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Abstract

Knowledge graphs are an important source of information used in a number

of applications including web search, online shopping, social networking, and

chatbots. They are an effective way of storing real-world data in a machine-

readable format. As a result, the construction of comprehensive, trustworthy

knowledge graphs has been a well-researched problem. We present a method

for adding new facts to an existing knowledge graph using Wikipedia tables

as a source of information. Previous work has primarily focused on extracting

facts from text, ignoring the information available in tables.

We use an existing knowledge graph to annotate a set of Wikipedia tables

using distant supervision with relations between pairs of columns. Then, we

run a classifier on these tables to remove as many tables brought in by error as

possible. We also create queries based on table formats identified as indicative

of certain relations to increase the number of tables collected. In total, we

annotate over 200,000 relational tables with these methods.

We then train a long short-term memory (LSTM) network using these

tables to predict a relation given a table and pair of columns. We perform

an ablation study to identify what features are weighted most heavily and

provide the most information to the LSTM. We also explore how two different

state-of-the-art word embedding sets fare. Our experiments show that our

system is able to correctly predict which relation a pair of columns represents

with over 87% accuracy. We compare our results with two other relation

prediction systems which use different datasets of tables and show that our
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method achieves higher accuracy, though a more direct comparison can not be

performed.
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This thesis is an original work by Erin Macdonald. No part of this thesis has
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Chapter 1

Introduction

1.1 Motivation

Knowledge graphs are a way of representing information in a machine-readable

format. The term “knowledge graph” has been used by researchers for years but

was popularizes in 2012 when Google used it to describe how they use struc-

tured, real-world data gathered from numerous sources to improve the results

of and speed up their search engine1. Although researchers had been present-

ing similar information in an analogous format like WordNet and Freebase,

they soon adapted the new term2. Since then, knowledge graphs have become

a popular way of representing relational data found on the web. Knowledge

graphs are key to the operation of search engines like Google [46], online shop-

ping retailers like Amazon3, and social networks like Facebook [33].

Because they are so ubiquitous, a fair amount of research has been focused

on building comprehensive and accurate knowledge graphs [34]. Even the best

modern knowledge graphs suffer from either inaccuracies or incompleteness.

Knowledge graphs with high coverage are often built automatically and con-

tain errors, while accurate knowledge graphs are usually created by humans

who are unable to codify all available information. As a result, even the best

knowledge graphs are incomplete. This thesis describes one method for finding
1https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-

not.html
2https://wordnet.princeton.edu/, https://developers.google.com/freebase
3https://aws.amazon.com/blogs/apn/exploring-knowledge-graphs-on-amazon-neptune-

using-metaphactory/
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new data to add to an existing knowledge graph, DBpedia. We hypothesize

that training a neural network with a large annotated dataset to predict rela-

tions in tables will be accurate and will provide a large number of new facts

to add to Freebase.

The main components of a knowledge graph are entities and relations.

Entities are real world “things” which are generally referred to in text by

proper nouns. Examples of entities can include (at a high level) individuals,

geographical locations, organizations, and products. Entities are the nodes

of the graph and are connected to one another through edges representing

relations. Examples of relations include the birthplace of a person, capital of

a country, director of a movie or political party of a politician.

1.1.1 Building Knowledge Graphs

There are multiple reliable public knowledge graphs. One example is Freebase

which was acquired by Google and initially built using mostly human annota-

tion before turning to more automated methods to improve coverage [45] In

Freebase, each article on Wikipedia becomes an entity in Freebase. To find

relations, the contributers to Freebase used structured dumps from various

information-based sites (such as IMDB) and extracted information relatively

reliably. By modern standards, Freebase is a moderately clean and compre-

hensive knowledge graph, though it still misses a large amount of information

and has a number of errors.

DBpedia is another public knowledge graph built using only the informa-

tion available onWikipedia. Like Freebase, every article onWikipedia becomes

an entity in DBpedia. DBpedia uses the infobox to build relations for a given

article. This creates another relatively clean and thorough knowledge graph,

though a large number of relations are still extracted erroneously.

In this thesis, we use the tables in Wikipedia articles to add new edges

to Freebase as most previous work on relation extraction (particularly with

tables) has used Freebase. Tables have never before been used to extract triples

for Freebase or any other knowledge graph but provide a valuable source of

semi-structured and abundant information.
2



PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>

dbr:Louise_of_Hesse-Kassel dbo:birthPlace dbr:Kassel.
dbr:Louise_of_Hesse-Kassel dbo:spouse dbr:Christian_IX_of_Denmark.

Figure 1.1: An example of some RDF triples describing a small knowledge
graph.

1.1.2 Resource Document Format

One way to represent information in knowledge graphs is using Resource Doc-

ument Format or RDF. This is a triple format where two entities, a subject

and object, are assigned a predicate to define how the entities are related.

Therefore, each triple defines one edge of the graph. The subjects, predicates,

and objects of triples are defined by URIs or uniform resource identifiers (an

example of a URI is http://dbpedia.org/page/Louise_of_Hesse-Kassel).

To remove repetition from a set of triples, we often define prefixes for common

URIs and use shortened forms in our triples.

One example of a set of triples is given in Figure 1.1 which uses prefixes

dbr: and dbo: for cleanliness. This small knowledge graph defines 3 entities

(Louise of Hesse-Kassel, Christian IX of Denmark, and Kassel) and 2 relation-

ships (birthplace and spouse).

1.2 Problem Definition

Information Extraction (IE) is the term used to describe methods for popu-

lating knowledge graphs with information. IE on text encompasses a number

of subtasks with the goal of enabling computers to extract the key pieces of

information encoded in written text and encode them in RDF to insert into a

knowledge graph [19]. These subtasks include performing named entity recog-

nition (NER), coreference resolution, entity linking and relation extraction

(RE). NER and coreference resolution attempt to identify and disambiguate

mentions of entities or proper nouns in the provided text.

An example of NER and coreference resolution on text is given in Fig-
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Louise of Hesse-Kassel was Queen of Denmark as the wife of King Christian
IX of Denmark. She had six children with Christian.

Louise of Hesse-Kassel was Queen of Denmark as the wife of King
Christian IX of Denmark. She had six children with Christian.

Louise of Hesse-Kassel was Queen of Denmark as the wife of King
Christian IX of Denmark. Louise of Hesse-Kassel had six children

with King Christian IX of Denmark.

Named Entity Recognition

Coreference Resolution

Figure 1.2: An example of named entity recognition and coreference resolu-
tion on text taken from the Wikipedia article for “Louise of Hesse-Kassel”.

Louise of Hesse-Kassel was Queen of Denmark as the wife of King
Christian IX of Denmark.

dbr:Louise_of_Hesse-Kassel dbo:title dbr:Queen_of_Denmark.

dbr:Louise_of_Hesse-Kassel dbo:spouse
dbr:Christian_IX_of_Denmark.

Relation Extraction

Figure 1.3: An example of relation extraction on a sentence from the
Wikipedia article for “Louise of Hesse-Kassel”.

ure 1.2. Entity linking is the task of matching those mentions to entities in

a knowledge graph. For example, the two mentions of “King Christian IX of

Denmark” in Figure 1.2 can be linked to the DBpedia entry for the entity,

represented in Figure 1.3 as dbr:Christian_IX_of_Denmark..

An important step in IE is determining how the entities in the text are

related to one another. This is referred to as relation extraction and is a key

task in the work to build accurate and informative knowledge graphs [19].

Figure 1.3 shows the RDF triples that can be extracted from the annotated

sentence.

Table understanding is the term used for ascribing meaning to the infor-

mation in a table. The goal of table understanding is to determine the types of

columns in a table (and by extension the types of entities in the corresponding
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rows) or to detect relations between pairs of columns mentioning entities [24].

After predicting a relation between a pair of columns, we can gather triples

by assigning this relationship to the entities in the numerous rows of those

columns [32]. For this thesis we used Wikipedia articles containing tables as

our dataset so the cells mentioning entities were already hyperlinked to the

relevant entities. This meant the task of entity detection had already been

completed. This left us to solve the task of identifying how a pair of columns

were related in order to produce triples.

We chose relations to predict from Freebase (mostly from related work) and

used Wikipedia tables as our corpus of tables. This is because not only are

the tables generally well-maintained, factual, and hyperlinked, but Wikipedia

also contains a wealth of information about a variety of topics. This provided

us with a large, clean corpus of non-domain-specific data with which to test

our method. Additionally, research has shown that other corpuses of tables

contain a small number of relational tables to work with [4].

In general, most tables have one column that acts as a subject and which

may be related to all other columns in the table, a concept introduced by

Venetis et al. and now accepted among table understanding researchers [48].

Venetis et al. also showed that the leftmost column of a table is the subject

column 75% of the time [48]. While their dataset was different, we can assume

that in general, tables on Wikipedia and tables elsewhere on the web are

structured similarly. This is especially true considering Wikipedia’s editing

guidelines when compared to the rest of the web.

We predicted relations between any pair of columns, building on earlier re-

search which attempted to identify this subject column first and then predicted

relations using that column [48]. For example, in Figure 1.4 the subject column

of the table is the first, with the header “Name”. We can predict the relation-

ship person-spouse between the first and fourth columns and person-children

between the first and fifth columns, producing 2 triples for person-spouse and

14 for person-children (relating Frederick VIII of Denmark to his 8 children

and Princess Alexandra of Denmark to her 6 children). By also predicting

relations for columns other than the subject column, we can produce another

5



Figure 1.4: The first two rows of the table from the Wikipedia article for
“Louise of Hesse-Kassel”.
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14 triples for person-children by recognizing the relationship between columns

four and five (this time relating Princess Louise of Sweden to her 8 children

and Edward VII of the United Kingdom to his 6 children).

Finally, because tables on Wikipedia are always contained in an article

about one subject, we can also predict if there is a relationship between the

article subject and a column in the table. The table in Figure 1.4 is taken from

the article for “Louise of Hesse-Kassel” so we can also predict the relationship

person-children between “Louise of Hesse-Kassel” and the first column, pro-

ducing a final 2 triples (one for each row shown in the figure). Figure 1.5 shows

a visualization of the knowledge graph extracted from the table in Figure 1.4.

Due to space limitations, not all grandchildren of Louise of Hesse-Kassel are

respresented.

In summary, our method takes a Wikipedia article containing a table as

input and identifies relations between the various columns as well as between

the article subject and any table columns. The output is a set of triples we

create using the predictions and entities in the rows on the table which can

then be added to an existing knowledge graph if they are not already present.

1.3 Contributions

In our attempt to answer the following research question:

Can recent neural network technology designed for processing run-

ning text be used to predict relationships represented in tables?

our work produced two contributions to the problem of table understanding

and the development of knowledge graphs. The first is a large corpus of over

200,000 tables annotated with high accuracy with column pairs or article sub-

ject - column pairs each representative of one of 28 relations or an abstention

(explained in Section 3.2). This is the first public dataset of its kind that can

be used to develop and compare relation extraction methods or other subtasks

using tables [26].

The second contribution is a system which is able to predict with ∼87%

accuracy a relation out of our 28 (plus a “no relation” prediction used for
7



Figure 1.5: A portion of the knowledge graph extracted from the table in
the Wikipedia article for “Louise of Hesse-Kassel”.
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abstentions) when given a new table (explained in Section 3.3). This is an

improvement on earlier work in a number of respects. First, our accuracy is

competitive with or better than related work (reported in Section 4.3), though

it is difficult to compare due to the dissimilar test conditions. Our system is

also able to predict a large number of relations compared to related work and

predicts relations between columns and between columns and article subjects

(discussed in Section 2.3). Finally, our system is able to add an estimated

582,691 triples to DBpedia from 46,077 tables.

1.4 Outline

This thesis begins with a discussion of related work including an introduction

to neural networks and word embeddings followed by a discussion of previ-

ous research on relation extraction on text and table understanding. We then

present the method in Chapter 3 in two parts. Section 3.2 explains how we

gathered our corpus of tables using two methods to balance accuracy and cov-

erage. Section 3.3 describes the structure of the network and how we created

the input for our network given an article with a table as well as the format of

the output. We present our experimental findings in Chapter 4. These experi-

ments include a thorough evaluation of parameters as well as a comprehensive

ablation study to determine which features contribute the most to accuracy

and how BERT embeddings perform compared to an older set of pretrained

word embeddings. Finally, we discuss conclusions, limitations, and directions

for future work in Chapter 5.

9



Chapter 2

Related Work

This chapter outlines the work most closely related to this thesis. Because

our method uses a neural network, specifically a long short-term memory or

LSTM, we begin the chapter with a brief introduction to neural networks and

the enhancements that led to LSTMs [17]. The method explained in this thesis

also relies heavily on word embeddings so we then provide a description of word

embeddings. Then, we discuss the datasets and previous methods employed

for relation extraction, primarily on text. Next, we examine previous work in

processing Wikipedia tables, some of which involves relation extraction, before

finally explaining how this work blends the two and builds on recent research.

2.1 Neural Networks

Neural networks are not a recent development in computing [12]. In fact, a

publication from 1943 could be considered the pioneering work in the field [27].

Interest in networks grew throughout the 1940’s and 50’s as computational

power and researchers fascination increased following the second world war,

but suffered a downturn in subsequent decades [2], [20], [40]. There has been a

massive resurgence in research in neural networks in the last two decades and

a considerable amount of pioneering work in computing science today employs

some form of network [13], [16], [44].
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Figure 2.1: An MLP with one hidden layer consisting of four neurons showing
the prediction of a single output value, y, given a vector, [x1, x2, x3], as input.
These values are first multiplied by a weight matrix, W , added to the bias b1
then pass through the first activation function σ in the hidden later. Then,
the result from the hidden layer is multiplied by another weight matrix, V ,
and added to a second bias b2. Finally, this value is passed through a second
activation function σ in the output layer to produce the output value y.

Multilayer Perceptron

The simplest neural network is the multilayer perceptron (MLP) which con-

sists of an input layer, at least one fully-connected hidden layer and an output

layer [12]. A hidden layer in an MLP takes the input values (from either a

previous hidden layer or the input layer) in the form of a vector x and multi-

plies it by a weight matrix, W [12]. Then, it adds a bias value and applies a

nonlinear activation function to the result to produce an output value y [12].

Finally, this vector is fed forward to the next layer (either the next hidden

layer or the output layer) [12]. The activation function, σ, transforms values

to the range {0,1} or {-1,1} depending on the function used [12]. The values

in the weight matrices are tuned by predicting on a set of labeled examples,

computing the error with respect to the gold labels and backpropagating this

information to update the weights using gradient descent or a similar opti-

mization function [12].

Mathematically, each layer multiplies a weight matrix, W , by the input

vector, x, adds a bias vector, b and transforms the resulting value y using

some activation function, σ: y = σ(Wx + b) [12]. Note that biases can be
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incorporated in a variety of ways as either a scalar, vector for the layer, or a

vector for each node in the layer. In Figure 2.1, the bias is a scalar unique

to each layer. MLPs and other similarly-structured networks are known as

feed-forward neural networks because every layer receieves input only from

the previous layer [12].

An example of an MLP is shown in Figure 2.1. MLPs, while fairly simple,

are a powerful tool and have been proven to be able to approximate any con-

tinuous function arbitrarily well using just one hidden layer [18]. Weaknesses

of MLPs include the high computational requirements and the propensity to

overfit to the data, both of which are due to the high number of connec-

tions between layers. The most successful enhancements to MLPs specifi-

ally for natural language processing (NLP) are convolutional neural networks

(CNN), recurrent neural networks (RNN) and modifications of RNNs such

as long short-term memory networks (LSTM) which can be uni-directional

or bi-directional all of which were used in top-performing relation extraction

methods [22], [49]–[51]. Our work uses an LSTM to leverage the benefits of

RNNs for NLP applications.

Recurrent Neural Network

Recurrent connections are a key development to neural networks and were in-

troduced by Rumelhart et al. in 1986 [41]. Initially designed to manage data

organized by time steps, sentences are another form of ordered data that is

an appropriate input [12]. Recurrent connections are able to share parameters

over multiple timesteps, using the hidden state of a previous timestep, h(t−1)

as input to the next hidden state calculation [41]. Because RNNs use previ-

ous hidden states as input to later hidden states, they excel at dealing with

problems where the output depends on the order of the input. The ability to

use hidden states generated from earlier input is what makes RNNs so appro-

priate for NLP problems as the meaning of a word relies heavily on those that

preceded it.

Some benefits of using recurrent connections rather than the full con-

nections shown in Figure 2.1 include a reduction in the number of connec-
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Figure 2.2: An illustration of a simple recurrent neural network. Input values
x(t) are superscripted by their timestamp and multiplied by a weight matrix,
U . Note that this matrix is the same for each time index. This result is
then combined with the previous hidden state, h(t−1) (which is multiplied by
another a weight matrix W ). The result of these operations is sent as the
input to the next hidden state h(t+1). These operations are repeated until we
reach the last input, x(τ−1). The result of x(τ−1)Uh(τ−1)WW produces the final
hidden state h(τ). h(τ) is combined with the final matrix V and sent through
an activation function (like the sigmoid function shown here) to produce the
output of the RNN o(τ).
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Figure 2.3: A simplified diagram of an LSTM. Bias values and weight matri-
ces have been omitted from this figure for simplicity. Hidden states (h(t) and
h(t−1)) are coloured in pink with the previous timesteps hidden state used as
input along with some parameter(s) x(t−1). Input, forget and output gates are
coloured in green and are all sent to matrix multiplication operations (coloured
in blue). The input and forget gates’ outputs are used in the state (coloured
in white) which then passes its output back to the matrix multiplication with
the forget gate. Finally the output produces the next hidden state which will
be used with the next input x(t).

tions and parameters and a heightened ability to process temporal data [12].

RNNs can also learn from fewer training examples because the weight matri-

ces are shared across time steps [12]. Figure 2.2 shows an RNN with inputs

x(1), ..., x(t−1), x(t), ..., x(τ−1) and one output variable, o(τ), generated at the end.

Long Short-Term Memory

The adaptation of the RNN to develop an LSTM layer was published in 1997

by Hochreiter and Schmidhuber who introduced self-loops so that the gradi-

ent could flow through paths for long times without the risk of increasing to

infinity [17]. The addition of the forget gate to this architecture by Gers at

al. in 2000 produced the LSTM we use today [10]. This forget gate conditions

the weight of the self-loop on the context [12]. Figure 2.3 shows a somewhat

simplified LSTM connection.

The main pitfall for neural methods is that they are supervised, mean-
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ing they require large amounts of training data in order to accurately learn

the weights of the network. This is a common problem for many supervised

learning methods which require labeled samples to learn the best features or

weights. Other issues with neural methods are their potential to overfit to the

training data, that they are often computationally expensive and are effectively

black boxes. This means that the weights that are learned provide no insight

into the data and we cannot easily determine from them what information was

the most useful for prediction. Recently, however, some researchers have been

attemping to uncover the meaning of these matrices [21]. Despite this, neural

methods are still the most successful and widely researched systems for NLP.

2.1.1 Embeddings

A major development in NLP in the last few years has been the introduction of

word embeddings. In the last decade or so, many researchers have focused on

this area [1], [8], [29], [35]. Word embeddings are an extension of much earlier

work which attempted to represent words as vectors [1]. The goal of word

embeddings is to create vectors for each word in a vocabulary by leveraging

co-occurence statistics and other contextual information so that words with

similar meaning and usage are close to one another in the vector space [1].

Most public systems for creating embeddings offer users the opportunity to

either train their own embeddings or download a set of embeddings (referred

to as pre-trained embeddings) which have already been computed using some

corpus. Until recently, the state-of-the-art set of pre-trained word embeddings

was GloVe [35] until work at Google developed an improvement, referred to

as BERT [8]. BERT and other embedding models are used as a step in many

NLP systems to convert text to meaningful vectors. We use BERT embeddings

in our research to convert the text in Wikipedia articles to vectors as input

for our neural network.
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2.2 Relation Extraction on Text

Relation extraction is a well researched task in information extraction, which

encompasses named entity recognition, coreference resolution, entity linking,

and relation extraction defined in Section 1.2 [19]. In this section we explain

the datasets used to compare different methods for relation extraction. We

also discuss the methods applied to this task including statistcal and, more

recently, a combination of statistical and neural.

2.2.1 Benchmarks and Metrics

Researchers have developed a number of datasets and benchmarks for rela-

tion extraction [15], [28], [38]. Traditionally, these contain a set of sentences

each with a corresponding relation label [38]. Each example might also have

additional information like annotated or linked entities [28], [38]. In addition

to the New York Times [38] and SemEval-2010 Task 8 [15] datasets others

include the TAC (text analysis conference) relation extraction [59], ACE [9],

and KnowledgeNet [28] datasets, all of which contain thousands of instances

of sentences with labeled relations.

In order to compare the results of different methods on the same dataset

as accurately as possible, the same metrics for evaluation must be used. For

relation extraction this frequently means either precision and recall, F1, or

a combination of both1. The calculations for precision and recall (P and R

respectively) are given in Equation (2.1) where “true positives” is the number

of test cases where the system correctly predicted a relation in the benchmark,

“false positives” is the number of cases where the system incorrectly predicted

a relation and “false negatives” is the number of cases where the system did

not predict a relation [19].

P =
true positives

true positives + false positives

R =
true positives

true positives + false negatives

(2.1)

1http://nlpprogress.com/english/relationship_extraction.html
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Precision and recall can be calculated for systems where one relation is

returned for an example by counting up the “true positives”, “false positives”,

and “false negatives” and inserting them to the formula in Equation (2.1).

In systems where relations are assigned a confidence value for each example,

we can order all test cases in the dataset by the highest confidence value

in each examples ranking and return only the first n of those relations [53].

This simulates predicting a relation on the first n cases and no relation on

all others [53]. The number of those n relations that are correctly predicted

according to the annotations in the benchmark is referred to as precision at

n [53]. Some literature presents a precision-recall curve, created by adjusting

the value of n to collect precision values at different recall levels [53].

F1 =
2 ∗ P ∗R
P +R

(2.2)

To compute F1, shown in Equation (2.2), different recall values from the

precision-recall curve can be tested and the highest value for F1 from these is

reported [19], [53]. This is also referred to as the harmonic mean as it attempts

to find a balance between high precision (often sacrificing recall) as well as high

recall (sacrificing precision) [19]. Accuracy is another metric that is used more

often in neural methods and calculates the total number of correct predictions

over all test cases.

2.2.2 Statistical Methods

Statistical methods for relation extraction (RE) generally involve using statis-

tics gathered from labeled data to build a model for each relation and then

finding the model that most closely resembles an input sentence [55]. To build

the models for these relations, many researchers use some of the data from the

benchmarks discussed above for training [9], [15], [38], [59]. Often, the accu-

racy of these methods is strongly correlated with the volume and quality of the

training data [55]. Unfortunately, for training data to be as close to perfect

as possible it has to be created by humans inspecting and labeling sentences,

making it expensive to create and, therefore, relatively scarce [14]. Even with
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well studied tasks like relation extraction, the need for more training data for

supervised methods is critical [14].

Distant Supervision

To avoid this issue, many supervised methods use a form of bootstrapping

to gather more labeled data for training [11], [30], [36], [47], [54]. The most

common form of bootstrapping in relation extraction nowadays is distant su-

pervision, first introduced by Mintz et al. in 2009 [31]. Distant supervision

uses an existing knowledge graph and corpus of text to label sentences with

relations [31]. In the work by Mintz et al., models are created for 102 rela-

tions on Freebase by gathering all pairs of entities related through a relation

then annotating the Freebase Wikipedia Extraction (a dump of Wikipedia)

with entity mentions and finding all sentences mentioning any of the pairs.

These sentences are then assumed to be representative of that relation and are

treated like the gold standard in the benchmarks explained above.

To create a model for each of these relations, Mintz et al. build a vector

using features extracted from the sentences collected. Negative training data is

also included for each relation by randomly selecting entity pairs not appearing

in any Freebase relation. With a feature vector for each relation, a multi-class

logistic classifier is built. At prediction, the classifier takes an entity pair and

similar feature vector constructed from a sentence mentioning the new pair

and returns a relation name and confidence score representing which relation

the input sentence is most likely to represent.

The distant supervision algorithm explained by Mintz et al. manages to

evade the need for large amounts of hand-labeled training data to build a

useful classifier [31]. Although using only the algorithm presented by Mintz

et al. achieves just under 40% precision at 10% recall on the New York Times

dataset [25], the method is incredibly valuable for gathering additional labeled

data for tasks with insufficient datasets [31]. This has been shown by numerous

papers published which use distant supervision as part of a larger system

to provide more labeled data [11], [30], [36], [47], [54]. Therefore, we apply

a distant supervised approach to Wikipedia tables with features including
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information about the article and table themselves.

2.2.3 Language Modeling

Previous work by Cannaviccio et al. [6] also used distant supervision to build

language models for 12 Freebase relations using Wikipedia text annotated with

entity mentions. Language models are built by first identifying sentences in

Wikipedia that mention entity pairs related in Freebase by any of the relations

being modeled. The phrases between each entity pair are first checked to

ensure they are relational and cleaned by replacing specific terms and values

(countries, monetary values, dates) with placeholders. Finally, the normalized

phrases between the entities are saved to a list of phrases for their relation.

The result of this method is a set of phrases for each relation assumed to be

descriptive of that relation.

At prediction time, a sentence is assigned a score for each relation using

Equation (2.3) where c(p, r) is the count of phrase p in the language model for

relation r.

score(p, ri) = log c(p, ri) · P (ri|p) where

P (ri|p) =
c(p, ri)∑
j∈R c(p, rj)

(2.3)

The authors then apply this calculation to sentences on Wikipedia men-

tioning entities in DBpedia in order to identify new instances of the 12 relations

not already in the knowledge graph [6].

The main pitfall for modeling methods is their inability to generalize to

unseen data [1]. For example, the method by Cannaviccio et al. will not

be able to predict a relation for a sentence containing a phrase never seen in

the data as the two values for c would be 0 [6]. Our work applies a similar

technique to Wikipedia tables but uses a neural network that converts the

strings in features to vectors using word embeddings to preserve the meaning

of the text. This method maps texts with similar subjects to vectors close

to one another, overcoming the problem of generalization faced by language

models [35].
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2.3 Table Understanding

In recent years, some researchers have attempted to make the tables on the

web more useful for search systems [4], [24], [39], [48]. Currently, most search

engines only index the text in a web page and ignore information provided by

tables [4]. This means users cannot search for the huge amount of data that is

described in tables that would be tedious and repetitive to discuss explicitly in

plain text [4]. Table understanding is a task parallel to information extraction

where the input is a table, rather than text, explained in Section 1.2.

2.3.1 Early Work

NLP work on tables first began with the WebTables project which automated

the conversion of HTML tables into relational databases [4]. WebTables also

presented a few tools for automated schema matching between tables as well

as automated joining of tables [4]. These two tools help consolidate simi-

lar information in different tables to provide the user with as much data as

possible [4]. This work spawned a handful of other methods also aimed at

annotating HTML tables on the web [24], [39], [48].

One hurdle that WebTables and similar methods had to overcome was

the variation across HTML tables [52]. While the web is full of unregulated

data, Wikipedia offers NLP researchers an informative, relatively noise-free

corpus on which to develop methods [32]. The standards for the language and

structure of articles as well as crowd-sourced editing on Wikipedia mean there

are fewer errors and little ambiguity in articles2. Tables on Wikipedia are

similarly monitored for structure and quality. This makes Wikipedia tables

a more suitable canvas to develop methods for processing tables on a deeper

level [3], [32]. As such, the most recent research in table understanding has

been performed on Wikipedia tables [5], [7], [32].

WikiTables, the first such work in this field, presents a user application

to simplify the exploration of tables on Wikipedia [3]. Bhagavatula et al.

implement a table joining method similar to WebTables in addition to keyword
2https://en.wikipedia.org/wiki/Wikipedia:Policies_and_guidelines
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search and a correlation mining task. WikiTables was able to take advantage of

the cleanliness of Wikipedia tables and, while working with fewer tables than

methods mining HTML tables on the web, presented a competitive system.

This work helped to highlight the viability of Wikipedia as a source for tabular

data.

More recently, research from the University of Stavanger has focused on

returning tables as results of queries and auto-completing tables as they are

created [56]–[58]. This improves existing search systems which only examine

the text of documents, ignoring potential answers provided in tables [56]. The

authors of these three papers take advantage of existing knowledge graphs

and a corpus of tables to train a ranking system for the different types of

suggestions (tables or cell values).

2.3.2 Relation Extraction on Tables

Some research in table understanding focuses on relation extraction onWikipedia

tables, the topic of this thesis [5], [7], [32]. The research done by Muñoz et al.

was the first to study relation extraction from tables [32].

The system created by Muñoz et al. [32] suggests relationships between

table columns and between columns and the article subject when pairs of the

same row are already related in an existing knowledge graph. Suggestions

are then filtered using a classifier by analyzing features of the article, table,

columns, entities, cells and resulting triples. The authors evaluate their work

on a dump of Wikipedia’s tables by manually annotating 750 of the around 37

million suggested triples using three judges. Using only triples for which there

was a unanimous agreement amongst judges, five classifiers were trained, eval-

uated and compared, with the best achieving close to 80% F1 (81% precision

and 77% recall) and producing almost eight million new triples for over 30,000

relations.

This work shows that a simple, intuitive method can provide a vast amount

of (mostly) accurate information to a knowledge graph. Our work uses a

similar dataset (Wikipedia tables) to create the same output (RDF triples)

for the same purpose (knowledge graph augmentation). Therefore, although
21



we used a different dump of Wikipedia tables, we loosely compare our final

results with Muñoz et al. showing that our system out-performs their best

classifier, which scored 78% accuracy, by over 10%.

Following Muñoz et al., a group of researchers at Roma Tre University in

Italy and the University of Alberta in Canada have published three methods

for relation extraction on tables [5], [7], [43]. All of these methods use language

models, an existing knowledge graph and an additional text corpus (Clueweb)

to determine the relationships in tables. Each entity pair in a table is scored

against a model for every relation and the highest-scoring relation is selected.

The highest F1 value reported in one paper is 71% [5] while the most recent

work reports on a different metric (mean reciprocal rank) [7]. We compare

with this work though we use a different dataset and our metrics are not the

same and report higher precision and recall.

All the methods described above that perform relation extraction onWikipedia

tables use language modeling and statistical information to predict relation-

ships [5], [7], [32], [43]. To our knowledge, our method is the first to use a

neural network.
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Chapter 3

Method

3.1 Datasets

Because our method is supervised, we required a large corpus of annotated

Wikipedia articles containing tables. Since no such dataset exists publicly, we

built our own using distant supervision with an existing knowledge graph. We

used DBpedia1 and Freebase2 as the knowledge graphs to collect entity pairs

known to be related to one another so we could search for tables mentioning

these entities in the same rows and infer a relation. In total, we collected entity

pairs for 28 Freebase relations using Freebase as well as equivalent DBpedia

relations.

For gathering our corpus of tables, we used a dump of Wikipedia from

March 2019. From this dump, we identified all articles that contained a table

object and parsed the table into JSON (referred to as our Wikipedia parser).

Information extracted from the table included table headers, captions and

cell values. We also saved information in the article including the title, type,

abstract, title of the section the table appeared in and any text appearing

in that section. Portions of the article which were saved are illustrated in

Figure 3.1.
1https://wiki.dbpedia.org/
2https://developers.google.com/freebase/
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Figure 3.1: Article fields saved by the parser for the Wikipedia article for
“Louise of Hesse-Kassel”. Each dashed red box contains one field we saved.
These include (from top to bottom) the title of the article, abstract, section
title, section paragraph, table headers, and cell values. Note that this table
does not have a caption.
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3.1.1 Relations

For the set of relations we chose to model, we combined those used in two

related works. The first of these was Mintz et al., 2008 which used the 102

largest Freebase relations at the time for building models and prediction [31].

The authors provide a table listing the 23 largest of those 102, which we use in

this work. We also used the relations provided by Cannaviccio et al., 2018 who

create language models for 9 Freebase relations [7]. After removing duplicates

for relations appearing in both sets, one of each reflexive relations (e.g. we

had person-parents and person-children and kept only person-parents), and

those no longer present in Freebase, the result is 24 relations. We also add 4

more relations (actor-character, film-production_company, film-music, actor-

film) not previously researched. We chose to add more relations for films as

there are an abundance of Wikipedia tables concerning films. The final result

is 28 relations which are given in Table 3.1.

3.2 Table Collection

To collect tables from the Wikipedia corpus that contained a pair of columns

related through one of the 28 relations, we used two methods. The first was a

modification of distant supervision using existing knowledge graphs, explained

in Section 3.2.1. The second was querying using headers, section titles and

other attributes identified to be indicative of one of the relations. This is

explained in Section 3.2.3.

3.2.1 Using Distant Supervision

We first used a form of distant supervision to collect training and testing data.

This involved gathering a list of entity pairs (e1, e2) that were related through a

relation r from our set of 28 relations. The number of pairs was highly variable

across our set of relations so we sought to find pairs another way. We settled

on identifying the equivalent DBpedia relations for each Freebase relation and

collecting those entity pairs as well. DBpedia is another public knowledge

much like Freebase but containing slightly different information due to its
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Relation Freebase Pairs DBpedia Pairs Total
person-place_of_birth 1,048,577 955,617 1,613,709
person-nationality 1,163,196 51,665 1,196,259
location-contains 433,219 771,909 1,056,940

sports_team-player 120,407 714,001 750,411
person-profession 532,612 0 532,612

film-country 470,722 25,298 476,745
person-place_of_death 336,859 245,846 475,669

actor-film 0 283,702 283,702
film-genre 270,947 0 270,947

musician-album 131,119 60,124 142,252
person-spouse 128,643 22,490 137,575
film-language 124,038 34,554 132,879

musician-origin 88,610 51,053 119,877
director-film 63,928 87,124 99,484
writer-film 39,489 84,430 98,590

person-graduate 0 98,150 98,150
producer-film 33,360 57,982 69,265

political_party-politician 0 65,420 65,420
book-genre 53,969 20,938 62,459

person-parents 54,512 20,350 58,090
person-religion 27,873 29,060 50,046
film-music 49,144 0 49,144

author-works_written 32,747 31,454 41,841
company-industry 0 38,112 38,112

football_position-player 7,259 29,480 36,739
film-production_company 11,979 1,636 13,573

actor-character 5,812 4,028 9,221
award-nominee 0 223 223

Table 3.1: Total number of entity pairs collected.

different construction method [23]. Not only did this increase the number of

entity pairs collected, but DBpedia includes more recent data whereas the pairs

we gathered from Freebase only contained information up to 2015. Table 3.1

shows for each relation the number of entity pairs collected from Freebase,

the number of pairs collected from DBpedia and the number of distinct pairs

obtained once the two were combined.

Then for each entity pair (e1, e2) collected for a relation r we searched for

Wikipedia tables with e1 and e2 appearing in cells of the same row but different

columns. We then assume that relation r holds between the two columns. We

also searched for Wikipedia tables with either e1 or e2 as the subject of the
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Relation # Tables Accuracy
sports_team-player 20,028 84%

person-place_of_birth 16,146 3.5%
person-nationality 14,297 64%

political_party-politician 9,010 78%
location-contains 7,747 89%
director-film 5,874 80%
writer-film 5,357 5.5%

musician-album 4,988 95%
actor-film 4,483 72%

producer-film 3,799 9.5%
person-spouse 2,487 15%
film-language 2,236 89%

football_position-player 2,120 100%
film-music 1,333 74%
film-genre 1,114 9.0%

person-place_of_death 1,070 6.0%
author-works_written 959 57%

film-production_companies 602 60%
actor-character 575 48%
film-country 572 73%

person-parents 390 27%
musician-origin 299 49%
person-profession 284 71%
company-industry 106 54%
person-graduate 83 37%

book-genre 28 78%
person-religion 18 78%
award-nominee 4 25%

Table 3.2: Statistics on how many tables were collected with column pairs
for each relation.

article and the other entity appearing in the cell of a table in the article.

We then assumed the article subject was related to the corresponding column

through relation r. The total number of tables returned by these queries are

shown in Table 3.2 and Table 3.3. The first column lists a relation, the second

gives the number of tables returned on average for each pair. The last two

columns show the total number of tables returned for each relation as well

as the estimated accuracy for this method. The accuracy was computed by

annotating a random sample of (up to) 200 tables per relation.
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Relation # Tables Accuracy
actor-film 20,369 93%

sports_team-player 3,900 79%
musician-album 3,755 88%
director-film 3,712 55%
writer-film 3,658 33%

location-contains 3,312 99%
producer-film 2,774 30%
actor-character 2,729 49%

person-place_of_birth 2,008 0.0%
person-nationality 1,397 0.0%

film-music 783 15%
person-profession 582 55%

political_party-politician 439 100%
person-spouse 407 4.5%

author-works_written 331 79%
person-place_of_death 202 0.0%

film-country 125 0.0%
person-parents 75 1.4%
person-graduate 70 74%
film-language 30 67%

film-production_companies 15 0.0%
company-industry 11 18%
award-nominee 8 71%

film-genre 7 14%
person-religion 2 0.0%

football_position-player 1 100%
book-genre 0 –

musician-origin 0 –

Table 3.3: Statistics on how many tables were collected with article subject-
column pairs for each relation.
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Distant Supervision Errors

The estimated accuracy for many relations posed an issue for this method whch

we managed to ameliorate using binary classifiers. The root of the problem

with our distant supervision method can be illustrated by the table shown in

Figure 3.2. This table lists films in the “Monsters, Inc.” franchise along with

their directors, producers, writers, composers and editors. There are multiple

examples of directors who were also writers in this table. For example Dan

Scanlon both directed and wrote Monsters University. These two triples are

also in DBpedia (not Freebase) which means when we queried our tables for

the pair (“Dan Scanlon”, “Monsters, Inc.”) for both film-director and film-

writer we returned a relation between columns one and two and columns one

and five. Therefore, our data for film-director and film-writer both included a

pair of columns not actually related through these relations. This is because

entities are frequently related to one another through more than one relation

and is therefore an unavoidable problem when using distant supervision. This

presents a bigger problem for some relations more than others and accounts

for almost all of the erroneous tables annotated in Table 3.2 and Table 3.3.

3.2.2 Classification for Error Reduction

Therefore, to clean up the tables collected we experimented with classifiers

to remove tables incorrectly annotatated. We chose relations which had an

accuracy below 85% to clean up with the classifiers to not risk removing too

many correctly annotated tables from those relations which are more accurate.

We created a feature vector for each table comprised of the column numbers

of the subject and object columns, number of entity pairs in the columns

present in Freebase or DBpedia, total number of pairs in all rows and percent

of pairs in the table in the database. To convert the header text, section title,

section text, and article title to vectors, we used the python library spaCy3

which has pre-trained embeddings for about a million words. We experimented

using two different lengths for our spaCy vectors for each field. For what we
3https://spacy.io/
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Figure 3.2: The table in the Wikipedia article of “Monsters Inc. (franchise)”.

30



Relation kNN (k=1) kNN (k=2) NC GNB
actor-character 0.75 0.60 0.53 0.51

actor-film 0.94 0.86 0.83 0.79
author-works_written 0.75 0.76 0.53 0.60

director-film 0.90 0.89 0.59 0.83
film-country 0.86 0.83 0.80 0.77
film-genre 0.31 0.0 0.18 0.86
film-music 0.85 0.85 0.48 0.81

film-production_company 0.68 0.61 0.43 0.71
musician-origin 0.64 0.59 0.58 0.34

person-nationality 0.93 0.91 0.90 0.88
person-parents 0.74 0.75 0.60 0.74

person-place_of_death 0.50 0.0 0.15 0.37
person-profession 0.80 0.74 0.53 0.77
person-spouse 0.34 0.22 0.33 0.67

political_party-politician 0.88 0.84 0.47 0.88
producer-film 0.25 0.0 0.24 0.24

sports_team-player 0.95 0.94 0.93 0.95
writer-film 0.17 0.0 0.16 0.12
Average 0.69 0.61 0.54 0.67

Table 3.4: F1 values of classifiers on column pair tables using 5,105-
dimensional vectors.

refer to as short vectors we used the first 3 words of the headers, section title

and article title and the first 5 words of the section paragraph. For long vectors,

we used the first 8 words of the article title, first 3 words of each header, 4

words from the section title and 14 of the section paragraph. When using

the 300-dimensional spaCy vectors, this created 5,105-dimensional vectors for

short vectors and 9,605 for the long vectors.

Once these vectors were built we took 100 annotated tables to train the clas-

sifiers and evaluated using another 100 annotated tables. We chose 3 classifiers

to experiment with - k-Nearest Neighbours (with k = 1 and k = 2), Nearest

Centroid and Gaussian Naïve Bayes. These classifiers tend to perform well

on NLP problems and are simple to train and interpret. Each classifier chose

to keep or discard an input table based on the provided feature vector. We

evaluated the classifiers by computing the F1 score of the tables kept by the

classifier. In this context, “true positives” were the tables correctly kept, “false

positives” were tables kept incorrectly, and “false negatives” were tables dis-
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Relation kNN (k=1) kNN (k=2) NC GNB
actor-character 0.72 0.65 0.56 0.28

actor-film 0.91 0.81 0.83 0.80
author-works_written 0.79 0.74 0.60 0.69

director-film 0.91 0.87 0.60 0.82
film-country 0.86 0.83 0.80 0.58
film-genre 0.17 0.0 0.18 0.80
film-music 0.85 0.86 0.48 0.83

film-production_company 0.78 0.64 0.43 0.61
musician-origin 0.72 0.60 0.58 0.55

person-nationality 0.91 0.88 0.90 0.85
person-parents 0.75 0.76 0.60 0.54

person-place_of_death 0.38 0.0 0.15 0.25
person-profession 0.80 0.69 0.53 0.63
person-spouse 0.46 0.0 0.33 0.42

political_party-politician 0.88 0.84 0.49 0.75
producer-film 0.23 0.17 0.26 0.18

sports_team-player 0.93 0.93 0.93 0.96
writer-film 0.44 0.0 0.16 0.10
Average 0.70 0.60 0.55 0.61

Table 3.5: F1 values of classifiers on column pair tables using 9,605-
dimensional vectors.

Relation kNN (k=1) kNN (k=2) NC GNB
actor-character 0.86 0.77 0.74 0.72

author-works_written 0.87 0.80 0.68 0.78
director-film 0.66 0.42 0.62 0.67
film-music 0.74 0.64 0.76 0.38

musician-album 0.98 0.95 0.89 0.95
person-profession 0.53 0.27 0.72 0.54
producer-film 0.49 0.31 0.30 0.41

sports_team-player 0.92 0.89 0.88 0.96
writer-film 0.24 0.15 0.53 0.39
Average 0.72 0.62 0.68 0.66

Table 3.6: F1 values of classifiers on article subject-column pair tables using
5,105-dimensional vectors.
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Relation kNN (k=1) kNN (k=2) NC GNB
actor-character 0.87 0.75 0.74 0.70

author-works_written 0.86 0.80 0.68 0.62
director-film 0.65 0.40 0.62 0.44
film-music 0.52 0.0 0.70 0.44

musician-album 0.97 0.94 0.89 0.95
person-profession 0.51 0.34 0.72 0.48
producer-film 0.47 0.28 0.30 0.37

sports_team-player 0.90 0.84 0.88 0.69
writer-film 0.27 0.10 0.53 0.34
Average 0.69 0.51 0.67 0.57

Table 3.7: F1 values of classifiers on article subject-column pair tables using
9,605-dimensional vectors.

carded that should have been kept. We trained and ran classifiers separately

for tables with column pairs and tables with article subject-column pairs.

The results of these experiments are given in Tables 3.4, 3.5, 3.6, and 3.7.

The tables show that for both groups, kNN with k = 1 performed best. Longer

vectors seemed to provide some extra information for the column pairs, while

the shorter vectors performed better for the article subject-column pairs. kNN

likely outperformed nearest centroid because the two classes form multiple dif-

ferent clusters based on differently formatted tables which the nearest centroid

can not manage as it computes an average for the whole class.

3.2.3 Querying

We also wrote a number of queries to find tables for each relation which may

have no entity pairs in any rows stored in Freebase or DBpedia. Most queries

looked for table headers and section titles that were identified through in-

spection of numerous tables to be characteristic of one of the relations. For

example, the pair of headers “Name” and “Children” (shown in our running ex-

ample, the Wikipedia table for “Louise of Hesse-Kassel”) relates children with

their parents. The results of running over 150 queries and annotating up to

100 tables for each of the 28 relations are shown in Table 3.8. We provide a

full list of these queries in section A.3. These results gave us far fewer tables

but with a much higher accuracy meaning we did not need to apply a classifier
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after collecting them.

For the final dataset, we also needed samples of tables not representative of

any relation. To accomplish this, we also queried for random tables, randomly

selected a pair of column numbers (including the article title) and added this to

our negative samples. This step assumes that most randomly selected tables

will not be indicative of one of our relations, a common, albeit imperfect,

assumption used when selecting negative samples for training classifiers [31],

[42].

We finally combined the tables collected by distant supervision with those

collected by querying for headers and section titles and present the numbers in

Table 3.9. These are the tables we use to train and evaluate our neural network

for relation prediction. This dataset also represents one major contribution of

our work - a large set of annotated tables for relation extraction on Wikipedia

tables4.

We also gathered statistics on how many tables actually contained the

fields we were saving. Table 3.10 gives a breakdown by relation of what per-

cent of tables contained a caption, headers, abstract and section paragraph.

We concluded that tables that didn’t have an abstract were likely a bug in

the Wikipedia parser caused by irregularities in the Wikipedia markup as all

articles on Wikipedia contain an abstract. Tables without headers were also

mostly as a result of the parser not handling the markup properly. Tables

without either a caption or a section paragraph are likely intentional as these

are not a requirement for tables on Wikipedia and are often omitted. This is

indicative of how much contextual information the LSTM is provided with to

deduce relations.

3.3 Prediction

The next step in our method was using the tables we collected to train a neural

network to perform relation prediction on an unseen table. For our neural
4The dataset of tables in JSON format and of entity pairs collected

from Freebase and DBpedia (in CSV) is available for download here:
https://doi.org/10.7939/DVN/SHL1SL [26]
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Relation Column Pairs Article Subject-
Column Pairs

# Tables Accuracy # Tables Accuracy
sports_team-player 22,041 98% 61 100%

political_party-politician 17,969 99% 45 100%
football_position-player 13,076 87% 0 –

person-nationality 7,002 100% 0 –
musician-album 5,528 100% 3,032 91%
location-contains 5,384 100% 737 98%
award-nominee 5,725 100% 0 –
person-graduate 5,408 100% 0 –
director-film 3,816 99% 688 88%
film-language 2,952 100% 0 –

author-works_written 1,372 89% 340 90%
actor-film 1,231 96% 26,946 98%

person-profession 716 97% 0 –
musician-origin 632 100% 0 –
producer-film 456 99% 508 92%
film-music 399 97% 0 –
film-country 380 100% 0 –

film-production_company 275 98% 0 –
person-parents 272 100% 459 96%
film-genre 203 94% 0 –
writer-film 199 80% 0 –

person-place_of_birth 180 100% 0 –
company-industry 102 100% 0 –
person-spouse 90 100% 0 –
actor-character 57 88% 21,405 97%
person-religion 42 100% 0 –
book-genre 9 89% 0 –

person-place_of_death 4 100% 0 –

Table 3.8: Number of tables collected and estimated accuracy of query
method.
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Relation Distant
Supervision Querying Total Accuracy

sports_team-player 21,440 22,102 38,897 96%
actor-film 22,580 28,177 38,319 96%

political_party-politician 8,642 18,014 25,965 96%
actor-character 1,724 21,462 22,157 96%
location-contains 11,059 6,121 15,682 95%

football_position-player 2,121 13,076 14,360 89%
musician-album 8,049 8,560 14,058 96%

person-nationality 8,865 7,002 13,433 95%
No relation – – 12,491 –
director-film 7,019 4,504 9,067 89%

award-nominee 6 5,725 5,730 100%
person-graduate 83 5,408 5,486 100%
film-language 2,256 2,952 3,522 95%

author-works_written 588 1,712 2,031 87%
producer-film 668 964 1,526 75%
writer-film 1,036 199 1,233 40%
film-music 932 399 1,137 86%

person-profession 420 716 1,129 88%
person-parents 122 731 801 94%
film-country 474 380 760 92%

musician-origin 112 632 743 96%
film-production_company 446 275 654 81%

person-spouse 305 90 390 58%
film-genre 8 203 208 91%

person-place_of_birth 0 180 180 100%
company-industry 59 102 137 100%

person-place_of_death 133 4 137 40%
person-religion 14 42 49 100%
book-genre 22 9 31 97%

Table 3.9: The total number of tables in our dataset for each relation split
by collection method. Note that the total number of tables given in column
four can be less than the sum of distant supervision and querying tables due
to overlap. The estimated accuracy is given in the last column.
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Relation Abstract Caption Paragraph
actor-character 95% 16% 0%

actor-film 93% 15% 1%
author-works_written 97% 9% 21%

award-nominee 98% 2% 9%
book-genre 100% 3% 0%

company-industry 98% 9% 39%
director-film 95% 4% 9%
film-country 98% 2% 27%
film-genre 99% 8% 10%

film-language 96% 1% 8%
film-music 96% 1% 16%

film-production_company 98% 6% 15%
football_position-players 90% 1% 5%

location-contains 97% 11% 27%
musician-album 96% 8% 6%
musician-origin 99% 2% 24%
No relation 95% 7% 19%

person-nationality 95% 1% 10%
person-graduate 86% 7% 9%
person-parents 89% 1% 24%

person-place_of_birth 96% 7% 27%
person-place_of_death 97% 5% 35%

person-profession 95% 4% 20%
person-religion 97% 4% 42%
person-spouse 89% 3% 22%

political_party-politician 98% 5% 19%
producer-film 96% 10% 4%

sports_team-player 96% 4% 11%
writer-film 97% 5% 4%

Table 3.10: Statistics on what fields were present in the tables collected.
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network we use an LSTM, an architecture which has been shown to perform

well in NLP problems [22], [50], [51]. Our LSTM consisted of an input layer

which took what we refer to as article embeddings (discussed in Section 3.3.1)

built from the table and BERT word embeddings. We tune weights using

specificity and sensitivity rather than accuracy because our classes (relations)

have such skewed samples making accuracy impractical in this case. The input

was then sent into an LSTM layer which outputted a 29 dimensional vector.

This was followed by a dense layer and the output layer both inputting and

outputting 29 dimensions. The structure of our prediction method is shown

in Figure 3.3.

We explain in the following two sections in more detail what input the

network reads followed by the output vector.

3.3.1 Input

Starting with an article and a pair of column numbers, we first created a vector

to represent the input. To begin we tokenized the headers, section title, section

text and table caption. We refer to these as the fields. We then concatenated

the BERT vectors for all the fields. If no BERT vector existed for a term,

we generated a random vector so as not to skew the vector too far in any

dimension. Then, we padded each of the 4 fields to a specified length (which

we experiment with in Section 4.1.1) and combined all the BERT vectors into

a single vector for the article.

3.3.2 Output

Once the input vector had been sent through the LSTM later, dense layer,

and the activation function, the output was a 29-dimensional vector. Each

index of this vector represented one of our 28 relations or no relation. The

value for a given index was the probability the network predicted for the table

representing that relation. To predict a relation for the input table, we chose

the most probable relation predicted (including no relation). Once a relation

was predicted, we could then create tuples for the rows of the input table.
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Figure 3.3: The architecture of our prediction model. Starting with an
unseen article containing a table, we use BERT embeddings taken from the
table headers, caption, section title and section text to create a vector for the
article. This input vector is sent first to an LSTM unit followed by a dense
layer. Each value is then sent through an activation function. The output is
a 29-dimensional vector. Each value in the vector corresponds to a predicted
probability that the input article and column numbers are representative of
the relation represented by that index of the vector.
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Chapter 4

Experiments

Our experiments included parameter tuning to optimize our neural network

(in Section 4.1) followed by a comparison with a baseline explained in Sec-

tion 4.2. We then ran some ablation studies (Section 4.3.1) and performed an

error analysis in Section 4.3.2. We tuned our parameters on a development set

comprising of 40% of our data or 92,130 tables. When the best set of param-

eters was found, we then trained a new network on another 40% of the data

(92,118 tables) and tested on the remaining 20% (46,077 tables). We report

the results of this final network along with two related works (Muñoz et al.

and Cannaviccio et al.) in Section 4.3.

4.1 Parameter tuning

Using 40% of our data for development, our first step was to find an optimal

set of parameters for our network. Because of the imbalance in class samples,

we trained the network using sensitivity and specificity instead of accuracy.

Parameters to tune included the vector length mentioned in Section 3.3.1 and

parameters for the network. Network parameters were the loss function, op-

timizer, activation function, number of epochs, batch size, and learning rate.

For each parameter setting, we created five networks using different splits of

the provided development data for training (80%) and testing (20%). We

report the accuracy for each parameter setting by computing the average of

these five in Section 4.1.1.
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Figure 4.1: Accuracy scores for four different activation functions. Other
parameter settings were categorical crossentropy for the loss function, adam
as an optimizer, batches of 128 samples, a learning rate of 0.001, and a vector
length of 19,968.

4.1.1 Results

We tuned parameters sequentially starting with the activation function and

report the accuracy of the network for five different epoch values.

Activation Function

Using defaults for the other parameters, Figure 4.1 shows how using softmax,

tanh, sigmoid and linear activation functions each fared when trained for 25,

30, 40, 50, and 75 epochs. Based on the results of this test we concluded that

softmax was the activation function best suited to this task. Softmax managed

to outperform every other function consistently for each epoch value.

Loss Function

Using softmax as the activation function, we then tested the loss function.

Here, the options were categorical crossentropy (tested above as the default),

binary crossentropy and Kullback-Leibler divergence (KL divergence). Fig-

ure 4.2 shows how the three functions performed. Analysing this figure, the

results were slightly less clear than those obtained when tuning the activation
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Figure 4.2: Accuracy scores for four different loss functions using softmax as
the activation function. Other parameters were adam as an optimizer, batches
of 128 samples, learning rate of 0.001, and a vector length of 19,968.

function (note the difference in scale), though binary categorical crossentropy

seemed to perform slightly worse than the other two. Considering this, we per-

formed the next set of experiments using both KL divergence and categorical

crossentropy.

Optimizer

Our options for optimizers were adam, rmsprop, adagrad and adamax. The

experiments are shown in Figure 4.3 with solid lines denoting the use of KL

divergence as the loss function and dashed lines the use of categorical crossen-

tropy. The four colours correspond to the four optimizers.

This comparison led us to a few conclusions. First, adagrad and adamax

performed worse than adam and rmsprop regardless of loss function. Second,

there was not notable difference between the accuracy values of adam and

rmsprop using either loss function. With this in mind, we chose the pair-

ing that produced the highest accuracy for further experiments, categorical

crossentropy and rmsprop.
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Figure 4.3: Accuracy scores for four different optimization functions using
softmax as the activation function and two different loss functions. Other
parameters were batches of 128 samples, learning rate of 0.001, and a vector
length of 19,968.

Batch Size

Next, we investigated how batch size impacted the accuracy by testing sizes of

128 (the default), 64, 32, 16, and 8. We found that smaller batch sizes boosted

the accuracy, shown in Figure 4.4. Based on this figure, we proceeded using

the smallest batch size we could train in a reasonable amount of time, 16.

Learning Rate

Once the batch size was chosen, we could tune the learning rate to the most

approprate value. These two parameters are closely related so we checked

what learning rate worked best for batch sizes of 16 samples. Figure 4.5 shows

how learning rates of 0.01, 0.001 (the default, used up until this point), and

0.0001 performed over five epoch values. From this, we concluded that the

default value of 0.001 was slightly better-suited for a batch size of 16 than the

other two.
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Figure 4.4: Accuracy scores of five different batch sizes using softmax, cat-
egorical crossentropy as the loss function and rmsprop as the optimizer. Un-
tuned learning rate was 0.001 and vector length was 19,968.

Figure 4.5: Accuracy scores of three different learning rates using softmax,
categorical crossentropy, RMSProp, and batches of 16 samples. Untuned vec-
tor length was 19,968.
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Vector Length

Finally, we compared three different feature vector lengths. Short vectors

used the first 2 words of a caption, the first word of each header, the first

2 words of the section title and the first 20 of the section paragraph. This

created vectors with 19,968 dimensions for each article when using BERTs 768

dimension vectors for each term. We used these short vectors as the defaults

for the earlier experiments. Medium vectors used 3 words of the caption, the

2 first words of each header, first 3 words of the section title and the first 24

words of the section paragraph. This created vectors with a length of 26,112.

Finally, long vectors took the first 5 words of the caption, the first 4 words of

each header, first 5 of the section title and the first 35 words of the section

paragraph. Long vectors were 40,704 dimensions. We chose these values based

on the median length of each field: 2 words in a caption, 1 in headers, 2 in

section title, and 23 in the section paragraph.

We report how each of these three lengths performed in Figure 4.6. The

results of this experiment show that using more words in the features does

not improve the accuracy and likely decreases it slightly due to the addition

of more parameters the network has to tune. Therefore, we conclude that the

best vector has a length of 19,968 dimensions.

When testing the five epoch values used previously (25, 30, 40, 50, and

75), we found that 50 epochs performed best but were forced to use 40 in the

interest of time. This concluded our parameter tuning. Moving forward, all re-

ported results use softmax as the activation function, categorical crossentropy

to compute loss, RMSProp as the optimizer, batch sizes of 16, a learning rate

of 0.001 and vectors of 19,968 dimensions.

4.2 Baseline

Because no work has had a similar enough usage to ours, we compared with

a baseline and loosely compare with previous work discussed in Section 2.3.

Our baseline method took all entity pairs available given a table and columns

(or column and article subject) and queried Freebase for the set of relations
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Figure 4.6: Accuracy scores of three different vector lengths using softmax,
categorical crossentropy, RMSProp, batches of 16, and a learning rate of 0.001.

any of these pairs were related through. For example, to predict a relationship

between the article subject and first column of the table in Section 1.2 the

baseline queried for Freebase relations connecting the following list of entity

pairs:

dbr:Louise_of_Hesse_Kassel - dbr:Frederick_VIII_of_Denmark

dbr:Louise_of_Hesse_Kassel - dbr:Princess_Alexandra_of_Denmark

dbr:Louise_of_Hesse_Kassel - dbr:George_I_of_the_Hellenes

dbr:Louise_of_Hesse_Kassel - dbr:Princess_Dagmar_of_Denmark

dbr:Louise_of_Hesse_Kassel - dbr:Princess_Thyra_of_Denmark

dbr:Louise_of_Hesse_Kassel - dbr:Prince_Valdemar_of_Denmark

To predict a relation we then took the most frequently returned relation

from the queries, breaking ties alphabetically. For the example above no re-

lations would be returned for any of the pairs meaning the baseline would

predict no relation for that pair of columns of the table. We ran this baseline

on the 20% of our tables set aside for testing and report results in Section 4.3.
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4.3 Results

Once we chose the best parameter settings for the development set, we trained

a network using the same parameters on the training set and tested on the

testing set. We compared our results on the test set with the baseline described

in Section 4.2. The accuracies of the two methods both broken down by

relation and on average across the whole test set are shown in Table 4.1. This

table shows that while our network does perform poorly for some relations,

the overall accuracy for each relation is much better than the baseline. For

the majority of relations, our network is able to predict the correct relation

over 90% of the time and averages over 87%. In Section 4.3.2 we discuss the

reasons our network fails for some relations.

We then performed a loose comparison with related methods discussed in

Section 2.3.2. Table 4.2 has the results of this comparison and shows that,

although the datasets are different for each of these systems, our accuracy

is consistently higher than the two non-neural methods [5], [32]. In total,

we were also able to extract an average of 582,691.4 new triples not already

present in Freebase. From this, we can conclude that not only are neural

networks applicable to this problem but LSTMs are well-suited despite being

created to parse running text.

4.3.1 Ablation Studies

We ran a number of ablation studies to test how different parts of the method

contributed to the accuracy. We started by testing how BERT embeddings

performed compared to GloVe. Since its release in 2019, BERT has overtaken

GloVe as the top embedding system [8], [35]. Building vectors for articles

using GloVe was done the same as is described in Section 4.1.1 but instead of

768 dimensions, we used 300 dimension vectors trained on Common Crawl1.

We created vectors the same number of tokens from each field of the article

as the “small” vectors described in Section 4.1.1 producing 7,800 dimension

vectors. The results of this test are shown in Figure 4.7 and show that using
1https://github.com/stanfordnlp/GloVe
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Relation Baseline Network
actor-character 0.4% 99.5%

actor-film 1.7% 83.8%
author-works_written 24.6% 87.5%

award-nominee 2.4% 100%
book-genre 42.9% 80%

company-industry 21.4% 96.4%
director-film 0% 78.8%
film-country 0% 83.5%
film-genre 19.0% 95.7%

film-language 52.9% 98.1%
film-music 49.6% 90.7%

film-production_companies 48.1% 0%
football_position-players 0% 96.6%

location-contains 0% 95.1%
musician-album 32.8% 95.7%
No relation 100% 63.1%

person-nationality 0% 95.9%
person-graduate 7.9% 98.5%
person-parents 0% 74.5%

person-place_of_birth 0% 99.4%
person-place_of_death 0% 8.6%

person-profession 17.7% 79.6%
person-religion 10.0% 58.0%
person-spouse 6.4% 53.8%

political_party-politician 0% 96.5%
producer-film 0% 0%

sports_team-player 12.4% 95.5%
writer-film 0% 38.6%

(Micro)Average 15.3% 87.7%

Table 4.1: Prediction accuracy on the test split achieved by the baseline and
our method (trained on the training split).

Accuracy Precision Recall F1
Muñoz et al. [32] 78.13% 81.54 77.37 79.40

Cannaviccio et al. [5] – 82 68 74
Present work 87.7% 98.71 91.59 95.02

Table 4.2: Comparison of our system on accuracy, precision, recall and F1
against two other methods.
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Figure 4.7: Accuracy values of our method using BERT embeddings and
GloVe embeddings.

GloVe embeddings significantly impacts the accuracy. We conclude that BERT

far outperforms GloVe likely due to the higher dimensionality, better vector

encoding, use of contextual information, and larger vocabulary.

We also tested how each part of the Wikipedia article impacts the accuracy.

To do this, we ran one set of tests for each field (caption, headers, section title

and section paragraph) removing a different field each time. The results in

Figure 4.8 show which fields provided the most information to the network.

Removing captions reduced the accuracy slightly but not significantly. This

was to be expected as most tables contained no caption. Removing the headers

and section information impacted the accuracy much more. Therefore, these

three features are likely weighted similarly in the network and provide the most

information used for prediction, with the section title contributing slightly

more than the other two.

4.3.2 Error Analysis

For the baseline, errors were almost always a prediction of no relation when

a relation did exist between the pairs. This is caused by an absence of in-

formation in the knowledge graph and helps illustrate the importance of this
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Figure 4.8: Accuracy values of our method removing one feature each time.

work. A small number of errors for twelve of the relations were predictions of

a different relation which can be attributed to entities being related through

more than one relation, explained in Section 3.2.1.

For our method, most errors were caused be a prediction of very similar

relations like film-writer instead of film-director. This is likely because the

majority of the information passed to the network points to the relation con-

cerning a person and a film, but discerning a writer versus director is difficult

and is done incorrectly in some cases. In addition, having fewer training ex-

amples gives the network less of a chance to tune the weights for that relation.

As a result, relations with few examples like person-place_of_death had a low

accuracy whereas relations like sports_team-player had a higher accuracy.

Both of these errors combine to adversely impact the accuracy for the rela-

tions film-production_companies and producer-film. First, this is a case where

the structure and content of the articles is very similar to others concerning

films (of which there are many). For example, section titles for many of the

articles for these relations are “Filmography” and headers are often “Film” or

“Title”. Second, there are only 654 and 1,526 total samples for these relations

respectively. This is not only a small number of samples overall, but a very

small number when considering how many samples there are for actor-film,
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actor-character, and director-film.

Finally, the accuracy of the collection of tables has a large impact on the

accuracy of the network prediction. By examining Table 3.9 along with Ta-

ble 4.1, we see that relations which had a low accuracy for collecting tables also

had a lower accuracy in the network. Good examples of this are writer-film

and film-music. These have a similar number of tables collected and tables

with a very similar format; however, film-music had a much higher collec-

tion accuracy (86%) than writer-film (40%). This is carried forward to the

network and explains the low accuracy for relations like writer-film, producer-

film, person-place_of_death, and person-spouse.
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Chapter 5

Conclusion

5.1 Overview

In this thesis, we presented a method for annotating tables using a combination

of information extraction, distant supervision, binary classification and neural

networks. Beginning with a set of twenty eight relations, we created a corpus

of 200,000 Wikipedia tables annotated with relations. We used two methods

to annotate this data in order to balance precision and recall.

The first, modeled after distant supervision, used a set of entities known

to be related in a knowledge graph to find tables mentioning any of these

pairs in either a pair of columns or the article subject and a column. Because

of the amount of noise introduced by this method, we tested four different

classification methods to clean up this dataset after hand annotating 200 tables

for each relation. We showed that k-Nearest Neighbours performed best and

improved the accuracy of this dataset significantly.

We also created custom queries for each relation to pull additional tables

missed by the method above that had pairs absent in the knowledge graph.

This step achieved much higher precision (above 95% for most relations) but

returned far fewer tables.

This produced our dataset, which is publicly available for future methods

to take advantage of. We split this dataset into 40% development to tune

the parameters of our neural network, 40% to train and 20% to test the final

network. After tuning six parameters, the network was able to achieve over

90% accuracy on the development set and 87.7% accuracy when trained on

52



the training set and tested on the test set.

We showed in our ablation studies that BERT far exceeds GloVe as an

embedding tool for our work. In addition, we investigated how the different

features of the Wikipedia article contributed to the accuracy of the network.

In this set of tests, we showed that while the captions of the tables are not

often informative, the other three features (section title and paragraph and

headers) are weighted approximately equally.

Finally, we tested how many new triples could be added using our method

from just the tables in the test set. On average for the test set, our method

was able to extract 582,691 new triples.

In conclusion, we were able to prove in this thesis that a neural method

for relation extraction on tables on Wikipedia is both appropriate and accu-

rate. The accuracy of our network is competitive with state-of-the-art relation

extraction methods for text without the semantic and syntactic information.

Our work also achieved higher accuracy and F1 than other work for relation

extraction on tables. Finally, our method for gathering tables to produce a

dataset is the first of its kind and the first corpus of annotated tables to be

released publicly.

5.2 Limitations

The main limitation to our work is the availability of training data. As we

explained in subsection 4.3.2, when a relation has a small number of samples

to train the network with, the prediction accuracy suffers. With this in mind,

because of the nature of neural networks, there are not many other limitations

for our method. As long as an article has headers, a section title and some

text in the section, our system will be able to produce an accurate prediction.

Our system is also not specific to the set of relations used in this thesis. As

long as an appropriate number of training tables can be gathered, the network

can be trained to predict any other relation.
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5.3 Future Work

There are a number of directions for future work for this thesis. First of all,

this method is applicable to other datasets of tables. For example, works like

WebTables scan a corpus of tables from the web, not just Wikipedia [4]. The

method described in this thesis can easily be applied to similar annotated

datasets.

Alternative unsupervised approaches to annotating articles like feature

learning with the help of libraries such as snorkel1 could also be applied to

this problem [37]. Methods like this annotate a corpus using predefined func-

tions and learn the best weights for each function to create the training and

testing data. It would be interesting to study how using feature learning to

gather tables would perform in comparison to our method.

In addition, our method for selecting negative examples is imperfect and

can be improved upon. The number of negative samples (12,491) is low com-

pared to some other relations which likely impacts the final accuracy of the

method. The makeup of these tables is also likely too widely varied for the

network to learn appropriate weights. Finding a more sophisticated way to

collect more negative samples would likely improve the accuracy of the system.

Fourth, we created models and experimented on 28 relations which is an

improvement on some earlier works which could predict between 10 and 15

relations. An interesting direction for future work would be a test of how

many relations are predictable in tables.

Another direction this work could be steered is in predicting properties

rather than relations. In DBpedia, properties describe an entity using literals.

For example, a persons birthdate or height or the GDP or population of a

country are all properties. As long as an appropriate dataset can be obtained

using a method like the one described in section 3.2, a similar network can be

trained to predict properties in tables as well.

We also did not experiment with the architecture of the neural network

and made the assumption that an LSTM would be most appropriate based on
1https://www.snorkel.org/
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their success in other natural language processing tasks. With this in mind,

another path for future work would be a thorough experimentation on the

structure of the network which has the potential to improve accuracy even

further.

Finally, more features have the ability to provide more information that

could be useful for the network. For example, we did not use the text present

in the cells, any type information about the entities in the columns or the

article title as features in the network. We also did not analyse the abstract

of the article, features of the entities in the table or other available text in the

article.
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Appendix A

Background Material

A.1 Relation Names

We used simplified names for Freebase relations in the tables throughout this

thesis to keep tables and explanations more concise. In Table A.1 we provide

the exact relations matched to the shortened terms used above. We also show

in this figure the equivalent DBpedia relations used to gather entity pairs in

Section 3.2.1.

In Table A.2 we list the related work we got each relation from.

A.2 Annotations

In this section we discuss some of the assumptions made when annotating

tables to check the accuracy of the collection steps explained in Section 3.2. For

a pair of columns or an article subject and column to be annotated as correct

for some relation, the annotator had to be able to deduce the relationship based

solely on the headers and context of the table. For example, consider a table

listing film titles and people involved in the film with the header “Director(s)”

and every person also wrote the film in their row. If this table was assigned the

relation film-writer, we label it as incorrect. We annotate this way because our

method relies on the information provided by the table and does not analyse

existing relations between the entities.

For some relations, we make simplifications about the timing. For sports_team-

player, we do not take into account former teams. This means we annotate
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Relation Source Literature
person-nationality

Mintz et al. [31]

location-contains
person-profession

person-place_of_birth
film-genre

film-language
film-country
writer-film
director-film
producer-film

person-place_of_death
musician-origin
person-religion

author-works_written
football_position-player

book-genre
film-music

company-industry
person-parents

Cannaviccio et al. [7]

person-graduate
sports_team-player

political_party-politician
award-nominee
person-spouse
actor-film

Nonemusician-album
film-production_company

actor-character

Table A.2: Source literature of each relation.
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an out-of-date table listing the roster of a sports team is correct even though

many of the players may not play for that team anymore. Similarly, with

person-graduate, we include tables listing people who we know attended the

school (based on the information in the table), but may not have graduated.

Some relations are ambiguous and we err on the side of generality in these

cases. musician-album is an example of this in which artists could contribute

to a song in an album which we annotate as correct. Likewise, film-writer

could include the screenwriter or story creators.

A.3 Queries

We ran 193 queries to collect tables for each relation based on the headers,

section title and article type. Below we list all the queries broken down by

relation:
actor-character

• (Headers = “Actor” & “Character”) & (Section title = “Filmography” | “Films”)

• (Headers = “Actor” & “Role”) & (Section title = “Filmography” | “Films”)

• (Headers = “Actress” & “Character”) & (Section title = “Filmography” | “Films”)

• (Headers = “Actress” & “Role”) & (Section title = “Filmography” | “Films”)

• (Headers = “Title” & “Role”) & (Section title = “Filmography” | “Films” |
“Film” | “Selected filmography”)

• (Headers = “Film” & “Role”) & (Section title = “Filmography” | “Films” |
“Film” | “Selected filmography”)

actor-film

• Headers = (“Cast” & “Film”)

• Headers = (“Actor” & “Film”)

• Headers = (“Actress” & “Film”)

• Headers = (“Cast” & “Movie”)

• Headers = (“Actor” & “Movie”)

• Headers = (“Actress” & “Movie”)

• Headers = (“Cast” & “Title” ) & (Section title = “Filmography” | “Films”)

• Headers = (“Actor” & “Title”) & (Section title = “Filmography” | “Films”)

• Headers = (“Actress” & “Title”) & (Section title = “Filmography” | “Films”)

• Headers = (“Cast” & “Title”) & (Section title = “2010s” | “2000s”)

• Headers = (“Actor” & “Title”) & (Section title = “2010s” | “2000s”)
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• Headers = (“Actress” & “Title”) & (Section title = “2010s” | “2000s”)

author-works_written

• Headers = (“Author” & “Title”)

• Headers = (“Author” & “Book”)

• Headers = (“Writer” & “Book”)

• Headers = (“Title”) & (Section title = “Bibliography” | “Novels” | “Fiction” |
“Non-fiction” | “Books”) & (Article type = “person” | “writer”)

award-nominee

• (Headers = “Category” & “Recipient”)

• (Headers = “Award” & “Recipient”)

• (Headers = “Award” & “Winner”)

book-genre

• (Headers = “Title” & “Genre”) & (Section title = “Bibliography”)

• (Headers = “Title” & “Genre(s)”) & (Section title = “Bibliography”)

• (Headers = “Work” & “Genre”) & (Section title = “Bibliography”)

• (Headers = “Work” & “Genre(s)”) & (Section title = “Bibliography”)

company-industry

• (Headers = “Company” & “Industry”)

• (Headers = “Company” & “Sector”)

• (Headers = “Employer” & “Industry”)

• (Headers = “Name” & “Industry”) & (Section title = “Companies”)

director-film

• (Headers = “Director” & “Title”) & (Section title = “Filmography” | “Films”)

• (Headers = “Director” & “Film”)

• (Headers = “Director” & “English Title”) & (Section title = “Filmography” |
“Films”)

• (Headers = “Director(s)” & “Title”) & (Section title = “Filmography” | “Films”)

• (Headers = “Director(s)” & “Film”)

• (Headers = “Director(s)” & “English Title”) & (Section title = “Filmography”
| “Films”)

• (Headers = “Film”) & (Section title = “As director”) & (Article type = “per-
son”)

• (Headers = “Title”) & (Section title = “As director”) & (Article type = “per-
son”)

• (Headers = “Movie”) & (Section title = “As director”) & (Article type = “per-
son”)
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• (Headers = “Film”) & (Section title = “Director”) & (Article type = “person”)

• (Headers = “Title”) & (Section title = “Director”) & (Article type = “person”)

• (Headers = “Movie”) & (Section title = “Director”) & (Article type = “person”)

• (Headers = “English title”) & (Section title = “Director”) & (Article type =
“person”)

film-country

• (Headers = “Title” & “Country”) & (Section title = “Filmography” | “Films”)

• (Headers = “Film” & “Country”)

• (Headers = “English title” & “Country”) & (Section title = “Filmography” |
“Films”)

• (Headers = “Title” & “Production Country”) & (Section title = “Filmography”
| “Films”)

• (Headers = “Film” & “Production Country”)

• (Headers = “English title” & “Production Country”)

film-genre

• (Headers = “Film” & “Genre”)

• (Headers = “Title” & “Genre”) & (Section title = “Filmography” | “Films”)

• (Headers = “Movie” & “Genre”)

• (Headers = “English title” & “Genre”) & (Section title = “Filmography” |
“Films”)

film-language

• (Headers = “Film” & “Language”)

• (Headers = “Title” & “Language”) & (Section title = “Filmography” | “Films”)

• (Headers = “Movie” & “Language”)

• (Headers = “Name of Film” & “Language”)

film-music

• (Headers = “Film” & “Music Director”)

• (Headers = “Film” & “Composer”)

film-production_companies

• (Headers = “Title” & “Studio”) & (Section title = “Filmography” | “Films”)

• (Headers = “Title” & “Studio(s)”) & (Section title = “Filmography” | “Films”)

• (Headers = “Film” & “Studio”)

• (Headers = “Film” & “Studio(s)”)

• (Headers = “Movie” & “Studio”)

• (Headers = “Movie” & “Studio(s)”)
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football_position-player

• (Headers = “Position” & “Name”) & (Section title = “Name”) & (Article type
= “football club season” | “Football club season” | “football club”)

• (Headers = “Position(s)” & “Name”) & (Section title = “Name”) & (Article
type = “football club season” | “Football club season” | “football club”)

• (Headers = “Pos.” & “Name”) & (Section title = “Name”) & (Article type =
“football club season” | “Football club season” | “football club”)

• (Headers = “Position” & “Name”) & (Section title = “Player”) & (Article type
= “football club season” | “Football club season” | “football club”)

• (Headers = “Position(s)” & “Name”) & (Section title = “Player”) & (Article
type = “football club season” | “Football club season” | “football club”)

• (Headers = “Pos.” & “Name”) & (Section title = “Player”) & (Article type =
“football club season” | “Football club season” | “football club”)

location-contains

• (Headers = “Country” & “City”)

• (Headers = “State” & “City”)

• (Headers = “Province” & “City”)

• (Headers = “Country” & “City”)

• (Headers = “Country” & “County”)

• (Headers = “Country” & “State”)

• (Headers = “Country” & “Province”)

musician-album

• (Headers = “Artist” & “Album”)

• (Headers = “Other artist(s)” & “Album”)

• (Headers = “Artist(s)” & “Album”)

• (Headers = “Album”) & (Section title = “Albums”) & (Article type = “musical
artist”)

• (Headers = “Title”) & (Section title = “Albums”) & (Article type = “musical
artist”)

• (Headers = “Album”) & (Section title = “Discography” | “Studio albums”) &
(Article type = “musical artist”)

• (Headers = “Title”) & (Section title = “Discography” | “Studio albums”) &
(Article type = “musical artist”)

• (Headers = “Album”) & (Section title = ) & (Article type = “musical artist”)

musician-origin

• (Headers = “Artist” & “Hometown”)

• (Headers = “Artist” & “Origin”)
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person-graduate

• (Headers = “COLLEGE” & “ROSTER”)

• (Headers = “University” & “Name”)

• (Headers = “College” & “Name”)

• (Headers = “College” & “Player”)

person-nationality

• (Headers = “Name” & “Nationality”)

• (Headers = “Name” & “Nation”)

• (Headers = “Name” & “Nat”)

• (Headers = “Name” & “Nat.”)

person-parents

• (Headers = “Name” & “Father”)

• (Headers = “Name” & “Parents”)

• (Headers = “Children” & “Name”)

person-place_of_birth

• (Headers = “Name” & “Place of Birth”)

• (Headers = “Name” & “Birthplace”)

person-place_of_death

• (Headers = “Name” & “Place of Death”)

• (Headers = “Person” & “Place of Death”)

person-profession

• (Headers = “Name” & “Occupation”)

• (Headers = “Celebrity” & “Occupation”)

person-religion

• (Headers = “Name” & “Religion”)

• (Headers = “Chaplain” & “Denomination”)

• (Headers = “Patriarch” & “Church”)

• (Headers = “Senator” & “Religion”)

person-spouse

• (Headers = “Name” & “Husband”)

• (Headers = “Name” & “Wife”)

• (Headers = “Name” & “Spouse”)

political_party-politician
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• (Headers = “Party” & “Representative”)

• (Headers = “Party” & “Name”)

• (Headers = “Party” & “Candidate”)

• (Headers = “Party” & “Member”)

producer-film

• (Headers = “Producer” & “Film”)

• (Headers = “Producer” & “Title”) & (Section title = “Filmography” | “Films”)

• (Headers = “Producer” & “English title”) & (Section title = “Filmography” |
“Films”)

• (Headers = “Producer” & “Movie”)

• (Headers = “Producer(s)” & “Film”)

• (Headers = “Producer(s)” & “Title”) & (Section title = “Filmography” | “Films”)

• (Headers = “Producer(s)” & “English title”) & (Section title = “Filmography”
| “Films”)

• (Headers = “Producer(s)” & “Movie”)

sports_team-player

• (Headers = “Club” & “Player”)

• (Headers = “Team” & “Player”)

• (Headers = “Club” & “Driver”)

writer-film

• (Headers = “Writer” & “Title”) & (Section title = “Filmography” | “Films”)

• (Headers = “Writer” & “Film”)

• (Headers = “Writer” & “Movie”)

• (Headers = “Writer(s)” & “Title”) & (Section title = “Filmography” | “Films”)

• (Headers = “Writer(s)” & “Film”)

• (Headers = “Writer(s)” & “Movie”)

A.4 Confusion Matrix
Below we present the average confusion matrix obtained by our final network on
the test data. This is an average of 5 runs. Network predictions are represented
by the top axis while target relations are along the leftmost axis. For example,
the network incorrectly predicted actor-character an average of 10.4 times when the
proper relations was actor-film. Diagonals (correct predictions) are bolded.
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