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Abstract

In an online control problem, a learner makes an effort to control the state of an unknown

environment so as to minimize the sum of the losses he suffers. In this thesis, we study

several online control problems, ranging from the simple bandit problems, through classical

LQ control problems, to more complex non-linear problems. The main topic is the design of

algorithms for these problems and the development of finite-time performance guarantees.

A common theme of the problems is that they assume a linear parametric uncertainty.

Accordingly, our methods employ a linear-in-the-parameters predictor and construct a con-

fidence set that contains the true parameter with high probability. In particular, the algo-

rithms always use the parameter that gives rise to the lowest expected loss.

The first main contribution of the thesis is the construction of smaller confidence sets

for the least-squares estimate. To arrive at these confidence sets, we derive a novel tail

inequality for vector-valued martingales. Based on this new confidence set, we improve the

algorithms for the linear stochastic bandit problem.

The second main contribution is the introduction of a novel technique to construct confi-

dence sets, which allows us to construct confidence sets given the predictions of any algorithm

whose objective is to achieve low regret with respect to the quadratic loss while using linear

predictors. As a demonstration of this new approach, we introduce the sparse variant of

linear bandits and show that a recent online algorithm together with our conversion allows

one to derive algorithms that can exploit if the unknown parameter vector is sparse.

In the second part of the thesis, we study the LQ control problem with unknown model

parameters. We design an algorithm and prove a sublinear regret. We also show that similar

techniques can be employed to design and analyze an algorithm for a more general problem

with nonlinear dynamics but linear parametric uncertainty. To the best of our knowledge

this is the the first time that regret bounds are derived for these classes of control problems.
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Notations

Let H be a separable Hilbert space. Let L(H) be the space of all H → H linear operators.
Let (ei) be a countable orthonormal basis for H. The inner product in H is denoted by
〈., .〉. The outer product of vector x, denoted by x⊗ x, is defined as a linear operator such
that, for any vector v, (x⊗ x)v = 〈v, x〉x. Let A∗ denote the adjoint of operator A. We use
‖x‖ =

√
〈x, x〉 to denote the norm of a vector x ∈ H. For a positive definite self-adjoint

operator A, the weighted norm of vector x is defined by ‖x‖A =
√
〈x,Ax〉. We use λmin(A)

and λmax(A) to denote the minimum and maximum eigenvalues of the positive semidefinite
matrix A, respectively. We use A � 0 to denote that A is positive definite, while we use
A � 0 to denote that it is positive semidefinite. We use I{E} to denote the indicator function
of event E.

We use O and Ω the “big-Oh” and “big-Omega” notations, respectively. That is, for D ⊂
R, f, g : D → R, a ∈ R∪{−∞,+∞}, we say that f = O(g) at a if lim supx→a,x∈D |f(x)/g(x)| <
∞. Similarly, we say that f = Ω(g) at a if lim supx→a,x∈D |g(x)/f(x)| < ∞. Usually, a

is clear from the context and is suppressed. We use Õ to hide logarithmic factors in the
big-O notation. We use ∧ and ∨ to denote the minimum and the maximum, respectively,
in addition to the more customary (but longer) min and max operators.

Throughout this thesis, we assume that the reader is familiar with basic concepts of
calculus, Reproducing Kernel Hilbert Spaces (RKHS), and probability theory. Required
background is summarized in Appendices A, B, and C.

1



Chapter 1

Introduction

Prediction problems can be formulated as a game between a learner and an environment,
where the learner receives data from the environment and is asked to build a predictor with
a small loss on future data. In the offline setting, the learner is given a dataset and the
goal is to find a predictor that performs well on “future” data: Learning (i.e., finding the
predictor) is one-shot, as is evaluation. In the online variant, on the other hand, learning and
performance assessment are interleaved: Data arrives sequentially in discrete time steps. In
each time step, the learner produces a predictor, which is evaluated on the next data point.
Performance is measured by the total loss of predictions over time. Sequential prediction
problems of this nature are called online learning problems (Cesa-Bianchi and Lugosi, 2006).

Oftentimes, the performance of an online learner is measured with respect to that of
the best predictor in some comparison class. This gives rise to the concept of the learner’s
regret, which is defined as the difference between the total loss (up to some time) of the
best competitor from the comparison class and the total loss of the learner. We say that
an algorithm is learning with respect to a class of competitors if its regret with respect to
the given class grows at most sublinearly with time, i.e. the average regret in the limit is
nonpositive. This property is known as Hannan consistency.

1.1 Specific Problems

Let us now consider a few specific examples, a subset of which is the subject of this thesis.

Problem 1 Full Information Online Learning (Cesa-Bianchi and Lugosi, 2006)
Consider the following game between the learner and the environment. At each round t,
the learner chooses a vector at from a (known) set D ⊂ Rd. Next, the environment reveals
a loss function `t(.) (the sequence of loss functions is chosen ahead of the game) and the
learner suffers the loss `t(at). The game is illustrated in Figure 1.1.

In the worst-case setting, the environment can choose any sequence of loss functions. A
special case of this problem, which makes it easier from the point of view of the learner,
when D is a convex, bounded region and `t is a convex loss function and the loss functions
are bounded by some constant. The resulting problem is called online convex optimization
under full-information feedback (Zinkevich, 2003, Shalev-Shwartz, 2011).

It might be tempting to ask for an algorithm that performs nearly as well as a competitor
that chooses the best prediction at each round, i.e. to define the regret by

PT =

T∑
t=1

`t(at)−
T∑
t=1

min
a∈D

`t(a) ,

where T is the time horizon. It is easy to see that for any learner, PT can grow linearly with
T . Thus, no learner can be Hannan consistent under this criterion. A criterion that is much

2



Learner Environment

Referee

Figure 1.1: Full information online learning. The learner predicts at and then observes the
loss function `t. The learner suffers the loss `t(at) which is recorded by the referee. Numbers
show the ordering in which the interactions occur.

less demanding and that often makes Hannan consistent learning possible, is to restrict the
set of competitors to ones that make the same decision in all timesteps, leading to the regret
definition

RT =

T∑
t=1

`t(at)−min
a∈D

T∑
t=1

`t(a) .

Full-information online learning is well-suited to model supervised learning problems. For
example, consider the problem of predicting the temperature in Edmonton. At time t, the
learner predicts the temperature based on some historical information xt. The prediction
can be a simple linear function of the data xt and the loss function can be quadratic:
`t(a) = (yt − 〈xt, a〉)2, where yt is the temperature for round t. The loss function satisfies
the convexity assumption. In this case, competing with the best constant predictor means
competing with the best linear predictor.

Problem 2 Bandit Information Online Learning (Abernethy et al., 2008) In a
bandit problem, the loss function is revealed only at the point chosen by the learner. Bandit
problem is more challenging than the full information online learning because the learner no
longer has access to additional information about the loss function such as its derivatives.
Following the notation of the previous example, this means that the learner only observes
`t(at) at round t (as opposed to observing `t(·), which was the case previously). The
information flow between the learner and the environment is shown in Figure 1.2.

Many practical problems, such as web advertisement, online routing, recommendation
systems, fit only the bandit framework (as opposed to the full information framework). In
these applications the decision of the learner, at, is often viewed as an action. In what
follows we will use the words action, prediction and decision interchangeably.

As an illustration of bandit problems, consider a web advertisement application. When
a user visits the website, the learner shows an ad from a pool of ads. The loss could be zero
if the user clicks on the ad, and it could be one otherwise. This gives rise to a function that
assigns a binary value to every ad. However, only the loss of the ad shown will be available
to the learner, thus making the problem an instance of bandit problems.

An important special case of the bandit problem is the linear bandit problem, where the
action-set is a bounded, convex subset of some vector-space and the loss is a linear function
of the action. We note in passing that if the action set is not convex, one can always define

3



Learner Environment

Referee

Figure 1.2: Bandit problem. As opposed to the full information setting, the loss function is
never passed to the learner, only the loss suffered at the chosen prediction point at.

a new action set as the convex hull of the original action set and extend the loss function
in a linear fashion. In practice, this means to use randomized actions (or distributions over
the original action set as actions).

A special case of linear bandit problems is when the action set is the standard simplex of
a finite-dimensional Euclidean space, giving rise to the so-called multi-armed bandit (MAB)
problem (Auer et al., 2003).

Problem 3 Stochastic Linear Bandits (Auer et al., 2002a, Auer, 2002, Dani
et al., 2008, Abbasi-Yadkori et al., 2011a) So far, no assumptions were made about
how the loss functions arise, apart from that they are selected ahead of the game. A
wide class of problems can be obtained by making stochasticity assumptions about the
environment. For example, classical statistical learning theory problems can be obtained by
making the assumption that `t(a) = `(a, ηt), for some (fixed) loss function ` and a sequence
of independent, identically distributed (i.i.d.) random variables (ηt)t. The stochastic setting
often allows specific algorithms and tighter regret bounds. Its appeal is that despite this, it
is still flexible enough to capture the essence of many real world problems.

As a specific example, consider stochastic linear bandit problems. In this case, `t(a) =
〈a, θ∗〉 + ηt(a), where θ∗ ∈ Rd is a fixed but unknown parameter vector and the elements
of the noise sequence (ηt(·))t for any fixed value of a are zero-mean random variables with
bounded moments. We shall deal with model (in fact, a slight generalization of it) in
Chapter 4. One of the contributions of this thesis is the design of algorithms that achieve
better performance (both in theory and practice) than what was previously available.

Problem 4 Sparse Linear Stochastic Bandits (Abbasi-Yadkori et al., 2011b) We
say that a vector is sparse when most of its elements are zero. It has been shown that more
sample efficient algorithms can be designed for many machine learning problems when the
parameter vector is sparse (Bühlmann and van de Geer, 2011). Sparse stochastic bandits is
the sparse variant of the linear stochastic bandits. In particular, in a sparse linear stochastic
bandit, the assumption is that most elements of θ∗ are zero. The question then is whether
there exist algorithms with regret that improves with increasing sparsity. This problem is
particularly interesting because many applications have a large number of features, but only
a few features are relevant.

A contribution of this thesis is to introduce the sparse stochastic bandit problem and to
obtain tight regret bounds for it.
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Problem 5 Online Reinforcement Learning (Szepesvári (2010), Section 3.2.4)
Up until now, the environment was memoryless, in the sense that actions had no effect on
future loss functions. The reinforcement learning (RL) problem is a more general problem
where the state of the environment changes as a function of the current state and the
action taken by the learner. Formally, such an environment can be described by a 6-tuple
(µ,X , D,Z, p, `), giving rise a Markovian Decision Process. Here, µ is the distribution of
the initial state; X is the state space; D is the action space; Z is the set of admissible
state-action pairs defined by

Z = {(x, a) : x ∈ X , a ∈ D(x)} ,

where D(x) is the set of available actions at state x; p : X×D×X → R is a stochastic kernel1

on X given Z, also known as the transition law; and ` : X ×D → R is the loss (a.k.a. cost)
function. Notice that, now, the loss is a function of both the environment’s state and the
action chosen by the learner. The interaction between the learner and the environment is
shown in Figure 1.3. There are a limited number of results when the stochasticity assumption
is relaxed.

As before, the objective is to have low regret with respect to a class of competitors.
In this setting, a standard competitor set is the set of (stationary) policies. Thus, each
competitor is a mapping from the state space to the action space, choosing in each state
one of the admissible actions. Thus, the regret has the form of

RT =

T∑
t=1

`(xt, at)−min
π∈Π

T∑
t=1

`(xt, π(xt)) , (1.1)

where Π is the class of policies. We refer the reader to standard RL textbooks (Sutton and
Barto, 1998, Bertsekas and Tsitsiklis, 1996) for further reading on the popular approaches
to the RL problem and how to choose a suitable class of policies Π.

Regret bounds exist only for finite Markov Decision Processes (Burnetas and Katehakis,
1997, Borkar, 2000, Bartlett and Tewari, 2009, Jaksch et al., 2010) when both the state and
action spaces are finite sets. A contribution of this thesis is to extend such results to MDPs
with continuous state-action spaces under some structural assumptions (see Problems 6
and 7 below). We study the case when the loss is stochastic. In contrast, Neu et al.
(2010a) obtain regret bounds for finite loop-free stochastic shortest path problems when the
reward function is determined by an oblivious adversary, while Neu et al. (2010b) extend
these results to finite MDPs, but make the additional assumption that the transition law
is “uniformly mixing”. These papers assume that the transition probabilities are known.
An extension of these results to the case when the transition probabilities are unknown is
presented in the paper by Neu et al. (2012).

Remark 1.1 Discounted Losses A large portion of RL literature studies discounted vari-
ant of the problem, where losses are discounted by a discount factor 0 < γ < 1 and the
total loss of policy π starting from state x is defined as Lx,π =

∑∞
t=1 γ

t`(xt, π(xt)), where
x1 = x. When discounting, we are basically assuming that future losses are less important
than more immediate ones. An optimal policy is defined by πx∗ = argminπ∈Π E [Lx,π]. An
ε-optimal policy starting from state x is one that satisfies Lx,π < Lx,π∗ + ε. Notice that
when the loss function is bounded by B > 0, Lx,π is bounded by B/(1−γ). This makes the
analysis of such problems somewhat easier.

A number of papers have studied the problem in a PAC-learning2 framework (Kearns and
Singh, 1998, Brafman and Tennenholtz, 2002, Kakade, 2003, Strehl et al., 2006, Szita and

1Let B(X ) denote the Borel σ-algebra of X . A stochastic kernel on X given Z is a function p(.|.) such
that for each z ∈ Z, p(.|z) is a probability measure on X and for each B ∈ B(X ), p(B|.) is a measurable
function on Z.

2PAC stands for “probably approximately correct”.
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Figure 1.3: (a) Online reinforcement learning problem. At round t, the learner observes
the environment’s current state xt and based on it, takes action at, which is sent to the
environment. In response, the environment reveals the loss `(xt, at) and moves its state to
xt+1. (b) An example of an RL problem. The action space is D = {+,×} and each vertex
is a state. The learner starts from one of the vertices and travels on the graph with the
objective of incurring low losses. The losses associated with the actions are shown on edges,
while the directions of the edges show the direction of state transitions (state transitions are
deterministic). Notice that the learner’s actions change what future loss functions it will
get.

Szepesvári, 2010, Jain and Varaiya, 2010). To state such results, we first define the sample
complexity of an algorithm. The definition is stated in the form given here as Definition 1
in (Szita and Szepesvári, 2010).

Definition 1.2 Let ε > 0 be a prescribed accuracy and δ > 0 be an allowed probability of
failure. The expression ζ(ε, δ,N,K, γ, Cm) is a sample complexity bound for algorithm A,
if the following holds: Take any ε > 0, δ ∈ (0, 1), N > 0, K > 0, γ ∈ [0, 1), Cm > 0 and
any MDP M with N states, K actions, discount factor γ, and losses bounded by Cm. Let
π be the policy that algorithm A runs. Let A interact with M , resulting in the process
x1, a1, x2, a2, . . . . Then, independently of the choice of x1, with probability at least 1 − δ,
the number of timesteps such that Lxt,π > Lxt,πxt∗ + ε is at most ζ(ε, δ,N,K, γ, Cm). An
algorithm with sample complexity that is polynomial in 1/ε, log(1/δ), N, K, 1/(1− γ), Cm
is called PAC-MDP (probably correct in MDPs).

The following theorem is a recent result in PAC-learning framework.

Theorem 1.3 (Szita and Szepesvári, 2010) Fix some prescribed accuracy ε > 0, failure
probability δ ∈ (0, 1), and discount factor γ ∈ [0, 1). Let M = (µ,X , D,Z, p, `) be an MDP
with |X | = N states and |D| = K actions, with non-negative losses, and a value L ∈ R that
is an upper bound on all discounted cumulated losses. If the Moremax algorithm, defined
in (Szita and Szepesvári, 2010), runs on MDP M , then with probability at least 1− δ, the

number of rounds t for which Lxt,Moremax > Lxt,πxt∗ + ε is bounded by Õ
(

NKL2

(1−γ)4ε2

)
.

Kakade et al. (2003) obtain sample complexity bounds for infinite state space MDPs un-
der the assumptions that the state transition and reward functions are uniformly Lipschitz,
while the state space is compact.

Remark 1.4 Convergence Results for Temporal-Difference (TD) Methods Asymp-
totic behavior of temporal-difference methods (Sutton, 1988) in large state and action spaces
is studied both in on-policy (Tsitsiklis and Van Roy, 1997) and off-policy (Sutton et al.,
2009b,a, Maei et al., 2009) settings. All these results concern the policy estimation prob-
lem, i.e., estimating the value of a fixed policy. The available results for the control problem,
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i.e., estimating the value of the optimal policy, are more limited (Maei et al., 2010) and prove
only convergence to local optimum of some objective function. It is not clear if and under
what conditions these TD control methods converge to the optimal policy.

Problem 6 Linearly Parametrized Control The linearly parametrized control problem
is a special case of the RL problem when the next state is a noisy linear function of some
features of the previous state and the action taken,

xt+1 = Θ∗ϕ(xt, at) + wt+1 . (1.2)

Here, X ⊂ Rn, D ⊂ Rd, Θ∗ ∈ Rn×m is an unknown matrix, ϕ : Rn+d → Rm is a feature
mapping, and wt ∈ Rn is a zero mean random variable that satisfies certain martingale and
tail properties (to be specified later). The difference with the more general RL problem is
that, here, the noise vector wt has an additive effect in the model and is also independent
of the state.

Strehl and Littman (2008) study this problem in the discounted setting and obtain
sample complexity bounds. They assume that the loss function is known or otherwise has
a linear form. Further, they assume that the `2 norm of feature mapping is less than 1,
i.e., supx∈X ,a∈D ‖ϕ(x, a)‖ < 1. In this thesis, we obtain regret bounds for the linearly
parametrized control problem in a more general setting (see Chapter 5).

Problem 7 Linear Quadratic Problem (Aström and Wittenmark, 1973) The linear
quadratic (LQ) problem is a special case of Problem 6 when the next state is a noisy linear
function of the previous state and the action taken,

xt+1 = A∗xt +B∗at + wt+1 , (1.3)

and the loss is a quadratic function of the state and action:

`(xt, at) = x>t Qxt + a>t Rat .

Here, A∗ ∈ Rn×n and B∗ ∈ Rn×d are unknown matrices, while Q ∈ Rn×n and R ∈ Rd×d
are known matrices. The LQ problem plays a fundamental role in the control literature.

1.2 Optimism in the Face of Uncertainty

A main topic of the thesis is that a careful study of linear prediction problems leads to
improved algorithms for the stochastic online learning problems. In the thesis, we will
demonstrate this for Problems 3, 4, 6, and 7. The algorithms that we study are based on a
common underlying idea—the optimism-in-the-face-of-uncertainty (OFU) principle.

Optimism in the face of uncertainty is a general principle that can be employed to design
efficient algorithms in many stochastic online learning problems. To simplify the discussion
of the principle, we restrict ourselves to the bandit problem in this section.

Consider the stochastic linear bandit problem. If the learner knew θ∗, he could simply
take the action a∗ = argmina∈D〈a, θ∗〉 in every time step to minimize the (expected) loss
(D is a convex, compact set, so the minimum is well-defined). When θ∗ is unknown, the
learner can rely only on an estimate. One simple idea, known as the certainty equivalence
principle (Simon, 1956), is to estimate θ∗ by some means such as using a least-squares

method and behave as if the (least-squares) estimate θ̂t was the true parameter vector. It
is easy to show that an algorithm that relies on the certainty equivalence principle can get
stuck with a sub-optimal choice, which leads to a linear regret. We demonstrate this by
means of an example.

Example 1 Let the decision set of a stochastic linear bandit problem be D = {e1, e2},
where ei is the unit vector along ith coordinate in R2. As noted beforehand, when D
contains unit vectors, we get what is called a multi-armed bandit problem. In this case,
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there are two “arms”, or actions. Let the loss be such that if the first action (e1) is chosen,
then the loss is a random number in the [0, 1] interval with mean µ1, while if the second
action (e2) is chosen, the loss is deterministic and takes on the fixed value µ2 ∈ [0, 1]. To
map this into our framework, let (ξt) be a sequence of i.i.d. random variables taking values
in [0, 1] and whose mean is µ1. Then, `t(a) = a1ξt + a2µ2 = 〈a, θ∗〉 + a1(ξt − µ1), where
θ∗ = (µ1, µ2)>. Thus, the loss indeed takes the desired form with ηt(a) = a1(ξt − µ1).

Let yt ∈ [0, 1] be the loss observed at time t. Assume that µ2 > µ1. The least-squares
estimate of µi at time t is

µ̂i,t =

∑t
s=1 I{xs=ei}ys∑t
s=1 I{xs=ei}

,

where I{.} is the indicator function. Assume that each action is taken once at the beginning,
from which point on the certainty equivalence principle is followed. This means that

at+1 = argmin
e1,e2

{〈e1, µ̂1,t〉, 〈e2, µ̂2,t〉}

for t ≥ 3. Clearly, the event µ̂1,2 > µ̂2,2 = µ2 happens with positive probability. When this
event happens, by induction we can see that action e1 will never be chosen again. Indeed,
when action two is chosen, only µ̂2,t has a chance of being changed. However, since the
payoff of action 2 is deterministic, the estimate will never be changed. Hence, the algorithm
will keep using the second (suboptimal) action, leading to a linear lower bound on the regret.

As this example demonstrates, the certainty equivalence principle can get stuck with
a sub-optimal action for long periods of time or even indefinitely. It is thus necessary to
allocate a portion of time to try those actions with higher estimated losses: The algorithms
need to “explore” actions that look “suboptimal”. How often or rather, when to explore
such actions is the main issue in designing efficient bandit algorithms. Clearly, exploration
should be tapered off with time: If this does not happen, the algorithm would still pay
a linear regret. The problem of balancing between exploring and exploiting is called the
exploration-exploitation dilemma.

Perhaps the simplest exploration method is to take random actions with a certain rate
to obtain more information about the parameter vector. For example, the learner in the
previous game can take one of the two actions uniformly at random once in every few
rounds. The exploration rate should be tuned to minimize regret. This method, known
as the forced-exploration method or ε-greedy method (Lai and Wei, 1981, 1982, 1987, Chen
and Guo, 1987), is simple to implement and with proper tuning it can often be made quite
competitive in practice.

A major issue with this simple idea is that the optimal exploration rate will depend
on the problem structure, which is often unknown to the learner. In Example 1, little
deliberation shows that one would need to explore for a longer fraction of the time to
discriminate between the two actions for smaller values of the (hidden) “gap” parameter
∆

.
= µ2 − µ1. To see why this is the case, consider the following informal argument (for a

precise argument with identical conclusions, see Dani and Hayes 2006). Assume the learner
takes Tα exploratory actions at the beginning of the game, where T is the time horizon and
0 < α < 1 is a tuneable parameter that governs the amount of exploration. During this
period, the learner suffers a regret of Ω(Tα∆). With a simple application of Hoeffding’s
Inequality (see Appendix C), we get that the event A = {µ̂1,Tα > µ̂2,Tα} happens with a
probability that is bounded by exp(−2Tα∆2). Further, one can argue that this probability
(in the worst-case) cannot be “much” smaller either (e.g., by an application of Stirling’s
formula). Under event A, the learner takes the sub-optimal action for the rest of the game.
Thus, the expected regret up to time T can be written as

E [RT ] = E [Regret(Exploration Phase)] + E [Regret(Exploitation Phase)]

≈ Tα∆ + (T − Tα)e−2Tα∆2

∆ . (1.4)
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If the learner chooses α ≤ 2/3, the second term of (1.4) is bounded by Ω(T 2/3) when
∆ = T−1/3. Otherwise, the first term is bounded by Ω(T 2/3) when ∆ = 1. In any case, for
any a priori fixed amount of exploration, the learner can suffer a regret as large as Ω(T 2/3).
On the other hand, it is well known that there exist algorithms (some of which will be
discussed below) that are able to achieve a regret of size at most O(T 1/2) independently of
what problem they are used for (thus, we say that they achieve a uniform, worst-case bound
of O(T 1/2)) (Auer et al., 2002a, Bubeck and Audibert, 2010). In fact, it is also known that
for the bandit problems considered here, O(T 1/2) is the best regret possible (Auer et al.,
2002a). One way of expressing that forced-exploration schemes are unable to achieve this
lower bound (i.e., the optimal growth rate of regret) uniformly over all problems is that they
do not adapt to the difficulty of the individual bandit problems.

1.2.1 The OFU principle

The Optimism in the Face of Uncertainty (OFU) principle, proposed by Lai and Robbins
(1985), elegantly addresses the exploration-exploitation dilemma (it appears that the prin-
ciple has been rediscovered at least once by Campi (1997) who calls it the “bet on the
best” principle). The basic idea is to maintain a confidence set for the parameter vector
and then in every round choose an estimate from the confidence set together with an action
so that the predicted expected loss is minimized, i.e., the estimate-action pair is chosen
optimistically. The OFU principle is known to have better adaptivity properties than (e.g.)
forced-exploration schemes in the sense that often it leads to algorithms that are able to
achieve the minimax regret rate.

To see the OFU principle in practice, consider again the two-action bandit problem of
Example 1. To implement the OFU principle, we need to come up with confidence set
for θ∗ = (µ1, µ2). In this example it makes sense to seek an appropriate confidence set in
the form of a Cartesian product, C1,t(δ/2) × C2,t(δ/2) ⊂ R2, where for a given confidence
parameter 0 < δ < 1, Ci,t(δ) = {µ : |µ − µ̂i,t| ≤ ci,t(δ)} is a (random) interval centered
around the empirical estimate of the mean loss of action i with (half-)width ci,t(δ) chosen
such that the event |µi − µ̂i,t| ≤ ci,t(δ) holds with probability at least 1 − δ. Then, by the
union bound, P (θ∗ ∈ C1,t(δ/2)× C2,t(δ/2)) ≥ 1− δ. The optimistic loss estimate of action
i is then ỹi,t = µ̂i,t − ci,t(δ/2) and the optimistic algorithm (that implements the OFU
principle) plays action at+1 = argmini ỹi,t in round t+ 1.

The width, ci,t(δ), typically scales like O(
√

log(1/δ)/Ni,t), where Ni,t is the number of
times action i was played up to time t. If an action is played only a small number of rounds,
then its confidence interval will be large, which means its optimistic loss estimate will be
small, which increases the chance of choosing such an action. To understand how the OFU
principle leads to an algorithm that “adapts” to the size of the gap, ∆, consider the case
when ∆ is large. In this case, the algorithm can easily discriminate between the two actions
and thus the exploration rate will be automatically small. Otherwise, if the gap is small,
the discrimination will be difficult and, as expected, the algorithm will explore more often.

We should note that the OFU principle, by construction, is limited to stochastic prob-
lems. Thus, the principle does not apply when no stochasticity assumptions are made on
the environment. It also appears that in the stochastic partial monitoring problems, the
OFU principle is not sufficient (Bartók, 2012). The fundamental reason is that, in these
problems, one has to explicitly reason about the “value of information”; actions differ in
terms of how much information we can gain by using them about the environment. The
optimism principle focuses too narrowly on the role of losses (or rewards), thus not leav-
ing sufficient room to reason about the indirect, “information-value” of using the actions.
However, when a stochastic model for the environment is available and we directly observe
losses, the OFU principle has been shown to be quite successful for a wide range of problems,
including bandit problems of various types (Lai and Robbins, 1985, Katehakis and Robbins,
1995, Burnetas and Katehakis, 1996, Auer et al., 2002a, 2007, Auer, 2002, Li et al., 2010,
Filippi et al., 2010) or online reinforcement learning problems (Burnetas and Katehakis,
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1997, Campi, 1997, Kakade, 2003, Bittanti and Campi, 2006, Strehl and Littman, 2008,
Bartlett and Tewari, 2009, Jaksch et al., 2010, Szita and Szepesvári, 2010). Indeed, one of
the contributions of this thesis is to add further evidence that the OFU principle can be
applied to an even wider range of problems. In particular, we will show, both theoretically
and empirically that the OFU principle can be effectively applied to even complicated online
reinforcement learning problems such as the LQ problem. It remains to be seen whether
alternative approaches, such as those by Abernethy et al. (2008) that were developed for
non-stochastic bandit problems, can be applied to stochastic online reinforcement learning
problems.
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Chapter 2

Summary of Contributions

The thesis makes contributions to constructing confidence sets for linear prediction problems
and demonstrates how the new confidence set construction techniques lead, through the OFU
principle, to learning algorithms with improved learning speed.

2.1 Construction of Confidence Sets by Vector-Valued
Self-Normalized Processes

The first confidence set construction technique builds on and extends techniques whose
history goes back to Robbins and Siegmund (1970). The key idea is to construct faithful
confidence sets whose shape is strongly dictated by the data, avoiding conservative upper
bounds by relying on so-called self-normalized bounds (see Chapter 3, Theorem 3.11).

With our new technique, we vastly reduce the size of the confidence sets of Dani et al.
(2008), Rusmevichientong and Tsitsiklis (2010), and Srinivas et al. (2010). First, our con-
fidence sets are valid uniformly over all time steps, which immediately saves log(T ) factor
by avoiding the otherwise needed union bound. Second, our confidence sets are “more em-
pirical” in the sense that some worst-case quantities from the old bounds are replaced by
empirical quantities that are always smaller, sometimes substantially. Further, the calcula-
tions are done for linear prediction over separable Hilbert spaces instead of finite-dimensional
Euclidean spaces, thereby significantly extending the scope and applicability of the result. In
particular, the result is applicable to popular nonparametric learning scenarios too, such as
learning with Gaussian processes or with ridge regression over RKHS spaces. This difference
is demonstrated through computer simulations in the further parts of the thesis, where the
confidence sets are used in constructing online learning methods in various control learning
problems.

2.2 A New Method to Construct Confidence Sets: Online-
to-Confidence-Set-Conversion

The aforementioned confidence sets are constructed from predictions of the online least-
squares method. Another contribution of this thesis is to show that, more generally, predic-
tions of any online algorithm that predicts the responses of the chosen inputs in a sequential
manner can be “converted” to a confidence set. The only assumption is that the online pre-
diction algorithm comes with an upper bound on its regret1 with respect to the best linear
predictor using the quadratic prediction loss. The details of this conversion are explained
in Section 3.5.

1This notion of regret, to be defined in Section 3.5, is different from the regret of the bandit problem.
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One strength of our method is that it allows us to use any linear prediction algorithm as
the underlying online algorithm, such as (online) least-squares (regularized or constrained)
(Lai et al., 1979, Auer et al., 2002b, Vovk, 2001), online LASSO, the exponentiated gradient
(EG) algorithm2 (Kivinen and Warmuth, 1997), the p-norm algorithm (Grove et al., 2001,
Gentile and Littlestone, 1999), the SeqSEW algorithm (Gerchinovitz, 2011), etc. These
algorithms differ in terms of their biases towards different solutions. For example, some
of these algorithms are biased towards sparse solutions, some of them are biased towards
sparse inputs, etc. However, all the algorithms just mentioned satisfy the assumptions of the
conversion, i.e., they work with quadratic prediction loss and for most of these algorithms a
regret bound is known. Thanks to the generality of our solution, we can obtain a confidence
set for each of these algorithms and, in fact, for any algorithm that might be developed in
the future, too. An important consequence of our approach is that the confidence sets we
derive from a regret bound for a given algorithm with a certain “bias” will inherit the “bias”
from the algorithm.

Study of conversions and reductions between machine learning tasks has a long his-
tory (Blackwell, 1953, Birnbaum, 1961, Morse and Sacksteder, 1966, Conover and Iman,
1981, Littlestone, 1989, Bartlett et al., 1994, Kearns, 1998). Our online-to-confidence-set
conversion can be compared with the online-to-batch conversions (Littlestone, 1989, Cesa-
Bianchi et al., 2004, Dekel and Singer, 2006). However, there are two major differences
between these two. First, online-to-batch conversions convert the predictions of a low-
regret online algorithm into a single prediction with a low risk, whereas in our online-to-
confidence-set conversion, we combine the predictions to construct a confidence set. Second,
in online-to-batch conversions, one assumes that the data (i.e., the input-response pairs) are
generated in an i.i.d. fashion (in fact, the risk is defined with respect to the underlying joint
distribution), while in online-to-confidence-set conversion the inputs (a.k.a. covariates) can
be chosen adversarially and only responses are stochastic. In summary, we are not aware of
previous results on reductions of the type we consider.

2.3 Linear Bandit Problems

By applying the OFU principle to the linear stochastic bandit problem, the problem reduces
to construction of confidence sets for the parameter vector.

When the decision set is a subset of Rd, using our confidence sets, we improve regret of
the ConfidenceBall algorithm of Dani et al. (2008). They showed that the regret of this
algorithm is at most O(d log(T )

√
T log(T/δ)) with probability at least 1 − δ. We modify

their algorithm so that it uses our new confidence sets and we show that its regret is at most
O(d log(T )

√
T +

√
dT log(T/δ)), which (roughly) removes a multiplicative factor

√
log(T )

from their bound (See Theorem 4.1). Dani et al. (2008) also proved a problem-dependent re-

gret bound. Namely, they showed that the regret of their algorithm is O(d
2

∆ log(T/δ) log2(T ))
where ∆ is the “gap” as defined in (Dani et al., 2008). For our modified algorithm, we prove

an improved O( log(1/δ)
∆ (log(T ) + d log log T )2) bound (see Theorem 4.8). Apart from these

theoretical improvements, we empirically demonstrate that the improved confidence bounds
lead to significantly better performance.

Srinivas et al. (2010) obtain sublinear regret bounds when the decision set is a subset of a
separable Hilbert space and the noise is Gaussian. We extend these results to sub-Gaussian
noise and also obtain better dependence in terms of logarithmic and constant terms (see
Theorem 4.1).

2EG is a variant of Winnow for linear prediction.
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2.4 Sparse Stochastic Linear Bandits

Another contribution of this thesis is the introduction and study of a variant of the stochas-
tic linear bandit problem, which we call sparse stochastic linear bandits. Sparsity, in recent
years, became the line of attack for statistical problems that were previously thought un-
solvable. The assumption that the underlying statistical model is sparse greatly decreases
the sample size required to learn the model provided, of course, when that the model is in-
deed sparse. Several examples of algorithms that take advantage of sparsity are the Winnow
algorithm (Littlestone, 1988), the LASSO (Tibshirani, 1996) and algorithms for compressed
sensing (Candès, 2006).

With sparsity in mind, we investigate the sparse variant of the linear stochastic bandit
problem. We focus on the situation when the underlying linear function is potentially sparse,
i.e., many of its coefficients are zero, as can be expected to be the case in applications when
the feature space is high-dimensional but only a few features are relevant (e.g., in web
advertisement applications). We show that a recent online algorithm together with our
online-to-confidence-set conversion allows us to derive algorithms that can exploit if the
reward is a function of a sparse linear combination of the components of the chosen action.
The details are given in Section 4.5.

Sparse linear bandit problem can be viewed as sequential decision making version of the
feature selection problem. Its potential applications include problems where the dimension-
ality of the features describing the actions/contexts is typically high; such as the online
optimization of contents of web pages, medical trials, web advertising management, etc.

2.5 Control Problems

The bandit setting relies on the assumption that the loss is a function of only the action
taken by the learner. Although the bandit setting is a satisfactory model of many real-world
decision making problems, it fails to fit many others. For example, consider a queueing
problem where the server controls the service rate, which in turn determines the frequency
at which the server processes the incoming jobs. The example is taken from (Lai and
Yakowitz, 1995) and is shown in Figure 2.1. The bandit learner seeks to find a single best
fixed service rate to have low cost. The cost, however, is a function of both learner’s action
(service rate) and the state of the system (number of jobs in the queue). The decisions made
by the learner change the state. An optimal learner needs to change its action depending
on the current state of system, a topic of reinforcement learning problem.

In the second part of the thesis (Chapter 5), we study two special cases of the RL
problem. First, we apply our confidence sets to the linear quadratic (LQ) problem and
derive the first finite-time regret bound for this problem. The LQ problem plays a central
role in control theory thanks to its simplicity and elegance. Although, in practice, rarely
does any control problem fit the LQ problem description, it is still one of the first choices
of control engineers and it is also often used as a building block of other algorithms.

Our approach is to follow the OFU principle: We construct confidence sets from results
of Chapter 3 and play optimistically with respect to them: At each round, the algorithm
solves an OFU optimization problem to choose the next action. Unfortunately, the OFU
optimization problem is not convex. We propose a gradient descent method for this opti-
mization problem and show that it is effective in finding near-optimal decisions.

Finally, we show that similar techniques can be employed to design algorithms for the
more general linearly parametrized control problems. Although we obtain Õ(

√
T ) regret

bounds for this class of problems, the algorithm is computationally intractable. It remains
an open problem to design efficient algorithm with nontrivial regret guarantees for this
problem.

13



Buffer Server

Bandit Agent

Jobs in Jobs out

Control Job cost

Buffer Server

RL Agent

Jobs in Jobs out

Control Job costQueue Length

(a) (b)

Figure 2.1: A queueing problem (Lai and Yakowitz, 1995). The loss for a job serviced is
l + Ca2s, where l is the time spent in the queue, s is the service time spent by the server
on this job, C is a parameter, and a is the service rate. The expected loss function is
`(x, a) = E

[
(x+ Ca2)s(a)

]
= x/a + Ca, where x is the number of jobs in the queue and

s(a) is the service time as a function of the service rate. (a) The queueing problem modelled
as a bandit problem. The bandit agent is indifferent to the state of the system x. (b) The
queueing problem as a reinforcement learning problem. The RL agent’s action is a function
of both the state and the loss observed.
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Chapter 3

Online Least-Squares
Prediction1

A large portion of machine learning is devoted to constructing point estimates of some un-
known quantity given some “noisy data”. A main issue with point estimates is that they
lack a description of the remaining uncertainty about the unknown quantity. Confidence
sets, on the other hand, allow one to characterize the remaining uncertainty. As Wasserman
has written: “never give an estimator without giving a confidence set” (Wasserman, 1998, p.
vii.). However useful confidence sets are on their own, in a number of sequential tasks they
are in fact indispensable. Examples include stopping problems (Mnih et al., 2008), bandit
problems (Auer et al., 2002a, Auer, 2002, Dani et al., 2008), variants of the pick-the-winner
problem (Even-Dar et al., 2002, Mannor and Tsitsiklis, 2004, Mnih et al., 2008), reinforce-
ment learning (Bartlett and Tewari, 2009, Jaksch et al., 2010), or active learning (Even-Dar
et al., 2002).

In this chapter we investigate the problem of constructing confidence sets for the vector-
coefficient of a linear function observed at a finite number of points in martingale noise
(the exact conditions of our result will be stated in the next section). In other words, the
uncertainty appears in a linear fashion. This is a popular and widely employed assumption
thanks to its simplicity and mathematical elegance. The resulting linear prediction problem
is widely studied in statistics, probability and statistical learning theory (Mardia et al.,
1979, Weisberg, 1980, Seber, 1984).

We demonstrate two novel approaches to construct confidence sets for the unknown
parameter vector. First, we employ tools from the theory of self-normalized processes to
provide a simple and self-contained proof on the tail behaviour of a vector-valued martingale.
We use the bound obtained to construct new confidence sets for the least-squares estimate
that are tighter than those that were previously available.

Our second approach concerns a general method that allows one to construct high-
probability confidence sets for linear prediction with correlated inputs given the predic-
tions of any algorithm (e.g., online LASSO, exponentiated gradient algorithm, online least-
squares, p-norm algorithm) targeting online learning with linear predictors and the quadratic
loss. We call this technique an online-to-confidence-set conversion. In the next chapter, we
will show how these new, tight confidence sets lead to improved performance (both theoret-
ically, and empirically) for existing linear stochastic bandit algorithms.

3.1 Self-Normalized Processes

The study of self-normalized processes has a long history that goes back to William Sealy
Gosset (a.k.a. Student) and is treated in detail in the recent book by de la Peña et al.

1This chapter is based on the work by Abbasi-Yadkori, Pal, and Szepesvari (2011a) and Abbasi-Yadkori,
Pal, and Szepesvari (2011b).
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(2009). As explained there, perhaps the most well-known result from these studies concerns
the t-statistic and its limiting properties: Consider the problem of statistical inference on the
mean µ of a normal distribution when the variance σ2 is unknown. Let mk = k−1

∑k
i=1mi

be the average of k i.i.d samples from the normal distribution and sk be the sample standard
deviation, s2

k = (k − 1)−1
∑k
i=1(mi − mk)2. Gosset (Student) shows that the t-statistic

Tk =
√
k(mk−µ)/sk has the t-distribution with k−1 degrees of freedom. The t-distribution

converges to the normal distribution as k → ∞. Without loss of generality assume that
µ = 0. Then we can write

Tk =
√
k
mk

sk
=

Sk

V
1/2
k

(
k − 1

k − (Sk/V
1/2
k )2

)1/2

, (3.1)

where Sk =
∑k
i=1mi is a scalar-valued martingale and Vk =

∑k
i=1m

2
i is an increasing

process. Let Nk = Sk/V
1/2
k be a sum of random variables normalized by the square root of

the cumulative variance, also known as a self-normalized process. Equation (3.1) implies
that study of tail bounds for Tk reduces to that for Nk. It is also known that the limiting
distributions of Tk and Nk coincide (Griffin, 2002).

In the next section, we study the vector-valued analog of Nk. Namely, we study self-
normalized processes of the form ‖Sk‖2V −1

k
, where Sk =

∑k
i=1 ηimi−1 is a vector-valued mar-

tingale, ηi is a real-valued, R-sub-Gaussian random variable (to be defined in Section 3.2),

mi lies in a separable Hilbert space H, and V k = V +
∑k
i=1mi−1⊗mi−1 is the correspond-

ing normalizing operator with positive-definite, “regularizing” operator V . We employ the
so-called method of mixtures of Robbins and Siegmund (1970) (see also de la Peña et al.
2009) to prove that for any 0 < δ < 1, with probability 1− δ,

∀k ≥ 0, ‖Sk‖2V −1
k
≤ 2R2 log

(
det
(
I +M1:kV

−1M∗1:k

)1/2
δ

)
, (3.2)

where M1:k : H → Rk is the operator such that for any v ∈ H, the ith element of M1:kv is
〈mi, v〉. A less general version of the bound, applicable only to the finite-dimensional setting,
can be derived from the works of de la Peña et al. (2004, 2009) by following some parts of
our derivations. The merit of our new proof is thus that it is more generally applicable and
it is also self-contained.

The above bound improves the previous bound of Dani et al. (2008), Rusmevichientong
and Tsitsiklis (2010) which were derived for the finite-dimensional setting (i.e., for Euclidean
spaces), as well as improving on the bound of Srinivas et al. (2012) which was derived for
separable Hilbert spaces. The bound is applicable to virtually any online least-squares
problem. The bound that we derive, immediately gives rise to tight confidence sets and
pointwise error bounds for the online least-squares estimate that can replace the confidence
sets in existing linear stochastic bandit algorithms. In particular, if the true parameter
vector is θ∗, we prove pointwise error bounds of the form

∀δ ∈ (0, 1), P
(
∀k, ∀m ∈ H,

∣∣∣〈m, θ̂k〉 − 〈m, θ∗〉∣∣∣ ≤ ‖m‖V −1
k
βk(δ)

)
≥ 1− δ,

for the least-squares estimate θ̂k, where βk(δ) denotes the square-root of the quantity on
the RHS2 of Equation 3.2 (cf. Theorem 3.11). Such bounds hold for any vector m ∈ H and
give rise to tight confidence sets for θ∗.

In one-dimensional problems, the bound in (3.2) is comparable to a self-normalized
form that can be obtained from Freedman’s inequality by using a peeling/stratification
argument (see, e.g., Theorem 1 in the paper by Audibert et al. (2009))3: let random variables

2The abbreviation RHS stands for “right-hand side”
3Audibert et al. (2009) show the derivation for i.i.d random variables. But, with a similar derivation, the

same form can be proven for martingale difference sequences.
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m1,m2, . . . be bounded in [0, b]. Let Gs =
∑s
i=1(mi −ms)

2/s be the empirical variance.

For any k ∈ N and x > 0, with probability at least 1− 3 inf1<α≤3

(
log k
logα ∧ k

)
e−x/α, for any

s ∈ {1, . . . , k},

|ms − µ| ≤
√

2Gsx

s
+

3bx

s
.

Compared to (3.2), the price is a log log k factor.

3.2 Vector-Valued Martingale Tail Inequalities

Let (Fk; k ≥ 1) be a filtration, (mk; k ≥ 1) be a H-valued stochastic process adapted to
(Fk), (ηk; k ≥ 2) be a real-valued martingale difference process adapted to (Fk). Assume
that ηk is conditionally sub-Gaussian in the sense that there exists some R > 0 such that
for any γ ∈ R, k ≥ 2,

E[exp(γηk) | Fk−1] ≤ exp

(
γ2R2

2

)
a.s. (3.3)

The sub-Gaussian condition automatically implies that E[ηk | Fk−1] = 0. Furthermore, it
also implies that Var [ηt |Fk−1] ≤ R2 and thus we can think of R2 as the (conditional)
variance of the noise. An example of R-sub-Gaussian ηk is a zero-mean Gaussian noise with
variance at most R2, or a bounded zero-mean noise lying in an interval of length at most
2R. Consider the martingale

St =

t−1∑
k=1

ηk+1mk (3.4)

and the processes

Vt =

t−1∑
k=1

mk ⊗mk, V t = V + Vt, t ≥ 1, (3.5)

where V is a positive definite operator such that for any m, V m is F1-measurable. Let
M1:t : H → Rt−1 be the operator such that for any v ∈ H, the kth element of M1:tv is
〈mk, v〉. Then, Vt can be written as Vt = M∗1:tM1:t.

Let N (m,B) denote the Gaussian measure on H with mean m ∈ H and a positive
definite self-adjoint trace class covariance operator B (Maniglia and Rhandi, 2004). Let
det(I +C) denote the Fredholm determinant of I +C, where C is any trace class operator.
The next two lemmas are stated as Lemma 1.2.7 and Proposition 1.2.8 in (Maniglia and
Rhandi, 2004). We will use these lemmas to calculate certain expectations under certain
Gaussian measures.

Lemma 3.1 (Invariance of Gaussian measures under affine transformations) Let H be a
separable Hilbert spaces. Consider the affine transformation F : H → H defined by F (x) =
Qx + z, where Q ∈ L(H) and z ∈ H. If we set µk = N (m,B) ◦ F−1, the measure defined
by µk(A) = N (m,B)(F−1(A)), A ∈ Fk, then

µk = N (Qm+ z,QBQ∗) .

Lemma 3.2 (Integration of e
α
2 ‖x‖

2

under Gaussian measures) Let N (m,B) be a Gaussian
measure on H. Then there is an orthonormal basis (en) of H such that Ben = λnen, λn ≥
0, n ∈ N. Moreover, for any α < α0 = infn

1
λn

, we have∫
H
e
α
2 ‖x‖

2

N (m,B)(dx) = (det(I − αB))−
1/2 exp

(α
2
〈(I − αB)−1m,m〉

)
.
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Note that B, being a covariance operator of a Gaussian measure, is trace class. Thus, so
is −αB. As a consequence, det(I−αB) is well-defined. In what follows, we use the equality
with α = −1.

The following inequality, which is a standard tool in proving tail inequalities, will play
a crucial role in our proof:

Lemma 3.3 Consider (ηt), (mt) as defined above and let τ be a stopping time with respect
to the filtration (Ft). Let λ ∈ H be arbitrary and consider

Pλt = exp

(
t−1∑
k=1

[
ηk+1〈λ,mk〉

R
− 1

2
〈λ,mk〉2

])
.

Then Pλτ is almost surely well-defined and

E
[
Pλτ
]
≤ 1.

Proof. The proof is standard, at least until the stopping time τ is considered. We give the
proof for the sake of completeness. First, we claim that Pt = Pλt is a supermartingale. Let

Dk = exp

(
ηk+1〈λ,mk〉

R
− 1

2
〈λ,mk〉2

)
.

Observe that by the choice of γ = 〈λ,mk〉/R in (3.3), we have E [Dk |Fk] ≤ 1. Clearly, Dk−1

is Fk-adapted, as is Pk. Further,

E [Pt|Ft−1] = E [D1 · · ·Dt−2Dt−1 |Ft−1] = D1 · · ·Dt−2 E [Dt−1 |Ft−1] ≤ Pt−1,

showing that (Pt) is indeed a supermartingale.
Now, this immediately leads to the desired result when τ = t for some deterministic time

t. This is based on the fact that the mean of any supermartingale can be bounded by the
mean of its first element. In the case of (Pt), for example, we have E [Pt] = E [E [Pt|Ft−1]] ≤
E [Pt−1] ≤ . . . ≤ E [P1] = E [D1] ≤ 1.

Now, in order to consider the general case, let St = Pτ∧t. It is well known that (St) is still
a supermartingale with E [St] ≤ E [S1] = E [P1] = 1. Further, since Pt was non-negative, so
is St. Hence, by the convergence theorem for non-negative supermartingales, almost surely,
limt→∞ St exists, i.e., Pτ is almost surely well-defined. Further, E [Pτ ] = E [lim inft→∞ St] ≤
lim inft→∞ E [St] ≤ 1 by Fatou’s Lemma.

We now show how to obtain a self-normalized bound for vector-valued martingales us-
ing the method of mixtures, originally used by Robbins and Siegmund (1970) to evaluate
boundary crossing probabilities for Brownian motion.

Theorem 3.4 Let (ηt), (mt), (St), (Vt), and (Ft) be as before and let τ be a stopping time
with respect to the filtration (Ft). Let s > 0 be an arbitrary integer and Us be a positive
definite, deterministic operator whose inverse is trace class. Then, for any 0 < δ < 1, with
probability 1− δ,

‖Sτ‖2(Vτ+Us)−1 ≤ 2R2 log

(
det
(
I +M1:τU

−1
s M∗1:τ

)1/2
δ

)
. (3.6)

Proof. Without loss of generality, assume that R = 1 (by appropriately scaling St, this can
always be achieved). Let

Gt(λ) = exp
(
〈λ, St〉 − 1

2 ‖λ‖
2
Vt

)
.

Notice that 〈λ, St〉 =
∑t−1
k=1 ηk+1〈λ,mk〉, ‖λ‖2Vt =

∑t−1
k=1〈λ,mk〉2, and that by Lemma 3.3,

the mean of Gτ (λ) is not larger than one.
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Let Λ be a Gaussian random variable that is independent of all the other random vari-
ables and whose covariance operator is U−1

s . Define

Gt = E [Gt(Λ)|F∞] .

Clearly, we still have E [Gτ ] = E [E [Gτ (Λ) |Λ ] ] ≤ 1.
Let us calculate Gt: Let f = N (0, U−1

s ) denote the Gaussian measure underlying Λ. We
have that

〈λ, St〉 − 1
2 ‖λ‖

2
Vt

= 1
2 ‖St‖

2
V −1
t
− 1

2

∥∥λ− V −1
t St

∥∥2

Vt

Thus,

Gt = exp
(

1
2 ‖St‖

2
V −1
t

)∫
H

exp
(
− 1

2

∥∥λ− V −1
t St

∥∥2

Vt

)
f(dλ) .

Let ν = M1:t(λ− V −1
t St) and g = N (−M1:tV

−1
t St,M1:tU

−1
s M∗1:t). By Lemma 3.1 we have

that

Gt = exp
(

1
2 ‖St‖

2
V −1
t

)∫
H

exp
(
− 1

2 ‖ν‖
2
)
g(dν) .

Now, by Lemma 3.2 we calculate that

Gt = det
(
I +M1:tU

−1
s M∗1:t

)−1/2
exp

(
1
2 ‖St‖

2
V −1
t
− 1

2 ‖St‖
2
V −1
t M1:t(I+M1:tU

−1
s M∗1:t)

−1M1:tV
−1
t

)
.

By elementary algebra, we obtain that

V −1
t − V −1

t M1:t(I +M1:tU
−1
s M∗1:t)

−1M1:tV
−1
t = (Us + Vt)

−1

and thus
Gt = det

(
I +M1:tU

−1
s M∗1:t

)−1/2
exp

(
1
2 ‖St‖

2
(Us+Vt)−1

)
.

Now, from E [Gτ ] ≤ 1, we get

P
(
‖Sτ‖2(Us+Vτ )−1 > 2 log

(
det
(
I +M1:τU

−1
s M∗1:τ

)1/2 1

δ

))

= P

 exp
(

1
2 ‖Sτ‖

2
(Us+Vτ )−1

)
δ−1 det

(
I +M1:τU

−1
s M∗1:τ

)1/2 > 1


≤ E

 exp
(

1
2 ‖Sτ‖

2
(Us+Vτ )−1

)
δ−1 det

(
I +M1:τU

−1
s M∗1:τ

)1/2


= E [Gτ ] δ ≤ δ,

thus finishing the proof.

Notice that the previous result does not apply to important special cases such as Us = λI,
λ > 0. Next we extend Theorem 3.4 to positive-definite regularizers that are not necessarily
trace class.

Corollary 3.5 (Self-Normalized Bound for Vector-Valued Martingales) Let (ηt), (mt), (St),
(Vt), and (Ft) be as before and let τ be a stopping time with respect to the filtration (Ft).
Assume that V is a deterministic positive-definite operator with a bounded inverse. Then,
for any 0 < δ < 1, with probability 1− δ,

‖Sτ‖2V −1
τ
≤ 2R2 log

(
det
(
I +M1:τV

−1M∗1:τ

)1/2
δ

)
. (3.7)
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Proof. First, let us construct a sequence (U−1
s ) of trace-class operators with limit V −1 in the

weak-operator topology.4 Let (ei) be an orthonormal basis ofH. For x ∈ H, x =
∑
i λiei, de-

fine Wsx =
∑s
i=1 λiV

−1ei. Note that Ws is well-defined and is positive definite, trace-class.
Thus, a positive definite inverse of Ws exists; let’s denote the inverse of Ws by Us. It remains
to be shown that V −1 is the limit of (Ws) in the weak-operator topology. To check this, take
x, y ∈ H and let λi = 〈x, ei〉. Then, 〈y,Wsx〉 =

∑s
i=1 λi〈y, V −1ei〉 = 〈(V −1)∗y,

∑s
i=1 λiei〉.

Thus, |〈y,Wsx〉−〈(V −1)∗y, x〉| = |〈(V −1)∗y,
∑s
i=1 λiei−x〉| ≤ ‖(V −1)∗y‖‖

∑s
i=1 λiei−x‖ →

0 as s→∞, which finishes the proof.
Let

Bs = 2R2 log

(
det
(
I +M1:τU

−1
s M∗1:τ

)1/2
δ

)
, B = 2R2 log

(
det
(
I +M1:τV

−1M∗1:τ

)1/2
δ

)
.

Note that M1:τV
−1M∗1:τ is a τ × τ matrix and hence B is well-defined. Now, since U−1

s

converges to V −1 in the weak-operator topology, each element of the matrix M1:τV
−1M∗1:τ

is the almost sure limit of the corresponding element of the sequence (M1:τU
−1
s M∗1:τ )s. Let

Zs = 1
{
‖Sτ‖2(Vτ+Us)−1 ≤ Bs

}
, and Z = 1

{
‖Sτ‖2V −1

τ
≤ B

}
. We have that ‖Sτ‖2(Vτ+Us)−1 →

‖Sτ‖2V −1
τ

and Bs → B almost surely. Thus, Zs → Z almost surely. Because Zs ≤ 1 for all s,

by Lebesgue’s dominated convergence theorem we get that E [Zs]→ E [Z]. By Theorem 3.4,
we have that E [Zs] ≥ 1 − δ for any s. Thus, lim supE [Zs] ≥ 1 − δ, which implies that
E [Z] ≥ 1− δ, finishing the proof.

Corollary 3.6 (Uniform Bound) Under the same assumptions as in the previous corollary,
for any 0 < δ < 1, with probability 1− δ,

∀t ≥ 1, ‖St‖2V −1
t
≤ 2R2 log

(
det
(
I +M1:tV

−1M∗1:t

)1/2
δ

)
. (3.8)

Proof. We will use a stopping time construction, which goes back at least to Freedman
(1975). Define the bad event

Bt(δ) =

{
ω ∈ Ω : ‖St‖2V −1

t
> 2R2 log

(
det
(
I +M1:tV

−1M∗1:t

)1/2
δ

)}
(3.9)

We are interested in bounding the probability that
⋃
t≥1Bt(δ) happens. Define τ(ω) =

min{t ≥ 1 : ω ∈ Bt(δ)}, with the convention that min ∅ = ∞. Then, τ is a stopping time.
Further, ⋃

t≥1

Bt(δ) = {ω : τ(ω) <∞} .

Thus, by Theorem 3.4

P

⋃
t≥1

Bt(δ)

 = P (τ <∞)

= P

(
‖Sτ‖2V̄ −1

τ
> 2R2 log

(
det
(
I +M1:tV

−1M∗1:t

)1/2
δ

)
, τ <∞

)

≤ P

(
‖Sτ‖2V̄ −1

τ
> 2R2 log

(
det
(
I +M1:tV

−1M∗1:t

)1/2
δ

))
≤ δ .

4That is, for any x, y ∈ H, 〈x, U−1
s y〉 → 〈x, V −1y〉.
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The quantity log det
(
I +M1:τV

−1M∗1:τ

)
is bounded for several kernels in (Srinivas et al.,

2012). Here, we demonstrate a simple bound for two special cases.

Corollary 3.7 Assume that the vectors (mk) come from a finite, K-element set, {v1, . . . , vK} ⊂
H. Then

log det
(
I +M1:τV

−1M∗1:τ

)
≤ K log

(
1 +

τ

K

)
.

Proof. Choose regularizer V such that for i ≤ K, V −1/2vi = ei. Thus, each row of M1:τV
−1/2

is an identity vector. Let C be the K × K diagonal operator with each diagonal element
Cs,s = Ns + 1, where Ns is the number of times we have observed vs. Then, by the matrix
determinant lemma, it is easy to see that

det
(
I +M1:τV

−1M∗1:τ

)
= det(C) .

This means

det
(
I +M1:τV

−1M∗1:τ

)
=

K∏
s=1

(1 +Ns) ≤
(

1 +
τ

K

)K
.

By the same matrix-determinant lemma, we also get a bound for the case when H is finite-
dimensional:

det(V t) = det(V ) det(I +M1:tV
−1M>1:t) ,

resulting in the finite-dimensional version of Corollary 3.6:

Corollary 3.8 (Finite-Dimensional Case) Assume the same as in Corollary 3.6 and assume
that H = Rd for some positive integer d. Then, for any 0 < δ < 1, with probability 1− δ,

∀t ≥ 1, ‖St‖V −1
t
≤ R

√
2 log

(
det(V t)1/2 det(λI)−1/2

δ

)
.

This result can be compared with a recent result that can be extracted from the paper
by Rusmevichientong and Tsitsiklis (2010).

Theorem 3.9 (Rusmevichientong and Tsitsiklis (2010)) Consider the finite-dimensional
version of the processes (St), (V t) as defined above and let

κ =
√

3 + 2 log((L2 + trace(V ))/λ0) .

Then, for any 0 < δ < 1, t ≥ 2, with probability at least 1− δ,

‖St‖V −1
t
≤ 2κ2R

√
log t

√
d log(t) + log(1/δ) .

Remark 3.10 By combining Corollary 3.8 and Lemma E.3 in Appendix E, we get a simple
worst case bound that holds with probability 1− δ:

∀t ≥ 1, ‖St‖2V −1
t
≤ dR2 log

(
trace(V ) + tL2

d δ

)
.

Despite the use of the crude upper bound in Lemma E.3, we see that the new bound is
still considerably better than that of Theorem 3.9. Note that the log(t) factor cannot be
removed from this new bound, as shown by Problem 3, page 203 in the book by de la Peña
et al. (2009).
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3.3 Optional Skipping

Consider the case when d = 1, mk = εk ∈ {0, 1}, i.e., the case of an optional skipping process

(see Appendix C for definitions). Then, using again V = I = 1, V t = 1 +
∑t−1
k=1 εk

.
= 1 +Nt

and thus the expression studied becomes

‖St‖V −1
t

=
|
∑t−1
k=1 εkηk+1|√

1 +Nt
.

We also have log det(V t) = log(1 +Nt). Thus, we get, with probability 1− δ

∀s ≥ 1,

∣∣∣∣∣
s−1∑
k=1

εkηk+1

∣∣∣∣∣ ≤
√

2(1 +Ns) log

(
(1 +Ns)

1/2

δ

)
. (3.10)

If we apply Doob’s optional skipping and Hoeffding-Azuma (see Appendix C), with a union
bound (see, e.g., the paper of Bubeck et al. (2008)), we would get, for any 0 < δ < 1, t ≥ 3,
with probability 1− δ,

∀s ∈ {1, . . . , t},

∣∣∣∣∣
s−1∑
k=1

εkηk+1

∣∣∣∣∣ ≤
√

2Ns log

(
2t

δ

)
. (3.11)

The major difference between these bounds is that (3.11) depends explicitly on t, while (3.10)
does not. This has the positive effect that one need not recompute the bound if Nt does not
grow, which helps e.g. in the paper of Bubeck et al. (2008) to improve the computational
complexity of the HOO algorithm.

Instead of a union bound, it is possible to use a “peeling device” to replace the conser-
vative log t factor in the above bound by essentially log log t. This is done e.g. in Garivier
and Moulines (2008) in their Theorem 22.5 From their derivations, the following one sided,
uniform bound can be extracted (see Remark 24, page 19): For any 0 < δ < 1, t ≥ 3, with
probability 1− δ,

∀s ∈ {1, . . . , t},
s−1∑
k=1

εkηk+1 ≤

√
4Ns
1.99

log

(
6 log t

δ

)
. (3.12)

As noted by Garivier and Moulines (2008), due to the law of iterated logarithm (see Ap-
pendix C), the scaling of the RHS as a function of t cannot be improved in the worst-case.
However, this leaves open the possibility of deriving a maximal inequality that depends on
t only through Nt.

3.4 Application to Least-Squares Estimation

In this section we first apply Theorem 3.4 to derive confidence intervals for least-squares
estimation, where the covariate process is an arbitrary process. In particular, our assumption
on the data is as follows:

Assumption A1 Linear Response Assumption Let (Fk) be a filtration, (m1, y1), . . .,
(mt, yt) be a sequence of random variables overH×R such that mk is Fk-measurable, and yk
is Fk+1-measurable (k = 1, 2, . . .). Assume that there exists θ∗ ∈ H such that E [yk|Fk] =
〈mk, θ∗〉, i.e., ηk+1 = yk − 〈mk, θ∗〉 is a martingale difference sequence (E [ηk+1|Fk] = 0,
k = 1, 2, . . .) and that ηk is R-sub-Gaussian.

5They give their theorem as ratios, which they should not, since their inequality then fails to hold for
Nt = 0. However, this is easy to remedy by reformulating their result as we do it here.

22



We shall call the random variables mk covariates and the random variables yk the responses.
Note that the assumption allows any sequential generation of the covariates.

Let θ̂t be the `2-regularized least-squares estimate of θ∗ with regularization parameter
λ > 0:

θ̂t = (M∗M + λI)−1M∗Y, θ̂1 = 0, (3.13)

where M = M1:t and M∗ = M∗1:t and Y = (y1, . . . , yt−1)>. We further let η = (η2, . . . , ηt)
>.

We are interested in deriving a confidence bound on the error of predicting the mean re-
sponse 〈m, θ∗〉 at an arbitrarily chosen random covariate m using the least-squares predictor

〈m, θ̂t〉. Using

θ̂t = (M∗M + λI)−1M∗(Mθ∗ + η)

= (M∗M + λI)−1M∗η + (M∗M + λI)−1(M∗M + λI)θ∗ − λ(M∗M + λI)−1θ∗

= (M∗M + λI)−1M∗η + θ∗ − λ(M∗M + λI)−1θ∗ ,

we get

〈m, θ̂t〉 − 〈m, θ∗〉 = 〈m,M∗η〉(M∗M+λI)−1 − λ〈m, θ∗〉(M∗M+λI)−1

= 〈m,M∗η〉
V
−1
t
− λ〈m, θ∗〉V −1

t
,

where V t = M∗M + λI. Note that V t is positive definite (thanks to λ > 0) and hence so is

V
−1

t , so the above inner product is well-defined. Using the Cauchy-Schwarz inequality, we
get

|〈m, θ̂t〉 − 〈m, θ∗〉| ≤ ‖m‖V −1
t

(
‖M∗η‖

V
−1
t

+ λ ‖θ∗‖V −1
t

)
≤ ‖m‖

V
−1
t

(
‖M∗η‖

V
−1
t

+ λ1/2 ‖θ∗‖
)
,

where we used that ‖θ∗‖2V −1
t
≤ 1/λmin(V t) ‖θ∗‖2 ≤ 1/λ ‖θ∗‖2. Fix any 0 < δ < 1. By

Corollary 3.6, with probability at least 1− δ,

∀t ≥ 1, ‖M∗η‖
V
−1
t
≤ R

√
2 log

(
det(I +M1:tM∗1:t/λ)1/2

δ

)
.

Therefore, on the event where this inequality holds, one also has

|〈m, θ̂t〉 − 〈m, θ∗〉| ≤ ‖m‖V −1
t

(
R

√
2 log

(
det(I +M1:tM∗1:t/λ)1/2

δ

)
+ λ1/2 ‖θ∗‖

)
.

Similarly, we can derive a worst-case bound. The result is summarized in the following
statement:

Theorem 3.11 Let (m1, y1), . . . , (mt−1, yt−1), mk ∈ H, yk ∈ R satisfy the linear model
Assumption A1 with some R > 0, θ∗ ∈ H and let (Ft) be the associated filtration. Assume

that ‖θ∗‖ ≤ S. Consider the `2-regularized least-squares parameter estimate θ̂t with regu-
larization coefficient λ > 0 (cf. (3.13)). Let m be an arbitary, H-valued random variable.

Let V t = λI +
∑t−1
k=1mk ⊗mk be the regularized design matrix underlying the covariates.

Then, for any 0 < δ < 1, with probability at least 1− δ, for any m ∈ H,

∀t ≥ 1, |〈m, θ̂t〉 − 〈m, θ∗〉| ≤ ‖m‖V −1
t

(
R

√
2 log

(
det(I +M1:tM∗1:t/λ)1/2

δ

)
+ λ1/2 S

)
.

(3.14)
Further, if the covariates satisfy ‖mk‖ ≤ L, k = 1, . . . , t− 1, then with probability 1− δ, for
any m ∈ H,

∀t ≥ 1, |〈m, θ̂t〉 − 〈m, θ∗〉| ≤ ‖m‖V −1
t

(
R

√
(t− 1)L2

λ
+ 2 log

(
1

δ

)
+ λ1/2 S

)
. (3.15)
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Remark 3.12 We see that λ → ∞ increases the second term (the “bias term”) in the
parenthesis of the estimate. In fact, λ → ∞ for n fixed gives λ1/2 ‖m‖V −1

t
→ const (as it

should be). Decreasing λ, on the other hand increases ‖m‖V −1
t

and the log term, while it

decreases the bias term λ1/2S.

Remark 3.13 Let H be a Reproducing Kernel Hilbert Space (RKHS) with underlying
kernel function k, and K be the Gramian matrix. It is easy to see that

λ(M∗M + λI)−1 = I −M∗(MM∗ + λI)M.

Thus,

λ ‖m‖2
V
−1
t

= 〈m,m〉 − ‖m‖2M∗(MM∗+λI)−1M

= k(m,m)− k(m, .)>(K + λI)−1k(m, .) (3.16)

Further, by matrix-determinant lemma, we have that

det(I +MM∗/λ) = det(I +K/λ). (3.17)

Equations (3.16) and (3.17) let us compute the RHS of (3.14) when H is a RKHS.

Theorem 3.11 can be compared with Theorem 6 of Srinivas et al. (2010).

Theorem 3.14 (Srinivas et al. (2010)) Let δ ∈ (0, 1). Assume that the noise variables have
a Gaussian distribution with variance σ2. Define

βt = 2 ‖θ∗‖2 + 150 log3(t/δ) log det(I + σ−2M1:tM
∗
1:t) .

Then, with probability at least 1− δ,

∀t ≥ 1,
∣∣∣〈m, θ̂t〉 − 〈m, θ∗〉∣∣∣ ≤ β1/2

t+1 ‖m‖(σ−2Vt+I)−1 .

Apart from improving in logarithmic terms and constants, our bound applies to the
substantially more general case when the noise is sub-Gaussian, while the result of Srinivas
et al. (2010), although they claim otherwise, applies only to Gaussian noise. In particular,
the proof of Lemma 7.2 of Srinivas et al. (2010) uses the explicit form of Gaussian probability
distribution function and it is unclear how this could be avoided with their proof technique.

From Theorem 3.11, we immediately obtain confidence bounds for θ∗:

Corollary 3.15 Under the conditions of Theorem 3.11, with probability at least 1− δ,

∀t ≥ 1,
∥∥∥θ̂t − θ∗∥∥∥

V t
≤ R

√
2 log

(
det(I +M1:tM∗1:t/λ)1/2

δ

)
+ λ1/2 S.

Also, with probability at least 1− δ,

∀t ≥ 1,
∥∥∥θ̂t − θ∗∥∥∥

V t
≤ R

√
(t− 1)L2

λ
+ 2 log

(
1

δ

)
+ λ1/2 S.

Proof. Plugging in m = V t(θ̂t − θ∗) into (3.14), we get

∥∥∥θ̂t − θ∗∥∥∥2

V t
≤
∥∥∥V t(θ̂t − θ∗)∥∥∥

V
−1
t

(
R

√
2 log

(
det(I +M1:tM∗1:t/λ)1/2

δ

)
+ λ1/2 S

)
. (3.18)

Now,
∥∥∥V t(θ̂t − θ∗)∥∥∥2

V
−1
t

=
∥∥∥θ̂t − θ∗∥∥∥2

V t
and therefore either

∥∥∥θ̂t − θ∗∥∥∥
V t

= 0, in which case

the conclusion holds, or we can divide both sides of (3.18) by
∥∥∥θ̂t − θ∗∥∥∥

V t
to obtain the

desired result.
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In what follows, we denote the “radius” of the confidence set at time t by βt(δ):

βt(δ) =

(
R

√
2 log

(
det(I +M1:tM∗1:t/λ)1/2

δ

)
+ λ1/2 S

)2

.

Remark 3.16 In fact, the theorem and the corollary are equivalent. To see this note that

〈m, θ̂t − θ∗〉 = 〈V 1/2

t (θ̂t − θ∗), V
−1/2

t m〉, thus

sup
m6=0

|〈m, θ̂t − θ∗〉|
‖m‖

V
−1
t

=
∥∥∥θ̂t − θ∗∥∥∥

V t
.

Corollary 3.17 Assume the same as in Theorem 3.11 except that inputs mi ∈ Rd lie in an
Euclidean space. Then, for any δ > 0, with probability at least 1 − δ, for all t ≥ 1, θ∗ lies
in the set

Ct =

{
θ ∈ Rd :

∥∥∥θ̂t − θ∥∥∥
V t
≤ R

√
2 log

(
det(I +M1:tM∗1:t/λ)1/2

δ

)
+ λ1/2 S

}
.

Furthermore, if for all t ≥ 1, ‖Mt‖ ≤ L then with probability at least 1− δ, for all t ≥ 1, θ∗
lies in the set

C ′t =

{
θ ∈ Rd :

∥∥∥θ̂t − θ∥∥∥
V t
≤ R

√
d log

(
1 + (t− 1)L2/λ

δ

)
+ λ1/2 S

}
.

The above bound could be compared with a similar bound of Dani et al. (2008) whose
bound, under identical conditions, states that (with appropriate initialization) with proba-
bility 1− δ,

for all t large enough
∥∥∥θ̂t − θ∗∥∥∥

V t
≤ Rmax

{√
128 d log(t) log

(
t2

δ

)
,

8

3
log

(
t2

δ

)}
,

(3.19)

where large enough means that t satisfies 0 < δ < t2e−1/16. Denote by
√
β̃t(δ) the RHS

in the last bound. The restriction on t comes from the fact that β̃t(δ) ≥ 2d(1 + 2 log(t)) is
needed in the proof of the last inequality of their Theorem 5.

On the other hand, Rusmevichientong and Tsitsiklis (2010) proved that for any fixed
t ≥ 2, for any 0 < δ < 1, with probability at least 1− δ,∥∥∥θ̂t − θ∗∥∥∥

V t
≤ 2κ2R

√
log t

√
d log(t) + log(1/δ) + λ1/2S ,

where κ =
√

3 + 2 log((L2 + trace(V ))/λ. To get a uniform bound one can use a union

bound with δt = δ/t2. Then
∑∞
t=2 δt = δ(π

2

6 − 1) ≤ δ. This thus gives that for any
0 < δ < 1, with probability at least 1− δ,

∀t ≥ 2,
∥∥∥θ̂t − θ∗∥∥∥

V t
≤ 2κ2R

√
log t

√
d log(t) + log(t2/δ) + λ1/2S ,

This is tighter than (3.19), but is still lagging behind the result of Corollary 3.17. Note that
the new confidence set seems to require the computation of a determinant of a matrix, a
potentially expensive step. However, one can speed up the computation by using the matrix
determinant lemma, exploiting that the matrix whose determinant is needed is obtained via
a rank-one update (cf. the proof of Lemma E.1 in the Appendix). This way, the determinant
can be kept up-to-date with linear time computation.
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3.5 Online-to-Confidence-Conversion

The confidence set of Section 3.4 is essentially constructed from the predictions of the online
least-squares method. In this section we show that, more generally, the predictions of any
online algorithm that predicts the responses of the chosen inputs in a sequential manner can
be “converted” to a confidence set.

In online linear prediction, we assume that in round t an online algorithm receives
mt ∈ H, predicts ŷt ∈ R, receives yt ∈ R and suffers a loss `t(ŷt) where `t(y) = (y − yt)2 is
the quadratic prediction loss. In online linear prediction, one makes no assumptions on the
sequence {(mt, yt)}∞t=1, perhaps except for bounds on the norm of mt and magnitude of yt.
In fact, the sequence {(mt, yt)}∞t=1 can be chosen in an adversarial fashion.

The task of the online algorithm is to keep its T -step cumulative loss
∑T
t=1 `t(ŷt) as low

as possible. We compare the loss of the algorithm with the loss of the strategy that uses
a fixed weight vector θ ∈ H and in round t predicts 〈θ,mt〉 – this is why the problem is
called linear prediction. The difference of the losses is called the regret with respect to θ and
formally we write it as

ρT (θ) =

T∑
t=1

`t(ŷt)−
T∑
t=1

`t(〈θ,mt〉) .

The construction of algorithms with “small” regret ρT (θ) is an important topic in the online
learning literature. Examples of algorithms designed to achieve this include variants of the
least-squares method (projected or regularized), the exponentiated gradient algorithm, the
p-norm regularized algorithm, online LASSO, SeqSEW, etc.

Suppose now that we feed an online algorithm for linear prediction with a stochastic
sequence {(mt, yt)}∞t=1 generated according to the model described above. Let the sequence
of predictions produced by the algorithm be {ŷt}∞t=1. The following theorem states that
from the sequence {ŷt}∞t=1 of predictions we can construct high-probability confidence sets
Ct for θ∗. Moreover, as we will see the volume of the set Ct will be related to the regret of
the algorithm; the smaller the regret of the algorithm, the smaller the volume of Ct is. The
theorem below states the precise result.

Theorem 3.18 (Online-to-Confidence-Set Conversion) Assume that {Ft}∞t=1 is a filtration
and for any t ≥ 1, mt is an H-valued, Ft-measurable random variable and ηt is a real-
valued, Ft-measurable random variable that is conditionally R-sub-Gaussian. Define yt =
〈θ∗,mt〉 + ηt+1, where θ∗ ∈ Rd is the true parameter. Suppose that we feed {(mt, yt)}∞t=1

into an online prediction algorithm that, for all t ≥ 1, admits a regret bound

ρt(θ∗) ≤ Bt, (almost surely)

where {Bt}∞t=1 is some sequence of {Ft+1}∞t=1-adapted non-negative random variables. Then,
for any δ ∈ (0, 1/4], with probability at least 1 − δ, the true parameter θ∗ lies in the
intersection of the sets

CT =

{
θ ∈ H :

T∑
t=1

(ŷt − 〈θ,mt〉)2 ≤ 1 + 2BT + 32R2 ln

(
R
√

8 +
√

1 +BT
δ

)}
,

where T ≥ 1.

The proof of the theorem can be found in Section 3.5.1.
Notice that, as expected, the confidence sets CT in the theorem can be constructed from

observable quantities: the data m1,m2, . . . ,mT , y1, y2, . . . , yT , the predictions ŷ1, ŷ2, . . . , ŷT
of the linear prediction algorithm, the regret bound BT , the “variance” of the noise R2 and
the confidence parameter δ. Finally, it is not hard to see that since CT is a sub-level set
of a non-negative quadratic function in θ, it is an ellipsoid, possibly, with some of the axes
infinitely long.
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An important feature of the confidence sets constructed in Theorem 3.18 is that they are
based on regret bounds BT , which can themselves be data-dependent bounds on the regret.
Although we will not exploit this in the later sections of the paper, in practice, the use of
such data dependent bounds (which exists for a large number of the algorithms mentioned)
is highly recommended.

Another important feature of the bound is that the unknown parameter vector belongs
to the intersection of all the the confidence sets constructed, i.e., the confidence sets hold
the true parameter vector uniformly in time. This property is useful both because it leads
to simpler algorithm designs and also to simpler analysis. Note that usually this property
is achieved by taking a union bound, where the failure probability δ at time step T would
be divided by a diverging function of T in the definition of the confidence set. With our
techniques, we were able to avoid this union bound, which is expected to give better results
in practice. In particular, if the online algorithm is “lucky” in that its regret BT does not
grow, or grows very slowly, our confidence set shrink faster than if a union bound was used
to ensure uniformity in time.

It turns out that the fact that confidence sets constructed in Theorem 3.18 can be
unbounded, might potentially lead to trouble (this happens when the vectors (mt) do not
span the full space H). To deal with this issue, we slightly modify the confidence sets: If
we know a priori that ‖θ∗‖ ≤ E we can add ‖θ‖2 ≤ E2 to the inequality defining CT in the
theorem. (Other a priori information can also be added; though using the Hilbert-space
norm leads to computational advantages as we will see.) This leads to the following obvious
corollary.

Corollary 3.19 (Regularized Confidence Sets) Assume the same as in Theorem 3.18 and
additionally assume that ‖θ∗‖ ≤ E. Then, for any δ ∈ (0, 1/4], with probability at least
1− δ, the true parameter θ∗ lies in the intersections of the sets

CT =

{
θ ∈ H : ‖θ‖2 +

T∑
t=1

(ŷt − 〈θ,mt〉)2 ≤ E2 + 1 + 2BT + 32R2 ln

(
R
√

8 +
√

1 +BT
δ

)}
,

where T ≥ 1.

Of course, it would be better to take intersection of the confidence sets from Theorem 3.18
and the set {θ : ‖θ‖ ≤ E} instead, since the resulting confidence set would be smaller than
the confidence set constructed in the corollary. However, the resulting confidence set would
no longer be an ellipsoid and this might complicate matters later. The confidence set
constructed in the corollary is always a bounded non-degenerate ellipsoid and this allows a
relatively simple analysis.

Corollary 3.20 Assume the same as in Corollary 3.19. The confidence sets are contained
in larger ellipsoids

Ct−1 ⊆
{
θ ∈ Rd : ‖θ − θ̂t‖2V t ≤ βt(δ)

}
,

where

θ̂t = argmin
θ∈Rd

(
‖θ‖2 +

t−1∑
s=1

(ŷs − 〈θ,ms〉)2

)
.

Proof. Consider the event A when θ∗ ∈
⋂∞
t=1 Ct. By Corollary 3.19, the event A occurs

with probability at least 1− δ.
The set Ct−1 is an ellipsoid underlying the covariance matrix V t = I+

∑t−1
s=1msm

>
s and

center

θ̂t = argmin
θ∈Rd

(
‖θ‖2 +

t−1∑
s=1

(ŷs − 〈θ,ms〉)2

)
.
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The ellipsoid Ct−1 is non-empty since θ∗ lies in it (on the event A). Therefore θ̂t ∈ Ct−1.
We can thus express the ellipsoid as

Ct−1 =

{
θ ∈ Rd : ‖θ − θ̂t‖2V t + ‖θ̂t‖2 +

t−1∑
s=1

(
ŷs − 〈θ̂t,ms〉

)2

≤ βt(δ)

}
.

The ellipsoid is contained in a larger ellipsoid

Ct−1 ⊆
{
θ ∈ Rd : ‖θ − θ̂t‖2V t ≤ βt(δ)

}
=
{
θ ∈ Rd : ‖θ − θ̂t‖V t ≤

√
βt(δ)

}
.

Remark 3.21 As mentioned in Remark 3.16, we can also obtain a pointwise error bound:
with probability at least 1− δ, for any m ∈ H,

∀t ≥ 1,
∣∣∣〈m, θ̂t〉 − 〈m, θ∗〉∣∣∣ ≤ ‖m‖V −1

t

√
βt(δ) .

3.5.1 Proof of Theorem 3.18

To prove Theorem 3.18, we will need Corollary 3.6 from Section 3.2 and Propositions D.1
and D.2 from Appendix D.

Proof of Theorem 3.18. With probability one,

BT ≥ ρT (θ∗)

=

T∑
t=1

`t(ŷt)− `t(〈θ∗,mt〉)

=

T∑
t=1

(ŷt − yt)2 − (〈θ∗,mt〉 − yt)2

=

T∑
t=1

(ŷt − 〈θ∗,mt〉 − ηt+1)2 − η2
t+1

=

T∑
t=1

(ŷt − 〈θ∗,mt〉)2 − 2ηt+1(ŷt − 〈θ∗,mt〉) .

Thus, with probability one,

T∑
t=1

(ŷt − 〈θ∗,mt〉)2 ≤ BT + 2

T∑
t=1

ηt+1(ŷt − 〈θ∗,mt〉) . (3.20)

The sequence {
∑T
t=1 ηt+1(ŷt − 〈θ∗,mt〉)}∞T=1 is a martingale adapted to {FT+1}∞T=1. We

upper bound its tail using Corollary 3.6 with V = 1.
Corollary 3.6 gives that with probability at least 1− δ, for all T ≥ 1∣∣∣∣∣

T∑
t=1

ηt+1(ŷt − 〈θ∗,mt〉)

∣∣∣∣∣ ≤ R
√√√√2

(
1 +

T∑
t=1

(ŷt − 〈θ∗,mt〉)2

)
ln


√

1 +
∑T
t=1(ŷt − 〈θ∗,mt〉)2

δ

 .

Combining with (3.20), we get

T∑
t=1

(ŷt − 〈θ∗,mt〉)2 ≤ BT + 2R

√√√√2

(
1 +

T∑
t=1

(ŷt − 〈θ∗,mt〉)2

)

×

√√√√√ln


√

1 +
∑T
t=1(ŷt − 〈θ∗,mt〉)2

δ

 . (3.21)
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From this point on, we just need to “solve” this inequality. More precisely, our goal is to
isolate a simple function of θ∗. We proceed as follows. We first add 1 to the both sides of

the inequality and introduce the notation z =
√

1 +
∑T
t=1(ŷt − 〈θ∗,mt〉)2, a = BT + 1 and

b = 2R
√

2 ln(z/δ). With this notation, we can write the last equation equivalently in the
form

z2 ≤ a+ bz .

Since a ≥ 0 and b ≥ 0 (since z ≥ 1 and δ ∈ (0, 1/4]) we can apply Proposition D.1 and
obtain that

z ≤ b+
√
a .

Substituting for b we have
z ≤ R

√
8 ln(z/δ) +

√
a .

Introducing the notation c =
√
a and f = R

√
8 we can write the last inequality equivalently

as
z ≤ c+ f

√
ln(z/δ) .

Therefore, by Proposition D.2,

z ≤ c+ f

√
2 ln

(
f + c

δ

)
.

Substituting for c, a and f we get

z ≤
√
BT + 1 + 4R

√√√√ln

(
R
√

8 +
√

1 +BT
δ

)
.

Squaring both sides and using the inequality (u+ v)2 ≤ 2u2 + 2v2 valid for any u, v ∈ R, we
have

z2 ≤ 2BT + 2 + 32R2 ln

(
R
√

8 +
√

1 +BT
δ

)
.

Substituting for z2 and subtracting 1 from both sides we get

T∑
t=1

(ŷt − 〈θ∗,mt〉)2 ≤ 1 + 2BT

+ 32R2 ln

(
R
√

8 +
√

1 +BT
δ

)
.

This means that θ∗ ∈ CT and the proof is finished.
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Chapter 4

Stochastic Linear Bandits1

Stochastic linear bandit problem in a separable Hilbert space H is a sequential decision-
making problem where in each round t, the learner is given a decision set Dt ⊆ H from
which he has to choose an action at. Subsequently he observes loss `t(at) = 〈at, θ∗〉 + ηt
where θ∗ ∈ H is an unknown parameter and ηt is a random noise satisfying conditions of
Assumption A1 of the previous chapter. In what follows, yt denotes the loss at time t, `t(at).

The goal of the learner is to minimize his total loss
∑T
t=1〈at, θ∗〉 accumulated over the

course of T rounds. Clearly, with the knowledge of θ∗, the optimal strategy is to choose
in round t the point a∗,t = argmina∈Dt〈a, θ∗〉 that minimizes the loss. This strategy would

accumulate total loss
∑T
t=1〈a∗,t, θ∗〉. It is thus natural to evaluate the learner relative to

this optimal strategy. The difference of the learner’s total loss and the total loss of the
optimal strategy is called the pseudo-regret (Audibert et al., 2009) of the algorithm, which
can be formally written as

RT =

(
T∑
t=1

〈at, θ∗〉

)
−

(
T∑
t=1

〈a∗,t, θ∗〉

)
=

T∑
t=1

〈at − a∗,t, θ∗〉 .

As compared to the regret, the pseudo-regret has the same expected value, but lower variance
because the additive noise ηt is removed. However, the omitted quantity is uncontrollable,
hence we have no interest in including it in our results (the omitted quantity would also
cancel, if ηt was a sequence which is independently selected of a1, . . . , at.) In what follows,
for simplicity we use the word regret instead of the more precise pseudo-regret in connection
to RT .

The goal of the algorithm is to keep the regret RT as low as possible. As a bare minimum,
we require that the algorithm is Hannan consistent, i.e., RT /T → 0 with probability one.

Several variants and special cases of the problem exist, differing on what the set of
available actions is in each round. For example, the standard stochastic multi-armed bandit
(MAB) problem is a special case of the linear stochastic bandit problem where the set of
available actions in each round is the standard orthonormal basis of Rd. The MAB problem
is introduced by Thompson (1933) and Robbins (1952) and is extensively studied in the
literature. Gittins (1979) studied the discounted problem in a Bayesian framework. The
Bayes rule and the dynamic programming can, in principle, give us the optimal action in a
Bayesian framework; however, the procedure can be computationally intractable. Gittins’
contribution was to show that the Bayesian computations can be efficiently performed in
this problem. Although this is a significant result, Gittins’ setting is different than ours,
which is not Bayesian and not discounted.

Lai and Robbins (1985) study the problem in a non-Bayesian parametric setting and
design an asymptotically optimal algorithm. The algorithm provably achieves a regret

1This chapter is based on the work by Abbasi-Yadkori, Pal, and Szepesvari (2011a) and Abbasi-Yadkori,
Pal, and Szepesvari (2011b).
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that is within a constant factor of the lower bound for this problem. The algorithm of
Lai and Robbins (1985) was simplified and further developed in (Katehakis and Robbins,
1995, Burnetas and Katehakis, 1996). These results have two limitations: their asymptotic
nature, and the assumption that the loss is a member of a known parametric family.2 These
two limitations were later removed by Auer et al. (2002a) who studied the non-parametric
problem and proposed the Upper Confidence Bound (UCB) algorithm with finite-time
regret bounds.

There is a parallel line of research on bandit problems that place no stochasticity as-
sumptions on the environment. In such problems, the environment can be adversarial and
is free to choose any loss function as long as it satisfies certain assumptions such as linearity,
convexity, boundedness, etc. Auer et al. (2003) proposed the EXP3 algorithm for the ad-
versarial version of the MAB problem and proved a O(

√
KT log T ) regret bound, where K is

the number of actions. This bound has an extra log(T ) factor compared to the lower bound
proved by Lai and Robbins (1985). The gap was later filled in by Bubeck and Audibert
(2010) who proposed an algorithm with a matching O(

√
KT ) regret bound.

The linear bandit problem was first introduced by Auer (2002) under the name “linear
reinforcement learning”. In this version of the problem, the set of available actions changes
from timestep to timestep, but has the same finite cardinality in each step. Auer (2002)
proposed two algorithms for this problem: the simpler LinRel algorithm that was proposed
without analysis, and the more complicated SupLinRel algorithm with a Õ(log

3/2K
√
dT )

regret bound, where d is the dimensionality of the unknown parameter vector and K is the
number of actions. Later, Li et al. (2010), Chu et al. (2011) studied the problem in the
context of web advertisement.

Another variant of the linear bandit problem, studied by Dani et al. (2008), Abbasi-
Yadkori (2009), Rusmevichientong and Tsitsiklis (2010), Abbasi-Yadkori et al. (2011a), is
the case when the set of available actions does not change between timesteps but the set can
be an almost arbitrary, even infinite, bounded subset of a finite-dimensional vector space.
Dani et al. (2008) proved a Õ(d

√
T ) regret bound for the LinRel algorithm. They also

showed that the upper bound is tight by proving a Õ(d
√
T ) lower bound for the linear

bandit problem. This seems to contradict the Õ(
√
dT ) upper bound of Auer (2002), but

notice that the settings are slightly different because the action set of (Auer, 2002) is finite
(though changing) and the “data” is subject to different constaints (`∞ vs. `2). Abbasi-
Yadkori (2009) and Rusmevichientong and Tsitsiklis (2010) independently analyzed forced-

exploration schemes in the linear bandit problem and derived problem-dependent Õ(d
√
T )

regret bounds. In this chapter, we show that the result of Dani et al. (2008) can be improved
in terms of the regret bound, while both the result of Auer (2002) and Dani et al. (2008) can
be improved in terms of the algorithms’ computational complexity. We have also introduced
the regularization to the linear bandit problem to have algorithms that are adaptive to the
sparsity or other regularities of the problem.

Another variant of the linear bandit problem, dubbed “sleeping bandits” and studied
by Kleinberg et al. (2008a), is the case when the set of available actions changes from
timestep to timestep, but it is always a subset of the standard orthonormal basis of Rd.
Related problems were also studied by Abe et al. (2003), Walsh et al. (2009), Dekel et al.
(2010).

More generally, the set of available actions might lie in a separable Hilbert space. Srinivas
et al. (2010) study this problem under the additional assumption that the noise is Gaussian.3

We extend their results to the sub-Gaussian noise and also improve the regret bounds in
terms of logarithmic terms and constants.

Abernethy et al. (2008) studied the linear bandit problem in a finite-dimensional non-

stochastic framework and obtained a Õ(d3/2
√
T ) regret bound, which is not scaling optimally

2We note that the results of (Burnetas and Katehakis, 1996) applies to non-parametric discrete distribu-
tions with finite support.

3Srinivas et al. (2010) claim that the noise can be any arbitrary bounded random variable, but in their
proof, they in fact use the specific probability distribution function of the Gaussian random variables.
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for t := 1, 2, . . . do
(at, θ̃t) = argmin(a,θ)∈Dt×Ct−1

〈a, θ〉
Play at and observe loss yt
Update Ct

end for

Figure 4.1: OFUL algorithm

in dimensionality for this class of problems. More recently, Bubeck et al. (2012) proposed an
algorithm with a O(

√
dT logN) regret bound for any finite action set with N actions. From

this algorithm, they obtain an algorithm with a Õ(d
√
T ) regret bound for the more general

setting of compact action sets and a Õ(
√
dT ) regret bound for the case when the action

set is the Euclidean ball. Unlike the algorithm of Abernethy et al. (2008), this algorithm
is computationally intractable. Bubeck et al. (2012), however, show that the algorithm can
be efficiently implemented for two special cases: the hypercube and the Euclidean ball.

4.1 Optimism in the Face of Uncertainty

A natural and successful way to design an algorithm in many stochastic online learning
problems is the optimism in the face of uncertainty principle (OFU). The basic idea, as
explained in Chapter 1, is that the algorithm maintains a confidence set Ct−1 ⊆ H for the
unknown parameters. It is required that Ct−1 can be calculated from past history and “with
high probability” the unknown parameters lies in Ct−1.

In summary, the algorithm chooses an optimistic estimate

θ̃t = argmin
θ∈Ct−1

( min
a∈Dt
〈a, θ〉)

and then chooses action at = argmaxa∈Dt〈a, θ̃t〉 that minimizes the loss according to the

estimate θ̃t. Equivalently, and more compactly, the algorithm chooses the pair

(at, θ̃t) = argmin
(a,θ)∈Dt×Ct−1

〈a, θ〉 ,

which jointly minimizes the loss. We call the resulting algorithm the OFUL algorithm for
“optimism in the face of uncertainty linear bandit algorithm”. Pseudo-code of the algorithm
is given in Figure 4.1.

4.2 Regret Analysis of the OFUL algorithm

We now give a bound on the regret of the OFUL algorithm when run with confidence sets Ct
constructed in Corollary 3.15 in the previous chapter. We will need to assume that expected
losses are bounded. We can view this as a bound on θ∗ and the bound on the decision sets
Dt. The next theorem states a bound on the regret of the algorithm. The proofs, which are
largely based on the work of Dani et al. (2008) and are included for completeness, can be
found in Appendix E.1.

Theorem 4.1 (Regret of OFUL) Let (a1, y1), (a2, y2), . . . satisfy the Linear Response As-
sumption A1 of the previous chapter. Let A1:t : H → Rt−1 be an operator such that for
any v ∈ H, the kth element of A1:tv is 〈ak, v〉. Assume that for all t and all a ∈ Dt,
〈a, θ∗〉 ∈ [−1, 1]. Then, with probability at least 1− δ, the regret of the OFUL algorithm
satisfies

∀T ≥ 1, RT ≤ 4
√
βT (δ)T log det(I +A1:T+1A∗1:T+1/λ) ,
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Figure 4.2: The application of the new confidence sets (constructed in Corollary 3.15) to a
linear bandit problem. A 2-dimensional linear bandit, where the parameter vector and the
actions are from the unit ball. The regret of OFUL is significantly better compared to the
regret of ConfidenceBall of Dani et al. (2008). The noise is a zero mean Gaussian with
standard deviation σ = 0.1. The probability that confidence sets fail is δ = 0.0001. The
experiments are repeated 10 times and the average and the standard deviation over these
10 runs are shown.

where

βT (δ) =

(
R

√
2 log

(
det(I +A1:TA∗1:T /λ)1/2

δ

)
+ λ1/2 S

)2

.

Remark 4.2 In a d-dimensional space, the above bound with the choice of V = λI reduces
to

RT ≤ 4
√
Td log(λ+ (T − 1)L/d)

(
λ1/2S +R

√
2 log(1/δ) + d log(1 + (T − 1)L/(λd))

)
.

Remark 4.3 When the action set is finite and has only k members, with an appropriate
choice of V , we get that

log det
(
I +A1:tV

−1A∗1:t

)
≤ k log

(
1 +

t

k

)
,

independently of the dimensionality of the space that the actions are embedded into (see
Corollary 3.7). Thus, the bound in the above theorem is in the order of k

√
T . Although

the optimal rate for the MAB problem scales as
√
kT , it is still interesting to obtain a

dimensionality-independent bound for a linear bandit algorithm. We note that such a
dimensionality-independent bound can not be obtained for the algorithm of Dani et al.
(2008), because the dimensionality appears in the size of their confidence ellipsoid. This
shows another advantage of constructing tight data-driven confidence sets.

Figure 4.2 shows the experiments with the new confidence set (constructed in Corol-
lary 3.15). The regret of OFUL is significantly better compared to the regret of Confi-
denceBall of Dani et al. (2008). The figure also shows a version of the algorithm that has
a similar regret to the OFUL algorithm, but spends about 350 times less computation in
this experiment. Next, we explain how we can achieve this computation saving.

4.2.1 Saving Computation

In this section, we show that we essentially need to recompute θ̃t only O(log T ) times

up to time T and hence saving computations.4 The idea is to recompute θ̃t whenever

4Note this is very different than the common “doubling trick” in online learning literature. The doubling
is used to cope with a different problem. Namely, the problem when the time horizon T is unknown ahead
of time.
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Input: Constant C > 0
τ = 1 {This is the last time step that we changed θ̃t}
for t := 1, 2, . . . do

if det(I +Aτ :tV
−1
τ A∗τ :t) > 1 + C then

(at, θ̃t) = argmin(a,θ)∈Dt×Ct−1
〈a, θ〉.

τ = t.
end if
at = argmina∈Dt〈a, θ̃τ 〉.
Play at and observe loss yt.

end for

Figure 4.3: The rarely switching OFUL algorithm

det(Vt) increases by a constant factor (1 +C). We call the resulting algorithm the rarely
switching OFUL algorithm and its pseudo-code is given in Figure 4.3. As the next
theorem shows its regret bound is essentially the same as the regret for OFUL.

Theorem 4.4 Under the same assumptions as in Theorem 4.1, with probability at least
1− δ, for all T ≥ 1, the regret of the rarely switching OFUL algorithm satisfies

RT ≤ 4
√

(1 + C)βT (δ)T log det(I +A1:T+1V −1A∗1:T+1) .

Remark 4.5 In the finite-dimensional case, we get that

RT ≤ 4
√

(1 + C)Td log(λ+ (T − 1)L/d)
(
λ1/2S +R

√
2 log 1/δ + d log(1 + (T − 1)L/(λd))

)
.

The proof of the theorem is given in Appendix E.2. The proof is based on the following
lemma whose proof can also be found in Appendix E.2.

Lemma 4.6 Let A, B and C be positive semi-definite operators such that A = B +C. Let
C = D∗D be a decomposition of C. Assume that DB−1D∗ is a trace-class operator. Then,
we have that

sup
a 6=0

〈a,Aa〉
〈a,Ba〉

≤ det(I +DB−1D∗) .

Remark 4.7 In the finite-dimensional case, the lemma can also be stated as follows: Let
A, B and C be positive semi-definite matrices such that A = B + C. Then, we have that

sup
a 6=0

a>Aa

a>Ba
≤ det(A)

det(B)
.

Figure 4.4 shows a simple experiment with the rarely switching OFUL algorithm.

4.2.2 Problem Dependent Bound

For simplicity, we restrict ourselves to the finite-dimensional fixed decision sets in this sec-
tion. First we explain the notion of “gap” as defined in (Dani et al., 2008). An extremal
point of the decision set D is a point that is not a proper convex combination of points in D.
The set of all extremal points in D is denoted by Γ. It can be shown that a linear function
on D is minimized in a point in Γ. Define the set of sub-optimal extremal points

Γ− = {a ∈ Γ : 〈a, θ∗〉 > 〈a∗, θ∗〉} .
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Figure 4.4: Regret against computation. We fixed the number of times the algorithm is
allowed to update its action in OFUL. For larger values of C, the algorithm changes action
less frequently, hence, will play for a longer time period. The figure shows the average
regret obtained during the given time periods for the different values of C. Thus, we see
that by increasing C, one can actually lower the average regret per time step for a given
fixed computation budget.

Then define the gap, ∆, as
∆ = inf

a∈Γ−
〈a, θ∗〉 − 〈a∗, θ∗〉 .

Intuitively, ∆ is the difference between the losses of the best and the “second best” action
in the decision set D. Note that when D is a ball, ∆ = 0. When D is a polytope, ∆ > 0.

The regret of OFUL can be upper bounded in terms of ∆ as follows.

Theorem 4.8 Assume that the action set is contained in a Euclidean ball of radius L in
Rd. Assume that λ ≥ 1 and ‖θ∗‖2 ≤ S where S ≥ 1. With probability at least 1− δ, for all
T ≥ 1, the regret of the OFUL algorithm satisfies

RT ≤
16R2λS2

∆

(
log(L(T − 1)) + (d− 1) log

64R2λS2L

∆2

+ 2(d− 1) log

(
d log

dλ+ (T − 1)L2

d
+ 2 log(1/δ)

)
+ 2 log(1/δ)

)2

.

The proof of the theorem can be found in the Appendix E.3.

The problem dependent regret of (Dani et al., 2008) scales like O(d
2

∆ log3 T ), while our

bound scales like O( 1
∆ (log2 T + d log T + d2 log log T )).

4.2.3 Multi-Armed Bandits

In this section we show that a modified version of UCB has with high probability constant
regret.

Let µi be the expected loss of action i = 1, 2, . . . , d. Let µ∗ = min1≤i≤d µi be the
expected loss of the best action, and let ∆i = µi − µ∗, i = 1, 2, . . . , d, be the “gaps” with
respect to the best action. We assume that if we choose action It in round t we obtain
loss µIt + ηt+1. Let Ni,t denote the number of times we have played action i up to time t,
and Xi,t denote the average of the losses received by action i up to time t. We construct
confidence intervals for the expected losses µi in the following lemma. (The proof can be
obtained from Equation 3.10 and an additional union bound over actions.)

Lemma 4.9 (Confidence Intervals) Assuming that the noise ηt is conditionally 1-sub-
Gaussian, with probability at least 1− δ,

∀i ∈ {1, 2, . . . , d}, ∀t ≥ 1, |Xi,t − µi| ≤ ci,t ,
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where

ci,t =

√
2

(1 +Ni,t)

N2
i,t

log

(
d(1 +Ni,t)1/2

δ

)
. (4.1)

Using these confidence intervals, we modify the UCB algorithm of Auer et al. (2002a)
and change the action selection rule accordingly. Hence, at time t, we choose the action

It = argmin
i

Xi,t − ci,t . (4.2)

We call this algorithm UCB(δ).
The main difference between UCB(δ) and UCB is that the length of the confidence

interval ci,t depends neither on T , nor on t. This allows us to prove the following result that
the regret of UCB(δ) is constant. The proof can be found in Appendix E.4.

Theorem 4.10 (Regret of UCB(δ)) Assume that the noise ηt is conditionally 1-sub-
Gaussian. Then with probability at least 1 − δ, the total regret of UCB(δ) is bounded
as

RT ≤
∑

i:∆i>0

(
3∆i +

16

∆i
log

2d

∆iδ

)
.

Figure 4.5 compares two versions of the UCB(δ) algorithm: one that uses a Hoeffding-
based confidence interval, and the other with confidence interval (4.1). As we can see, the
regret of UCB(δ) is improved with the new bound.

Remark 4.11 Lai and Robbins (1985) prove that for any suboptimal arm j,

E [Ni,t] ≥
log t

D(pj , p∗)
,

where D is the KL-divergence, and p∗ and pj are the probability density functions of the
optimal arm and arm j, respectively. This lower bound does not contradict Theorem 4.10,
as Theorem 4.10 only states a high probability upper bound on the regret. Note that
UCB(δ) takes δ as its input. Because with probability δ, the regret in time t can be O(t),
on expectation, the algorithm might have a regret of O(tδ). If we select δ = 1/t, then we
get O(log t) upper bound on the expected regret.

Remark 4.12 If we are interested in an average regret result, then, with a slight modifi-
cation of the proof technique, we can obtain a result similar to what Auer et al. (2002a)
prove.

Remark 4.13 Coquelin and Munos (2007) and Audibert et al. (2009) prove similar high-
probability constant regret bounds for variations of the UCB algorithm. Compared to their
bounds, our bound is tighter thanks to that with the new self-normalized tail inequality we
can avoid one union bound. The improvement can also be seen in experiment as the curve
that we get for the performance of the algorithm of Coquelin and Munos (2007) is almost
exactly the same as the curve that is labelled Old Bound in Figure 4.5.

4.3 Alternative Methods for Stochastic Linear Bandit
Problems

In this section, we briefly explain a number of other approaches to the linear stochastic
bandit problem. In the next section, we will compare the performance of these algorithms
and ours on a real-world dataset. We start by a slight generalization of the linear stochastic
bandit problem.
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Figure 4.5: The regret against time for two versions of the UCB(δ) algorithm: one that
uses a Hoeffding-based confidence interval (referred to as Old Bound), and the other with
confidence interval (4.1) (referred to as New Bound). The results are shown for a 10-
armed bandit problem, where the mean value of each arm is fixed to some value in [0, 1].
The regret of UCB(δ) is improved with the new bound. The noise is a zero-mean Gaussian
with standard deviation σ = 0.1. The value of δ is set to 0.0001. The experiments are
repeated 10 times and the average together with the standard deviation are shown.

Changing Action Sets

In the rest of this chapter we will consider a slight generalization of the stochastic linear
bandit problem. The generalization is important from the point of view applications, but it
does not present any added difficulties for the algorithms discussed so far, or the algorithms
that we will subsequently discuss. So far, we have assumed that the actions available in each
time step belong to the same set D ⊂ Rd. In many applications, however, the set of actions
may change in each time step (some actions may expire, some other actions may become
available). Thus, in what follows, we will allow this set to change. The set of admissible
actions for time step t will be denoted by Dt ⊂ Rd. Naturally, the set Dt will be announced
at the beginning of the round, before the algorithm has to choose an action.

Thompson Sampling

Thompson (1933) introduced the multi-armed bandit (MAB) problem and proposed a simple
Bayesian mechanism for action selection in such problems. The algorithm takes a prior
distribution and a probability model on the losses of the arms/actions as input. Given the
observations, the posterior distribution is obtained using the Bayes’ rule, from which the
algorithm samples the next loss estimate that is the basis of choosing the next action.

Recently, Chapelle and Li (2011) showed experimentally that the multi-armed version
of the algorithm is competitive in a number of experiments. The first finite-time analysis of
the method has appeared in Agrawal and Goyal (2012) and Kaufmann et al. (2012). These
results, although promising, do not match the minimax optimal regret rates of the MAB
problem.

In this section, we show an implementation of Thompson sampling in the linear bandit
setting. Let Nn(m,Σ) denote the n-dimensional normal distribution with mean vector
m and covariance matrix Σ. Let χ2

ν denote the chi-square distribution with ν degrees of
freedom. We assume that, given action at, the loss is distributed according to

yt | at, θ, σ2 ∼ N1(〈at, θ〉, σ2) . (4.3)

Further, we assume that the parameter vector θ and the variance σ2 together have a normal-
(inverse chi-square) distribution:

θ | σ2 ∼ Nd(µt, σ2(νtΨt)
−1) ,

σ−2 ∼ (τ2
t νt)

−1χ2
νt . (4.4)
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for t := 1, 2, . . . do
Draw (θ, σ2) from normal-(inverse chi-square) distribution (4.4)
For each action a ∈ Dt, draw a loss from (4.3)
Let at be the action with the lowest sample loss
Play action at and observe loss yt
Update hyper-parameters by (4.5)

end for

Figure 4.6: Thompson sampling for linear bandits.

The variables µt, νt,Ψt, τt are called hyper-parameters as they specify the distribution of
parameters θ and σ2. The prior is conjugate: the posterior has the same form given new
data. The hyper-parameters are updated as follows:

νt+1 = νt + 1 ,

νt+1Ψt+1 = νtΨt + a>t at ,

νt+1Ψt+1µt+1 = νtΨtµt + a>t yt ,

νt+1(τ2
t+1 + µ>t+1Ψt+1µt+1) = νt(τ

2
t + µ>t Ψtµt) + y2

t . (4.5)

The pseudo-code of the algorithm is given in Figure 4.6. We currently have no theoretical
guarantees for this algorithm.

Exponentially weighted Stochastic (EwS) Algorithm

Maillard (2011) proposes the exponentially weighted stochastic (EwS) algorithm for MAB
problems. Let Na,t be the number of times that action a is played up to time t, and µ̂a,t be
the empirical mean loss of action a at time t. At each round, the algorithm computes the
empirical gaps

∀a ∈ Dt, ∆̂a,t = max
b∈Dt

µ̂a,t − µ̂b,t ,

and then defines a distribution from which the next action is drawn:

pt(a) =
exp(−2Na,t−1∆̂2

a,t−1)∑
b∈Dt exp(−2Nb,t−1∆̂2

b,t−1)
.

The EwS algorithm can be generalized to the linear bandit setting. Using the same
notations as before, we define the empirical gaps

∀a ∈ Dt, ∆̂a,t = max
b∈Dt

〈a, θ̂t〉 − 〈b, θ̂t〉 , (4.6)

and the distribution from which the next action is drawn from the density

pt(a) =
exp

(
−2 ‖a‖

V
−1
t

∆̂2
a,t−1

)
∑
b∈Dt exp

(
−2 ‖b‖

V
−1
t

∆̂2
b,t−1

) . (4.7)

The Pseudo-code of the algorithm is shown in Figure 4.7. We currently have no theoretical
guarantees for this algorithm.
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for t := 1, 2, . . . do
Compute empirical gaps by (4.6) for each action a ∈ Dt

Compute distribution (4.7)
Draw an action at from the distribution
Play action at and observe loss yt
Update θ̂t by the least-squares method

end for

Figure 4.7: EwS for linear bandits

Bandits based on Generalized Linear Models (GLM)

Modelling a bounded loss, such as that in the web advertisement, by an unconstrained linear
function can lead to suboptimal performance. One approach to constrain the loss is to use a
generalized linear model (GLM); given action a and parameter vector θ∗, the expected loss
y is assumed to have the form of

E [ y | a, θ∗ ] = ρ(〈a, θ∗〉) ,

where the inverse link function ρ : R→ [0, 1] is a strictly increasing, continuously differen-
tiable function.

An inverse link function ρ with the said properties gives rise to a so-called canonical ex-
ponential model that determines the distribution of the losses as a function of the action and
the parameter. It can be shown that the maximum likelihood estimator (MLE) underlying
this exponential model satisfies

F (θ)
.
=

t−1∑
k=1

(yk − ρ(〈ak, θ〉))ak = 0 .

Filippi et al. (2010) propose to find the MLE estimator by using Newton’s method to find the
root of this equation and then play optimistically. Newton’s update rule gives the recursion

θ̂t
(p+1)

= θ̂t
(p)
−

(
t−1∑
k=1

ρ′
(
〈ak, θ̂t

(p)
〉
)(

1− ρ
(
〈ak, θ̂t

(p)
〉
))

aka
>
k

)−1

F (θ̂
(p)
t ) , (4.8)

where ρ′ denotes the derivative of ρ. This update has to be iterated until convergence, giving
rise to θ̂t. Note that Newton’s method is guaranteed to converge due to the properties of ρ.
Further, in an efficient implementation the inverse matrix can be computed incrementally
using the Sherman-Morrison formula. Finally, given the most recent estimate, an optimistic
action is chosen by solving

at = argmin
a∈Dt

{
ρ(〈a, θt〉)− βt ‖a‖V −1

t

}
, (4.9)

where βt is an appropriate increasing function. The pseudo-code of the algorithm is given
in Figure 4.8.

4.4 Experiments

We tested the linear bandit algorithms presented in the previous section, along with OFUL
in the recent “Exploration/Exploitation” challenge5. We present the results in this section.

5The challenge was part of an ICML 2012 workshop on Exploration/Exploitation dilemma. See
https://explochallenge.inria.fr
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for t := 1, 2, . . . do
Find the optimistic action at by solving (4.9)
Play action at and observe loss yt
Update θ̂t by Newton’s method (4.8)

end for

Figure 4.8: GLM for linear bandits

Problem Definition and Dataset

For evaluation, the organizers of the challenge used the Yahoo! front page article recommen-
dation dataset.6 This dataset has been generated by Yahoo! and saved for the evaluation of
bandit methods. How the actual evaluation of bandit algorithms (which assume the avail-
ability of an environment to interact with instead of some “static” dataset) is done will be
explained in the next section (the idea is to use importance weighting), while in this section
we focus on the description of the underlying problem and how the data was collected and
what it contains.

The contextual bandit problem underlying this dataset is to pick an article at any time t
from a pool of available articles at that time, given some information about the user visiting
the webpage. The headline of the article picked is then displayed at a prominent part of
Yahoo’s webpage. The goal is to recommend articles that the users will find appealing.
Whether the user found an article appealing is measured based on whether the user clicked
on the article. Accordingly, the reward (which is the negated loss) given to the bandit
algorithm is 1, if the user clicks on the chosen article, and is 0 otherwise. This can be
modelled by introducing the reward function

rt(a) =

{
1, if the user who visits the website at time t clicks on article a;

0, otherwise.

The clickthrough rate (CTR) achieved by an algorithm is the average reward achieved by
the algorithm over a given period of time.

The dataset is collected as follows: at each timestep, a user visits the Yahoo! front page.
The behaviour policy observes the pool of articles and it then chooses one article uniformly
at random to show to the user. The user’s feedback and other information (timestamp, user
vector, and available articles) are then recorded.

Each entry in the dataset contains a timestamp, a 136-dimensional binary vector repre-
senting the user visiting the front page at the given time step, the identifiers of the available
articles (around 30 of them), the identifier of the displayed article, and whether the user
clicked on the article. The identifier shows the age of an article; articles with larger identi-
fiers are more recent. The first element in the user vector is constant and always equals to
1. The remaining elements encode other user information such as age, gender, etc, but at
the time of the contest, the meaning of these bits was not revealed to the contestants.

The dataset contains 30 × 106 entries, from which 9, 200, 000 entries are used in the
training phase. The split is based on time (older data is used for the first, training phase).
The total number of articles during the training phase is 246, while the total number of
articles in the full dataset is 652. At any timestep, the number of available articles is less
than 30. The pool of available articles, however, changes over time (see Figure 4.9).

Given that there are around 30 articles at each timestep, the probability of the event that
a policy’s recommendation matches the choice of the behaviour policy (the displayed article)
is 1/30. Naturally, only when this happens does the algorithm get useful feedback (see also
the next section for further explanation). Thus, there are around 300, 000 evaluations for

6http://webscope.sandbox.yahoo.com/catalog.php?datatype=r%20%28%E2%80%9CR6%E2%80%B3%29
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Figure 4.9: The pool of available articles changes over time. The total number of articles
during the training phase is 246. Black bars show the subset of the articles that are available
at any given time.

any algorithm. Submissions are constrained to run in less than 36 hours. To fulfil this time
constraint, an algorithm should choose an article on average within 5 ms and update its
policy within 50 ms when receiving feedback.

Off-Policy Evaluation

In a bandit problem, the loss function is revealed only for the action chosen; we do not
know what would have happened if another action was chosen at a given time. Thus, when
recording the dataset, the dataset will miss this information and if a bandit algorithm to
be evaluated will deviate from the action used to collect the data, the algorithm cannot be
given feedback. This is in contrast to the supervised learning setting where no matter what
decision one makes, the decision can be evaluated. One approach to this problem is to repeat
the data collection process for each bandit algorithm. This approach, however, is inpractical
as testing on a real-world system, such as the Yahoo! front page article recommendation,
can be expensive.

Another approach to this problem is to use a single dataset to evaluate different ban-
dit policies. The problem of evaluating policies (algorithms) other than the one that was
used to generate the data is known as the off-policy evaluation problem in reinforcement
learning (Sutton and Barto, 1998). In this literature, the data gathering policy is called the
behaviour policy, while the policy that we want to evaluate is called the target policy.

How can we evaluate a target policy based on some data generated by a behavior policy
that may be different from the target policy? Assume that contexts-reward function pairs
(xt, rt(·))t are sampled in an i.i.d. fashion. Let at be the choice of the behavior policy b at
time t, and let a′t be the choice of the target policy π at time t. The goal is to estimate the
expected average reward that is achieved by the target policy. The idea is simply to reject
timesteps where at and a′t differ – a form of “rejection sampling”, giving rise to

r̂π,T =

∑T
t=1 I{at=a′t}rt(at)∑T

t=1 I{at=a′t}
, (4.10)

where T is the size of the dataset. Assuming that the behavior policy selects actions uni-
formly at random and that the target policy is a “stationary policy” (i.e., it chooses its
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action based on the current context only), one can show that this estimator is unbiased, i.e,
E [r̂π,T ] = E [r(π(x1))] (Li et al., 2011). This suggests using this estimator in evaluating the
performance of bandit methods (the only issue is that bandit algorithms “learn”, i.e., the
policy underlying a bandit algorithm is not stationary).

Submission Rules

Submissions are not allowed to log any part of the data; therefore, no offline processing is
possible. The only feedback that participants receive is a file that shows the CTR of the
submitted algorithm at every 200, 000 timesteps.

Article Recommendation as a Linear Stochastic Bandit Problem

A simple approach to the article recommendation problem is to treat articles independently
and use a MAB algorithm, such as UCB, for action selection. The CTR of UCB is shown
Figure 4.10.

The problem can be more naturally modelled as a linear bandit problem by assuming
that for each article l and user xt, the probability of click is linear in some features of the
article and the user, P (rt(xt, l) = 1) = 〈a(xt, l), θ∗〉. The action set in this linear bandit
problem has the form of

Dt = {a(xt, l) : l ∈ Lt} ,

where Lt is the set of articles at time t.

Action Representations

As mentioned earlier, we can treat articles as if there was no information shared between
them and use a MAB algorithm for action selection. In that case, the action set has the
form of

Dt =




1
0
...
0

 ,


0
1
...
0

 , . . . ,


0
0
...
1


 , θ∗ =


θ1,∗
θ2,∗

...
θk,∗

 ∈ Rk ,

where k = 256 is the number of articles.
This simple baseline can be improved by considering additional information, so that

we can generalize over the set of articles. First notice that more recent articles are more
likely to receive clicks. To see this, notice the CTR difference between AlwaysLast and
AlwaysFirst algorithms in Figure 4.10, which always pick the most recent or oldest article,
respectively. Another source of information that can be exploited is the user vector. It is
reasonable to assume that similar users have similar click behaviour. We explain three
methods to encode this information in the action representation.

The first action representation, which we call UserInfo, represents an action by a vector
of length 246× 136 = 33, 456. For article i ∈ {1, . . . , 246}, all elements of the corresponding
action vector are zero except 136 of them in positions 136(i − 1) to 136i that contain the
user vector. Thus, the action set has the form of

Dt =



xt
0
...
0

 ,


0
xt
...
0

 , . . . ,


0
0
...
xt


 , θ∗ =


θ1,∗
θ2,∗

...
θk,∗

 ∈ Rk×n ,

where n = 136 is the dimensionality of the user vector and each θi,∗ is an n-dimensional
vector.

The second action representation, that we call AgeInfo, represents an action by a
vector of length 248. Let it be the most recent article available at time t. Let fi,t be the age
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difference between article i and article it. We represent the action associated with article
i by a vector a that has non-zero values only at ai = a247 = 1 and a248 = fi,t. Thus, the
action set has the form of

Dt =





1
0
...
0
1
f1,t


,



0
1
...
0
1
f2,t


, . . . ,



0
0
...
1
1
fk,t




, θ∗ =


θ1,∗
θ2,∗

...
θk,∗

 ∈ Rk+2 .

The third action representation, that we call Hybrid, represents an action by a vector
of length 246 × 136 + 2 = 33, 458. The first 33, 456 elements of action i are identical to
UserInfo, the 33, 457th element is 1, and the last element is fi,t. Thus, the action set has
the form of

Dt =





xt
0
...
0
1
f1,t


,



0
xt
...
0
1
f2,t


, . . . ,



0
0
...
xt
1
fk,t




, θ∗ =


θ1,∗
θ2,∗

...
θk,∗

 ∈ Rk×n+2 .

Next we explain the computational complexity of different algorithms with the above
action representations.

Computational Issues

Consider the OFUL algorithm. The optimistic value of action a is

〈a, θ̂t〉+ ‖a‖
V
−1
t
βt(δ) .

Because action vectors are sparse in these experiments, both terms can be computed effi-

ciently even in large dimensions. It only remains to update θ̂t and V
−1

t efficiently. Comput-

ing θ̂t by the least-squares method also requires V
−1

t . So we first discuss the complexity of

updating V
−1

t .

Computing V
−1

t can be computationally expensive in high-dimensional problems. Be-
cause V t is updated by a rank-one matrice, we can use the Sherman-Morrison formula to
improve the computational cost of the update of the inverse from O(d3) to O(d2):

(V t + ata
>
t )−1 = V

−1

t −
V
−1

t ata
>
t V
−1

t

1 + a>t V
−1

t at
.

The formula is fast enough for the AgeInfo representation. The combination of the OFUL
algorithm and the AgeInfo action representation is denoted by OFUL-AgeInfo in Fig-
ure 4.10. In the UserInfo representation, the V t matrix has a block-diagonal structure,
which again allows fast updates. This combination is denoted by OFUL-UserInfo in
Figure 4.10.

We lose the block-diagonal structure with the Hybrid representation and the updates
can no longer be done within the time limits. The OFUL algorithm estimates θ∗ by the least-
squares method. Instead of this, we can update the estimate by the gradient descent method,
which is computationally efficient even with the high-dimensional Hybrid representation.
Let α > 0 be a learning rate, θ̂t be the estimate at time t, aHybrid,t be the action vector in the
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Hybrid representation, and aAgeInfo,t be the action vector in the AgeInfo representation.
The gradient update rule is given by

θ̂t = θ̂t−1 + 2α(rt − 〈aHybrid,t, θ̂t−1〉)aHybrid,t .

Computing the optimistic bonus requires V
−1

t , which, due to the quadratic complexity of
the Sherman-Morrison formula, can be updated within the time limits only in the AgeInfo
representation. Adding the estimate and the optimistic bonus together, we get the optimistic
estimate:

〈aHybrid,t, θ̂t〉+ ‖aAgeInfo,t‖V −1
t
βt(δ) .

This method is denoted by OFUL-Gradient in Figure 4.10.
The GLM algorithm has all the computational complexities of the OFUL algorithm

with the additional cost of Newton’s update (4.8). The update rule (4.8) is computationally
expensive as it iterates over all past timesteps. Instead, we estimate Newton’s update using
a subset St that is sampled from past timesteps:

θ̂t
(p+1)

= θ̂t
(p)
−

(∑
k∈St

ρ′
(
〈ak, θ̂t

(p)
〉
)(

1− ρ
(
〈ak, θ̂t

(p)
〉
))

aka
>
k

)−1

F (θ̂
(p)
t ) .

Further, in each time step, again for increased speed, only one update of Newton’s iteration
is executed, so the update used in the experiments actually takes the above form.

Results

Results for the algorithms we have implemented are shown on Figure 4.10. The figure shows
the scores that were achieved in Phase 1 of the competition when we have experimented with
the various methods. As described earlier, in every time step AlwaysFirst chooses the oldest
articles available in the pool, while AlwaysLast chooses the most recent ones. The difference
between the performance of these two methods shows that the “age” of an article is indeed
important. Random simply chooses one article uniformly at random. That its performance
is better than that of AlwaysFirst is another indication that choosing recent articles is a
good idea. That Thompson sampling did not perform well is surprising. It is possible that
tweaking with its parameters may lead to much better results. That OFUL-Grad, which
is a true “hybrid” did not perform well is less surprising. However, it is more surprising
that GLM-AgeInfo did not perform well. It may be because the original GLM algorithm
was replaced with a computationally cheaper alternative and as a result the performance
got sacrificed. That UCB performed well is reassuring, as is that two variants of OFUL
(OFUL-AgeInfo and OFUL-UserInfo) performed significantly better than UCB. In the final
submission we chose to submit OFUL-AgeInfo, which was our submission that performed the
best in Phase 1. We were worried about overfitting, but at the time there was a possibility
that on the top X contestants will proceed to the second phase, hence we felt it is better to
submit our best performing method.

In the actual competition, there were 38 participants, but only 25 of them obtained
a score substantially higher than the UCB algorithm. Our best submission (OFUL-
AgeInfo) ranked 7th in the Phase 1, while it ranked 8th in Phase 2. The scores achieved
by the top 8 participants in the two phases are shown on Figure 4.11. As can be seen from
the figure, all scores were quite close to each other (and much better than the score that
was achieved by UCB in Phase 1, which was below 600).7 It is remarkable, that the score
of the top participants of Phase 1 all dropped in Phase 2. The actual scores are shown
on Figures 4.12 and 4.13, for Phase 1 and Phase 2, respectively. The winner of Phase 2
did not use any user or article information, but used a variant of UCB tuned for normally

7The score is 1000 times the CTR as estimated with the off-policy evaluation method described earlier.
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Figure 4.10: Clickthrough rate (CTR) of a number of linear bandit algorithms on Yahoo!
front page article recommendation dataset.
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Figure 4.11: Scaled CTR of our algorithm compared to the scaled CTR of top three partic-
ipants of the training and test phases. Our username is EpsilonGreedyRocks!
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distributed random variables (the so-called UCB-Normal algorithm, Auer et al. 2002a). The
main difference to UCB is the use of variance information. It is remarkable, though due to
the small CTR values somewhat expected, that in this problem the use of variance improves
the performance of UCB significantly. The winner of Phase 1 combined heuristic methods
with algorithms based on the OFU principle (Chou and Lin, 2012). Based on the data
available, it appears that the top participants of Phase 1, despite their limited access to
the data, overfitted the data from Phase 1. However, the data also suggest that the final
outcome can potentially be attributed to luck: the score of the winner of Phase 2 increased
by approximately 50 points from Phase 1 to Phase 2. Given that the scores have to divided
by 1000, the difference is 4× 10−2. A difference of this size, given that the size of the test
data is in the range of 106, is on the edge of being detectable at the range of scores of 900:
The variance of a binomial random variable with p = 9× 10−4 and n = 106 trials is about
30. Therefore, scores within 30 − 60 points of each other are expected to be statistically
indistinguishable.

4.5 Sparse Bandits

In this section, we first define the sparse variant of the linear stochastic bandits, and then
show how the so-called “optimism in the face of uncertainty” principle can be applied to
this problem.

Our goal will be to design algorithms for which the regret is low if θ∗ is sparse, that
is, if most coordinates of θ∗ are zero. This is what we call the sparse variant of the linear
stochastic bandit problem.

4.5.1 Regret Analysis of OFUL

Consider the OFUL algorithm defined in Figure 4.1 that uses the confidence set Ct con-
structed in Corollary 3.19 from an online linear prediction algorithm. To keep the analysis
general, we leave the underlying linear prediction algorithm unspecified and we only assume
that for all T ≥ 1 it satisfies the regret bound ρT (θ∗) ≤ BT .

We introduce a shorthand notation for the RHS of the inequality in Corollary 3.19
specifying the confidence set Ct:

βt(δ) = E2 + 1 + 2Bt + 32R2 ln

(
R
√

8 +
√

1 +Bt
δ

)
.

The next two theorems upper bound the regret RT of the resulting OFUL algorithm8.
The proofs are similar to the proofs of Theorems 4.1 and 4.8.

Theorem 4.14 (Regret of OFUL) Assume that ‖θ∗‖2 ≤ E and assume that for all t ≥ 1
and for all a ∈ Dt, ‖a‖2 ≤ A and |〈a, θ∗〉| ≤ G. Then, for any δ ∈ (0, 1/4], with probability
at least 1− δ, for any T ≥ 1, the regret of the OFUL algorithm is bounded as

RT ≤ 2 max{1, G}
√

2T log det(1 +A1:T+1A∗1:T+1/λ) max
0≤t<T

βt(δ) .

Theorem 4.15 (Problem Dependent Regret Bound of OFUL) Assume the same as in
Theorem 4.14 and additionally assume that the gap ∆, as defined in Section 4.2.2, is positive.
Then, for any δ ∈ (0, 1/4], with probability at least 1 − δ, for any T ≥ 1, the regret of the
OFUL algorithm is bounded as

RT ≤
8

∆
max{1, G2} log det(1 +A1:T+1A

∗
1:T+1/λ) max

0≤t<T
βt(δ) .

8Note that RT has nothing to do with ρT (θ) of Section 3.5, except for sharing the same name.
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Figure 4.12: Results of the training phase.
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Figure 4.13: Results of the test phase. Our username is EpsilonGreedyRocks.

To simplify, here and in the rest of the chapter we view E,A,G,R as constants. Then,
when the action set is a subset of Rd, the problem dependent and independent regrets
of OFUL are Õ(dBT lnT/∆) and Õ(

√
TdBT ), respectively. Consequently, smaller regret

bound for the online prediction algorithm translates (via Theorems 4.14 and 4.15) into a
smaller regret bound for OFUL.

As the theorems show, the regret of OFUL depends on the regret of the online learning
algorithm that we use as a sub-routine to construct the confidence set. In particular, in
order to achieve O(polylog(T )

√
T ) uniform regret for OFUL, one needs an online learning

algorithm with O(polylog(T )) regret bound.
Unfortunately, for some of the popular algorithms, such as the exponentiated gradient,

the p-norm algorithms, and also for online LASSO, the best known regret bounds are of
the order O(

√
T ); see (Kivinen and Warmuth, 1997) and (Cesa-Bianchi and Lugosi, 2006,

Chapter 11). The main reason for the mediocre O(
√
T ) regret bounds seems to be that

these algorithm use only gradient information about the quadratic prediction loss function
`t(〈·, at〉).

Better bounds are available for, e.g., the online regularized least-squares algorithm (i.e.,
ridge regression) that also uses Hessian information:

Theorem 4.16 (Regret of Ridge Regression; Cesa-Bianchi and Lugosi 2006, Theorem 11.7)
Let {θt}T+1

t=1 be the sequence generated by the Follow the Regularized Leader algorithm
on the quadratic loss with the quadratic regularizer R(θ) = ‖θ‖22/2. The FTRL algorithm
with learning rate η > 0 satisfies the following bound that holds for all T ≥ 1 and all
(a1, y1), . . . , (aT , yT )

T∑
t=1

`t(ŷt) ≤ inf
θ∈Rd

{
T∑
t=1

`t(〈at, θ〉) +
‖θ‖22
2η

}
+
LT d

2
log

(
1 +

ηA2T

d

)
,

where LT = max1≤t≤T `t(〈θt, at〉).
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By combining Theorems 4.14 and 4.16, we get that the regret of OFUL with ridge
regression is Õ(d

√
T ). Note that this latter bound essentially matches the bound obtained

by Dani et al. (2008) and is similar to the bound in Theorem 4.1.
In online linear prediction, one approach to exploit sparsity (when present) is to use an

online `1-regularized least-squares method. To be able to demonstrate that sparsity can
indeed be exploited in stochastic linear bandits, one then needs results similar to Theo-
rem 4.16 for this algorithm, under sparsity assumption. This was an open problem until
recently, when Gerchinovitz (2011) proposed the SeqSEW algorithm (“Sequential Sparse
Exponential Weights” algorithm), which is based on the sparse exponential weighting algo-
rithm introduced by Dalalyan and Tsybakov (2007), and proved the following logarithmic
regret bound for it.

Theorem 4.17 (Regret of SeqSEW∗∗, Theorem 8 of Gerchinovitz 2011) The SeqSEW∗∗
algorithm introduced by Gerchinovitz (2011) satisfies the following bound that holds for all
T ≥ 1 and all sequences (a1, y1), . . . , (aT , yT ), (at, yt) ∈ Rd × R,

T∑
t=1

`t(ŷt) ≤ inf
θ∈Rd

{
T∑
t=1

`t(〈at, θ〉) +HT (θ)

}
+ (1 + 38 max

1≤t≤n
y2
t )GT ,

where `t(y) = (yt − y)2,

HT (θ) = 256

(
max

1≤t≤T
y2
t

)
‖θ‖0 log

e+

√√√√ T∑
t=1

‖at‖2

+ 64

(
max

1≤t≤T
y2
t

)
GT ‖θ‖0 log

(
1 +
‖θ‖1
‖θ‖0

)
(4.11)

and

GT = 2 + log2 log

e+

√√√√ T∑
t=1

‖at‖2

 .

The pseudo-code of the SeqSEWB,η
τ algorithm, which SeqSEW∗∗ extends, is given in

Figure 4.14. The SeqSEW∗∗ algorithm differs from this algorithm in that it sets the values
of τ,B and η on a data-dependent fashion. In particular SeqSEW∗∗ runs fresh copies
SeqSEWB,η

τ for non-overlapping time-periods of increasing lengths with values of τ,B, η
set based on empirical quantities measured during previous rounds (details can be found
in Section 3.3 of the paper by Gerchinovitz 2011). Theorem 4.17 motivates the OFUL
algorithm presented in Figure 4.15 that uses the SeqSEW∗∗ algorithm of Gerchinovitz (2011)
as an online learning sub-routine. By combining Theorems 4.14 and 4.17, we get that the
regret of the OFUL with SeqSEW∗∗ algorithm (shown on Figure 4.15) is bounded, with
probability at least 1− δ, as

RT ≤ 2 max{1, G}

√
2Td log

(
1 +

TA2

d

)
max

1≤t<T
βt(δ) , (4.12)

where

βt(δ) = E2 + 1 + 2Bt(θ∗) + 32R2 log

(
R
√

8 +
√

1 +Bt(θ∗)

δ

)
,

Bt(θ∗) = Ht(θ∗) + (1 + 38 max1≤s≤t y
2
s)Gt and Ht, Gt are defined as in Theorem 4.17.

From Theorem 4.17 we obtain a confidence set that scales with the sparsity of θ∗. This
confidence set is not computable unless if we assume that a prior bound is known on the
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Input: threshold B > 0, learning rate η > 0, prior scale τ > 0.
Prior distribution

p0(du) =

d∏
j=1

(3/τ)duj
2(1 + |uj | /τ)4

.

for t := 1, 2, . . . do
Observe input at
Predict ŷt =

∫
Rd [〈at, u〉]B pt(du)

Observe yt
Compute the posterior distribution

pt+1(du) =
1

Zt+1
exp

(
−η

t∑
s=1

(ys − [〈as, u〉]B)
2

)
p0(du) ,

where

Zt+1 =

∫
Rd

exp

(
−η

t∑
s=1

(ys − [〈as, v〉]B)
2

)
p0(dv)

is the normalizing factor.
end for

Figure 4.14: SeqSEWB,η
τ algorithm. In the prediction step, the algorithm makes use of

the truncation operator, [y]B = max(min(y,B),−B), where B is an a priori bound on the
range of prediction values.

for t := 1, 2, . . . do
Construct confidence set Ct−1 by Corollary 3.19

(at, θ̃t) = argmax(a,θ)∈Dt×Ct−1
〈a, θ〉

Predict ŷt by SeqSEW∗∗
Play action at and observe loss yt
Update Ct

end for

Figure 4.15: OFUL with SeqSEW∗∗
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sparsity of θ∗. To relax this assumption, we would need data-driven regret bounds for the
algorithm of Gerchinovitz (2011), a problem that is still open. Another open problem is to
extend Theorem 4.17 to the separable Hilbert spaces, as it applies only to finite-dimensional
spaces in its current form.

From the sub-Gaussianity assumption (3.3), we have that with probability 1− δ, for any
time t ≤ T ,

|yt| ≤ G+R
√

2 log(T/δ) .

Thus the regret (4.12) can be compactly written as Õ(
√
d‖θ∗‖0T ). Compared to the Õ(d

√
T )

bound of Dani et al. (2008), the regret bound of OFUL with SeqSEW∗∗ is lower when
‖θ∗‖0 < d, which is the case for sparse vectors. Similarly, by application of Theorem 4.17

to the problem dependent regret bound of OFUL in Theorem 4.15, the Õ(d2 log3 T/∆)

problem dependent bound of Dani et al. (2008) can be improved to Õ(d‖θ∗‖0 log2 T/∆).
Notice that the regret bound of OFUL with SeqSEW∗∗ still depends on d. A slight

modification of the usual lower bound for d-armed bandit (Cesa-Bianchi and Lugosi, 2006,
Chapter 6) will give us that even if sparsity is p = 1 then the regret must be O(

√
dT ). More

specifically, we choose d distributions for the d arms, so that a random arm has a small
reward and all the others have reward zero. This is equivalent to having a sparse θ∗ with
one non-zero component. Antos and Szepesvári (2009) provide another lower bound of the
same order when the action set is the unit ball. This shows that the

√
d term in the regret

is unavoidable, which is in contrast to sparsity regret bounds for the full information online
learning problems.

4.5.2 Compressed Sensing and Bandits

Carpentier and Munos (2012) employ compressed sensing techniques to estimate the support

of θ∗ and achieve sparsity regret bounds of order of Õ(p
√
T ). Their setting is different than

ours in two aspects. First, they consider the case when the action set is the unit ball, which
makes it possible to satisfy the isotropic conditions that are required for compressed sensing.
In contrast, our results hold for any bounded action set. The second difference, which also
explains why they can avoid the

√
d in their upper bound, is that they assume noise “in the

parameters” in the sense that their loss function takes the form of `t = 〈at, θ∗〉+ 〈at, ηt〉.

4.5.3 Experiments with Sparse Bandits

The SeqSEW∗∗ algorithm integrates over a multi-dimensional distribution to make a pre-
diction. As integration in general can be computationally expensive, we should resort to
sampling techniques such as particle filtering, Gibbs sampling, MCMC, etc. (as suggested
by Gerchinovitz (2011), for example, the Langevin Monte-Carlo method of Dalalyan and
Tsybakov (2009) could be adapted for this purpose). Instead, for ease of implementation,
we use another sparsity online algorithm, called the Exponentiated Gradient (EG)
algorithm, in the experiments.

We compare two versions of the OFUL algorithm: the basic algorithm, called OFUL-
LS, with confidence sets that are constructed in Corollary 3.15; and another version, called
OFUL-EG, whose confidence sets are constructed from predictions of the EG algorithm.

The Exponentiated Gradient (EG) Algorithm

The EG algorithm is a member of the family of the Linearized Proximal-Point algo-
rithms (Rockafellar, 1976). The Linearized Proximal-Point algorithms predict

θt+1 = argmin
θ∈Θ

[
η˜̀t(θ) +DR(θ, θt)

]
(4.13)
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at time t, where Θ is a convex set, ˜̀t(θ) = 〈∇`t, θ − θt〉 is the linearized loss, η > 0 is a
learning rate, and DR is the Bregman divergence corresponding to the Legendre function R,

DR(u, v) = R(u)−R(v)− 〈∇R(v), u− v〉 .

The function R is also known as the regularizer as it biases the predictor to specific so-
lutions. We obtain different algorithms by choosing different regularizers. For example,
the EG algorithm corresponds to the unnormalized negative entropy regularizer, R(θ) =∑d
i=1(θi log θi − θi), whose domain is the positive quadrant of Rd.
In order to solve (4.13), we first solve the unconstrained minimization problem,

θt+1 = argmin
[
η˜̀t(θ) +DR(θ, θt)

]
, (4.14)

and then project the solution on Θ,

θt+1 = argmin
θ∈Θ

DR(θ, θt+1) . (4.15)

The unconstrained minimization (4.14) can be solved by finding the root of the gradient
vector,

η∇`t +∇DR(θ, θt) = 0 .

It can be shown that ∇DR(θ, θt) = ∇R(θ)−∇R(θt), and thus, if R∗ denotes the Legendre
dual of R, we get

θt+1 = (∇R)−1(∇R(θt)− η∇`t)
= ∇R∗(∇R(θt)− η∇`t),

which is the “mirror-descent” form of the linearized proximal point algorithm (Nemirovski
and Yudin, 1998, Beck and Teboulle, 2003). When the constraint set Θ is the d-dimensional
simplex,

∆d =

{
θ ∈ Rd :

d∑
i=1

θi = 1 and θi ≥ 0, 1 ≤ i ≤ d

}
,

i.e., when Θ = ∆d, the update rule for the EG algorithm can be compactly written as

θt+1,i = θt,i exp (−η∇i`t(θt)) , for 1 ≤ i ≤ d ,

θt+1 =
θt+1∥∥θt+1

∥∥
1

.

Let us consider now the regret of this algorithm. Let A∞ = max1≤t≤T ‖at‖2∞. Let

LT (θ) =
∑T
t=1 `t(θ) be the total loss of a fixed predictor θ ∈ Rd, and L̂T =

∑T
t=1 `t(θt)

be the total loss of the learner. Kivinen and Warmuth (1997) show that if the parameter
space Θ is the d-dimensional simplex and the loss function is the quadratic loss, then, for all

θ ∈ ∆d, the Exponentiated Gradient algorithm with learning rate η =
√

2 log d

A∞L̂T
satisfies

ρT (θ) = L̂T − LT (θ) ≤ 2A∞ log(d) + 2
√
A∞ log(d)LT (θ) . (4.16)

In the current setting with the linear observation model, yt = 〈θ∗, at〉 + ηt, and quadratic
loss functions, `t(θ) = (yt − 〈θ, at〉)2, under the additional assumption that the noise is
bounded by σ, we have that

LT (θ∗) =

T∑
t=1

(yt − 〈θ∗, at〉)2 ≤
T∑
t=1

η2
t ≤ σ2T .
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Figure 4.16: The EG algorithm achieves a smaller regret compared to the least-squares
method on a prediction problem when the unknown parameter vector is sparse. At each
round, we generate a random input vector at in {−1,+1}200. The parameter vector θ∗
has only 10 non-zero elements, each being equal to 0.1. The algorithm observes 〈θ∗, at〉
corrupted by a Gaussian noise drawn from N (0, 0.12). The time horizon is T = 1000.
We set the least-squares regularizer to λ = 1, and the EG time-varying learning rate to√

2 log(d)/t.

Thus, we have

ρT (θ∗) = L̂T − LT (θ∗) ≤ 2A∞ log(d) + 2σ
√
A∞ log(d)T . (4.17)

Compared to this regret bound, which scales with the root of the length of the horizon T , the
SeqSEW algorithm enjoys a stronger O(log(T )) regret bound. However, as we explained at
the beginning of this section, it is much easier to implement EG. Further, the regret bound
presented here might be too conservative. Nevertheless, in contrast to the least-squares
method whose regret scales linearly with dimensionality, the regret bound (4.16) displays
only a logarithmic dependence on the dimension d.

The assumption that θ ∈ Θ = ∆d may seem overly restrictive. However, the algorithm
and the analysis are not hard to extend to the case when Θ is the `1 unit-ball. For this,
just note that for θ ∈ Rd, ‖θ‖1 ≤ 1, we can write θ = θ+ − θ−, where ‖θ+‖1, ‖θ−‖1 ≤ 1
and θ+, θ− ≥ 0 (≥ is meant to be componentwise, i.e., we just decompose θ into its positive
and negative parts). Then, keeping two sets of weights, one for the positive part, one for
the negative part of the weight, both updated using the EG algorithm (no projection is
necessary when the updated parameter vector has a 1-norm below one), while predicting
with θt = θ+

t − θ−t , we get that essentially the same result holds for the resulting EG±
algorithm Grove et al. (2001).

Experimental Results

We compare the two bandit methods derived from ridge regression and EG using a synthetic
problem. However, first we compare the two underlying prediction methods on some artificial
problem, which is constructed to favour EG to verify whether EG indeed has some advantage
over ridge regression.

Ridge Regression vs. EG in a Prediction Setting At each round, we generate a
random input vector at in {−1,+1}200. The parameter vector θ∗ has only 10 non-zero
elements, each being equal to 0.1 (thus, θ∗ ∈ ∆d, d = 200). The algorithm observes 〈θ∗, at〉
corrupted by a Gaussian noise drawn from N (0, 0.12). The time horizon is T = 1000. We set
the least-squares regularizer to λ = 1, and the EG time-varying learning rate to

√
2 log(d)/t.
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for t := 1, 2, . . . do
at = argmaxa∈D〈θ̂t, a〉 + ‖a‖

V
−1
t
βt(δ), where θ̂t and

βt(δ) are defined in (4.18) and (4.19), respectively
Given {(as, ys)}t−1

s=1, EG predicts ŷt
Play action at and observe loss yt

end for

Figure 4.17: The OFUL-EG algorithm.

Figure 4.16 shows that the EG algorithm achieves a smaller regret compared to the least-
squares method. This implies that the OFUL-EG algorithm, whose confidence sets are
constructed from the predictions of the EG algorithm, might achieve a better performance
compared to the OFUL-LS algorithm. Next, we compare these two algorithms.

Comparison of OFUL-EG and OFUL-LS Recall from Section 3.5 that, given an
online learning algorithm (such as EG) that produces predictions {ŷ1, ŷ2, . . . } for inputs
{a1, a2, . . . }, and admits a regret bound ρt(θ∗) ≤ Bt, we can construct a confidence ellipsoid
with centre

θ̂t+1 = argmin
θ∈Rd

(
‖θ‖22 +

t∑
s=1

(ŷs − 〈θ, as〉)2

)
(4.18)

and width

βt(δ) = 1 + 2Bt + 32R2 ln

(
R
√

8 +
√

1 +Bt
δ

)
. (4.19)

For the EG algorithm, Inequality (4.17) implies that we can use Bt = 2A∞ log(d) +
2σ
√
A∞ log(d)t. The definition of the OFUL-EG algorithm is shown in Figure 4.17. The

OFUL-LS algorithm is identical to the one studied in Section 4.1 (see Figure 4.1).
We compare these two linear bandit algorithms on synthetic data. The action set is

k = 200 randomly generated vectors in {−1,+1}200. The parameter vector θ∗ has only 10
non-zero elements, each being equal to 0.1. The algorithm observes 〈θ∗, at〉 corrupted by a
Gaussian noise drawn from N (0, 0.12). The time horizon is T = 1000. We set the least-
squares regularizer to λ = 1, and the EG learning rate to η = 1. Figure 4.18-(a) shows that
the OFUL-LS algorithm outperforms the OFUL-EG algorithm in this experiment. This
better performance can be attributed to the fact that the OFUL-LS algorithm uses very
tight confidence sets (constructed in Chapter 3). However, there is still room for improving
OFUL-EG.

In particular, if we study the proof of Corollary 3.20 more carefully, we realize that the
confidence width (4.19) can be tightened to

βt(δ) = 1 + 2Bt + 32R2 ln

(
R
√

8 +
√

1 +Bt
δ

)
−

t∑
s=1

(
ŷs − 〈θ̂t+1, xs〉

)2

. (4.20)

A close inspection of the proof of Theorem 3.18 also reveals that the confidence width can
be further reduced to

βt(δ) =

√Bt + 1 + 4R

√√√√ln

(
R
√

8 +
√

1 +Bt
δ

)2

− 1−
t∑

s=1

(
ŷs − 〈θ̂t+1, xs〉

)2

. (4.21)

These two modifications greatly improve the performance of the OFUL-EG algorithm.
Figures 4.18-(b,c) show the performance of the OFUL-EG algorithm using the improved
confidence widths (4.20) and (4.21).
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Figure 4.18: Comparing the OFUL-EG and the OFUL-LS algorithms on synthetic data.
The action set is k = 200 randomly generated vectors in {−1,+1}200. The parameter vector
θ∗ has only 10 non-zero elements, each being equal to 0.1. The algorithm observes 〈θ∗, at〉
corrupted by a Gaussian noise drawn from N (0, 0.12). The time horizon is T = 1000. We set
the least-squares regularizer to λ = 1, and the EG learning rate to η = 1. (a) The OFUL-
LS algorithm outperforms the OFUL-EG algorithm (b) The OFUL-EG algorithm with
the improved confidence width (4.20) outperforms the OFUL-LS algorithm (c) Improving
the regret of the OFUL-EG algorithm with confidence width (4.21) (d) Experimenting with
a problem with a smaller dimensionality and action set, k = 100, d = 100.
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Figure 4.19: Comparing the OFUL-EG and the OFUL-LS algorithms on synthetic data.
The action set is k = 5 randomly generated vectors in {−1,+1}200.

Interestingly, the OFUL-LS is the winning algorithm when the number of actions
is small. Figure 4.19 shows an experiment with only k = 5 actions. This phenom-
ena can be explained by noting that the regret of the OFUL-LS algorithm depends on
log det

(
I +A1:tV

−1A∗1:t

)
(see Theorem 4.1), which, in a finite-action setting, can be bounded

as

log det
(
I +A1:tV

−1A∗1:t

)
≤ k log

(
1 +

t

k

)
,

independently of the dimensionality of the space that the actions are embedded into (see
Corollary 3.7).
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Chapter 5

Linearly Parametrized Control
Problems1

Up until now, the environment was memoryless, in the sense that actions had no effect on
future loss functions. This chapter studies a more general problem where the state of the
environment changes as a function of the current state and the action taken by the learner.

In the first part of the chapter, we study the average loss linear quadratic (LQ) control
problem with unknown model parameters, also known as the adaptive control problem in
the control community. The problem is to minimize the average loss of a controller that
operates in an environment whose dynamics is linear, while the loss is a quadratic function
of the state and the control. The optimal solution is a linear feedback controller that can be
computed in a closed form from the matrices underlying the dynamics and the loss. In the
learning problem, the topic of this chapter, the dynamics of the environment is unknown.
This problem is challenging since the control actions influence both the loss and the rate at
which the dynamics is learned, a topic of adaptive control. The objective in this case is to
minimize the regret of the controller, i.e. to minimize the difference between the average loss
incurred by the learning controller and that of the optimal controller. In this dissertation,
for the first time, we show an adaptive controller and prove that, under some assumptions,
its expected regret is bounded by Õ(

√
T ). We build on the results of Chapter 3 on online

linear estimation and the results in adaptive control design, the latter of which we survey
next.

When the model parameters are known and the state is fully observed, we can derive the
optimal controller from the principles of dynamic programming. The version of the problem
that deals with the unknown model parameters is called the adaptive control problem. The
early attempts to solve this problem relied on the certainty equivalence principle (Simon,
1956). The idea, as explained in Chapter 1, was to estimate the unknown parameters from
observations and then design a controller as if the estimated parameters are the true pa-
rameters. Later, it was realized that the certainty equivalence principle did not necessarily
provide enough information to reliably estimate the parameters and the estimated parame-
ters could converge to incorrect values with positive probability (Becker et al., 1985). This
in turn might lead to suboptimal performance.

To avoid failure to identify the system dynamics, methods that actively explore to gather
information have been developed (Lai and Wei, 1982, 1987, Chen and Guo, 1987, Chen and
Zhang, 1990, Fiechter, 1997, Bradtke et al., 1994, Lai and Ying, 2006, Campi and Kumar,
1998, Bittanti and Campi, 2006, Al-Tamimi et al., 2007). However, up to our best knowledge,
so far no finite-time regret bounds, but only asymptotic results are known for these methods.
One exception is the work of Fiechter (1997). However, the main result of this work is a
PAC-type result and in a discounted total expected cost framework.

Most of the aforementioned methods use forced-exploration schemes to provide the suf-

1Results of Sections 5.1 and 5.2 have appeared in (Abbasi-Yadkori and Szepesvári, 2011).
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ficient exploratory information. The idea, as explained in Chapter 1, is to take exploratory
actions according to a fixed and appropriately designed schedule. However, the forced-
exploration schemes lack strong worst-case regret bounds, even in the simplest problems
(see e.g. Dani and Hayes (2006), Section 6 and the explanation in Chapter 1). Unlike the
preceding methods, Campi and Kumar (1998) proposes an algorithm based on the OFU
principle, which they call the Bet On the Best (BOB) principle. However, Campi and
Kumar (1998) only show asymptotic optimality, i.e., the average loss of their algorithm con-
verges to that of the optimal policy in the limit. In this chapter, we modify the algorithm
and the proof technique of Campi and Kumar (1998) and extend their work to derive a
finite time regret bound. The modification of the algorithm was necessary to make our
proof go through. The results presented here, just like of the previous chapters, build upon
the results of Chapter 3 that provide confidence sets for linear estimation with dependent
covariates.

The OFU principle has also been applied to learning in finite Markov Decision Processes,
both in a regret minimization (e.g., Bartlett and Tewari 2009, Jaksch et al. 2010) and a PAC-
learning setting (e.g., Kearns and Singh 1998, Brafman and Tennenholtz 2002, Kakade 2003,
Strehl et al. 2006, Szita and Szepesvári 2010). In the PAC-MDP framework there has been
some work to extend the OFU principle to infinite Markov Decision Problems under various
assumptions. For example, Lipschitz assumptions and finiteness of the action set have been
used by Kakade et al. (2003), while Strehl and Littman (2008) explored linearly parametrized
models with stable feature mappings. (A stable matrix has a `2 norm less than 1.) However,
none of these works obtain regret bounds for MDPs with continuous state and action spaces,
a setting we study in this chapter. Continuous action spaces in the context of bandits have
been explored in a number of works, such as the works of Kleinberg (2005), Auer et al.
(2007), Kleinberg et al. (2008b) and in a linear setting by Auer (2002), Dani et al. (2008),
Rusmevichientong and Tsitsiklis (2010) and Abbasi-Yadkori et al. (2011a).

One potential problem with the proposed algorithm is its computational requirements;
the algorithm needs to solve a computationally expensive optimization problem at each
round. In Section 5.4, we derive a gradient algorithm for this optimization problem (with
no guarantees) and investigate the behavior of this algorithm empirically. The experiments
attest that the method is indeed successful in achieving sublinear regret, while keeping the
cost of computations at a manageable level.

In the second part of the chapter, we study the adaptive control problem with linearly
parametrized dynamics. More specifically, the expected value of the next state is assumed to
be linear in some features of the current state/action pair. We propose a similar OFU-based

method and show that, under some assumptions, its expected regret is bounded by Õ(
√
T ).

Whether this (or a similar) method can be implemented efficiently remains to be seen.

5.1 The Linear Quadratic (LQ) Control Problem

We consider the discrete-time infinite-horizon linear quadratic (LQ) control problem:

xt+1 = A∗xt +B∗at + wt+1 ,

`(xt, at) = x>t Qxt + a>t Rat , (5.1)

where t = 1, . . . , at ∈ Rd is the action at time t, xt ∈ Rn is the state at time t, `(xt, at) ∈ R
is the loss at time t, wt+1 is the “noise”, A∗ ∈ Rn×n and B∗ ∈ Rn×d are unknown matrices
while Q ∈ Rn×n and R ∈ Rd×d are known (positive definite) matrices. We will denote
`(xt, at) by `t. For simplicity, x1 = 0. The problem is to design a controller based on past
observations to minimize the average expected loss

J(a1, a2, . . . ) = lim sup
T→∞

1

T

T∑
t=1

E [`t] . (5.2)
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Let J∗ be the optimal (lowest) average loss. The regret up to time T of a controller incurring
a loss of `t at time t is defined by

RT =

T∑
t=1

(`t − J∗) ,

i.e., the regret is the difference between the performance of the controller and the (expected
average) performance of the optimal controller that has full information about the system
dynamics. As usual, regret can be interpreted as a measure of the loss due to not knowing
the system dynamics.

5.1.1 Assumptions

In this section, we state our assumptions on the noise and the system dynamics. The role
of assumptions on the system dynamics is to ensure that the optimal control problem has a
well-defined solution.
Define

Θ>∗ =
(
A∗ , B∗

)
, m = n+ d , and zt =

(
xt
at

)
.

Thus, the state transition can be written as

xt+1 = Θ>∗ zt + wt+1 .

Assumption A2 (Linear Model Assumption) Let (Ft; t ≥ 1) be a filtration, (z1, x2), . . .,
(zt, xt+1) be a sequence of random variables over Rm × Rn such that:

(i) zt, xt are Ft-measurable;

(ii) For any t ≥ 1,
E [xt+1|Ft] = z>t Θ∗ ,

i.e., wt+1 = xt+1 − z>t Θ∗ is a martingale difference sequence (E [wt+1|Ft] = 0, t =
1, 2, . . .);

(iii) E
[
wt+1w

>
t+1 | Ft

]
= In;

(iv) The random variables wt are component-wise sub-Gaussian in the sense that there
exists a constant L > 0 such that for any γ ∈ R, and index j ∈ {1, . . . , n},

E [ exp(γwt+1,j) | Ft ] ≤ exp(γ2L2/2) .

The assumption E
[
wt+1w

>
t+1 | Ft

]
= In makes the analysis more readable. In Section 5.2,

we will sketch how this assumption could be removed.
Our next assumption concerns the system dynamics. This assumption will make sure

that that optimal control problem for the true system is well-posed. Coincidentally, it also
ensures that an optimal controller (knowing the system parameters) can be found efficiently.
To introduce this assumption, we need some more background about optimal LQ control.
First, we introduce the concepts of reachability and observability.

Reachability means that for any initial state x0 and final state xf , there exists a sequence
of control vectors that after n timesteps, bring the state of the system xt+1 = A∗xt+B∗at to
xf . When xt+1 = A∗xt +B∗at is reachable, we also say that the pair (A∗, B∗) is reachable.
For linear systems it holds that the definition will not change if the restriction that the state
has to be brought to xf in at most n steps was removed. (cf. Section 3.8.4 of (Hendricks
et al., 2008)). Observability means that, given at least n consecutive measurements of the
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form zt = Cxt, we can infer the initial state x0 of the system xt+1 = A∗xt (Hendricks et al.,
2008). When xt+1 = A∗xt, zt = Cxt is observable, we also say that the pair (A∗, C) is
observable.

The following result gives a complete algebraic characterization of the reachability and
observability (Hendricks et al., 2008, p. 140, Theorem RD2 and p. 149, Theorem OD2):

Proposition 5.1 A pair (A,B), where A is an n × n matrix and B is an n × d matrix, is
reachable if and only if the n× nd matrix

[B AB . . . An−1B]

has full rank. A pair (A,C), where A is an n × n matrix and C is an d × n matrix, is
observable if and only if the pair (A>, C>) is reachable.

Let Θ> = (A,B). Assume that (A,B) is reachable and (A,Q1/2) is observable. (Here,
Q1/2 is any matrix M satisfying Q = M>M . Note that it does not matter which of the
possible roots of Q one uses, (A,Q1/2) is either observable for all of the roots, or it is not
observable for any of them as it follows from the definition of observability. Given our
assumptions, there is a unique solution P (Θ) in the class of positive-semidefinite symmetric
matrices to the so-called Riccati equation

P (Θ) = Q+A>P (Θ)A−A>P (Θ)B(B>P (Θ)B +R)−1B>P (Θ)A . (5.3)

The optimal control law for a LQ system with parameters Θ is

at = K(Θ)xt , (5.4)

where
K(Θ) = −(B>P (Θ)B +R)−1B>P (Θ)A

denotes the so-called optimal gain matrix (Bertsekas, 2001, V. 2, p. 273). The average loss
of this controller, which is equal to the optimal average loss for the system, satisfies

J(Θ) = trace(P (Θ))

(Bertsekas, 2001, V. 2, p. 273) (in particular, J∗ = J(Θ∗) = trace(P (Θ∗))).
Under the feedback law (5.4), the closed-loop behavior is

xt+1 = (A+BK(Θ))xt + wt+1 .

Thus, the stability of the closed-loop system is controlled by the matrix A+BK(Θ). As it is
well-known, under the same assumptions, the matrix A+BK(Θ) is stable, i.e., its `2-norm
is less than one.

We are ready to state our assumptions on the system:

Assumption A3 (Reachability and Observability Assumption) Fix the constants S,C > 0,
Λ ∈ [0, 1) and define the set

S = S0 ∩ S1 ∩ S2 ∩
{

Θ ∈ Rn×m : trace(Θ>Θ) ≤ S2
}
,

where

S0 =
{

Θ = (A,B) ∈ Rn×m : (A,B) is reachable, (A,Q1/2) is observable
}
,

S1 =
{

Θ = (A,B) ∈ Rn×m : ‖A+BK(A,B)‖ ≤ Λ
}
,

S2 =
{

Θ = (A,B) ∈ Rn×m : ‖K(Θ)‖ ≤ C
}
.

We assume that Θ∗ ∈ S with known S.
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By the boundedness of S, we also obtain the boundedness of P (Θ) (Anderson and Moore,
1971). The corresponding constant will be denoted by D:

D
.
= sup {‖P (Θ)‖ : Θ ∈ S} . (5.5)

The assumption that Θ∗ ∈ S0 can be relaxed somewhat; it turns out that the reachability
and observability assumptions can be replaced by weaker stabilizability and detectability
conditions, which are both necessary and sufficient for the optimal LQ problem to have a
nontrivial solution (Bertsekas, 2001, V. 1, P. 141).2 We have decided to use the stronger
conditions to simplify the presentation. The assumptions Θ∗ ∈ S1, Θ∗ ∈ S2 for some values
of Λ and C are not restrictive given Θ∗ ∈ S0 (since the values of Λ and C need not be
known). These assumptions allow us to state our regret bounds for any Θ∗ ∈ S (i.e., the
bound will depend on Λ and C; as Λ approaches 1 or C approaches infinity, the bound
will grow unbounded). The assumption that trace(Θ>∗ Θ∗) ≤ S2 for a known value of S is
restrictive. We note that the previous works by Campi and Kumar (1998) and Bittanti and
Campi (2006) also make the same assumption. We leave it for future work to remove this
assumption.

5.1.2 Parameter estimation

We need high-probability confidence sets to implement the OFU principle. The derivation
of the confidence set is based on the results of Chapter 3. Define

et(Θ) = λ trace(Θ>Θ) +

t−1∑
s=1

trace((xs+1 −Θ>zs)(xs+1 −Θ>zs)
>) .

Let Θ̂t be the `2-regularized least-squares estimate of Θ∗ with regularization parameter
λ > 0:

Θ̂t = argmin
Θ

et(Θ) = (Z>Z + λI)−1Z>X , (5.6)

where Z and X are the matrices whose rows are z>1 , . . . , z
>
t−1 and x>2 , . . . , x

>
t , respectively.

The next theorem, whose proof following along the lines of Corollary 3.15 and is hence
omitted, constructs high probability confidence sets for the unknown parameter matrix Θ∗.

Theorem 5.2 Let (z1, x2), . . . , (zt, xt+1), zs ∈ Rm, xs ∈ Rn satisfy the Linear Model As-
sumption A2 with some L > 0, Θ∗ ∈ Rm×n, trace(Θ>∗ Θ∗) ≤ S2 and let F = (Ft) be the

associated filtration. Consider the `2-regularized least-squares parameter estimate Θ̂t with
regularization coefficient λ > 0 (cf. (5.6)). Let

V t = λI +

t−1∑
s=1

zsz
>
s

be the regularized design matrix underlying the covariates. Define

βt(δ) =

nL√2 log

(
det(V t)

1/2 det(λI)−1/2

δ

)
+ λ1/2 S

2

. (5.7)

Then, for any 0 < δ < 1, with probability at least 1− δ,

trace((Θ̂t −Θ∗)
>V t(Θ̂t −Θ∗)) ≤ βt(δ) .

In particular, P (Θ∗ ∈ Ct(δ), t = 1, 2, . . . ) ≥ 1− δ, where

Ct(δ) =
{

Θ ∈ Rn×m : trace
{

(Θ− Θ̂t)
>V t(Θ− Θ̂t)

}
≤ βt(δ)

}
.

Notice that the construction of the confidence set uses the knowledge of both L and S.

2 Stabilizability differs from reachability in that it requires that the “unreachable” part of the state is
stable. Similarly, detectability differs from observability in that it requires that the “unobservable” part of
the state is stable.

61



Inputs: S > 0, L > 0, δ ∈ (0, 1), λ > 0, Q ∈ Rn×n, R ∈ Rd×d.
Set V 0 = λI and Θ̂0 = 0.
(Ã0, B̃0) = Θ̃0 = argminΘ∈C0(δ)∩S J(Θ).
for t := 0, 1, 2, . . . do

if det(V t) > 2 det(V 0) then

Calculate Θ̂t using (5.6).

Find Θ̃t such that J(Θ̃t) ≤ infΘ∈Ct(δ)∩S J(Θ) + 1√
t
.

Let V 0 = V t.
else

Θ̃t = Θ̃t−1.
end if
Calculate at based on the current parameters, at = K(Θ̃t)xt.
Execute control, observe new state xt+1.
Save (zt, xt+1) into the dataset, where z>t = (x>t , a

>
t ).

V t+1 := V t + ztz
>
t .

end for

Figure 5.1: The OFULQ algorithm for the LQ problem.

5.1.3 The OFULQ Algorithm

The adaptive controller uses the OFU principle. The idea is to construct the confidence set
for the unknown parameter Θ∗ as in Theorem 5.2 with an appropriately selected value of
δ = δt and then select the parameter that gives the smallest average loss over all parameters
within the confidence set. Given the parameter selected, use the controls as specified by the
optimal control law (5.4) using the parameter found.

However, there are two issues with the method described so far. First, solving for
the minimizer of J(Θ) over Ct(δ) ∩ S may be too demanding. Therefore, we relax this

requirement to finding a parameter vector Θ̃t from Ct(δ) ∩ S such that

J(Θ̃t) ≤ inf
Θ∈Ct(δ)∩S

J(Θ) +
1√
t
. (5.8)

We will later argue that the relaxed requirement will not cause a significant increase of the
regret.

The second issue is that performance may also get harmed if the controller is changed too
frequently (the initial state distribution has to converge to the steady distribution underlying
the controller for the controller’s actual average reward to be close to the expected long-
term average reward of the controller). Thus, to prevent the loss increase resulting from too
frequent controller changes, we limit the frequency with which the controller can be switched.
In particular, the idea is not to switch to a new controller before a significant amount of
new information is collected about the current parameter estimates (this idea was used
earlier, e.g., in the paper by Jaksch et al. (2010) ). More specifically, the algorithm changes
controllers only when the determinant of V t is increased by a constant factor (chosen to be 2
in the algorithm). We call the resulting algorithm the OFULQ algorithm for “optimism
in the face of uncertainty linear quadratic algorithm”. The details of the algorithm are given
in Figure 5.1.

5.2 Analysis

In this section we give our main result together with its proof. Our main result states that
with high probability the regret is of order O(

√
T ).
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Theorem 5.3 Fix Q,R � 0 and assume that A3 holds for some values of S,Λ, C > 0.
Consider the OFULQ algorithm with parameters L, S > 0, δ ∈ (0, 1), λ > 0 and Q,R.
Assume that ((zt, xt+1))t≥1 satisfies A2 with constant L > 0. Then, it holds that for any
0 < δ < 1, for any time T , with probability at least 1− δ, the regret of OFULQ satisfies

RT = Õ
(√

T log(1/δ)
)
,

where the constant hidden is a problem dependent constant.

Remark 5.4 We see that the major assumption is that the algorithm needs to know a
bound on trace(Θ>∗ Θ∗) and on the “sub-Gaussianity” constant L > 0. These bounds are
used in the construction of the confidence set.

Remark 5.5 The assumption E
[
wt+1w

>
t+1 | Ft

]
= In in the Linear Model Assumption A2

makes the analysis more readable. Alternatively, we could assume that E
[
wt+1w

>
t+1 | Ft

]
=

G∗, which is unknown. Then the optimal average loss becomes J(Θ∗, G∗) = trace(P (Θ∗)G∗).

The only change in the OFULQ algorithm is in the computation of Θ̃t, which will have
the following form:

(Θ̃t, G̃) = argmin
(Θ,G)∈Ct(δ)

J(Θ),

where Ct(δ) is now a confidence set over Θ∗ and G∗. The rest of the analysis remains
identical, provided that an appropriate confidence set is constructed.

Remark 5.6 In online learning problems (see Problem 1 in Chapter 1), obtaining a high
probability regret bound is usually considered a stronger result than obtaining a bound on
the expected regret. This is because in such problems the loss function is assumed to be
bounded so that a simple argument obtains a bound on the expected regret: assume we
have a high probability bound of the form,

P (RT ≤ BT log(1/δ)) ≥ 1− δ .

Assume that the loss function is bounded by L, which implies that RT ≤ LT . Then we
have that for any δ ∈ (0, 1),

E [RT ] ≤ BT log(1/δ) + δLT .

Choose δ = 1/T and obtain E [RT ] ≤ BT log(T ) + L.
This argument is not applicable in the current LQ setting with unbounded loss functions.

Notice that, in the worst case, the state vector can grow exponentially. Thus, Theorem 5.3
provides only a high probability regret bound and cannot be used to obtain a bound on the
expected regret. We leave it for future work to derive a bound on the expected regret.

The least-squares estimation error in Theorem 5.2 scales with the size of the state and
action vectors. First we show that with high probability the norm of the state vector grows
slowly. Given the well-behavedness of the state, we decompose the regret and analyze each
term using appropriate concentration inequalities to prove Theorem 5.3. We might expect
that in order to have a sublinear regret, the state should converge to zero as time goes to
infinity. But notice that the state is perturbed by a sub-Gaussian noise, that, with high
probability, can take values as large as log(t) up to time t.

5.2.1 Bounding ‖xt‖
We choose an error probability, δ > 0. Given this, we define two “good events” in the
probability space Ω.
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Definition 5.7 We define the event that the confidence sets hold for s = 1, . . . , t,

Et = {ω ∈ Ω : ∀s ≤ t, Θ∗ ∈ Cs(δ/4) } ,

and the event that the state vector stays “small”:

Ft = {ω ∈ Ω : ∀s ≤ t, ‖xs‖ ≤ Υt } ,

where

Υt =
1

1− Λ

(
Ψ

Λ

)m(
G
(
Zmt βt(δ/4)

1/2
)1/m+1

+ 2L
√
n log(4nt(t+1)/δ)

)
,

and

Ψ = 1 ∨ supΘ∈S ‖A∗ +B∗K(Θ)‖ , Zt = max0≤s≤t ‖zs‖ ,
G = 2

(
2Smm

√
mH1H3

)1/m+1
, H1 > 16 ∨ 4S2H2

2H3

m ,

H2 = supY≥1
1
Y

(
nL

√
m log

(
1+TY/λ

δ

)
+ λ1/2S

)
, H3 = 16m−2(1 ∨ S2(m−2)) .

In what follows, we let E = ET and F = FT .

We show that E ∩ F holds with high probability and on E ∩ F , the state vector grows
slowly.

Lemma 5.8 P (E ∩ F ) ≥ 1− δ/2 .

The proof is in Appendix F.2. The proof considers only the case when Zt > 1, as oth-

erwise, the state vector is obviously bounded. The proof first shows that
∥∥∥(Θ∗ − Θ̃t)

>zt

∥∥∥
is well-controlled except for a small number of occasions. Given this and a proper decom-
position of the state update equation, we prove that the state vector stays smaller than Υt.
Notice that Υt itself depends on βt(δ) and Zt, which in turn depend on xt. The next lemma
takes the additional step to bound ‖xt‖. The proof is in Appendix F.2.

Lemma 5.9 For appropriate problem dependent constants C1 > 0, C2 > 0 (which are
independent of t, δ, T ), for any t ≥ 1, it holds that I{Ft}max1≤s≤t ‖xs‖ ≤ Xt, where

Xt = Y m+1
t

and

Yt
.
= (e ∨ λm(e− 1) ∨ 4(C1 log(1/δ) + C2 log(t/δ)) log2(4(C1 log(1/δ) + C2 log(t/δ))) .

5.2.2 Regret Decomposition

Given the previous bound on the state vector, we decompose the regret and analyze each
term using appropriate concentration inequalities. From the Bellman optimality equations3

for the LQ problem, we get that (Bertsekas, 2001, V. 2, p. 228–229)

J(Θ̃t) + x>t P (Θ̃t)xt = min
a

{
x>t Qxt + a>Ra+ E

[
x̃a>t+1P (Θ̃t)x̃

a
t+1

∣∣∣ Ft]} (5.9)

= x>t Qxt + a>t Rat + E
[
x̃at>t+1P (Θ̃t)x̃

at
t+1

∣∣∣ Ft] ,
3The existence of a solution for (5.9) follows from the existence of a solution for the Riccati equation.
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where x̃at+1 = Ãtxt + B̃ta+ wt+1 and (Ãt, B̃t) = Θ̃t. Thus,

J(Θ̃t) + x>t P (Θ̃t)xt = x>t Qxt + a>t Rat

+ E
[
(Ãtxt + B̃tat + wt+1)>P (Θ̃t)(Ãtxt + B̃tat + wt+1)

∣∣∣ Ft]
= x>t Qxt + a>t Rat + E

[
(Ãtxt + B̃tat)

>P (Θ̃t)(Ãtxt + B̃tat)
∣∣∣ Ft]

+ E
[
w>t+1P (Θ̃t)wt+1

∣∣∣ Ft]
= x>t Qxt + a>t Rat + E

[
(Ãtxt + B̃tat)

>P (Θ̃t)(Ãtxt + B̃tat)
∣∣∣ Ft]

+ E
[
x>t+1P (Θ̃t)xt+1

∣∣∣ Ft]
− E

[
(A∗xt +B∗at)

>P (Θ̃t)(A∗xt +B∗at)
∣∣∣ Ft]

= x>t Qxt + a>t Rat + E
[
x>t+1P (Θ̃t)xt+1

∣∣∣ Ft]
+ (Ãtxt + B̃tat)

>P (Θ̃t)(Ãtxt + B̃tat)

− (A∗xt +B∗at)
>P (Θ̃t)(A∗xt +B∗at),

where in the third equality we have used xt+1 = A∗xt + B∗at + wt+1 and the martingale
property of the noise. Thus,

T∑
t=1

J(Θ̃t) +R1 =

T∑
t=1

(
x>t Qxt + a>t Rat

)
+R2 +R3 ,

where

R1 =

T∑
t=1

{
x>t P (Θ̃t)xt − E

[
x>t+1P (Θ̃t+1)xt+1

∣∣∣Ft]} , (5.10)

R2 =

T∑
t=1

E
[
x>t+1(P (Θ̃t)− P (Θ̃t+1))xt+1

∣∣∣Ft] , (5.11)

R3 =

T∑
t=1

(
(Ãtxt + B̃tat)

>P (Θ̃t)(Ãtxt + B̃tat)− (A∗xt +B∗at)
>P (Θ̃t)(A∗xt +B∗at)

)
.

(5.12)

Thus, on E ∩ F ,

T∑
t=1

(x>t Qxt + a>t Rat) =

T∑
t=1

J(Θ̃t) +R1 −R2 −R3

≤TJ(Θ∗) +R1 −R2 −R3 + 2
√
T ,

where the inequality follows from the choice of Θ̃t and the fact that on E, Θ∗ ∈ Ct(δ).
Thus, on E ∩ F ,

R(T ) ≤ R1 −R2 −R3 + 2
√
T . (5.13)

In the following subsections, we bound R1, R2, and R3.

5.2.3 Bounding I{E∩F}R1

We start by showing that with high probability all noise terms are small.
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Lemma 5.10 With probability 1− δ/8, for any t ≤ T , ‖wt‖ ≤ Ln
√

2n log(8nT/δ).

Proof. From the Linear Model Assumption A2, we have that for any index 1 ≤ i ≤ n and
any time t,

P
(
|wt,i| ≤ L

√
2 log(8/δ)

)
≥ 1− δ/8 .

With an union bound on time and dimension, we get that, with probability 1− δ/8, for any
t ≤ T , ‖wt‖ ≤ Ln

√
2n log(8nT/δ).

Lemma 5.11 Let R1 be as defined by (5.10). Let W = Ln
√

2n log(8nT/δ), ν > 0 be an
arbitrary positive constant, and

B′δ =
(
ν + TD2S2X2(1 + C2)

)
log

(
4nν−1/2

δ

(
ν + TD2S2X2(1 + C2)

)1/2)
.

With probability at least 1− δ/2,

I{E∩F}R1 ≤ 2DW 2
√

2T log(8/δ) + n
√
B′δ .

Proof. Let ft−1 = A∗xt−1 +B∗at−1 and Pt = P (Θ̃t). Write

R1 = x>1 P (Θ̃1)x1 − x>T+1P (Θ̃T+1)xT+1 +

T∑
t=2

(
x>t P (Θ̃t)xt − E

[
x>t P (Θ̃t)xt|Ft−1

] )
.

Because P is positive semi-definite and x1 = 0, the first term, is bounded by zero. The
second term can be decomposed as follows:

T∑
t=2

(
x>t Ptxt − E

[
x>t Ptxt|Ft−1

] )
=

T∑
t=2

f>t−1Ptwt +

T∑
t=2

(
w>t Ptwt − E

[
w>t Ptwt|Ft−1

] )
.

We bound each term separately. Let v>t = f>t−1Pt and

G1 = I{E∩F}
T∑
t=2

v>t wt = I{E∩F}
T∑
t=2

n∑
i=1

vt,iwt,i =

n∑
i=1

I{E∩F}
T∑

2=1

vt,iwt,i .

Let MT,i =
∑T
t=1 vk,iwk,i. By Corollary 3.6, on some event Gδ,i that holds with probability

at least 1− δ/(4n), for any T ≥ 0,

M2
T,i ≤ 2R2

(
ν +

T∑
2=1

v2
t,i

)
log

4nν−1/2

δ

(
ν +

T∑
2=1

v2
t,i

)1/2
 .

= Bδ,i .

On E∩F , ‖vt‖ ≤ DSX
√

1 + C2 and thus, vt,i ≤ DSX
√

1 + C2. Thus, onGδ,i, I{E∩F}M2
t,i ≤

B′δ. Thus, we have

G1 ≤
n∑
i=1

√
B′δ,i

on ∩ni=1Gδ,i, that holds w.p. 1− δ/4.

Define Ut = w>t Ptwt − E
[
w>t Ptwt|Ft−1

]
and its truncated version Ũt = UtI{Ut≤2DW 2}.

Define G2 =
∑T
t=2 Ut and G̃2 =

∑T
t=1 Ũt. By Lemma C.7,

P

(
G2 > 2DW 2

√
2T log

8

δ

)
≤ P

(
max

2≤t≤T
Ut ≥ 2DW 2

)
+ P

(
G̃2 > 2DW 2

√
2T log

8

δ

)
.
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By Lemma 5.10 and Azuma’s inequality, each term on the right hand side is bounded by
δ/8. Thus, w.p. 1− δ/4,

G2 ≤ 2DW 2

√
2T log

8

δ
.

Summing up the bounds on G1 and G2 gives the result that holds w.p. at least 1− δ/2,

I{E∩F}R1 ≤ 2DW 2

√
2T log

8

δ
+ n

√
B′δ .

5.2.4 Bounding I{E∩F} |R2|
We can bound I{E∩F} |R2| by simply showing that the OFULQ algorithm rarely changes
the policy, and hence most terms in (5.11) are zero.

Lemma 5.12 On the event E ∩ F , the OFULQ algorithm changes the policy at most

m log2

(
1 + TX2

T (1 + C2)/λ
)

times up to time T .

Proof. If the OFULQ algorithm has changed the policy K times up to time T , then we
should have that det(V T ) ≥ λm2K . On the other hand, we have

λmax(V T ) ≤ λ+

T−1∑
t=1

‖zt‖2 ≤ λ+ TX2
T (1 + C2) ,

where C is the upper bound on the norm of K(.) (see Assumption A3). Thus, it holds that

λm2K ≤ (λ+ TX2
T (1 + C2))m .

Solving for K, we get

K ≤ m log2

(
1 +

TX2
T (1 + C2)

λ

)
.

Lemma 5.13 Let R2 be as defined by (5.11). Then we have

I{E∩F} |R2| ≤ 2DX2
Tm log2

(
1 + TX2

T (1 + C2)/λ
)
.

Proof. On event E ∩ F , we have at most K = m log2

(
1 + TX2

T (1 + C2)/λ
)

policy changes
up to time T . So at most K terms in the summation (5.11) are non-zero. Each term in the
summation is bounded by 2DX2

T . Thus,

I{E∩F} |R2| ≤ 2DX2
Tm log2

(
1 + TX2

T (1 + C2)/λ
)
.

5.2.5 Bounding I{E∩F} |R3|

The summation
∑T
t=1

∥∥∥(Θ∗ − Θ̃t)
>zt

∥∥∥2

will appear while bounding |R3|. So we first up-

per bound this summation, whose analysis requires Lemma E.2 from Appendix E and the
following lemma whose proof can be found in Appendix F. Notice that Lemma 5.14 is the
matrix counter-part of Lemma 4.6.
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Lemma 5.14 Let A ∈ Rm×m and B ∈ Rm×m be positive semi-definite matrices such that
A � B. Then, we have

sup
X 6=0

∥∥X>AX∥∥
‖X>BX‖

≤ det(A)

det(B)
.

Lemma 5.15 On E ∩ F , it holds that

T∑
t=1

∥∥∥(Θ∗ − Θ̃t)
>zt

∥∥∥2

≤ 16

λ
(1 + C2)X2

TβT (δ/4) log
det(V T )

det(λI)
.

Proof. Consider round t. Let st = (Θ∗− Θ̃t)
>zt. Let τ ≤ t be the last round that the policy

is changed. So Θ̃t = Θ̃τ and st = (Θ∗ − Θ̃τ )>zt. By Triangle inequality we have

‖st‖ ≤
∥∥∥(Θ∗ − Θ̂τ )>zt

∥∥∥+
∥∥∥(Θ̂τ − Θ̃τ )>zt

∥∥∥ . (5.14)

Next, we bound each term on the RHS. For all Θ ∈ Cτ ,∥∥∥(Θ− Θ̂τ )>zt

∥∥∥ ≤
∥∥∥V 1/2

t (Θ− Θ̂τ )
∥∥∥ ‖zt‖V −1

t
(Cauchy-Schwarz inequality)

≤
∥∥∥V 1/2

τ (Θ− Θ̂τ )
∥∥∥√ det(V t)

det(V τ )
‖zt‖V −1

t
(Lemma 5.14)

≤
√

2
∥∥∥V 1/2

τ (Θ− Θ̂τ )
∥∥∥ ‖zt‖V −1

t
(Choice of τ)

≤
√

2βτ (δ/4) ‖zt‖V −1
t

, (λmax(M) ≤ trace(M) for M � 0)

Applying the inequality to Θ∗ and Θ̃τ , together with (5.14) gives

‖st‖2 ≤ 8βτ (δ/4) ‖zt‖2V −1
t

.

By the fact that Θ̃t ∈ S we have that

‖zt‖2V −1
t
≤ ‖zt‖

2

λ
≤ (1 + C2)X2

T

λ
.

It follows then that

T∑
t=1

‖st‖2 ≤
8

λ
(1 + C2)X2

TβT (δ/4)

T∑
t=0

(‖zt‖2V −1
t
∧ 1)

≤ 16

λ
(1 + C2)X2

TβT (δ/4) log
det(V T )

det(λI)
. (Lemma E.2).

Now, we are ready to bound R3.

Lemma 5.16 Let R3 be as defined by (5.12). Then we have

I{E∩F} |R3| ≤
8√
λ

(1 + C2)X2
TSD

(
βT (δ/4) log

det(V T )

det(λI)

)1/2√
T .

68



Proof. We have that

I{E∩F} |R3| ≤ I{E∩F}
T∑
t=1

∣∣∣∣∥∥∥P (Θ̃t)
1/2Θ̃>t zt

∥∥∥2

−
∥∥∥P (Θ̃t)

1/2Θ>∗ zt

∥∥∥2
∣∣∣∣ (Tri. ineq.)

≤ I{E∩F}

(
T∑
t=1

(∥∥∥P (Θ̃t)
1/2Θ̃>t zt

∥∥∥− ∥∥∥P (Θ̃t)
1/2Θ>∗ zt

∥∥∥)2
)1/2

(C.-S. ineq.)

×

(
T∑
t=1

(∥∥∥P (Θ̃t)
1/2Θ̃>t zt

∥∥∥+
∥∥∥P (Θ̃t)

1/2Θ>∗ zt

∥∥∥)2
)1/2

≤ I{E∩F}

(
T∑
t=1

∥∥∥P (Θ̃t)
1/2(Θ̃t −Θ∗)

>zt

∥∥∥2
)1/2

(Tri. ineq.)

×

(
T∑
t=1

(∥∥∥P (Θ̃t)
1/2Θ̃>t zt

∥∥∥+
∥∥∥P (Θ̃t)

1/2Θ>∗ zt

∥∥∥)2
)1/2

≤ 8√
λ

(1 + C2)X2
TSD

(
βT (δ/4) log

det(V T )

det(λI)

)1/2√
T . ((5.5), L. 5.15)

5.2.6 Putting Everything Together

Proof of Theorem 5.3. By (5.13) and Lemmas 5.11, 5.13, 5.16 we have that with probability
at least 1− δ/2,

I{E∩F}(R1 −R2 −R3) ≤ 2DX2
Tm log2

(
1 + TX2

T (1 + C2)/λ
)

+ 2DW 2

√
2T log

8

δ
+ n

√
B′δ

+
8√
λ

(1 + C2)X2
TSD

(
βT (δ/4) log

det(V T )

det(λI)

)1/2√
T .

Thus, on E ∩ F , with probability at least 1− δ/2,

R(T ) ≤ 2DX2
Tm log2

(
1 + TX2

T (1 + C2)/λ
)

+ 2DW 2

√
2T log

8

δ
+ n

√
B′δ

+
8√
λ

(1 + C2)X2
TSD

(
βT (δ/4) log

det(V T )

det(λI)

)1/2√
T .

Further, on E ∩ F , by Lemmas 5.9 and E.2,

log detV T ≤ m log

(
λm+ T (1 + C2)X2

T

λm

)
+ log detλI .

Plugging in the above inequality gives the final bound, which, by Lemma 5.8, holds with
probability 1− δ.

5.3 Extension to Non-Linear Dynamics

The optimization problem (5.8) is defined over reachable and observable matrices. The
reachability and observability assumptions guarantee that the Riccati equation has a solu-
tion, which in turn guarantees a solution to the average cost optimality equation (ACOE).
Thus, a solution to the ACOE is guaranteed for a LQ problem whose model is specified by
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the solution of (5.8). Thus, we could write the optimality equation (5.9), from which we
obtained the regret decomposition.

In this section, we study a more general control problem with a non-linear transition
law. It turns out that the same proof technique still can be employed under the weaker
assumption that the average cost optimality inequality (ACOI) has a solution. It only
remains to find conditions analogous to reachability and observability, under which, the
ACOI has a solution in a non-linear control problem. We take a general approach and make
the following assumption:

Assumption A4 Let X ⊂ Rn be the state space. Let p(. | ., .,Θ) : X × D → X be the
transition law parametrized by Θ. Let Θ∗ be the true parameter. There exists J(Θ∗) and
h(.,Θ∗) : X → R that satisfy the following average cost optimality inequality (ACOI) for
any x ∈ X :

J(Θ∗) + h(x,Θ∗) ≥ min
a∈D(x)

{
`(x, a) +

∫
h(y,Θ∗)p(dy |x, a,Θ∗)

}
.

Further, we assume that there exists an oracle that, for any possible value of Θ, can deter-
mine if this ACOI has a solution and if a solution exists, provide one.

We further make the following assumption:

Assumption A5 For Θ = Θ∗, the optimal average loss, J∗ is well-defined. Further, it
holds that J(Θ∗) ≤ J∗.

With a slight abuse of the concepts, we will call the quantity J(Θ) the average loss of
the optimal policy, while function h(.,Θ) will be called the value function. In what follows,
we denote h(.,Θ∗) by h∗(.). We denote the set of parameters for which the ACOI has a
solution by K. By Assumption A4, Θ∗ ∈ K.

The following examples, taken from (Arapostathis et al., 1993, Hernández-Lerma and
Lasserre, 1996), show two cases when Assumption A4 is satisfied.

Example 2 Let F(X ) be the space of bounded functions on state space X , and Fy(X ) be
the subspace of functions f in F(X ) such that f(y) = 0 for some given point y ∈ X . Define
the span of a function f as

s(f)
.
= sup
x∈X

f(x)− inf
x∈X

f(x) .

Recall the definition of a Markov Decision Process from Chapter 1. Assume that the loss is
bounded, lower semi-continuous4, non-negative, and inf-compact5 on the set of admissible
state-action pairs. Assume that the transition kernel is strongly continuous. Define the
mapping Ty : Fy(X )→ Fy(X ) by

Tyf(x) = Tf(x)− Tf(y), x ∈ X , (5.15)

where

Tf(x) = min
a∈D(x)

[
`(x, a) +

∫
f(y)p(dy|x, a)

]
.

Define the total variation norm of a finite signed measure λ on X by

‖λ‖V
.
= sup
B∈B(X )

λ(B)− inf
B∈B(X )

λ(B) .

In particular, we have
‖p− q‖V = 2 sup

B∈B(X )

|p(B)− q(B)|

4A function f is lower semi-continuous at x0 if lim infx→x0 f(x) ≥ f(x0).
5The loss function ` is inf-compact if the set {a ∈ D(x) : `(x, a) ≤ r} is compact for any x in X and r

in R.
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for probability measures p and q. Suppose the transition kernel satisfies

∀(x, a), (x′, a′) ∈ Z, ‖p(.|x, a)− p(.|x′, a′)‖V ≤ 2β , (5.16)

where 0 < β < 1 and Z is the set of admissible state-action pairs. Under this condition, it
can be shown that Ty is a contraction mapping. Thus, by the Banach Fixed-Point Theorem,
we get that there is a unique function h ∈ Fy(X ) that satisfies Tyh = h. By substituting h
in (5.15) we get the ACOE

∀x ∈ X , J + h(x) = Th(x) ,

where J = Th(y).
To see an example when condition (5.16) holds, consider the case when the state tran-

sition is given by
xt+1 = f(xt, at) + g(xt)wt+1 ,

the state and action spaces are compact sets; f : X ×A → R and g : X → R are bounded,
continuous, and g(.) > 0; and (wt) is a sequence of independent N (0, I) random vectors.

Example 3 Assume that the loss is lower semi-continuous, non-negative, and inf-compact
on the set of admissible state-action pairs. Assume that the transition kernel is strongly
continuous. Define the total discounted loss by

Vγ(π, x) = E

[ ∞∑
t=1

γt`(xt, π(xt)) |x1 = x

]

and the optimal total discounted loss by

V ∗γ (x) = inf
π∈Π

Vγ(x, π) ,

where Π is the class of all policies. Suppose there exists a state y ∈ X and constants
β ∈ (0, 1) and M ≥ 0 such that for all γ ∈ [β, 1),

(1− γ)V ∗γ (y) ≤M . (5.17)

Further, assume that there is a constant N ≥ 0 and a non-negative function b(.) on X such
that for any x ∈ X and any γ ∈ [β, 1),

−N ≤ V ∗γ (x)− V ∗γ (y) ≤ b(x) . (5.18)

Under these assumptions, it can be shown that there exist 0 < ρ∗ ≤ M and a sequence
γn ↑ 1 such that for any x ∈ X ,

lim
n→∞

(1− γn)V ∗γn(x) = ρ∗ . (5.19)

Further, under the same assumptions, it can be shown that there exists a constant J and a
function h : X → R such that h(y) = 0, for any x ∈ X

−N ≤ h(x) ≤ b(x) ,

and (J, h) satisfy the ACOI

J + h(x) ≥ min
a∈D(x)

[
`(x, a) +

∫
h(y)p(dy |x, a)

]
, x ∈ X .

Condition (5.17) is satisfied, for example, for bounded losses.
We can show that the ACOE also has a solution by making the following additional

assumptions:
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(i) The function b(.) in (5.18) is measurable and that for any x ∈ X and a ∈ D(x), it
satisfies

∫
X b(y)p(dy|x, a) <∞

(ii) The sequence (V ∗γn(x) − V ∗γn(y)) is equicontinuous,6 where (γn) is the sequence that
satisfies (5.19).

In this section, we assume that the model has the form of

xt+1 = Θ>∗ ϕ(xt, at) + wt+1 ,

where Θ∗ ∈ Rm×n is an unknown matrix, ϕ : Z → Rm is a feature mapping, and the
noise wt+1 has the same properties as before (see the Linear Model Assumption A2). We
consider any loss function `(xt, at) as long as a smoothness assumption on the value function
is satisfied (see Assumption A7).

We apply techniques similar to those in Section 5.2 to obtain sublinear regret bounds
for this family of control problems. Before stating our main result, we make a number of
assumptions on the loss and the transition law. We make the following assumption on the
boundedness of the parameter matrix:

Assumption A6 The unknown parameter Θ∗ is a member of set S defined by

S =
{

Θ ∈ Rn×(n+d) : trace(Θ>Θ) ≤ S2
}
.

We also make an assumption on the smoothness of the value function:

Assumption A7 Lipschitz Continuity There exists B > 0 such that for all Θ ∈ S,
h(0,Θ) = 0 and for all x, x′ ∈ X , |h(x,Θ)− h(x′,Θ)| ≤ B ‖x− x′‖.

Assumption A8 Optimal Policies We assume that for any Θ ∈ K, an optimal deter-
ministic stationary policy exists and the algorithm has access to an oracle that returns such
a policy. We denote the output of this method by a(.,Θ).

This condition could again be relaxed, since we do not need the actual optimal policy, only
an approximately optimal policy.

Finally, we make the following assumption on the feature mapping:

Assumption A9 There exist 0 < Λ < 1, K > 0, k > 0 such that for all Θ ∈ S and for all
x ∈ X , ∥∥Θ>ϕ(x, a(x,Θ))

∥∥ ≤ Λ ‖x‖ , (5.20)

‖ϕ(x, a(x,Θ))‖ ≤ K ‖x‖k . (5.21)

Condition 5.20 will let us show that the state vector is “well-behaved”. The condition can
be relaxed in a bounded state space. We can obtain similar results by replacing (5.20) and
(5.21) with the less restrictive conditions that

∥∥Θ>ϕ(x, a(x,Θ))
∥∥ ≤ Λ ‖x‖+ Λ′ ,Λ′ > 0 and

‖ϕ(x, a(x,Θ))‖ ≤ K ‖x‖k +K ′ ,K ′ > 0. We have decided to use the stronger conditions to
simplify the presentation.

Let Θ̂t be the `2-regularized least-squares estimate of Θ∗ with regularization parameter
λ > 0. Theorem 5.2 gives a high-probability confidence set around Θ∗:

Ct(δ) =

{
Θ : trace((Θ̂t −Θ)>V t(Θ̂t −Θ)) ≤

nL√2 log

(
det(V t)

1/2 det(λI)−1/2

δ

)
+ λ1/2 S

2}
,

6A class of functions F is equicontinuous if for any x ∈ X , for any ε > 0, there exists a set G such that
x ∈ G and for any f ∈ F and y ∈ G,

|f(y)− f(x)| < ε .
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Inputs: S > 0, δ > 0, L, λ > 0.
Set V 0 = λI and Θ̂0 = 0.
Θ̃0 = argminΘ∈C0(δ)∩S∩K J(Θ).
for t := 0, 1, 2, . . . do

if det(V t) > 2 det(V0) then

Calculate the ridge-regression estimate Θ̂t.
Find Θ̃t such that J(Θ̃t) ≤ infΘ∈Ct(δ)∩S∩K J(Θ) + 1√

t
.

Let V 0 = V t.
else

Θ̃t = Θ̃t−1.
end if
Calculate control at = a(xt, Θ̃t).
Execute control, observe new state xt+1.
Save (ϕ(xt, at), xt+1) into the dataset.
V t+1 := V t + ϕ(xt, at)ϕ(xt, at)

>.
end for

Figure 5.2: The OFUNLQ algorithm: The implementation of the OFU principle for
non-linear control problems.

where V t = λI +
∑t−1
s=1 ϕ(xs, as)ϕ(xs, as)

>, L is defined in Assumption A2, S is defined in
Assumption A6, and δ is the confidence level.

As before, the objective is to have low average loss. We use the OFU principle as follows:
at time t, we pick a parameter Θ̃t ∈ Ct(δ) ∩ S ∩ K that has a small average loss J(Θ̃t):

J(Θ̃t) ≤ inf
Θ∈Ct(δ)∩S∩K

J(Θ) +
1√
t
. (5.22)

We assume that there exists an optimization method that, given the model, returns the
optimal policy. We denote the output of this method by a(.,Θ). At time t, we take action

at = a(xt, Θ̃t). Because Θ∗ belongs to the confidence set, we have that J(Θ̃t) ≤ J∗ + 1/
√
t.

The details of the algorithm are given in Figure 5.2.

5.3.1 Analysis

The following theorem states a high probability bound on the regret of the OFUNLQ
algorithm:

Theorem 5.17 Assume that A4–A9 hold for some values of 0 < Λ < 1, S,B, k,K > 0.
Assume that ((ϕ(xt, at), xt+1))t≥1 satisfies A2 with constant L > 0. Consider the OFUNLQ
algorithm with parameters L, S > 0, δ ∈ (0, 1), and λ > 0. Then, it holds that for any
0 < δ < 1, for any time T , with probability at least 1− δ, the regret of OFUNLQ satisfies

RT = Õ
(√

T log(1/δ)
)
,

where the hidden constant depends on the problem.

The proof is similar to that of Theorem 5.3. The least-squares estimation error in The-
orem 3.15 scales with the size of the state vectors. First we show that with high probability
the norm of the state vector grows slowly. Given the well-behavedness of the state, we
decompose the regret and analyze each term using appropriate concentration inequalities to
finish the proof.
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Bounding ‖xt‖

We choose an error probability δ > 0. Given this, we define two “good events” in the
probability space Ω.

Definition 5.18 We define the event that the confidence sets hold for s = 1, . . . , t,

Et = {ω ∈ Ω : ∀s ≤ t, Θ∗ ∈ Cs(δ/4) } ,

and the event that the state vector stays “small”:

Ft = {ω ∈ Ω : ∀s ≤ t, ‖xs‖ ≤ Υt } ,

where

Υt =
1

1− Λ

(
Ψ

Λ

)m(
G
(
Zmt βt(δ/4)

1/2
)1/m+1

+ 2L
√
n log(4nt(t+1)/δ)

)
,

and

Ψ = 1 ∨maxt≤T
∥∥Θ>∗ ϕ(xt, at)

∥∥ / ‖xt‖ , Zt = max1≤s≤t ‖ϕ(xs, as)‖ ,
G = 2

(
2Smm

√
mH1H3

)1/m+1
, H1 > 16 ∨ 4S2H2

2H3

m ,

H2 = supY≥0
1
Y

(
nL

√
m log

(
1+TY/λ

δ

)
+ λ1/2S

)
, H3 = 16m−2(1 ∨ S2(m−2)) .

In what follows, we let E = ET and F = FT .

We show that E ∩ F holds with high probability and on E ∩ F , the state vector grows
slowly.

Lemma 5.19 P (E ∩ F ) ≥ 1− δ/2 .

Lemma 5.20 For appropriate problem dependent constants C1 > 0, C2 > 0 (which are
independent of t, δ, T ), for any t ≥ 0, it holds that I{Ft}max1≤s≤t ‖xs‖ ≤ Xt, where

Xt = Y m+1
t

and

Yt
.
= (e ∨ λm(e− 1) ∨ 4(C1 log(1/δ) + C2 log(t/δ)) log2(4(C1 log(1/δ) + C2 log(t/δ))) .

The proofs of these lemmas are very similar to those for Lemmas 5.8 and 5.9. The only
difference is in the proof of Lemma 5.8, which now has the following form: let Mt = Θ∗− Θ̃t

and

gt =

{
Λ t /∈ TT
Ψ t ∈ TT

We can write the state update as

xt+1 = Γt + rt+1 ,

where

Γt =

{
Θ̃>t ϕ(xt, ut) t /∈ TT
Θ>∗ ϕ(xt, ut) t ∈ TT

and

rt+1 =

{
M>t ϕ(xt, ut) + wt+1 t /∈ TT
wt+1 t ∈ TT
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Thus, we can write

‖xt‖ ≤ ‖Γt−1‖+ ‖rt‖ ≤ gt−1 ‖xt−1‖+ ‖rt‖ = gt−1gt−2 ‖xt−2‖+ ‖rt‖+ gt−1 ‖rt−1‖
= gt−1gt−2gt−3 ‖xt−3‖+ ‖rt‖+ gt−1 ‖rt−1‖+ gt−1gt−2 ‖rt−2‖ = · · · = gt−1 . . . gt−t ‖xt−t‖
+ ‖rt‖+ gt−1 ‖rt−1‖+ gt−1gt−2 ‖rt−2‖+ · · ·+ gt−1gt−2 . . . gt−(t−1)

∥∥rt−(t−1)

∥∥
=

t∑
k=1

(
t−1∏
s=k

gs

)
‖rk‖ .

Thus, we have that
t−1∏
s=k

gs ≤ Ψn+dΛt−k−(n+d) .

Thus, we have that

‖xt‖ ≤
(

Ψ

Λ

)n+d t−1∑
k=0

Λt−k−1 ‖rk+1‖

≤ 1

1− Λ

(
Ψ

Λ

)n+d

max
0≤k≤t−1

‖rk+1‖ .

The rest of the proof is identical to the proof of Lemma 5.8.

Regret Decomposition

Define x̃att+1 = Θ̃>t ϕ(xt, at) + wt+1. From Assumption A4, provided that the confidence set
does not fail at time t, we get that

J(Θ̃t) + ht(xt) ≥ min
a∈D(xt)

{
`(xt, a) + E

[
ht(x̃

a
t+1) | Ft

]}
= `(xt, at) + E

[
ht(x̃

at
t+1) | Ft

]
= `(xt, at) + E

[
ht(Θ̃

>
t ϕ(xt, at) + wt+1) | Ft

]
= `(xt, at) + E

[
ht((Θ̃t −Θ∗)

>ϕ(xt, at) + Θ>∗ ϕ(xt, at) + wt+1) | Ft
]

= `(xt, at) + E [ht(εt + xt+1) | Ft] ,

where εt = (Θ̃t −Θ∗)
>ϕ(xt, at). Thus, on E ∩ F ,

R(T ) =

T∑
t=1

(`(xt, at)− J∗)

≤
T∑
t=1

(`(xt, at)− J(Θ̃t)) (by A5)

≤
T∑
t=1

(ht(xt)− E [ht(xt+1 + εt) | Ft]) .

Thus, we can bound the regret on E ∩ F ,

R(T ) ≤ h1(x1)− hT+1(xT+1) +

T∑
t=1

(ht+1(xt+1)− E [ht(xt+1 + εt) | Ft])

≤
T∑
t=1

(ht+1(xt+1)− E [ht(xt+1 + εt) | Ft]) .
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The OFU algorithm changes the policy only when the confidence set is halved. (so,
ht+1 = ht most of time.) Let At denote the event that the algorithm has changed its policy
at time t. Then, on E ∩ F ,

R(T ) ≤
T∑
t=1

(ht+1(xt+1)− E [ht(xt+1 + εt) | Ft])

=

T∑
t=1

(ht+1(xt+1)− ht(xt+1)) +

T∑
t=1

(ht(xt+1)− E [ht(xt+1 + εt) | Ft])

≤ 2BXT

T∑
t=1

I{At} +

T∑
t=1

(ht(xt+1)− E [ht(xt+1 + εt) | Ft])

≤ 2BXT

T∑
t=1

I{At} +B

T∑
t=1

‖εt‖+

T∑
t=1

(ht(xt+1)− E [ht(xt+1) | Ft]) .

Define

R1 = 2BXT

T∑
t=1

I{At} , (5.23)

R2 = B

T∑
t=1

‖εt‖ , (5.24)

R3 =

T∑
t=1

(ht(xt+1)− E [ht(xt+1) | Ft]) . (5.25)

We bound these terms in a number of lemmas.

Lemma 5.21 On the event E ∩ F , the OFU algorithm changes its policy at most

m log2

(
1 + TK2X2k

T /λ
)

times up to time T .

Proof. If the algorithm has changed the policy M times up to time T , then we should have
that det(V T ) ≥ λm2M . On the other hand, we have

λmax(V T ) ≤ λ+

T−1∑
t=1

‖ϕ(xt, at)‖2 ≤ λ+ TK2X2k
T .

Thus, it holds that
λm2M ≤ (λ+ TK2X2k

T )m .

As a result, we have

M ≤ m log2

(
1 +

TK2X2k
T

λ

)
.

This lemma implies that R1 can be bounded as follows:

Lemma 5.22 Let R1 be as defined by Equation (5.23). Then we have that

I{E∩F}R1 ≤ 2BXTm log2

(
1 + TK2X2k

T /λ
)
.

Next, we bound R2 by an argument identical to the one used to prove Lemma 5.15.
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Lemma 5.23 Assume that E ∩ F holds. Then we have that

T∑
t=1

∥∥∥(Θ∗ − Θ̃t)
>ϕ(xt, at)

∥∥∥2

≤ 8

λ
K2X2k

T βT (δ/4) log det(V T ) .

Lemma 5.24 Let R2 be as defined by Equation (5.24). Then we have that

I{E∩F}R2 ≤ B
√

8

λ
TK2X2k

T βT (δ/4) log det(V T ) .

Similarly, we bound R3 by an argument similar to the one used to prove Lemma 5.16.

Lemma 5.25 Let R3 be as defined by Equation (5.25). Then with probability at least
1− δ/2,

I{E∩F}R3 ≤ H
√

8T log 4/δ ,

where H = 2B(Ψ +W ) and W = Ln
√

2n log(4nT/δ).

Proof. Note that Et+1 ⊂ Et and Ft+1 ⊂ Ft, and so I{Et+1∩Ft+1} ≤ I{Et∩Ft}, and in par-
ticular, since E = ET , F = FT , I{E∩F} ≤ I{Et∩Fs} holds for any t, s ≤ T . We have
that

I{E∩F}R3 ≤
T∑
t=1

I{Et+1∩Ft}(ht(xt+1)− E [ht(xt+1)|Ft]).

Define
Dt = I{Et+1∩Ft}(ht(xt+1)− E [ht(xt+1)|Ft])

and its truncated version Dc
t = Dt ∧H. Define the supermartingale

Mτ =

τ∑
t=1

Dc
t , M0 = 0 .

This is a supermartingale, since Et+1 and Ft are Ft measurable. Let A be the event that
for t ≤ T , wt ≤W . If A holds then,

Dt = I{Et+1∩Ft}

(
ht
(
Θ>∗ ϕ(xt, at) + wt+1

)
− E

[
ht
(
Θ>∗ ϕ(xt, at) + wt+1

)
|Ft
] )

≤ 2B
∥∥Θ>∗ ϕ(xt, at)

∥∥+B
(
‖wt+1‖+ E [‖wt+1‖ |Ft]

)
≤ 2B(Ψ +W ) = H .

Thus, under A, Dt = Dc
t . Then, by Azuma’s inequality, we get that

P
(
MT > H

√
2T log(4/δ)

)
≤ δ/4 .

Thus,

P

(
A,

T∑
t=1

Dt > H
√

2T log(4/δ)

)
≤ δ/4 .

Thus

P

(
T∑
t=1

Dt ≤ H
√

2T log(4/δ)

)
≥ 1− δ/4− P (Ac) ≥ 1− δ/2 .

Then, by Lemma 5.10, we get that with probability at least 1− δ/2,

I{E∩F}R3 ≤ H
√

8T log 4/δ .
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Gradient
Input: Ellipsoid covariance matrix V , ellipsoid center Θ̂, step-size α.
Θ0 = Θ̂.
for i := 0, 1, . . . , C do

Compute ∇Θ trace(P (Θ)) by (5.26),(5.27).
Θi+1 = Θi − α∇Θ trace(P (Θ)).
Θi+1 = Project(Θi+1, V, I).

end for
Return ΘC .

Figure 5.3: The projected gradient descent method for solving the OFU optimization.

Putting Everything Together and Proving Theorem 5.17

Proof of Theorem 5.17. The proof follows in a straightforward manner from Lemmas 5.22,
5.24, and 5.25.

5.4 Computational Issues and Experiments

In this section, we derive two incremental gradient descent methods to find an approximate
solution to problem (5.8). We study experimentally their behavior on a simple example. Fi-
nally, we study the behavior of the OFULQ algorithm that uses these optimization methods
on a simple idealized web server control problem.

5.4.1 Incremental Methods for Finding an Optimistic Parameter

Recall that J(Θ) = trace(P (Θ)), where P (Θ) is the Riccati solution. At round t, we solve
the optimization problem

inf
Θ∈Ct(δ)∩S

trace(P (Θ))

approximately to find an optimistic estimate Θ̃t. Perhaps the simplest approach is to use
an iterative method such as the projected gradient descent method,

Θ̃t ← ΠCt(δ)

(
Θ̃t − α∇Θ trace(P (Θ))

)
,

where ∇Θf is the gradient of f with respect to Θ, α > 0 is a step-size, Ct(δ) is the confidence
ellipsoid at time t, and ΠR is the Euclidean projection on R. The resulting algorithm is
shown in Figure 5.3.

Alternatively, we can use Newton’s method with iterations

Θ̃t ← ΠCt(δ)

(
Θ̃t − αHΘ(trace(P (Θ)))−1∇Θ trace(P (Θ))

)
,

where HΘ(f) is the Hessian of f with respect to Θ. Next we derive the gradient and the
Hessian of trace(P (Θ)) and the projection rules. In general, Newton’s method is expected
to converge with a fewer iterations but at the price of a higher per-iteration computational
effort. Whether a gradient method, or Newton’s method should be used in a specific appli-
cation is expected to depends on the specific of the problem.

Notice that the above optimization algorithms project onto Ct(δ) instead of Ct(δ) ∩ S.
This is done for ease of implementation. Later, we will show experimentally that omitting
S does not cause major problems, at least in the problem we tested the algorithm on. In
the next two subsections we show how the gradient and Hessian of the objective function
J can be computed. This is followed by the description of how the projection step can be
implemented.
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Gradient Computation

To simplify the presentation, we use P to denote P (Θ). Let [Mjk]j=1...r, k=1...c be a r × c
matrix whose (j, k)th element is Mjk. If the dimensionality of the matrix can be understood
from the context, we omit r and c and just write [Mjk]j,k.

The derivation of the gradient and the Hessian of trace(P ) in general multidimensional
problems is as follows. We have that

∇A trace(P ) =

n∑
i=1

∇APii =

n∑
i=1

[
∂Pii
∂Ajk

]
j,k

, (5.26)

∇B trace(P ) =

n∑
i=1

∇BPii =

n∑
i=1

[
∂Pii
∂Bjk

]
j,k

. (5.27)

Define
G = Q+A>PA−A>PB(B>PB +R)−1B>PA− P

and
g = trace(G).

If A,B, P satisfy the Riccati equation, then g = 0. By the Implicit Function Theorem
(Theorem A.2 in Appendix A), we get that for any 1 ≤ i, j ≤ n , 1 ≤ k ≤ d,

∂Pii
∂Ajk

= −∂g/∂Ajk
∂g/∂Pii

, (5.28)

∂Pii
∂Bjk

= −∂g/∂Bjk
∂g/∂Pii

. (5.29)

Thus, we only need to compute

∂g

∂Ajk
= trace

(
∂G

∂Ajk

)
, (5.30)

∂g

∂Bjk
= trace

(
∂G

∂Bjk

)
, (5.31)

∂g

∂Pii
= trace

(
∂G

∂Pii

)
. (5.32)

It can be shown that

∂G

∂Ajk
= A>C1jk + 1kjCA ,

∂G

∂Bjk
= −H1kjPA+H(B>P1jk + 1kjPB)H> −A>P1jkH

> ,

∂G

∂Pii
= A>1iiA− 1ii −HB>1iiA−A>1iiBH

> +HB>1iiBH
> ,

where H = A>PB(B>PB + R)−1. Then, given (5.28)–(5.32), we can compute derivatives
via the help of (5.26) and (5.27).

Hessian Computation

Next, we show how the Hessian can be computed. The second-order derivatives of trace(P (Θ))
can be obtained from (5.28) and (5.29), which, in turn, requires the second-order derivatives
of g with respect to A,B, P . These derivatives can be obtained from the following equations:

∂2G

∂Ajk∂Bj′k′
= PB(B>PB +R)−11k′j′P − P1j′k′(B

>PB +R)−1B>P

+ PB(B>PB +R)−1(B>P1j′k′ + 1k′j′PB)(B>PB +R)−1B>P ,
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∂2G

∂Pii∂Bj′k′
= − ∂H

∂Pii
1k′j′ +

∂H

∂Pii
(B>P1j′k′ + 1k′j′PB)H>

+H(B>1ii1j′k′ + 1k′j′1iiB)H> +H(B>P1j′k′ + 1k′j′PB)
∂H>

∂Pii
,

∂2G

∂Pii∂Aj′k′
= 1kj1iiA+A>1ii1jk −HB>1ii1jk − 1kj1iiBH

>

− 1kjPB(B>PB +R)−1B>1iiA−A>1iiB(B>PB +R)−1B>P1jk

+ 1kjPB(B>PB +R)−1B>1iiBH
> +HB>1iiB(B>PB +R)−1B>P1jk ,

∂2G

∂Ajk∂Aj′k′
= 1kjC1j′k′ + 1j′k′C1jk ,

∂2G

∂Bjk∂Bj′k′
= − ∂H

∂Bj′k′
1kjPA−A>P1jk

∂H>

∂Bj′k′
+

∂H

∂Bj′k′
(B>P1jk + 1kjPB)H>

+H(B>P1jk + 1kjPB)
∂H>

∂Bj′k′
+H(1>k′j′P1jk + 1kjP1j′k′)H

> ,

∂H

∂Bjk
= A>P1jk(B>PB +R)−1

−A>PB(B>PB +R)−1(1kjPB +B>P1jk)(B>PB +R)−1 ,

∂H

∂Pii
= A>1iiB(B>PB +R)−1

−A>PB(B>PB +R)−1(B>1iiB +R)(B>PB +R)−1 .

From these, the Hessian can be computed using simple algebra.

Projection Step

Because the confidence set (the optimization space) is an ellipsoid, we discuss how to project
a point on an ellipsoid. The derivation of how this can be done can be found in, e.g., the work
of Kiseliov (1994) and is essentially an application of Lagrange multipliers and Newton’s
method. Consider the ellipsoid

U = {u : Rk : trace(u>Mu) ≤ 1} .

Imagine (abstractly) that the goal is to project u0 ∈ Rk on U according to a weighted
Euclidean norm, i.e., the problem is to compute

û = argmin
u∈U

(u− u0)>N(u− u0) .

Define the Lagrangian

L(u, µ) = (u− u0)>N(u− u0) + µ(trace(u>Mu)− 1) .

From ∂L/∂u = 0 we get the projection

û(µ) = (N + µM)−1Nu0 . (5.33)

From ∂L/∂µ = 0 we get that

trace(u(µ)>Mu(µ))− 1 = 0 . (5.34)

We solve for µ and then obtain the projection from (5.33). Define

G(µ) = trace(û(µ)>Mû(µ))− 1 . (5.35)
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Project
Input: Point u0, ellipsoid covariance matrix M , projection weight matrix
N .
µ0 = 0.
for i := 0, 1, . . . , C do

Compute G(µi) and G′(µi) by (5.35),(5.36).

µi+1 = µi − G(µi)
G′(µi)

.

end for
Return (N + µC+1M)−1Nu0.

Figure 5.4: Projection of a point on an ellipsoid.

We solve for the zero of G(µ) = 0 iteratively using Newton’s method:

µs+1 = µs −
G(µs)

G′(µs)
.

The derivative of G(µ) can be computed as follows:

G′(µ) = trace

(
∂

∂µ
û(µ)>Mû(µ)

)
= 2 trace

(
∂û(µ)>

∂µ
Mû(µ)

)
, (5.36)

∂û(µ)

∂µ
=

{
∂

∂µ
(N + µM)−1

}
Nu0 = −(N + µM)−1M(N + µM)−1Nu0 .

Putting together the pieces, we arrive at the iterative projection algorithm whose pseudocode
is shown in Figure 5.4.

5.4.2 Finding the Optimistic Parameters: Numerical Illustration

Figure 5.5 shows the objective function J(Θ) = trace(P (Θ)) when the state and action
spaces are 1-dimensional (n, d = 1). Based on this figure, we conjecture that trace(P (Θ))
is convex in A. In fact, the hypothesis can be shown to be true in the 1-dimensional case.
However, it is not known if the hypothesis is true in higher dimensions. From Figure 5.5, it
also appears that if the confidence set is away fromB = 0, the gradient descent method might
be effective in solving the OFU optimization problem. That the critical line is B = 0 is not
a coincidence: Knowing the “sign” of the control clearly plays a crucial role. The practical
consequence of this for multidimensional systems is that the gradient method will only be
reliable when “signs” in the some kind of “eigenstructure” of matrix B is identified with
high probability. Determining the exact condition remains for future work. Nevertheless,
we speculate that in this initial phase, whose length should probably be determining using
a stopping rule, it is better to use randomized controls.

Let us now illustrate the behavior of Newton’s method, the earlier described projected
gradient descent method, and a simple discretization method for minimizing trace(P (Θ))
over a fixed confidence set when n, d = 1. Figure 5.6-(a) shows that Newton’s method finds
near optimal solutions in just two steps. The behavior of the other two methods are shown
in Figure 5.6-(b,c). Figure 5.7 shows the fixed confidence ellipsoid and a sample trajectory
of the gradient procedure that converges to the minimum of trace(P (Θ)) over the confidence
set. The step-size of the gradient method is chosen to be 1/

√
λ1 + λ2, where λ1 and λ2 are

the eigenvalues of the covariance matrix underlying the ellipsoid. We observed that the
gradient method with this step-size performs well on many problems.

81



A

0.10
0.05

0.00
0.05

0.10

B

10

5

0

5

10

P

0.000

0.002

0.004

0.006

Figure 5.5: Values of the objective function J(Θ) = trace(P (Θ)) as a function of Θ = (A,B),
where A,B ∈ R. Here, P (Θ) is the solution of the Riccati Equation (5.3).

0 1 2 3 4 5 6 7 8 9
Iteration

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

tr
ac

e(
P)

trace(P) vs. Number of Iterations

0 200 400 600 800 1000
Iteration

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

tr
ac

e(
P)

trace(P) vs. Number of Iterations

0 500 1000 1500 2000 2500
Iteration

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

tr
ac

e(
P)

trace(P) vs. Number of Iterations

(a) (b) (c)

Figure 5.6: (a) Newton’s method. (b) Gradient descent method. (c) Uniform discretization.
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Figure 5.7: A sample trajectory of the projected gradient descent method.
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5.4.3 Illustration of OFULQ

The purpose of this section is to illustrate the behavior of OFULQ on a simple control
problem. As the control problem, we choose a web server control problem. This control
problem is described first, which will be followed by the description of our results.

Web Server Control Application

Next, we illustrate the behavior of OFULQ on a web server control problem. The problem
is taken from Section 7.8.1 of the book by Hellerstein et al. (2004) (this example is also used
in Section 3.4 of the book by Aström and Murray (2008)). An Apache HTTP web server
processes the incoming connections that arrive on a queue. Each connection is assigned to
an available process. A process drops the connection if no requests have been received in
the last KeepAlive seconds. At any given time, there are at most MaxClients active
processes. The values of the KeepAlive and MaxClients parameters, denoted by aka
and amc respectively, are chosen by a control algorithm. Increasing amc and aka results in
faster and longer services to the connections, but also increases the CPU and memory usage
of the server. MaxClients is bounded in [1, 20], while KeepAlive is bounded in [1, 1024].
The state of the server is determined by the average processor load xcpu ∈ [0, 1] and the
relative memory usage xmem ∈ [0, 1]. A operating point of interest of the system is given by

xcpu = 0.58 , aka = 11s , xmem = 0.55 , amc = 600 .

A linear model around the operating point is assumed, resulting in a model of the form(
xcpu(t+ 1)
xmem(t+ 1)

)
=

(
A11 A12

A21 A21

) (
xcpu(t)
xmem(t)

)
+

(
B11 B12

B21 B21

) (
aka(t)
amc(t)

)
+

(
w1(t+ 1)
w2(t+ 1)

)
,

where (w1(t + 1), w2(t + 1))t is an i.i.d. sequence of Gaussian random variables, with a
diagonal covariance matrix. Note that these state and action variables are in fact the
deviations from the operating point. Hellerstein et al. (2004) fitted this model to an Apache
HTTP server and obtained the parameters

A =

(
0.54 −0.11
−0.026 0.63

)
, B =

(
−85 4.4
−2.5 2.8

)
× 10−4 ,

while the noise standard deviation was measured to be 0.1. Hellerstein et al. (2004) found
that these parameters provided a reasonable fit to their data.

For control purpose, the following cost matrices were chosen (cf. Example 6.9 of Aström
and Murray (2008)):

Q =

(
5 0
0 1

)
, R =

(
1/502 0

0 0.16

)
.

Numerical Results

We compare a forced-exploration method, a Q-learning method, and the OFULQ algorithm
on this problem. We run these experiments in NumPy on a dual-core Linux machine with
a 2.16 gigahertz CPU and 3 gigabytes of RAM. The time horizon in these experiments is
T = 10, 000. We repeat each experiment 50 times and report the mean and the standard
deviation of the observations. In these experiments, a single run takes, on average, 4.83
seconds with the forced-exploration method and 11.54 seconds with the OFULQ algorithm.

The forced-exploration algorithm takes
√
T = 100 random exploratory actions at the

beginning, and then takes the greedy action with respect to the least-squares estimate
for the rest of the episode. During the exploration phase, we sample the random action
according to aka ∼ U(1, 100) and amc ∼ U(1, 10), where U(a, b) is the uniform distribution
over [a, b]. The top-left subfigure of Figure 5.8 shows the regret of the forced-exploration
method.
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Bradtke et al. (1994) prove convergence of a Q-learning method on discounted determin-
istic LQ problems. The algorithm maintains a current policy Kt ∈ Rd×n, which is a linear
mapping from state to action. For every Ne steps of policy estimation, one step of policy
improvement is performed. At each round, the output of the current policy is perturbed by
a noise vector to obtain the action, at = Ktxt + ut. We choose Ne = 30 and discount factor
γ = 0.9. Each element of the noise vector is drawn from U(0, 1). The top-right subfigure of
Figure 5.8 shows the regret of the Q-learning method, which looks almost linear. We also
experimented with an R-learning method (Sutton and Barto, 1998), which is the average
loss version of the Q-learning algorithm. However, the value function estimate diverges in
our experiments.

The inputs to the OFULQ algorithm are δ = 1/T, λ = 1, R = 0.1, S = 1. The gradient
module takes 50 steps to solve each OFU optimization problem. The learning rate is

α =

√
0.001

trace(V t/βt(δ))
.

The reason for dividing by the trace of V t is that if some eigenvalue of V t is big then in
some direction the ellipsoid will have a small diameter. Hence, the inverse of the trace is
an indicator of how big the confidence set is, note we want to take smaller steps when the
ellipsoid is smaller. Similarly, βt(δ), is the radius of the ellipsoid and then it makes sense
to increase the step-size as a function of βt(δ). The square root is needed to match the
dimensions of the step-size to that of these two other quantities. The constant 0.001 is
chosen in an ad hoc fashion (based on prior experience with other problems).

In the projected gradient method, we apply Newton’s update for computing the projec-
tion of the unconstrained parameter at most 1, 000 times or until the projected point lies
inside the confidence ellipsoid (on average, the Newton update is used only for about 15
steps, which takes about 0.0028 seconds). Solving the OFU problem requires 0.286 seconds
on average. Empirically, we have found that the optimistic estimates always lied in the set
S. We also note that the algorithm always makes less than 30 switches.

The bottom-left subfigure of Figure 5.8 shows the regret of the OFULQ algorithm,
which is slightly worse than what we get for the forced-exploration method. We explain
this observation by noting that, in this problem, we need large inputs to reliably estimate
matrix B, which has small elements. The forced-exploration method takes large random
actions, whose scale is manually set by the programmer, while the OFULQ algorithm has
no way to find the right scaling at the beginning. However, it can also be seen from the
figure, that the rate at which the regret of OFULQ increases starts to decrease, while the
forced-exploration method, once exploration is turned off, does not adapt and hence the
rate of increase of its regret stays constant (illustrating the benefit of algorithms that adapt
online).

To make the comparison with the forced exploration method fair(er), we add an initial
exploration period to the OFULQ algorithm. A reasonable-looking suggestion is that this
initial phase should last (n + d) × 10 time steps; in other words, by the end, we expect to
see 10 samples for each dimension.

The bottom-right subfigure of Figure 5.8 shows the regret of this algorithm. Now,
OFULQ clearly outperforms the forced-exploration method – both in terms of its mean
regret and variance. It is also interesting to know that this new algorithm makes about
15 switches. For illustration purposes, average trajectories of the state and action vectors
are shown in Figure 5.9 for this last version of OFULQ. The evolution of the least-squares
estimates for the elements of the parameter matrix for the same case is shown in Figures 5.10
and 5.11.
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Figure 5.8: Regret vs time for a web server control problem. (Top-left): regret of the forced-
exploration method. (Top-right): regret of a Q-learning method. (Bottom-left) regret of
the OFULQ algorithm. (Bottom-right): regret of the OFULQ algorithm with the initial
exploration.
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Figure 5.9: The trajectory of the state and action vectors. (Top left): xcpu vs. time. (Top
right): xmem vs. time. (Bottom left): aka vs. time. (Bottom right): amc vs. time.
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Figure 5.10: The least-squares estimate for matrix A vs time.
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Figure 5.11: Least-squares estimate for matrix B vs time.
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Chapter 6

Conclusions

We employed the “optimism in the face of uncertainty” principle to design efficient algo-
rithms for a number of important decision making problems, such as the linear stochastic
bandit and the linear quadratic control problems. The main requirement to the application
of the OFU principle is that a pointwise error bound for the online prediction is available.
Tighter error bounds often translate into better online performance.

The first contribution of this thesis was to derive new tighter error bounds for the online
least-squares method. Our approach was to relate the estimation error to a self-normalized
quantity for vector-valued martingales. We also showed that the predictions of any online
algorithm with quadratic losses can be combined in a certain fashion to give a confidence set
whose size scales only with the average regret of the online algorithm. This general result
allowed us to construct confidence sets smaller than what was previously available when the
unknown parameter vector is assumed to be sparse.

Equipped with tight confidence sets, we obtained linear bandit algorithms that achieve
regret bounds with both improved theoretical and empirical performance. In particular,
the effectiveness of the proposed methods was demonstrated on the Yahoo! article recom-
mendation dataset, whereas we compared algorithms tuned for the sparse and nonsparse
situations on synthetic data. These experiments fully confirmed the theoretical predictions:
the algorithm specialized to the sparse setting performs favourably in comparison to other
linear bandit methods when the parameter vector is sparse. We believe further progress can
be made on this front by deriving confidence sets from tighter data-driven regret bounds.
Obtaining such regret bounds remain an open problem.

The second main topic of the thesis is the application of the OFU principle to con-
trol problems. We first studied the basic linear quadratic control problem that plays a
fundamental role in the control literature. We designed an algorithm and proved the first
finite-time regret bound for this algorithm. We also proposed a gradient-based method to
approximately solve the OFU optimization problem; thereby making it possible to imple-
ment the algorithm in practical way for high-dimensional problems. Our experiments show
that the proposed gradient-based technique indeed achieves a sublinear regret. These results
are encouraging as they show that the OFU principle can be successfully applied to a class
of control problems with continuous state and action spaces.

Finally, we showed that a similar technique can be employed to design and analyze
algorithms for more general control problems with non-linear transition laws, but linear
uncertainty. For such problems, we also obtained sublinear regret bounds. However, at
the moment, these results remain of purely theoretical interest only, as there are no known
efficient ways to implement the required OFU optimization problem.
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András Antos and Csaba Szepesvári. Lower bounds for linear stochastic bandits. Personal
Communication, 2009.

András Antos, Varun Grover, and Csaba Szepesvári. Active learning in heteroscedastic
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Peter Bühlmann and Sara van de Geer. Statistics for High-Dimensional Data: Methods,
Theory and Applications. Springer, 2011.

Apostolos N. Burnetas and Michael N. Katehakis. Optimal adaptive policies for sequential
allocation problems. Advances in Applied Mathematics, 17(2):122–142, 1996.

Apostolos N. Burnetas and Michael N. Katehakis. Optimal adaptive policies for Markov
decision processes. Mathematics of Operations Research, 22(1):222–255, 1997.

Marco C. Campi. Achieving optimality in adaptiv control: the “Bet On the Best” approach.
In Proceedings of the 36th IEEE Conference on Decision and Control, 1997.

Marco C. Campi and P. R. Kumar. Adaptive linear quadratic Gaussian control: the cost-
biased approach revisited. SIAM Journal on Control and Optimization, 36(6):1890–1907,
1998.

Emmanuel J. Candès. Compressive sampling. In Proceedings of the International Congress
of Mathematicians, volume 3, pages 1433–1452, 2006.
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Aurélien Garivier and Eric Moulines. On upper-confidence bound policies for non-stationary
bandit problems. Technical report, LTCI, 2008.

Claudio Gentile and Nicolas Littlestone. The robustness of the p-norm algorithms. In
Proceedings of the Twelfth Annual Conference on Learning Theory, 1999.

93
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Csaba Szepesvári. Multi-task learning. Notes, 2009.
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Appendix A

Background in Calculus and
Linear Algebra

Definition A.1 (Lipschitz Continuity) Let D ⊂ Rd, h : D → R. If there exists L ≥ 0
such that for all a1, a2 ∈ D, |h(a1)− h(a2)| ≤ L ‖a1 − a2‖, then we say that function h is
Lipschitz continuous with constant L.

The next theorem is stated in the form given here as Theorem 1.8.1 in (Melas, 2006).
The original version can be found in (Gunning and Rossi, 1965, Chapter 1).

Theorem A.2 (Implicit Function Theorem) Let G : Rs+k → Rs be a function and fix
u0 ∈ Rk such that

• the equation G(v, u0) = 0 has a solution v0; and

• the function G is continuous and has continuous first partial derivatives ∂
∂ui

G(v, u),
∂
∂vj

G(v, u), for 1 ≤ i ≤ k and 1 ≤ j ≤ s in the neighborhood of (u0, v0) and

• det
[
∂
∂vj

Gi(v0, u0)
]s
i,j=1

6= 0 .

Then there exists a neighborhood U of the point u0 and function g : U → Rs such that in
U we have (1) G(u, g(u)) = 0, (2) v0 = g(u0), (3) g is continuous and

J(g(u), u)
∂g(u)

∂uj
= −Lj(g(u), u) , j = 1, . . . , k,

where

J(v, u) =

[
∂

∂vj
Gi(v, u)

]s
i,j=1

, Lj(v, u) =

[
∂

∂uj
Gi(v, u)

]s
i=1

.

Further, if ĝ : U → Rs satisfies (1) and (2) then ĝ = g.

Lemma A.3 (Sherman-Morrison Formula) Assume that V ∈ Rd×d is an invertible matrix
and a, b ∈ Rd are vectors. If 1 + b>A−1a 6= 0, then we have that

(V + ab>)−1 = V −1 − A−1ab>A−1

1 + b>A−1a
.

Lemma A.4 (Matrix-Determinant Lemma) Let V ∈ Rn×n be an invertible matrix and
A,B be n×m matrices. Then it holds that

det(V +AB>) = det(V ) det(I +B>V −1A) .
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Appendix B

Reproducing Kernel Hilbert
Spaces

The following definitions and theorems are taken from (Rynne and Youngson, 2008).

Definition B.1 (Inner Product Space) A real or complex vector space H with an inner
product 〈., .〉 is called an inner product space.

Definition B.2 (Hilbert Space) An inner product space that is complete with respect to
the metric associated with the norm induced by the inner product is called a Hilbert space.

Definition B.3 (Orthonormal Sequence) Let H be an inner product space. A sequence
(ei) ⊂ H is said to be an orthonormal sequence if ‖ei‖ = 1 for all i ∈ N, and 〈ei, ej〉 = 0 for
all i, j ∈ N with i 6= j.

Theorem B.4 Any infinite-dimensional inner product space H contains an orthonormal
sequence.

Definition B.5 (Orthonormal Basis) Let H be a Hilbert space and let (ei) be an orthonor-
mal sequence in H. Then (ei) is called an orthonormal basis for H if and only if for all
m ∈ H, m =

∑∞
i=1〈m, ei〉ei.

Definition B.6 (Separable Space) A space is separable if it contains a countable dense
subset.

Theorem B.7 (Separable Hilbert Space) A Hilbert space H is separable if and only if it
has an orthonormal basis.

Definition B.8 (Trace Class Operator) Let H be a separable Hilbert space with orthonor-
mal basis (ei). A bounded linear operator A : H → H is trace class if

∑∞
i=1〈(A∗A)1/2ei, ei〉

is finite.

Note that in this definition the choice of (ei) is arbitrary. However, it can be shown
that if

∑∞
i=1〈(A∗A)1/2ei, ei〉 is finite for some orthonormal basis, then it is also finite for any

other basis.
The next definitions and propositions are stated in the form given in (Szepesvári, 2009).

Definition B.9 (Reproducing Kernel Hilbert Space) Let k : X × X → R be a positive
semi-definite kernel function. Consider the linear space

H0 = {
t∑

k=1

λkk(xk, .) : t ∈ N, λk ∈ R, xk ∈ X} .
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Pick f, g ∈ H0. Without loss of generality, we may assume that f =
∑t
k=1 λkk(xk, .), g =∑t

k=1 λ
′
kk(xk, .), i.e., f and g are defined using the same set of points in X . Define the inner

product of f and g by

〈f, g〉 =
∑
k,j

λkλjk(xk, xj) .

The Reproducing Kernel Hilbert Space (RKHS) underlying k is defined as the closure of H0

with respect to the norm induced by so-defined inner product. This will be denoted by H.

Proposition B.10 The following statements are true:

• The inner product in the above definition is well-defined.

• For any x ∈ X , k(x, .) ∈ H0 and for any x, x′ ∈ X ,

〈k(x, .), k(x′, .)〉 = k(x, x′) .

This is the so-called “reproducing property” of k.

• H is a Hilbert space.

• If f =
∑
i αik(xi, .) ∈ H then

‖f‖2H
.
= 〈f, f〉 =

∑
i,j

αiαjk(xi, xj) .

Definition B.11 (Feature Map) Let k : X ×X → R be a positive semi-definite kernel. We
say that Φ : X → RN is a feature map underlying k if

k(x, x′) = 〈Φ(x),Φ(x′)〉

holds for any x, x′ ∈ X , where in the RHS the inner product is the usual `2-inner product.

Proposition B.12 Let Φ be a feature-map underlying k and let H be the RKHS corre-
sponding to k. For any f ∈ H,

‖f‖2H = inf{‖θ‖22 : f = θ>Φ} .

In particular, H = {θ>Φ : ‖θ‖22 < +∞}.
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Appendix C

Tools from Probability Theory

The following definitions and lemmas are stated in the form given here in (Kallenberg, 2002).

Lemma C.1 (Fatou’s Lemma) For any measurable functions f1, f2, · · · ≥ 0 on (Ω,F , µ),
we have

lim inf
t→∞

µft ≥ µ lim inf
t→∞

ft .

Theorem C.2 (Lebesgue Dominated Convergence) Let f, f1, f2, . . . and g, g1, g2, . . . be
measurable functions on (Ω,F , µ) with |ft| ≤ gt for all t, and such that ft → f, gt → g, and
µgt → µg <∞. Then µft → µf .

Definition C.3 (Stopping Time) Let F = (Ft) be a filtration. We say that random time τ
is F-stopping time if {τ ≤ t} ∈ Ft for every t.

Definition C.4 (Martingale) Given any filtration F = (Fk), we say that a sequence x =
(xk) forms a martingale with respect to F if E [xk|Fk−1] = xk−1 a.s. for all k.

An example of a martingale is the fortune of a gambler at round t, denoted by xt.
The game is considered fair if E [xt|Ft−1] = xt−1, which is the martingale property. If the
gambler skips some rounds of a fair game, we expect that the resulting game is still fair.
The following definition and theorem are stated in the form given here in (Doob, 1953).

Definition C.5 (Optional Skipping) Let (yk) be a stochastic process, and let F = (Ft) be
a filtration with the following properties:

(i) E [ |yk| ] <∞ , k ≥ 1.

(ii) Random variable yk is either measurable with respect to Fk or is equal almost every-
where to a function which is.

(iii) For all k ≥ 1 either E [yk+1|Fk] = 0 with probability 1, or the process is real and

(iv) E [yk+1] ≥ 0 with probability 1.

Let i1, i2, . . . be random variables taking on integral values, and having the following prop-
erties: 1 < i1 < i2 < · · · < ∞, and {ω : ij(ω) = k} ∈ Fk−1 for k ≥ j, neglecting sets of
measure 0. Define ỹj by

ỹj = yij , j ≥ 1 .

The process (ỹk) will be said to be obtained from the process (yk) by optional skipping.

Theorem C.6 Suppose that a process (yk;Fk) with the properties (i), (ii), (iv) of the
preceding definition is transformed into the process (ỹk) by optional skipping, and suppose
that

E [|ỹk|] <∞ , k ≥ 1 . (C.1)
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Then the process (ỹk) satisfies

E [ỹk+1 | ỹ1, . . . , ỹk] ≥ 0 , k ≥ 1 , (C.2)

with probability 1. If (iv) is replaced by (iii), there is equality in (C.2) with probability 1.
The condition (C.1) is satisfied if either of the following conditions is satisfied.

(i) Each ij defining the skipping is a bounded random variable, with probability 1.

(ii) There is a number K such that, for each j,

E [|yk+1| | Fk] ≤ K , k ≤ ij(ω) ,

with probability 1.

Lemma C.7 Let x1, . . . , xt be random variables. Let a ∈ R. Let St =
∑t
k=1 xk and

S̃t =
∑t
k=1 xkI{xk≤a}. Then it holds that

P (St > x) ≤ P
(

max
1≤k≤t

xk ≥ a
)

+ P
(
S̃t > x

)
.

Proof.

P (St ≥ x) ≤ P
(

max
1≤k≤t

xk ≥ a
)

+ P
(
St ≥ x, max

1≤k≤t
xk ≤ a

)
≤ P

(
max

1≤k≤t
xk ≥ a

)
+ P

(
S̃t ≥ x

)
.

Theorem C.8 (Hoeffding’s Inequality) Let x1, . . . , xt be independent real-valued random
variables such that for each k = 1, . . . , t there exist some ak ≤ bk such that P (ak ≤ xk ≤ bk) =
1. Then for every ε > 0,

P

(
t∑

k=1

xk − E

[
t∑

k=1

xk

]
≥ ε

)
≤ exp

(
− 2ε2∑t

k=1(bk − ak)2

)

and

P

(
t∑

k=1

xk − E

[
t∑

k=1

xk

]
≤ −ε

)
≤ exp

(
− 2ε2∑t

k=1(bk − ak)2

)
.

Theorem C.9 (Hoeffding-Azuma Inequality) Let v1, v2, . . . be a martingale difference se-
quence with respect to some sequence x1, x2, . . . such that vk ∈ [ak, ak + ck] for some
random variable ak, measurable with respect to x1, . . . , xk−1 and a positive constant ck. If
St =

∑t
k=1 vk, then for any ε > 0,

P (St > ε) ≤ exp

(
−2ε2∑t
k=1 c

2
k

)
and

P (St < −ε) ≤ exp

(
−2ε2∑t
k=1 c

2
k

)
.

Theorem C.10 (Freedman’s Inequality) Let x1, . . . , xt be a bounded martingale difference
sequence with respect to the filtration F = (Fk)1≤k≤t and with |xk| ≤ K. Let

Sk =

k∑
s=1

xs
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be the associated martingale. Denote the sum of the conditional variances by

Σ2
t =

t∑
k=1

E
[
x2
k|Fk−1

]
.

Then for all constants ε, v > 0,

P
(

max
k=1...t

Sk > ε and Σ2
t ≤ v

)
≤ exp

(
− ε2

2(v +Kε/3)

)
,

and therefore,

P
(

max
k=1...t

Sk >
√

2vε+ (
√

2/3)Kε and Σ2
t ≤ v

)
≤ e−ε .

The following theorem is stated in the form given here in (de la Peña et al., 2009).

Theorem C.11 (Law of the Iterated Logarithm) Let x1, x2, . . . be independent and iden-
tically distributed random variables and let St =

∑t
k=1 xk. If E

[
x2

1

]
< ∞ and E [x1] = µ,

Var [x1] = σ2, then

lim sup
t→∞

St − tµ√
2t log log t

= σ a.s.,

lim inf
t→∞

St − tµ√
2t log log t

= −σ a.s.,

lim sup
t→∞

max1≤k≤t |Sk − kµ|√
2t log log t

= σ a.s.

Conversely, if there exist finite constants a and τ such that

lim sup
t→∞

St − ta√
2t log log t

= τ a.s.,

then a = E [x1] and τ2 = Var [x1].
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Appendix D

Some Useful Tricks

Proposition D.1 (Square-Root Trick) Let a, b ≥ 0. If z2 ≤ a+ bz then z ≤ b+
√
a.

Proof. Let q(x) = x2− bx−a. The condition z2 ≤ a+ bz can be expressed as q(z) ≤ 0. The
quadratic polynomial q(x) has two roots

x1,2 =
b±
√
b2 + 4a

2
.

The condition q(z) ≤ 0 implies that z ≤ max{x1, x2}. Therefore,

z ≤ max{x1, x2} =
b+
√
b2 + 4a

2
≤ b+

√
a ,

where we have used that
√
u+ v ≤

√
u+
√
v holds for any u, v ≥ 0.

Proposition D.2 (Logarithmic Trick) Let c ≥ 1, f > 0, δ ∈ (0, 1/4]. If z ≥ 1 and

z ≤ c+ f
√

ln(z/δ) then z ≤ c+ f

√
2 ln

(
c+f
δ

)
.

Proof. Let g(x) = x − c − f
√

ln(x/δ) for any x ≥ 1. The condition z ≤ c + f
√

ln(z/δ)
can be expressed as g(z) ≤ 0. For large enough x, the function g(x) is increasing. This is
easy to see, since g′(x) = 1 − f

2x
√

ln(x/δ)
. Namely, it is not hard see g(x) is increasing for

x ≥ max{1, f/2} since for any such x, g′(x) is positive.

Clearly, c + f

√
2 ln

(
c+f
δ

)
≥ max{1, f/2} since c ≥ 1 and δ ∈ (0, 1/4]. Therefore, it

suffices to show that

g

(
c+ f

√
2 ln

(
c+ f

δ

))
≥ 0 .
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This is verified by the following calculation

g

(
c+ f

√
2 ln

(
c+ f

δ

))
= c+ f

√
2 ln

(
c+ f

δ

)
− c− f

√√√√ln

(
c+ f

√
2 ln ((c+ f)/δ)

δ

)

= f

√
2 ln

(
c+ f

δ

)
− f

√√√√ln

(
c+ f

√
2 ln ((c+ f)/δ)

δ

)

= f

√
ln

(
c+ f

δ

)2

− f

√√√√ln

(
c+ f

√
2 ln ((c+ f)/δ)

δ

)

≥ f

√
ln

(
c+ f

δ

)2

− f

√√√√ln

(
(c+ f)

√
2 ln ((c+ f)/δ)

δ

)

= f
√

ln (A2)− f
√

ln
(
A
√

2 lnA
)

≥ 0,

where have defined A = (c+ f)/δ and the last inequality follows from that A2 ≥ A
√

2 lnA
for any A > 0.
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Appendix E

Proofs of theorems of Chapter 4

E.1 Proof of Theorem 4.1

Lemma E.1 We have that

det
(
I +A1:tV

−1A∗1:t

)
=

t−1∏
k=1

(1 + ‖ak‖2V −1
k

) .

Proof. First consider the finite dimensional case. Elementary algebra gives

det(V t) = det(V t−1 + at−1a
>
t−1) = det(V t−1) det(I + V

−1/2

t−1 at−1(V
−1/2

t−1 at−1)>)

= det(V t−1) (1 + ‖at−1‖2V −1
t−1

) = det(V )

t−1∏
k=1

(
1 + ‖ak‖2V −1

k

)
, (E.1)

where we used that all the eigenvalues of a matrix of the form I +mm> are one except one
eigenvalue, which is 1 + ‖m‖2 and which corresponds to the eigenvector m.

Let A1:t,n be the first n columns of matrix A1:t, Wn be the n× n version of V , and ak,n
be the first n elements of ak. Similarly, define W t,n. Define

S∞ =
det(I +A1:tV

−1A∗1:t)∏t−1
k=1(1 + ‖ak‖2V −1

k
)

and

Sn =
det(I +A1:t,nW

−1
n A∗1:t,n)∏t−1

k=1(1 + ‖ak,n‖2W−1
k,n

)
.

Both these quantities are well-defined. We know that Sn = 1 for all n and so limn→∞ Sn = 1.
It remains to show that limn→∞ Sn = S∞. For simplicity, assume that V is diagonal. We
know that if H and Hn are t×t matrices and Hn → H, then, det(Hn)→ det(H). This holds
because determinant is a polynomial function of elements of a matrix. We show that each
element of I +A1:t,nW

−1
n A∗1:t,n converges to the corresponding element in I +A1:tV

−1A∗1:t.
Consider the (i, j)th element of the first matrix. It is equal to

∑n
l=1 ai,laj,l/Vl,l, which by

definition converges to
∑∞
l=1 ai,laj,l/Vl,l, which is the (i, j)th element of the second matrix.

This shows that the numerator of Sn is converging to the numerator of S∞. Similarly, we
can show that the denominator of Sn is also converging to the denominator of S∞. Thus,
limn→∞ Sn = S∞. Thus S∞ = 1. Thus,

det
(
I +A1:tV

−1A∗1:t

)
=

t−1∏
k=1

(1 + ‖ak‖2V −1
k

) ,

finishing the proof.
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Lemma E.2 We have that

log det
(
I +A1:tV

−1A∗1:t

)
≤

t−1∑
k=1

‖ak‖2V −1
k
,

t−1∑
k=1

(‖ak‖2V −1
k
∧ 1) ≤ 2 log det

(
I +A1:tV

−1A∗1:t

)
.

Proof. Using log(1 + u) ≤ u, we can bound

log det
(
I +A1:tV

−1A∗1:t

)
≤

t−1∑
k=1

‖ak‖2V −1
k

.

Further, by u ≤ 2 log(1 + u), which holds when u ∈ [0, 1], we get that

t−1∑
k=1

(‖ak‖2V −1
k
∧ 1) ≤ 2 log det

(
I +A1:tV

−1A∗1:t

)
.

In the finite-dimensional case, we get the following result.

Lemma E.3 Let (ak)∞k=1 be a sequence in Rd, V be a d × d positive definite matrix and

define V t = V +
∑t−1
k=1 asa

>
s . Then, we have that

log

(
det(V t)

det(V )

)
≤

t−1∑
k=1

‖ak‖2V −1
k

.

Further, if ‖ak‖2 ≤ L for all k, then

t−1∑
k=1

min
{

1, ‖ak‖2V −1
k

}
≤ 2(log det(V t)− log detV )

≤ 2(d log((trace(V ) + tL2)/d)− log detV ) ,

and finally, if λmin(V ) ≥ max(1, L2) then

t−1∑
k=1

‖ak‖2V −1
k
≤ 2 log

det(V t)

det(V )
.

Proof. The trace of V t is bounded by trace(V ) + tL2 if ‖ak‖2 ≤ L. Hence,

det(V t) =

d∏
i=1

λi ≤
(

trace(V ) + tL2

d

)d
and therefore,

log det(V t) ≤ d log((trace(V ) + tL2)/d) ,

finishing the proof of the second inequality. The sum
∑t−1
k=1 ‖ak‖

2

V
−1
k

can itself be up-

per bounded as a function of log det(V t) provided that λmin(V ) is large enough. Notice

‖ak‖2V −1
k
≤ λ−1

min(V k) ‖ak‖2 ≤ L2/λmin(V ). Hence, we get that if λmin(V ) ≥ max(1, L2),

log
det(V t)

detV
≤

t−1∑
k=1

‖ak‖2V −1
k
≤ 2 log

det(V t)

det(V )
.
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Most of this argument can be extracted from the paper of Dani et al. (2008). However, the
idea goes back at least to Lai et al. (1979), Lai and Wei (1982). (a similar argument is used
around Theorem 11.7 in the book by Cesa-Bianchi and Lugosi (2006).) Note that Lemmas

B.9–B.11 of Rusmevichientong and Tsitsiklis (2010) also give a bound on
∑t−1
k=1 ‖ak‖

2

V
−1
k

,

with an essentially identical argument. Alternatively, we can use the bounding technique
of Auer (2002) (see the proof of Lemma 13 there on pages 412–413) to derive a bound like∑t−1
k=1 ‖ak‖

2

V
−1
k
≤ Cd log t for a suitable chosen constant C > 0.

Remark E.4 By combining Corollary 3.6 and Lemma E.2, and assuming that V = λI for
some λ > 0, we get a simple worst case bound that holds with probability 1− δ:

∀t ≥ 0, ‖St‖2V −1
t
≤ R2

(
tL2

λ
+ 2 log

(
1

δ

))
. (E.2)

Proof of Theorem 4.1. Lets decompose the instantaneous regret as follows:

rt = 〈θ∗, at〉 − 〈θ∗, a∗,t〉

≤ 〈θ∗, at〉 − 〈θ̃t, at〉 (because (at, θ̃t) is optimistic)

= 〈θ∗ − θ̃t, at〉

= 〈θ∗ − θ̂t, at〉+ 〈θ̂t − θ̃t, at〉

=
∥∥∥θ∗ − θ̂t∥∥∥

V
−1
t

‖at‖V −1
t

+
∥∥∥θ̂t − θ̃t∥∥∥

V
−1
t

‖at‖V −1
t

(Cauchy-Schwarz Inequality)

≤ 2
√
βt(δ) ‖at‖V −1

t
. (E.3)

By (E.3) and the fact that rt ≤ 2, we get that

rt ≤ 2 min
(√

βt(δ) ‖at‖2V −1
t
, 1
)

≤ 2
√
βt(δ) min

(
‖at‖2V −1

t
, 1
)
.

Thus, with probability at least 1− δ, for any T ≥ 0,

RT =

T∑
t=1

rt ≤

√√√√T

T∑
t=1

r2
t ≤

√√√√8βT (δ)T

T∑
t=1

(
‖at‖2V −1

t
∧ 1
)

≤ 4
√
βT (δ)T log det(I +A1:T+1A∗1:T+1/λ) ,

where the last step follows from Lemma E.2 with the choice of V = λI.

E.2 Proof of Theorem 4.4

First, we prove Lemma 4.6.

Proof of Lemma 4.6. We first consider a simple case. Assume that C = a⊗ a where a ∈ H
and B is positive definite. Let x 6= 0 be an arbitrary vector. Using the Cauchy-Schwarz
inequality, we get

〈x, a〉2 = 〈B1/2x,B−1/2a〉2 ≤
∥∥∥B1/2x

∥∥∥2 ∥∥∥B−1/2a
∥∥∥2

= ‖x‖2B ‖m‖
2
B−1 .

Thus,
〈x, (B + a⊗ a)x〉 ≤ 〈x,Bx〉+ ‖x‖2B ‖a‖

2
B−1 = (1 + ‖a‖2B−1) ‖x‖2B
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and so
〈x,Ax〉
〈x,Bx〉

≤ 1 + ‖a‖2B−1 = det(I + aB−1a∗) ,

thus finishing the proof of this case.
If C = D∗D = a1⊗a1 + · · ·+at−1⊗at−1, then define Vs = B+a1⊗a1 + · · ·+as−1⊗as−1

and use

〈x,Ax〉
〈x,Bx〉

=
〈x, Vtx〉
〈x, Vt−1x〉

〈x, Vt−1x〉
〈x, Vt−2x〉

. . .
〈x, V2x〉
〈x,Bx〉

≤
t−1∏
k=1

(1 + ‖ak‖2V −1
k

)

= det(I +DB−1D∗) ,

where the last step follows from Lemma E.1. This finishes the proof of this case.
If C is a positive definite matrix, then the eigendecomposition of C gives C = U>ΛU ,

where U is orthonormal and Λ is positive diagonal matrix. This, in fact gives that C can
be written as the sum of countably many rank-one matrices:

C = D∗D =

∞∑
k=1

ak ⊗ ak .

We finish the proof for the general case by noting that det(I + DB−1D∗) is well-defined
by the assumption that operator DB−1D∗ is trace-class, and applying a simple limiting
argument to get that

∞∏
k=1

(1 + ‖ak‖2V −1
k

) = det(I +DB−1D∗) .

Proof of Theorem 4.4. Let τt be the smallest time step less than or equal to t such that
θ̃t = θ̃τt . By an argument similar to the one used in Theorem 4.1, we have

rt ≤ 〈θ∗ − θ̂τt , at〉+ 〈θ̂τt − θ̃τt , at〉 .

We also have that for all θ ∈ Cτt−1 and any a ∈ H,

|〈θ − θ̂τt , a〉| ≤
∥∥∥V 1/2

t (θ − θ̂τt)
∥∥∥ ‖a‖V −1

t

≤
∥∥∥V 1/2

τt (θ − θ̂τt)
∥∥∥√det(I +Aτt:tV

−1
τt Aτt:t) ‖a‖V −1

t

≤
√

1 + C
∥∥∥V 1/2

τt (θ − θ̂τt)
∥∥∥ ‖a‖V −1

t

≤
√

(1 + C)βτt ‖a‖V −1
t

≤
√

(1 + C)βt ‖a‖V −1
t

,

where the second step follows from Lemma 4.6, and the third step follows from the fact that
at time t, det(I + Aτt:tV

−1
τt Aτt:t) ≤ 1 + C. The rest of the argument is identical to that of

Theorem 4.1. We conclude that with probability at least 1− δ, for all T ≥ 0,

RT ≤ 4
√

(1 + C)βTT log det(I +A1:T+1V −1A∗1:T+1) .
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E.3 Proof of Theorem 4.8

First we state a matrix perturbation theorem from Stewart and Sun (1990).

Theorem E.5 (Stewart and Sun (1990), Corollary 4.9) Let A be a d× d symmetric matrix
with eigenvalues ν1 ≥ ν2 ≥ . . . ≥ νd, E be a symmetric d × d matrix with eigenvalues
e1 ≥ e2 ≥ . . . ≥ ed, and V = A + E denote a symmetric perturbation of A such that the
eigenvalues of V are ν̃1 ≥ ν̃2 ≥ . . . ≥ ν̃d. Then, for i = 1, 2, . . . , d,

ν̃i ∈ [νi + ed, νi + e1] .

Proof of Theorem 4.8. We start by bounding the regret in terms of log det(V T+1). We have
that

RT =

T∑
t=1

rt ≤
T∑
t=1

r2
t

∆

≤ 16βT (δ)

∆
log det(V T+1) , (E.4)

where the first inequality follows from the fact that either rt = 0 or ∆ < rt, and the second
inequality can be extracted from the proof of Theorem 4.1. Let bt be the number of times
that we have played a sub-optimal action (an action as for which 〈θ∗, as〉− 〈θ∗, a∗〉 ≥ ∆) up
to time t. Next, we bound log det(V t) in terms of bt.

We apply Theorem E.5 to bound the eigenvalues of V t. Let Et =
∑t
s:as 6=a∗ asa

>
s and

At = V t − Et = (t − bt)a∗a
>
∗ . Let the eigenvalues of V t and Et be λ1 ≥ · · · ≥ λd

and e1 ≥ · · · ≥ ed, respectively. The only non-zero eigenvalue of At is (t − bt)L∗, where
L∗ = a>∗ a∗ ≤ L. By Theorem E.5, we have that

λ1 ∈ [(t− bt)L∗ + ed, (t− bt)L∗ + e1]

and
∀i ∈ {2, . . . , d} , λi ∈ [ed, e1] .

Thus,

det(V t) =

d∏
i=1

λi ≤ ((t− bt)L∗ + e1)ed−1
1

≤ ((t− bt)L+ e1)ed−1
1 .

Therefore,
log det(V t) ≤ log((t− bt)L+ e1) + (d− 1) log e1 .

Because trace(E) =
∑t
s:as 6=a∗ trace(asa

>
s ) ≤ Lbt, we conclude that e1 ≤ Lbt. Thus,

log det(V t) ≤ log((t− bt)L+ Lbt) + (d− 1) log(Lbt)

= log(Lt) + (d− 1) log(Lbt) . (E.5)

After some calculations, we can show that

βt log detV t ≤ 4R2λS2

(
log detV t + 2 log

1

δ

)2

(E.6)

≤ 4R2λS2

(
d log

dλ+ tL2

d
+ 2 log

1

δ

)2

, (E.7)
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where the second inequality follows from Lemma E.3. Thus, by (E.4) and noting that
Rt ≥ bt∆,

bt ≤
16βt
∆2

log det(V t) (E.8)

≤ 64R2λS2

∆2

(
d log

dλ+ tL2

d
+ 2 log

1

δ

)2

. (E.9)

Thus, with probability 1− δ, for all T ≥ 0,

RT ≤
16βT

∆
log det(V T+1) (E.4)

≤ 64R2λS2

∆
(log det(V T+1) + 2 log(1/δ))2 (E.6)

≤ 16R2λS2

∆
(log(L(T + 1)) + (d− 1) log(LbT+1) + 2 log(1/δ))2 (E.5)

≤ 16R2λS2

∆

(
log(L(T + 1)) + (d− 1) log

64R2λS2L

∆2
(E.9)

+ 2(d− 1) log

(
d log

dλ+ (T + 1)L2

d
+ 2 log(1/δ)

)
+ 2 log(1/δ)

)2

,

finishing the proof.

E.4 Proof of Theorem 4.10

Proof. Suppose that the confidence intervals do not fail. When we play action i, the lower
estimate of the action is below µ∗. Thus,

ci,s ≥
∆i

2
.

Substituting ci,s and squaring gives

N2
i,s − 1

Ni,s + 1
≤

N2
i,s

Ni,s + 1
≤ 4

∆2
i

(
2 log

d(1 +Ni,s)
1/2

δ

)
.

By applying Lemma 8 of Antos et al. (2010), we get that for all s ≥ 0,

Ni,s ≤ 3 +
16

∆2
i

log
2d

∆iδ
.

By substituting the above inequality in RT =
∑
i 6=i∗ ∆iNi,n, we get that with probability

at least 1− δ, the total regret is bounded by

RT ≤
∑

i:∆i>0

(
3∆i +

16

∆i
log

2d

∆iδ

)
.
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Appendix F

Proofs of theorems of Chapter 5

F.1 Proof of Lemma 5.14

Proof of Lemma 5.14. We first consider a simple case. Let A = B+vv> and B be a positive
definite matrix. Let X 6= 0 be an arbitrary matrix. Using the Cauchy-Schwarz inequality
and the fact that for any matrix M ,

∥∥M>M∥∥ = ‖M‖2, we get

∥∥X>vv>X∥∥ =
∥∥v>X∥∥2

=
∥∥∥v>B−1/2B1/2X

∥∥∥2

≤
∥∥∥v>B−1/2

∥∥∥2 ∥∥∥B1/2X
∥∥∥2

.

Thus, ∥∥X>(B + vv>)X
∥∥ ≤ ∥∥X>BX∥∥+

∥∥∥v>B−1/2
∥∥∥2 ∥∥∥B1/2X

∥∥∥2

=

(
1 +

∥∥∥v>B−1/2
∥∥∥2
)∥∥∥B1/2X

∥∥∥2

,

and so ∥∥X>AX∥∥
‖X>BX‖

≤ 1 +
∥∥∥v>B−1/2

∥∥∥2

.

We also have that

det(A) = det(B + vv>) = det(B) det(I +B−1/2v(B−1/2v)>) = det(B)(1 + ‖v‖2B−1),

thus finishing the proof of this case.
More generally, if A = B+v1v

>
1 +· · ·+vt−1v

>
t−1 then define Vs = B+v1v

>
1 +· · ·+vs−1v

>
s−1

and use ∥∥X>AX∥∥
‖X>BX‖

=

∥∥X>VtX∥∥
‖X>Vt−1X‖

∥∥X>Vt−1X
∥∥

‖X>Vt−2X‖
. . .

∥∥X>V2X
∥∥

‖X>BX‖
.

By the above argument, since all the terms are positive, we get∥∥X>AX∥∥
‖X>BX‖

≤ det(Vt)

det(Vt−1)

det(Vt−1)

det(Vt−2)
. . .

det(V2)

det(B)
=

det(Vt)

det(B)
=

det(A)

det(B)
,

the desired inequality.
Finally, by SVD, if C � 0, C can be written as the sum of at most m rank-one matrices,

finishing the proof for the general case.
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BT+1 = ∅
for t := T, T − 1, . . . do

Initialize Bt = Bt+1

while
∥∥π(Mt,B⊥t )

∥∥
F
> mε do

Choose a column of Mt, v, such that
∥∥π(v,B⊥t )

∥∥
F
> ε

Update Bt = Bt ⊕ {v}
end while

end for

Figure F.1: Obtaining subspaces Bt for t ≤ T .

F.2 Bounding ‖xt‖ - Proof of Lemmas 5.8 and 5.9

Define

H1 > 16 ∨ 4S2H2
2H3

m
,

H3 = 16m−2(1 ∨ S2(m−2)) ,

H2 = sup
Y≥1

1

Y

(
nL

√
m log

(
1 + TY/λ

δ

)
+ λ

1/2S

)
.

Recall that zt = (x>t , a
>
t )>, Θ̃t is the optimistic estimate of Θ∗ at round t, and E is the

event that all confidence sets hold up to round T . First, we show that
∥∥∥(Θ∗ − Θ̃t)

>zt

∥∥∥ is

well-controlled except for a small number of rounds. Given this and a proper decomposition
of the state update equation, we prove that ‖xt‖ stays smaller than αt.

Let π(v,B) and π(M,B) be projections of vector v and matrix M on subspace B ⊂ Rm,
where the projection of matrix M is done column-wise. Let B ⊕ {v} be the span of B and
v. Let B⊥ be the subspace orthogonal to B such that B ⊕ B⊥ = Rm.

Let Mt = Θ∗ − Θ̃t. Fix a real number 0 ≤ ε ≤ 1. Define a sequence of subspaces Bt as
follows: Set BT+1 = ∅. For t = T, . . . , 1, initialize Bt = Bt+1. Then while

∥∥π(Mt,B⊥t )
∥∥
F
>

mε, choose a column of Mt, v, such that
∥∥π(v,B⊥t )

∥∥
F
> ε and update Bt = Bt ⊕ {v}. The

process is shown in Figure F.1. The sequence is defined such that the column space of
MT , . . . ,Mt has little outside subspace Bt; after finishing with round t, we will have∥∥π(Mt,B⊥t )

∥∥ ≤ ∥∥π(Mt,B⊥t )
∥∥
F
≤ mε . (F.1)

Let TT be the set of timesteps (including repetitions) at which subspace Bt expands. The
cardinality of this set, c(t), is at most m. Denote these timesteps by t1 ≥ t2 ≥ · · · ≥ tc(t).
Let i(t) = max{1 ≤ i ≤ c(t) : ti ≥ t}. Let Nt = {v1, . . . , vc(t)} be the set of vectors
that are added to Bt during the expansion rounds. Let Bj = span(v1, . . . , vj). Notice that
Bc(t) = Bt. We can write vk = wk + uk, where wk ∈ Bk−1, uk ⊥ Bk−1, ‖uk‖ ≥ ε, and
‖vk‖ ≤ 2S.

The following lemma shows that any vector can be represented approximately by mem-
bers of Nt.

Lemma F.1 We have that

∀x, ∀j ∈ {1, . . . , c(t)},
j∑

k=1

〈vk, x〉2 ≥
ε4

H1

ε2(j−2)

16j−2(1 ∨ S2(j−2))
‖π(x,Bj)‖2 , (F.2)

and thus,

H1H3

i(t)∑
i=1

∥∥M>ti x∥∥2 ≥ ε2c(t) ‖π(x,Bt)‖2 . (F.3)
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B

P

L

α

β

v

η

x

λ

Figure F.2: Relevant quantities that are used in the inductive step. v = vl+1 and B = Bl.

Proof. By construction, Nt is a subset of the set of all columns of Mt1 ,Mt2 , . . . ,Mti(t) . Thus,
we have that

i(t)∑
i=1

∥∥M>ti x∥∥2 ≥ x>(v1v
>
1 + · · ·+ vc(t)v

>
c(t))x ,

which shows that we can obtain (F.3) from (F.2).
The inequality (F.2) is proven by induction. First, we prove the induction base for

j = 1. Without loss of generality, assume that x = Cv1 for some constant C. From
condition H1 > 16, we get that 16−1H1(1 ∨ S−1) ≥ 1. Thus,

ε2 ≥ ε2

16−1H1(1 ∨ S−1)
.

Thus,

C2 ‖v1‖4 ≥
ε2C2 ‖v1‖2

16−1H1(1 ∨ S−1)
,

where we have used the fact that ‖v1‖ ≥ ε (see definition of v1 in Figure F.1). Finally, by

noting that C2 ‖v1‖4 = 〈v1, x〉2 and C2 ‖v1‖2 = ‖π(x,B1)‖2, we get

〈v1, x〉2 ≥
ε4

H1

ε−2

16−1(1 ∨ S−2)
‖π(x,B1)‖2 ,

which establishes the base of induction.
Next, we prove that if the inequality (F.2) holds for j = l, then it also holds for j = l+1.

Figure F.2 contains all relevant quantities that are used in the following argument.
Assume that the inequality (F.2) holds for j = l. Without loss of generality, assume that

x is in Bl+1, and thus ‖π(x,Bl+1)‖ = ‖x‖. Let P ⊂ Bl+1 be the 2-dimensional subspace that
passes through x and vl+1. The 2-dimensional subspace P and the l-dimensional subspace
Bl can, respectively, be identified by l − 1 and one equations in Bl+1. Because P is not a
subset of Bl, the intersection of P and Bl is a line in Bl+1. Let’s call this line L. The line
L creates two half-planes on P . Without loss of generality, assume that x and vl+1 are on
the same half-plane. (notice that we can always replace x by −x in (F.2).)

Let 0 ≤ β ≤ π/2 be the angle between vl+1 and L. Let 0 < λ < π/2 be the orthogonal
angle between vl+1 and Bl; λ is the angle between vl+1 and π(vl+1, Bl). We know that
β > λ. Recall that ul+1 and wl+1 are defined such that vl+1 = wl+1 + ul+1, wl+1 ∈ Bl,
ul+1 is orthogonal to Bl, ‖ul+1‖ ≥ ε, and ‖vl+1‖ ≤ 2S. Thus, β ≥ arcsin(ε/ ‖vl+1‖). Let
0 ≤ α ≤ π be the angle between x and L. (α < π, because x and vl+1 are on the same
half-plane.) The direction of α is chosen so that it is consistent with the direction of β.
Finally, let 0 ≤ η ≤ π/2 be the angle between x and π(x,Bl) (see Figure F.2).
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By the induction assumption

l+1∑
k=1

〈vk, x〉2 = 〈vl+1, x〉2 +

l∑
k=1

〈vk, x〉2

≥ 〈vl+1, x〉2 +
ε4

H

ε2(l−2)

16l−2(1 ∨ S2(l−2))
‖π(x,Bl)‖2 . (F.4)

There are two possibilities:

(i) If α < π/2 + β/2 or α > π/2 + 3β/2, then

|〈vl+1, x〉| = |‖vl+1‖ ‖x‖ cos∠(vl+1, x)| ≥
∣∣∣∣‖vl+1‖ ‖x‖ sin

(
β

2

)∣∣∣∣ ≥ ε ‖x‖
4

. (F.5)

From H1 > 16, we obtain that for any l ≥ 1,

H1 >
1

16l−2(1 ∨ S2(l−1))
,

which also implies that

H1 >
ε2l

16l−2(1 ∨ S2(l−1))
. (F.6)

By (F.5) and (F.6) and noting that x ∈ Bl+1, we get

〈vl+1, x〉2 ≥
ε2 ‖x‖2

16
≥ ε4

H1

ε2(l−1)

16l−1(1 ∨ S2(l−1))
‖π(x,Bl+1)‖2 . (F.7)

(ii) If π/2 + β/2 < α < π/2 + 3β/2, then η < π/2− β/2. Thus,

‖π(x,Bl)‖ = ‖x‖ |cos(η)| ≥ ‖x‖
∣∣∣∣sin(β2

)∣∣∣∣ ≥ ε ‖x‖
4S

.

Thus,

‖π(x,Bl)‖2 ≥
ε2 ‖x‖2

16S2
,

and
ε4

H1

ε2(l−2)

16l−2(1 ∨ S2(l−2))
‖π(x,Bl)‖2 ≥

ε4

H

ε2(l−1)

16l−1(1 ∨ S2(l−1))
‖x‖2 ,

which, together with (F.4) and (F.7), finishes the proof of the induction step.

Next we prove a simple bound on
∥∥M>t zs∥∥.

Lemma F.2 For all t ≤ T ,

max
1≤s≤t−1

∥∥∥(Θ∗ − Θ̃t)
>zs

∥∥∥ ≤ βt(δ/4)
1/2.

Proof. On event E, for any t ≤ T we have that

trace

(
M>t

(
λI +

t−1∑
s=1

zsz
>
s

)
Mt

)
≤ βt(δ/4) .

Because λ > 0 we get that,

trace

(
t−1∑
s=1

M>t zsz
>
s Mt

)
≤ βt(δ/4) .
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Thus,
t−1∑
s=1

∥∥M>t zs∥∥2
=

t−1∑
s=1

trace(M>t zsz
>
s Mt) ≤ βt(δ/4) .

Thus, for all t ≤ T ,
max

1≤s≤t−1

∥∥M>t zs∥∥ ≤ βt(δ/4)
1/2 .

Now we are ready to show that
∥∥M>t zt∥∥ is well-controlled except when t ∈ TT .

Lemma F.3 We have that for any 1 ≤ t ≤ T ,

max
s≤t, s/∈Tt

∥∥M>s zs∥∥ ≤ GZm/m+1

t βt(δ/4)
1/2(m+1),

where

G = 2
(

2Smm
√
mH1H3

)1/m+1

,

and
Zt = max

s≤t
‖zs‖ .

Proof. From Lemma F.1 and Definition 5.7 we have that

εm ‖π(zs,Bs)‖ ≤
√
i(s)H1H3 max

1≤i≤i(s)

∥∥M>ti zs∥∥ ,
which implies that

εm ‖π(zs,Bs)‖ ≤
√
mH1H3 max

1≤i≤i(s)

∥∥M>ti zs∥∥ . (F.8)

We can write∥∥M>s zs∥∥ =
∥∥(π(Ms,B⊥s ) + π(Ms,Bs))>(π(zs,B⊥s ) + π(zs,Bs))

∥∥
=
∥∥π(Ms,B⊥s )>π(zs,B⊥s ) + π(Ms,Bs)>π(zs,Bs)

∥∥
≤
∥∥π(Ms,B⊥s )>π(zs,B⊥s )

∥∥+
∥∥π(Ms,Bs)>π(zs,Bs)

∥∥
≤ εm ‖zs‖+

2S

εm

√
mH1H3 max

1≤i≤i(s)

∥∥M>ti zs∥∥ . by (F.8) and (F.1)

Thus,

max
s≤t,s/∈Tt

∥∥M>s zs∥∥ ≤ εmZt +
2S

εm

√
mH1H3 max

s/∈Tt, s≤t
max

1≤i≤i(s)

∥∥M>ti zs∥∥ .
From 1 ≤ i ≤ i(s), s /∈ Tt, we conclude that s < ti. Thus,

max
s≤t,s/∈Tt

∥∥M>s zs∥∥ ≤ εmZt +
2S

εm

√
mH1H3 max

1≤s<t

∥∥M>t zs∥∥ .
By Lemma F.2, we upper bound the second term on the RHS and get that

max
s≤t,s/∈Tt

∥∥M>s zs∥∥ ≤ εmZt +
2S

εm

√
mH1H3βt(δ/4) .

Finally, if we choose

ε =

2S

Zt

√
βt(δ/4)H3

mH1

1/m+1
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we get that

max
s≤t,s/∈Tt

∥∥M>s zs∥∥ ≤ 2
(

2S(Ztm)m
√
mβt(δ/4)H1H3

)1/m+1

= GZ
m/m+1

t βt(δ/4)
1/2(m+1),

which is the statement of the lemma. It remains to show that the choice of ε satisfies ε < 1.
From the definition of H1, we have that

H1 >
4S2H2

2H3

m
.

Thus, (
4S2H2

2H3

mH1

)1/2(m+1)

< 1

and so we also have that

ε =

2S

Zt

√
βt(δ/4)H3

mH1

1/m+1

< 1 ,

finishing the proof.

Now we are ready to prove Lemma 5.8. We show that the event E ∩ F holds with high
probability.

Proof of Lemma 5.8. We can write the state update as

xt+1 = Γtxt + rt+1,

where

Γt+1 =

{
Ãt + B̃tK(Θ̃t) t /∈ TT
A∗ +B∗K(Θ̃t) t ∈ TT

and

rt+1 =

{
M>t zt + wt+1 t /∈ TT
wt+1 t ∈ TT

Thus, we obtain

xt = Γt−1xt−1 + rt = Γt−1(Γt−2xt−2 + rt−1) + rt = Γt−1Γt−2xt−2 + rt + Γt−1rt−1

= Γt−1Γt−2Γt−3xt−3 + rt + Γt−1rt−1 + Γt−1Γt−2rt−2 = · · · = Γt−1 . . .Γt−txt−t

+ rt + Γt−1rt−1 + Γt−1Γt−2rt−2 + · · ·+ Γt−1Γt−2 . . .Γt−(t−1)rt−(t−1)

=

t∑
k=1

(
t−1∏
s=k

Γs

)
rk .

Thus,

‖xt‖ ≤
t∑

k=1

(
t−1∏
s=k

‖Γs‖

)
‖rk‖

≤
(

Ψ

Λ

)m t∑
k=1

Λt−k+1 ‖rk‖

≤ 1

1− Λ

(
Ψ

Λ

)m
max

1≤k≤t
‖rk‖ .
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where Λ and Ψ are defined in Assumption A3 and Definition 5.7. We have that ‖rk+1‖ ≤∥∥M>k zk∥∥+ ‖wk+1‖ when k /∈ TT , and ‖rk+1‖ = ‖wk+1‖, otherwise. Thus,

max
k<t
‖rk+1‖ ≤ max

k<t, k/∈Tt

∥∥M>k zk∥∥+ max
k<t
‖wk+1‖ .

The first term on the RHS can be bounded by Lemma F.3. The second term can be bounded
as follows: from the sub-Gaussianity Assumption A2, we have that for any index 1 ≤ i ≤ n
and any time k ≤ t, with probability 1− δ/(t(t+ 1))

|wk,i| ≤ L
√

2 log
t(t+ 1)

δ
.

As a result, with a union bound argument, on some event H with P (H) ≥ 1− δ/4, ‖wt‖ ≤
2L
√
n log 4nt(t+1)

δ . Thus, on H ∩ E,

‖xt‖ ≤
1

1− Λ

(
Ψ

Λ

)m (
GZ

m/m+1

t βt(δ/4)
1/2(m+1) + 2L

√
n log(4nt(t+ 1)/δ)

)
= Υt .

By the definition of F , H ∩E ⊂ F ∩E. Because, by the union bound, P (H ∩ E) ≥ 1− δ/2,
P (E ∩ F ) ≥ 1− δ/2 also holds, finishing the proof.

Proof of Lemma 5.9. Fix t. On Ft, x̂t
.
= max1≤s≤t ‖xs‖ ≤ Υt. With appropriate constants,

this implies that
x ≤ D1

√
βt(δ) log(t)x

m/m+1 +D2

√
log(t/δ),

or

x ≤
(
D1

√
βt(δ) log(t) +D2

√
log(t/δ)

)m+1

, (F.9)

holds for x = x̂t. Let Xt be the largest value of x ≥ 0 that satisfies (F.9). Thus,

Xt ≤
(
D1

√
βt(δ) log(t) +D2

√
log(t/δ)

)m+1

. (F.10)

Clearly, x̂t ≤ Xt. Because βt(δ) is a function of log det(V t), (F.10) has the form of

Xt ≤ f(log(Xt))
m+1. (F.11)

Let at = X
1/(m+1)
t . Then, (F.11) is equivalent to

at ≤ f(log am+1
t ) = f((m+ 1) log at).

Let c = max(1,max1≤s≤t ‖as‖). Assume that t ≥ λm. By the construction of Ft, Lemma E.2,
tedious, but elementary calculations, it can then be shown that

c ≤ A log2(c) +Bt, (F.12)

where A = G1 log(1/δ) and Bt = G2 log(t/δ). From this, further elementary calculations
show that the maximum value that c can take on subject to the constraint (F.12) is bounded
from above by Yt.
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