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Abstract 

We discuss the use of biologically inspired algorithms, including Genetic 

Algorithms, Particle Swarm Optimization and Ant Colony Optimization in classification 

and extraction of classification rules. 

Biologically inspired algorithms that are discussed in this work are heuristic-based 

optimization methods that provide global search strategy and use population of 

individuals to find approximate solution of a given problem. They provide an interesting 

alternative for generation of classification rules when compared with traditional greedy 

search-based approaches. We discuss differences between specific biologically inspired 

algorithms, including their rule representations, encodings of individuals, their 

approaches to the rule extraction, and advantages/disadvantages of search strategies that 

are applied to the classification problems. 

We propose enhancements with respect to the rule extraction and rule 

representation of the current algorithms to introduce new biologically inspired 

classification algorithm. We examine the properties of generated classification models, 

which is in contrast to the existing methods that aim at obtaining the highest possible 

classification accuracy. Instead of focusing on the accuracy, we analyze other properties 

like the total number of rules, the distribution of rules among specific classes, and 

modularization of the generated models. 

Extensive experimental tests prove that proposed method is comparable or better 

than compared biologically inspired algorithms in terms of the predictive accuracy, 

while providing a complete set of modular production rules. 
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1 Introduction 

With the current advancements in informational technologies we have witnessed 

an exponential growth of the amount of stored information. Now it is fairly easy to 

create customized databases that fit specific user needs and which contain huge amount 

of easily accessible data. This tremendous amount of information contains potentially 

useful knowledge, thus the need for data analysts and special (sem-) automatic methods 

to extract it. 

Data mining (DM) is defined as "the nontrivial extraction of implicit, previously 

unknown and potentially useful information from data" [1]. This is an interdisciplinary 

field that uses methods from several research areas (including machine learning and 

statistics) to extract knowledge from the input data. DM is a core step of a broader 

process called Knowledge Discovery in Databases (KDD), which involves automatic 

and semiautomatic methods for data analysis and techniques for generation and 

validation of hidden data structure (hidden knowledge). This process consists of pre

processing methods to facilitate the application of the data mining algorithms, the DM 

step, and post-processing methods to improve and apply the discovered knowledge [2] 

[3]. 

DM algorithms can be divided into two distinctive groups, namely supervised 

learning algorithms and unsupervised learning algorithms, both referred to as learners. In 

the case of the latter methods, the data include so called target attribute that defines 

discrete labels (the corresponding problem is known as classification) or a target 
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attribute that defines continuous values (the problem is known as regression). The main 

goal is to find relation between the remaining attributes and the values of the target 

attribute. The unsupervised methods discover the hidden data structure that does not 

involve any supervision, i.e., a priori knowledge of the labels [4]. 

The discovered knowledge that encodes the above relation is called a model. The 

model is often used to predict the values of the target attribute for data that was not used 

to develop the model. The distinctive difference between different DM algorithms is the 

structure of the model, it can be used to categorize the learners into groups. The 

supervised learning algorithms include statistical methods (e.g., Bayesian theory based 

methods [5], in which case the model is based on a set of probabilities), kernel based 

algorithms (e.g., Support Vector Machine [6], where the model is based on a set of 

nonlinear hyperplanes), decision rule, tree, and list induction methods (e.g., RIPPER [7], 

C4.5 [8], PART [9], respectively, where the model is expressed as a set of rules, some of 

which can be represented as trees), instance based algorithms (e.g., Nearest Neighbour 

and k-Nearest Neighbours [5], where the data constitutes the model), and neural 

networks (e.g., multiple layer perceptron [10] and RBF neural network [11], where the 

model consists of a network of interconnected processing units called neurons). The 

unsupervised algorithms include clustering and association rule mining methods. 

In this work we focus on the supervised learning algorithms. The supervised 

learners can be separated in two groups, "white-box" and "black-box", based on the 

ability of the user to interpret the model. In the former case the model can be read, 

interpreted, and modified (if desired) by the human user. The "white-box" supervised 
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learners include decision rule, tree, and list induction methods. The latter models are not 

interpretable by the human user, i.e., only the computer program can handle their 

complex structure. In our work we focus on the "white-box" learners as we aim to 

produce human-readable classification models. 

Biologically inspired algorithms is a category of algorithms that imitate the nature 

in the context of the evolution of organisms (e.g. Genetic Algorithms [12], where a 

group of individuals evolve to create and adapt to an environment), social behaviour of a 

group of beings, such as fish schools and bird flocks (e.g. Particle Swarm Optimization 

[13] [14], where group of individuals move through an environment and cooperate with 

each other in order to find locations of food sources), and cooperation between insects 

such as ant colonies (e.g., Ant Colony Optimization [15], where individuals try to find 

the shortest path between a colony and a food source). Biologically inspired algorithms 

introduce a set of behaviour description rules, a set of simple organisms that adhere to 

the these rules, and a method to iteratively apply the rules. Although the rules are 

conceptually simple, the algorithms complexity increases with passing iterations. When 

compared to traditional greedy search-based approaches they provide an interesting 

alternative which addresses heuristic-based global search strategy. 

Recently the biologically inspired algorithms, including the Neural Networks, 

Genetic Algorithms, Particle Swarm Optimization, and Ant Colony Optimization based 

algorithms, were applied in the classification domain. In this work we focus on the 

"white-box" learners. In particular, we consider extending the biologically inspired 

methods and we contrast our solution with other "white-box" methods. The selected 
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biologically inspired classification methods include Genetic Algorithm based approaches 

that extract a set of rules [16] and a more recent Particle Swarm Optimization based 

algorithm, PSO II [17], and an Ant Colony Optimization based algorithm, AntMiner 

[18]; the latter two methods also generate a set of rules. 

In this work we compare the current "white-box" biologically inspired 

classification algorithms such as PSO II and AntMiner and we propose extensions to the 

considered algorithms. We discuss the design of the new "white-box" biologically 

inspired classification method and its advantages and disadvantages in comparison with 

the current algorithms. We experimentally compare the proposed algorithm with the 

selected biologically inspired classification algorithms and other "white-box" supervised 

learners, including decision rule, tree, and list induction methods such as RIPPER, C4.5, 

PART, respectively. 

The proposed biologically inspired algorithm has the following characteristics: 

It improves the quality of the current biologically inspired classification 

algorithms and provides quality comparable to traditional "white-box" 

classification algorithms. 

It's classification model consist of a set of modular rules, i.e., the rules are 

independent and they can be used separately, which is in contrast to the current 

biologically inspired classification algorithms. 

The classification model provides rules for each class in a given problem, while 

in case of existing "white-box" methods some classes may not have the 
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associated rules in the classification model. 

Main goals and the anticipated contributions of this work follow: 

Development of novel rule representations in context of biologically inspired 

classification algorithms. 

Development of novel rule extraction procedure which extends current 

procedures used in the biologically inspired algorithms. 

Development of novel classification procedure in context of biologically 

inspired algorithms. 

Design, implementation and comparison (with other "white-box" methods) of 

the proposed biologically inspired classification algorithm. 

This document is organized as follows. Chapter 1 contains necessary background 

and definitions related to the problems discussed in this work. We discuss not only 

definitions related to classification, but also provide information about biologically 

inspired algorithms such as Genetic Algorithms [12], Particle Swarm Optimization [13] 

[14] and Ant Colony Optimization [15]. Existing biologically inspired classification 

algorithms are reviewed in the Chapter 3. In Chapter 4 we introduce the design of the 

proposed biologically inspired classification algorithm. We do not limit ourselves to the 

discussion of the proposed method, but we also review advantages and disadvantages of 

our approach in comparison with the existing algorithms described in Chapter 3. 

Chapter 5 contains experimental comparison between existing "white-box" classification 

methods, such as RIPPER [7], C4.5 [8], PART [9], biologically inspired algorithms, such 
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as PSO II [17], AntMiner [18], and the proposed biologically inspired algorithm. 

6 



2 Background 

This chapter provides an overview of the concepts used throughout this document. 

It provides necessary background and definitions of terms, including classification and 

biologically inspired algorithms. 

2.1 Classification 

The essence of classification is to assign a record (also known as item, case or 

instance) to one of the discrete labels (also known as class labels). Classifier is a 

classification algorithm that builds models that discriminate between different class 

labels. The "white-box" model can be used to discover and analyze potentially 

interesting knowledge that is hidden in the data. 

In a typical supervised scenario, the classifier extracts the model from a training 

set and the model is evaluated on a set of cases to infer the quality of the generated 

model. Training and evaluation of the classifier on the same set of cases may produce 

overestimated results with respect to the quality of the model, which may not reflect the 

quality of the model in context of its future use. Therefore, the testing should be done on 

cases that were not seen during model generation. Typically, the cases are split into three 

disjoint sets that does not contain any common case: 

Training set is a set of cases used to extract the classification model. 

Validation set is a set of cases used to evaluate the classification model during 

the model generation procedure. 
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Test set is a set of cases used to evaluate the final generated classification 

model. 

2.1.1 Attribute 

Attributes (also known as variables or features) are record descriptors and are 

typically of one of the two types: nominal (attribute values are members of an unordered 

set) or numeric (attribute values are numeric and ordered). 

Each record is described by the several attributes, each with a specific domain. 

One of the attributes is defined as a dependant attribute (also known as class). The 

remaining attributes are called a predictor attributes. If any of the attributes, including 

the dependant attribute are unknown (the attribute value is unknown or missing) then the 

case is referred to as an unknown case and the attribute value is specified as "?". 

In the scope of this work the case, the case is represented as follows: 

{attributel = valuel , attribute_2 = value_2; ...; class = value} (1) 

2.1.2 Production rule 

Production rule is defined as a conditional clause that involves two parts: the 

antecedent and the consequent. Rule antecedent contains a combination, typically a 

conjunction, of conditions on a predictor attribute values, while the rule consequent 

contains a predicted class label. Structure of the production rule follows: 

IF antecedent THEN consequent (2) 
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In this work we use a general form of the production rule shown in Figure 1. The 

rule antecedent contains a set of conditions connected by the logical conjunction. Each 

condition, referred to as a term, is a disjunction of logical tests over the single predictor 

attribute. The logical tests in two terms cannot involve the same predictor attribute, this 

means that each attribute can only be used in one or no terms. The rule consequent 

contains the predicted class label. The production rule format assumes that the predictor 

attributes are nominal. 

IF 

attribute^ = value_l_l OR attributel = value_l_2 OR .. 

= value_l_jV/ 

AND 

attribute_2 = value_2_l OR attribute_2 = value_2 2 OR .. 

= value_l_A,
2 

AND 

AND 

attributeJV = valueJV_1 OR attributeJV= valueJV_2 OR 

attribute/V = valueJVJVw 

THEN class = value 

OR attributel 

. OR attribute_2 

. . .OR 

Figure 1: Production rule representation, where N is the number of attributes to test and TV, denotes 

the i-th attribute value. 

A given production rule can cover a given case, this means that all terms included 

in the rale pass logical tests on the case (the term that passes the included logical tests on 

the case is referred to as passed term), otherwise the case is referred as not covered by 

the rule, e.g., production rule 

"IF temperature = low OR temperature = high THEN weather = bad" covers the case 
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{temperature = low; weather = ?} and does not cover the case 

{temperature = moderate; weather = ?}. 

Rule pruning is a technique in DM [19], that removes irrelevant terms or parts of 

the terms that might have been unduly included in the production rule, i.e., we remove 

the terms present in the rule antecedent to check whether the modified production rule 

has better quality than the original production rule. Rule pruning potentially improves 

the rule, helps avoiding overfitting to the training set, and may simplify the rule. 

2.1.3 Verification and validation 

The purpose of the validation of a given classification model is to statistically 

evaluate the performance and quality of the model that was obtained by the model 

extraction procedure. This can be done using several quality measures such as predictive 

accuracy, sensitivity, and specificity. These statistical quality measures quantify the 

performance on a binary classification test (positive class is defined as a class label for 

which evaluation is performed or the class present in the prediction rule consequent that 

we currently evaluate, while all other class labels are aggregated together into a negative 

class). To evaluate the model we use a test set. In a typical supervised learning scenario 

the class labels of test cases are known and they are used to evaluate the quality of the 

classifications. However in contrast to the training cases, the test cases are not used 

during model extraction procedure. We have four possible classification outcomes, see 

Table 1. 

10 



Original (true) class positive 

Original (true) class negative 

Predicted class positive 

true positive (TP) 

false positive (FP) 

Predicted class negative 

false negative (FN) 

true negative (TN) 

Table 1: Binary classification test outcomes. 

The true positive (TP) indicates the number of correct positive classifications, true 

negative (TN) indicates the number of correct negative classifications, false positive 

(FP) indicates the number of incorrect positive classifications, and false negative (FN) 

indicates the number of incorrect negative classifications. 

The evaluation criteria that can be used to quantify the quality of the model are 

defined as follows: 

TP Sensitivity^ *100% (3) 
TP + FN K ' 

TN 
Specificity= * 100 % (4) 

TN + FP K ' 

TP+TN Predictive accuracy= *100% (5) 
TP+TN+FP+FN K ' 

The sensitivity, see Equation 3, measures the ratio between the number of 

predicted true positive cases and the of the cases with original (true) positive class, 

referred to as positive cases, i.e., how many of the positive cases are correctly 

recognized. The sensitivity estimates the quality of the prediction of the positive data. 

The specificity, see Equation 4, measures the ratio between the the number of predicted 

true negative cases and the cases with original (true) negative class, referred to as a 

negative cases, i.e., how many of the negative cases are correctly recognized. Specificity 
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shows how well the prediction model, which was designed for the positive class, 

excludes the negative class. The predictive accuracy, see Equation 5, gives the overall 

evaluation and is defined as ratio between all correct prediction and all predictions. In 

this work the predictive accuracy is referred to as accuracy. 

2.1.3.1 Cross-validation 

Cross-validation is a method to estimate the quality of the classification model. In 

rc-fold cross-validation, where n indicates number of equally-sized subsets we use n-\ 

subsets to train the model and one remaining subset evaluate the generated classification 

model. This is repeated n times, each time different subset is used as the test set. Finally, 

we report an average classification evaluation criteria over the training/test experiments 

[4]-

This method is used to report the quality of classification model that can be used to 

compare different classification algorithms. 

2.1.3.2 Paired T-test 

Paired T-test, referred to as a T-test, is a statistical hypothesis test that compares 

two groups of paired samples, which in case of this work correspond to the measured 

quality of the model. It calculates the differences between each set of pairs and analyzes 

whether this difference is statistically significant based on the assumption that the groups 

of samples follow a Gaussian distribution. 

In this work the T-test is used to compare the quality of two classification models, 
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which are extracted and tested on the same training and test sets, respectively. 

2.2 Biologically inspired algorithms 

Biologically inspired algorithms imitate the natural systems such as ant colonies or 

swarms. These methods bring useful contribution to design of adaptive algorithms that 

could be used in computer science. In this section we discuss several biologically 

inspired methods. This list is not complete as we want to focus only on methods, 

including Genetic Algorithm, Particle Swarm Optimization, and Ant Colony 

Optimization that were recently applied in the classification domain. 

2.2.1 Genetic Algorithms 

Genetic Algorithm (GA) [12] is a search technique that is used to find approximate 

solutions to various optimization problems. It is a population based algorithm that is 

inspired by the theory of evolution, where number of representatives is maintained and 

evolved according to principles of natural selection - survival of the fittest individual. 

This simple concept makes GA easy to implement and adopt to solve problems in 

different domains [12][16][20][21]. 

GA is an optimization algorithm that is inspired by the evolutionary biology 

techniques (which are based on genetic operations such as inheritance, mutation, 

selection and crossover), where a group of individuals represented by chromosomes 

evolve toward better solutions. Specific individuals are first selected for mating, and 

then modified, using crossover and mutation operations, to form new population. This 
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scheme, which is based on the concept of organisms' evolution, aims at improving of the 

population with time and passing generations. 

A typical GA computer simulation requires definition of genetic representation of 

the solution domain and the fitness function that is used to evaluate candidate solutions. 

In this approach, each individual chromosome is equivalent to single candidate solution. 

Genetic representation of the solution domain does not concern only chromosome 

interpretation and encoding scheme, but also the genetic operations. Traditionally, a 

standard representation of a chromosome is a bit string, but other types and structures 

can be used in a similar way. Regardless of the actual type, a mapping between specific 

representation and solution domain has to be defined; it provides interpretation of the 

individual. Additionally, crossover and mutation operations have to be designed for the 

chosen chromosome type. These two operations are crucial to the GA algorithm as 

population evolution depends on them. Crossover is an analogous operation to the 

reproduction; it uses two input chromosomes (current generation) to generate two new 

chromosomes (next generation). As the outcome, this technique ensures differences 

between two consecutive generations of individuals. In contrast, mutation process 

concerns only a single chromosome, usually introducing random changes in its 

representation. It is analogous to the biological mutation and ensures genetic diversity in 

the population. 

Fitness function is used to evaluate chromosome and quantify its quality in a given 

problem domain. This value is used as a measure to select the best representatives of the 

current generation population that are used to create the next generation. The quality 
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measure is a driving force for population evolution towards better, possibly optimal 

problem solutions. 

In the GA algorithm, population evolves from the initial set of chromosomes. 

Using selection, crossover and mutation operations, population should improve its 

quality, as measured with the fitness function, with passing time and generations. GA is 

an iterative algorithm, where single iteration corresponds to a certain generation. In each 

iteration, see Figure 2, first a number of population representatives (chromosomes) is 

selected. The selection is based on the quality of the members, only the fittest ones are 

used to obtain the next generations. Additionally, in order to avoid destroying good 

solutions/individuals, a technique called elitism may be used. In elitism, a pre-defined 

number of best population members is automatically passed to the next generation; this 

means that these selected individuals are not subjected to crossover and mutation 

operations. When a set of best population representatives is specified, we use the 

crossover and mutation operations to create the next generation individuals. The last step 

of the algorithm is the stop condition. We usually check whether the maximum number 

of generations was exceeded, but the stop condition can be defined as a convergence 

criterion, which is based on the evaluation of the current generation or a few of the last 

generations. 
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initialize_population() 

LOOP 

set = select_chromosomes(population) 

crossoverchromosomes(set) 

mutate_chromosomes(set) 

update_population(population, set) 

UNTIL stop_condition() 

Figure 2: Pseudo-code of the GA algorithm 

2.2.2 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) [13][14][22] is a Swarm Intelligence [22] 

based global optimization method. Initially, it was introduced as an algorithm to solve 

continuous problems, but extensions and modifications make it possible to apply this 

method to discrete problems i.e. Binary Particle Swarm Optimization (BPSO) [23]. The 

PSO algorithm is based on a simple concept and because of that, it can be easily 

implemented. It uses only primitive mathematical operators that are computationally 

inexpensive, both in terms of small memory requirements and speed [13]. 

PSO is an optimization algorithm inspired by the intelligent group behaviour of 

beings such as birds or fishes and their social experience in community (swarm). 

Although each individual, often called particle, has limited capabilities, behaviour of the 

entire swarm is complex and exhibits intelligence. Particle decisions are based on the 

environment, its own experience (memory) and information from neighbours (social 

experience). This means that each individual has a limited experience and memorizing 

capabilities. 
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An important aspect of the PSO algorithm is the concept of a particle 

neighbourhood, as it has great impact on knowledge sharing between the particles. 

Although there are different models, usually the neighbourhood is based on a relative 

position in the environment (i.e., Euclidean distance between two particles) or social 

relations expressed as a predefined relationship between particles (i.e., index in the 

storing array [17]). While choice of the specific neighbourhood model plays important 

role, we also have to consider its size. The meaningful sizes vary from single nearest 

neighbour to all particles in the swarm. In the latter case, a particle shares its experience 

with the entire swarm. This means that each particle knows best position that was visited 

by all other swarm members. Usually the number of considered neighbours is either two 

or all particles [17]. 

In the PSO algorithm particles explore an environment in order to find the best 

possible position. In each iteration, all particles in the swarm have to decide where to go; 

the decision is based on quality of the environment (discussed later), and personal and 

neighbourhood experience. Using this information, particles move from the current to 

the next position in the search space. The search procedure continues as long as the stop 

condition is not fulfilled. To implement the stop condition we usually check whether the 

maximum number of iterations was exceeded or analyze the particles in the swarm, i.e., 

the stop condition is based on the convergence of the particles. Various PSO 

modifications may contain some differences, but this main concept is shared between all 

variants, see Figure 3. 
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initialize_swarm() 

LOOP 

FOR particle IN 1 :number_of_particles 

evaluate_particle_environment(particle) 

evaluate_particle_experience(particle) 

FOR k IN neighbourhood 

evaluate_particle_neighbour(particle, k) 

END 

move_particle(particle) 

update_experience(particle) 

END 

UNTIL stop_condition() 

Figure 3: Pseudo-code of the PSO algorithm 

Each particle position is represented by an array with specified length D that 

usually equals to the problem dimensionality; it can be measured as the number of 

attributes or size of the problem solution. In the basic PSO approach single array 

variable is a floating point value that represents particle position in xt dimension, but 

this is not always the case since some PSO algorithm variants may use different data 

types; e.g. in the BPSO algorithm each particle is a binary string (single dimension is a 

boolean value). 

x =(x, x2..., xD), ie{ 1,2,... D) (6) 

To simulate particles movement and search capabilities we have to maintain 

memory for each individual, including current position ( xt ), velocity ( v, ) and best 

position ( P t ) . Additionally depending on the neighbourhood model we have to store 

best neighbourhood position (Pig) for each particle. Particle movement equations for 
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the PSO algorithm are defined as follows: 

v,.(/)= Xv,{t-\) 

+ (pl{Pt-xi(t-\)) 

+ <p2(Plt-xl{t-l)) (,) 

x,{t)= xt{t-l) + vt(t) 

where t is an iteration number, v,.(f) is a particle velocity in z'-th dimension, x,(?) 

is a particle position in z'-th dimension, X, cp, , cp2 are parameters, and P,, Pig are 

particle best local and best neighbourhood position in z'-th dimension. 

Particle movement equations for the BPSO algorithm are defined as follows: 

v,.(0= Xvt[t-\) 
+<p,(P,-x,(f-l)) 

+Cp2(Pig-Xi(t-l)) (8) 

) = Jl rand{)<S{Vj{t)) 
[0 otherwise 

where S is a sigmoid function. 

Velocity update equations, v,.(/), are identical for the BPSO and PSO algorithms. 

In both cases, formula can be separated into three different components. The first part, 

Xv,.(/-1), represents velocity "memory"; parameter X can be interpreted as an 

environment resistance during particle movement through search space. The second part, 

cp,(P ;-x,(/-l)), is a particle "cognition" part, which represents particle private 

thinking. The third part, (p2{Plg-xi{t-\)), corresponds to the "social" thinking of the 

particle that describes cooperation between different individuals in the swarm. The two 

latter parts use <px and <P2 parameters that are random weights with predefined upper 

limit; they modify the behaviour of the particle. The parameters allow to choose whether 
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the private thinking is more important or the social behaviour and information sharing 

with other individuals in the swarm should make precedence. 

Because of the different character of the particle position for the standard PSO and 

the BPSO algorithms, position update equations, x,{t), are different. For the continuous 

PSO algorithm, position update is just a simple summation that simulates real life 

movement. However discrete version of the algorithm uses velocity differently; it is an 

indication of desired position value. First the velocity is limited to range [0.0; 1.0] using 

the sigmoid function S, then output value is used as a probability that certain particle 

position bit equals 1. 

During the search procedure, particles move according to equations *,•(/) and 

v,(0 , using information about the environment. In order to evaluate current position and 

calculate its quality, a mapping between particle position and problem dependent 

description is used. This mapping connects the problem that we want to solve with the 

PSO algorithm. This means that the particle position has to be encoded into specific 

domain dependent solution. 

2.2.3 Ant Colony Optimization 

Ant Colony Optimization (ACO) [15] [24][25] is a versatile, population based 

optimization algorithm that can be applied to solve many problems in various domains 

[26]. ACO was inspired by the collective behaviour of ants and it tries to mimic their 

group behaviour. It is very interesting that in spite of the almost blindness of ants, they 

still can find shortest paths between the colony and food sources. Ants communicate 
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with each other using a substance called pheromone that attracts other individuals. 

During movement, ants drop pheromone on the ground to mark the trail and make it 

more attractive for other ants. Paths that are used more frequently contain larger amounts 

of pheromone. As a result, more ants tend to use these selected paths and leave even 

more pheromone. Using this positive feedback, ants can find shortest paths between 

points of interest (e.g., food source) and the colony. 

Essentially, the algorithm that mimics behaviour of the real world ants is an agent 

based system that includes methods to cooperate and adapt. In this approach, each 

problem solution is represented by the path that is constructed by the single agent. 

Cooperation simulates group behaviour and information sharing between ants in 

terms of the use of pheromone trails. Single ant movement is random, except when it 

encounters already marked path, in which case the path could be detected and followed. 

Each ant that follows the specific path marks it with additional pheromone, which makes 

the path more attractive for other ants. 

When no pheromone information is available then ants choose the path blindly. In 

contrast to this behaviour, ACO adapts to the environment and uses quality measure to 

increase probability to choose better paths. Environment may also be dynamic over time. 

In this case the algorithm will adapt automatically to the modified environment. 

The above mentioned properties of the ACO algorithm imply the following: 

Representation; We represent the problem in such way that its solution can be 

constructed incrementally. Additionally we have to maintain its validity during 
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construction procedure. 

Cooperation. We provide a pheromone updating scheme that specifies how to 

modify pheromone trails T ; both reinforcement (increase) and evaporation 

(decrease) of the pheromone with time have to be taken into consideration. 

Adaptation. In order to evaluate the solutions quality during construction phase, 

we provide a problem dependent heuristic function q . This function binds 

together ACO algorithm with a specific problem that we want to solve and it 

provides local quality measure of incomplete solutions. 

Movement. During construction phase, ants incrementally constructs given 

problem solution. In every iteration, each ant decides where to move; basically, 

this is decision how to extend current candidate solution. It is based on path 

quality calculated as a combination of the heuristic function (q ) and the 

pheromone trails ( T ). 

2.2.3.1 Ant System 

Ant System was introduced as a first method based on the described concept of 

Ant Colony Optimization to solve TSP problem [15] [24]. In this system, simulated ants 

behave similarly to their real world counterparts and try to find shortest path between 

source and destination points. However, TSP problem includes additional constraints: 

each point can only be visited once and source and destination points are the same. 

These restrictions have to be taken into consideration during optimization phase to 

specify available trails for ants, during solution construction. Single solution, an ant 

22 



path, represents tradesman route between points of interest and have to meet the above 

requirements. 

Ant System is a straightforward algorithm that is based on a simple concept. Main 

algorithm and solution search scheme is presented in Figure 4. In a single iteration, ants 

try to construct candidate solutions by moving from the source to the destination points. 

At this point, pheromone is used to guide search to select possibly better paths. Amount 

of pheromone that is spread along the paths is updated after an ant finishes its 

movement, as it was proposed in [24]. However, this step is usually omitted and there is 

only single pheromone update after all ants construct complete candidate solutions. The 

final stage of ant processing is to store candidate solution; it may be additionally 

processed to improve it. The last step is the stop condition; it can be defined as the 

maximum number of possible iterations or it could be based on the convergence analysis 

based on the stored candidate solutions [15][24][25]. 

initialize_colony() 

LOOP 

FOR ant IN 1 .numberofants 

initializeant(ant) 

path = incrementally_construct_path(ant) 

update_pheromone_local(path) 

update_solutions(path) 

END 

update_pheromone_global(paths) 

UNTIL stop_condition() 

Figure 4: Pseudo code of the ACO algorithm 

The most important part of the single Ant System iteration is solution construction 

23 



m. j» n ~ 
Source*-/^-"" T .^-'Destination 

6" 
Figure 5: Complete candidate solution constructed by the ant 

procedure. It is repeated multiple times, once for each ant in the colony. Initially, each 

ant starts at the source point and represents an empty solution; next, iteratively, solution 

is expanded as ant wanders from point to point in search space. Candidate solution is 

complete when ant arrives to the destination point, at this point construction procedure 

stops (see Figure 5). 

The decision where to move is based both on the pheromone trails T and the 

heuristic function q that describes local environment quality. Probability of transition 

between two points is defined as follows: 

PmV)-^—f—w 7^>neN (9) 

where / is iteration number, m, n are points in search space, a, P are 

parameters, and N is an allowed set of points that are connected with point m . 

Transition probability is a trade-off between ant visibility (local quality) and 

pheromone intensity on the trail (the more pheromone is on the path, the more ants are 

using it) that is controlled by the parameters a and fi . Here we implicitly declare that 

the movement is only possible over trails that are allowed for a specific point. This is 

very important as we want to construct only valid solutions. In the case of TSP problem, 
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it means that each ant can visit single point only once and we have to dynamically 

modify set of allowed points during the incremental construction of the solution. 

Local quality, described by the heuristic function that tries to estimate the cost of 

extending solution, is problem dependent. Its main purpose is to guide ants to visit 

points that are more likely to be included in the optimal problem solution. Heuristic 

function mainly depends on the problem that we want to solve, e.g. for TSP, a good 

choice is the function based on the length between nodes. 

Pheromone is a communication method that is used for information sharing 

between ants. As single ant moves and constructs solution, it drops pheromone marks on 

the visited points. Paths that are used more frequently have more pheromone, thus it is 

more likely that even more ants would use them. Update of pheromone intensity over 

paths can be done both locally and globally. The main difference between global and 

local update is that the former method uses only single path as a reference, while the 

latter includes all paths that were followed by ants in single Ant System iteration. In both 

cases, the update formula is similar. 

Tmn(t + l) = PTmn(t) + ATmn (10) 

where / is iteration number, m, n are points in search space, p is a evaporation 

parameter, and A T is a reinforcement value 

Pheromone intensity update formula takes two aspects into consideration: 

evaporation and reinforcement. Evaporation, controlled by the parameter p , is used to 

avoid accumulation of pheromone and it simulates behaviour of the substance in real 
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world. Additionally all paths that were visited by all considered ants are reinforced. The 

increase amount depends both on the number of ants and constructed solutions quality. 

However, in contrast to heuristic function that describes local environment during 

construction phase, at this point we evaluate complete solutions to allocate more 

pheromone for the shorter/better paths. 

Although basic ACO algorithm performed well, in case of problems with higher 

number of dimensions, the exploration of the search space was limited and suffered an 

early search stagnation (the situation where all ants take same path and thus generate the 

same solution). To overcome these problems an elitist strategies were proposed [27]. 

MAX-MIN Ant System introduced few changes to the pheromone handling, including 

changes to pheromone update formula. 

Pheromone levels should lie within given range [i"m/„;Tm(K]. This modification 

tries to prevent search stagnation in cases when one trail contains significantly 

more pheromone than all other trails. 

Initialization of pheromone trails with Tmm improves exploration of the search 

space at the beginning of the algorithm. 

Elitist strategy; after each iteration only best solutions are exploited. This means 

that during pheromone update procedure we do not consider all trails that were 

created by ants. Instead only selected (usually solutions with highest quality) 

ones are used. 

Stop condition that uses convergence analysis can be based on pheromone 
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levels; ACO algorithm stops when pheromone level rmax is present on a single 

trail and TOT.B is on all other trails. 

2.3 Summary 

In this chapter we defined several terms used in the classification domain, 

including the data, (e.g., the training set, data cases, and attributes), knowledge 

representation (e.g., the production rules), and methods to quantify extracted knowledge 

(e.g., the quality measures such as the sensitivity and specificity) and compare classifiers 

(e.g., the cross-validation and T-test). Additionally, we described biologically inspired 

algorithms such as Genetic Algorithm, Particle Swarm Optimization, and Ant Colony 

Optimization and provided details about the heuristic strategies used during the 

optimization procedure. The concepts discussed in this chapter are used throughout this 

document. 
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3 Existing biologically inspired classification algorithms 

In this chapter we discuss current biologically inspired classification algorithms. 

We focus on the recently proposed methods for generation of production rules such as 

PSO II [17] and AntMiner [18] that are based on Particle Swarm Optimization and Ant 

Colony Optimization, respectively. While other approaches exist, for instance based on 

the Genetic Algorithms [16], the above two methods are considered as the 

representatives of the currently available biologically inspired classification algorithms 

in terms of the classification algorithm design [16] [17] [18]. 

3.1 PSO II 

PSO II [17] is the first application of the PSO algorithm in classification domain 

and it uses the standard PSO algorithm to discover a set of production rules that form the 

classification model. In this section we discuss the parametrization and the design of the 

biologically inspired classification algorithm. The next few subsections contain 

description of the aspects related to the classification model such as rule representation, 

rule extraction procedure, and classification procedure. 

The PSO II algorithm defines the following aspects of the underlying PSO 

algorithm: 

Particle quality formula that is used to evaluate the current particle position 
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sensitivity*specificity i/"0.0<x(.<1.0,fel,2,..., D 
— 1 otherwise 

where x, is z'-th value of the particle position array, D is the particle position 

array size, and the sensitivity and specificity are computed for a given particle 

that represents single production rule over a current training set, i.e., the 

training cases that are used to extract the production rule with the PSO 

optimization algorithm. 

The particle quality formula penalizes the particles that move out of the range 

[0.0; 1.0] in any of the particle position array indices. 

Particle movement equation parameters, see Equation 7. The values of X, <p,, 

and <p2 parameters are set to guarantee the convergence of the particle swarm 

[28][29]. We use the following values: X=0.73 , <p,=<p2=1.49 [17][28][29]. 

The PSO algorithm stop condition. The search procedure used to extract single 

production rule stops when the swarm converges, i.e., the sum of normalized 

Euclidean distance between all the particles in the swarm is smaller than a user-

defined threshold. The value that provides the best results is 0.1 [17]. 

The number of particles in the swarm. The size of particle swarm determines a 

trade-off between computational costs and search capabilities. The bigger the 

swarm, the more time is needed to run the PSO algorithm, but on the other 

hand, the number of evaluated points is bigger, thus possibly leading to a better 

final solution. The number of particles equals to 25 [17]. 

Q(x)= 
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In the following subsections we discuss several aspects of the PSO II classification 

algorithm that introduce additional parameters together with their values: 

The rule extraction procedure stop condition. The rule extraction procedure 

stops when the current training set contains fewer cases than an user-defined 

parameter The value is set to 5% of cases in the training set. 

The indifference threshold. The parameter is discussed in following subsection. 

The value equals 0.9 [17]. 

3.1.1 Rule representation and rule encoding 

PSO II algorithm extracts a set of production rules. Single production rule contains 

only one logical test for each attribute. This means that rule antecedent is a conjunction 

of logical tests, see Figure 6. In the PSO II algorithm, each term is a single logical test 

that involves one attribute. This is a simplification of the rule representation shown in 

Figure 1. 

IF 

attributel = 

AND 

attribute_2 = 

AND 

AND 

attribute_N 

= va lue l 

= value_2 

= valuejV 

THEN class = value 

Figure 6: Simplified production rule representation in PSO II algorithm, where N is the number of 

attributes. 
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An encoding scheme that translates the PSO particle (each particle is an array of 

floating point numbers of size D ) into the relevant production rule is necessary to 

associate the problem of extracting production rules with the PSO optimization 

algorithm. In the PSO II rule extraction algorithm D is the number of attributes 

(including predictor and class attributes), where each particle position array index 

corresponds to the single term, e.g., if the problem contains 10 attributes (including the 

class attribute) then the size of the particle position array is 10. The mapping between 

the array index and the term is defined as follows, see Figure 7: 

Particle search space is limited to range [O.O.l.O]. In case when the particle 

position violates this constraint for any of the array indices then the particle 

position is marked as invalid. 

Search space is subdivided into equally sized sub-ranges that map floating point 

numbers into a specific nominal attribute value, e.g., [0.0,0.2) maps to the first 

attribute value, [0.2; 0.4) maps to the second attribute value, etc. This encoding 

scheme implies that the attribute values are ordered. 

We introduce indifference threshold, which is a user-defined parameter that 

further divides the search space. It describes probability that a specific attribute 

is irrelevant and the corresponding term should not be included in the 

production rule, i.e., in case when the indifference threshold range is [0.0;0.5) 

then the rule antecedent does not contain the term testing corresponding 

attribute if the particle position is within the range. The indifference threshold is 

used only for these particle position array indexes that map to the predictor 
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range when term is 
considered irrelevant 

attribute values 

0.0 
indifference 
threshold 1.0 

Figure 7: The mapping between the z'-th particle position value ( xf ) and the term for the predictor 

attribute with four unique values in the PSO II biologically inspired classification algorithm. 

attributes. 

The authors claim that the encoding scheme supports the numeric attributes, but 

the algorithm performance was never tested on the datasets that contain the numeric 

attributes [17]. In this work we limit ourselves to the analysis of the nominal attributes 

only. As such we do not define the mapping between the PSO particle and the 

production rule that contains numeric attributes for the PSO II algorithm. 

3.1.2 Rule extraction procedure 

Rule extraction procedure is a straightforward training algorithm in which we 

iteratively create a set of production rules for a given training dataset. Generated ruleset 

can be used to assign class label to previously unknown cases. All rules are created one 

after another, in an iterative process, and there is no predefined order that defines how to 

assign a given class label to the next production rule. Class attribute is considered as a 

predictor attribute during the optimization procedure and is optimized. 

The main algorithm, see Figure 8, starts by removing all unknown data cases, both 
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initialize(pso, data, ruleset) 

WHILE numberoftrainingcases > maxnumber 

rule = generaterulewith PSO(pso, data) 

update_ruleset(ruleset, rule) 

update_training_dataset(data, rule) 

END 

post_process_ruleset(ruleset, data) 

of_uncovered_case 

Figure 8: Pseudo-code of the PSO II rule extraction algorithm 

from the training and the test sets, and the training set is initialized as the current training 

set. After this pre-processing step, the production rules are iteratively generated and 

added to the ruleset. Each iteration consists of a few actions. Namely, the PSO algorithm 

is a core step and is used to extract a single, best production rule, and next after pruning, 

the rule is added to the ruleset. Finally, all cases correctly classified by the extracted rule 

are removed from the current training dataset and next iteration starts. Rule extraction 

algorithm stops when the remaining number of training cases is lower than a user-

defined threshold. The last step of the algorithm is to finalize ruleset, by adding default 

production rule. The default rule is in the form "IF TRUE THEN class=default_value", 

where default_yalue is the most common class label in the remaining training cases. 

The finalized ruleset is subject of additional post processing routine. It involves 

ruleset cleaning, where all production rules that may never be applied are removed from 

the ruleset. This procedure includes two types of tests. First, the rules are processed 

sequentially and we check whether the current rule is superset of the next rule (the next 

rules contains a subset of the terms of the current rule in the rule antecedent). Second, 

we check whether the rule predicts the same class label as the default rule (they have the 
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same rule consequent) and is located just before the default rule. The rules that obey one 

or both of these above tests are removed. 

3.1.3 Classification procedure 

Ruleset extracted by the PSO II algorithm can be used to classify test cases, which 

were unseen during training, but in order to do so we have to follow specific procedure. 

All rules are created, one after another, without any predefined order. As a result of this 

design, the sequence of production rules and corresponding class labels is arbitrary, and 

the rules are used in order in which they were generated. The first rule that covers the 

test case is used and the case is assigned the class predicted by the selected rule 

consequent. 

The ruleset contains a default rule, which is used for all test cases that are not 

covered by any of the production rules generated during the rule extraction procedure by 

the PSO optimization algorithm. 

3.2 AntMiner 

AntMiner [18] is the first method that proposed to use Ant Colony Optimization in 

the classification domain. In this section we discuss the design of the production rule 

extraction procedure and discuss the customizations of the ACO algorithm. The next few 

subsections contain description of several aspects related to the classification model such 

as rule representation, rule extraction procedure, and classification procedure. 

The AntMiner algorithm defines the following aspects of the underlying ACO 
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orithm: 

Path construction procedure and the stop condition. During the optimization, 

each ant tries to find shortest path between the source and the destination 

points. Each point in the constructed path, with exception of the source and the 

destination points, represents one production rule term. The process of building 

the production rule is iterative and in each iteration a single term is 

concatenated to the candidate solution. The ant decision to choose the trail and 

at the same time the corresponding term is based on the quality of the available 

trails computed as a combination of the heuristic function ( q ) and the 

pheromone trails ( T ) as shown in Equation 9. At each step of the procedure we 

have to specify the set of allowed points. The following criteria have to be met: 

a) The production rule, after the term is added, covers more cases than a user-

defined parameter min_cases_per_rule. 

b) The production rule contains only a single term that includes a certain 

predictor attribute to avoid an invalid rule antecedent such as "temperature 

= low AND temperature = high". 

The path construction procedure stops when the set of allowed points is empty 

and the path is considered as finished. 

The min_cases_per_rule parameter value is set to 5 [18]. 

Heuristic function. The heuristic function q that describes the local quality of 

the environment is based on the entropy [30]. The same approach it is used in 
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one of the competing classification algorithms, C4.5 [8]. 

Solution quality formula that we use to evaluate the complete ant path: 

Q = sensitivity* specificity (12) 

where the sensitivity and specificity are computed for a completed ant path that 

represents single production rule over a current training set, i.e., the training 

cases that are used to extract production rule with the ACO optimization 

algorithm. 

Pheromone update formula: 

,, u Tm„(t)+Qrmn(t) (13) 

where / is iteration number, m , n are points in search space, Q is the quality 

of candidate solution, and R is a set of trails that constitute the candidate 

solution. 

The ACO algorithm stop condition. The search procedure that extracts single 

production rule stops when the ant colony converges or the maximum number 

of ants constructs the complete path. The algorithm converges when the number 

of successive ants that generate the same candidate solution is equal to the 

value of no_rules_converge parameter. 

The no_rules converge parameter value is set to 10 [18] and maximum 

number of ants equals 3000 [18]. 

Additional parameters. The ACO algorithm contains a few additional 
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parameters that have to be specified, namely the transition probability 

parameters « and /?. The transition probability defined in Equation 9 

characterizes the choice of trails that could be added to the candidate solution. 

We use the following values: « = /?= 1 [18]; this means that both the pheromone 

trails and the heuristic function have equal impact on the value of the transition 

probability. 

In the following subsections we discuss stop conditions of the AntMiner 

classification algorithm. The rule extraction procedure stops when the current training 

set contains fewer cases than an user-defined parameter max_uncovered_cases. The 

max_uncovered_cases parameter value is set to 10 [18]. 

3.2.1 Rule representation and rule encoding 

AntMiner algorithm extracts a set of production rules. Single production rule 

contains a number of terms, where each term can contain only single logical test. This 

means that rule antecedent is a conjunction of logical tests, see Figure 9. In the AntMiner 

algorithm each term is a single logical test that involves one attribute. This is a 

simplification of the rule representation shown in Figure 1. 
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IF 

attributel 

AND 

attribute_2 

AND 

AND 

attributeJV = valued 

THEN class = value 

Figure 9: Simplified production rule representation in AntMiner algorithm, where N is the number 

of attributes. 

An encoding scheme that translates a completed ant path into relevant production 

rule is not needed as each ant path represents a number of terms that are present in the 

production rule, which is the desired representation. The path construction procedure is 

explained in the previous section. 

3.2.2 Rule extraction procedure 

AntMiner rule extraction procedure creates a set of production rules that can be 

used to assign class label to previously unknown data cases. Rules are created one after 

another and in each iteration single production rule is generated. While class attribute is 

not subject to optimization, its value is set only after the rule antecedent is completed 

(single ant constructed the complete path between source and destination point); it is 

unknown to this point of rule extraction procedure. We select a majority class label 

among the covered cases in order to maximize the quality of the rule. 

= value 1 

= value 2 
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The main algorithm, see Figure 10, starts with initialization of a current training 

set and is divided into a set phases. In the first, core step, ACO algorithm is used to 

extract a set of candidate production rules. Only the best rule is chosen and added to the 

output ruleset. Next, the selected production rule is pruned to remove irrelevant terms to 

avoid potential overfitting to the current training set. Finally, all training cases correctly 

classified by the generated rule are removed from the current training set and next 

algorithm iteration starts. Rule extraction algorithm stops when the number of remaining 

training cases is smaller that user-defined threshold value. 

initialize(aco, data, ruleset) 

WHILE number_of_training_cases > max_number_of_uncovered_cases 

rule = generate_rule_with_ACO(aco 

update_ruleset(ruleset, rule) 

update_training_dataset(data, rule) 

END 

post_process_ruleset(ruleset, data) 

data) 

Figure 10: Pseudo-code of the AntMiner rule extraction algorithm 

When the rule extraction procedure stops and the ruleset contains a set of rules 

generated from training set, a default rule that covers remaining training cases is created 

and concatenated to the ruleset. Default rule is in the form 

"IF TRUE THEN c\2iss-default_yalue", where default_yalue is the most common class 

label in the remaining training cases. 

3.2.3 Classification procedure 

Generated ruleset, which was extracted by the AntMiner algorithm, can be used to 
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classify a new case that was unseen during training process. The discovered production 

rules are applied in the order in which they were extracted and stored in the ruleset. The 

first rule that covers the new case is used and the case is assigned the class indicated by 

the corresponding rule consequent. 

The ruleset contains a default rule, which is used for all new cases that are not 

covered by any of the production rules extracted during rule extraction procedure by the 

ACO algorithm. 

3.3 Summary 

In this chapter we discussed the current biologically inspired classification 

algorithms such as PSO II and AntMiner and provided details about the parametrization 

of the considered algorithms. We described several aspects of the algorithms such as the 

rule representation and encoding (i.e., defines the mapping between the optimization 

algorithm and the production rules), rule extraction procedure (i.e., the method used to 

extract production rules from the training set), and classification procedure (i.e., the 

method to assign class label to test case using the extracted production rules). 
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4 Proposed biologically inspired classification algorithm 

In this chapter we discuss the proposed biologically inspired classification 

algorithm. The discussion is organized in the similar fashion as the description of the 

PSO II and AntMiner algorithms to allow for seamless comparison between the main 

concepts of the considered biologically inspired classification algorithms. The last 

section contains summarized characteristics of the above approaches. 

4.1 Motivation 

The current biologically inspired classification algorithms such as PSO II and 

AntMiner focus on the accuracy as the main goal in the design of the corresponding 

classification algorithms. The algorithms are characterized by the straightforward 

production rule representation and the classification procedure that resembles the 

approach used by the decision list classifiers. 

In this work we extend the production rule representation and the rule extraction 

procedures to design accurate and modular classifier. We acknowledge that the 

classification accuracy is an important aspect of the classification algorithm. To this end, 

we use an extensive experimental environment to compare the accuracy of models 

generated by the proposed method with the accuracies of the considered biologically 

inspired classification algorithms and other traditional "white-box" classification 

algorithms such as RIPPER, C4.5, and PART. Additionally, the proposed algorithm is 

characterized by modularity of the generated model (i.e., the extracted production rules 
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are independent of each other and thus they can be used separately). This feature 

separates our method from the current biologically inspired classification algorithms that 

generate a set of dependent production rules. Finally, we analyze and quantify the 

completeness of the classification model, i.e., in the case of the proposed method the 

ruleset contains production rules for each class present in the training set. This is again 

the defining characteristics of our method, while the current biologically inspired 

classification algorithms may provide incomplete model. Our experiment measure how 

often the competing methods (including biologically inspired classification algorithms 

and the other considered "white-box" methods) generate incomplete models. 

4.2 Proposed method 

In this section we discuss the parametrization and the design of the proposed 

biologically inspired classification algorithm. The next few subsections contain 

description of several aspects related to the classification model such as rule 

representation, rule extraction procedure, and classification procedure. 

The proposed biologically inspired classification algorithm uses the BPSO 

algorithm to discover a set of production rules that constitute the classification model. 

The algorithm defines following aspects of the underlying BPSO algorithm: 

Particle quality formula used to evaluate current particle position 

Q (x) = sensitivity * specificity (14) 

where x is the particle position and the sensitivity and specificity are computed 
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for a given particle that represents a single production rule over a current 

training set, i.e., the training cases that are used to extract the production rule 

with the BPSO optimization algorithm. 

The above particle quality formula favours general production rules (i.e., the 

production rules that cover larger number of the positive cases) that at same 

time minimize the number of covered negative cases. The ideal production rule, 

in terms of the proposed evaluation measurement, covers all positive cases and 

no negative case. This quality formula was proposed in [31][32] and is also 

used in the competing biologically inspired classification algorithms [17][18]. 

Particle movement equation parameters. We analyze and optimize the 

parameters to find the best performing combination of the particle movement 

parameters X, <p,, and cp2. The detailed analysis is provided in the 

experimental section of this work. 

The PSO algorithm stop condition. In the proposed method we specify a fixed 

number of iterations that are performed during the optimization procedure. The 

value we choose is big enough to assure the stagnation of the BPSO 

optimization procedure during the rule extraction procedure and equals 1000 . 

We analyze all benchmarking problems that are used in the experimental study, 

see Chapter 5, to ensure that the value of quality function does not increase 

after the selected number of the BPSO algorithm iterations during the rule 

extraction procedure. 
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In the following subsections we discuss the stop condition of the proposed 

classification algorithm. The rule extraction procedure stops when the current training 

set contains fewer cases than user-defined parameter The value is set to 5 % of cases in 

the positive class of the current training set. 

4.2.1 Rule representation and rule encoding 

The proposed biologically inspired classification algorithm extracts a set o 

prediction rules. Single prediction rule antecedent is composed of the number of terms 

connected by the logical conjunction. Each term is a disjunction of logical tests over the 

single predictor attribute. The rule consequent contains a predicted class label. The rule 

representation is shown in Figure 1. 

An encoding scheme that translates the BPSO particle (each particle is a binary 

string of length D) into the relevant production rule is necessary to associate the 

problem of extracting production rules with the BPSO optimization algorithm. In the 

proposed algorithm D is the total number of attribute values, computed as a sum of the 

number of unique values of all predictor attributes. The BPSO particle position bit string 

is divided into a number of substrings. Single substring corresponds to the certain 

predictor attribute and represents one term, e.g., if the number of predictor attributes is 

N then the bit string contains N substrings and if the predictor attribute has Nt unique 

values then the corresponding substring contains N, bits. Single substring bit 

corresponds to the one logical test from the term, i.e., if nominal attribute A has three 

unique values {small, medium, large) then the substring contains three bits and a pattern 
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term term term term 

1 2 3 4 1 2 1 2 3 4 5 6 1 2 

"1 "2 " 3 " 4 

Figure 11: The BPSO particle position bit string (14 bits length) encoding for the production rule 

with four terms (attributes Ai, A2, A3, A4). Each bit corresponds to the certain value of the specific 

attribute. 

Oil is read as term A = medium OKA = large. While the order of the predictor attribute 

values is not important during optimization procedure, we specify the order of the values 

in the BPSO particle position bit string to correctly encode the production rule, see 

Figure 11. 

The encoding scheme has two special cases, when all bits are set to one and when 

all bits are set to zero. When all bits are set to one, the rule antecedent covers all cases 

and the production rule can be interpreted as the default rule. Similarly, when all bits that 

correspond to a certain term are set to one then the attribute is not included in the rule 

antecedent. When all bits are set to zero, the rule antecedent does not cover any case and 

the production rule is treated as invalid. The interpretation is alike when all bits that 

correspond to the single term are set to zero. 

We reuse the encoding scheme that was introduced in [33] [34] and which was used 

used in biologically inspired classification algorithms that extract the production rules 

with the GA algorithm [16]. 
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4.2.2 Rule extraction procedure 

The proposed rule procedure algorithm iteratively generates production rules from 

the input training dataset. A specific class label is chosen in advance for each generated 

rule, which happens before the actual procedure of single rule generation starts. The 

algorithm is designed to create at least a single rule for each class label that is available 

in the training set; this means that we explicitly set a minimum number of rules that 

would be present in the extracted ruleset. 

The main algorithm, see Figure 12 is divided into inter and outer iterations. In the 

former part we only select a current positive class label and initialize the rule extraction 

procedure. The letter part is the actual rule extraction procedure in which one production 

rule is generated in a single iteration. In each outer iteration we execute a number of 

inter iterations, thus generating a number of production rules for the same class; we refer 

this set of production rules a submodel. We make this distinction because all rules in the 

submodel share the same class label and no other rule consequent extracted during 

complete run of the rule extraction algorithm contains this class label. Generated ruleset 

does not contain any default rule and is composed of the set of submodels that cover all 

class labels that are available in the training set. 

46 



initialize(ruleset, bpso, data) 

FOR classlabel IN set_of_available 

initialize_data(data, classlabel) 

class_labels 

WHILE nurnber_of_training_cases > max 

rule = generate_rule_with_BPSO(bpso 

update_ruleset(ruleset, rule) 

update_training_dataset(data, 

END 

END 

rule) 

_nurnber_of_uncovered_cases 

data, class label) 

Figure 12: Pseudo-code of the proposed rule extraction algorithm 

Outer loop of the rale extraction algorithm starts with the training set 

reinitialization; all submodels are generated from the complete training set. We select a 

unique positive class label and divide the dataset into positive and negative parts. The 

outer loop stops when all class labels from the training set are processed. 

Inner loop contains actual rule extraction procedure; in each iteration a single 

production rule is generated and added to the selected submodel. In the first, core step, 

the BPSO algorithm is used to find the best production rule that can be extracted from 

the current training set. The extracted production rules is not modified, i.e., we do not 

perform the rule pruning, as in the scope of this work we do not analyze size of the 

production rules. Next, the generated production rule is added to the selected submodel 

with the corresponding quality value as computed during the BPSO optimization 

procedure. Finally, we modify the training set by removing all correctly classified cases. 

The inner loop stop when the number of the remaining training cases in the positive part 

is smaller than a user-defined threshold value. 
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When compared with the existing biologically inspired algorithms the distinctive 

feature of the proposed method is the two level design of our approach. As the result of 

this design, we create as set of submodels that consist of modular production rules, i.e., 

each rule can be interpreted and used independently of the remaining ruleset. This is in 

contrast to the rules generated by the previously described PSO II and AntMiner 

biologically inspired classification algorithms. While the extracted model is more 

flexible and provides at least one rule for each class label present in the training set, the 

main disadvantage of this approach is the increased computational cost; each submodel 

is generated from the complete training set. 

4.2.3 Classification procedure 

The generated ruleset can be used to predict class label of the unknown cases, i.e., 

cases that are not included in the training set. In the proposed biologically inspired 

classification algorithm the production rules are modular and can be used independently. 

At the same time, the complete extracted model should be used to perform 

classification ,i.e., one rule can only predict one class label, while the entire ruleset 

allows for classification into multiple classes. 

Classification procedure ranks the generated submodels according to the number 

of production rules that covers the test case. The submodel with the highest quality, 

computed as the sum of quality values of rules, within the submodel, that cover the test 

case, constitutes the prediction. However, the test case may not be covered by any of the 

generated production rules. In this situation the prediction is based on the "most 
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compatible" production rules, i.e., production rules with the biggest number of passed 

terms. As more than one production rule may by "compatible" at the same level, i.e., 

with exactly the same number of the passed terms, we use all the selected production 

rules to rank submodels according to the sum of production rule quality values. 

When compared with the existing biologically inspired algorithms the main 

difference is that we do not use the generated ruleset in any specific order as the rules 

are modular and independent. Additionally, instead of using the default rule to provide 

prediction for the test cases that are not covered by any of the extracted production rules 

we propose a novel procedure to provide output class label in this situation. 

One distinctive advantage of the proposed approach is the submodel ranking. 

During classification procedure we compute a quality measure for each of the 

submodels. This value is used to rank submodels, and the best is used for the prediction. 

While the other considered methods provide only the predicted class label, in our case 

we provide the user additional feedback information in terms of the confidence value 

that is assigned to each of the submodels. The confidence value can be used to compare 

different submodels, however we lose this information when using only single prediction 

rule from the extracted ruleset. 

4.2.4 Comparison with existing biologically inspired algorithms 

Table 2 presents a comparison between the proposed method and existing 

biologically inspired algorithms such as PSO II and AntMiner. The Table contains a 

condensed overview of characteristics of the methods analyzed in this work. The 
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comparison is organized in similar fashion as the the descriptions of the considered three 

biologically inspired classification algorithms and is separated into three main design 

steps. 

Main design 

steps 

Rule 

representation 

and encoding 

Rule extraction 

procedure 

Classification 

procedure 

Overall 

Detailed characteristics 

Rule can contain nominal attributes 

Rule can contain numerical attributes 

Encoding assumes order of the attribute 

values 

Rules et contains default rule 

Ruleset contains rules for each class 

Rules are modular and can be used 

independently 

Rules with same consequent are grouped 

together 

Rules are pruned before adding to the 

ruleset 

The rules are used in the extraction order 

Classification method provides 

prediction for all possible predictor 

attributes values 

The models includes additional feedback 

information i.e., confidence factor 

Algorithm works with unknown cases, 

i.e., non-missing values of unknown 

cases are used to generate model. 

Algorithm 

PSOII 

Yes 

Yes, but 

never 

tested 

Yes 

Yes 

No 

No 

No 

Yes 

Yes 

Yes 

No 

No 

AntMiner 

Yes 

No 

No 

Yes 

No 

No 

No 

Yes 

Yes 

Yes 

No 

Yes 

Proposed 

method 

Yes 

No 

No 

No 

Yes 

Yes 

Yes 

No 

No 

Yes 

Yes 

Yes 

Table 2: Comparison of the proposed method with the existing biologically inspired algorithms 
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4.3 Summary 

In this chapter we described the proposed biologically inspired classification 

algorithm. We presented several aspects of the proposed method such as the 

parametrization, the rule representation and encoding (i.e., defines the mapping between 

the optimization algorithm and the production rules), the rule extraction procedure (i.e., 

the method used to extract production rules from the training set), and the classification 

procedure (i.e., the method to assign class label to test case using the extracted 

production rules) and contrasted the proposed design with the other biologically inspired 

classification algorithms such as PSO II and AntMiner. As the result of the several 

extensions to the considered algorithms the proposed method extracts a complete set of 

modular production rules. 
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5 Experimental results 

In this chapter we experimentally compare the proposed biologically inspired 

classification method with the existing "white-box" classification methods, such as 

RIPPER, C4.5, PART, and the current biologically inspired classification algorithms 

such as PSO II and AntMiner. First, we describe the datasets used in the experiments, 

including several real world datasets and two synthetic datasets. Next, we explain the 

parametrization of the proposed method. Finally, we provide the results of the 

comparison between all the six learners. 

5.1 Synthetic datasets 

To evaluate the proposed biologically inspired classification method and compare 

it with the considered two biologically inspired algorithms we perform several 

experiments on the two synthetic datasets. We apply the three biologically inspired 

classification algorithms to extract the classification models from the two synthetic 

datasets and contrast the rule extraction procedures and output rulesets. 

Both synthetic datasets are multi-class and contain three unique class attribute 

values (i.e., class 1, class 2, and class 3). The predictor attributes (i.e., attribute 1 and 

attribute 2, referred to as Al and A2, respectively) are defined as follows: Al e{0,l,2,3} , 

A2e{0A,2] . Figure 13 shows the generator cases that are used to create the synthetic 

datasets; each class contains a specific number of training cases that are randomly 

chosen from the generator cases. 
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class 1 + class 2 X class 3 * class 1 + class 2 X class 3 * 

X X 

* + + + 

X X 

0 1 2 3 0 1 2 3 

Attribute 1 (Al) Attribute 1 (Al) 

(a) (b) 

Figure 13: The generator cases for the multi class synthetic datasets, i.e., the training synthetic 

dataset contains random number of the generator cases. The class 1 generator cases are indicated 

as "+", the class 2 generator cases are indicated as "x", and the class 3 generator cases are 

indicated as "*". Panel (a) defines generator cases for dataset 1, while Panel (b) shows generator 

cases for dataset 2. The x-axis and y-axis correspond to the values of attribute 1 (Al) and 2 (A2), 

respectively. 

The number of the cases for each unique class label in the synthetic dataset 1 is as 

follows: class 1 contains 320 cases, class 2 contains 80 cases, and class 3 contains 10 

cases. 

The number of the cases for each unique class label in the synthetic dataset 2 is as 

follows: class 1 contains 10 cases, class 2 contains 60 cases, and class 3 contains 160 

cases. 

The uneven distribution of the cases in the both multi-class datasets is used to 

expose advantages and disadvantages of the considered biologically inspired 

classification algorithms. 

In the experiments that concern synthetic datasets we extract the classification 

model and evaluate it on the same, complete dataset. While the quality of the generated 

3 

1 
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classification model may be misleading, the main goal of the experiments is to compare 

the advantages and disadvantages of the rule extraction algorithms used in PSO II, 

AntMiner, and the proposed classification method. 

5.2 Benchmarking datasets 

To evaluate the proposed biologically inspired classification method and compare 

it with considered classification algorithms we perform experiments with several real 

word datasets, also known as benchmarking problems. We apply the selected six 

classification algorithms to extract the classification models from the datasets. 

The real world datasets are publicly available and they were retrieved from the 

UCI repository [35]. The selected datasets, see Table 3, provide a comprehensive 

environment to test performance of the proposed and the competing methods. The 

benchmarking problems range from 101 to 12960 cases, the number of attributes is 

between 7 and 35, and the number of class labels ranges between 2 and 7. The datasets 

include both binary and multi class problems. 
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# 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Abbr. 

be 

bew 

car 

cmc 

derm 

dna 

lymph 

mush 

nurse 

vote 

zoo 

Full name 

breast cancer 

breast cancer Wisconsin 

car evaluation 

contraceptive method 

dermatology 

dna 

lymphography 

mushroom 

nursery 

congressional voting records 

zoo 

Number 

of cases 

277 

683 

1728 

1473 

358 

3186 

148 

5644 

12960 

232 

101 

Number 

of class 

labels 

2 

2 

4 

3 

6 

3 

4 

2 

5 

2 

7 

Distribution of cases 

in classes 

196/81 

444/239 

1210/384/69/65 

629/333/511 

111/60/71/48/48/20 

767/765/1654 

2/81/61/4 

3488/2156 

4320/3/328/4266/4044 

124/108 

41/20/5/13/4/8/10 

Number of 

attributes 

10 

10 

7 

10 

35 

61 

19 

23 

9 

17 

17 

Table 3: Properties of the benchmarking datasets. The number of attributes includes both the 

predictor attributes and the class attribute. 

5.3 Parametrization of the proposed method 

The proposed biologically inspired algorithm contains a number of parameters that 

have to be specified. In this section we discuss the parameter selection procedure for the 

BPSO algorithm, which is used to extract production rules in the proposed classification 

algorithm. The PSO algorithm parametrization proposed in [28] [29] guarantees the 

convergence of the swarm and provides an excellent choice for the parameters. However 

the BPSO algorithm lacks such analysis and we parametrize the parameters such as X, 

<px , <p2, and the neighbourhood model. We also discuss other parameters such as stop 

condition parameters, that are required in the proposed classification algorithm. 

We separate the required parameters into two groups: 
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BPSO algorithm swarm behaviour parameters. This group contains all 

parameters that have direct impact on the swarm search procedure, i.e., 

movement, information sharing, and the swarm size. We analyze these 

parameters in the proposed parametrization procedure. 

Stop condition parameters. This group includes two parameters, the number of 

iterations of the BPSO optimization algorithm, and the minimal size of the 

current training set during the rule extraction procedure. These parameters were 

already discussed and specified in Chapter 4 

The parameter selection procedure for the BPSO algorithm focuses on the BPSO 

particle movement equation, see Equation 8. However, we also analyze different 

neighbourhood models and swarm sizes. We use only a subset of the benchmarking 

problems listed in Table 3, which are characterized by the small size, i.e., the number of 

cases, due to computationally expensive nature of the parametrization procedure. We 

include the following datasets: be, bew, derm, lymph, vote, and zoo. 

The following parameters are optimized: 

Particle movement equation parameters. We analyze the X, cp, , and cp2 

parameters of the BPSO particle movement equation. In the analysis (px=<p2, 

this means that the private thinking and the social behaviour have equal impact 

on the particle movement throughout the search space. We execute a grid search 

over the following sets of values X={0.75,1.00,1.25} and 

cp = {1.0,1.5,2.0,2.5,3.0,3.5,4.0] . The default settings for the BPSO algorithm 
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particle movement parameters suggested in the [23] is as follows X=1.00 and 

(p,=<p2=2.0 

Neighbourhood model. We use the global (referred to as global) and closest 

index (referred to as index) based neighbourhood model. In the latter case only 

two closest particles are considered. The default setting for the BPSO algorithm 

neighbourhood model, which was suggested in the [23], is global. 

Swarm size. We check the trade-off between the quality of the classification 

model and the computational costs to generate the model with the BPSO 

optimization algorithm. We use the following sizes: 25, 50, and 100. 

In order to select the best combination of the parameters for the BPSO algorithm 

we analyze both the accuracy of the generated model and the number of production rules 

in the generated ruleset. Both values are combined into a single quality measure that is 

defined as follows: 

Q p=(100 —accuracy)*^ rules (15) 

The goal of the parameter selection procedure is to find the combination of above 

parameters that will result with smallest value of the quality measure defined in 

Equation 15. However in the discussion we also consider the trade-off between the 

obtained values of the quality measure and the computational costs, i.e., bigger size of 

the swarm will increase the time requirements. 
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Figure 14: Visualization of the grid parametrization results for the global neighbourhood model 

with (a) 25, (b) 50, and (c) 100 particles in swarm. The plots present the accuracy of the generated 

model (left column), the number of rules in the extracted model (central column) and the quality 

measure Qp (right column) over the selected values of the BPSO particle movement equation 

parameters X and cp . The point with the best value of Qp is indicated as black dot. The results 

are based on the 10-fold cross-validation tests that were repeated five times over the six selected 

benchmarking problems. 

The visualization of the parametrization results is in Figure 14 and Figure 15, 

which show results for global and index neighbourhood models, respectively. Each plot 

contains a summary of the results for a certain neighbourhood model and swarm size 

over the selected values of the BPSO particle movement equation parameters, X and 

<p . Single point on the grid in a given plot is an average obtained from the 10-fold 

cross-validation procedure that is repeated five times over the six selected benchmarking 
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problems. We repeat the 10-fold cross-validation because the proposed biologically 

inspired classification algorithm is nondeterministic, i.e., pseudo-random numbers are 

used during the initialization and optimization. 

Figure 15: Visualization of the grid parametrization results for the index neighbourhood model 

with (a) 25, (b) 50, and (c) 100 particles in swarm. The plots present the accuracy of the generated 

model (left column), the number of rules in the extracted model (central column) and the quality 

measure Qp (right column) over the selected values of the BPSO particle movement equation 

parameters X and cp . The point with the best value of Qp is indicated as black dot. The results 

are based on the 10-fold cross-validation tests that were repeated five times over the six selected 

benchmarking problems. 

We summarize the results of the parameter selection procedure in Table 4. We 

report the minimal Qp values for each neighbourhood model and swarm size together 

with the corresponding number of rules in the extracted model and the mean accuracy 
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over the six selected benchmarking problems. Additionally we provide the results for the 

default parameters suggested in [23], i.e., X = 1.00, (/>, = (p2=2.0, and global 

neighbourhood model; these results are underscored in Table 4. 

Parameters 

Neighbourhood 

model 

global 

global 

global 

global 

global 

global 

index 

index 

index 

Number of 

particles in 

swarm 

25 

25 

50 

50 

100 

100 

25 

50 

100 

X 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.25 

1.00 

<P 

2.50 

2.00 

1.00 

2.00 

2.00 

3.00 

1.00 

3.50 

1.50 

Results 

Accuracy 

[%] 

87.58 

87.10 

87.86 

87.58 

87.86 

87.90 

88.06 

88.16 

88.04 

Number 

of rules 

5.25 

5.24 

5.09 

5.11 

5.03 

5.04 

5.02 

5.00 

5.00 

Qp value 

65.23 

67.62 

61.82 

63.52 

61.09 

61.01 

59.99 

59.25 

59.80 

Runtime 

[sec] 

848 

811 

1650 

1661 

3291 

3196 

799 

1593 

3234 

Table 4: Listing of the best combinations of X and <p parameters for each considered 

combination of the neighbourhood model and number of particles in swarm. The results are based 

on the 10-fold cross-validation tests that were repeated five times over the six selected 

benchmarking problems. The runtime is the time needed to extract all classification models for the 

six considered benchmarking problems in the 10-fold cross validation tests. Selected parameters 

are shown in bold. The default parameters as suggested in [23] are underlined. 

The results show that the accuracy difference between the best and the worst 

combinations of BPSO parameters is very small and equals -0 .5% , when we do not 

include the default parameters. The difference in the case of the number of rules in the 

extracted classification model equals 0.25 . 

We select X = 1.00, cp,=(p2=1.0 and index based neighbourhood model to 
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implement the proposed biologically inspired algorithm. We use these values in all 

subsequent experiments. While a few other parameter sets can lead to slightly improved 

quality (the value of Qp ) the selected parameters provides the best trade-off between the 

computational costs, measured using the running time, and the obtained quality. 

5.4 Results on the synthetic dataset 

In this section we provide and discuss the results of the comparison between the 

three selected learners, PSO II, AntMiner, and the proposed biologically inspired 

classification algorithm on the two synthetic datasets. We describe the extracted 

classification models in the context of the design of the considered classification 

algorithms. 

The two considered biologically inspired classification algorithms, AntMiner and 

the proposed method, create classification models that correctly classify all the training 

cases for both synthetic datasets. However, the PSO II algorithm accuracy is lower than 

100% on both considered synthetic datasets. 

Figure 16 shows the decision boundaries derived from the generated classification 

models and the production rules that constitute the classification model extracted from 

the synthetic dataset 1. The order of the rules is important for the classification 

procedure of the PSO II and AntMiner algorithms. 
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class 1 + class 2 class 3 3K PSO II production rules: 

(1) IF A2 = 0 THEN class = 3 

(2) IF A2 = 1 THEN class = 3 

(3) IF Al = 1 THEN class = 2 

(4) IF A2 = 2 THEN class = 2 

(5) IF 27?UE THEN class = 1 

class 1 + 

1 2 

Attribute 1 (Al) 

class 2 X class 3 * 

class 1 

1 2 

Attribute 1 (Al) 

class 2 X class 3 5K 

AntMiner production rules: 

(1) IF A2 = 2 THEN class = 2 

(2) IF Al = 0 THEN class = 1 

(3) IF Al = 1 AND A2 = 1 THEN class = 2 

(4) IF A l = 2 THEN class = 3 

(5) IF Al = l THEN class = 3 

(6) IF Al = 3 THEN class = 3 

(7) IF TRUE THEN class = 1 

The proposed method production rules: 

(1) IF Al = 0 AND (A2 = 0 OR A2 = 1) 

THEN class = 1 

(2) IF (Al = 0 OR Al = 1) AND (A2 = 0 

ORA2 = l) THEN class = 2 

(3) IF (Al = 2 OR Al = 3) AND (A2 = 0 

ORA2 = l) THEN class = 3 

(4) IF Al = 1 AND A2 = 0 THEN class = 3 

Figure 16: Visualization of the decision boundaries derived from the generated classification 

models and the production rules that constitute the classification model extracted from the 

synthetic dataset 1 by PSO II (top row), AntMiner (middle row), and the proposed classification 

algorithm (bottom row). The decision regions and the corresponding production rules are 

numbered to show the order in which they were generated, which is important for the PSO II and 

AntMiner algorithms. Each number on the decision region is associated with the rule consequent 

shown in the circle below the number. Generator cases are indicates as "+", "x", and "*". 

1 2 

Attribute 1 (Al) 
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PSO II classification model (top row) contains five production rules, including the 

default rule. Rules (1) and (2) assign the cases to the majority class in the synthetic 

dataset 1, which is the class 3. The possible misclassification of the test cases is the 

result of the quality function that is used in the PSO II algorithm to evaluate the 

production rules and the specific rule representation. Rule (3) correctly classifies the 

cases in the class 2. However, because of the classification procedure used in PSO II, it 

only covers one generator case (the production rules have to be applied in the order in 

which they were extracted from the training set). This means that the rule (3) cannot be 

applied before the rules (1) and (2) that were extracted earlier. The generated production 

rules (1), (2), (3), and (4) cover all possible values of attributes Al and A2. This means 

that the default rule will not be applied and while the default rule consequent points to 

the class 1, the test cases will not be classified as class 1. 

AntMiner classification model (middle row) contains seven production rules, 

including the default rule. The extracted production rules correctly classify all the 

generator cases. The rule extraction procedure used by AntMiner makes the order of the 

classes in the production rules arbitrary, e.g., the rules (1) and (2) for the class 2 are 

separated by the rule (2) with the class 1. The shape of the decision boundaries reveals 

underlying complexity of the classification with the extracted production rules, which is 

is in contrast to the simplicity of the ruleset itself. The complexity of the decision 

boundaries stands from applying the classification procedure on the extracted ruleset. 

Similarly as in the case of the PSO II algorithm, the complete set of the extracted 

production rules covers all possible values of attributes Al and A2. This means that the 
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default rule will not be applied. 

The proposed method classification model (bottom row) contains four production 

rules. The complete classification model correctly classifies the generator cases. 

However, the individual production rules may incorrectly classify the test cases. In the 

extracted classification model the rules (1) and (2) overlap, and the classification 

decision is based on the quality of the production rules measured as described in 

Chapter 4. The production rules extracted in the proposed classification algorithm 

contain a complete description of the decision boundary and can be used separately, 

which is in contrast to the competing biologically inspired classification algorithms. This 

difference is result of the design of the rule extraction procedure. The extracted 

production rules do not cover all possible values of attributes Al and A2. While the 

synthetic dataset does not contain any generator cases for those regions, the proposed 

classification algorithm will still classify the test cases in those regions. The decision is 

based on the classification procedure described in Section 4.2.3. 

Figure 17 shows the decision boundaries derived from the generated classification 

models and the production rules that constitute the classification model extracted from 

the synthetic dataset 2. The order of the rules is important for the classification 

procedure of the PSOII and AntMiner algorithms. 
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class 1 class 2 class 3 * PSO II production rules: 

(1) I F A 2 = 1 THEN class = 1 

(2) IF A2 = 0 THEN class = 2 

(3) IF A2 = 2 THEN class = 2 

(4) IF TRUE THEN class = 3 

0 1 2 

Attribute 1 (Al) 

class 1 + class 2 X class 3 K AntMiner production rules: 

(1) IF Al = 0 AND A2 = 1 THEN class = 3 

(2) IF A2 = l THEN class = 1 

(3) IF Al = l THEN class = 2 

(4) I F A 1 = 0 THEN class = 2 

(5) IF 77? UE THEN class = 1 

class 1 + 

1 2 

Attribute 1 (Al) 

class 2 X class 3 M The proposed method production rules: 

(1) IF (Al = 1 OR Al = 2 OR Al = 3) 

AND A2 = 1 THEN class = 1 

(2) IF (Al = 0 OR Al = 1 OR Al = 2) 

AND (A2 = 0 OR A2 = 2) THEN class 

= 2 

(3) IF Al = 0 AND A2 = 1 THEN class = 3 
0 1 2 3 

Attribute 1 (Al) 

Figure 17: Visualization of the decision boundaries derived from the generated classification 

models and the production rules that constitute the classification model extracted from the 

synthetic dataset 1 by PSO II (top row), AntMiner (middle row), and the proposed classification 

algorithm (bottom row). The decision regions and the corresponding production rules are 

numbered to show the order in which they were generated, which is important for the PSO II and 

AntMiner algorithms. Each number on the decision region is associated with the rule consequent 

shown in the circle below the number. Generator cases are indicates as "+", "x", and "*". 
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PSO II classification model (top row) contains four production rules, including the 

default rule. Rule (1) assign the cases to the majority class in the synthetic dataset 2, 

which is the class 1. The possible misclassification of the test cases is the result of the 

quality function that is used in the PSO II algorithm to evaluate the production rules and 

the specific rule representation. The extracted production rules (1), (2), and (3) cover all 

possible values of the attributes Al and A2. This means that the default rule will not be 

applied and while the default rule consequent contains the class 3, the test cases will not 

be classified as class 3. 

AntMiner classification model (middle row) contains five production rules, 

including the default rule. All extracted production rules correctly classify the generator 

cases. Similarly as in the case of synthetic dataset 1, we observe that the decision 

boundaries are relatively complex. The extracted production rules (1), (2), (3), and (4) 

do not cover all possible values of the attributes Al and A2. This means that the default 

rule will be applied for these regions and test cases will be classified as class 1. 

The proposed method classification model (bottom row) contains three production 

rules. Both the complete classification model and each individual production rules 

correctly classify the generator cases. We also note that shape of the decision boundaries 

may be different in consecutive runs of the proposed rule extraction procedure due to the 

randomness of the search procedure, i.e., rule (2) could also include points (Al=3, 

A2=0) and (Al=3, A2=2). We note that the proposed method can generate production 

rules that describe cases tat were not included in the training set. In particular, rule (2) 

covers points (Al=2, A2=0) and (Al=2, A2=2), which do not correspond to the 
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generator cases. The presence of logical tests Al=2 and Al=3 in rule (2) is arbitrary. 

This is the result of selection performed with the quality function used in the proposed 

classification algorithm to evaluate the production rules during the optimization 

procedure. 

5.5 Results on the benchmarking datasets 

In this section we provide the results of the comparison between the six selected 

learners, RIPPER, C4.5, PART, PSO II, AntMiner, and the proposed biologically 

inspired classification algorithm. The experiments are performed on the selected eleven 

real world benchmarking problems. 

We use RIPPER, C4.5 and PART classification algorithms implementations from 

the Weka suite [36]. The biologically inspired algorithms, PSO II [17] and AntMiner 

[18], were obtained from the authors. 

In the experimental study we use the 10-fold cross validation procedure to 

compare the six learners. Similarly as in the synthetic datasets comparison, we repeat the 

10-fold cross-validation five times for PSO II, AntMiner and the proposed classification 

method. The reported quality of the generated model is an average over the ten folds 

together with the corresponding standard deviation. In the case of PSO II, AntMiner, and 

the proposed classifier, where 10-fold cross validation is repeated five times, we first 

average the measurements for the same folds obtained in the multiple runs, and then 

these averages are used to compute average and standard deviation for the ten folds. 

We separate all benchmarking problems into two groups based on the size of the 
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extracted model, i.e., the number of extracted production rules or leaf nodes. In case of 

the car and nurse datasets the proposed classification method extracts much smaller 

models when compared with models generated by RIPPER, C4.5, and PART; the other 

considered biologically inspired algorithms also generate similarly small models. While 

the model is more compact its predictive accuracy is also lower. To indicate this 

difference we summarize the results for all benchmarking problems and the set of 

benchmarking problems that excludes the car and nurse datasets (indicated using * in 

Table 5, Table 6, and Table 8). 

Table 5 and Table 6 report the mean results for both considered groups of the 

benchmarking problems. We average all measurements (the accuracy of the extracted 

model and the number of production rules or leaf nodes in the generated classification 

model) and the corresponding standard deviation values obtained from the individual 

datasets to provide the overview of the results. 

The benchmarking problems are pre-processed to satisfy the requirement of the 

considered learners. We remove all unknown cases as the PSO II algorithm cannot use 

the cases with missing values to extract the classification model. We also use the same 

training and tests sets for each classifier (which is necessary to compute the T-test, which 

is explained later in this section) when performing the 10-fold cross validation. 

We report the predictive accuracy of the classification models generated by the six 

considered learners over the eleven selected benchmarking problems in Table 5. We 

show the highest accuracy values for each individual dataset in bold and we provide the 

summarized mean results over all considered experiments. 
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Dataset 

be 

bew 

car 

cmc 

derm 

dna 

lymph 

mush 

nurse 

vote 

zoo 

MEAN 

MEAN* 

Algorithm 

RIPPER 

74.4 ± 8.46 

93.8 ±2.67 

87.5 ±1.86 

46.6 ± 2.65 

89.4 ± 6.74 

93.9 ± 1.21 

77.9 ±10.9 

100.0 ± 0.0 

96.8 ± 0.54 

97.0 ± 4.12 

88.0 ±11.3 

85.9 ±4.59 

84.5 ± 5.34 

C4.5 

75.9 ± 8.05 

93.8 ±2.84 

92.3 ±1.24 

49.2 ±4.10 

93.4 ±4.05 

93.4 ±1.00 

80.7 ± 8.94 

100.0 ± 0.0 

97.1 ±0.57 

96.5 ± 3.99 

92.0 ±7.89 

87.7 ±3.88 

86.1 ±4.54 

PART 

68.5 ±7.66 

93.8 ±2.84 

95.4 ± 1.96 

48.6 ±3.59 

95.1 ± 3.82 

93.7 ±1.24 

80.7 ± 10.7 

100.0 ± 0.0 

99.1 ± 0.32 

95.2 ±3.81 

93.0 ±8.23 

87.6 ±4.01 

85.4 ±4.62 

PSOII 

74.8 ± 8.67 

93.4 ±3.16 

78.8 ±2.69 

43.2 ±3.92 

70.5 ± 4.63 

83.8 ±1.93 

78.0 ±11.1 

96.8 ± 0.94 

77.3 ±1.91 

94.9 ±3.72 

94.2 ± 5.12 

80.5 ± 4.34 

81.2 ±4.80 

AntMiner 

77.6 ± 10.2 

90.2 ± 2.06 

85.3 ±0.35 

43.0 ±3.80 

95.0 ±4.89 

87.4 ±1.24 

75.0 ±9.88 

97.6 ± 0.87 

86.6 ±0.72 

96.1 ±4.14 

91.8 ±7.69 

84.1 ±4.51 

83.7 ± 5.04 

Proposed 

method 

70.8 ± 7.34 

96.1 ± 2.06 

80.4 ±2.12 

50.8 ± 4.02 

90.6 ±2.85 

90.6 ±1.36 

80.1 ±6.71 

99.4 ± 0.43 

79.8 ±1.45 

96.7 ±4.12 

93.6 ±4.97 

84.5 ±3.40 

85.4 ±3.76 

Table 5: Accuracy ± standard deviation results for the six learners on the eleven benchmarking 

problems. The results are based on the 10-fold cross-validation tests, which for PSO II, AntMiner, 

and the proposed method were repeated five times. The best results for each datasets are shown in 

bold. Mean values are reported for eleven or (*) nine benchmarking problems (excluding car and 

nurse datasets). 

The proposed biologically inspired algorithm twice obtains the best accuracy (for 

the bew and cmc datasets). The two competing biologically inspired algorithms, PSO II 

and AntMiner, obtain the best results for the zoo and be datasets, respectively. PART is 

the learner that obtains the best accuracies for five out of the eleven datasets, which is 

the highest count of wins. 

The proposed method obtains favourable accuracy for the datasets car and nurse 

that are excluded from the reduced group of nine benchmarking problems when 
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compared to PSO II. Both algorithms use the same measure to evaluate the production 

rules during the rule extraction procedure and similar methods (BPSO and PSO, 

respectively) to extract single production rule. This improvement is likely due to the 

different rule representations. 

The mean results show that the proposed biologically inspired classification 

algorithm obtains favourable accuracies when compared with PSO II and AntMiner. The 

accuracies are comparable when the proposed method is contrasted with RIPPER, C4.5 

and PART for the reduced group of the nine benchmarking problems. The reported mean 

values may be misleading since different datasets are characterized by different default 

accuracies (accuracy when all cases are classified to the largest class, i.e., the class label 

with the highest number of cases in the training set). Therefore, later in this section we 

summarize the results using win/draw/loss counts and a statistical significance test. 

We observe that the proposed classification algorithm has the smallest mean 

standard deviation. This shows that the accuracy of the models generated from the 

individual benchmarking problems is less variable for the proposed method than the 

accuracies of the other competing methods. This could be due to the generation of rules 

for each class in the case of the proposed classification algorithm. 

We report the number of rules or leaf nodes in the classification models extracted 

by the six considered learners over the eleven selected benchmarking problems in Table 

6. We show the smallest classification models for each individual dataset in bold and we 

provide the summarized mean results over all considered experiments. 
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Dataset 

be 

bew 

car 

cmc 

derm 

dna 

lymph 

mush 

nurse 

vote 

zoo 

MEAN 

MEAN* 

Algorithm 

RIPPER 

3.60 ± 0.96 

13.0 ±1.41 

35.5 ±5.73 

6.40 ±1.90 

14.0 ±1.56 

17.8 ±2.82 

6.90 ±1.20 

6.00 ± 0.00 

112. ±9.43 

2.00 ± 0.00 

7.30 ±0.67 

20.5 ±2.34 

8.56 ±1.17 

C4.5 

12.1 ±10.9 

49.6 ±7.59 

122. ±6.47 

182. ±76.2 

23.9 ±4.40 

78.9 ±4.15 

18.4 ±1.40 

24.6 ±0.52 

359. ±8.19 

2.50 ±1.08 

10.7 ±2.79 

80.5 ±11.24 

44.8 ±12.11 

PART 

18.4 ±4.20 

11.5 ±2.68 

62.0 ±3.05 

187. ± 11.1 

8.10 ±1.66 

65.3 ±3.89 

9.40 ±1.26 

11.3 ±0.67 

189. ±11.2 

5.30 ±0.95 

7.60 ± 0.52 

52.3 ±3.74 

36.0 ±2.99 

PSOII 

6.10 ±0.65 

9.50 ±1.08 

8.12 ±0.31 

7.12 ±0.60 

9.64 ± 0.70 

6.74 ±0.38 

6.12 ± 0.45 

4.98 ± 0.22 

7.02 ± 0.06 

3.66 ± 0.79 

7.12 ±0.19 

6.92 ± 0.49 

6.76 ± 0.56 

AntMiner 

6.26 ± 0.46 

12.6 ±0.52 

18.0 ±0.75 

11.9 ±0.91 

7.82 ± 0.59 

8.68 ±0.50 

6.54 ± 0.42 

7.88 ± 0.43 

17.7 ±0.69 

4.32 ± 0.42 

6.00 ± 0.00 

9.78 ±0.52 

8.00 ± 0.47 

Proposed 

method 

6.00 ± 0.00 

2.00 ± 0.42 

6.20 ± 0.42 

9.00 ± 0.00 

6.12 ±0.14 

5.22 ± 0.24 

6.22 ± 0.41 

2.80 ± 0.28 

7.00 ± 0.00 

2.60 ± 0.52 

7.00 ± 0.00 

5.49 ± 0.22 

5.24 ±0.19 

Table 6: Number of rules or leaf nodes ± standard deviation in models generated by six learners on 

the eleven benchmarking problems. The results are based on the 10-fold cross-validation tests, 

which for PSO II, AntMiner, and the proposed method were repeated five times. The best results, 

smallest number of rales (or leaf nodes) on the extracted model for each datasets are shown in 

bold. Mean values are reported for eleven or (*) nine benchmarking problems (excluding car and 

nurse datasets). 

The proposed biologically inspired algorithm extracts the smallest classification 

models, in terms of the number of production rules or leaf nodes, for six out of the 

eleven datasets (including the car and nurse datasets that are excluded from the reduced 

group of the benchmarking problems), which is the highest count of wins. The 

competing biologically inspired algorithms, PSO II and AntMiner, obtain the best result 

for the lymph and zoo datasets, respectively. RIPPER is the learner that extracts the 

smallest classification models for the be, cmc and vote datasets. 
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The AntMiner algorithm, in the case of the zoo dataset, extracts the classification 

model that contains only six production rules, including the default rule. While the 

dataset contains seven unique class labels, the extracted model does not discriminate the 

test cases between all the classes that are present in the training set. Later in this section 

we provide a more detailed analysis of the completeness of the classification model. 

The mean results show that the proposed biologically inspired classification 

algorithm obtains favourable results in terms of the size of the extracted classification 

model when contrasted with the considered classification algorithms. The mean value 

for all selected benchmarking problems equals 5.49 and is close to the average number 

of classes in the eleven selected datasets that equals 3.64 . This is likely due to the 

proposed rule representation and the generalization properties of the fitness function that 

is used during the optimization procedure to obtain a single production rule. While the 

classification model extracted by the proposed method contains fewer prediction rules, 

the rule representation is more complex. Later in this section we summarize the above 

results using win/draw/loss counts. 

We observe that the proposed classification algorithm has the smallest mean 

standard deviation. This shows that the size of the models extracted from the individual 

benchmarking problems is less variable in the proposed method than the size of the 

extracted models in case of other competing methods. This could be due to generation of 

rules for each class in the case of the proposed classification algorithm, which is in 

contrast to the other considered methods. 

We report the summarized win/draw/loss results for the six considered learners 
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over the eleven selected benchmarking problems in Table 7. Table summarizes the 

results reported in Table 5 and Table 6. We provide the comparison of the accuracy of 

the extracted models on the upper triangle and the size of the generated classification 

model in the lower triangle. 

Algorithm 

RIPPER 

C4.5 

PART 

PSOII 

AntMiner 

Proposed 

method 

Algorithm 

RIPPER 

- • 

11/0/0 

(9/0/0) 

9/0/2 

(7/0/2) 

3/0/8 

(3/0/6) 

4/0/7 

(4/0/5) 

3/0/8 

(3/0/6) 

C4.5 

2/2/7 

(2/2/5) 

-

3/0/8 

(3/0/6) 

1/0/10 

(1/0/8) 

1/0/10 

(1/0/8) 

1/0/10 

(1/0/8) 

PART 

3/2/6 

(3/2/4) 

3/3/5 

(3/3/3) 

-

1/0/10 

(1/0/8) 

1/0/10 

(1/0/8) 

0/0/11 

(0/0/9) 

PSOII 

8/0/3 

(6/0/3) 

10/0/1 

(8/0/1) 

9/0/2 

(7/0/2) 

-

9/0/2 

(7/0/2) 

2/0/9 

(2/0/7) 

AntMiner 

8/0/3 

(6/0/3) 

9/0/2 

(7/0/2) 

9/0/2 

(7/0/2) 

4/0/7 

(4/0/5) 

-

1/0/10 

(1/0/8) 

Proposed 

method 

6/0/5 

(4/0/5) 

7/0/4 

(5/0/4) 

6/0/5 

(4/0/5) 

2/0/9 

(2/0/7) 

4/0/7 

(2/0/7) 

-

Table 7: Win/draw/loss results for six learners on the eleven benchmarking problems. The results 

in the brackets are based on the nine benchmarking problems (excluding car and nurse datasets). 

The upper triangle reports the accuracy of the generated classification model and the lower 

triangle reports the number of rules (or leaf nodes) in the extracted classification models, e.g., the 

3/0/8 value located in row PART and column C4.5 means that PART model contains more rules 

(or leaf nodes) than C4.5 model on 3 datasets and PART model contains less rules (or leaf nodes) 

than C4.5 model on 8 datasets, the 3/3/5 value in the C4.5 row and PART column mean that C4.5 

accuracy is higher than PART accuracy three times, the accuracy of the two methods is even three 

times, and C4.5 accuracy is lower than PART accuracy five times. The results are based on the 10-

fold cross-validation tests, which for PSO II, AntMiner, and the proposed method were repeated 

five times. 
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Table 7 provides an overview of the experimental comparison between all selected 

algorithms. However the most relevant part of the summary is the last row and the last 

column that compare the proposed biologically inspired classification algorithm with 

other considered classification algorithms such as RIPPER, C4.5, PART, PSO II, and 

AntMiner. 

The proposed method obtains favourable accuracy when compared with PSO II 

and AntMiner, i.e., the extracted classification model has better accuracy in case of nine 

out of eleven and seven out of eleven benchmarking problems, respectively. The 

win/draw/loss accuracy measure of the proposed method is comparable with the 

RIPPER and PART when considering both complete set of eleven benchmarking 

problems and the reduced set of nine benchmarking problems. C4.5 obtains better 

win/loss accuracy record against the proposed method in the case of both sets of 

benchmarking problems. 

We further summarize Table 7 by computing a sum of wins between a given 

learner and all other classification algorithms, including both the complete set of eleven 

benchmarking problems and the reduced set of nine benchmarking problems (results 

reported in brackets). The results are: 36(28), 35(25), 30(28), 26(21), 19(16), and 12(8) 

for C4.5, PART, the proposed method, RIPPER, AntMiner, and PSO II classification 

algorithms, respectively. While the proposed method is placed third when using the 

complete set of eleven datasets, it scores first together with the C4.5 algorithm when 

considering the reduced set of nine datasets. 

We observe that models extracted by the proposed method contains fewer 
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production rules than the classification models extracted by the other classification 

algorithms for a larger number of dataset. This is consistent over all considered 

competing methods, which can be observed in the last row in Table 7. However, the 

other learners have simpler representation of the production rules. 

We report results of the T-test comparison in Table 8. We test whether the 

differences in the quality between models extracted by our method and each competing 

learner are statistically significant. Each of the compared models is generated from the 

same data (the same fold). This means that we perform the 10-fold cross validation with 

exactly the same division of the benchmarking problems for each considered learner. 
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Dataset 

be 

bew 

car 

cmc 

derm 

dna 

lymph 

mush 

nurse 

vote 

zoo 

SUMMARY 

SUMMARY* 

RIPPER 

~~ 

++ 

-

++ 

~~ 

-
— 

-

-
— 

~~ 

2/5/4 

2/5/2 

C4.5 

~~ 

++ 

~ 
— 

~~ 

--

~~ 

~ 

--
— 

~~ 

1/6/4 

1/6/2 

Algorithm 

PART 

~~ 

++ 

~ 

~~ 

~ 

-
— 

-

— 
— 

~~ 

1/5/5 

1/5/3 

PSOII 

— 

++ 

— 

++ 

++ 

++ 

— 

++ 

++ 

~~ 

— 

6/5/0 

5/4/0 

AntMiner 

~~ 

++ 

~ 

++ 

-

++ 

— 

++ 

~ 

~~ 

— 

4/4/3 

4/4/1 

Table 8: T-test results of accuracy comparison between the proposed classification algorithm and 

five competing learners on the eleven benchmarking problems; "++" indicates that the proposed 

method is significantly better than the competing learner, "—" indicates no significant difference, 

"--" indicates that the proposed method is significantly worse than the competing learner. 

Summary values reported as "++/—/--" respectively summarize the results for eleven or (*) nine 

benchmarking problems (excluding car and nurse datasets), e.g., the 4/4/1 value located in the row 

SUMMARY* and column AntMiner means that the proposed method is significantly better than 

AntMiner on 4 datasets, there is no significant difference between the proposed method and 

AntMiner on 4 datasets, and AntMiner is significantly better than the proposed method once. The 

results are based on the 10-fold cross-validation tests, which for PSO II, AntMiner, and the 

proposed method were repeated five times. 

The proposed biologically inspired classification algorithm obtains favourable 

results in terms of statistical significance when compared with the other two considered 

biologically inspired algorithms. However, the results favour the competing traditional 

"white-box" learners when we consider the complete set of eleven benchmarking 
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problems. The accuracy comparison shows that RIPPER and C4.5 algorithms are 

comparable to the proposed method when considering the reduced set of nine 

benchmarking problems. 

Table 9 contains the summary of completeness analysis of the classification 

models extracted from the benchmarking problems. We analyze whether the 

classification models contain a complete set of rules, i.e., the generated ruleset contains 

non-default production rules for all class labels present in the training set. 

During rule extraction procedure, RIPPER always selects the majority class in the 

training set and creates a default rule for the class. It means that for each benchmarking 

problem in Table 9, the column with RIPPER algorithm contains at least 10 folds with 

one class label that has only the default production rule. 
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Dataset 

be 

bew 

car 

cmc 

derm 

dna 

lymph 

mush 

nurse 

vote 

zoo 

Algorithm 

RIPPER 

10/0 

10/0 

10/0/0/0 

10/0/0 

10/0/0/0/0/0 

0/0/10 

2/10/0/1 

10/0 

9/4/0/1/0 

10/0 

10/0/0/0/2/0/0 

C4.5 

0/0 

0/0 

0/0/0/0 

0/0/0 

0/0/0/0/0/0 

0/0/0 

0/0/0/1 

0/0 

0/10/0/0/0 

0/0 

0/0/0/0/0/0/0 

PART 

0/0 

0/0 

0/0/0/0 

0/0/0 

0/0/0/0/0/5 

0/0/0 

6/0/0/3 

0/0 

0/8/0/0/0 

0/0 

0/0/2/0/3/0/0 

PSOII 

0/0 

0/0 

0/0/0/9 

0/0/2.2 

0/0/0/0/0.2/1 

0/0/0 

10/0/0/3 

0/0 

0/10/9.8/0/0 

0/2.2 

0/0/1/0/8/0/0 

AntMiner 

0/0 

0/0 

0/0/0/0 

0/0/0 

0/0/0/0/0/0 

0/0/0 

3/0/0/2.2 

0/0 

0/5.6/0/0/0 

0.2/0 

0/0/10/0/10/0/0 

Proposed 

method 

0/0 

0/0 

0/0/0/0 

0/0/0/0 

0/0/0/0/0/0 

0/0/0 

0/0/0/0 

0/0 

0/0/0/0/0 

0/0 

0/0/0/0/0/0/0 

Table 9: Completeness of models generated by the learners on the benchmarking problems. The 

reported values correspond to the number of folds with missing or only default rule per class label, 

e.g. the 2/10/0/1 value located in row lymph and column RIPPER means that 2 folds for class 0, 

10 folds for class 1, 0 folds for class 2, and 1 fold for class 3 include only the default or no rules. 

The results are based on the 10-fold cross-validation tests, which for PSO II, AntMiner, and the 

proposed method were repeated five times. Because of that the results for PSO II, AntMiner, and 

the proposed method are averaged and may be a floating point numbers. 

The only method that contains non-default production rules for all class labels 

present in the training set is the proposed biologically inspired classification algorithm. 

This is a result of the design of the proposed rule extraction procedure. The other 

competing learners extract the classification models that are incomplete for at least two 

benchmarking problems. 

The classification models extracted on the lymph, nurse, and zoo benchmarking 

problems are the most problematic in terms of the model completeness for the RIPPER, 
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C4.5, PART, PSO II, and AntMiner algorithms. The three datasets are a multi-class 

problems with the uneven distribution of cases among the class labels. The classification 

models do not contain the non-default production rules for the classes with the smallest 

number of cases. 

The proposed biologically inspired algorithm is designed to provide the complete 

set of production rules. The eleven selected real world benchmarking problems show 

that completeness of the model is not guaranteed in the case of the considered five 

competing classifiers. 

5.6 Summary 

In this chapter we experimentally compared the proposed biologically inspired 

classification method with the existing "white-box" classification methods, such as 

RIPPER, C4.5, PART, and the current biologically inspired classification algorithms 

such as PSO II and AntMiner. First, we parametrized the proposed method to obtain a set 

of BPSO parameters for the subsequent experiments. Next, we used two synthetic 

datasets to provide an extensive comparison of the three considered biologically inspired 

algorithms and discuss the extracted classification models. Finally, we performed the 

experimental comparison of the six considered classifiers on the eleven selected 

benchmarking problems. We analyzed the performance of the methods in terms of the 

predictive accuracy, the number of the extracted production rules or leaf nodes, and the 

completeness of the extracted classification model. 

The comparisons showed that the proposed method is comparable in terms of 
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predictive accuracy to the traditional "white-box" classifiers and favourable when 

contrasted with the two considered biologically inspired algorithms. Additionally, we 

experientially confirmed that the proposed method extracts a complete set of modular 

production rules, which is in contrast to the other five competing classifiers. 
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6 Conclusions 

In this work we discussed the use of biologically inspired algorithms to generate 

"white-box" classification models. Biologically inspired algorithms are heuristic-based 

optimization methods that provide global search strategy and use population of 

individuals to find approximate solution of a given problem. They provide an interesting 

alternative for generation of classification rules when compared with traditional greedy 

search-based approaches. 

We described the differences between the biologically inspired classification 

algorithms such as PSO II and AntMiner, including the rule representation, the 

encodings scheme, the rule extraction procedure, and the classification procedure. 

In this work we proposed enhancements with respect to the rule representation, the 

rule extraction procedure, and the classification procedure of the current algorithms and 

we introduce novel biologically inspired classification algorithm. We considered several 

the properties of generated classification models, which is in contrast to the existing 

methods that aim at obtaining the highest possible classification accuracy. Instead of 

focusing only on the accuracy, we analyzed three other properties of the classification 

models such as the total number of rules, modularization, and the completeness of the 

extracted model. 

Extensive experimental tests showed that the proposed method provides 

favourable predictive accuracy when compared with the current biologically inspired 

classification algorithms and comparable predictive accuracy when contrasted with three 
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traditional "white-box" algorithms such as RIPPER, C4.5, and RIPPER. Additionally, 

the proposed method provides a complete set of modular production rules, which is in 

contrast to the current biologically inspired classification algorithms. 

List of significant contributions: 

Development of a novel classification algorithm to generate production rules 

using Binary Particle Swarm Optimization algorithm. 

Novel rule encoding method in context of current biologically inspired 

classification algorithms. 

Development of biologically inspired classification algorithm that generates a 

set of modular rules. 

Development of biologically inspired classification algorithm that generates 

rules for each class present in the training set. 

The parametrization of the Binary Particle Swarm Optimization algorithm. 

The first comprehensive comparison of several biologically inspired classifiers. 

The first comparative study that includes rule-based, decision-tree based, 

decision-list based, and the biologically inspired classification methods. 

The first study to consider and compare the completeness of the generated 

classification models. 
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7 Future work 

In this work we discussed the design of the biologically inspired classification 

algorithm that extracts a complete set of modular production rules and provided an 

experimental comparison with other "white-box" classification algorithms. During the 

development of the proposed method we found a number of interesting directions that 

can be analyzed in future: 

Analysis of the complexity of the extracted production rules. In this work we 

proposed extensions to the rule representations used in the current biologically 

inspired algorithms, but we did not analyze the complexity of the production 

rules as focused on the modularity of the generated rules. 

Processing of continuous attributes. It would be interesting to extend the 

proposed algorithm to cope with the continuous attributes, as currently the 

proposed method can work only with the discrete attributes. 

Scalability analysis. In this work we only briefly mentioned the computational 

costs of the proposed method, measured as the running time. It would be 

interesting to perform an extensive analysis and comparison between the 

biologically inspired algorithms in terms of the computational costs. 
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