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ABSTRACT 

 

Shale gas is one of the most important unconventional fossil fuel resources. It is usually 

developed by horizontal drilling and hydraulic fracturing techniques. The in-situ stress 

magnitude distribution in a given shale gas field is a significant factor that should be 

considered by horizontal drilling and hydraulic fracturing. However, the accurate 

determination of in-situ stresses is normally hindered by the lack of experimental data. 

Aiming to address this issue, this thesis proposes a method of combining artificial 

intelligence and conventional rock mechanics to predict the in-situ stress magnitudes in a 

given shale gas reservoir based on the logging data. Since the experimental in-situ stress 

data are not sufficiently large to serve as the training dataset, this thesis selects the data in 

two wells for which the calculated in-situ stress magnitudes are in good agreement with 

the measured in-situ stress magnitudes as the training samples. Empirical rock-mechanics 

equations are used to generate more training data based on the data collected from these 

two wells. Then, a 4-layer artificial neural network model is established to predict the 

magnitudes of horizontal in-situ stresses in other wells. The results show that the predicted 

maximum horizontal in-situ stress magnitudes and predicted minimum horizontal in-situ 

stress magnitudes agree well with the measured data. Finally, a series of 3D maps showing 

the horizontal in-situ stress distributions in one shale gas reservoir in the Longmaxi 

formation of Sichuan (China) have been plotted by the newly developed neural network 

model.  
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CHAPTER 1 INTRODUCTION 

1.1 Research Background  

With the depletion of conventional oil and gas reservoirs, unconventional shale gas 

reservoirs have become more important targets for exploration and development ever. 

Since shale is characterized by low porosity and low permeability, horizontal drilling and 

hydraulic fracturing have been widely used to exploit shale gas resources (Lian et al., 2015; 

Neuzil, 2019). The design and implementation of these engineering processes are greatly 

affected by the in-situ stress state of shale gas reservoirs. For example, the in-situ stress 

state helps determine the orientation of the horizontal well sections (Rasouli et al., 2011). 

In the hydraulic fracturing process, the in-situ stress state controls the shape, height, width, 

and direction of hydraulic fractures, thus posing a significant effect on the productivity of 

the created hydraulic fractures (Zhang et al., 2018). The magnitude of the horizontal in-

situ stresses is a part of the in-situ stress state. Therefore, accurate evaluation of the 

horizontal in-situ stress magnitudes plays an essential role in the efficient exploitation of 

shale gas resources. 

1.2 Literature Review 

The in-situ stresses in a geological formation are generally comprised of coupled tectonic 

stress, gravitational stress, thermal stress, and pore pressure (Ju et al., 2017). The in-situ 

stress state in a geological formation is usually represented by vertical stress, maximum 

horizontal in-situ stress, and minimum horizontal in-situ stress (Lin et al., 2006; Matsuki 
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and Takeuchi, 1993).  

There are many methods to evaluate the magnitudes of in-situ stresses, such as hydraulic 

fracturing, acoustic emission, and well logging (Haimson and Fairhurst, 1969; Seto et al., 

1997; Thiercelin and Plumb, 1994). The hydraulic fracturing method can help to determine 

the in-situ stress based on the mini-frac test data. These data reflect the relationship 

between pressure and time during the fracturing process (Haimson and Fairhurst, 1969). 

However, we cannot conduct the mini-frac test in every well, making this method 

inapplicable sometimes. We can also obtain the in-situ stresses by analyzing the sonic 

characteristics of the measured elastic waves (Seto et al., 1999). The sonic emission 

method is very useful in measuring the magnitude of the in-situ stress in the deep 

formations. However, this method is expensive and cannot reflect the characteristics of the 

whole formation in a well. Based on the conventional logging data, some empirical 

calculation methods have been developed to determine the in-situ stresses (Thiercelin and 

Plumb, 1994). However, these empirical methods may lose their accuracy when being 

extrapolated to other conditions that are not considered in the model-building stage.   

There are very few studies that explore the use of artificial neural network (ANN) models 

to predict the in-situ horizontal stresses. Recently, Abbas et al. (2020) developed an ANN 

model that could be used to predict the magnitudes of horizontal minimum in-situ stress. 

This method establishes a back-propagation (BP) neural network model by training it 

against the measured minimum horizontal in-situ stresses. The conventional well logging 
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data are the input data, including compressional wave transit times, shear wave transit 

times, density, total porosity, and gamma-ray. The minimum horizontal stress is measured 

by the leak-off and extended leak-off tests. Their study shows that the ANN model is able 

to reliably estimate a continuous profile of the minimum in-situ stress along the borehole. 

1.3 Problem Statement 

ANN is an emerging and promising method for in-situ stress magnitude evaluation. 

Admittedly, the performance of ANN highly depends on the quantity and quality of the 

data used for training the model. As for horizontal in-situ stress predictions, the training 

samples are usually obtained by interpreting the leak-off tests or triaxial rock tests. 

However, the leak-off tests and triaxial rock tests are expensive, highly limiting the amount 

of experimental in-situ stress data available for training the ANN model. This is 

particularly true for shale gas wells. Therefore, how to generate a sufficient number of 

experimental in-situ stress data is a problem that remains to be addressed.   

1.4 Research Objectives and Technical Route 

This thesis proposes a novel workflow to address the above problem. We focus on a shale 

gas field comprised of five wells. We find that the maximum and minimum horizontal 

stresses of two wells out of the five wells can be well predicted by empirical rock-

mechanics correlations. This implies that we can possibly use the empirical correlations to 

generate a large database that includes continuous profiles of maximum and minimum 

horizontal stresses along the borehole. The large but artificially generated database is then 
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used to train the ANN model. Thus, the objective of this research is to propose a hybrid 

approach that can combine the empirical rock-mechanics equations and an ANN model to 

more accurately predict the maximum and minimum horizontal in-situ stresses in shale gas 

reservoirs.  

1.5 Thesis Structure  

There are five chapters in this thesis: 

• Chapter 1 introduces the research background with regard to the prediction of the 

in-situ horizontal stress magnitudes, literature review, problem statement, research 

objective, and thesis structure.  

• Chapter 2 shows the geological overview of the study area and introduces the data 

used in the research, which are the logging data and the measured in-situ stress 

data. 

• Chapter 3 presents the methodology developed to predict the in-situ horizontal 

stress in the study area.  

• Chapter 4 presents the research results and the related discussion. It is shown that 

the magnitudes of the in-situ stresses yielded by the trained ANN model are more 

accurate than the magnitudes of the in-situ stresses obtained by the conventional 

method. Finally, a series of 3D distribution maps of in-situ stress magnitudes in 

this study area are generated. 

• Chapter 5 summarizes the conclusions and gives recommendations for future 
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studies. 
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CHAPTER 2 OVERVIEW OF THE STUDY AREA AND DATA 

PREPARATION 

2.1 Geological Overview of the Study Area 

Y area studied in this thesis is located in the south of the Sichuan Basin. Its regional 

structure is located in the HY Mountain tectonic belt. Long 1 Member, the lower Marine 

shale of the Silurian Longmaxi Formation, is the main exploration strata. The lithology of 

Long 1 Member is black shale interbedded with thin siltstone layers. Long 1 Member is of 

deep-water shelf facies deposition with stable stratum thickness. These deep-water 

continental shelf subfacies can be further divided into seven types of sedimentary 

microfacies from top to bottom: rich silicon microbiological shale deep-water shelf facies, 

siliceous shale deep-water shelf sedimentary microfacies, clay siliceous shale deep-water 

shelf microfacies, siliceous clay shale deep-water shelf microfacies, calcareous clay shale 

deep-water shelf microfacies, calcium-rich clay shale deep-water shelf microfacies, and 

rich clay shale deep-water shelf microfacies. 

 

2.2 Logging Data Preparation 

This thesis uses the logging data of five wells (i.e., well Y1, well Y2, well Y3, well Y6, 

and well Y7) in the Y area, including XMAC logging (DTS), gamma-ray logging (GR), 

density logging (DEN), sonic logging (AC), and neutron logging (CNL). The interval of 

the logging data is 0.125 m, covering 4550 meters from the surface to the underground. 
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This thesis mainly focuses on the 1-9 layers of the target formation in the study area 

(Figure 1-5).  

 

 

Figure 1 The logging data of well Y1 (GR: gamma-ray logging, MD: measured depth, 

DEN: density logging, CNL: neutron logging, AC: sonic logging, and DTS: XMAC 

logging). 
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Figure 2 The logging data of well Y2. 
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Figure 3 The logging data of well Y3. 
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Figure 4 The logging data of well Y6. 
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Figure 5 The logging data of well Y7. 

 

2.3 Core Data Preparation 

The core data used in this thesis are shown in Table 1, including the rock-mechanics 

parameters (Young's modulus and Poisson's ratio) and the in-situ horizontal stresses. In 
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Table 1, Sv represents vertical stress. The RTR-1000 triaxial rock testing machine and the 

SAEU2S acoustic emission system are applied to test the core samples in this study area. 

A total of 45 core samples are tested for Young's modulus and Poisson's ratio, while a total 

of 47 core samples are tested for the magnitudes of the maximum and minimum horizontal 

in-situ stresses (SHmax and SHmin). 

 

Table 1 Core-related experimental data collected for the study area. 

Well name Layer Depth/m 

 

 

Poisson's 

ratio 

 

Young's 

modulus

, GPa 

Sv, 

MPa 
SHmax, MPa SHmin, MPa 

Y1 8 3802.66  0.279  24.667  93.19  97.72  86.16  

Y1 7 3812.36  0.257  22.833  93.47  / / 

Y1 5 3834.76  0.250  27.114  94.10  99.06  88.94  

Y1 4 3839.66  0.257  20.402  95.95  99.85  89.82  

Y1 3 3844.26  0.267  24.243  96.79  104.39  86.76  

Y1 3 3847.16  0.274  27.001  95.01  100.95  82.30  

Y1 3 3854.06  0.285  30.588  95.09  100.70  90.59  

Y1 3 3861.16  0.261  22.503  95.84  100.78  91.09  

Y1 1 3868.36  0.264  22.333  96.10  100.12  92.01  

Y2 9 4018.88  / / / 114.50  105.00  

Y2 8 4036.28  / / / 109.00  99.90  

Y2 7 4051.36  / / / 103.60  92.80  

Y2 6 4057.81  0.215  28.460  / 109.90  103.60  

Y2 6 4058.71  0.218  28.491  96.79  104.80  79.60  

Y2 5 4064.11  0.232  28.667  / 105.30  98.00  

Y2 4 4070.11  0.234  23.685  / 108.90  97.80  

Y2 3 4082.21  0.265  26.400  / 113.70  102.40  

Y2 3 4087.61  0.248  27.322  / 118.00  106.00  

Y2 1 4093.21  0.230  28.300  / 117.40  100.00  

Y3 4 4079.70  0.242  20.502  / 105.00  91.36  

Y3 4 4079.90  0.242  20.825  / 107.11  92.28  

Y3 4 4080.70  0.241  22.117  / 116.15  91.51  

Y3 3 4081.50  0.240  23.461  / 106.47  91.40  
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Y3 3 4081.80  0.240  23.407  / 107.01  92.69  

Y3 3 4089.50  0.252  22.111  88.03  105.95  80.54  

Y3 3 4096.90  0.263  20.853  / 112.63  91.78  

Y3 1 4102.70  0.242  26.502  / 116.87  94.65  

Y3 1 4104.96  0.253  27.804  / 116.32  96.38  

Y6 8 3828.56  0.240  29.105  94.44  97.95  93.61  

Y6 7 3840.76  0.250  32.881  94.75  97.48  86.80  

Y6 7 3842.76  0.246  28.988  88.03  100.19  76.67  

Y6 5 3847.06  0.226  25.505  95.00  102.37  94.55  

Y6 6 3848.06  0.218  26.644  94.89  100.94  89.55  

Y6 4 3855.26  0.209  25.577  95.20  99.27  91.98  

Y6 3 3864.76  0.250  29.331  96.06  106.68  93.64  

Y6 3 3870.86  0.255  27.922  96.15  104.27  95.33  

Y6 2 3876.06  0.259  26.719  96.75  104.06  93.85  

Y6 2 3877.36  0.260  26.421  96.78  100.63  92.47  

Y6 1 3882.56  0.280  27.425  96.92  103.68  93.53  

Y7 9 3030.30  0.285  35.460  76.38  88.36  73.29  

Y7 8 3046.10  0.292  24.011  74.90  81.07  64.97  

Y7 7 3060.60  0.298  34.400  73.50  72.59  59.81  

Y7 6 3072.30  0.279  25.600  76.47  94.87  77.00  

Y7 5 3084.10  0.290  29.027  76.25  86.67  66.42  

Y7 4 3094.70  0.318  34.326  77.56  92.57  73.22  

Y7 3 3122.40  0.305  29.385  77.02  80.80  66.55  

Y7 2 3130.80  0.279  29.726  78.76  97.44  78.79  

Y7 1 3136.60  0.295  28.000  78.84  76.49  65.05  
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CHAPTER 3 METHODOLOGY 

This chapter proposes a new methodology to predict the magnitudes of in-situ horizontal 

stresses based on ANN and conventional rock mechanics. Rock-mechanics parameters are 

obtained based on experimental data and well logging data. An ANN model has been 

formulated and trained. Eventually, the ANN model is used to predict a series of 3D 

distribution maps of the in-situ horizontal stresses in the study area. 

Figure 6 shows the main workflow that has been developed in this study. The workflow 

mainly consists of the following steps: 

1) We first retrieve cores from the five wells in the study area through coring 

operations. Next, we measure the rock-mechanics parameters (i.e., Young's 

modulus and Poisson's ratio) of the core samples. These measured Young's moduli 

and Poisson's ratios are the so-called static rock-mechanics parameters. We also 

measure the in-situ horizontal stresses using a triaxial test apparatus.  

2) We select five input parameters that can influence the in-situ horizontal stresses 

from all the logging profiles obtained for the five wells. These parameters include 

gamma-ray logging (GR), density logging (DEN), sonic logging (AC), neutron 

logging (CNL), and depth (DEP). We can obtain shear wave slowness based on the 

DTS logging and compressional wave slowness based on the AC logging. Based 

on the shear wave slowness and compressional wave slowness, we can again 
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calculate Young's moduli and Poisson's ratios. These Young's moduli and Poisson's 

ratios obtained based on the interpretation of well logging data are the so-called 

dynamic rock-mechanics parameters. We then calculate the in-situ horizontal 

stresses using an empirical model.  

3) Next, we compare the measured horizontal in-situ stresses against the ones 

calculated using an empirical rock-mechanics model. From the calculation results, 

we find that there are two wells for which the measured horizontal in-situ stresses 

agree well with the ones calculated using the empirical model. To address the above 

problem that normally it is expensive to measure the in-situ horizontal stresses 

using the retrieved core samples and there are thus insufficient experimental data, 

we generate more pseudo-experimental data of in-situ horizontal stresses by using 

the empirical model. These pseudo-experimental data are subsequently used to 

train the ANN model. 

4) We predict the in-situ horizontal stresses in the other three wells using the trained 

ANN models and examine the model performance by comparing the calculated 

ones against the measured ones. It is found that the trained ANN model performs 

well in predicting the in-situ horizontal stresses in the other three wells. 

5) In addition, we build a 3D geological model based on the stratigraphic data 

collected for this study area. By coupling with the well logging data, we obtain 3D 
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logging distribution models. On the basis of the 3D logging distribution model, we 

apply the developed ANN model to predict the 3D in-situ horizontal stress 

distributions across the reservoir. Such 3D distribution maps will be highly useful 

for guiding the drilling and hydraulic fracturing operations in the study area. 
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Figure 6 Flowchart of the workflow that is developed in this study. 

3.1 Determination of Rock-Mechanics Parameters 

Depending on the method used to obtain the rock-mechanics parameters (including 

Young's modulus and Poisson's ratio), the rock-mechanics parameters can be divided into 
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two types, namely static rock-mechanics parameters and dynamic rock-mechanics 

parameters. The static rock-mechanics parameters in this thesis are the ones obtained by 

using uniaxial or triaxial loading tests in the laboratory, while the dynamic parameters are 

the ones obtained by the interpretation of the well logging data (Yale et al., 1994). 

The dynamic rock-mechanics parameters, i.e., Young's modulus (𝐸) and Poisson's ratio 

(𝑣), can be calculated based on the following equations (Zhang et al., 2006): 

 

𝐸 =
𝜌

𝛥𝑡𝑠
2

3𝛥𝑡𝑠
2−4𝛥𝑡𝑝

2

𝛥𝑡𝑠
2−𝛥𝑡𝑝

2                                            (1) 

𝑣 =
1

2

𝛥𝑡𝑠
2−2𝛥𝑡𝑝

2

𝛥𝑡𝑠
2−𝛥𝑡𝑝

2                                                 (2) 

where 𝛥𝑡𝑝 and 𝛥𝑡𝑠  are the compressional wave slowness and the shear wave slowness, 

which are obtained from XMAC logging data and sonic logging data, respectively; 𝜌 is 

the bulk density obtained by density logging. Since the dynamic rock-mechanics 

parameters obtained by logging data may deviate from the real ones, we need to covert 

these dynamic parameters to the static ones according to the measured Young's modulus 

and Poisson's ratio. Figure 7 shows the relationship between the dynamic Poisson's ratio 

obtained based on the logging data and the static experimental data, while Figure 8 shows 

the relationship between the dynamic Young's modulus obtained based on the logging data 

and the static experimental data. It can be seen from Figures 7 and 8 that the static rock-

mechanics parameters correlate well with the dynamic ones. Based on the results shown 

in Figures 7 and 8, we obtain a linear relation between the dynamic and static Poisson's 
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ratios, as well as a linear relation between the dynamic and static Young's modulus, as 

shown below: 

𝑦 = 2.5219𝑥 − 0.3421                                           (3) 

𝑦 = 0.3868𝑥 + 11.825                                           (4) 

where x is the dynamic Poisson's ratio or the dynamic Young's modulus; y is the static 

Poisson's ratio or the static Young's modulus. Note that the coefficients of determination, 

R2, of the above two regressions are 0.8293 and 0.8082, respectively. This indicates that 

the corrections as per Equations (3) and (4) are with good accuracy. 

 

 

Figure 7 Relationship between the dynamic Poisson's ratio obtained based on the logging 

data and the static experimental data. 
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Figure 8 Relationship between the dynamic Young's modulus obtained based on the 

logging data and the static experimental data. 

 

3.2 Prediction of In-situ Stresses 

3.2.1 Conventional Method for Calculating In-situ Stresses 

Vertical stress is caused by the weight of the overlying formations. It can be calculated by 

using density logging data. The expression of the vertical stress is given by (Eaton, 1975): 

𝑆𝑣 = ∫ 𝜌(ℎ)
ℎ

0
𝑔 ⋅ 𝑑ℎ                                       (5) 

where 𝑆𝑣  is the vertical stress magnitude; ℎ  is the depth; 𝜌(ℎ)  is the density of the 

formation obtained from density logging; 𝑔 is the acceleration of gravity. 

The in-situ horizontal stresses are mainly caused by the overlying strata pressure, tectonic 

stress, creep of the rock formation, and rise of pore pressure. In this thesis, the pore 
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elasticity equation proposed by Thiercelin and Plumb (1994) is used to calculate the 

maximum and minimum horizontal in-situ stresses in the study area (Thiercelin and Plumb, 

1994):  

𝑆𝐻𝑚𝑖𝑛 =
𝜈

1−𝜈
(𝑆𝑣 − 𝛼𝑃) +

𝐸𝜀ℎ

1−𝜈2 +
𝜈𝐸𝜀𝐻

1−𝜈2 + 𝛼𝑃                       (6) 

𝑆𝐻𝑚𝑎𝑥 =
𝜈

1−𝜈
(𝑆𝑣 − 𝛼𝑃) +

𝐸𝜀𝐻

1−𝜈2 +
𝜈𝐸𝜀ℎ

1−𝜈2 + 𝛼𝑃                       (7) 

where 𝑆𝐻𝑚𝑎𝑥 is the maximum in-situ horizontal stress magnitude; 𝑆𝐻𝑚𝑖𝑛 is the minimum 

in-situ horizontal stress magnitude; 𝛼 is the Biot coefficient; 𝑃 is the pore pressure that can 

be obtained from the drilling records; 𝜀ℎ and 𝜀𝐻 are the strain constants in the direction of 

the minimum and maximum horizontal stresses, respectively. 𝜀ℎ and 𝜀𝐻 are mainly used 

to characterize the additional in-situ horizontal stresses due to tectonic stresses. It should 

be noted that 𝛼, 𝜀ℎ, and 𝜀𝐻 are optimized as 1, 0.000205, and 0.000726 in this study area, 

respectively.  

 

 

3.2.2 ANN Model 

3.2.2.1 Establishment of ANN Model 

BP neural network is one of the most widely used neural network models. Its main 

structure consists of an input layer, a hidden layer, and an output layer. The core of this 

method is to use the gradient descent method to adjusting and the connection weights and 

thresholds of the network (Abbas et al., 2020). Figure 9 shows the basic structure of the 

BP neural network (Ahmed et al., 2018). We assume that there are 𝑛 inputs and 𝑚 outputs 
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in a neural network, and 𝑠 neurons in the hidden layer.  

The output of the hidden layer, the output of the ANN model, and the error function can 

be calculated by (Ding et al., 2011): 

𝑏𝑗 = 𝑓1(∑ 𝑤𝑖𝑗𝑥𝑖 − 𝜃𝑗
𝑛
𝑖=1 ) (𝑖 = 1,2, … , 𝑛; 𝑗 = 1,2, … , 𝑠)                   (8) 

𝑦𝑘 = 𝑓2(∑ 𝑤𝑗𝑘𝑏𝑗 − 𝜃𝑘
𝑛
𝑗=1 ) (𝑗 = 1,2, … , 𝑠; 𝑘 = 1,2, … , 𝑚)                 (9) 

𝑒 = ∑ (𝑡𝑘 − 𝑦𝑘)2𝑚
𝑘=1                                         (10) 

where 𝑏𝑗 is the jth output of the hidden layer; 𝑦𝑘 is the kth output of the neural network; 𝑡𝑘 

is the actual output value (real value); 𝑒 is the squared error between calculated outputs 

and real values; 𝑥𝑖 is the ith input value; 𝜃𝑘 is the kth threshold of the output layer; 𝜃𝑗  is 

the jth threshold of the hidden layer; 𝑓1 is the transfer function of the hidden layer; 𝑓2 is 

the transfer function of the output layer; 𝑤𝑖𝑗 is the connection weight between the ith input 

and the jth neuron; 𝑤𝑗𝑘 is the connection weight between the jth neuron and the kth output.  

In the training process, the neurons in the hidden layer and the output layer first receive 

the inputs from the forward layer. Then all the inputs are summed up with different weights. 

Next, the new outputs are calculated through an activation function. Based on the 

calculated error between the predicted outputs and the actual outputs, the model uses the 

back-propagation method to update the weights and thresholds in each neuron (Ahmed et 

al., 2018; Alzate et al., 2014). The updating is stopped until the calculated error is 

acceptable (Ahmed et al., 2018; Alzate et al., 2014). 
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Figure 9 The basic structure of the BP neural network (Ahmed et al., 2018). 

 

(1) The selection of input parameters 

Although XMAC logging (DTS) data is available among all the five wells in this study 

area, it could be missing in the other areas due to its high cost. Besides, due to the weight 

of overlying formations, depth is also a significant factor that effects the magnitudes of the 

in-situ stresses. As a result, aiming to make the ANN model more inclusive, we select 

depth (DEP), sonic logging (AC), neutron logging (CNL), density logging (DEN), and 

gamma-ray logging (GR) as the input parameters to carry out the correlation analysis in 

this study area.  

(2) Construction of the neural network structure 

ANN model structure affects the prediction accuracy and the computational efficiency. If 

the number of neurons is too small, the accuracy of the model is not satisfactory. But if the 

number of neurons is too large, it will not only increase the training time but also increase 
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the learning error. This thesis uses Matlab to build a 4-layer BP neural network model, 

including one input layer, two hidden layers, and one output layer. The BP neural network 

structure is illustrated in Figure 10. The input layer has five inputs (i.e., DEP, AC, CNL, 

DEN, and GR). The two hidden layers have 10 and 8 neurons, respectively. The output 

layer has two outputs (i.e., SHmin and SHmax). 

(3) Preparation of the training samples 

The experimental in-situ stress data are normally quite limited. To address this issue, we 

propose a hybrid method, which combines neural networks and conventional rock 

mechanics, to achieve better predictions of in-situ horizontal stresses. First, the in-situ 

stress magnitudes of the five wells are calculated using the conventional rock-mechanics 

method (i.e., Equations 1-7). The results show that the calculated in-situ stress magnitudes 

of well Y1 and well Y3 agree well with the measured ones. Next, we apply the empirical 

model as represented by Equations 1-7 to obtain the continuous profiles of SHmin and SHmax. 

At last, the well logging data (DEP, AC, CNL, DEN, and GR), together with the 

continuously calculated profiles of SHmin and SHmax, are used as the training data for 

building the ANN model.  
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Figure 10 Optimized structure of the ANN model established in this study. 

 

3.2.2.2 Training Process  

The training process of the ANN model includes setting input and output values, designing 

the hidden layers and the neurons of each layer, and setting the learning rate and allowable 

error. The samples are divided into three parts randomly (train set: 70%, validation set: 

15%, and test set: 15%). The Levenberg-Marquardt back-propagation algorithm in Matlab 

is selected for learning and training the ANN model. The activation function is a nonlinear 

Sigmoid function, and the learning and training rate is 0.1. Mean squared error is used as 

the error standard of the training progress, which is set as 10𝑒−5 (i.e., the goal value). 

Figure 11 shows the evolution of the squared error during the training process. The 

training process is completed automatically at the tenth epoch, leading to a mean squared 

error of 7.8518𝑒−6.  
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Figure 11 Evolution of the mean squared error during the training process. 

3.3 Prediction of 3D In-situ Stress  

3.3.1 Establishment of 3D Geological Model  

In this study, the software Petrel is adopted to establish the 3D geological model for the 

study area of Longmaxi formation in southwest China. Firstly, the lithology of different 

formations, the depths of different formations, and the structural plane data are input into 

Petrel. Then the fault model and the layer model are established in sequence. Based on the 

lithology of different formations and the trend of structural surface data, an interpolation 

model is established. As the geological stratification is known, the interpolation of each 

layer is carried out according to the sedimentation laws. Finally, a 3D geological model of 

the study area is obtained and shown in Figure 12. 
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Figure 12 The 3D geological model established in this study for the study area of 

Longmaxi formation in southwest China. 

 

3.3.2 Establishment of Spatial Distribution Models of Logging Parameters 

Figure 13 presents the spatial distribution models of the AC, CNL, DEN, GR, and DEP 

parameters that are established based on the interpolation of the logging data of the five 

wells. The Kriging interpolation algorithm is adopted for the spatial interpolations. Based 

on the obtained spatial distributions of logging parameters, the established ANN model 

can predict the magnitudes of horizontal in-situ maximum and minimum stresses in the 

study area. 

Y2
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Y1
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(e) 

Figure 13 The spatial distribution models of different logging parameters: (a) AC; (b) CNL; 

(c) DEN; (d) GR; (e) DEP. 
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CHAPTER 4 RESULTS AND DISCUSSION 

This chapter shows the calculation results of the rock-mechanics parameters (including 

Young's modulus and Poisson's ratio). Then based on the rock-mechanics parameters, the 

maximum horizontal in-situ stress magnitudes and minimum horizontal in-situ stress 

magnitudes for individual wells are determined by the newly developed neural network. 

Finally, by combining the geological model and the developed ANN model, we further 

obtain the 3D in-situ stress distribution maps in the study area. 

4.1 Rock-Mechanics Parameters 

Figures 14-18 show the profiles of the rock-mechanics parameters in the study area 

obtained using the method presented in Chapter 3.1. We can see that the corrected rock 

mechanics parameters (static curves) fit better with the experimental data than the original 

ones (dynamic curves). 

Figures 19 and 20 show the plane distribution diagrams of Poisson's ratio and Young's 

modulus, respectively. In Figure 19, the Poisson's ratio ranges from 0.22 to 0.31. The blue 

area, where the Y6 well is located, has the lowest Poisson's ratio. The central anticline area, 

where the Y7 well is located, has the highest Poisson's ratio (red area). In summary, the 

Poisson's ratio gradually decreases from the central anticline area to the surroundings. The 

plane distribution of Young's modulus is similar to that of Poisson's ratio (see Figure 20). 
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Figure 14 Profiles of Young's modulus and Poisson's ratio for well Y1. 



37 

 

 

Figure 15 Profiles of Young's modulus and Poisson's ratio for well Y2. 

 

Figure 16 Profiles of Young's modulus and Poisson's ratio for well Y3. 
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Figure 17 Profiles of Young's modulus and Poisson's ratio for well Y6. 
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Figure 18 Profiles of Young's modulus and Poisson's ratio for well Y7. 
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Figure 19 Plane distribution of Poisson's ratio in the study area. 

 

Figure 20 Plane distribution map of Young's modulus in the study area. 
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4.2 Predictions of In-situ Horizontal Stresses for Single Wells 

4.2.1 Conventional Rock-Mechanics Method 

Figures 21-25 present the profiles of the in-situ stress magnitudes of the 5 wells based on 

the conventional methods (Chapter 3.2.1). The calculation and prediction errors used in 

this thesis are calculated as: 

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑ |

(𝑆𝐻𝐴−𝑆𝐻𝐸)

𝑆𝐻𝐸
|𝑛

𝑖=1                                         (8) 

where 𝑀𝐴𝑃𝐸 is the mean absolute percentage error in calculating or predicting the in-situ 

horizontal stresses; 𝑆𝐻𝐴 is the calculated or predicted in-situ horizontal stress magnitude; 

𝑆𝐻𝐸  is the measured in-situ horizontal stress magnitude; 𝑛  is the total number of the 

measured points in a well. 

Table 2 summarizes the prediction errors of in-situ maximum and minimum horizontal 

stress magnitudes based on the conventional methods (Equations 6 and 7). The calculation 

errors vary from 2.82% to 8.05%, and the average calculation errors for the maximum and 

minimum horizontal in-situ stress magnitudes are 3.99% and 4.81%. 
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Table 2 Calculation errors of the in-situ stresses by the conventional rock-mechanics 

method. 

 

Well number Depth (m) SHmax, %  SHmin, % 

Y1 3773-3875 2.82  2.87  

Y2 4015-4100 3.29  5.24  

Y3 4015-4110 2.04  3.27  

Y6 3793-3886 3.75  5.02  

Y7 2996-3141 8.05  7.63  

Average 3.99  4.81 

 

 

 
Figure 21 Calculated in-situ stresses of well Y1 based on the conventional rock-mechanics 

method. 
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Figure 22 Calculated in-situ stresses of well Y2 based on the conventional rock-mechanics 

method. 

 
Figure 23 Calculated in-situ stresses of well Y3 based on the conventional rock-mechanics 

method. 
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Figure 24 Calculated in-situ stresses of well Y6 based on the conventional rock-mechanics 

method. 
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Figure 25 Calculated in-situ stresses of well Y7 based on the conventional rock-mechanics 

method. 

 

4.2.2 ANN  

We employ the newly developed ANN (Chapter 3.2.2) to predict the in-situ maximum and 

minimum horizontal stresses for Y2, Y6, and Y7 wells. Figures 26-28 show the predicted 

magnitudes of the in-situ stresses in the three wells. The MAPEs yielded by different 

models are summarized in Table 3. The MAPEs in predicting the in-situ maximum and 

minimum horizontal stresses yielded by the ANN model trained by the newly generated 
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data are 3.27% and 3.76%. These calculation errors are lower than those yielded by the 

conventional rock-mechanics method (5.03% and 5.96%). Therefore, the method proposed 

in this study to generate a large database is reliable, and the ANN model trained with the 

newly generated data can provide accurate predictions of the in-situ horizontal stresses in 

this study area.  

 

 

 

Figure 26 Predicted magnitudes of in-situ horizontal stresses in well Y2 using the ANN 

model trained by the newly generated training data. 
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Figure 27 Predicted magnitudes of in-situ horizontal stresses in well Y6 using the ANN 

model trained by the newly generated training data. 
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Figure 28 Predicted magnitudes of in-situ horizontal stresses in well Y7 using the ANN 

model trained by the newly generated training data. 
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Table 3 MAPEs in predicting the magnitudes of in-situ horizontal stresses yielded by the 

ANN model trained by the newly generated data, and the conventional rock-mechanics 

method. 

 

Well number 

ANN trained by the newly 

selected data (%) 

Conventional rock-mechanics 

method (%) 

SHmax SHmin SHmax SHmin 

Y2 2.39  4.27  3.29 5.24 

Y6 3.07  3.34  3.75 5.02 

Y7 4.36  3.68  8.05 7.63 

Average 3.27  3.76  5.03 5.96 

 

4.3 Prediction of 3D In-situ Stresses in the Study Area 

Figures 29 and 30 show the distributions of the in-situ maximum and minimum horizontal 

stresses in the study area predicted by the newly developed ANN model, respectively. As 

shown in Figure 29, the in-situ maximum horizontal stress magnitudes in the study area 

vary from 80.3 MPa to 130 MPa. The in-situ maximum horizontal stress magnitudes in the 

anticline area are lower than those in the northwest and southeast areas. As seen in Figure 

30, the minimum horizontal in-situ stress magnitudes in the study area are mainly between 

41 MPa to 100 MPa. Similarly, the in-situ minimum horizontal stress magnitudes in the 

anticline area are also lower than that of other areas. Figure 31 shows the differences 

between the maximum and minimum horizontal in-situ stress magnitudes calculated using 

the developed ANN model in the study area. As shown in Figure 31, the stress difference 

in the study area mainly ranges from 10 MPa to 20 MPa. The stress difference in the 
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anticline area ranges from 16 MPa to 20 MPa, and the stress difference in the flat area 

(southeast area and northwest area) ranges from 10 MPa to 16 MPa. These results indicate 

that the anticline area exhibits larger stress differences and is more suitable for hydraulic 

fracturing treatments. 

 

Figure 29 Distribution of in-situ maximum horizontal stress magnitudes yielded by the 

ANN model developed in this study.  

 



51 

 

 

Figure 30 Distribution of in-situ minimum horizontal stress magnitudes yielded by the 

ANN model developed in this study. 

 

 
Figure 31 Distribution of the differences between the maximum and minimum horizontal 

in-situ stress magnitudes calculated using the newly developed ANN model. 
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CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS  

5.1 Conclusions 

In this thesis, a new method for predicting the in-situ horizontal stresses in a shale gas 

reservoir has been developed based on the artificial intelligence and the conventional rock 

mechanics. We demonstrate that the newly developed ANN model can be used to more 

accurately predict the magnitudes of in-situ maximum and minimum horizontal stresses 

than the conventional methods. Based on the research results, we can form the following 

conclusions:  

• Since the experimental data in this study area are insufficient, this thesis proposes a 

novel method to generate a large pseudo-experimental training database of in-situ 

horizontal stresses based on the data in two wells (Well Y1 and Well Y3), for which 

the calculated in-situ stress magnitudes are in good agreement with the measured in-

situ stress magnitudes. 

• A 4-layer ANN model is established, which has one input layer, two hidden layers, and 

one output payer. The input parameters are depth (DEP), sonic logging (AC), neutron 

logging (CNL), density logging (DEN), and gamma-ray logging (GR). The outputs are 

the in-situ horizontal stresses. Then the generated large pseudo-experimental training 

database is used to train the established neural network. Finally, we use this newly 

trained model to predict the magnitudes of in-situ horizontal stresses in other wells 

(Well Y2, Y6, and Y7). 
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• We predict the in-situ horizontal stresses in the other three wells using the trained ANN 

models and examine the model performance by comparing the calculated ones against 

the measured ones. It is found that the trained ANN model performs well in predicting 

the magnitudes of the in-situ horizontal stresses in this study area. 

• Finally, a series of 3D in-situ horizontal stress magnitude distribution maps of the study 

area have been plotted by the newly developed neural network coupled with a 

geological model. Such 3D distribution maps will be highly useful for guiding the 

drilling and hydraulic fracturing operations in this study area. 

 

5.2 Recommendations  

The hybrid approach developed in this study is proven to be a reliable approach in a small 

reservoir. Future studies should be conducted to see whether such approach can also be 

valid in larger-size reservoirs. Furthermore, the logging data applied in this thesis are from 

5 wells in which the lithology is shale. Future studies can examine if this approach of 

combining ANN and conventional rock mechanics can be extended to predict the in-situ 

stress magnitudes for the conventional reservoirs, such as carbonate and sandstone 

reservoirs. 
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