision rules, various nonlinear decision

rule structures have been proposed. Motivated by the success of linear decision rules in providing

the favorable scalability features for multi-stage problems, the nonlinear decision rules are formu-

lated as x(ξ) = x>O(ξ) where O : Rm′ → Rm is a nonlinear operator that defines the structure

of the decision rule. This structure improves the solution optimality considerably while retaining

the scalability property. To mention some instances, different authors have suggested various de-

cision rule structures such as linear[22, 6, 56, 7], piecewise linear [27, 28, 29, 30], multilinear [29],

quadratic [73, 29] and polynomial. Kuhn et al. [56] proposed a method to estimate the approx-

imation error introduced by linear decision rules. They have argued the method is applicable to
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problems with random recourse and multiple decision stages. Chen et al. [27] addressed uncertain

problems where only limited information of underlying stochastic parameters are available. The

authors discussed that linear decision rules are inadequate for this type of problems and can result

in infeasible solutions. They suggested an alternative second order conic optimization model that

can be solved efficiently. Chen and Zhang [28] presented an extended affinely adjustable robust

counterpart method to solve multistage uncertain linear problems and illustrated the potential

of their proposed method is beyond what is presented in the literature. Georghiou et al. [29]

proposed a lifting technique that provides tighter upper and lower bounds compared to the case

where linear decision rule is directly applied to the original stochastic problem. They proposed a

structured lifting method that gives rise to flexible piecewise linear and nonlinear decision rules.

Goh and Sim [30] developed new piecewise linear decision rules that provide a more flexible formu-

lation of the original uncertain problem and results in better bounds on the objective. Bertsimas

et al. [32] proposed a framework for tackling linear dynamic systems under uncertainty. They

introduced a hierarchy of polynomial control policies that exhibited strong numerical performance

at a moderate computational expense.

Although there is a wealth of literature available for real-valued decision rules, the available

literature for binary decision rules is relatively scarce. Bertsimas and Georghiou[35] proposed a

structure for binary decision rules that models binary variables as piecewise constant functions and

can provide high-quality solutions. However, the computational expense is significant. Bertsimas

and Caramanis[34] proposed a structure for integer decision rules formulated as y(ξ) = y>dξe,
where y ∈ Zk and d·e is the ceiling function. In their work, the resulting problem is approxi-

mated and solved using a randomized algorithm [74] that provides only a limited guarantee on

solution feasibility. Hanasusanto et al. [36] proposed a so-called k-adaptable structure that can

only be applied to two-stage uncertain binary problems where the decision maker pre-commits to

k second stage policies and implements the best one once the uncertain parameters are revealed.

Recently, Bertsimas and Georghiou [39] proposed a systematic lifting method for binary decision

rule that trades off scalability and optimality. This method can be applied to large multistage

problems. They demonstrated that the method is highly scalable and provides high-quality solu-

tions and can readily be used along with real-valued decision rules with the general structure of

x(ξ) = x>O(ξ), O : Rm′ → Rm. Postek and Den Hertog [38] proposed a method to iteratively split

the uncertainty set into subsets based on some heuristics. The method keeps the computational

complexity at the same level as the static robust optimization problem. Bertsimas and Dunning

[63] extended the work of finite adaptability and presented a partition-and-bound method for mul-

tistage adaptive mixed integer optimization problem.

While there are many possible ways for uncertainty lifting and uncertainty set partition, we

focus on the grid partition based method in this work considering its simplicity in implementa-
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tion. This means that for lifting method, we lift each uncertain parameter individually instead of

any aggregated version of them. Whereas for the uncertainty set partition method, we divide the

uncertainty set using hyper-rectangles. Under this assumption, the binary decision rule (lifting)

method and the finite adaptability method (with grid partitioning) for addressing multistage adap-

tive optimization problems inherently share similarities. The goal of this study is to compare the

solution complexity of these two methods in order to obtain insight on advantages and limitations

of each method. The contribution of this work is summarized below:

1. Point out the similarity and difference between the lifting method and the finite adaptability

(partitioning) method. We demonstrate that under equivalent setting, the partition method

in general leads to better solution quality since lifting method has less flexibility due to the

restriction of linear decision rule.

2. Propose novel breakpoint optimization formulations for both lifting and partitioning meth-

ods. It is shown that breakpoint optimization leads to improved solution quality with the

cost of solving mixed integer nonlinear problems (MINLP) compared to mixed integer linear

problems (MILP) under a fixed breakpoint setting.

3. Conduct an extensive computational study to investigate the advantages of lifting and finite

adaptability methods under fixed breakpoint and variable breakpoint setting. We highlight

the tractability of the lifting method for handling large cases with many time stages, and the

limitation of finite adaptability method caused by the quick increase of model size.

The paper is organized as follows. Section 3.2 presents the general multistage adaptive binary

optimization problem formulation and the traditional scenario tree-based method is applied to an

illustrating example. Section 3.3 provides detailed formulations of the binary decision rule method

based on lifting technique and the variable breakpoint technique is explained. Section 3.4 provides

the detailed formulation for the finite adaptability method based on uncertainty set partitioning

and the variable breakpoint based formulation is presented. Section 3.5 presents an extensive

computational study using an inventory control problem and finally, Section 3.6 concludes the

paper.

3.2 Multistage adaptive binary optimization

The multistage adaptive integer optimization problem to be addressed is as follows:

min Eξ

(∑
t

(Dtξ[t])
> yt(ξ[t])

)
(3.1a)

s.t.

t∑
τ=1

Bt,τyτ (ξ[τ ]) ≤ Etξ[t] ∀ξ ∈ Ξ, t = 1, ..., T (3.1b)
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yt(ξ[t]) ∈ {0, 1}Nyt (3.1c)

where Dt, Bt,τ and Et are constant vectors/matrices, yt(ξ[t]) is the adaptive binary decision

variable expressed as a function of uncertainty vector ξ[t], based on the following notation:

ξq,t scalar, q-th uncertain parameter of stage t

ξt vector of uncertain parameters of stage t: [ξ1,t, · · · , ξq̄t,t]>,

where q̄t is the number of uncertain parameters in stage t

ξ[t] vector of uncertain parameters from stage 1 to t:
[
1, ξ>1 , ..., ξ

>
t

]>
ξ vector of all uncertain parameters (from stage 1 to T ):

[
1, ξ>1 , ..., ξ

>
T

]>
, that is, ξ[T ]

In this work, we consider polyhedral uncertainty set for ξ ∈ R|ξ[T ]| (|ξ[T ]| is the size of ξ):

Ξ = {ξ : Jξ ≥ h} (3.2)

where J and h are constant matrix and vector, respectively. For each uncertain parameter, we

assume that it is subject to an interval Ξq,t = {ξ
q,t
≤ ξq,t ≤ ξq,t}.

Illustrating example

Throughout this paper, we will study the following illustrating example while presenting various

solution methods. The problem has 2 stages (t=1, 2). Each stage includes only one uncertain

parameter. First stage decision y1 could depend on ξ1, and the second stage decision y2 could

depend on both ξ1 and ξ2. The problem is formulated as:

min Eξ(−y1(ξ)− y2(ξ)) (3.3a)

s.t. 2y1(ξ) ≤ 1 + 2ξ1 ∀ξ ∈ Ξ (3.3b)

3y1(ξ) + 2y2(ξ) ≤ 1 + 2ξ1 + ξ2 ∀ξ ∈ Ξ (3.3c)

yt(ξ) ∈ {0, 1} ∀ξ ∈ Ξ, t = 1, 2 (3.3d)

Assume that each uncertain parameter follows an independent uniform distribution in a certain

interval and the uncertainty set Ξ is given as:

Ξ = {ξ : ξ1 ∈ [0, 3], ξ2 = [0, 6]}

The above numeric example can be casted into the formulation 3.1a-3.1c with B11 = 2, B21 = 3,

B22 = 2, E1 = [1, 2], E2 = [1, 2, 1], D1 = [−1, 0], D2 = [−1, 0, 0], ξ[1] = [1, ξ1]>, ξ[2] = [1, ξ1, ξ2]>.

Before presenting the lifting and the finite adaptability methods, traditional scenario tree-

based method is applied to solve the illustrating problem in order to investigate the problem’s true
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optimal solution. While the number of scenarios is reasonably large, we can find the approximate

optimal solution of the adaptive optimization problem. Figure 3.1 illustrates the scenario tree for

2 time stages where each node includes 3 branches. In the following scenario tree based model, yk

Figure 3.1: Scenario tree for 2 time stages and 3 branches for each node

represents the decision made at node k, a(k) denotes the parent node of k, pk is the probability of

node k. Equations 3.4a to 3.4d present the nodal formulation. For the above scenario tree shown

in Figure 3.1, K1 = {1, 2, 3}, K2 = {4, · · · , 12}, which indicate the set of nodes at the first and

second time steps, respectively.

min −
∑

k∈K1∪K2

pkyk (3.4a)

s.t. 2yk ≤ 1 + 2ξk ∀k ∈ K1 (3.4b)

3ya(k) + 2yk ≤ 1 + 2ξa(k) + ξk ∀k ∈ K2 (3.4c)

yk ∈ {0, 1} ∀ k ∈ K1 ∪K2 (3.4d)

In this work, all the mixed integer linear optimization problems were modelled in GAMS and

solved using CPLEX solver on a workstation (Intel Xeon Dual 20 Core 2.0 GHz Processor, 128

GB DDR4 ECC RAM). Table 3.1 present the results of the above model for 4, 11, 31 and 99

branches per node. Figures 3.2 and 3.3 illustrate the binary solution for 4 and 31 branches per

node, respectively. In theses figures, the black squares indicate value 1 and the white squares

indicate 0 value. Table 3.1 shows that by increasing the number of scenarios, the optimal objective

value converges to a value around −1.6. We use this as a benchmark for comparing the different

methods to be discussed.

Regarding the recourse decision, Figure 3.3 illustrates that for y1(ξ1), there is a change point

around 1 for ξ1. For y2(ξ1, ξ2), there are three change points at around 0.5, 1 and 2 for ξ1, and two

change points at around 1 and 2 for ξ2. Those values can be used as a basis for comparison while
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Table 3.1: Results of scenario tree method for the illustrating example

Branches Objective Run time Continuous Variables Binary Variables
4 -1.625 0.032 s 3 20
11 -1.562 0.041 s 3 132
31 -1.605 0.078 s 3 993
99 -1.594 0.433 s 3 9900

Figure 3.2: Solution under the scenario tree with 4 branches per node

Figure 3.3: Solution under the scenario tree with 31 branches per node

the lifting and partitioning methods are implemented.
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3.3 Binary decision rule with lifted uncertainty

3.3.1 Uncertainty lifting

Bertsimas and Georghiou [39] proposed a decision rule method for adaptive binary variables. This

method enforces a linear relation between the binary variable and the lifted uncertain parameters.

In this method, 0-1 indicator functions are defined based on a set of breakpoints for each uncertain

parameter. The utilization of the indicator functions results in a nonconvex lifted uncertainty

set. To resolve this problem, convex overestimation is applied to the lifted nonconvex set in order

to obtain a convex set. The accuracy of the solution can be improved by increasing the number

of breakpoints in the lifted set. While traditional scenario-tree methods result in an exponential

growth of model size which restricts the application in large scale problems, the lifting method

provides the scalability and tractability required for large scale problems.

Consider a single uncertain parameter ξq,t subject to the interval Ξq,t = {ξ
q,t
≤ ξq,t ≤ ξq,t}, and

assume the interval is divided into (r̄q,t + 1) subintervals using r̄q,t breakpoints: αr,q,t, r = 1, ..., r̄q,t.

To lift the uncertainty, the indicator functions Qr,q,t(·) of uncertain parameters are used. The

following list summarizes the notation used for lifting a single uncertain parameter ξq,t:

r̄q,t scalar, number of breakpoints applied for ξq,t

αr,q,t scalar, value of the r-th breakpoint for ξq,t, r = 1, · · · , r̄q,t
as a generalization, we denote the bounds as: α0,q,t ≡ ξ

q,t
, αr̄q,t+1,q,t ≡ ξq,t

α0,q,t < α1,q,t < ... < αr̄q,t,q,t < αr̄q,t+1,q,t

Qr,q,t the r-th lifted uncertain parameter for ξq,t (an indicator function of ξq,t),

Qr,q,t(ξq,t) =

{
1, if ξq,t ≥ αr,q,t

0, if ξq,t < αr,q,t

Qq,t vector of all lifted parameters for ξq,t: [Q1,q,t, · · · , Qr̄q,t,q,t]
>

Qt vector of all lifted parameters for ξt: = [Q>1,t, · · · ,Q>q̄t,t]
>

Q[t] vector, all lifted parameters for ξ[t]: [1,Q>1 , ...,Q
>
t ]>

note: the first element 1 is used for intercept term while implementing linear decision rule

ξ′q,t vector of overall (original + lifted) uncertainty related to parameter ξq,t:
[
ξq,t,Q

>
q,t

]>
ξ′t vector of overall uncertainty for stage t:

[
ξ′>1,t, · · · , ξ′>q̄t,t

]>
ξ′[t] vector of overall uncertainty from stage 1 to t:

[
1, ξ′>1 , ..., ξ

′>
t

]>
ξ′ vector of overall uncertainty from stage 1 to T :

[
1, ξ′>1 , ..., ξ

′>
T

]>
Ξ′p,q,t the p-th line segment of the lifted uncertainty set for ξ′q,t, p = 1, · · · , r̄q,t + 1

Ξ′q,t the lifted uncertainty set (nonconvex) for ξ′q,t

Ξ′ the lifted uncertainty set (nonconvex) for ξ′

νi,p,q,t the two extreme points of Ξ′p,q,t, i = 1, 2
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ν1,p,q,t =

αp−1,q,t, 1, · · · , 1︸ ︷︷ ︸
p−1 times

, 0, · · · , 0︸ ︷︷ ︸
r̄q,t−p+1 times

> , p = 1, · · · , r̄q,t + 1

ν2,p,q,t =

αp,q,t, 1, · · · , 1︸ ︷︷ ︸
p−1 times

, 0, · · · , 0︸ ︷︷ ︸
r̄q,t−p+1 times

> , p = 1, · · · , r̄q,t + 1

ηi,p,q,t scalar, coefficient of extreme points in convex full formulation

Figure 3.4 illustrates the lifted uncertainty set (Ξ′q,t) for a single uncertain parameter ξq,t based

on 1 and 2 breakpoints. It is clear that the lifted uncertainty set is nonconvex since it contains

disconnected pieces (Ξ′1,q,t, · · · ,Ξ′Rq,t+1,q,t) in a higher dimensional space.

Figure 3.4: Lifting scheme for 1 breakpoint (left) and 2 breakpoints (right) on a single uncertain
parameter ξq,t

In addition, projection matrices Pξ[t] ∈ R|ξ[t]|×|ξ′| and PQ[t]
∈ R|Q[t]|×|ξ′| are used in order to

obtain ξ[t] and Q[t](ξ) from the overall uncertainty vector, as follows:

ξ[t] = Pξ[t]ξ
′ t = 1, ..., T (3.5a)

Q[t](ξ) = PQ[t]
ξ′ t = 1, ..., T (3.5b)

Based on the above notation and the original uncertainty set definition in equation 3.2, the lifted

nonconvex uncertainty set for ξ′ can be written as:

Ξ′ = {ξ′ : Pξ[T ]
ξ′ ∈ Ξ; ξ′q,t ∈ Ξ′q,t, t = 1, · · · , T, q = 1, · · · , q̄t} (3.6)

The nonconvexity of the lifted uncertainty set poses challenges to the optimization problem. The

lifted set is convexified such that the semi-infinite constraints can be addressed. Given the 2(r̄q,t+1)

extreme points, the convex hull of Ξ′q,t can be constructed as:

conv(Ξ′q,t) = {ξ′q,t = [ξq,t,Q
>
q,t]
> : ∃ ηi,p,q,t (3.7)
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ξ′q,t =

r̄q,t+1∑
p=1

2∑
i=1

ηi,p,q,tνi,p,q,t

r̄q,t+1∑
p=1

2∑
i=1

ηi,p,q,t = 1

ηi,p,q,t > 0, i = 1, 2; p = 1, · · · , r̄q,t + 1}

Based on the above convex hull, we define the following convex overestimation for the overall

uncertainty set Ξ′ defined in equation 3.6:

Ξ̂′ = {(ξ′,η) : Pξ[T ]
ξ′ ∈ Ξ; (ξ′q,t,ηq,t) ∈ conv(Ξ′q,t), t = 1, · · · , T, q = 1, · · · , q̄t} (3.8)

Figure 3.5: Illustration of the relation between conv(Ξ′) and its convex overestimation Ξ̂′

Notice that the convex hull of Ξ′, conv(Ξ′), is a subset of the above overestimation. Figure

3.5 illustrates the relation between conv(Ξ′) and the overestimation Ξ̂′. The left figure illustrates

Ξ′ according to equation 3.6. Ξ′ is obtained by intersecting the original uncertainty set Ξ (the

black triangle) and the nonconvex sets Ξ′1 and Ξ′2 denoted by discontinuous red lines segments.

Notice that the sets Ξ′1 and Ξ′2 are at least two dimensional where the dimension depends on the

number of breakpoints used in the definition of the lifted set. However, for illustration purpose,

the dimension of Ξ′1 and Ξ′2 is assumed to be one since using two dimensions on each axis will

make the visualization impossible. The blue shaded area demonstrates conv(Ξ′). In the right

figure, the blue triangle corresponds to the overestimation set Ξ̂′ (equation 3.8), which is obtained

by intersecting the original uncertainty set Ξ and conv(Ξ′1)× conv(Ξ′2). As the figure shows, Ξ̂′ is

an overestimation of conv(Ξ′).

Finally, for simplicity in derivation, we project the polyhedral uncertainty set Ξ̂′ onto the space

of ξ′, and compactly write it as:

Ξ̂′ = {ξ′ : J ′ξ′ ≥ h′} (3.9)
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where J ′ and h′ are constant matrix calculated from the breakpoints value and the original un-

certainty set parameters J ,h.

Illustrating example (cont.)

In this section, the lifting method is applied to the illustrating example. Two breakpoints are

considered for each uncertain parameter (r=1, 2):

for ξ1 : α1,1,1 = 1, α2,1,1 = 2

for ξ2 : α1,1,2 = 2, α2,1,2 = 4

The lifted uncertainty vector is formulated as:

ξ′ = [1, ξ1, Q1,1,1(ξ1), Q2,1,1(ξ1), ξ2, Q1,1,2(ξ2), Q2,1,2(ξ2)]>

The 0-1 indicator functions are defined as:

Q1,1,1(ξ1) =

{
1, if ξ1 ≥ 1

0, if ξ1 < 1
, Q2,1,1(ξ1) =

{
1, if ξ1 ≥ 2

0, if ξ1 < 2

Q1,1,2(ξ2) =

{
1, if ξ2 ≥ 2

0, if ξ2 < 2
, Q2,1,2(ξ2) =

{
1, if ξ2 ≥ 4

0, if ξ2 < 4

The associated projection matrices and the corresponding (original or lifted) uncertainty vectors

are:

P ξ[1] =

[
1 0 0 0 0 0 0

0 1 0 0 0 0 0

]
, ξ[1] = P ξ[1]ξ

′ = [1, ξ1]>

P ξ[2] =

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 1 0 0

 , ξ[2] = P ξ[2]ξ
′ = [1, ξ1, ξ2]>

PQ[1]
=

1 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

 , Q[1](ξ) = PQ[1]
ξ′ = [1, Q1,1,1, Q2,1,1]>

PQ[2]
=


1 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

 , Q[2](ξ) = PQ[2]
ξ′ = [1, Q1,1,1, Q2,1,1, Q1,1,2, Q2,1,2]>
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The lifted uncertainty set is defined as: Ξ′ = {ξ′ ∈ R2 : Pξ[2]ξ
′ ∈ Ξ, ξ′q,t ∈ Ξ′q,t}, where Ξ = {ξ :

ξ1 ∈ [0, 3], ξ2 = [0, 6]}. Next, The convex hull for each single lifted uncertain parameter conv(Ξ′q,t)

is constructed. For simplicity in presentation, ηi,p,1,1 and ηi,p,1,2 are represented by ηp,i and η′p,i in

the following equations, respectively.

conv(Ξ′1,1) =
ξ′1,1 :

∃ η1,1, η1,2, η2,1, η2,2, η3,1, η3,2 ≥ 0,

η1,1 + η1,2 + η2,1 + η2,2 + η3,1 + η3,2 = 1 ξ1

Q1,1,1

Q2,1,1

 = η1,1

0

0

0

+ η1,2

α1,1,1

0

0

+ η2,1

α1,1,1

1

0

+ η2,2

α2,1,1

1

0

+ η3,1

α2,1,1

1

1

+ η3,2

3

1

1




conv(Ξ′1,2) =
ξ′1,2 :

∃ η′1,1, η′1,2, η′2,1, η′2,2, η′3,1, η′3,2 ≥ 0,

η′1,1 + η′1,2 + η′2,1 + η′2,2 + η′3,1 + η′3,2 = 1 ξ2

Q1,1,2

Q2,1,2

 = η′1,1

0

0

0

+ η′1,2

α1,1,2

0

0

+ η′2,1

α1,1,2

1

0

+ η′2,2

α2,1,2

1

0

+ η′3,1

α2,1,2

1

1

+ η′3,2

6

1

1




The overall convex hull conv(Ξ′) is a subset of the following overestimated set Ξ̂′ = {ξ′ ∈ R2 :

Pξ[2]ξ
′ ∈ Ξ, ξ′q,t ∈ conv(Ξ′q,t), q = 1, t = 1, 2}.

3.3.2 Binary decision rule

To approximate the optimal adaptive binary solution, binary decision rule is employed. It enforces

a linear relation with respect to the lifted uncertainty (indicator function). The binary decision yt

depends on uncertainty up to time stage t. In binary decision rule, yt is approximated by a linear

combination of indicator functions from stage 1 to stage t, Q[t](ξ):

yt(ξ[t]) = Y tQ[t](ξ) t = 1, ..., T (3.10a)

where the coefficients only take the following possible integer values: Y t ∈ {−1, 0, 1}|yt|×|Q[t]|.

Furthermore, binary restriction on original variables need to be enforced, hence:

0 ≤ Y tQ[t](ξ) ≤ e ∀ξ ∈ Ξ, t = 1, ..., T (3.11)

where e is the vector of all ones. By applying binary decision rule to the general stochastic formu-

lation, a semi-infinite optimization problem with finite number of variables but infinite number of
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constraints is obtained:

min Eξ

(∑
t

(Dtξ[t])
> Y tQ[t](ξ)

)
(3.12a)

s.t.
t∑

τ=1

Bt,τ

(
Y τQ[τ ](ξ)

)
≤ Etξ[t] ∀ξ ∈ Ξ, t = 1, ..., T (3.12b)

0 ≤ Y tQ[t](ξ) ≤ e ∀ξ ∈ Ξ, t = 1, ..., T (3.12c)

In the above model, the constraints contain nonconvex indicator functions of original uncertain

parameters. Using Eqs. 3.5a and 3.5b, the stochastic model can be written as the following model

with linear constraints with respect to the lifted uncertainty ξ′:

min Eξ′
(∑

t

(DtP ξ[t]ξ
′)> Y tPQ[t]

ξ′

)
(3.13a)

s.t.
t∑

τ=1

Bt,τ

(
Y τPQ[τ ]

ξ′
)
≤ EtP ξ[t]ξ

′ ∀ξ′ ∈ Ξ′,∀t ∈ 1, ..., T (3.13b)

0 ≤ Y tPQ[t]
ξ′ ≤ e ∀ξ′ ∈ Ξ′,∀t ∈ 1, ..., T (3.13c)

Since the lifted uncertainty set Ξ′ is nonconvex and consequently the problem is still intractable.

The problem can be conservatively approximated by using convex overestimation Ξ̂′ of the lifted

uncertainty set as defined in equation 3.9.

min Eξ′
(∑

t

(DtP ξ[t]ξ
′)> Y tPQ[t]

ξ′

)
(3.14a)

s.t.
t∑

τ=1

Bt,τ

(
Y τPQ[τ ]

ξ′
)
≤ EtP ξ[t]ξ

′ ∀ξ′ ∈ Ξ̂′, t ∈ 1, ..., T (3.14b)

0 ≤ Y tPQ[t]
ξ′ ≤ e ∀ξ′ ∈ Ξ̂′, t ∈ 1, ..., T (3.14c)

Since constraints 3.14b and 3.14c are linear with respect to ξ′, and the uncertainty set Ξ̂′ is a poly-

hedral set, duality theorem can be used to covert this semi-infinite problem into its deterministic

robust counterpart. As an example, constraint 3.14b can be written as(
t∑

τ=1

Bt,τY τPQ[τ ]
−EtP ξ[t]

)
ξ′ ≤ 0 ∀ξ′ ∈ Ξ̂′, t ∈ 1, ..., T

or equivalently as in the following, based on the uncertainty set definition in equation 3.9

max
J ′ξ′≥h′

(
t∑

τ=1

Bt,τY τPQ[τ ]
−EtP ξ[t]

)
ξ′ ≤ 0 ∀t ∈ 1, ..., T
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Its deterministic counterpart is obtained as follows after applying duality to the inner maximization

problem: 
−h′>θt ≤ 0 ∀t
−J ′>θt = (

∑t
τ=1Bt,τY τPQ[τ ]

−EtPξ[t])> ∀t
θt ≥ 0 ∀t

Similarly, constraint 3.14c can be divided into two parts: 0 ≤ Y tPQ[t]
ξ′ and Y tPQ[t]

ξ′ ≤ e, and

the robust counterpart is derived accordingly. The overall deterministic counterpart formulation

is given by

min
∑
t

Tr(E[ξ′ξ′>]P>ξ[t]D
>
t Y tPQ[t]

) (3.15a)

s.t. −h′> θt ≤ 0 ∀t (3.15b)

− J ′>θt = (
t∑

τ=1

Bt,τY τPQ[τ ]
−EtPξ[t])

> ∀t (3.15c)

θt ≥ 0 ∀t (3.15d)

− h′>λt ≤ 0 ∀t (3.15e)

− J ′>λt = (−Y tPQ[t]
)> ∀t (3.15f)

λt ≥ 0 ∀t (3.15g)

− h′>φt ≤ e ∀t (3.15h)

− J ′>φt = (Y tPQ[t]
)> ∀t (3.15i)

φt ≥ 0 ∀t (3.15j)

Y t ∈ {−1, 0, 1}|yt|×|Q[t]| (3.15k)

where Tr(·) is trace operator and E[ξ′ξ′>] can be derived from the know distribution of the uncer-

tainty.

Illustrating example (cont.)

Table 3.2 presents the results of the above lifting method for different number of breakpoints. For

1 breakpoint case, the breakpoint values are set as 1.5 for ξ1, and 3 for ξ2. For 2 breakpoints

case, the breakpoint values are set as (1, 2) for ξ1, and (2, 4) for ξ2. For 9 breakpoints case,

the breakpoint values are set as (0.3, 0.6, 0.9, · · · , 2.7) for ξ1, and (0.6, 1.2, · · · , 5.4) for ξ2. The

objective did not improve beyond 1.333 even for 9 breakpoints. This observation indicates that

lifting solution quality may be restricted. Using the definition of the lifting method for the binary

variable, we can plot the y1(ξ1) and y2(ξ1, ξ2) variables. For the case of 2 breakpoints, the model

solution is Y 1 = [0, 1, 0] and Y 2 = [0, 0, 0, 1, 0], and the adaptive binary variables are expressed
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as:

y1(ξ1) = Y 1Q[1] = [0, 1, 0]× [1, Q1,1,1(ξ1), Q2,1,1(ξ1)]> = Q1,1,1(ξ1)

y2(ξ1, ξ2) = Y 2Q[2] = [0, 0, 0, 1, 0]× [1, Q2,1,1(ξ1), Q1,1,2(ξ2), Q2,1,2(ξ2)]> = Q1,1,2(ξ2)

As shown in Figure 3.6, the binary variable y2 is only a function of parameter ξ2 which indicates

a restricted solution quality.

Figure 3.6: y1(ξ1), y2(ξ1, ξ2) solution under 2 breakpoints: (1, 2) for ξ1, and (2, 4) for ξ2

Table 3.2: Solution from lifting method with different number of fixed breakpoints

Number of breakpoints Number of variables Objective Run time
1 5 Integer, 159 continuous -1.000 0.022 s
2 8 Integer, 199 continuous -1.333 0.078 s
9 29 Integer, 514 continuous -1.333 0.094 s

3.3.3 Breakpoint optimization for lifting method

In this section, we assume that the location of breakpoints is not pre-fixed and they are optimized

instead. Based on equation 3.9, the breakpoints information is contained in the parameters J ′,h′

and can be formulated as:

J ′ = J0 + J1α

h′ = h0 + h1α

where J0,J1,h0,h1 are known constant matrices/vectors, α is the vector involving all location

information of breakpoints. The above formulated J ′ and h′ should be substituted in the dual

counterpart formulation (Eqs 3.15a to 3.15j) to complete the variable breakpoint lifting technique.
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min Eξ′
∑
t

Tr(E[ξ′ξ′>]P>ξ[t]D
>
t Y tPQ[t]

) (3.16a)

s.t. − (h0 + h1α)′>θt ≤ 0 ∀t (3.16b)

− (J0 + J1α)>θt = (
t∑

s=1

BtsY sPQ[s]
−EtPξ[t])

> ∀t (3.16c)

θt ≥ 0 ∀t (3.16d)

− (h0 + h1α)′>λt ≤ 0 ∀t (3.16e)

− (J0 + J1α)′>λt = (−Y tPQ[t]
)> ∀t (3.16f)

λt ≥ 0 ∀t (3.16g)

− (h0 + h1α)′>φt ≤ e ∀t (3.16h)

− (J0 + J1α)>φt = (Y tPQ[t]
)> ∀t (3.16i)

φt ≥ 0 ∀t (3.16j)

Y t ∈ {−1, 0, 1}|yt|×|Q[t]| (3.16k)

Notice that expectation of the lifted uncertainty E(ξ′) also depends on the location of the variable

breakpoints, so E[ξ′ξ′>] is also a function of α (which can be evaluated analytically based on

the distribution information). The resulting model will be a mixed integer nonlinear optimization

problem, where the integer variables are the binary decision rule coefficients Y t, and the continu-

ous variables include the dual variables θ,λ,φ and the breakpoints locations α.

In this work, all the MINLP problems were solved using the ANTIGONE solver [75] in GAMS

platform on a workstation (Intel Xeon Dual 20 Core 2.0 GHz Processor, 128 GB DDR4 ECC RAM)

using 10 hours time resource limit. The reported solution are with zero optimality gap, otherwise it

is reported. Using a single variable breakpoint in the illustrating example, the obtained objective

(−1.333) is better than using a single fixed breakpoint(−1.000). This shows the advantage of

variable breakpoint lifting compared to the fixed breakpoint method. However, in this example

using more than 1 variable breakpoints did not further improve the objective as shown in Table

3.3. This observation shows that lifting method’s solution quality is restricted.

Table 3.3: Solution statistics for variable breakpoint lifting

Number of breakpoints Number of variables Objective Run time
1 5 Integer, 513 continuous -1.333 1.075 s
2 8 Integer, 876 continuous -1.333 2.375 s
9 29 Integer, 6112 continuous -1.333 2 min, 14 s

The optimized breakpoint values are summarized below:
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� for 1 breakpoint case, 1 for ξ1, 2 for ξ2

� for 2 breakpoints case, (0, 1) for ξ1, (0, 2) for ξ2

� for 9 breakpoints case, (1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 3, 3, 3) for ξ1, (1, 1, 1, 1, 2.52, 3.6, 4.2,

4.8, 5.4) for ξ2

Notice that the variable breakpoints are not forced to be different to each other, so the solution

has overlapped breakpoints while the number of breakpoints increases.

3.4 Finite adaptability with uncertainty set partitioning

3.4.1 Uncertainty set partitioning

In this method, the uncertainty set is divided into small partitions and constant binary decision

is assumed for each partition. Similar to lifting method, we define breakpoints for each uncertain

parameter and each subset is a box type of uncertainty set. Figure 4.2 illustrates the partitioning

of a two dimensional rectangular uncertainty set and the corresponding scenario tree with each

branch representing a subinterval for each parameter. In this figure, the interval of each uncertain

parameter is divided into 3 segments such that there are 3 nodes in the first stage and 9 nodes in

the second stage. The following notations were used in this method:

s a scenario (each scenario is represented by a matrix structure (allowing empty elements),

its element sq,t gives the subinterval index of uncertain parameter ξq,t) under this scenario

r̄q,t scalar, number of breakpoints for ξq,t

αsq,t,q,t scalar, upper bound value for element ξq,t under scenario s
As an example, consider a two-stage problem: the first stage has uncertain parameters ξ1,1, ξ2,1

and the second stage has one uncertain parameter ξ1,2. Assume no breakpoint is applied to ξ1,1, 1

breakpoint is applied to ξ2,1, and 2 breakpoints are applied to ξ1,2. Then the set S is:

s ∈ S =

{[
1 1

1 ∗

]
,

[
1 1

2 ∗

]
,

[
1 2

1 ∗

]
,

[
1 2

2 ∗

]
,

[
1 3

1 ∗

]
,

[
1 3

2 ∗

]}

where ”*” denotes that the corresponding element is not existing.

For each scenario s ∈ S, the uncertainty set is a hyper-rectangular (subset of original set Ξ)

Ξs = {ξ : αsq,t−1,q,t ≤ ξq,t ≤ αsq,t,q,t; t = 1, ..., T, q = 1, ..., q̄t}

which can be compactly written as

Ξs = {ξ : W sξ ≥ V s} (3.17)
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3.4.2 Finite adaptability

Next, the finite adaptability method (also denoted as ”partitioning method” in this work) is applied

to the original problem 3.1a-3.1c. The idea is a combination of scenario tree based stochastic

formulation and robust optimization. For each scenario, we enforce constraint satisfaction over a

uncertainty set as defined in equation 4.4 instead of a single point in the uncertainty space. The

resulting model can be cast as:

min
y

∑
s∈S

ps

T∑
t=1

DtEΞs(ξ)yt,s (3.18a)

s.t.

t∑
τ=1

Atτyτ,s ≤ Etξ ∀t, s, ξ ∈ Ξs (3.18b)

yt,s = yt,s′ ∀(t, s, s′) ∈ SP (3.18c)

where the last constraint is enforcing non-anticipativity and SP is the set of all scenarios with the

same path up to time t:

SP = {(t, s, s′) : sq,τ = s′q,τ , ∀τ = 1, ..., t, q = 1, ..., q̄τ}

Reformulating the semi-infinite constraint using linear programming duality, the corresponding

robust scenario based formulation is

min
y

∑
s∈S

ps

T∑
t=1

DtEΞs(ξ)yt,s (3.19a)

s.t. V >s θt,s ≥
t∑
τ

Atτyτ,s ∀s, t (3.19b)

W>
s θt,s = E>t ∀s, t (3.19c)

θt,s ≥ 0 ∀s, t (3.19d)

yt,s = yt,s′ ∀(t, s, s′) ∈ SP (3.19e)

Illustrating example (cont.)

In this section, the partitioning method is applied to the illustrating example 3.3a-3.3d and the

results are presented. Figure 4.2 illustrates the partitioning and the corresponding scenario tree

for the illustrating example.

The formulation for partitioning of the uncertainty set is based on 2 equally-spaced breakpoints

for each uncertainty element: for ξ1,1 ∈ [0, 3] the breakpoints are set as 0 < 1 < 2 < 3; for ξ1,2 ∈
[0, 6] the breakpoints are 0 < 2 < 4 < 6. Hence, S =

{
[1, 1], [1, 2], [1, 3], [2, 1], [2, 2], [2, 3], [3, 1], [3, 2], [3, 3]

}
.
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Figure 3.7: Partitioning of the 2-dimensional uncertainty set (left figure) and scenario tree repre-
sentation (right figure)

The non-anticipativity condition set SP contains the following elements:(
1, [1, 1], [1, 2]

)
,
(

1, [1, 1], [1, 3]
)
,
(

1, [1, 2], [1, 3]
)

(
1, [2, 1], [2, 2]

)
,
(

1, [2, 1], [2, 3]
)
,
(

1, [2, 2], [2, 3]
)

(
1, [3, 1], [3, 2]

)
,
(

1, [3, 1], [3, 3]
)
,
(

1, [3, 2], [3, 3]
)

The partitioning based model is MILP problem. Table 3.4 presents the results from finite adapt-

ability method. As the number of partitions increases, the objective improves until it reaches close

to the optimal solution obtained from scenario method (-1.594 for 99 branches per node). For

comparison, the branches and breakpoints are evenly distributed in scenario and finite adaptabil-

ity method, respectively. For 29 breakpoints in partitioning method and 31 branches in scenario

method, the optimal objectives are -1.589 and -1.605, respectively. Figures 3.8 and 3.9 illustrates

the partitioning solution for 2 and 29 breakpoints. As the figures demonstrates, there is a close

match between the partitioning and scenario solution.

Table 3.4: Solution of finite adaptability method

Number of breakpoints Number of variables Objective Run time
2 18 binary, 109 continuous -1.444 0.015 s
9 200 binary, 1201 continuous -1.510 0.016 s
29 1800 binary, 10801 continuous -1.589 0.078 s
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Figure 3.8: Solution from finite adaptability method using 2 breakpoints for each parameter

Figure 3.9: Solution from finite adaptability method using 29 breakpoints for each parameter

3.4.3 Breakpoint optimization in partitioning method

In the variable breakpoint partitioning technique, the location of breakpoints is unknown a priori

and it is optimized instead. The location of breakpoints is reflected in the V s matrix of equation

4.4 and it is formulated as follows:

V s = V 0
s + V 1

sα ∀s ∈ S

where V 0
s and V 1

s are constant matrix. The corresponding robust scenario based formulation is

min
y

∑
s∈S

ps

T∑
t=1

DtEΞs(ξ)yt,s (3.20a)
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s.t. (V 0
s + V 1

sα)>θt,s ≥
t∑

τ=1

Atτyτ,s∀s, t (3.20b)

W>
s θt,s = E>t ∀s, t (3.20c)

θt,s ≥ 0 ∀s, t (3.20d)

yt,s = yt,s′ ∀(t, s, s′) ∈ SP (3.20e)

In this formulation, the probability of occurrence of each scenario depends on the location of

breakpoints since the length of each dimension in each scenario depends on the location of break-

points. The probability ps for each scenario and EΞs(ξ) are both functions of α and they can be

evaluated based on the distribution of the uncertainty.

Table 3.5 summarized the results of the variable partitioning technique. It can be observed that

for the same number of partitions, the variable partitioning method provided a better objective

compared to the fixed breakpoint method. For instance, for 2 breakpoints per uncertain parameter,

the variable and fixed methods’ objectives are -1.500 and -1.444, respectively. The variable method

even provided a better objective with just 3 breakpoints compared to the fixed method with 9

breakpoints. However, for large number of partitions, the fixed breakpoint method is much faster

in terms of solution and it could provide a better objective using 29 breakpoints in less than 1s

compared to the variable method using 5 breakpoints after about 18 min run time.

Table 3.5: Variable breakpoint partitioning applied to the illustrating example

Number of breakpoints Number of variables Objective Run time
1 8 binary, 83 continuous -1.333 0.682 s
2 18 binary, 180 continuous -1.500 0.604 s
3 32 binary, 315 continuous -1.528 0.928s
5 72 binary, 699 continuous -1.562 18 min 54 s

3.4.4 Flexibility comparison

We can observe from Table 3.2 that for the illustrating problem, lifting method’s objective does

not improve beyond -1.333 even for 9 breakpoints, while the partitioning method could provide a

better objective of -1.444 with 2 breakpoints for each parameter. In this section, we investigate

the reason why lifting method leads to restricted solution quality compared to the partitioning

method. For this purpose, the solution from partitioning method is substituted into the decision

rule solution from lifting method. Note that same breakpoints are applied in the lifting and par-

titioning method (as shown in Figure 4.2). This will result in a linear system of equations. If the

set of equations has no solution, this means that the lifting method has restricted flexibility such
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that it cannot cover the solution of the partitioning method.

Figure 3.8 presents the partitioning solution. In this problem, the interval for ξ1, ξ2 are divided

into 3 equally distributed pieces. Based on the binary decision rule equations:

yt = Y tQ[t]

Q[1] = [1, Q1,1,1, Q2,1,1]

Q[2] = [1, Q1,1,1, Q2,1,1, Q1,1,2, Q2,1,2]

For the three nodes at stage 1, the corresponding lifted uncertainty vector Q[1] takes the following

three values:

Node 1 : Y 1[1, 0, 0]> = 0

Node 2 : Y 1[1, 1, 0]> = 1

Node 3 : Y 1[1, 1, 1]> = 1

There is a solution Y 1 = [0, 1, 0] for the above equations. For the nine nodes at stage 2, the lifted

uncertainty vector takes 9 different values for nodes 4 to 12:

Node 4 : Y 2[1, 0, 0, 0, 0]> = 0

Node 5 : Y 2[1, 0, 0, 1, 0]> = 1

Node 6 : Y 2[1, 0, 0, 1, 1]> = 1

Node 7 : Y 2[1, 1, 0, 0, 0]> = 0

Node 8 : Y 2[1, 1, 0, 1, 0]> = 1

Node 9 : Y 2[1, 1, 0, 1, 1]> = 1

Node 10 : Y 2[1, 1, 1, 0, 0]> = 1

Node 11 : Y 2[1, 1, 1, 1, 0]> = 1

Node 12 : Y 2[1, 1, 1, 1, 1]> = 1

There is no solution Y 2 satisfying this linear system of equations (there are 9 equations and 5

variables for Y 2). This evidence indicates that lifting method’s solution is restricted compared

to partitioning method. The limited solution flexibility is due to the affine decision rule over the

lifted uncertainty.
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3.5 Case study: Inventory Control Problem

In this section, an inventory control problem with discrete ordering decisions is studied where

the problem is adapted from [39]. This problem can be formulated as an multistage adaptive

optimization problem with fixed recourse and can be explained as follows. At the beginning of

each time period t ∈ T = {1, ..., T}, the product demand ξt is observed. This demand can be

satisfied in two ways: (1) by pre-ordering at period t using maximum N lots (binary variable zn,t is

introduced to express whether we order from n lots in time period t or not), each delivering a fixed

quantity qz at the beginning of period t for a unit cost of cz; (2) by placing a recourse order during

the period t using maximum N lots (binary variable yn,t is introduced for this decision), each

delivering immediately a fixed quantity qy for a unit cost of cy. The pre-ordering cost is always less

than the immediate ordering cost (cz < cy). If the ordered quantity is greater than the demand,

the excess units are stored in a warehouse that incurs a unit holding cost of ch and can be used to

satisfy future demand. Furthermore, the cumulative volume of pre-orders
∑t

τ=1

∑N
n=1 q

zzn,τ can

not exceed the ordering budget B̄t. The objective is to minimize the total ordering and holding

costs over the planning horizon by determining the optimal decision of zn,t and yn,t(ξ[t]). Eqs 4.3a

to 4.3f express the problem formulation.

min Eξ

(
T∑
t=1

N∑
n=1

czqzzn,t + cyqyyn,t(ξ[t]) + chIt(ξ[t])

)
(3.21a)

s.t. It(ξ[t]) = I0 +
t∑

τ=1

(
N∑
n=1

qzzn,τ + qyyn,τ (ξ[τ ])− ξτ

)
∀t ∈ T , ξ ∈ Ξ (3.21b)

It(ξ[t]) ≥ 0 ∀t ∈ T , ξ ∈ Ξ (3.21c)

t∑
τ=1

N∑
n=1

qzzn,τ ≤ B̄t ∀t ∈ T (3.21d)

zn,t ∈ {0, 1}, yn,t(ξ[t]) ∈ {0, 1} ∀n, t (3.21e)

Notice that zn,t is static binary decision variable, while yn,t is adaptive binary decision variable de-

pendent on the realized uncertainty ξ[t]. The uncertainty set is represented as: Ξ = {ξ ∈ RT : l ≤
ξ ≤ u}. Uniform distribution is assumed for all of them. The bounds for each random parameter

are chosen from lt ∈ [0, 5] and ut ∈ [10, 15] for t = 1, ..., T . The cumulative ordering budget equals

to B̄t = 10t for t = 1, ...T . It is also assumed that qz = qy = 15/N and the initial inventory is zero

(I0 = 0).

Two different configurations of the inventory problem are studied in this work (Table 3.6).

In the second configuration, the unit cost for immediate ordering (cy), unit cost for storage at

warehouse (ch) and the maximum number of delivery lots (N) are greater than the first config-
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uration. Since at the second configuration, the costs for immediate ordering and warehouse are

higher, therefore it is more economical to satisfy demand using first stage decisions. Lifting and

partitioning method using both fixed and variable breakpoint are applied to the case study and

the obtained results are discussed.

Table 3.6: Inventory problem parameters

First Configuration
N cz cy ch qy qz

2 2 3 4 7.5 7.5
Second Configuration

N cz cy ch qy qz

3 2 5 6 5 5

First, the comparison is made between lifting and partitioning methods using same fixed break-

point setting. The following results are obtained:

1. The number of variables grows exponentially in the partitioning method while it grows lin-

early in the lifting. For a large number of time stages (T ) and number of breakpoints used

(Br), the number of variables in the partitioning method can be prohibitively large and it

may not be possible to run the model (Tables A.13 and A.14). Therefore, considering time

and computational resource limitations, lifting method is suggested for large models (exper-

iments next to T = 10, Br = 2 in this case study, Tables A.11 to A.12). Thus, the ability to

run large models can be considered the main advantage of the lifting method.

2. It is observed that for experiments with small and medium model size (up to T = 10, Br = 1

in this case study), the partitioning method provides a better objective value in shorter run

time compared to the lifting method. For instance, for experiments with 5 time steps, the

partitioning method provides a better solution in 9.5 seconds (Table A.13, T = 5, Br = 2)

compared to lifting method in 10 hours run time (Table A.11, T = 5, Br = 15). Figures 3.10

and 3.11 compare the fixed breakpoint lifting and finite adaptability (partitioning) methods

for first and second configurations, respectively.

3. In general, in both partitioning and lifting methods, the objective improves by increasing the

number of breakpoints except for large problems where the optimality gap is still quite large

after 10 hrs run time limitation (Tables A.11 and A.12). Thus, for large models, in order to

obtain the best objective in limited run time, there is no need to consider large number of

breakpoints.

Next, the comparison is made between fixed and variable breakpoint methods. The following

observations are made:
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Figure 3.10: Comparison of lifting and finite adaptability method using same fixed breakpoints
setting (first configuration).

Figure 3.11: Comparison of lifting and finite adaptability method using same fixed breakpoints
setting (second configuration).

1. Variable breakpoint lifting and partitioning techniques introduce additional variables and

require mixed integer nonlinear optimization compared to mixed integer linear optimization

for fixed breakpoint case. As shown in Tables A.11, A.13, A.15, A.16, and Figures 3.12 and

3.13, the variable breakpoint techniques can provide a better objective compared to fixed

methods for small to medium size models (T = 2 and T = 5). However, the run time is

longer. For a large number of time steps and breakpoints, the problem size is too large such

that it is impossible to run the model under computational resource restrictions.

2. For small to medium size experiments (T = 2, T = 5), the fixed breakpoints partitioning

method is recommended since it provides the best objective within the shortest run time

considering computational resource restrictions.

3. For large size problems (T = 10, T = 20), the lifting method under fixed breakpoints is

the only method that that results in a feasible solution considering computational resource
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limitation. The partitioning technique leads to large size problems such that the solver could

not find a solution in 10 hours time limit.

Figure 3.12: Comparison of solution from lifting method using fixed breakpoints and optimized
breakpoints

Figure 3.13: Comparison of solution from finite adaptability method using fixed breakpoints and
optimized breakpoints

3.6 Conclusions

In this work, the lifting and partitioning methods for multistage adaptive binary optimization

problems were studied. Different formulations based on fixed or variable breakpoints setting for

each method were presented. Computational studies were made to compare the computational

performance and the solution quality. The following conclusions can be made from this study.

First, the binary decision rule (lifting) based method and the finite adaptability (partitioning)

based method share the similar idea of uncertainty set splitting using breakpoints for each uncertain

69



parameter. While lifting based method has less solution flexibility than partitioning method (under

the same breakpoint setting), the lifting method has the advantage of superior computational

tractability and scalability for large problems. While computational resource restrictions is a

major concern (especially for problems with large number of stages), the lifting method with fixed

breakpoints is suggested and the number of breakpoints can be moderately large to avoid inferior

solution quality. Otherwise, the partitioning method is suggested. Variable breakpoints can be

implemented for partitioning method especially for small number of stages with the usage of small

number of breakpoints. As a future research direction, the number of breakpoints can be optimized

to avoid unnecessary model complexity.
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Chapter 4

Multistage Adaptive Stochastic Mixed

Integer Optimization through Piecewise

Decision Rule Approximation

Abstract

This work studies the multistage adaptive stochastic mixed integer optimization problem, where

the aim is to find adaptive continuous and integer decision policies that optimize the expected ob-

jective. While searching for the exact optimal policy is challenging, piecewise decision rule-based

solution framework is studied and two types of strategies are compared: uncertainty set partition-

ing and uncertainty lifting. Adaptive binary and continuous decisions are approximated through

piecewise constant and affine decision rule, respectively. The original optimization problem is

solved through robust counterpart optimization technique. The proposed methods are applied to

an inventory control problem and a chemical process capacity planning problem. Results show

that the two methods provide flexible options with the trade-off between solution quality and

computational efficiency. The uncertainty set partitioning based method leads to better solution

quality and is appropriate to small-scale problems. On the other hand, the lifting method provides

significant computational efficiency especially for large problems.
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4.1 Introduction

Stochastic programming is an important technique for decision making under uncertain circum-

stances. It has many applications in different fields such as operations management [4, 5], control

[6, 7], finance [8, 9] and process systems engineering [10, 11, 62, 76]. In the recourse based stochas-

tic programming problem, recourse/adaptive/adjustable decisions can be made based on observed

uncertainty. In multistage stochastic programming, the uncertainty is revealed gradually over time

stages and the recourse decision can be made sequentially. It is widely known that obtaining the

exact optimal adaptive decision policy of multistage stochastic problems including binary and con-

tinuous variables is computationally intractable [67, 55].

Two major solution approaches for multistage adaptive stochastic mixed integer problem in-

clude the scenario tree based method and the decision rule approximation method. The first

method is the traditional approach. The idea is to discretize the uncertain parameters and rep-

resent the uncertainty through scenario trees. Then a deterministic counterpart problem can be

formulated and solved accordingly. This approach results in exponential growth of the model size

which makes the resulting deterministic problem computationally challenging and restricts its ap-

plication to small size problems. Many literature work have applied the scenario-based method

method in different applications. To name a few, Ahmed et al. [12] addressed a multi-period in-

vestment model for capacity expansion of a chemical plant under uncertain demand and cost. They

used a heuristic scheme and a branch and bound algorithm to solve the problem to optimality.

Birge and Rosa [13] studied the problem of greenhouse gas policy decision-making under economic

uncertainty. Escudero et al. [14] investigated production and capacity planning problems to assist

in raw material supply sourcing decision under demand uncertainty. Takriti et al. [15] developed

a model and a solution method for power generation decision making when demand is uncertain.

For a review on stochastic optimization, the reader can refer to [16, 17, 18] .

Considering the difficulty and the computational burden in solving stochastic problems using

traditional scenario tree methods, there is a need for computationally efficient solution methods.

As an alternative approach, the idea of the decision rule based method is to formulate the adaptive

variables as special functions of uncertain parameters. These functions are referred to as decision

rules. Recent advances in robust optimization enabled researchers to reformulate the problem un-

der decision rule approximation as tractable optimization problem [70, 69]. Ben-Tal et al. applied

linear decision rules in the context of adaptive robust optimization [22]. In their work, real valued

variables are assumed to be linear functions of uncertain parameters. The simple structure of linear

decision rules provides the scalability required for multistage stochastic problems. Some applica-

tion instances for linear decision rules is reviewed here. Skaf and Boyd[7] designed a general affine

controller in which the control input is an affine function of all previous measurements to minimize

72



a convex objective. They illustrated the method with applications in supply chain management

optimization and dynamic portfolio optimization. Calafiore [8] addressed a portfolio optimization

problem using an affine parametrization of the recourse policy that provides a sub-optimal but

explicit formulation that can be used to solve multistage problems with many constraints and

periods. Atamtürk and Zhang [23] presented a two-stage robust optimization method for network

flow with uncertain demand and provide applications for lot-sizing and location transportation

problems and compared the results with single-stage robust optimization and two-stage scenario-

based optimization. Goh et al. [77] developed robust optimization procedures for controlling total

completion time in projects with uncertain activity time. Rocha and Kuhn[78] used the linear

decision rule method to manage the portfolio of electricity contracts using a multistage stochastic

mean-variance optimization model and emphasized the value of adaptability and scalability inher-

ent in this method. Ben-Tal [58] used the affinely adjustable robust counterpart (AARC) method to

solve a multi-period supply chain problem. Decision rule based method has also received attention

in the process systems engineering community. Lappas and Gounaris [24] developed a multistage

adjustable robust optimization framework that accounts for inherent endogenous uncertainty in

process scheduling by employing decision-dependent uncertainty sets. Ning and You [25] presented

a data-driven framework for adaptive optimization using data and applied the proposed framework

on two industrial applications of process scheduling and process network planning. Zhang et al.

[26] developed a scheduling model for continuous industrial processes that provide interruptible

load. The uncertainty in the timing of the load reduction request is modeled by an adjustable

robust optimization approach that integrates recourse decisions using linear decision rules.

In order to address the optimality issue in decision rule methods, various nonlinear decision

rules for adaptive real-valued variables have been proposed. The rationale behind the nonlinear

decision rules is to improve the optimality while preserving the scalability of linear decision rules.

Chen et al. [27] proposed new decision rule structures, segregated and deflected linear decision

rules and demonstrated that these proposed methods can outperform sampling approaches when

limited information about the underlying probability distributions is available. Chen and Zhang

[28] presented a splitting-based extended affinely adjustable formulation and showed that their

method is tractable and scalable to multistage problems. Georghiou et al. [29] proposed piecewise

linear continuous decision rule based on axial segmentation and lifting of the uncertain parameters.

They also proposed a method for piecewise linear continuous decision rule based on general segmen-

tation. The authors recommended ideas for nonlinear continuous decision rules such as quadratic,

power, monomial, inverse monomial and multilinear liftings and compared different methods on a

dynamic inventory control problem. Goh and Sim [30] studied distributionally robust optimization

problem and applied the linear decision rule method to get tractable approximation. Bampou and

Kuhn [31] presented a polynomial decision rule to solve multistage stochastic problems. They esti-

mated the suboptimality of the decision rule by solving a dual version of the problem in polynomial
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decision rule. Bertsimas et al. [32] introduced a hierarchy of near-optimal polynomial policies and

showed that these policies can be computed by solving a single semidefinite programming problem.

They evaluated the framework using three classical applications in the context of inventory man-

agement and robust regulation of a suspension system. Recently, Avraamidou and Pistikopoulos

[33] proposed a method based on generalized affine decision rules for linear mixed integer robust

optimization problems using multi-parametric programming and showed that the method can find

the exact global solution.

Although many decision rule structures are proposed for real-valued variables, the available

literature for adaptive integer variables is scarce. Bertsimas and Caramanis [34] proposed a linear

decision rule and approximated the semi-infinite optimization problem using a sampling algorithm.

Bertsimas and Georghiou [35] suggested a structure that can provide near-optimal solutions but

restricted scalability. Hanasusanto et al. [36] presented a binary decision rule based on the previ-

ous work done by Bertsimans and Caramanis [37] that can only be applied to two-stage problems.

Postek and den Hertog [38] presented a method for iterative splitting of uncertainty set that can be

used for adaptive integer variables and demonstrated the advantage of their method on a capital

budgeting and a lot sizing problem. Recently, Bertsimas and Georghiou [39] proposed a binary

decision rule that lifts the original uncertain parameters using 0-1 indicator functions. The trade-

off between the solution optimality and scalability can be adjusted based on the segmentation

resolution over the uncertainty set. The authors suggested a scalable formulation that can be used

for large-scale multistage problems. For an extensive review on adaptive optimization, the reader

can refer to Bertsimas et al., [40], Gabrel et al. [41] and Yanıkoğlu et al. [79].

While most of the existing work study adaptive continuous decisions and binary decisions sep-

arately, this study presents a novel piecewise decision rule solution framework that integrates both

adaptive continuous and adaptive binary variables. To evaluate the efficiency of the piecewise

decision rule method, two strategies are presented and compared: an uncertainty lifting based

method and an uncertainty set partitioning based method. The first method combines the uncer-

tainty lifting based method for decision rule approximation for continuous and binary variables.

This combination provides a robust scalable solution for multistage stochastic problems. It can

be adjusted to result in a continuous or discontinuous solution for the continuous variables. The

discontinuous solution provides more flexibility and consequently a better objective value. The

second method combines the scenario tree representation and uncertainty set based robust coun-

terpart optimization technique. In the proposed partitioning method, we partition the uncertainty

set using fixed breakpoints at the initial stage. Such a partition is used since we try to compare the

performance with the lifting method, which essentially also partitions the uncertainty set through

axial segmentation. Overall, the new contribution of the work is: 1) combination of the continuous

lifting and binary lifting strategies, 2) a predefined uncertainty set partitioning method and the

74



associated piecewise decision rule, 3) comparative study of the two piecewise decision rule frame-

work and discussion on the advantages and limitations.

The rest of the paper is organized as follows: Section 4.2 presents the general formulation for

multistage stochastic problems under exogenous uncertainty and describes an inventory planning

case study. In section 4.3, the uncertainty set partitioning based method is described. Section 4.4

presents the mathematical framework for adaptive continuous and adaptive binary variables and

shows how to integrate both continuous and binary variables in a single framework. In Section

4.5, the developed framework is applied to an inventory control problem and the benefits of the

proposed method are discussed. Section 4.6 presents a case study about expansion planning of a

chemical process network and section 5.8 concludes the study.

4.2 Multistage stochastic mixed integer optimization

Formulation 4.1 presents the multistage stochastic problem that is addressed in this study.

min Eη

(∑
t

c>t (η)xt(η) + d>t (η)yt(η)

)

s.t.
t∑

τ=1

A>t,τxτ (η) +
t∑

τ=1

B>t,τyτ (η) ≤ ft(η) ∀t,η ∈ Ω (4.1)

yt(η) ∈ {0, 1} ∀t,η ∈ Ω

where η is the primitive exogenous uncertainty vector parameter, the objective coefficients ct(η),

dt(η), and constraint right hand side ft(η) are assumed to be dependent on the primitive uncer-

tainty. Furthermore, we assume they are linearly dependent on the vector of uncertain parameters

up to time t, η[t]:

ct(η) = Ctη[t], dt(η) = Dtη[t], ft(η) = F tη[t]

Constraints coefficients At,τ and Bt,τ are assumed to be independent of uncertainty.

This formulation aims at finding the optimal adaptive decision (policy) xt(η) and yt(η) that

are feasible for all uncertainty realizations in the uncertainty set Ω and minimizes the expected

objective performance (E(·) is the expectation operator). Due to non-anticipativity requirements

(i.e., the decision can not be made based on unknown future information), the adaptive continuous

decision xt(η) and adaptive binary decision yt(η) are functions of uncertain parameters up to time

t, η[t]:

xt(η) = xt(η[t]), yt(η) = yt(η[t])
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Under the above assumption, the problem under investigation can be re-written as

min Eη

(∑
t

η[t]
>C>t xt(η[t]) + η[t]

>D>t yt(η[t])

)

s.t.

t∑
τ=1

(A>t,τxτ (η[τ ]) +B>t,τyτ (η[τ ])) ≤ F tη[t] ∀t,η ∈ Ω (4.2)

yt(η[t]) ∈ {0, 1} ∀t,η ∈ Ω

While it is in general hard to get the optimal decision policy xt(η) and yt(η), we study piecewise

decision rule based approximation method in this paper. The unknown true optimal policy will

be approximated by piecewise linear/binary decision rule. In subsequent section 3, we present

the uncertainty set partitioning based method. For each partition, linear and constant binary

decision rules are applied to continuous and binary variables, respectively. In Section 4, we present

the uncertainty lifting method. Applying linear decision rule over the lifted uncertainty will also

lead to piecewise linear decision rule for continuous variable and piecewise constant decision rule

for binary variables. Then the two methods will be compared in terms of solution quality and

computational efficiency.

4.2.1 Example: Inventory planning problem

As a motivating example, the problem of inventory planning of a single product is presented here.

As Figure 4.1 shows, at the beginning of each time period, the demand uncertainty ηt is revealed.

In order to satisfy the demand, two types of decisions are made. The continuous ordering decision

xt can only be used to satisfy the demand for the next time period. The binary ordering decision

yn,t (related to fixed order amount qn from lot n) can be used to satisfy the demand immediately

at the same time period but at a higher ordering cost (cx < cyn). At each time step, the demand

should be satisfied and the remaining products will be held at the inventory and are used to satisfy

the demand for the next time period. Holding the products at the inventory will incur the holding

cost of ch per unit product. At t = 1, only the binary decision yn,1 is available to satisfy the

demand at this period, since x1 decision can only be used to satisfy the demand at the next time

period. The initial inventory I0 is assumed to be zero. This decision making sequence is shown in

Figure 4.1.
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Figure 4.1: Decision making and uncertainty realization sequence

Equations 4.3a-4.3f present the multistage stochastic programming formulation for this inventory

planning problem under demand uncertainty.

min Eη

(
T−1∑
t=1

cxxt(η[t]) +
T∑
t=1

N∑
n=1

cynqnyn,t(η[t]) +
T∑
t=1

chIt(η[t])

)
(4.3a)

s.t. It(η[t]) = I0 +
t∑

τ=1

[
xτ−1(η[τ−1]) +

N∑
n=1

qnyn,τ (η[τ ])− ητ

]
∀t ∈ {1, ..., T},η ∈ Ω (4.3b)

It(η[t]) ≥ 0 ∀t ∈ {1, ..., T},η ∈ Ω (4.3c)

xt(η[t]) ≥ 0 ∀t ∈ {1, ..., T − 1},η ∈ Ω

(4.3d)

t∑
τ=1

xτ (η[τ ]) ≤ CCAP t ∀t ∈ {1, ..., T − 1},η ∈ Ω

(4.3e)

yn,t(η[t]) ∈ {0, 1} ∀n, t,η ∈ Ω (4.3f)

The problem parameters and variables are described as follows. ηt is the uncertain demand pa-

rameter of time period t. cyn is the cost for buying a unit of product from lot n for immediate

delivery. cx is the cost per product unit for purchases that are delivered in the subsequent period.

ch is the holding cost for a unit product in the inventory. qn is the fixed quantity delivered when

the purchase decision yn,t is made. N is the number of lots. CAPt is the order limit at time step

t and CCAP t is the cumulative order limit up to period t, CCAP t =
∑t

τ=1CAPτ . It is the level

of available inventory at period t. xt is the product amount ordered in period t.

Table 4.1: Problem parameters

cx cy1 cy2 ch N qn

2 7 9 5 2 50
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Table 4.2: Order limit for each time period

t 1 2 3 4 5 6 7 8 9

CAPt 50 80 60 70 50 90 40 70 80

In this problem, the demand uncertainty is assumed to be uniformly distributed within the un-

certainty set {η : lt ≤ ηt ≤ ut, t = 1, · · · , T} where lt and ut are the lowest and highest possible

demand at each time period t that are considered to be 20 and 100, respectively.

4.3 Uncertainty set partitioning based method

In this method, the uncertainty set is divided into partitions. Adaptive continuous variables are

modeled as affine functions of uncertain parameters and adaptive binary decisions are assumed be

constant (0 or 1) for each partition. To generate the partitions, a set of breakpoints are pre-defined

for each uncertain parameter. Figure 4.2 illustrates the partitioning of a two dimensional rect-

angular uncertainty set using two breakpoints for each uncertain parameter. With this partition,

a corresponding scenario tree can be constructed with each branch representing a subinterval for

each parameter. In this figure, each uncertain parameter is divided into 3 segments such that there

are 3 nodes in the first stage and 9 nodes in the second stage.

(a) (b)

Figure 4.2: Partitioning of a 2-dimensional uncertainty set (left) and scenario tree representation
(right)

In order to clarify how each scenario is defined, consider a two-stage problem: the first stage
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has uncertain parameters η1 and the second stage has one uncertain parameter η2. Assume 1

breakpoint is applied to η1 and two breakpoints are applied to η2. Therefore, the set S is:

s ∈ S =

{[
1, 1

]
,
[
1, 2

]
,
[
1, 3

]
,
[
2, 1

]
,
[
2, 2

]
,
[
2, 3

]}

For each scenario s ∈ S, the corresponding uncertainty set is a subset of original set Ω. The

probability of uncertainty realization occurs in subset Ωs is ps. Its value can be evaluated based

on the known probability distribution of the uncertainty. The subset is compactly written as

Ωs = {η : W sη ≥ V s} (4.4)

The uncertain set partitioning method (also described as finite adaptability method) is applied

to the original problem 4.1. This method is a combination of scenario tree based stochastic

formulation and robust optimization. For each scenario, the constraints are satisfied over an

uncertainty set as defined in equation 4.4 instead of a single point in the uncertainty set. For

each scenario, the binary variables take constant value and continuous variables are assumed to

be affine functions of uncertain parameters.

yt(η) = yst ∀t, s,η ∈ Ωs (4.5)

xt(η) = Xs
tη[t] ∀t, s,η ∈ Ωs (4.6)

where η[t] denotes the vector of uncertain parameters up to time step t. A truncate matrix Rt can

be applied to the vector of all uncertain parameters η to obtain η[t].

Rtη = η[t] ∀t (4.7)

The original problem 4.1 can be formulated as:

min
∑
s∈S

ps
∑
t

Eη∈Ωs
(
η>R>t C

>
t X

s
tRtη + η>R>t D

>
t y

s
t

)
s.t.

t∑
τ=1

(A>t,τX
s
τRtη +B>t,τy

s
τ ) ≤ F tRtη ∀t, s,η ∈ Ωs (4.8)

yst ∈ {0, 1} ∀t, s

yst = ys
′

t ∀(t, s, s′) ∈ SP

Xs
t = Xs′

t ∀(t, s, s′) ∈ SP

where the last two constraints enforce non-anticipativity; at each time step, the variables can only

depend on the revealed uncertain parameters up to time step t. Therefore, scenarios with the same
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path up to time step t should have the same solution. This set of scenarios is represented by SP :

SP = {(t, s, s′) : sτ = s′τ , ∀τ = 1, ..., t} (4.9)

where st gives the subinterval index of uncertain parameter ηt under this scenario. For instance,

the set SP corresponding to Figure 4.2 contains the following elements:(
1, [1, 1], [1, 2]

)
,
(

1, [1, 1], [1, 3]
)
,
(

1, [1, 2], [1, 3]
)

(
1, [2, 1], [2, 2]

)
,
(

1, [2, 1], [2, 3]
)
,
(

1, [2, 2], [2, 3]
)

(
1, [3, 1], [3, 2]

)
,
(

1, [3, 1], [3, 3]
)
,
(

1, [3, 2], [3, 3]
)

Next, the semi-infinite constraint is reformulated using duality theorem and the corresponding

deterministic counterpart formulation is obtained:

min
∑
s∈S

ps
∑
t

(
Tr(R>t C

>
t X

s
tRtEΩs(ηη

>)) + EΩs(η)>R>t D
>
t y

s
t

)
s.t. V s

>θt,s ≥
t∑

τ=1

B>t,τy
s
τ ∀t, s (4.10a)

W s
>θt,s = −

t∑
τ

A>t,τX
s
τRτ + F tRt ∀t, s (4.10b)

θt,s ≥ 0 ∀t, s (4.10c)

yst ∈ {0, 1} ∀t, s (4.10d)

yst = ys
′

t ∀(t, s, s′) ∈ SP (4.10e)

Xs
t = Xs′

t ∀(t, s, s′) ∈ SP (4.10f)

where Tr(·) denotes the trace operator, θt,s represents the dual variables. The final model 10 is a

mixed integer linear optimization (MILP) problem that can be solved using off-the-shelf optimiza-

tion solver such as CPLEX. Notice that the second order moment matrix in the objective can be

evaluated using formula E[ηη>] = Cov(η) + E[η]E[η]> with Cov(η) being the covariance matrix

of vector η. Specifically, based on matrix calculation property E[Tr(Mn×n)] = Tr(E[Mn×n]) and

Tr(Mm×nNn×m) = Tr(Nn×mMm×n), the first term is derived from the following property

E[η>Mη] = Tr(E[η>Mη]) = E[Tr(η>Mη)] = E[Tr(Mηη>)] = Tr(E[Mηη>]) = Tr(ME[ηη>])
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4.4 Uncertainty lifting based method

This section explains the mathematical framework for lifting uncertain parameters. The traditional

scenario tree method results in exponential growth of the problem size that makes the problem

computationally expensive while the lifting method provides the scalability and tractability re-

quired for large-scale problems. The lifted parameters are used to build piecewise linear/binary

decision rules for continuous and binary variables. Construction of convex overestimation set from

the original uncertainty set is also presented.

4.4.1 Piecewise linear lifting of uncertainty

The concept of lifting for piecewise linear continuous decision rule was proposed by Georghiou et

al. [29]. In this framework, a set of breakpoints are selected for each uncertain parameter. A

lifting operator is defined based on the selected breakpoints that result in a nonconvex lifted set.

The nonconvex set is convexified using its extreme points. The adaptive continuous variable will

be approximated by an affine function of the lifted uncertain parameters.

Consider a single uncertain parameter ηi defined within the interval Ωi ∈ [li, ui]. The uncertain

parameter is axially segmented using ri− 1 number of breakpoints. Figure 4.3 illustrates that two

breakpoints (ri = 3) are selected for the uncertainty interval.

Figure 4.3: Two breakpoint locations are selected to segment the uncertainty interval

The location of breakpoints is denoted by zij, j = 1, · · · , ri − 1. To generalize the notation, we

define zi0 ≡ li, z
i
ri
≡ ui. Hence zi0 < zi1 < ... < ziri−1 < ziri . The lifted uncertainty for a single

uncertain parameter ηi is defined as:

Gi,j =


ηi ri = 1

min{ηi, zi1} ri ≥ 2, j = 1

max{min{ηi, zij} − zij−1, 0} ri ≥ 2, j = 2, ..., ri − 1

max{ηi − zij−1, 0} ri ≥ 2, j = ri

(4.11)

Notice that if ri = 1, it means that there are no breakpoints for i-th uncertain parameter and

the lifting operator will reduce to the identity mapping. The original uncertain parameter can be

retrieved through the following equation: ηi =
∑ri

i=1Gi,j where Gi = (Gi,1, · · · , Gi,ri). Figure 4.4

illustrates the lifted uncertain parameter for two breakpoints.
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Figure 4.4: Illustration of the lifted uncertain parameter for two-breakpoint case

Figure A.4 illustrates the sequence for convexifying the lifted set. The left figure shows that two

breakpoints are selected for lifting the uncertain parameter. The middle figure presents the lifted

nonconvex set (ΩliftC
i ) in the space of the lifted uncertain parameters Gi,j, j = 1, · · · , ri and the

right figure is obtained by convexifying the lifted nonconvex set (ΩliftC
i ) using its extreme points.

Figure 4.5: Lifted uncertain parameter and convexified uncertainty set

The nonconvex set ΩliftC
i is a union of ri connected finite line segments. Its extreme points

are ν0 = (li, 0, · · · , 0)>, ν1 = (zi1, 0, · · · , 0)>, ν2 = (zi1, z
i
2 − zi1, 0, · · · , 0)> ,· · · , νri = (zi1, z

i
2 −

zi1, · · · , ziri−1 − ziri−2, ui − ziri−1)> ∈ Rri . Therefore, the convex hull of ΩliftC
i is generated by the

simplex with vertices {νj}rij=0: {Gi ∈ Rri : Gi =
∑ri

j=0 λjνj ,
∑ri

j=0 λj = 1, λ0, · · · , λri ≥ 0}. This

can be rewritten as:

conv(ΩliftC
i ) = {Gi ∈ Rri : ∃λ ∈ Rri+1,Aiλ = (1,G>i )>,λ ≥ 0} (4.12)

= {Gi ∈ Rri : A−1
i (1,G>i )> ≥ 0} (4.13)
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where

Ai =

[
1 · · · 1

ν0 · · · νri

]
,A−1

i =



zi1
zi1 − li

− 1

zi1 − li
− li
zi1 − li

1

zi1 − li
− 1

zi2 − zi1
1

zi2 − zi1
. . .

. . . − 1

ziri−1 − ziri−2
1

ziri−1 − ziri−2

− 1

ui − ziri−1
1

ui − ziri−1


Note that Ai ∈ R(ri+1)×(ri+1). In reference [29], the continuous variable is approximated by an

affine function of lifted uncertain parameters x(η) = X[1,G]>. For instance, for a single uncertain

parameter with two breakpoints, the continuous variable is formulated as: x(η) = x0 + x1Gi,1 +

x2Gi,2 + x3Gi,3 = X[1, Gi,1, Gi,2, Gi,3]>. It should be noted that the lifted uncertain parameters

Gi,j are continuous with respect to the original uncertain parameters ηi, therefore the continuous

variable will always be continuous with respect to η. This property restricts the flexibility of the

decision rule. In section 5.5.4, a discontinuous decision rule for the continuous variable is presented

that is inherently more flexible.

4.4.2 Piecewise binary lifting of uncertainty

The idea of adaptive binary variables based on decision rule method was proposed by Bertsimas

and Georghiou [39]. In this method, each uncertain parameter is lifted using the indicator func-

tions. The lifted set is non-convex and it is convexified which results in a convex over-estimation

of the original uncertainty set.

Consider a single uncertain parameter ηi subject to the interval li ≤ ηi ≤ ui, and assume the

interval is divided into ri subintervals using ri− 1 breakpoints zij, j = 1, ..., ri− 1, (Figure 4.3). To

lift the uncertainty, the indicator functions Qi,j(·) of uncertain parameters are employed.

Qi,j(ηi) =

{
1, if ηi ≥ zij

0, if ηi < zij
(4.14)

While two breakpoints are applied on a single uncertain parameter ηi, the corresponding indicator

functions are illustrated in Figure 4.6.
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Figure 4.6: Indicator functions for two breakpoints on uncertain parameter ηi

Figure 4.7 illustrates the lifted uncertainty set for two breakpoints. The lifted set is nonconvex

since it consists of disconnected pieces. Next, using the extreme points of the lifted nonconvex set,

a convex polyhedron is formulated.

Figure 4.7: Lifted uncertain parameter and convexified uncertainty set to be used for adaptive
binary decision rule

Convex hull of lifted uncertainty set for a single uncertain parameter is formulated as:

conv(ΩliftB
i ) = {η′

i = (ηi,Qi) : ∃ λk,p,i > 0,η′
i =

ri∑
p=1

2∑
k=1

λk,p,iνk,p,i,

ri∑
p=1

2∑
k=1

λk,p,i = 1} (4.15)

where Qi = (Qi,1, · · · , Qi,ri−1) is the vector of indicator functions for uncertain parameter ηi, λk,p,i

is the coefficient of extreme points in the convex hull and ν1,p,i and ν2,p,i are extreme points of the

p-th segment of the lifted non-convex set (ΩliftB
i ) related to parameter ηi:

ν1,p,i = [zip−1, 1, · · · , 1︸ ︷︷ ︸
p− 1 times

, 0, · · · , 0︸ ︷︷ ︸
ri − p times

]>, ν2,p,i = [zip, 1, · · · , 1︸ ︷︷ ︸
p− 1 times

, 0, · · · , 0︸ ︷︷ ︸
ri − p times

]> ∈ Rri

therefore,

conv(ΩliftB
i ) = {η′

i = (ηi,Qi) ∈ Rri : ∃ λ ∈ R2ri ,Aiλ = (1,η′
i
>

)>,λ > 0} (4.16)
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where

Ai =

[
1 1 · · · 1 1

ν1,1,i ν2,1,i · · · ν1,ri,i ν2,ri,i

]
∈ R(ri+1)×2ri

The binary variable will be a linear combination of indicator functions that can generate a piecewise

constant solution. For instance, for a single uncertain parameter and two breakpoints, the decision

rule for the binary variable will be: y(ηi) = y0+y1Qi,1+y2Qi,2 = Y [1, Qi,1, Qi,2]>. As an illustration,

Table 4.3 demonstrates that for the case with 2 breakpoints, the binary decision rule can generate

all the possible values of the binary variable at different uncertainty intervals. The integer variable

Y ∈ {−1, 0,+1}.

Table 4.3: Piecewise adaptive binary variable for 2 break points case

yηi∈[li,zi1) yηi∈[zi1,z
i
2) yηi∈[zi2,u

i] y0 y1 y2

1 0 0 1 -1 0

0 1 0 0 1 -1

0 0 1 0 0 1

1 1 0 1 0 -1

1 0 1 1 -1 1

0 1 1 0 1 0

1 1 1 1 0 0

0 0 0 0 0 0

4.4.3 Overall lifted uncertainty

In this study, both adaptive continuous and adaptive binary variables are considered in the problem

formulation. Therefore, the uncertain parameter includes the lifting elements for both binary and

continuous variables. In the following, the notation used for the overall uncertainty vector for all

time steps is summarized here.

� η′
i = [ηi, Qi,1, · · · , Qi,ri−1︸ ︷︷ ︸

binary

, Gi,1, · · · , Gi,ri︸ ︷︷ ︸
continuous

]> = [ηi,Qi
>,Gi

>]
>

� η′
[t] vector of overall uncertainty from stage 1 to t: [1,η′

1
>, · · · ,η′

t
>]
>

� η′ ≡ η′
[T ] vector of overall uncertainty from stage 1 to T : [1,η′

1
>, · · · ,η′

T
>]
>

Assume the original uncertainty set is a general polyhedral set:

Ω = {η : Jη ≥ h} (4.17)
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The convex overestimation for the overall lifted uncertainty set is defined as follows. It includes

constraints from the original uncertainty set, the convex hull for the continuous lifted set, the

convex hull for the binary lifted set and the correlation between the lifted parameters.

Ω̂′ = {η′ : Jη ≥ h,Gi ∈ conv(ΩliftC
i ), (ηi,Qi) ∈ conv(ΩliftB

i ), ηi = 1>Gi, i = 1, · · · , T} (4.18)

The convex overestimated set after projection to the space of η′ can be compactly written as:

Ω̂′ = {η′ : J ′η′ ≥ h′} (4.19)

Projection (truncation) matrices can be used to retrieve the specific uncertainty to be used in the

decision rule approximation model:

φ[t] = [1,G>
1 , · · · ,G

>
t ,Q

>
1 , · · · ,Q

>
t ]
>

= P η[t]η
′ (4.20)

Q[t] = [1,Q>
1 , · · · ,Q

>
t ]
>

= PQ[t]
η′ (4.21)

G[t] = [1,G>
1 , · · · ,G

>
t ]
>

= PG[t]
η′ (4.22)

4.4.4 Decision rule approximation

The decision rule for continuous variables is based on defining an affine function of the overall

lifted uncertainty as presented in section 5.5.3. The adaptive continuous variable is approximated

as:

xt(η[t]) = Xt[1,G
>
1 , · · · ,G

>
t ,Q

>
1 , · · · ,Q

>
t ]
>

= XtP η[t]η
′ (4.23)

This formulation provides the flexibility to achieve a discontinuous solution for the continuous

variable. Notice that if a piecewise continuous decision rule is necessary to be enforced, we can

express the continuous variables as the following affine function of the lifted uncertain parameter:

xt(η[t]) = Xt[1,G
>
1 , · · · ,G

>
t ]
>

= XtPG[t]
η′ (4.24)

Adaptive binary variables are approximated using the following affine function of the lifted uncer-

tain parameter:

yt(η[t]) = Yt[1,Q
>
1 , · · · ,Q

>
t ]
>

= YtPQ[t]
η′ (4.25)

Using the above linear decision rules, the original problem formulation (equation 4.2) will become

a semi-infinite optimization problem since the parameter η′ belongs to convex set Ω̂′ and can take
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infinite number of values (equation 4.26b).

min E(
∑
t

(η′>Pη[t]
>C>t XtP η[t]η

′ + η′>Pη[t]
>Dt

>YtPQ[t]
η′)) (4.26a)

s.t.
t∑

τ=1

(A>t,τXtP η[t]η
′ +B>t,τYtPQ[t]

η′) ≤ FtP η[t]η
′ ∀t,η′ ∈ Ω̂′ (4.26b)

Yt ∈ {−1, 0, 1} ∀t (4.26c)

To solve this problem, duality based standard robust linear optimization formulation is applied to

the constraints and the resulting deterministic counterpart is obtained.

min Tr
∑
t

(Pη[t]
>C>t XtP η[t]E[η′η′>] + Pη[t]

>Dt
>YtPQ[t]

E[η′η′>]) (4.27a)

s.t. h′θt ≥ 0 ∀t (4.27b)

J ′>θt = −
t∑

τ=1

(A>t,τXtP η[t] + B>t,τYtPQ[t]
) + FtPη[t] ∀t (4.27c)

θt ≥ 0 ∀t (4.27d)

Yt ∈ {−1, 0, 1} ∀t (4.27e)

where θt is the dual variable. The final model is a MILP problem.

Remark: Limitation of the binary decision rule

In the binary decision rule method, the binary variable is a linear combination of 0-1 indicator

functions and each indicator function is a function of only one uncertain parameter. Therefore, the

final binary variable can only be a function of one of the uncertain parameters. This restriction

limits the solution quality. To illustrate this limitation, assume a problem with two time steps

and one uncertain parameter at each time step. For simplicity, consider one breakpoint for each

uncertain parameter. Under this setting, for t = 1 and t = 2, the binary variable is formulated as:

t = 1, y1(η[1]) = Y0 + Y11Q11(η1)

t = 2, y2(η[2]) = Y0 + Y11Q11(η1) + Y21Q21(η2)

At t = 2, there are two indicator functions (Q11(η1) and Q21(η2)) involved in the decision rule.

Considering the range of coefficients Y ∈ {−1, 0,+1}, linear combination of independent 0-1

indicator functions will not necessarily be binary. Therefore, at each time step, the binary variable

can only be a function of one uncertain parameter. Table 4.4 shows all the possible combinations

of the indicator functions at t = 2. Among all the 18 combinations, 6 are feasible that result in a

binary variable. In each feasible case, the indicator function related to only one of the uncertain
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parameters is involved, hence the solution quality is restricted.

Table 4.4: Combinations of indicator functions at t = 2

y2(η[2]) NF NF NF NF F F NF F NF NF F NF F F NF NF NF NF

Y0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

Y11 -1 -1 -1 0 0 0 1 1 1 -1 -1 -1 0 0 0 1 1 1

Y21 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1

NF: Not Feasible, F: Feasible

4.5 Results for inventory planning problem

The example problem introduced in Section 2 is studied here using the different piecewise decision

rule approximation methods presented in Section 3 and 4. All the numerical experiments are

run on a desktop computer with 8 Gb RAM and Intel(R) Core(TM) i5-7500 CPU @ 3.40GHz

processor.

4.5.1 Lifting method results

The inventory problem is investigated for cases with different time horizon T = 2, 3, 5, 10. In

order to demonstrate the effectiveness of the proposed framework, 4 combinations of variables

are examined for each case: adaptive, static continuous, static binary, all static. In the adaptive

setting, both continuous and binary variables are adaptive. In the static continuous setting, the

continuous variables are forced to be static and the binary variables are adaptive. In the static

binary setting, the continuous variables are adaptive and the binary variables are static. As a basis

for comparison, when continuous and binary variables are all static, the optimal objective for the

four cases T = 2, 3, 5, 10 are 1850, 2900, 5350, 15350, respectively.

Tables 4.5 to 4.8 present the results for different cases using various number of breakpoints. Note

that if a problem is not solved to optimality, then the relative optimality gap is also reported

along with the objective in the table. It is evident that in all the time stages, the adaptive and all

static settings result in the best and worst objective, respectively. According to the results of the

static continuous and static binary setting, in most of the cases, the contribution of the adaptive

continuous variables is greater than the adaptive binary variables. For static continuous setting,

the objective deteriorates more significantly compared to the static binary setting.

Another important observation is that increasing the number of breakpoints improves the objective

as expected. For time horizons T = 2, 3, 5, even using a large number of breakpoints, the run time

for the adaptive settings is under 1 min, therefore it justifies to increase the number of breakpoints
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to obtain a better objective. For T = 2, 3, 5, increasing the number of breakpoints beyond 5 has

not improved the objective. For T = 10, the model size is very large and increasing the number of

breakpoints beyond 3 results in notable increase of run time. Therefore, depending on the problem

size, a reasonable number of breakpoints should be selected to obtain the best objective and the

least run time.

Figures 4.8a, 4.8b show the continuous decision rule at t = 1 and t = 2 for the case of T =

3 using 3 breakpoints. As these figures demonstrate, the continuous decision rule results in a

continuous solution that restricts the solution flexibility. Figures 4.9a and 4.9b illustrate the same

figures for discontinuous decision rule. It can be observed that the continuous solution is piecewise

discontinuous linear with respect to demand uncertain parameter. This results in an improved

objective compared to static or simply linear solutions. The continuous solution show that the

ordering amount increases when the demand increases, which is reasonable. The binary solutions

can be observed from Figure 4.10. The figure demonstrates that the obtained binary solution is

adaptive and therefore the solution quality is enhanced.

(a) (b)

Figure 4.8: Adaptive solution under piecewise continuous decision rule, for T = 3, 3 breakpoints

(a) (b)

Figure 4.9: Adaptive solution under piecewise discontinuous decision rule T = 3, 3 breakpoints
applied
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(a) (b)

(c) (d)

Figure 4.10: Adaptive binary solution for T = 3; 3 breakpoints applied for each uncertain param-
eter

Table 4.5: Results for the inventory problem, T=2

Break points1 Adaptive 2 Static Cont3 Static Bin4 All Static5 Variables6 Run Time7

Br=1 1620.00 1690.00 1622.50 1850.00 466, 10 0.3 s

Br=3 1287.50 1462.50 1613.75 1850.00 710, 22 0.3 s

Br=5 1120.00 1268.75 1609.37 1850.00 954, 34 0.4 s

Br=7 1120.00 1268.75 1268.75 1850.00 1138, 46 0.7 s
1 Number of breakpoints used in uncertainty lifting.
2 Optimal objective value by allowing both continuous and integer variables be adaptive.
3 Optimal objective value by allowing only adaptive continuous be adaptive.
4 Optimal objective value by allowing only integer variables be adaptive.
5 Optimal objective value by forcing all continuous and integer variables to be non-adaptive.
6 Number of continuous and binary variables in the model with both adaptive continuous and integer

variables.
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Table 4.6: Results for the inventory problem, T=3

Break points Adaptive Static Cont Static Bin All Static Variables Run time

Br=1 1940.00 2340.00 2282.50 2900.00 1064, 18 0.2 s

Br=3 1637.50 2147.50 2258.75 2900.00 1646, 42 0.4 s

Br=5 1487.50 1891.25 2246.87 2900.00 2228, 66 1.0 s

Br=7 1487.50 1891.25 2246.87 2900.00 2810, 90 1.5 s

Table 4.7: Results for the inventory problem, T=5

Break Points Adaptive Static Cont Static Bin All Static Variables Run time

Br=1 2692.50 4055.00 3377.50 5350.00 2983, 40 0.4 s

Br=3 2362.50 3912.50 3278.50 5350.00 4673, 100 2.3 s

Br=5 2207.50 3475.00 3260.00 5350.00 6363, 160 5.1 s

Br=7 2207.50 3475.00 3255.62 5350.00 8053, 220 41.1 s

Table 4.8: Results for the inventory problem, T=10

Break points Adaptive Static Cont Static Bin All Static Variables Run time

Br=1 4517.50 10530.00 6902.50 15350.00 11998, 130 1.6 s

Br=3 4177.50 10442.50 6433.75 15350.00 18978, 350 87 s

Br=5 4032.50, 4.8% gap 9372.50 6391.87 15350.00 25958, 570 15 min

Br=7 4027.50, 8.1% gap 9417.50, 7.1% gap 6364.37 15350.00 32938, 790 30 min
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(a) T=2 (b) T=3

(c) T=5 (d) T=10

Figure 4.11: At all the time steps, the model that includes both adaptive binary and adaptive
continuous variables results in the best objective (minimum cost) compared to models that include
static continuous, static binary or both static continuous and static binary variables.

Figure 4.11 summarizes the solution for different cases. It gives an intuitive illustration on the

effect of the adaptability of different type of decisions. It is also clear to see the trend that as the

number of breakpoints increases, the solution quality increases. Note that in the study, the set of

smaller number of breakpoints is always the subset of the large number of breakpoints in the same

case. This is to ensure the location of the breakpoints is not making impact. However, we point

out the location of the breakpoints is also important and may affect the quality of the solution

significantly.

4.5.2 Partitioning method results

Tables 4.9 to 4.12 present the results for the partitioning method applied to the inventory problem.

For small cases with T = 2, 3, the run time is close to the lifting method. In terms of the objective,

partitioning method provides slightly better objective values. However, for T = 5, 10, as the model

size becomes larger, the lifting method becomes much more efficient from run time point of view

and the objective value is similar or even better than the partitioning method. For instance for

the case with T = 10, the partitioning method results in the objective of 4259.19 in 30 min while
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the lifting could provide the better objective of 4177.50 in just 87 s or 4032.50 in 15 min. It is

also important to notice that for T = 10, Br=3/5/7, the partitioning method results in such a

large model size that the CPLEX solver could not return a feasible solution after 3 hours while

the lifting method was solved very efficiently in 87s. Thus, the lifting method with the flexible

discontinuous decision rule is efficient for large model cases.

Table 4.9: Results for the inventory problem, T=2

Break points Objective Variables Run Time

Br=1 1490.00 110, 16 0.3 s

Br=3 1207.50 422, 64 0.4 s

Br=5 1113.75 942, 144 0.4 s

Br=7 1111.87 1670, 256 0.4 s

Table 4.10: Results for the inventory problem, T=3

Break points Objective Variables Run Time

Br=1 1820.00 495, 48 0.2 s

Br=3 1556.25 3911, 384 1.3 s

Br=5 1466.25 13183, 1296 4.8 s

Br=7 1459.77, 2.3% 31239, 3072 30 min

Table 4.11: Results for the inventory problem, T=5

Break points Objective Variables Run Time

Br=1 2508.75 5449, 320 0.7 s

Br=3 2235.95, 2.1% 174089, 10240 30 min

Br=5 2199.54, 8.7% 1321929, 77760 30 min

Br=7 ∗∗ — — —
∗∗ Problem size is too large. No feasible solution reported after 3 hrs.

Table 4.12: Results for the inventory problem, T=10

Break points Objective Variables Run Time

Br=1 4259.19, 0.91% 686094, 20480 30 min

Br=3 ∗∗ — — —
∗∗ Problem size is too large. No feasible solution reported after 3 hrs.
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We can use the partitioning method as a reference to check the sub-optimality of the results

of the lifting method. While the number of breakpoints is large, we can get a high-resolution

partition of the uncertainty set. In other words, we divide the uncertainty set into very small

sub-regions and each sub-region is associated with a decision rule. This way, the obtained solution

will be close to the optimal solution. The partitioning method results reported in Table 9 with 5

and 7 breakpoints shows that the optimal solution is around 1111 for T = 2. This provides a basis

for comparison of the solution quality from lifting method as reported in Table 5, where the best

solution 1120 is not far from this reference. Similar evaluation of solution quality can be made for

T = 3, 5 for the inventory planning problem.

4.6 Capacity Expansion Planning

This section investigates a case study for multistage capacity planning of a chemical plant. Figure

4.12 illustrates the process network superstructure. In this network, chemicals j = 1, · · · , 4 can

be purchased from external resources and chemical j = 5 is produced and sold to the market.

It is assumed that there is no inventory in this problem, therefore all the purchased or produced

chemicals are consumed or sold in the process. The demand at each time step must be satisfied

and the objective is to maximize the overall revenue over a number of time stages.

Figure 4.12: Chemical plant superstructure

There are two sources of uncertainty in this problem: demand d5,t and price γ5,t of the sold product

(chemical 5). Figure 4.13 illustrates the decision making and uncertainty revelation sequence. At

the beginning of the first time period, there is an initial pre-built capacity (Qi,1 = 100000) for

each process i = 1, · · · , 6. During each time period t and after demand and price uncertainties

are revealed, some capacity expansion decisions (yi,t(η[t]), Xi,t(η[t])) are made based on the revealed

uncertainty up to time period t, η[t]. The process capacity at each time period is the summation
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of the existing capacity and the expanded capacity in the previous time period. Qi,t(η[t−1]) is used

to satisfy the demand at the same time period. At each time step, after uncertainty revelation,

operation Wi,t(η[t]) and purchase decisions Pj,t(η[t]) are also made.

Figure 4.13: Decision making and uncertainty realization sequence

In this problem, demand and price uncertainties at each time step are defined as:

γj,t(η
p
t ) = γ̄j,t(1 + ηpt ) ∀t, j = 5 (4.28)

dj,t(η
d
t ) = d̄j,t(1 + ηdt ) ∀t, j = 5 (4.29)

where γ̄j,t and d̄j,t are the minimum price and demand for the fifth product respectively. Prim-

itive uncertain parameters ηdt ∈ [0, 1.5], ηpt ∈ [0, 2] are assumed to be uniformly distributed and

independent at each time step.

The capital budget restriction CIt at each year t and the minimum number of expansions for each

process during the project time horizon Nmin
i are considered to be linear functions of uncertainty.

CIt(η) = C̄I t(1 + ηpt + ηdt ) ∀t (4.30)

Nmin
i (η) =

1

T − 1

T−1∑
t=1

ηdt − ᾱ ∀i (4.31)

where C̄I t is the minimum available budget at each year t and ᾱ is a constant parameter (0.75)

to adjust the minimum required number of process expansions considering the average range of

demand uncertainty. Equation 4.30 means when the demand or price of the sold product increases,

it justifies to allocate a larger budget for process expansion in order to meet the demand and in-

crease the revenue. Equation 4.31 indicates that when demand increases, the minimum number of

process expansions will also increase to meet the demand.

The general multistage stochastic programming formulation for this problem is presented as follows:
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max Eη
[ T∑
t=1

5∑
j=1

(γj,t(η
p
t )Sj,t(η[t])− Γj,tPj,t(η[t]))−

T∑
t=1

6∑
i=1

δi,tWi,t(η[t])−
T−1∑
t=1

6∑
i=1

(αi,tXi,t(η[t]) + βi,tyi,t(η[t]))

]
(4.32a)

s.t.

0 ≤ Xi,t(η[t]) ≤ yi,t(η[t])X
U
i,t ∀i, t ≤ T − 1, η ∈ Ω

(4.32b)

Qi,t(η[t−1]) = Qi,t−1(η[t−2]) +Xi,t−1(η[t−1]) ∀i, t ≥ 2, η ∈ Ω (4.32c)

Nmin
i (η) ≤

T−1∑
t=1

yi,t(η[t]) ≤ Nmax
i ∀i, η ∈ Ω (4.32d)

6∑
i=1

(αi,tXi,t(η[t]) + βi,tyi,t(η[t])) ≤ CIt(η) ∀t ≤ T − 1, η ∈ Ω (4.32e)

Wi,t(η[t]) ≤ Qi,t(η[t−1]) ∀i, t, η ∈ Ω (4.32f)

Pj,t(η[t]) +
6∑
i=1

νi,jWi,t(η[t]) = Sj,t(η[t]) +
6∑
i=1

µi,jWi,t(η[t]) ∀j, t, η ∈ Ω (4.32g)

Pj,t(η[t]) ≤ aj,t ∀j, t, η ∈ Ω (4.32h)

Sj,t(η[t]) ≥ dj,t(η
d
t ) ∀j = 5, t, η ∈ Ω (4.32i)

Xi,t(η[t]) ≥ 0 ∀i, t ≤ T − 1, η ∈ Ω (4.32j)

Wi,t(η[t]), Pj,t(η[t]) ≥ 0 ∀i, j, t, η ∈ Ω (4.32k)

yi,t(η[t]) ∈ {0, 1} ∀i, t ≤ T − 1, η ∈ Ω (4.32l)

Pj,t(η[t]) = 0 ∀j = 5, t, η ∈ Ω (4.32m)

Sj,t(η[t]) = 0 ∀j = 1, 2, 3, 4, t, η ∈ Ω

(4.32n)

In this problem, the objective is to maximize the profit over a given time horizon. Eq. 4.32a

is the objective function that accounts for the revenue from selling chemical 5 and the costs of

operation, capacity installation and material purchase. Constraint 4.32b enforces bounds on the

expansion capacity (Xi,t(η[t])) of process i. yi,t(η[t]) is a binary variable which indicates whether

process i is expanded or not at period t. Eq. 4.32c calculates the total capacity for each process

up to time t. Constraint 4.32d means that the total number of expansions for each process i is

restricted between a lower and upper bound during the project horizon. Constraint 4.32e indi-

cates that, at each year, there is a capital restriction CIt(ηt) for expansion (αi,tXi,t(η)) and fixed

investment (βi,tyi,t(η)) costs. Constraint 4.32f means that the operation level of each process at

time t can not be more than the total installed capacity for that process up to time t. Eq. 4.32g is
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a material balance equation and it means the total amount of purchased (Pj,t(η[t])) and produced

(ηi,jWi,t(η[t])) chemicals must be equal to the total amount of consumed (µi,jWi,t(η[t])) and sold

(Sj,t(η[t])) chemicals. Constraint 4.32h indicates that the amount of purchased chemical j at time

t should be less than or equal to the available amount of that chemical (aj,t). Constraint 4.32i de-

scribes that the amount of sold chemical j at time t (Sj,t(η[t])) should satisfy the demand (dj,t(η
d
t )).

Constraint 4.32k indicates that problem variables can not be negative. Constraint 4.32m indicates

that chemical 5 is sold and constraint 4.32n means that chemicals 1 to 4 are purchased and not

sold. Following the methodology explained in Section 4, the binary and continuous variables are

formulated as affine functions of lifted uncertain parameters and the original problem is converted

to its deterministic counterpart and solved using MILP solver CPLEX. All the parameter values

are listed in the appendix.

The capacity expansion problem is studied for T = 3, 4 and 5 time stages. Note that for the

case that all variables are static, the optimal objective for T = 3, 4, 5 are 10111.69, 15194.75 and

20953.12, respectively. Tables 4.13 to 4.15 present the results for lifting method under discontinu-

ous decision rules for adaptive continuous variables. The contribution of the adaptive continuous

variables is greater than the adaptive binary variables. For instance, in T=4 with 3 breakpoints,

the objective reduced by 5.7% for the static continuous case while it was only reduced by 0.2% for

the static binary. In all the time horizons, increasing the break points have improved the objective

value. However, for larger settings, the run time increases significantly. For example, in T=4

setting, when the number of break points is increased from 1 to 3, the run time has increased from

20 s to 5 hrs which may not be desirable. Thus, for larger settings, selecting a reasonable number

of breakpoints can save a substantial amount of time and computational effort.

Figures 4.14a, 4.14b provide a graphical illustration of the results for the continuous decision rule

for T = 3 (the same figures for the discontinuous decision rule are similar). Both figures show

that when the demand increases, the installed capacity and total capacity increase accordingly. At

each time step, the continuous variables depend on all the revealed uncertain parameters in the

previous time steps. For instance, the amount of sold product at t = 5 discontinuous decision rule

(1 breakpoint) is provided below:

S5,5(η) = 425490+55306.41Gd
2,1+72644.72Gd

3,1+1192.07Gp
3,1+178000+23863.62Qp

2,1+48401.03Qp
3,1

where Gd
tj, G

p
tj and Qd

t,j, Q
p
t,j are the j-th component of the lifted continuous and binary demand

and price uncertain parameters at time step t respectively.
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Table 4.13: Results for chemical plant based on discontinuous decision rule, T=3

Break points Adaptive Static Cont Static Bin Variables Run time

1 10784.58 10533.73 10653.70 14204, 48 1.6 s

3 10872.66 10539.83 10769.44 22750, 120 50.7 s

Table 4.14: Results for the chemical plant based on discontinuous decision rule,T=4

Break points Adaptive Static Cont Static Bin Variables Run time

1 16405.54 15512.61 16225.68 25550, 90 20.0 s

3 16467.41 15528.53 16427.24 41086, 234 5hr

Table 4.15: Results for the chemical plant based on discontinuous decision rule, T=5

Break points Adaptive Static Cont Static Bin Variables Run time

1 22710.20 20961.42 22520.43 40192, 144 4 min

3 23054.45 21098.23 23015.95 62478, 384 38hr

(a) Capacity expansion of process i = 2 at t = 1 (b) Total capacity of process i = 2 at t = 2

Figure 4.14: Capacity expansion x2,1 and total capacity Q2,2 of process i = 2 at t = 1 and t = 2
for T = 3

4.7 Conclusion

In this study, a novel solution framework is proposed for solving multistage mixed integer stochastic

problems that contains both adaptive binary and adaptive continuous variables, based on uncer-

tainty set partitioning and uncertainty lifting ideas. While the traditional uncertainty discretiza-

tion and scenario tree representation based method results in exponential growth of problem size

that makes the problem computationally prohibitive, the proposed piecewise decision rule based
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methods provide flexibility for seeking solution quality and computational efficiency. The uncer-

tainty lifting method is compared with the uncertainty partitioning method in terms of solution

quality and computational efficiency. While the uncertainty set partitioning method leads to bet-

ter solution quality and is appropriate for small scale problems. It is demonstrated that the lifting

method can provide the scalability and tractability required for large scale problems with signifi-

cant computational advantage.

Breakpoints are used in both methods of the proposed framework. Increasing the number of break-

points leads to more flexible adaptive solution and may improve the solution. However, beyond

a certain point, the run time increases considerably while the objective remains the same or im-

proves negligibly. Depending on the problem size, a reasonable number of breakpoints need to be

selected. In this paper, we didn’t investigate the impact of the location of the breakpoints. How-

ever, it is worth pointing out that the location is also as important as the number of breakpoints.

Furthermore, this work addresses the exogenous uncertainty only. Future work will be extended

to investigate the problem with endogenous type of uncertainty.
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Nomenclature for capacity planning example

Indices

t time period

i process

j chemical

Parameters

ηdt Demand uncertainty at period t

ηpt Price uncertainty at period t

αi,t Unit expansion cost of process i at the beginning of period t

βi,t Fixed cost of establishing or expanding process i at the beginning of period t

γi,t,Γi,t Selling and buying prices of chemical j in period t

δi,t Unit operating cost for process i during period t

νi,j Input proportionality constant for chemical j in process i

µi,j Output proportionality constant for chemical j in process i

CIt Investment budget for period t

aj,t Availability of chemical j in period t

dj,t Demand of chemical j in period t

NEXP
i Allowable number of expansions for process i

XL
i,t, X

U
i,t Lower and upper bounds for capacity expansion of process i in period t

Variables

Pj,t Units of chemical j purchased at period t

Qi,t Total capacity of process i in period t

Sj,t Units of chemical j sold at the end of period t

Wi,t Operating level of process i in period t

Xi,t Units of expansion of process i at period t

yi,t Binary variable; if process i is expanded during period t, then yi,t = 1, otherwise yi,t = 0
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Chapter 5

Multistage Stochastic Mixed Integer

Optimization Under Endogenous and

Exogenous Uncertainty

Abstract

A novel mathematical framework is proposed for multistage adaptive optimization that incorpo-

rates endogenous and exogenous uncertainty based on robust optimization technique. The endoge-

nous uncertainty is formulated based on the k-adaptability (partitioning) method where at each

scenario, the binary variable is constant and the continuous variable is an affine function of endoge-

nous uncertain parameters. The exogenous uncertainty is modeled using the lifting method where

the binary variables are affine functions of 0-1 indicator functions and the continuous variables

are approximated using affine functions of lifted uncertain parameters. In order to demonstrate

the applicability of the proposed framework, a systematic approach is followed with respect to

problem comlexity beginning from the simplest case of only binary variables under endogenous

uncertainty to the more inclusive case of both binary and continuous variables under endogenous

and exogenous uncertainty. A case study for infrastructure and production planning of a gas filed

is employed. The results show that the proposed framework can successfully be applied to large

problems and the solution effectively incorporates both types of uncertainty for binary and con-

tinuous variables.
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5.1 Introduction

Optimization under uncertainty aims to make the best decisions under uncertain conditions. Un-

certainty is categorized as exogenous and endogenous uncertainty. If the uncertainty is not affected

by the problem decisions, it is called exogenous uncertainty, otherwise it is referred to as endoge-

nous uncertainty. Endogenous uncertainty is typically classified into two types. In type 1, the

decisions affect the underlying distribution of uncertainty. For instance, a company may decide

to lower the price of its products in order to change the probability distribution of its sale toward

higher values and to increase its market share. In type 2, the decisions determine the time of

uncertainty revelation . For example, the true amount of recoverable gas in a gas field is usually

unknown until after a costly well drilling operation is completed. Two main approaches are used

in this field: scenario-tree based optimization and robust duality based optimization. Different

studies that address scenario-tree based method or robust optimization based method under ex-

ogenous or endogenous uncertainty are reviewed in the following.

In the context of scenario-tree based optimization under exogenous uncertainty, many studies

are carried out and a few are reviewed in the following. Takamatsu et al.,1974[80] addressed the

parameter uncertainty involved in design of unit operations in a process system and applied the

method on a simple chemical reaction process. Grossmann and Sargent, 1978 [81] proposed a

strategy for optimum design of chemical plants where the uncertain parameters are bounded. The

method ensures that the plant specifications are met for any feasible realization of uncertain pa-

rameters. The method is illustrated on a reactor-separator system and a heat exchanger network.

Gupta and Maranas, 2000 [82] suggested a two-stage stochastic programming approach to address

demand uncertainty in supply-chain planning problems. The production decisions are first stage

and the supply-chain decisions are second stage decisions. It was shown that the computational

requirements are much smaller than the Monte Carlo sampling. Applequist, 2000[83] presented

a metric for evaluating supply chain design and planning projects that accounts for the effects

of demand uncertainties on revenue while considering uncertainty in inventory over time. The

method provides a rational balance between expected value of investment performance and its

variance. We refer to Sahinidis, 2004 [17] for a review on stochastic programming under exogenous

uncertainty.

Scenario-tree based optimization under type 2 endogenous uncertainty is addressed by different

authors. Goel and Grossmann, 2004 [54] proposed a stochastic programming model that incorpo-

rated the dependency of scenario tree on decisions. They addressed an optimal investment and

operational planning of gas field development under uncertainty in gas reserves. Goel and Gross-

mann, 2006 [20] extend the stochastic programming framework by presenting a mixed-integer

formulation for stochastic problems where decisions influence the time of information discovery.
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Boland et al., 2008, [84] formulated a mixed integer multistage stochastic method to address the

scheduling of open pit mine production. In this framework, the decision made in later time periods

can depend on observations of geological properties in earlier periods. The authors extended the

formulation to general stochastic problems under endogenous uncertainty. They discussed that

using the structure of the proposed method, a significant number of non-anticipativity constraints

can be omitted in some cases. Colvin and Maravelias, 2008 [85] presented a multi-stage stochastic

formulation for planning of clinical trials in pharmaceutical research. Given a portfolio of potential

drugs and limited resources, the model determines the trials to be performed in each period. Solak

et al., 2010, [86] developed a detailed description of research and development project portfolio

management and modeled the problem as a multistage stochastic problem with endogenous uncer-

tainty. They proposed a solution technique than can be used along with scenario decomposition

methods.

Scenario-based optimization under type 1 endogenous uncertainty has received less attention.

Peeta et al., 2010 [87] addressed a pre-disaster planning problem for strengthening a highway

network where links are subject to failure due to disaster. The goal is to select links to invest

in considering budget restrictions with the objective of maximizing the post disaster connectivity

and minimizing travel costs. Escudero et al., 2018 [88] addressed a three stage problem for man-

aging natural disaster mitigation. The endogenous uncertainty is based on the decision-maker’s

investment to obtain greater accuracy in regard to the occurrence of disaster and reinforcing the

network infrastructure. Hellemo at al., 2018 [89] formulated two-stage stochastic problems with

recourse where the prior probabilities are distorted by an affine transformation or combined using

a convex combination of several probability distributions through decision variables.

Since scenario-based multistage stochastic programming problems usually suffer from the curse

of dimensionality (exponential growth of model size at multistage settings), researches have tried

to tackle this issue using different methods. Apap and Grossmann, 2017 [19] proposed a sequential

scenario decomposition heuristic and a Lagrangean decomposition method. Goel and Grossmann,

2006 [20] presented a Lagrangean branch and bound algorithm to reduce the model size. Gupta

and Grossmann, 2014 [21] developed a new Lagrangean decomposition algorithm for solving large-

scale stochastic problems with endogenous uncertainty that can reduce the computational expense

by reducing the number of non-anticipativity constraints. Colvin and Maravelias, 2010 [11] devel-

oped novel branch and cut algorithms where non-anticipativity constraints that are unlikely to be

active are removed from the formulation and added only if they are violated within the search tree.

Robust optimization under exogenous uncertainty is investigated in various studies. Mitra

et al., 2012 [90] applied robust optimization to uncertain electricity prices using an uncertainty

set with multiple features that can account for correlated data. They showed the differences
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between a deterministic and robust scheduling solution for an air separation plant. Vujanic et al .,

2012 [91] tackled the problem of flexible electricity consumption using robust optimization. They

applied their proposed method on scheduling of cement milling machines. Amaran et al., 2016

[92]addressed the problem of maintenance planning for integrated chemical sites under uncertainty

of maintenance duration. A combined robust optimization and stochastic programming approach

is proposed in their study.

Studies that addressed robust optimization under endogenous uncertainty are rare in the liter-

ature. Vayanos et al.,2011 [57] approximated the true solution by partitioning the uncertainty set

and in each partition, the binary variables are constant and continuous variables are affine functions

of uncertain parameters. They derived the non-anticipativity constraints for decision dependent

uncertain parameters for their partitioning method. Lappas and Gounaris., 2016 [60] proposed a

adjustable robust optimization approach for process scheduling under uncertainty. They showed

that adjusting decisions to past parameter realizations leads to significant improvements in the

objective. A decision-dependent uncertainty set is to model the endogenous uncertainty inherent

in process scheduling is also formulated in their study. Nohadani and Sharma, 2018 [93] pro-

posed a decision dependent uncertainty set whose size depends on binary decisions and reduces

conservatism of robust optimization approaches. They discussed a shortest path problem where

the uncertain arc lengths are affected by decisions. Vayanos et al., 2019 [94] proposed a method

inspired by k-adaptability approximation where k candidate strategies for each decision stage are

chosen here-and-now and at the beginning of each period, the best strategy is selected after the

uncertain parameters are revealed. They generalized their approach to minimize piecewise linear

convex functions.

Studies that address both endogenous and exogenous uncertainty are limited in the literature.

In the context of stochastic programming, two notable studies deal with this type of problems.

Goel and Grossmann, 2006 [20] presented a mixed integer programming formulation and applied

Lagrangean duality based branch and bound algorithm to reduce to number of non-anticipativity

constraints. Apap and Grossmann, 2017 [19] proposed a composite scenario tree that captures

both types of uncertainty and discussed two solution approaches to reduce the number of non-

anticipativity constraints and solve the problem. A sequential scenario decomposition heuristic

and a Lagrangean decomposition method. Dupačová (2006) [42] provided only a general descrip-

tion of problems under both types of uncertainty but did not present a solution framework or

numerical results.

This study presents a novel mathematical framework that addresses both exogenous and en-

dogenous uncertainty in a multistage mixed integer optimization problem structure. The parti-

tioning method is employed to model the endogenous uncertainty and the lifting method is used

to model the exogenous uncertainty. In this framework, both binary and continuous variables
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are adaptive with respect to endogenous and exogenous uncertain parameters and the problem is

solved based on robust optimization technique.

The rest of the paper is organized as follows. Section 5.2 presents the general problem for-

mulation and states the required assumptions. Sections 5.3 explains the partitioning method for

enogenous uncertainty and presents a simple problem structure with only binary variables under

endogenous uncertainty. Section 5.4 describes problem structures that include continuous and bi-

nary variables under endogenous uncertainty. Section 5.5 explains the lifting method for exogenous

uncertainty for binary and continuous variables and describes a problem structre where continuous

variables are functions of both endogenous and exogenous uncertainty and binary variables are only

a function of endogenous uncertainty. Section 5.6 presents the most comprehensive problem struc-

ture where both binary and contiuous variables are functions of both types of uncertainty. Section

5.7 illustrates a numerically demanding case study about infastructe and production planning of

a gas field and section 5.8 concludes the paper.

5.2 Problem statement

The general formulation of a multistage stochastic problem addressed in this study is presented

below.

min
x,y,z

E
(∑

t

c>t (η)xt(ξ,η) + d>t (η)yt(ξ,η) + h>t (η)zt(ξ)
)

(5.1a)

s.t.
t∑

τ=1

A>t,τxτ (ξ,η) +
t∑

τ=1

B>t,τyτ (ξ,η) +
t∑

τ=1

M>
t,τzτ (ξ) ≤ et(ξ) + ft(η) ∀t, ξ ∈ Ξ, η ∈ Ω (5.1b)

xt(ξ,η) = xt(zt−1 ◦ ξ,η[t]) ∀t, ξ ∈ Ξ, η ∈ Ω (5.1c)

yt(ξ,η) = yt(zt−1 ◦ ξ,η[t]) ∀t, ξ ∈ Ξ, η ∈ Ω (5.1d)

zt(ξ) = zt(zt−1 ◦ ξ) ∀t, ξ ∈ Ξ (5.1e)

zt(ξ) ∈ {0, 1}, yt(ξ,η) ∈ {0, 1}, xt(ξ,η) ∈ R ∀t, ξ ∈ Ξ, η ∈ Ω (5.1f)

where ξ, η are the vectors of primitive endogenous and exogenous uncertain parameter, respectively.

xt(ξ,η), yt(ξ,η) are continuous and binary variables and zt(ξ) is the indicator binary variable

that indicates the revelation of endogenous uncertainty. Notice that we assume scalar variables

x, y, z here but the variables can be easily extended to vector case. The notation ◦ indicates

the Hadamard product which is the element-wise product. The product zt−1 ◦ ξ means revealed

endogenous parameters up to time step t−1 and η[t] is the vector of exogenous uncertain parameters

up to time step t, η[t] = [η1, · · · , ηt]. The objective coefficients ct(η), dt(η), ht(η), and constraint

right hand side parameters et(ξ), ft(η) are assumed to be linearly dependent on the primitive
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uncertainty.

ct(η) = Ctη[t], dt(η) = Dtη[t], ht(η) = Htη[t], ft(η) = Ftη[t], et(ξ) = Etξ

Constraints coefficients At,τ , Bt,τ and Mt,τ are assumed to be independent of uncertainty. Ξ and

Ω are the uncertainty set for endogenous and exogenous uncertainty, respectively. In this paper,

they are both assumed to take polyhedral representation and both types of uncertainty are suumed

to follow uniform distribution. To address this problem, we start by a special case and gradually

increase the problem complexity.

5.3 Binary variables under endogenous uncertainty

We first consider the following problem with only endogenous uncertainty and binary variables

indicating the revealing status

min
z

E
(∑

t

ctzt(ξ)
)

(5.2a)

s.t.
t∑

τ=1

A>t,τzτ (ξ) ≤ Etξ ∀t, ξ ∈ Ξ (5.2b)

zt(ξ) = zt(zt−1 ◦ ξ) ∀t, ξ ∈ Ξ (5.2c)

zt(ξ) ∈ {0, 1}k ∀t, ξ ∈ Ξ (5.2d)

where ξ is the vector of primitive endogenous uncertain parameters. zt(ξ) is the indicator binary

variable that indicates the revelation of endogenous uncertainty.

5.3.1 Uncertainty set partitioning

In this method, the interval for each endogenous uncertain parameter is divided into segments.

The overall uncertainty set is partitioned into scenarios where each scenario is a hyper-rectangle

of the following form:

Ξs = {ξ ∈ Ξ : visi−1
≤ ξi < visi , i = 1, ..., k}

where s ∈ S =×k

i=1
{1, ..., ri} ⊆ Nk. vi0 < vi1 < vi2 < · · · < viri−1 < viri represents ri − 1 breakpoints

along the ξi axis and vi0, viri indicate the initial and the end parameter values for ξi. For simplicity

in the subsequent derivation, we re-write the above uncertainty set into compact form as

Ξs = {ξ : Wsξ ≥ Vs}
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5.3.2 Solution method

Using the above partitioning method, the binary decisions are approximated by piecewise constant

decision rules of the following form, where zt,s ∈ {0, 1}k:

zt(ξ) = zt,s ∀t ∈ T, ξ ∈ Ξs, s ∈ S (5.3)

At each time step, the continuous and binary variables can only depend on uncertain parameters

revealed up to the previous time step. This feature is referred to as non-anticipativity in the

literature. The revelation of endogenous uncertainty is indicated by the binary variable z(ξ). To

simplify the notation, the domain of the following parameters is removed: t ∈ T, s, s′ ∈ S, j, j′ ∈
{1, ..., k}. The non-anticipativity for endogenous uncertainty can be expressed in the following

form:

|zt,j′,s − zt,j′,s′| ≤ zt−1,j,s ∀j, j′, t, s, s′ : s−j = s′−j (5.4)

where s−j = s′−j means all the components in the scenarioss and s′ are the same, except the j-th

component.

With the above approximation to the adaptive binary variables, we obtain a robust optimization

formulation. Furthermore, we use duality based robust linear optimization and obtain the following

deterministic counterpart optimization model

min
z,θ

∑
s

ps
∑
t

∑
j

ctzt,j,s (5.5a)

s.t. V >s θt,s ≥
t∑
τ

A>t,τzτ,s ∀t, s (5.5b)

W>
s θt,s = Et ∀t, s (5.5c)

θt,s ≥ 0 ∀t, s (5.5d)

|zt,j′,s − zt,j′,s′| ≤ zt−1,j,s ∀j, j′, t, s, s′ : s−j = s′−j (5.5e)

zt,j,s ∈ {0, 1} ∀j, t, s (5.5f)

5.3.3 Example

In this section, a numeric example that includes binary variables under endogenous uncertainty is

presented.

max Eξ(z1,1(ξ) + z1,2(ξ) + z2,1(ξ) + z2,2(ξ)) (5.6a)

s.t. z1,1(ξ) + z1,2(ξ) ≤ D1ξ ∀ξ ∈ Ξ (5.6b)

3z2,1(ξ) + 2z2,2(ξ) ≤ D2ξ ∀ξ ∈ Ξ (5.6c)
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z2,j(ξ) ≥ z1,j(ξ) ∀j, ξ ∈ Ξ (5.6d)

z2,j(ξ) = z2,j(z1(ξ) ◦ ξ) ∀j, ξ ∈ Ξ (5.6e)

z1,j(ξ) = z1,j ∀j, ξ ∈ Ξ (5.6f)

zt,j(ξ) ∈ {0, 1} ∀t, j, ξ ∈ Ξ (5.6g)

where ξj is the j-th endogenous uncertain parameter which is independent of time. zt,j is the

binary variable that indicates the revelation of j-th uncertain parameter at time step t. In this

illustration problem, t = 1, 2 and j = 1, 2. ξ is defined as ξ = [1, ξ1, ξ2]. Constraint 5.6d means

once an uncertain parameter is revealed, it remains revealed at the next time period. Equation

5.6e is the non-anticipativity constraint which means the binary variables at the second time step

can only be a function of revealed uncertainty parameters at the first time step. Constraints

5.6f indicates that at the first time step, the binary variables are non-adaptive with respect to

uncertain parameters since at the first step no uncertain parameter is revealed yet. Based on the

uncertainty set partitioning method, the following robust optimization problem is obtained and

its deterministic counterpart can be derived accordingly:

max
∑
s

ps(z1,1,s + z1,2,s + z2,1,s + z2,2,s) (5.7a)

s.t. z1,1,s + z1,2,s ≤ D1ξ ∀s, ξ ∈ Ξs (5.7b)

3z2,1,s + 2z2,2,s ≤ D2ξ ∀s, ξ ∈ Ξs (5.7c)

z2,j,s ≥ z1,j,s ∀j, s (5.7d)

z1,j,s = z1,j,s′ ∀j, s, s′ (5.7e)

| z2,j,s − z2,j′,s′ |≤ z1,j,s ∀j, j′, s, s′ : s−j = s′−j (5.7f)

zt,j,s ∈ {0, 1} ∀j, t, s (5.7g)

where D1 = [1, 1, 3], D2 = [2, 2, 1]. Breakpoint locations for different number of partitions is

provided in the following table:

Table 5.1: Breakpoint locations

Number of partitions Number of scenarios ξ1 ∈ [0, 3] ξ2 ∈ [0, 6]

2 4 1.8 3.6

5 25 0.6, 1.2, 1.8, 2.4 1.2, 2.4, 3.6, 4.8

10 100 0.3 : 0.3 : 2.7 0.6 : 0.6 : 5.4
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Table 5.2: Solution statistics for different number of partitions

Number of partitions Objective Binary, Continuous Variables Run time

2 2.4 16, 49 0.235 s

5 2.4 100, 301 0.236 s

10 2.5 400, 1201 1.339 s

Figure 5.1: Scenarios 1 to 4 when each uncertain parameter is segmented into 2 partitions using 1
breakpoint

Figure 5.2: zt,j binary solution at 4 scenarios

Figure 5.1 illustrates how scenarios are generated when the range of each uncertain parameter
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Table 5.3: Binary solution for 4 scenarios z(ξ) = zt,j,s

t 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
j 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2
s 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

zt,j,s 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1

is divided into 2 partitions. Figure 5.2 and table 5.3 show that at t = 1, ξ1 is not revealed (z1,1 = 0)

but ξ2 is revealed (z1,2 = 1). At t = 2, z2,1 is adaptive with respect to the revealed parameter (ξ2)

and non-adaptive with respect to the unrevealed parameter (ξ1). Since the ξ2 is revealed at t = 1,

it remains revealed at t = 2 which means z2,2 = 1. Table 5.2 shows when the number of partitions

increase, the objective improves. It means that increasing the number of partitions results in a

more refined solution space and subsequently a better objective value.

Figure 5.3: Binary solution for 100 scenarios

The explanation for the solution obtained from 10 partitions for each uncertain parameter (100

scenarios) is similar to the solution obtained from 2 partitions (4 scenarios).
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5.4 Continuous and binary variables under endogenous

uncertainty

In this section, we consider problems that include binary and continuous variables under endoge-

nous uncertainty

min
x,z

E
(∑

t

ctxt(ξ) + dtzt(ξ)
)

(5.8a)

s.t.
t∑

τ=1

A>t,τxτ (ξ) +
t∑

τ=1

B>t,τzτ (ξ) ≤ Etξ ∀t, ξ ∈ Ξ (5.8b)

xt(ξ) = xt(zt−1 ◦ ξ) ∀t, ξ ∈ Ξ (5.8c)

zt(ξ) = zt(zt−1 ◦ ξ) ∀t, ξ ∈ Ξ (5.8d)

zt(ξ) ∈ {0, 1}, xt(ξ) ∈ R ∀t, ξ ∈ Ξ (5.8e)

where ξ is the vector of the primitive endogenous uncertain parameters. xt(ξ) is the continuous

variable and zt(ξ) is the indicator binary variable that indicates the revelation of endogenous

uncertainty.

5.4.1 Solution method

Under the same uncertainty set partitioning method, the binary and continuous decisions are

approximated by piecewise constant and piecewise linear decision rules of the following form:

zt(ξ) = zt,s ∀ξ ∈ Ξs, s ∈ S (5.9)

xt(ξ) = Xt,sξ ∀ξ ∈ Ξs, s ∈ S (5.10)

where zt,s ∈ {0, 1}k, Xt,s ∈ Rk+1. The non-anticipativity for endogenous uncertainty can be

expressed in the following form:

|zt,j′,s − zt,j′,s′| ≤ zt−1,j,s ∀j, j′, t, s, s′ : s−j = s′−j (5.11)

|Xt,s,j′ −Xt,s′,j′ | ≤Mzt−1,j,s ∀j, j′, s, s′ : s−j = s′−j (5.12)

|Xt,s,j| ≤Mzt−1,j,s ∀j, t, s (5.13)

where s−j = s′−j means all the components in the scenarios s and s′ are the same, except the

j-th component. M is a sufficiently large constant. With the above constraints, the deterministic

counterpart formulation is then given as following

min
X,z,θ

∑
s

ps
∑
t

ctXτ,sEΞs(ξ) + dtzt,s (5.14a)
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s.t. V >s θt,s ≥
t∑
τ

B>t,τzτ,s ∀t, s (5.14b)

W>
s θt,s =

t∑
τ

A>t,τXτ,s − Et ∀t, s (5.14c)

θt,s ≥ 0 ∀t, s (5.14d)

|zt,j′,s − zt,j′,s′| ≤ zt−1,j,s ∀j, j′, t, s, s′ : s−j = s′−j (5.14e)

|Xt,s,j′ −Xt,s′,j′ | ≤Mzt−1,j,s ∀j, j′, s, s′ : s−j = s′−j (5.14f)

|Xt,s,j| ≤Mzt−1,j,s ∀j, t, s (5.14g)

zt,j,s ∈ {0, 1} ∀j, t, s (5.14h)

5.4.2 Example

Consider a numeric example given below

max Eξ(z1,1(ξ) + z1,2(ξ) + z2,1(ξ) + z2,2(ξ)+x2(ξ) + x3(ξ)) (5.15a)

s.t. z1,1(ξ) + z1,2(ξ) ≤ D1ξ ∀ξ ∈ Ξ (5.15b)

3z2,1(ξ) + 2z2,2(ξ) ≤ D2ξ ∀ξ ∈ Ξ (5.15c)

x1(ξ) = 0 ∀ξ ∈ Ξ (5.15d)

x2(ξ) ≤ D3ξz2,1 ∀ξ ∈ Ξ (5.15e)

x3(ξ) ≤ D4ξ ∀ξ ∈ Ξ (5.15f)

z2,j(ξ) ≥ z1,j(ξ) ∀j, ξ ∈ Ξ (5.15g)

z1,j(ξ) = z1,j ∀j, ξ ∈ Ξ (5.15h)

z2,j(ξ) = z2,j(z1(ξ) ◦ ξ) ∀j, ξ ∈ Ξ (5.15i)

x2(ξ) = x2(z1(ξ) ◦ ξ) ∀ξ ∈ Ξ (5.15j)

x3(ξ) = x3(z2(ξ) ◦ ξ) ∀ξ ∈ Ξ (5.15k)

zt,j(ξ) ∈ {0, 1} ∀j, t, ξ (5.15l)

In this model, the only new type of constraints are the non-anticipativity constraints 5.15j and

5.15k. There constraints enforce that at each time step, the continuous variable can only be a

function of revealed uncertainties up to the previous time step.

max
∑
s

ps(z1,1,s + z1,2,s + z2,1,s + z2,2,s +X2,sEΞs(ξ)+X3,sEΞs(ξ)) (5.16a)

s.t. z1,1,s + z1,2,s ≤ D1ξ ∀s, ξ ∈ Ξs (5.16b)

3z2,1,s + 2z2,2,s ≤ D2ξ ∀s, ξ ∈ Ξs (5.16c)

x1 = 0 (5.16d)
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X2,sξ ≤ D3ξz2,1,s ∀s, ξ ∈ Ξs (5.16e)

X3,sξ ≤ D4ξ ∀s, ξ ∈ Ξs (5.16f)

| zt+1,j′,s − zt+1,j′,s′ |≤ zt,j,s ∀t = 1, s, s′, j, j′ : s−j = s′−j (5.16g)

| Xt+1,j′,s −Xt+1,j′,s′ |≤Mzt,j,s ∀t, s, s′, j, j′ : s−j = s′−j (5.16h)

| Xt+1,j,s |≤Mzt,j,s ∀t, j, s (5.16i)

zt+1,j,s ≥ zt,j,s ∀j, s, t = 1 (5.16j)

z1,j,s = z1,j,s′ ∀j, s, s′ (5.16k)

zt,j,s ∈ {0, 1} ∀j, t, s (5.16l)

where t = 1, 2, ξ = [1, ξ1, ξ2], D1 = [1, 1, 3], D2 = [2, 2, 1], D3 = [1, 3, 1] and D4 = [1, 2, 1].

Breakpoint locations are provided in table 5.4. Constraints 5.16g and 5.16h stipulates the non-

anticipativity for binary and continuous variables across different scenarios. Constraint 5.16i en-

forces the non-anticipativity for continuous variables within each scenario.

Table 5.4: Breakpoint locations

Number of partitions Number of scenarios ξ1 ∈ [0, 3] ξ2 ∈ [0, 6]

2 4 1.8 3.6

5 25 0.6, 1.2, 1.8, 2.4 1.2, 2.4, 3.6, 4.8

15 225 0.1875 : 01875 : 2.8125 0.3750 : 0.3750 : 5.625

Table 5.5: Solution statistics for different number of partitions

Number of partitions Objective Binary, Continuous variables Run time

2 9.92 16, 122 0.221 s

5 9.92 100, 752 0.489 s

15 10.48 900, 6752 49.932 s

(a) x2(ξ1, ξ2) (b) x3(ξ1, ξ2)

Figure 5.6: Continuous solution for 225 scenarios
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Figure 5.4: zt,j binary solution at 225 scenarios

Table 5.5 shows when the number of partitions increase, the objective improves. Figure 5.4

illustrates the binary solution for 225 scenarios (the binary solution for 4 scenarios is the same

as the solution shown in Figure 5.2). Figures 5.5 and 5.6 show that the continuous solution is

piecewise discontinuous. Using 225 scenarios, the break point location has shifted from 3.6 to

3.2 and the objective has improved, but the solution shows similar trend. Figures 5.5a and 5.6a

show that at t = 1, the continuous solution is only a function of revealed uncertainty ξ2 and

constant with respect to unrevealed uncertainty ξ1. Figures 5.5b and 5.6b show that at t = 2,

the continuous variable changes with respect to both uncertain parameters since at t = 2, both

uncertain parameters are revealed at some scenarios.
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(a) x2(ξ1, ξ2) (b) x3(ξ1, ξ2)

Figure 5.5: Continuous solution for 4 scenarios

5.5 Continuous variables under exogenous and endogenous

uncertainty and indicator binary variables under en-

dogenous uncertainty

This section studies problems that involve continuous variables under endogenous and exogenous

uncertainty and binary variables under only endogenous uncertainty.

min
x,z

E

(∑
t

c>t (η)xt(ξ,η) + d>t (η)zt(ξ)

)
(5.17a)

s.t.
t∑

τ=1

A>t,τxτ (ξ,η) +
t∑

τ=1

B>t,τzτ (ξ) ≤ et(ξ) + ft(η) ∀t, ξ ∈ Ξ, η ∈ Ω (5.17b)

xt(ξ,η) = xt(zt−1 ◦ ξ,η[t]) ∀t, ξ ∈ Ξ, η ∈ Ω (5.17c)

zt(ξ) = zt(zt−1 ◦ ξ) ∀t, ξ ∈ Ξ (5.17d)

zt(ξ) ∈ {0, 1}, xt(ξ,η) ∈ R ∀t, ξ ∈ Ξ, η ∈ Ω (5.17e)

where ξ, η are the primitive endogenous and exogenous uncertain parameter vectors, respectively.

xt(ξ,η) are continuous variables and zt(ξ) is the indicator binary variable that indicates the reve-

lation of endogenous uncertainty. η[t] is the vector of exogenous uncertain parameters up to time

step t, η[t] = [η1, · · · , ηt]. The objective coefficients ct(η), dt(η), and constraint right hand side

coefficients et(ξ), ft(η) are assumed to be linearly dependent on the primitive uncertainty.

ct(η) = Ctη[t], dt(η) = Dtη[t], ft(η) = Ftη[t], et(ξ) = Etξ

Partitioning method is used to model endogenous uncertainty and lifting method is used for ex-

ogenous uncertainty. Since in the following problems, lifting method is used to formulate adaptive

continous and adaptive binary variables under exogenous uncertaitny, it is explained in detail in
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the following section and illustrated in the Appendix.

5.5.1 Piecewise linear lifting of exogenous uncertainty

Georghiou et al., 2015, [29] proposed the idea of adaptive continuous variables based on linear

decision rule. In this method, the primitive uncertain parameter is mapped to a higher dimension

lifted set based on predefined breakpoints and lifted parameters . Assume ηi is the i-th uncertain

parameter defined within ηi ∈ [li, ui] and ri−1 is the number of breakpoints; the lifted parameters

are defined as:

Gi,j =


ηi ri = 1

min{ηi, vi1} ri ≥ 2, j = 1

max{min{ηi, vij} − vij−1, 0} ri ≥ 2, j = 2, ..., ri − 1

max{ηi − vij−1, 0} ri ≥ 2, j = ri

(5.18)

If ri = 1, it means there is no breakpoint for the i-th uncertain parameter and the lifting

operator is reduced to a identity mapping. Notice that for ri− 1 breakpoints, the number of lifted

uncertain parameters is ri. The original uncertain parameter can be retrieved by ηi =
∑ri

j=1Gi,j.

The locations of breakpoints for ηi is defined as: vi0 < vi1 < . . . . < viri, where vi0 = li and viri = ui.

The nonconvex set ΩliftC
i is a union of ri connected finite line segments. Its extreme points

are ψ0 = (li, 0, · · · , 0)>, ψ1 = (vi1, 0, · · · , 0)>, ψ2 = (vi1, v
i
2 − vi1, 0, · · · , 0)> ,· · · , ψri = (vi1, v

i
2 −

vi1, · · · , viri−1− viri−2, ui− viri−1)> ∈ Rri . Thus, the convex hull of ΩliftC
i is generated by the simplex

with vertices {ψj}rij=0: {Gi ∈ Rri : Gi =
∑ri

j=0 λjψj,
∑ri

j=0 λj = 1, λ0, · · · , λri ≥ 0}. This can be

rewritten as:

conv(ΩliftC
i ) = {Gi ∈ Rri : ∃λ ∈ Rri+1,W c

i λ = (1,G>i )>, λ ≥ 0} (5.19)

where W c
i =

[
1 · · · 1

ν0 · · · νri

]
.

5.5.2 Piecewise binary lifting of exogenous uncertainty

Bertsimas and Georghiou, 2015 [39] originally developed the concept of adaptive binary vari-

ables based on linear decision rule. In this method, the primitive uncertain parameter is mapped

to a higher dimensional uncertainty set using 0-1 indicator functions. For each breakpoint, an

indicator function is defined. The space of the original uncertain parameter and the indicator

functions generates a non-convex set that is convexified using its extreme points which results in

an over-estimated convex polyhedron. The binary variable is a linear combination of 0-1 indicator

functions. Using decision rule formulation results in semi-infinite constraints and subsequently

duality theorem is applied to convert the semi-infinite constraints to their deterministic counter-
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parts. While traditional scenario-tree methods suffers from curse of dimensionality, the decision

rule method provides the scalability required to tackle large-scale problems. In this method, the

trade-off between the computational burden and the solution quality can be adjusted by the num-

ber of breakpoints. Increasing the number of breakpoints results in a better solution quality but

increased computational expense.

Assume that ηi belongs to the interval ηi ∈ [li, ui] and the breakpoints are denoted by vi1 <

vi2 < ... < viri−1. The indicator functions are defined based on the location of the breakpoints.

Qi,j(ηi) =

{
0, if ηi < vij

1, if ηi ≥ vij
(5.20)

Convex hull of lifted uncertainty set for a single uncertain parameter is formulated as:

conv(ΩliftB
i ) = {η′i = (ηi, Qi) : ∃ λk,p,i > 0, η′i =

ri∑
p=1

2∑
k=1

λk,p,iψk,p,i,

ri∑
p=1

2∑
k=1

λk,p,i = 1} (5.21)

where Qi = (Qi,1, · · · , Qi,ri−1) is the vector of indicator functions for uncertain parameter ηi, λk,p,i

is the coefficient of extreme points in the convex hull and ψ1,p,i and ψ2,p,i are extreme points of the

p-th segment of the lifted non-convex set (ΩliftB
i ) related to parameter ηi:

ψ1,p,i = [vip−1, 1, · · · , 1︸ ︷︷ ︸
p− 1 times

, 0, · · · , 0︸ ︷︷ ︸
ri − p times

]>, ψ2,p,i = [vip, 1, · · · , 1︸ ︷︷ ︸
p− 1 times

, 0, · · · , 0︸ ︷︷ ︸
ri − p times

]> ∈ Rri

thus,

conv(ΩliftB
i ) = {η′i = (ηi, Qi) ∈ Rri : ∃ λ ∈ R2ri ,W b

i λ = (1, η′i
>

)>, λ > 0} (5.22)

where W b
i =

[
1 1 · · · 1 1

ψ1,1,i ψ2,1,i · · · ψ1,ri,i ψ2,ri,i

]
∈ R(ri+1)×(2ri).

5.5.3 Overall lifted exogenous uncertainty

In this study, both adaptive continuous and adaptive binary variables are considered in the problem

formulation. Therefore, the uncertain parameter includes the lifting elements for both binary and

continuous variables. In the following, the notation used for the overall uncertainty vector for all

time steps is summarized here.

� η′i = [ηi, Qi,1, · · · , Qi,ri−1︸ ︷︷ ︸
binary

, Gi,1, · · · , Gi,ri︸ ︷︷ ︸
continuous

]> = [ηi, Qi
>, Gi

>]
>

� η′[t] vector of overall uncertainty from stage 1 to t: [1, η′1
>, · · · , η′t

>]
>
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� η′ ≡ η′[T ] vector of overall uncertainty from stage 1 to T : [1, η′1
>, · · · , η′T

>]
>

Assume the original uncertainty set is a general polyhedral set:

Ψ = {η : Jη ≥ h} (5.23)

The convex overestimation for the overall lifted uncertainty set is defined as follows. It includes

constraints from original uncertainty set, the convex hull for the continuous lifted set, the convex

hull for the binary lifted set and the correlation between the lifted parameters.

Ψ̂′ = {η′ : Jη ≥ h,Gi ∈ conv(ΩliftC
i ), (ηi, Qi) ∈ conv(ΩliftB

i ), ηi = 1>Gi, i = 1, · · · , T} (5.24)

The convex overestimated set after projection to the space of η′ can be compactly written as:

Ψ̂′ = {η′ : J ′η′ ≥ h′} (5.25)

Projection/truncation matrices can be used to retrieve the specific uncertainty to be used in the

decision rule approximation model for continuous and binary variables:

η[t] = [η1, · · · , ηt] = Pη[t]η
′ (5.26)

Q[t] = [1, Q>1 , · · · , Q>t ]
>

= PQ[t]
η′ (5.27)

G[t] = [1, G>1 , · · · , G>t ]
>

= PG[t]
η′ (5.28)

5.5.4 Decision rule approximation

As an approximation policy, we set the continuous variables as function of the lifted exogenous

uncertain parameter and the endogenous uncertainty:

xt(ξ, η) = Xt,sξ +X ′t,sη
′
[t] ∀t, s, ξ ∈ Ξs, η

′ ∈ Ψ̂′ (5.29)

Adaptive binary variables under endogenous uncertainty are approximated using the partitioning

method explained in section 5.3.1.

zt,j(ξ) = zt,j,s ∀t, j, s (5.30)

Using the above approximation methods in the original problem formulation will result in a semi-

infinite problem since the parameter η′ belongs to convex set Ω̂′ and can take infinite number of

values. Through standard duality based robust counterpart constraint formulation, the determin-
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istic counterpart optimization problem is formulated as

min
∑
s

ps
∑
t

(E(η′)>P>η[t]C
>
t Xt,sEΞs(ξ) + Tr(P>η[t] Ct

>X ′t,sPG[t]
E[η′η′

>
])) (5.31a)

+
∑
s

ps
∑
t

E(η′)>Pη[t]
>D>t zt,s

s.t. Vsθt,s + V ′sθ
′
t,s ≥

t∑
τ=1

Bt,τ
>zτ,s ∀t, s (5.31b)

W>
s θt,s = −

t∑
τ=1

(A>t,τXτ,s) + Et ∀t, s (5.31c)

W
′>
s θ′t,s = −

t∑
τ=1

(A>t,τX
′
τ,sPG[t]

) + FtPη[t] ∀t, s (5.31d)

θt,s ≥ 0, θ′t,s ≥ 0 ∀t, s (5.31e)

|zt,j′,s − zt,j′,s′ | ≤ zt−1,j,s ∀j, j′, t, s, s′ : s−j = s′−j (5.31f)

|Xt,s,j′X−t,s′,j′| ≤Mzt−1,j,s ∀j, j′, s, s′ : s−j = s′−j (5.31g)

|Xt,s,j| ≤Mzt−1,j,s ∀j, t, s (5.31h)

zt,j,s ∈ {0, 1} ∀t, j, s (5.31i)

5.5.5 Example

An illustrating example is studied in this section.

min − Eξ,η(z1,1(ξ) + z1,2(ξ) + z2,1(ξ) + z2,2(ξ))+x2(ξ, η) + x3(ξ, η)) (5.32a)

s.t. z1,1(ξ) + z1,2(ξ) ≤ D1ξ ∀ξ ∈ Ξ (5.32b)

3z2,1(ξ) + 2z2,2(ξ) ≤ D2ξ ∀ξ ∈ Ξ

z2,j(ξ) ≥ z1,j(ξ) ∀j, ξ ∈ Ξ (5.32c)

z1,j(ξ) = z1,j ∀j, ξ ∈ Ξ (5.32d)

x1 = 0 (5.32e)

x2(ξ, η) ≥ D3η −D1ξ ∀ξ ∈ Ξ, η ∈ Ψ (5.32f)

x3(ξ, η) ≥ D4η −D2ξ ∀ξ ∈ Ξ, η ∈ Ψ (5.32g)

z2,j(ξ) = z2,j(z1(ξ) ◦ ξ) ∀j, ξ ∈ Ξ (5.32h)

x3(ξ, η) = x3(z2(ξ) ◦ ξ, η[2]) ξ ∈ Ξ, η ∈ Ψ (5.32i)

x2(ξ, η) = x2(z1(ξ) ◦ ξ, η[1]) ξ ∈ Ξ, η ∈ Ψ (5.32j)

zt,j(ξ) ∈ {0, 1} ∀t, j, ξ ∈ Ξ, η ∈ Ψ (5.32k)

Using the approximation methods for continuous and binary variables, the following semi-infinite
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problem formulation is obtained that can be converted to its robust deterministic counterpart

using dulaity method.

min −
∑
s

ps(
∑
t

∑
j

zt,j,s +
∑
t

Xt+1,sEΞs(ξ) +
∑
t

X ′t+1,sE(η′[t])) (5.33a)

s.t. z1,1,s + z1,2,s ≤ D1ξ ∀s, ξ ∈ Ξs (5.33b)

3z2,1,s + 2z2,2,s ≤ D2ξ ∀s, ξ ∈ Ξs (5.33c)

zt+1,j,s ≥ zt,j,s ∀j, s, t = 1 (5.33d)

x1 = 0 (5.33e)

X2,sξ +X ′2,sη
′
[2] ≥ D3η[2] +D1ξ ∀s, ξ ∈ Ξs, η ∈ Ψ, η′ ∈ Ψ′′ (5.33f)

X3,sξ +X ′3,sη
′
[3] ≥ D4η[3] +D2ξ ∀s, ξ ∈ Ξs, η ∈ Ψ, η′ ∈ Ψ′′ (5.33g)

| zt+1,s,j′ − zt+1,s′,j′ |≤ zt,s,j ∀t = 1, s, s′, j, j′ : s−j = s′−j (5.33h)

| Xt+1,s,j′ −Xt+1,s′,j′ |≤Mzt,s,j ∀t, s, s′, j, j′ : s−j = s′−j (5.33i)

| Xt+1,s,j |≤Mzt,s,j ∀t, j, s (5.33j)

z1,s,j = z1,s′,j ∀j, s, s′ (5.33k)

zt,s,j ∈ {0, 1} (5.33l)

where D1 = [1, 1, 3], D2 = [2, 2, 1], D3 = [1, 3], D4 = [1, 2, 1]. In this problem, there are two time

steps t = 1, 2, two endogenous ξ1, ξ2 and two exogenous η1, η2 uncertain parameters. Constraints

5.33h and 5.33i enforce the non-anticipativity for binary and continuous variables across different

scenarios and constraint 5.33j stipulate the non-anticipativity for continuous variables within the

same scenario. The breakpoint locations for endogenous and exogenous parameters are provided

in tables 5.6 and 5.7 respectively.

Table 5.6: Breakpoint locations for endogenous uncertain parameters

Number of breakpoints Number of scenarios ξ1 ∈ [0, 3] ξ2 ∈ [0, 6]

1 4 2 4

2 9 1, 2 2, 4

5 36 0.5, 1, 1.5, 2, 2.5 1, 2, 3, 4, 5
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Table 5.7: Breakpoint locations for exogenous uncertain parameters

Number of breakpoints η1 ∈ [0, 3] η2 ∈ [0, 6]

1 2 4

2 1, 2 2, 4

5 0.5, 1, 1.5, 2, 2.5 1, 2, 3, 4, 5

Table 5.8: Solution statistics for different number of breakpoints

Number of breakpoints Objective Discrete, Continuous variables Run time

1 31.61 16, 150 0.316 s

2 30.83 36, 307 0.467 s

5 30.00 144, 1138 0.907 s

Table 5.9: Binary solution for 4 scenarios z(ξ) = zt,j,s

t 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

j 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2

s 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

zt,j,s 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1

(a) x2(ξ1, ξ2) (b) x2(η1)

Figure 5.7: Endogenous x2(ξ1, ξ2) , exogenous x2(η1) parts of the continuous solution for 4 scenarios
at t = 1
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(a) x2(ξ1, ξ2) (b) x2(η1)

Figure 5.8: Endogenous x2(ξ1, ξ2), exogenous x2(η1) parts of the continuous solution for 9 scenarios
at t = 1

(a) 4 scenarios (b) 36 scenarios

Figure 5.9: Endogenous part of the continuous solution x3(ξ1, ξ2) for different number of scenarios
at t = 2 (the exogenous part is not illustrated since the dimensions exceed 3)

The binary solution in this problem is similar to the previous problems (Table 5.9). Figures 5.7

and 5.8 illustrate the endogenous x2(ξ1, ξ2) and exogenous x2(η1) parts of the continuous solution

at t = 1 (x2(ξ, η) = x2(ξ1, ξ2) + x2(η1)). As figure 5.2 and table 5.9 indicate, at t=1, only ξ2 is

revealed and ξ1 is not realized. It means that at t=1, the continuous variable can only be a linear

function of ξ2 and η1. Figures 5.7a and 5.8a illustrate that the endogenous part of continuous

variable (x2(ξ1, ξ2)) is only a linear funtion of ξ2 and fixed with respect to ξ1. Figures 5.7b and

5.8b shows that at each scenario, the exogenous part of continuous variable (x2(η1)) is a linear

function of exogenous uncertainty.

Figure 5.9 presents the endogenous part of the continuous solution at t = 2 (x3(ξ1, ξ2)). At the

second time step, ξ2 is revealed at all scenarios while ξ1 is only revealed at certain scenarios (Table

5.9). Therefore, the continous solution is a linear function of ξ2 at all scenarios and only a function

of ξ1 at some scenarios. For instance for the case of 4 scenarios, x3(ξ1, ξ2) is only a function of

ξ1 when ξ2 ∈ [4, 6] which is equivalent to scenarios 2 and 4. Similar solution is obtained for 9
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and 36 scenarios. Figure 5.9 shows that by increasign the number of scenarions from 4 to 36, the

breakpoint along the ξ2 axis has shifted from 4 to 3 which has contirbuted to an improved objective

value. As table 5.8 shows, increasing the numer of breakpoints for both types of uncertainty has

provided a more refined search space and subsequently has resulted in a better solution quality.

5.6 General problem formulation under exogenous and en-

dogenous uncertainty

Here, we go back to the original problem stated in Section 2, which includes indicator binary

variables under endogenous uncertainty, binary and continuous variables under both endogenous

and exogenous uncertainty. Under the assumption of the coefficients: ct(η) = Ctη[t], dt(η) = Dtη[t],

ht(η) = Htη[t], ft(η) = Ftη[t], et(ξ) = Etξ, the model is

min
x,y,z

E

(∑
t

η>[t]C
>
t xt(ξ,η) + η>[t]D

>
t yt(ξ,η) + η>[t]H

>
t zt(ξ)

)
(5.34a)

s.t.
t∑

τ=1

A>t,τxτ (ξ,η) +
t∑

τ=1

B>t,τyτ (ξ,η) +
t∑

τ=1

M>
t,τzτ (ξ) ≤ Etξ + Ftη[t] ∀t, ξ ∈ Ξ, η ∈ Ω (5.34b)

xt(ξ,η) = xt(zt−1 ◦ ξ,η[t]) ∀t, ξ ∈ Ξ, η ∈ Ω (5.34c)

yt(ξ,η) = yt(zt−1 ◦ ξ,η[t]) ∀t, ξ ∈ Ξ, η ∈ Ω (5.34d)

zt(ξ) = zt(zt−1 ◦ ξ) ∀t, ξ ∈ Ξ (5.34e)

zt(ξ) ∈ {0, 1}, yt(ξ,η) ∈ {0, 1}, xt(ξ,η) ∈ R ∀t, ξ ∈ Ξ, η ∈ Ω (5.34f)

5.6.1 Solution method

Both binary y(ξ, η) and continuous x(ξ, η) variables are functions of endogenous and exogenous

uncertainty. z(ξ) is the binary decision that indicates the revelation of endogenous uncertainty.

In this general formulation, the continuous variable is formulated as a linear combination of en-

dogenous and exogenous uncertainty. The binary varaible is formulated as the multiplication of

endogenous and exogenous binary components which represents the AND logic between two types

of uncertainty. In both binary and continuous varibles, the endogenous component is formulated

using the partitioning method and the exogenous component is formulated based on the lifting

method. In both binary and continuous variables, for each scenario of endogenous uncertainty,

123



there is a lifting solution for exogenous uncertainty.

zt(ξ) = zt,s ∀t, s (5.35a)

yt(ξ, η) = yt,sYt,sQ[t](η) ∀s, η ∈ Ψ (5.35b)

xt(ξ, η) = Xt,sξ +X ′t,sη
′
[t] ∀s, ξ ∈ Ξs, η′ ∈ Ψ̂′ (5.35c)

Following the above described variable modeling technique and by applying duality to semi-infinite

constraints, the deterministic counterpart optimization model is obtained.

min
∑
s

ps
∑
t

(E(η′)>Pη[t]
>C>t Xt,sEΞs(ξ) + Tr(Pη[t]

>Ct
>X ′t,s PG[t]

E[η′η′
>

])) (5.36a)

+
∑
s

ps
∑
t

(Tr(Pη[t]
>Dt

>yt,sYt,sPQ[t]
E[η′η′

>
]) + E(η′)>Pη[t]

> H>t zt,s)

s.t. (5.36b)

Vsθt,s + V ′sθ
′
t,s ≥

t∑
τ=1

Mt,τ
>zτ,s ∀t, s (5.36c)

W>
s θt,s = −

t∑
τ=1

(A>t,τXτ,s) + Et ∀t, s (5.36d)

W
′>
s θ′t,s = −

t∑
τ=1

(A>t,τX
′
τ,sPG[t]

−B>t,τyτ,sYτ,sPQ[t]
) + FtPη[t] ∀t, s (5.36e)

θt,s ≥ 0, θ′t,s ≥ 0 ∀t, s (5.36f)

|zj′,t,s − zj′,t,s′| ≤ zj,t−1,s ∀j, j′, t, s, s′ : s−j = s′−j (5.36g)

|yt,s − yt,s′| ≤ zj,t−1,s ∀j, t, s, s′ : s−j = s′−j (5.36h)

|Xt,s,j′ −Xt,s′,j′ | ≤Mzj,t−1,s ∀j, j′, t, s, s′ : s−j = s′−j (5.36i)

|Xt,s,j| ≤Mzj,t−1,s ∀j, t, s (5.36j)

zt,s ∈ {0, 1}, yt,s ∈ {0, 1} ∀t, s (5.36k)

Yt,s ∈ {−1, 0,+1} ∀t, s (5.36l)

5.6.2 Example

Consider the following illustrating example

max Eξ,η[(2 + η)x(ξ, η)− 6y(ξ, η)− 4z(ξ)− 0.1x(ξ, η)] (5.37a)

s.t. x(ξ, η) ≤ ξ ∀ξ, η (5.37b)

8x(ξ, η) ≤ 16 + η ∀ξ, η (5.37c)

(η − 8)z(ξ) ≤ 16y(ξ, η) ∀ξ, η (5.37d)
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x(ξ, η) ≤ 20z(ξ) ∀ξ, η (5.37e)

x(ξ, η) ≥ 0 ∀ξ, η (5.37f)

x(ξ, η) = x(z(ξ) ◦ ξ, η) ∀ξ, η (5.37g)

y(ξ, η) = y(z(ξ) ◦ ξ, η) ∀ξ, η (5.37h)

y(ξ, η), z(ξ) ∈ {0, 1} ∀ξ, η (5.37i)

By employing the explained variable modeling technique and using duality method, the determin-

istic counterpart formulation can be derived.

max
∑
s

ps[2(XsEΞs(ξ) +X ′sE(η′) + E(η)XsEΞs(ξ) +X ′sE(ηη′>)

− 6ysYsE(Q(η))− 4z − 0.1((XsEΞs(ξ) +X ′sE(η′))] (5.38a)

s.t. Xsξ +X ′sη
′ ≤ ξ ∀s, ξ ∈ Ξs, η

′ ∈ Ψ̂′ (5.38b)

8(Xsξ +X ′sη
′) ≤ 16 + η ∀s, ξ ∈ Ξs, η ∈ Ψ, η′ ∈ Ψ̂′ (5.38c)

(η − 8)z ≤ 16(ysYsQ(η)) ∀s, η ∈ Ψ (5.38d)

Xsξ +X ′sη
′ ≤ 20zs ∀s, ξ ∈ Ξs, η

′ ∈ Ψ̂′ (5.38e)

Xsξ +X ′sη
′ ≥ 0 ∀s, ξ ∈ Ξs, η

′ ∈ Ψ̂′ (5.38f)

|Xs,j| ≤Mzs ∀s, j = 2 (5.38g)

zs = zs′ ∀s, s′ (5.38h)

0 ≤ YsQ(η) ≤ 1 ∀s, η ∈ Ψ (5.38i)

zs ∈ {0, 1}, ys ∈ {0, 1} ∀s, t, j (5.38j)

Uncertainty interval and breakpoint locations are presented in Table 5.10.

Table 5.10: Breakpoint locations for endogenous and exogenous uncertain parameters

Endogenous ξ ∈ [0, 10] Exogenous η ∈ [0, 16]

Number of breakpoints Location Number of breakpoints Location

1 5 1 8

2 1, 3 3 4, 8, 12

3 1, 3, 7 7 2, 4, 6, 8, 10, 12, 14, 16
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Table 5.11: Solution statistics for different number of breakpoints

Br Endo, Exog Objective Disc, Cont variables Run time

1, 1 14.133 12, 190 0.348 s

1, 3 14.133 20, 262 0.359 s

1, 7 14.133 36, 402 0.414 s

2, 1 17.217 18, 280 0.463 s

2, 3 17.426 30, 388 0.384 s

2, 7 17.657 54, 604 0.514 s

3, 1 18.360 24, 370 0.384 s

3, 3 18.479 40, 514 0.574 s

3, 7 18.493 72, 802 0.635 s

(a) Binary variable (b) Continuous variable

Figure 5.10: Both binary and continuous variables are piecewise discontinuous functions of ξ and
η (illustration for 2 endogenous and 7 exogenous breakpoints)

Figure 5.10 illustrates the binary and continuous solution for the case with 2 and 7 breakpoints

for endogenous and exogenous uncertaint parameters, respectively. It can be observed that both

binary and continuous variables are piecewise discontinuous functions of endogenous and exogenous

uncertainty. Table 5.11 demonstrates that by increasing the number of breakpoints for endogenous

or exogenous uncertain parameters, the objective value improves. In this problem, increasing the

number of partitions for endogenous uncertainty has a much more substantial effect on improving

the objective value than increasing the number of breakpoints for exogenous uncertainty.

5.7 Shale gas problem

In this section, a case study about infrastructure construction and production planning of a gas field

is studied. Figure 5.11 illustrates the general network of the gas field. There are 3 platforms and

5 pipelines. The goal is to optimally plan the construction and gas production during a certain
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time horizon in order to maximize the revenue. Equatoins 5.39a to 5.39o present the problem

objective and constraints. The problem includes both endogenous and exogenous uncertainty. ξ is

the gas reservoir size that represents endogenous uncertainty and η is the gas price that indicates

the exogenous uncertainty. Explanation of all the problem variables and parameters is provided

in the Appendix.

Figure 5.11: Platform, Pipeline Network

max Eξ,η
∑
t∈T

dt[c
g
t (ηt)(x

f
2,t(ξ, η) + xf4,t(ξ, η))−

∑
i∈L

cli(y
l
i,t(ξ, η)−yli,t−1(ξ, η)) (5.39a)

−
∑
j∈P

cpj(y
p
j,t(ξ)− y

p
j,t−1(ξ))−

∑
j∈P

ccjx
c
j,t(ξ, η)−

∑
j∈P

cej x
e
j,t(ξ, η)]

s.t.
∑
t∈T

xej,t(ξ, η) ≤ ξj ∀j, ξ ∈ Ξ, η ∈ Ψ (5.39b)

0 ≤ xej,t(ξ, η) ≤ rj + ηt ∀j, t ∈ T, ξ ∈ Ξ, , η ∈ Ψ (5.39c)

xej,t(ξ, η) +
∑

i∈L+(p)

xfi,t(ξ, η) ≥
∑

i∈L−(p)

xfi,t(ξ, η) ∀j ∈ P, t ∈ T, ξ ∈ Ξ, η ∈ Ψ

(5.39d)∑
i∈L−(p)

xfi,t(ξ, η) ≤
t∑

t′=1

xcj,t′(ξ, η) ∀j ∈ P, t ∈ T, ξ ∈ Ξ, η ∈ Ψ

(5.39e)

0 ≤ xfi,t(ξ, η) ≤Myli,t(ξ, η) ∀i ∈ L, t ∈ T, ξ ∈ Ξ, η ∈ Ψ

(5.39f)

0 ≤ xcj,t(ξ, η) ≤Mypj,t(ξ) ∀j ∈ P, t ∈ T, ξ ∈ Ξ, η ∈ Ψ

(5.39g)

ypj,t(ξ) ≥ ypj,t−1(ξ) j ∈ P, t ∈ T, ξ ∈ Ξ (5.39h)
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yli,t(ξ, η) ≥ yli,t−1(ξ, η) i ∈ L, t ∈ T, ξ ∈ Ξ, η ∈ Ψ (5.39i)∑
j∈P

xpj,t(ξ)−
∑
j∈P

xpj,t−1(ξ) ≤ Nmax ∀t, ξ ∈ Ξ (5.39j)

ylt(ξ, η), ypt (ξ) ∈ {0, 1} ∀t, ξ ∈ Ξ, η ∈ Ψ (5.39k)

ypt+1(ξ) = ypt+1(ypt (ξ) ◦ ξ) ∀ ∈ t, ξ (5.39l)

xfi,t+1(ξ, η) = xfi,t+1(ypt (ξ) ◦ ξ, η[t+1]) ∀i, t, p, ξ, η (5.39m)

xcj,t+1(ξ, η) = xcj,t+1(ypt (ξ) ◦ ξ, η[t+1]) ∀j, t, p, ξ, η (5.39n)

xej,t+1(ξ, η) = xej,t+1(ypt (ξ) ◦ ξ, η[t+1]) ∀j, t, p, ξ, η (5.39o)

Equation 5.39b means that the total amount of gas extracted over the entire time horizon from a

single gas field should not exceed the gas field size. Equation 5.39c indicates that gas production

is limited by a maximum production rate at a particular production platform. If the gas price

increases at each year, the amount of gas extraction increases proportionally. Equation 5.39d is

the flow conservation constraint in the network. Equation 5.39e enforces that gas flow from a

particular production platform should not exceed its capacity. Equation 5.39f enforces that gas

can not flow through pipeline i if the pipeline has not been built. Equation 5.39g means that no

platform expansion can be constructed if platform p has not been built. Equation 5.39h and 5.39i

enforces that once a platform or pipelines is built, it does not vanish in the network. Equation

5.39j enforces the maximum number of platforms that can be built at each year. Equation 5.39a

is the objective that constitute of the revenue obtaine from selling gas minus the costs for building

pipelines, platforms, gas extraction and platform capacity expansion.

The endogenous uncertainty is modeled using partitioning method and the exogenous uncer-

tainty is modeled using lifting method. The binary variable ypj,t(ξ) indicates the construction of

platforms and it depends only on endogenous uncertainty. The binary variable yli,t(ξ, η) indicates

pipeline construction and it depends on both type of uncertainties. It is modeled as a multipli-

cation of an endogenous binary variable and an exogenous binary variable (AND logic between

endogenous and exogenous uncertainty). The continuous variables are modeled as linear combi-

nation of endogenous and lifted exogenous uncertain parameters. In both binary and continuous

variables, for each scenario of endogenous uncertainty, there is a lifting solution for exogenous

uncertainty. Under the linear decision rule approximation, the derivation of the deterministic

counterpart optimization problem is reported in Appendix.

ypj,t(ξ) = ypj,t,s ∀j, s, ξ ∈ Ξs (5.40)

yli,t(ξ, η) = yli,t,sY
l
i,t,sQ[t](η) ∀t, i, s, ξ ∈ Ξs, η ∈ Ψ (5.41)

xfi,t(ξ, η) = Xf
i,t,sξ +X

′f
i,t,sη

′
[t] ∀t, i, s, ξ ∈ Ξs, η

′ ∈ Ψ̂′ (5.42)

xcj,t(ξ, η) = Xc
j,t,sξ +X

′c
j,t,sη

′
[t] ∀t, j, s, ξ ∈ Ξs, η

′ ∈ Ψ̂′ (5.43)
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xej,t(ξ, η) = Xe
j,t,sξ +X

′e
j,t,sη

′
[t] ∀t, j, s, ξ ∈ Ξs, η

′ ∈ Ψ̂′ (5.44)

Table 5.12: Breakpoint locations for endogenous and exogenous uncertain parameters

Endogenous Exogenous

Number of breakpoints ξ1 ∈ [0, 10] ξ2 ∈ [0, 5] ξ3 ∈ [0, 5] Number of breakpoints η ∈ [0, 1]

1 5 2.5 2.5 1 0.5

2 1, 6 1, 3 1, 3 3 0.25, 0.5, 0.75

(a) (b)

Figure 5.12: Reservoir size illustration for 8 and 27 scenarios

Table 5.12 demonstrates the uncertainty range and breakpoints locations and figure 5.12 illus-

trates the partitioning of endogenous uncertainty (gas reservoir size) for 8 and 27 scenarios. The

problem solution for T = 3, 4, 5 time periods and different number of breakpoints is reported in

table 5.13. Increasing the number of exogenous and endogenous breakpoints has improved the ob-

jective while the effect of endogenous uncertainty (reservoir size) is more significant. For instance

at T = 3, increasing the number of endogenous breakpoints from 1 to 2 has improved the objective

by 11.45% while increasign the number of exogenous breakpoints from 1 to 3 has resulted in 8.32%

improvment in the objective. It should be noted that increasing the breakpoints has substantially
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increased the run time. As an example, for T = 3, when the number of exogenous breakpoints

increases from 1 to 3, the runtime increases from 16 min with zero gap to 17 hrs with 5.8% gap.

Therefore, depending on the model size, selecting a reasonable number of breakpoints can save

significant run time.

Table 5.13: Solution statistics for different number of partitions

Time step Br Endo, Exog Obj Best possible obj Opt gap Disc, Cont variables Run time

T=3

1, 1 22.69 22.69 0 912, 33965 ∼16 min

1, 3 23.22 24.58 5.87% 1872, 50045 ∼ 17 hr

2, 1 24.29 25.29 3.9% 3078, 114601 ∼ 336 hr

2, 3 23.30 27.65 18.64% 6318, 168871 ∼ 26 hr

T=5

1, 1 25.85 25.85 0 1920, 84973 ∼ 118 hr

1, 3 25.86 28.68 10.89% 4320, 30413 ∼ 40 hr

2, 1 25.02 29.28 17.04% 6480, 286753 ∼ 56 hr

2, 3 23.80 30.49 28.09% 14580, 440113 ∼ 91 hr

T=10 1, 1 26.31 28.07 6.2 % 5840, 311613 ∼ 336 hr

5.7.1 Solution for binary decision rule

Figure 5.13: Platform construction decision at year t and scenario s

Figure 5.14: Pipe construction decision at year t and scenario s

Figures 5.13 and 5.14 illustrate the platform and pipe construction decisions. platforms 1 and 2 are

built from the first time step and platform 3 is built starting from the second time step at all the
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scenarios. Considering constraint 5.39j that stipulates at each time step only two platforms can be

built and building the platform is required to extract and sell the gas, these results are rational.

Figure 5.14 illustrates the pipe construction decision for the 8 scenarios setting (figure 5.12a). Pipes

3 and 5 are never built since these pipes are the most expensive pipes to build and their absence

does not prevent gas delivery from any platform to the main pipeline (figure 5.11). Pipe 1 is only

built after scenario 4 at t = 1. Since pipe 1 delivers the gas from platform 1 and scenarios 1 to 4

and 5 to 8 correspond to the smaller and larger segments of reservoir 1 respectively ([0, 5] and [5,

10]), the solver has decided it’s not economical to build pipe 1 for smaller segment of the reservoir.

Pipe 2 is only built after scenario 2 at t = 1. Since pipe 2 delivers the gas from platform 2 and

scenarios 1 and 2 correspond to the smaller segment of reservoir 2, the solver has decided that it

is only profitable to build pipe 2 starting from scenario 3 where scenarios correspond to the larger

segments of reservoirs 2 and 1. Pipe 4 delivers the gas from platform 3. Since platform 3 is not

built at t = 1, subsequently pipe 4 can not be built at t = 1 too. At t = 2, pipe 4 is only built

at scenarios 2, 4, 6, 8 that correspond to the larger segment of reservoir 3 ([2.5, 5]) in order to

achieve the most profit.

5.7.2 Solution for continuous decision rule

The continuous varaibles include extraction, flow and capacity expansion decisions (xej,t(ξ, η),

xfj,t(ξ, η), xcj,t(ξ, η)) that depend on both price and reservoir size uncertainty. At each time step, the

continuous variables can depend on all previous uncertain parameters up to the current time step.

Since different scenarios represent different reserves for each of the three reservoirs, the solution

corresponding to each scenario can be different. Table 5.14 presents the extraction solution for

platform 3 at t = 5 under the setting T=5, 1 endogenous and 1 exogenous breakpoint. It can

be observed in the table that for platform 3, each group of scenarios 1,3,5,7 and 2,4,6,8 have the

same solution since the first group correspond to the smaller segment ([0, 2.5]) and the second

group corresponds to the larger segment ([2.5, 5]) of reservoir 3. For the latter group, the extrac-

tion amount depends on both reservoir and price uncertainty; as the reservoir size or the price

increases, the extraction increases too that follows constraitns 5.39b and 5.39c.

5.8 Conclusion

In this study, a novel framework capable of handling both endogenous and exogenous uncertainty

for multistage mixed integer optimization is formulated based on robust optimization method.

The endogenous and exogenous uncertainties are modeled using the partitioning and the lifting

methods, respectively. The continuous variable is a summation of endogenous and exogenous com-

ponents. The endogenous component is based on the partitioning method where, at each scenario,
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Table 5.14: xej,t(ξ, η) for platform 3 at t=5 under the setting T=5, 1 endogenous, 1 exogenous
breakpoint

Scenario Number Platform 3

1 xe3,5(ξ, η) = Xe
3,5,1ξ +X

′e
3,5,1η

′
[5] = 0.33ξ3

2 xe3,5(ξ, η) = Xe
3,5,2ξ +X

′e
3,5,2η

′
[5] = 0.4ξ3 − 1 + 0.17G5,2

3 xe3,5(ξ, η) = Xe
3,5,3ξ +X

′e
3,5,3η

′
[5] = 0.33ξ3

4 xe3,5(ξ, η) = Xe
3,5,4ξ +X

′e
3,5,4η

′
[5] = 0.4ξ3 − 1 + 0.17G5,2

5 xe3,5(ξ, η) = Xe
3,5,5ξ +X

′e
3,5,5η

′
[5] = 0.33ξ3

6 xe3,5(ξ, η) = Xe
3,5,6ξ +X

′e
3,5,6η

′
[5] = 0.4ξ3 − 1 + 0.17G5,2

7 xe3,5(ξ, η) = Xe
3,5,7ξ +X

′e
3,5,7η

′
[5] = 0.33ξ3

8 xe3,5(ξ, η) = Xe
3,5,8ξ +X

′e
3,5,8η

′
[5] = 0.4ξ3 − 1 + 0.17G5,2

the continuous variable is approximated using an affine function of endogenous uncertain param-

eters. The exogenous component is based on the lifting method where the continuous variable

is approximated using an affine function of lifted uncertain parameters at each scenario of en-

dogenous uncertainty. This formulation results in a flexible piece-wise discontinuous solution for

the continuous variable. The binary variable is a multiplication (AND logic) of endogenous and

exogenous components. The endogenous component is constant at each scenario. The exogenous

component is approximated using an affine function of 0-1 indicator functions at each scenario

of endogenous uncertainty. The proposed framework is applied to a numerically demanding case

study for infrastructure construction and production planning of a gas filed. The obtained re-

sults demonstrate that the proposed framework is effective for large problem settings and it can

successfully integrate both endogenous and exogenous uncertainty in the solution.
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Chapter 6

Strategic Planning of SAGD Reservoir

Development under Reservoir

Production and Oil Price Uncertainty

Abstract

During the lifecycle of an oilfield project, well development is a critical phase due to intensive

investments required for capital cost. Determining whether it is economic to develop an oilfield or

not and finding the best plan for field development are the main concerns in this field of study.

Drainage area development and production planning are crucial in a SAGD project of oil sand in-

dustry. In this study, an optimization framework for planning the development of SAGD drainage

areas under uncertainty is presented. The proposed framework includes the following two major

elements. First, a mixed integer optimization model is developed to arrange the multiperiod devel-

opment plan of the drainage areas with consideration of capital and steam allocation restrictions.

Second, uncertainties in crude oil price and reservoir production are investigated based on a mul-

tistage stochastic programming model. The results demonstrate that the method can effectively

generate an economically optimal development plan that maximizes the profit.
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6.1 Introduction

Oil extraction and production is one of the main income streams of Alberta Canada. After

Venezuela with 297 billion barrels and Saudi Arabia with 268 billion barrels of oil reserves, Al-

berta of Canada has 166.3 billion barrels of proven oil reserves [95]. Most of the the oil reserves in

Alberta Canada is oil sands bitumen. Since the start of commercial production in 1967 in Alberta,

only 5.9% of initial crude bitumen reserves have been produced. Athabasca, Peace River and cold

lake are the major areas for bitumen production in Alberta where Athabasca holds the largest

reserves. Bitumen is produced using surface mining and in-situ methods: surface mining methods

are used in areas where the bitumen reserve is close to the surface and in-situation methods are

employed where the bitumen is deep below the ground. It is estimated that 80% of the total

bitumen reserves are extractable using in-situ methods and surface mining will account for only

20%. In 2012, production from in-situ methods surpassed mined production. In 2014, 55% of total

bitumen production (366.3 thousand m3 per day) was from in-situ methods. By 2024, total bitu-

men production is expected to reach 642 thousand m3 per day and in-situ production is expected

to reach 60% [96]. Cyclic-steam stimulation (CSS) and Steam Assisted Gravity Drainage (SAGD)

are the commonly used methods for bitumen production.

In SAGD operation, high temperature and high pressure steam is injected into the underground

reservoir to reduce the bitumen viscosity so that it can be pumped to the surface. Usually several

pairs of horizontal injector and producer wells are installed into a drainage area from a surface

pad (SP) (Figure 6.1). The injector is installed around 5 meters above the producer. Hot steam is

injected into the injector well. As a result, steam chamber grows and propagates into the reservoir,

and liquidizes the bitumen. Subsequently, bitumen is pumped out. The SAGD operation mainly

consists of three stages: rising, spread and depletion stages. In rising stage, steam chamber

gradually propagates into the reservoir and production builds up. During spread stage, steam

chamber has already reached top of the pay zone and it propagates laterally. In the depletion

stage, most of the bitumen is already produced and production gradually declines. The produced

bitumen is processed in the central processing facility (CPF). CPF is a surface facility that produces

steam for injection into the underground oil reservoir, separates oil-water emulsion and recycles

the produced water for steam generation.
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Figure 6.1: Left: 3D view of a DA; Middle: aerial view of a DA; Right: aerial view of multiple
DAs

In the context of oil and gas infrastructure investment and production planning, most of the

publications use a deterministic approach[97, 98, 99, 100]. Van Den et al. [98] presented a review

of available literature for these types of problems. Shahandeh et al. [100] proposed an optimization

framework to optimally divide an oil field into several drainage areas, in order to have maximum

access to bitumen. They developed a deterministic optimization algorithm to maximize the rev-

enue from SAGD operations while uncertainty is not addressed. Charry et al. [101] proposed an

energy optimization model for upgrading of unconventional oil to minimize the cost while meeting

environmental regulations and product demands. The proposed model for upgrading plants can

determine the energy production costs and identify significant parameters that influence upgrading

operations. Betancourt-Torcat et al. [102] presented an energy optimization model with similar

objectives. Shahandeh and Li [103] proposed an optimal bitumen upgrading facility with the goal

of CO2 reduction. They discussed optimal configurations for different scenarios including plant

capacity, price of natural gas, electricity and crude oil. The obtained model is a large-scale mixed-

integer nonlinear problem which is solved using augmented Lagrangian decomposition method.

Uncertainty can be classified into endogenous and exogenous type [53]. If an uncertain pa-

rameter’s revelation time depends on the decisions, it is referred to as endogenous uncertainty,

otherwise it is called exogenous uncertainty. In the stochastic programming context, the reader

can refer to the review [16, 17] on stochastic problems, and the following works [104, 105, 51, 106]

as examples for addressing exogenous uncertainty. For endogenous uncertainty in optimization

problem, distribution of uncertain parameters and the revelation time could both be affected by

the optimization decisions. Hence, stochastic optimization problems including decision-dependent

uncertainty revelation are considered to be difficult and the solution methods in this context are

rare. Jonsbr̊aten [53] developed a stochastic model with decision-dependent uncertainty under the

assumption that variables controlling uncertainty revelation are discrete and only affect first stage

decisions. Stochastic problems including discrete endogenous uncertainties can be formulated as

deterministic mixed-binary programs [54],but the number of non-anticipativity constraints and

binary variables can increase exponentially by expanding the size of the problem, which makes the
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problem computationally intractable. Therefore, researchers have tried to propose approximation

methods to provide feasible but suboptimal solutions to the original problem. In order to reduce

the complexity of the problem, measurement decisions (i.e. decisions that reveal uncertain infor-

mation) can be fixed as the first stage variables. Goel and Grossmann [54] employed decomposition

techniques to solve this type of stochastic problems. Colvin and Maravelis [11] proposed branch

and cut algorithm that can incorporate the adaptive measurement variables.

Addressing uncertainty in reservoir development planning is critical since it significantly affects

the economic performance of a project. Among the various sources of uncertainties, oil price and

reservoir production capacity represent the major uncertain factors to be considered. In the past,

stochastic programming has received lots of attention in the context of oil and gas investment and

production planning under uncertainty. Most of the algorithms for solving stochastic problems

require discrete distribution of uncertain parameters. Jonsbr̊aten [53] used a finite scenario tree to

model the decision procedure and the binary decisions were used to indicate the uncertainty reve-

lation. He addressed production optimization under reservoir size and price uncertainty. Goel and

Grossmann [54] presented a stochastic programming approach for offshore gas filed development

under reserve uncertainty. Later on, Goel et al. [107] developed a branch and bound based algo-

rithm to solve the similar problem. Gupta and Grosmann [10] proposed iterative algorithms based

on relaxation of non-anticipativity constraints for measurement variables. Betancourt-Torcat et

al. [108] extended the deterministic model developed by Betacourt-Torcat et al. [102] to account

for uncertainty in steam-oil-ratio (SOR) and natural gas price. It provides optimal arrangement of

energy supply and oil producer infrastructures. There are few numbers of publications addressing

oil and gas planning problems including endogenous uncertainty. Gupta and Grossmann [109] pro-

posed a new decomposition algorithm based on relaxation of non-anticipativity constraints that

results in reduced computational expense while preserving the same optimality gap.

All of the above described solution methods are based on scenario representation (discretiza-

tion) of uncertain parameters. Discretization is an effective method for small size problems, but

for problems with large number of uncertain parameters, discretization can result in very large

number of states which makes the problem computationally inefficient. On the contrary, using

few scenarios may result in suboptimal or even practically infeasible solutions. As an alternative,

decision rule approximation techniques have been applied in various stochastic and robust opti-

mization problems [30, 56, 22]. To handle endogenous uncertainty, Vayanos et al. [57] proposed a

method for solving stochastic dynamic problems based on robust optimization techniques. They

introduced binary variable for information revealing status. Furthermore, they presented method

for approximating binary decisions by piecewise constant functions and adaptive real-valued de-

cisions by piecewise linear functions of uncertainty. This decision rule approximation leads to a

mixed-integer linear programming problem (MILP).
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In this work, long term development planning of the drainage areas is addressed. This study is

complementary to a previous work [100] where a method for configuring the drainage area layout

was developed. First, an optimization framework is built to account for rising, spread and deple-

tion stages of SAGD operation. Furthermore, we incorporate the effect of price and oil production

uncertainties into the optimization framework under realistic restrictions. Following the idea pro-

posed by Vayanos et al. [57], in this work, binary variables are used to indicate the revelation of

endogenous uncertainty. The goal of this optimization framework is to maximize the profit. The

problem is finally solved using linear decision rule techniques.

The rest of the paper is organized as follows. Section 2 provides a general description of the

problem. In Section 3 a detailed description and mathematical formulation of oil production and

steam injection models in SAGD operation is presented. Multistage deterministic and stochastic

development models are explained in Sections 4 and 5, respectively. Section 6 discusses the obtained

results and compares deterministic and stochastic solutions. Section 7 concludes the paper.

6.2 Problem statement

In this study, the goal is to determine an optimal reservoir development and oil production plan

that maximizes the net present value (NPV) over a long term horizon. DAs have different geological

properties such as porosity, permeability and oil saturation. SAGD oil production profile consists

of three stages [110, 111] where the duration and the amount oil production at each stage depends

on the geological properties of each DA.

The steam required by all drainage areas will be provided by the steam generation facility.

Since the steam generation capacity is limited, the steam resources have to be optimally allocated

to different drainage areas during the lifetime of the project. In addition, the CPF has a limited

capacity for processing the produced bitumen, which accordingly restricts the amount of possible

oil production. In summary, bitumen production from multiple drainage areas is restricted by the

limited steam generation and oil production capacity of the CPF. Finally, the capital investment

is constrained by the available budget for each year.

In this work, it is assumed that any DA development and oil production decision takes imme-

diate effect at the beginning of each year and that oil production uncertainty (ζi) is revealed at

the middle of the year after DA installation decision is made and installation is completed. Since

price for each year is considered to be the average price of the whole year, price uncertainty (εt) for

each year is revealed at the end of the year when the oil price for the whole year is known (Figure

6.2).
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Figure 6.2: Uncertainty revelation and decision making sequence

In the subsequent sections, a deterministic optimization model based on previous work [100] is

first developed. Next, a stochastic optimization framework under price and production uncertainty

is proposed. In this stochastic model, future oil price and oil production capacity are set as the

uncertain parameters. Future oil price does not depend on optimization decisions while oil produc-

tion capacity depends on reservoir uncertainty which is revealed at each stage based on the well

development decisions. Therefore, oil price is an exogenous uncertainty but oil production capacity

is an endogenous uncertainty. Using linear decision rule approximation and robust optimization

techniques, the stochastic model is converted to a deterministic model. Both deterministic and

stochastic solutions provide the time for DA installation, oil production sequencing and production

rate for each DA. Deterministic and stochastic models are explained in detail in Section 4 and 6,

respectively.

6.3 SAGD process model

The objective of this section is to calculate the oil production capacity and steam injection rate that

are required to formulate the deterministic and stochastic optimization problem for DA develop-

ment. Next, oil production and steam injection models are described and the required parameters

are provided and explained. These models are employed to simulate the oil production and steam

injection rates for each DA according to its geological properties.

6.3.1 Oil production model

In SAGD operation, the oil production profile mainly consists of three stages: rising, spread and

depletion stages (Figure 6.3). In rising stage, steam chamber is gradually expanding in the un-

derground reservoir and oil production is increasing until the steam chamber reaches top of the

net pay zone. At this point, steam chamber starts developing laterally and an almost constant

oil production profile is observed until most of the bitumen in the pay zone is extracted. At the

end of spread stage, oil production rate starts declining and depletion stage starts since most of
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the bitumen is produced up to this point. Duration and production rate at each of these three

stages vary according to reservoir geological properties. In the following, the mathematical model

for each of these three stages [110, 111] is presented and the required parameters are explained.

Figure 6.3: Rising, spread and depletion stages of oil production in SAGD operation

The oil flow rate for the rising stage is obtained using the following equation:

qrising = 3(
kgα

mνs
)
2
3 (φ∆S0)

1
3 t

1
3CF1 (6.1)

The oil flow rate for the spread stage is calculated as:

qspread = 2

√
βkgαφ∆S0h

mνs
CF2 (6.2)

The oil flow rate for the depletion stage is obtained using Eqs. 6.3 to 6.6:

qdepletion = 2Q∗/Factor (6.3)

Q∗ =

√
3

2
− t∗2

√
2

3
(6.4)

t∗ =
t

w

√
kgα

φ∆0mνsh
(6.5)

Factor =

√
mνs

kgαhφ∆S0

CF3 (6.6)
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where qrising, qspread and qdepletion(m3/m×day) are oil production rates per meter of the well length

in rising, spread and depletion stages, respectively. In addition, k(m2)is the reservoir effective

permeability, α(m2/s) is the reservoir thermal diffusivity, νs(m
2/s) is the oil viscosity at steam

temperature, g(m/s2) is the gravitational acceleration, ∆So is the displaceable oil saturation,

m is the viscosity-temperature correlation parameter, φ is the reservoir porosity, h(m) is the

effective drainage height, t (second) is time, t∗ is dimensionless time, β, γ1 and γ2 are empirical

constants, CF1, CF2 and CF3 are conversion factors (CF1 = (24 × 3600)4/3, CF2 = 24 × 3600,

CF3 = 1/(24× 3600)) to calculate production rate in (m3/m× day).

Eqs. 1 to 6 are used to calculate oil production rates. Using geological data specific to each

drainage area which are obtained from Eqs. 14 to 18, the oil production capacity for each drainage

area at each year of its lifetime (qmaxoili,k ) is calculated. The qmaxoili,k values are organized as a numeric

table and used in the optimization problem.

6.3.2 Steam consumption model

In this section, an approximate model for steam consumption is presented. The cumulative heat

consumption in SAGD well consists of two main components: heat inside the steam chamber Hinside

and cumulative heat loss Hloss. Hinside is calculated based on the required energy for expansion

of steam chamber (Eq. 6.7). Cumulative heat loss consists of heat loss to overburden, chamber

sides and underburden. Heat loss to overburden Htop is calculated based on cumulative heat loss

to a semi-infinite plane (Eq. 6.8). The heat outside the steam chamber is composed of heat losses

from the chamber sides and underburden which can empirically considered to be one-third of the

heat losses from the overburden [112]. Therefore, the total cumulative heat consumption Htotal

and total required steam volume Vsteam is calculated using Eqs. 6.7 to 6.11 [1]:

Hinside = A∆TCνrhηs (6.7)

Htop =
4

3
A∆T

√
ktCνot

π
(6.8)

Hloss = Htop +
1

3
Htop (6.9)

Htotal = Hinside +Hloss = A∆T (Cνrhηs +
√
ktCνot) (6.10)

Vsteam(t) =
Htotal

Hlν

=
A∆T

Hlν

(Cνrhηs +
√
ktCνot) (6.11)

Based on the theoretical derivation and experimental work by Butler, [110] the height of the

steam chamber can be calculated as a function of time and reservoir geological properties. The

steam chamber height is calculated using Eq. 6.12 before it reaches the reservoir top. After reaching

the reservoir top, it is replaced by constant effective reservoir height. Finally, the cumulative steam
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consumption for each year is obtained using Eq. 6.13.

h = 2(
kgkt

mνsφ∆S0Cν0

)
1
3 t

2
3 (6.12)

Vsteam(t) =
Ht

Hlν

=
A∆t

Hlν

(Cνrhηs +
√
ktCνot) (6.13)

In the above equations, ∆T is the temperature difference between reservoir temperature and

injected steam, A is the planar area of the steam chamber, Cvr is the reservoir volumetric heat

capacity, Cvo is the overburden volumetric heat capacity, ht is the height of the steam chamber as

a function of time, ηs is the effective sweep efficiency, kt is the overburden thermal conductivity,

k is effective reservoir permeability, m is the viscosity-temperature correlation coefficient, Hlv is

the steam latent heat and t is time since the start of steam injection. Eqs. 7 to 13 are used to

calculate the cumulative volume of injected steam Vsteam(t) for each drainage area up to year t .

The formula Vsteam(t) − Vsteam(t − 1) is used to calculate the volume of injected steam for each

drainage area at each year of its life time, qsteami,k . These values are organized as a numeric table

and used in the optimization problem.

Athabasca reservoir properties [2] were used in order to calculate oil production and steam

consumption rates for each DA. Average reservoir porosity, permeability and initial oil saturation

are parameters that can be calculated based on the following empirical equations [3]:

φ =
0.25NCB

DAcell
(6.14)

Aν =
6

dp
(6.15)

k =
1

2τA2
ν

φ3

(1− φ)2
(6.16)

Sw =
100φ2.25

√
k

(6.17)

So = 1− Sw (6.18)

where NCB is a dimensionless geological parameter that indicates the net continuous bitumen

in each DA [100], DAcell is the number of cells in each DA, Aν(m
−1) is the specific area of spherical

shape grains, dp (m) is the average diameter of grains, Sw is water saturation and τ is tortuosity. It

is assumed in this work that same number of well pairs were installed in each DA. All the required

geologic parameters are provided in supporting information Table S1.
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6.4 Deterministic development planning

In this section, a deterministic SAGD drainage area development planning model is proposed.

The result of this development plan includes the starting time and oil production rate for each DA

during its lifetime. This plan is optimized to maximize the net profit. In the following, constraints

and objective function of the optimization model are described. In the model, indices i, t and k

refer to DA number, year within the lifetime of the project and year within life time of each DA,

respectively.

Production start time is one of the decision variables in the optimization model. It is assumed

that any DA installation and production decision can only be made at the start of each year and

it is calculated by the following equation:

tstarti =
∑
t

zi,tt ∀i ∈ I (6.19)

where zi,t is a binary variable indicating whether i-th drainage area starts production at year t or

not, and tstarti is the start time of i-th DA.

To enforce that each DA production starts only once, the following constraint is applied:∑
t

zi,t ≤ 1 ∀i ∈ I (6.20)

Since the lifetime of DAs varies, a mathematical mechanism is required to enable shifting

lifetime of each DA during the project horizon. The following equation enables shifting lifetime

of each DA and ensures that nonnegative oil production rate from each DA (qoili,t ) is less than or

equal to the capacity (qmaxoili,k Nw) calculated from theoretical SAGD model presented above (Eqs.

6.1 to 6.7).

qoili,t ≤
∑
k∈Ki

zi,t−k+1q
maxoil
i,k Nw ∀t ∈ T , i ∈ I (6.21)

qoili,t ≥ 0 ∀t ∈ T , i ∈ I (6.22)

where qoili,t (m
3/year) is the oil production rate for each DA during the project time horizon,

qmaxoili,k (m3/year) is the oil production capacity for each well pair during the DA life time.

In addition, CPF capacity is an upper limit for total oil processing volume at each year.

Therefore the oil production at each year must always be less than or equal to the CPF capacity.∑
i∈I

qoili,t ≤ CapCPF ∀t ∈ T (6.23)
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For each DA, steam injection should start at the same year of oil production. Therefore a

similar equation is used for steam injection while a steam consumption restriction (Capsteam) is

applied.

qsteami,t =
∑
k∈Ki

zi,t−k+1q
steam
i,k Nw ∀i ∈ I, t ∈ T (6.24)∑

i∈I

qsteami,t ≤ Capsteam ∀t ∈ T (6.25)

where qsteami,t (m3/year) is the steam flow rate for each DA during the project time horizon,

qsteami,k (m3/year) represents steam flow rates for each well pair during the DA life time and Capsteam

is the yearly steam generation capacity.

Capital cost of the project consists of initial investment for installation of well pairs for all DAs,

DAcost(M$), and initial investment for central processing facility [113]. In this study, it is assumed

the CPF is already available in the field. The next constraint imposes a capital restriction for DA

installation per year, CCDA(M$).

DAcost
∑
i∈I

zi,t ≤ CCDA ∀t ∈ T (6.26)

Next, the objective function is discussed which is based on the net present value calculation.

The first term is the Total Annual Revenue (TAR) which accounts for the profit of selling the oil:

TARt = (1−RY )OPt
∑
i∈I

qoili,t ∀t ∈ T (6.27)

where OPt is the oil price in CAN$/m3 and RY is royalty parameter. If a company decides to

extracts oil from an oil sands field in Alberta, it has to pay a percentage of its revenue as royalty

to the government. The royalty value is scaled according to the price of West Texas Intermediate

[113, 114].

The main capital cost in the objective function is DA capital investment (CCDA) which is

calculated as following:

TCCt = DAcost
∑
i∈I

zi,t ∀t ∈ T (6.28)

where DAcost is the capital cost for each DA and TCCt is the required investment for all the DAs

per year. As mentioned above, it is assumed that investment for CPF is already been made and

the facility is available, so the capital cost of CPF is not counted here.
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The cost for steam generation is calculated next. Vaporizing water requires fuel consumption

and the cost is obtained by the following equation:

TFCt = FC
∑
i∈I

qsteami,t ∀t ∈ T (6.29)

where FC is the fuel cost in (M$/m3) and TFCt is the total fuel cost in (M$/year). Finally, the

objective is to maximize the NPV defined using the following equation:

maxNPV =
∑
t∈T

1

(1 +DR)t
[TARt − TCCt − TFCt] (6.30)

where the term 1/(1 +DR)t is the discount cash flow term required to calculate NPV and DR is

the discount rate. The overall multiperiod deterministic planning (MSDP) model includes Eqs. 19

to 30. It is a mixed integer linear optimization problem.

6.5 Uncertainty

In this work, it is assumed that for each DA, production capacity follows a uniform distribution

around a nominal value. For oil production capacity uncertainty, a perturbation ζi is considered

based on the theoretical value calculated using geological parameters. This oil production uncer-

tainty reflects uncertainty in different reservoir geologic parameters such as porosity, permeability,

saturation, etc.

q̃maxoili,k = qmaxoili,k (1 + ζi), ∀i ∈ I,∀k ∈ Ki (6.31)

where qmaxoili,k is the nominal value for oil production and q̃maxoili,k is the uncertain oil production of

i-th DA at the k-th year of its lifetime. It is worth pointing out that the production uncertainty

is an endogenous uncertainty in this work. That is, the uncertainty will be revealed once the well

is developed.

As a manipulated variable for SAGD well control, the steam injection rate is determined and

controlled by the company that manages the SAGD operation. Steam injection rate is known

in this sense. Therefore, it is not considered as a source of uncertainty. The formula provided

in this paper for steam consumption rate is an estimate of the actual field values. However, the

oil production rate is dependent on the oil reserve capacity underground, which is not accurately

known to the operator and is considered as an uncertain parameter.

To model the oil price uncertainty, a time series model structure, Auto Regressive Moving
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Average ARMA(p, q), is used:

OPt = {φ1OPt−1 + · · ·+ φpOPt−p}+ {εt + θ1εt−1 + · · ·+ θqεt−q} (6.32)

where the parameters φ1, · · · , φp, θ1, · · · , θq can be estimated from history data [115] as shown

in Figure 6.4, εt represents uncorrelated white noise (with zero mean and constant variance).

Figure 6.4: ARMA training using historical bitumen price data

ARMA is a practical tool for modeling and predicting time series data. It provides a de-

scription of a stationary stochastic process based on two polynomials: autoregression (AR) and

moving average (MA). The AR polynomial regresses the variable on its own lagged (past) values

{φ1OPt−1 + · · ·+φpOPt−p} and the MA part models the error term as a linear combination of error

terms at the same and previous time periods {εt+θ1εt−1+· · ·+θqεt−q}. The model is commonly rep-

resented as ARMA(p, q) where p and q are the orders of the AR and MA polynomials respectively.

To predict the future oil price from time t + 1 to t + T , we define ε = [εt+1, · · · , εt+T ]T . Then

the future oil price can be compactly written as:

OPt+i = At+iε+ bt+i, i ∈ {1, · · · , T} (6.33)

where At+i is a vector, bt+i is a scalar, both calculated using the model parameters, past noise and

past oil price data.

In order to demonstrate the derivation procedure for future oil price prediction (Eq. 6.33), the
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derivation for a simple case of p = 1 and q = 1 is presented here. By assuming the process starts

at time t=0, oil price for next two time steps 1 and 2 is calculated. According to Eq. 6.32, oil

price for the current and the next two time steps can be written as:

OP0 = φ1OP−1 + ε0 + θ1ε−1 (6.34)

OP1 = φ1OP0 + ε1 + θ1ε0 (6.35)

OP2 = φ1OP1 + ε2 + θ1ε1 (6.36)

In Eqs. 6.34 to 6.36, the goal is to find oil price for the next two time steps OP1 and OP2;

parameters θ1 and φ1 are known parameters obtained from ARMA model training; OP−1 and OP0

are the oil price for the previous and current years which are known; ε−1 can be set as zero because

of zero mean assumption; ε0 can be calculated using Eq. 6.34; ε1 and ε2 are uncertain parameters

for future time steps. In order to obtain OP1, ε0 is calculated from Eq. 6.34 and then it is plugged

into Eq. 6.35.

ε0 = OP0 − φ1OP−1 (6.37)

OP1 =
[
0 1

] [ε1
0

]
+ (φ1 + θ1OP0 − φ1θ1OP−1) (6.38)

In order to obtain OP2, OP1 from Eq. 6.38 is plugged into Eq. 6.36.

OP2 = [φ1 + θ1 1]

[
ε1

ε2

]
+ (φ2

1 + θ1φ1)OP0 − φ2
1θ1OP−1 (6.39)

In Eqs. 6.38 and 6.39, all the parameters are known. For larger values of p and q, a similar

procedure is followed and oil price for any future time step can be calculated. The general formula

for future price prediction is presented in Eq. 6.33.

The overall uncertainty vector is defined as:

ξ = [1, ζ1, · · · , ζN , ε1, · · · , εT ]T (6.40)

where the first element 1 is used to simplify the linear decision rule expression. To use the above

uncertainty vector for oil flow rate, the row vector ei is defined such that eiξ = ζi (all elements

of ei are zero except the i + 1-th element is 1). Using ei , the oil production uncertainty can be

written as:

q̃maxoili,k (ξ) = qmaxoili,k (1 + eiξ), ∀i ∈ I (6.41)

146



For oil price, a truncate operator P is defined such that: Pξ = [ε1, · · · , εT ]T , then oil price

uncertainty can be written as:

OPt(ξ) = AtPξ + bt, ∀t = 1, · · · , T (6.42)

Uncertainty set

For the stochastic problem, the following uncertainty set is constructed:

Ξ = {ξ = [1, ζ1, · · · , ζN , ε1, · · · , εT ]T :

ζi ∈ [ζ
i
, ζ̄i], ∀i, (6.43a)

|εt| ≤ z1−α, ∀t, (6.43b)∑
t

|εt| ≤ Γz1−α, (6.43c)

Atε+ bt ≥ 10, ∀t} (6.43d)

The constraints applied in the uncertainty set are explained as following:

� For each drainage area i, the production capacity varies in a interval ζi ∈ [ζ
i
, ζ̄i].

� For oil price, the variation range of white noise is controlled by applying conditions on each

εt such that |εt| ≤ z1−α, where z1−α is the 1− α confidence level for normal distribution.

� The total change of budget is controlled by:
∑

t |εt| ≤ Γz1−α, where Γ is a scalar to control

range of white noise change, t is time in project horizon.

� Considering minimum oil price $10: OPt(ξ) = AtPξ + bt ≥ 10,∀t.

The above uncertainty set is a convex polyhedron. In compact matrix notation it is written as:

Ξ = {ξ : Wξ ≥ ν}

In order to investigate effect of uncertainty set size on predicted oil price, 3 different combi-

nations of Γ and CI were selected (Γ=25 & CI=99%, Γ=12 & CI=95%, Γ=7, CI=90%) and the

average oil price ± std is plotted. As Γ and CI move toward smaller values, the size of price

uncertainty set reduces and considering that a minimum 10$ price is applied, reduced mean oil

price and standard deviation is observed such that the uncertainty set corresponding to Γ = 25

and CI=99% have the highest mean oil price and standard deviation and Γ = 7 and CI=90% have

the lowest values (Figure 6.5). Figure 6.5 was generated based on the ARMA model trained from

history bitumen price data. The mean price represents the average price of 1000 random samples

for next 25 years of bitumen price predicted using the ARMA model. Notice that for a single

sample of price prediction, the profile is not necessarily declining. This average trend is reflecting
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the latest history price declining trend in the bitumen price between June 2008 and March 2016

as shown in Figure 6.4.

Figure 6.5: Effect of uncertainty set size on predicted bitumen price

6.6 Stochastic planning

In multistage stochastic programming, uncertainty in bitumen price and reservoir capacity is in-

cluded in the model. Before drilling each oil well in SAGD operation, there is only an initial

estimate about the reservoir property and after well completion, the uncertainty is revealed. Fu-

ture oil price is also uncertain and neglecting price uncertainty can deteriorate planning outcome.

Therefore, in long term reservoir development, considering reservoir property and price uncertainty

can provide a feasible and optimal development plan that significantly improves the planning re-

sults while neglecting uncertainty may lead to infeasible plans. In the following section, multistage

stochastic programming (MSSP) formulation are presented to tackle the oil price and reservoir

production uncertainty.

6.6.1 Multistage stochastic programming model

In the deterministic planning model, it is assumed that there is no uncertainty in the model and

all parameters take deterministic value that is known. However, in stochastic modeling at each

stage only the uncertain information up to previous stage are known and the present and future

uncertainty are unknown. The constraints that reflect this fact are referred to as non-anticipativity

constraints. To summarize, the difference between stochastic and deterministic models is the price

and oil production uncertainty and non-anticipativity constraints. Eqs. (6.44a) to (6.44m) present
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the stochastic model:

max
∑
t∈T

1

(1 +DR)t
E

[
(1−RY )OPt(ξ)

∑
i∈I

qoili,t (ξ) −DAcost
∑
i∈I

zi,t(ξ)− FC
∑
i∈I

∑
k∈Ki

zi,t−k+1(ξ)qsteami,k Nw

]
(6.44a)

s.t. DAcost
∑
i∈I

zi,t(ξ) ≤ CCDA ∀t ∈ T , ξ ∈ Ξ (6.44b)∑
t∈T

zi,t(ξ) ≤ 1 ∀i ∈ I, ξ ∈ Ξ (6.44c)

qoili,t (ξ) ≤
∑
k∈Ki

zi,t−k+1(ξ) q̃maxoili,k (ξ)Nw ∀i ∈ I, t ∈ T , ξ ∈ Ξ (6.44d)∑
i∈I

qoili,t (ξ) ≤ CapCPF ∀t ∈ T , ξ ∈ Ξ (6.44e)∑
i∈I

∑
k∈Ki

zi,t−k+1(ξ) qsteami,k Nw ≤ Capsteam ∀t ∈ T , ξ ∈ Ξ (6.44f)

qoili,t (ξ) ≥ 0 ∀i ∈ I, t ∈ T , ξ ∈ Ξ (6.44g)

x1,t(ξ) = 1 ∀t ∈ T (6.44h)

xi+1,t(ξ) =
∑
t′≤t

zi,t′(ξ) ∀i ∈ I, t ∈ T , ξ ∈ Ξ (6.44i)

xl,t(ξ) = 0 ∀l ≥ NDA + 3, t < l − (1 +NDA), ξ ∈ Ξ

(6.44j)

xl,t(ξ) = 1 ∀l ≥ NDA + 2, t ≥ l − (1 +NDA), ξ ∈ Ξ

(6.44k)

qoili,t (ξ) = qoili,t (xt−1(ξ) • ξ) ∀i ∈ I, t ∈ T , ξ ∈ Ξ (6.44l)

zi,t(ξ) ∈ {0, 1}, xl,t(ξ) ∈ {0, 1} ∀i ∈ I, t ∈ T , ξ ∈ Ξ (6.44m)

Here, new binary variable x is introduced, which denotes the information revealing status of the

uncertainty. Constraint (6.44h) is for the trivial element 1 in the uncertain vector ξ. The non-

anticipativity relation between information revealing status variable x and development decision z

is modeled by constraint (6.44i). For price uncertainty, the information revealing status variable is

only dependent on the time, this is modeled by constraint (6.44j) and (6.44k). Constraint (6.44l)

represents non-anticipativity constraints for production decision variables (it is only decided based

on information revealed) and and sign (•) in Eq. (6.44l) represents Hadamard product.

6.6.2 Linear decision rule based solution method

Multistage stochastic model includes constraints with the uncertain parameter ξ, and each of these

constraints has to be satisfied for infinite number of uncertain ξ values. This stochastic optimiza-
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tion model is intractable. One method to simplify the problem is to employ a decision rule and

approximate the adjustable variable using affine function of the uncertainty. This leads to the

so-called linear decision rule, which is used in this work to solve the stochastic problem. The result

of the LDR solution is a set of linear decision rules rather than exact values which approximates

the optimal solution. Affine decision rule method has received considerable application in robust

optimization where the objective is evaluated based on the worst case performance over the un-

certainty set. In this study, the method is applied to multistage stochastic programming model

where the objective is based on the expected performance over the uncertainty set. In comparison

to traditional scenario (tree) based stochastic programming, LDR method seeks solution feasibility

over an uncertainty set instead of finite number of scenarios.

In this work, we do not use the scenario based approach since this problem has relative large

number of stages (for example 25 stages in the case study of next section). This will results in a

scenario tree with very large size even if two branches are considered for each node. Compared to

scenario based method, the LDR method leads to less model complexity. In addition, it provides

an efficient way to deal with endogenous uncertainty.

In the proposed linear decision rule method of this paper, the binary variables are considered

to be constant function of uncertainty; therefore, the following decision rule is used:

zi,t(ξ) = zi,t, ∀ξ ∈ Ξ,∀i ∈ I, t ∈ T (6.45)

xl,t(ξ) = xl,t, ∀ξ ∈ Ξ,∀l ∈ L, t ∈ T (6.46)

where zi,t ∈ {0, 1}, xl,t ∈ {0, 1}.
Continuous variable qoili,t (ξ) is considered to be a linear function of uncertainty, hence the fol-

lowing linear decision rule is employed:

qoili,t (ξ) = Qi,tξ, ∀ξ ∈ Ξ, ∀i ∈ I, t ∈ T (6.47)

where Qi,t is a row vector [Qi,t,1, · · · , Qi,t,1+N+T ].

Non-anticipativity

As described in Section 6.1, non-anticipativity of uncertain information means that at each time

step, uncertain information up to previous time step are revealed and therefore decisions depend on

uncertain information only up to previous time step. At the first step, no uncertainty is revealed,

therefore the coefficient of LDR solution does not depend on any uncertainty and it is set as zero.

For time step greater than 1, the decision at each time step, only depends on uncertainties revealed

up to previous time step. To enforce non-anticipativity, Qi,t,l must satisfy:

Q(i, 1, l) = 0 ∀i ∈ I, l ∈ L (6.48)
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|Qi,t,l| < Mxl,t−1, ∀i ∈ I, l ∈ L, t ≥ 2 (6.49)

where M is a big constant (can be set as the maximum production capacity). For the trivial

element 1 in the uncertain vector ξ, we have:

x1,t = 1, ∀t ∈ T (6.50)

The non-anticipativity relation between information revealing status variable x and development

decision z is defined as:

xi+1,t =
∑
t′≤t

zi,t′ , ∀i ∈ I, t ∈ T (6.51)

For price uncertainty, the information revealing status variable only depends on time.

xl,t = 0, ∀l ≥ NDA + 3, t < l − (1 +NDA) (6.52)

xl,t = 1, ∀l ≥ NDA + 2, t ≥ l − (1 +NDA) (6.53)

Constraints 6.52 and 6.53 describe the price uncertainty revelation status for each year. The

price uncertainty of each year is revealed at the same year but it is unknown at previous years.

The numbers 2 and 3 are required to adjust the price uncertainty revelation for each year. Finally,

the following matrix represents the structure of the x variable.

[xlt] =



1 1 ... 1

z1,1 z1,1 + z1,2 ...
∑

t z1,t

z2,1 z2,1 + z2,2 ...
∑

t z2,t

: :
. . . :

zN,1 zN,1 + zN,2 ...
∑

t zN,t

1 1 ... 1

0 1 ... 1

: :
. . . :

0 0 ... 1



(6.54)

The second half of the matrix in Eq. 6.54 illustrates the price uncertainty revelation at each year.

For example the last row of the matrix corresponds to price uncertainty of the final year. The

price uncertainty of the final year is only revealed at the last year. Therefore all the elements of

the last row are zero except the last column which corresponds to the final year.

Overall deterministic counterpart model

For each semi-infinite constraint, it is converted to deterministic counterpart based on duality
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principle. Detailed procedure on robust counterpart derivation of the constraints and the expec-

tation of the objective function with respect to the uncertainty are provided in the supporting

information. The overall deterministic counterpart of the stochastic model is expressed in Eqs.

6.55a to 6.55n. The deterministic planning model and the LDR based stochastic planning model

are both mixed integer linear optimization problem, which can be solved using standard MILP

solver.

max
∑
t∈T

1−RY
(1 +DR)t

[
tr(P TATt

∑
i∈I

Qi,t E(ξξT ) ) + bt
∑
i∈I

Qi,tE(ξ)

]
−
∑
t∈T

DAcost
(1 +DR)t

∑
i

zi,t

−
∑
t∈T

NwFC

(1 +DR)t

∑
i

∑
k∈Ki

zi,t−k+1q
steam
i,k (6.55a)

s.t. DAcost
∑
i∈I

zi,t ≤ CCDA ∀t ∈ T (6.55b)∑
t∈T

zi,t ≤ 1 ∀i ∈ I (6.55c)

− νΛi,t −
∑
k∈Ki

zi,t−k+1 q
maxoil
i,k Nw ≤ 0 ∀i ∈ I, t ∈ T (6.55d)

−WΛi,t = Qi,t −
∑
k∈Ki

zi,t−k+1 q
maxoil
i,k Nwei ∀i ∈ I, t ∈ T

Λi,t ≥ 0 ∀i ∈ I, t ∈ T

− νλt ≤ CapCPF ∀t ∈ T (6.55e)

−Wλt =
∑
i∈I

Qi,t ∀t ∈ T

λt ≥ 0 ∀t ∈ T∑
i∈I

∑
k∈Ki

zi,t−k+1 q
steam
i,k Nw ≤ Capsteam ∀t ∈ T (6.55f)

νµi,t ≥ 0 ∀i ∈ I, t ∈ T (6.55g)

Wµi,t = Qi,t ∀i ∈ I, t ∈ T

µi,t ≥ 0 ∀i ∈ I, t ∈ T

x1,t = 1 ∀t ∈ T (6.55h)

xi+1,t =
∑
t′≤t

zi,t′ ∀i ∈ I, t ∈ T (6.55i)

xl,t = 0 ∀l ≥ NDA + 3, t < l − (1 +NDA)

(6.55j)

xl,t = 1 ∀l ≥ NDA + 2, t ≥ l − (1 +NDA)

(6.55k)
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Q(i, 1, l) = 0 ∀i ∈ I, l ∈ L (6.55l)

|Qi,t,l| ≤Mxl,t−1 ∀i ∈ I, l ∈ L, t ≥ 2 (6.55m)

zi,t ∈ {0, 1}, xl,t ∈ {0, 1} (6.55n)

6.7 Case study

In this section, an example problem is used to investigate the proposed planning method using

deterministic and stochastic optimization models. There are 43 DAs to be developed in total,

each DA includes 6 pairs of wells and the project time horizon is considered to be 25 years. Oil

production and steam injection tables are calculated in MATLAB and it was found that life time

of the DAs vary between 6 to 10 years while the life time of each drainage area depends on the

amount of bitumen available in each DA. NCB parameter used in Eq. 6.14 reflect the amount of

available bitumen in each DA which varies between 307 to 504 in this problem [100]. The length

and width of each DA is 850 m and 600 m respectively. In this study, it is assumed that DA

installation and production decisions are made at the beginning of each year, therefore there are

25 stages. All the relevant parameters for the deterministic model are provided in supporting

information file Table S2.

Table 6.1: Statistic of the deterministic and stochastic models

Statistics Stochastic Model Deterministic Model

Number of constraints 1303962 3580
Number of variables 1067144 4537

Optimality gap 1% 1%
Run time Max: 4.5 hr; Min: 500 sec Max: 0.724 sec

All the optimization problems are modeled and solved in GAMS 23.9 using the CPLEX solver

12.71. Table 6.1 reports the models’ statistics for deterministic and stochastic models. Relative

optimality gap of 1% was considered as the stopping criteria which was met at all the runs.

Using Intel(R) Core(TM) i5-3470 CPU @ 3.20 GHZ, 8.00 GB RAM and 64 bit windows operating

system, the minimum and maximum run time for the stochastic model are 500 seconds and 4.5

hours, respectively. While the maximum run time for the deterministic model is only 0.724 seconds.

As Table 6.1 indicates, number of constraints and variables for the stochastic model is much larger

than the deterministic model.

6.7.1 Deterministic planning solution

Deterministic planning model was solved first. Figure 6.6 illustrates DA development sequence,

TNPV (NPV up to year t), number of operating wells and total oil production at each year for

the specific scenario of CPF= 5.25 × 106m3/year and steam capacity of 16 × 106m3/year. It
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can be observed that generally drainage areas with larger bitumen in place (DAs 35 to 43 ) are

developed at the beginning years (years 1 to 10) and those with smaller bitumen in place (DAs

1 to 10 ) are developed at the final years which is the expected and reasonable trend and DAs

are scattered to maximize the revenue while satisfying the constraints. From the beginning up to

year 15, number of operating wells and total oil production per year increases; from year 15 to 25,

number of operating wells decline and the slope of TNPV curve testifies this trend.

Figure 6.6: Deterministic planning solution

Next, we evaluate the performance of deterministic planning solution through sampling. In all

the cases, CPF capcity is 5.25 ×106 m3/year and steam generation capacity is 16× 106 m3/year.

For each Γ value, 1000 samples from the corresponding uncertainty set are generated and sampling

method is applied on the results of stochastic and deterministic solutions. Confidence interval and

flow perturbation factors are fixed at 95% and 10% accordingly and Γ is varied in the range of 5

to 25.

As Table 6.2 demonstrates, deterministic solution always results in considerable percentage of

oil flow constraint violations among the 1000 samples. It should be clarified at this point that

in deterministic sampling, for each flow constraint violation, the infeasible flow rate is considered

to be zero in NPV calculation. This replacement has resulted in significantly smaller NPV from

deterministic solution compared to stochastic solution.
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Table 6.2: Sampling evaluation results of deterministic solution

Γ NPV(M$) Mean Violations

Γ=25 1711 16.62%

Γ=15 1711 16.62%

Γ=10 1161 16.69%

Γ=7 1142 16.64%

Γ=5 756 16.72%

6.7.2 Stochastic planning solution

In order to investigate the effect of price uncertainty on NPV, 15 experiments were conducted

using different Γ and confidence interval (CI) values. Table 6.3 illustrates the obtained results.

For greater values of Γ and CI, the price uncertainty set is wider and since a minimum price

constraint (bitumen price> 10$/bbl) is applied in the uncertainty set, wider price uncertainty set

results in greater bitumen price values and the NPV increases accordingly. Figure 6.7 illustrates

the stochastic planning solution for extreme and middle cases of uncertainty set parameters.

Table 6.3: Effect of price uncertainty set size on NPV objective of the stochastic model

CI=99% CI=95% CI=90%

Γ=25 6098.88 5688.20 5364.91

Γ=15 6110.96 5690.01 5363.14

Γ=10 6061.87 5562.50 5025.23

Γ=7 5482.12 4678.88 4216.94

Γ=5 4535.58 3902.16 3659.33

Note that the results presented in Table 6.3 is based on stopping criterion of 1% optimality

gap. If we reset the optimality gap to zero and solve the problem to optimality, then the objective

is expected to decrease as Γ decrease under the same CI value.

To study the effect of reservoir and price uncertainty on stochastic optimization results, 1000

samples from the widest uncertainty set (10% bitumen flow perturbation, Γ=25, CI=99%, Bitumen

Price>10 $) were generated and applied on stochastic results. Table 6.4 illustrates the results of

sampling method. It shows a decreasing trend of NPV from wider uncertainty set (greater values

of Γ and CI) towards narrower uncertainty set. Solution obtained from narrower uncertainty

set (smaller Γ and CI values) encloses smaller price uncertainty set and results in smaller NPV.

Figure 6.8 illustrates sampling NPV distribution for a specific uncertainty set. In the stochastic

solution, changing the size of uncertainty set (Γ,CI) will finally affect the planning of the drainage
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Figure 6.7: Stochastic planning solution

areas in SAGD operation during the project time horizon. Smaller uncertainty sets restrict the

price variations which results in lower NPV and vice versa. More description about the effect of

uncertainty set on stochastic solution is provided in Section 7.3 and 7.4.
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Table 6.4: Sampling based evaluation of stochastic solution (each based on the samples from the
corresponding uncertainty set)

CI=99% CI=95% CI=90%

Γ=25 6099 5845 5857

Γ=15 6111 5857 5854

Γ=10 5861 5859 5856

Γ=7 5860 5852 5857

Γ=5 5867 5855 5854

Figure 6.8: NPV distribution for Γ = 15 and CI=95%

In order to evaluate the performance of the stochastic solutions in terms of feasibility subject

to the widest uncertainty set, the sampling method is used. The following factors affect the un-

certainty set: Γ and CI affect price uncertainty and bitumen flow perturbation affects production

uncertainty. In order to obtain the most comprehensive assessment, 1000 samples from the widest

uncertainty set (CI=99% and Γ = 25, flow perturbation is always kept at 10%) were generated

and applied to the solutions obtained from different combinations of CI and Γ. During sampling

procedure, the constraint for maximum bitumen production was violated for some of the samples.

Figure 6.9 illustrates the mean number of constraint violations and Table 6.5 presents the mean

percentage of constraint violations for 1000 samples. Solutions obtained from narrower uncertainty

set may not be feasible for uncertainty values outside of their uncertainty set and result in greater

number of violations. For instance, solution obtained from Γ = 25 and CI=99% shows no viola-

tions while solution obtained from Γ = 7 and CI=90% has resulted in the highest percentage of

violations.
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Figure 6.9: Average number of violations

Table 6.5: Mean percentage of constraint violations in sampling (all based on the same set of
samples from the largest uncertainty set)

CI=99% CI=95% CI=90%

Γ=25 0 14.64% 14.43%
Γ=15 14.42% 14.22% 14.66%
Γ=10 14.04% 14.72% 14.80%
Γ=7 14.44% 14.76% 14.86%

In the stochastic solution, changing CI and Γ values will finally affect the planning of the

drainage areas. While smaller uncertainty sets restrict the price variations, it results in lower NPV

and more constraint valuations. As it is described in Section 7.2, the stochastic solution obtained

from the largest uncertainty set provides the highest NPV and least constraint violations subject

to samples obtained from the widest uncertainty set which is preferable from profit and safety

point of views.

6.7.3 Sub-optimality of LDR solution

Sub-optimality of LDR solution is investigated based on continuous and binary components of the

solution. In order to study suboptimality of continuous LDR solution, two different solutions are

compared: complete MSSP solution and partial MSSP solution. Stochastic solution consists of two

parts: continuous variable q(ξ) and binary variable z. In complete MSSP solution, the decision rule

solution (z and q(ξ)) are fixed. Then using sample data from the uncertainty set (Γ=10,CI=95%),

the obtained objective function value is 5562 M$. For partial MSSP solution, the binary variables

are fixed to get a linear programming (LP) problem. For 1000 uncertainty samples (from CI=95%

and Γ = 10 set), the resulting LP problem is called 1000 times from MATLAB and solved using
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GAMS for each uncertainty sample. The final objective function value is 5655 M$. Hence, a gap

of 93 M$ is observed for continuous LDR solution.

Sub-optimality of binary LDR Solution is examined by comparing two solutions: Partial MSSP

solution and Partial MSDP Solution. For Partial MSSP Solution, the MSSP binary decision rule

is fixed and for each known uncertainty sample (perfect Information), the LP problem is solved.

With this, the objective is 5655 M$. For Partial MSDP Solution, the MSDP binary decision rule

is fixed and for each known uncertainty sample (perfect Information), the LP problem is solved.

The objective value is 5770 M$. As a result, the gap for binary LDR solution is 115 M$.

The above calculation shows that LDR solution is suboptimal and there is room to improve the

solution. It should be noted that the partial MSDP and partial MSSP solution are not applicable

in real applications since they are based on known realizations of the uncertainty.

6.8 Conclusion

In this work, multistage deterministic and stochastic optimization models for a SAGD reservoir

development planning were built. The mathematical modeling procedure resulted in mixed in-

teger linear programming for both deterministic and stochastic models. The objective of the

models was to maximize the revenue obtained from the SAGD operation during the project hori-

zon considering restrictions on capital investment, steam generation and oil processing capacities.

The stochastic model was developed to incorporate oil price and oil production uncertainty. The

multistage stochastic programming model handles both exogenous and endogenous uncertainties

simultaneously. Using a linear decision rule based approximation method, the stochastic model

was efficiently solved. To study the effect of uncertainty set size on the solution, experiments with

different uncertainty set sizes were conducted. Using samples from the widest uncertainty set,

the evaluation results demonstrated that the solution obtained from the widest uncertainty set

results demonstrates the lowest number of violations subject to uncertainty. Finally, since in this

study a linear decision rule was employed in order to solve the stochastic problem, the obtained

solution was suboptimal. The suboptimality of the solution was investigated by fixing the binary

component of the stochastic solution and solving the LP problem for sampled uncertainty values;

it was found that LDR solution can further be improved.
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Nomenclature

Indices and Sets

i ∈ I Set of drainage areas {1, · · · , NDA}
k ∈ Ki Set of time periods within the lifetime of drainage area i {1, · · · , T lifei }
t ∈ T Set of time periods within the lifetime of whole project {1, · · · , T}
l ∈ L Set of uncertain parameters {2, 3, ..., NDA + T + 1}

Continuous Variables

NPV Net present value

qsteami,t Steam injection rate for i-th DA at year t of project horizon (m3/year)

qoili,t Oil production rate for i-th DA at year t of project horizon (m3/year)

qoili,t (ξ) Adjustable oil production rate for i-th DA at year t of project horizon (m3/year)

Qi,t,l Coefficient of linear decision rule

tstarti Production start time of drainage area i

TARt Total annual revenue at year t

TCCt Total capital cost at year t

TFCt Total fuel cost at year t

Λi,t,λt,µi,t Dual variables

Binary Variables

zi,t zi,t = 1 if drainage area i has started production at year t otherwise 0

xl,t xl,t = 1 if uncertainty variable l is revealed at year t otherwise 0

Uncertain Parameters

ξ Set of uncertain variables within uncertainty set Ξ

q̃maxoili,k (ξ) Uncertain oil production of i-th DA at year k of its life time

OPt(ξ) Uncertain oil (bitumen) prices at year t

ζi Oil production uncertainty for i-th drainage area

εt Oil price uncertainty at year t
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Parameters

A Planar area of steam chamber (m2)

Cνo Overburden volumetric heat capacity (MJ/m3K)

Cνr Reservoir volumetric heat capacity (MJ/m3K)

CapCPF Oil processing capacity (m3/year)

Capsteam Steam generation capacity (m3/year)

CCDA Capital cost for drainage area installation per year (M$)

DAcost Installation cost for each drainage area (M$)

DR Discount rate at each year

FC Fuel cost (M$/m3)

g Gravitational acceleration (m/s2)

h Effective drainage height (m)

Hc Heat inside the steam chamber (J)

Ho Heat loss to overburden (J)

Ht Total cumulative heat consumption (J)

Hlν Steam latent heat (MJ/m3)

h Steam chamber height (m)

k Effective reservoir permeability(m2)

kt Overburden thermal conductivity(MJ/(m ·K · year))
L Well length

m Viscosity-temperature correlation coefficient

NDA Number of drainage areas

Nw Number of wells in each drainage area

NCB Net continuous bitumen

OPt Oil price at year t (CAN $/bbl)

qmaxoili,k Max oil production for each well in i-th DA at k-th year of its life time (m3/year)

qsteami,k Steam injection for each well in i-th DA at k-th year of its life time (m3/year)

RY Royalty

So Reservoir initial oil saturation

Soil Initial oil saturation

Sor Residual oil saturation

T lifei Total life time of i-th DA (years)

Tsteam Steam temperature (◦C )

VSteam Steam volume (m3)

w Half-well spacing (m)

α Reservoir thermal diffusivity (m2/s)

ηs Reservoir effective sweep efficiency

νs Oil viscosity at steam temperature (m2/s)

φ Reservoir porosity
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Chapter 7

Conclusion and Future work

7.1 Concluding remarks

This study is an endeavor to propose new methods that can resolve problems that traditional

scenario-tree method faces in solving multistage stochastic problems. Scenario-tree method usually

result in exponential growth of problem size in multistage settings that require long run times

and very powerful computational resources. By employing linear decision rules for binary and

continuous variables based on the lifting method and integrating these decision rules into a single

framework, a flexible piece-wise linear decision rule for continuous variables is obtained that results

in a significant computational efficiency compared to scenario-tree method. Also a novel framework

that integrates both exogenous and endogenous uncertain parameters into a single framework is

proposed while studies that address both types of uncertainty are rare in the literature. A new

hybrid method that combines scenario-tree and linear decision rule methods is proposed that

results in run time and computational efficiency in problems where both constraints variables and

coefficients are uncertain.

7.2 Future work

This study can be extended by integrating other methods that result in improvement of solution

quality or reduction of runtime and computational expense. For example, decision-dependent un-

certainty sets can be integrated into the frameworks proposed in chapters 3, 4 and 5. Also methods

that has been recently proposed in the literature such as muli-parametric programming can be in-

tegrated with the methods proposed in this study to improve the solution quality. Chapters 3 and

4 propose new methods that deal with exogenous uncertainty. These methods can be extended for

endogenous uncertainty.
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Appendix A

A.1 Chapter 1

1. Derivation procedure for illustrating example Hybrid 1 method

Deriving the dual counterpart for constraint 10d:∑
i

γ̄i(1 +Oiξ)xi,1 + yk ≥ dk ∀k ∈ {2, 3, 4}, ξ ∈ Ξ∑
i

γ̄ixi,1 +
∑
i

γ̄ixi,1Oiξ + yk ≥ dk ∀k ∈ {2, 3, 4}, ξ ∈ Ξ

{ ∑
i γ̄i xi,1 + minξ∈Ξ

∑
i γ̄ixi,1Oiξ + yk ≥ dk ∀k ∈ {2, 3, 4}

−Wξ ≥ −V

Applying duality:
∑

i γ̄i xi,1 + maxθ[−V >θk] + yk ≥ dk ∀k ∈ {2, 3, 4}
−W>θk = (

∑
i γ̄ixi,1Oi)

> ∀k ∈ {2, 3, 4}
θk ≥ 0 ∀k ∈ {2, 3, 4}

Dropping the max operator:
∑

i γ̄i xi,1 − V >θk + yk ≥ dk ∀k ∈ {2, 3, 4}
−W>θk = (

∑
i γ̄ixi,1Oi)

> ∀k ∈ {2, 3, 4}
θk ≥ 0 ∀k ∈ {2, 3, 4}

Deriving the dual counterpart for constraint 10e:{ ∑
i γ̄i(1 +Oiξ)(xi,1 + xi,a(k)) + yk ≥ dk ∀k ∈ {5, ..., 13}

−Wξ ≥ −V
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Applying duality:
∑

i γ̄i (xi,1 + xi,a(k)) + maxφ[−V >φk] + yk ≥ dk ∀k ∈ {5, ..., 13}
−W>φk = (

∑
i γ̄i (xi,1 + xi,a(k)) Oi)

> ∀k ∈ {5, ..., 13}
φk ≥ 0 ∀k ∈ {5, ..., 13}

Dropping the max operator:
∑

i γ̄i (xi,1 + xi,a(k))− v>φk + yk ≥ dk ∀k ∈ {5, ..., 13}
−w>φk = (

∑
i γ̄i (xi,1 + xi,a(k)) Oi)

> ∀k ∈ {5, ..., 13}
φk ≥ 0 ∀k ∈ {5, ..., 13}

2. Derivation procedure for illustrating example Hybrid 2 method

Expectation of the objective function:

Note that ξ1and ξ2 are uniformly distributed around zero, therefore E(ξ1) = 0 and E(ξ2) = 0,

∑
i

αixi,1 + Eξ

(∑
i

αixi,2(ξ) +
2∑
t=1

βyt(ξ)

)

=
∑
i

αixi,1 + Eξ

[∑
i

αi(x̄i,2 + x̃i,2 ξ1) + β(ȳ1 + ỹ1 ξ1 + ȳ2 + ỹ2 ξ1 + ŷ2 ξ2)

]

=
∑
i

αixi,1 +

[∑
i

αi(x̄i,2 + x̃i,2 E(ξ1)) + β [ȳ1 + ỹ1 E(ξ1) + ȳ2 + ỹ2 E(ξ1) + ŷ2 E(ξ2)]

]

=
∑
i

αixi,1 +

[∑
i

αix̄i,2 + β (ȳ1 + ȳ2)

]

Expanding the variables and parameters:

Apply the decision rules in 20a-20d, and rearrange the constraints into vectorized form of uncertain

parameters ξ = [1, ξ1, ξ2]>.

min
∑
i

αixi,1 +

[∑
i

αix̄i,2 + β (ȳ1 + ȳ2)

]

s.t.

2∑
i=1

xi,1 ≤ 100

2∑
i=1

[x̄i,2 x̃i,2 0] ξ ≤ 100 ∀ξ ∈ Ξ∑
i

γi,l xi,1 + [ȳ1 ỹ1 − d̄1 0] ξ ≥ d̄1 ∀l,∀ξ ∈ Ξ
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∑
i

γi,l xi,1 +

(∑
i

γi,l[x̄i,2 x̃i,2 0] + [ȳ2 ỹ2 ŷ − d̄2]

)
ξ ≥ d̄2 ∀l,∀ξ ∈ Ξ

xi,1 ≥ 0 ∀i

[x̄i,2 x̃i,2 0] ξ ≥ 0 ∀i,∀ξ ∈ Ξ

[ȳ1 ỹ1 0] ξ ≥ 0 ∀ξ ∈ Ξ

[ȳ2 ỹ2 ŷ2]ξ ≥ 0 ∀ξ ∈ Ξ

Duality theorem is applied to the six semi-infinite constraints to obtain robust counterpart con-

straints 21c-21e, 21g-21i. The derivation procedure is similar to 10d provided in section 1 of the

appendix.

3. Parameters for Capacity Expansion Problem

Table A.1: Buying prices Γj,t for j=1,2,3,4 (102$/ton)

Γj,t t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

j = 1 22.98 34.67 27.89 25.62 32.42 28.64 31.00

j = 2 60.23 75.21 79.25 62.10 65.42 72.20 78.80

j = 3 18.36 34.81 15.12 16.40 32.60 21.80 28.20

j = 4 17.44 21.89 27.74 22.40 19.40 25.60 19.40

Table A.2: Selling price γj,t for the fifth product j=5 (102$/ton)

γj,t t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

j = 5 58.03 55.14 48.58 49.10 53.20 52.50 57.80

Table A.3: Expansion investment cost (102$/ton ), αi,t

αi,t t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

i = 1 11.52 6.82 9.24 7.80 8.40 10.20 9.80

i = 2 10.08 9.35 5.34 7.60 6.50 8.20 9.80

i = 3 11.91 7.40 9.25 8.20 7.60 9.60 11.00

i = 4 4.89 10.10 8.61 6.80 7.40 9.84 8.40

i = 5 7.78 7.13 11.81 8.30 9.70 7.90 11.20

i = 6 6.69 5.82 6.74 5.92 6.10 6.80 6.50
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Table A.4: Fixed investment cost (106$), βi,t

βi,t t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

i = 1 34 58.4 47.9 42 56 36 62

i = 2 31.6 38.2 35.2 32.4 35.1 33.8 34.6

i = 3 46.8 23.8 41.3 25.4 45.6 34.2 38.2

i = 4 33.8 30.7 40.1 31.4 38.6 34.2 40.3

i = 5 43.9 22.6 20.1 34.6 22.8 42.4 38.6

i = 6 26.9 20.3 29.1 22.4 30.8 28.6 24.2

Table A.5: Unit operation cost ($/ton), δi,t

δi,t t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

i = 1 50 50 30 40 30 50 40

i = 2 30 30 40 30 40 40 30

i = 3 30 40 30 30 40 30 50

i = 4 30 50 30 50 30 40 40

i = 5 20 50 60 30 40 60 50

i = 6 50 50 30 40 50 40 30

Table A.6: Availability of chemicals 1 to 4 (kton/year), aj,t

aj,t t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

j = 1 370 330 390 340 350 40 360

j = 1 680 360 320 350 440 500 660

j = 1 450 580 280 300 500 540 290

j = 1 680 390 460 400 480 660 540

Table A.7: Demand for chemical 5 (kton/year), d5,t

dj,t t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

j = 5 91 40 94 44 64 93 52

Table A.8: Capital investment restriction (106$), CI(t)

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

CI(t) 400 70.8 82.3 74.6 81.2 86.4 71.8
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Table A.9: Yield rate for each process i and product j, ηi,j

η̄i,j j = 1 i = 2 i = 3 t = 4 t = 5

i = 1 0 0 0 1 0.89

i = 2 0 0 1.06 0 1

i = 3 0 0 0 0 1

i = 4 0 0 1 0 0.65

i = 5 0 0 1 0 0

i = 6 0 1 0 0 0

Table A.10: Consumption rate for each process i and product j, µi,j

µi,j j = 1 i = 2 i = 3 t = 4 t = 5

i = 1 1.22 0 0.65 0 0

i = 2 0 0.52 0 0 0

i = 3 0 0 0 0.7 0

i = 4 0.68 0 0 0.79 0

i = 5 0 0.82 0 0 0

i = 6 1.07 0 0 0 0
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A.2 Chapter 2

Table A.11: Results for lifting method, first configuration

T,Br Objective Run time Opt. Gap Constraints Cont. Vars Discrete Vars

T=2, Br=1 118.0 0.04 s 0 405 277 14

T=2, Br=2 118.0 0.04 s 0 545 363 20

T=2, Br=3 103.0 0.06 s 0 685 449 26

T=2, Br=5 99.25 0.08 s 0 965 621 38

T=2, Br=7 99.25 0.27 s 0 1245 793 50

T=2, Br=15 94.09 17.42 s 0 2365 1481 98

T=5, Br=1 403.25 0.11 s 0 2358 1603 50

T=5, Br=2 399.50 6.30 s 0 3233 2133 80

T=5, Br=3 390.12 29.53 s 0 4108 2663 110

T=5, Br=5 378.87 1 hr 57 min 0 5858 3723 170

T=5, Br=7 371.37 10 hrs 6.05% 7608 4783 230

T=5, Br=15 369.03 10 hrs 22.98% 14608 9023 470

T=10, Br=1 1115.25 18.83 s 0 10893 5768 155

T=10, Br=2 1088.99 10 hrs 51.56% 12713 8363 260

T=10, Br=3 1012.12 10 hrs 6.13% 16213 10473 370

T=10, Br=5 1004.62 10 hrs 12.83% 23213 14693 590

T=10, Br=7 1004.62 10 hrs 20.23% 30213 18913 810

T=10, Br=15 1073.06 10 hrs 25.76% 58213 35557 1454

T=20, Br=1 3575.0 10 hrs 1.55% 36423 24813 610

T=20, Br=2 3579.99 10 hrs 9.14% 50423 33343 1140

T=20, Br=3 3421.25 10 hrs 11.4% 64423 41873 1670

T=20, Br=5 3441.87 10 hrs 19.68% 92423 58889 2686

T=20, Br=7 3892.81 10 hrs 29.35% 120423 75069 2866

T=20, Br=15 4549.99 10 hrs 21.66% 232423 139657 3454

Note: ”T” denotes the number of stages, ”Br” denotes the number of breakpoints.
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Table A.12: Results for lifting method, second configuration

T,Br Objective Run time Opt. Gap Constraints Cont. Vars Discrete Vars

T=2, Br=1 124.5 0.11 s 0 565 388 21

T=2, Br=3 118.25 0.11 s 0 957 630 39

T=2, Br=5 107.62 0.23 s 0 1349 872 57

T=2, Br=7 107.62 1.38 s 0 1741 1114 75

T=2, Br=15 107.62 18 min 52 s 0 3309 2082 147

T=5, Br=1 498.0 0.13 s 0 3298 2248 75

T=5, Br=3 461.75 26 min 1s 0 5748 3738 165

T=5, Br=5 433.0 10 hrs 2.64% 8198 5228 255

T=5, Br=7 418.62 10 hrs 6.28% 10648 6718 345

T=5, Br=15 409.87 10 hrs 23.56% 20448 12678 705

T=10, Br=1 1306 3.7 s 0 12893 8768 225

T=10, Br=3 1202.25 10 hrs 5.64% 22693 14698 555

T=10, Br=5 1149.12 10 hrs 11.95% 32493 20628 885

T=10, Br=7 1196.62 10 hrs 19.27% 42293 26558 1215

T=10, Br=15 1309.12 10 hrs 26.77% 81493 49924 2181

T=20, Br=1 4456.52 10 hrs 3.27% 50983 34798 915

T=20, Br=3 4091.24 10 hrs 9.5% 90183 58788 2505

T=20, Br=5 4006.25 10 hrs 19.27% 129383 82712 4029

T=20, Br=7 4984.37 10 hrs 31.27% 168583 105382 4299

T=20, Br=15 6457.18 10 hrs 27.51% 325383 195864 5181
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Table A.13: Results for partitioning method, first configuration

T,Br Objective Run time Opt. Gap Constraints Cont. Vars Discrete Vars

T=2, Br=1 118.0 8.42 s 0 89 71 20

T=2, Br=2 100.5 8.8 s 0 197 151 40

T=2, Br=3 96.43 8.64 s 0 349 263 68

T=2, Br=5 87.76 8.533 s 0 785 583 148

T=2, Br=7 85.30 8.48 s 0 1397 1031 260

T=2, Br=15 79.53 8.69 s 0 5605 4103 1028

T=5, Br=1 378.17 8.82 s 0 3244 2253 330

T=5, Br=2 320.30 9.52 s 0 24797 17023 2440

T=5, Br=3 291.70 11.65 s 0 104800 71693 10250

T=5, Br=5 272.34 1 min 22s 0 797828 544333 77770

T=5, Br=7 243.10 25 min 10 s 0 3365752 2293773 327690

T=10, Br=1 903.15 19.22 s 0 364561 245783 20500

Table A.14: Results for partitioning method, second configuration

T,Br Objective Run time Opt. Gap Constraints Cont. Vars Discrete Vars

T=2, Br=1 124.5 8.41 s 0 91 81 30

T=2, Br=2 129.22 8.66 s 0 203 271 60

T=2, Br=3 108.56 8.78 s 0 361 297 102

T=2, Br=5 101.37 8.71 s 0 815 657 222

T=2, Br=7 97.07 8.40 s 0 1453 1161 390

T=2, Br=15 93.21 8.49 s 0 5845 4617 1542

T=5, Br=1 476.75 8.9 s 0 3342 2418 495

T=5, Br=2 393.06 9.46 s 0 25649 18243 3660

T=5, Br=3 359.45 11.94 s 0 108556 76818 15375

T=5, Br=5 323.29 1 min 56 s 0 827378 583218 116655

T=5, Br=7 291.70 38 min 16 s 0 3492144 2457618 491535

T=10, Br=1 1184.07 21.4 s 0 372755 256033 30750
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Table A.15: Results for lifting method with breakpoint optimization, first configuration

T,Br Objective Run time Opt. Gap Constraints Cont. Vars Discrete Vars

T=2, Br=1 94.07 5.98 s 0 756 630 14

T=2, Br=2 94.07 2 min 40 s 0 1212 1032 20

T=2, Br=3 90.95 48 min 48 s 0 1764 1530 26

T=2, Br=5 90.94 10 hrs 15.27% 3156 2814 38

T=2, Br=7 90.94 10 hrs 32.03% 4932 4482 50

T=2, Br=15 94.02 10 hrs 48.63% 15876 14994 98

T=5, Br=1 383.37 5 hrs 19.26% 4311 3561 50

T=5, Br=2 384.55 10 hrs 34.93% 7056 5961 80

T=5, Br=3 428.56 10 hrs 49.75% 10401 9861 110

T=5, Br=5 479.42 10 hrs 62.52% 18891 16761 170

T=10, Br=1 1089.23 10 hrs 30.6% 16716 13766 150

T=10, Br=2 1126.13 10 hrs 49.30% 27556 23216 260

Table A.16: Results for partitioning method with breakpoint optimization, first configuration

T,Br Objective Run time Opt. Gap Constraints Cont. Vars Discrete Vars

T=2, Br=1 94.07 1.92 s 0 137 117 20

T=2, Br=2 86.26 1 min 47 s 0 297 249 40

T=2, Br=3 80.01 10 hrs 1.28% 521 433 68

T=2, Br=5 78.06 10 hrs 2.72% 1161 957 148

T=2, Br=7 79.03 10 hrs 34.61% 2057 1689 260

T=2, Br=15 101.66 10 hrs 56.63% 8201 6697 1028

T=5, Br=1 371.86 10 hrs 17.22% 3872 2876 330
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A.3 Chapter 3

Parameters for capacity planning example

Table A.17: Buying prices Γj,t for j = 1, 2, 3, 4 (102$/ton)

Γj,t t = 1 t = 2 t = 3 t = 4 t = 5

j = 1 22.98 34.67 27.89 25.62 32.42

j = 2 60.23 75.21 79.25 62.10 65.42

j = 3 18.36 34.81 15.12 16.40 32.60

j = 4 17.44 21.89 27.74 22.40 19.40

Table A.18: Selling price γ̄j,t for the fifth product j = 5 (102$/ton)

γ̄j,t t = 1 t = 2 t = 3 t = 4 t = 5

j = 5 58.03 55.14 48.58 49.10 53.20

Table A.19: Expansion investment cost (102$/ton ), αi,t

αi,t t = 1 t = 2 t = 3 t = 4 t = 5

i = 1 11.52 6.82 9.24 7.80 8.40

i = 2 10.08 9.35 5.34 7.60 6.50

i = 3 11.91 7.40 9.25 8.20 7.60

i = 4 4.89 10.10 8.61 6.80 7.40

i = 5 7.78 7.13 11.81 8.30 9.70

i = 6 6.69 5.82 6.74 5.92 6.10

Table A.20: Fixed investment cost (106$), βi,t

βi,t t = 1 t = 2 t = 3 t = 4 t = 5

i = 1 34 58.4 47.9 42 56

i = 2 31.6 38.2 35.2 32.4 35.1

i = 3 46.8 23.8 41.3 25.4 45.6

i = 4 33.8 30.7 40.1 31.4 38.6

i = 5 43.9 22.6 20.1 34.6 22.8

i = 6 26.9 20.3 29.1 22.4 30.8
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Table A.21: Unit operation cost ($/ton), δi,t

δi,t t = 1 t = 2 t = 3 t = 4 t = 5

i = 1 50 50 30 40 30

i = 2 30 30 40 30 40

i = 3 30 40 30 30 40

i = 4 30 50 30 50 30

i = 5 20 50 60 30 40

i = 6 50 50 30 40 50

Table A.22: Availability of chemicals 1 to 4 (kton/year), aj,t

aj,t t = 1 t = 2 t = 3 t = 4 t = 5

j = 1 370 330 390 340 350

j = 1 680 360 320 350 440

j = 1 450 580 280 300 500

j = 1 680 390 460 400 480

Table A.23: Demand for chemical 5 (kton/year), d̄5,t

t = 1 t = 2 t = 3 t = 4 t = 5

d̄5,t 91 40 94 44 64

Table A.24: Capital investment restriction (106$), C̄I(t)

t = 1 t = 2 t = 3 t = 4 t = 5

C̄I(t) 400 70.8 82.3 74.6 81.2

Table A.25: Yield rate for each process i and product j, νi,j

νi,j j = 1 i = 2 i = 3 t = 4 t = 5

i = 1 0 0 0 1 0.89

i = 2 0 0 1.06 0 1

i = 3 0 0 0 0 1

i = 4 0 0 1 0 0.65

i = 5 0 0 1 0 0

i = 6 0 1 0 0 0
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Table A.26: Consumption rate for each process i and product j, µi,j

µi,j j = 1 i = 2 i = 3 t = 4 t = 5

i = 1 1.22 0 0.65 0 0

i = 2 0 0.52 0 0 0

i = 3 0 0 0 0.7 0

i = 4 0.68 0 0 0.79 0

i = 5 0 0.82 0 0 0

i = 6 1.07 0 0 0 0
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A.4 Chapter 4

1. Lifting of exogenous uncertainty

Continuous lifting

Figure A.1 illustrates the breakpoint locations along ηi axis and figure A.2 demonstrates the lifted

uncertain parameters Gi,j, j = 1, ..., ri for general number of breakpoints ri − 1.

Figure A.1: General number of breakpoints on ηi axis

Figure A.2: Illustration of lifted uncertain parameters (Gi,j) for general number of breakpoints
ri − 1

In order to comprehend the fundamentals of the lifting method, this method is illustrated

using 1 breakpoint. Figure A.3 shows the lifted uncertain parameters for one breakpoint. The

sequence for lifting the uncertain parameter ηi is presented in figure A.4. The left figure shows

that one breakpoint is selected for lifting the uncertain parameter. The middle figure plots the

lifted non-convex set in the space of lifted uncertain parameters and the right figure convexifies

the non-convex set using its extreme points and the definition of the convex hull.

Figure A.3: Illustration of lifted uncertain parameter for one-breakpoint case
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Figure A.4: Lifted uncertain parameter and convexified uncertainty set

The continuous variable is a linear combination of lifted parameters. For instance for one

breakpoint setting, it is written as: x(η) = X0 + X1G1 + X2G2 = X[1, G1, G2] = XG. This

formulation results in a piecewise linear continuous variable with respect to the original uncertain

parameter. This formulation is more flexible compared to decision rules where the continuous

variable is simply a linear function of the original uncertain parameter.

Binary lifting

The binary lifting is formualted using on 0-1 indicator functions. Figure A.5 illustrates the indicator

function for the breakpoint located at vi1 along the ηi axis. Figure A.6 shows the sequence for

convexifying the lifted set for one breakpoint. The left figure shows that one breakpoint is selected.

The middle figure shows the lifted set consists of disconnected pieces and therefore it is non-convex.

The right figure shows that the non-convex set is convexified using its extreme points which results

in a polyhedron.

Figure A.5: Indicator functions for one breakpoint on uncertain parameter ηi
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Figure A.6: Lifted uncertain parameter and convexified uncertainty set to be used for adaptive
binary decision rule

The binary variable is a linear combination of 0-1 indicator functions. For instance for one

breakpoint, the binary variable is formulated as: y(η) = Y0 + Y1Q1 = Y[1, Q1] = YQ. The range

of integer values for the Y variable is {−1, 0,+1}. Figure A.7 illustrates the 4 different possible

solutions for the adaptive binary variable when 1 break point is applied.

Figure A.7: Adaptive binary solution for 1 breakpoint
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2. Shale gas problem

Nomenclature

Sets

t ∈ T Time horizon, in years, T = {1, ..., 10}
j ∈ P Set of candidate production platforms, P = {1, 2, 3}
i ∈ L Set of possible pipelines, L = {1, 2, 3, 4, 5}
L+(p) Set of ingoing pipelines into platform p

L−(p) Set of outgoing pipelines from platform p

O Main pipeline

Parameters

ξj Gas field size, random variable, uniform distribution, U(0, 10), U(0, 5), U(0, 5)

ηt gas price uncertainty at year t, uniform distribution, ηt ∈ [0, 1]

rj Maximum annual production rate for platform j

(3, 1.5, 1.5), (2, 1, 1), (1, 0.5, 0.5) for T = 3, 5, 10, respectively

dt Discount factor in year t ,
1

1.01t−1

cgt (ηt) Unit price for gas at time step t, 2 + ηt

ccj Cost for unit capacity expansion for production platform j, (0.2, 0.2, 0.2)

cej Cost for unit gas extraction for platform j, (0.1, 0.1, 0.1)

cli Cost for building pipeline i, (2, 1, 3, 1, 5)

cpj Cost for building platform j, (4, 2, 2)

Variables

ypj,t(ξ) Binary, xpj,t(ξ) = 1 if platform j exist in year t, otherwise 0

yli,t(ξ, η) Binary, xli,t(ξ, η) = 1 if pipeline i exist in year t, otherwise 0

xfi,t(ξ, η) Amount of gas flow through pipeline i in year t

xej,t(ξ, η) Amount of gas extraction for platform j in year t

xcj,t(ξ, η) Capacity of production platform j in year t

Formulation of the 3-platform case

Equations A.1a to A.1n present the problem formulation for the case with 3 platforms

max Eξ,η
10∑
t=1

dt[c
g
t (ηt)(x

f
2,t(ξ, η) + xf4,t(ξ, η))−

5∑
i=1

cli(y
l
i,t(ξ, η)−yli,t−1(ξ, η)) (A.1a)

−
3∑
j=1

cpj(y
p
j,t(ξ)− y

p
j,t−1(ξ))−

3∑
j=1

ccjx
c
j,t(ξ, η)−

3∑
j=1

cej x
e
j,t(ξ, η)]

187



s.t.
t∑

t′=1

xej,t′(ξ, η) ≤ ξj ∀j, t, ξ ∈ Ξ, η ∈ Ψ (A.1b)

0 ≤ xej,t(ξ, η) ≤ rj + ηt ∀j, t, ξ ∈ Ξ, η ∈ Ψ (A.1c)

xe1,t(ξ, η) ≥ xf1,t(ξ, η) + xf3,t(ξ, η) ∀t, ξ, η (A.1d)

xe2,t(ξ, η) + xf1,t(ξ, η) ≥ xf2,t(ξ, η) + xf5,t(ξ, η) ∀t, ξ, η (A.1e)

xe3,t(ξ, η) + xf3,t(ξ, η) + xf5,t(ξ, η) ≥ xf4,t(ξ, η) ∀t, ξ, η (A.1f)

t∑
t′=1

xc1,t′(ξ, η) ≥ xf1,t(ξ, η) + xf3,t(ξ, η) ∀t, ξ, η (A.1g)

t∑
t′=1

xc2,t′(ξ, η) ≥ xf2,t(ξ, η) + xf5,t(ξ, η) ∀t, ξ, η (A.1h)

t∑
t′=1

xc3,t′(ξ, η) ≥ xf4,t(ξ, η) ∀t, ξ, η (A.1i)

0 ≤ xfi,t(ξ, η) ≤Myli,t(ξ, η) ∀i, t, ξ ∈ Ξ, η ∈ Ψ (A.1j)

0 ≤ xcj,t(ξ, η) ≤Mypj,t(ξ) ∀j, t, ξ ∈ Ξ (A.1k)

ypt (ξ) ≥ ypt−1(ξ) ∀t, ξ ∈ Ξ (A.1l)

ylt(ξ, η) ≥ ylt−1(ξ, η) ∀ξ ∈ Ξ, η ∈ Ψ (A.1m)∑
j∈P

xpj,t(ξ)−
∑
j∈P

xpj,t−1(ξ) ≤ 2 ∀t, ξ ∈ Ξ (A.1n)

ypt+1(ξ) = ypt+1(ypt (ξ) ◦ ξ) ∀ ∈ t, ξ (A.1o)

xfi,t+1(ξ, η) = xfi,t+1(ypt (ξ) ◦ ξ, η[t+1]) ∀i, t, p, ξ, η (A.1p)

xcj,t+1(ξ, η) = xcj,t+1(ypt (ξ) ◦ ξ, η[t+1]) ∀j, t, p, ξ, η (A.1q)

xej,t+1(ξ, η) = xej,t+1(ypt (ξ) ◦ ξ, η[t+1]) ∀j, t, p, ξ, η (A.1r)

The objective of the deterministic counterpart formulation can be derived as following:

Part 1

Eξ,η
∑

t dt

[
cgt (ηt)(x

f
2,t(ξ, η) + xf4,t(ξ, η))

]
=
∑

s ps
∑

t dt

[
(2 + E(ηt))(X

f
2,t,s +Xf

4,t,s)EΞs(ξ)
]

+
∑

s ps
∑

t dt

[
2(X

′f
2,t,s +X

′f
4,t,s)E(η

′

[t]) + (X
′f
2,t,s +X

′f
4,t,s)E(ηtη

′

[t])
]

Part 2

−Eξ,η
∑

t dt
∑

i c
l
i(y

l
i,t(ξ, η)− yli,t−1(ξ, η))

= −
∑

t dt
∑

i c
l
i

[∑
s(psy

l
i,t,s)Y

l
i,t,sE(Q[t](η))−

∑
s(psy

l
i,t−1,s)Y

l
i,t−1,sE(Q[t−1](η))

]
Part 3

E
∑

t dt
∑

j

[
−cpj(y

p
j,t(ξ)− y

p
j,t−1(ξ))− ccjxcj,t(ξ, η)− cejxej,t(ξ, η)

]
=
∑

t dt
∑

s ps
∑

j[−c
p
j(y

p
j,t,s−y

p
j,t−1,s)−ccj(Xc

j,t,sEΞs(ξ)+X
′c
j,t,sE(η′))−cej(Xe

j,t,sEΞs(ξ)+X
′e
j,t,sE(η′))]
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The following constraints model that the built infrastructure dost not vanish

yli,t,sY
l
i,t,sQt(η) ≥ yli,t−1,sY

l
i,t−1,sQt−1(η) ∀t, s, i, η (A.2)

ypj,t,s ≥ ypj,t−1,s ∀j, t, s (A.3)

Non-anticipativity for endogenous uncertainty is modeled below

∣∣ypj′,t,s − ypj′,t,s′∣∣ ≤ ypj,t−1,s ∀j = 1, 2, 3, j′ = 1, 2, 3, s, s′ : s−j = s′−j (A.4)∣∣yli,t,s − yli,t,s′∣∣ ≤ ypj,t−1,s ∀j = 1, 2, 3, j′ = 1, 2, 3, s, s′ : s−j = s′−j (A.5)∣∣Xe
i,t,s,j′ −Xe

i,t,s′,j′

∣∣ ≤Mypj,t−1,s ∀i = 1, 2, 3, j = 1, 2, 3, j′ = 1, 2, 3, 4, s, s′ : s−j = s′−j (A.6)∣∣Xc
i,t,s,j′ −Xc

i,t,s′,j′

∣∣ ≤Mypj,t−1,s ∀i = 1, 2, 3, j = 1, 2, 3, j′ = 1, 2, 3, 4, s, s′ : s−j = s′−j (A.7)∣∣∣Xf
i,t,s,j′ −X

f
i,t,s′,j′

∣∣∣ ≤Mypj,t−1,s ∀i = 1, 2, 3, 4, 5, j = 1, 2, 3, j′ = 1, 2, 3, 4, s, s′ : s−j = s′−j

(A.8)∣∣∣Xf
i,t,s,j

∣∣∣ ≤Mypj,t−1,s ∀i = 1, 2, 3, 4, 5, j = 1, 2, 3, s, t (A.9)∣∣Xe
i,t,s,j

∣∣ ≤Mypj,t−1,s ∀i = 1, 2, 3, j = 1, 2, 3, s, t (A.10)∣∣Xc
i,t,s,j

∣∣ ≤Mypj,t−1,s ∀i = 1, 2, 3, j = 1, 2, 3, s, t (A.11)

Sample derivation for robust constraints

Consider following constraint

t∑
t′=1

xc2,t′(ξ, η) ≥ xf2,t(ξ, η) + xf5,t(ξ, η) ∀t, ξ, η

Apply the decision rule

t∑
t′=1

(Xc
2,t′,sξ +X

′c
2,t′,sη

′
[t′]) ≥ Xf

2,t,sξ +X
′f
2,t,sη

′
[t] +Xf

5,t,sξ +X
′f
5,t,sη

′
[t] ∀t, ξ, η′ ∈ Ψ̂′

Further use the truncate matrix R[t]η
′ = η′[t]

(
t∑

t′=1

Xc
2,t′,s −X

f
2,t,s −X

f
5,t,s)ξ + (

t∑
t′

Xc
2,t′,sR[t′] −X

′f
2,t,sR[t] −X

′f
5,t,sR[t])η

′ ≥ 0 ∀t, ξ, η′ ∈ Ψ̂′

Based on the uncertainty set {ξ : wξ ≥ v} and {η′ : w′η′ ≥ v′}, then duality theorem is applied to

the constraint with respect to ξ and η′ uncertain parameters:

v>s θ(t, s) + v′>φ(t, s) ≥ 0 ∀t, s
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w>s θ(t, s) =
t∑

t′=1

Xc
2,t′,s −X

f
2,t,s −X

f
5,t,s ∀t, s

θ(t, s) ≥ 0 ∀t, s

w′>φ(t, s) =
t∑

t′=1

X ′c2,t′,sR[t′] −X ′f2,t,sR[t] −X ′f5,t,sR[t] ∀t, s

φ(t, s) ≥ 0 ∀t, s
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A.5 Chapter 5

This section include table for geological properties of Athabasca oil reservoir, table for deterministic

model parameters, derivation for deterministic dual counter parts of stochastic model constraints,

calculation procedure for expectation of objective function with respect to the uncertainty set.

Table A.28 provides the physical and geological parameters of Athabasca reservoir and Table

A.29 presents the parameters of the deterministic model.

Table A.28: Athabasca reservoir properties [1, 2]

Parameter Value Parameter Value

w(m) 50 γ1 1.224

α (m2/s) 7.06× 10−7 γ2 0.816

m 4 Tsteam(◦C) 263.9, 242.5

νs(m
2/s) 10 τ(%) 81

h(m) 26.5 Hlν(MJ/m3) 1640, 1753

Sor 0.15 Cνr(MJ/m3K) 2.35

DAcell 510 Cνo(MJ/m3K) 2.38

dp(m) 90× 10−6 kt(MJ/m ·K · year) 85

Aν(m
−1) 6.67× 10−4 ηs 0.5

Table A.29: Model parameters [2, 3]

Parameter Value Parameter Value

Nw 6 DR (%) 6

L(m) 850 RY (%) 10

NDA 43 CCCPF (M$) 2480

SAGDlifetime (yr) 25 DAcost(M$) 78

CapCPF (m3/yr) 5.25× 106 CCDA (M$) 300

Capsteam (m3/yr) 16× 106 FC(M$/m3) 0.3023× 10−6

Dual counter part derivation

Derivation procedure for the deterministic counterpart of the multistage stochastic programming

model using linear decision rule is presented below.
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Constraint 2b: DAcost
∑

i∈I zi,t(ξ) ≤ CCDA,∀t ∈ T ,∀ξ ∈ Ξ

Apply decision rule of binary variable

DAcost
∑
i∈I

zi,t ≤ CCDA,∀t ∈ T

Constraint 2c:
∑

t∈T zi,t(ξ) ≤ 1,∀i ∈ I,∀ξ ∈ Ξ

Apply decision rule of binary variable ∑
t∈T

zi,t ≤ 1,∀i ∈ I

Constraint 2d: qoili,t (ξ) ≤
∑

k∈Ki zi,t−k+1(ξ) q̃maxoili,k (ξ)Nw,∀i ∈ I, t ∈ T , ξ ∈ Ξ

Use the uncertainty model, and apply the linear decision rule of continuous variable

Qi,t ξ ≤
∑
k∈Ki

zi,t−k+1 q
maxoil
i,k (1 + ζi)Nw, ∀i ∈ I, t ∈ T , ξ ∈ Ξ

max
ξ∈Ξ

Qi,t ξ − (1 + ζi)
∑
k∈Ki

zi,t−k+1 q
maxoil
i,k Nw ≤ 0,∀i ∈ I, t ∈ T

Define αi,t =
∑

k∈Ki zi,t−k+1 q
maxoil
i,k Nw, ei = [0, · · · , 0, 1, 0, · · · , 0] (all zero except the i + 1-th

element being 1, such that eiξ = ζi), and bi,t = Qi,t − αi,tei{
max
ξ∈Ξ

bi,tξ

}
− αi,t ≤ 0,∀i ∈ I, t ∈ T

{
max bi,tξ

s.t.−Wξ ≤ −ν

}
− αi,t ≤ 0,∀i ∈ I, t ∈ T

Introduce dual variables Λi,t and apply duality to the inner LP problem
min − νΛi,t

s.t. −WΛi,t = bi,t

Λi,t ≥ 0

− αi,t ≤ 0,∀i ∈ I, t ∈ T

Drop the minimization operator
−νΛi,t − αi,t ≤ 0, ∀i ∈ I, t ∈ T
−WΛi,t = bi,t,∀i ∈ I, t ∈ T
Λi,t ≥ 0,∀i ∈ I, t ∈ T
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Replace αi,t and bi,t
−νΛi,t −

∑
k∈Ki zi,t−k+1 q

maxoil
i,k Nw ≤ 0,∀i ∈ I, t ∈ T

−WΛi,t = Qi,t −
∑

k∈Ki zi,t−k+1 q
maxoil
i,k Nwei,∀i ∈ I, t ∈ T

Λi,t ≥ 0,∀i ∈ I, t ∈ T

Constraint 2e:
∑

i∈I q
oil
i,t (ξ) ≤ CapCPF , ∀t ∈ T , ξ ∈ Ξ

Apply the linear decision rule of continuous variable∑
i∈I

Qoil
i,t ξ ≤ CapCPF ∀t ∈ T , ξ ∈ Ξ

max
ξ∈Ξ

∑
i∈I

Qoil
i,t ξ ≤ CapCPF ∀t ∈ T

Introduce dual variable λt
min − νλt

s.t. −Wλt =
∑

i∈I Q
oil
i,t

λt ≥ 0

 ≤ CapCPF ∀t ∈ T

Constraint 2e minimum is removed:
−νλt ≤ CapCPF ∀t ∈ T
−Wλt =

∑
i∈I Q

oil
i,t ∀t ∈ T

λt ≥ 0 ∀t ∈ T

Constraint 2f:
∑

i∈I
∑

k∈Ki zi,t−k+1(ξ) qsteami,k Nw ≤ Capsteam,∀t ∈ T

Apply binary decision rule∑
i∈I

∑
k∈Ki

zi,t−k+1 q
steam
i,k Nw ≤ Capsteam,∀t ∈ T

Constraint 2g: xi+1,t(ξ) =
∑

t′≤t zi,t′(ξ),∀i ∈ I, t ∈ T , ξ ∈ Ξ

Apply binary decision rule

xi+1,t =
∑
t′≤t

zi,t′ ,∀i ∈ I, t ∈ T

Constraint 2h: qi,t(ξ) ≥ 0,∀i ∈ I, t ∈ T , ξ ∈ Ξ

Apply decision rule for continuous variable
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{
minξ Qi,tξ

s.t. Wξ ≥ ν

}
≥ 0, ∀i ∈ I, t ∈ T

Introduce dual variable µi,t
max νµi,t

s.t. Wµi,t = Qi,t

µi,t ≥ 0

 ≥ 0,∀i ∈ I, t ∈ T

Finally, after dropping maximizing operator
νµi,t ≥ 0 ∀i ∈ I, t ∈ T
Wµi,t = Qi,t ∀i ∈ I, t ∈ T
µi,t ≥ 0 ∀i ∈ I, t ∈ T

Expectation of objective function with respect to uncertainty set

Calculation procedure for expectation of objective function with respect to the uncertainty set is

provided below.

∑
t

1

(1 +DR)t
E

[
(1−RY )OPt(ξ)

∑
i∈I

qoili,t (ξ)−DAcost
∑
i

zi,t(ξ)−FC
∑
i

∑
k∈Ki

zi,t−k+1(ξ)qsteami,k Nw

]
First term ∑

t

1

(1 +DR)t
E

[
(1−RY )OPt(ξ)

∑
i∈I

qoili,t (ξ)

]

=
∑
t

1

(1 +DR)t
E

[
(1−RY )(AtPξ + bt)

∑
i∈I

Qoil
i,t ξ

]

=
∑
t

1−RY
(1 +DR)t

E

[
AtPξ

∑
i∈I

Qi,tξ + bt
∑
i∈I

Qi,tξ

]

=
∑
t

1−RY
(1 +DR)t

E

[
(AtPξ)

T
∑
i∈I

Qi,tξ + bt
∑
i∈I

Qi,tξ

]

=
∑
t

1−RY
(1 +DR)t

E

[
ξT (P TATt

∑
i∈I

Qi,t)ξ + bt
∑
i∈I

Qi,tξ

]

=
∑
t

1−RY
(1 +DR)t

[
tr(P TATt

∑
i∈I

Qi,t E(ξξT )) + bt
∑
i∈I

Qi,tE(ξ)

]
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Second term

∑
t

1

(1 +DR)t
E

[
−DAcost

∑
i

zi,t(ξ)

]
=
∑
t

1

(1 +DR)t

[
−DAcost

∑
i

zi,t

]

Third term ∑
t

1

(1 +DR)t
E

[
−FC

∑
i

∑
k∈Ki

zi,t−k+1(ξ)qsteami,k Nw

]

=
∑
t

1

(1 +DR)t

[
−FC

∑
i

∑
k∈Ki

zi,t−k+1,sq
steam
i,k Nw

]
Combined result:

∑
t∈T

1−RY
(1 +DR)t

[
tr(P TATt

∑
i∈I

Qi,t E(ξξT ) ) + bt
∑
i∈I

Qi,tE(ξ)

]

−
∑
t∈T

DAcost
(1 +DR)t

∑
i

zi,t −
∑
t∈T

NwFC

(1 +DR)t

∑
i

∑
k∈Ki

zi,t−k+1q
steam
i,k
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