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Abstract 

Taxanes are used for the treatment of breast, ovarian, and lung cancer. 

Unfortunately, taxane based therapy—the current treatment for metastatic 

breast cancer—has substantial shortcomings including myelosupression, 

neurotoxicity, and frequently acquired resistance. Our present understanding 

of taxane cytotoxicity is incomplete and prevents rational approaches to 

taxane improvement. Autophagy is a celluar process that digests portions of 

the cytosol to provide metabolic support in times of stress. This process is 

capable of promoting survival or conversely promoting cell death, depending 

on the context. The relationship between paclitaxel and autophagy is 

unclear. In this study, we show that paclitaxel causes inhibition of autophagy 

in breast cancer cells, both by decreasing autophagosome formation and by 

altering autophagosome trafficking and localization. Autophagy inhibition 

protects breast cancer cells against paclitaxel induced cell death, suggesting 

that manipulation of autophagy may represent a therapeutic target for 

improving breast cancer treatment options.  
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1.1 Paclitaxel treatment of breast cancer 

Paclitaxel was identified in a National Cancer Institute screen designed to 

identify antitumor agents in plant samples (Wall and Wani 1995). The 

isolation and purification of the compound occurred in the late 1960s, 

followed shortly by the first report describing its structure and antitumor 

activity (Wani, Taylor et al. 1971; Suffness 1993). Paclitaxel was initially 

shown to arrest cells at the G2-M phase of the cell cycle (Jordan, Toso et al. 

1993), but in contrast to other known drugs with similar activity (vinca 

alkaloids, colchicine, etc.), it arrested cells by stabilizing microtubules, rather 

than disassembling them (Schiff, Fant et al. 1979). Paclitaxel and its 

analogue Docetaxel showed enough potential as chemotherapeutic agents to 

justify numerous clinical trials, and this led to their integration into standard 

treatment regimens for both early and advanced breast cancer (Lyseng-

Williamson and Fenton 2005; Nabholtz and Gligorov 2005; Bedard, Di Leo et 

al. 2010). 

While the taxanes (paclitaxel and docetaxel) have improved treatment 

outcomes for many patients, they suffer from several shortcomings. First, as 

both a monotherapy and as a combinational therapy, taxanes show 

significant myelosuppression and neuropathy (Tang 2009). Secondly, 

resistance to taxane based chemotherapies is common (McGrogan, Gilmartin 

et al. 2008), and refractory tumors have few treatment options (Perez 2009). 

Finally, there is no validated clinical marker available to predict taxane 

sensitivity (Noguchi 2006), though multi gene profiles may offer some insight 
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(Oakman, Bessi et al. 2009) and a recent report identified the protein Bad as 

a potential predictor (Craik, Veldhoen et al. 2010). Strategies to overcome 

these shortcomings will require detailed mechanistic knowledge of taxane 

induced cytotoxicity, but the mechanism is currently unclear (Gascoigne and 

Taylor 2009). 

1.2 Paclitaxel induced cell death 

Paclitaxel induced cell cycle arrest is well characterized: paclitaxel binds to a 

region of β-tubulin termed the 'taxol binding site,' and this binding 

considerably stabilizes the microtubule (Lowe, Li et al. 2001; Noguchi 2006). 

Microtubules are dynamic cytoskeletal structures that contribute to cell shape, 

intracellular transport, motility, and mitosis (Wade and Hyman 1997). These 

structures undergo rapid growth and shrinkage, termed 'dynamic instability,' 

and this instability is necessary for successful division of the chromosomes 

during mitosis (Rieder, Schultz et al. 1994; Wilson and Jordan 1995). By 

stabilizing the microtubules during mitosis, paclitaxel activates a signaling 

complex known as the spindle assembly checkpoint (SAC) (Rieder and 

Maiato 2004). The SAC is a control mechanism that prevents cell cycle 

progression from metaphase to anaphase in the presence of unattached 

kinetochores. In mitotically arrested cells treated with paclitaxel, at least one 

kinetochore is unable to properly attach to a microtubule, preventing 

satisfaction of the SAC (McEwen, Heagle et al. 1997; Waters, Chen et al. 

1998). Prolonged mitotic arrest can lead to multiple cellular fates including 

death in mitosis, mitotic exit followed by death, viable mitotic exit without 
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continued cell cycle progression, and viable mitotic exit followed by further 

division (Rieder and Maiato 2004). Blajeski et al. first proposed the model that 

during prolonged mitotic arrest, cyclin B levels eventually decrease enough 

for the cell to escape mitotic arrest, and the cell enters a multinucleated, 

tetraploid, G1 state before dying (Blajeski, Kottke et al. 2001).  

Different concentrations of paclitaxel elicit very different cellular responses. 

Very low concentrations (as low as 8nM) are sufficient to suppress 

microtubule instability  and induce mitotic arrest and cell death in HeLa cells, 

while a higher concentration (1 μM) induces bundling of microtubules (Jordan, 

Toso et al. 1993; Jordan, Wendell et al. 1996). Clinically relevant 

concentrations of paclitaxel are in the low nanomolar range (~25nM) (Huizing, 

Vermorken et al. 1995; Derry, Wilson et al. 1998). It is yet unclear what 

cellular factors dictate paclitaxel  response. A recent study utilizing high-

throughput live-cell microscopy followed the individual cellular fates of seven 

different cancer cell lines treated with paclitaxel, and found extensive 

variation in cell fate upon exit from mitotic arrest (Gascoigne and Taylor 

2008). The variation existed both between and within cell lines. They 

proposed a model in which cyclin B1 degradation is occurring simultaneously 

with activation of cell death pathways. Diminishing cyclin B1 levels cause exit 

from mitotic arrest (Brito and Rieder 2006) while increasing cell death activity 

causes the cell to die. Their relative rates dictate the fate of the cell. In an 

effort to determine the genetic contribution to anti-mitotic treatment, 

Gascoigne et al. observed cells originating from the same progenitor 

(Gascoigne and Taylor 2008). They showed that genetically identical sister 
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cells frequently undergo different response to paclitaxel treatment, indicating 

that cell response to paclitaxel is not solely dependent on genetic factors.  

Paclitaxel has been shown to cause cell death through induction of apoptosis, 

a regulated cellular death pathway (Woods, Zhu et al. 1995; Jordan, Wendell 

et al. 1996). This is supported by several studies demonstrating that effective 

induction of cell death by paclitaxel requires caspase activity (Panvichian, 

Orth et al. 1998; Gascoigne and Taylor 2008; Shi, Orth et al. 2008). 

Caspases are the effectors of apoptosis, and cleave key cellular substrates 

leading to dismantling and destruction of the cell (Pop and Salvesen 2009).  

The cellular signaling events that result from paclitaxel treatment and lead to 

caspase activation are still elusive (Rieder and Maiato 2004; Gascoigne and 

Taylor 2009), though the Bcl-2 family of proteins play an important role (Willis 

and Adams 2005). Members of the Bcl-2 family of proteins regulate apoptosis 

and contain both pro-death and pro-survival members (Youle and Strasser 

2008). Bim, a pro-death member of the family, has been shown to contribute 

to paclitaxel induced apoptotic signaling in some cell types (Li, Moudgil et al. 

2005; Tan, Degenhardt et al. 2005), though its importance is unclear in 

human breast cancer cells (Sunters, Fernández de Mattos et al. 2003; 

Czernick, Rieger et al. 2009). The pro-death protein Bad has also been 

shown to  contribute to paclitaxel sensitivity, and clinical samples showed that 

Bad is a prognostic indicator of docetaxel response in breast cancer patient 

(Craik, Veldhoen et al. 2010). The pro-survival family members Bcl-2 and Bcl-

xL oppose the effects of the pro death members, and they are associated 
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with resistance to paclitaxel. RNAi depletion of Bcl-2 and Bcl-xl sensitizes 

breast cancer cells to paclitaxel induced apoptosis (Simoes-Wust, Schurpf et 

al. 2002; Tanabe, Kim et al. 2003). Yet of all the members of the Bcl-2 family, 

only Bad has shown prognostic clinical potential, suggesting the existence of 

other paclitaxel responsive death pathways. 

1.3 Autophagy 

Autophagy is a catabolic cellular process that degrades double-membrane 

bound portions of the cytosol through fusion with lysosomes (Fig. 1.1) 

(Ravikumar, Sarkar et al. 2010). This process occurs constitutively at basal 

levels to support cellular homeostasis by providing energy through the 

breakdown of cellular components, degrading long lived proteins, and is 

uniquely capable of clearing large protein aggregates and disposing of 

damaged organelles (Yang and Klionsky 2010). Defects in autophagy are 

implicated in many pathologies and dysfunctional clearance of autophagic 

substrates can contribute to tumorigenesis (Mathew, Karp et al. 2009), 

neurodegeneration (Iwata, Riley et al. 2005), and premature aging (Juhasz, 

Erdi et al. 2007).  

Autophagosomes begin as an isolation membrane, also known as a 

phagophore, at the pre-autophagosomal structure (PAS). The phagophore is 

a double membrane that expands, encloses the cytosol, and eventually 

develops into an autophagosome. The site of phagophore formation is well 

defined in yeast, occurring near the vacuole (Suzuki, Kirisako et al. 2001).  
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There appear to be several sites of autophagosome formation in mammalian 

cells, and they have been observed to originate from the ER, mitochondria, 

and plasma membrane (Axe, Walker et al. 2008; Hayashi-Nishino, Fujita et 

al. 2009; Yla-Anttila, Vihinen et al. 2009; Hailey, Rambold et al. 2010; 

Hayashi-Nishino, Fujita et al. 2010; Ravikumar, Moreau et al. 2010). The 

phagophore then expands, engulfs a portion of the cytoplasm, and finally 

closes, forming an autophagosome. This autophagosome is then trafficked 

along microtubules bi-directionally, with a bias toward the MTOC, putting it in 

close proximity with the Golgi apparatus, the site of lysosomal biogenesis. 

Finally, the autophagosome will dock and then fuse with a lysosome, and 

lysosomal hydrolases will degrade the contents of the autophagosome 

releasing metabolic substrates. At any point prior to final fusion with the 

lysosome, the autophagosome may interact with other autophagosomes 

through fusion, or by transferring cargo via membrane protrusions. 

Endosomes may also fuse with autophagosomes en route to lysosomal 

fusion (Jahreiss, Menzies et al. 2008). 

1.3.1 The autophagic molecular machinery 

Our understanding of the molecular machinery regulating autophagy is 

developing rapidly, but is still incomplete. The core autophagic machinery is 

composed of two kinase complexes that function in formation of the 

phagophore (Vps34 and Ulk) and two ubiquitin-like conjugation systems that 

promote phagophore elongation and closure (Atg12-5 and LC3-PE), see Fig. 

1.2) (Yang and Klionsky 2010). Analysis of autophagy protein assembly at the  
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PAS shows a hierarchy: the Ulk complex is the most upstream, followed by 

the Vps34 complex, then the Atg12-5 conjugate system, and finally the LC3-

PE conjugate system (Suzuki, Kubota et al. 2007; Itakura and Mizushima 

2010). Each of these protein systems is necessary for autophagosome 

formation and a defect in one system will lead to improper function of 

downstream systems. Autophagy is regulated at each step in this process 

and allows fine tuning of autophagic flux in response to diverse stimuli. 

1.3.2 Autophagic kinase complexes 

The Ulk complex is composed of Ulk1, mATG13, Atg101, and FIP200 (Hara, 

Takamura et al. 2008; Chan, Longatti et al. 2009; Mercer, Kaliappan et al. 

2009). ULK1 is a serine\threonine protein kinase necessary for autophagy 

(Kuroyanagi, Yan et al. 1998; Chan, Kir et al. 2007). Ulk complex activity is 

necessary to recruit downstream autophagy proteins to the PAS (Itakura and 

Mizushima 2010). Ulk1 activity is regulated through opposing 

phosphorylations by mTOR and AMPK; mTOR has an inhibitory effect on 

Ulk1 activity while AMPK has a stimulatory effect (Kim, Kundu et al. 2011; 

Shang and Wang 2011). mTOR can also phosphorylate Atg13, and this 

phosphorylation is associated with a decrease in autophagic activity (Jung, 

Jun et al. 2009). Ulk1 is also capable of autophosphorylation. Ulk1 

autophosphorylation causes a conformational shift that promotes autophagic 

induction (Chan, Longatti et al. 2009). mATG13 and FIP200 are also Ulk1 

substrates and are phosphorylated when autophagy is induced, further linking 
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Ulk1 kinase activity to increased induction of autophagy (Chan, Longatti et al. 

2009; Jung, Jun et al. 2009). 

The second autophagic kinase complex includes Vps34, a class III PI3K that 

is essential for mammalian autophagy (Volinia, Dhand et al. 1995). Vps34 

phosphorylates phosphatidylinositol to create phosphatidylinositol (3)-

phosphate (PI3P) (Schu, Takegawa et al. 1993; Volinia, Dhand et al. 1995), 

and its kinase activity is essential for induction of autophagy (Obara, Noda et 

al. 2008). PI3P is generated at the site of autophagosome formation (Axe, 

Walker et al. 2008), though the mechanism by which PI3P enrichment 

promotes autophagy is not clear (Yang and Klionsky 2010). Recently, 

proteins have been discovered that promote autophagy and possess the 

ability to bind PI3P, representing a mechanistic link between PI3P enrichment 

and autophagosome formation (Burman and Ktistakis 2010). WIP1\2 

(orthologues of Atg18 in yeast) have been shown to bind PI3P (Proikas-

Cezanne, Waddell et al. 2004; Proikas-Cezanne, Ruckerbauer et al. 2007). 

WIP2 localizes to the phagophore and promotes LC3-PE conjugation (see 

1.3.3), and its depletion by RNAi causes the accumulation of immature 

autophagosomes (Polson, de Lartigue et al. 2010). DFCP1 is another PI3P 

binding protein that positively regulates autophagy (Derubeis, Young et al. 

2000). It localizes to PI3P enriched punctate structures on the ER and 

seemingly functions by constricting  portions of nascent autophagosomal 

membrane, causing them to separate from the ER (Axe, Walker et al. 2008). 

While specific mechanistic roles for PI3P in autophagy are still emerging, it is 

clear that Vps34 activity is essential for the formation of autophagosomes. 
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The core of the Vps34 complex is composed of three members: the class III 

PI3K Vps34 and its two binding partners P150 and Beclin 1, both of which 

increase its lipid kinase activity and stimulate autophagy (Volinia, Dhand et al. 

1995; Petiot, Ogier-Denis et al. 2000; Kihara, Kabeya et al. 2001). The 

activity of the Vps34 complex can be regulated in several ways. Vps34 itself 

can be phosphorylated by Cdk1 and Cdk5. These phosphorylations disrupt 

binding of Vps34 to its positive regulator Beclin 1, causing decreased Vps34 

activity (Furuya, Kim et al. 2010). Beclin 1 interacts with several proteins that 

modulate autophagy. Beclin 1 dependent autophagy is positively regulated by 

Atg14, Ambra1, and UVRAG (Fimia, Stoykova et al. 2007; Itakura, Kishi et al. 

2008). Rubicon and the pro-survival members of the Bcl-2 family negatively 

regulate autophagy (Maiuri, Le Toumelin et al. 2007; Oberstein, Jeffrey et al. 

2007; Matsunaga, Saitoh et al. 2009; Zhong, Wang et al. 2009). Pro-survival 

Bcl-2 family members can sequester Beclin 1 through interaction with its BH3 

domain, preventing it from stimulating Vps34 activity. Consequently, pro-

death Bcl-2 family members can induce autophagy by displacing Beclin 1 

from the pro-survival family members (Maiuri, Zalckvar et al. 2007). The wide 

variety of Vps34 complex members allows fine control of Vps34 activity. 

1.3.3 Autophagic ubiquitin-like conjugation systems 

Two ubiquitin-like conjugation systems are required for phagophore 

elongation and closure. The first system conjugates Atg12 to Atg5 

(Mizushima, Sugita et al. 1998; Yang and Klionsky 2010). Atg7 acts as an E1 

enzyme, forming a conjugate with Atg12 (Tanida, Tanida-Miyake et al. 2001). 
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Next, Atg10 acts as an E2 enzyme and replaces Atg7, forming an Atg12-

Atg10 conjugate (Shintani, Mizushima et al. 1999; Mizushima, Yoshimori et 

al. 2002; Nemoto, Tanida et al. 2003). The Atg12-Atg10 conjugate can then 

interact with Atg5, conjugating Atg12 to Atg5. Finally, The Atg12-Atg5 

conjugate can then non-covalently interact with Atg16L, forming an Atg12-

Atg5\Atg16L trimer. Knockout of Atg5 in murine cells prevented formation of 

mature autophagosomes. Rare autophagosome-like structures were 

observed in Atg5-/- cells, but these structures did not accumulate LC3-II, 

which is an indicator of maturing and completed autophagosomes 

(Mizushima, Yamamoto et al. 2001). Atg5 knockout also prevents localization 

of Atg16L to the PAS (Mizushima, Kuma et al. 2003).The Atg16L coiled coil 

domain allows oligomerization with other trimers, forming a homotetramer 

known as the Atg16L complex (Mizushima, Kuma et al. 2003). This complex 

localizes to the phagophore (primarily the outer leaflet) and functions in 

membrane elongation and closure (Mizushima, Yamamoto et al. 2001).  

The second ubiquitin-like conjugation system conjugates LC3 to PE (Yang 

and Klionsky 2010). LC3 is the mammalian homologue of Atg8 in yeast. Atg8 

was originally found to be associated with the autophagosome and is 

essential for autophagosome formation in yeast (Kirisako, Baba et al. 1999). 

Shortly afterwards, LC3 was shown to perform a homologous role in 

mammalian cells (Kabeya, Mizushima et al. 2000). LC3 is initially translated 

as a full length protein (proLC3) and is then immediately cleaved between 

glycine 120 and threonine 121 by Atg4 (Tanida, Sou et al. 2004). The cleaved 

form of LC3 is designated as LC3-I, and has an exposed C-terminal glycine 
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that is then conjugated to PE. The lipidated form of LC3 associates with the 

autophagosome and is known as LC3-II (Kabeya, Mizushima et al. 2000). 

LC3-PE conjugation requires Atg7 and Atg3 (Yang and Klionsky 2010). Atg7 

functions as an E1-like enzyme in mammalian cells, and forms a conjugate 

with LC3-I (Tanida, Tanida-Miyake et al. 2001). The Atg7-LC3 conjugate then 

interacts with Atg3, which functions as an E2-like enzyme and forms an Atg3-

LC3 conjugate (Tanida, Tanida-Miyake et al. 2002). Finally the Atg16L 

complex functions as an E3-like enzyme, specifying the location of LC3 

lipidation and conjugating LC3 to PE, forming LC3-II (Hanada, Noda et al. 

2007; Fujita, Itoh et al. 2008). LC3-II localized on the cytoplasmic face of the 

autophagosomal membrane can be recycled before degradation of the 

autophagosome. Atg4 delipidates the external LC3-II by cleaving off the PE 

moiety (Tanida, Sou et al. 2004), but LC3-II within the autophagosome is 

degraded after fusion with the lysosome, along with the autophagic cargo 

(Tanida, Minematsu-Ikeguchi et al. 2005). 

Aside from the role of the Atg16L complex in LC3 PE conjugation, additional 

links between the two conjugation systems exist. Atg3 (the E2 like protein  in 

the LC3-PE conjugation system) can interact with Atg12 and promotes 

formation of the Atg12-5 conjugate, but only in the presence of Atg7 (Tanida, 

Tanida-Miyake et al. 2002). Similarly, Atg10 (the E2 like protein in the Atg12-

5 conjugation system) can interact with LC3 and promote its lipidation, but 

only in the presence of Atg7 (Nemoto, Tanida et al. 2003). Through these 

interactions, the E2-like proteins in one conjugation system support the 

second, and vice versa.  
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Functional studies of yeast Atg8 have provided insight into the function of 

LC3. Atg8 localizes to both sides of the phagophore membrane, and is 

required for phagophore elongation and maturation. Using an in vitro 

liposomal system and a combination of electron and fluorescent microscopy 

Nakatogawa et al. demonstrated that Atg8 promotes membrane tethering and 

hemifusion, and that PE conjugation alters these activities (Nakatogawa, 

Ichimura et al. 2007). They proposed that PE conjugation significantly 

changes the conformation of Atg8, and exposes regions of the protein that 

allow multimerization and subsequent tethering/hemifusion. Supporting the 

role of LC3 in autophagosome maturation, disruption of the LC3 conjugation 

system in mice through knockout of Atg3 led to an accumulation of 

incomplete autophagosome like structures. These structures were smaller 

than the autophagosomes in wild type cells, and were frequently unclosed 

and cuplike, supporting a role for LC3 in autophagosome expansion and 

closure. (Sou, Waguri et al. 2008).  

1.4 Autophagosome trafficking 

The mature autophagosome must be brought into the proximity of and fuse 

with a lysosome to degrade its cargo. Cytoskeletal components have long 

been known to support autophagy (Aplin, Jasionowski et al. 1992), and 

microtubules are specifically implicated in autophagosome formation, 

trafficking, and fusion. Autophagosomes move along microtubules in a dynein 

dependent manner (Iwata, Riley et al. 2005; Pandey, Nie et al. 2007; Lee, 

Koga et al. 2010), with LC3 serving as an autophagosomal anchor for 
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attachment (Kimura, Noda et al. 2008). Microtubules also support trafficking 

of lysosomes toward the MTOC, moving them into the proximity of 

autophagosomes (Matteoni and Kreis 1987). The significant functional 

relationship between autophagosomes  and microtubules links autophagy to 

paclitaxel, and suggests that paclitaxel treatment may have pronounced 

effects on autophagic flux. 

It is important to note that the specific role of microtubules in supporting 

autophagy is controversial (Monastyrska, Rieter et al. 2009), with one study 

showing that microtubules are required for autophagosome formation but not 

fusion with the lysosome (Fass, Shvets et al. 2006), and another study 

showing that it played a role in both formation and fusion (Kochl, Hu et al. 

2006). A third study suggests that microtubules have some role in formation 

of autophagosomes and acetylated microtubules are especially important for 

autophagosome trafficking (Xie, Nguyen et al. 2010).  

These studies primarily focus on the effects of microtubule depolymerization 

using drugs like nocodazole or vinblastine. Fass et al. primarily studied the 

effects of nocodazole treatment, and suggested that the depolymerization of 

microtubules caused redistribution of both lysosomes and autophagosomes 

throughout the cell, allowing diffusion to bring them together (Fass, Shvets et 

al. 2006). Kochl et al. found that high concentrations of paclitaxel (5μM) had 

minimal effects on both autophagosome formation and trafficking, and in 

contrast to Fass et al. found that depolymerization diminishes 

autophagosome\lysosome fusion (Kochl, Hu et al. 2006). Interestingly, their 
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study shows that depolymerization of microtubules by different drugs had 

different effects on autophagosome formation. Nocodazole decreased 

autophagosome formation while vinblastine strongly increased it. These 

differing effects may be better understood when considered in the context of 

microtubule acetylation. Xie et al. report that nocodazole decreases levels of 

acetylated tubulin while vinblastine increases them, but causes them to 

accumulate in large foci (Xie, Nguyen et al. 2010). Acetylated tubulin may 

then be important for the formation of autophagosomes. Paclitaxel was also 

shown to increase acetylated tubulin levels, but was used at a clinical 

unachievable concentration (10μM) (Xie, Nguyen et al. 2010).  

Therefore, the effect of paclitaxel on autophagosome trafficking in breast 

cancer cells is difficult to predict.  Firstly, the above studies focus on 

depolymerizing agents. Secondly, the high concentrations of paclitaxel used 

may make the data inapplicable to clinically relevant concentrations (5-20μM 

compared to 25nM) (Jordan, Wendell et al. 1996; Derry, Wilson et al. 1998). 

Finally, the studies by Fass et al. and Kochl et al. use rodent cell lines, while 

Xie et al. uses HeLa. None of these are a relevant model for paclitaxel 

treatment of breast cancer. Additionally, rodent cells have been shown to be 

significantly more resistant to nocodazole and other spindle poisons than 

human cells, raising a question about the applicability of rodent studies to 

human cell lines (Rieder and Maiato 2004). 
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1.5 Autophagy and paclitaxel 

Predicting the relationship between paclitaxel treatment and autophagy is 

difficult because previous studies have used a variety of cancer cell lines, and 

concentrations of paclitaxel that are clinically unachievable (Jordan, Wendell 

et al. 1996; Derry, Wilson et al. 1998). Additionally, these studies did not 

report the effects of autophagy on survival. Gorka et al. treated MCF-7 breast 

cancer cells with paclitaxel and observed that the cells showed features of 

autophagy during death (Gorka, Daniewski et al. 2005). The authors defined 

this as autophagic cell death, and concluded that paclitaxel induces 

autophagy in breast cancer cells. Hayashi et al. observed that paclitaxel 

induced autophagy in endothelial cells, potentially contributing to cell death 

(Hayashi, Yamamoto et al. 2009). Again the study by Gorka et al. uses 

clinically unattainable concentrations of paclitaxel and both studies show that 

paclitaxel induces autophagy. Importantly, both studies neglect the use of 

lysosomal inhibitors when they observe accumulation of the autophagosomal 

marker LC3. This is significant, as an accumulation of LC3 may represent 

either increased formation or decreased degradation, corresponding to 

increased and decreased autophagic flux, respectively. Lysosomal inhibitors 

would prevent degradation of LC3 in the lysosome, and would allow 

unambiguous interpretation of the LC3 accumulation (Tanida, Minematsu-

Ikeguchi et al. 2005). 

One body of evidence, primarily from cytoskeletal studies, suggests that 

paclitaxel will inhibit autophagy by blocking autophagosome maturation. 
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Another smaller body of evidence suggests that paclitaxel induces 

autophagy. All of the evidence (excepting the study by Hayashi et al.) uses 

concentrations of paclitaxel that induce hyperstabilization of microtubules, 

and only one study uses breast cancer cells, the relevant model for this study 

(Hayashi, Yamamoto et al. 2009). Another line of evidence comes from study 

by Furuya et al. and shows that during mitotic arrest Cdk1 and Cdk5 can 

phosphorylate Vps34, inhibiting its activity by diminishing its binding with 

Beclin 1, and leading to an inhibition of autophagy (Furuya, Kim et al. 2010). 

The study used nocodazole to cause mitotic arrest. So while that report 

cannot directly address the relationship between paclitaxel and autophagy, a 

similar effect may be observed during paclitaxel treatment of breast cancer 

cells. Cdk1 activity depends on cyclin B1 to stimulate its activity, and the 

study by Furuya et al. showed that accumulation of cyclin B1 coincides with 

Vps34 phosphorylation (Furuya, Kim et al. 2010). Paclitaxel also induces a 

prolonged mitotic arrest, and maintenance of arrest requires persistence of 

cyclin B1 (Gascoigne and Taylor 2008).  Clinical concentrations of paclitaxel 

induce mitotic arrest in breast cancer cells (Czernick, Rieger et al. 2009; 

Craik, Veldhoen et al. 2010), so it is possible that these cells will also have 

inhibited autophagosome formation. Ultimately, conflicting evidence and 

varied experimental models prevent confident prediction of paclitaxel's effects 

in a breast cancer model, necessitating further research. 
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1.6 Autophagy and cell death 

Autophagy is an important survival response to many  different stresses 

including  oxidative stress (Yang, Wu et al. 2008), accumulation of protein 

aggregates (Iwata, Riley et al. 2005; Pandey, Nie et al. 2007; Lee, Koga et al. 

2010), and ischemia (Degenhardt, Mathew et al. 2006). It also sustains life in 

many developmental contexts such as fertilization (Tsukamoto, Kuma et al. 

2008), neonatal starvation (Kuma, Hatano et al. 2004) and T-cell 

development (Stephenson, Miller et al. 2009). Conversely, autophagy has 

also been shown to promote death in diverse cases such as inhibition of 

caspases (Yu, Alva et al. 2004), etoposide treatment of apoptosis deficient 

murine fibroblasts (Shimizu, Kanaseki et al. 2004), anti-estrogen  treatment of 

breast cancer cells (Bursch, Ellinger et al. 1996), NGF or serum/potassium 

withdrawal from neurons (Xue, Fletcher et al. 1999; Canu, Tufi et al. 2005), 

and in a Myc-induced murine lymphoma model (Amaravadi, Yu et al. 2007). 

Consequently it is impossible to accurately predict the relationship between 

cell survival and autophagy a priori.  

It is unclear whether autophagy can directly cause cell death in mammalian 

cells (Kroemer and Levine 2008). Developmental cell death requiring 

autophagy has been demonstrated in Drosophila melanogaster and in 

Dictyostelium discoideum. Autophagy deficient drosophila embryos mutant 

cannot properly degrade larval salivary glands (Berry and Baehrecke 2007). 

Additionally, during programmed remodelling of the larval drosophila midgut, 

autophagy is necessary for cell death while apoptosis is not (Denton, 
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Shravage et al. 2009). Dictyostelium undergoes developmental cell death 

while differentiating into stalk cells, and inactivation of autophagy through 

Atg1 disruption abolishes this death (Kosta, Roisin-Bouffay et al. 2004).  

Presently, there is no in vivo evidence for autophagic cell death (ACD) in 

mammalian cells (Scarlatti, Granata et al. 2009). Several mammalian studies 

(outlined above) have reported the observation of prominent autophagic 

features coinciding with cell death, but it is technically challenging to separate 

cell death with the features of autophagy from cell death caused by 

autophagy. An alternative explanation is that autophagy alters the rate of cell 

death, or functions in concert with other cellular death pathways (Kroemer 

and Levine 2008). This is an appealing hypothesis, owing to the dearth of in 

vivo evidence of ACD in mammalian cells. 

1.7 Purpose of study 

The primary aim of this study is to establish the relationship between 

paclitaxel, autophagy, and cell survival in a breast cancer cell culture model. 

It shows that autophagy contributes to paclitaxel cytotoxicity, yet paclitaxel 

inhibits autophagic flux. Finally it explores the mechanism of paclitaxel 

inhibition of autophagy.  
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2.1 Chemicals 

All chemicals were obtained from Fisher Scientific Company (Ottawa, ON, 

Canada) unless otherwise noted. 3-methyladenine, bafilomycin A1, and 

paclitaxel were obtained from Sigma-Aldrich (Oakville, ON, Canada). TMRE 

and Hoechst 33342 were obtained from Invitrogen (Carlsbad, CA, USA). 

FuGENE 6, Complete protease inhibitor and PHOSstop phosphatase 

inhibitor were obtained from Roche (Indianapolis, IN, USA). 

2.2 Antibodies 

Antibody sources and dilutions are summarized in table 2.1. 

2.3 Centrifugation 

Three centrifuges were used throughout this study: 

1. Eppendorf 5810 R 

a. Rotor: Swinging bucket rotor (A-4-81) 

2. Beckman Coulter Microfuge 16 Microcentrifuge 

a. Rotor: Fixed Angle FX241.5P 

3. Eppendorf 5402 Refrigerated Centrifuge 

a. Rotor: Fixed Angle F-45-18-11 
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All centrifugations are described in parentheses in the following order: 

speed, duration, temperature, rotor. 

2.4 Cell Culture Reagents and Materials 

RPMI 1640 media, Penicillin-Streptomycin, 0.05% Trypsin-EDTA and G-418 

were obtained from Invitrogen. Fetal calf serum was obtained from Sigma-

Aldrich. Cell culture flasks, plates, dishes, and serological pipettes were 

obtained from BD Biosciences (Franklin Lakes, NJ, USA). 

2.5 Cell Culture and Creation of GFP-LC3 Stably Expressing Cell 

 Lines 

MCF-7 and SK-BR-3 human breast cancer cells were obtained from Dr 

Gordon Mills (MD Anderson Cancer Center, University of Texas). Cells were 

cultured in RPMI 1640 media supplemented with 10% fetal calf serum at 

37°C in a humidified 5% CO2 atmosphere. Cultures were checked for 

mycoplasma using a Mycosensor PCR Assay Kit, according to the 

manufacturer’s directions (Agilent Technologies, Mississauga, ON, Canada). 

Cells were passaged every two to three days to maintain subconfluent 

cultures. To passage the cells, growth media was removed, and the cells 

were washed once with 0.5% Trypsin-EDTA. The wash was removed, and 

additional 0.5% Trypsin-EDTA was added, followed by a 4 minute incubation 

at 37°C. Trypsinized cells were resuspended in an appropriate volume of 

growth media and then subcultured or plated for experiments.  
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To create MCF-7 cells stably expressing GFP-LC3, cells were transfected 

with pEGFP-C1 vector containing rat LC3-B cDNA (gift from Dr Gordon 

Shore, McGill University, Montreal, Canada). Transfection was performed 

using FuGENE 6, according to the manufacturer’s directions. Stable 

transfectants were selected using 500mg/L G-418. The resulting polyclonal 

cell population was sorted into monoclonal cell lines using a Becton 

Dickinson FACSAria by the Faculty of Medicine and Dentistry Flow 

Cytometry Facility. Only cells showing moderate GFP-LC3 fluorescence 

were selected for sorting. Moderately expression was determined by 

selecting cells showing approximately 10 to 20 fold higher fluorescence than 

non-expressing cells. Individual colonies were expanded and then one cell 

line was chosen based on its continued moderate GFP-LC3 fluorescence 

and expected response to starvation. 

2.6 Inhibitor Treatments 

3-Methyladenine was resuspended in ~60 °C water to make a stock solution 

of 200mM. Before each use, the stock was heated as before to dissolve the 

solidified 3-methyladenine, and it was added to media to create a final 

concentration of 5mM. 

Bafilomycin A1 was resuspended at a concentration of 8mM in anhydrous 

DMSO, and diluted to 100nM for usage in experiments. All bafilomycin 

treatments were performed for 4 hours. 
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2.7 Apoptosis Assays 

Cells were subjected to experimental conditions then harvested, stained with 

TMRE, and analyzed by flow cytometry. Harvesting was accomplished by 

washing the cells once with DPBS (2.68mM KCl, 1.47mM KH2PO4, 

136.9mM NaCl, 8.06mM Na2HPO4-7H2O, pH 7.4), then lifted from the plate 

with 0.05% trypsin-EDTA. After addition of trypsin, plates were incubated at 

37°C for 4 minutes followed by resuspension in complete media. All media 

and washes were collected and the cells were pelleted (500xg, 5 minutes, 

room temperature, A-4-81). The supernatant was removed and the cells 

resuspended in 100µL of 100nM TMRE diluted in growth media. The cells 

were then stained for 30 minutes at 37°C in growth conditions. After staining 

the cells were pelleted as above and resuspended in 200µL of DPBS. 

Resuspended cells were analyzed on a Becton Dickinson Biosciences 

FACScan or FACScalibur equipped with a 488nm laser line paired with a 

FITC (for EGFP) or phycoerythrin (for TMRE) emission filter. Fluorescent 

compensation was carried out using single fluorophore controls. Cell death 

was quantified by setting a gate in the FL2 channel that encompassed all 

events with lower fluorescence than the live cell population in the untreated 

control. 

2.8    Shakeoff Assays 

To collect mitotically arrested cells, plates were knocked to dislodge loosely 

adherent cells. After knocking, dishes were examined using a light 
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microscope, and knocked again if significant numbers of mitotic cells 

remained. The media containing these cells was collected along with a 

subsequent DPBS wash. These cell populations were denoted as 'Mitotic 

Fraction' in figures. The remaining cells were harvested using 0.05% 

Trypsin-EDTA and denoted as 'Adherent Cells' in figures. The cells were 

then analyzed as described in section 2.6 or lysed as described section 2.8. 

2.9 Cell Lysis and Protein Quantification 

Cells were subjected to experimental conditions and then harvested as 

separate mitotic and adherent populations as described in section 2.7, or as 

a total population by harvesting as in section 2.6. Cell suspensions were 

pelleted by centrifugation (500xg, 5 minutes, room temperature, FX241.5P). 

The pellets were washed twice by resuspension in DPBS followed by 

pelleting as above. The pellet was then lysed by resuspension in a buffer 

composed of 20mM tris pH 7.4, 150mM NaCl, 2% Triton X-100, 1X complete 

protease inhibitor, and 1x PHOSstop phosphatase inhibitor. Lysates were 

incubated for 15 minutes at 4°C. Cellular debris was pelleted by 

centrifugation (16000xg, 5 minutes, 4°C, F-45-18-11). Samples of the 

lysates were then taken and diluted to determine protein concentration using 

the BCA protein assay, following the manufacturer's instructions (Pierce, 

Rockford, IL, USA).  
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2.10 SDS-PAGE and Immunoblotting 

Protein lysates were mixed with an equal volume of 2x SSB (0.1M tris pH 

6.8, 16% glycerol, 3.2% SDS, 8% β-mercaptoethanol, 0.01% bromophenol 

blue) and loaded onto discontinuous SDS-PAGE gels. Stacking gels were 

composed of 4% acrylamide, 125mM tris pH 6.8, 0.1% SDS.  Separating 

gels were composed of 375mM tris pH 8.8, 0.1% SDS, with the percentage 

of acrylamide denoted in figure legends. The lysates were then 

electrophoresed in a SDS running buffer (0.1% SDS, 24.8mM tris, 192mM 

glycine) for approximately 70 minutes (until the loading dye ran off) at 180V 

in a Mini-Protean 3 cell. The stacking gel was then removed, and the 

separating gel was transferred onto 0.22µm PVDF membrane in a transfer 

buffer composed of 192mM glycine, 24.8mM Tris, and 20% methanol. 

Proteins were transferred at 15V in the Mini-Protean 3 cell for at least 12 

hours at 4°C. Non specific antibody interactions were prevented by blocking 

in 5% BSA in TBS-T (for antibodies from Cell Signaling) or in 5% 

NFSM/TBS-T (for all other antibodies) for one hour at room temperature. 

After blocking, the membrane was incubated with primary antibody diluted in 

5% NFSM/TBS-T overnight at 4°C. The membrane was then washed in 

TBS-T for 10 minutes with gentle agitation at room temperature. The 

washing was repeated for a total of three times with fresh TBS-T. After 

washing, the membrane was incubated with the appropriate HRP 

conjugated secondary antibody diluted in NFSM/TBS-T for 1 hour at room 

temperature. The membrane was then washed three times as above and 

then incubated with ECL-Plus Western Blotting Detection Reagent for 5 
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minutes according to the manufacturer’s directions. Protein bands were 

visualized by exposure of the membrane to GE Hyperfilm ECL. 

2.11 Microarray Analysis 

Microarray data from docetaxel resistant and sensitive cell lines (Chang, 

Wooten et al. 2003) was obtained from the Gene Expression Omnibus 

database (Edgar, Domrachev et al. 2002). The database was queried for 

each individual autophagy gene (ULK1, ATG12, ATG5, ATG4B, mATG13, 

ATG9A, ATG4A, BECN1, LC3B, ULK2, PIK3C3), and results were copied 

into Microsoft Excel for all further analysis. Using the complete data set, the 

average raw signal value was calculated. The raw values were then divided 

by the average value to create the normalized change in expression. The 

logarithm of each normalized expression to the base of 2 was compiled into 

a table. Conditional formatting was used to colour code the values in the 

table and create a heat map. The greatest upregulation on the scale was set 

to solid green, the lowest to solid red, and unchanged genes were set to 

black. The numbers in the table were hidden by entering three semicolons 

into the custom number formatting box. A Student's t-test was performed for 

each gene, using groups defined by docetaxel sensitivity. 

2.12 Immunofluorescent  and Fixed Microscopy 

Cells were plated on #1.5 coverslips (Electron Microscopy Services, 

Hatfield, PA, USA) and exposed to experimental conditions. Media was 
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removed, and the cells were then washed once with DPBS-M and fixed in 

4% paraformaldehyde/DPBS-M solution for 15 minutes at room temperature 

or 4°C overnight. Cells were then washed twice as above, and 

permeabilized with a 0.1% Triton X-100/DPBS-M solution for 2 minutes at 

room temperature. Cells were washed three times as above, then blocked in 

a solution of 4% NDS/DPBS-M (NDS) for 1 hour at room temperature. Cells 

were washed once as above then incubated with primary antibody diluted in 

4%NDS/DPBS-M solution for 1 hour at room temperature. Cells were 

washed 3 times as above and then incubated with secondary antibody 

diluted in 4% NDS/DPBS-M containing 1µM Hoescht 33342 (Invitrogen) for 

1 hour at room temperature. Cells were washed three times as above and 

then mounted on slides in Prolong Gold (Invitrogen). 

2.13 Wide Field Live Cell Microscopy 

Cells were plated on either Lab-Tek II Chambered Coverglass (Nunc, 

Rochester, NY, USA) or on 35mm glass bottom culture dishes (MatTek, 

Ashland, MA, USA). During live cell experiments cells were cultured in RPMI 

1640 (without phenol red) supplemented with Penicillin (50U/mL), 

Streptomycin (50µg/mL) and 10% FCS, at 37°C in a humidified 5% CO2 

atmosphere. Wide field microscopy was performed on a Zeiss Axio 

Observer Z1 (Carl Zeiss Canada, Toronto, ON, Canada) equipped with an 

Axiocam MRm (Carl Zeiss Canada). Transmitted light was provided by a 

HAL 100 light source (Carl Zeiss Canada) and reflected light was provided 

by a HXP-120C lamp (Carl Zeiss Canada). Filter sets are listed in table 2.2.  
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Cells were imaged on a Heating Insert P S with a CO2-Cover PM  (PeCon 

GmbH, Erbach, Germany). The 5% CO2 atmosphere was provided by a 

TempModule S1 and a CO2 Module S1 (Pecon GmbH). 

2.14 Live Cell Spinning Disk Confocal Microscopy 

Spinning disk confocal microscopy was performed on a UltraView VoX 

Confocal Imaging System (PerkinElmer, Woodbridge, ON, Canada) 

attached to a Leica DMI6000B microscope. Images were acquired on an 

ImagEM camera (Hamamatsu Corporation, Bridgewater, NJ, USA). 

Excitation radiation was provided by a 488nm laser line paired with a 527nm 

band pass (50 nm width) emission filter (PerkinElmer). The growth 

environment was maintained inside of a Universal ASI Stage Water 

Jacketed Incubator (Okolab, Ottaviano, NA, Italy). The atmosphere was kept 

at 19% O2 and 5% CO2 by paired DGTO2BX and DGTCO2BX gas mixers 

(Okolab). Temperature was measured by a TP00-1 thermometer (Okolab), 

maintained by a Ecoline Staredition E103 water bath (LAUDA, Lauda-

Königshofen, Germany) controlled by TempControl Basic software (Okolab). 

2.15 Deconvolution 

Deconvolution was performed using Huygens Professional software 

(Scientific Volume Imaging B.V., Hilversum, Netherlands). Microscopic Z 

stacks were loaded into the software, then processed using either the CMLE 

or QMLE algorithm. The software used a theoretical point spread function, 
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an estimated signal to noise ratio, automatic background estimation, 

automatic bleaching correction, automatic brick mode, optimized iteration 

mode, automatic padding mode, a quality change threshold of 0.1%, for a 

maximum of 10 iterations during QMLE or 40 during CMLE. 

2.16 GFP Puncta Counting and Quantification 

After acquisition and deconvolution, image file names were randomized 

using Filename Randomizer (CodeUnit, Craig Lotter). Images were analyzed 

in a blinded fashion using Imaris x64 (Bitplane Scientific Software, 

Switzerland). Images were cropped to remove excess volume. To determine 

the number of puncta, a surface layer was created for the channel 

containing GFP-LC3 fluorescence. Mitotic cells were omitted using regions 

of interest. The surface layer was smoothed using a 0.1µm surface detail 

level, and thresholding was performed using background subtraction, using 

a largest sphere diameter of 0.1µm. The intensity threshold was set 

manually, so as to outline all visible puncta, while omitting false selections. 

Large clusters of continuous puncta were separated using the region 

growing function, using either a seed size of 0.3µm or 0.5µm for small and 

large puncta, respectively. Seed point thresholding was performed using a 

manually set quality threshold that included all visible puncta. Finally, if 

present, small erroneously generated puncta were eliminated using a voxel 

number filter, manually set between 1-10 voxels. A final surface layer was 

then calculated, and the software determined the number of puncta present. 

The total number of cells was counted manually, using the DAPI 
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fluorescence channel. The number of puncta/cell was quantified for three 

independent experiments, and the fold induction was calculated using the 

following formula: (Number of puncta/cell after four hours of Bafilomycin A1 

treatment)/( Number of puncta/cell without Bafilomycin A1 treatment). This 

ratio was averaged for the three experiments and plotted. 

2.17 GFP-LC3 Puncta Tracking 

Live cell data for puncta tracking was acquired through live cell spinning disk 

microscopy (section 2.14). Three dimensional image stacks were acquired 

at maximum speed (5-15s/stack)  for a total of 5 minutes. Data was then 

exported from Volocity (PerkinElmer, Woodbridge, ON, Canada). Pixel 

spacing and time metadata were reentered manually, and images were 

analyzed in Imaris x64. Puncta were tracked manually, and the statistics for 

each stack were exported, compiled, and analyzed in Excel (Microsoft, 

Redmond, Washington, USA). 

2.18 Statistical Analysis 

Data are presented as a mean of three independent experiments, with error 

bars indicating the standard deviation. Statistical significance was 

determined using a two-tailed Student's T Test for two means with equal 

variance. 
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Chapter 3: The Role of Autophagy During 
Paclitaxel Treatment of Breast Cancer 

Cells 
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3.1 Autophagy contributes to paclitaxel cytoxicity 

To determine what role autophagy has on cellular response to paclitaxel, we 

decided to inhibit autophagy and assess whether the treatment affected the 

ability of paclitaxel to induce cell death. We treated MCF-7 and SK-BR-3 cells 

with paclitaxel for 48 hours in the presence or absence of the autophagy 

inhibitor 3-MA, followed by assessment of cell death by TMRE staining and 

analysis by flow cytometry (Fig. 3.1). In MCF-7 cells, paclitaxel induced 25% 

specific cell death (specific cell death will be used to refer to the percentage 

of TMRE negative cells with treatment, subtracted from the percentage of 

TMRE negative cells  in the untreated sample). Adding 3MA to the cells for 

the duration of paclitaxel treatment decreased specific cell death from 25% to 

14%. 3MA induced 6% specific cell death when used alone, so when this 

toxicity was taken into account, cell death specific to paclitaxel was reduced 

from 25% to 8%. 

To ensure that these effects were not specific to MCF-7 cells, the 

experiments were repeated in SK-BR-3 cells. Paclitaxel caused 67% specific 

cell death in SK-BR-3 cells, and this was reduced to 47% in the presence of 

3MA (Fig. 3.1). When 3MA toxicity was accounted for, 3MA reduced 

paclitaxel induced specific cell death from 67% to 41%. These data suggest 

that autophagy contributes to paclitaxel induced cell death in two independent 

breast carcinoma cell lines. 
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3.2 A subset of autophagy genes is down-regulated in docetaxel 

resistant breast tumors  

Data from a breast cancer cell culture model indicate that autophagy 

contributes to paclitaxel induced cell death. To determine if the same 

relationship between taxanes, autophagy, and cell death existed in primary 

breast tumors, we queried a publically available database of microarray data, 

that includes breast tumors treated with four cycles of neoadjuvant docetaxel 

chemotherapy (Edgar, Domrachev et al. 2002; Chang, Wooten et al. 2003). 

The microarray samples are divided into docetaxel sensitive samples (from 

tumors that shrunk to less than 25% of their pre-treatment size) or docetaxel 

resistant samples (from tumors that did not shrink to at least 25% of their 

original size). After querying the microarray data for autophagy genes, we 

found that a subset were downregulated in the docetaxel resistant tumor 

samples (Fig. 3.2). Downregulated genes included ULK1, Atg12, Atg5, Atg4B, 

mAtg13, and Atg9A. These data support a functional link between autophagy 

and taxane cytotoxicity, suggest that autophagy may contribute to clinical 

efficacy of taxane chemotherapy, and further suggest that autophagy genes 

may be useful prognostic indicators of taxane responsiveness. 

3.3 Paclitaxel decreases autophagic flux in breast cancer cells 

Based on the observation that autophagy stimulates paclitaxel cytotoxicity, 

we wanted to determine if paclitaxel regulated autophagy. Therefore we  
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examined the accumulation of the autophagic marker LC3-II in untreated and 

paclitaxel treated cells, with starved cells as a control. LC3-II localizes to the 

autophagosome in response to autophagic induction, and remains associated 

with the autophagosome until it is degraded by fusion with a lysosome 

(Kabeya, Mizushima et al. 2000; Tanida, Minematsu-Ikeguchi et al. 2005). 

Therefore, to observe the accumulation of LC3-II, we treated cells with the 

lysosomal H+-ATPase inhibitor bafilomycin A1 (Werner, Hagenmaier et al. 

1984; Bowman, Siebers et al. 1988; Yoshimori, Yamamoto et al. 1991). 

Immunoblotting for LC3 showed that non-paclitaxel treated cells showed an 

increase in the intensity of the LC3-II band when treated with bafilomycin (Fig. 

3.3). This difference is an indication of the basal level of autophagy in MCF-7 

cells. Starved cells showed the largest increase in LC3-II intensity with the 

addition of bafilomycin, indicating the largest amount of autophagic flux. In 

contrast, paclitaxel treated cells accumulated a lower intensity LC3-II band 

with the addition of bafilomycin, indicating that paclitaxel treated cells have 

the lowest amount of autophagic flux. 

 These cells also stably expressed the fluorescent autophagosomal marker 

GFP-LC3. Non-paclitaxel treated cells showed an increase in GFP-LC3-II 

when treated with bafilomycin. Paclitaxel treated cells showed an increase in 

intensity of the GFP-LC3-II band compared to the untreated control, but the 

band showed a smaller increase with the addition of bafilomycin  than the 

non-paclitaxel treated cells. Starved cells showed no clear GFP-LC3-II band 

in the absence of bafilomycin, but showed the largest band with its addition   
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(α-Tubulin was used as a loading control). These data indicate that paclitaxel 

inhibits autophagy in breast cancer cells. 

To examine the mechanism of paclitaxel induced autophagy inhibition, we 

decided to examine autophagic flux at the single cell level. Therefore we 

generated MCF-7 cells that stably express GFP-LC3, a fluorescent 

autophagic marker that localizes to autophagosomes in response to 

autophagic induction. Briefly, cells were plated on glass coverslips, treated 

with paclitaxel for 24 hours, and then visualized along with untreated and 

starved controls (Fig. 3.4). Cells grown under normal conditions showed 

punctate GFP-LC3 fluorescence that was markedly increased in both quantity 

and intensity in the presence of bafilomycin. This indicates a robust basal 

level of autophagic flux. Paclitaxel treated cells showed two distinct patterns 

of GFP-LC3 fluorescence in two distinct subpopulations of cells. Paclitaxel 

induces mitotic arrest, so we observed both non-mitotic and mitotic cells 

(determined  by chromosome condensation and indicated by arrowheads). 

Mitotic cells consistently show low number of GFP-LC3 puncta when 

compared to their non-mitotic counterparts. When treated with pac, mitotic 

cells show a smaller increase in the number of puncta than non-mitotic cells. 

This indicates that paclitaxel treated cells in mitotic arrest had diminished 

autophagosome production. This potential block in autophagosome formation 

may partially explain the paclitaxel induced inhibition of autophagy seen in 

figure 3.3.  
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In contrast, paclitaxel treated cells that were not in mitosis showed a modest 

increase in the number of observed GFP-LC3 puncta when compared to 

untreated control cells (Fig. 3.4A). While the observed increase in the number 

of autophagosomes suggests that paclitaxel induces autophagy, we also 

observed that starved cells showed fewer puncta than the untreated control 

cells where it is known that starvation is a strong inducer of autophagy. 

Therefore, assessment of autophagic induction cannot be performed by 

simply counting GFP-LC3 puncta in cells. 

This is because successful fusion of an autophagosome with a lysosome 

results in the degradation of the autophagosomal cargo, with concomitant 

loss of GFP-LC3 signal. Since LC3-II (and GFP-LC3-II) are contained within 

the autophagosome, an increase in the number of GFP-LC3 puncta can 

indicate either increased autophagosome formation (induction of autophagy) 

or decreased autophagosome degradation (inhibition of autophagy) (Tanida, 

Minematsu-Ikeguchi et al. 2005; Mizushima and Yoshimori 2007). To prevent 

the clearance of autophagosomes and distinguish between the two 

possibilities, each treatment was therefore performed in duplicate, with one of 

each pair being treated with bafilomycin. Cells grown under normal conditions 

show a striking increase in the number of GFP-LC3 positive puncta in the 

presence of bafilomycin, illustrating the basal level of autophagy in MCF-7 

cells. Starved cells showed a larger bafilomycin dependant increase in the 

number of GFP-LC3 puncta, indicating that starvation increased the 

autophagic flux in MCF-7 cells (Fig. 3.4A, 4h Baf). In comparison, non-mitotic 

paclitaxel treated cells show a small increase in the number of GFP-LC3 
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puncta, when comparing either non-bafilomycin or bafilomycin treated 

samples. These results suggest that paclitaxel inhibits autophagic flux. To 

quantify this increase, we counted the number of GFP-LC3 puncta/non-

mitotic cell in each treatment and then determined the fold increase in the 

number of puncta/cell when the samples were treated with bafilomycin. This 

analysis demonstrated that the paclitaxel treated cells showed the least 

autophagic turnover (1.6 fold increase), the starved cells showed the most 

(4.5 fold increase), and the untreated cells showed an intermediate amount 

(3.3 fold increase) (Fig. 3.4B). 

The above results suggest that paclitaxel may inhibit autophagy at two 

stages: by inhibiting autophagosome formation within mitotically arrested 

cells, and by inhibiting autophagosome maturation within non-mitotic cells. 

Therefore, we decided to examine these two distinct blocks. 

3.4 Mitotic arrest inhibits autophagy in breast cancer cells 

Mitotically arrested cells show lower numbers of GFP-LC3 puncta compared 

to neighboring non-mitotically arrested cells (Fig 3.4A). This observation, as 

well as a previous report, suggests that autophagy may be inhibited during 

mitosis (Furuya, Kim et al. 2010). As paclitaxel treatment induces widespread 

mitotic arrest, this may represent one mechanism of paclitaxel induced 

autophagy inhibition. Therefore, we decided to specifically examine mitotic 

cells for evidence of autophagic inhibition. 
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To isolate a population of mitotically arrested cells, we performed a mitotic 

shakeoff and collected the loosely adherent cells. These cells were then 

examined with a microscope. The collected cells showed low numbers of 

GFP-LC3 puncta compared to cells not in mitotic arrest (Figs 3.5 and 3.4A). 

The bafilomycin treated sample showed only a modest increase in the 

number of GFP-LC3 puncta when compared to paclitaxel treatment alone, 

showing that autophagy is inhibited in mitotically arrested cells (Fig. 3.5). 

These data also validate the ability of the mitotic shakeoff technique to isolate 

a population of mitotically arrested cells. 

To confirm that autophagy is inhibited in mitotically arrested cells, we 

performed a paclitaxel treatment and mitotic shakeoff in two breast cancer 

cell lines, and collected cells for biochemical analysis. Each population 

(untreated, paclitaxel treated for 24 hours-adherent cells, paclitaxel treated for 

24 hours-mitotic fraction; all with a paired bafilomycin treatment) was lysed 

separately and examined by immunoblot. Compared to their bafilomycin 

treated duplicates, the mitotic cell fraction showed the smallest increase in 

LC3-II band intensity, the adherent cells showed an intermediate amount, and 

the untreated cells showed a large increase (Fig. 3.6). To support the LC3 

data, we also immunoblotted for p62, an autophagic substrate. Only the 

untreated cells showed an increase in p62 band intensity with bafilomycin 

treatment. Together, these data show that paclitaxel treatment inhibits 

autophagy, and that the inhibition is strongest in mitotically arrested cells. 
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To observe individual cells throughout the duration of paclitaxel treatment, we 

performed live cell microscopy on MCF-7 cells stably expressing GFP-LC3. 

As a cell entered into and remained in mitotic arrest, GFP-LC3 staining that 

localized to distinct puncta slowly disappeared and was replaced by a diffuse 

fluorescence (Fig. 3.7, 2-9h). Once the cell escaped mitotic arrest, fluorescent 

GFP-LC3 puncta staining reappeared (Fig. 3.7, 10-14h). To determine the 

amount of LC3 localized to autophagosomes, we determined the amount of 

punctate GFP-LC3 fluorescence as a percentage of total GFP-LC3 signal. 

The percentage of punctate GFP-LC3 decreased as the cells entered mitotic 

arrest, reaching a minimum one hour after arrest (Fig. 3.7, 5h). As the cell left 

mitotic arrest the percentage of punctate GFP-LC3 quickly increased, 

reaching a 6.5 fold increase over the initial percentage, 4 hours after exiting 

arrest (Fig. 3.7, 2h vs 14h). The live cell microscopy shows that 

autophagosome formation is strongly inhibited during mitotic arrest, and 

increases after exiting. 

3.5 Inhibition of Autophagosome formation in paclitaxel mediated 

mitotic arrest is associated with Vps34 inhibition 

Since we observed that autophagosome formation is blocked in cells 

undergoing paclitaxel-induced mitotic arrest, we decided to investigate 

possible causes of this inhibition. While there is some controversy as to 

whether autophagy is altered in mitotic cells, Furuya et al. showed 

convincingly that in HeLa, 293T and H4 cells, autophagy was blocked in  
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mitosis in response to nocodazole treatment. Furthermore, they identified that 

this block was dependent on cdk1 and cdk5 mediated inhibitory 

phosphorylation of Vps34 on T159 (Furuya, Kim et al. 2010). This 

phosphorylation caused decreased binding between Vps34 and Beclin 1,  

leading to lower Vps34 kinase activity. Therefore we decided to test whether 

the same phosphorylation occurred in breast cancer cells in response to 

paclitaxel. MCF-7 and SK-BR-3 cells were treated with paclitaxel for 24 

hours, and then a mitotic shakeoff was performed. Western blot examination 

of the cell lysates using an antibody for Vps34 phospho-T159 showed the 

appearance of a band in the mitotic cell fraction (Fig. 3.8). This demonstrates 

that T159 of Vps34 is phosphorylated in paclitaxel treated, mitotically arrested 

cells, and that this may contribute to inhibition of autophagosome formation. 

On the other hand, adherent cells showed only low levels of Vps34 T159 

phosphorylation in response to paclitaxel treatment. This suggests that as 

cells exit mitosis, the increased autophagosome formation that we observed 

(Fig. 3.8) is associated with, and may be the result of, increased Vps34 

activity. 

3.6 Paclitaxel disrupts autophagosome trafficking along 

microtubules 

As mentioned previously, we observed two distinct blocks to autophagy in 

paclitaxel-treated cells. Not only did we observe a block in autophagosome 

formation in paclitaxel-induced mitotic arrest (Fig. 3.7), in non-mitotic cells we 

observed a block in autophagosome maturation (Fig. 3.4). Since correct  
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autophagosome trafficking towards lysosomes is central to autophagic flux, 

we decided to monitor autophagosome movement. Therefore, we plated 

MCF-7 cells stably expressing GFP-LC3 onto chambered coverglass and 

examined GFP-LC3 movement on a spinning disk confocal microscope. We 

acquired three dimensional image stacks to quantify the change in puncta 

speed (Fig. 3.9). In control cells the average speed was 0.104 μm/s, with 

speeds ranging from 0.014 to 0.423 μm/s. Many puncta were observed to 

move long distances during the observation period. By contrast, in cells 

treated with paclitaxel for 24 hours, the average speed was approximately 

half that of untreated cells (0.055 μm/s), with the speeds ranging from 0.011 

to 0.244 μm/s. Puncta in paclitaxel treated cells moved comparatively short 

distances. This alteration in puncta dynamics indicates that paclitaxel inhibits 

puncta tracking and therefore likely affects autophagosome maturation. 

3.7 Paclitaxel disrupts autophagosome localization 

To determine whether the alteration in autophagosome dynamic movement 

affected autophagosome intracellular localization, we performed colocalizaion 

studies to assess the association of autophagosomes with the microtubules, 

microtubule organizing center (MTOC) and lysosomes. Autophagosomes are 

normally associated with and traffic along microtubules (Fass, Shvets et al. 

2006). Analysis of bafilomycin treated GFP-LC3 expressing cells showed a 

distinct perinuclear localization. However, this association was disrupted by 

paclitaxel treatment (Fig. 3.4A). As paclitaxel induced stabilization of 

microtubules may contribute to aberrant trafficking of autophagosomes, we  
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performed immunofluorescent microscopy to examine the relationship 

between GFP-LC3 and microtubules in paclitaxel treated cells. In untreated 

and starved cells, GFP-LC3 puncta were associated with microtubules, and 

the microtubules appeared organized around a perinuclear microtubule 

organizing center (MTOC) as visualized by indirect immunofluorescence of 

pericentrin (Fig. 3.10). The GFP-LC3 puncta appeared to be localizing to the 

region of the cell surrounding the MTOC. In paclitaxel treated cells, GFP-LC3 

puncta were associated with microtubules, but did not show a distinct cellular 

localization (Fig. 3.10). Additionally, the microtubule network appeared to be 

disorganized when compared to either the untreated or starvation control 

(Fig. 3.10). 

One of the functions of autophagosome trafficking is to move the 

autophagosome into the proximity of a lysosome so that they may fuse and 

degrade the autophagic cargo. To examine the effect of the disrupted 

microtubule network we examined the relationship between the lysosomes 

and GFP-LC3 by fluorescent microscopy (Fig. 3.9). In both untreated and 

starvation controls, GFP-LC3 and LAMP1 colocalized to the same region of 

the cell (Fig. 3.9 and 3.10). The bafilomycin treated samples showed high 

levels of colocalization between GFP-LC3 and LAMP1 in the untreated and 

starved controls indicating that bafilomycin-treatment blocked 

autophagosome degradation after association with lysosomes. In contrast, 

paclitaxel treated cells did not show any clear colocalization with lysosomes 

as shown by LAMP1 immunofluorescence (Fig. 3.11). Furthermore, 

bafilomycin treatment showed a near absence of colocalization in paclitaxel  
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treated samples (Fig. 3.11). Together, these results show that paclitaxel 

significantly impacts autophagosome trafficking. Specifically, paclitaxel 

treatment causes disorganization of the microtubule network and disrupts the 

association of autophagosomes with lysosomes by causing mislocalization of 

both. This has the functional effect of preventing efficient degradation of 

autophagosomes and their cargo, and is one mechanism of paclitaxel 

inhbition of autophagy. 
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4.1  Paclitaxel inhibits autophagy through disruption of 

autophagosome localization and trafficking 

The specific role of microtubules in autophagy is unclear (Monastyrska, Rieter 

et al. 2009). Using nocodazole to disrupt the tubulin network, several groups 

have shown that microtubules mediate autophagosome formation (Fass, 

Shvets et al. 2006; Kochl, Hu et al. 2006), trafficking (Kochl, Hu et al. 2006; 

Xie, Nguyen et al. 2010), and speed (Jahreiss, Menzies et al. 2008). The role 

of microtubule dynamics in this process, however, is less clear. Paclitaxel is a 

microtubule stabilizing agent that has multiple cellular effects depending on 

intracellular concentration. At high concentrations (greater than 200nM), 

paclitaxel bundles microtubules and initiates a cell-cycle independent cell 

death pathway, whereas at lower clinically achievable concentrations, 

paclitaxel initiates mitotic arrest-dependent apoptosis (Wang, Wang et al. 

2000). With respect to autophagy, using high concentrations of paclitaxel (5-

20μM) Xie et al. found that paclitaxel increased GFP-LC3 puncta formation 

specifically in mitotic cells (Xie, Nguyen et al. 2010), and Kimura et al. 

observed a modest diminishment of autophagosome speed (Kimura, Noda et 

al. 2008). On the other hand, Kochl et al. found that stabilized microtubules 

had no significant effect on autophagosome formation. Thus it is still not clear 

how paclitaxel regulates autophagy (Kochl, Hu et al. 2006). 

This study shows that lower, clinically relevant doses of paclitaxel  have an 

inhibitory effect on autophagic flux (see Fig. 4.1 for model). Biochemical 

examination of LC3-I/II conversion as well as immunofluorescent examination  



75 
 

  



76 
 

of GFP-LC3 puncta formation demonstrated that autophagosomes 

accumulate in non mitotic, paclitaxel treated cells. While similar observations 

were initially interpreted as a paclitaxel-dependent stimulation of autophagy 

(Gorka, Daniewski et al. 2005), using the lysosomal inhibitor bafilomycin A1, 

we showed that the accumulation of autophagosomes was the result of 

inefficient autophagosome degradation, rather than an increase in 

autophagosome formation.  

This observed block in autophagosome degradation led to examination of the 

underlying causes. We found that low-dose paclitaxel treatment altered 

autophagosome movement. Live cell microscopic examination showed that 

autophagosomes moved at lower speed in paclitaxel treated cells. In non-

paclitaxel treated cells, autophagosome movement was not uniform, with 

some GFP-LC3 positive puncta moving very rapidly and for long distances, 

while others moved relatively slowly. In contrast, GFP-LC3 puncta in 

paclitaxel treated cells had a lower average speed, a lower maximum speed, 

and very few puncta that travelled long distances. Lysosomes are also 

trafficked along microtubules, presumably to the same final location of 

autophagosomes. So it is possible that diminished trafficking speeds and 

distances would delay the arrival of autophagosomes to areas enriched in 

lysosomes and therefore diminish autophagic flux. Therefore, we decided to 

evaluate autophagosome localization. 

Paclitaxel treatment caused autophagosomes to change localization from 

primarily perinuclear to diffuse cytoplasmic localization. Perinuclear 
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autophagosomal localization coincides with the location of the Microtubule 

Organizing Center (MTOC), which is the eventual destination of 

autophagosomes (Matteoni and Kreis 1987; Jahreiss, Menzies et al. 2008). 

To assess the association of autophagosomes to the MTOC, we used the 

MTOC-specific marker, pericentrin. Immunofluorescent examination of GFP-

LC3 and pericentrin showed that autophagosomes in both untreated and 

starved cells localize to the MTOC. On the other hand, paclitaxel treatment 

caused mislocalization of GFP-LC3 away from the MTOC.  

The MTOC shares similar perinuclear localization to the Golgi apparatus, the 

site of lysosomal biogenesis (Anitei, Wassmer et al. 2010). Additionally, 

lysosomes are trafficked along the microtubules toward the MTOC (Matteoni 

and Kreis 1987). This may be biologically significant as a way of 

concentrating lysosomes and autophagosomes into the same region of the 

cell, allowing their efficient fusion. Therefore we assessed the effect of 

paclitaxel treatment on autophagosome-lysosome association. 

Immunofluorescent analysis revealed that during basal or starvation-induced 

autophagy, lysosomes and autophagosomes colocalized to the same 

perinuclear region. Paclitaxel treatment causes a relocalization of both the 

lysosomes and autophagosomes throughout the cytosol, with little co-

association between the two organelles. As well, bafilomycin treatment shows 

diminished accumulation of LC3-II in paclitaxel treated cells versus non-

paclitaxel treated cells. Taken together, this data indicates that paclitaxel 

treatment inhibits autophagosome-lysosome associations, resulting in a block 

in autophagosome maturation and turnover. 
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4.2 Mitotic arrest inhibits autophagy 

Not only did we find that paclitaxel inhibits autophagosome traffic, we also 

found that paclitaxel inhibited autophagosome formation in mitotically 

arrested cells. Eskelinen et al. first described that autophagy was suppressed 

in mitotic NRK cells (Eskelinen, Prescott et al. 2002). However Liu et al. 

observed autophagy in mitotic HeLa cells (Liu, Xie et al. 2009). Whether 

these conflicting results reflect cell-type specific differences, it is obvious that 

extrapolation of results between different systems must be done with caution. 

This study shows that autophagy is inhibited in paclitaxel treated mitotically 

arrested breast cancer cells. This was demonstrated through LC3 blotting as 

well as through live cell analysis. Live cell microscopy revealed that when a 

cell entered mitotic arrest, it slowly degrades the autophagosomes present at 

the time of arrest. There was no obvious formation of new autophagosomes. 

This suggests that in mitotic cells,  preexisting autophagosomes can still fuse 

with lysosomes and degrade their cargo, though it appears that new 

autophagosome formation is suppressed. Recently, Furuya et al. provided a 

mechanism for  mitotic autophagy suppression by demonstrating that Cdk1 

phosphorylates Vps34 on T159 during mitosis, decreasing its binding with 

Beclin 1 and inhibiting formation of autophagosomes (Furuya, Kim et al. 

2010). Examination of paclitaxel treated, mitotically arrested cells showed 

phosphorylation of Vps34 on T159. To my knowledge, this is the first 

demonstration of Vps34-specific inhibition in response to paclitaxel treatment. 

Notably, this phosphorylation was nearly absent in the adherent fraction of 

paclitaxel treated cells, suggesting Vps34 phosphorylation was specifically 
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associated with mitotic arrest. Live cell examination of paclitaxel treated cells 

also revealed that as a cell left mitotic arrest, there was a rapid formation of 

autophagosomes, and the loss of Vps34 phosphorylation suggests a potential 

mechanism. 

4.3 Autophagy as a therapeutic target during paclitaxel treatment 

Manipulation of autophagy is currently being investigated as a treatment 

strategy to improve patient response to chemotherapy (Fleming, Noda et al. 

2011). Determining whether a particular cancer treatment would benefit most 

from inhibition or induction of autophagy is of the utmost importance, as 

pharmaceuticals already exist for either approach. The autophagy inhibitor 

chloroquine has shown success in clinical trials for the treatment of 

glioblastoma (Sotelo, Briceno et al. 2006; Briceno, Calderon et al. 2007) and 

the autophagy inducer rapamycin is widely used to facilitate transplants 

(Campsen, Zimmerman et al. 2011). This study showed that inhibition of 

autophagosome formation with Vps34 inhibitor, 3MA, diminished paclitaxel-

induced cell death in vitro. As well, a subset of autophagy genes was down-

regulated in docetaxel-resistant tumors. Together, these data suggest that 

autophagy may enhance the effectiveness of taxane therapy in breast cancer. 

But does paclitaxel-inhibited autophagy limit cell death? If that were the case, 

then the rational approach would be to stimulate autophagy. 

Yet it is unclear if traditional inducers of autophagy would be capable of 

increasing cell death, as paclitaxel inhibits autophagy at multiple steps. 
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Rapamycin induces autophagy (through inhibition of mTOR) and is known to 

be a well tolerated therapy. We did attempt to evaluate whether rapamycin 

could stimulate autophagy in the presence of paclitaxel. Preliminary data 

showed that rapamycin treatment has no effect on autophagosome formation 

or paclitaxel cytotoxicity in a breast cancer cell culture model. This may 

indicate that the duration of rapamycin treatment was insufficient to affect 

autophagosome formation, but this seems unlikely considering how quickly 

starvation (a potent inhibitor of mTOR) can affect autophagic flux. A more 

likely explanation is that autophagic induction is also inhibited downstream of 

mTOR. We found that Vps34 activity is likely to be inhibited during paclitaxel 

induced mitotic arrest. Inhibition of Vps34 would then prevent mTOR based 

induction of autophagy. Additionally, even if autophagosome formation can be 

enhanced, paclitaxel blocks downstream autophagosome trafficking and 

fusion with lysosomes through its effects on microtubules. Thus therapeutic 

induction of autophagy in combination with paclitaxel treatment is not possible 

until the molecular mechanisms of autophagosome trafficking are better 

understood.  

Alternatively, these data are also consistent with the idea that blunted 

autophagy itself is a cell death signal. In this case, the rational approach 

would be to stimulate autophagosome-formation in combination with 

paclitaxel, which would result in an increased build-up of autophagosomes 

incapable of fusing with lysosomes. Potentially, this blunted autophagy then 

kills the cells. For the moment, we have shown that autophagy and taxane-
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induced cell death are linked. How these diverse signaling pathways interact, 

will be the subject of future experiments. 

4.4 Future Research 

4.4.1 How does paclitaxel inhibit autophagy? 

This study raises many significant questions about the relationship between 

paclitaxel, autophagy, and cell death. While the phenomenon of autophagy 

inhibition was well characterized, there are major uncertainties remaining 

about the regulation during paclitaxel treatment. Paclitaxel induced mitotic 

arrest causes an inhibitory phosphorylation on Vps34 that coincides with 

reduced autophagosome formation. The functional effect of Vps34 

phosphorylation can be demonstrated by performing immunoprecipitations of 

Beclin 1, and determining if there is diminished binding to Vps34. This 

interaction is crucial for autophagic induction, so diminished binding would 

indicate a functional block in autophagosome formation. There may be 

additional levels of regulation that combine to create the observed inhibitory 

effect. Only an understanding of the complex regulation of autophagosome 

initiation will allow effective manipulation strategies.  

mTOR is one of the best characterized regulators of autophagy. Under 

nutrient rich conditions, mTOR is active and phosphorylates multiple proteins 

within the Ulk complex, as well as downstream cell growth regulators (Yang 

and Klionsky 2010). The level of mTOR activity during paclitaxel treatment is 
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unknown, but can be assessed by examination of mTOR S2448 

phosphorylation (Chiang and Abraham 2005) or by assessing the 

phosphorylation of its substrates p70SK and 4E-BP1 (Fang, Vilella-Bach et 

al. 2001). This pathway can be examined further downstream, at the level of 

the Ulk complex. The Ulk1 complex is a potentially important regulatory 

target, as it is essential for autophagosome formation (Yang and Klionsky 

2010). Ulk1 has recently been shown to be regulated by AMPK and mTOR 

(Egan, Kim et al. 2011; Kim, Kundu et al. 2011; Loffler, Alers et al. 2011). The 

two kinases have opposing effects on Ulk activity: AMPK stimulates its 

activity and mTOR inhibits it. If paclitaxel induced autophagy inhibition 

involves suppression of Ulk complex kinase activity, this block could 

potentially be overcome through the use of mTOR inhibitors, leading to 

increased autophagosome formation and increased cytotoxicity. 

4.4.2 How does autophagy promote cell death in paclitaxel treated 

cells? 

The question of how autophagy potentiates paclitaxel cytotoxicity remains 

unanswered. One hypothesis is that autophagosome degradation is 

necessary to increase cytotoxicity. It is unclear why increased autophagy 

leads to increased cell death though it can be imagined that excessive 

autophagy could destroy key cellular components. An alternative hypothesis 

posits that autophagosome accumulation without degradation is toxic. In this 

scenario, autophagic cargo is sequestered within the autophagosome and 

provides no metabolic benefit due to downstream defects in trafficking. It is 
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challenging to distinguish between the two possibilities. Inhibiting autophagy 

with 3MA is protective, but that result supports either hypothesis. 3MA inhibits 

autophagosome formation, diminishing both the number of autophagosomes 

that accumulate within the cell as well as the number available to be 

degraded.  

Effectively inducing autophagosome formation would allow discrimination 

between these possibilities. We attempted to address this using rapamycin 

treatment. The rationale was that if increased autophagosome formation lead 

to greater cell death in paclitaxel treated cells, it would indicate that 

autophagosome accumulation rather than degradation contributed to cell 

death, as any autophagosomes formed would traffic inefficiently. No change 

in cytotoxicity was observed. Although this result is inconclusive, as 

rapamycin did not increase autophagosome formation in the presence of 

paclitaxel. For this approach to work, it would require some additional 

treatment to induce autophagosome formation. The observed increase in 

T159 phosphorylation of Vps34 may represent a target for such a treatment. 

Furuya et al. identified Cdk1 and Cdk5 as the kinases responsible for this 

phosphorylation in mitotic cells (Furuya, Kim et al. 2010). Cdk5 is primarily 

associated with cells of the nervous system (Dhavan and Tsai 2001), so 

inhibition of Cdk1 to stimulate Vps34 mediated autophagosome formation 

may de-repress autophagosome formation. We predict that with Cdk1 

inhibition, autophagosome formation of mitotically arrested cells will increase, 

yet autophagosome trafficking will still be blocked. If under these conditions, 

there was increased cell death, then this could indicate that accumulation of 
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undegraded autophagosomes contributes to cell death. These experiments 

will provide insight into how autophagy promotes death as well as how 

autophagy promotes cell death in paclitaxel treatment.  

Another way to explore the mechanism of paclitaxel cytotoxicity would be to 

restore efficient autophagosome trafficking, though there is no obvious way to 

directly accomplish this. Monastrol, the small molecule inhibitor of Eg5 

provides an alternative approach to study the effects of autophagy of cell 

death in the context of anti-mitotic treatment (Mayer, Kapoor et al. 1999). Eg5 

is a mitotic kinesin, and is necessary for the formation of a bipolar spindle 

(Sawin, LeGuellec et al. 1992). Inhibition of Eg5 with monastrol causes 

mitotic arrest and eventually leads to apoptosis (Chin and Herbst 2006). As 

autophagosome trafficking is dynein dependent (Jahreiss, Menzies et al. 

2008; Kimura, Noda et al. 2008), monastrol should theoretically induce mitotic 

arrest and cell death in the absence of an autophagy trafficking block. In this 

experimental system, existing modulators of autophagy can be used to 

determine the role of autophagy in cytotoxicity. With no downstream 

autophagosome trafficking block, inducers of autophagy such as rapamycin 

will increase autophagic flux. Then, by comparing the effects of an autophagy 

inducer in the presence or absence of a lysosomal inhibitor such as 

chloroquine or bafilomycin, we can determine whether cytotoxicity caused by 

mitotic inhibitors depends on autophagosome degradation or accumulation. 
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4.5 Summary 

Considerable controversy and uncertainty exists regarding the interplay 

between paclitaxel, autophagy, and cell death. This study addressed the 

uncertainty using a breast cancer cell culture model and clinically attainable 

concentrations of paclitaxel. We determined that autophagy contributes to 

paclitaxel induced cell death, and that this may be a clinically relevant 

relationship as docetaxel sensitive primary breast tumors show upregulation 

of a subset of autophagy genes. We also found that paclitaxel treatment 

inhibits autophagy through two distinct mechanisms: disruption in 

autophagosome formation and trafficking. Paclitaxel's importance as a 

chemotherapeutic agent underscores the critical importance of understanding 

the relationship between paclitaxel, autophagy, and cell death. 
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