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ABSTRACT

Thermal pyranometers and pyrheliometers are the most frequently used
instruments for solar radiation measurement. Due to the thermal
inertia of their sensors, the output signals are unable to follow
exactly a rapid radiation change. For instantaneous solar radiation

measurements, correction for the time-response-~error becomes

necessary.

Brinkworth and Hughes {4, 5] proposed an electronic compensation
circuit which could accelerate the response of thermal radiation
instruments. However, their hardware scheme, of which the accuracy
depends largely on the electronic element quality and the
envirenmental conditions, may introduce changes in the instrument's
calibration constants. A software scheme has been developed by
Suehrcke et al. [6; by analyzing a linear sensor model using heat
transfer theory. Suehrcke's approach may be questioned when the
measured instrumental response to step function radiation varies
significantly from a single exponential function, which is one of his

important assumptions.

In this work, the response of Kipp & Zonen (M-S thermal pyranometers
to a step radiation change was measured. It was observed that the
pyranometer output varied significantly from a single exponential

function of time. Using a multi-exponential function to fit the



experimental data, the two domlnant exponential components of the

signal, as well as their time constants, were extracted.

A thermal model <¢f the pyranometer has been developed, whose response
displays the observed time behavior. The model lead to the derivation
of a transient function describing the relationship between the

pyranometer output and the radiation input.

In order to determine an unknown parameter in the transient function,
sinusoidal response of the same pyranometer was examined. Based on the
experimentally determined transient function, a second order
correction scheme (SOC) was developed to correct the second order time
response error. As the time response error occurs, SOC  has
demonstrated definite improvement over both the original thermal
sensor readings and the first order correction scheme proposed by

Suehrcke et al. [6].
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i. INTRODUCTION

Renewed interest in solar energy has developed as a result of tcday’'s
energy crises and environmental problems. The design and analysis of
solar energy wutilization grpresent unique problems, due to the
intermittent and diffuse nature of the resource and the high initial
expenditures of the conversion system. These characteristics have made
it important to accurately predict the process performance and
consequently generated activity in both measurements of the process
input (solar radiation) and in the application of modeling techniques.
Until now, most of the modeling activities have been based on hourly

or daily solar radiation values. But recent solar radiation research

has demonstrated the need for
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[(3]. As the sampling period approaches the order of radiation sensor
response, however, time response errors may be encountered in the

radiation measurement.

1.1 Solar radiation sensor

Depending on the principie on which they are based, radiation sensors

may be broadly classified as photoelectric {(or photovoltaic) and

thermoelectric sensors.

As its name implies, a photoelectric sensor makes a conversion between

photons of 1light energy and electrical signal. This procedure, as
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shown in Figure 1.1, is made possible by a PN junction which col'ects
the electron-hole pairs excited by incident radiation photons. The
photoelectric sensor provides a simple, inexpensive radiation
instrument that yields a strong output signal without external power.
A further and important advantage is that the photoelectric detector,
cf which the response time is estimated to be about 10 us [1], is
virtually 1instantaneously activated by the discrete events of the
incident photon flux. How=ver, not every photon in Figure 1.1 is able
o stimulate an electron-hole pair to the conduction band since the
energy of the sun’s photons is so spread out that only a few have an
energy exactly equal to the band gap of silicon. Insufficiently
energetic photons contribute nothing to the output current. A spectral
sensitivity curve for a silicon sensor and a typical selar radiation
spectrum is shown in Figure 1.2. This effect makes the photovoltaic
sensor suffer from accuracy problems since the spectrum of clear skv
solar radiation is different from the cloudy sky radiation spectrum

[19].

A thermoelectric sensor, based on the principle of converting the
incident radiant energy into heat, can overcome the spectral
sensitivity problem. In the sensor, a blackened (or partly black and
partly white) receiver which is not spectrally selective over the
visible and near infrared band is used to provide an indication, or a
quantitative reading which is proportional to the incident amount of
energy. The energy absorbed by the receiver gives rise to a
temperature difference AT in the receiver, which depends on its

thermal properties. The temperature difference in turn gives rise to a



heat flow ih' and there is a thermal resistance Rh to this flow which

is analogous to =2lectrical resistance. In fact, in the case of

stationary heat flow, a law similar to Ohm's law may be employed:

AT=ith {(1.1)

As the thermal equilibrium state is reached, the heat flow ih should
respond only to the incidiant radiation. While the temperature
difference AT may be measured accurately by either thermccouple or
thermopiles, the evaluation of Rh is very complicated and an absolute
determination 1is almost impossible. The destermination of 1h is

therefore not a simple matter. However, when Rh can be maintained at a
constant value, measurements of radiation are possible and may be
carried out with satisfactory accuracy. Because of their signal’'s
direct connection with the total energy absorbed and thelir
nonselective feature to the spectral distribution of the energy,

thermoelectric sensors have conventionally played a major role in

solar radiaticn instruments.

1.2 Time response error

As has already been mentioned, the thermal equilibrium status of the
thermoelectric sensor has t. be reached before any correct readings
could be obtained. If not, a time response error could occur due to

the imbalance between the internal thermal flow and the incident

radiant energy.



The time response of the 1instruments depend on their operation
principles, mechanircal structures and thermal properties. General time
response discussions on a group of such instruments, or pyranometers,
used to measure global solar radiation, can be found in L.F. van Wely
and G.J. van den Brink’s work [2], where the step response of
instruments is used to represent their dynamic characteristics.
According to their measurements, the settling time needed by the
pyranometer signals to reach the final stable value after the onset of
step 1input, ranged from 60 s to 180 s for different types of
pyranometers. In another words, thermal pyranometers yield erroneous

readings for at least 60 s after a sudden step radiation change.

Further investigations of the time effect of the pyranometer was
performed by H. Suehrcke [3] who conducted a comparison between a
thermal Kipp & Zonen CM-10 and a photovoltaic pyranometer. Both
pyranometers were placed under a clear-cloudy sky and their outputs
plotted, as shown in Figure 1.3. Due to its instantaneous time
response, the photovoltaic pyranometer can be assumed to give the true
solar radiation recording. Figure 1.3 shows that the signals from the
two pyranometers are almost identical during the time 13:51:10 to
13:51:25 and 13:52:00 to 13:52:35 (or from 13:49:45 to 13:50:38),
corresponding to cloudy sky conditions and clear sky conditions
respectively. That is because that both cloudy and clear conditions
had brought a internal thermal equilibrium status to the thermal
radiation sensor and the readings of the pyranometer would
consequently represent the true radiation value. But as a clear-cloudy

or cloudy-clear transition occurs, at about 13:50:45, and 13:51:40 in



Figure 1.3, the thermal pyranometer CM~10 sensor cannot follow the
rapidly changing radiation and vyields erroneous readings for
approximately 20 s. It is a.so seen that the thickness and density
variation associated with the cloud movement, from 13:52:37 to

13:53:00, is still too fast to be caught accurately by the thermal

pyranometer.

Thus thermal radiation sensors, measuring instantaneous solar
radiation, can yield inaccurate readings due to their thermal inertia

as the radiation changes rapidly.

1.3 Error compensation

Some efforts have been made to compensate or to correct the time
response error {4, 5, 6]. An electronic compensation circuit was
proposed by Brinrkworth and Hughes (4, S] to accelerate the dynamic
response of thermal radiation instruments. When the compensating
circuit is used with the Kipp and Zonen pyranometers, the response to
a step change in radiation is substantially completed in about 2.3 s
[S], much faster than that obtained by van Wely et al. [2]. However,
this hardware compensation scheme, of which the accuracy depends
largely on the precision of the electronics and the environmental
conditions, may introduce changes in the instrument's calibration
constants. Based on the analysis of a linear sensor model using heat
transfer theory, Suehrcke et al. have developed a software correction
scheme [6], which is based on the instrument response to a step

function of radiation being descr.oed by a single exponential



function. The software scheme, simple and free of modification to the
measurement circuit, takes the advantages from both the modern

techniques for data handling and the reliabilities of conventional

instruments.

However, careful investigations [2, 7, 8, 13, 14] of the thermal
pyranometers have indicated that their dynamic responses can not be
described by simple first order behavior, i.e. the step response can't
be fit to a single exponential function. In addition to this, the
thermal shock measurements of Wardle and Barton [10], as shown in
Figure 1.4, suggest that the output signal of a darkened pyranometer,
after the ambient temperature drops abruptly, doesn’t change
exponentially. Instead, the signal goes back to the level before the
thermal shock occurs. This phenomenon can't be explained by Suehrcke’s
single plate model of the thermal pyranometer. Similar results were
obtained by van den Brink {11]. Van Wely and van den Brink [2] suggest
that pyranometers in general have multiple time constants, caused by
the inertia of the sensor, the net infra-red radiation between the
inner dome and sensor, and a change in the temperature of the
instrument housing. Apparently only the first order time response
error is corrected by Suehrcke's scheme and the high order error

correction is the purpose of this work.

This thesis begins with a brief introduction on the solar radiation
measurement sensors followed by the model development for the thermal
pyranometer in Chapter 2, where a relationship (transient function)

between the radiant input and sensor output is derived. Chapter 3



presents the investigation of the multiple time constant phenomenon of
Kipp & Zonen CM-5 pyranometers, subject to an experimentally-generated
step change of radiation. Chapter 4 introduces the sinusoidal response

of the pyranometer, the experimental realization of the measurement

and the determination of an unknown constant in the transient

function. A time response error correction scheme based on the

transient function is discussed and demonstrated in Chapter S, and

conclusions are drawn in Chapter 6.
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Figure 1.1 Photovoltaic radiation sensor.
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2. RESPONSE MODEL OF THERMAL PYRANOMETER

2.1 Suehrcke’s model

To correct the time response error, Suehrcke et al. [6] have developed
a single plate tliermal pyranometer model, which has well demonstrated
the first order behavior of the instrument. In Suehrcke’s analysis,
the thermal radiation sensor response is equalized to the temperature
response of a thin plate that tries to reach 1its equilibrium
temperature when it 1is exposed to changing radiation, as shown
schematically in Figure 2.1. Assuming that the incident radiation
intensity on the pyranometer is C{t) and using the first law of
thermodynamics, the equation that governs the response of the sensor

can be formulated as:

dT(t)

(MC) at

(7a)G(t)—U(T(t)-Ta) (2.1)

where (MC) is the effective sensor heat capacitance per unit area, T
denotes the sensor plate temperature, (Ta) the glass dome
transmittance and sensor surface absorptance product, U the overall
heat loss coefficient per unit area, and Ta the ambient temperature.
Let Ts be the equilibrium temperature that is reached by the sensor
when dT/dt=0. For this case Equation (2.1) yields the relation between

the plate temperature and the incident radiation:



P U —
G = &) (TS Ta) (2.

1]
[8¥]

Assuming a linear relation between plate temperature and radiometer
reading, the radiation indicated by the sensor, Gi' can be expressed

in the same form as Equation (2.2):

—— U —
G, (t) = gy (T()-T,) (2.3)

Using Equation (2.3) in Equation (2.1) yields:

dGi(t)

where T=(MC)/U is the time constant of the sensor. Equation (2.4) is
used directly, in Suehrcke’s compensation for time response error, to
correct the erroneous radiation jinstrument output Gi(t) to the true
radiation G(t), provided that the instrument’s time constant and the

first derivative of the indicated radiation are known.

For some special functions of incident radiation G(t), Equation (2.4)
may be solved analytically. Here two special forms of radiation

fluctuation are selected for analysis: a step change and a periodic or

sinusoidal change.

Consider first a step change in radiation, described by G(t)=GO for

tsto and G(t)=G1 for t>t0. The instrument response, determined by

solving Equation (2.4) analytically, is:



=15 -G lexp(~{t- .8
Gy (t)=15,-G Jexp(-(t to)/z)+G1 (2.=)

= >t .

where t 0

Another interesting time response of the pyranometer is its sinusoidal

response, sometimes referred as the frequency response. For radiation
»

osciliations described by G(t)=K sin (wt} , where w represents the

angular frequency of osciilation in radians per unit time and the

amplitude K is constant, Equation (2.4) becomes:

dGi(t)
K sin (wt) = G, (t) + T ——— (2.6)
i dt

which 1is a 1linear, first-order differential! equation having the

solution:

Gi(t)wC expl(~-t/t)+K (1+(wt)%)"*? sin(wt-arctan wt) (2.7)

where C is a constant that may be evaluated by the initial condition.

Reference to Figure 2.2 shows that the signal from the sensor \is

reduced in amplitude to the value oK, where a=(1+(wr)?)? is the

attenuation factor. Gi(t) also lags behind G{t) by the amount

»
This is the simplified expression. In fact, radiation oscillation
should be described by G(t)=K sin{wt)+K’', where K’'>K>0, since
radiation value can’t be negative.
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arctan(wtr), once sufficient time has elapsed so that the initial

transient has died away. The lag expressed as a phase angle in radians

can be converted to time wunits if divided by w. To a close
approximation, the time (tL) that the sensor lags behkind the incident

radiation change is the time constant T because arctan(wr)=zwr when wrt

is small.

Suehrcke’s model is simple and may be applied to the basic
understanding and the first-degree correction for the time response

error [6]. But for higher order corrections, further investigation on

the sensor model will be needed.

2.2 Double thin plate model

In general, a thermal radiation sensor produces a signal by =
temperature difference due to a differential absorption of radiation,
between either a black and a white surface, two black surfaces, or a
blackened surface and the base or housing of the instrument [9]. Thus
the single thin plate of Suehrcke’s sensor model may not be sufficient

to describe the sensor behavior.

2.2.1 Transient function

More realistically, our thermal model of the pyranometer, shown
schematically in Figure 2.3, is composed of two thin plates 1 and 2,
each with an effective heat capacitance (MC), and overall heat loss

coefficient (U). Ta is the ambient temperature. Plate 1, with
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absorptance a, is exposed to the radiation G(t) under a glass dome of
transmittance J. The pyranometer output 1is proportional to the

difference between the temperatures of the plates.

Using the first law of thermodynamics, the model behavior can be

depicted by the following equations:

dTICt)

(Micl)——dt = (Ta) G(t)*U1a [Tl(t)—Ta]_Ulz [Tl(t)—Tz(t)] (2.8)
dTZ(t)

(MZCZ) . = U12 [Tl(t)_TZ(t)]—UZa [Tz(t)—Ta] (2.9)

where (MiC;) and T, are the effective heat capacitance and temperature

of plate i respectively, ’a’ denotes the ambient medium (air}, and Ui

J
represents the overall heat loss coefficient from medium i to j.

From (2.8},

M,C, dT (t) U _+U . U,
T, (t) = + T.(t)- ==~ G(t)- —= T (2.10)
2 Yz at Uiz i Uio U 2

Inserting (2.10) and its derivative into (2.9) results in:
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(M,C.) (U, +U, 5 )+ (M,C,) (U +U 1212124

i;(t>+

(Tl(t)-Ta)

Also from (2.9),

M_C
T, (1) = 22

+U Uy 40, U

(M1C1)(M2C2)

H )G

T2
U12

Inserting (2.12) into (2.8) yields:

171

(M. C )(U2a+U12)+(M

fé(t)+

(Tz(t)~Ta) =

Subtracting (2.13) from (2.11) obtains:

AT(t)+ 11

\(

(Mlcl)(MZCZ)

(2.11)

(2.12)

+U. U _+U_ U

1a"12"Y12%a%Y2,Y12

(Mlcl)(MZCZ)

(M1C1)(M2Cé)

(M, C )(U23+U12)+(M

(Mlcl)(MZCZ)

(2.13)

1a%12%Y12Y%22%Y2.Y%12

(Mlcl)(MZCZ)

~

(Mlcl)(MZCZ)
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g - U2 (T )
ATit) = -2 _G(t) + a G(t) (2.14)

MIC1 (MICI)(NZ%)

where AT(t) = Tl(t)—TZ(t).

Let ATS be the static equilibrium temperature difference when
AT(t)=AT(t)=G(t)=0. Equation (2.14) then yields the relation between
ATS and the radiation value indicated by the pyranometer Gi which,

under this circumstance, equals to the incident radiation:

u ..U, +U. U_ +U_ U
G. =G = 1271a "1a 2a 2a 12 ATS (2.15)

(aT) U2a

It is assumed that the pyranometer output Gi(t), for time-varying

radiation G(t), has the same form as (2.15) so that:

U, U, +U, U_. +U_ U
G, (t) = 12 1a 1a 2a 2a 12 ,ry) (2.16)

(T ) U2a

Using (2.16) in (2.14) yields:
COG(t)+G(t) = CIGi(t)+ CzGi(t)+ Gi(t) (2.17)

where
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Co= MCo/ U,y

— 4
Cy= (M,C ) (M,C,)/ (U, U+ U

1 u, u.))

12% Y1aY245* UooYpo

u U, _+ U, U )

Co= M0 U, % Upp)* MG, U+ UL/ (U U S+ U 2a’ "2a 12

Equation (2.17) 1is the transient function used to describe the

behavior of the pyranometer.
2.2.2 Step and sinusoidal response

Equation (2.17) may also be analytically solved for a step or a

periodic (sinusoidal) change of incident radiation G(t).

Solution of (2.17) for a step function of radiation, described as

before, at t=t0 yields:

Gi(t)=A exp(-(t—to)/rl)+B exp(-(t»to)/%2)+ G1 {(2.18)

where A and B are constants related to the initial conditions, namely
A+B=G0—G1. Unlike (2.5), the step response of the double thin plate
model is composed of two exponential comporients, with time constants
L and T, which are determined by the thermal properties of the two
plates through 1112=C1 and rl+12=C2. This explains the double time

constant phenomenons of thermal pyranometers.
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Inserting a sinusoidal change in radiation G(t)=K sin(wt) into

Equation (2.17) ylelds:

2.1/72

K(1+(Cow) ) sin(wt+ ¢)=C1 Gi(t)+C Gi(t)+Gi(t) (2.19)

2

where ¢ = arctan (Cow). The instrument response, determined by solving

(2.19) analytically, is:
Gi(t)=A exp(—t/f1)+B exp(—t/12)+ oK sin{wt-0) (2.20)

where A and B are constants set by the initial conditions, Tl and tz

are the time constants of the two exponential components that appeared

in the step response.

Once the elapsed time t exceeds T, and T, so that the transient terms

approach zero, the signal Gi(t) from the sensor lags behind the input

radiation G(t) by the phase angle

2 . 2
arctan (w(rl+12)/(1—w rlrz))—¢ if o 1112<1
2
= 22— i =
e={n/2-¢ if w T,7,51 (2.21)
2 . 2
n+arctan(w(rl+r2)/(l—w T,7,))-¢ if W, T,>1

The signal from the sensor is also reduced in amplitude by a

attenuation factor:
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[((l~w21 T )2+w2(r +T )2)(1+C2w2)]1/2
172 1""2 0 ,
55 5> (2.22)

(w 11+1)(w 12+1)

Both step and sinusoidal response of the double plate model are quite

different from that of the single plate model.
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Figure 2.1

Single plate thermal pyranometer model.

Adapted from Suehrcke et al. [6].
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G(t)=K sin(wt)

Time (1)

Figure 2.2 Sinusoidal response of single plate model.
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Figure 2.3 Double plate thermal pyranometer model.
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3. STEP RESPONSE OF KIPP & ZONEN CH-5 PYRANOMETERS

The theoretical step response needs to be experimentally justified and
the two time response constants determined for further investigation
and correction of time response error. An experimentally~generated
step change of radiation is used to examine the double time response
phenomenon of Kipp & Zonen CM-5 pyranometers. Analysis of the signals
produced by the pyranometers are to be used to show that the response

to a step function can be described by the sum of two exponential

components.

3.1 Instrumentation

The experimental setup is shown in Figure 3.1. A 600W tungsten
filament projection lamp, operating under ac conditions, was used as
the radiation source, and a step radiation change effected by the
camera shutter. The step transition time was less than 1 ms. The

intensity of the lamp was controlled by an ac autotransformer.

The radiation readings were recorded with a Sciemetric S8082A data
acquisition unit and an IBM XT-compatible computer. The Iintegrated
data acquisition software COPILOT" was used to monitor and store the

signals.



26

3.2 Experimental results and analysis

The output signals were recorded once each second after the radiation
step. Figure 3.2 shows a semi-logarithmic plot of one of measured
responses to a downward step radiation change. For this plot, GO=
780\»Im'_2 and G1= SWm_z. It is not possible to fit the points to a
straight 1line, which is imp..ed by Equation (2.5). But Equation

(2.18), on the other hand, describes the observed experimental

response.

But direct fitting of the recorded signal with (2.18) is susceptible
to significant error in Tl and 12, as described by Acton [{12].
Therefore general fitting schemes will not be used. To extract the two
time constants T, and T, consider Equation (2.18), and assume that
rl<r2. The first term on the right hand side of (2.i8), with the time
constant L and called the first signal component, decays faster than

the second signal component with the time constant = it becomes

23
negligible after a certain time. Figure 3.2 indicates the points
closely fit a straight line after 20s, implying single exponential
behavior there. Consequently the second signal is assumed to be
dominant between 20 s and 60 s and readily determined by means of
linear least squares fitting. As shown in Figure 3.2, the signal after
60 s cannot be accurately resolved by the data acquisition unit and is
not considered in the analysis. The second signal component may now be
subtracted from the original signal at times less than 15 s to obtain

the first signal component. Figure 3.3 demonstrates this technique;

the squares represent the extracted first signal component on the 1n
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(Gi(t)_Gl) vs time diagram. The distribution falls on a straight line,

verifying the two-exponential mod-' for the thermal pyranometers.

From ten separate measurements of CM-5S pyranometer No. 784354, the
average time constants were: rl=l.98i0.l7 s and r2=11.7910.24 s. The
uncertalinties represent the standard deviation of the ten
measurements. All six of the pyranometers displayed a two-exponential
response. Their values of L and T based on ten measurements for

each pyranometer, are shown in Table 3.1.

Measurements of the time constants were performed under a variety of
radiation inputs, varying parameters such as step amplitudes, step
direction (upward or downward) and initial radiation (GO). ood
repeatability occurred for the two measured time constants. Step
response experiments were also carried out under different physical
conditions: different optical beam size centering on the sensor
surface; 1illumination by the sun rather than a lamp; and different
pyranometer orientations. The measured response times were not
influenced by these conditions within the precisien of our

measurements.

The value of T, agrees Wwith the value of 3 s measured by van Wely and
van den Brink [2] for a Kipp and Zonen CM-S5 pyranometer. This

reference makes no quantitative mention of T nor does T, appear to

2° 2
liave been measured elsewhere. A time constant of 235 s for a CM-5
pyranometer is indicated by Nast [8], although it is not clear whether

this value is for T, or some longer time constant.
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3.3 Response to impulse radiation

Another property of pyranometer step response suggested by the
experiments is that the ratic of A to B, which are the parameters in
Equation (2.18}, is a constant independent of operating conditions.
This characteristic will produce an interesting phenemenon as the

sensor undergoes an impulse radiation change.

Figure 3.4 shows how a double exponential response pyranometer reacts
to an impulse radiation input theoretically. The impulse function is
described by G(t)=0 for t<O0, G(t)=G1 for O0=t<T and G(t)=0 for t=T,
where T is small compared with the time censtants T, and 12.

During O=t<T, the instrument responds as to a upward step radiation

change determined by (2.18):

Gi(t)=A(1—exp(-t/tl))+B(1-exp(—t/12)) (3.1)

At t=T, the first signal component reaches A(l—exp(—T/Tl))=A’, and the
second signal reaches B(l—exp(-T/rZ))=B’. Now with the downward step
occurring at this point, both signal components start to decay, but
with & signal component ratio A’/B’ rather than A/B. For T<<tl, Ty

A’ /B’ (A/B)(Tz/tl). From the previous measurements for the time

[}

constants, Tz/tlES. which 1is large enocugh to bring a significant
change to the signal component ratio from A/B, which is what would be

anticipated for a downward step.



in order to experimentally confirm the analysis, a function

representing the signal component ratio at t=t0, and independent of

the absolute amplitude value ¢~ step or impulse 1is introduced.

Slightly changing (2.18) for t0= 0 yields:

Gi(t)— G1= B (R exp -t/rl)+ exp(—t/rz)) (3.2)

where R is the signal ratio at t=t0=0.

Taking the logarithm and the derivative of (3.2) obtains:

d[ln(Gi(t)—Gl)] dlln (R exp(-t/7

) A egp(—t/tz))]

dt at

(3.3)

where the right hand side contains no absolute values, but only the
ratio (R) of A and B. Function (3.3) is used to characterize response

with different R.

In the experiment, the impulse radiation was generated by the camera
shutter with T=0.25 s. CM-5 pyranometer #784354, with L 1.98 s and
T2=11.79 s, was subject to the radiation input. The signal after the
shutter closed was recorded every 0.3 second. To calculate function

(3.3), each experimental data was first transformed to the logarithm

of the difference between itself and the last stable signzl. A series
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of 20 transformed data points were then picked sequentially and
regressed to a straight line by applying 1least squares fitting.
Assigning the negative inverse of the slope of the regressed line,
which is the response time in Suehrcke’s model, to the times of the
series middle points, a [-1/slope’ vs time diagram like Figure 3.5 was
obtained. In the diagram, the [-1/slope] at t=3 s is calculated by
regressing the data points between 0.3 second and 6 second, and the
[-1/slope] of 3.3 second by the data points between 0.6 and 6.3
second, and so on. The [~1/slope] vs time diagram of a downward step
response 1is also displayed in the figure. Comparison with the
theoretical calculation indicated that the impulse response fitted
well with R=40 curve and the step . ;ponse with R=7 curve. The impulse
response has amplified value of R for the step response by about 6
times, confirming the previous analysis and the measured values of =T

1

and T,

Impulse radiation response measurement also allow a simple way to
estimate the first time constant Tl since the amplifying effect has
made the first signal component take a major part right after the
impulse. In Figure 3.5, the [-1/slope] of first few points of the
impulse response approximately equals to T

3.4 Correction for measurement of step radlation

The experiments and analysis described above indicate that Kipp &
Zonen CM-5 thermal pyranometers can be characterized by at least two

exponential response times, which are independent of the measuring
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range or physical conditions. From the measured values of t. and T,

the parameters in (2.17) were readily obtained except the constant CO'

For a step radiation measurement, hcwever, the term containing C_ 1s

o

Zzero because G(t)=0 for txto. A correction scheme is

possible using (2.17) to calculate G(t) from measured values of Gi(t)'

therefore

A similar correction scheme has been proposed by Suehrcke et. al. (6]
for a single exponential response pyranometer. The application of the
two correction schemes to a downward step functlion is shown in Figure
3.6, which compares the pyranometer signals Gi(t) with the corrected
readings. With Suehrcke’s first order correction method (6], T is

1

used as the time constant. For this figure, t0=ls, G0=780Hm—2.
G.=5Wm 2.

1
The corrected readings are a definite improvement over the CM-S
pyranometer readings, effectively approaching the true radiation G1
about 10 s after the step. The first order correction scheme also
shows improvement over the uncorrected signal, but the decay to the

true <ignal is slower than with the second order method. This is due

to the uncorrected second exponential component.

Thus the time response error of a step response has been successfully
conpensated using the measured time constants which determine Cl and
C2 in Equation (2.17). But a realistic radiation variation is more
arbitrary and the CO term in (2.17) needs to be considered if we wish
to apply the second order correction method for a more general

instantaneous solar radiation measurement. Like the other constant

factors in (2.17), C0 is determined by the thermal properties of the
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radiation sensor. A theoretical calculation of C0 is wvirtually
impossible because of the difficulty obtaining the sensor thermal
parameters. As has been discussed above, the sinusoidal response of
the thermal pyranometer model, either through the attenuation factor «
or phase lag 06, 1s influenced by CO’ since a sinusoidal variation of
G(t), unlike a step function, does not set the term containing C0 in
(2.17) to zero. Therefore a sinusoidal response experiment is needed
in order to correct the second order response error caused by an

arbitrary radiation signal. This experiment is discussed in the next

chapter.



Serial # ?; (s) AT, (s) ?; (s) AT, (s)
784332 2.87 0.027 11.95 0.15
784316 2.83 0.037 9.92 0.12
784396 2.32 0.059 10.78 0.14
784386 2.91 0.035 13.43 0.07
784354 1.98 0.170 11.79 0.24
784356 2.55 0.180 10.62 0.21

Table 3.1 The value of t’s of six pyranometers.
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Figure 3.2 Pyranometer response to a downward step of radiation.
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Figure 3.4 Pyranometer response to a pulse radiation.
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4. SINUSOIDAL RESPONSE OF KIPP & ZONEN CM-5 PYRANOMETER

In the previous chapter, the investigation of the step radiation
response of Kipp & Zonen CM-5 pyranometers shows that the response to
a step function should be described by the sum of two exponential
functions [13, 14]. A two plate thermal model was developed and the
relationship between the radiation input G(t) and the pyranometer
output Gi(t) satisfied the differential equation (2.17), in which the
constant factors C and C are readily known once the two time

1 2
constants L and 12 are measured. For step radiation input, the time
response error has been compensated by using (2.17) directly ({13, 14].
To correct the time response error for an arbitrary input G(t)
however, another constant C0 in (2.17) must be determined.
From (2.21) and (2.22), sinusoidal response of the two plate sensor
model depends on not only the two time constants but the constant C0

as well. With known Tl and T, CO can be obtained by measuring the

sinusoidal response of the pyranometer.

4.1 Experimental setup

Figure 4.1 shows the experimental setup. A 600W tungsten filament
projection lamp was used as the radiation source. Kipp & Zonen CM-5
thermal pyranometer #784316 and a Rho Sigma photovoltaic pyranometer

were used for the sinusoidal response measurement. The beam splitter
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permits simultaneous thermal and photovoltaic sensor measurements.
Because of its rapid response, the photovoltaic sensor is assumed to

L ]
give readings proportional to the incident radiation, with no error

due to a finite response time.

The sinusoidal modulator is an opaque template of radius p=R+r sin 7,
as shown in Figure 4.2. Assuming the lamp filament has a rectangular
image of wuniform intensity, the radiation transmitted past the
modulator is proportional to the dashed area. If the template rotates
at a constant rate, the radiation reaching the sensor will be
sinusoidally modulated. To vary the angular frequency w for the
sinusoidal function generator, the template was driven by a small
rubber wheel, whose distance from the template axis could be changed
by physically moving the wheel. The rubber wheel was driven by a

synchronous motor with speed of about 6 rpm.

The radiation readings were recorded with a Strawberry Tree Analog
Connection™ Mini-16™ data acquisi:ion unit and an IBM-XT compatible

computer. The QuickLog PC" software was used to monitor and store

signals.
4.2 Measurement and analysis

The data acquisition procedure started after the thermal pyranometer

Due to iiie principle of operation of the sinusoidal modulator, the
uneven temperature distribution on the lamp filament image may
change the spectral content of the modulated light beam. The

possible error caused by the spectral sensitivity of the PV sensor
is ignored here.
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reached its stable status, i.e. the transient terms in (2.20) became
zero. The output signals from the pyranometers were sampled and stored
once each 0.5 s in a data file. Figure 4.3 dispiays the sampled data
at w=0.4009 rad s-l. Some ripple appears on the photovoltaic
pyranometer output. This is caused by the ac power supply powering the
light source. The thermal pyranometer output is still not a pure
sinusocidal function although 1less ripple 1is present than on the
photovoltaic signal. That 1s probably due to 1limitations in the
sinusoidal modulator. For instance, the imperfection of the modulator
template shape and the lamp filament image would influence the purity

and spectral pattern of the generated sinusoidal function.

Before performing the numerical calculation of lag time or attenuation
factor indicated by (2.21) and (2.22), an accurate frequency
determination was necessary. That is because the angular frequency w
of each data file is only roughly estimated at this point and its

"true’ value has to be determined by the signals themselves.

A program, shown in Figure 4.4, was written for the purpose of
determining the frequency. Because of its smaller ripple, the thermal
pyranometer signal was used. Only an initially estimated frequency w
and the changing step Aw are needed as input parameters to the
program. Al, assumed to have only one minimum value with different w,
are the standard deviation of the experimental data and their best
fitting sinusoidal function. Comparison of Ai's of different w
determine the direction of adjusting w. The best fitting angular

frequency (w) is yielded automatically with the accuracy of *Aw. The
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results shown in the thesis were obtained by Aw=0.0001 rad/s. The

scurce file of the program is given in Appendix A.

Using the calculated w to fit the experimental data, the lag time and
the amplitude attenuation of the thermal pyranometer output were
determined. The amplitude attenuation measurement suffers from a basic
inaccuracy caused by difficulties experienced in initially equalizing
the signals from the two pyranometers at their minimum and maximum
values at the two corresponding positions of the modulator template.
This may be caused by non-linear effects of the modulation process, or
variation of the optical frequency components of the radiation emitted
from different portions of the la~. {i!ament. Fortunately, the lag
time measurement accurzcy droc ¢ .t depend on the signal equalization
accuracy of the sensors. Thus iy the lag time measurement was used

to determine the unknown constant CO in (2.17).

The sinusoidal response of the Kipp and Zonen CM-5S pyranometer #784316
has been measured under 14 different frequencies ranging from 0.0891
to 0.4617 rad s_l. For this pyranometer, A2 and T, were measured to be
2.83 s and 9.97 s, respectively (See Table 3.1). The lag time vs.

angular frequency diagram is plotted in Figure 4.5.

The theoretical curve displayed in Figure 4.5 is plotted according to
(2.21) for C0=9.22t0.02 s. This value of CO was obtained from a fit of
(2.21) to the experimental points for a chi-squared minimum. The

quoted uncertainty is the valuez of Jzz.
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For completeness, the attenuation diagram is displayed in Figure 4.6.
The experimental and calculated results show reascnable agreement,
aithough the theoretical curve for CO=9.22 consistently falls below

the experimental points. Presumably, this is due to the inaccuracy of

the attenuation measurement.

4.3 Conclusions

The sinusoidal response of Kipp and Zonen CM-S5 pyranometer with
angular frequency w has been measured over the frequency range
0.014-0.073 Hz. Comparing the experimental data with theoretical
calculations based on the two plate thermal sensor model has
determined the last unknown constant of (2.17) so that all the
parameters appearing in the transient function have been
experimentally obtained. On the other hand, the good agreement between
the measured and calculated sinusoidal response has given a

Justification for the previous model analysis.

With the Kknown transient function, representing the relationship
between the pyranometer input and output, a correction scheme should
be possible by computing the pyranometer input, which is the ’true’
value of the incident radiation, from the pyranometer output, that is,

the radiation value indicated by the instrument.
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Figure 4.2 Shape of the sinusoidal modulator template.
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5. TIME RESPONSE ERROR CORRECTION

S.1 Introduction

The measurements of the step response and the sinusoidal response of
Kipp and ZzZonen CM-5 pyranometer have quantitatively explored the
relationship between the pyranometer input and the output. At this
point, the transient function (2.17) can be used to determine the
radiance input G(t) according to the instrument output Gi(t)' But the
calculation procedure from Gi(t) to G(t) will involve not only the
numerical solution for a differential equation, but also numerical
differentiation for the values of the first and second derivatives of
G.. As numerical differentiation is always fraught with difficulties

i

and hazards, it should be performed with caution.

5.2 Numerical differentiation

The derivative of the function Gi(t) at t=t0 is defined as

G.(t +At)-G, (t.)
G.(t)=1im —9 i 0 (5.1)

At->0 At

provided the limit exists. For a tabulated set of experimental data,

the way in which Gl(t) usually appears, the accuracy of numerical
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differentiation depends largely on the measurement accuracy and the
sampling frequency. Since measurement error exists, however,
decreasing At (increasing the sampling frequency) will not guarantee a
better result of differentiation. In some cases smaller At amplifies
the error of differentiation with the existence of measurement error.
Figure 5.1 demonstrates the phenomenon. The slope of L, measured with
larger sampling period At, approximates the true derivative (the slope
of the tangent) rather than the slope of L', which is measured with
smaller sampling period At’', even when the same amount of error e 1is
introduced in both measurements. In addition, the error in the first
derivative will be transferred to the ~alculation of the second

derivative and make the situation worse.
5.2.1 3-point collocation

The simplest and most straightforward algorithm for the numerical
computation of first and second derivatives is the three point
collocation method by calculating éi(t) using Gi(t—At) and Gi(t+At),
where At is the sampling period. éi(t) is approximated by the slope of

the line passing through its two neighboring points:

G. (t+At)-G_ (t-At)
i i

G. (t)= (5.2)
. 2 At

Replacing Gi with Gi will obtain the second order derivative as well.
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As discussed before, a step radiation input will set the differential
term in (2.17), Cod(t). to zero. As a consequence, how well the time
response error is compensated depends on how accurately the values of
61 and é; are calculated. Thus the result of error correction for step
response can be used as an indication for the Jderivative calculation.

In another words, the compensation for the step response can be used

to determine which numerical differentiation scheme should be used.

Figure 5.2 displays the corrected step response using 3-point
collocation numerical computation. Substantial ripple appears on the
corrected curve. The situation is even worse right after onset of the

step because the steeper response curve there makes the derivative

calculations less accurate. ~*\\\N

A 3-point colloca® 'n algorithm is not suitable for the correction
scheme because it directly utilizes the /:sult of the experiments,
ccmpleted with inherent measurement erroi=. Moreover, these inherent
errors usually will not be predictable with any degree of certainty;
that is to say, the inherent errors are distributed according to some
statistical pattern, and there is a reasonable probability that some
of the errors are quite large. Thus a smoothing procedure for the

experimental data is preferable before performing derivative

calculations.

5.2.2 Data smoothing

Least squares approximations are often used as a effective scheme to
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smooth out inherent errors. However the signals from the pyranometer
can change in an arbitrary fashion caused by the cloud passing between
the sun and the pyranometer. It is impossible, therefore, to fit the
radiation readings with any particular simple function. However, it is
reasonable to assume that the radiation change in a small period of
time, say 2 or 3 seconds, shouldn't be very large and could be fitted
by a simple function. In the case of the sample period being 0.5 s, it
should be ieasonable to assume that 5 successive peints - representing
a period of 2 seconds - can be well fitted by a quadratic curve. Thus
a S-point parabola fitting algorithm 1is used in the numerical
differentiation for the purpose of smoothing data. By this method,
éi(t) is calculated by using five successive values of G.1 straddling
the reading at t. The numerical differentiation formula for S point

parabola fitting has been given by LaFara [1S]:

1

éi(t)= (-2 Gi(t-2 At)—Gi(t—At)+Gi(t+At)+2 Gi(t+2 aAt))  (5.3)

10 At

where At is the sampling period. Gi‘ in turn, is obtained from the

M »
five successive values of Gi straddling the point at t.

Because (5.3) does not apply near both ends of the data, the following

- .« .
With a S-point parabola fitting scheme, Gi could also be calculated

directly from the fitted cuve of Gi’ in which case less points will
be used to calculate the second derivative. But that will

eventually increase the truncation error as stated by Dorn [16].
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formulas obtained from four point parabola fitting will be useful for

the points at each end [151]:

. 1
Gi(to)= (-21 Gi(t0)+13 Gi(t0+At)+17 Gi(t0+2 At)
20 At
-9 G, (t +3 At)) (5.4)
i 0
. 1
Gi(t0+ﬂt)= - (-11 Gi(t0)+3 Gi(to+At)+7 Gi(to+2 At)
20 At
G.(t_+3 At)} (5.5)
i 0
. 1
G.(t, -At)= (11 G_(t )-3 G_{(t, -At)-7 G.(t -2 At)
i N 50 At i N i N i N
- G,(t, -3 At)) (5.6}
i N
. 1
Gi(tN)= 2o 2t (21 Gi(tN)—13 Gi(tN—At)-17 Gi(tN_z At)

+9 G_(t -3 At} (5.7)
i N

where the last data point is at tN.
Figure 3. «hows the ¢cnsequence of using S5-point-parabola fitting.
Compared with Figure 5.2, the noise produced by the differentiation
calculation is jyreatly reduced at the price of the corrected readings
approaching G1 after 10 s of step onset, much slower than the 3 point

collocation scheme. That is because more points were used in the
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derivative computation and the under-approximation for the values of
first few point derivatives made the error compensation there
insufficient. It has to be pointed out that the experimentally
generated step radiation change, with a rise time of less than 1 ms,
is much more rapid than what can oc-ur in actual solar radiation

measurement. The accuracy of the derivative calculation using S point

parabola fitting will improve when the input radiation doesn’t change

so rapidly.
5.3 Time response error correction

5.3.1 Runge-Kutta method

For an arbitrary radiation input G(t), calculating G(t) from Gl(t)
with (2.17) is a problem of solving a first-order ordinary
differential equation. Many numerical techniques exist for finding the
solutions to differential equations. Because of the difficulties
encountered in numerical differentiation as discussed before, the
fourth~order Runge-Kutta method is used because it does not require
the evaluation of any derivatives. However, function C(t) will have to
be evaluated for more than one value of t and G(t) {16}, that is to
say that two successive values of Gi(t) will be used to evaluate one
value of G(t) and the consequent data points will have only half the
number of Gi(t) values. But this disadvantage will be well compensated

by not having to evaluate the derivatives.

According to (2.17), the fourth-order Runge-Ku..a in this problem can



be defined by the following five equac.ions:
G(t+2 At)= G(t)+ At(k1+2k

,+2kg*k, ) /3 (5.8)

where At is the sampling period and

b= (0)4C,GL LE)+G, (£)=G(1)) /C (5.9)
k,=(C. G, (t+At)+C,G, (t+At)+G, (t+At)-G(t+at)-At k,))/Cy (5.10)
kg=(C G, (t+At)+C G, (t+At)+G, (t+At)-G(t+At)-At k,))/Cy (5.11)

k4=(C1Gi(t+2 At)+C2Gi(t+2 At)+Gi(t+2 At)}-G(t+2 At)-2 At k3))/CO

(5.12)

Provided the initial value G(tG) is known, the G(t) after to can be

evaluated with the time period of 2 At.
5.3.2 Initial condition and partial instability

Because the time response error correction 1involves the numerical
solution for a differential equation, it is important to know the
initial value of the ’"true’ incident radiation G(to). In addition to
this, the partial instability may be encountered [16] when too many
steps are taken 1in solving the equation and produce extremely
inaccurate results, because small roundoff or truncation errors may be

accumulated and magnified as the solution is carried out over a large



number of time steps.

According to the previous sensor model analysis, it is assumed that
whenever the sensor plate temperature reaches equilibrium, the
instrumrnt will give a correct reading for the radiation. 1i.e.
Gi(t)=G(t). if é;(t)=éi(t)=0. With this property. a procedure was
invoked in the error correction program to refresh the initial input
radiation value occasionally. The first and the second derivatives of
Gi(t) were monitored and when they were small enough, Gi(t) would be
assumed to represent the input radiation and used as the initial G(t)

for the following data points.

In realistic solar radiation measurements, more than 80% of the time
is occupied by clear sky cor totally cloudy wonditions (¢;(L)=¢1(L)=0)
(3], when there is no instrument response problem at all. Thus the
initial value refreshting procedure not only prevents continuous
propagation of numerical error inherent in the Runge-Kutta method, but
also eliminates unnecessary calculation when the time response error

doesn’'t occur. The Turbo Pascal program for the 2nd order time

response error correction is given in Appendix B.
5.3.3 irior correction for experimentally generated radiation

The experimental setup for the sinusoidal response measurement (Figure
4.1) was used to demonstrate the utility of both first order and
second order correction schemes. Without the sinusoidal modulator. the

intensity of the projection lamp was varied by rotating in an
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arblitrary fashion the control knob of the autotransformer powering the
lamp. Figure 5.3 plots typical thermal and photovoltaic pyranometer
signals subjected to the 'arbitrary’ intensity, with the results of
the second order correction (SOC) scheme applied to the thermal
pyranometer readings. For comparison, the first order correction (FOC)
of Suehrcke [6] was alsc applied. Figures 5.3 (a) and (b) are segments
of the same intensity scan, while Figure 5.3 (c) is from another scan.
Note the different horizontal and vertical scales of Figure 5.3 (b)

compared with the other two figures.

In general, the corrected readings closely follow the photovoltaic
signal, which is assumed to be proportional to the incident radiation
G(t). Under most circumstances, the SOC is a substantial improvement
over the FOU although they are both nearly equal when G and Gi are not

rapidly changing, as, for example, for t=8 s.

Both correctiocn schemes do net respond to intensity spikes of width of
approximately 1s or less. These spikes were intentionally produced by
'tweaking' the autotransformer dial, for example at t=19, 34, 37, and
40 s. The 1 s duration represents probably the fastest that could be
produced by cloud edges or 'holes’ in clouds passing between the sun
and the pyranometer. The thermal pyranometer dces not react
significantly tc such spikes because of its longer time response. As
well, the numerical technique for determining the first and the second
derivatives at a given point uses a small spread of contiguous points,

which tends to wash out any such short duration structure.
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A good example illustrating the difference between the S0C and the FOC

scheme is demonstrated at t=41 s in Figure 5.3 (b). At this time, Gi=0

and according to the FOC scheme [6], GiEG, which is indeed the case,
as evident in the figure. On the other hand, the SOC curve is not

equal to G.l because GitO and it is much closer to the true curve G.

One property of the numerical technique used for correcting the signal

is apparent at t=66 s in Figure 5.3 (c). G(t) decreases rapidly at

this time, and both the FOC and SOC schemes seem to 'anticipate’ this
decrease before it actually occurs, by commencing

te drop a little

beforehand. This occurs Dbecause of the method of numerical
differentiation to determine Ci and 6;. As has been discussed, Ci at t
is calculated by using the five successive values of G.1 straddliing the
reading at t©. As well, é; is ubtainea from the five successive wvalues
of éi' Thus the calculation at t 'looks ahead' 4 4t actually. Oue

could perform the numerical differentiation using past times only to

avoid this effect, but would possibly produce less accurate values of

the derivatives elsewhere ([18].

The SOC scheme results in a signal which very closely matches that of
the incident radiation. Applying this scheme in 'real time’ should be
possible if required, where, because of the numerica’ differentiation
technigque discussed above, ’'real time’ actually means correcting the
signal after a delay of approximately AAt. The computer used for
controlling the data acquisition wunit and for calculating the

correction must be able to perform the correction in less than 4t.
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Furthermore, the FOC developed above may generally be used for other

sensors, such as the temperature sensors, of which the dynamic

character can be described by a multi-exponential function.

5.3.4 Error correction for sclar radiation measurement

In crder to demonstrate the SOC application in the &ctual solar
radiation measurements, one Kipp & Zonen CM-S thermal pyrancmeter and
one Rho Sigma photovoltaic pyranometer were installed hor! zontally on
the roof of the Electrical Engineering Building in the University of
Alberta. On August 20, 1991, a fast variation of cloud thickness was
recorded around 1:30 pm by both the thermal and the photovoltaic
pyranometer. The pyranometer readings are shown in Figure 5.4 as well

as the compensated curves obtained by both correction schemes.

It is obvious that the SOC scheme is a definite improvement over not

only the thermal pyranometer readings but also FOC scheme.
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6. CONCLUSIONS

The major aim of this work is to measure and analyze the
multi-exponential response phenomenon of thermal pyranometers. The
purpose behind this aim is to correct the short term time response
error produced by the relatively slow response of the conventional
radiation measurement instruments. What is more interesting is that
the cerrection scheme, developed in this work, may possibly be used
for the correction of measured physical quantities that are the result

of a dynamic process characterized by a transient function.

6.1 Summary of contributions

From a careful investigative study of the step response of CM-5
thermal pyranometers, it was found that the dynamic behavior of the
radiation measurement instrument can be characterized by at least two
response time constants. This appears to be the first report 6f such a
second time constant having been measured and calculated
quantitatively by numerically fitting the readings of the pyranometer
sub jected to a step radiation input. The measured values of the two
time constants, under different physical and environmental conditions,
show a good repeatability for each individual pyranometer. It can be
concluded that the amplitudes of the two time constants, dominating
over the dynamic behavior of CM-S pyranometer, are independent of the

spectral content and the intensity of incident radiation.
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To simulate the double-exponential response, a double plate thermal
model of the pyranometer has been developed and a transient function
of the pyranometer input and output derived. Corresponding *“he two
measured time constants (tl and 12) to the transient function yields
two of the three parameters in the function. In order to determine the
remaining constant, a sinusoidal response experiment was performed
using a simple sinusoidal radiation generator. Comparison between the
experimental response with the theoretically calculated pyranometer

frequency response determines the unknown constant.

Applying a fourth-order Runge-Kutta method, the transient equation was
used to realize an error correction scheme with the capabillity of
compensating the second order time response error oi the pyranometer.
The second order correction (SOC) demonstrated a definite improvement
over the first order correction (FOC) in both laboratory experiments
{171 and actual solar radiation measurements. With improved numeriral
techniques, real time compensation for time response error should be
possible. In another words, the ’true’ radiation value is able to be
accurately anticipated before the thermal radiation sensor reaches its
internal equilibrium. The SOC scheme is of great significance and
importance for thermal pyranoneters and pyrheliometers used in the
instantaneous solar radiation measurements, as it improves the dynamic

response of the instruments.

6.2 Limitations and suggestions for future work

The double plate thermal model for the pyranometer has given an



excellent ecuplanation to the radiation behavior (responsel of the
thermal pyrancmeter, but 1t 1is not sufficient to characterize the
therma! btehivicr of the instrument. The recpense 2f a thermal shock
without incident radiation change can still be described by Equation
(2.18) because nc radiation change means the 1left hand side of
Equation (2.17) is zero, as in the case of the step response. In a
dark room (G=0), the condition of the thermal shock experiment,

Fquation (2.18) becomes:

Gi(t)=A exp(—(t—to)/rl)+8 exp(—(t—to)/rz) (6.1)

Because no radiation exist in the experiment, the initial condition

should be A+B=0

U]

ince Gi=0 at L=t0. With this condi-ion, a positive
signal, shaped similarly to the testing result of Wardle and wvan den
Brink [10., 11}, will be generated from Equation (6.1) after the
thermal shock occurs If the values of T and T, measured here,
however, are substituted in (6.1}, Gi(t) occurs over a time period
much shorter than observed in the thermal shock experiments (see
Figure 1.4}, This 1is because the instrument housing, which has a
longer time constant, has isolated the thermal shock from the sensor

ridates. rurther investigation on the housing effect weculd be needed in

arder to study the thermal shock phenomsnon.

As mentioned before, the numerical differentiation algorithm used in
SOC is the 5-point parakoia fitting scheme, which ®'looks ahead' 24t
and 44t to vield the first and the second derivatives respectively.

Thus a sh.. coming of the methed is that the consegquent correction
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often "anticipates’' scme rapid change before it actually occurs [17!

Improvement on the numericai differentiation algorithm is theref:

needed.

Limitation also appears in the sinusoidal response measurement. Due to
the working principle of the system, the spectral content of the
radiation was modulated as well as the intensity. Thus the spectral
sensitivity of the photovoltaic pyranometer decreased the accuracy of
the attenuation factor measurement. In addition to this, the range of
the angular frequency 1is limited by the geometrical size of the
sinusoidal modulator template and the driving wheel. The generated
sinusoidal wave shape is imperfect due to the imperfect shape of the
modulator template and the lamp filament image, both of which are not
exactly the shapes assumed in Figure 4.2. A better sinusoidal
radiation might be generated by letting the radiation beam 20 through
two rotating polarized plates before reaching the pyranometer senscr.
The angular frequency would be controlled by the rotating speed of the

polarized plate.

Another aspect of a sinusoidal response measurement is that the
frequency response of the sensor can be used to correct the time
response error by the methcd of Fourier transform, provided the known
frequercy response range of the pyranometer is wide enough. Further
work in this area will be needed in order to perform Fourier analysis

in the instantaneous solar radiatinn mezasurement.
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AFPENDIX A
PASCAL PROGRAM FOR DETERMINING THE BEST FIT FREQUENCY OF

A SINUSOIDAL FUNCTION

{ Find the exact frequency of a trigonometric input - A:data.the }

type
list = array{1..4000] of real;

var
data,c " : text;
m,n,i,al: integer;
flag,res,resl,resZ,w.wl.wZ,shen.A,B.C,t,aO,aZ,a3: real:
b0,bi,b2,b3,c0,cl, 2,c3,dom,s»p: reuil;
G: list;

begin
wri.e('Enter the in.%*ial Omega (rad/s): ’);
readln{w);
write(’Enter the sampling period (Seconds): ');
readln(t}:
writeln(’'FEnter the step change for Omega: ');
readin(step);
assign{data,’a:\data. the’);
m:=1;
reset(data);

while not eof(data) do



begin

readln(data,Glm]);

m:=m+1;

end;
al:=m-1;
repeat
n:=0;
az2:=0;
a3d:=0;
a0:=0;
b0:=0;
b2:=0;
b3:=0;

2.=0;

3-=0:
while n<al do

begin

a2:=a2+cos(w*n"t);
a3:=a3+sin(w*n*t);

al 2+GIn+1];

b2, b2+sqr(cos{w*n®*t));
b3:=b3+cos(w*n*t)*sini{w*n®t);
b0: =b0+G[n+1]}*cos(w*n*t);
c3:=c3+sqr(sin{w*n*t));
c0:=c0+G[n+1]1*sin(w*n®*t);
n:=n+1;

end;
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a2:

ald:

a0:

b0O:

b2:

b3:

cO:

hl:=a2
cl:=a3;
c2:=b3;
dom:=al®*(b2*c3-b3%*c2)-a2*(bl1%*c3-b3®cl)+a3®*(bl1*c2-b2*-1),
A:=(a0"(b2%c3-b3*c2)-a2* (b0*c3-b3%c0)+a3* (b0*c2-b2*c0) ) /dom:
B:=(al*(b0*c3-b3%*c0)-a0* (b1*c3-b3%c1)+a3*(bl1*c0-b0"c1) ) /dom;
C:=(al*(b2*c0-b0*c2)-a2*({b1*cC-b0%*c1)+a0*(bl1®*c2-b2%c1))/dom
res:=0;
n:=1;
while n<al+i do

begin

res:=res+sqr {A+Bfcos(Ww*(n-1)*t)+C*sin(w*(n-1)%t)-Gini):

n:=n+i;
end;
writeln;
writeln(’ Current frequency {(Omego) is:’ ,w:6:5);
writeln(’ The residual is: ’',res);
writeln;

wl:=w+sten,



c3:=0;
while n<al do
begin
a2:=a2+cos{wil”n*t);
a3:=a3+sin(wl®*n®t);
a0:=a0+Gn+{1;
b2:=b2+sqr {cos(wl*n®*t));
b3:=b3+cos(wi®*n®t)®*sin(wl*n*t);
bO:=b0+GIn+!}*cos(w1®*n®t);
¢3:=c3+sqr(sin(wi*n*t));
c0:=c0+G[n+1]*sin(wl*n"t);
n:=n+1;
end;
bl:=a2;
cl:=a3;
c2:=b3;
dom:=al*{b2*c3-b3*c2)-a2*(21*c3-b3%c1)+a3® (bl *c2-b2%ci);
A:=(a0" (b2*c3-b3%c2)-a2" (b0*c3~b3*cO0)+a3* (b0®*c2-b2“c0) ) /dom;
B:=(al1®*(b0*c3-b3%c0)-a0*(b1*c3-b3*cl1)+a3*(bi*cO-b0*c1))/dom;
C:=(al*(b2"c0-b0*c2)-a2* (b1*c0-b0*c1)+a0*(bl*c2-b2%*c1))/dom;
resl:=0;
n:=1,;
while n<al+l do
begin
resl:=resl+sqgr(A+B*cos(w1®*(n-1)*t)+C*sin(wl*(n-~-1)*t)-G[nl};
:=n+l;

end;



if resl<res then
w2:=wl+step;

if resl<res then
flag:=1

else
begin

wZ:=w-step;

flag:=~1

end;
n:=0;
a2:=0;
al3:=0;
a0:=0;
b0:=0;
b2:=0;
b3:=0;
c0:=0;
c3:=0;

while n<al do

begin
a2:
ad:
a0:
b2:
b3:
bO:

c3:

=a2+cos(w2*n*t);
=al3+sin(w2*n*t);

=a0+Gn+1};
=b2+sqr(cos(w2*n*t});
=b3+cos{w2*n*t)*sin(w2%n*t);
=b0+GIn+1]*cos(w2*n*t};

=c3+sqr(sin(w2*n*t)});



c0:=cO0+G[n+1]*sin(w2®n®*t);
n:=n+i;
end;
bl:=a2;
cl:=a3,;
c2:=b3;
dom:=al®(b2%c3-b3*c2)-a2*(b1*c3-b3%"c1)+a3*(bi1%c2-b2*%*cl);
A:=(a0%(b2%c3-b3*c2)-a2* (b0*c3-b3%*c0O)+a3® (bO*c2-b2*c0) }/dom;
:=(al*(b0%c3-b3"% 3)~-al*{bl*c3-b3%*c1)+a3*(b1*cO0-b0*cl) ) /dom;
C:=(al*(b2®*c0~-b0*c2)-a2* (b1%*c0-b0O*c1)+a0*(bl1%*c2-b2%*c1))/dom:
res2:=0;
n:=1;
while n<al+1l do
begin
res2:=res2+sqr(A+B%*cos(w2* (n~1)*t¥+C*sin(w2*(n-1)*t)-G[n]);
n:=n+1;
end;
if flag=1 then
shen:=(res2-res1)*(res-resl);
if flag=1 then
w:=wl
else
begin
shen: =(res2-res)*(resl-res);
W:=w2;
end;

until shen>0;



if flag=-1 then

W:=w+step;

writeln(’The exact frequency (Omega) is:

end.

' LwW:6:5);

%
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APPENDI: ™
PASCAL PROGRAM FOR 2ND CRDER TIME RESPONSE ERROR CORRECTION OF

THERMAL PYRANOMETER

{
This prgram is for the 2nd order correction of time response error
of thermal pyranometer.
The instrument indicated readings are in the file--A:DATA.THE.
The corrected reading will be given in file--A:BABY.DAT,
with the time label on.
}
type
listl = array(1..1000] of real;
list2 = array{l..lOdO] of integer:
{
declare variables
}
var

data, out: text;

l,m,n,i, j,k: integer;
t,t1,t2,c0,cl,c2,e,k1,k2,k3,k4: real:;
G,d1,d2,y:list1;

cr: list2;



start the program

begin

Enter the parameters of meas . ~r-n{ and instrument
write('Enter the sampling period:
readln(t);
write(’Enter the two time constz . ;. ' J;

readin(tl, t2);

cl:=t1*t2;
c2:=tl+t2;
write(’Enter CO of the transient function: ')

readln(c0);
write(’Enter the Epsilon: ’);

readlnie);

input the pyranometer readings

assign{data, 'a:\data. the’);
m:=1;
reset(data);
while not eof(data) do
begin
readlnidata,G(m]);
m: =m+1;

end;



m:=m-1;

calculate the 1st and 2nd derivatives of pyranometer

indicated radiation

d1{11:=(-21*G[11+13*G({21+17*G[31-9*G[4])/20/t;
d1[2):=(-11*G[1]+3*G[2]1+7*G[31+G[4])/20/t;
dllm-11:=(11%G[{m)-3*G[m-1)1-7*G(m-2]1-GIm-31)/20/¢;
diflml:=(21%*G[m]}-13*G{m-1]-17*G[m-21+9*G(m-3])/20/t;
n: =3;
while n<m-1 do
begin
d1{nl:=(-2*G[n-21-G[n-11+G[(n+11+2*G[n+2]1)/10/t;
n:=n+l;
end;
d2(1]1:=(-21%*d1{1]1+13*d1([2]1+17*d1(3]1-9°d1[41]1)/20/t;
d2[2]:=(-11*d1[1]1+3*d1[2]+7*d1[3]}+di(4])/20/t;
d2[m-11:=(11*d1[(m]-3*d1[m~-1]-7*d1[m-2]-d1[m-3]1)/20/¢;
d2{m]:=(21*d1{m}-13%d1{m-1]1-17*d1[m-21+9%d1[m-3})/20/t;
n: =3;
while n<m-1 do
begin
d2(n):=(-2%*d1[n-2]1-di[n-1]+d1[n+1]1+2%d1(n+2])/10/t;
n:=n+1;

end;

determine the refreshing points for the initial value

%



-

while i<m do
begin
if abs(di{il)+abs(d2{i]l)>e then
i:=i+l
else
begin

cr{jl:=1;

1:=1+1;
J:=j+1;
end;

end;

cr{jl:=m;

give warning if no refreshing point found

if j=1 then

writeln(’No correction performed because Epsilon is too smallt’)

start error compensation

else
begin
write('Correction starts after’,cr(1]1*t,’seconds. ');

end;
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k:=1;
while k<j do
begin
n:=crik};
l:=crlkl;
y{11:=G[1};
while n<crlk+1] do
begin
kl:=(c1*d2[nl+c2*d1(nl+Ginl-y(1])/c0O;
k2:=(c1*d2[n+1)1+c2%d1[n+11+GIn+1]-(y[1]+t*k1))/cO;
3:=(c1*d2[n+11+c2*d1(n+1J+G[n+1]-(y[1]1+t*k2))/cO;
k4:=(c1%*d2[n+2]+c2%*d1 [n+2}+Gin+2]1-(y[11+2*t*«3))/cO;
yvi1+2]:=y{1]+t* (k1+2%k2+2k3+k4)/3;
yIll+1l:=(y[1l)l+y[1+21)/2;
l:=1+2;
n: =n+2;
end;
k:=k+1;

end;

output the corrected values

assign(out, ’a:\baby.dat’);
rewrite(out);

n: =crl];

while n<m+7 do

begin

So



writeln{out,n*t,
n: =n+1;
end;

end.

*Lyinl);
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