27654 o L ‘}

NATIONAL LIBRARY alauomEous NATIONALE
o OTTAWA . OTTAWA
? SARNADA : . e

C

NAME OF AUTHOR.. CA\«;M A)

TITEE of mests.. ACA L

..

(- DEGREE FOR WHICH THESIS WAS PRESENTED. /V'C
YEAR THIS DEGREE GRANTED...... ...’.?.7.(..... feeen SR
. L ’ T
’—\\’)) Permission is hereby granted to THE NATIONAL, LIBRARY

OF CANADA-t§ microfilm this thesis and to lend or sell copies
° of the film. |
The author reserves other'publjcgtioﬁ righfs, and o
neither the thesis nor extensive extracts from it may be

printed or otherwise reproduced without the author's

(Signed) %«ty«(« zé’/\,

PERMANENT ADDRESS:
/C1L - 8518 //3-32

written permission.

~pATED. /). (zxvc/{ 19 /¢

NL-91 (10-68)

INFORMATION TO USERS
; A o

~ THIS DISSERTATION HAS BEEN
"MICROF ILMED EXACTLY-AS RECEIVED

w
-

This copy\was “produced froya micro-
document .

fiche coppAof the original
The qualityN\of the copy is heavily
dependent upo the quality of the
original thesis submitted for
microfilming. Every effort hat
been made -to- ensure the highest
quality of reproduction possible.

»

{ v

PLEASE NOTE: Some pages maf‘ﬁdvezf"

indistinct print: Filmed as .
received.

N

o

Canadian Theses Division
Cataloguing Branch
National Library of Canada
Ottawa, Canada K1IA ON4

VR
AVIS AUX USAGERS

LA THESE A ETf MICROF ILMEE
TELLE QUE NOUS I.'AVONS RECUE

-

Cette copie a 6té faite 3 partir
d'une microfiche du document .
original. La qualité de Ta copie.
dépend grandement de la qualite
de la thase soumise pour le
microfimage. - Nous avons tout
fait pour assurer ume qualitée
supérieure ‘de reproduction. -

¢

NOTA'BENE: La qualite d'fmpressiod o

de certaines pages peut laisser a
désirer. 'Microfilmée telle que
nous 1'avans regue.

Division des théses canadiennes
Direction du catalogage
Biblioth2que nationale du Canada
Ottawa, Canada KIA ON4

-3

. . . "

/ . . . o
.

- . . .

. - i
.
. . " 4
- ~ ‘< .

" "THE UNIVERSITY OF ALBERTA

- +
~

ALAI: A LANGUAGE FOR ARTIFICIAL INTELTIGENCE
< b’ ‘°

1 CHRISTOPHER GRAY

A THESIS
SUBNITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTING SCIENCE

ED M0 NTON, ALEERTt

SPRING, 1976

v{‘ ' T °
[:
_THE UNIVERSITY OF ALBERTAg
PACULTY OF GRADUATE STUDIES AND nxsz‘ac(© e
. 4 .
- . T . ‘
o \ ’
b

/

‘w
The undersigned certify that they have.read, and -
racomsmend to the Faculty of Graduate Studies and Research

for acceptance, a thesis entitled “ALAI: A banguage for

L] ‘ 4

Artificial Intelligence“ submitted ﬁ; chtistophet Gray »n -

partial fulfilllent of the require-en s for ‘the deqtee otmw

-

Master of Science.

g .

. \ . . A ~

‘ Co-Supetvisor

pé//(\fwmq‘,

_ Co-Supervisor

Mm%«/

-

-4 . . Abstract . IR SO

' . . " _,.'0

~use of coupntens in artificiol 1ntol&iqonco

"};pplicati

the tCSKQ Hln,

fut ptoqtmns vti&ten Ln maost of tho- thnot rooﬁily bo

he . vatxous projects could be brought ‘tagether end

mer ed. " This requires the existence of a single standard AI

discusse§ with respect to. their applicability to AI -

progranas. The1t usatnl features are extracted and a language

hese and other features is proposed. The proposed

-languaqe (ALAY) is described in detail and examples are

,"olbining

provided to clarify the intended usage. Sone of the features
stressed in the.lanuage.are ea sy }teration, pattern

matching, data net lanipulat{%nfand program modifiability.

The language contains se‘rai features uhi‘c.h have not
been used in previous languages. These features are zntended
to i-proyetthe efficiency of data net search and internal
program-environment changes. The use of bathracking‘as a>
probleam solvimg tool is discussed and vays in which the

’ . .
Process can be speeded up are introduced.

<

s benotit: ttoo a ptograoltng lthulq. snitod to

ch ln\qnoges ‘have boon devolobod tocontly. é”

3

L 4
Agknovliedgmernts
. . ’_.. N o o N L .

AN \

!

I\vbuld ‘Al ke to than pr. Jeff Sampson and Dr. Len

Schwbctt for thcit boqtinull advice, snppo;t and csitlcisl
vhich has helped shnpe this!tbo:is and the ALAI languagae.

‘T vould uimo 1ike te thask Jis Meifets for his sany .

discuyssions, criticisas and siﬁgestious‘regardinq t he
. N ‘/ .

1augﬁaqg.'

I .vish £o extend wmy aépreqﬁation to the Departmsent of

L

Computing SCIence and to thp latiOﬁfl R;seatch Council for

their support of thxs vork. i‘ s

[

o

4

. CHAPTER

44

Ot her

A
2.2
2.3
2.0

-

wwwwwww
« 8 4 o o

'QO\Q#WNJ

CONTENTS .

y PAGE
. . /0 '

. . [
S'.‘o IntrOdllCtiOl\ l.o-.o.-‘..0..(‘.‘0...’...0....0..-.-.1

AI Langu‘ges-..o..o.-..o.o....0.........“‘

LISPd...........’.b...d......v.......'..-...5
S‘IL‘;......'...........\..........'..........11
suoDoL .,..................Q...............‘.17

2.PlK‘..-..-......-..............-.r... qo...o‘23

The Features of ALAI-.............30.

BaSiC N@EQAS .cciecccccssnscsscsacsancsccsacsnacanedl
BasiC INternal POLMS .ccececacacacaacccscnceaddd
Portability and RedundancCy .ccceccecceccaccaa3d?
The Datd Net .c.cieceiccaaccancaaccnacacsacaeaasld’
Pattern MatChing .eccccececaacnnscncanscnanaaslili
BACKtLACKinNg .cceeccecccvancaaccdanscsncancaaadcid?
PlanNNing cccceecececcccccccacncsoncsacsaccocannesdrdl

The.Language T e s ety e cncedsecsesse s s0s0ssnemese -0-00055

- d ODNONEWN O

[
-t ad b
VEWN =0

EEEsL s EFErEEGCEEE S

4.16
4.17
4.18
4.19
4.20
4. 21
4.22
4.23

Method of Description ...ceececceccecncecaeaadsds
BasSiC SILUCLULE .c.ccuccecccccccnscnscscaaneaddd
Identifiers ... ,cccccccccncencacnncccsnnsnascad9
Declarations ...c.ceccccaecscccacaccascaccaadsb0
EXPreSSiONS eccececcceccccsccscsccsaccncosasaacnasbdb9
Statements c.cceescncctccccconcccccncscccencaalb
ACithmeticC ceenccceneccccncccccncononcosceescaalB
StriNgS cccccccccccccncennsassccascsnncsnsccsnsaadl

BilS cececeeccoscasccsccccssacncccananceacasaaBl

2 BooleanS‘cq..-....o-.-o.‘.o-.n...-.-‘.. 00010086

Pairs, Triples and VeCtOrS c.cceececcaccccacea89
Sets, Bags, Lists and Chains ..ccicercscccsacaa.d2
Stacks and QUEUES .ceccceccccnocccccsccnasnaaensdI?
RECOLAS cececccacacecccncacsncascscsncncncseasasl00
User Defined Data TYPES cceccecemencccenensaalO3
LabelsS cccceiccccccacccsccacaceacencccoacnssal0S

PrOCVAlS c.eceecencoscncacccsacncosconcacssncanecslOb

Locations (lOC"S) ceccceacsncacccconcaceacaaasl0?
ATFAYS ceceaccgeaccccacosacsnscsccascccacncescacesslO8
TADlEeS .cciececaaccocscancnnscscocnce samsoeccecaecslll
ALCAS e cececcaccccscscnsacassccnsscanscssnssascccasll2
Conditional CoNStrUCES cccceccccccaseccncneansaalll
Iterative CONStIUCES uceiccecrpevccsccccsaccaasnlls
Return, Exit, Iterate and Nex{121

N

vi

CHAPTER

CONTENTS (cont'q)

. PAGE
4.24 TInput and Output '..........,..................‘2
“025 The Data “et ...oo--oo-..-.oo...0-01000000000126
4.26 OUnevaluated Expressions and Parse Time and
Compile Time EVALlUALION ceveveeccnncenccnonaslld2
4.27 PWtterns and Pattern Matching cececsncnccseccss 138
“.28 t.‘t'»..I.Q.......................l...".z
4.29 SGSCcsses - e esecccecctesssccscsecaacscccas 146
4.30 EBvents and‘!';nt_types ceecesaccecsccaccessasl52
.31 BacCKtrACKiINg cieeuiiesnceeeciecaccoscacaceesal’6
B.32 WOILlAS ucenieeeeceanceacnecceacacocaneans
.33 Elaborations c.eeiiecicceeeecncencocenn o

4.34 o0dds and Ends PP e s e e s ettt cscssncneoncnnncse ool
1

5 CONClUSION tieeennienececanneaacensnscnccencnnneal7T

References;f...............182
=y .

Appendix A - A Grammar for ALAI .c.eueeececcacaceesnn..183

Appendix B - Internal Structures S LK

B1 Language Defined Recorad ClasSes‘............;...193

B2 Internal Program StIUCtUTES «.iceeececceccccnaeasl9?

B3 Symbol Tables R R R R R R DR IR IR R |

Appendix C - Operating Environmenteceeeevceeo...208
s > v

Appendix D - Sample PrOQraMS cuceecececeanccacenacoesn.206

ryd

CHAPTER 1

JI¥TRODUCTION

Computers, often thought of as ;;!higol vhich comspute,
have many uses other than as large, high speed nuneriqal
calculators. One of these uses is as a ypol for the
exploration of intell?}bnce, i.e. finding- out what
intelligence is, what it eéconpasses and how it is achieved.
The main use of computers in such studies is as a mediym in
waich intelligent processes can be simulated, a usage
eabodying the field usually terleg " "artificial
inéelliqence". Tkis f£ield covers such topics as co-p;tetized

,3ame playing, automatic theoreas proving, the understandiﬁg
and production of natural language by lachine,‘silulation of
+human thqught, etc. Progcaamming computers to accomplish such
tasks i§ very difficult, partiy because of the innate
calpleiity and abstractness of the tasks. Special
programming languages and techniques have been developed

)
-~#hich can make the job easier. This thesis discusses some of

these languages and techniques and introduces a nev language
wvhich provides a cosbination of techniques which has not

previously been directly available.

Chapter A discusses several existing programaing

lanquages which have been used in artificial intelligence

-

’ . : :
(AI) appiicntiéan: The pctticulorilinéuaéo. dtlcunc.d' vere
chosen because 6& the diversity of their characteristics aad
the influeace thgy have hadq oa the ﬂroponod aev laaguage.
The didcussion conc;ptrntol on'the language features vaich
sost lttongly n!toct tho op-o vith wvhich the lllqnlqo undor
discussion can bo usod to program a amajor AI npp!icntion.
Mention 4is msade of thq stroag nla veak putlt: of the
languages and, vhere relevant and possible, comparison- - is
nade between the 1.69n’qel as to the u;nbility 3f the foras

in which the capabilities in common are offered.

Chapter 3 diacnsses the possibility ana desirability of
combining many landguage teathrei\(inéludinq tho?c discissed
in Chapter 2) in a single AI language. Conildofation is
Jiven to wvhat features are desired and how they can bHe
combined so as to ainimize inconvenience and effort on the
part of the ptogtall;t. The 1language ALAI (promounced
al-eye) is introduced as an atteapt to ﬁtovide a ptovioqsli
unavailable combination of featutes"and capabilities. The
chapter includes motivations for some of the teatur;s
included in the ﬁev language and continyes the éo-parison of
featu:es and vays of attaining thea. Alternate fotls vhich
are not wused in ALAI are discuyssed, along vith reasons why
ther@@te not used. The ma jor topics are the data netvork,

pattern matching, backtracking and ptocessas.

" . The central ’}n:t of the thesis is Chapter 4, which

describes the proposead language in detail. The description

>

o ' [y ’ ! .. [T ’ :) o .\".W‘.S\?".‘ f "",
* 1 " ’ ! . . ' s .J. o "4 K- W P
" " . ’ . - LN
e e EEREEEI e
ww‘ ‘ - ' S S
] ' e s

g"‘,w ..

. \
Tis '.ttllqcl ‘i- bocttqp- cccotdtlg to c.tn'typo- tnd hohtc.

1nnqunqo cc--tt.ctu. !ho dase c‘n-trobt-. L0, loolntat
-tntooont- and OI’CCCIIOII.QItC do-ctthod irst, atter Eli:b
_c¢6~toattto- ato'!oocrtbod ia orzder of t‘;lilﬂ ponplixttr
R uafamiliarity to the avcthc read ,“lbo Co.ctifttoa.
deal wmostly vith the .ouonttet. 1.0. ncnlth .td nlaq.. of
the types and cemgtrests,’ wifle the -yw?-' iu' &““,:y,/‘ m«
described by ‘s grassar ia Appo-d‘t l. lxu-plo nlc- ot tio

features are given along-vith o:pllltttons -loto nocc-l-ty.,

e
\

oy he & L s S, . - ! e ! ’ : v R " ~ L . %"f‘v’ d
f - . ey o SE i . . "u];v‘ s . "'.“\“\}'..&. S
EA R - » .. f - . . &
¥ Y Yo e Sy " o, .&-‘ R o .) . cabe K
1] ! » N N e
) Wl et X
" b, » (] L) S ,,.’.
. 2 Q s] A . r
s 1 -? .4) 8 Co . t
: B T Lep ' el
i . i g .y ".’ ~ '.I..'. 4
' ¢ v e . il TS
. . \
' SRR , cunu 2 e
. ,\ “,,‘ e, me, . + - ‘ ,"‘
e .
- Yo . .
e . .‘ ‘ . .o_ S, - e . R .
* : A o
. .\ e

\-...’.. . ' ,'.\’l—‘\:%t
R I VN o TR u'hm Rt
- o R \,. . .’,‘ué
o : SRS S T . | Tt
: . . N ’) . . N

. £ in she R,

, tt «u-nu,cul mﬂugoui nﬂnmuon' un
n «‘ ' ‘bmen uppuruq quite tnpi’le"JlOQO nlplltblo y{ & QM asw o
A lnngnnqou tqol tilt oxt-tlng ones lt. tnaldqcntq. rd.filla'
| lLGOL. coqpt. ctc. do not -.ot the nccl‘.ot -o-t clxtcnt l!lfl .
ptoqrgn-ors. ' !cojpct- il AI are boc0|1-¢ ant.lningly o -
"j}:. albslious -nd vatiod. Thcy ':ulqo frol gane pllyilq tld'
« . theorem ptoviuq T hltltnl IAlqlagc 1nfornst’on t'tttovni”,
‘ and q-aotalitod problea -olving. ltt.nptinq “to -.iastgect
computers (notorionsly uninagtiativo a.d r>‘) to solve
sauch ptoblo-: is dittxcnlt even vit“:t t oftém q"‘f‘y R
lisitations of conventional ptogtallinq 1:::1.;-. .-a iﬁcttv
inconsisteat isplenentations. The tusk_goconq. _easler with
the..isc of a prograsaing laijlngp suited to the -pislclthod '
their greater ntllity in AX ;p;lic;fioni”ittaallo bociiio"t///
the intrinsic 1utot.st of the aév - ptoqtalninq col-ttnqtl ll‘
data handling concepts vh;g&f}pcy 4ghgodugg.

- '~

Before att.-pting to dosiqn a .aev prograsasiag 1&.91190 =

it is useful to examine the existinag laaqnaqcs ia’ 6!8.: tq,

leatn fros the -istakes_and cuccossos ot Oth.tl‘_l dotailo&

——— — -

A

L]

® .,_"-"

” R
B A CNCR W

o

. eo;plote 1y a nif

systes construct ,

l"'i'

A IO gy o SO T
s X . q Yy
-. ’\ML%‘ o %,

.Z'.v.',v' .".' o’ ww

IR ALY LS
" .r:"'. " “

u& apbutuu.- otbot hlﬁm Mh nnbou:‘
ufluuthl tnﬁit ml'n gum “ﬁ!. "ﬂh g QI :
T (Sussegp, ,ot” tl... 1mc lwn}h ot ll"-y' ma. 0”
(l‘uuou. ttehu ”72').‘ !-3 mnuu. ot n.. 1!601 ud ’
u.a:x.so (van u;.qumu agd unuu. ot sl., ina pcuq. , o

drut aucu-uu o: s uhcu- of ‘Al h-guiu can’de.

tom tl ‘lobtou. au uph.ol. 1978, - o e

2.1 urse S L -, ’
R S L) ’ B) .

-LIS"i. ouq og u- (ov lengeages that is lltouunly !

‘ nnocinud *vith u-tuxcul ., iatelifgéace by -oig mno u

tn ecqpnug uou. This is p.rnp- due to the asatage .u

form of the lnquqn, botd of vhieh - u-q to u..eo.n,. sdst
cuut unr.. ‘rho nunallou ot tho langaage steas !m ite’
toptocntauoa schese for ptognn. data,
otc. _and (Q:o- its ‘seftace npparango
which is ‘that of -ostod lists nclosod ia btlctot..=looot

foras ot the language accept iaput 1- more ctlldu:d Jdru. ,
e, g. ausv looks liko an u.cox. la-quqc. Pot tiis

_ disc iidn, ;ll\ original LISP foraat 1111 e comdotod. rn

2

N
surface form has only féut special characters: (disreaarding
those uhiéh serve only as!/"break" characters and "amacros"
for sonme syétactic structure) , *'.', ' (', ') and the space.
Thus’ igput to and output from the system are si;ble and
uniform, but-because of the great nesSting depths colloniy
encountered, the structures can ‘Pe' very coaplex and
difficult to understand. Alsé, because such Qeavy use is

made of the few special characters, it is very easy.to
miipse them, the most common Iproblen being that of
mismatched or misplaced parentheses.
o~
/7 .

The base entity in. LISP is the atom, which is
r2presented via its n9me, a sequencé of characters. At the
naxt leveliiﬁ the dotted pair, represented as '(', the left
field, '.°', the right field and ')'. The fields can be

[

elther atoﬁs or'othqr gotted.paits. Thus all things in L¥SP
are atOm; or binary trees created’fron atoas. ' (Here ‘'tree"
is taken to allow loopihg structures, i.e. a branch of the
tree'can»point back to the rebt, etc.) Linked lists can be
represedped as dotfed pairs by lgttipg the left fields be

3. e
the eleméﬁft of the list and the right*fields be the links

which define the 1list. E.q. (A . (B . (C . NIL))) is a
kllnked list with the three elelent;‘A, B and C. Such foras
are %P comaon that a special syntax (l%sfrnotation) has been
jeqiéned for them: (A B C), etc. ®his -is a surface

conv=ntion only; internally, lists are stil.l represented hy

rignt br&hching chains of dotted pairs. -

-,

!Q,

Prograss, exptessionsA and commands are represented by
functions, predicates, pseudo-functions and ’special; foras,
all of which are in turn"reprgsented as lists, the first
element of vhich specifies the function, etc.'to beAﬁsed and
the' remainder of which specifies the argulénts (each
argument' and [@e function are.evaluated before the function
is called). E.g. (PLUS 3 (TIMES 2 7)) evaluates to 17. All

L4 .
functioﬁf, special forass, etc. yield a value wvhen executed,

hence they ¢&an all be used as expressions. Since all

structures arq,binary tree stfuctures,-the onJy'capabilities
really needed are 'thQSe for setting "~ the left and righi
ficlds of dotted pairs (REPLACA and REPLACD), for examining
these fields (traversing the tree to the left or right
raspectively) (CAR and CDR) and for some kind of conditional
capability. Others are usuadly provided, ‘houever, » to
simplify 1list wmanipulations, function,definition, progras
control, etc. It is often desirable to simply build lists,
tather than execute thean, i.x. to be able ®0 use a fora such
as (REPLACD location (A B C)) without having the systea try
to execute function A with arqguments B and, C. This is

\}iply returns

provided tor by the special fora QUOTE which s

its argument, unevaluated.

In keeping with the mathematical consistency angd
simplicity of LISP structures, a forms of the Church laabda
notation is used for the definition of user functions. Such
fo>rms can be named and hence saved in the System or can be

unnamed "constants" whch exist only for their one usage.

*

he . form is illustrated, along with the basic LISP

b

" 'conditional, in the following factorial function:

N -

(DEPINE (QUOTE (
(PACTORIAL (LANBDA (N)
(COND ((ZEROP N) 1)

(T, (TINES N (PACTORIAL (DIFFERENCE N 1)))))

1y 1))
©

DEFINE takes as argument a 1list of function definitioas.
Each function definition 4s a 1list containingvthe atonm
represéntinq the name and a lambda expression representing
the body .of the function. A lasbda expression is *LAMBDA'
tolloved~by an (ordered) 1list of parameters, followed by an
exp;ession which usually references the parameters. The COND
special form takes as arguments several two element lists.
It successivelf evaluates and tests the results of the first
element of these lists. If the result is not the special
atom NIL, then the value of the COND is the value of the
second part of that list. The atom T is used to correspond
to 'true' as NIL corresponds to 'false'. ZEROP i; non-NIL if
its argqument is zero. Thus this formulation of facforial can
be read as "define the function PACTORIAL such that
FACTORIAL(N) is given by: if N is zero then 1 else N times’

FACTORIAL (N-1)". *\

The above definition can be executed at any time, e.g.
as part of the execution of some other progras. A DEPI!P
which refers to an atom which already has an associated
function simply redefines the functionh. Assgbipted with each
atom 1is a property or p-list which contains indicators,
optionally followed by values, which constitute knowledge

4

concerning that atonQ Punctions are siaply .}to}cd ?n this
"list. As the value of some indicator anh as EXPR. The user
is free to -anipulatf p-lists in any vay he sees t;t,i thus
he can easily produce i;valid functions, possibly causing
LISP to fail. Also, since such f/::nctioﬁs are list
structures, they caa be éhangéijqepd‘ created Qby other

pPrograms. A program can even dynamically modify .itself.

4

These. features have - several ilpliéat;onsv for AI
programmers. The surface syntax of LISP can ﬁe very cosplex,
difficult to read and very verbose. Por example, coampare the
above factorial definition with the & following ALGOLW
version:

INTEGER ;iOC URE FACTORIAL(INTEGER VALUE N) ;
IF N=0 THEN 1 ELSE NsPACTORIAL (N-1);

This version is slightly shorter and, to most people, auch

Cclearer. .Also, the syntax used, although it incorporates

several different rules, is more pleasing in that, once
<

l2arned, it can more - readily be written without error.

The program/data uniformity gives LISP prograss the
capacity for self improvement of a scale and nature not
readily possible by simple parameter optimization. This
capacity, usually considered necessary for truly ambitious
attempts at machine inteiligence, is simply not available in
standarad prograaming languages. A unifarm prograna
r2presentation would seem to be desirable, Cat least
internally, so that self @aodifying systems need not be

overly concerned with syntax. The LISP convention does not

. ' "on
!

entireiy eltninatg this probles, hoquor, since i€ is still

necessary to keep track of hov many. of 'what kind dt_'

arquments the various functions, predicates, e@tc. -require.

The uniform binary tree structure used for dataalso:

has its qdvadtages and' disadvantages. 1Its. sinplic;ty_»gn@l

uniformaity allow the design' of péiettnl functions vﬁich
operate on such structures. Their purpose and method of

operation - is less hidden in dotalli of the data strqctuté

than the.purposes and metheds of fundtioas 'hich' sust diu1<

¢ . 3 ' L .
vith complicated structures having many types of components.

Also, the constant size (two pointers) of all nodes,

records, etc. used by the systeam, greatly silplifies storage

management. This sanme unifors representation, however, tends

to obscure nor-binary properties by requiring that nodes .

using more than two fields be represented as listi_or some
other structure built up frosm two field nodes (dotted
pairs). Also, the 1list teptesentition can be w&steful of
space. {or example, the list (DIFFERENCE X YY) uses three
dotted pairs for a total of six pointers. If a three field

node were used, however, (DIFFERENCE is known to alwvays

require exactly two arguments, hence examining the first .

ficld can give the total number of fields) only ‘threé
pointers wvould be needed. Thus LISP provides several
features which are highly desirable for AI applications, but

makes some sacrifices to do so.

v

10

“——

2.2 sarL,

.

The SAIL language is almost totnlly‘ Aiilililit iroi'
basic :Lisv. SAIL, and its pattnbrftho.nllr Alti lggucturoc,:
are edsy to use and are efficient 15 ic}ns ot‘ conputa%ioh;
The 1a;guage is ALGOL ‘based and !mn bo OOlpiled to produce

object aodules which gcaa be lavod anld thol loalbd and

Q oxecutod vith other proqxa.- (possibly lrlttol i 80!0 oth.t'

:fﬁﬁ“‘9°) at a llt.t dltc. CIoso conttol ov.r i.put and

,output is provided. ssxn has several data trpocb znc;natagfk

aszociatious, iteas, lots ‘and/lints. Syntactic construct- _
are provided tot>easy sanipulatioa of ihese types and- for
many - standard operatiopns found ia other ptoq;aniing
languages (e.g. integer and- real arithmetic, arrays,
automatic type conversions, etc.). _nhé bisic lingulge is
sinilar to other ALGOL _type lanqnages- and need not be
detaxled here. Of special note is the extended capability of
the 1teratxon statement as in:

4 <

POR X<-2, I-6, J STEP 3 UNTIL K, L STEP M-2 WHILE P<27 DO
statesent; .)

Here X will take on successive values of 2, I-6, J, 503, cee
K, L, L#MN-2, ... etc. and the 'statement' will be executed
once for each of these values. DONE, uzir and, éOlTIIOE
Statements are provided for exiting and itératiqg such

loops.

Of chief interest to AI vorkers are the sets, lists and
data sttuctnr. provided, and the facilities for manipulating

theam. A list is an ordered sequence of elements froam which

[. . ‘ B ‘a

N . [%

.
. .
“

individual olonont- daL e ptckbd qﬁh»by ndozlnq. ll.l‘ntl
can be inserted (at opocitic locationo) or dolotod ,1: the
Por"and RENOVE statbnont-. The ,td.t of occurrence and the.
nu-bnt of occnrtoncot of an elesent ‘in a :i is uholly
deterpined by tho ll.t program; SAIL will not chlngo thon.

SQts are liko 1ist& ‘eXcept that tho u-or\ﬂptograls cannof/

‘conttol the ordetring of clononts v&tbin th sets and an

eleament can occur 6niy:oncL- SAIL -oti cottocpoud to the
N

standard satheaatical notion of ahlot. The opcrutions of lot

.uniol. 1ntotnoetioa ‘ and lit)i%u.co lt. provided. .aAn
additional iteration statement, the POREACH stateaent, is

introduced. :It is capable of 1t§tat1ng through a set .

list, i.e. of doing some statement once for each olenenﬁ

(the current value of the iteration variable) of the set or
4 -

list.
G

The SAIL data structure is built up of iteas. Pach itens
can have an associated PNANE or print name and can have a

.,
datum, vwvhich is any arbitrary valuh, Aassociated with it.
O

.Internally, items are represented by intqgnts' each ite- has
f& c?‘t,sponding ;nteqet vhich -is globally reserved for that
“gyal '(all parts of the data structure are outside of the

> Rléck structure of SAIL pPrograms). The data structure

consists of associations, three element entitieé

represegé}ng knovledge concerning iteams. The three eleaents

‘are théy attribute, the object and the value. Por exaaple

-

Father-of®John=Tom can be read as "the father of Johmn 1is

Tom". The attribute, object and value are the iteas

AN

13

«
.

Pather-of, Jahn and Ton respectively. Other associations caa
be usod as Aparts'jot associations, thus knovledge about

knovledge is possible. such associations can be made and

unsade via €15 niKt and ERASE statements.

éeatching of 'and retrieval frona the SAIL data
structures (LEAP) are greatly 1gac111tatod by the FOREACH
statement used in conjunction vith doriycd setsr ror
example, coasider the following:

POREACH X | FATHER@TON=X AND X IN PTA-SET DO statement
The 'statement' will be done once for each FATHER of TOM who
is a wmember of PTA-SET. If a derived get is used, the
generality increases:

FOREACH X, Y | LINKQ(PATHERIY):X DO ...

This FOREACH will iterate through all LINKs of all PATHERS.
The deriv;d set is (PATHER.!). The three foras for such
derived sets are as follovs: a®b represents the set of all i
such that a®b=X, a=b represents the set of all X such that

Xe@a=b, and a'b represeats the set of all X such that aex=b.

The internal nature of SAIL's data structure is also of
interest. Many languages vwith a built-in data strugture or
data net have it in the form of linked 1lists. .These lists

must be traversed in order to locate inforsation on them.

’

This time consuming procedure is circuavented in SAIL. Since
each association has gexactly three cosponeats, it is

possible to store the a ssocfuttons—in tebltes:—The position
L -
of a particular association can be determined by hashing on

o

»

L

14

tﬁe integer values of the iteas used. The eleaents of
derived sets can be obtained by following short, sépci;lizod
linked lists containing only the relevant values. To
syampetrically allow the three types of derived sif:, all
associations are stored in triplicate, hashed amnd linked 1in
three diftergnt vays. In each of the three tabies,
associations éﬁving the same elements in tvo positions are
stored close together (partly d%; to hashing, but mostly due
t> a paging technique) so that iteration through a derivead
s2t can, operating systena potnitting, iavolve a @minimus
number of feferenées to bulk storage devices (druas, disks,
etc.). The SAIL data structures can provide sigmificant
inprovenents in search and retrieval times, but they suffer

from redundancy, inefficient use of. storage a-qi anp often

Cumbersome restriction to three eleament associations.

4T TsAIL allows multiple concurrent processes via

timeslicing. The various processes can communicate with each
other and with the outside world via events of specific
event types. A given process can be in any of four states:
tarminated, suspended, ready or running. Processes are
created by the SPROUT Statement, suspended and terminated by
the SUSPEND and TERMINATE Stateaments, and can be made ready
(resumed) by the RESUME statement. A Process is running only
when it is the one actually executiﬁg (through the
timeslicing scheme) at that time. Ready processes' are

codceptually running, but, due to the bhon-parallel nature of

typical coaputers, they are not actually _executing.

- 3

15

Suspended processes are noam-ready but caa bWo ready by a
RESUNE in the running ‘process. RESUNE pgovides a seans by

vhich the issuer of the ansuiz can pass a vnih;'(n nessage)

to the process being resunsed. Tgtlinntod processes have been,
permanently discontinued and can never be sade ready or
running again.

L1

Events in SAIL are 'irranqed into event types. Eac 4.

event type has an associatod queue of processes vaiting fory

an event of that type (the wait Jueue) and an %d? ...
queue of events of that type waiting to be noé ~ 4

" notice queue). The CAUSE statement produces events and can

thus affect notice gqueues and can cause the resumption of
processes wvaiting for an event of the type éaused. The
INTERROGATE form examines the queues of some event type and
can affect both the event type and the running processes.
The JOIN construct (similar to t‘ vaiting action of
INTERROGATE) causes one process to be suspended uantil all of
a specified group of processes are terminated. EPEach event
carries with it an associated message vhich can be useé to
identify the event and carry Se;intic information about it.

Provisions are made vhereby the wuser can vrite his own

procedures for CAUSING and INTERROGATING event types.
3
SAIL also provides a context mechanism of the *"storage

bin" variety. Individual variables or all variables
pra2viously remembered ia that context can have their currenf

value saved in the context via the REMENBER sStatement. It

o

16

A o

also allows the reseabering in ome context of the ceurmeat

valees of the variables which have been stored in q.othorQ

context. The RESTORE (for retrieying saved values) and
PORGET (for discarding saved values) statements are siasilar.
The INCONTEXT form tests whether or not a given variable is

saved in a given context.
~]

This type of context mechaniss gives the programmer a
method for storimg information about ;tlt.l of the Qotld in

Such a wvay that he has cosplete control over vhat is saved

vhere. It dces not;jhovovot. offer any facilities vhereby

variables (or array- eleaents or items data, etc.) can be
flagged so as to be - qutdlatically saved vhen they are
changed. Thus it is lecessary to explicitly save everything

that need§ to be saved, a task which can b; difficult if the

structure, as well'as.’the content of a vworld amodel 1;*

changing over time. -SAIL also offers RO means wvhereby a
4 . .

_pro%;an can easily create other prograas vhich are

equivalent to itself in terms of accessibility for cruaning.

The overall structure of the language suffers from soae

rigidity (especially in relation to the data structure)

.which can iake some applicatipns Cumbersome and inelegant.

17

2.3 swopor e s SO
‘ sy ﬁ:

The slolon language (the lw lnguq-’u aucum
by Griswold, et ‘1.. 1971) is “.11.: to LISP Lq tblt. the "-‘
external and iateraal forasjare aot uu thol.\ ‘ -uuud
proqtﬁnninq lnnqu.q.->*‘(f{ SNOBOL -t.tonoltl Il'l.tho sase
bllic.gptl, vhich is sinmilar to that wused by l..olbl!
language 1in that it ias divided iato .p.ct’tt ¢loidl. ‘e
geaeral fors is LABEL SUBJCT Patejfl = opJRCY ‘®oTo. The
LADEBL is used to namse the ltatotout 80 thtt ¢ cu..po

brnnchoa to; 1f it i@ mot pt.-ont then nt 1oa-t oqq;'tlanx L
sust precede thc SUBJECT. The GOTO is indicated by colon
pcefix and, if‘not PCesent, ‘defaults to an eatonditioasl

branch to the next statesent.

The soio decision making capabi}ity in SNOBOL is that
of success or failure of am operatioa. If any operation im a
Statement fails (e.g. array index out of bonndsﬁgi’ptgdiéitc
does not hold, pattern satching fails, etc.) then the
execution of the statement 1nlediatoly ceases and the
stateaent is said to have failed. The three forss of GOTO,
‘:S(label)', *:P(label)* and '°(1:bel)' coatrol htanching on
Success, on failure and unconditionally. The success and
failure form can appear together. If th;g PATTERN does not
gopear in a statcment, then the statement is just a siaple’
;ssignnent statement (one can tﬂink of an omjtted pattern as -

matching any SUBJECT) as in

COUNTER = COUNTER + 1

-
v . e “

e hoth tht = ond tlo olach o:c opitted, tbo nﬂgﬁggzo[‘
is a pattera -ntnltlg statemeat ia WAiSh - the PATERNN ";
MAtched against the S0BINCT. 1¢ at1 of :lia:cv; !l!!ll!o T
and OBJECT are prouont. then The stuteaent is a replucesens °

statement 1in vhiqh .tho sudstriag of SUBJECT vhich vas
satched by PATTERN is replaced by OBIBCT. It omcT 46
ositted but the = is preseat, thea ODJIBC? is l..ll.‘ to bc
.;ull Aa striang of lonqth sero) for eigthert an l.‘tgp.o.t

statesent Orf a replaceaeat -tntoloit. Aey other statesent

(exceapt ‘the ol atnto-.ut.,ohtch hn- .IL(the . . Illlb o

auch as Llll& = OBJBCT, etc. is 11103a1,

Ve

The internal vorktngc of stonon are lot acco.olblo to
the ptoqtlll.t, but ld%. hiat caa De obtuincd froa the
definition. of the. language. Bach String is represented
uniquel’/‘/insldo.tho fyston S0 that if ve have & =
*BOTHSTRINGS' and P« \Q?rn' '*STRINGS' (the blank represeats

string-e c‘oncatcncilm g then both A and B poiat to the same

.
int(ernn}'}ocation. Bach string has associated vith it a-

value ‘iich kc:,,ali be changed and referenced by the usor. Por
Texglple; if ve .hav-e

RONTH = ' APRILS S i /
then SHONTH is oquivalcint to APRIL. B.g.

$NONTH = ¢ CRUBL'

 MEANW = SMONTH : P

are eguivaleat to

APRIL = 'CROUEL! : ' ' .

MEAN = MPRIL

The $ indirection Operatq: cam of course be applied ¢to
'} -

N LN [A.. +
. A T O

. . B
T oy St . e . A TR

T p e
»

’
‘-‘.’

* muhrMum;m-o e e

33-- 1qmn. - s (vous Wmm et e o ;:]f
nun lno:.sodﬂ the uhb ot l!m tN.l clunhm *
atring expregsions asd oospile eabe. uu.nn uh “ws v,!

oporltor is lQ tantoltilq ‘;ot.lo Ot the: l‘ljll ‘ It‘
aliove sech thhqo s cn”ul .-to'n o . ‘
Ne Wt 1(s(*LABBLY nn § e

vhich branghes te LABELA dependimg on the valee of B.

. perhaps UM -nliﬁ"ﬁ“ﬂ..illori.ltdﬁi ot 'Iiii(

&Pltttti -utchanq capabiliw. A p.ttqtn Gll ho tho.glt o: an

a set of strings. A pAttera match is -aid to onocoo‘ At sode
substtinq of the SUBIRCT is oq.al to oae of tho ltttuq-
represented by the rPlff!ll. Bnlipally. patteras acrey ¢

cconstructed frows lctilq coastants, variables (vblch‘ ,‘

[

represent the séﬁénq fora of their curreat valwe), the
L]
alternation operator (|) and the comcateastioa operagor

v . \
(blank) . Bgackets can be used to altex: the order of

application of* the operators (coacatenation bhes °htqhot
precedence). Thus if

POSS = *'CAT!) °
then tho‘p:>t.gp

PUSS ('KIN®' | 'TAILS' | *EBRPILLAR') |
tepresénts the strings *CATKIN', 'CATTAILS® Ild\ -
'CATERPILLAR' . The value of a variable used in a pattera Can
be another pattern which is them used a’ a subpattern of the

patterh in wbich the variable appears. ¢

<+

20
{ﬁ
A number of special purpose built-in patterns are also

" available. NULL " represents _a string of length zero.

et]

LEN(integer) regrasents a string with (infbger) characters.
";SPAN.(strinJg) & BEEAK (string) match, "respectively,
sequences of, 'aed anything up to, characters which are in
(string). ANY(string) (NOTANY(str;ng)) matches single
characters which are (are not) in (string). TAB(integer) and
RTAB(integer) move the cursor (the pointer imdicating the
current position in the subject striﬁg), to the (integer)
pisition from the 1left 5: right end of the string. Left
movement (beckvards) is not per;ftted for TAB and RTAB. REN
1s equivalent to RTAB(0), it matches the REMainder of- the
sttin?.'POS(integer) (RPOS (integer)) fails if the cursor 1is
not _at the (integer) character froa the Teft (right) end of
'+ subject string. FAIL <causes a fail (in the pattern
mitching) when encountered. FENCE matches the null string
when 1nitially matched, but causes failure of the entire
pattern match if backed into. ABORT causes immediate failure
>f the «ntire pattern matéh. ARB matches any string of zero
or more chardcters, but will always attempt to match as few
characters as possible. ARBNO (pattern) matches any nuaber
}as few as possible) occurrences of (patterm). BAL matches a
string representing an expression which 1is balanced with
repect to parentheses. SUCCEED matches the null string and

«

will always succeed.

°

Several other features of patterns are also available.

»

ifv a pattern is postfixed by . and a variable, then_if thé
match succeeds, the variable is 4ssigned ghe portion of the
subject which wvas matched by the paesfixed pattern. $ is
used in this way like . except that the'£§signlent is done
during the pattern matching and doe; not depend omn overall
success. The character @ i--ediatéiy before a vagiable (no
interveni&g blanks as in . o£'$ and other SNOBOL operators)
pfoduces a pattern which matches the null str¥ng and which
immediately @agsigns the current cursor ,position (an integer
value) to:.the variable. .When a pattern is produced, _any
expressions in the patterﬁv are normsally evaluated
immediately. Thus when actual pattern matching occurs, al
parts of the pattern are constants. The evaluation of
expressions can be delayed until pattern matching time by
prefixing the expression with «. This use of unevaluated
expressions allows the construction of recursive patterns as
in
P = &P 1Z' | Y

which matches a 'Y* followed by;zero or nére '*Z's. SNOBOL
.also contains & Aunber og user settable flags which control
some of the details of patté}n matching, input/output,
.proqram tracing, etc.

SNOBOL also provides many system functions, predicates,
operators, etc. which are needed for basic programming
capabllity. One feature not often found is the ability ¢to

redeftine the meaning of.- an operator or function nasé¢ and to

define synonyms. For example OPSYN('+','F',2) causes all

%

subsequent uses of the operator 5+', as in N + M to call the
function F, as F(N,M). As in LISP, the definition of a
function is an executable operation, so that fumnctions can
b= dynamically defined and redefined. An interesting data
structure 1is the table,‘ wvhich is essentially a ohe
dimensional array which is indexed by anything, rather than
just by integebs: ihﬁs if T is a table, T<'A'> = 33assigns‘3
t> the A'th element of T. A is not converted to an integer,
it is simply a ’string value. Similarly, patterns, real
numbers, unevaluated expressions, etc. cap be used to index
tables. SNOBOL provides a way whereby executing programs can
modify themselves, but the method is far 1ess'elegant and
complege than that of LISP. The function CODE accepts a
string arqument which is compiled into executable internal
structures. Labels in the new code supercede existing labels
of the same name. A GOTO of the form :<code> will cause a

branch to the top of the program pointed to by (code).

The language provides excellent pattern satching.
capabilities as far as strings are concerned, but does not
extend these capabilities to other data types such as
integers or user defined data types (similar in SNOBOL to
records offered by typical ALGOL languages). No facilities
are providgd vhereby a dath netvork' can be created,
manipulated or saved for future use (without cumbersome use
of user data types, string pattern natcbing, external
storagje, etc.). Some rather arbitrary restrictions exist in

the lanqguage; for example, an array may have another array

a 23

as an element, but a form like A<12, 6>C14,J> may not index
the inner array; instead, the sy§:e- fuction ITENM '!ust "be
used. Similarly, ($S)<2> is not allowed. The external format
of the language is usefal fbr' cettqin restricted
applications, but it teﬁds to be difficult to get used to

.

and can be diffi‘ to follow. Also, the .control structures
B 3 . '.-' N ’

of fered are somevhat [restricted " and the pover and

convenience of iteration is totally lacking.

[

2.4 2.PAK .

i

2.PAK, like SAIL, is an ALGOL type 1languadge, and as
b)
S

such it i relatively easy to use. One of the wmost

noticeable features of 2.PAK vi; its conciseness; the
construct§ available are few and do not overlap auch. The
programmer is thus not confused by a bewildering - array of
special forms and methods, many of which effectively do the
same thing. The ‘language provides the . very basic
capabilities for wvorking 'uith, the features offered, but
l2aves ‘the definition of more pouegful, more specific foras
up to the user (via macros and procedures). This convention
is good for programs which use the various features . in
straightforward ways, but more complicatead ‘i}grais may tend
t> become overfull of calls to procehufés and macros which
have functions known for certain only by the programmer. A

price of basic simplicity and specificity can thus be

inconsistency. : -

|

. The use 6f macros in ﬁigher level languages is not nev,
but is sﬁffipiehtly rare to be noteworthy. The _macro
-tacilify of 2.PAK is by no means as extensive as the macro
ang cohditionai‘;s;elbly features of the IBM/360 aésa-bler,
;ut i$ sufficient , for most needs. Parameters are allowed,
hut they are strxctly ordored and are only string coastants.

or identiflets. Exptessxons and variables in 2.PAK are typed

as fully as possible (e.g. 'string list array?*) so that the'-~

compiler 'can aid the ptogtanler by type checking his :
@

'prograns, For applications tequlrinq’variable types, the all
inq}usi(e " type ';;r* is provided along with execution tilé
type deteraination via.the‘pr§éedure ‘type'. Like SNOBOL,
2.PAK Tea; es’ tableﬁ (typed .as’ to the entries) and
unévalnatedt:ZpressiOns. The prefix '#' is ptovided to force

evaluat1on within an unevaluted expression.

The <coroutines provided by 2.PXK seem . to be a cross
batwveen génerators’ (as in CONNIVER) and processes (as in
SAIL). They a’e‘ declareds 1like procedures - and appear
identical to . them except that they cannot return a value.
' Varjables can be declared which can point only to individual
instan;es kinﬁocations) of some specific coroutine. Values
for these are created by calling the corobtine,vith some
specific argquments. Each such call creates a new and
independent coroutine * instance. .Three stagglent§ are
provided for manipulating coroutine instances. The ‘'invoke!

statement causes the specified instance to be restarted at

the point at which it previously left off. The instance

25
issuinq the 5invoke' is s&spended and the return location of
the invoked instance is..it to the statement following the
'Envoke'. The 'resume' statement is 1like 'invoke' except
éhﬁt 'the‘ return - location At'the instance being resused is
‘not,affgdted. The ‘'detach' statement causes the current
ihstanpe (the one issuing the 'detach‘) to suspend itself
and branch tolits retura location..znch ‘coroutine contains
- an implicit ‘'detach' as its final statement. *Detach!' gnd
fresune' can scéut dnly in coroutines. The reserved word
'-;' points to the cqgrently -active coroutine instance.

Variables within a coroutine instance can be referenced,

. both for retrieving and changing their value by preceding'/

the variable name (or array, list or taple element) vith the
variable poiﬂting to the instance followved by a period. This
convention is recursive, alloving such foras as

X.2.P(6,4):=2.
Y

The data network of fered by 2.PAK is based on 1labelled
nodes interconnected by labelied, dirééted edges. It is
constructed wusing the standard lénguagé constructs and
Cecord classes. The gntire package could have bee’
programmed by the user, but is provided as parf of the
language {; simplify the user's job and to provide soae
uniformity among 2.PAK programs. Pattern oriented'seatchihg

-

of and retrieval froam the structures can be provided by the

~

pattern matcher.

A type of backtracking is provided through\an'expanded

. 26
g . » ;

‘"storage binf cong.xi s¥bpanisa. Contoxiq are created apd
enggred via the :nev Qontext' statement. Individual values
- are saved in the énttoh%ggontoxt by the ‘'save' statesent. AN
optional argument to,the data-base procedures or thcgsettl‘g
of-a global .SAVE svitch allows changes to the data-base to
be saved in the current context. The ‘back' statement
restores i-icdiatoly,.trnnitoti to/tho.OIriiot context, or
forgets entir chang;s made .to .mariables~ and/or the
data-base and :E:z;destroys the current context and backs up
to the previous‘one. In this way backup of values, but neot
of execution, is achieved. The 'preserve!’ statélent\binds
thz current context to the current coroutine' instance so
that it can be specifically referred to. The ‘restore’
statement restores the world to the state it haﬂ when the

context bound to the specified coroutine instance was last

active. This smethodology allows no way

for tqterencing
values saved in a context not bound to a coroutine (oﬁly ene
. .
lcan' be bound to each coroutine instance). Also, as in SAIL,
;4values to be saved must always be explicitly saved by the

programmer.

The pattern wmatcher of 2.PAK is one of the language's
most interesting features. Unlike the matchers of SNOBOL and
PLANNER which are restricted to matching only strings or
oﬁly the data ret, the 2.PAK l;tcher can operate on any
subject pattern whatever. Also, the user is free to :rite

pattern matching procedures which best meet his individual

regquirements. A 2.PAK pattern is built up of Dboolean

expressions which wmust evaluate ¢to true in order for the
subpattern they represent to be successful. The global
variables SOBJECT and CURSOR point to the string being
satched (SUBJECT is used only for strinqv pattern wmatching)
and the ‘pottion of the subject currently being examined
(integer char;ctet posiiion for sttinés). The operator ‘or!
allovs .alternation as vith "SNOBOL's *|'. Bracketed
subpatterns'are valid "arguments" for ‘or'. The procuegs of:
pattern matching is one of conparison,ladvancing in both the
subject. and the pattern, and backup in both the shbjé&t and
the pattern. The subject is fixed, hence retraversing it has
no effect on it and will yield the same result, but the
pattern confgins . alternatives and expressions to Dbe

evaluated, hence backing up and going forward in it can have

very definite effects.

Mo allow full control over these *effects, direction
indicators are used. If a boolean expression appears by
itself, it is taken as a constant and is evaluated only vhen
passed over in the-forvafd direction. If it is prefixed by
'<->' theh it is considered to be a generator of %uhpatterns
and is-evaluated vhen going forward and vhen going backward.
DThis action is needed for patterns equivalent to, say the
SNOBOL ARBNO. To complete the set, the prefix '<-' specifies
that an expression is to be evaliated and tried only when
Sackinq up.’ Motiom in the Pattern is controlled by the
success or failure (true or false result) of the boolean

exbressionsf but traversal of the subject is entirely up to

28

the exptessiohs of the pattern. Three global variables are
used to coatrol patsg;n iatching. If SUCCEERD is true when a
nev subpattern is to be tried, then the entire match stops'
and ‘true' is returned. Simsilarly PAIL can cause an
immediate termination with a result of 'false'. If CONTEXTS
is true, then a new context is created and en}ered for each
ma jor pattern matching oxgtcséion (each sequential part)

evaluated.

Several predefined fungtions are provided, all of which
could have been vritten by the user. Por example, ‘cursor?'
sets the value of CURSOR and returns ‘true', ‘tget_cursor*
retrieves t he value of -CURSOR and returns ‘true',
‘match_string' compares the string pointed at by CURSOR Wwith
its argument and, if they are equal, advances CURSOR to the
end of the matched substring and returns 'true’ else returas
‘false', etc. The basic boolean matching procedure 'match?
accepts a pattern arqument, an initial value for CURSOR and
pPossibly an initial value for SUBJECT. It returns ‘truet if
the match is successful. PFor example

PAT:=<: (type (COURSOR) =tint'), (type (SUBJECT) ='string'),
match, ing ('B') or match_string(*'R'), ’
mytch_sge€ring (*E') or match_string ('EAY),
match_string ('D') or match_string (*DS*) :>;

matches the strings ‘'BED!', 'BEDS*, 'BEAD?, ‘BEADS ', *RED',
'REDS', 'READ' and 'READS'. Recursive patterns are possible:

PAT:=<:(type(CURSOR)='node'),

<->match_edge (*ABOVE") ,
(Label (CURSOR) ='TABLE') or
match (PAT,CURSOR) :>;

PAT will succeed if CURSOR initially points to a node fros

29

vhich there is a sequence of zero or more edges labelled

'ABOVE®' leading to a node labelled 'TABLE®.

~This pattern latchind system 1is quite general and
powe?rul but it tends to be rather verbose and does not make
pattern wvriting easy for the prograsaer. Compare the above
string pattetn\with an equivalent SNOBOL one:

('B' I "R*) ('E' | 'EA') (*D' | 'Ds')
The SNOBOL version is much shorter and clearer. 2.PAK, 1like
SNOBOL, allovs the execution tiame compilation of strings,
but this capability is far inferior to that of LISP and
LISP-based languages. The data net provided does not allow
for systea efficienéy because of its added on nature. Also,
the use of edge labels to specify the relationship holding
vbetveen the participant nodes ‘may not alvays be desirable.
For example, it does not readily allov other than two-vay
rzlationships without argiticial subrelations such’ as are
needed for wmulti-element relationships in LISP. Other net
conventions, although representationally equivalent, may be

better suited comceptually to some applications.

o ' 30

CHAPTER 3

. THE PEATURES OF ALAI

-

The previous chapter ‘has discussed sovotnl ptogtal-ing
languages with respect to thelr basic structure, " the
features they offer and the usefulness of their various
features in artificial intelliqence‘application;. The list
of features mentioned is by no leZns exhaustive. Peatuyres
wvhich have been used to advantage in oth.; languaqes include
failure driven backtracking (both of valnes and execution in
programs), pattern directed procedure .. invocation, and
language extensdbility., None of the lanquages yet avaxlable
offers all of these features as built-in co-ponents. It is
not clear that it js desirable, of” dven possible to combine

them all.

If all of the desirable features (or so-é acceptable
alternative) were available in one language, it is possible
that many of the current artificial intelligence Projects
€ould be rewritten in the one language wvithout too Buch
difficulty. This would be a first sStep tovards producing a
single large system with truly advanced capabilities. The
conponenf% for natural language coaprehension, nétural
language deneration, problena solving, inductive and

deductive feasoning, planning, etc. could be Separately

-

3

designed, yet sttniqhttotva:dly integrated. At the very
least, more videgpread use of a single, standarq lanqhnqo-
vould wmake ¢ @e program portability apd for easier use

of programs produced at other centers.

»

It can h“\tquod that such a general language would be
too clumsy and 1nologint for easy Qlo and that the various
Z?oaturos are of such a nature that they camnot all exist
sisultaneously. There exist languages today vhich att_of
'spf!icient generality that few people are familiar with ,tho
vorkings and use of all of the parts. This by no -ean; sakes
the 1lanquages unusable; the user need only be familiar with
‘those particular features vhich he is going to use - the
othars é;n be essentially norexistent for hia. Supposed
inconp;tibilites‘of features‘are often technical in nature
and can be overcome with sufficiemt etforg. Other, more
basic problems can be sidestepped. Por example, the features
of high efficiency (of prograa execution time) and dyng,ic
prograa nodifidbility> would seem to be 1tro€ouciliable. ft‘
both high efficiency programs and wmodifiable prograas can
exist in the same systena, however, both features are
"obtained to a large extent since, in most applications, very

few programs need be kept in the inefficient modifiable

state.

This thesis introduces ALAI (A Language -for Artificial
Intelligence) vhich possesses nany of the desirable

*tures. The details of combining the various fet.ltures have

lin
o bogm worked out and are
of Chapser §. ltpocially notonotyhy i®s the 1nt.§tntloa 6!

ned ia the relevaat . sections

completely acconliblo contott- vith full backtrackisg amd
aultiple processes. ‘ N

3.1 Basic Needs ~

Users of LISP | vho are " also ll..&lilt with a sore
standard language knov the difficulty of‘cxpri@iinq in LISP
many basic programming opotat#ons. Por example, the siaple
arithmetic expression for ‘one ;solution of a quadratic
2juation: |

(-B+SQRT (B#B-UadsC)) /(2%h).
must be written in basic LISP as:

> - (QUOTIENT (PLUS (nuns B} (SQeT (Dlrrzntléi (TINES B B)
~. (TINES 4-X CT)))) (TINES 2 1))

§i-ilat1y, ‘the ack, in SNOBOL, of simple iteration
statelents,i'if' stitelents, type checking, etc. and the
requirgment that all operators be spaced off from their
~operands-will often prove irksome to a programmer used to
more _standard conventions and capabilities. ihus it wouid
Seeas that standard capabilities are required in a language
that . is to be wused for nonstandard applicatiohs. s a

Cesult, ALAI. has been given the capacity for manipulation of

integer, real, boolean, logical, string, array, procedure,

etc. 'values in wvays that are familiar to most prograasers.

For the same reasons, ALAI has been provided with flexible

-~

input/output capabilities and the capability for formatting

. . " . 7 ,“ ’o f . . . ‘ -
: . C 33

hY
\.

l‘* of values to be output nnd‘*to: easy dooofxlq of iapet

strings. : »

rho\'ﬁfilioiéo of ihuy ltg‘h.rd features in ".talda;d
fora't tends to require that the optt;‘olaaqncjo be of lé“
“standard fora®". Thiw esseatially seans that it i; built dj:‘
top of a standard langeage of 001’ kind. A large portion of
the nev languages istrodgced ia the ihit-tgv'ydat- édvb iotg
based on ALGOL. The reason for this is " gerhaps th%i
readability and structure of ALGOL, both oi vhich have &39
praised by coiputi?g theorists. To conform to this tfcnd and
also to satisfy certain hperlbnaf b;ot-toncop. ‘lli is an
ALGOL based language. This is not. to say that all ;tructutcc
and conventions appeatihé iq ;ay,CAiGOLl,i'appoat .nnlltcfdd
in ALAI. Rather, the basic form is- that ot‘aéit ALGOL
.languaqes, and most features offered in Dbasic ‘LéOL ase

ava%lable in some form or other in ALAI. ’

Aside from the standard features of arithmetic, arrays,
itecati&n, etc., several languages oft;r other data types as.
basics types. These include sets (unordered, vith oaly one
occirrence of a particular 1te-); bags (unordered, any
nusber of occurrences}, - lists (ordered, ;ny” nuaber of

a occurrences) and tables (one dilqnsiqnal arrays indexed by
arbitrary values)., These types aroiall ;v;ilable in lLAI:
Also available are vectors, which arq q¥ternally equiv;lont
to lists but are represented intetgglly as sequences of

L d

consecutive locations rather than as linked structures, and

34

Vs

chains, vhich are bidirectionally 1linked 1lists. For
/7

completeness, the various standard operators are available,

e.g. 1list concatenat and set union, intersection and

difference, along with a few new operators for working with

baqs, .

* The iteration capabilities offered byv SAIL can be
convenient to.use. They allow a single iteration to pass
ovel Sseveral successive ranges of values. MLISP offers a
differonf version 1in which sSeveral 1iteration variables

e

simultaneously pass over independent raﬁges. The total

‘iteration ceases when any of the ranges end. This latter

form has been chosen for ALAI. Along vith this form is the
ability to 1terate through the elements of sets, lists,.
bags, vectors, arrays and tables. Through the use of loc's
(pointers to variables, etc.), the iteration‘facilipy allows

the elements being iterated through to be changed as well as

referenced. Thus an array can be initialized vithout
explicitly specifying anm index, hence‘avoiding any necessity

of index checking.

4.¢< 3asic Internal Forams
: P

The previous chapter pointed out the advantages of
f

hiving an i1nternal program structure which is accessible to

]

us=r, programs. It also pointed out some disadvantages of

!’

having a purely LISP-1like external form. Some language

1=2signers have avoided these difficulties_to some extent by

v

RRCAN #, .
buildinéfﬁ}pore standfrd syntax on top of a LISP-like base.
This syétax can be accepted by either an interpreter
(vritten'iq LISP) which stores the external form internally
and executes it as ;eeded, or a translatot'(again writtenm in
LISP) vhich produces LISP ‘prograss egui valent to the input
source programss. It is also possible that the entire systen
be designed‘with tJb different representations in mind, one
internal and one external. This latter -ethqd is used in

ALAT, but aspects oﬁ the above translation scheme are also
incorporated. The only major difference from the translation
scheme is that no part of the system is intended for
accepting and parsing the internal foram. (User prograss can

Oof course simulate this with very little effort.)

“

A facility is available for executing statements during
th= parsing of the external form of a routine. These parse
time sStatements have access (as do all‘statenents in ALAJ)
t> the internal forms being produced and hence can modify or
add to them in any way. In this way a very powerful wmacro
facility, wusing the full power and convenience of athe ALAI
lanquaqe,‘is provided. It is also possible for the parse
tim= statements in one routine to wmodify the internal
stractures 0of some other routine. This uld be desirable
for automatic standardization of stryctures and
Cepresentation of things used by the prograsmer. The program
which does the parsing (translation froe source forms to
internal torm) 1s of course written in ALAI. It 1is

r:sponsible for syntax checking, type checking, identifier

36

verification, etc. and for most error messages.

The ability to do interactive operations has proied to
be of value. One aspect of this is the abiliiy to modify a
progranm td improve its performance. This can be done via
text editors working on files containing the source
Statements for the program or can be done by a component of
the interactive system which manipulates ‘the int;rnal
structures used for programs. The latteF approach is
illustrated by the language APL, which proyiges a form of
character oriented editing on the external\fotu of stored
programs. The user is thus isolated from the internal
representations used. In ALAI, the internal structures are
fully accessible to the user, hence the ediging can be done
directly on them. The editor is a standard program, written

in ALAI, .which provides facilities for locating and changing
» (

.

parts of internal structures. It works in conjunction with
the parser and with a routine for printing internal

Structures in a form sisilar to the original source fora.

The internal programs structures produced by the parsef
(a1nd any user programs which care to do So0) are immediately
executable via an interpreter. This msethod does ﬁot .produce
much efficiency, so a further component of the systeam 1is
needed. This is a compiler which transla&s the 1internal.
structures into machine code for the local computer.
Programs which have been compiled cannot be modified in that

state; rather, the original uncompiled version aust be

37

changed and then recompiled (or _useq instead of the old
compiled version). Such compiled versions can be . freely
intermixed with uncompiled ones-and‘arg idéntical in usa@e
except for tbéit greatly incre;sed efficiency. As with the
parsét and editor, the coibiler is simply another ALAI

prograa which 'is standard for a given implementation.

3.3 Portability and Redundancy

Ag mentioned above, many parts of the ALAI systea will
bé written in ALAI. This extends to the higher lével
portions of the interpreter for prégral structures. Tpus the
only parts not written in ALAI are the very low level
interpretation routines which woulad directly deal with the
interaction between ALAI constructs and the ﬂost computer
and aperating systea. In this way, the entire system can be
made easily portable. It will also be highly standar 4,
since there will ef fectively be dﬂi; ‘one, standard
implementation. A given inple-entation-(eicept of course the
tirst) need only provide th® few bottom level .routines, a
task which should involve no more than one 6: twvo nonﬁhs of
effort. vBecause of the vastly different machine
architectures, it would be necessary to transport the ALAI
varsions of the system in a coded form which represents the
linked and sequential structure of the prograas in a way

which is independent of word lengths and addressing modes.

Ways have been developed whereby the base structures

38

can be portable, the only local portion needed being an I,/0
interface. An eialple‘isithe language ALGOL68. The lLGOLéOCV
'c0|piler (vritten in ALGOL68C)/produces nachine‘che for a
hypothetical conpgtér called the 2 machine. A standarad part
of the isplementation is a FORTRAN (chosen because it exists
at most computer installatjons) program which intecrprets
Z-code. :sé? the compiler (the Z-éode object for it) is

by the FORTRAN interpreter and produces 2-code

" R

interpre
prograams ' wvhich are,also interpreted by the FORTFAN progranm.
A particular installation which wishes greater efficiency
can produce a program which translates Z-code into the local
lachiHN c;de. Although this wsethod makes implementation
slightly easier, it will not be wused for AhAI, lostly
because of a desire to keep things simple (no hypothetical
machines or foreign la&@nageé are introduced). Also, the.
local 1implementer of ALAI can, fn the interests ~of
efticiency, hand code. any of the routines without fear of
violating any conventions (he will have chosen and
implemented the bottom 1level conventions). If greatér
dvezrall efficiency is npeeded, a local compiler can be
produced, using the initial implementation's’ compiler as

gquide and base.

As mentioned in section 2.4, the 2.PAK language
contains very little redundancy, i.e. there are usually very
f2w ways of saying the sasme thing in the language. This has
the advantage of making the language easy to 1learn and

describe. At first glance, it wvould seem that ALAI has taken

’ ' ‘ 39
£he almost opposite approach. Por example, the 'cond' fora
is semantically equivaleﬁt to 'if',- ‘then!' - telift - 1gq
Sequences and is thus redundant. Its syatax is noﬁ the sanme
hovever, and the.oxtérnal fotn, not the sesantics, is the
part with which most users will be concerned,., Both the
‘cond' and the ‘if' are included because they are each
preferable in certain cases. Por example, 'if A<B ﬁhen A
else B' would wusually be considered better than ‘cond
(A<B:A,A>=B:8)' because of the former's greater readability,
but when long sequences of alternatives are involved, many
may prefeg the shorter *'cond' fora. Many érqqrallers have
their ovwn specific preferemces on language form and -would be
much " happier if their favorite fora vere used. To keep
éveryone (at least most of the programaers) happy, both
forms are included. Those who do not wish to use say, fhe
~'conde form, can simply ignore its presence; they are not
‘likely to ‘use it accidentally. Similar reasons hold for
several other cases in which some structure is really not

{r
Recessary.

3.Q The Data Net

.

Many different forms of data network (net, data
~Structure, association net) have been used by various
programming languages. Undoubtedly, BOsSt programmers would
have definite preferences based on their own particular
experience and neegs. Unlike programaming constructs, the

various net styles cannot all be offered without introducing

40

unnecessary inefficiencies into the execution-time storaye
and computing needs of Prograss using the net. The baest
.salution would seea to be to offer one"gonotal fora which
can easily an4 officiont“{ Contain the others. Some data’
nets (sgph as that of 2.PAK) use nodes for oSJoctl 'ot
diﬁcourse and labeled édges for properties and relations
(concepts) . Others represent both objects of disgoutse Aind
concepts, as nodes, and fora relationships by pointing to
these. The *fiode and edge form as used by 2.PAK cannot easily
provide the capabilities of a concept and relationship fors.
For example, finding all uses of a given concept as a
relation wmay 4involve searching the entire network for all
edges with the appropriate label. No such ‘problem arises
vith the concept and relationship representation. Another
adqantage of this second Tepresentation is that properties,
binary relationships, or relationships over more thanm two
,arguments can all be represenied vith equal facility. HMost
natwork forms are representationally equivalent so that, in
the end, the decision as to vhat fora to use must be based

on matters of convemience and preference.

The data structure chosen for ALAI has. two wmain
components: a dictionary and a Semantic netwvork. The
dictionary provides a aeans of vaccessing net elements
directly by their name (if any); Any elements which are thus
accessible will have direct access to the relevant
dictionary entry. The net elements fall into two categories:

instances, which correspond roughly to things and

41

. ‘ »
propositions; and concepts, which correspond roughly to
properties (including states things cag be in and activites
they can be engaged in) and relations. The significance of
nodes in the net is entirely up to the user, but most would
correspond to some type of concept or instance; for such
nodes certain fields are predétined. Because it is the user
who defines t'he Ahode types, there are arbitrarily many
types, and the various type? can be used in arbitrary vays.
‘Gertain uses, however, are expected to be more coamon than
others. For example, facts or propositions sgored in the net
would =most 1likely be in the form of compound instances
having fields for a coﬁcept (the'"verb" of the "sentence")
and several participants (the "subject"™ and "object", etc.).
When such an instance 1is created, the ALAI net manipulation
routines automatically create access links to it froa. the
concept (s) and instance (s) used in the compound instance.
This system of automatic back links provides for conple£ely
°f}pfdirectional links throuéhout the network. The back links
(usage and participation lists) introduce some storage space

wasta§e, bat it is felt that this is a fair price for the

ability to traverse structures in either direction.

For the sake of efficiency, an extra, dimension is added
to the repertoire of possible mnode types through the use of
descriptors. These are identical to instances and concepts
except that when the systea is constructing back links to
coepound elements, it will not 1link from a permanent

(non-descriptor) element to a descriptor. In this way,

42

.Subnets of descriptors can be created vhich are not 1linked
to and "énce can be changed or destroyed without a great

deal of backlink modification.

As discussed in Chapter 2, the net Structure used by
SAIL is designed to be efficient in teras of accessing tiae.
The price for this efficiency is vasteful use of storage
space and strict restriction to triples as stored facts. No
attempt has been made in ALAI to achieve SAIL type accessing
efticiency. Most of the time associated with use of a data
net is that of searching through the many 1links for some
specific fact or Substructure. The net structure of ALAI
attempts to reduce overall search time by guiding the
search. Each element in the net has an associated count of
how '‘many times it has been used as a part of a compound in
the net. A search for an element would ghen be guided by
these counts; the links frona little used elements would be
tollowed tirst, rather than those from elements used often.
Efficiency of storage is achieved QP some ;xtent by allowing
2ach compound to have as many parts as it needs, thus
avoiding many of the linked lists used in LISP

repfesentations.,

The extermal form used to represent sentences and
substructures to be inserted into or searched for in the net
€an greatly affect its attractiveness to users. The fornm
used in 2.PAK for producing and traversing node and edge

structures is very nice; the sequential nature of the

43

L |
Structures is plainly displayed, as are the labels t;: the
edges ﬁ‘ﬁ aodes. Production of tree-like structures is not
quite as easy, hovwever. The use in LISP of bracketed pairs
to represent the branches of a node can be expanded to
handle n-way branching, but the 1list notation aust be
abandoned to avoid ambigquity. Thus a fora such as
(KNOW (SONOF PngR) (LIKES TOM (DAUGHTEKOP PlbL)))
caﬁ be used to represent a thFee level subtree representing
the knowledge "the son of Peter knows that Tom likes Paul's
daughter". The use of indenting to represent depth is also
possible:
KNOW
SONOF
PETER
LIKES
TOM
DAUGHTEROP
PAUL

This method, though representing trees in a readable fornm,
occuples a large amount of Space and is dependent on
character position, a factor which is usually ignored in
ALGOL languages. Numeric level indicators can be used, as
can special level shift characters (cf which the LISP
brackets are one exaaple),. The simplest and most concise
form vould Seem to be that used by LISP. This form has been
selecte'for use in ALAI to represent descriptors, sets,

bags, lists, chainse etc. The actual type is distinguished

by a single character prefixing the structure.

44

3.5 Pattern Matching @

Trdversing of structures, done with the same form in
2.PAK as is used to create thea, can be done for
multi-element instances by specifying tho‘ index of the
Pointer to follow down. Thus 'X:=X(2)* moves the pointer X
down into the second Substructuse of the structure it was
previously pointing at. More complicated traversals can be
done via the pattern matcher. Note that the LiSP_lethod of
using CAR, CAAR, CADR, etc. is simply an abbreviated form of
the numeric index method, in which A has the value 1 and D

has the value 2.

-

. Three different pattern wmatchers wvere discussed in
Chapter 2. The SAIL net search mechanisa and derived sets
can be considered to be a pattern matcher. Their operation
is restricted to searching the association net. The SNOBOL
pattern amatcher is powerful, easy to use and concise but is
r:stricted to working with string subjects. The 2.PAK
pattern natc;er is powerful and general (it can match
strings and the data net as vell as any other structure or
data type' used) but is very verbose and does not Provide
many features to make the programmer's task easy. It would
be very desirable to coambine the good point§ of all three,

along with those from other pattern matchers, such as those

used by PLANNER, CONNIVER, QA4, etc. Can this be done?
®

The difficulties are those of avoiding ambiguity while

maintaining freedom of torm and conciseness: For exaample,

45

does ‘ &j’

(2.64 "cat" mdog"® (12+16))

N

rapresent a compound yith relation 2.64 (??) and
pat}icipantg “cat", "dog" and the compound (12016% o vhat?
The "“cat" "dog" pair cag be a seguence of elements of the
main structure being defined or can be a separate subpattern
representing the single string "cﬁtdog". Asbiguity coaes
fron the unspecified nature of the Sequences being.
represented. This can be overcome by fully specifying the
type of such sequences and by requiriamg that all
subsequences be properly typed. .The already existing
convention of single character otyping prefixes for sets,
lists, etc. can be carried over and extended to include
" othar types such as strings and bit sequences in pattern
specifications. In ALAI, a further coavention is. introducqd
which states that bracketed elements within a segueﬁbe are
subsequences of the same type. Thus the above pattegn cam be
written unambiguously as say,
L(2.64 "cat™ "dog" +(12+16))
which represents a list containing the real number 2.64, the
string "cat", the string "dog"™ and the result of revaluating
the expression ¢(12+16) or as
S(2.64 string("cat" "dog") (12+16))
whicn represents a set containing the real number 2.64, the

string represented by the pattern "cat"® "dog" and a set

containing the result of evaluating the expression 12+16.

’ L]

/

The SNOROL convention of a blank for concatenation and

‘46
'I' for alternation has been used. Also added are several
®urther conventions and syabols, most of which gonotplizo
the SMOBOL pattern functions and vnln?l. EBves more
conciseness (amd perhaps a 1little confusion) has 'boon
achieved by letting syabols which have one meanimng in noraal
oxpéosclonl have another =aseaning in patteras (a briak
character is provided tQ)‘;itCh back to.notlal evaluation).
For exaaple ’

string(("dog"au‘"cat")=51)
matches the string "dogdogdogdogcat"® and assigns the portion
of the subject so matched to the variable S1. Special foras
are ‘'also introduc;d for representing integers, real nusbers
and boolean values. The resalt of these choices and
conventions is a pattern matcher. which is general like that
of 2.PAK but which is approximately as concise (more in some

Places, less in others) as those of SNOBOL and SAIL.

The syntactic form of the net search lechani;..js also
significant. Many nqet searchers are of an "all or ope"
n;ture in which there is 1little control over what is
ratrieved after the initial specification has b%qn given. It
is often desirable to limit the number of sa;ples found\Ot
to eliainate some for some reason 5: to perfora saome other
associated operation in between searches .for Suyccessive
samples. The iterative construct, especially in ;he
generalized form offered by;ALAI, allows t.hese lanip‘tions

quite readily. Thus the net search Construct in ALAI is an

expression form usable in the 'via' fora) (section 4.22) of

-

-

/ s s

«

“»
the iteration statement. This method has the advantage of

alloving grdater control of and iatersixing vith net

searching wvithout imtroducing much . in the vay of new

language consgtructs. ‘ K'
”» .
\"’ - "

3.6 BacESb.ckinq . ' o .

A feature of artificial 1nto}1190nco prograasiag
languages vhich hag received much attention lately is that
of backtracking. The amount of backtrackiag offered by a

given 1language can vary froa very gonc-.i foras which are

-easy t> use and are a vital part of fhe language to siaple

forms involving nothing more ¢ha oae context lochaniap

> (4]
vhich can store variable Bindings.

technique, vhich can be thought isplementation of

the general heuristic "trial and errof™, was perhaps first

-

ra2alized only after tﬁe appéatance Of the PLANNER lmnqnaqé.

Since then it has been incorporated into several langtages
N . Q

in several different forms. The technique,” though very

poverful and general, is e;trelely 1ne?£icient in' teras of
computation and as such has recently encou;tergd increasing
opposition. It is argued that backtrﬁckind does not
represent human problea solwing methods accurately, nor does
it easily allow any heuristics_to bg used. to’ decrease the

search time. Planning is ngt involved, and thus the probles

is not solved "intelligently%; an acceptable solution is

merely found by brute force of cosputatien. It is also

arqued that most problems wvhich are solved by *automatic

ull pover of the

e

failure driven backtracking" techniques can be solved auch
more efficiently by conventional techniques if a lit%le

. ‘
thought 1s given to the probles and how to solve it.

' ~
(s , -
It cannot be aenied, however, ¢hat the trial and error
b \TD
m:=th>d can produce solutions to ©problems which are not
amenablg to @more sophisticated analysis. The question
becomes that of whicn problems cannot readily be solved by
. »
other means and if in fact there are enough of them to merit

the effort needed to 1ncorporate’ backtracking into ;
language. As with most supposedly decisive guestions, the
answer will wvary from person to persoa. One who is
interested 1n the theoretical aspects of problenm solving and
15 willing to spend the time and effort needed to analyze
problems to an extent where purely algorithmic solﬁtions are
possible is likely to conéider failure drivenm Dbacktracking
unnecessary and in fact an undesirable evil. On the other
hand, one who is interested only in solving soae fair;y

straightforvard problem with aminimum effort on his own part,

1s likely to consider such backtracking as a definite boon.

Can a middle ground be found, i.e. 1is there a solution
azceptable to both extremes? Obviously, the technique gannot
bhe abandoned altogether. Father, it @must be na's?'eL norg
flexitle, more efficient and more theoretically "plegéing",
tasically, what 1s needed 1is a means whereby the process can
be easily controlled and guided without losing any of its

-

inher: nt Lower. Consider for exaaple the problem of étz

49

missionaries and cannibals (Appendix D). Pailure driven
bécktracki;g can yield a solution to this problem as long as
1t "daesn't get into a loop of some kind. In doing so
howe;er, it will waste large amounts of time trying
possibilities which are egﬁivaleqt to others already tried
or that can be foredoomed to failure with a minimum of
computation and thought by éhe programmaer. It 1s not,
however, at all obvious hov to solve the problea in a purely
deductive way, i.e. to produce some algoritham which produces
sd>lutions for arbitrary starting situations. Guiding the
solution via heuristics, timely checks and the use of a
. reasonable problem representation can improve things
immensely. For example, a little thought will show that auch
effort is saved if the boat takes as @any people as possible
on the trips over and as few as possible on the trips back.
H2nc= a vay.is needed whereby the order of choices can be
controlled. It is also pointless to try taking more
caﬁnibals than nissionaries (unless no wmissionaries are
taken), so that “"early failure or simply not‘trying some

4

alternatives is desirable. To enable early detection "~ of
ry .

doomed possibilities in such a vay' as to aminimize
computation, it is necessafy to test the prospective valuyes

before:%ﬁ‘@erting them 1in the <context to be wused for

backtracking. Thus one would like to be able to chose froam a

pretested set of values. These requirements are similar to

.

those for net searching, hence in ALAI, théy have been

handled similarly. The backtracking form wused in ALAI is
<

50

very similar to the basic :for' iteration statement and has
its full capabilites for iteration through séis, 'vhile?’,
‘until' and ‘*suchthat forms . and the use of parallel
iteration. This format allovs the easy combination of net
search with backtracking, so that "Qlternatives can be
supplied from a semantic base.

The "goodness" of a given try can change dynamically as
nore~is learned about it and the other trys, hence it is
desirable to be able to discontinue one 1line of

\

inyestigation in favour of another. This situation can be
nicely ha;gled by uéing Processes for the trying of the
various alternatives. They can then be run in- parallel or
Sejuenced¢ by a knowledgeable scheduler SO0 as to take
advantage of their expected usefulness. &hey can communicate
with each other and with the scheduler by means of ewvents
and global | switches. In ALAIx, a second type of
"backtracking" construct, again vigh the basic forama of the
lteration statement, is used to produce the processes uish

the various values tried being produced by the iteration

forms. o

Intimately associated with tE? baéxtracking facilities
°f a lanquage are the contexts used to Store alternate
vailues. In ALAI,. the f k» req’ired'iélg%e vith autodmatic
provisions f?r saviggl igiues vhicﬁ define the wvarious

-altaernatives. '(A Efss poverful or'-ore user controllable

form would be redundant with the- control given by the
2 4

51

iteration foras andAvould be more difficult to use.) To ease
things further, any part or subpart 6f a variable can be
aaje automatically s#veable in all co;texts. The contexts
theaselves aré completely manipulable and have been designed
to fit in with the idea of n”ltiple processes. Those who

wish a simple storage bin type of context éqn use tables

Lgdexed by the location to be saved.

| &P
Ygpf®cess exists in ALAI.

-

As indicated above, a’ formy
ek
Of the lanqguages discussed in~E PL

'Jé: SAIL and 2.PAK had
the capability for forms which could be called processes.
Other languages not discussed; such as QAu, ha;e similar
capabilities. The type of process facility.actually required

will of course depend on the particular user and

Hiﬁl for everyone, is to offer a full pouer'facility
';fng all of the capabilities that may be needed. The
lt is similar in natyre to the facilities offered by
‘SKIL énd QA4, but is different in syntax. Each process aust
be able to run independently of the others in terms both of
variable and net values and of when and how long it is
running. It is desirable to have a means of interprocess
communication by which the processes can affect one another
and can synchronize themselves. As with SAIL, this
communication is effected with events and event types. An
event 1is something that can have a vefy definite semantic
m2aning, hence it will often be necessary to represent

evenrts in the data net. To avoid duplication of effort and

ﬂ-, | | 52
L 4

to provide a meaningful 1link between the lQ’ttact quantities
g}}n the data net and the hightly structured hithy definpite
" prograanas, the events used in ALAI are valid elements of
compounds and descriptors. They can be reétieved throﬁgh
lata net search, and data net semantic knowledge concerning
them can in turn be retrieved directly from the event

itself. R Y ///

The actual con#ents‘ o(‘_processQS'ahdhevents and the
creatiQn and desttucyion of then is controlled by_the uséf.
It is necessary, hoiever, that events and proqessss,
pPossibly ruaning in parallel, fit in cousistently vith the
pre-existing notions of backtracking and contexts. For
example, what is to happen when a process which has‘q;reated
and started other processes vhicﬁ'arcfgtill;in existence and
can be, resumed, fails back pajt the points at which the
other processes were created? If t;; Subprocesses are left
active, backup past their creatxon point would cQ’pge and
erhaps destroy (by backing up past a block entry point)
values vhich the subprocesses are dependent on. The backup
can be stopped at the process creation points, or the
processes {and all processes they created, etc.) can be
destroyed. Similar cases hold for.a backup of one of the
created processes. Because the action taken is a major one
and c;n greatly affect the progranm (s) currently runniag,
ALAI gjives the choice of action to the user. The choice is
specified inithe form of the relation between the'.creating

&

process and the created Process at the time of process

53

creation.

One of the arguments used agaiast backtraqking is the.
fact that contexts ptoviéed for usg by the backtrackiﬂg
mechanisa are very inefficient in terms of computation used
to switch between them. The amount of conputation‘required
can become very high in a language like ALAI vhere complete
éfeedon with contexts is given; the user can switch betveen
any contexts at will and can reference values in oﬁhet
contexts., If the user wishes to work in environments which
are highly dissimilar, e.g. with respect to the data naet
‘contents,' then switching between contexts representing the
environments can be a very lengthy process. The problea can
be avoided by preventing su;h use of contexts (vﬁich perhaps
explains the lack of power of "contexts"™ in soae langpages)
but this solution is not very appea}ing for a language which
is trying to be general. In ALAI, two methodse are available,
for speeding up environment changes; one involves making
relevent contexts "éloser together" and the other invol;es a
nevw data type, ";orld". A world is a complete environment, -
including a full data net and dictionary. Switching between
worlds ("entering" the new world) imvolves changing only one
Or two pointers indiCating which is the current world to use

for assertions and net searches.

54

3.7 Planning -

One 6f the in;ended uses of the ALAIX language is as a
@eans of specifying the proéess by which an "intelligent";
System can produce a plan or Program wvhich accomplishes some
desired goal. In its early stages of formulation, such a
pian vould be represented as a subnet of internal data
Structures. This type of representation would have to be
intofpreted‘ by the user's progras and hence would not be
iery_effibienx. The final form of the plan would be a valid’
pProgran strucfure vhich could be compiled into fast machine
code. The step between the two foras is a very lfrge one and
- would likely prove a substantial obstacle to the plan laxﬂng
process. What is needed is some intermedfate fora, perhaps
allowing an -entire range of representations. One way of
doing this is to allow a mixture of program structure and
Semantic structure uhic; cﬁn be executed by the systea. This
methqd 1is done by ALAI *“elaborations®. They are direétly
-executable .as parts of programs, but can contain arbitrary
semantic structures vhich are to be elhborated
(accdmplished) by the current elaboratOt‘;thine. This form
is something of an experiment in ALAI; they have not yet
‘been used as ALAI has not yet been ilplelsnted, So that
tnei; true usefulness is not knowa. A more Jdetailed
description of their nature and how to use tnem can be found

at the end of the next Cchapter.

) 3

55

—

" "f"——"_mf“”‘

CHAPTER 4

THE LANGUAGE

4.0 Method of Description

Language descriptions for ALGOL type prograaming
1anq§ages are often based on a complex B.N.P. gramsar. The
grammar given for ALAI (Appendix A) describes the language
syntactically, but does not incorporaie all of ghe features
scanned for and checked by the parser. The relevant parts of
the grammar are seant to be read in parallel with the
specific parts of the language description. The descriptions
in this chapter provide examples of the various constructs
and provide semantics for thesm, i.e. tell what they nmean.
Before the more detailed descriptions are given, a short,
gzneralized introduction to ALAI liliuﬁe given, in order to

L o

give the reader a grounding in its basic structure. .

4.1 Basic Structure

ALAI is an ALGOL type block structured language, but it
has no 'beqgin's and its 'end's are used to match 'attespt's.
Instead, existing®"bracket words" have been extended to act
as block delimiters, and more control words have been added.
By usind special control words that fit in stjggard

configurations; it is easier to find what part of a progranm

56
\ 4

is a unit, i.e. wvhere it starts and where it ends. For
example, 'ti' alvays matches an tif, '04¢ latches a ‘do*,
'‘esac' matches a 'case' etc., rather than haviang ‘'begin'
'2nd' pairs for all blocking structures. If a block is
need;d (L.e. as a sequence of statements where only one 1is
allowed) then the delimiters 'do' and 'od' or brackets can

be used. An example is the 'fa;ling' statement:

failing do A:=B; C:=pD; HBRGB(i,Y); fail od;
Note that in this dGSCtipglon {amd hopefully in user
progranms), specialf words are vritten in lower case, vhile
user declared identifiers are writtenm in upper case,
Language defined identifiers other than keywords will often
begin with an asterisk, kwhich is Aot allowed in user

declared identifiers.

When useqd interactively, ALAI will accept statements
for immediate execution, hence there can exist no explicit
"main program"; instead, procedures (procs) repreéént top
level programs. Procedures can be recursive and, as with
other blocks, program execution can back into thema even
after they have been exited. (This is only possible ‘when
there 1s a backtrack point somewhere in their range.) The
ALAI parser is meant to be used in a directly interactive
situation where errors in source language input are detected
and ftlagged immediately after the current line is entered.

.

The effect of the parser is to produce internal Structures

vhich <can be interpreted (executed) by the interpreter and

'can be compiled into machine code by a compiler. As such,

k;)

57

&
the parser must effectively operate in 'one pass!'. To do
this, it is necessary that all variables, record classes,
procedures, etc. be declared 'before they are used. This
regtriction is removed for label and elaboration constants

s that it is possible to branch forvard and to instantiate

‘an elaboration before it is encountered. Procedures and

racord classes vhich reference each other are handled by the

"use of dusay declarations which inform the parser of the

identifiers to come lgter without actually defining those

ilentifiers.

When ALAI is used interactively, top level statements
(L.e. not 1inside a yprocedure declaration) are executed
imme-diately. In this case, and in this case only,
expressions are valid statenents; they are executed and
their valué is printed. Such statements and expressions are
executed in an environment containing declarations which are
global to all wuser-defined trocedures. Variables, record
~lasses, data types, etc. vhich are of this type are
lezlared whenever needed (as long as the user is in the top
level of execution and tﬁe declarations come before all uses
of the things being declared) and are available to all
procedures defined later. Tpe objécts - thus declared are
called ‘*fixed' obijects, e.qg. fixed record classes, fixed
variables, etc. Statements and expressions entered at this
top level are not executed until they have been completely
parsed. Procedure calls in the top level are used to start

ths execution of the procedures which are effectively the

58

main programs. If ALAI is not being used interactively, then
the top level statements and declarations Tepresent the
single tmain prograst, just as in most other ALGOL type

compilers.
[4

Conditional constructs in ALAI are 'if* statements (end
with 'fi'), 'if' expressions (do not need a closing 'fi'y,
‘cond' statements and e}ptessions, ‘atteapt' statements and
expressions, tvwo types of 'case' statements and expressions,
parallel iteration ('i10°', ‘try' and ‘'ptry') stateaents,
'‘for' expressions and 'failing' statements. Their meaning is
usually discernable, but in case of doubt, consult the
relevant section ot this description fot‘ full explanations
of syntax and semantics. The occurrence of the
pseudofunctions 'S¢, ‘B, ‘v, tpt a7, ‘L, 'Ce, or *De
Ciuses parsing of sets, bags, vectors, pairs, triples,
lists, chains or descriptors, Cespectively, in which all
bracketed séquences Are considered to be of the saame
sp2cified type. The special brackets '« and '>!' instead of
normal round ones prevent the type froe being applied to the
inner elements (they amust supply their own type). For
example

L(2 3 (6 1 A+B) (641+1))
produces a list containing two integers End tvo lists,
wner<as . ‘.

L<Z 3 (64141) <A Q>>

produces a list' containing three integers and a set. The

specral brackets without any %;eceding pPseudofunction yield

4 set. When Parsiag descriptions (plou%ptunction ‘DY), vﬁich.
includes patterns, +the occurrence of a Aata type (e.g.
integqer, string, list\.caulel parsing ;f & pattern of that
type. many types have special pattern constructs, but th;'
basic operations of and ('é'), or (*1') and iteration (tdr)

arle usually available.

The constuct aap+ is used to reference tield B of
record A. To get a *]oct (Pointer to the actual storage area
reserved for a vaFiable or eleasent) or ‘procval: (Pointer to
the internal structure teptesegting 4 procedure) value, the
deeded variable or proc .nale is preceded vith '@ 7o
de-reterence such ‘loc's and 'procval's, the '6' prefix is
used. i.e. 'gaxe jg equivalent to 'y for X either a Progras
variable or.i Procedure. '3' also returns,specific tief&s of
Specifjic records (values of type & 'loct) as' in '3adnB'.
Unevaluated'expressions 8re created by the g Prefix anpnq
evaluated by the '=1 pr%tix. '+ Yefore 2 statement yields
parse tiae evaiuation (a macro). ap input line with a "C® jip
the first column js treated as %/”éﬁ;lent, as are all

Characters enclosed by the pair " /an, s/,

4.2 Identifiers
.
An identifier jn ALAI 'is a Sequence of one or aore
1ettefs, digits and underscores which starts with a letter.

\
There is po upper limit on the size of identifiers. Sope

lanquage defineqd identifjers are prefixed vith anp asterisk

°'
60

1

(¢) . Identifiers are used to demote variables, fields of
records, procedures, data typrs n.nd data type eleaehts.
.Oseveral ‘'reserved vords' i.e. identifiers that ‘blvo_ a
special'ayntactic nganing. \giilt in the lanquaéo.. T?oy
cannot be used as idcntlfﬁ,;l since the scanning toutiJ‘E
pass them to @he parser as special reserved words and not as
idontifiogs; ‘The parser accepts both normal identifiers and
reserved words in eithet*uppct or lowir case sb it is

advisable to be avare of all of the reserved vords. The

. . :]
reserved vords in ALAI arez

“ -

—

active, add, all, any, array, as, assert, atteapt, by,
card, case, cause, collect, cond, corp, delete, div,
dnoc, do, dumay, elif, else, empty, end, enter, esac,
exit, failing, false, fi, find, find1, for, fresuae,
from, go, goto, if, in, inactive, inbuff, incarnate,
is, isnt, iterate, line, need, next, null, od, of, oa,
outbuff, pop, priority, proc, ptry, push, rem, reset,
resume, return, sign, suchthat, then, time, to, true,
try, until, using, via, wvait, wvhile, with, wrt.

4.3 peclarations L s

Declarations inform the parser of the existenco‘o?fc~'éiéi
- Ty ™
valid identifier and of the way in vhich the pro Lamser é.
intends to wuse it. All identifiers . (except th Jﬁoso,'"
Vom N T

o .
pre-declaration is part of the language) sust be ‘decla

before they are used. No identifier may be declared m
than once in any block, unless all such declarations are

field names for different record classes. A declaratioq

}

an identifier in anl inner block will ovotride; for -

duration of that dinner block, any declarations of the :

‘ t

3 Y

. ®
identifier in an outer block. (Pre-declacations by the

language are conlido:od to be in a block which contains all

of the programmer's fixed procedures and vatllblol.)' An

identifier is defined., (i.e. valid) only in the block inm.

which its declaration appearss Outside of that block, '

references to the idengifier wvill be im error. All
declyrations msust a?poa: before all executable statenments in

a block. ¢

As is seen in the é?allar in lppond;x” A, ALAX
declarations allow initializations, j.e. the assigning of an

initial value to a variable being declared. In ALAI, vhen an

initialization is parsed, the parser, removes the ’

,

initialization and inserts ®an as;igniont statement before
the executable portion of the biock "to. do the
initialization. The assignmsent statements are.-in':the ‘same
order as the initializations vhich caused their insertion.

The wost comsmon and sttaightforuafﬁ type of declaration |is
e 3

[} [. -~
the” <normsal-declaration>. Declatatfons*ﬂ of - this type

¢

A1

,oogg;:pond to standard declarations gn most ‘prograsaing

laligsiages: : -
< 4nt A,B,APPLE_OF_NY_EYE ,
event list stack back static COLLISIONS
bool static FLAG:=true,DONE:=false _
back X,Y
ref (PERSON) PRESIDENT,CHAIRMAN .
loc stack list loc P, Q . -

»

The type 'free' (which is the default if no <sisple-type> is
specified) allows values of any ALAI adea type, including
~d . .

such things as integers, bils, expressions, procedures,

arrays, net references, processes, etc. Such values have the
,type associated vith the specific value and this type can be

found and checked by an executlng prograam.

Normal .vectors, strings and arrays are of varying size
and are represented as a pointer to a special record which
defines the vector, string or array. If the foras 'string
{(<number>) ', 'vector (<ﬂunber2)' and ‘tarray (<bounad-
pairs-1>)¢ are used, however, the sttiﬁgs, vectors and
arrays so declafed are of fixed size and are stored directly
1 fhp data’ area for the block, rather than in sonme
dynamically obta&ned area which 1is pointed to oﬂiy by a
single p&inter in the data area. References to thea as
strings, veétors and arrays yield copies which are of the
standard record and pointer foram. Assignments to them will
Cause copying of the values into the fixed areas. If the
vilue thus aséigned is too large, truncating of éhe higher
pd>sitions occurs; if the value as too small, paddiag of the
hijher positions with blanks or null§ occurs. It is

«
m=aningful to declare such variables as 'backall' but not as
'back'. .
Sample fixed string, vector and array 5eclarations:
string (300) SENTENCE:=" =

int vector (4) ‘local QUAD, FOUR:%V(J 4,9,2127>,GROUP
array(6,-12:32)backall global MATRIX, ELE®ENTS

It the form ‘array (<dimensions>) ' is used, then the
array 1s represe:.r- : as in varying sized arrays, but the

parser will check that the nuaber of dimensions (indices) is

14]

?3

always correct. E.g.
o
string list array (e«,%,%2,%) P
declares’ P to be a four-dimensional array, but its size is

not specified. Note that foras such as:

string(lZ) arEay (15:27) ‘\.
though unaabiguous and perhaps desirable, are .not allowed.

Aabitious implementers may allowv and support such features,

but the stafdard implementation will not.

kecora declarations merely specify the conteat of the
declared record class. Such declarations define only the
torm of the records, hence it is not wmeaningful to
initialize then. Special waodifiers are applied to the
reference variables of the class, rather than to the Class
itself. Sample <record-declarations>:

record DATA(int I,J; ref POINTER;context MYWORLD)
recordtTREE(ref(TREE) list CHILDREN; free VALUE)

Thz type ‘*ref' without the bracketed record class, allows
values to be pointers to any user defined record class. A
r=cord class with an empty field list can be re-declared in

tne'same block. This~allows the creation of record classes

which reference each bther. €e.g.:

record A;

record B(re)
r2cord A (ref/(B)

tr; free X,Y);
£ int P; string Q)

Declarations ot new data types (<user-type-

declaration)) specify name of the new data types and
list the identifie

vilues of those
R Py

64

standard AMLAI data typ8s in that they can be used as the
type for variables, fields of Lecerds and qg:%dund types,

procedures, etc. The simple type ‘any' allows valdes to be

of any user definé& type (not records). Example:

type PARENT (MOTHER, ‘FATHER) ;

type DAY (MONDAY,TUESDAY, WEDNESDAY, THURSDA! FRIDAY,
SATURDAY, SUNDAY) ; .

PARENT X,Y; (

DAY array (10) 1local static P; .

record DATE(int YEAR, TIME; DAY DAYI) ’

Pfocedures can have.any number of pa;a;et;rs, inciuding
zero, hence forward referencing cannot be accoaplished as
with record classes. Instead, <dully-specification>'s are
used 1n which the word 'dul;y' replaces thé vord *préc* and
only the procedure name, its type (if any) and the names and
types of its paraléters (if any) are given. Note that an
untyped or proper procedure does not have‘type 'free' or
type ‘null' or any other vaﬂld ALAI type. Proper procedures
cannot appear as parts of s1nple expre551ons as they return
no value. Sllllarly, typgd procedures c’enot appe;r as
Statements. Procedures with a variable number of argulents
are handled wvjia the <lu1tip1€>*‘§yntax. Only ongg.lultiple
parameter is allowed, ana~ it aust be the last one. It is
denoted by pluralizing‘the last vérd of the type. Inside the
Yody of the procedure, multiple parameters will occur as
single stacks of the. specified type wvith the supplied
arquments pushed onto thes last to first (so that " the top

element is the first one given, etc.).

Sample procedure declarations and specifications:;

S

int dummy A(int X) ;-
int proc B(int X,Y):
(A(X)+A(Y)) /A (X+Y)
int proc A (int X);
if X<0 then 0 elif |X>4 then 10 else B(X,X-4) ;
proc P(string array PA; int I,J; process list OPTIONS);
resume CPTIONS(I) with PA(J);
fail
corp;

The following procedure finds the mean of an arbitrary

r 4
number of reals:

real proc MEAN(event_type ERROR; reals X);
(real SUNM:=0.;
int COUNT:=0;
wvhile -~empty X for COUNT from 1 by 1
do
SUM: =SUM+<X;

pop X

2. od;

if (SOM:=sSs0M/float COUNT)<.5 then cause ERROR fi;
sunmy ; .)

Q:=MEAN (BAD, 1. ,6+,2.75,-37.,16./f1loat J+12.0)

MEAN will cause a rgal division by zero error if it is
. ;

"called with no arguments other than the event type, but the

parser will allow suach usage. -

<
.

The_ <procedure-equivalence> éonsttqct gives one
procedure the sase body as a previous one (and hence the
same parameters and type). The special parameter ‘string
«CALLED' does not correspondwto an elemant of the argument
list when the procedure 1is called. Instead, it is
automatically given as value a stripg containing the name by
wnich the procedure was called. This facility is useful for
natural language Wwork wvhere words «are’f!eptesen;ed by
procedures. A common procedure, say ;6UN, cam process most

I

simple nouns; all it needs to know is the name it was called

' ",:;' ﬁ
-~ \

A

\ny

, \§ :
.7 . J ’ .
by (i.e. the vord it is to pProgcess).
Q
Equates = (<equ-declarationd) are ' pawse-time free
variables which are 1local to their block of declaratxon.
USeszof thea, both referencing and assigning, can be t:oely
1nter\ixed vith normal identifiers, but the actions will be
done at Parse time. For example:
freeax- bool Y; set s; -
equ A,B:=3,C:="This is a message."
X:=if Y then B¢A:=2 else C:
© S:=<A,C,;"s0 is this">
is eguivalent to :
free X; bool Y; set S' : ‘
X:=if Y then 3¢2 N) "This is a message.";
5:=2<2,"This is a: .Q sage." "so is thisn>
If the current va!ﬁe of an equ is an expression (is of type

‘expr'), then that expression is inserted into the code,

rather than appearing as an expression constant.

-

ALAI is a block structured, recursive language.\ For

ALAI, this i;ans that , vhen a étogran is executing, entry
into a block with local variabies necessitates the acquiring
of. storage fér those ;ariablps. Such run-~- txle storage
allocation is”‘necessary to insure that separate calls to a
procedure which uses itself recursxvely all have separate
storaqe areas. Separate storagé for each variable on each

invocation is' not always desirable, Wovever. Procedures

which are aot recursive can.be speeded up if all of their

local variables (incgyding.fixed size strings, vectors and

arrays) and paraseters do not need to be provided storage

2ach time the procedure is called. a programaer asay™ also

N ' 67

desire ' that a procedureﬁtelenber some value betwveen calls,
but may not want to go to the trouble of making ‘the
procedure into a process and using it>as a coroutine. To
allov these types of things, ALAI has ﬁhe special modifier
"static' wvhich can be applied. to local variables and to
parameters. Sudﬁ static vatiables‘have only one storage area
Set aside for theam (other than when éaved in a context) and
thesz 1oca£ions are uséd vhenever thé variables are

referenced, regardless of any recursion or multiprocessing.

»

Another aspect of block structured programsming is. that
local variables and anything referring to theam lose all
Eignificance vhen the block of their declaration is exited.
Thé*" parser nmust prevent all atteapts to pass a possibly
local value out of its range of declaration. Soae things,
however, are global objects, e.qg. an atthy of integers, a

list of references to a fixed (declared external to all

procedures) record class, etc. . even though they are

currently the valye of a local variable. Since the parser,’

cannot know whether, say, a stack is local or global (the
values are put onto the stack at run time, hence the ‘parger
cannot be sure of their type). it woulad have to prevent all

attempts to assign possibly local values to any variable

which . is wmore global than the cufteni block. This is a.

rather large restriction.

4
Fn ALAI, this problem has been partly overcome by

¢

'gllouinqx tvo types for such Bbjects of indeterminate -

- -

y) “A;'

-

QG vre 68

globality, declared by wseans of the special modifijers

‘4local' - and ' global! ('local! is the default). *'Global’

variables can receive only values which are guaranteed to be
- . .

: < totally global. Their values, can them be transaitted out of

- :y, their blo_ck of declata»@ can be attached to the data net,

N

-

g“»“v . : :

= “-can be;passed to other ‘processes, etc. 'Local' variables can
‘? :receilé . any ':alue (of the proper ALAI type), togatdlossAot

- its scope, but these values cannot be passed ouF af the
range of the variable. Constants which are local, e.g.
pointers to local variables or labels, can only be assigndd
to ‘'local' variables whose range is no greater than that of
the constant. It is felt Ehat this arrangement allows the

'ptogra-ler to do all vaiue transfers vhich are gu;ranteed to
be meaningful. If, for sose special purpose, it is desirable
to | circuavent the ‘local'/*global! arrangement, the
programmer sust do so via more devious aseans (e.g. going

through system constructs to assign local values to global

variables).

Many AI languages, which offer backtrackinb wdo hot
provide much control over the nature of the backttacling. In
o
ALAI, global switches control backtracking (i.e. saving of

[~
changed values in the current context) separately for the

data net and for program variables (fixed variables are
considered to be progrﬂr variables) . Individual control over
each variable is allowved (when the glohil save svitch for

variables is off) through the @gsial modifiers ‘*back’,

'packall’, 'backallall', etc. Any ‘aisiqnlent ‘to a *'back’

: »
- : -

69

variable or to a top level elesment of a 'backall' variable
vill be saved in tﬁd current context..ack' is relévent for
éll data types exccpt‘1 fixed size sttings, vectors and
arrays. Theﬁe types can be made backtrackable by using the
variable sized versions. *'Backall' is relevant only to all"-
compound’ types and to 'free' and 'ref' variables. Compounad
types which ar@'declared 'backall®' have assignments to all

v

ot their elenenf;:backtrackable,-jrst as if each element had
been declared ‘'back'. Note that ibackall' is a property of
the variablé and not of the particular object ‘(e.g. array)
which is the current value of the variahle. It is thus
meaningful to declare fixed -size vectors and arrays as
‘backall'. *'Backallall' bears ﬁhejsale relation to ‘'backall’
as ‘'backall' does to 'back', etc. Note also that *backall’
docs not automatically imply *back'. Por exanple; 1f L is an
'‘int list array', i.e. an array of lists of integers, then
it it is 'back', then assignments to L itself are saved; if
it is 'backall', then assignlqpts to the elements of the
array L are saved and if it is 'backallall', then

assignments to elements of the lists in the array (i.e. the

integers) are saved.

4.4 Fxpressions

)
Expressions are built up of constants, storage location

references and operators. Constants are of varying types and
vatying forms. Storage location references are aost often

just simple variables but can be much sore complex, such as

70

/ref (& /procval E(M(12,140) (16)))d(J div 2)
which can mean "the J-div-2nd field of a record which is
returned as the value of a parameterless pt‘edure vhich is
the current value of a location pointed to by the ‘'loct at
the 16'th position in the vector which is the current value
of the 12,I+J'th element of array HNw, (In order for the
Parser to accept this location, N would have to g declared
as 'loc vector array' or something even naore specific.)

Operators are wusually simple language defined ones such as

L R PN S IR Py

+ €tc. but can also be the names of user

defined procedures.

The structure of thé various location forms can be seen
by referring to Appendix A. If a location is the left side
of an assignnént, then the assignment puts a value into that
location and‘returhs that same value as the value of the
assignment. Other references to locatio%? refer to the
current values in the locations. A simple identifier (some
lanquage defined identifiers are prefixed by a *s«', but are
still just identifjiers) refers directly to the location
associated with that identifier. The location which is the
value ot a 'loc' expression can be referenced by prefixing
the *loc' expression by the indirection operator '6*, por
example

6 (it B then X else 3Y):=3 4
4551gns 3 to either X or Y, depending on the value of t&fg'
B+

hoolean, B,

-

71

The '@' operator when used as an infix, indicates field

‘'

selection in records. The record being selected from is the
rasult of any express;on of typé ‘ref' or wvhose type is that
of a p@nter to a single user defined record class. The
Selector, although it can be any integer expression, is
usually just the ided;ifier associated with the required
tield of the record wvhen the record class UL? declared.
Array subscripting is standarad except‘khat the argray being
subscripted can be the result of a complex expression or
procedure cal}. Strings can be referenced in their entirety
or th;ouqh a substring designator. The substring designator
indicates the starting positiég/of the substring within the
given string (the first position 1is position 1) and the
length of th% substring. (If not specified, the length
defaults to 1.)' Por example, *'S(2|34)' refers to the 2nd
thrtouyh 36th characters 1in the string S. Bits values can
have subsequence designators which are entirely equivalent
in function to substr;ng designators. Such substrings and

Subsequences can be both referenced as expressions and

assiqgned to.

Vectors, lists, chains, pairs, triples, stacks and
queucs dre all ordered sequences of values and as such can
be indexed by a single integer. The indexing starts at the
l:ft with index 1 and must be within the size of the object
being indexel. For stacks and gueues, indexing starts at the
.top and tront respectively. Tables are essentially

one-dimensional arrays which can be indexed by any type of

72
value. Indexing with a value which is not yet in' the table
will <create the entry if the table reference iw the left
hand side of an assiqn-ezt, and will return null othervise
(but vill not create the table entry). For example, if the.
table T does not contain an entry indexed by ‘"cat" then
referencing *'T("cat")' will return null but not affect T,
but executing *T("cat") :="meow"' will create an eantry in T,

p
indexed by "cat" and give it the value "meow",

A subexpression which is enclosed in brackets 1is
clearly delimited, i.e. it is 'clear wvhere it starts and
stops, hence such an expression can be arbitrarily coaplex
withth introducing ambiquity concerning its bounds. To take
advantage of this clarity, ALAI allows block expressions to
be used wherever brscketed expressibns are used. Block
expressions are zero or more declarations followed by zero
or more sStatements followed by an * expression which is
»valuated as part of the block and whose result is the value
of the block expression. The whole thing can be enclosed in
A pair of identifiers (they must be thé sane identifier)
which serve to cosment the limits-of .the block expression
and to provide a name by which the block can be referenced.
A sample block expression, named "example", which returns an

integer result is as follows:

("example" int A,B:=0;

for A from 1 to 6 .
Ao R:=B+A
od;

B "example")

For procedures which have only one parameter, the brackets

73

enclosing the argument on a call to the procedure can be
onitted.'rhe procedure name is then e;sentially a prefix
operator with very iov precedence (the argument is expanded
as far as possible, up to the next enclosing bracket or use
of a procedure name as an infix or ptetix operator). In a
si-ilgr manner, tao—paralotot procedures can be used as

infix operators.

Each expression has an assoéiated type, which i€
obtained from the 1location or procedure .call which
constitutes the exptession, or from the last operation
performed in evaluating the expression. Procedure calls,
assignments to typed locations and operators often reguire
expressions of specific types. When the type of an
expression is determinable, it wsust be acceptable in the

* \
position in wvhich it is to be used. Often, however, the type
ot an expression is not knovn until the prograa is actually
tun, thus the parser has no vay of determining it. This can
sccur when refergncinq locations which are }tree', such as

‘free! variables, record fields selected by expressions,

elements of untyped arrays, etc.

To be sure of «correct action, the parser should
Jeherate program structures which will check the type of
Such expressions before using thea in places which require
specitic t}pes (e-g. integer addition). Such "run-time type
checking" is time consuming, however, and thus not ‘aluays

desirable. o0Often, the programmer knows that q&particular

s, e LA

S

expression is of a particular typé (he wmight have ;;‘gv
checked it) and déos not wvish run-time type checking to
occur. To accomodate this and to reduce the number of €}9§
sismatch errors which are essontialfy syntactic in nature,
ALAI requires that all expressions either be glvon a type by
the programmer, have an isplicit type, or have the detauit
type ‘'free' which cannot be used in any position v§ich does
not accept f‘free' values. The . programher can give an
expression a type by prefixing it vith either a single or a
double slash (*/') followed by the type. A siagle slash
causes the parser to generate program structure which vwill
Check to make sure that the expression is of the specified
type, and a doublé glash gJuaxantees to the parser that the
expression will be of the specified type and need not be
checked. When wusing the second form, the programmer can of
course lie about the type, but 8ny probleas arising froas
doing so are then his own fault. The parser will not accept
incorrect type specifications for expresssions for which it

knows the type.

The type ‘free! encompasses all other types, i.e.
locations of type 'free' can have any value wvhatever. Type
tany! encompasses all user defined data types; type 'ref!
encompasses alY user defined record classes; type 'fixed
loc' encompasses all 'loc's which point to variables whose
values are stored directly in siggla wvords, i.e. are siample
integers, reals, bits values or boolean valuesa type 'ptr

loc' encompasses all other *'loc’' values, e.g. tfree',

s

-~

i

«

- } . . R . 75
tarray', xoht'. etc. ' * ‘

L,

As previously mentioned, ’the value of an assignaent is

ﬁhe valwe bein.q assigned to the® receiving ﬁocnt!on. Thus

ssiqn-ents are valid expressions. When ausiqnnniu ité '
made, the ;xpresllon beidy assigned must be of the lll; type
as or encompassed iff the typi of the l6cation being nssig_noq
to. Certain assignaents, such as to fixed length strings,

may modify the value before doing the actual assignaent.

a
The standard form for procedure calls is that of the

name of the procedure folloved by a bracketed 1list of its
arquments. If the éfocedure has no parameters, then the
bracketed lfff can bb‘elpty or can be oamitted. The standat{
tors must be’ uked it sthe procedure has. lth_than two
paranetacs or if the procodute is not named directly but ‘is
the. galue of a‘.procval expression (prefixed by the Ty
de- referance:;. '? ‘ : ‘ _ o
. e ¢

many oth)r express;oq foras (e. q. '‘A¢B*' for addit233‘
ace alloved bx th-laﬁquage. These will be discussed under
the televant dnta type or in sebarate sections devoted to
specxal consthcts_ (like 'if? ttate-onts and expréssions) .
Expressions dr»vevqiuated in a left-to-right wmacner unless
sJme oOther -qydcx ‘is imposed by the ese of bricketed
suboxptnssxons. An exceptxon\xs the case of assigaments; the
assignment is made before the value of the asskgnaent is

returned. Data types for which sany operhtors.afe defineqd

(e.g, integers) will define a precedence ordering among the

76

~operators. Also, if an operator fTeturns a result of a
different typédthan its arguments, then §He expressions
fepreSenting 'the arguaents amust be evaluated fully before
the operétor can be applied. An example of this is the
expression 1in the following,ptoce?ure, vhich has only one
valid order ot evajuation:

bool proc’ IFBIT(bits int PQS) ;.

€1 shl POS-1 & x~=:6; .
Such a procedpre §s Aoﬁ needed iﬁ_ALAI since single bits are
yalid booleqﬁ expressions, but ‘its form serves well to
indicate how typing needs can diéa-biguate expressions. (The
¢'s delimit bits constanﬁs,:"shl' }equires a bits and an
integer arqument and returns a*bits result, and '-°¢ reieire;
And returns integer values.) {Be same eipFessioh, fully

bracketed is as fqQllows:

((£1 shl (POS-1))&X)-~=¢0

4.5 Statements

A statement in ALAI can be an assignment (exactly like
assijnment expressions, except that th;‘ re;urned value 1is
17nored), a procedure call (again e;ac;ly like expression
proczdure calls, except that tlWe procedure sust mot return a
.value, else either a parse time or run time error will
occur) , £he empty sequence' (this is a convenience only and
has no semantic $ignificance),\ a special statement fora

] .

(ii1scussed later in relevapt sections), or a block delimited

by 'd5' and 'od!'. Statement blocks are equivalent to blocks
- ,,———f_\

-

77

(no delimited by 'begin' and ‘'end*) in other ALGOL

>

type ages. They are actually a special case of the
‘general ‘do! Statement and. are included here only to
indicate their use as standard "blocks. As with block
expressions, the identifiers just inside the block
deli-igers ‘are a construct for naming the block and for
marking its ends more clearly. If a block contains no

declarations, l.e. no local variables, then 1it is

s2mantically just a sequence of statements (possibly'vith a
»~

name) in that entry into and exit from it require no stbtage.*
. []

or backg@fa\point manipulation. When a block is exited, all
labels - And yafiablfs defin;d'or declared within that block
becoae undef{ned or undeclared. They can become defined
i’:agaip by re-entry of the bloék, either from its top tﬂrbugh
normal program éxecution, or from its bottom by a backup to

a backtrack ‘'poimt established within the block. On such a

backup, all local varjables will be given the values they

had when the bac}traclﬁlifcﬁ;nt u’agse e#a‘i.s:hed. loge‘;bat a
Cesume to another process doei not cakse the exiting of the
block containing the reSu-e. Each instance of a block
(s2veral w=may éxist simsultaneously due to recarsion or

_nultiplé processes) has its own copy of all local variables
not dec{ifed staticy Static variables are éonnon- to all
instances of the Hlock. |

Saaple statements:

SORT (X, Y, 12)
P:=Q-12

do int X;:

-

X:=3/Y;
do THING »
real PI; process PR;
PI:=3.14159;
X:=X/trunc PI
THING od '
od . ‘

4.6 ‘Arit‘gfic

Standard ALAI of}e;s tvo types of arithmetic, integer
(*'int') and real. Paft&cnlat versions of the 1language may
offer other types, e.g. ‘'short int® or '1on§ real', but
these are non-standard and should not be used in prograas
vhich are intended to be writéen in,'standa;d,ALAI'. The
basic fofA of integer and real expressions c;p be kseen in
the jramsar. The infix Qqperators "¢', - 0 g0 'tt',"/'
and 'mod' represent the operations +addition, gmbtraction,
multiplication, exponentiatiqn, _ division and resainder
resvactively. The>'ptefix operators *-', 'I* apgd ‘*sign®
- Lepresent negation, absolute value and the signuam function
Cespectively. 'Sign' returmns an fntegér indicating the* sign

2
of ' its a‘gu-ent: *1 if positive, -1 if negative, 0 if 0.

There is no implicit conversiof betwveen the two types, i.e.
expréssions such as '2¢3.27' are illegal. Conversions must '
be done éxplicitly *via the procedures float, trunc and

round.

Arithmetic expressions are evaluated in the ‘standard
1e£t-to-}ight order but a precedence scheae is superimposed.

Operations with higher precedence are performed before those
. N

vith lower precedence. The precedence grouping, in order

79

of

dacreasing precedence, of the ALAI arithmetic operitgts is

|~

as follows , .

-(prefix), |, sign

.k v ’

%, /, mod * .
+, -(infix)

Ari'thmetic expressions are represented internally as calls

to procedures which do the requited"oberations. This

-

convention,.also used for most other basic operators, allows

an internal format vhich users can easily manipulate.

The arithmetic procedures predeclared in the ldnquage are:

~

iplus - integer sum of two integer arguments |

N .

itises * integer product of two foteger arguaments

idiff - integer result of fig
the second

iipover - integer result Jf fi

poviE/df\tQE_fecond I
.‘*\ —— 7

~

integer argusent ainus
0 ‘)

t integer argument to the

ijiv - integer quotie®t of f7rst integer argument divided

by the second

- /

imod - integer remainder of first integer argusent

divided by the second) s
iabs - integer magnitude of integer argument

isign '= integer result of integer argument: +1
positive, -1 if negative, 0 if 0.

ineg - imeaeger result is negative of integer argusent

if

irand - random integer selected froa the range of 1 to

the argument passed to 'irand®
4
Cpylus - real sum of tvo real arquaents

rtimes - real product of two real argumeents

Ardiff - real Sﬂﬁplt of first real argusent minus the

second N

; ' 80
3 ’ ' | ’ - ' ~.

rdiv - real gquotient of first redl argument divided by
the second . - ' .

rmod - remainder of first real acgulent"divided by the
second .

rrpover - téal_rgshlt of first real argument to the pover
of the second . ;

-ripover -- real result of first (fial) arguaent to the
pover of the second (integer) argument

rabs - real magnitude of real argueent

rsign - integer result of real afgwgpnt: +1 if positive,
’ -1'if negative, 0 if 0.0 S

- rneg - real result is negative of real @rguaent
urand - uniform randow nuaber between 0.0 and 1.0

round - integer result of rounding the real arquaent to
nearest uhole‘!alue“ .

trunc - ig rr .ur§ of truncating the real argumeant to
who £y only " - | e, . g
i - VO . .
ocat - ‘real result of clo§estjzvalue to the integer
argusent . - ~ » - : C
,;’\ - . . .’ » .
Tha.. operator-procedure correspopndences are ws"fd‘aovs: e

/

1 - .
r2presents iplus and rplus; *-' represents !%iff; vrdiff,“‘i

ineg and rneg; ‘e Cepresents itimes and rtimes; 'mod®' *

represents imod and ramod; '/ Lepresents idiv and rdiv; 'ese!
Tepresents iipower, rrpower and ripowver *|° represents iabs

* ' L 3
and rabs; ‘sign' r@presents isign and rsign.

Sample arithmetic expressions: <

Declarations used:
real X,Y,2Z2; , : o .
int I,J,K;
Rzal expressions: . ot .
X+float 2 ((
XeaI-) (2416./(Y-6.)) .
(float 12¢13/1-12)%s2.106E-32 ’ . .
Integer expressions: - :
I+J-3 -
trunc(float(I)»=.3) +iplus(2,6-K) '
LR,
] P2
Nt

b . 81,
4.7 Strings .

ALAI has ¢two kinds of strings, fixed .agnqth and
variable length. If a string is decl;red as in 'string(éOO)
LONG', where the bracketad quanpity "must . be an integer
constant greater thawp zero, th#n the declared string will

”'alugys be of the given length. If ifAis assigned a string
vhich 1is too short, then th-e shor‘ string is padded on we
right vith blanks to the correct }Jﬂqth. it the string to‘bo

assigned is too long, then it is tcuncated on the righ

-

a string is declared as in 'string VARYING', then

varying length. The tvo.gtypes of strings can b

.

intermixed. String ‘ipnqé;nts are ces of chaW

enclosed in quotes. The quotes can :C both ' or both

". 1t the Juote used as a delinai be a character of

the string, then eaqp'sinqle occurr égired"is. ejtered

as a pai.‘ tbé guotes.)

Substrings can be picked out (as expressions or as
references{ via substring designators Plac". after the
string expression or reference. These are one o two integer

’expressions,, enclosed in brackets “th; if necessary, L‘\;
sz2parated by the characfer *|°. Th§ first expression is the '
pasition ' vithin" @me . string - of the first character of the
substfznq fithe first position in a qtri‘g is position 1).
The second value is the nuibér of éharacters to take im the
substring. If not gjveQL a leng®hk of 1 is aséu!od; 'Rnn-tile

ercors ‘'occur if this dés"ﬁétor'at;elpts to use a character

—

P e e . . .) s
.

- [~
o » Yo 82

T
. D * '
. Y T
‘ RS L
-
: - >

b bounds of the string, i.e. if the: first Velue is

"1 or 4if the eus of thu two values ainus one is

greater than the present length of the. string. The

. 5 -
dentifier, #L, used within the "substring designator

expressions, represents the length of the string.
) The folloving pre¢cedures are‘aotined:'
sconc+~- string concatenation

trim - string result is argument with aliittliling blanks
' repoved , - o

trisml - string result is argumentgywith all but one
trailiag blank removed (one " blank is added if

" hecessary) o
decode - integer éhatactgr code of first character in
Btring argumsent L™ g
-"‘

code - string of length one, coded froa 1ntog’ aafgu-ont”

dup s -ah'ting result 1is the first h’t 1’6)1:9“0“
duplicatbkd the second (integer) argumept t¥ases

intget - inieqet result is the decoded al of the
string arguament. If the arguaent is invalid, the"

a,

value returned is that of the global _Lntogo“
)

sINTERRY and tMd#-global boolean sJJTERR is set t
true. 4 b
v .
realget - real result is the decoded value ‘of the string
acrqumaent. If +the arqument is invalid, the- value
returned is that of the global real . «BEAL BRRV and

the global boolean sREALERR is set to true.

repfix - string result is the fixed point representation .

of the first (real) argument of length the second
(integer) argument and with the third (integer)
argueent digits after the decinmal point. If the
second argument is negative, thény.the length is the
shortest ' needed to represent the number. If the
third argument is -1, then the decisal point is not
(1 included. If the third argusent is less than or
' : equal to -2, then as Rany digits as are necessary
are included after the decimal point.' If the'
representation cannot . be sade, then the resylt is
an appropriate leagth string (3 £fq¥ second arguaent
negative) of asterimks and the global boolean
«sPIXERR is set to true. Sasple ‘repfix?

RZ 2

‘ ﬁ 1r' " S 83

14

conversions: repfix (2.031,-1,0) => »2,031m, cepfix
(2.031'603; > ” 2.03‘"' re " (2-03"6'“) >
"2.0310", repfix (2.031,3,-1‘ => " 2n, geptix
(2.031,7,-2) => » 2.031n, repfix (2.031,6,2) '=>

! " 2.03n, ’

»

repsci - string result is the scien:f{ic representation
of the first (rea)l) argugen vith the second
(integer) arguament digits after the decisal point.
If the second argument is negative, the - :c;’nl
point is nat included. .The exponent is w# Xten as
‘E' folloved by a #iga or blank, followved b$ - tvo

= digits (one or both ®ay be zeroes). .

¢ repint - string result is the representation of, the tirst
(integer) . argumente vith gprfitieat l.u"t-q lanks

to d. @ length of the second (integer) arguaent.

. It @ Second argument is negative, thea .the result
> is as lop as is needed to represent the first
.arqungt'. x?.fthe representation is not possible,
. oen R CRML appropriate nusber of asterisks is
“keturned ‘and the global boolean sINTRERR is set to

b AT teue. ”
< : . . N)

_‘ o

. e
The aoperator *+' can be uged to represent sconc. The

e

global boolean «PLUSBLANK controls the‘héértion of a plus

>

sign for the three ‘'rep...' procedures. If it is8 true, a
Rlus sign is not inserte¥, instead, a blank is used , (except
wvhen the total lenqtl; is unspecified, in vhick; case no
? character is inserted). If +PLUSBLANK is false, then the '+!

sign will alvays appear for positive nuasbers.

-

- ples of string manipulations:
-

string (R0) A;
' string B,C;
» string (1) CHAR;
CHAR:=nen,;

| A(13) :="only the vo' of ‘only' will be moved in";
B:="now B is of length 21";: '
Ci=tstring vith gquotes '' wokm';

B(16]5S) :=triml A;
C:=Betriml CHAR(V|1+43-(9 div |3));

|

84

4.8 Bits

©
Bits constants are represented as bipary, octal or

haxadecimal constants. Binary éonstanta are seguences of
‘0's and '1's preceded by a '¢*', Both octal.and hexadecinmal
_Constants use the prefix '!'. When the sequence is decoJ‘d.
. it is interpreted as either octal or -hexadecimal, depending
on the® current value of the fixed boolean sHEX. If sHEX is
ttue, the interpretation is as hexadecimal, if oHEX _is
false, then the d’!‘. tq:t be all octal digits and they ‘té
interhreted as an octe\hcoustant The exact number of bits
alloved in bits va * vill do“pena on the uchu:e of
1uplelrn§ﬁ§§9n,3Aaf' vill j" &ﬁailnble accuracy and size of
a&arxthn&tic values. Bié-~valuoa can be subseguenced, exactly
as with strings. a sityﬁbit (picked out frdm a bits vnluo)

+ 13 equivalent to ﬁ.b°1'°°" value. When operating with bits

sugsqquencos., tho"lcnn.'hs mest match.

.,
P .

. The ope;&tbrl '4', 169°,]| apnd gt represent bitwise
neqbt‘ion, AND, inclusive ang exclusive OR tospocti{miy. The
\gpetafprs ‘'shl* and 'shr' shift bits values left or right an
inteqeé number of Positiess. The operator %' yi}l) return
the bits value of {ts atgdnent, If the argusent is an
integer, its- binary rdpt:sont;tion i; returned; #f the
Afgument is a type which uses a pointer to a language
defined record,. ghen the result will be the binary

Lepresentation of that pointer, etc.

The following procedures are defined:

44.

845

logand - bitwise 'and' of two bits argumaents

logor - bitvise 'inclusive or' of two bits arqgquaents <~'
logxor - bitwise 'oiclusiva or' or twd bits arguments -~
lognot - bitwise complement of bits argument

shitt - bits result is the first (bits) arquaent shifted

left by the second (integer) argument places. If

the second argquaent is negative, then the shifting

is to the right,

. P o

bits - ts resplt is .the. bit representation of the

a sent, which can be of any type. If it is a

pointer, then the bits representation of the
pointer is returned. i ‘ ' re

L4

binget - hits result is decoded value of string of binary
1igits. Brror will set fixed boolean +BINEZRR to
true and return the present value of the fixed bits
«BINERRV. '

yctqet - bits result is decoded value of string of octal
digits. +OCTERK and «OCTERRV work as «BINERE and
«BINERRYV, T

huxget - bits result is glecoded value of string of
hexadecimal 'digits. +HEXERR and «HEXERRV work as
«BINFRR and «BINERRV.

bitget - bits result is the decoded valie of the string
as a hex or octal (depending on the value of eHEX)

or binary value given complete with initial ‘'g? er
ll‘

- .
repbin - string result is full vwidth binary
Lepresentation of bits argument

Cepoct - string result is full wvidth octal representation
of bits argqgument LN

tephex - string result is full width hexadecimal
representation of bits argquaent

bitint - integer result is value of bits argument,

The operator ‘X' is equiv®lent to the procedure bits.
In the three 'rep...' procedures, no prefix (‘€' or '1') isg

included lin the result. The operators '&', |, 149 apnd o

are equivalent to logand, logor, 1logxor and lognot
ruspectively. 'shl' and 'shr' are used to Yepresent shift;
if ‘'shr' 1is used, then the integer shift amount ia negated
(&)

hefore passing it to shitt. The bits opetagotq .Qtecedence
scheme is: d

L 9]

[

shl, 'shr?

tel, g \

1y ‘v
Fxamples of bits manipulations:

bits A,B,C;

A:=£011010;

® s:=1017rC;

C:=A|BE€1111000000000000; -

B(IIJ+6) :=C(K|J*6);

A(3):=~C(IP3Y) (%13.4)(6); @

L

4.9 Rooleans

Booleans qgan take on gne of two values, true ot'
. o -

They are used mostly for flags and conditig® indicators. "The'
'1t', 'cond' and 'case' constructs use 'booloan values to
control the flow of program execution. Most boolean values
arte originally produced as the result of comparing. twvo
things. The comparison operators)r'<', '<=!', > and DO=?
(32¢ later for '=!' and *-=*; these have wider 'application
and are therefore not classified as "conpirlpn operators")
compare the values of tvo integers, tvo reals .or tvo
strings. String comparisons coapare gpe integer eguivalents
(as returned by the procedure decode) of the cﬁ?}actats in

the strings, the left-nost characters being ‘'most

< .

significant'. If the strings are not of the same length,

then the short one is padded on the right with characters
—

vhose integer equivalent is zero. The integer 4quivaleats of

Characters will vary from machine to sachine, but will amost

-
-

often be either EBCDIC or ASCII, both of vhich produce

acceptable alphabetic orderings when strings are compared. .

The idanti&y comparison operators, ‘s=! apd ‘-~a=?
ragister equality only if the immediate values of the
comparands are the same. Por integers, reals, bits and
boolean values, these operators test the truc'valuos of the
comparands, but for all other values, the Pointers to the

values are tested, and not the values themselves. Thus if

one has
string A,B,C,D:="days"; .
A:="happy"+D; =
B:="happy¥"eD; -

C:=A; *
then the following are true:
A==C
" A~==pB
B~==C
The equality comparison operators, '=' and ‘'-=' test ‘thc
actual values of coapound values 1like strings, vectors,

stacks, etc. Note that A==B jimplies 'A=B (and A-~=B }lélies

Lf .the expressions compared are of different types, they

vill never be either equal ('=') or identical ('s==¢)_~

LN

\)
\ "As‘ngntiqnod earliter, a sinb;p bit,” picked out of a

'

bits value, is a valid boolean expression. Thus (~#0) (1) is

» equivaleht to trye and ¢oi1) is oqulkaloﬂt to false. lotg
that no matter hovw many digits are giv;n in the source for a
bits “constant, the constant {itself alwvays has the full

- langth used in the particular iasplementation of ALAI. Thus

‘ €0 and #1 themselves are not valid boolean expressions.

The cosplementation operator (*-') applied to a boolean 2
yields a bdolean which is the coapleasent of the argument. ‘
Thé booleﬁn operators '6t', ‘et andl vy represqg;_izhc/'
operations of bbplean AND, boqleand oxé;usive and inclusive

OR respectively. Note that if the first arguaent for '$' or

1. s, respocti'ely;. 'tal;e' or ‘true’', then the second
argqument is not evtligzed. The precedence scheme for the‘

booltan operators is as follows:

140 -’
1= >0 _ =1 eyt tamm?
[[~ [4 - St
T gt LA h Y . .)
’ *: .. ‘.
0'0 - M

Note that the cosparison operators cannot have boolean
arq;-eﬁts, henée'the arguments for such coaparisons ‘are
aluafs evaluated fuliy before any boolean g;erations on the
comparison rosult'co-lgnce. ;

The following procedures are defined:

) {
bnot - beolean g‘nplenent of boolean arguaent
band - boglean 'and' of boolean a:guloﬁts
?qf o rbor boolegn '1nclusxve or ot tqpﬁhbolcan acguments

:gf 3
ot **EHSQean ‘exclusivasrorY. of. tvo boolean atgulents
'_4

&
comp - directly cospacres its {1t-t two arguaests (‘A' and,
] ‘B') according to she third (the ‘key'). The
boolean result is’true if .)

1) key=-2 and A<B or) -® :

2) key=-%t and A<sB or -, . T

3) key=0 and A=B or \ .

4) key=! and A>=p or) ” e
. 5) key=2 and A>B .

Any other value of the key (an tﬁtogoti producol
false. Thiogproc.d does: direct signed integer®
.comparison; if p&s&sed pointers as arguaents, 1t
vill merely cospare the ‘poiatersa,. hence * can be
u:ed to put Ak ordering on. acbitrary vc‘ es.

realcomp - as comp but requires real arguments

stringcosp - as comp but cospares striangs, not their
‘ ‘. pointers)

Sample boolean expressions:
A<=BSBC=D| A=BEB>D -

P~ (QeP:=SssnThijg string®) .
I~=3&(81|~32)(6) T :

4.10 Pairs,-Triples an@ Vectors

”

Vectots‘ace one-dinensional. ordered lists ot ob&octs,
}11 ;i vhich are of the sade type (that typb can bq 'ttoe'
'hovevet). A qiven vector vatiablq nay point 'to “ vectors of
Any length or, in the cnso' of fixed sizcd v-ctétd%itho
variable eactually is the vector. Reforoncing a v#ctor
variable (or an _element of a vector vector or veetor 7&:&!,
etc.) reters to the entire vectof.‘ Individual /‘ﬁjects
(elements) in the vector can "be roforthod=(oig er for
obtaining their value or for asmigning a. nev va&ue) by
indexing she vector ~¥ith a single integer expression.
Indices: start At one un&h the left-lost element. Pairs aad

trxpl -+ &L ess gfally vectors ‘of two Or three e¢lements
s R

[}

90

t e,

respectively. Their elements can be selected via indefing as

in® standard vectors - 'or via their field names in the record

classes ({langquage def ined) vhich repreéent pairs and |

triples. The elements of pairs are «LEPT and «RIGHT (the

»
l2ft and rig elements respectively) and the elemeats of

-

triples (from left to rightlaare +LEPT, #HIDDLE and «RIGHT.
Thus if A is a triple, ‘'Ad«MIDDLE' and *A(2)' are

ejuivalent.

. .
Pairs, triples and vectors can be indicated in source -

language 1in two ways. The ‘torm 'P<A,B>' produces a pair?

whose elements are A and B (both of which can be arbitrary

expressions of the appropriate type). A and B can be oamitted

.

" (but not the coi-a) in which case they'ate aquled to be
nill (zero for, int, real and bits pairs; false for bool
palrs).-'They are parsed in the normal manner. The form 'P(A

B)' has similar results except that A and B are treatad

1, .

differently. If A and B are sdmple expressions)like e,
YA+B- (T div 3)', etc. but with no embedded blanks which are
not <nclosed in brackets, then the expression result iS used
in £ha pair. (In this forum embedded blanks are siénificant -
thay 1elimit the elemeﬁté of the pair.) If A or Bis iotaily
enclosed 1in bra;kets, then they are interpreted as pairs in ,
the same manner as the original pair. Thus

P(3+6 ((1 -2) (6 4)))
is ejulvalent to ’

P<3+6,P<P<T, -2>, P<6,U>>>

bit

P(2 4) -1 €.)
is in error because the outer pair has too amany elements
(the pair.P(z,M>, 1 aad -2).. Analagous constructs using the:
’pseudofunctions 'T' and tye produce - sripiesf and vecgtors
Lespectively. Trigles sust have.fhrbe'elelents, but vectors
can have any pyamber of eleasents. Hhen.using the syntax. vith
nofnal (rouhd)‘ bratkets, care must be taken to ensure that

any bLanks and bracketing used in the elesments-will not be

n151ntetpreted as delimiters. An expression which must be

entirely bracketed (8.g9. toZenciose some eabedded .bianks,

p=rhaps around the opera *aod') must be preceded by a

collon to ensure thab it is parsed correctly.. The colon tells
A

the parser to sv1tch back to nornal par51ng for the extent’

of one lexpr9551on. The quclal foras null and'() are .valid

r
pairs, triples and vectars.-Thef%orl V<> denotes a vector-
- . « ’ .

with no glements (an empty vector). .

NOo operators are defined for pairs or triples.. Vectors
£an be concatenated with the '+' operator. Sample vector
expressions:

V< e,s>(d-3) 1=J¢3
A+V(Q P () (X+Y+2))
V(2 .1 2 ((V(Y 2 3 "Cat")+V<Q>) (I+3)) (2 1 0))

Tne tollowing procedures are defined:

£

vectconc - vector result is concatenation of two vectors
bpalr - pair result has the tyo arguments as elements
btriple - triple result ;has the three argumeats as

: elements

hvector - vector result has the arguments (if any) as
elements

-) . . ‘ ' L. 92 _.

pairequal., - returns true if .the two pait arguments are

€quivalent ?
-triplequal - as Pairegqual but compares triples Ca-
vectequal - as pa!!equal but cCompares vectors
. .
4.11 Sets, Bags, Lists and Chains R
Sets, bags, lists and chains are ordergd linear

-,

. ' _ ~ :
S=3Juences like vectors, but the vay in vhich they are
. [4 .

ordpered and the way in w#ichvtﬂey are constfucted interhally'
rakes then signiEiEEﬁtly different? Internally, vecxorsA are
a group of consecutive: storage locations poiﬁted to‘by_a
field of the language defined record which répresents the
"vettor, 'Sefs, bags; © lists and chains, hovever, are
r2presented as 1in¢ed'lists, the‘;pointer to them a@merely
plints to the‘fi:st elenént of the 'linked iist. It is thus °
‘coupusationally easy to add to; delete froa and cha;n
together these objects, whereas to do so Qith vectors
.

r:quires the creation of a new vector each time a

Lenqth-affecting change is made. ‘ ’ .

Lists are most like vectors in tﬁat tﬂe order of the
elements is whatever order the user QSed vhen creating or
a0difying the list. Thus lultiple occyrences of elements afe
not even recognized by the ALAI intetnti—grocedures vhen
d2aling with lists (and chains and vectors). Bags, however,
ars sorted by ALAI,fthe user has éontrol only of tﬁe nusber
of duplicaqSF of each item contained in thea; they

¢

correspond to bags of coloured Rarbles. It is the quantities
»w

.
- ;

th&t are important, not the orderinq. s.ts, liko btqs, ute"'

» .
xnternally sorted.by ALAI, but sets ”gan contain only one

t. .
occurrence of an element. The presence or abqpnce ot an -

' Soe : o»
etement, not its ‘position ot .nulber of -ocqurronces, is

inportant. ”hains are user ordered like lists, but ‘hey are -

represented xnternally as doubly linked lxsts so that tue[

can Dbe ttaverscﬂ -in ei(&et direction. Lists are built of
two-field records vhose fields are t'lLUB and #NEXT. Chains
are buxltAof three-fiefd récords’vhose tields are tPREVIQUS,
«VALUE and <+NEXT. Using the glven field nanes, lists and

-

chains can be fregly traversed and altered by the user

thr.ough Poalmters vhich are of tipe list or chain-
. L] . -

. N s U
respectivel : :

»

' . . ‘ ’ ' . ”. .
Sets, bags, lists and chains’can all be indexed by a

-

single integer expression. This indexing yields a pointer to
the appropriate value in the coipound‘elelent,‘dot to one of

the records frons vhf&h it is'constructed.-If A is 'jnt liﬁt'

then A(3) is ‘int*' and not '1nt liste. Sets, begs, lists and'

"halns can be specified in source language 1n vays analagous
tOo those for pairs, triples and vectors. The pseudofunctions
used are S,.B, ﬁ and C respectively; The form '< se. D' can
be used without a pseudofunction;_in vhich é;sé a set is
preducéd. The forms null and () are also valid Séis{ bags,

lists and chains.

-

The set operators 's', 'e', and '-', yith precedence

ordering (highest to lowest)

©

‘e

P9 . - - Lo . o
L] v .
40 L ey] ’ : .
? L4

sot' épotatioﬁé tof inti:lc;tion, unioa and

't

tapteseﬁt

) -differende tespe"ively. thq set couparison opntitors';'<'
_ _ -

'<=', 1> nnd '>=' resent tho tospectivo set co.patison:

'of propar subsct 1the sets 'dre~ not equivt‘:nt), sub-ot.

Jprope: snpcraot and suporsct. !ho colpqtilon opctatot- Sunt
dd 'a=-', and '= and 'ﬁs' test set 1dentity (the samse sct)
and’ set equivalbnce (the same elelents).

The set comparison operators have been extended to

.ébply to bags;' bagy A is a superbag oﬁ'bhé B if for e;éty
éig-enﬁ'in bag B,. there ar; ai'ieastias‘lany-éccutrenceé of
that ele-ent in bag A as. in bqq B, bag A 1s a proper
superbag of bag B if for every elelent 1nAbag B, there are
R ‘.;e- occurrgnces -of' that element in bag A tham in bag B.i
etE; The bag ppetators»”l{, *&¢, '+ and *'-*' produce result
Ab%qs in vhich the'nulber of occurrences of. the.elénéhtsiiS'
vthe -axilul, llnllul, sum or d1fference respectlvely of the

nuaber of occurrences of the ele-ents in the argnlents. H1th

|
the, *-' gqperator, result counts that would be negative

produce-a result count of zero and set the fixed bdoléan
. - :) P
*BAGERR to true, . . .

The °~ 1list- "ana cha1n operators '+' and .‘t' cause
appendlng and concatenatan of the list hnd chaln. argqnentg
respectively. *+' creates a nev list or chain consisting qf’
the elements frql both arguments an&'reiu;nq it as result;
et -odifies thé last element of the first ﬁrqulent (and the

. (74

95

N w
. & A

first element of . tho second arguaent 1n the case of chains)
to point to the othot nrqnnont and totutns a pointet to the
lodified titst -arguneat. The '-' ljist and chain opotagpg

retutnq the reverse of its- atguncnt (tho el.ldnts appear in

L

the opposite ordet). The . operatax '<~' (and its negative -

'ﬂ{—'[tests set and bag l.lb.tlhip..:
‘The ‘folloving prbod‘,mu-"u'c’ defined:
. bset - result is set of the argu-euts

bbaq - result is bag of the atqulents

blist - result is_ list of the argulents in the sanme ordet .

as given
'4

bchain - result is chain of the arguaents in the sanme
order as given ..

»
-

intersect - set intersection of tvb sets
un1on - set union of two sets -
setdiff - set difference of tvo sets

bagplus - bag result has €lement counts ,vhich are the sua
of the corresponding element counts in the two
arguasents. '

bagdi ff - ‘bag result has ele-ent counts vhich are the
difference of .the corresponding element counts in
the two argunents. If any element count would be
less than zero, then it., is set to zero and the
fixed boolean #»BAGERR is set to. ttue.

bagmax - bag result has elelent' counts which are ¢he
maximum of the_cottesponding element counts in the
tvo arguments

bagmin - bag result has element counts vhich are the

ainimum of the corresponding element codnts in the "

. two arguments

listconc - attaches the second list argument to the end
of the first and returas the modified first
arquaent , : : :

llstappend ~- produces and returns a_ list whose first part
is 2 copy of the: first list argumsent and whose

96

remainder is a copy of the second list argumeng

€hainconc - attaches the second chain argument to the end
of the first (coaplete with the necessary back
link) and returns the modified first argument

chainappend - produces and returns a chain vhose ftirst
part is a copy of the first chain argument and
vhose remainder is a copy of c«he second chain
argument ‘ -~ -

By

listreverse - constructs and returns the reverse of thq
list argusent

chainreverse - returns the reverse of the chain argument

setcomp - returns a boolean valué resulting fron
comparing 1its first two arguments (sets) according
to its third (integer) argument. See comp under
'strings* for details on the third arguaent. The
sets are compared on the basis of a subset -
Superset - equivalence relatioanship. .

bagcomp - 1like setcosmp except coampares bags (see above
C discussion for the meaning of bag comparisons)

listegual -~ boolean . result is true if the elements‘'of the
.two list artgument's are the same and in ' the same
order (the lists are equjvalent) ,

chainequal - returns true if the two chain arguments are .
equivalent

smeaber - retufns true if the first arqumént is a aeaber
of the second (set) arguament '

> nue - integer result is the number of occurrences of the
first argument in the second (bag, vector, list or
chain) arqument R

Sasple set, bag, Iist and chain manipulations:

set 5; int bag IB1,IB2; list L; real chain RC;

S:=<3,6,2.05,.CAT,"app1e">; »

/% 3<-5 is true, 4<-S is false s/

S:=5+<.D0G,3,"apple">;

/% S will now be equal to:

<3,6,2.45, .CAT,.DOG, "apple"> */

5:=S%S<3,"apple","cat">;

/% yields S = <3,"apple"> /. .

IBI:=B<2,2,3,Q,Q,M>;

IB2:=B<1,1,2,u4>; e
. /% IB1+IB2 = B<1,1,2,2,2,3,4,4,4,4> -

IB1-IB2 = B<2,3,4,4> ‘

97

IB1|IB2 = B<1,1,2,2,3,4,8,4>

IB1«IB2 = 8<2,4> ./
L:-ANOTHERL]éT; /% nNoWw traverse it »/
vhile L-=null do

L:=L3s«NEXT; - °
/+* process the element here s/

od; .‘
RC:=C<3.2,4.7>s0THERCHAIN; .
RC(4) :=27.34; /« modify the chain »/ v
for I from 1 to 8 do RC:=RC3+NEXT o0d;
for I from 1 to 5 do RC:=RCa«PREVIOQUS od;
/* now RCA«VALUE = 27.34 o/
-

4

b g
4.12 Stacks and Queues '

. Stacks (push-down stores) and queues (first in-first 5

Jut stores) are ordered lists in which access has been
limited to <certain pfescfibed methods. Stacks allow .access
only thkough one end of the list (the top of the stack) ;

elements are ‘'pushed' onto the stack and ‘popped' from the’
stack (in the reyerse order from which they were pushed on)

throuqh this one access point. Queues allow access through
both ends of the list; elements are 'added®' to the back and
removed, or popped, from the front (in the same order as
they were added).‘r ALAI implements both stacks and queueé as
linked lists. ’

‘Most stack and queue manipulating comventions requf&é
that the top or front element be poppead before it can be
r=ferenced. This is a nuisance for stacks (it often must be
pushed back on) and disasterous for gqueues (it can't be put
bxck in without cycling through the eétite quele) . In ALAI,
this problem has been alleviated by the following

»
convention: a stack or queue expression prefixed by the

98
y,

. .

opetat;r '<', yields a reference td the top or front eleaent
of the stack or queue (respectively).r If the stack or gueue
i? eapty or uninitiaiized, the reference is invalid. Thu# .
the top elesent of a stack and the front element of a ,éueue
can be referenced and chanqed vithout being removed from the
stack or queue. ALAI aiso al}ovs reference to eléments

"within a stack or 'queue by indexing. Indexing starts at the

top Oof the stack or the front of the queue with an ipdex of

one. \ . :) »

The new statement foras needed” to operate stacks and
queues are the push, pop and add statements. 'Push® followed
by a stack expression vill add a nev element to the top of

the stack with initial value null, zero or false, depending

. . .
on the type of the stack. It is legal to push onto an eapty -

or uninitialized stack. 'Pop' followed by a stack ©or gqueuye

expression will remove one element from the top of the stack

or the front of the queue. Trying to pop an empty or
uninitialized stack- or queue'h?s no effect but will set the
fixed boolean *STACKERR or »=QUEUERR to true (respectivel}).
Popping the'last e}elent turns the stack or Jueue into an
empty one. 'Add' followed by a block-expression, followed by
‘to*, followed by a qﬁeué expression,‘will add the value,df
fhe first expression to the back of the queue which is the
value pf ¢the second expression.. (The first expression is
fully delimited by *add* and. *'to', hence it c;n be a

block-ex-pression.) Tha operator fempty? tests the-enp&inegs

of stacks and queues. It is used to represent the procedures

. .

saapty and q‘npty. The difference.,betveen eapty - ‘nda
‘uninjtialized stacks can be seen in the folloving:
stack A,B,X,Y:

A:=B;) - - . a
B:=emptystack;

push B; _ '
<B:=6; , o
Y-=e|ptystack ‘ .
X:=Y; ‘ ' :)
push X;. . S
o<Y:=6; -t : -
. -
X and Y now point to the same stack which has one element
(6) . B points to a second stack which also has one element
(6). A is still unipitialized (null). Similar relationships
h>1d betveen empty and unipitialized (null) queues. Stacks
and Jueues can be made uninitialized by assiganing null or ()
to thenm.
The following procedures are defined:
' 2mptystack - returns a unique élpty stack . N
emptyqueue - returns a unique empty queue
Sempty - returns true if the stack atqu-ent is elpt)
gqempty - returns true if the queue argument is é-pty
stackequal - returns true if the tvo stack argusents are

eguivalent

queuequal - returns true if the two queue arguments are
e;ulvalent : : .

push - pushes the stack supplied as argument

addqueue - adds the second arguaent to the queue supplied
as first arqument

popstack - pops one element from the stack argument

p3pgueue - pops one element from the queue argument

: ~

*

100

4.13 Records 7 v, N

L ‘ i .
k record is a siagle structure 'contnining.‘fvotal-

different but related pieces of 1nfo:nntLon.‘T?o'/ptpco:‘ of
info;..tl&n,l Qalled the fields .of “tio tchl‘, can be of
varying !npe aﬁd numsber, but are tlxod‘viéhin l\qivon record
class. In - ALAI, - record cClasses age '.dqtinod . via
<recordodoc1ut¢tion>{s. VYariables of gyp; 'ref' arg poiutotl.
to records; if the ‘ref'! is toll;vod. by a bracketed
identifier, then that identifier must be the name of a
record “cl;ss and the variables being declared can point to
(reference) records of thét élass; if no such ideatifier |is
given, then , the variables are of type ‘ref' (rather than.
‘ref (<identifier>) ') and can point io records of any class.
The name of the record class becomes a fptoceduteﬂjvhich
jenerates records 6f that olass;‘if_called vith‘no arguaents
it produces a record vit& gll aull or zero fields; if called
with arguments, tﬁen.the argusent list must con}ain one less
comma ‘than there are fields in the record class. When qa{lod
vith arquments, the "btocedure" returns a record whose
fields have been filled ihA- with the values passed as
arguments, or if no ;alue vaé passed for a tielé, that field

is initially null or zero. b

FPields of records (normally in ref variables or arrays,
etc.) can be accessed by followving the ref expresssion by an
"3' followed Dby An integer expression. The integer is used

- %

»
as-an index to the record, indexing starting at one with the

' | R . a 100
lefteost (in the-<record-declarationd) field. The result Caa
be used in expressions as a vnlio or cam. be assigaed to}jrho
infix *»° opotutor does not take precedence over indexing or

procedure callimg. The u.u-‘ of records pointed t’by

.'bnc;all' ref v.ttablo- are sade ‘back' vhile the .vltiabib‘

‘poinis to that tocotd. The value 'lnll' (oqnivnlont;y o

1: a vnlid valie for .11 et vn:t.hl.n and it is _distimet

fron 111 rocotds.

4 .

To simplify the use of records and to 1nctcasc'tho
amount of parse-tinme chockinq that is possible, the
daclaration of a record class ptoducos 1ntoqot variablos,
associated vith that class, vhose values are initializod -to
the aPPIOptiate index for the fields vhose nlngs they boat.

These variables can be used by the 'progtcl.ot, but their

‘values cannot be changed. The sase identifier can be nsod-%n

mdoce than one record class, te%ulting in conflicting values
for the resulting integet variable. In such ‘c;=§s, the
conflict is resolved by simply .disalloving wse of the
variable except wvhen the parser is sure of the record class.
in use (either froa iis own checks or via a user checkler
gJuarantee). Thus if the following declarations hav:i been
aade:
, record A(int VALUE:; ref (A) PTR);
record B(int CODE,VALUE, PTR) ;
ref X;
* ref (A) Y:

then one can have

YOVALUE:=3;
(/Tef (B) X)@PTR:=4;

but rot - ‘ L , T EAN

| XOVALUBiebiCint (RXOPTR): . e
TycoDE: R 4iv 27 . ¢ e

The left-to-right '.nx'u'uo_-' cule - l.o'i:',opocnou'ct ,'oqu'l. CoR

v

' precedeage procoeu the folloviag reswit: . RIS
‘ M“C\D ((I)“.C).D oto. R R BT r; .. L - 3

ﬂu mtu cxm u-motu- ‘slee w ,c ‘spepce ',

integer (can ;-tounchd bue got u.dupd to) vh-c mase ° L
.. i3 th€ same 48 thg regprd class (and bence'the same as that ¢
of ‘the retord” gonotatinq procodnto (ot the cluc‘) .lq 8hoqo° o
' valuo is .‘1!1 to the type aulbct vhich Iln bewa llléqtltod' ot
J&th'tbo tocqtd class. These typo nu-bots are unigue to oach .
racord -’ class and are an iategral part of oich toeb:d. heace
they ‘can be usod to-idontity the .cecdrd cl.ll £o wvhich ‘a -
particular tocotd ‘belongs. The syntax used is that of tho
boolonn oxpross&on: .. . ~

‘Cexpression) (L: | i:nt} <iat-oxprosslon>
The 1é?t-ﬁgnd,ogptos§Xon can be of any type, but is wesgally
jreﬁ'. ‘any' or ‘free', i.e. sosething that,onc&npcn.ol ;
range of sub-tybos. The . right-hand integer expression is
usually a spocial.socute variadble such‘as ‘ret’ tolloiod by

°

the name of a tecord ‘class or a user defined 4data type :nime

5

-or a staada:e ALAI data type name (a single vord only.,e.q;

tint? or.'frréy{“or ‘stack', not a complex type Ilje ‘feal
listt) " but ’can .Le an _ arbitrary iithot oxptesiion. The
.parsef translates occurrences of ‘is' (and its negative

'isn{') int> calls on the’pfocedure ‘type'. e.g. °

L%

e ' 103

type(i)=¥
whiéh in turn becomes:
comp(type(X),Y,0)
Set membership tests can of course .he used:
type (X)<-<A,B,C, D>
No ambiguity in wusage of the record class name can occur,
since the ‘cteqer version can be used only ‘as a bracketed.
t>rm following ‘ref'.
Tha44olloyinq procedures are defined:

type - integer result is the type of the arguaent which
can be of, any type.

r-cordejual '~ returns true if the two record argusents
are« equivalent.

4.14 User Defined Data Typbs \

I
UJser defined data types consist of an identifier

r=>pr-senting the data ;fpe'(it is a secure integer whose
valug 1S the type number for that particular data type) and
a sgi}of identifiers representing the values of that data
type. The set of value identifiers is available at run-time
$)> that values of the user defined data tyEés can be read
and. written as strings. Each user defined data type 1s
r?pr:s;nted by a unique type number yhich is an integral
part of any value of such a type. The value 'null' is also a

vilid value for any user defined data type; 1ts integer

< Julivalent 1s zero, whereas the user-specified values start
S _

*5

at one
name 5f the data type can be
th=2 current type of ‘any!'
‘gll user defined data types.
user defined.data{fypes. The

will compare values from the

and go up to however many values ate specified.

values.

104

The

used in 'is' or *isnt' to check

The type 'any' encompasses

No opetaéors are - def ined for

simple comparisons '=' and '-~='

same user defined data type.

The foilowinq procedures are defined: -
reptype - returns a string which 1is the identifier
associajed w#ith the -user deflned data value

ty pe

passed as argument. -

gettype - returns a valid user defined data type value
corresponding to the string passed as the_ first
argument. The second (integer) argument is the type
number for ‘the data type or if zero thea all data
types are searched for the name. If no such value
exlists, then the fixed boolean -TYPERR is set to
true and null is returned.

see under ‘'Records!

type
Sample user data type manipulationé:

Q
type DIRECTION (NORTH,SOUTH,EAST,WEST) ;

type SEXX (MALE, PEMALE,NEUTER, HERMAPHRODITIC) ;

record PERSON(string NAME; int AGE; SEXX SEX;
DIRECTION POINT) ;

int N, TOTAL:=0; \

DIRECTION CLASSPOINT; ref (PERSON) ‘*SOOL; -

while inline (CLASSPOINT); CLASSPOINT-~=null do

/#+ sample data: % SOUTH " »/

inline (N) ;
TOTAL:=TOTAL+N;
for to N do
SOUL :=*PERSON{(,,, CLASSPOINT) ;
inline (NAME (SOUL) ,AGE(SOUL),SEX (SOUL)) ;
data: " 'Jones,Harry' 23 MALE " =&/
od od;
/s« the craated records are here just ignored =/

/ *

. { 105

[3
MIIS Label's’

/
;

A label is a pointer: to a location inside a program to
vhich control can be transferred via a goto statement. Label
constants, 'created by placing an identifier (the constant's

. Y R

n&nc)&)folloved by a colon, beﬂore any executable stateament

ate local [Jiues._ As such they cannot be assigned to any

-‘labep variable which is more global than. themselves. Goto

statements, ‘goto' or 'go*' 'to' followed by either ‘a label
constant'orua label vari&ble, éﬁc. (i.e. a label expreé#ioh)

cause'a branch to the state-ént labelled by the label
constant which is the valueé of tbe‘expression. It is illegal
t> branch 1into a block. Branchiqg out of a bloﬁk éausés
normal block exiting of that block (any backtrack points
previously established in that block will of course still
exist). Branching within a block merely changes the order of
execution of the statements of the block." No operators are’

Jefined for label value€s.

It has been argued that the ‘'goto' construct is
danger»nus in that it causes confusion as to what conditions
exict when a givén statensnt is executed.’ Also, ih a
sufficiently general prograsaming 1language, goto's are
reiundant, i.e. any program can be written without using

them. ALAI as a language is meant to be easy to use,

however, so the 'qgoto' construct has been maintained for the -

benefit of those who are used to using them (e.g. FORTRANX

programmers) and for cases in which it 1s the most natural

g 106 .

construct to use. More restricted constructs (less capable
i 4
of causing.zonfusion) are available in the form of ‘exit',’

‘return' and 'next'.
Sample label manipulatzrons:

label L; - kY

:=if A<B then LOOP else END: b
goto L; . . "f
LOOP:X:=3; . . ~

if Y<X then go to END fi;

END:returh

4.16 Procvals

A procval variable is a variable which takes procedures
as values. Procval constants are produced by prefixing the
procedure name with *". Procedures which are the value of a

proacval expreSsion can be called by prefixing the procval

.

expression by '6' and postfixing it with a bracketed
arguent list (optional if the call uses no arquaents). The -

'5' operator takes precedence over infix operators, arguaent
. r

lists, indexing and field selection.
Sample procval manipulations:

procval P;

proc THING;
X:=Y;

int proc F{int X);
(3xX+U) =X +5;

P:=3THING;

&P ;

:=adF;
I:=1¢&P (1) ;

' : . . ' 107

4.17 Locations (lag's) . . ¥ , i

Loc variables have as values pointers to referencable

and assignable locations. These locations can be. variabléé}
specific fields of specific records, elements of arrays,

etc. A loc constant is produced by preceding a valid

<location> by '@'. The resulting loc is referenced both for -

obtaining its current value and for assigneent, by preceding

the loc expression by *&'. As many ‘1evéls of such

indirection as are needed can bes used. Albiguou- calos. such

as using '6' before a free value (1t conld be either a 1OC‘

or a procval which returned 'a value), are not’ alloved.’

Entire <location>'s are evaluited 5350te'applying the 'a°

-~
oparator, thus if X is a ref, then *#Xa3* is . equivalent to

'd (Xx33)*' but not to '(ax)a3'. (This latter fora. refers to

the ¢hird field of the language defined record .uhiéﬁ
represents the loc, i.e. to a non-existant field.) No- other

oparators are specifically relevant to loc's. ‘Loc valhes

-

cannot be passed out of the range of the variable be;ng,

referenced, hé‘ce the parset vill not allow loc exptesSLOns

to be passed outward other than as arguments in a ptocedure

call.
Sample loc manipulations:

record 2(int VALUE; ref (2)PTR) ;
15c.A;
ref (Z)P;
int list Q;
int array R;
int S;
& (case 1+1 mod 4 of (@S, @dR(S+4, I div 4), aQ(1I-8),
®P®VALUE) : =6 .
:=@S; . '

<108

EA:=348A;
The 'a* operator, unlike '8', does not take precedence over -

1

indexing, argusent lists or field selection.

»

4.18 Arrays
' s

‘Atfays are regions of storage 'atgrngcd‘ as
. multidimensional rectangular blocks. ALAI ‘places no 1limits
von tﬁg size or dimensionality of arrays, but the ‘local
»opetatxng systel or hardvale liy lilit ﬂﬁhg total si;o.
Arrays have ao associatad type other than 'a:tay' Put array
variables can be typeq and so cdn»agray-oxptqssibnb; Por
example,. if X is declared as 'ihtilist ‘apray 1list array',
then thg expression '1(641,12)(13—&)' has type 'int list
array'. If no basic type other than .'array' - is specified,
théd ‘free array' is assumed. Bapty artays réturned by the’
pfocedure ‘array' have no type, hnd,thué'can be &sgigned to
.any array variable (this is simply a spec1a1 allovance smade
by the parser). The atgulent list for atray is als; special
- te the parser in that a non-standacd fora is agcepted. The °

correct form is any nusber of pairs éf integets, “but the
parser . will accept "pairs" of the fOIl <1nt-expresslon>

. <int- exptesszon) or sxnply <1nt-expressxon> In ‘the 1atter
form, the first expression defaults to one. The successive
pairs denote the ranges of indices for suééessive

.dimensions.

Elements of axfays are valid variables and have the

’) . 109
T

) éy.po ‘passed on fros the variable vhpich ¢ tt.»&;‘ points to
the artay; Elesents are selected by ! following .ap array

exptossibn b; a bracketed list of integer ,!pt.llioil, vhich
seioct.alohq the respective -dimensions of\ the arfuie The
indiée: must be within the . range of £h§ lover and upper

gbudds passed to tarray' whep the array vas created. ‘lrtays'
themselves are global objects, but the values stored .in thes
may not be, hipce the globality is coqttoilrd through the
'qlé?al: and"locql3' special wmodifiers ﬂ‘pp{iod to arcray
vatiabics . tsee ‘'Declarations’).. Imdividual 'olciints of

arrays can be soloéted as 'loc' values by prefixing an array
‘reference by '3, as in 'DA(I.J,K)'. X¥o specjal operators

‘are déflﬂed.fOt-arrays. . 3 : . -

Fixed“ size arrays are local, rather than .global
objects, hence . passing of , them ‘As arrays necessitates
copying the complete array (see 'Declarations?). Pixed
di-ensionaiity for arrays serely ‘instrncts the parser to
check the nusber of indices used to index th?fhx;cy and the-
dilens{onality of arrays assigned tq. ;‘a‘e' fixed
> digénitéggigﬁl; array variables. Théé checking is not.alvays
- ‘é§§§iiﬁgiﬁhé§h serves oniy to eliminate some - run-tinme
éﬁe#kigq,?"rhe dimensionality of an array expression can be
specifically checked or guaranteed by the user through ‘the
‘/'gag ‘//' typing mechanisa using the type ‘array? foIioued
by ﬂa bracketed integer constant representing the
dimensionality.

Sample array- manipulations: , . .

int array B:=array(3:2,-16,0);
int C; .
real array (s,s,s) D;

bool array(1:3,1:25)Pr;

bool G; g

int loc H;

G:=G8P(1,18+J) ;
D:=array(I:J,P<13,K¢6>,27);
D(I,15,1) :=13.2; :

H: =3B (20,-6); .

EH:=CHe1;

E(H: =3B (I,20~J)) :=CH#+1;

')

110

Note the last fora, wvhich allows the inérelontation of an

4

array element with only one indexing of the array. The left

to right order of evaluation requires thatt H be given its

value on the left hanﬁ side of the outer assignlent.

' The following procedure is defined:

array - argumsents are a.variable nusber of integer pairs.
The <xesult is an array whose dimensionality equals

the number of pairs and whose 1lower and upper

bounds correspond to the left and right values of
the respective pairs. 'Array' is recognized by the
‘parser and is treated specially (see above).

4.19 Tables

Tables are essentially one-dimensional expandable

arrays. They are indexed by 'free' values, i.e.
rathber than just by integers. Eapty tables (not
the null value) are produced by the procedure

type of a table refers to the data in the table

by anything,
the same as
"tablet'. The”

rather than

to the values used to index the table (as vith arrays the

type is associated with the table variables, -

rather than

with the tables theamselves). If a nonexistent index is used,.

i.e. one for wvhich there is .no corresponding entry in the

L

table, then if the reference is vysed to produce a 'loc!

1M1

value or as a destination in an assignment, the entry is

created and initialized to the appropriate one of null, zefo

or false; else if the entry is needed

then no éhtry is created; but the value

t he fixed boolean «TABERR is set to

entries g?n be created as needed.

specifically relevant to taples.

The fdflovinq procedures are defined:
table - returns a unique empty

initially of size egual to the
a table sust be expanded, then

to obtain ,a Value,
L] - .

null is returnéd and
true. Thus new ‘table

No: operators _are

table. The table is
integer argument. If
the expansion is " in

lots of «TABEXPAND entries (+TABEXPAND is a fixed

int) .

tabarray -~ converts the table argument into a 2 by (size
of table) free array. The indices become the first
Column and the values become the second column.

arraytab - converts the array argument into a table. The
array maust be two-dimensional, must have oanly. tvo
columns and no entry in the first ccluan wmay be

duplicated. The first coluasn

. cthawseqond the entries of the

becomes theé indices,
table. An invalid

- array ‘argument sets the fixed boolean +CONVERE to

true and yields a null ‘table.

Both arraytab. and

tabarray do not affect their arqguments. .

Sample table manipulations:

table T1,T2:=table (20) ;

T2 ("cat") :="d09"3

T2(6) :=<6,3,2,1>;

Ti:=table (100} = .
T1(T2("cat")):=P ("bow" "wvow") ;
T1(V ((6) "cat")) :=T2(6) ;

11

4.20 Areas
. v £

An area is an unstructured but contiguous blbcx of
storage. The size of the area (the nulbet of Hordé .in the
block) is an integral part of the area. Area is a simple
data type, not a cosmpound type, ‘hence ﬁteas cannot be
further typed (as can arrays, lisfs. vectors, etc.). ﬂreas
can be indexed by a single integer (the first word of the
area 1is word zero). Words in areas are vél;d *free"*
locations. Words in areas can be used in expressions as
‘free' values and can be - a-signo.d any uluo."vhat’cnt.“
Assiqnnen;s.within areas are not backtrackable. A y

‘The folloving procedure is defined:

area - returns anh area whose size 1is specified by the
integer argument

4.21 Conditibnal Constructs
4..,4“

The conditional constructs in ALAI are *if's, ‘case's
and 'cond's. The statement foras aluay% end in a matching
closing word, i.e. 'case' statemeants end with 'esag': 'cond'i
statements ead with ‘'dmnoc' and ‘if) statements end with
tfi'. This convention produces source programs vwhich are
slightly easier to read than conventions which do not
clearly delimit such constfucts. Expressjon foras of these‘
vconditional constructs do noi end with a closin§ ;Otd. This
allows iteration expressions which ;re shorter (as‘ nost.

conditional expressions will be}. e.g.

if A<B then A else B

113

-~
All alternatives in expression cqnditionalp-lult be of the
same type (note that 'troi"onc;lpallcl all typol)'nud: this
is the type of £ho entire expression. Block expressions are
allowed in some places, but simple oxprolqionl are ‘thnitod-

in others; a blogk expression is nlloﬁod-uhonoyot it is

delimited by mandatory ke ywords or punctuation marks.

*

The basic *if' construct, if BOOL then CASE! else CASE2
fi, is executed in the standard vay; CASE1 is efecuted 4if
BOOL yields true, and CASE2, if present, is execated if BdbL«
vields false. The 'eles' part, hers-'blse CASE2' cas be
omitted in the atate-ent:forl of 'it's,.'ca;g's and 'cond's,
in which case the.gt;£e-ent is eapty if the 'else’ pi:t ig
to be executed. 'If' expressions must have ‘the ‘else’ part,
Since an express‘on aust have a value in all cases e.g. (if
BOOL vyields false. The 'elif! parts'(elif is a contraction
of else if) are optional and of atbittary nuaber. They serve
D to provxde addxtional altetnatlves. In general, the first
alternative inlediately following a 'then' which iamediately
follows a boolean‘ wvhich yields true is the one which is
executed. If no boolean.yields true, then tye ‘else' part is
executed. After a boolean has Yielded true, no further
b>>leans are evaluated. The 'elif' can be considered .to be

‘else if* except that no additional closing 'fi's (lteratxon

statelents) are required or permitted.

In the ,'case' construct, the alternative executed

(avaluated) isksqlected by one expression, the selector. 1In

t

1

the second fore of the case, vith an iateger seléctor, the
value of the lolocto:‘lip used as an 1;:oqot index to tho‘
list of altersatjves. The ‘else!’ part, .12 pt.lont. is
ox§cutod it the' selector yields am index which is "out of
.ranqe", i.e.lis less than one jor greater than the ausber gf
alternatives. In the first J&\“, the selector, here of any
type 1nc1udin§ integer, is coapared against tho', key
expressions (the one's bcfoii the coloas in the case list)
and vhen a match is found, the corresponding alternative
oi-nodiatily -after the same colon) 1is executed. The oy
expressions can be arbitrary expressioas but will aost ogteé:'

" be simple constants as in°

case PERSON of ("John": 26 "Nacy":28, "Paul™:1-dJ,
"Susan®":P (K))

The comparison u;ed Qith the key expressions is of the ‘'=¢
type. Case expressions asust alv‘ys yield a value, but the
else part is optional, so it is possible that none of‘ the .
alternatives are selected. If this happens, null (or zero or
false)v is returned and th; fixed boolean «CASERR is set to

true.
[]

The ‘'cond' construct is equivalent" to the Cife
construct except that the ‘else! part can bg oaitted. It
does, however, reguire fewer words. For example:

con&)l:B,C:D,E:P,G:HNelse'I
L

is equivalent to:

if A then B elif C then D elif E then P elif G them H
else I fi

which in turn is equivalent to:

r | s
Q

if a thon B else if C then D else if 8 thon P else if ¢
‘then H else I f£4 4 £4 24) N

Cond- prto-lion-. ‘like case expressions, _can tnil to
ofll&nto any alternative if thé 'élse’ part is nilainq. It
this happens, null (or :Qro or false) is returned and the
fixed booloqn;oconggll is set to true. |

-

4.22 Iterative Constructs

The ba:ig 1t;rativc constructs iq. ILAI are the
—1tara£ion stateaent and expression. ‘Tﬂ?>;ALllz itekation
ttatcnont-inéotporét-s the features from no;t POR, WHILE, DO
and SUCHTHAT forass in -other prograaming languages. An
examination $t the graassar (la}oidix A) Shows that the
simplest fSrm of a iteration statesent is 'do <block> qd'.
which 8oces not even contain a ‘for'. This fora is equivalent
to the standard ALGOL block as, in say, ALGOLW. It can be
used to ‘' put s;veral statements vhere the language allovs
only one. The «€ora 'vhile BOOLEAN do <block> od' is a siaple
iteration in vhich BOOLEAN, then <block> wvill be executed
Fepeatedly un‘tl BOOLEAN ‘'yields false (<block> la; not be
executed at all). The form 'do <block> uatil -BOOLEAN o4
Causes <block>, then BOOLEAN to be executed repeatedly until
BOOLEAN yields true (<block> .will alvays be executed at
l2ast once). If both 'while' and *umtil? are used, then thg

three are repeatedly executagj(in the same sequence as they

appear) until either cutoff becomes etfectiv@.

'*Por' parts cause iteration through a segueace of
-

"‘ !
.

¢
A .
o
' ' ! ¢

vnquo;. The fors ‘'froa* - 1to' - 'by‘ ltcp. &htbuqh cu_
srithsetic sequence of ronla or 1ltl§.tl.“ !%o three pattl
sust all be gither real or Latoqot. tlo tlr.o lny tppoct is
cuy order and any cosbinatioa of thc three may be oaitted,

‘in which case defaults are used.: The defaults are: froa 9

.(1.0) by 1 (V.0) to infinity., If th; ‘to' part is ocnn.ua.

then that ‘for' does not liamit the iteratioas, it secely
sets dp a counter. If the varioas expressions (vhich are
evaluated only once, inmsediately before the iteratioas
comsmence) are snc; fhat the count variable (the <locct;qn>:

vhich also is evaluated only once) never actually eguals the
limit, then the iterations stop vwith the last value wvhich is
vithin the limits. The ‘suchthat' tera provides a vay of
continuing the iteration, but skipping the executjion of }ho
sain <block>; if any ‘'suchthat? expression yields false,

then the execution of the <block> (or the"collcct{ ?att for
iteration expressioas) is skipped for that iteration, but
all iteration parts are exécuted (unless a cutoff ;LcuEZ)

and have their normal effect. 'While' and ‘until* _can also
occur with ‘*for's in which case they interact with the

'fPr's in such a way that any cutoff is iamediately

effective.

The *in®' fora, without the *@' jiterates throaugh the
elements of a compound value. Por example, if the ‘*in?
expression yields a set, then the <location> successively
takes on the members of the set as value. Such iteration

[4

through a bag repeats the value the appropriate number of

‘e

117
times. Arrays are iterated by changing the 1last coordinate
most rapidly. If '@in' is wused, then the <locaté%n> 1s

assigned successive 'loc' values vhich point to the elements
o

of the compound value. #@r example, if X is 'real 1ocf~and Y
is 'real array*, then ™
for X @in Y do £X:=0.0 od ; e

szts all of Y to zeros. One advantage of this form is that
therz is no need for Subscript checking since the subscripts

are supplied internally. The 'via' fore uses as iteration
L 3

values the results of the 'via! expression, which is usually

a generating fprocedure of some kind. A cutoff is produced by

the 'via' if the expression returns null, zero or false.

If more than one 'for! part is used, then they are
€xecuted sequentially in the order in which they appear. A
cutotf will prevent the execution of any ‘for! parts,
'whi.. »r 'until! following the part which producea the

cutoft. The various 'for! parts thus operate all at once,
v "

but have an ordering as to ,heir execution.
A sample 1teration statement: 1

s=t R,P,Q,Y,Z2; - -list R; 1int PP, COUNT;

for ¥ in Y suchthat X-<-Z

for A in B suchthat A-~<-7

for COUNT

while PP rem COUNT-=1

Toodn t=Pe X D>

Q:=D-<A>;
R:=R&«LJE<CX,ADD>

until X<-B | A<~-Z

o1t

-

Thls particular iteration statement adds certain elements to

th Sets p and v and to the list kK, but otherwise has no

118

€¢asily discernible practical use. It does serve, however, to

illustrate the form of the various components and how they

o

fit together. The statement is equivalent to the followaing:

W »
set B,P,0,Y,Z2; list R; int pP,1,COUNT, XC,BC;
bool F;

YC:=size Y; BC:=size B; -

COUNT:=0; I:=1;

goto LOOP1; .)
LOOP:I:=I+1; £
LOOP1:F:=false; . :

if I>XC | I>BC then goto 00T fi;

X:=Y(I); -
1f ~(X-<-Z) then F:=true fi; ’
:=B(I); ' '

if ~g~K-Z) then F:=true fi;
COUNT :=COUNT+1;
if, ~(PP rem COUNT-~=1) then goto OUT fi;
if F then goto LOOP;
) P:=P+<X>;
Q:=Q-<A>;
:=R&L<P<X ,ADD>;
1f ~(X<-B| A<-Z) then goto LOOP fi;
01IT:

Iteration expressions are mainly useful for
constructing linear compound objects such as sets and lists.
The *10 <block> od' of the iteration statement is replaced
by a ‘using' and a ‘collect! part. The 'using' part is
=valuated once to produce a procedure which must accept two
argquments of the same type and return a value. The type of
the arjJuments must be the same as the type of the ‘collect'!
#Xpression since this expression provides the arquments. The
type ©Of the procedure's result determines the overall type
of the iteration expression. When a iteration expresssion is
encountered in an executing program, the various expressions

which are to be evaluated only once are evaluated (1n the

order in which they ,appear)' and their results are used

119

throughout thei life of the . iteration expression. The
rdsultant 'using' procedure is then called wiph both null
(;r zero or false) arguments. The valye so obtained is thé
initial value for an inferna14 variable wvhich is used to
"collect" or accumulate the final gesult. Oon sudcessive_
iterations through the iteration expressipn, the ‘'collect!®
expression is . evaluated and then passed as second atgulent
to the"usind' procedure. The internal accumulator is passed
as the first ﬁrgu-ent and the result is assigned back into
t he infernal accumulator. This process is done once for each
iter;tio; through the iteration expression and the last
value in the internal accusulator is the final value of the
entire iteration eipression. For. example, the following
iteration expression yiglds a set consisting of the first
non-null values produce‘by the procedure GEN:

tor X via GEN @sing union collect <X>

Within the'iterating parts of the iteration expression
(those parts which are executed every iteration, e.g.
'while?', ‘until® parts) the internal accumulating variable
can be referenced through the name '#A'. Tvwo departures froa
this standard evaluation procedure are made. If the ‘using!
procedure 1is the constant 'band' or 'bor! ({boolean AND or
hoolean OK), then a cutoff is generqted if the ‘*collect!
expression ever yields ‘'false' or 'true! respéctively. This
value is then .the result of the iterafion expression. The
definitions of the following procedures are extended to make

th2a valid 'using' procedures: iplus, itimes, rplus, rtimes,

120

sconc, logand, logor, band, bor, vectconc, .intersect, union,

bagplus, bagmax, bagmin, 1listconc, listappend; chainconc,

b4
chainappend.

The <location> in the 'for' part is treated specially
in that it need not be declared. If it is declared, then the
existing identifier is. (it will thus maintain the last
value used in the iteration expression), but if it is not,
then it is "declared"™ local to the entire iteration
Statement or expression. If the parser can determine the

correct type to use, then that type is used, otherwise type,

4

‘free' is used. The suitable type can be determined from the
type of the 'from', 'to' and 'by' expressions ‘{if all three
are omitted, then the type is integer) or from the sub-type
of *in' or 'via® expressions.
Sample iteration expressions:

/* sum of positive elements of int vector IV: =x/
for I in IV suchthat I>0 using iplus collect I
/+* inner product of vectors A and B: x/
for R1 in A
for R2 in B
using rplus
collect R1«R2 .
/% list of first 20 prime numbers =/
for I from 2 suchthat
(for J in =
using band
collect I div J a= 0)
for K to 20 &‘:
asing listconc
collect L<I> .

-

121

4.23 Return, Exit, Iterate and Next

The.norual method of returning fros a'ptécedure"is_lto
execute the last statément in the main block of the
.procedure body. Sometimes, however, it is desirabile éo
raturn from some ‘point in the interiqr of tﬁe pr&ceduf&.
This can ke done by branching to a labelled eampty.: sta‘tolo‘nt
at the very end of the body, But this method can be sl.igb‘tly
confusing, especially if the labelrna-e is cHosén poorly. A
more explicit alternative is the ‘return' statement which,
on execution, causes an inlediate(ieturn-fro:'thé procédure
in which the ‘*retaurnt appears. If the procedure being
reéurned f;o- is a typed érocedure (i.e. returns a value),
then the 'return' must be followed by an expression of the
appropriate type whjch becomes the final ;qlué of the

zvturns can cause severaliﬁlock exits,.

procedure call. Such

but do not affect backtrack points.

Specialized goto's are also usefﬁl in conjunction with
fterations. *Exit? follaped by an'identifiér ﬁhich is'hused
as a block name for the body of a iteration statement, will
cause that block to be exited immediately, and the iteration
Statement to be given an immediate cutoff. If the ideptifier
is omitted, then the iteration.statelent exited is the most
local one which encompasses the ei@t statelent; fItefate'
works ;inilarly to 'exit' except that instead of'exiting th;

entire iteration statement, only the body block is eiited.

The iterations and tests are then performed and execution

122

v

continues with the start of the body block. (‘Iterate' |is
essentially a 'q&io' to th;.end 6(}ho nan;d body block.)
*Next' is sisilar to itefate_cxp;p{hﬁthat after pofforpinq
the itet;tions' and cutéff teégs; etocution continues after

the 'next' rather than at the start of the bodj block.

Sample 'exit', *'itérate' and ‘next':

for I to.5 do
outbuff (I);
exit; g
-outbuff (-I) od; /% prints:

1 . «/ , : .

for I to S5 do) ‘ :
outbuff (I);

o

iterate; . .
outbuff (-I) oQ; /+ prints:
12345 x/

for I o 5 do
outbuff (I);

next;
outbuff (-I) od; /% .prints: -
1-23-45 ./

4.24 Input and Output

Input and output (I/0) in ALAI is done via a set of
special statements and procedures. 'Card' is the basic input
statement; it will take any nuamber of arguments and will
rzad values for each of them fros the standard input streas.
Statements occurring within the argument 1list will be
executed at the appropriate time. The reading starts with a
new input record (card) and reads as many regords as are
needed (several values may be read from one. record, but no
value may cross a record. boundary) until all of its
arquments, each of which @must be a valid <location}¢ has

been given a value. A fixed integer, «CARDLEN, tells- the

123
. »

input routines how Qany colu,as of'ouch record gq con-ido;.
The external reproqyﬁta;iont,ﬁfécptod are those acc;ptod. in
.~ program source. The data Ldlo-cnts' being read amust be
sSaparated by blanks or co-ial. Tyb types vhich can be read
in: this vay are: ints, tealg. bits (as:bin, oct or hex),
strings,-uset defindd data type ialuos and linear soquoncis
of such (i.e. sets, lists, cklins,.b-q-. vectors, pciil and -
triples) represented in either <> or () format. - Linear
saguences of Aclirieat \Qg‘uences of lin-'a_f sequences etc. are
alloved and the elements of a sequence can span Basultiple
tecﬁrdé S0 long as no basic element atteapts to do so. Free
values cannot be read, hence the levei 6f nesting for input

of sequences is lisited by the level of declaratioq of the

location'being read into.

‘Inbuff' is a statepqnt' fora similar to. 'cafd' but
vhich will accept only one arguaent ahd uhiéh vill not cause
a nev record to be started unless the ptevious'one is
exhausted. The pro;edure 'tercard',(tetlinqte card) siaply
causes a new input. record to be read. The procedure
;getcard' returns a string result vhich is the next complete
racord in the input streas (its 'length need* not equal
*CARDLEN). Use of ‘'getcard' does not affect the buffering
done by ‘'inbuff' and 'card:?'. Output is done in a si-iiar
manner except that greater control over format is available.
The Statements ‘line' and 'outbuff' correspond to 'é;td' and

‘inbuff* - ana the procedures ‘'terline' and ‘putline!

correspond to 'tercard' and ‘getcard'. When integers and

124

«

rzal nuabers are being output, the formatting is done by the

proéedures ‘repint!’', ‘tepfix' .and v'tepsci'-~vhich qere”

discusséd previously (sae‘hnddr 'Sttinqs‘). The second and

"third arguments for ‘“'repfix' and the second argumeats for

'rfepsci' and 'repint' are, respectively, the fixed integers °

sP_L (fixed length), «PF_D (fixed decimal), »S_D (scientific

. . . . ’ N
decimal) and +I_L (integer length) . The f£¥xed boolean. sSCI

controls wvhich of scientific or fixed point notation is t;\\

be used for real numbers (true -> scientifid). Por bits
values, #BIN decides betyeen binary and hexaqécilal or octal
(ttue -> binatj) and =HEX, the s@le variable as is
referenced for reading bits values and fqr use bx the bits
decoding/encoding rouiines, decides between hexadecimal and
octal (tru; -> hex) . The formats used are those of full
length returned by 'tepbin', ‘repoct' and ‘rephex' (see
%2335_'Bitsf). The fixed ints 'IPOS' and 'OPOS' indicate the
next positions in the .buffers to be used by ‘'inbuff' and
Soutbuff' respectively. The _procedures f*tabi' and *'tabo!
will cause tabbing (skipping of characters or ‘insertion of
blanks) into the respective buffers to the position passed

A~
as argument.)

‘Putline' outputs its single string .arqulqnt without
affecting the buffers used by. *outbuff* and '1ine'. Free
valu2s can be output so long as the actual value being
Ooutput 'is of one of the basic types listed above. When
printing is being done, some operating Ssysteas Support

carriage control of some kind to allow such things as

~

»

125

overprinting, double spacing, page alignment, etc. The fixed
variable »CC is amgnt for this purpose, but because rog
varying syste-s,‘ its nature and effects cananot be part of
the langﬁage specification vithout . unnecessary

complications. Similarly, I/0 to -other than the standard

input and output devices will vary in nature, but the
procedure names A'tead' and ‘write' are intended for this
use. It is exéected that some Silpl;. ieans for zthe input
(parsing) and output (pretty-printing) of expressibhs under
user prograsm control will be provided, but the exact nature
of _tﬁese vill not be known until an initial ALAI
implementation is produced and in fact may vary froa place
td place. The following procedures are defined and have been
described above:
tercard, terline, getcard, putline, read, write

Sample input/output:

int.I; real R; string S; list L; bits B;
card(I,R,S,L); /= possible data is:

26 -15.7E21 "Hello "™ L (2 ("car" 4) 3) *x/

/+ the same effect is achieved by: s/

tercard; inbuff(I); inbuff (R);

inbuff (S); inbuff (L)

/% or by: =/

card(XI,R,S); inbuff (L) ; -
/+ the above data line could be printed by: =/
«I_L:=2; tSCi:ﬂ:tM #S_D:=1;

line(I1," +R," W, 5," ",L)

*BIN:=false; «HEX:=true; B:=I1FACB0781;

line (£101," " _B); /« produces:

00000005 FPACBO781 but =/

*HEX:=false; line(£101," ",B); /sproduces:
00000000005 37262603601 assuming 32 bit wvordss/

126

4.25 The Data Net

The ALAI data net is constructed of dictionary entries
and user defined record classes. Instances and concepts afe
created by 'adding certain fields to the ones in theitecord
classes. These fields are fixed and in fixgd positions in
the records so that the ALAI net manipulating roﬂtines have
some predetermined fields to work with. Any record class can
be used aS a data net node class;‘thus the user has a high
degree of control over net contents. The predefined type
'lict', used for dictionary entries, consists of a string,
«NANME, and a list, =«MEANINGS. «MEANINGS is a list of, among
other things, pointers to net eleaments which "represent" the
entity named by the string «NAME. Two other predefined
record classes are used by the system. 'Simple' is a record
class which has no fields. 'Expr' (previously considered as
a data type dué to special considerations by the parser) is
a record class with the following fields: dict «REL; free
*°AR1, «PAR2, ... , «PARn. Records of this class (and only
of this class) can have an arbitrary nusber of fields. This
is allowed because all things which are used as «REL's have
an integer on their «MEANINGS 1list which indicates the
number of participants used with them. Thus internal prograa

structures consist of nodes (records) of class texpr'.

The postfix 'It (for instance) applied to a record
class name yields the name of a record class having the

following extra fields: int «PARCNT:; I list «PARTIC. (The

4

127
type 'I' refers to any such record, i.e. any instance.) The
postfix C! (for concepts) applied to a record c;ais naase
yields the name of a record class having the following extra
fields: int *=PARCNT, «USECNT; I list tPlRTIC, «USBAGR. .The
type 'C' refers to any such record, i.e. any concept. The
postfix 'N' (for node) yields & class containing both
concepts and instances of that class and Qhe type ‘%' refers
to any concepts or instances. Thus if 'NODE® is a valia
r2cord class, then ‘ref (NODE) *, ‘ref (NODEI) ", ‘ref (NODEC) !

L]
and 'ref (NODEN) ' are all valid types for net’elements.

The extra fields added to instances agd'cyncppts are
used by the net maintenance routines but can also be used by
the user. *PARCNT is a count of the nuamber of .glnes this
element (inséance or concept) has been used (pointed to) as
a field of an instance which wvas constructed by the net
maintenance routines. *PARTIC is.a list o;‘{he instances in
which this element has been used. This count and lis§ does
not include the usages of a concept as the concept (fhe
"verb" of a "sentence") in a coapound element. #«USECNT and
*USAGE are an integer count and instance list which include
only these latter uses. Thus only concepts can occur as the
first component in a compound element if the standard linkup

-

Loutines are to be used properly.
L J

As an illustration, consider one possible scheme for
representing predicate calculus expressions in net forna.

Simple itens (those, whose existence is . assunmed) are

128

rapresented by the record classes 'ITENI® (inatanco_l) and
‘IPENC! (concepts). Simple propositions are t.pron'ntod by
the record class® 'COMPI' ey are compound instances). Note
that, as vith siample record classes, the name of the record
class is a procedure which builds records of that class vwith
P

its argusents as fields. +PARTIC and «USAGE back links are
autosatically produced for all instances and cotagepts, and
dict records are automatically produced and inserted if
strings are passed instead of 'dict' values. Thus wve could
have:

record ITEM(dict NANE) ;

record COMP1(C PRED; N SUBJECT);

ref (ITEMI) INSTY,INST2;

ref (CONP1I) PROP?,PROP2;

ref (ITEMC) COMNE1,CONC2;
TO é:reate iteess *John' and 'Sam' and predicate 'Human':

INST1:=ITENI("John");

INST2:=ITEMI ("Saa") ;

CONC1:=ITENC ("“"Human"™) ;
Note that the added fields for congcept and instance are not
given; they are automatically set to zero and null. \Also,
this use of ‘*dict' values (in concepts and instances)
automatically puts those concepts or instances in the
+MEANINGS 1list for the 'dict's. To state that John and Sanm

are human:

PROP1:=COMP1I(CONC1, INST1)
PROP2:=CONP1I (CONC1,INST2)

The «PARTIC lists of the nodes for John and Sam will now
have one entry each and the «USAGE list of the node for
Human will have ¢two entries. These operations can be

combined ib allov the easy "stating" of propositions:

'??’

129

CG:PtrQITlHC('PtQtty"),IT
-~ . - :
Hore sophisticated propositioas cam be handled:

record C2(C PRED; N SUBJECT,OBJECT); -
record CN(C PRED; W list ARGS): Sy

C2I(ITBHC("Think.”),I'ST‘:'IQ&FI("BXII"),C,i(IT'HC("And”).
L<COHP1I(IT!BC("H.RGIOI.“);IfBQ1). -
COHP1I(IT!HC("SIIrt"),IlST1)>))
In this last assertion, one of the fields of a pnode being
constructed wvas not another hode, but rather vas a list of
hodes. In this case and in others like it, the hodes vhich

are subparts of a field (not itself a node) of a node being

constructed are all backlinked to the new node.

Descriptors are concepts or insiancbs for vh}[ﬁ the net
maintenance routines will not backlink fros non-descriptor
components. Tﬁese types are represented by a further postfix
of p¢ used after (or insiead .of) the 'Ct, 1 o 'y
Postfixes. Thus, for the record class 'NODE', the following
€xtra node types are defined: ‘ref (NODED) *, '‘ref (NODEID) *,
‘ref (NODECD) * and ‘ref (NODEND) *. Using the above record
cla;;gs; Ol; tould have:

reé(CONCIID) T1,T2;
T1:=CONCYID(ITENC("Happy"),INST1);
T2:=CONC1ID(ITEHC("Supetior"),INS?I);
T1 and T2 will not be backlinked to from 'Happy', 'Superior’.
5r *Bill' and thus can be efficiently destroyed (deleted
from the net) if they prove to be untrue or unnecessary.
Note however, that if the following is "assertedns:
CZID(ITEHC("Knows"),INST1,T1) ’j‘

then T1 will Be backlinked to the nevly created descriptor

130
node since it is itself a descriptor. Noteq that there is no
dCfference betveed net uses of 'ref(NODE)' and non-net uses
of '‘ref (NODE)*', thus all uses Of an instance or coacept in
any non-descriptor record will be backlinked. The predefined
record class ‘'simple' has nb fields, thus the tyﬁo
‘ref (simple) ' is a ;iiiinquilhabli pointer to mothing. Such
usage is entirely persissible; it is thea the value of the
pointer itself which is of intC'qQ3{ and not anything'.tho

pointer may happeh to poiat to (if anything).
‘Lo ,

The predefined "‘record class ‘expr! is’ of special
interest because of its inport;nco to ‘the li‘I runtime
system. It is used for all nbnéolpilcd progras structures,
includi;; pdtterns. ﬁécause ot.this, it is desirable to have
a special, simplified syntax for it. The recor@® class naame
‘D' is considered to be a synoayas for 'exprD' and similar in

““B*, etc. This

syntax to the typing pseudofunctions 'se,
means that it cam be used with angle brackets and cCommas, as
in

DL"#«ASSIGN", X, Y>
or with found brackets and no connas,'as in

D(«IF («REF :tlookup("X") null) :TRUEPART null : ELSEPART)

This latter form is then equivalent to:

exprD("sIF", exprD("«BREF", tlookup("X"), gull), TRUEPART,
null, ELSEPART) ’

In the -latter form, siaple identifiers qre treated as
dictionary entry references to entries with tBat identifier

as name, and normal parsing is achieved through the break

—nairacler, v, Further special syntax for the !
pséudofunction is discussed in section 4.27 (Patterns a

Pattern Matching).

Any record containing a 'dict' field can be output; t
string associaied with the ‘dictd vill be used. 'Dic
values can be created by prefixing a character Sequence by

pP>rinsi ('.'). Two procedures are defined for use with da

-

n-t nodes; they are given. belgv; Also usable 1s t
procedure 'recordequal' (defined in section U4.13) which wi
test ftor the equivalence of nodes which are, in actualit,
spepial records. If it 1is desirable to referegce a ;iV(
node repeatedly (as was largely avoided inethe aboy
examples), the most efficient method is to create the no¢
at varse time and use a parse time variable (an ‘egu!') t
r=fec:nce it as a constant. Run time references to alread
€x1s5ti1ng nodes can be obtained via the procedures 'lookup
104 ‘get'. Note that the opeﬂggors 'is' and 'isnt' ar
us-ful for work with the data net.

The following procedures are defined:
lookup - the string passed as arquaent is 1looked up i
the «current net dictionary. It 1t is found, th
dictionary entry ('dict* record) is returned, els.
null is returned. p
gt - th2 «xMEANINGS list of the first (dict) argument i:
‘'scanned for meanings of the type specified by th
second (integer) argument. A list -of the Beaning:
found 1s constructed and returned. The values fo)
the second argument will most likely derive froi
the fPredeclared safe integers such as t'int!? anc
*liste or from record class references such ac
‘ref (NODE) ', ctc.

132

an

hd

, ' i v .
4.26 Unevaluated Ewxpressiohs #nd Parse Time and Compile Time
o 3

Evaluation

A program or ‘procedurg in ALAI 1is processed three
distinct times: it is parSed, it may be compiled, and it is
executed. Normally, the expressions and statements of a
procédure are evaluated or executed when the procedure as 6
_whole is executed. If, however, an expression is prefixed by
the character '#', then it is not evaluated to yield a
result, rather 1t IS the result, a result of type ‘expr?*
(expression) . Such unevaluatéd expressions cam be passed
around, <aved, etc. in variables of type 'exbr' or type
‘fre<'. Evaluation of such expressions can be forced by
preceding 4an '‘expr' expression (an expression whose result
1S ot type 7expr') with the chafg;ter '='., The result of
evaluating the ‘'expr! then becomes the value of the *=¢
Jperator. 'Expr' is a compound type, hence ‘expr'! variables
zan be fyped further as in 'int expr'. Note that because of
th-ir internal structure ‘expr's are all 'D*s. An ‘expr' can
b2 a block expression, but it is illéqal to brangh out of
that block or to fail out of it. References in the ‘expr' to
local variables are via 'loc' constants creafed for thenm;
tnus '-xpr's can be passed to procedures and tr variables
th2y reference may thus be used outside of their range._The
“ntiTte 'expr?, however, cannot be passed out of the range of

the most local variable it references.

If a statement in ALARI source 1is preceded by the

133

cnaracter '+', then that statement is executed at parse time
and does not appear in the resulting internal progran
structure. Such statements can reference and chanée 'équ's
available in the current block and any fixed variables or
data net elements. They are mainly intended‘ as a way of
allowing "a type of macro (the statement can be a call to a
procedure which‘-oaifies the prograg structure produced by
the parser) and as a way of allowing the changing, in the
middle of parsing, of any fixed variables or data net
elements Which the parser is dependent on. In a similar
mAanner, 2nd for similar reasons, a statement preceded by the
character '"#£' is executed at compile time. If +the prograas.
structure containing a compile time sStatement is ever
interpreted, then the compile time statement 1is skipped
over. Compile tipme statements can only reference fixed

vari1ables and net.elements.

To facilitate the locating of parts of prograas, the
n>tion of a '1ocator (not to be confused with 'loc's) is
introduced. Locators are descriptive ways of writing callg
tp the procedure 'locate' which returns a type ‘expr’
pointer to a part of a procedure. Locators are written as a
sagquence 0f procedure or block names followed byla sequence
>f statement numpbers, all separated by ‘#°s. ?l; exanpie
‘alphat#hecta®#12#3816" refers to the 16th substatement of the
3rd substatement of the 12th statement in précedure {(or
hlock) ‘beta? which 1is found inside procedure (or block)

talpha'. Since most uses for locators in user procedures are

134

those where prograas are to be dynamically modified,

/

locatprs are parsed as calls to 'iocate' in ;11 cases,
rather than being evaluated at parse tine if possible. The
exact correspondence betyeen locators and internal prograa
Structure will beeome clearer after the discussion of
internal progia- Structures and after direct usé of an ALAI
implementation which uﬁes locators as parsing pronbters (see
later discussion on possible operating‘environnents).

The following procedure is defined:

locate - first argument is a list of strings, second is a

list of integers. The list$s are used .as the
procedure or block names and the statement and
substatement numbers to locate parts of existing
progranms. An texpr' pointer to the 1located
structure is returned. If the appropriate structure
cannot be found, then null is returned.

4.27 Patterns and Pattern Matching

Pattern matching in ALATI matches specific patterns
ajainst other structures or entities. ?3}terns are
constructed of descriptors, hence 'pat' (for patterﬂ“ is a
subtype of *'D', Hence also, the syntax for patterns is part
of an*' pust be compatible witﬁ; that for descriptors.
Patterns are built up froa subpattern; using the pattern
OPs=rators '=t, v, g, g0 age, tge, <=1, '<=>r, t—>,
-, veon, -—---‘, Pidet, 1iKe>r, tio>v, 0z oapg 3=t phe
opvrators!' formats and meanings are as follows (square
brackets delimit optional parts): “

's' - this prefix indicates that 2 subpattern must pot be

matched

© 135

e - this infix inaicates that either or both
Subpatterns must be matched '

6' - this infix indicates that both subpatterns must be
matched : ’ ‘

‘#' - this infix igpdicates that -either but neot both
subpatterns must be matched 4

'a[<int-expression>][C=<Iocation>]' ~ this postfix is
used only in patterns representing linear sequences of .
elesents, e.g. instances, strings, lists, ets, etc.
If the integer expression is absent, then the

postfixed bpattern can appear any number of times
(the entirg¥sequence is taken vhereas ‘arbno! takes
only as - many as necessary) and 'the count of

occuprences is set into the location (if given) . If an
integer expression is given, then the subpattern smust
occur that- nuamber of tiaes (negative implies zero) .
The action is siasilar to the SNOBOL '*SPAN' pattern.
Note that the integer expression and the location are
evaluated every time the postfixed pattern is wmatched
(they akp evaluated before the matching).

'¢{<int-expression>][C=<location>]' - this postfix is

’ like '3' except that without an integer count it takes
as few elements as possible, i.e. it is like SNOBOL'S
*ARBNO'.

©

'<-* - this prefix indicates that the prefixed pattern is
to be evaluated and matched only wvhen the matching
process backs up over it

tea>r - the prefixed pattern is to be evaiuated and
matched when passed over in_either direction

'->* - the prefixed pattern is to be evaluated and
matched only when passed over in the forward direction

'-' - equivalent to 'érb'

'--' - eguivalent to 'span(arb)?

'---' - equivalent to ‘arbno (arb)!

':<-' - the true or false result of the prefixed boolean

expression = 1s equivalent to the success or failure of
matching a pattern prefixed by *<-!

':<=>' - as ':<-* byt corresponds to *<->!
':->' - as ':<-' byt corresponds to 1->!

'=<location>*' - the portion of the target which 'is

TWETTT L e T T

- 136

matched by the. Postfixed pattern is'alsignod‘tq the
location. The assignsent is done every time the
pattern is matchead. _ . ,

'=a<Iocation>' - ass8igns to the location the position in
the current linear Sequence of the postfixed pattern

In a pattern, simple Constants stand for fthojielves. and
non-pattern expressions ‘(perhaps . preceded by a
disanbiquating colon) are evaluated oﬂée, before the
natéhiﬁq Starts and thereafter their :esult; are constantf
Patierns wvhich are Unprefixed are assumed to have the prefix
'<->'. Postfixes which follo; No pattern are assymed to
tollow the Pattern '~', The location following the '=)

postfix (vhich iésalf iust follow any 3¢ postfix) is
treated ‘as a Segment varijable, e.g. if a list is being.
matched, then multiple elements matched by the 13+ operator

» Adfe assembled ;nto a list before being passed on to }he
location. Note tha£ Ti=D>1, toga>t and *:->1 prefix boolean
expressions, not Patterns. The safe fixed yiriable «CYRSOR

points to the unit in the possible target structure which is

currently being matched. S

The Pseudofunctions S+ B, V, L, C and D can be used in
Patterns but the internal structure pProduced is differeant
from that produced 1inp normal usage. Since patterns are

descriptors,'they alvays start with the Pseudofunction 'pr .

Sample patterns angd their meaning:

D(string((*B* I *R') (vgev 4 'EA') ('D* | ‘DS')))
matches 'BED?', *BEDS, 'BEAD', 'BEADS?, 'RED', 'REDS®,
'READ* or "READS".

D(V(x | (BIG BROTHER) (-33) =Y 6))
matches a vector containing:

L . 137

1) the concept X or the instance {BIG BROTHER)

followved by } o o

2) 3 of anything; the three are asseabled into -a
vector and assigned to the prograa variable Y '

3) the integer constant 6 '

D(L(stqing((”h" ——- HgW) § (~-F "ea" ~---))=WORD
get (lookup (*DOG")) (1) 3=D0OGS) ' ,
matches a list contaiaing: ' . .
1) 4 steing which starts with *"h®, ends with "sg» apng
‘ contains "ea" somevhere in its interior. The string
is assigned to the variable WORD.
'2) an arbitrary nusber of occurrences of the node DOG.
The occurrences are. asseabled into a list ana
assiqnad to the variable DOGS.

X:=D(stringg®a" (null | i=8X) "h")) :
This 1is a recursive pattern wvhich wmatches a string -
consisting of one or more ‘antg folloved by the - same
number of "b"ts_)\ better vay (in terms of efficiency) of
accomplishing the same thing is the pattern
D(string ("a"aC=I nhnar))
vhere I is an integer variable.
‘String' is one of several special "functions" which
modifies the pattérn satching or provides for special
o,
purpose patterns. The names of these pseudofunctions
correspond to the nases of the ALAT data types they are used
to produce patterns to -Atch. The name alone represents any
object of that type. 'S', 'BY, etc. can be considered as
abbreviations for ‘sea?, '‘bag', etc. Inside the "argumsent
list® for these functions, the pattern *arb' represents an
elesent capable of being a part of the type corresponding to
the pseudofunction, Inside 'string*', ‘tarb? represents any
single character; inside ‘bits' it represents any bit;
inside 'bool' it represents 'true' or ‘false'; inside ‘'int?
or 'real' it represents any numeric value. In more general

compound types, e.g. 'list', it represents anything. 1Inside

‘int' and 'real*, subpatterns can be comsparisons which aust

v

138

be true for the value to be matched, e.g.
int(<2 & >I | >2 £ >aJ)
If no such nase is used for the global type, then ‘'list?

(*L') is assunmed.

The actual foras used for pattern litching are the
procedure ‘'match? and& khe ‘find*, *find1' and ‘reset!
constructs. The 'find' form searctes for occurrences of the
<pat-expression> such that the 'wvith?* pat terns exist and the
*suchthat! expreésion is true. The searching is done in tﬂe
world specified (defaults ;o the current wvorld). The v?ARCHT
;nd *USECNT fields of nodes are used to reorder the search
in order to decrease expected search tile vhenever this can
be done without <changing the effects of the search. The
rasult of the find expression can be either a pointer to the -
tound target structure (which matches the object ~of the
search, 1i.e. matches the expression following the word
‘*find* or *find1') or a part of the found structure. If the
searZh object contains a .value assignmsent (via the '=!

' gfattern pPostfix) to the special program variable 'sR', then
K the value of the 'tind' is the latest value of '&R'. If
‘find' is calléd with the Sale object and -'vith's as a
previous call in the same process, then another exalplevof
Y he objeci is found and returned. When no more candidates
are tound (this can happen on the first call) null is
returned. Note that 'find' is thus a valid 'via' expression

for "iterative constructs. The finding of successive values

can be reset (and the associated storage space freed) by

issuing a 'reset' with the same object and ‘'with's.

"he construct 'find1' is the Same as a 'find‘
immediately folloved by a corresponding 'reset' - it finds
éhe example only. If ‘'need' is specified, then the finds
vill find the closest candidate not alrgady -chosen if no
exact wmatch exists. The fixed variable «NEED is then
assigned a list of pdirs, the left element of vhich .is a
small part of the object pattern not matched and the right
element of which is the corresponding part of theé returned

cdndidate which was “close to" the required form. A sample

)

find:

findl! D(DOG I=#R) with D(BLACK =«R) with D(BIG = R)
Note that it'is possible to produce recursive patterns which
do not use unevaluated expressions by circularly wmsodifying
the Lntefnal structure of the pattern.
The following procedutés and safe variables are defined:

match - returns true or false depending on the success or
failure of the wmatching of its tvo ayguments. If
both arguments are patterns, then the second is
treated as a constant and the first is used as a
pattern to match against it. If one arqument is a
pattern then it is matched against the other. Any
Oother combination of arguments is invalid and
returns false. The symbol '<>' can be used to
represent 'match'.

cright - moves »CURSOR right one element in the current
sequence

cleft - moves +«CURSOR 1left one element in the current
sejuence

cdown - moves *«CURSOR down from the current element to
its first subeleament

Cup - moves #»CURSOR up to point to the entire Sequence of
which 1its previous value was a part. These four
) -

140

N
. '

gursor moving procedures allov the user to write

pattern satching procedures which <can be called
" from within patterns. : .
arb - a pattern which matches anything. The range of arb

can be restricted by pseudofunctions which specify

pattern types (e.g. ‘'‘string').

arbno - a pattern which will match as many occurrences of
its argument as™are needed to complete the entire
pattern match

|

span - a gattern which matches any numsber of occurrences
of its patters arqument. It will match as many as
there are, regardless of what further parts of the
pattern may need to match.

break - a pattern which matches everything in a linear
sejuence up to something which matches its argument

to - 'to (PAT) ! will match as 'break (PAT) PAT'. A value
assignment from 'to' yields only the portion of the
target matched by PAT.

abort - a pattern which causes immediate failure of the
entire pattern match

fail - a pattern wvhich causes failure when encountered
succeed - a pattern which is alwvays matched (to nothing)
tab - matches sufficient elemsents to cause the next

pattern in sequence to be matched against the n+i1st
element wvhere’'n is the integer argument to tab

rtab - matches sufficient elements to leave only n
elements in the current linear seguence, where n is
the integer arqument to rtab ’

len - m@matches the next n elements @f the current linear
sequence, vhere n is the integer argumsent to len.
Tab, rtab and len fail if they cannot performs their
normal function.

pos - fah if "the next element to be matched in the
current linear sequence is not the n+1st element of
the sequence, where n 1is the 1integer arguaent to
pos

rpos - fails 1f the next element to be matched in the
current linear sequence is not the nth eleament from
the end of the sequence, where n 1is the integer
argument to rpos

W1

3

Sample program for data net and pattetns:@
»

int I; bool QS,QO0; - x5 Yy
string S,SSUB,SVERB,SOBJ; ‘ ‘
record R(dict NANE):)
ref (RC) VERB; ref (RI) suB, OBJ; ‘
record S(ref(RC) V; ref(RI) S,0);
ref (SI) SENTENCE; D PORM;
pat ART:sD(sttinq(("the"l"a"l"sone"l"an")a " ng)).;
pat W:=D(string(break (" %))), B:=D(string(" "“a)) ;
vhile S:=getcard -= "stop"
do if D(string (ART W=SSUB B W=SVERB B ART W=S0BJ)) <>S
then SUB:=RI (SSUB) ;
VERB:=RC (SVERB) ; RS
OBJ : =RI(SOBJ) ;
Q5:=SSUB="who"| SSUB="yhat";
QO:=SOBJ="vho"lSOBJ=“vhat";
if ~QS&~Qo0
then ignore SI (VERB,SUB, OBY) /xassert the facts/
else FORM:=if QS&-QO
then D(VERB - OBJ) /#looking for subjectss/
elif -QSé&QoO -
then D(VERB SUB -) * /elooking for objectss/
else D(VERB - -); /«looking for baths/
for SENTENCE via find FPORNM
for I
do line(">",SENTENCEOS,SENTENCEBV,
SENTENCE®0,%. ")

od;
if I=0 then line (">Dnone found.") fi
fi
else line (">invalid input.")

fi
0d;
/+* a sample session: =/
cat is animal
a dog is an animal
what 1is an animal
>cat 'is animal.
>dog is animal.
who 1s person
>none found.
John is a person
John is what
>3ohn is person.
doedgyMary have sheep
>invalid input.
bicycle is vehicle
what is what
>cat is animal.
>dog is animal.
>John 1s person.
>bicycle is vehicle.
a car has some wheels

a bicycle has wvheels
vhat has what

>car has wvheels.
>bicycle has vheels.

stop
" ®
4.28 Contexts ’
Contexts {type ‘context®) in ALAI are used for

"snapshots of the world" for use in backtracking and the

processing of alternatives. Other languages use constructs

called "contexts"™ as storage bins for variable bindings,

i.e. as places in which the programmer can specifically save

a binding and from which that bindim§ can 1later be
ratrieved. Ian ALAI, this function can easily be handled by
tables - one simply indexes the table by a 'loc' pointer to
the location which is to be saved. A pointer to the current
context can be obtained from the safe fixed ;atiable
*MYCONTEXT. A similar variable, *ROOT, points tﬁ.the context
which is the root of the tree of contexts for ‘the current
world. 'Context® is a language defined record class with the
following six fields: .
*«PARENT - points to the parent context of this context
«CHILDREN - a 1list pf the childrem (contexts) of t{is
context. A child is immediately above its parent in
the context tree. .

»BIRTHPLACE - the world which this context is part of

*LEVEL - the integer level in the context tree of this
context. ®ROOT is at level O.

«CHANGES - this 1is the end node of a circular linked list
containing the information necessary to switch betwgeen
this context and its parent. Its format is
complicated, hence the programmer is advised not to

-

»

43

try to tamper with it.
+ROOTER - this is similar to «CHANGES, except that its
information enables a direct svitch betveen this
context and ¢ROOT. Its format is not the same as that
Of #CHANGES, but the two are interwoven by necessity.
Through the +PARENT and «CHILDREN fields, contexts are
arranged in a tzcee strnctnt- vith «ROOT (it has no pareat)
as the root. The :BIRTHPLACS field is used to prevent
atte-pts to svwitch to contexts which are ‘Parts of another

world uithout also entering that' world.

When a variable which has been declared 'back' or when
a part of a variable which has been declared ‘backall', etc.
is assigned to, the fact of its value change is stored 1in
the current context. The effect of such assignaents on the
*CHANGES and «ROOTER 1lists of descendent coatexts is
properly handled. Actual locations which are thus saved in
One or more contexts do not contain their preseni value
directly, instead.they contain a pointer to a special recorad
(actuaily a pact of a *CHANGES list) which contains the
curcent value, This seemingly inefficient -method
significantly increases the* efficiency of contexts and their
associated procedures. The procedure 'back\ will dynamically
Save any location in such a msanner. 'Unback’ vill remove all
refefences to a given 1location from the entire tree of
Contexts. When a program block is exited, all locations in
that block are autosatically “Yunbacked". Because of thi*’&
contexts can be global objects even though they contain

references to 1local values - all such references will be

4
i . ‘ 144

removed vhen the block in which the locals are declared is
exited. Contexts are producgd by the étocoduro 'spront{ and
svwitched to (made the current context) by the procedure
'switch'., It is possible to teforenca“:lucs vith respect to
contexts ‘other than 15. curreat one by postfixing the
locations with 'urt? f&lloved by a contoxt' expression.. The
effect is to get the value that the location would have if
that context were svitched‘to. Assignments to a location
'vrt' a context have similar effects. Note that *wrt!® iotks
vith individual locations, hence '(A wrt c)(), YA(3) vrt

C' and '(A wrt C) (3) wrt C¢ may all be different.

:)
The computation required to switc tween contexts

widely separated in the context tree can hibitive. , To

hglp alleviate this problea, the idea of g" a context
is introduced. "Rooting" a context requires the goﬂstruction
of a =ROOTER list for that context, which itself is a tilé
consuming task. Switching between two _rooted contexts,
however, requires the traversal of only the tvo «ROOTER's
rather than several «CHANGES lists.AThns if contexts vhich

o .
are widely separated in the context tree are to be svitched

into and out of often, it is wise to “root" thei. Rootin%
and unrooting (to recover the space occupigd by the.§ROOTER
list) are done by the procedures froot' and 'unroot'. Saample
program MISS_CAN?2 (Appendix D) illustrages the use of
contexts for saving "states of the worldn. ‘

The following procedures are defined:

sprout - a <child context is sprouted from the argument

145

context and returned. The child's «PARENT is set to
the argument context, its «BIRTHPLACE is set to
*MYWORLD (the current world), its *=LEVEL is set one
jJreater that its parent's and its «CHILDREN,
*CHANGES and «ROOTFR are¢ set to null.

shortest path throu@h thed context tree (it may
Lnvolve «ROOTERS) to®he target context is found.
This path is traversed by undoing all saved
assignments when goin&‘ down the tree (towards
=R00T) and re-doing all saved assignments when
going back up. The effect is to give all locations
the value they last had when the target context was
~the current context.

sWwitch - a switch is mad :é the argument context. The

n-wcontext -° sprouts -a new context from the current
context and switches to it. Effectively,
'nevcontext' is 'switch sprout «MYCONTEXT®.

back - t he location passed as . arguaent is @made
backtrackable. Its current value is saved in =ROQT.

anback - all references in all contexts in the current
world ~“ to the arqument location are removed.
‘Unback' can be applied to 1locations declared
‘back?', but its effect will be wundone (to the
2“xtent that a new reference is produced) when an
assiqgnment to the 'back' location is made.

root - the context passed as arquaeent is rooted, 1.e. a
*HOOTER list is made for it which condenses (and
removes multiple assignments froa) the «CHANGES
lists traversed in sWwitching from the argument
context to *«ROOT or vice versa.

Inroot - the «ROOTER list of the argument context 1is
destroyed

contextequal - returns true if the two context arquments
are equivalent. Parentage, «ROOTER and «CHANGES are
all checked.

e

.

146

4.29 Processes

A process in ALAI is something that can be executed as
an independent entity. Procedures do not fall into this
group because the execution of a procedure is a part of the
execution of its caller, i.e. it is not tndependent. ALAI
proc=2sses can be run serially-or in par§lle1 (or any mixture
of the two) and can affect each other's operation if
desired. Synchronization of and communication between
processes 1s provided 1in the form of events (discussed in
th= next section). After its <creation or incarnation and
before 1ts destruction, a process can be in one of four
states: active, waiting, suspended or terminated. Active
processes are currently "running", i.e. are on the active
list of the scheduler (most computers do not support trué
parallel processing, so all active processes will not be
exscuting but will take turns). Walting processes are not
surrc=ntly active, but\c{n be.automatically made active when
an event of the appropriate type occurs. Suspended fprocesses

.

must he explicitly "resusad" by an active process 1in order

»

tH be come active. Terminated pwgocesses can never becoae
active again but have not yet been destroyed. The safe fixed

variikble «MYPROCESS points to the ~currently executing
- - .
process. 'Prodéés‘ is a lanquage defined record class with

the tollowing fields:

«BASES - this field is a list of stacks of areas. The
areas are the storage regions used by various blocks
for their local variables. The first element on the
list 1s the stack for the current block (if i1t has
ong) . Stacks are used to allow for recursive

147

‘procedures and the calling of procedures which use
block levels which are already in use. - .

«CONTINUE - this field indicates where to continue
executian of a suspended or waiting process. It is
either an ‘'expr? pointer to a part of programs
structure or a *code’ (a non user accessible data
type) pointer into an actual regiom of.machine code.

+#SAVEAREA - this area is dependent on the machine and
system of implementation. It is used for the storage
of temporary values, e.g. register contents, relevant
to the resumption of an inactive process. pu

STATUS - this integer indicates the status of the
process as follows: -2: terminated, -1: suspended, 0:
active, >0: waiting. If the process is 'waiting, then
*STATUS is one greater than the number of other
processes waiting for the same event.which will be
triggered before this one.

*PATH - this field points to the end of the branch of the
backtracking tree which this Process 1is associated

with.

*¥AITFOR - this is the event_type which this process is
currently waiting for (null if the process is not
waiting) , b ’

‘*TRIGGERA - this is a list of the event_types which may

be caused by the activatjon of this process

*TRIGGERI - this is a list of the event_types which may
be caused by the inactivation of this process

*PRIORITY -~ this integer is the default priority (larger
positive values mean higher priority) for this process
when it is placed on a wait queue (wvaiting for an

even
-)

*PROCONTEXT -~ this is the context which this process is
currently working in (the value for «BYCONTEXT when
this process is executing) °* .)

- ,

*+PKOWORLD - this is the world which this‘pcocess is
currently working in (the value for *NYWORPD vhea this
process 1is executingx. ‘#gj 3 ’

*OBJECTS - a stgck of elapoistions which are currently
being executegd .

«FIXLIST - a list ﬁf pairs containing a pointer to a
location (type 'loc') and the value that location
V’ should be qgiven vhen this process is resumed (see the

A 148

]

procedures "fix' and tunfix?)

«PINDLIST - this is a 1list of information needed to
maintain continuity between equivalent 'fjnd's

Processes are created by the 'incarnate!' coastruct. The
procedure given becomes- the body og the process. 1Its
execution will start at the start of the procedure and end

at its end. When the end of such a procedure is reached, or

tne procedure ‘'return's, then the assosﬁpted process . is
M - . L [.

t:rminated. The integer exptessiogﬂ, o Y89 *as' in the

incarnate construct governs the intefég%eééche of the
‘incarhnator (the process . issuing the ‘'incarnfate') and the
incarnee (the process being created o; inca;nated)._ Safe
fixéd i1ntegers 'sléve', 'independent', ‘interdependent! and

‘master', with values 1, 2, 3 and Q,respectiVely, represent

ths only v

A H:ccepted. The identifiers used represent the
* . !

status incarnee with respect to the incarmator. If
f-;pendent, then either can terminate without
affectirf “'é‘other; if the two are interdependent; then the
tarmination of either will <cause the tersination of the
other; the ter;ination' of tﬁe master will cause the
termination of the slave; and the tetlinatioﬁ of the slave
will not affect the lastet; Reéardless of the relationship,
when both are terminated, the notice of the termination is
passéd back up the {now mutual) execution path to any
=arlier incarnation point. This effect will become clearer
N

when the execution path is explained in the discussion on

backtracking. If a 'priority' expression is used, its value

149
o
becomes the «PRIORITY of the newv process, else thﬁefilue of
: ' ’ .

the fj(:)d integer «DEFPRI is used.

When hev processes are incqrnateﬁ, their refé;énces to
variables which exist at the time of the incarnation will
‘normally be to the same copy as vil{vrgferences'bj phe
incarnator process. In some case;/this is _desitad;‘ but in
ogﬁers, “the _variousf‘procesge; should be independent with
respect to. what they do to -ftogral ‘vari;bles. Tﬁisi,is a .
logical place to use con?@xts. To facilitate their use, a
?:xed bocle?n, *»INCONT, is used to control the ‘au:?natic
. sprouting of and svitching to of new éontexiﬁ oo an
incarnate. If «INCONT is true, then on incarnation, two new
contexts are sprouted from the cur?eht one and the tvg
processes each switch to one of the conféxtsg“lf «INCONT is
false then no pev contexts are created an@ thg tvo ﬁnocesses

RY

b>th use the original context.

.

When a process is incarnated, it has vstatus &Y
(suspended). It can be made active by "resusing" it. The
resume construct can be either a statement or an expression,
tae type being deter mined by how it is used. The integer
‘time' expression (which defqults .to zero) controls the
niture of the resusption. If the value is zero then the
subject process (the reéu-ee) is immediately made activé and
exec;tion of'i£ replaces execution of the resumer which ié

suspended. (If- parallel execution is in effect, then all of

the time slots previously used by thecresumer will now be

150

used by the :esulee:) P 4 the ‘time' value is non-zero then
‘parallel execution commences (or continues if it was ilready
in effect). Negative values assign that nulbetcithe absdlute
'value) of consecutive time slots to the resumee. Positive
values assign that number of timeée slots to the resumee, but
the time slots are nov evenly distributed in the scheduler's’
list of slots. If parallel execution was pteviouély in
efféct. then the resumer's time slots are not changed for
non-zero 'time! values, but if it was not, then the resumer -
is given only one time slot. The resumer continues execution
after a paralleling resume until its time slot(s) is (are)
used up for the moment. The resulér can be thé fesuiée bif_
the ‘'time! value is non-zero, in wvhich caseighe numsber ana
distribution of its time slots are~;hanged to yield the new
arrangement. If parallel processinq vis not wused then a

'resume' 1s essentially a swvitch to a coroutine,

The 'vwith' expression is any value to be passed to the
process being resumed (the resuiee) as the value of the
‘resume' expression with which it had suspended itself. " An
attempt to pass a 'vwith' expression to a statement 'resume’
or on the tirst 'resume' to a newly incarnated process will
Cause Aan error. Similarly, a process vhich suspended via aﬁ
expression ‘resume' cannot be reactivated by a ‘resunse’
which does not pass a 'with' expression. It is an error to
attempt to resume a process which is terminated, vaiting or
currently active. The 'wait' construct is used to lake‘the

present process wait for an event of the-indicated type. The

151

event;type’is pPut as tha..iAITPOR of the current process and
the process is suspended and given a wait status dependent
on the quaue of processes waiting for an event of the given:
eveug_typé. The process is put on the event_type's wait
queue in a position determined by its «PRIORITY, which can
vbe overidden by specifying a ‘'priority' expression. When an
event of ghé approptiate type is caUseﬂ (or if oOne was
waiting to be noticed when the ‘wvait' vas'issuod), and this
\process is next on the wait queue, then it is resumed and
the value of the 'wait' expression is the event which caused .
the process's resumption. The process is resused with one
“time slot alloted to it. When a process is incarnated its‘
«BASES, «PKOWORLD and sOBJEBCTS are copied from its
incarnator; its «CONTINUE is the start ;f its Dbody;
«SAVEAKEA is a new area of appropriate size:-.ér;rus is -1%;
«PATH 1is to thet ihcarnation node just creagéd; *8AITFOR,
«TRISGGERA and «TRIGGERI are null; «PRIORITY is the priority
expressidn. or «DEFPPRI; »PROCONTEXT is a nev context or the
same as its inca.rnator's; and #PIXLIST and «PINDLIST are
nall. Procedure PARAND (Appendix D) illustrates one use of
processes.
The following procedures are defined:

terminate - the proceés supplied as “ ar§ument is
terminated. It is legal to terminate a terminated

- process. -
suspend - the process supplied as argqument is suspended.
It is legal to suspend a suspended or waiting

process, but not a terminated one. :

schedule - he scheduler is called, i.e. the cu‘.:ut time
slot £ group of consecutive time slots W®ssigned

j

152

e s
liely.:Hdotw"

steal - the curreant pro § 1is requesting that it be
given all tise slot#, i.e. that parallel processing
be disabled. This is useful when a process is about
to do waanipulations which regquire that its
environment, which it shares with other concurrent
processes, hot Dbe tampered with until the
manipulation is coaplete. For some computer
operating systeas, calling ‘steal' before doing a
large computation involving omly localized values
may tend to increase the overall efficiency of a
program. The ‘'steal' request will be ignored (but
vill not be in error) if the current value of the’
fixed boolean »DENYSTEAL is true. Note that if a
resuse vhich causes parallel ‘execution is given
while ‘'stealt is in effect, the process(es) so
resumed will not start their operation, i.e. will
b be given no time slots, until ‘steal' is no longer
in effect.

to the same proce‘) is iame

[J
unsteal - returns to normal operation after a «call to
‘gteal

fix - the location’ passed as argument is added to the
«FIXLIST of the current process. The values stored
in the fixlist are updated when this process is
resumed out of or is timed out of if parallel
processing is in effect., When it is again
activated, the locations indicated on its fixlist
will be given the corresponding value from the
list. The intent is to maintain independent values
for fizxed,, language defined variables yithout the
use of contexts, but other uses &c¢¢-also possible.

unfix - removes from the »FIXLIST of” the curreat process

any pair which saves the value of the 'lbcation
passed as argument

4. 30 Events and Event_types

Fvents and event_types were mentioned in the discussion
on processes. They are used to synchronize the operation of
various processes ani for the passing of information among

them. Events also happen in the real world and in many model

worlds which are sisulated by computer prograas. Because of"

154

this,' one would 1like to be able to use some form of
representation for events in the dat& net. ALAI events are
valid data net components and, unlike most other data types,
events contain a ¥ield, «KNOW, vh;ch makes the net knowledge
about an event accessible from that event. Thus ALAl events
are both valid semantic enptities for use in the data net ané®
operational entitiés which can directly affect prograns

eiec‘{ion. 'Event_type' is a.lanquage defined record class

with {he following fields:
*WAIT - a queue of the processes waiting for an eveat of
this type
«NOTICE - a queue of events of this type waiting to be

noticed. Normally, one or both of «WAIT and «NOTICE
will be empty. . ’

«WHAT - any arbitrary value describing this event_type.
In the case of coapound event_types (built up froa one
or more processes) using the constructs ‘active',
*inactive', ‘any' and ‘'all', «WHAT will be a specaal
purpose descriptor.

#KNOW - this 1s a list of all of the instances in which
this event_type has been used as a participant

fBvent' 1s a language defined record <class with the

following fields:
5
#«MESSAGE -~ this 1s any arbitrary value associated with
this event., It wvill usually be a particular
description wvhich distinguishes this event from others
of its kind.

«TYPE - this is a pointer to the event_type which this
event is a representative of .

«KNOW - this 1s a list of all of the instances in which
,this event has been used as a participant
The ‘any'/'all' - 'active'/'inactive' construct allows

for the definition of event_types from processes. If only
)

154

ﬁ'\

-
.

one process expression 1is used, then the 'any'/‘'all' is
omitted and an event of this type is caused by the
activation (tactive!) or the inactivation ('inactive') of
the specified process. The extension to asultiple processes
and 'anyd/'all' is straightforward, e.g. the event_type 'any
active (P1,P2,P3)' is "caused" when any of .the processés P,
P2, P3 become active (it must have been previously
inactive). *'All' means the moment vhen all of the processes
become active or inactive (actually, the last one of the
group to become active or inac;ive vhiie the others are all
in the appropriate state will <cause the event). {f an
event _type is defined 1in such a wvay, then the «WHAT field of
it will Dbe used to indicate the processbs.involved. For one
protese only, «WHAT will be an 'expr' whose »REL is =ACTIVE
or «INACTIVE and whose single participant 1is the process
® *blnvolved. For ‘'any'/‘'all®' cases, «WHAT will be an ‘expr!'
wit h tiNYACTIVE, «ANYINACTIVE, *ALLACTIVE or «ALLINACTIVE as
«REL and the processes as participants. When such an event
occurs, 1its «MESSAGE will be the process which immediately
l=4 to its occurrence, i1.e. the last one to go into the

]
desired state.

BRecause actual processes do*ot exist until run time
(L.e. there are no process constahts), event_types which
depend on p[ocesses‘can;ot be constructed until all of the
relevant processes are in existence. To conforn to this

r-gquirement, the 'any'/'all' - tactive'/'inactive' construct

13 executable, i.e. it is executed every time it is

155

encountered. Thus the user should avoid executing the sase
or equivalent event_type specifications wmore than once,
since this vould lead to redundancy 6f event_types. If one
or wmore of the processes changes, however, it is necessary
to construct a nev event_type. Event_types ' which will no

longer be used should be destroyed.

The ‘'cause! state;ent can be used to cause an event of
the specified type. The 'with' part is used to supply a
value for sMESSAGE of the nev event; if it is omitted, then
the current value of the fixed 1ntege£ «EVENTNO is uUsed and
+EVENTNO 1s incremented by one. T?e ‘on' statement 1s used
t> set up a trap for an event_type. The *on' trap in effect
tJr a gqgiven event_type is the one uh}ch vas executed most
recently. The traps are pushed onto a stack by 'on' and can
te popped by the procedure 'popon'. If such a trap is in
effect, then wvhen an event is caused, it is placed on the
notice queue (regardless of the state of the wait queue) and
th> block in the 'on' statement is executed. The block is
free to> do whatever it wishes to the event and the Qqueues.
1f, when the block - finishes (or calls the procedure
‘continue'), both the wait queue and the notice gueue are
not empty, then events and processes are successively
removed and paired up until one queue is %:gty. The
processes so removed are started and the eveant they were
paired with is the value for the 'vait' expression which put
them on the wait queue. At the same time, the process(es)

running at the time of the event are restarted (they were

156

all temporarily stopped vhen the event was tfappod). The
safe fixed variable «INTERRUPT is an event_type used for
various kind§ of hardware, sovare and user inte:tupts.“Tho
natuce and handling of the events of this type will be
dependent on -“sachine, environment and prograsaer of the
p&tticdlar implementation. Standardization is possible, but
has not been looked at. Sample procedure PARAND (Appendix D)
illustrates one use of events.
The follovinq‘ptocedutos are dbtined{
popon - vpops the last ‘'on®' trap from the systen
maintained stack of traps . for the argyusent

event_type. If no trap is left on the stack, then
trapping is disabled. .

-

continue - exits from the body of an ‘on! trap and
restores norsal execution (possibly with the
addition of processes which were vaiting for the
event which' was trapped).

newvevent - a newv event_type vith description as passed as
arguseant is created and returned

eventequal - returns true if the two eient_type argusents
are equivalent -

\

4.31 Backtracking

Backtracking is the [frocess of executiag a progr;l
backwards in suih a way that variable values are downdated,
i.e." given tﬁe valuéé' they had earlier. In AI vwvork
backtracking is wusually wused to try several different
met hods oi‘ assumptions for solving some kind of problena.
®hen one method fails to solve the problem, the probles

s>lving program is backed up to undo all of the things done

in trying the method and another method is then tried. If a

157

Id

mathod or assumption does not result in.a‘fgiluto, then it
is not backtracked and its effects are carried over to lator'
patté)of the program. 1In ALAI, explicit failures cayse
backtracking to specific backtrack points which are
dynamically produced by an executing 'progra;. These
backtrack points are nodes in the backtrack tree, which is
essentially a tree representing tﬁe course of execution of
the current processes. It has one braach for eac? ptocos;-
currently in existence. The links in the tree point
backwards, i.e. tovﬁtds the root. The nodes in the tcee are
of four types: backtrack points, process incarnation points
(at these poi)?s a branch splits into two branches), block
.entry poaints fér blocks in which backtrack points or
liﬁ;hrnation poiﬁts have been produced (there will be a block
entry point for all current blocks, regardless of whether or

&
not they are needed) and method entry pdints (di scussed

unler 'Elaborations').

Incarnation points are produced by the execution of the
'incarnate! consiruct. They are added at the end of the

‘current backtrack tree as pointed tp by «PATH of the process

1ssuing the }ncarnate. The «PATH of the two fesulting ﬁgw .

processes will then point to the new node vhich consists of
pointers to the two processes, an integer indicating the
status of the right-hand process (the second field of the
node) with respect to the left-hand process Ythe first field
of the node) and a pointer to the previous node in the tree.

The status code is exactly as in the incarnate ‘as!

\ | ™ 158

-
e
expression. Por execution purposes, blocks are considered to
be a sequence of stateaents, perhaps followed by an
expression, wvhich has an associated set of doclarag}ons.
K{- Syntactic blocks with no declarations are not cog;idoted to‘

be blocks, they are simply a sequence of statements. When a
"block (with declaratiohs} is entered at execution time, a
block entry node is produced and added to the current branch,
of the backtrack tree. It éonsists of an integer block level

number (levels for blocgs with declarations) and a pointer

> .
t> the previous node. When such a block is exited, if its

entry node is the last node in the tree, then it is deleuted
8) .
since there is no way to back up into the_block and there is

€

nd> other process dependent on its continued existance. At

the same time, the storage assignea to the variables in the

2

block is released.

Backtrack peints are produced by executing the ‘'try°

and 'ptry' constructs, both of which are essentially special

[y

s
cf-ha.yrpose interative constructs. The optional sttin%g at the.

Lo ‘ti Jt‘f’@l are used to label the backtrack points' .produced
thep so*“at backing up can be more closely controlled

»

a'odf oﬁ,the 'try' Statement, correspanding to the block

3

v.as a body for the iteration statement, is whatever

o B) :

g~~4‘i*prpqran is executed after the ‘'trye, including itself if
loops, iteration or recursion are iavolved. For exasple,

consider the following 'try' statement:

-

" for X via GEN for I by 1 while GOOD(X) try "mnetsearchn

Wwhen encountered during f orva rd execution, ¢this statement

[

159

“ill set up a backtrack point labelled "netsearch" pointing
t> the 'try' statement. GEN will be 'called to produce a
value for k, I will Dbe initializéd to 1,‘and then, 1if
GOOD (X) yields true, execution continues with the progras
following the 'try' statement. If, during this progras, a
tail to "netsearch" occurs, the 1teration steps will be
p2rfyrmed again, 1i.e. GEN will be called to yield a new
value for X, I will be incremented by 1 a:d GOOD(X) will ©be

called. The program following the ‘*try! will then be

~executed again with the new values for X and I, along with

any effects of the calls to GEN and GOOD, ﬁntil a fail to
"netsearch" occurs. This cycle is repeated until the prograas
after the 'try*' "succeeds" in which case the backtrack point
15 removed, or until GEN yields null or GOOD (X) yields
talse, in which case the 'try' statement fails and further

bickup occurs.

The *'ptry' expression is of a sisilar nature, but 1t

oftegs greater control over the trying of the alternatives.

»

Consider the following:

P:==«MYPROCESS;
L:=for X via GEN while GOOD(X)

ptry “

BLOCK1;

r=sume P;)

BLOCK/ .

then;

7/

FLOCKY and BLOCKZ represent sedtions of the ptry-then block
which 1o the actual processing. On each step through the
lterytion, SEN 1s cal.. to produce a value for X, GOOD 1s

cilled to test that value, a process with the ptry-then

‘ 160

block as body is incarnated as slave of the current process
, o .
and the new process 1is resumed, replacing the current

process. BLOCK1 is executed and then the new process resumes

]

P which then places the new process in the list
location 1is given as va to L (this aésignnent
b2fore any procesges are incarnated). P, the ‘main process,
th2n 1lterates again, producing another new process uith the
same body as béfore. This sequence of actions continues
until GEN returns null or GOOD(X) returns false. The 'ptry!
15 then removed from the backtrack tree and all that is left
1s L which contains a loc pointing to a list of processes,
all «containing the same block and all suspended at the same
point. Fach of these, however, has a (probably) unique value
t>r X. The program after the 'ptry' cam themn supervise the
ranning of these processes 1in any way it sees fit. If any ot
th: processes fails or runs into the end of BLOCKZ, then it
1s terminated and cannot be resumed. If a fail occurg wvhen
processing BLQCK1, or if éhere 1s no resume to get the next
process, then the new proceés is ierlinated and 1s not
included in the list of processes which L points at (through
aone step of indirection). The iteration variables (X in the
-xampl ») are all redeclareda in the .ptry-then block and
initidlize;r to the values of the correspopgding original
1teration variables. This allows each process to have
separate and independent values without the need of
cont--xts. A new context will be sprouted and switched to for

‘ach new ‘process only if the fixed boolean *PBTCONT is true.

' , : ‘ 161

Similarly, new contexts will be sprouted and switched to for
each iteration in a 'try' only if the fixed.Poclean q.ﬂCONT
. .
is true. The sample procedure 'P;RAND'_illusttates t he 252
of ‘ptry". ' . g
Backtrack points are pro@uced by ‘*try* and ‘*failing*
and are temporarily wused by ‘'ptry* and 'atténp&'. They
consist of a string label (the string used,at the end of the
'try', 'ptry' or ‘failing' which produced the point), a
pointer . to the .progran structure or @machine code to be
executed after backing up to this point, a context (may be
nall, in which case no context switch occurs) to switch to
before continuing execution, an integer indicating hdw many
«BASES stacks to pop in order to get back to this point, and
a pointer to the previous node in the tree. If the backtrack
pr>int was created without specifying a string as label, then
that field of the node will be cmpty (pull). The 'failing’
construct is wused as - a trap for backtracking; when
encountered during normal execution, it is skippéﬁh but when
backed into, it uiil be executed. When it haé executeqd,
program flow will continue in .the ~f6;;5rd direction with
the 'failing' reagtivated) unless the Sody of the *'failing’

gencrated 4 fail of its own.

s

The fattempt® statement 1is essentially a ‘cond’
statcement with success and failure playing the roles of true
and false. If the first part of a pair (the two parts are

those separated by a colon) succeeds, i.e. execution drops

162

out of the bottom of it, then the second pagrt is executed.
NO more thanm one second Part is ever e;ecuted, but all of
the first parts may be atteapted and fail. If no first part
succeeds, then the 'else' part, if present, is executed. The
'attempt? construc? may be used, by letting the second pa;t
nereiy set a fl;g, as a test for suécess of any or, all of

sa2veral alternatives, i.e. as an AND or OR of successéeh. .

Three procedures are used to iniiiate backtracking (it
1s also initiated when a ‘try' runs out of alternati#es):
*faill', *'failto' and 'failpast:f 'Fail' fails back to the
latést Eéfktrack point on the tree, 'fgilto' fails back to
the last b;cktrack point vhose 1label matches the string
passed as argument and 'failpast' fails 'to the point
immediately before the late;Q one whose label natche§
‘failpast's a%gunent. Backtrack points failed over are
removed from thé tree. Normal forward execution continues in
the appropriate place in the construct v?ich produced the
backtrack éoint backed up to. fhe point is maintained as
active in the tree unless the construct generates a fail of
its own ('failing' has a fail in it or ‘try' runs out of

alternatives) in which case it is removed and a simple

unlabelled fail to the next point occurs.

Racktrack points can be removed fros the tree by-:.direct
maniputation or by the procedures 'succeed!, 'succéédﬂ.' and
‘.succeedpast'. 'Succeed' reamoves only the latedt backtrack

4

point, 'succeedto! removes all points up to but not

@

¥

300 . _ .

. Y . s . 163
4 | ‘.' * . .
including ‘the la®est one vhose label matches xsucceedto's
arqﬁnent and fsucceédpast' removes all points up to " and
incfudipg the litest one wvhose label matches the aréuleni.‘
These procedures are used for finalizing the ,choice of
alterndtives ‘Agd »fot'cleaning up backtrack points that are
no loﬁﬁér useabi%. The ;fresu-e'.éonstruct is the same "as
t he _'resune'vcpnstfﬁct (with no 'Jlth' allowved) except that
a fail is 'inledigtely generated in the proéedure being
r2sumed. With proper use of }failin§'~and ‘fresume’, noticg

-

of failure can be backed up across process. changes.

When more than one process is ip use, it is necessary

that the various «BASES Ligﬁs befseparate in ordﬁf that a
block entry or exit in onemprocess will not affect the other
prdcesses. Similarly, it is desirable that block entry and
ox1t not affect the generality of .backtracking;
_Spécifically,'it is desirable to be able .to back into a
block which has been exited and have the local variables in

- SN——

that block become available again with their latest valqes.
The ALAI backtracking msethodology allows ghis without the
neeqd af contexts. When.a backtnac; point -is. produced, the
t>p «lements of the active stacks on the <current =BASES list
,are duplicated; one coéy is a working copy which can be
- cnanged as blocks are entered and exited, but the other copy
15 never changed ﬁnt{l_ghe backtrack potnt is removed and
thus can alvay; be us;d to restore local variables. When a

block (one with local variables) is exited, if the latest

~node on the braasch of the backtrack tree is not its entry

-

164

nole, then the storage for the local variables iﬁ that block
is pot freeld. The top o; the #BASES stack vhich points to it
can be changed Sy a jater biock éntry without "losing" ;he_
locals since it will have been either duplicated or copied
in the «BASES list - of another process ‘(one wvhich was

incarnated in that block and hence is dependent on it).

-
The four types of nodes used in_ the backtrack tree

cause severalvdifferent types of actions when encountered
during backup. Backup through a ‘block entry point indicates
that everything (if anything) that wvas dependéat .on the
local variables of that block is now gone, hence the action
taken is to remove the node aﬁd free’ihe storagé'occdpied by
that block's* locals. Backtrack points which are backed up-
over are simply removed from the tree. The appropriate
number of Stacks on #BASES are popped once and the indicated
cont.xt suitcﬁed to. Backtrack points vhich are backed up to
are first backed up over without removing the node froa the
tree, 1.e. stacks are Qopped and a coniext svitch may occur.
Further- execution nay’thed re—establisb‘the backtrack point
Or cause a fukthér failure. Acﬁion taken on reaching an
inzarnation point depends on the status of the other process
an? the dependency relafion between the two. If the failing
process is the slave or the two are interdependent and the
other process 1is not yet terminated then the process is
teorainated; if the failing pfocess is the master or the two
are interdependent, then both processes are terminated and

destra4ed, the node 1s removed and backup continues; else if

“ e O - 165

the processes are independent and the other is already
tarminated, then the failing process is terminated, both
processes are destroyed, the node i8 removed and backup

dentinues.

’

v r

A :£§§eyetll global (ti;.“Ez;'itCA.s are associated wvith
.éi,;:ktt"éck;n s a. nev/context' vill be sprouted and svitthed to
f5% ;nch=p cess forsed in a 'ptry' if and only if QPBTCON;
is Atrue; a new context will be sprouted and svitched to for
each new alternativ; in a *try' if amd only if tBTcgﬂT is
true; assignsents to the data net will be saved in contéxts
if and only if sNETSAVE is true; ass;qnlents to all parts of

all program var les regardless of ‘thefr thack' status will

be saved in contexts . if #ALLBACK is true; and the
saving of any values all 1in contexts is disabled if
*ANYBACK is false. Note that process switches change to new
brdnches of the backtrack tree which will have different
noles than the old one. Contexts are not automatically
jestroyed on backtracking !the user amay have saved thens
somewhere 1in order;that he can look to seé'vhat‘a ‘try' had
accompl ished) SO the user is tGSPOﬁsible for destroyiﬂv
those he no longer needs. The garbage colleﬁtor will not
Aestroy any contexgg since they aée all linked together via
*PARENT .and «CHILBREN links. The sample programs NISS_CAN1
and MISS_CAN2 (Appendix D) illustrate the use of

% .
backtracking. One use ot ‘'ptry' 18 shown ain the sample

procedure PARAND. ’, » .

The following procedures are defined:

166

fail - fails to the sost recent backtrack point on the
current branch of the backtrack tree

failto - fails back to thee most recent bac‘ack point on
‘the current branch of the backtrack tree whose
label equals the string passed as arguaent to

° - failto

failpast - fails back to the backtrack point created just
beYore the most recent one on the current branch of
the backtrack tree vhose label equals the string
passed as argument to failpast

succeed - removes the most recent backtrack point froa
the current braa¢h of the backtrack tree

succeedto - removes all backtrack point& on the current
branch of the backtrack tree’ up to but .not
including the most recent one vhose label equals
the string passed as argument to succeedto

succeedpast - removes all backtrack points on the current
branch of the backtrack tree up to and including
the most recent one whose label equals the string
passed as argument to” succeedpast. i.e.

'succeedpast ("point"): fail®' " is equivalent to
'*failpast ("point"),

4. 32 Worlds

Contexts are wusually used to Fepresent a state of the
world or ot some system within which & jprogram can be said
t> bpe operating. The fora used in ALAI is especially suited
tdo contexts which do not vary much frona parent to child. The
few difterences are nicely contained in the list ot changes.
[f, however, the user wishes to work in environments which
are drastically dissimilar, the context mechanisa becomes
highly iW®efticient, in terms of both storage needed and
computation wused in switching contexts. This could easily
hippen 1f, say, a generalized probles soiver is wvworking in a

worll of toy blocks and a sechanical arm, and then amust

.

167

switch to a world of predicate calculus. The tvo problenm
domains have structures in common, but these would be far
outweighed by the differences. The situa@lon becomes almost
impractical it the probleam solver is to solve problems in
both domains siaultaneously - it would then be continually
svitching between do-ains and wvould spend most of .1ts time
doing so. ALAI offers a construct vhich gcombats this
pr;hlen. ‘Wworld* is an ALAI data typé, denoting objects
which contain entire worlds - i.e. a data net with
associated dictionary (this automatically includes a tree of
Contexts). A program can create as many worlds as it wishes
and can enter thea at will. Interworld referencing fog data
net search and assertion is vprovided. Each process has
associated with it a wvorld of operation and a current
context within that world, both of which can be changed at
will. .

. [
There are no world constants in ALAI, hence all wvorlds

must be constructed dynamically. This is done by the
procedure ‘'neworld'. The current process can change its
world of execution (pointed to by the safe fixed variable
«MYWOKLD) by wusing the 'enter' construct. 'Enter" causes a
sWwitch to the specified world with conditions as contained
in the indicated context. If the 'wrt? part is omitted, then
the wodrld is entered with the same context it vas in when
last exited (by an 'enter' out of it). If all operations in
a world have been with «NETBACK tufned‘off (false), then the

context used is irrelevant to the wprlid itself, but may

168
still be- significant as far as program variables are
concerned. Tﬁe ‘assert' expression vill construct sufficient
‘instgncas under the specified context in the specified wvorld
to make a A‘tructute in the net as described by the
description given. A pointer to the top level instance of
the resultinq structure is returned. The context defaults to
the last-used context of the world, which in turn deg&ults
to the current world (sMYWOKLD). 'The '‘delete! statement,
used tor removing things from the data net, has two foras.
If an insFance is wused, then that specific instance is
deleted from the net (in whatever worlada it as in) with
C2spect to the context specified. The deletion is effective
>nly in the «context specified and all descendents of it
which ha%e not altered a part of it, If a descriptor 1is
used, then an instance corresponding to that descriptor, in
the world specified, is found (pattern matching is not used,
#h- correspondence must be exact) and deleted with respect
ty) the specified context. The world and context default as
in 'assert’'.

The following procedure is defined:
neworld - creates and returns a new world. The world is
empty except for a few systen concepts.
several different applications are possible for worlds.
On:, mentioned above is that of different problem domains
for a problem solver. .Another use for worlds is as
containers for wmodels, i.e. for small subworlds which

represent some part ot a larger world, but in a fora which

169

is easier to handle. Other uses come froa atteapts to handle
full natural 1language. -When the words "suppose that" occur
in English discourse,‘ge usually expect the next few words
or sentences . to describe a situation wvhich is probably not
valid, but, for the sake of discussion, ve are to assume
that it is. ALAI wvorlds can represeat such suppositional
wdo>rlds in which "facts" @may be directly contrary to
knowledge 1in some other world. Human belief systeas, which
are effectively individuals' personal aodels of the real
world, are also amenable to representation as ALAI worlds.
The followdng sample program skeleton, which is basically
similar to ghat of the example at the end of section 4.27,
illustrates this latter use of vorlds.
D FACT;

/7« the description representing the fact to be asserted
or looked up =»/

I PERSON;
/« the net structure for the person who's belief systea
we are in »/ IS

world table WORLDOF;
/= table of the various worlds indexed by the PERSON &/
string INPUT;
hool QUESTION, DELETE;
wOorld MAIN:=«MYWORLD; N
bool proc ENDER(string X) ;
/* tests for a request to stop =/
proc PARSE (string X) ;
/% Parse the input English string, set QUESTION if 1is a
question, DELETE if is a request to delete a fact. Set
PERSON (creating new concepts instance and vworld if
necessary) to the instance representing the one doing the
believing, or to NULL if no believer. Set FACT to a
description representing the fact(s) to be asserted or
scarched for. =/
/+* cosmence actual processing =/
WOKLDOP (null) :=«MYWORLD;
vhile INPUT:=getcard; -~ENDER(INPUT)
do PARSE(INPUT) ;

1€ ~QUESTIONE-DELETE

then assert FACT in WORLDOF (PERSON) ;

elif ~DELETE

170

then enter WORLDOP (PERSON) ;
/¢ ansver the question if possible =/
enter MAIN; o
/¢« if not yet answered, then answer it now s/
else delete FACT in WORLDOP (PERSON)
fi
od

4.33 Elaborations .

The idea of an elaboration (type ‘elab') is being
introduced in ALAI as an experi-edi. They may prove useful
or they wmay prove completely useless. The intent is to
introduce further linkaQe between semantic sStructures stored
in the data net and executable program structures. They also
qive. a new control structure which can be vieved as
hierarchical in nature and vwhich <can complement the
facilities offered by the 'téy' Statenent. 'Elab' is a
language defined record class vit‘ the following fields:

*OBJECT - this is the net structure (node} vhich is the

semantic meaning or intent of the elaboration, i.e.
the structure which is being elaborated

«METHODS - thi§¥is a list of expressions or pointers to
executable mpthine code. These methods are the
routines which attempt to elaborate or perfora

«OBJECT. |,

*ELABNO - this is &an integer index into «NETHODS which
indicates the ‘'current" method, or, if it is one
greater than the length of «METHODS, it indicates that
a new method is to be produced before this elaboration
can be executed

+KNOW - this is a list of all of the instances in which
this elaboration has participated
Elaborations are valid statements and as such they

appearl in executable programs as part of the prograa 1itself.
S

When elaboration constants are defiﬁed ((ho identifier
before the *1!' is the name of the constant), they are given
the node expression as «OBJECT, and the 1list of ‘'expr's
(else null) as »NETHODS; «ELABNO is set to 1 and «KNOW to
null. Thg evaluation of the relevant expreséions is done on
entry to the block ian which the elaboration constant
appears. The 'local'/'global' special modifier is relevant
for ‘'elab' variables: locél variables can accept any 'elabd’
value,“sht their value cannot be passed out of their block
of deciaration;- global valges can be passed anywhere, but
their «METHODS lists are rgstricted to ‘'expr*s which are
fully global, i.e. reference only net and fixed variables.
The globality of an 'elab' ddhstant is deteramined by the
globality of the w®wost 1local variable réferenced iﬁ the

‘axpr's given.

M fixed *procval' variable, sELABORATOR, is intimately
associated-;i%h the use of elaborations. When am elaboration
is encountered during execution, its current (its sMETHODS
indexed by its «ELABNO) method is acéessed. If the nmethod
exists then this elaboration is pushed onto «0OBJECTS of the
current process and the method is executed. At the same time
a method entry point is added to the current branch of the
backtrack tree. The point consists of only..a poiﬁter to the
previous node in the tree and it serves only to insure that
*J)BJECTS is popped appfopriately n backing up. For all
other lanquage-defined uses of the E;:e it is ignored. pf

the method being executed completes its execution,bcontrol

|

7 . g 172

h’%:__""\"" a«f2turns to the poth‘ following the elaboration, oOBﬁCTS is ‘
h . .

SN ;mm" ppped and the method entry point is removed. If accessing
we T e |

) “h""th current lethod yields a null pointe‘b then the ‘rtrent’
v - .

fe valtos, .zuaoanon is " called with the elaboration as
f\shttz - areee” :

, arquaent. The intent is that the elaboration "procedure
! produce a method to be uso% or cha‘ugo ¢ELABNO to indicate an’

existing method. If, on return fros the elaborator, the
current -éthod is still null, a fail is gJenerateqd,
indicating thatlu:alternative vas found. If the elaborator
did yteld a current method, then that method is executed in
the Vmanner described above. The hierarchical nature of
elaborations comes from the fact that a ptogran. being
€xecuted as a method can ita¢ldf contain elaborations. Also,

any program can access =QRJECTS of’the current progcess to

find >ut what elaboratioan(s) it i a part of.

The exéacted useavoﬁ’eiébbrations are such that a large

surrounding = progtaam cdpable of problem solving, deductive

. ¢ N

reasoning, etc., is peeded. Hence a true exaiple of their
- o |

intent is .ot possible here, In§tead, a .verbal "example" is
given. Suppose that fhe veasonlnq syst.n has been géked to -
produce a plan fot.RgFforllng some ttsk, e.g. build a two
storey house out of voﬁgen,'blbcks. Initial tas*, analysis

Bight produce a Sequence of substeps, stored in the semantic
< ! he J

net, such as: C) PR

(BUILD,LARGE_WASE) ' »-
(BUILD, FIRST_STOREY) ’

(BUILD,SECOND_STOREY)

(BUILD, ROOF)

N

173

Such a plan must be interpreted by a plan follower in order
to be carried out. The ALAI elaboration feature allows the
plan 'to be directlx converted into an executable progranm
Scegment

BASEINI (BUILD,LARGE_BASE) ;

FIRSTHNI(BUILD,FIRST_STOREY);
SECONDINI(BUILD, SECOND_STOREY) ; "o '

ROOFINI (BUILD, ROOF) ; .
This program segment (after setting *ELABORATOR to a routine
which can accomplish the various parts, however

inefficiently) can then be treated as an unevaluated

expr—ssion and directly executed.

So far, little has been gained.. As more 1is learned,
however, ind as the <segment 1S executed repeatedly, the
resultant details of its opetatign will become clearer. As
ritterns arise, program segaents for the subtasks can be
tro>duced and assigned as methods ot the top-level
elaborations. These sub-task routines could also consist of
elaborations and basic steps. The cycle of le?rn details,
ti1ll in met hods, etc. can bF reﬁeated until the various
st-ps become trivial and directl; prograamable. The result
will be a fairly efficient program which accomplishes the
task directly and which 1is "connentedg\ﬁi\ the *OBJECTS of.
the various elaboerations which enmbody -it. Alternafe
solutions found would be stored as other ~ «METHODS and are
" thus casily available for comparison purposes. The final

st--p of producing a normal prograe would only reguire the

concatenation of all ot the various bottom level' steps. The
J‘\

174

alvantages his wmethodology are its "uniformity and
: ’ e

generality: Btine can be directly executed whether it is

&

fully detailed, just created in rough .for .
internediafe developmental stage, andlShe elaboration scheme
ailows different parts. of the routines to be 1in very
different states gf development. The automatic existence of
semantic comments («OBJECTS) -akes the resulting routine
comprehensible to semantic routines at all but the ﬁltilate
stage O>f development.

'S

4.34 o4 and Ends

\ . .

“The fixed boole?n «NETPORT controls the application of
a heuri;tic iqtendgd to speed up data net searches. If
*NETSORT 1is true, then- each reference to an element of a
participation or usage list _wvhich wvas wused for further
searching will cause that eienent to be intefchanged on the

list with the element before.it.

TN 4 &

The intent is to "sort" the
- DS
lists so that the most, used"ﬁcﬂe‘rep?s#a‘hel vill be
towards the front of the l}st. This ac;ion ls disabled 1if
*NETSORT is false. The fixed boolean :PERHI%’controls the
use ot the field§ of lénquage defined record classes and of
site wvariables as-receptors in assignlents and as aggjuments
for the 'e' 'log!-generatilg operator. If «PERMIT is false
vhen such a use 1is parsed, the usage will'be disallowed.
«PERMIT should be kept false unless it 1is absolutely

hecessary to change 'some portion of a language defined’

entity. The intent 1s to prevent the user froa "fouling up

- , 175

.

the works" by tampering with values vhich the language is

» “
dependéent on. Certain additional procedures are needed for

the language but have not yet been described: they are
/H\\\Trﬂeséribed here. _ a

"The following procedures ‘are defined:

copy - will 5i'ld_a copy of its string, pair, triple,

vestor, "* set, bag, 1list, chain, stack, gqueue,
record, array, table or descriptor arqument. The
parser is avare ,of ‘'copy' amnd will - use an

appropriate type for 1t.

Size - integer result is ag follovs: '
: 1) if argument is string, then the length of the
string :

2) if argument is pair, then 2

J) if arguaent is triple, them 3

4) if argument is vector, set, bag, list, chain,
stack or queue then the nuaber of elements: in
t he arqgument Y

5) if argumsent is array, then the total nuaber of
elements in the array '

6) if argumwent is record,* then the nusber of fields

7) if arqument is descriptor, then the nuaber @pf
participants+1

8) if argument is table, then the number of entries

9) if argument is elmboration, .then the number of
mnethods

10) if argument is area, then the size of the area’

11) else 1

ignore - this procedure accepts a single argueent of any
type. If gignores that argument, does nothing and
returns n esult. It-is.Qsed to turn am expression

into a statement.

destroy - this procedure accepts a pointer to any
record-type entity (including language defined
records) and destroys it, i.e. returns the space it
occupies to the storage manipulator. ‘Destroy' does
not do any special safeguarding to prevent other
references (now invalid) to the thing destroyed,
but it will undo back links -froa participants to an
instance or descriptor being destroyed.

typeit - thiqh procedure returns its second argunedt
. modi fied® to have the type passed as first argument
(integer) :

getlin - the string argument is decoded into a linear

»

Sejuence, e.g. a 1list, set, instance, etc. and a

- Pointer to the decoded result is returned. The
expected foraat in the striag is a typing
pseudofunction, '<*', a 1list of constants and &
Closing *>*'. Other’ '‘get..." pro@edures will be used
for processing the constants and the fixed boolean
*LINERR will be set to true if the forsat of. the.
llneag sequence is bad. '

getseq - this procedure is'like '‘getlin' except that the
'(-..)' format is /expected, complete with the
convention of the carrying over of the main ‘type to
internal subsequences. The error flag is «SEQERR. '
replin - this procedure is the reverse of ‘getlin' - it
Accepts a linear sequence as argument and returns a
" String representation using the double angle
bracket format . :
repsegq - this procedure corresponds to '‘getseg' as
‘replin' corresponds to- 'getlin?

o

177

cuxprca_s .

CONCLUSION

This thesis has discussed the Prograsming langyage

needs of artiticipI' intelligence wvorkers. Pour spécific

*

languages, LISP, SAIL, SNOBOL and 2.PAK vef. discussed with
rispect to the features they offer which are useful to AI

vorkers. It was found that no langquage offers all of the

-

featﬁreé “that would be.' needed and thus that no lanq%‘a

vould provide a praceg@al base fofF a general ' artificial
intelligence systel*z vas -.de_cided_‘thot a nev Jlanguage,
P ‘}'.o .

embodying most of the deslrable féaturés,‘ﬁq§ld be a useful
¢4

’

tool for AI research. Such a language, § & vas propoisd <
e x4

-~ Al

and described. . " ; . -
. 4
ALAI is based on ALGOL and contains basic facilities
such as arithnetic, character lanipulation, arrays, etc.
which are provideé by most st;ndatd broqralling languages.
Thks base 1is augmented py many data types more séociali;ed
1n their usage, e.g. sets, bags, tables, stacks and‘ Qnéaes.
A built in data net provides facilities for the easy storage
of Semantic knowledge. The net‘can be searched 'll pigtetn)
matChin'g techniques eabedded in the "poverful iteta&ion
facility. Siailar battern_natchiqg, as concise and poverful
as that of SNOBOL 6: SAIL, can be applied to arbitrary data,

: &4
'. . 1 \')
s N \

‘. , U 178

e N

including character strings. Pailure driven backtracking, .

again based on the iteration construct, allows the

incorporation of trial and . errar searches ‘into norggl
prograas. More controlled search is providaed by tho Yptry!
state-ent torl vhich qenecates lists of selected processes,
the elements of which 'can e ind‘ividually_ controlled to
ev_aluate ;)r try a qilven possibility. The techniques and
needs of wmultiple pr_ocisses, backtrackilg aﬁd dat;a' nét

operations have been sSuccessfully conbine" in a consistent

and usable systea of conventions. w

The capability for dynaz}ci proqtal -odztxcat.xon am
)L kings' 9f

generation is supplied hy de‘nxng the intetnal 5
the systesm to be an integral part of the 1 Prgqralé
al:e. represented hs temporary p‘ar'ts qt tr-ue .;d.nd' can
e -manipulated by the'pattern matching fac
program product'is. tacilitated by Q n" ~data type,

élabozation, ‘whic bridges the ébncoptnal gap bctvoen pure

« lutomatic
¢ .

shaantic structure and purte prograa structure. Tbo ant

1net‘f1c1enc1es associated with free use of contexcs a the
/ N .

1ata net have been reduced by the use of usage and
> . -

’ participation counts on all concepts and by the ﬁtro'duct.ion

of rooted contexts and of worlds. It is not expected that

\us °rSs uou].d v:.sh to‘nan’rpula? the 1nmrna1 fora of such -

-

contexts even thoewgh the capability is provided.

A working version of ALAI has not ygs been 1|plelented.

Work is soon to.,begin on an inzti*)\10n, houeve:, and it

/ﬁ!“wﬁpped that n.vorkinq intorprotor (and perhaps J?agilot)sy

.{

-
'

[+ 3

Tnis next level wvwould be entirely interprotaple b

. . ‘ . » .. A ¢ 17’

[4 :) .

vill gpon be producod. A proposod external nppoarcnco of the

~TLAI systeama is discussed in lppondr _C. Th;‘ initial

iaplementation will staft ‘with g'lot of hapic procedures

written in aésolbly.ldnqhngo (e.g. 1iplus, itiios, sconc,

crde, 1bgand, etc.) nnd;toqiinol,'aqgin vritten in assenbly
eV o ©

language, to interpret the lowvest level operatiods. of the -

lanquaq. (o.q. sisple assiqnlont, idontitiot locatxon. asic
it s&ntoaent). 4130 nedded is' a miniapl ina'ttagg) the
outer worli, so that comsunhication is poq.}blo. These
_cq"Pnents represent the baso portion Which vould ha‘? to be
age-
AW

Following these 'initial steps, high&r lavel ptoqia res

oan . 4
sand higher lev8l interpretation routines would be v

crded by any 1nq‘l11ation uinhinq to implement the lang

the
lowest level asseably lanquaqe'routinés and would tquZ:e ;o
procedures other than those exisi’*b at the lowest level (or
others ax_thé saie leJZl but alroddy defined). dn the
initial Llplelentation only, a toutine vould be ncedod to
t'!nslate frol an extetnll ‘form (probably similar to basic
LISP because of ~its syntactic simplicity) to' internal

Sttuctures which can then -be interpreted. This process of

'buiidinq up on lower levels cAn continue until allklgnquage

'co-pgn§¥ts, i.e. interpretation routines’, predefined

procedures, p&rset, éonpilet, editor, etc. are complete.

This paper has, hopefully, draih qroatﬁr attention to

e o .) . ‘.‘\
O A : Lo

ifen.@

C * 180
the pressing need for Staﬁdatdization in AI work. This
standardization is @sost ea%ily obtained thr"h a single .
programaing Janguage which is easily portable.and for vwhich

one standaf% isplementation exists.: The ALAI language

definition shows that the features and capabilities no;deﬁ'

for the various types of Al programajing can be combined Tbx’ng
sinql1. language vwvhich is st&il usable.’ The” presence of th€ .
v:r‘st features which wvould not norsally bg nfeded tor :

qi,vén task can wake the regultant Brogras@aore general and
tg_E"praxinq_in it;ig;;ration, as exaampled by the free fora
.ZQbut of ’thelvggaﬁgg&',:éngg? in hﬁpandix D. Such a.
conbiﬂii&qb ot ';%uets ';Jy ';130 free the lind» of the
programser tro; many of the details of hls task._ thus

i) ’ hd
l:aving™ more time and patiencq for the development of

better, more poyerful programs for nttiticial‘.ﬁtelligence.

Although ALAI is powerful and general, it is definitely
not the ultimate Al language. The basic style, {hat of an
AYGOL# base with special "resarved votds" used for syntactic
Tonstructs /;presenting the se-antiq capabilities of the
language, may be replaced by a scheme of high density like.
~tdhb,' ‘or ofyhigh verbosity like that of COBOL, or,
| -omé ;likely, by.a'toén as yet unhﬁt;clpatod. The selection
‘qa"eoxureg for the language vas based . on .past usefulness

. ‘and gJuesses as to ,future need, hence may prove to be
pléfuly inappropri;te. New capabilities. amd technigues

will 1likely be introduced which will supegcede or make"

obsoletge many of the ones in ALAI and will - provide

..

.

181
Capabilities not offered by ALAI. Hovever, it is hoped that
actual use of ALAI will produce vorkoin"q Al prograass of
greater powver and ,usotuln:ss than has previously beehn
obtained. The experience thus gained vifl undoubtedly aid in
the disgovery of new programming techniques and newv ways of
thinkiné'about old probleams.

¥ : .
The original jiaspetus for the design of ALAIL came froms

the r'ealization that nono 3! th; rotdily | available .AI

languages suited the q ot a planned natural language

'canprehensio{/ceasoninq sy:”l‘ which - -cou.ld be easily

transported. Since ‘then, -“}*siqn’ and. ;lplale.tation of

the languayeg hn“ﬂ‘.‘tble a lajol' qon“in itself, but because
o9

* ¢ . she o“iqinal g§oal wvas nhot W,, the design of the language

say reflect the desire t,w-plify tl:xe proqra.lling of

naturdal language and f.q'son.l’g applications. Qegardless of

-

its many ih{)ttco-‘ip_;jt, ’(t.}hs;"?'elt that the language will be
a definite ’aid th .&I ' ;‘:to.j'octs,' at‘ least 1locally. The
ultima tevp'to'qranlincl; language -.a’ ’v'ar_bal natural langﬁaqé
backev:k by t?onptehonAsive Planning, deduction, 1nd‘uction and
automatic pr'oqraning tac'ili_t‘i__‘o's - day thus Dbe closét
b:C‘luSe of the successful ‘d;miqn otri language more suited

to the needs of thosp vho are fo isplement ~the ultimate .

language.

182

Refergnges &

Bobrow, D. G}\and B. Raphael, "New Programeming ,Languages for
Artificial Intelligence Research", ACHN Computing
SULrYeys, 6, No.6, Sept. 1974.

Burstall, R. M. and R. J. Popplestone, "POP-2 Reference

Manual", Nachipe Iptelligence 2, E. Dale and D. Michie
eds., American Elsevier, 1968.

SGrisweold, R. B..'J. P. Poage and 1. P. Polonsky, The SNOBOLY
Rrodramming g‘eannsq,,pront‘co~ﬂpll. 1971.

Hawitt, C., "Plannel: & Language for Proving Theoress in

Rohots", Procesdi tha 1 :an&innlé PY 31 ‘rm
conference an ALL 14 laskelligence, 1 Gé? ' :
Hawitt, C., "Procedural !-b.ddinq of Knowledqge in Planner",
» trogeedinga of the dniscoational Jednt

) =onference op Artificimld Intelligsnce., 1971.

-

McDermott, D. V. and G. J. Sussman, "The Conniver Reference
the' ™ Manual", AL MepQ 2239, MIT Artificial Intelligence
Laboratory, May 1972.

M:11li, L. PF., "The 2.PAK Language Pt‘litives for Al

Applications", Techpical Report $#73, Umiversity of
Toronto, December 1974,

kulifson, J. F., J. A. Derksen and R. J.” Waldinger, “QA4: A
Proceilural Calculus for Intuitive Reasoning”, Jachpical
Note 1), Artificial Intelliqgence Center, Stamford
Research Institute Project 8721, Novesber 1972.

Samith, D. C., "MLISP", Nemo AIN-135, Stanford Al Project,
October 1370, :

Sussman, G. J. and D. V. McDersott, "Why Conniving is Better
Than Planning", Al Hemo #2355A, MIT Artificial -
Intelligence Laboratory, April 1972. ,

Van Lehn, K. -A. ed., "Sail User ﬁanual",‘nglg AIN-204,

Stanford AI Lab, July 1973. :

Van Wijngaarden, A., B. J. Mailloux, J. E. L. Peck, C. H. M
Koster, M. Sintzoff, C. H. Lindsey, L. G. L. T.
Meertens and R. Pisher, "Revised Beport on the

Algorithamic Language ALGOL68", Acta Informatica. 197¢,
2+ in press.

!/ .
Weissman, C., LESP 145 Primer. Dickenson, 1967.

a) ‘83

Appendix A - A 'Grammar for ALAJ

The parser for ALAI detects type mismatches? aultiple
or nonexistent declarations, ianvalid parameter 1lists, etc.,
all of which are semantic errors rather than syntactic
arrors. Complex grammars can include such things as type
checking, operator precedence, etc. in the syantax of the
lanquage, but the following grammar does not do So. In ad,
it merely states the foras of the ALAI ‘constructs, ther
than the ~way in which they should be used. The Reta-syntax
used to describe the ALAI syntax is a nmodified fors of a
B.N.F. gramasar. Meta-symbols, ‘sejuences of letters and
hyphens enclosed in angle brackets ('<' and '>'), are used
3S noh-terminal symbols indicating concepts vhich exist in
some form in the ALAI syntax, but wvhi®h are sore coaplicated
than simple strings. Exaaples are <integer>, _.<declaration>
and <expression®. The foram of the seta-syabols.is specified
Y productions of the foras: ‘

seta-syabol ::= meta-expression

Meta-expressions are built up of simple cbnstants (single ot
sejuences o0f characters which stand for themselves) and .

various eleaaents of peta-syntax: . .
1) (neta-expression-} | meta-expression-2 | --- '
| meta-expressionem) ' ®

The resulting meta-expression can be ény of the
sub+«meta-expressions. If a Beta-expression of this type

is the only ameta-expression in a aeta-syabol
specificatiol, then the enclosing brace brackets are
omitted. =~ - ~ -
2) meta-expression-1 meta-expression-2 ---
Reta-expression-n .
The resulting leta-%&pression i$§ that consttx:ted by B
" the *

linearly concatenating or appending all 4
Sub-aseta-expressions. .
+3) (meta-expression) _ '
o The bracketed meta-expression is optional, i.e. it need
not appear. .
4) <meta-expression-1 | seta-expression-2 | «--
| meta-expression-n2 : ’
At least one of the sub-meta-expressions aust appear. If
more than one appears, then they sust be in the same
order as they appear in the ligt of alternates.
Tpper case letters appearing in meta-syabols stand for
variables and aust be substituted for consistently
throughout individual productions. Such a 'T', i.e, as in
<T-expression> stands for any ALAI type as represented by
the meta-syabol type-1>, Imn the actual ‘parser iatput,
blanks are ignogéé except as parts of strings. They do serve
as component elimiters, hovever; ‘event_ type' is ot
ejuivalent to 'event_type', nor *PERSON A to *PERSONA'.

Y

ler ’ 184

Identifjiers

<letter> ::= |
L | m{| N Q
I 2 J
<digit> ::=0 | 1V | 2} 3 1 4 S| 6|71 81} 9 .
<identifier> ::= dletter> | <identifier> (<letter> |
<digit> | _})
<any-identifiar> ::= [e) <identifterd

A B | CIDJEIPIG | H I | J|K.]|
ot P | IR SHET QUL VYW XY

Declarations

<user-type> ::= <identlifier>

<simple-type> ::= int. | real | ‘bits | bool | String |
label | dict | C { I 4 N | D | CD | ID | WD | pat |
procval | process | context | event | event_type | .
vorld | elab | area | free | any | <user-typed>

<compound-type> ::= pair | triple | vector | set | .bag |
list | chain | table | array | stack | queue | expr

<type-1> ::= <simple-type> | <compound-type> | .
ref((<identifier>)] | <type-1> <compound-type> | 3
[(<type-1> | ptr | fixed}) loc

<nusber> ::= <digit> | <nuaber> <digit>

<integer> ::= [+ | -}] <numberX

<bound-pairs~1> ::= [(<integer> :] <integer> |
<bound-pairs-1> , [<integer> :) <1nteqet>

<dimensions> ::= & | <dimensionsd> , e

<type> ::= S<type-1> | (vector (<number>) | array
. ((<bound-pairs-1> | <dimensions>}))}2 | ctting
" (<nuaber)>)
<back> ::= back | <back> all o

<special-sodifier> ::= static | local | global | <back>
<{specials> :t= <special-modifier> | <spetials>
<special-modifier> .
. <inijtjalizations> ::= <idenptifier> [:= <expression>] |
v <initializstions> , <identifier> [:= <expression> N
<normal-declaration> ::= <<type> | <specialsd>2
<ipitializations>) .
<i1dentifier~-1list> ::= <identifier> | <identifier-list> ,
<identifier> ' :
<user-type-declaration> ::= type <identifier>
(<identifier-list>) .
<equ-declaration> ::= equ <1n1t1311zations>
<fields> j:= <type-1> <identifier-list> | <fields> ;
- <typé-1% <identifier-list> .
<record-declaration> ::= record <1deut1£10t>
{ ([<fields>}))] .
<paramet®¥rs> ::= <<type> | <specialsd>2 <1dentifict-list>
| <parameters> ; s<type> | <specials>2 .
<identifier-list>
<multiple-1) ::= <simple-typed> | <compound- type) | ref
{ (<identifier>)) <conpound-type> | <multiple-1>
<co:pound-type>) .
<multiple> ::= (<multiple-1> s | Lkefs [(<identifier>))}

<«

\ . 185
vy, | |
\' A%

1aldpeifie .

<pqt8:'.:a U (<parameters> [; <multiple>] | <sultiple>}))
<procedure-declaration> ::= proc <identifier> [<pacrs>);
/<block> gorp .
<typéd-procedure-declaration> ::= .Ctype-1>- proc
<ideptifier> [<pars>] ; <expression>
<dudmy-specification> :i= [<typd-1>) dummy <identifier>
. (<pars>)] . S _
<procedure-equivalence> ::= proc <identifier> =
<identifier> ' -~
<declaration> :3= <norwal-declaration> |)
<user-type-declaration> | <egqu-declarati 0> ,
<record-declaration> | <procedure-declat®¥ion> | :
« <typed-procedure-declaration® | <dusay-specification>
| <procedure-eguivalence> o A

Expressions-

-

<location> ::= <any-identifier> | & <loc-expression> |
<ref-expression> ® <int-expression> | 3 _
<array-expression> (<int-expressiop-list>) | _ —
{string-expression> (<int-expressign> [<bar>
<int-expression>])* | <bits-expression>
(<¢int-expression> [<bar> <int-expression>}) |
{<vector-expression> | <list-expression> |
<chain-expression> | <pair-expression> |
{triple-expression>,.| <stack-expression> |
<area-ewppression> | <‘g=ue-exptession>}
(<{int-expression>) .

P | <table-expression> C‘%xpressioh)) |
<{<stafk-expression> |’<queue-expression>}
<{expression> ::= (<block-expressiond>) | <prefix>

. <expression> | <expresgion> <infix> <expression> |«
<assignsent> | [/) / <type~1> <expression> |
{<any-identifiepdy | ¢ <pto§;|1~exptoslxon>} , -
[({<expressioa-2ist>))] | -special-expression> |
<T-expression> '

‘ +<bar> ::= | i
{T-expression> ::= <expression>
'<T-block-expression> ::= <block-expression> .
<expression-1list> ::= <Cexpression> | <expression-list> ’
<expression> : :
\\ <T-expression-list> ::= <T-expressieon> |
<T-expression-list> , <T-expression>
<{freexgxpression> ::= <T-expression>
* <any-ejpression> ::= <user-type-expression> .
<asf§ighment> ::= <locatiop> := <expression> L)
<fixed-loc-expression> f:="<int-loc-expression> |
<rea1-lop-exptessiqg§ | <bits-loc~expressiom> |
<bool-loc-expressio , s
<ptr-loc-expression> ::= any other <T-loc-qxpression>
réfigd ::= <any-identifier> R)
. <ANfiRd ;e <Eny- ntifier> PadA U
v ieTel &8 - $§.::= (<block-b > 3] <cxpéh$sion>'|

’ n."‘ * .-
. .

180

b 4

‘Cidentifier-X> <block-body> ; <expression>

<1denti€ier-X> o
». Statements) i Y
- » <emapty> ::= ' f A}
,“ <declérations> ::= <declaration> | <declarations>
p <declaration> ’)
, <statements> ::= <statementd> | <statements> ; <stféqment>
<block-body> ::= [<declaratigns> ;] <stateaents>
<bjock> ::= <block-body> | < dontitidt-!) <block-body>
. <1&ontuier -X>
<statemept> ::= 4o <block> od §° <asnign-ont> | UL
) {<any~ 1dontifier> { & <procval-expression>)
(([<expression-1ist>])] | <special-stateaent> |
<empty> ‘
. .
Inteqgers
« -
"<int-prefix> ::= - | <bar> | sign
© <int-infix> :i= ¢ | = | &« | se | div | ren
<int-expressiond> ::= <expression> | <integer> |
<int-prefix> <int-expression> | <int-expression>
<int~infix> <int-expression>
Reals :
<real> ::= (<integer> . [<ngpbet>] | « <numbéer>)} [E
<¢integer>]) | <integer> P <integer> .
<real-prefix> ::= - | <bar>
<real-infix> %:= ¢ -f = | » | = | /
<real-@xpre#sion> ::= <expression> | <r al) |
<real-prefix> <real-expression> | al-exprelsion)
<real-infjix> <real<expre$Ssion> | <repl-exptessxon> se
<integer-expression> ' ,
<int-expression> ::= sxgn <real- expredsxon) o
Strings . ! S\ f
<guote-1> ::= ! .- ,
<guote-2x ::= " /
<char-1> ::= any character except <quote-~1>
<char-2> ::= any character except <quote-2>
<chars-1> ::= <char=1> | <chars-1> Xchar-1> /
<chars=2> ::= <char-2> | <chars-2> <char~-2> '
<sttiag> ::= <{quote-1> <chags: 1> <quote—1> { <quote-2>
) <chars-2> <quote-2>
<string- expressxon) = <expression> | <stting> [
e <string-empression> + <string-expression> ' o

<int-expression> ::= size <string-expression>

Bits

-

Kbin&ry*digf%g e L ??"

.y

<for-parts>.j:= <empty> | <for-parts>
<{itegation-statement> ::= <for-parts>

<for-part>
[vhile

<bool-block-expressiomn>] do <block> [until

<bool-block-expression>] od S
<T-iteration-expression> ::= <for-part

<bool—block-e;pt§§sion>] usinyg

{<T+procval-block®

s> (vhile

collect <expression> {until <bool-expression>)
<{special-statement> :: <iterat19n-sgatenen:> i return
[<expression>) | exit [<identifier>) | iterate

{<identi¥ier>] | next [<identifier>

]

<T-special-expressiond ::= <T-iteratidn-exprpssion>

}hput and Output

<location-1list> ::= <location> | <loca
" <location>

tion-list? v

<special-statement> ::= card (-<location-list>) i

line (<expression-1list>) .| inbuff
| outbuff (<expression>)

The Data Net

<char 3> ::=.any character except blank
<chars3> ::= <char3> | <fhars3> <char3
<digt-expression> ::= . <clars3>
<eMement-1> ::= <séquence-$§ | <chars3
<expression> '
<elements- 1> :
<sequence=-1> ::

: <elements-1>)
<{D-expression>

<empty> | <elements-1
(
= D <sequence-1> | L

Nonstandar® Evaluation n

(<location>)

> -
> 1 (:]
> <elelent;i

<limear>

<locator> ::= <identifier> I <locator> & <nuaber> |

. <identifier> # <locator> .
{expr-expression> ::= # <expression> {
<empty-statement> ::= ¢ <statement)> |
<expressiond> ::= = <ex pr-expression>

LAY

Patterns and Pattern Ma tching

LY

<pattern-prefix> ::= - | <t | <=> | =->
<pattern-infix> ::= & | « | <bar>
<pat-bool-prefix> ::= :¢- | :<=> | :=>

<locator>
+ <statement)>

~

. r

+

190

expression> | <T-proc-identifier>j

{pattern> ::= <expressiond | <pattern-prefix> <pattern>

| <pattern> <pattern-infix> <patter
| <pat-bool-prefix> <bool-expressio
<pattern> (@ | #} [<int-expression>
| <pattern> = (3] <location>
PR R A .
<Sequence-prefix> ::= <simple-type> |
I Bl VvViLypCcype 1

n>
n> |

] (C=<location>]'

<compound-type>

<element-2> ::z [<sequence-prefix>) <{sequence-2> |
‘ . A

| S

»

187

‘ ~
<octal-digit> =0 LY 2 314 5 6 i 17
¢hex-digit> :: <digit> | A { B { C | D } E (. 4
<pinary> ::= ¢ <binary-digit> | <binary> <binary-digit>

<octal> Y <octal-digit> | <octal> <octal-digit>

<hexaded€:215g::= ! <hex-digit> | <hexadecimal)>
<hex-digit .

<p1ts> ::= <binary> | <octal> | <hexadecimal>

1t e

<bits-infix> ::= <bar> | & | = :

{(hits-expression> ::= <expression> | <bjits> |~
<bits-expression> | <bits-expression> <bits-infix>
<bits-expression> | % <expression> - «

Rouvleans

Lin

P11

<{bonlean> ::= true

<bool-infix> ::= & | « | <bar>

<comp> ::= < | <="| > | >=

<egual-comp> :1:= = | ==

<compound-cowp> ::= == | A==

<boodl-expressiond> ::-= <expression> | <boolean> | -~
<tool-2xpression> | <bits-expression>

({int-expression>)
I <bodl-expression> <bool-infix> <bool-expression>
| <int-expression> <comp> <int-expression>
| <r-~al-expression> <comp> <real-expression>
| <string-expression> <compd> <string-expression>
I <T-expression> <e jual-comp> <T-expression>
| <T-expression> <compound-comp> <T-expression>
)

‘Al Compound Objects

<element> ::= <sequence> | L] <é§pression>
<eclements> ::= <empty> | <elemerts> <element>)
<se quenced> ::= (<elements>) >
Sleft-brac~ket> ::= <)
<right-bracketY a:= "> B - . .
<expression-list-1> ::= [<expressiog>] |
<expression-list-1> , [<eexpression>)
<lin=ar> ::= <left-bracket> <expression-list-1>» .
<riqght-~bracket> M
v
rs, Triples and Vectors "
<palr-element> ::= <pair-1> | L] <expres§ion>
<pair=-1> ::= ((<pair-element> <pair-element>])
<pair-2> ::= <lett-bracket> [<expression>] ,
(<expression>] <right-bracket>
<pair-expression> ::= P <pair-1> | p <pair-2>
<triple-clement> ::= <dtriple-1> | [:]) <expression>
<triple-1> ::= ([<triple-element> <triple-element)>
<triple-element>]) -
<triple-2> ::= <left-bracket> [<expression>] ,

L <ex reégion>] + [<expression>] <right-bracket>
<t[iplg§3xprpsslon> 2= T <triple-1> | T <triple-2>

-

' . : ' . 188

P

<{vector> ::= V <sequence> | V <linear> :
<yoctor—expression§ ::= <expression> |, <vector> |
{vector-expression> + <vector-expression)

.

Sets, Rags, Lists and Chains

<set> ::= S <sequence> | [S] <limear> _
<bag> ::*+ B <sequence> -| B <linear>

<list> ::= L <sequence> | L <linear>

<zhain> ::= C <sequence> | C <linear>
<set-infix> ::= ¢+ | « | =~ .)

<bag-infix> 3= + | - | & | <bar>

<list-infix> ::= + | «

<chain-infix> ::= + | «

<{spt-expression> ::= <expression> | <set> | .
{set-expression> <set-infix> {set-expression>

<bag-expression> ::= <expression> | <bag> |
<bag-expression>¥ <bag-infix> <bag-expression>

<list-expression> ::= <expression> | <list> |
<list-expression> <list-infix> <list-expression>
I -~ <list-expression> '

<chain-expression> %:= <expression> | <chain> |
<chain-expression? <chain-inftix> <chain-expression>
{ - <chain-expression>

VN

<membership> ::= <~ | =<-
<set-comp> ::= < | <= | > | >=
<bag-comp> ::= < | <= | > | >=

<fBol-expressign> ::=
<expression> <membership> {set-expressibon> |
<expression> <membership> <bag-expression>
| <set-expression> <set-comp> {set-expression>
| <bag-expression> <bag-comp> <{bag-~expression>

Stacks and Queues

<bool-expression> ::= eampty {{stack-expression> |
<queue-expression>j

<statement) ::= pop (<stack-expression> |
<{Jueue-expression>})
| add <expression> to <queuve-expression>
| push <stack-expression>

Hefer«-n es
<tyie-1infix> ::= is | isnt
<bool-expression> ::= <expression> <type-infix>
<int-expression>

abels

<statement> ::= <identifier> : <statement> |
fjoto { go to} <label-expression>

Tonditional Tonstructs - \

*

It.

189

<elifs> ::= <empty> | <elifs> elif
<bool-block-expression> ghen <block>
<if-statement> ::= if <boo -block-expression> then
<block> <elifs> [else lock>]) fi
<T-elifs> ::= <emptyd> | <T-elifs> elif A
<bool-block-expressionp> then <T-block~expression> .
<T-if-expression> ::= if <bool-block-expression> then
<T-block-expression> <T-elifs> else <T-expression>
{case-1ist=T> ::= <T-expression> : <hlock> | :
<case-1i®6t-T> , <T-expressiend> : <block>
<block-list> ::= <block> | <block-list> ; <block>.
<case-statement> ::= case <T-block-expressiofn> of
<case-1ist-T> [else <block>] esae
ks case dint-bYock-exfpression> of <block-1list> (else
+ <block>) esac :
<T1-case-list-T2> ::s <T2-expression> : -
<T1-block-expression> | <Tl1-case-list-T2> ,
<T2-expressidom>® <T1-block-expression>
<T-block®™expression-list> ::= <T-blpck-expression> |
<T-block-expression-list> » <T-block-expression>
{T-case-expression> ::= case <T2~b16ck-expression> of
(<T-case-1list-T2> [else <T-block-expression>])).

~

| case <int-block-expressiagad>. of

(T-block-expression-list> felse <T-block-expression> })
<cond+list> ::= ébool-{mock— xpression> : <block> |

<cond-1list> , <boof~bloc -expression> : <block>

<(cond-statement> ::= cond <cond-list> [else <block>] dnoc

<T-cond-1list> ::= <bool-block-expression> :
<T-block-expression> | <T-cond-list>
<bool-block-expression> : <T-block-e pression> :

{T-cond-expression> ::= cond (<T-cond-1list> [else 4

<T-block-expression>))
(speclal-statement> ::= <if-statement> | <casc-statement>

| <cond-statement) :
{T-speclal-expression> i:= <T-if-expression> |

{T-case-expressiqn> | <T-cond-expression> -

rative Constructs

<tor-part> ::= for <location> {
. from <int—block—expression>] [to
<int—block-expression>]
[hy <int;block—expression>]|
_from <real—blpck-expression>]
(to {real-block*expression>] [by .
<r9a1—block—expression>]
t [} in <compound-block-expressitgfd>1
| via <expression> } .
{ sachthat <bdol—block-expression)]

\,

\

\ «

-

! wher= "compound" is to be replaced by sef§, bag, list,
¢hain, vector, array, table, stack or queu

4

>

v) ') 191

- ? . N)
. .

<chars3> [} [] <oxpt¢slion> l <pattern> -
{elaments-2» 1:= .<éapty> | <eleagntsz-2> Celement-2>
-<sequence-2> :im (Celéments-2>) - .
<pat-expression> ::= D <sequeace-2> | (D-bxpre:sion)
-<withd> :¢= with <plt~exptossion> o
- <withs> 7:= Cemptyd> | <vithsd <with>.
. <T- specxal-vxptession> 3:= (find | find1)
<pat-expression> [.umndo) { need] <withs> [suchthat
S~ ___° <bool-expression>] [in <varld-expression>] -
‘<special-statesegt> ::* reset <pat—expronlion> <uiths>
[in <world-ex ession>]

-

Contexts) ’ ' :

<location> ::= <location> wrt <c6ntex£-exptession>

AN
>

Processes*

<resume> ::= resume <process-expression> [vzth
<expressxon>] [time <1nt-oxpression>]

<process-expression> ::= incarnate
<procval block-expression> as <int-expression>
{priority <int-expression>))

<T- spec1a1 expression> ::= <resume> .) “

<special-statement> ::= <resumed. / :

. <event-specjal-expression> :>= wvait
<event_type-expression> [priority <int-expression>]
”e

Events and Event_typeﬁ .

<process-listd> ::= <process-expression> | <ptocess list>

*. , <proc®ss-expression

<event_.type-expression> ::= (active | inactive}
<process—-expression> | {any | all} ({active | inactivej}
{(<process-1list>) | <process list-expression>)

{special-statement> ::= cause <event_type-expression>
(vith <expression>)] | on <event_type-block-expression>
do <block> od - ’

'S

-Backtracking
<try> ::z _<for-parts> [while (jool—block-expresslon>] try

[<str1ng>]
<ptry> ::=|{<for-parts> [wvhile <bool-block- -expression>)
ptry <b ock> then [<string>] ;
<process list loc-special- expressxon).::- <ptry>
<attempt-list> ::= <block> : <block> | <attempt-list> ,
<block> <block> >
<attempt> ::= attempt <atteapt-list> (else <block>] end
<fresume> ::7 fresume <process-expressjond> { time
<in@-exrpression>) .
<r-spe$a1 -expression> ::= <fresumed>
{special-statement> ::= <try> | <atteapt> | <fresunme>
{ failing’ [<str1ng>] {stateament>

o

5 | | : : . .'192
o | &

Worlds

L]

|}

‘<qpec1a1-statanént>‘::- enter <vorld-expression> (wet .
<context-exptossion>] | delete (<expressiond> |

<D7expression> (in <world-expression>)} [vwrt
<coptext-expressiond>]°

€
<instante-special-expression> ::= assert <

D-expression>

" [in <wot1d-9xpression>] (vrt'<context-expressian>]
s - . . .

Elaboratipns

(speéial-statenent) :i= <identifier> | <expcessiond> las
<expr lxst~exptdssibn)) | <elab-expression>
: -

d .

°

194

Appendix\b - Intefhal.structyreS'
- 8

B1 Language Defined Record Classes /
¥ ' . .
L many data typos'in<§;:}\ some use only a sinyle
alu€, while others, like contexts, tables, lists, etc. use
gaveral within the single entity. The presence of the
general type ‘free' (needed to make the data het general but
still accessjible through the standard language coastructs)
requires thatlall \ypes be represaented by some single,
.uniform convention. The simplest and most common solution is
to represent multi-valued entities by a ‘single pointer to a
racord containing the various values. Proper use of type
‘free' requires that the type of such records be .
determinable, hence some type code must accompany all values
. to be assigned to 'free' locatioms. (For uniformity, the
¢ ' same conventior is extended to locations of types ‘any' and
: ‘ref'.) This type code can be either a part of the pointer
) >C a part of the record pointed at, but for ALAI, the ¢choice
S has been made: it goes with the pointers. For single value
types, the value is stored directly, rather than being
pointed to. The fields of the various language defined
racord classes (i.e. the‘'data types with more than one value
in them) are as follovs: g

bool - type code 1
bits - type code 2
int - type code 3
real - type code 4
loc - type code S
pair - type code 6

free »LEPT

free &RIGHT
triple - type code 7

free sLEFT

free «MIDDLE

free «RIGHT"
list - type code 8

free =VALUE

list «NEXT
Set - type code 9
tree #»VALUE

s2t «=NEXT

bag - type code 10
free »VALUE
bag «NEXT

stack - type code 11
free »VALUE
stack =NEXT
A stack pointer points to the top of the stack. The links
in the stack point away from the top. The bottom node has
a null =NEXT.)

. queue - type code 12

free «VALUE “

oo 194

S
.

queue sNEXT \ o
A gueue pointer is to a special record of type 12. Its
‘ «VALUE points to the node at’' the back of the queue, its
«NEXT to the node at the front. The links go froms front
to back. «NEXT of the back node is nuyll. ‘
chain - type code 13 . '
chain PREVIOUS - ’ ’
free «VALUE \]
chain «NEXT
area - typae code 14 .
int «LEN
? «REGION
«LEN is the number of storage units 4in the region pointed
to by the untyped pointer. «REGION. The count will
gbably be in some handy unit such as byte or word.
strw- type code 15 .

int EN

area\=REGION .

*LFN is the number of character Yy in the s

*KEGION is the area (which contains vn length)’

Storage in which the characters are located. ¥
vaotor - type code 17

int «LEN

Area *=REGION
*LEN is the number of elements in this vector. »=REGION is
the area (whose length may be greater than is necessary)
in which the elements are stored.

array - type. code 19
int pair list «BOUNDS
area =REGION
The pairs in *BOUNDS are the upper and lower bounds for
the corresponding dimensions of the array.

table - type code 22
int «LEN
area =REGION
*LEN is the current number of entries in the table. The
entries are two consecutive values arrayed through
*REGION: the index value, followved by the corresponding
table entry%

label - type code 23
int «BLOCKLEV
tree *WHERE i .
*BLOCKLEV is the block level of the block containing the
definition of the label. It is used to control bloTk exit
when branching. «WHERE will be either an ‘expr!' lpointer
to what statement to interpret next or a 'code' ‘pointer
t> the instruction to branch to. Q%

elab - type code 25
free x0BJECT
list «METHODS
int *=ELABNO
I list «KNOW

context - type code 27
context «PARENT N

! 195
- ' 2

Context list «CHILDREN)
world eBIRTHPLACE (‘
int oLEVEL -
free «CHANGES ' ‘ '
free «ROOTER : ’ .
Contexts were discussed ptevioésly except for the M

' Structure of «CHANGES and «ROOTER. «CHANGES is the head

" of a circular linked lisg of "change records" (type cqde
56) which have five fields, all of which are nominally of
type ‘'free'. Their usage is Ne restricted hovever.. The
first field is the link to the ne Such reocord or back
to the context (type code 56 or 27) .\Lhe second is
essentially a 'loc' pointer to the loca A whose value
is being saved by this record, but its ty field (for
the type of the thing it contains or point$\ at) has been
cogverted tq a boolean flag (it is not a- propec boolean,
it is only uded that wa) indicating whether or not this
record is in the «CHAN list of the current context.
(To reference it, use e.g. (%type (X)) (sL).) .The thirad
fielld.is a part of a ring of fields which leads

saved. In this ring will be type S8 pointers to the thirAq
field of "change records", exactly one type 57 pointgr to
the fourth field of a "change. recora" and possibly type
59 or 60 pointers to the Second or third field of “rooter
records'". These rings, using only one pointer per recorad,
provide two-way links between a saved value and 4al1l 4
Subseqyent values which are dependent on it. The fifith
field is the Properly typed valye being saved by this
record. «ROOTER is the head of a circularly linked list
of "rooter records" (type code 61) which have three
'free' fields. The first is a type 61 Pointer to the next
record or a type 27 Pointer back to the context. The
gecond and third fields Participate in the :
above-mentioned ringsg the second field ultiasa ely points
to the value for the location under *ROOT, the |{third
field to'its value under the context in question. Such
- =ROOTER lists are usually longer than «CHANGES ists.
Prbocess - type code 28
area stack list «BASES
free *CONTINUE (actually 'code' or 'expr?')
area' «SAVEAREA
int «STATUS
free aPATH (types 6u4-67)
event _type «WAITFOR ®
event _type list «TRIGGERA '
2vent_type list «TRIGGERI
int «PRIORITY
conteﬂ} «*P ROCONTEXT
world % PROWORLD
elab stack «OBJECTS
pair list «PRIXLIST
list «PINDLIST

. - ‘ © 196

y_J »
-
event _type - type qode 29 .
process gqueue o?\é? o .
event queue +NOTICE ' .
free eWHAT - ~
' I list «KNOW\,)
‘ event - type code 30 -
free «NESSAGE ° .. _ ' ‘
event _type «TYPE . . <\
\ T 1ist «KNOW
C - type code 31 . "
1 - typa code 32° .
N ~-~type coda 33 . ! \ N —
D~ type code 34 .
CD - type code 35 ’ N
ID - type cole 36
ND - type gode 37 \\< .

dict - type code 41

pat
exp
' coHd

wOor

PL‘D

string =NANE

list «MEANINGS

- type code 42

a Qub-type of 'desc’

r - Xype code 43 I

Sub-type of ‘desc'
e - type code 44

used to point to sections.of machtne code

1d - type-code 45 Y

dict table, sDICTIONARY

context «CURCONT
context «WROOT -
«DICTIONARY is a table indexed by the strings which are
the names of the objects in this world. Its entries are
the correspdnding 'dict! records. «CURCONT is the
“"current context" for use with this world., «®WROOT is the
root of the context tree for this vorld. '

cval - type code 46

int list «TYPE

free tNAHES (actually ‘dict' or 'dict set')

int «STORSIZE

pair table =PARS .

expr =EBODY «

code «CBODY ,

«TYPE is the type of the procedure, ‘e.g. 'int list loc
proc A' would yield a «TYPE of 'L<5,8,3>¢., The leftamost

*bit of the first ele-ent of the lxst (the major type)

"the string names, of.

controls whether to uge «EBODY (0) or =CBODY (1) for this
procedure. The bit second frdm the left in the same word
(accessed via ' (% ((PROCP«TYPE) (1))) (2) ') controls whether
«NAMES is a single 'dict' pointer (0) or a set of then
(V). «EBQDY and »CBODY are pointers to the prograa
structure version and the compiled version of the body of
the procedure. Either may be null (as may =NAMES).
*STORSIZE is the amount of storage needed for the
parameters of the procedure. «PARS is a table, indexed by
irs indicating the types and

e - . 197
‘-
. / .
positions of ‘the paraasters of the procedure. The nature
of the pairs will be discussed later (see 'Syabdol.
rabrles'). JIf this pr&cbdono has 'been coapiled, then in
.the intermsts of saving storade space, both +EBODY and
¢PARS may be null (i.e. the poegras -ttncturo“rd the
.8yabol table have been demtroyed).
raf - type cQde-48) - R . : .
includes all user geclared record classes
any - type ¢ode 51 : .
includes all useg defined data types
free - typé code 54 ~ : .
includes &1l ALAIX kypos ’ _ .
ejJu - type code 55 : :
parse time varipbles _ . . .
Types ‘ref' - ‘equl\ vill never occur in an actual ‘run-time
pointer (unleks the programser puts one there). Types 64 -
67"™re used for block entry, msethod entry, incarnation and
backtrack points in the backtrack tree. . .

)

.

B2 Internal Program Structures .

"Programs in ALAI can be either cowpiled or uncoapiled.
Compiled ‘programs are represented by a single pointer to the
top of the machine code. Uncompiled prograss, vhich are o
executed via an interpreter, 'are represented as netvorks of
descriptors which use special language defimed cqQucepts as

-the relation (sREL). Note that all participants of ‘expr!
nodes are actually ‘free'. The concepts used and the
participants expected are as follovs:

*BLOCK used to represent all block expressions and
statements s :
*PAR1: the nase (if any) givem to the block
*PAR2: int - the storage needed for this block's locals
=PAR3: pair table - its sysbol table (see later)
«*PARU4: list - list of the statements (and expression) of

the block
«ASSIGN used for all assignaents ..
*PAR1: the location being assigned to \‘

*PAR2: the expression being assigned [
«REF used for all identifier references °

*PAR1: the syambol table entry

*PAR2: the list of subexpressions

These can be indices, argumeats or a field selector.
»1F used for if stateasdnts and expressions

«PAR1: the original 'if' boolean expression

*PAR2: the original true case stateaments or expression

*PAR3: a list of ‘'elif's. Bach is a pair: a boolean

expressionrand ‘a list of statesents (and expression) .

«PAR4: the final 'else' part
In the *IF form and in others, where one statement or
expression is accepted, a list can appear, the elements of
which are to be serially executed. The list represents a
block statement or expression without declarations.

|

\

N
SN, . v . -
DR \/ ®

«CASE1 used for indexable case consdructs
«PARY: the indexing expressios
Qo __oPRR2: a list Jf the bxpressions or statesents
sPAR3: the ‘'else' part .
¢CASE2 used for key-cospare case con-Y‘uct-
sPARY: the kay expressiona :

¢PAR2: 1ist of pairs: the cospare expression and ::o

resulti stateaent or expression
_ «PAR3: the 'else’ part
«Z0ONQ used for ‘tond’ constructs

«PARY: a list of pairs: boolean expression-and the

resulting statemegt or oxptcluion'
o sPAR2: the 'else' part

+«STEP used for reage specificatioa il 'to:' coastructs

oPARY;: 'froa' expression
oPAR2: 'to" oxptoss&:n Tmull for infinity)
«PAR3: 'by' expressio
«IN used for ‘in* speci cations in ‘for's
«PARY: the 'in®' expression
«ATIN used for 'din' specificatioas
«PARY: the '8in' part .
‘«VIA used for 'via' specifications in 'for's
«PAR1: the 'via' expression
sPOR-PART used for <for-part>'s in ‘for's
«PAR1: the 'for*' variable
«PAR2: «STEP, sIl, *ATIN or VIA
«PAR3: the 'suchthat' expression
«FORS used f>r iteration statesments
«PAR1: a 1listiof «FOR-PART's -
#sPAR2: the 'vhile' expression
«PAR3: the block or statemeant list (the body)
«PAR4: the *until* expression
+«+PORE used for iteration expressions
sPAR1: a list of «FOR-RART's
sPAR2: the ‘'wvhile' expre¢ssion
«PAR3: the *'using' expréssion
«PARU: the ‘collect' expression
«PARS: the *until®' expression
«RETURN used for ‘return®' statesments
«PAR1: the value to be returned (if any)
+EXIT used for ‘exit' stateasents
. *PAR1: the 'for' to exit (its string label)
#+NEXT used for 'next! statements
«PAR1: the label of the *'for' to iterate
«ITERATE used for 'iterate' statements
«PAR1:.the label of the 'for' to iterate within
«CARD used for '&ard' statements

«PAR1: list of the "argument" locations and statements

+LINE used for 'line' statements

«PAR1: list of the Yargument" expressions and statements

«INBUFP used for 'inbuff' statements
«PAR1: the location to read to

«+OUTBUPF used for 'outbuff'® statements
*PAR1: the expression to output

‘ . : . . g '”r
&
.]) , e
.) » - .
«TP uséd for the '<' stack and gquewe operator
sPAR1: the stack or geusue to take thé top or froat '
_ . eleaqat of '
. «DERRY.used for derefereacing 'loc's
’ oPARY: the *loC’' expression to be used as a location
ozxzc used £4or calliag 'procval’s
§PARY: the °‘procval' ezpressios to de called
¢PAR2: the list of arguseat expressioas
¢+s0TO used for branching (‘goto’)
sRPARY: the ‘label! oxpro-lto- to bcamch to °
+TYPE used tQ reguest tun-tise type checkinag
«PyR1: the ipteger list specifylag the roqusfbd type
«PAR2: the expression vhose type is ¢to bo chockod
sUNBVAL used te pmoduce ‘expc's
., oPARY: the expressios to be used as & '-:pt'

o!'lL used to represent the ‘'=' prefix operator o
_.«PAR1: the *expr' expression to be evaluated o
glof ¢LEPT, o¢BOTH, oRIGNT repfesent pattern ptotixos ~, <=,

<-> and => _ .
~ «PAR1: the pattern the prefix is to apply to
sAND, sOR and ¢XOR represent the pattern infixes &, | and »
" «PAR1: the list of subpatteras dbeiag cosbined
«BLEPT . «BBOTH and eBRIGHT represeant the prefixes :¢<¢-, :¢<->
and :->
" «PAR1: the boolean expression to be tested
»SPAN represents the ‘3’ pattern postfix
«PAR1: the integer count needed (mull fox not qivon)
. «PAR2:"the location to put the coumt into
«ARBNO represents. the 'f£' pattern postfix .
+PAR1: the iateger count needed (null for aot qivoi’_
«PAR2: the location to put the count into
¢PASSISN represenats the '=' pattern operator
+«PAR1: the pattern to match °
«PAR2: the location to assign the target to
«PPOS represents the '=3' pattera operator
_«PAR1: the pattern to satch
+PAR2:'the location to assiga the position mssber to
P, T, sV, oL, 6Cg/.s, B, ST and ¢BIT are used to

o

rapresent pairs, triples, vectors, lists, ochaias, sets,
bags, strings and bit sequences as patterm structures
«PAR1: the sequemce which this is an elemeat ‘of
+«PAR2: the chain of elements for this sequeace
+«TYPEARDP used to represent restricted ‘arb' valaues
«PARY: the.xnteqor type of the required part of th.
tagfqget
«INT dused to represent integer cosparison patterns
#*PAR1: the integer comparison code for the test (see
‘comp' wnler ‘Booleang’) 2
+«PAR2: the integer exptession nsed as right-hand
comparand .
+REAL used to teptesent real comparison patterns
#PAR1: the integer comparisoa code
«PAR2: the real expression used-as right-hand co-pnrand
«PIND used for the 'find' expression

v

RGH T A

23

N
*PAR1: the pattern to be found
«PARZ2: a list of the *'with' patterns
«PAR3: the 'suchthat' boolean expression
«*PARU: the 'in' world expression
«PAR5: bit 1: 1 for 'need! '
*PIND1 used for the *'find1' expression
as «FIND .
*RESET used for the 'reset'! <Statement
*PAR1: the pattern sgsarched for
*«PAR2: a list of the’ 'with's used
+PAR3: the 'in' world expression
«dFT used for the 'wmrt' construct ,
«PAR1: the location.being referenced
«PAR2: th2 context to reference with respect to
*RESUME used for the 'resume' construct
*PAR1: the process to resume
*PAR2: the 'with' expression to pass
*PAR3: the 'time' int-expression to use
*FRESUME used for the 'fresume' construct
«PAR1: the process to resume
/ «PAR2: the 'time' int-expression to,use
+ INCAKNATE used for the incarnate expression
«PAR1: the procval expression to use as body
«PAR2: the 1integer 'as' expression
+PAR3: the integer 'priority' expression
*4AIT used for the *'walt' expréession
«PAR1: the event_type to wait for
*PAR2: the 1integer 'priority' expression

a3

"#ACTIVE, «INACTIVE, «ALLACTIVE, «ALLINACTIVE, *ANYACTIVE,

«ANYINACTIVE see the discussion under 'Events and
Evint _types! 8
* AJSE used for the 'cause' statement
*PAR1: the event_type to be caused
«PAR2: the 'with' message to be passed
«IN used for the 'on'! statement
«+PAR1: the event_type to be trapped

200

«*PARZ2: the block or list of statements to do on tne trap

«T"hY used ftor the 'try' statement
*PAR1: a list ot =FOEK-PAKT's
*»PARZ2: the 'while' boolean expression
«PAR3: th2 straing label for this ‘*try' _
«PTKY used for the 'ptry' expression
«PAR1: a list of «=FOR-PART's
*PAR2: th> 'while' boole€an expression
*PAR3: the 'ptry' body block
«PAR4: the string label for this 'ptry!*
«ATTEMPT used for the attempt statement
«PAR1: list of pairs: block to try, block to do on
sucecess ~
*PAR2: the 'else' part
«FATLING used to represent the 'failing' statement
«PAR1: th> statement to execute when failed back to
*PAR2: th= string label for this 'failing'
*ZNTEF used for the 'enter' statement .

.

201

*PARY1: the wvorld to enter .

*PAR2: the context to enter with respect to
«DELETE used for- the 'delete! statement

«PAR1: the expression or pair (D, world) to delete

sPAR2: the context to delete with respect to
«*ASSERT used for the 'assert' expression ‘

*PAR1: the descriptor o5f what to assert

«PAR2: the world to assert in

*PAR3: the context to assert with respect to

B3 S}mb&l Tables
- 7

There are three types of symbol tables in ALAI, but all
ar» structured the same. The tirst type is the global syabol
tiblw; it cogtains declarations for all lanquage defined
nimes and all fixed names (declared by the user but not
within any procedures). The second type are those which are
pirt of blocks («BLOCK®«PAR3); they are essentially the samg
as-the global symbol table, but are associated with
particular blocks. The thigrd type are those which are part
ot a procedure («xPARS); they are similar to the other types
but will not contain constants, record class descriptions or
user Jata type descriptions. The fixed variable *«GLSYMTAB
piints to the global symbol table. All symbol tables are
1ndexed by the strings which are the names of the entries
and contain free pairs. The first eleament of the pairs 1s an
integer or a list giving the type of the tdentifier. The
mo>st major type is the first in the list. Bits 0 and 1 of
tne major type indicate whether the identifier is static (0)
ot dynamic (1) and local (0) or global (1) respectively. In
©ach level of the type which is used as an integer type,
Pits < and 3 indicate whether or not the identifier is safe
(1) and back (1) respectively at_that level. For standard
virialkles, the second element of the pair indicates the .
iisplaCcmsnt of that variable in either the static or the
iynamic sforage region. *Special cases are as follows:

fixel size string - type code 1o .
The last =lement 1n the type lyst will be the length in
cnharacters of the string, (the amount of storage actually
reserved is irrelevant).

tfixed size vector - type code 18
The last element in the type list will be the number of
elements in the vector. -

fixed dimensionality array - type code 20
The e€lement in the type list immediately following the 20
is the number of dimensions in the array.

fixed size array - type code (/1
The element in the type list immediately following the 21
15 a list of pairs indicating the respective lower and
upper bounds of the indices of the array.

lab#1 constant - type code 24 »
The seconi1 element of the pair is the label@ronstant
ftyp- 'label') which 1s named by this entry.

202

elab constant - type code 26
The second element of the pair is the elab constant {type
‘elab') which is named by this entry.

proc constant - type code 47 .
The second element of the pair is th} procedurg constant
(type 'procval') which is named by this entry.

r>f - type code 48 ’ :
The entry in the type list after the 48 is the integer
type number for the record class which this variable 1s
allowed t> reference. If this intager is zero then this

¢~ variable can reference any user defined record class.,

r2cord field name - type code 49 o
The second element of the pair is this field's offset- in
the recorld. The two elements in the type list after the
49 are a pointer to the entry for this record class ard
the type of this field. :

record class name - type code 50
The second element of the pair is a vector of pointers to
the symbol table entries for the fields of this record
class. The next element of the type list is the inteqger
type code for this record class.

any - type code 51
The entry after the 51 in the type list is the integer
type npmber for the user defined data type which this
variable can reference. If this integer is zero then this
variable can reference any user .defined data type.

user type constant - type code 52
The second element of the pair is the integer equivalent
of this i1dentifier. The element in the type list after
the 52 1s a pointer to the symbol table entry for this
user defined data type. .

user type class name - type code 53
The second element of the pair is a vector of pointers to
the symbol table entries for the constants of this type.
The element after the 53 in the type list is the integer
type code for this user defined data type.

eJu -~ type code 55
The second element of the pair is the current value of
this equ.

constant - type code 62 ?” .

K\Tnis type 1is used to reserve storage for consta¥ts which
are created gt run time and will not change throughqut
the duration of the block or procedure which this entry
1s 1n, e.g. 'loc' constants. The second element of the
pair hol€®s the displacement of the pseudo-variable. The
¢lements of the type list beyond the 62 hold the type of
the constant. Such pairs are listed under the name
«SPECIAL.

multiple - type code 63
This signifies that the string which indexed thi% pair
has more than one meaning in this block. The second
element of the pair is a list of the pairs which
represent the various meanings in the sdme way that
normal symbol table pairs operate. ’

203

In the global symbol table, the name #«CONSTANT yields a pair
vhose second element is a list of fully typed constants. The
presence of such constants in the symbol table prevents
duplication of constants. The parser will prevent atteapts
to alter par f constants, so that multiple use and re-use
of them is sBfe. -

'j 204
e

Appendix C - Operating Environment . . C .

As has been mentioned previously, ALAI is intended to
be used interactively. The overall effect is that of an
ALSOL typé APL. Some kind of external file would be used for
storage of a "workspace" which would contain the data net,
compiled and uncoapiled Programs, fixed variables and their
values, etc. in the same state as whea this "workspace file"
vas last updated. Information can thus be saved between
runs, allowing the gradual accuamulation of banks of data and
sets of procedures. When ALAI is first cum with a new
vorkspace, no user procedures exist and no fixed identifiers
have been declared, so what can the user do? In this mode of
oparation, called "base mode", declarations can be sade by
entering a <ieclaration> preceded by the word 'declare'. The
Objects thus definead (they can be simple variables, record
classes, procedures, etc.) are entered into the global
symbol.table as fixed objects. They can then be referenced
from vithin procedures and, fore interestingly, fros base
. mode. When in base mode a statement entered is executed
iamediately after the entire Statement has been parsed.
Expressions entered in base mode are ttéated.51lilarly (the
procedure 'ignore' is not needed, expressions themselves are
accepted) and the resulting value is printci'out. ' '

The ways in which ALAI communicates with the host
operating system and with the .devices {t supports will of
course be dependent on that system and on’ the choices of
.Whoever designs the interface. Possible features are those
for workspace conttol, i.e. a library of thens, SWwitching
amdong them, copying parts of one into another, etc. Another
local feature is that of the existence of and the nature of
a compiler to produce machine code for the 1local coaputer.
Such a feature is not necessary, but is highly desirable in
that it would greatly reduce the execution time of
procedures which had been cQapiled. Many of the pattern
features available, €.g. =SPAN, «ARBNO, etc. can be coapiled
into executable code rather than kept as structures which
must he interpreted by a pattern matcher.

The vast majority of prograsaers do not have the knack
of writing perfect programs on the first try, hence soame vay
is needed whereby procedures existing in an ALAI vorkspace
can be changed. One method is to destroy the o0ld version ana
then re-enter the new one. This method is not very handy in
an interactive environment, however, as it is dependent on
the text editing and file handling. facilities of the local
System. An alternative is to edit the actual program »
structure within the workspace. A semantic editor (wvritten
entirely in ALAI o course) could be a part of the ALAI
system. It would provide simple to use interactive
facilities for searching through programs, for changing
small parts, for deleting parts, for moving parts, etc. In
effect it. would be similar to fext editors except that it

205
would operate on internal program strucfures as pointed to
-or indicated by locators. It would be dependent on the .
existence ¥nd useability of the patser (also written in
ALAI) and of a routine for printing oat program structures
in a neat, legible format (like the LISP “pretty-print®
‘routines), - '

? \ * ' 1]
Further capabilities which are possible imclude the
‘ conveénient use of the system as a batch processor. .Pixed
variables would still.be atBthe top level of execution, but
statements entered in base mode would be compiled as the
main prggras rather than being executed and then discarded.
The resulting object module should be ditcctly'&xocuyable
under the Wost operating system. Also desirable is a means
for accessing routines wvritten in some Other language
(usually desired is the local assesbly language or PORTRAN)
So that special purposes and/or high efficiency can be
athieved. This would be of particular interest to those
wishing to do numerical operatidns, as the definitioa of
_ALAI does not include such standard functions of 4nalysis as
SIN, COS, LOG, EXP, etc. Features such as -these have been
standardized in other programming languages, but it is felt
that the details of such should be decided by those who
implement the language in a given énvironment, rather than
by the language designer.

\

\ . | 206

Appendix D - saaple Proqgals .

, ‘An ideal sasple program to dembnstrate the advantages
of ALAI would be one that speaks and understands English
fluently and that possesses poverful and general probles
solving and adstraction capabilities Although such uses are
tha intent of the language, they are \sbme time in the
future, so somewhat less extravagant xasples vill be given.
) . seeningly common Saaple prograam is one vwith z set of
procedures wvhich "plans® and executes a solution to the
aonkey and bananas probles. Such a prograa, though easily
vritten in ALAXI, does not democastrate much of the language.
Instead the problem of the missionaries and caanibals will
be used. Three missionaries and three cannibals must cross a
river in a sfngle boat (capacity tvwo people) ia such a vay
that the.cannibals never outnumber the sissionaries, oOne of
the features of ALAI that can be seen here is the vay in
vhich programs cap be similar in structure to plans that
people may, develop. A Sisple-minded plan for the 8 and C
pProblex might go as follows: %“put sosme (1 or 2) people into
the boat. ' Cross to the other side. Keep doing this until’
everybody is on the far side. Make sure that the canmibals
hever outnumber any missionaries present.® The "keep doing
until"® in ALAI would be a. looping statenment; putting people
into the boat could be transferring thqp from a bag
rapresenting the bank into one representing the boat;
crossing theé river coyld be svitching bags; the outnumber
Check could be a conditional failure if the selection of
passengers is done by a backtracking construct (*try*); etc.’
"The following ALAI procedure follows the "people-plan" and
can be derived from it ig a very fev minutes of thought (by
one familiar with the language):

proc MISS_CAN1;

. string "list ACTIONS:=L<>;

string BANK:="left";

‘int I; equ M:=gimple,C:=simple;

simple bag LEPTI¥B<A,n,H,C,C,CD>,
RIGHT: = B<>, BOAT;

simple bag loc SIDE:=aLEPT;

boo) proc BAD(simple bag X);

. Num(C,X)>num(M,X) Enum(N,X)~=0:

*ALLBACK:=4BTCONT:=truae;

do ignore ACTIONSsL<"Empty the boat. ">,
. BOAT:=B<>;

Tl for. I in <1,2> try;
" fof to I 4o
for X in &SIDE try;
R " ESIDE: =6SIDE-B<X>:
e BOAT :=BOAT#B<X>; '
& ignore ACTIONS#L<"Put a "+ (if X=C

t hen "cannibal" else "missionary") +
" into the boat."> od;
if BAD(ESIDE) | BAD(BOAT) then fail fi;

207

if SIDE=3LEPT
then SIDE:=3RIGHT; BANK:="right" .
Y else SIDE:=BLEFT; BANK:="left"™ fi;
6SIDE:=ESIDE+BOAT; -
if BAD(ESIDE) then fail fi:
ignore ACTIONS#L<"Cross to the "+BANK+" bank. ">
until size(RIGHT) =6 od; , ‘
for BANK in ACTIONS do line(BANK) od
corp; '

. After a ‘bit of study and perhaps a bit of referring
back to see what some of the symbols do, this procedure
should be fairly clear. ACTIONS is used to hold a sequence
.of sentences which tell how to solve the problem. .SIDE is
used to indicate either '‘LEFT or RIGHT so that the body of
the procedure need not be ,concerned with which particular
bank it is on. .ALLBACkﬂt{d *BTCONT are turned on (all

locations are backtracked for all ‘try' statements) for N
;é,p&icity (but not for efficiemncy). The procedure as it ~a
ands has several problems, one of which is that it will

not work; the reason being that the selection of one person
(tried first) from the system. ordered bags is deteraministic
- that one person will be shuttled back and forth endlessly.
An attempt t> fix this can be made by trying a load of two
people first when crossing to the far (right) bank (a simaple
heuristic). To guarantee a solution however, it is necessary
to prevent loops of any kind, i.e. no situation may-ever be
repeated. This requires a record of all situations which
have occurred, a record nicely provided by the contexts
between the current one and the one-in use when the
procedure was called. The procedure would still be far from
perfect however; it would waste much time trying equivalent
combinations, it would waste time trying combinations which
are doomed $0o fail, it is inflexible in what it can solve,
etc. It is 3also very sloppy - it disregards the needs of its
caller by changing vital flags and it creates and swvitches
down a large tree of contexts. It also sets up and leaves
many backtrack points which can trap a fail having nothing
t> do with them. If all of these loose ends are tied up it
may also be wise to generalize on its capabilites by msaking
parameters out of the numbers of people, the anumbers who can
row, the capacity of the boat, hom many it takes to row the
boat, how many solutions are required, etc. If these
features are taken into account, the follpovwing procedure can
be obtained (it has not been tested as no ALAI.
implementation yet exists):

proc MISS_CAN2 (int CODE,BOATLOAD,CREHLRH,RC,NRH,NRC);
int vector LEFT:=V(RH,RC,NR!,NRCZ;_FIGHT:=V<0,0,0,0>;
int vector loc back backallall SIDE:=aLEPT;
int back LOAD,B1,BZ,B3,BQ,B1A:=0,821:=0,B3A:=O,BMA:=O;
‘'int list COMEBACK:=for I from CREW to BOATLOAD using
listconc collect L<I>, GOOVER:=listreverse COMEBACK;
¢ int list loc back MOVE:=aGOOVER; °

(@)

@)

- 208

string back BANK;
string list list ACTIONS:=L<>;
string list backall ACTS:=L<>;
string list BEST;
context M, N,C:=«MYCONTEXT;
context list CL:=eMYCONTEXT@«CHILDREN;
bool vector (2) SAVE: =V<+«BTCONT,sALLBACK>; p
int proc MIN(ints X); .
(int T:=<KX;
vhkile -~empty X do .
if T><X then T:=<X fi;
pop X od;
R .
-1intbroc MAX (ints X)
(int T:=<X; G
vhile -~empty X do
if T<<X then T:=<X fi:
pop X od;
T) 3
PLOC CDESTROY {(context X);
context C;
for C in X3+«CHILDREN do CDESTROY C od;
destroy X
. Zorp;
if CODE<1|CODB>3lBOATLOAT(OICREH(OIRH<O|RC(O
| NRM<O|NRC<0 ‘then
line ("Invalid problem specification - solution ",
"not attempted.v):

return fi; ’
if BOATLOAD(ZICREH)RH*RCIRH‘NRHE}C#NRC then
line ("No solution to this 5% lem.") :
return fi; '
*ALLBACK:=false; *BTCONT:=true;
failing "point" do
if size (ACTIONS) =0 then
line ("No solution to this é%oblel.") .
elif CODE=2 then
Print out all possible solutions
for ACTS in ACTIONS for LOAD by 1 do
line("Solution number "¢repint (LOAD,~-1) ¢m:n)
for BANK in ACTS do line (BANK) o0d od
Print solution with minimum number of boat trips
€else LOAD:=size BEST:=ACTIONS (1) ;
for ACTS in ACTIONS do
if (Bl:=size ACTS)<LOAD then
LOAD:=B1;
BEST:=ACTS fi od;
line ("One best solution is:") ;
for BANK in BEST do line (BANK) od
fi;
goto EXIT od;
while LEFT(1)>0]LEFT(2)>0|LEPT(3)>0|LBFT(“)>O do
ignore ACTS«L<"Empty the boat.">: v
for LOAD in &MOVE suchthat

oNoNe!

~
-

c

a 209

)

Don't try doomed boatdoads
LOADC= (6SIDE) (1) ¢+ (6SIDE) (2) ¢ (6SIDE) (3) ¢ (6SIDE) (4)
try: o
for B1 froas HAX(Clti-(DSIDB)(2),LOID—(GSIDE)(2)-
(6SIDE) (3) - (6SIDE) (4) ,0)
Must be enough others €Q xoOv and fill the boat
Don't overload or take more than there are
to MIN(LOAD, (ESIDE) (1)) try;
for B3 froa HIX(LOQD-BI-(&SID!)(2)~(GSIDE)(“),O)
to NIN(LOAD-B1, (8SIDE) (3)) %
suchthat (B4:=B1+¢B3i=0|2«B4>=L0OAD) &,
((6SIDE) (1) =B16(&ESIDE) (3)=B3| (&3
(ESIDB)(3)-Z‘BQ>=(GSID!)(2)0(&5‘
Can't be negative and must leave enoug
Don®t take toO many or more than there
Don't let missionaries be outnuambered
for B2 from MAX(CREW-B1,LOAD-B1-B
to MIN(LOAD-B1-B3, (6SIDE) (2))
Enough to man and fill the boat

But not overload it or take mo tlhan ¢
B4 :=LOAD-B1-B2-B3; p
if B1=B1AEB2=B2AEB3=B3AEB . e

Don't undo what was just done - ‘ &
(6SIDE) (1) :=(ESIDE) (1) -B1; (ESIDE) (2) :=(&SIDE) (2) -B2;
(ESIDE) (3):=(8SIDE) (3)-B3; (6SIDE) (4) :=(E6SIDE) (4) -Bu;
if SIDE=3LEFT then) ‘
SIDE:=@RIGHT;
MOVE :=8COMEBACK;
BANK:="right!" else
SIDE:=aLEFT;(
MOVE :=3GOOVER;
BANK :=%left" fi;
if LOAD:=(ESIDE) (1) + (ESIDE) (3) +@1+B3<
(6SIDE) (2) + (6SIDE) (4) 4qQP+BUELOAD~=0 then fail fi;
Fail if would be disaster on arrival at opposite bank
(6SIDE) (1) :=(&SIDE) (1) +B1; (GSIDB)(2):=(8$IDB)(8K082;
(ESIDE) (3):=(6SIDE) (3) +B3; (&£SIDE) (84) :=(ESIDE) (4) +B4;
Now check that this situation is a newvw one
:=x«MYCONTEXT;
1f for M via (
for LOAD to 8 do0 M:=Mas«PARENT
until M=C od; M)
suchthat M~=C
using bor collect
(for LOAD to 4 using band collect
LEFT (LOAD) =LEFT(LOAD) wrt N)
vntil M=C then fail fi; b
B1A:=B1; B2A:=B2; B3A:=B3; B4A:=B4;
ignore ACTSx%
L<"Put "e¢repint (B1,-1) +"rowing missionaries, "+
repint {(B2,-1)+" rowing cannibals, "+repint (B3,-1) +
" npomn-rowing missionaries and "+repint (B4,.-1)+
" non-rowing cannibals into the boat.",
"Cross to the "+ BANK+" bank.">
N

DE) (1) ¢
E) (4) -LOAD) try;
for LOAD" .
re

boat or on bank
'SIDE) (4) ,0)

are

f£fi:

4

210

R .
od;
C Save the solution vwe have found
if" Cco t1.thep ignore ACTIONSeL<copy ACTS>; fail f£i;
line ("One soflution is:");
for BANK in ACTS do lino(BAlK) od; ' -
C Remove created backtrack points .
EXIT:succeed "point"; '
switch C;
*BTCONT:=SAVE(Y); »ALLBACK:=SAVE(2):;
C Restore flags and destroy spurious contexts
for M in «NMYCONTEXTO+CHILDREN do
if for N in CL using band collect N-=¥N
then CDESTROY N fi o4; .
C Parse time: permit tampering '
+«PERNIT:=true;
destroy «MYCONTEXTa«CHILDREN;

-HYCOITBXTI-CHILDREN.tCL' ™
++PERNIT:=false)
corp; !l
o To find one solution to the t&nddrd problen:
MISS_CAN(1,2,1,3,3,0,0); o

MISS_CAN2 is fairly lengthy angd, becnusc Qf the pover,
of the ALMI coanstructs used, it is quite complex. The seven
parameters are as follows:

CODE - if 1 then prtint first solution found, it 2 then
print all solutions (trivial variants are not included,
nor are those wvhich repeat any situation), if 3 then .
, brint the best (least number of boat trips) solution

" BOATLOAD - the number of peog}e the boat can carry

CREW - the number of rovers meeded to man the boat

RM - nuaber of missionaries who can row
RC - number of cannibals who can row
NEM - number of amissionaries vho camnot row
NRT - number of cannibals who caanot row
Th=2 various internal variables are as follows:
LEFT,RIGHT - vectors of imtegers representing the nuabers

of people on the left and Ttight banks. Pixed size vectors
are not used since SIDE must be able tg point to thenm.
SIDE - points to either LEFT or RIGHT. It is back-
trackable as are all changes ‘to the elements of LEPT and
RIGHT made through it. :
LOAD - number of people to take on curreat boat trip

B1, B2, B3, B4 - numbers of rowing missionaries, rowing
cannibals, non-rowing missjionaries and non-rovlng
cannibals to take on current tt1p

B1A, B2A, B3A, B4A - as B1, B2, 'B3, B4 but refer to the
previous ttip. They are used to prevent the immediate
undoing of wvhat a trip has acgomplished.

COMEBACK, GOOVER - l1ists of integers which will
successively be tried as values for LOAD vhen the boat is
coming back and g9oing over . - ,

MOVE - iniicates which of COMEBACK or GOOVER is qurrently
being done

- ' ~ a1

BANK -~ contains the string representing the destimation
bank -
ACTIONS - a list of the solutions found, each of wvhich is
a list of strings representing the reguired actions
@ ACTS - contains the strings representing the actions done
s0 far in the current solution. The @lesents of it are
backtrackable. .
BEST ~ temporary register used vhen determining the best
solution : .
B, N - tesmporary context ragisters
C - points to the context in effect when MISS_CANI is
cdlled. Checking of uautionrshould not go beyond this
ong, and on exit, it should be as it vas and should be
the-current context.
CL - saves the original children of C so0 that on exit,
only the extra ones created by NISS_CAN2 are dest d
VE - saves the values of the tvo systes flags alterwd
¢ by MISS_CAR2 so that they can be reset on exit :
The procedures NIN and NMAX find the minimum and saximuas of
the integers passed as argusents. (Mote the use of aultiple
paraseters.) CDESTROY destroys its arguaent goatext uloi‘
vwith all of ifs descendents. _ ’ .
The following conversationgl version of the progras is
used to describe it: . .
If some parameter is bad, print an error sessage and
stop. :
If the parameters are such that no 'solutjon is:possible,-
print a message to that effect and stop. .
Set the system flags so that everything is not
autowmatically backtracked (MISS_CAN2 is clean does
not need this) agd so that each 'try®' statement oduces
a nev context vhenever exécuted. =
The 'failing' sBtateamefAt will be backed up into (it is not
executed vhen encountered ién the forwvarad direction) only
. vhen all solutions to this particular probles (if there
are any) have been found and put on ACTIONS. If and vhen
such a backup does occur thea : -
If no solutions vere found, print a message to this
effect or, ' ‘
if all solutions wvere requested (CODE=2) then print
all of them or, s ®
find and print the best solution (if more than one is
found with the same number of trips, them the first
one found is printed).
After the printing, a branch to EXIT is made to "clean
up aftelr the execution of the procedure" and-stop.
The actual search for solutions nov commences. The method
» is to-make boat trips VHILE there are still some people
remaiping on the left bank. Bach boat trip consists of:
Ewpty the boat. (Internally, B1,°'B2, B3 and B4
represent the contents of the boat.) - ’

Select some total number, LOAD, of people to put into

the boat. Whdn going over, large numbets are tried

y

A3) 212

first, vhea coaning back, ssall nuabers are tried first
(2 heuristic to aid the single solutioa case). If a
fail back to this point occurs, then select another

" value for LOAD if there are 'any, else fail back soae
sore. “The values for LOAD tried must be less than or
equal to the number of people on the side the baat is

departing frowe. :
Successively try values for B1, B3 and B2 (B4 is then
determined exactly since B1¢B2+4B3¢B& = LOAD). The
various constraints used ('fros', 'to' and 'suchthat’
parts) are described in the comaents. It would have
begp sispler but less efficient to try all values and
then later fail if they vere baad.
If the values just selected are such that they undo
vhat the previous boat trip accomplished, then fail
(prevent simple looping).
Resove the selected people from the vector
representing the departure side. '
Cross to the other side.)
If, vhen the boat gets there, the cannibals vould eat
the sissionaries, thea fail.
a4 the selected people to the ‘vector represeanting)\ the
arrival side.
The next nine lines of the program (starting with
"N:=sNYCONTEXT") generate a fail if the situation just
produced has ever existed before. The test is made by
cosparing the values of LEPT as they are .nov with
their values in previous situationg (WRT context n).
If they are all the same (in any of the contexts n)
then a fail is genperated. The contexts M to test are
every e@ighth one between the current one and C. Only
s every eighth one need be tested since each situatfon
involves four 'try's, hence four contexts, and only
every second situation has the boat on the sase side.
Following this last test, the crossing is finalized
(at least ugtil a later fail) by updating the BiA -
B4R 'previous trip' values and by putting appropriate
messages onto ACTS, the list of steps for the
solution. , '
The loop which makes a boat crossing is now repeated
if a solution has ‘ndt been created. ’
_Execution will reach this point only if a solution has
been found. , »
If more than one solution is required (CODE-=1), 'then the
found solution (ACTS) is added to the 1list of solutions
(ACTIONS) and a fail is produced to generate more
solutions éif any) . .
If only oné solution was requested, it is printed.
EXIT: This point is reached vhen processflg is cosplete, but
unvanted contexts and backtrack points resain.
The extra backtrack points are removed ('succeed
"pointil). ‘
Tpe original context is restored. :
The original global flag values are restored.

P g o . -

. : ' a1l
. .
r~~ .
Each chixa of the curremt coamtext vhich is not im CL.
(1.e. 414 not exist originally) is destroyed alang vith
all of its descendents. i o _
The children list of the current context 1ls reset to its
original value. (Parse time setting of the global oPERRIT
flag is needed to get the parser to allov this taspering
vith things the systes is dependent on.)

The fdlloviag procedurs, PARAND, takes as argusent a
sat of boolean ‘'expr's and finds tbe logical AND Of thea. It
does this in an unusual vay hovever. Instead of evaluating
the oxpressions serially and atopping when one yields false,
“the expressions are executed all at once, in parallel.
Unless the expressioas iateract the result will be, the sanme,
but the tipe taken to obtain that result may differ ’
drastically. If one of the expressions (it is fot kpova:
vhich one or ones) yields a false after oaly a sasall amoumt -
of execution, thea the entire procedure call vill take oaly
that time sultiplied by the nuaber of expressions plus sose
dverhead for PARAND. If the expressions were évaluated
serially, the tise required wvamld be the sus of the tises
for the expressions evaluated up to the ome ehich vielded
false. Which type of processing is preferable will depenrd ona
the particular situation. PARAND vorks by using a 'ptry‘' to
produce a list of processes which have, essentially, the
evaluation of one of the ‘expr's as body. Theése processes
are all started and the procedure vaits for a, terajination
wvhich yields a false (or for all to finish, in which case
the result is true). Mo new contexts Are created (ualess an
'2xpr' does so) and all processes used by PARAND are
destroyed.

bool proc PARAND(boOl expr set E):
(bool P:=true, SAVE:=«PBTCONT;
process P1,P:=s«MYPROCESS;
bool expr X; .
process list loc L; ’ .
event_type EVEN; '

-*PBTCONT:=false;

L:=for X in E ptry
: resume P;

. F:=F&=X;
suspend «MYPROCESS then;

EVEN:=any inactive &L;

«PBTCONT:=SAVE;

for Pl in &L do resume Pl tise 1 od; ¢
vhile F&for P! in EL using bor collect P18+STATUS> =0

do ignore EVEN od; -
destroy EVEN; \N . "
for P1 in &L do :
terminate P1; d T \
destroy®” P1 od; ' . ~ '

F) ;

@

214
.

[-4

The following procedure, NIM, is a coamplete proygyrafl for
Playing the game of nim against a human opponent. The object
is to remove the last counter from a huBber of piles of
counters. The players alternate, removing at jeast one
counter in.each turn, but taking counters frona only one
Pile. The strategy employed by the irograu is a purely
Calculated pne based on the followitg procedure:,let D pe
the bitwise exclusive-or of the binary representations of
th=z numbers >f counters remaining in the varioys piles;
then, for each pile, let F be the result of subtracting D
from the integer represented by the bitwlise exclusive-or of
D and the number of counters'in the pile; if P is positive
then removing that number of counters from that pile is a
winning play. If no winning plays exisSt, then one couanter is
c2moveéd from the largest pile. The program is user proof in
that no possible input can cause it to fail. The input is
scanned via string patterp matching so that an illusion of
"understanding" is produced.

proc NIM(ints PP);
int T7,C,P,M,LEPT:=for P in PP using 1iplus collect P,
. NUMPILES:=s1ze PP;
bool GAMEOVER:=NUMPILES<1|for P in PP using bor
collect P<1; bits »; :
bat INTP:=D(String (*O ' "1 *20 1304|750 1g1
|n7lllqullgl)a);
int list list F:
int list MP,PILES:=for P in PP using listcopce
collect L<P>;
string M,CS, PS;
proc PLAY (int C,P) ;
PILES (P):=PILES (P)-C;
LFEFT:=LEFT-C
Corp;
1t SAMFOVEK then line("Invalid piles. Start over.") fi;
=1 _L:=-1; /#use free format output =/
while ~GAMEOVER :
1> 4ine("The piles are ", (repseg PILES) (2{%L-1) ,". ") ;
¢ Th- machines's move:
D:=tor P 1n PILES using logxor collect x%p;
F:=for P in PILES
for C
suchthat M:=P-bitint (D«%P) >0
using listconc
collect L{(C M)) ;

it F=null /#*1f no winning plays/
then T:=PILES(1) /xfind largest pilesy

P:=1; ’

for M in PY¥LFS

for C w'sthe pile numbers/

do 1f M>T then T:=M; :=C f1

23;

=1

»1s5e MP:=F(irand (size F)) ;

fi

C:=MFE(1); P:=MP(2) .
; /xselect a random winning plays/

PLAY (C, P) ;

line("1'11l take ",C," from pile ",P,
" leaving ", (repseq PILES) (2{=*L-1),".");

1f LEFT=0 /#The machine has wons/

then line("Better luck next time.") :
GAMEOVER:=true

fi;

C Th= huwman's aove:
for M to '3
while -~GAMEOVER *

do line (case M of ("Your move.",

>d
21
corp;

"That'!'s an illeqal move. Please try again.',
here p i1s the pile"+

"Move should be 'c from p'
" and ¢ ® dounters yqQu
if D(string(break ("resign")-
then line("That's too bad."
GAMEOVER:=true _ /+xhuma
elif D(string (to (INTP) =CS
to(IN") =PS --))<>NE
(C:=int get (CS) ;
:=intget (PS) ;
P>=16 P<=NUMPILESEC>=16CKL
then PLAY (C,P) ;
N:=U;
if LEFT=0 /«The human has wconx/
then line("Drat. You won.") ;
GAMEOVEKk:=true
fi
elif M=3 /xInvalid input for the third timgs/

ish to take."));
))<>M:=getcard

resignss/
eak (" fronm ﬁ)

then line ("Perhaps you should study the 'nima'',

215

" writeup. We'll play again another time.") ;

SAMEOVER:=true
fi

T Sample session:

INIM(3,4,5);
The piles are (3 4 5).

I'11 take 2 from pile 1 leaving (1 4 5).
Your move.

I wish

to take 5 counters from pile #3.

The piles are (1 4 0).

I'1l ta

ke 3 trom pile 2 leaving (1 1 0).

Your move,

damn
That's
J2.K. 0.

an 1llegal move. Please try again.
K. I'1]1 take 1 from 2 you ?1##%<!

The piles are (1 0 0).

I'11l ta
3etter

ke 1 from pile 1 leaving (0 0 0).
luck next time.

