
University of Alberta

Biologically inspired modular classifier

by

Michal Kurgan

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of the

Master of Science

Department of Electrical and Computer Engineering

Edmonton, Alberta

©

Fall, 2008

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-47284-2
Our file Notre reference
ISBN: 978-0-494-47284-2

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

•*•

Canada

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Dedication

To my family, especially my parents, for their continuous support, and my brother for his

numerous advices and help during my studies. They have put an incredible effort to help

me during my education. I especially thank them for continuing words of encouragement

and advice.

Abstract

We discuss the use of biologically inspired algorithms, including Genetic

Algorithms, Particle Swarm Optimization and Ant Colony Optimization in classification

and extraction of classification rules.

Biologically inspired algorithms that are discussed in this work are heuristic-based

optimization methods that provide global search strategy and use population of

individuals to find approximate solution of a given problem. They provide an interesting

alternative for generation of classification rules when compared with traditional greedy

search-based approaches. We discuss differences between specific biologically inspired

algorithms, including their rule representations, encodings of individuals, their

approaches to the rule extraction, and advantages/disadvantages of search strategies that

are applied to the classification problems.

We propose enhancements with respect to the rule extraction and rule

representation of the current algorithms to introduce new biologically inspired

classification algorithm. We examine the properties of generated classification models,

which is in contrast to the existing methods that aim at obtaining the highest possible

classification accuracy. Instead of focusing on the accuracy, we analyze other properties

like the total number of rules, the distribution of rules among specific classes, and

modularization of the generated models.

Extensive experimental tests prove that proposed method is comparable or better

than compared biologically inspired algorithms in terms of the predictive accuracy,

while providing a complete set of modular production rules.

Acknowledgement

I would like to thank all the people who help me to finish this thesis and complete my

studies. Especially I appreciate my supervisor Dr. Witold Pedrycz whose experience and

support helped me, over the last few years. The understanding and encouragement for

my research directions motivated me to continue my research.

I would like to thank the members of my thesis committee, Dr. Marek Reformat, and Dr.

Aminah Robinson Fayek for their help during my studies. I also want to thank Dr.

Horacio Marquez, the chair of the Electrical and Computer Engineering department.

Table of Contents

1 Introduction 1

2 Background 7

2.1 Classification 7

2.1.1 Attribute 8

2.1.2 Production rule 8

2.1.3 Verification and validation 10

2.1.3.1 Cross-validation 12

2.1.3.2 Paired latest 12

2.2 Biologically inspired algorithms 13

2.2.1 Genetic Algorithms 13

2.2.2 Particle Swarm Optimization 16

2.2.3 Ant Colony Optimization 20

2.2.3.1 Ant System 22

2.3 Summary 27

3 Existing biologically inspired classification algorithms 28

3.1 PSOII 28

3.1.1 Rule representation and rule encoding 30

3.1.2 Rule extraction procedure 32

3.1.3 Classification procedure 34

3.2AntMiner 34

3.2.1 Rule representation and rule encoding 37

3.2.2 Rule extraction procedure 38

3.2.3 Classification procedure 39

3.3 Summary 40

4 Proposed biologically inspired classification algorithm 41

4.1 Motivation 41

4.2 Proposed method 42

4.2.1 Rule representation and rule encoding 44

4.2.2 Rule extraction procedure 46

4.2.3 Classification procedure 48

4.2.4 Comparison with existing biologically inspired algorithms 49

4.3 Summary 51

5 Experimental results 52

5.1 Synthetic datasets 52

5.2 Benchmarking datasets .54

5.3 Parametrization of the proposed method 55

5.4 Results on the synthetic dataset 61

5.5 Results on the benchmarking datasets 67

5.6 Summary 79

6 Conclusions 81

7 Future work 83

8 References 84

List of Tables

Table 1: Binary classification test outcomes 11

Table 2: Comparison of the proposed method with the existing biologically inspired

algorithms 50

Table 3: Properties of the benchmarking datasets. The number of attributes includes both

the predictor attributes and the class attribute 55

Table 4: Listing of the best combinations of X and q> parameters for each considered

combination of the neighbourhood model and number of particles in swarm. The

results are based on the 10-fold cross-validation tests that were repeated five times

over the six selected benchmarking problems. The runtime is the time needed to

extract all classification models for the six considered benchmarking problems in the

10-fold cross validation tests. Selected parameters are shown in bold. The default

parameters as suggested in [23] are underlined 60

Table 5: Accuracy ± standard deviation results for the six learners on the eleven

benchmarking problems. The results are based on the 10-fold cross-validation tests,

which for PSO II, AntMiner, and the proposed method were repeated five times. The

best results for each datasets are shown in bold. Mean values are reported for eleven

or (*) nine benchmarking problems (excluding car and nurse datasets) 69

Table 6: Number of rules or leaf nodes ± standard deviation in models generated by six

learners on the eleven benchmarking problems. The results are based on the 10-fold

cross-validation tests, which for PSO II, AntMiner, and the proposed method were

repeated five times. The best results, smallest number of rules (or leaf nodes) on the

extracted model for each datasets are shown in bold. Mean values are reported for

eleven or (*) nine benchmarking problems (excluding car and nurse datasets) 71

Table 7: Win/draw/loss results for six learners on the eleven benchmarking problems.

The results in the brackets are based on the nine benchmarking problems (excluding

car and nurse datasets). The upper triangle reports the accuracy of the generated

classification model and the lower triangle reports the number of rules (or leaf nodes)

in the extracted classification models, e.g., the 3/0/8 value located in row PART and

column C4.5 means that PART model contains more rules (or leaf nodes) than C4.5

model on 3 datasets and PART model contains less rules (or leaf nodes) than C4.5

model on 8 datasets, the 3/3/5 value in the C4.5 row and PART column mean that

C4.5 accuracy is higher than PART accuracy three times, the accuracy of the two

methods is even three times, and C4.5 accuracy is lower than PART accuracy five

times. The results are based on the 10-fold cross-validation tests, which for PSO II,

AntMiner, and the proposed method were repeated five times 73

Table 8: T-test results of accuracy comparison between the proposed classification

algorithm and five competing learners on the eleven benchmarking problems; "++"

indicates that the proposed method is significantly better than the competing learner,

"~~" indicates no significant difference, "—" indicates that the proposed method is

significantly worse than the competing learner. Summary values reported as "+

+/~~/~" respectively summarize the results for eleven or (*) nine benchmarking

problems (excluding car and nurse datasets), e.g., the 4/4/1 value located in the row

SUMMARY* and column AntMiner means that the proposed method is significantly

better than AntMiner on 4 datasets, there is no significant difference between the

proposed method and AntMiner on 4 datasets, and AntMiner is significantly better

than the proposed method once. The results are based on the 10-fold cross-validation

tests, which for PSO II, AntMiner, and the proposed method were repeated five times.

76

Table 9: Completeness of models generated by the learners on the benchmarking

problems. The reported values correspond to the number of folds with missing or

only default rule per class label, e.g. the 2/10/0/1 value located in row lymph and

column RIPPER means that 2 folds for class 0, 10 folds for class 1, 0 folds for class

2, and 1 fold for class 3 include only the default or no rules. The results are based on

the 10-fold cross-validation tests, which for PSO II, AntMiner, and the proposed

method were repeated five times. Because of that the results for PSO II, AntMiner,

and the proposed method are averaged and may be a floating point numbers 78

List of Figures

Figure 1: Production rule representation, where N is the number of attributes to test and

Nt denotes the z'-th attribute value 9

Figure 2: Pseudo-code ofthe GAalgorithm 16

Figure 3: Pseudo-code ofthe PSO algorithm 18

Figure 4: Pseudo code of the ACO algorithm 23

Figure 5: Complete candidate solution constructed by the ant 24

Figure 6: Simplified production rule representation in PSO II algorithm, where N is the

number of attributes 30

Figure 7: The mapping between the /-th particle position value (xi) and the term for the

predictor attribute with four unique values in the PSO II biologically inspired

classification algorithm 32

Figure 8: Pseudo-code ofthe PSO II rule extraction algorithm 33

Figure 9: Simplified production rule representation in AntMiner algorithm, where N is

the number of attributes 38

Figure 10: Pseudo-code ofthe AntMiner rule extraction algorithm 39

Figure 11: The BPSO particle position bit string (14 bits length) encoding for the

production rule with four terms (attributes Ab A2, A3, A4). Each bit corresponds to the

certain value ofthe specific attribute 45

Figure 12: Pseudo-code ofthe proposed rule extraction algorithm 47

Figure 13: The generator cases for the multi class synthetic datasets, i.e., the training

synthetic dataset contains random number of the generator cases. The class 1

generator cases are indicated as "+", the class 2 generator cases are indicated as "x",

and the class 3 generator cases are indicated as "*". Panel (a) defines generator cases

for dataset 1, while Panel (b) shows generator cases for dataset 2. The x-axis and y-

axis correspond to the values of attribute 1 (Al) and 2 (A2), respectively. 53

Figure 14: Visualization ofthe grid parametrization results for the global neighbourhood

model with (a) 25, (b) 50, and (c) 100 particles in swarm. The plots present the

accuracy of the generated model (left column), the number of rules in the extracted

model (central column) and the quality measure Qp (right column) over the selected

values of the BPSO particle movement equation parameters X and cp . The point

with the best value of Qp is indicated as black dot. The results are based on the 10-

fold cross-validation tests that were repeated five times over the six selected

benchmarking problems 58

Figure 15: Visualization of the grid parametrization results for the index neighbourhood

model with (a) 25, (b) 50, and (c) 100 particles in swarm. The plots present the

accuracy of the generated model (left column), the number of rules in the extracted

model (central column) and the quality measure Qp (right column) over the selected

values of the BPSO particle movement equation parameters X and cp . The point

with the best value of Qp is indicated as black dot. The results are based on the 10-

fold cross-validation tests that were repeated five times over the six selected

benchmarking problems 59

Figure 16: Visualization of the decision boundaries derived from the generated

classification models and the production rules that constitute the classification model

extracted from the synthetic dataset 1 by PSO II (top row), AntMiner (middle row),

and the proposed classification algorithm (bottom row). The decision regions and the

corresponding production rules are numbered to show the order in which they were

generated, which is important for the PSO II and AntMiner algorithms. Each number

on the decision region is associated with the rule consequent shown in the circle

below the number. Generator cases are indicates as "+", "x", and "*" 62

Figure 17: Visualization of the decision boundaries derived from the generated

classification models and the production rules that constitute the classification model

extracted from the synthetic dataset 1 by PSO II (top row), AntMiner (middle row),

and the proposed classification algorithm (bottom row). The decision regions and the

corresponding production rules are numbered to show the order in which they were

generated, which is important for the PSO II and AntMiner algorithms. Each number

on the decision region is associated with the rule consequent shown in the circle

below the number. Generator cases are indicates as "+", "x", and "*" 65

1 Introduction

With the current advancements in informational technologies we have witnessed

an exponential growth of the amount of stored information. Now it is fairly easy to

create customized databases that fit specific user needs and which contain huge amount

of easily accessible data. This tremendous amount of information contains potentially

useful knowledge, thus the need for data analysts and special (sem-) automatic methods

to extract it.

Data mining (DM) is defined as "the nontrivial extraction of implicit, previously

unknown and potentially useful information from data" [1]. This is an interdisciplinary

field that uses methods from several research areas (including machine learning and

statistics) to extract knowledge from the input data. DM is a core step of a broader

process called Knowledge Discovery in Databases (KDD), which involves automatic

and semiautomatic methods for data analysis and techniques for generation and

validation of hidden data structure (hidden knowledge). This process consists of pre

processing methods to facilitate the application of the data mining algorithms, the DM

step, and post-processing methods to improve and apply the discovered knowledge [2]

[3].

DM algorithms can be divided into two distinctive groups, namely supervised

learning algorithms and unsupervised learning algorithms, both referred to as learners. In

the case of the latter methods, the data include so called target attribute that defines

discrete labels (the corresponding problem is known as classification) or a target

1

attribute that defines continuous values (the problem is known as regression). The main

goal is to find relation between the remaining attributes and the values of the target

attribute. The unsupervised methods discover the hidden data structure that does not

involve any supervision, i.e., a priori knowledge of the labels [4].

The discovered knowledge that encodes the above relation is called a model. The

model is often used to predict the values of the target attribute for data that was not used

to develop the model. The distinctive difference between different DM algorithms is the

structure of the model, it can be used to categorize the learners into groups. The

supervised learning algorithms include statistical methods (e.g., Bayesian theory based

methods [5], in which case the model is based on a set of probabilities), kernel based

algorithms (e.g., Support Vector Machine [6], where the model is based on a set of

nonlinear hyperplanes), decision rule, tree, and list induction methods (e.g., RIPPER [7],

C4.5 [8], PART [9], respectively, where the model is expressed as a set of rules, some of

which can be represented as trees), instance based algorithms (e.g., Nearest Neighbour

and k-Nearest Neighbours [5], where the data constitutes the model), and neural

networks (e.g., multiple layer perceptron [10] and RBF neural network [11], where the

model consists of a network of interconnected processing units called neurons). The

unsupervised algorithms include clustering and association rule mining methods.

In this work we focus on the supervised learning algorithms. The supervised

learners can be separated in two groups, "white-box" and "black-box", based on the

ability of the user to interpret the model. In the former case the model can be read,

interpreted, and modified (if desired) by the human user. The "white-box" supervised

2

learners include decision rule, tree, and list induction methods. The latter models are not

interpretable by the human user, i.e., only the computer program can handle their

complex structure. In our work we focus on the "white-box" learners as we aim to

produce human-readable classification models.

Biologically inspired algorithms is a category of algorithms that imitate the nature

in the context of the evolution of organisms (e.g. Genetic Algorithms [12], where a

group of individuals evolve to create and adapt to an environment), social behaviour of a

group of beings, such as fish schools and bird flocks (e.g. Particle Swarm Optimization

[13] [14], where group of individuals move through an environment and cooperate with

each other in order to find locations of food sources), and cooperation between insects

such as ant colonies (e.g., Ant Colony Optimization [15], where individuals try to find

the shortest path between a colony and a food source). Biologically inspired algorithms

introduce a set of behaviour description rules, a set of simple organisms that adhere to

the these rules, and a method to iteratively apply the rules. Although the rules are

conceptually simple, the algorithms complexity increases with passing iterations. When

compared to traditional greedy search-based approaches they provide an interesting

alternative which addresses heuristic-based global search strategy.

Recently the biologically inspired algorithms, including the Neural Networks,

Genetic Algorithms, Particle Swarm Optimization, and Ant Colony Optimization based

algorithms, were applied in the classification domain. In this work we focus on the

"white-box" learners. In particular, we consider extending the biologically inspired

methods and we contrast our solution with other "white-box" methods. The selected

3

biologically inspired classification methods include Genetic Algorithm based approaches

that extract a set of rules [16] and a more recent Particle Swarm Optimization based

algorithm, PSO II [17], and an Ant Colony Optimization based algorithm, AntMiner

[18]; the latter two methods also generate a set of rules.

In this work we compare the current "white-box" biologically inspired

classification algorithms such as PSO II and AntMiner and we propose extensions to the

considered algorithms. We discuss the design of the new "white-box" biologically

inspired classification method and its advantages and disadvantages in comparison with

the current algorithms. We experimentally compare the proposed algorithm with the

selected biologically inspired classification algorithms and other "white-box" supervised

learners, including decision rule, tree, and list induction methods such as RIPPER, C4.5,

PART, respectively.

The proposed biologically inspired algorithm has the following characteristics:

It improves the quality of the current biologically inspired classification

algorithms and provides quality comparable to traditional "white-box"

classification algorithms.

It's classification model consist of a set of modular rules, i.e., the rules are

independent and they can be used separately, which is in contrast to the current

biologically inspired classification algorithms.

The classification model provides rules for each class in a given problem, while

in case of existing "white-box" methods some classes may not have the

4

associated rules in the classification model.

Main goals and the anticipated contributions of this work follow:

Development of novel rule representations in context of biologically inspired

classification algorithms.

Development of novel rule extraction procedure which extends current

procedures used in the biologically inspired algorithms.

Development of novel classification procedure in context of biologically

inspired algorithms.

Design, implementation and comparison (with other "white-box" methods) of

the proposed biologically inspired classification algorithm.

This document is organized as follows. Chapter 1 contains necessary background

and definitions related to the problems discussed in this work. We discuss not only

definitions related to classification, but also provide information about biologically

inspired algorithms such as Genetic Algorithms [12], Particle Swarm Optimization [13]

[14] and Ant Colony Optimization [15]. Existing biologically inspired classification

algorithms are reviewed in the Chapter 3. In Chapter 4 we introduce the design of the

proposed biologically inspired classification algorithm. We do not limit ourselves to the

discussion of the proposed method, but we also review advantages and disadvantages of

our approach in comparison with the existing algorithms described in Chapter 3.

Chapter 5 contains experimental comparison between existing "white-box" classification

methods, such as RIPPER [7], C4.5 [8], PART [9], biologically inspired algorithms, such

5

as PSO II [17], AntMiner [18], and the proposed biologically inspired algorithm.

6

2 Background

This chapter provides an overview of the concepts used throughout this document.

It provides necessary background and definitions of terms, including classification and

biologically inspired algorithms.

2.1 Classification

The essence of classification is to assign a record (also known as item, case or

instance) to one of the discrete labels (also known as class labels). Classifier is a

classification algorithm that builds models that discriminate between different class

labels. The "white-box" model can be used to discover and analyze potentially

interesting knowledge that is hidden in the data.

In a typical supervised scenario, the classifier extracts the model from a training

set and the model is evaluated on a set of cases to infer the quality of the generated

model. Training and evaluation of the classifier on the same set of cases may produce

overestimated results with respect to the quality of the model, which may not reflect the

quality of the model in context of its future use. Therefore, the testing should be done on

cases that were not seen during model generation. Typically, the cases are split into three

disjoint sets that does not contain any common case:

Training set is a set of cases used to extract the classification model.

Validation set is a set of cases used to evaluate the classification model during

the model generation procedure.

7

Test set is a set of cases used to evaluate the final generated classification

model.

2.1.1 Attribute

Attributes (also known as variables or features) are record descriptors and are

typically of one of the two types: nominal (attribute values are members of an unordered

set) or numeric (attribute values are numeric and ordered).

Each record is described by the several attributes, each with a specific domain.

One of the attributes is defined as a dependant attribute (also known as class). The

remaining attributes are called a predictor attributes. If any of the attributes, including

the dependant attribute are unknown (the attribute value is unknown or missing) then the

case is referred to as an unknown case and the attribute value is specified as "?".

In the scope of this work the case, the case is represented as follows:

{attributel = valuel , attribute_2 = value_2; ...; class = value} (1)

2.1.2 Production rule

Production rule is defined as a conditional clause that involves two parts: the

antecedent and the consequent. Rule antecedent contains a combination, typically a

conjunction, of conditions on a predictor attribute values, while the rule consequent

contains a predicted class label. Structure of the production rule follows:

IF antecedent THEN consequent (2)

8

In this work we use a general form of the production rule shown in Figure 1. The

rule antecedent contains a set of conditions connected by the logical conjunction. Each

condition, referred to as a term, is a disjunction of logical tests over the single predictor

attribute. The logical tests in two terms cannot involve the same predictor attribute, this

means that each attribute can only be used in one or no terms. The rule consequent

contains the predicted class label. The production rule format assumes that the predictor

attributes are nominal.

IF

attribute^ = value_l_l OR attributel = value_l_2 OR ..

= value_l_jV/

AND

attribute_2 = value_2_l OR attribute_2 = value_2 2 OR ..

= value_l_A,
2

AND

AND

attributeJV = valueJV_1 OR attributeJV= valueJV_2 OR

attribute/V = valueJVJVw

THEN class = value

OR attributel

. OR attribute_2

. . .OR

Figure 1: Production rule representation, where N is the number of attributes to test and TV, denotes

the i-th attribute value.

A given production rule can cover a given case, this means that all terms included

in the rale pass logical tests on the case (the term that passes the included logical tests on

the case is referred to as passed term), otherwise the case is referred as not covered by

the rule, e.g., production rule

"IF temperature = low OR temperature = high THEN weather = bad" covers the case

9

{temperature = low; weather = ?} and does not cover the case

{temperature = moderate; weather = ?}.

Rule pruning is a technique in DM [19], that removes irrelevant terms or parts of

the terms that might have been unduly included in the production rule, i.e., we remove

the terms present in the rule antecedent to check whether the modified production rule

has better quality than the original production rule. Rule pruning potentially improves

the rule, helps avoiding overfitting to the training set, and may simplify the rule.

2.1.3 Verification and validation

The purpose of the validation of a given classification model is to statistically

evaluate the performance and quality of the model that was obtained by the model

extraction procedure. This can be done using several quality measures such as predictive

accuracy, sensitivity, and specificity. These statistical quality measures quantify the

performance on a binary classification test (positive class is defined as a class label for

which evaluation is performed or the class present in the prediction rule consequent that

we currently evaluate, while all other class labels are aggregated together into a negative

class). To evaluate the model we use a test set. In a typical supervised learning scenario

the class labels of test cases are known and they are used to evaluate the quality of the

classifications. However in contrast to the training cases, the test cases are not used

during model extraction procedure. We have four possible classification outcomes, see

Table 1.

10

Original (true) class positive

Original (true) class negative

Predicted class positive

true positive (TP)

false positive (FP)

Predicted class negative

false negative (FN)

true negative (TN)

Table 1: Binary classification test outcomes.

The true positive (TP) indicates the number of correct positive classifications, true

negative (TN) indicates the number of correct negative classifications, false positive

(FP) indicates the number of incorrect positive classifications, and false negative (FN)

indicates the number of incorrect negative classifications.

The evaluation criteria that can be used to quantify the quality of the model are

defined as follows:

TP Sensitivity^ *100% (3)
TP + FN K '

TN
Specificity= * 100 % (4)

TN + FP K '

TP+TN Predictive accuracy= *100% (5)
TP+TN+FP+FN K '

The sensitivity, see Equation 3, measures the ratio between the number of

predicted true positive cases and the of the cases with original (true) positive class,

referred to as positive cases, i.e., how many of the positive cases are correctly

recognized. The sensitivity estimates the quality of the prediction of the positive data.

The specificity, see Equation 4, measures the ratio between the the number of predicted

true negative cases and the cases with original (true) negative class, referred to as a

negative cases, i.e., how many of the negative cases are correctly recognized. Specificity

11

shows how well the prediction model, which was designed for the positive class,

excludes the negative class. The predictive accuracy, see Equation 5, gives the overall

evaluation and is defined as ratio between all correct prediction and all predictions. In

this work the predictive accuracy is referred to as accuracy.

2.1.3.1 Cross-validation

Cross-validation is a method to estimate the quality of the classification model. In

rc-fold cross-validation, where n indicates number of equally-sized subsets we use n-\

subsets to train the model and one remaining subset evaluate the generated classification

model. This is repeated n times, each time different subset is used as the test set. Finally,

we report an average classification evaluation criteria over the training/test experiments

[4]-

This method is used to report the quality of classification model that can be used to

compare different classification algorithms.

2.1.3.2 Paired T-test

Paired T-test, referred to as a T-test, is a statistical hypothesis test that compares

two groups of paired samples, which in case of this work correspond to the measured

quality of the model. It calculates the differences between each set of pairs and analyzes

whether this difference is statistically significant based on the assumption that the groups

of samples follow a Gaussian distribution.

In this work the T-test is used to compare the quality of two classification models,

12

which are extracted and tested on the same training and test sets, respectively.

2.2 Biologically inspired algorithms

Biologically inspired algorithms imitate the natural systems such as ant colonies or

swarms. These methods bring useful contribution to design of adaptive algorithms that

could be used in computer science. In this section we discuss several biologically

inspired methods. This list is not complete as we want to focus only on methods,

including Genetic Algorithm, Particle Swarm Optimization, and Ant Colony

Optimization that were recently applied in the classification domain.

2.2.1 Genetic Algorithms

Genetic Algorithm (GA) [12] is a search technique that is used to find approximate

solutions to various optimization problems. It is a population based algorithm that is

inspired by the theory of evolution, where number of representatives is maintained and

evolved according to principles of natural selection - survival of the fittest individual.

This simple concept makes GA easy to implement and adopt to solve problems in

different domains [12][16][20][21].

GA is an optimization algorithm that is inspired by the evolutionary biology

techniques (which are based on genetic operations such as inheritance, mutation,

selection and crossover), where a group of individuals represented by chromosomes

evolve toward better solutions. Specific individuals are first selected for mating, and

then modified, using crossover and mutation operations, to form new population. This

13

scheme, which is based on the concept of organisms' evolution, aims at improving of the

population with time and passing generations.

A typical GA computer simulation requires definition of genetic representation of

the solution domain and the fitness function that is used to evaluate candidate solutions.

In this approach, each individual chromosome is equivalent to single candidate solution.

Genetic representation of the solution domain does not concern only chromosome

interpretation and encoding scheme, but also the genetic operations. Traditionally, a

standard representation of a chromosome is a bit string, but other types and structures

can be used in a similar way. Regardless of the actual type, a mapping between specific

representation and solution domain has to be defined; it provides interpretation of the

individual. Additionally, crossover and mutation operations have to be designed for the

chosen chromosome type. These two operations are crucial to the GA algorithm as

population evolution depends on them. Crossover is an analogous operation to the

reproduction; it uses two input chromosomes (current generation) to generate two new

chromosomes (next generation). As the outcome, this technique ensures differences

between two consecutive generations of individuals. In contrast, mutation process

concerns only a single chromosome, usually introducing random changes in its

representation. It is analogous to the biological mutation and ensures genetic diversity in

the population.

Fitness function is used to evaluate chromosome and quantify its quality in a given

problem domain. This value is used as a measure to select the best representatives of the

current generation population that are used to create the next generation. The quality

14

measure is a driving force for population evolution towards better, possibly optimal

problem solutions.

In the GA algorithm, population evolves from the initial set of chromosomes.

Using selection, crossover and mutation operations, population should improve its

quality, as measured with the fitness function, with passing time and generations. GA is

an iterative algorithm, where single iteration corresponds to a certain generation. In each

iteration, see Figure 2, first a number of population representatives (chromosomes) is

selected. The selection is based on the quality of the members, only the fittest ones are

used to obtain the next generations. Additionally, in order to avoid destroying good

solutions/individuals, a technique called elitism may be used. In elitism, a pre-defined

number of best population members is automatically passed to the next generation; this

means that these selected individuals are not subjected to crossover and mutation

operations. When a set of best population representatives is specified, we use the

crossover and mutation operations to create the next generation individuals. The last step

of the algorithm is the stop condition. We usually check whether the maximum number

of generations was exceeded, but the stop condition can be defined as a convergence

criterion, which is based on the evaluation of the current generation or a few of the last

generations.

15

initialize_population()

LOOP

set = select_chromosomes(population)

crossoverchromosomes(set)

mutate_chromosomes(set)

update_population(population, set)

UNTIL stop_condition()

Figure 2: Pseudo-code of the GA algorithm

2.2.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) [13][14][22] is a Swarm Intelligence [22]

based global optimization method. Initially, it was introduced as an algorithm to solve

continuous problems, but extensions and modifications make it possible to apply this

method to discrete problems i.e. Binary Particle Swarm Optimization (BPSO) [23]. The

PSO algorithm is based on a simple concept and because of that, it can be easily

implemented. It uses only primitive mathematical operators that are computationally

inexpensive, both in terms of small memory requirements and speed [13].

PSO is an optimization algorithm inspired by the intelligent group behaviour of

beings such as birds or fishes and their social experience in community (swarm).

Although each individual, often called particle, has limited capabilities, behaviour of the

entire swarm is complex and exhibits intelligence. Particle decisions are based on the

environment, its own experience (memory) and information from neighbours (social

experience). This means that each individual has a limited experience and memorizing

capabilities.

16

An important aspect of the PSO algorithm is the concept of a particle

neighbourhood, as it has great impact on knowledge sharing between the particles.

Although there are different models, usually the neighbourhood is based on a relative

position in the environment (i.e., Euclidean distance between two particles) or social

relations expressed as a predefined relationship between particles (i.e., index in the

storing array [17]). While choice of the specific neighbourhood model plays important

role, we also have to consider its size. The meaningful sizes vary from single nearest

neighbour to all particles in the swarm. In the latter case, a particle shares its experience

with the entire swarm. This means that each particle knows best position that was visited

by all other swarm members. Usually the number of considered neighbours is either two

or all particles [17].

In the PSO algorithm particles explore an environment in order to find the best

possible position. In each iteration, all particles in the swarm have to decide where to go;

the decision is based on quality of the environment (discussed later), and personal and

neighbourhood experience. Using this information, particles move from the current to

the next position in the search space. The search procedure continues as long as the stop

condition is not fulfilled. To implement the stop condition we usually check whether the

maximum number of iterations was exceeded or analyze the particles in the swarm, i.e.,

the stop condition is based on the convergence of the particles. Various PSO

modifications may contain some differences, but this main concept is shared between all

variants, see Figure 3.

17

initialize_swarm()

LOOP

FOR particle IN 1 :number_of_particles

evaluate_particle_environment(particle)

evaluate_particle_experience(particle)

FOR k IN neighbourhood

evaluate_particle_neighbour(particle, k)

END

move_particle(particle)

update_experience(particle)

END

UNTIL stop_condition()

Figure 3: Pseudo-code of the PSO algorithm

Each particle position is represented by an array with specified length D that

usually equals to the problem dimensionality; it can be measured as the number of

attributes or size of the problem solution. In the basic PSO approach single array

variable is a floating point value that represents particle position in xt dimension, but

this is not always the case since some PSO algorithm variants may use different data

types; e.g. in the BPSO algorithm each particle is a binary string (single dimension is a

boolean value).

x =(x, x2..., xD), ie{ 1,2,... D) (6)

To simulate particles movement and search capabilities we have to maintain

memory for each individual, including current position (xt), velocity (v,) and best

position (P t) . Additionally depending on the neighbourhood model we have to store

best neighbourhood position (Pig) for each particle. Particle movement equations for

18

the PSO algorithm are defined as follows:

v,.(/)= Xv,{t-\)

+ (pl{Pt-xi(t-\))

+ <p2(Plt-xl{t-l)) (,)

x,{t)= xt{t-l) + vt(t)

where t is an iteration number, v,.(f) is a particle velocity in z'-th dimension, x,(?)

is a particle position in z'-th dimension, X, cp, , cp2 are parameters, and P,, Pig are

particle best local and best neighbourhood position in z'-th dimension.

Particle movement equations for the BPSO algorithm are defined as follows:

v,.(0= Xvt[t-\)
+<p,(P,-x,(f-l))

+Cp2(Pig-Xi(t-l)) (8)

) = Jl rand{)<S{Vj{t))
[0 otherwise

where S is a sigmoid function.

Velocity update equations, v,.(/), are identical for the BPSO and PSO algorithms.

In both cases, formula can be separated into three different components. The first part,

Xv,.(/-1), represents velocity "memory"; parameter X can be interpreted as an

environment resistance during particle movement through search space. The second part,

cp,(P ;-x,(/-l)), is a particle "cognition" part, which represents particle private

thinking. The third part, (p2{Plg-xi{t-\)), corresponds to the "social" thinking of the

particle that describes cooperation between different individuals in the swarm. The two

latter parts use <px and <P2 parameters that are random weights with predefined upper

limit; they modify the behaviour of the particle. The parameters allow to choose whether

19

the private thinking is more important or the social behaviour and information sharing

with other individuals in the swarm should make precedence.

Because of the different character of the particle position for the standard PSO and

the BPSO algorithms, position update equations, x,{t), are different. For the continuous

PSO algorithm, position update is just a simple summation that simulates real life

movement. However discrete version of the algorithm uses velocity differently; it is an

indication of desired position value. First the velocity is limited to range [0.0; 1.0] using

the sigmoid function S, then output value is used as a probability that certain particle

position bit equals 1.

During the search procedure, particles move according to equations *,•(/) and

v,(0 , using information about the environment. In order to evaluate current position and

calculate its quality, a mapping between particle position and problem dependent

description is used. This mapping connects the problem that we want to solve with the

PSO algorithm. This means that the particle position has to be encoded into specific

domain dependent solution.

2.2.3 Ant Colony Optimization

Ant Colony Optimization (ACO) [15] [24][25] is a versatile, population based

optimization algorithm that can be applied to solve many problems in various domains

[26]. ACO was inspired by the collective behaviour of ants and it tries to mimic their

group behaviour. It is very interesting that in spite of the almost blindness of ants, they

still can find shortest paths between the colony and food sources. Ants communicate

20

with each other using a substance called pheromone that attracts other individuals.

During movement, ants drop pheromone on the ground to mark the trail and make it

more attractive for other ants. Paths that are used more frequently contain larger amounts

of pheromone. As a result, more ants tend to use these selected paths and leave even

more pheromone. Using this positive feedback, ants can find shortest paths between

points of interest (e.g., food source) and the colony.

Essentially, the algorithm that mimics behaviour of the real world ants is an agent

based system that includes methods to cooperate and adapt. In this approach, each

problem solution is represented by the path that is constructed by the single agent.

Cooperation simulates group behaviour and information sharing between ants in

terms of the use of pheromone trails. Single ant movement is random, except when it

encounters already marked path, in which case the path could be detected and followed.

Each ant that follows the specific path marks it with additional pheromone, which makes

the path more attractive for other ants.

When no pheromone information is available then ants choose the path blindly. In

contrast to this behaviour, ACO adapts to the environment and uses quality measure to

increase probability to choose better paths. Environment may also be dynamic over time.

In this case the algorithm will adapt automatically to the modified environment.

The above mentioned properties of the ACO algorithm imply the following:

Representation; We represent the problem in such way that its solution can be

constructed incrementally. Additionally we have to maintain its validity during

21

construction procedure.

Cooperation. We provide a pheromone updating scheme that specifies how to

modify pheromone trails T ; both reinforcement (increase) and evaporation

(decrease) of the pheromone with time have to be taken into consideration.

Adaptation. In order to evaluate the solutions quality during construction phase,

we provide a problem dependent heuristic function q . This function binds

together ACO algorithm with a specific problem that we want to solve and it

provides local quality measure of incomplete solutions.

Movement. During construction phase, ants incrementally constructs given

problem solution. In every iteration, each ant decides where to move; basically,

this is decision how to extend current candidate solution. It is based on path

quality calculated as a combination of the heuristic function (q) and the

pheromone trails (T).

2.2.3.1 Ant System

Ant System was introduced as a first method based on the described concept of

Ant Colony Optimization to solve TSP problem [15] [24]. In this system, simulated ants

behave similarly to their real world counterparts and try to find shortest path between

source and destination points. However, TSP problem includes additional constraints:

each point can only be visited once and source and destination points are the same.

These restrictions have to be taken into consideration during optimization phase to

specify available trails for ants, during solution construction. Single solution, an ant

22

path, represents tradesman route between points of interest and have to meet the above

requirements.

Ant System is a straightforward algorithm that is based on a simple concept. Main

algorithm and solution search scheme is presented in Figure 4. In a single iteration, ants

try to construct candidate solutions by moving from the source to the destination points.

At this point, pheromone is used to guide search to select possibly better paths. Amount

of pheromone that is spread along the paths is updated after an ant finishes its

movement, as it was proposed in [24]. However, this step is usually omitted and there is

only single pheromone update after all ants construct complete candidate solutions. The

final stage of ant processing is to store candidate solution; it may be additionally

processed to improve it. The last step is the stop condition; it can be defined as the

maximum number of possible iterations or it could be based on the convergence analysis

based on the stored candidate solutions [15][24][25].

initialize_colony()

LOOP

FOR ant IN 1 .numberofants

initializeant(ant)

path = incrementally_construct_path(ant)

update_pheromone_local(path)

update_solutions(path)

END

update_pheromone_global(paths)

UNTIL stop_condition()

Figure 4: Pseudo code of the ACO algorithm

The most important part of the single Ant System iteration is solution construction

23

m. j» n ~
Source*-/^-"" T .^-'Destination

6"
Figure 5: Complete candidate solution constructed by the ant

procedure. It is repeated multiple times, once for each ant in the colony. Initially, each

ant starts at the source point and represents an empty solution; next, iteratively, solution

is expanded as ant wanders from point to point in search space. Candidate solution is

complete when ant arrives to the destination point, at this point construction procedure

stops (see Figure 5).

The decision where to move is based both on the pheromone trails T and the

heuristic function q that describes local environment quality. Probability of transition

between two points is defined as follows:

PmV)-^—f—w 7^>neN (9)

where / is iteration number, m, n are points in search space, a, P are

parameters, and N is an allowed set of points that are connected with point m .

Transition probability is a trade-off between ant visibility (local quality) and

pheromone intensity on the trail (the more pheromone is on the path, the more ants are

using it) that is controlled by the parameters a and fi . Here we implicitly declare that

the movement is only possible over trails that are allowed for a specific point. This is

very important as we want to construct only valid solutions. In the case of TSP problem,

24

it means that each ant can visit single point only once and we have to dynamically

modify set of allowed points during the incremental construction of the solution.

Local quality, described by the heuristic function that tries to estimate the cost of

extending solution, is problem dependent. Its main purpose is to guide ants to visit

points that are more likely to be included in the optimal problem solution. Heuristic

function mainly depends on the problem that we want to solve, e.g. for TSP, a good

choice is the function based on the length between nodes.

Pheromone is a communication method that is used for information sharing

between ants. As single ant moves and constructs solution, it drops pheromone marks on

the visited points. Paths that are used more frequently have more pheromone, thus it is

more likely that even more ants would use them. Update of pheromone intensity over

paths can be done both locally and globally. The main difference between global and

local update is that the former method uses only single path as a reference, while the

latter includes all paths that were followed by ants in single Ant System iteration. In both

cases, the update formula is similar.

Tmn(t + l) = PTmn(t) + ATmn (10)

where / is iteration number, m, n are points in search space, p is a evaporation

parameter, and A T is a reinforcement value

Pheromone intensity update formula takes two aspects into consideration:

evaporation and reinforcement. Evaporation, controlled by the parameter p , is used to

avoid accumulation of pheromone and it simulates behaviour of the substance in real

25

world. Additionally all paths that were visited by all considered ants are reinforced. The

increase amount depends both on the number of ants and constructed solutions quality.

However, in contrast to heuristic function that describes local environment during

construction phase, at this point we evaluate complete solutions to allocate more

pheromone for the shorter/better paths.

Although basic ACO algorithm performed well, in case of problems with higher

number of dimensions, the exploration of the search space was limited and suffered an

early search stagnation (the situation where all ants take same path and thus generate the

same solution). To overcome these problems an elitist strategies were proposed [27].

MAX-MIN Ant System introduced few changes to the pheromone handling, including

changes to pheromone update formula.

Pheromone levels should lie within given range [i"m/„;Tm(K]. This modification

tries to prevent search stagnation in cases when one trail contains significantly

more pheromone than all other trails.

Initialization of pheromone trails with Tmm improves exploration of the search

space at the beginning of the algorithm.

Elitist strategy; after each iteration only best solutions are exploited. This means

that during pheromone update procedure we do not consider all trails that were

created by ants. Instead only selected (usually solutions with highest quality)

ones are used.

Stop condition that uses convergence analysis can be based on pheromone

26

levels; ACO algorithm stops when pheromone level rmax is present on a single

trail and TOT.B is on all other trails.

2.3 Summary

In this chapter we defined several terms used in the classification domain,

including the data, (e.g., the training set, data cases, and attributes), knowledge

representation (e.g., the production rules), and methods to quantify extracted knowledge

(e.g., the quality measures such as the sensitivity and specificity) and compare classifiers

(e.g., the cross-validation and T-test). Additionally, we described biologically inspired

algorithms such as Genetic Algorithm, Particle Swarm Optimization, and Ant Colony

Optimization and provided details about the heuristic strategies used during the

optimization procedure. The concepts discussed in this chapter are used throughout this

document.

27

3 Existing biologically inspired classification algorithms

In this chapter we discuss current biologically inspired classification algorithms.

We focus on the recently proposed methods for generation of production rules such as

PSO II [17] and AntMiner [18] that are based on Particle Swarm Optimization and Ant

Colony Optimization, respectively. While other approaches exist, for instance based on

the Genetic Algorithms [16], the above two methods are considered as the

representatives of the currently available biologically inspired classification algorithms

in terms of the classification algorithm design [16] [17] [18].

3.1 PSO II

PSO II [17] is the first application of the PSO algorithm in classification domain

and it uses the standard PSO algorithm to discover a set of production rules that form the

classification model. In this section we discuss the parametrization and the design of the

biologically inspired classification algorithm. The next few subsections contain

description of the aspects related to the classification model such as rule representation,

rule extraction procedure, and classification procedure.

The PSO II algorithm defines the following aspects of the underlying PSO

algorithm:

Particle quality formula that is used to evaluate the current particle position

28

sensitivity*specificity i/"0.0<x(.<1.0,fel,2,..., D
— 1 otherwise

where x, is z'-th value of the particle position array, D is the particle position

array size, and the sensitivity and specificity are computed for a given particle

that represents single production rule over a current training set, i.e., the

training cases that are used to extract the production rule with the PSO

optimization algorithm.

The particle quality formula penalizes the particles that move out of the range

[0.0; 1.0] in any of the particle position array indices.

Particle movement equation parameters, see Equation 7. The values of X, <p,,

and <p2 parameters are set to guarantee the convergence of the particle swarm

[28][29]. We use the following values: X=0.73 , <p,=<p2=1.49 [17][28][29].

The PSO algorithm stop condition. The search procedure used to extract single

production rule stops when the swarm converges, i.e., the sum of normalized

Euclidean distance between all the particles in the swarm is smaller than a user-

defined threshold. The value that provides the best results is 0.1 [17].

The number of particles in the swarm. The size of particle swarm determines a

trade-off between computational costs and search capabilities. The bigger the

swarm, the more time is needed to run the PSO algorithm, but on the other

hand, the number of evaluated points is bigger, thus possibly leading to a better

final solution. The number of particles equals to 25 [17].

Q(x)=

29

In the following subsections we discuss several aspects of the PSO II classification

algorithm that introduce additional parameters together with their values:

The rule extraction procedure stop condition. The rule extraction procedure

stops when the current training set contains fewer cases than an user-defined

parameter The value is set to 5% of cases in the training set.

The indifference threshold. The parameter is discussed in following subsection.

The value equals 0.9 [17].

3.1.1 Rule representation and rule encoding

PSO II algorithm extracts a set of production rules. Single production rule contains

only one logical test for each attribute. This means that rule antecedent is a conjunction

of logical tests, see Figure 6. In the PSO II algorithm, each term is a single logical test

that involves one attribute. This is a simplification of the rule representation shown in

Figure 1.

IF

attributel =

AND

attribute_2 =

AND

AND

attribute_N

= va lue l

= value_2

= valuejV

THEN class = value

Figure 6: Simplified production rule representation in PSO II algorithm, where N is the number of

attributes.

30

An encoding scheme that translates the PSO particle (each particle is an array of

floating point numbers of size D) into the relevant production rule is necessary to

associate the problem of extracting production rules with the PSO optimization

algorithm. In the PSO II rule extraction algorithm D is the number of attributes

(including predictor and class attributes), where each particle position array index

corresponds to the single term, e.g., if the problem contains 10 attributes (including the

class attribute) then the size of the particle position array is 10. The mapping between

the array index and the term is defined as follows, see Figure 7:

Particle search space is limited to range [O.O.l.O]. In case when the particle

position violates this constraint for any of the array indices then the particle

position is marked as invalid.

Search space is subdivided into equally sized sub-ranges that map floating point

numbers into a specific nominal attribute value, e.g., [0.0,0.2) maps to the first

attribute value, [0.2; 0.4) maps to the second attribute value, etc. This encoding

scheme implies that the attribute values are ordered.

We introduce indifference threshold, which is a user-defined parameter that

further divides the search space. It describes probability that a specific attribute

is irrelevant and the corresponding term should not be included in the

production rule, i.e., in case when the indifference threshold range is [0.0;0.5)

then the rule antecedent does not contain the term testing corresponding

attribute if the particle position is within the range. The indifference threshold is

used only for these particle position array indexes that map to the predictor

31

range when term is
considered irrelevant

attribute values

0.0
indifference
threshold 1.0

Figure 7: The mapping between the z'-th particle position value (xf) and the term for the predictor

attribute with four unique values in the PSO II biologically inspired classification algorithm.

attributes.

The authors claim that the encoding scheme supports the numeric attributes, but

the algorithm performance was never tested on the datasets that contain the numeric

attributes [17]. In this work we limit ourselves to the analysis of the nominal attributes

only. As such we do not define the mapping between the PSO particle and the

production rule that contains numeric attributes for the PSO II algorithm.

3.1.2 Rule extraction procedure

Rule extraction procedure is a straightforward training algorithm in which we

iteratively create a set of production rules for a given training dataset. Generated ruleset

can be used to assign class label to previously unknown cases. All rules are created one

after another, in an iterative process, and there is no predefined order that defines how to

assign a given class label to the next production rule. Class attribute is considered as a

predictor attribute during the optimization procedure and is optimized.

The main algorithm, see Figure 8, starts by removing all unknown data cases, both

32

initialize(pso, data, ruleset)

WHILE numberoftrainingcases > maxnumber

rule = generaterulewith PSO(pso, data)

update_ruleset(ruleset, rule)

update_training_dataset(data, rule)

END

post_process_ruleset(ruleset, data)

of_uncovered_case

Figure 8: Pseudo-code of the PSO II rule extraction algorithm

from the training and the test sets, and the training set is initialized as the current training

set. After this pre-processing step, the production rules are iteratively generated and

added to the ruleset. Each iteration consists of a few actions. Namely, the PSO algorithm

is a core step and is used to extract a single, best production rule, and next after pruning,

the rule is added to the ruleset. Finally, all cases correctly classified by the extracted rule

are removed from the current training dataset and next iteration starts. Rule extraction

algorithm stops when the remaining number of training cases is lower than a user-

defined threshold. The last step of the algorithm is to finalize ruleset, by adding default

production rule. The default rule is in the form "IF TRUE THEN class=default_value",

where default_yalue is the most common class label in the remaining training cases.

The finalized ruleset is subject of additional post processing routine. It involves

ruleset cleaning, where all production rules that may never be applied are removed from

the ruleset. This procedure includes two types of tests. First, the rules are processed

sequentially and we check whether the current rule is superset of the next rule (the next

rules contains a subset of the terms of the current rule in the rule antecedent). Second,

we check whether the rule predicts the same class label as the default rule (they have the

33

same rule consequent) and is located just before the default rule. The rules that obey one

or both of these above tests are removed.

3.1.3 Classification procedure

Ruleset extracted by the PSO II algorithm can be used to classify test cases, which

were unseen during training, but in order to do so we have to follow specific procedure.

All rules are created, one after another, without any predefined order. As a result of this

design, the sequence of production rules and corresponding class labels is arbitrary, and

the rules are used in order in which they were generated. The first rule that covers the

test case is used and the case is assigned the class predicted by the selected rule

consequent.

The ruleset contains a default rule, which is used for all test cases that are not

covered by any of the production rules generated during the rule extraction procedure by

the PSO optimization algorithm.

3.2 AntMiner

AntMiner [18] is the first method that proposed to use Ant Colony Optimization in

the classification domain. In this section we discuss the design of the production rule

extraction procedure and discuss the customizations of the ACO algorithm. The next few

subsections contain description of several aspects related to the classification model such

as rule representation, rule extraction procedure, and classification procedure.

The AntMiner algorithm defines the following aspects of the underlying ACO

34

orithm:

Path construction procedure and the stop condition. During the optimization,

each ant tries to find shortest path between the source and the destination

points. Each point in the constructed path, with exception of the source and the

destination points, represents one production rule term. The process of building

the production rule is iterative and in each iteration a single term is

concatenated to the candidate solution. The ant decision to choose the trail and

at the same time the corresponding term is based on the quality of the available

trails computed as a combination of the heuristic function (q) and the

pheromone trails (T) as shown in Equation 9. At each step of the procedure we

have to specify the set of allowed points. The following criteria have to be met:

a) The production rule, after the term is added, covers more cases than a user-

defined parameter min_cases_per_rule.

b) The production rule contains only a single term that includes a certain

predictor attribute to avoid an invalid rule antecedent such as "temperature

= low AND temperature = high".

The path construction procedure stops when the set of allowed points is empty

and the path is considered as finished.

The min_cases_per_rule parameter value is set to 5 [18].

Heuristic function. The heuristic function q that describes the local quality of

the environment is based on the entropy [30]. The same approach it is used in

35

one of the competing classification algorithms, C4.5 [8].

Solution quality formula that we use to evaluate the complete ant path:

Q = sensitivity* specificity (12)

where the sensitivity and specificity are computed for a completed ant path that

represents single production rule over a current training set, i.e., the training

cases that are used to extract production rule with the ACO optimization

algorithm.

Pheromone update formula:

,, u Tm„(t)+Qrmn(t) (13)

where / is iteration number, m , n are points in search space, Q is the quality

of candidate solution, and R is a set of trails that constitute the candidate

solution.

The ACO algorithm stop condition. The search procedure that extracts single

production rule stops when the ant colony converges or the maximum number

of ants constructs the complete path. The algorithm converges when the number

of successive ants that generate the same candidate solution is equal to the

value of no_rules_converge parameter.

The no_rules converge parameter value is set to 10 [18] and maximum

number of ants equals 3000 [18].

Additional parameters. The ACO algorithm contains a few additional

36

parameters that have to be specified, namely the transition probability

parameters « and /?. The transition probability defined in Equation 9

characterizes the choice of trails that could be added to the candidate solution.

We use the following values: « = /?= 1 [18]; this means that both the pheromone

trails and the heuristic function have equal impact on the value of the transition

probability.

In the following subsections we discuss stop conditions of the AntMiner

classification algorithm. The rule extraction procedure stops when the current training

set contains fewer cases than an user-defined parameter max_uncovered_cases. The

max_uncovered_cases parameter value is set to 10 [18].

3.2.1 Rule representation and rule encoding

AntMiner algorithm extracts a set of production rules. Single production rule

contains a number of terms, where each term can contain only single logical test. This

means that rule antecedent is a conjunction of logical tests, see Figure 9. In the AntMiner

algorithm each term is a single logical test that involves one attribute. This is a

simplification of the rule representation shown in Figure 1.

37

IF

attributel

AND

attribute_2

AND

AND

attributeJV = valued

THEN class = value

Figure 9: Simplified production rule representation in AntMiner algorithm, where N is the number

of attributes.

An encoding scheme that translates a completed ant path into relevant production

rule is not needed as each ant path represents a number of terms that are present in the

production rule, which is the desired representation. The path construction procedure is

explained in the previous section.

3.2.2 Rule extraction procedure

AntMiner rule extraction procedure creates a set of production rules that can be

used to assign class label to previously unknown data cases. Rules are created one after

another and in each iteration single production rule is generated. While class attribute is

not subject to optimization, its value is set only after the rule antecedent is completed

(single ant constructed the complete path between source and destination point); it is

unknown to this point of rule extraction procedure. We select a majority class label

among the covered cases in order to maximize the quality of the rule.

= value 1

= value 2

38

The main algorithm, see Figure 10, starts with initialization of a current training

set and is divided into a set phases. In the first, core step, ACO algorithm is used to

extract a set of candidate production rules. Only the best rule is chosen and added to the

output ruleset. Next, the selected production rule is pruned to remove irrelevant terms to

avoid potential overfitting to the current training set. Finally, all training cases correctly

classified by the generated rule are removed from the current training set and next

algorithm iteration starts. Rule extraction algorithm stops when the number of remaining

training cases is smaller that user-defined threshold value.

initialize(aco, data, ruleset)

WHILE number_of_training_cases > max_number_of_uncovered_cases

rule = generate_rule_with_ACO(aco

update_ruleset(ruleset, rule)

update_training_dataset(data, rule)

END

post_process_ruleset(ruleset, data)

data)

Figure 10: Pseudo-code of the AntMiner rule extraction algorithm

When the rule extraction procedure stops and the ruleset contains a set of rules

generated from training set, a default rule that covers remaining training cases is created

and concatenated to the ruleset. Default rule is in the form

"IF TRUE THEN c\2iss-default_yalue", where default_yalue is the most common class

label in the remaining training cases.

3.2.3 Classification procedure

Generated ruleset, which was extracted by the AntMiner algorithm, can be used to

39

classify a new case that was unseen during training process. The discovered production

rules are applied in the order in which they were extracted and stored in the ruleset. The

first rule that covers the new case is used and the case is assigned the class indicated by

the corresponding rule consequent.

The ruleset contains a default rule, which is used for all new cases that are not

covered by any of the production rules extracted during rule extraction procedure by the

ACO algorithm.

3.3 Summary

In this chapter we discussed the current biologically inspired classification

algorithms such as PSO II and AntMiner and provided details about the parametrization

of the considered algorithms. We described several aspects of the algorithms such as the

rule representation and encoding (i.e., defines the mapping between the optimization

algorithm and the production rules), rule extraction procedure (i.e., the method used to

extract production rules from the training set), and classification procedure (i.e., the

method to assign class label to test case using the extracted production rules).

40

4 Proposed biologically inspired classification algorithm

In this chapter we discuss the proposed biologically inspired classification

algorithm. The discussion is organized in the similar fashion as the description of the

PSO II and AntMiner algorithms to allow for seamless comparison between the main

concepts of the considered biologically inspired classification algorithms. The last

section contains summarized characteristics of the above approaches.

4.1 Motivation

The current biologically inspired classification algorithms such as PSO II and

AntMiner focus on the accuracy as the main goal in the design of the corresponding

classification algorithms. The algorithms are characterized by the straightforward

production rule representation and the classification procedure that resembles the

approach used by the decision list classifiers.

In this work we extend the production rule representation and the rule extraction

procedures to design accurate and modular classifier. We acknowledge that the

classification accuracy is an important aspect of the classification algorithm. To this end,

we use an extensive experimental environment to compare the accuracy of models

generated by the proposed method with the accuracies of the considered biologically

inspired classification algorithms and other traditional "white-box" classification

algorithms such as RIPPER, C4.5, and PART. Additionally, the proposed algorithm is

characterized by modularity of the generated model (i.e., the extracted production rules

41

are independent of each other and thus they can be used separately). This feature

separates our method from the current biologically inspired classification algorithms that

generate a set of dependent production rules. Finally, we analyze and quantify the

completeness of the classification model, i.e., in the case of the proposed method the

ruleset contains production rules for each class present in the training set. This is again

the defining characteristics of our method, while the current biologically inspired

classification algorithms may provide incomplete model. Our experiment measure how

often the competing methods (including biologically inspired classification algorithms

and the other considered "white-box" methods) generate incomplete models.

4.2 Proposed method

In this section we discuss the parametrization and the design of the proposed

biologically inspired classification algorithm. The next few subsections contain

description of several aspects related to the classification model such as rule

representation, rule extraction procedure, and classification procedure.

The proposed biologically inspired classification algorithm uses the BPSO

algorithm to discover a set of production rules that constitute the classification model.

The algorithm defines following aspects of the underlying BPSO algorithm:

Particle quality formula used to evaluate current particle position

Q (x) = sensitivity * specificity (14)

where x is the particle position and the sensitivity and specificity are computed

42

for a given particle that represents a single production rule over a current

training set, i.e., the training cases that are used to extract the production rule

with the BPSO optimization algorithm.

The above particle quality formula favours general production rules (i.e., the

production rules that cover larger number of the positive cases) that at same

time minimize the number of covered negative cases. The ideal production rule,

in terms of the proposed evaluation measurement, covers all positive cases and

no negative case. This quality formula was proposed in [31][32] and is also

used in the competing biologically inspired classification algorithms [17][18].

Particle movement equation parameters. We analyze and optimize the

parameters to find the best performing combination of the particle movement

parameters X, <p,, and cp2. The detailed analysis is provided in the

experimental section of this work.

The PSO algorithm stop condition. In the proposed method we specify a fixed

number of iterations that are performed during the optimization procedure. The

value we choose is big enough to assure the stagnation of the BPSO

optimization procedure during the rule extraction procedure and equals 1000 .

We analyze all benchmarking problems that are used in the experimental study,

see Chapter 5, to ensure that the value of quality function does not increase

after the selected number of the BPSO algorithm iterations during the rule

extraction procedure.

43

In the following subsections we discuss the stop condition of the proposed

classification algorithm. The rule extraction procedure stops when the current training

set contains fewer cases than user-defined parameter The value is set to 5 % of cases in

the positive class of the current training set.

4.2.1 Rule representation and rule encoding

The proposed biologically inspired classification algorithm extracts a set o

prediction rules. Single prediction rule antecedent is composed of the number of terms

connected by the logical conjunction. Each term is a disjunction of logical tests over the

single predictor attribute. The rule consequent contains a predicted class label. The rule

representation is shown in Figure 1.

An encoding scheme that translates the BPSO particle (each particle is a binary

string of length D) into the relevant production rule is necessary to associate the

problem of extracting production rules with the BPSO optimization algorithm. In the

proposed algorithm D is the total number of attribute values, computed as a sum of the

number of unique values of all predictor attributes. The BPSO particle position bit string

is divided into a number of substrings. Single substring corresponds to the certain

predictor attribute and represents one term, e.g., if the number of predictor attributes is

N then the bit string contains N substrings and if the predictor attribute has Nt unique

values then the corresponding substring contains N, bits. Single substring bit

corresponds to the one logical test from the term, i.e., if nominal attribute A has three

unique values {small, medium, large) then the substring contains three bits and a pattern

44

term term term term

1 2 3 4 1 2 1 2 3 4 5 6 1 2

"1 "2 " 3 " 4

Figure 11: The BPSO particle position bit string (14 bits length) encoding for the production rule

with four terms (attributes Ai, A2, A3, A4). Each bit corresponds to the certain value of the specific

attribute.

Oil is read as term A = medium OKA = large. While the order of the predictor attribute

values is not important during optimization procedure, we specify the order of the values

in the BPSO particle position bit string to correctly encode the production rule, see

Figure 11.

The encoding scheme has two special cases, when all bits are set to one and when

all bits are set to zero. When all bits are set to one, the rule antecedent covers all cases

and the production rule can be interpreted as the default rule. Similarly, when all bits that

correspond to a certain term are set to one then the attribute is not included in the rule

antecedent. When all bits are set to zero, the rule antecedent does not cover any case and

the production rule is treated as invalid. The interpretation is alike when all bits that

correspond to the single term are set to zero.

We reuse the encoding scheme that was introduced in [33] [34] and which was used

used in biologically inspired classification algorithms that extract the production rules

with the GA algorithm [16].

45

4.2.2 Rule extraction procedure

The proposed rule procedure algorithm iteratively generates production rules from

the input training dataset. A specific class label is chosen in advance for each generated

rule, which happens before the actual procedure of single rule generation starts. The

algorithm is designed to create at least a single rule for each class label that is available

in the training set; this means that we explicitly set a minimum number of rules that

would be present in the extracted ruleset.

The main algorithm, see Figure 12 is divided into inter and outer iterations. In the

former part we only select a current positive class label and initialize the rule extraction

procedure. The letter part is the actual rule extraction procedure in which one production

rule is generated in a single iteration. In each outer iteration we execute a number of

inter iterations, thus generating a number of production rules for the same class; we refer

this set of production rules a submodel. We make this distinction because all rules in the

submodel share the same class label and no other rule consequent extracted during

complete run of the rule extraction algorithm contains this class label. Generated ruleset

does not contain any default rule and is composed of the set of submodels that cover all

class labels that are available in the training set.

46

initialize(ruleset, bpso, data)

FOR classlabel IN set_of_available

initialize_data(data, classlabel)

class_labels

WHILE nurnber_of_training_cases > max

rule = generate_rule_with_BPSO(bpso

update_ruleset(ruleset, rule)

update_training_dataset(data,

END

END

rule)

_nurnber_of_uncovered_cases

data, class label)

Figure 12: Pseudo-code of the proposed rule extraction algorithm

Outer loop of the rale extraction algorithm starts with the training set

reinitialization; all submodels are generated from the complete training set. We select a

unique positive class label and divide the dataset into positive and negative parts. The

outer loop stops when all class labels from the training set are processed.

Inner loop contains actual rule extraction procedure; in each iteration a single

production rule is generated and added to the selected submodel. In the first, core step,

the BPSO algorithm is used to find the best production rule that can be extracted from

the current training set. The extracted production rules is not modified, i.e., we do not

perform the rule pruning, as in the scope of this work we do not analyze size of the

production rules. Next, the generated production rule is added to the selected submodel

with the corresponding quality value as computed during the BPSO optimization

procedure. Finally, we modify the training set by removing all correctly classified cases.

The inner loop stop when the number of the remaining training cases in the positive part

is smaller than a user-defined threshold value.

47

When compared with the existing biologically inspired algorithms the distinctive

feature of the proposed method is the two level design of our approach. As the result of

this design, we create as set of submodels that consist of modular production rules, i.e.,

each rule can be interpreted and used independently of the remaining ruleset. This is in

contrast to the rules generated by the previously described PSO II and AntMiner

biologically inspired classification algorithms. While the extracted model is more

flexible and provides at least one rule for each class label present in the training set, the

main disadvantage of this approach is the increased computational cost; each submodel

is generated from the complete training set.

4.2.3 Classification procedure

The generated ruleset can be used to predict class label of the unknown cases, i.e.,

cases that are not included in the training set. In the proposed biologically inspired

classification algorithm the production rules are modular and can be used independently.

At the same time, the complete extracted model should be used to perform

classification ,i.e., one rule can only predict one class label, while the entire ruleset

allows for classification into multiple classes.

Classification procedure ranks the generated submodels according to the number

of production rules that covers the test case. The submodel with the highest quality,

computed as the sum of quality values of rules, within the submodel, that cover the test

case, constitutes the prediction. However, the test case may not be covered by any of the

generated production rules. In this situation the prediction is based on the "most

48

compatible" production rules, i.e., production rules with the biggest number of passed

terms. As more than one production rule may by "compatible" at the same level, i.e.,

with exactly the same number of the passed terms, we use all the selected production

rules to rank submodels according to the sum of production rule quality values.

When compared with the existing biologically inspired algorithms the main

difference is that we do not use the generated ruleset in any specific order as the rules

are modular and independent. Additionally, instead of using the default rule to provide

prediction for the test cases that are not covered by any of the extracted production rules

we propose a novel procedure to provide output class label in this situation.

One distinctive advantage of the proposed approach is the submodel ranking.

During classification procedure we compute a quality measure for each of the

submodels. This value is used to rank submodels, and the best is used for the prediction.

While the other considered methods provide only the predicted class label, in our case

we provide the user additional feedback information in terms of the confidence value

that is assigned to each of the submodels. The confidence value can be used to compare

different submodels, however we lose this information when using only single prediction

rule from the extracted ruleset.

4.2.4 Comparison with existing biologically inspired algorithms

Table 2 presents a comparison between the proposed method and existing

biologically inspired algorithms such as PSO II and AntMiner. The Table contains a

condensed overview of characteristics of the methods analyzed in this work. The

49

comparison is organized in similar fashion as the the descriptions of the considered three

biologically inspired classification algorithms and is separated into three main design

steps.

Main design

steps

Rule

representation

and encoding

Rule extraction

procedure

Classification

procedure

Overall

Detailed characteristics

Rule can contain nominal attributes

Rule can contain numerical attributes

Encoding assumes order of the attribute

values

Rules et contains default rule

Ruleset contains rules for each class

Rules are modular and can be used

independently

Rules with same consequent are grouped

together

Rules are pruned before adding to the

ruleset

The rules are used in the extraction order

Classification method provides

prediction for all possible predictor

attributes values

The models includes additional feedback

information i.e., confidence factor

Algorithm works with unknown cases,

i.e., non-missing values of unknown

cases are used to generate model.

Algorithm

PSOII

Yes

Yes, but

never

tested

Yes

Yes

No

No

No

Yes

Yes

Yes

No

No

AntMiner

Yes

No

No

Yes

No

No

No

Yes

Yes

Yes

No

Yes

Proposed

method

Yes

No

No

No

Yes

Yes

Yes

No

No

Yes

Yes

Yes

Table 2: Comparison of the proposed method with the existing biologically inspired algorithms

50

4.3 Summary

In this chapter we described the proposed biologically inspired classification

algorithm. We presented several aspects of the proposed method such as the

parametrization, the rule representation and encoding (i.e., defines the mapping between

the optimization algorithm and the production rules), the rule extraction procedure (i.e.,

the method used to extract production rules from the training set), and the classification

procedure (i.e., the method to assign class label to test case using the extracted

production rules) and contrasted the proposed design with the other biologically inspired

classification algorithms such as PSO II and AntMiner. As the result of the several

extensions to the considered algorithms the proposed method extracts a complete set of

modular production rules.

51

5 Experimental results

In this chapter we experimentally compare the proposed biologically inspired

classification method with the existing "white-box" classification methods, such as

RIPPER, C4.5, PART, and the current biologically inspired classification algorithms

such as PSO II and AntMiner. First, we describe the datasets used in the experiments,

including several real world datasets and two synthetic datasets. Next, we explain the

parametrization of the proposed method. Finally, we provide the results of the

comparison between all the six learners.

5.1 Synthetic datasets

To evaluate the proposed biologically inspired classification method and compare

it with the considered two biologically inspired algorithms we perform several

experiments on the two synthetic datasets. We apply the three biologically inspired

classification algorithms to extract the classification models from the two synthetic

datasets and contrast the rule extraction procedures and output rulesets.

Both synthetic datasets are multi-class and contain three unique class attribute

values (i.e., class 1, class 2, and class 3). The predictor attributes (i.e., attribute 1 and

attribute 2, referred to as Al and A2, respectively) are defined as follows: Al e{0,l,2,3} ,

A2e{0A,2] . Figure 13 shows the generator cases that are used to create the synthetic

datasets; each class contains a specific number of training cases that are randomly

chosen from the generator cases.

52

class 1 + class 2 X class 3 * class 1 + class 2 X class 3 *

X X

* + + +

X X

0 1 2 3 0 1 2 3

Attribute 1 (Al) Attribute 1 (Al)

(a) (b)

Figure 13: The generator cases for the multi class synthetic datasets, i.e., the training synthetic

dataset contains random number of the generator cases. The class 1 generator cases are indicated

as "+", the class 2 generator cases are indicated as "x", and the class 3 generator cases are

indicated as "*". Panel (a) defines generator cases for dataset 1, while Panel (b) shows generator

cases for dataset 2. The x-axis and y-axis correspond to the values of attribute 1 (Al) and 2 (A2),

respectively.

The number of the cases for each unique class label in the synthetic dataset 1 is as

follows: class 1 contains 320 cases, class 2 contains 80 cases, and class 3 contains 10

cases.

The number of the cases for each unique class label in the synthetic dataset 2 is as

follows: class 1 contains 10 cases, class 2 contains 60 cases, and class 3 contains 160

cases.

The uneven distribution of the cases in the both multi-class datasets is used to

expose advantages and disadvantages of the considered biologically inspired

classification algorithms.

In the experiments that concern synthetic datasets we extract the classification

model and evaluate it on the same, complete dataset. While the quality of the generated

3

1

53

classification model may be misleading, the main goal of the experiments is to compare

the advantages and disadvantages of the rule extraction algorithms used in PSO II,

AntMiner, and the proposed classification method.

5.2 Benchmarking datasets

To evaluate the proposed biologically inspired classification method and compare

it with considered classification algorithms we perform experiments with several real

word datasets, also known as benchmarking problems. We apply the selected six

classification algorithms to extract the classification models from the datasets.

The real world datasets are publicly available and they were retrieved from the

UCI repository [35]. The selected datasets, see Table 3, provide a comprehensive

environment to test performance of the proposed and the competing methods. The

benchmarking problems range from 101 to 12960 cases, the number of attributes is

between 7 and 35, and the number of class labels ranges between 2 and 7. The datasets

include both binary and multi class problems.

54

1

2

3

4

5

6

7

8

9

10

11

Abbr.

be

bew

car

cmc

derm

dna

lymph

mush

nurse

vote

zoo

Full name

breast cancer

breast cancer Wisconsin

car evaluation

contraceptive method

dermatology

dna

lymphography

mushroom

nursery

congressional voting records

zoo

Number

of cases

277

683

1728

1473

358

3186

148

5644

12960

232

101

Number

of class

labels

2

2

4

3

6

3

4

2

5

2

7

Distribution of cases

in classes

196/81

444/239

1210/384/69/65

629/333/511

111/60/71/48/48/20

767/765/1654

2/81/61/4

3488/2156

4320/3/328/4266/4044

124/108

41/20/5/13/4/8/10

Number of

attributes

10

10

7

10

35

61

19

23

9

17

17

Table 3: Properties of the benchmarking datasets. The number of attributes includes both the

predictor attributes and the class attribute.

5.3 Parametrization of the proposed method

The proposed biologically inspired algorithm contains a number of parameters that

have to be specified. In this section we discuss the parameter selection procedure for the

BPSO algorithm, which is used to extract production rules in the proposed classification

algorithm. The PSO algorithm parametrization proposed in [28] [29] guarantees the

convergence of the swarm and provides an excellent choice for the parameters. However

the BPSO algorithm lacks such analysis and we parametrize the parameters such as X,

<px , <p2, and the neighbourhood model. We also discuss other parameters such as stop

condition parameters, that are required in the proposed classification algorithm.

We separate the required parameters into two groups:

55

BPSO algorithm swarm behaviour parameters. This group contains all

parameters that have direct impact on the swarm search procedure, i.e.,

movement, information sharing, and the swarm size. We analyze these

parameters in the proposed parametrization procedure.

Stop condition parameters. This group includes two parameters, the number of

iterations of the BPSO optimization algorithm, and the minimal size of the

current training set during the rule extraction procedure. These parameters were

already discussed and specified in Chapter 4

The parameter selection procedure for the BPSO algorithm focuses on the BPSO

particle movement equation, see Equation 8. However, we also analyze different

neighbourhood models and swarm sizes. We use only a subset of the benchmarking

problems listed in Table 3, which are characterized by the small size, i.e., the number of

cases, due to computationally expensive nature of the parametrization procedure. We

include the following datasets: be, bew, derm, lymph, vote, and zoo.

The following parameters are optimized:

Particle movement equation parameters. We analyze the X, cp, , and cp2

parameters of the BPSO particle movement equation. In the analysis (px=<p2,

this means that the private thinking and the social behaviour have equal impact

on the particle movement throughout the search space. We execute a grid search

over the following sets of values X={0.75,1.00,1.25} and

cp = {1.0,1.5,2.0,2.5,3.0,3.5,4.0] . The default settings for the BPSO algorithm

56

particle movement parameters suggested in the [23] is as follows X=1.00 and

(p,=<p2=2.0

Neighbourhood model. We use the global (referred to as global) and closest

index (referred to as index) based neighbourhood model. In the latter case only

two closest particles are considered. The default setting for the BPSO algorithm

neighbourhood model, which was suggested in the [23], is global.

Swarm size. We check the trade-off between the quality of the classification

model and the computational costs to generate the model with the BPSO

optimization algorithm. We use the following sizes: 25, 50, and 100.

In order to select the best combination of the parameters for the BPSO algorithm

we analyze both the accuracy of the generated model and the number of production rules

in the generated ruleset. Both values are combined into a single quality measure that is

defined as follows:

Q p=(100 —accuracy)*^ rules (15)

The goal of the parameter selection procedure is to find the combination of above

parameters that will result with smallest value of the quality measure defined in

Equation 15. However in the discussion we also consider the trade-off between the

obtained values of the quality measure and the computational costs, i.e., bigger size of

the swarm will increase the time requirements.

57

Figure 14: Visualization of the grid parametrization results for the global neighbourhood model

with (a) 25, (b) 50, and (c) 100 particles in swarm. The plots present the accuracy of the generated

model (left column), the number of rules in the extracted model (central column) and the quality

measure Qp (right column) over the selected values of the BPSO particle movement equation

parameters X and cp . The point with the best value of Qp is indicated as black dot. The results

are based on the 10-fold cross-validation tests that were repeated five times over the six selected

benchmarking problems.

The visualization of the parametrization results is in Figure 14 and Figure 15,

which show results for global and index neighbourhood models, respectively. Each plot

contains a summary of the results for a certain neighbourhood model and swarm size

over the selected values of the BPSO particle movement equation parameters, X and

<p . Single point on the grid in a given plot is an average obtained from the 10-fold

cross-validation procedure that is repeated five times over the six selected benchmarking

58

problems. We repeat the 10-fold cross-validation because the proposed biologically

inspired classification algorithm is nondeterministic, i.e., pseudo-random numbers are

used during the initialization and optimization.

Figure 15: Visualization of the grid parametrization results for the index neighbourhood model

with (a) 25, (b) 50, and (c) 100 particles in swarm. The plots present the accuracy of the generated

model (left column), the number of rules in the extracted model (central column) and the quality

measure Qp (right column) over the selected values of the BPSO particle movement equation

parameters X and cp . The point with the best value of Qp is indicated as black dot. The results

are based on the 10-fold cross-validation tests that were repeated five times over the six selected

benchmarking problems.

We summarize the results of the parameter selection procedure in Table 4. We

report the minimal Qp values for each neighbourhood model and swarm size together

with the corresponding number of rules in the extracted model and the mean accuracy

59

over the six selected benchmarking problems. Additionally we provide the results for the

default parameters suggested in [23], i.e., X = 1.00, (/>, = (p2=2.0, and global

neighbourhood model; these results are underscored in Table 4.

Parameters

Neighbourhood

model

global

global

global

global

global

global

index

index

index

Number of

particles in

swarm

25

25

50

50

100

100

25

50

100

X

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.25

1.00

<P

2.50

2.00

1.00

2.00

2.00

3.00

1.00

3.50

1.50

Results

Accuracy

[%]

87.58

87.10

87.86

87.58

87.86

87.90

88.06

88.16

88.04

Number

of rules

5.25

5.24

5.09

5.11

5.03

5.04

5.02

5.00

5.00

Qp value

65.23

67.62

61.82

63.52

61.09

61.01

59.99

59.25

59.80

Runtime

[sec]

848

811

1650

1661

3291

3196

799

1593

3234

Table 4: Listing of the best combinations of X and <p parameters for each considered

combination of the neighbourhood model and number of particles in swarm. The results are based

on the 10-fold cross-validation tests that were repeated five times over the six selected

benchmarking problems. The runtime is the time needed to extract all classification models for the

six considered benchmarking problems in the 10-fold cross validation tests. Selected parameters

are shown in bold. The default parameters as suggested in [23] are underlined.

The results show that the accuracy difference between the best and the worst

combinations of BPSO parameters is very small and equals -0 .5% , when we do not

include the default parameters. The difference in the case of the number of rules in the

extracted classification model equals 0.25 .

We select X = 1.00, cp,=(p2=1.0 and index based neighbourhood model to

60

implement the proposed biologically inspired algorithm. We use these values in all

subsequent experiments. While a few other parameter sets can lead to slightly improved

quality (the value of Qp) the selected parameters provides the best trade-off between the

computational costs, measured using the running time, and the obtained quality.

5.4 Results on the synthetic dataset

In this section we provide and discuss the results of the comparison between the

three selected learners, PSO II, AntMiner, and the proposed biologically inspired

classification algorithm on the two synthetic datasets. We describe the extracted

classification models in the context of the design of the considered classification

algorithms.

The two considered biologically inspired classification algorithms, AntMiner and

the proposed method, create classification models that correctly classify all the training

cases for both synthetic datasets. However, the PSO II algorithm accuracy is lower than

100% on both considered synthetic datasets.

Figure 16 shows the decision boundaries derived from the generated classification

models and the production rules that constitute the classification model extracted from

the synthetic dataset 1. The order of the rules is important for the classification

procedure of the PSO II and AntMiner algorithms.

61

class 1 + class 2 class 3 3K PSO II production rules:

(1) IF A2 = 0 THEN class = 3

(2) IF A2 = 1 THEN class = 3

(3) IF Al = 1 THEN class = 2

(4) IF A2 = 2 THEN class = 2

(5) IF 27?UE THEN class = 1

class 1 +

1 2

Attribute 1 (Al)

class 2 X class 3 *

class 1

1 2

Attribute 1 (Al)

class 2 X class 3 5K

AntMiner production rules:

(1) IF A2 = 2 THEN class = 2

(2) IF Al = 0 THEN class = 1

(3) IF Al = 1 AND A2 = 1 THEN class = 2

(4) IF A l = 2 THEN class = 3

(5) IF Al = l THEN class = 3

(6) IF Al = 3 THEN class = 3

(7) IF TRUE THEN class = 1

The proposed method production rules:

(1) IF Al = 0 AND (A2 = 0 OR A2 = 1)

THEN class = 1

(2) IF (Al = 0 OR Al = 1) AND (A2 = 0

ORA2 = l) THEN class = 2

(3) IF (Al = 2 OR Al = 3) AND (A2 = 0

ORA2 = l) THEN class = 3

(4) IF Al = 1 AND A2 = 0 THEN class = 3

Figure 16: Visualization of the decision boundaries derived from the generated classification

models and the production rules that constitute the classification model extracted from the

synthetic dataset 1 by PSO II (top row), AntMiner (middle row), and the proposed classification

algorithm (bottom row). The decision regions and the corresponding production rules are

numbered to show the order in which they were generated, which is important for the PSO II and

AntMiner algorithms. Each number on the decision region is associated with the rule consequent

shown in the circle below the number. Generator cases are indicates as "+", "x", and "*".

1 2

Attribute 1 (Al)

62

PSO II classification model (top row) contains five production rules, including the

default rule. Rules (1) and (2) assign the cases to the majority class in the synthetic

dataset 1, which is the class 3. The possible misclassification of the test cases is the

result of the quality function that is used in the PSO II algorithm to evaluate the

production rules and the specific rule representation. Rule (3) correctly classifies the

cases in the class 2. However, because of the classification procedure used in PSO II, it

only covers one generator case (the production rules have to be applied in the order in

which they were extracted from the training set). This means that the rule (3) cannot be

applied before the rules (1) and (2) that were extracted earlier. The generated production

rules (1), (2), (3), and (4) cover all possible values of attributes Al and A2. This means

that the default rule will not be applied and while the default rule consequent points to

the class 1, the test cases will not be classified as class 1.

AntMiner classification model (middle row) contains seven production rules,

including the default rule. The extracted production rules correctly classify all the

generator cases. The rule extraction procedure used by AntMiner makes the order of the

classes in the production rules arbitrary, e.g., the rules (1) and (2) for the class 2 are

separated by the rule (2) with the class 1. The shape of the decision boundaries reveals

underlying complexity of the classification with the extracted production rules, which is

is in contrast to the simplicity of the ruleset itself. The complexity of the decision

boundaries stands from applying the classification procedure on the extracted ruleset.

Similarly as in the case of the PSO II algorithm, the complete set of the extracted

production rules covers all possible values of attributes Al and A2. This means that the

63

default rule will not be applied.

The proposed method classification model (bottom row) contains four production

rules. The complete classification model correctly classifies the generator cases.

However, the individual production rules may incorrectly classify the test cases. In the

extracted classification model the rules (1) and (2) overlap, and the classification

decision is based on the quality of the production rules measured as described in

Chapter 4. The production rules extracted in the proposed classification algorithm

contain a complete description of the decision boundary and can be used separately,

which is in contrast to the competing biologically inspired classification algorithms. This

difference is result of the design of the rule extraction procedure. The extracted

production rules do not cover all possible values of attributes Al and A2. While the

synthetic dataset does not contain any generator cases for those regions, the proposed

classification algorithm will still classify the test cases in those regions. The decision is

based on the classification procedure described in Section 4.2.3.

Figure 17 shows the decision boundaries derived from the generated classification

models and the production rules that constitute the classification model extracted from

the synthetic dataset 2. The order of the rules is important for the classification

procedure of the PSOII and AntMiner algorithms.

64

class 1 class 2 class 3 * PSO II production rules:

(1) I F A 2 = 1 THEN class = 1

(2) IF A2 = 0 THEN class = 2

(3) IF A2 = 2 THEN class = 2

(4) IF TRUE THEN class = 3

0 1 2

Attribute 1 (Al)

class 1 + class 2 X class 3 K AntMiner production rules:

(1) IF Al = 0 AND A2 = 1 THEN class = 3

(2) IF A2 = l THEN class = 1

(3) IF Al = l THEN class = 2

(4) I F A 1 = 0 THEN class = 2

(5) IF 77? UE THEN class = 1

class 1 +

1 2

Attribute 1 (Al)

class 2 X class 3 M The proposed method production rules:

(1) IF (Al = 1 OR Al = 2 OR Al = 3)

AND A2 = 1 THEN class = 1

(2) IF (Al = 0 OR Al = 1 OR Al = 2)

AND (A2 = 0 OR A2 = 2) THEN class

= 2

(3) IF Al = 0 AND A2 = 1 THEN class = 3
0 1 2 3

Attribute 1 (Al)

Figure 17: Visualization of the decision boundaries derived from the generated classification

models and the production rules that constitute the classification model extracted from the

synthetic dataset 1 by PSO II (top row), AntMiner (middle row), and the proposed classification

algorithm (bottom row). The decision regions and the corresponding production rules are

numbered to show the order in which they were generated, which is important for the PSO II and

AntMiner algorithms. Each number on the decision region is associated with the rule consequent

shown in the circle below the number. Generator cases are indicates as "+", "x", and "*".

65

PSO II classification model (top row) contains four production rules, including the

default rule. Rule (1) assign the cases to the majority class in the synthetic dataset 2,

which is the class 1. The possible misclassification of the test cases is the result of the

quality function that is used in the PSO II algorithm to evaluate the production rules and

the specific rule representation. The extracted production rules (1), (2), and (3) cover all

possible values of the attributes Al and A2. This means that the default rule will not be

applied and while the default rule consequent contains the class 3, the test cases will not

be classified as class 3.

AntMiner classification model (middle row) contains five production rules,

including the default rule. All extracted production rules correctly classify the generator

cases. Similarly as in the case of synthetic dataset 1, we observe that the decision

boundaries are relatively complex. The extracted production rules (1), (2), (3), and (4)

do not cover all possible values of the attributes Al and A2. This means that the default

rule will be applied for these regions and test cases will be classified as class 1.

The proposed method classification model (bottom row) contains three production

rules. Both the complete classification model and each individual production rules

correctly classify the generator cases. We also note that shape of the decision boundaries

may be different in consecutive runs of the proposed rule extraction procedure due to the

randomness of the search procedure, i.e., rule (2) could also include points (Al=3,

A2=0) and (Al=3, A2=2). We note that the proposed method can generate production

rules that describe cases tat were not included in the training set. In particular, rule (2)

covers points (Al=2, A2=0) and (Al=2, A2=2), which do not correspond to the

66

generator cases. The presence of logical tests Al=2 and Al=3 in rule (2) is arbitrary.

This is the result of selection performed with the quality function used in the proposed

classification algorithm to evaluate the production rules during the optimization

procedure.

5.5 Results on the benchmarking datasets

In this section we provide the results of the comparison between the six selected

learners, RIPPER, C4.5, PART, PSO II, AntMiner, and the proposed biologically

inspired classification algorithm. The experiments are performed on the selected eleven

real world benchmarking problems.

We use RIPPER, C4.5 and PART classification algorithms implementations from

the Weka suite [36]. The biologically inspired algorithms, PSO II [17] and AntMiner

[18], were obtained from the authors.

In the experimental study we use the 10-fold cross validation procedure to

compare the six learners. Similarly as in the synthetic datasets comparison, we repeat the

10-fold cross-validation five times for PSO II, AntMiner and the proposed classification

method. The reported quality of the generated model is an average over the ten folds

together with the corresponding standard deviation. In the case of PSO II, AntMiner, and

the proposed classifier, where 10-fold cross validation is repeated five times, we first

average the measurements for the same folds obtained in the multiple runs, and then

these averages are used to compute average and standard deviation for the ten folds.

We separate all benchmarking problems into two groups based on the size of the

67

extracted model, i.e., the number of extracted production rules or leaf nodes. In case of

the car and nurse datasets the proposed classification method extracts much smaller

models when compared with models generated by RIPPER, C4.5, and PART; the other

considered biologically inspired algorithms also generate similarly small models. While

the model is more compact its predictive accuracy is also lower. To indicate this

difference we summarize the results for all benchmarking problems and the set of

benchmarking problems that excludes the car and nurse datasets (indicated using * in

Table 5, Table 6, and Table 8).

Table 5 and Table 6 report the mean results for both considered groups of the

benchmarking problems. We average all measurements (the accuracy of the extracted

model and the number of production rules or leaf nodes in the generated classification

model) and the corresponding standard deviation values obtained from the individual

datasets to provide the overview of the results.

The benchmarking problems are pre-processed to satisfy the requirement of the

considered learners. We remove all unknown cases as the PSO II algorithm cannot use

the cases with missing values to extract the classification model. We also use the same

training and tests sets for each classifier (which is necessary to compute the T-test, which

is explained later in this section) when performing the 10-fold cross validation.

We report the predictive accuracy of the classification models generated by the six

considered learners over the eleven selected benchmarking problems in Table 5. We

show the highest accuracy values for each individual dataset in bold and we provide the

summarized mean results over all considered experiments.

68

Dataset

be

bew

car

cmc

derm

dna

lymph

mush

nurse

vote

zoo

MEAN

MEAN*

Algorithm

RIPPER

74.4 ± 8.46

93.8 ±2.67

87.5 ±1.86

46.6 ± 2.65

89.4 ± 6.74

93.9 ± 1.21

77.9 ±10.9

100.0 ± 0.0

96.8 ± 0.54

97.0 ± 4.12

88.0 ±11.3

85.9 ±4.59

84.5 ± 5.34

C4.5

75.9 ± 8.05

93.8 ±2.84

92.3 ±1.24

49.2 ±4.10

93.4 ±4.05

93.4 ±1.00

80.7 ± 8.94

100.0 ± 0.0

97.1 ±0.57

96.5 ± 3.99

92.0 ±7.89

87.7 ±3.88

86.1 ±4.54

PART

68.5 ±7.66

93.8 ±2.84

95.4 ± 1.96

48.6 ±3.59

95.1 ± 3.82

93.7 ±1.24

80.7 ± 10.7

100.0 ± 0.0

99.1 ± 0.32

95.2 ±3.81

93.0 ±8.23

87.6 ±4.01

85.4 ±4.62

PSOII

74.8 ± 8.67

93.4 ±3.16

78.8 ±2.69

43.2 ±3.92

70.5 ± 4.63

83.8 ±1.93

78.0 ±11.1

96.8 ± 0.94

77.3 ±1.91

94.9 ±3.72

94.2 ± 5.12

80.5 ± 4.34

81.2 ±4.80

AntMiner

77.6 ± 10.2

90.2 ± 2.06

85.3 ±0.35

43.0 ±3.80

95.0 ±4.89

87.4 ±1.24

75.0 ±9.88

97.6 ± 0.87

86.6 ±0.72

96.1 ±4.14

91.8 ±7.69

84.1 ±4.51

83.7 ± 5.04

Proposed

method

70.8 ± 7.34

96.1 ± 2.06

80.4 ±2.12

50.8 ± 4.02

90.6 ±2.85

90.6 ±1.36

80.1 ±6.71

99.4 ± 0.43

79.8 ±1.45

96.7 ±4.12

93.6 ±4.97

84.5 ±3.40

85.4 ±3.76

Table 5: Accuracy ± standard deviation results for the six learners on the eleven benchmarking

problems. The results are based on the 10-fold cross-validation tests, which for PSO II, AntMiner,

and the proposed method were repeated five times. The best results for each datasets are shown in

bold. Mean values are reported for eleven or (*) nine benchmarking problems (excluding car and

nurse datasets).

The proposed biologically inspired algorithm twice obtains the best accuracy (for

the bew and cmc datasets). The two competing biologically inspired algorithms, PSO II

and AntMiner, obtain the best results for the zoo and be datasets, respectively. PART is

the learner that obtains the best accuracies for five out of the eleven datasets, which is

the highest count of wins.

The proposed method obtains favourable accuracy for the datasets car and nurse

that are excluded from the reduced group of nine benchmarking problems when

69

compared to PSO II. Both algorithms use the same measure to evaluate the production

rules during the rule extraction procedure and similar methods (BPSO and PSO,

respectively) to extract single production rule. This improvement is likely due to the

different rule representations.

The mean results show that the proposed biologically inspired classification

algorithm obtains favourable accuracies when compared with PSO II and AntMiner. The

accuracies are comparable when the proposed method is contrasted with RIPPER, C4.5

and PART for the reduced group of the nine benchmarking problems. The reported mean

values may be misleading since different datasets are characterized by different default

accuracies (accuracy when all cases are classified to the largest class, i.e., the class label

with the highest number of cases in the training set). Therefore, later in this section we

summarize the results using win/draw/loss counts and a statistical significance test.

We observe that the proposed classification algorithm has the smallest mean

standard deviation. This shows that the accuracy of the models generated from the

individual benchmarking problems is less variable for the proposed method than the

accuracies of the other competing methods. This could be due to the generation of rules

for each class in the case of the proposed classification algorithm.

We report the number of rules or leaf nodes in the classification models extracted

by the six considered learners over the eleven selected benchmarking problems in Table

6. We show the smallest classification models for each individual dataset in bold and we

provide the summarized mean results over all considered experiments.

70

Dataset

be

bew

car

cmc

derm

dna

lymph

mush

nurse

vote

zoo

MEAN

MEAN*

Algorithm

RIPPER

3.60 ± 0.96

13.0 ±1.41

35.5 ±5.73

6.40 ±1.90

14.0 ±1.56

17.8 ±2.82

6.90 ±1.20

6.00 ± 0.00

112. ±9.43

2.00 ± 0.00

7.30 ±0.67

20.5 ±2.34

8.56 ±1.17

C4.5

12.1 ±10.9

49.6 ±7.59

122. ±6.47

182. ±76.2

23.9 ±4.40

78.9 ±4.15

18.4 ±1.40

24.6 ±0.52

359. ±8.19

2.50 ±1.08

10.7 ±2.79

80.5 ±11.24

44.8 ±12.11

PART

18.4 ±4.20

11.5 ±2.68

62.0 ±3.05

187. ± 11.1

8.10 ±1.66

65.3 ±3.89

9.40 ±1.26

11.3 ±0.67

189. ±11.2

5.30 ±0.95

7.60 ± 0.52

52.3 ±3.74

36.0 ±2.99

PSOII

6.10 ±0.65

9.50 ±1.08

8.12 ±0.31

7.12 ±0.60

9.64 ± 0.70

6.74 ±0.38

6.12 ± 0.45

4.98 ± 0.22

7.02 ± 0.06

3.66 ± 0.79

7.12 ±0.19

6.92 ± 0.49

6.76 ± 0.56

AntMiner

6.26 ± 0.46

12.6 ±0.52

18.0 ±0.75

11.9 ±0.91

7.82 ± 0.59

8.68 ±0.50

6.54 ± 0.42

7.88 ± 0.43

17.7 ±0.69

4.32 ± 0.42

6.00 ± 0.00

9.78 ±0.52

8.00 ± 0.47

Proposed

method

6.00 ± 0.00

2.00 ± 0.42

6.20 ± 0.42

9.00 ± 0.00

6.12 ±0.14

5.22 ± 0.24

6.22 ± 0.41

2.80 ± 0.28

7.00 ± 0.00

2.60 ± 0.52

7.00 ± 0.00

5.49 ± 0.22

5.24 ±0.19

Table 6: Number of rules or leaf nodes ± standard deviation in models generated by six learners on

the eleven benchmarking problems. The results are based on the 10-fold cross-validation tests,

which for PSO II, AntMiner, and the proposed method were repeated five times. The best results,

smallest number of rales (or leaf nodes) on the extracted model for each datasets are shown in

bold. Mean values are reported for eleven or (*) nine benchmarking problems (excluding car and

nurse datasets).

The proposed biologically inspired algorithm extracts the smallest classification

models, in terms of the number of production rules or leaf nodes, for six out of the

eleven datasets (including the car and nurse datasets that are excluded from the reduced

group of the benchmarking problems), which is the highest count of wins. The

competing biologically inspired algorithms, PSO II and AntMiner, obtain the best result

for the lymph and zoo datasets, respectively. RIPPER is the learner that extracts the

smallest classification models for the be, cmc and vote datasets.

71

The AntMiner algorithm, in the case of the zoo dataset, extracts the classification

model that contains only six production rules, including the default rule. While the

dataset contains seven unique class labels, the extracted model does not discriminate the

test cases between all the classes that are present in the training set. Later in this section

we provide a more detailed analysis of the completeness of the classification model.

The mean results show that the proposed biologically inspired classification

algorithm obtains favourable results in terms of the size of the extracted classification

model when contrasted with the considered classification algorithms. The mean value

for all selected benchmarking problems equals 5.49 and is close to the average number

of classes in the eleven selected datasets that equals 3.64 . This is likely due to the

proposed rule representation and the generalization properties of the fitness function that

is used during the optimization procedure to obtain a single production rule. While the

classification model extracted by the proposed method contains fewer prediction rules,

the rule representation is more complex. Later in this section we summarize the above

results using win/draw/loss counts.

We observe that the proposed classification algorithm has the smallest mean

standard deviation. This shows that the size of the models extracted from the individual

benchmarking problems is less variable in the proposed method than the size of the

extracted models in case of other competing methods. This could be due to generation of

rules for each class in the case of the proposed classification algorithm, which is in

contrast to the other considered methods.

We report the summarized win/draw/loss results for the six considered learners

72

over the eleven selected benchmarking problems in Table 7. Table summarizes the

results reported in Table 5 and Table 6. We provide the comparison of the accuracy of

the extracted models on the upper triangle and the size of the generated classification

model in the lower triangle.

Algorithm

RIPPER

C4.5

PART

PSOII

AntMiner

Proposed

method

Algorithm

RIPPER

- •

11/0/0

(9/0/0)

9/0/2

(7/0/2)

3/0/8

(3/0/6)

4/0/7

(4/0/5)

3/0/8

(3/0/6)

C4.5

2/2/7

(2/2/5)

-

3/0/8

(3/0/6)

1/0/10

(1/0/8)

1/0/10

(1/0/8)

1/0/10

(1/0/8)

PART

3/2/6

(3/2/4)

3/3/5

(3/3/3)

-

1/0/10

(1/0/8)

1/0/10

(1/0/8)

0/0/11

(0/0/9)

PSOII

8/0/3

(6/0/3)

10/0/1

(8/0/1)

9/0/2

(7/0/2)

-

9/0/2

(7/0/2)

2/0/9

(2/0/7)

AntMiner

8/0/3

(6/0/3)

9/0/2

(7/0/2)

9/0/2

(7/0/2)

4/0/7

(4/0/5)

-

1/0/10

(1/0/8)

Proposed

method

6/0/5

(4/0/5)

7/0/4

(5/0/4)

6/0/5

(4/0/5)

2/0/9

(2/0/7)

4/0/7

(2/0/7)

-

Table 7: Win/draw/loss results for six learners on the eleven benchmarking problems. The results

in the brackets are based on the nine benchmarking problems (excluding car and nurse datasets).

The upper triangle reports the accuracy of the generated classification model and the lower

triangle reports the number of rules (or leaf nodes) in the extracted classification models, e.g., the

3/0/8 value located in row PART and column C4.5 means that PART model contains more rules

(or leaf nodes) than C4.5 model on 3 datasets and PART model contains less rules (or leaf nodes)

than C4.5 model on 8 datasets, the 3/3/5 value in the C4.5 row and PART column mean that C4.5

accuracy is higher than PART accuracy three times, the accuracy of the two methods is even three

times, and C4.5 accuracy is lower than PART accuracy five times. The results are based on the 10-

fold cross-validation tests, which for PSO II, AntMiner, and the proposed method were repeated

five times.

73

Table 7 provides an overview of the experimental comparison between all selected

algorithms. However the most relevant part of the summary is the last row and the last

column that compare the proposed biologically inspired classification algorithm with

other considered classification algorithms such as RIPPER, C4.5, PART, PSO II, and

AntMiner.

The proposed method obtains favourable accuracy when compared with PSO II

and AntMiner, i.e., the extracted classification model has better accuracy in case of nine

out of eleven and seven out of eleven benchmarking problems, respectively. The

win/draw/loss accuracy measure of the proposed method is comparable with the

RIPPER and PART when considering both complete set of eleven benchmarking

problems and the reduced set of nine benchmarking problems. C4.5 obtains better

win/loss accuracy record against the proposed method in the case of both sets of

benchmarking problems.

We further summarize Table 7 by computing a sum of wins between a given

learner and all other classification algorithms, including both the complete set of eleven

benchmarking problems and the reduced set of nine benchmarking problems (results

reported in brackets). The results are: 36(28), 35(25), 30(28), 26(21), 19(16), and 12(8)

for C4.5, PART, the proposed method, RIPPER, AntMiner, and PSO II classification

algorithms, respectively. While the proposed method is placed third when using the

complete set of eleven datasets, it scores first together with the C4.5 algorithm when

considering the reduced set of nine datasets.

We observe that models extracted by the proposed method contains fewer

74

production rules than the classification models extracted by the other classification

algorithms for a larger number of dataset. This is consistent over all considered

competing methods, which can be observed in the last row in Table 7. However, the

other learners have simpler representation of the production rules.

We report results of the T-test comparison in Table 8. We test whether the

differences in the quality between models extracted by our method and each competing

learner are statistically significant. Each of the compared models is generated from the

same data (the same fold). This means that we perform the 10-fold cross validation with

exactly the same division of the benchmarking problems for each considered learner.

75

Dataset

be

bew

car

cmc

derm

dna

lymph

mush

nurse

vote

zoo

SUMMARY

SUMMARY*

RIPPER

~~

++

-

++

~~

-
—

-

-
—

~~

2/5/4

2/5/2

C4.5

~~

++

~
—

~~

--

~~

~

--
—

~~

1/6/4

1/6/2

Algorithm

PART

~~

++

~

~~

~

-
—

-

—
—

~~

1/5/5

1/5/3

PSOII

—

++

—

++

++

++

—

++

++

~~

—

6/5/0

5/4/0

AntMiner

~~

++

~

++

-

++

—

++

~

~~

—

4/4/3

4/4/1

Table 8: T-test results of accuracy comparison between the proposed classification algorithm and

five competing learners on the eleven benchmarking problems; "++" indicates that the proposed

method is significantly better than the competing learner, "—" indicates no significant difference,

"--" indicates that the proposed method is significantly worse than the competing learner.

Summary values reported as "++/—/--" respectively summarize the results for eleven or (*) nine

benchmarking problems (excluding car and nurse datasets), e.g., the 4/4/1 value located in the row

SUMMARY* and column AntMiner means that the proposed method is significantly better than

AntMiner on 4 datasets, there is no significant difference between the proposed method and

AntMiner on 4 datasets, and AntMiner is significantly better than the proposed method once. The

results are based on the 10-fold cross-validation tests, which for PSO II, AntMiner, and the

proposed method were repeated five times.

The proposed biologically inspired classification algorithm obtains favourable

results in terms of statistical significance when compared with the other two considered

biologically inspired algorithms. However, the results favour the competing traditional

"white-box" learners when we consider the complete set of eleven benchmarking

76

problems. The accuracy comparison shows that RIPPER and C4.5 algorithms are

comparable to the proposed method when considering the reduced set of nine

benchmarking problems.

Table 9 contains the summary of completeness analysis of the classification

models extracted from the benchmarking problems. We analyze whether the

classification models contain a complete set of rules, i.e., the generated ruleset contains

non-default production rules for all class labels present in the training set.

During rule extraction procedure, RIPPER always selects the majority class in the

training set and creates a default rule for the class. It means that for each benchmarking

problem in Table 9, the column with RIPPER algorithm contains at least 10 folds with

one class label that has only the default production rule.

77

Dataset

be

bew

car

cmc

derm

dna

lymph

mush

nurse

vote

zoo

Algorithm

RIPPER

10/0

10/0

10/0/0/0

10/0/0

10/0/0/0/0/0

0/0/10

2/10/0/1

10/0

9/4/0/1/0

10/0

10/0/0/0/2/0/0

C4.5

0/0

0/0

0/0/0/0

0/0/0

0/0/0/0/0/0

0/0/0

0/0/0/1

0/0

0/10/0/0/0

0/0

0/0/0/0/0/0/0

PART

0/0

0/0

0/0/0/0

0/0/0

0/0/0/0/0/5

0/0/0

6/0/0/3

0/0

0/8/0/0/0

0/0

0/0/2/0/3/0/0

PSOII

0/0

0/0

0/0/0/9

0/0/2.2

0/0/0/0/0.2/1

0/0/0

10/0/0/3

0/0

0/10/9.8/0/0

0/2.2

0/0/1/0/8/0/0

AntMiner

0/0

0/0

0/0/0/0

0/0/0

0/0/0/0/0/0

0/0/0

3/0/0/2.2

0/0

0/5.6/0/0/0

0.2/0

0/0/10/0/10/0/0

Proposed

method

0/0

0/0

0/0/0/0

0/0/0/0

0/0/0/0/0/0

0/0/0

0/0/0/0

0/0

0/0/0/0/0

0/0

0/0/0/0/0/0/0

Table 9: Completeness of models generated by the learners on the benchmarking problems. The

reported values correspond to the number of folds with missing or only default rule per class label,

e.g. the 2/10/0/1 value located in row lymph and column RIPPER means that 2 folds for class 0,

10 folds for class 1, 0 folds for class 2, and 1 fold for class 3 include only the default or no rules.

The results are based on the 10-fold cross-validation tests, which for PSO II, AntMiner, and the

proposed method were repeated five times. Because of that the results for PSO II, AntMiner, and

the proposed method are averaged and may be a floating point numbers.

The only method that contains non-default production rules for all class labels

present in the training set is the proposed biologically inspired classification algorithm.

This is a result of the design of the proposed rule extraction procedure. The other

competing learners extract the classification models that are incomplete for at least two

benchmarking problems.

The classification models extracted on the lymph, nurse, and zoo benchmarking

problems are the most problematic in terms of the model completeness for the RIPPER,

78

C4.5, PART, PSO II, and AntMiner algorithms. The three datasets are a multi-class

problems with the uneven distribution of cases among the class labels. The classification

models do not contain the non-default production rules for the classes with the smallest

number of cases.

The proposed biologically inspired algorithm is designed to provide the complete

set of production rules. The eleven selected real world benchmarking problems show

that completeness of the model is not guaranteed in the case of the considered five

competing classifiers.

5.6 Summary

In this chapter we experimentally compared the proposed biologically inspired

classification method with the existing "white-box" classification methods, such as

RIPPER, C4.5, PART, and the current biologically inspired classification algorithms

such as PSO II and AntMiner. First, we parametrized the proposed method to obtain a set

of BPSO parameters for the subsequent experiments. Next, we used two synthetic

datasets to provide an extensive comparison of the three considered biologically inspired

algorithms and discuss the extracted classification models. Finally, we performed the

experimental comparison of the six considered classifiers on the eleven selected

benchmarking problems. We analyzed the performance of the methods in terms of the

predictive accuracy, the number of the extracted production rules or leaf nodes, and the

completeness of the extracted classification model.

The comparisons showed that the proposed method is comparable in terms of

79

predictive accuracy to the traditional "white-box" classifiers and favourable when

contrasted with the two considered biologically inspired algorithms. Additionally, we

experientially confirmed that the proposed method extracts a complete set of modular

production rules, which is in contrast to the other five competing classifiers.

80

6 Conclusions

In this work we discussed the use of biologically inspired algorithms to generate

"white-box" classification models. Biologically inspired algorithms are heuristic-based

optimization methods that provide global search strategy and use population of

individuals to find approximate solution of a given problem. They provide an interesting

alternative for generation of classification rules when compared with traditional greedy

search-based approaches.

We described the differences between the biologically inspired classification

algorithms such as PSO II and AntMiner, including the rule representation, the

encodings scheme, the rule extraction procedure, and the classification procedure.

In this work we proposed enhancements with respect to the rule representation, the

rule extraction procedure, and the classification procedure of the current algorithms and

we introduce novel biologically inspired classification algorithm. We considered several

the properties of generated classification models, which is in contrast to the existing

methods that aim at obtaining the highest possible classification accuracy. Instead of

focusing only on the accuracy, we analyzed three other properties of the classification

models such as the total number of rules, modularization, and the completeness of the

extracted model.

Extensive experimental tests showed that the proposed method provides

favourable predictive accuracy when compared with the current biologically inspired

classification algorithms and comparable predictive accuracy when contrasted with three

81

traditional "white-box" algorithms such as RIPPER, C4.5, and RIPPER. Additionally,

the proposed method provides a complete set of modular production rules, which is in

contrast to the current biologically inspired classification algorithms.

List of significant contributions:

Development of a novel classification algorithm to generate production rules

using Binary Particle Swarm Optimization algorithm.

Novel rule encoding method in context of current biologically inspired

classification algorithms.

Development of biologically inspired classification algorithm that generates a

set of modular rules.

Development of biologically inspired classification algorithm that generates

rules for each class present in the training set.

The parametrization of the Binary Particle Swarm Optimization algorithm.

The first comprehensive comparison of several biologically inspired classifiers.

The first comparative study that includes rule-based, decision-tree based,

decision-list based, and the biologically inspired classification methods.

The first study to consider and compare the completeness of the generated

classification models.

82

7 Future work

In this work we discussed the design of the biologically inspired classification

algorithm that extracts a complete set of modular production rules and provided an

experimental comparison with other "white-box" classification algorithms. During the

development of the proposed method we found a number of interesting directions that

can be analyzed in future:

Analysis of the complexity of the extracted production rules. In this work we

proposed extensions to the rule representations used in the current biologically

inspired algorithms, but we did not analyze the complexity of the production

rules as focused on the modularity of the generated rules.

Processing of continuous attributes. It would be interesting to extend the

proposed algorithm to cope with the continuous attributes, as currently the

proposed method can work only with the discrete attributes.

Scalability analysis. In this work we only briefly mentioned the computational

costs of the proposed method, measured as the running time. It would be

interesting to perform an extensive analysis and comparison between the

biologically inspired algorithms in terms of the computational costs.

83

8 References

[I] M. Fayyad, G. Piatetsky-Shapiro and P. Smyth. From data mining to knowledge

discovery: an overview. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R.

Uthurusamy, editors, Advances in knowledge discovery and data mining.

AAAI/MIT, 1996.

[2] L.A. Kurgan and P. Musilek. A survey of Knowledge Discovery and Data Mining

process models. Knowledge Engineering Review, 21(1): 1-24, 2006.

[3] O. Maimon and L. Rokach. Data Mining and Knowledge Discovery Handbook,

2005. Springer-Verlag New York, Inc., 2005.

[4] K.J. Cios, W. Pedrycz, R.W. Swiniarski and L.A. Kurgan. Data Mining: A

Knowledge Discovery Approach, 2007. Springer-Verlag New York, Inc., 2007.

[5] R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis, 1973. John

Wiley and Sons, 1973.

[6] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,

20(3):273-297, 1995.

[7] W.W. Cohen. Fast Effective Rule Induction. Proceedings of the 12th International

Conference on Machine Learning, pages 115-123. 1995.

[8] J.R. Quinlan. C4.5: programs for machine learning, 1993. Morgan Kaufmann

Publishers Inc., 1993.

[9] F. Eibe and I.H. Witten. Generating accurate rule sets without global optimization.

Proceedings of the Fifteenth International Conference on Machine Learnin, pages

144-151. 1998.

[10] J. Sietsma and R.J.F. Dow. Creating artificial neural networks that generalize.

Neural Networks, 4(l):67-79, 1991.

[II] M.T. Musavi, W. Ahmed, K.H. Chan, K.B. Faris and D.M. Hummels. On the

84

training of radial basis function classifiers. Neural Networks, 5(4):595-603, 1992.

[12] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine

Learning, 1989. Addison-Wesley Longman Publishing Co., Inc., 1989.

[13] J. Kennedy and R. Eberhart. Particle Swarm Optimization. IEEE International

Conference on Neural Networks - Conference Proceedings, pages 1942-1948.

1995.

[14] Shi Yuhui and R. Eberhart. A Modified Particle Swarm Optimizater. Proceedings

of the IEEE Conference on Evolutionary Computation, pages 69-73. 1998.

[15] M. Dorigo, V. Maniezzo and A. Colorni. Ant system: optimization by a colony of

cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B:

Cybernetics, 26(\):29-4l, 1996.

[16] A.A. Freitas. A survey of evolutionary algorithms for data mining and knowledge

discovery. In A. Ghosh and S. Tsutsui, editors, Advances in Evolutionary

Computation. Springer-Verlag, 2002.

[17] Tiago Sousa, Arlindo Silva and Ana Neves. Particle swarm based Data Mining

Algorithms for classification tasks. Parallel Computing, 30(5-6):767-783, 2004.

[18] R.S. Parpinelli, H.S. Lopes and A.A. Freitas. Data mining with an ant colony

optimization algorithm. IEEE Transactions on Evolutionary Computation,

6(4):321-332, 2002.

[19] L.A. Breslow and D.W. Aha. Simplifying decision trees: A survey. Knowledge

Engineering Review, 12(1): 1-40, 1997.

[20] H. Aytug, M. Khouja and F.E. Vergara. Use of genetic algorithms to solve

production and operations management problems: A review. International Journal

of Production Research, 41(17):3955-4009, 2003.

[21] R. Leardi. Genetic algorithms in chemometrics and chemistry: a review. Journal

ofChemometrics, 15(7):559 - 569, 2001.

85

[22] J. Kennedy and R. Eberhart. Swarm intelligence, 2001. Morgan Kaufmann

Publishers Inc., 2001.

[23] J. Kennedy and R. Eberhart. A discrete binary version of the particle swarm

algorithm. Proceedings of the IEEE International Conference on Systems, Man

and Cybernetics, pages 4104-4108. 1997.

[24] M. Dorigo and L.M. Gambardella. Ant colony system: a cooperative learning

approach to the traveling salesman problem. IEEE Transactions on Evolutionary

Computation, l(l):53-66, 1997.

[25] M. Dorigo and G. Di Caro. The Ant Colony Optimization Meta-Heuristic. In D.

Corne, M. Dorigo and F. Glover, editors, New Ideas in Optimization. McGraw-

Hill, 1999.

[26] M. Dorigo. Ant Algorithms Solve Difficult Optimization Problems. Proceedings of

the 6th European Conference on Advances in Artificial Life, pages 11-22. 2001.

[27] T. Stutzle and H.H. Hoos. MAX-MIN Ant System. Future Generation Computer

Systems, 16(8):889-914, 2000.

[28] M. Clerc and J. Kennedy. The particle swarm - explosion, stability, and

convergence in a multidimensional complex space. IEEE Transactions on

Evolutionary Computation, 6(l):58-73, 2002.

[29] R. Eberhart and Y. Shi. Comparing Inertia Weights and Constriction Factors in

Particle Swarm Optimization. Proceedings of the IEEE Conference on

Evolutionary Computation, pages 84-88. 2000.

[30] T.M. Cover and J.A. Thomas. Elements of information theory, 1991. Wiley-

Interscience, 1991.

[31] H.S. Lopes, M.S. Coutinho and W.C. Lima. An evolutionary approach to simulate

cognitive feedback learning in medical domain. In E. Sanchez, T. Shibata and L.A.

Zadeh, editors, Genetic Algorithms and Fuzzy Logic Systems.

86

[32] M.V. Fidelis, H.S. Lopes and A.A. Freitas. Discovering Comprehensible

Classification Rules with a Genetic Algorithm. Proceedings of the IEEE

Conference on Evolutionary Computation, pages 805-810. 2000.

[33] W.M. Spears and D.F. Gordon. Is consistency harmful? 1992.

[34] K.A. De Jong, W.M. Spears and D.F. Gordon. Using genetic algorithms for

concept learning. Machine Learning, 13:161-188, 1993.

[35] Newman, D.J., S. Hettich, C.L. Blake and C.J. Merz. UCI Repository of machine

learning databases. 1998.

[36] I.H. Witten and F. Eibe. Data Mining: Practical machine learning tools and

techniques, 2005. Morgan Kaufmann, 2005.

87

