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s ~ ABSTRACT. o
In thls thesis the problem of. quantlzatlon of~$pgn 11

3/2 field Interacting w1th an electromagnetlc fleld 1§

critically examlned. An attempt is made to trace the origin

\

of the d1 ficulties: oc;urlng in this problem.'
The f1r§t three chapters rev1ew brlefly the nature b
of the problem, presentlng the stand p01nt from whlch ._ ﬂg}Q
we analyze +he quantlzatlon procedure of spln 3/2 ' | )
‘field, as well as establlshlng the notatlons to be used

The Rarrta~Schw1nger field with mass m and spln 3/2

minlmally couplea?to electromagnetlc fleld 1s quantlzed in

’.thapter 4 flrst by extendlng the method USed by Takahash1

.and’ Umezawa, an exten51on of Klmel and Nath's work is

-—

then presented It was . found that our quantlzatlon procedure-
suffers the same 1nconelstency as Johnson and Sudarshan.

| " The ex1stencé of the. S—Matrlx is proved in chapter 5
under the weak field assumptlon.” . :

Our conclus1on 1s presented in Chapter 6 with" dlscu551on

‘ .
“on the p0551b111ty for further 1nvest1gat10n.'

iv
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CHAPTER 1 / =, o« g

> INTRODUCTIPN . . = 4 i

’

'The}probleﬁ/oF quantlzatlon for system with hlghe:"

con51stent set of rules for® the quantlzatlon of 1nter-m‘

ac Ing :Qgger Spln fleld is stlll absent.,

'ngrac (l) publlshed a paper on relatl—_.‘L

.“*3’ . Ao 'y AR
pendently of the equatlons of motlon, Flrez and Paull C e !

-t Ry
suggested the method of hlghen~sp1n Lagranglans. VIt E '

has  since" become a popular technlque to construct .

NS by
K Lagranglans for free hlgher spln partlcles whlch yleld
both the equatld\S*oi\gotlon and the constralnts. \ i
However, Velo and Zwan21n§er (3 have shown ‘that the 3
- Lagranglan dev1ce by itself does not automatlcally‘ ;, Eﬁ%

< g |
'prov1de satlsfactory wave’ equatlons. The wave equatlong

for the Rarlta Schw1nger (4) Spln 3/2 fleld mlnlmally \

'coupled to electromagnetlc fleldprossesqnoncausal - R
~ - [

: modes_oprropagatlon Thls-problem is not resolved



e . “

A 3

by the addltlon of (non—mlnlmal) magnetlc moment

terms to the 1nteract10n Lagranglan (5).~ i
" | It- has been shown byggphnson and Sudarshan ' (6)
- Y .

that thé-basic probiem'in e quantization of Fermi-:

Dlrac flelds of spln greater than a half is that the
._existence. of secondary constralnts on the. flelds ' | ; :;-
'necessarlly brlngs the dynamlcs into con51derat10n~ : 4
They have furthermore, shown that for the case of

€

_ spln 3/2 fleld ra coupllng to an external electro— .
" ‘magnetic field renders the antlcommutators 1ndef1n1te
‘and dhereby 1ncon51stent w1th a posltlve deflnlte

-\Ametrlc -when it 1s quantlzed in terms of the Schwingef's

TV A 2

-1[act10n principle. The lqdeflnlteness arlses ‘from ‘the
fpresencewof the factor;iR = 1 - (2e/3m? )O'B in the.
,antlcomm;tatlon/relation:\ B is the magnetlc field
l,strength.' The antlcommutator is p051t1ve deflnlte only ;

| (2e/3m? )BI <1 everywhere. The quantlzatlon by
Johnson and Sudarshan is con51stent if the 1nequa11ty ,
(2e/3m ) 2B2 ? 1l is satisfied. Thls 51tuat10n shall ’jv

.be refered to as the "weak field case“ ¥ x ~

\
O ,) .

Gupta and Repko (7), demonstrated that the ch01ce

_of canonlcal varlables co;§espond1ng to the commutatlon

1ons found by Johnson and Sudarshan-: (6) suffers

s

-the addltlonar 1ncon51stency of not belng compatlble»

w1th the HelsenBerg s equatlons of motlon. By. maklng

g N
N,

a ]ud1c1ous transformatlon of the canonlcal varlables , P

ioowe



- ’ - /, j ' »A._ :,-’-w
for the sprn 3/2 and the electromagnetlc flelds, they
_4Pave explfaltly constructed the Interactlon Hamllton--
ian and the commutatlon Qelatlons for the fleld vari-
gaehles whlch are consistent w1th the Helsenberg S equat-
ions of motlon. Hence they conclude that the quantlzat—

ion of charged spln 3/2 fleld although creatlnq enormous

'

mathematlcal compllcatlons, does not appear to involve

~

any fundamental dlfflculty or 1ncon51stency. Recently
K1me1 and Nath (8) reexamlned the problem u51ng the

Yang—Feldman (9) formallsm. Their work seems to conflrm

and complement the results -and conclus1ons of Gupta

and Repko. However, they reserve the 00551b111ty of

1nterna1 1nconsxstency w1th1n the Yang—Feldman formal— T'
ism when certaln condltlons between the Helseanrg Fleld !

operators and the asymptotlc flelds break down.uf'

H

It was not clear whether the Johnson—Sudarshan s
- / t‘

1ncon51stency is 1nherent 1n ‘the Schw1nger ] actlon }
pr1nc1p1e (10) or it stems from the pecullar propagatlon |
character of the fundamental f1eld equatwons. In thlS v
the51s,vwe crltlcally examlne the prbblem of quantlzatlon
of spln 3/2 fleld 1nteract1ng with. an electromaanstlc‘
fleld and attempt to trace the orlgln of the" dlfflcultles.:
ﬁe present 1n Chapter 2 a summary of the fundamental
‘structure of Quantum p1eld Theory whlch prov1des us
Wlth a stand p01nt from which we analyze the quantlzat~'
ion procedure of sp1n 3/2 fIEIA, In Chapter 3, we Ca
revxew brlefly the general propertles of the Rarlta—



# | o \ .
Schwinger wave equations.’ The Rarlta—Schwlnger fleld

'~ with mass m and sp1n 3/2 mlnlmally coupled to. electro—

‘}magnetlc field is quantlzed in Chapter 4 first by ex— .
b .
'tendlng the method used by Takahash1 and Umezawa (ll)

- (in partlcular the second paper of Ref 11, see’ also-

‘TKatayama (12)) for the case of 1nteract10ns w1th hlgher

“«
l'

..derlvatlve coupllng. Thls method - is essentlally anv~'
exten51on’of the Yang—Feldman Technlque (9) where the
1Interact10n Hamlltonlan 1s deflned through the»wave"

. equation in 1ntegra1‘form, and from the Interactlon
Hamlltonlan,.the S-matrix lS c*nstructed The Inter- .
action Hamlltonlan for our case is found to be an -

'

"1nf1n1te power serlea of the couollng constant (the .fi
-charge e), and apart from the lowest order term,lall'
terms of ngher order depend on’ the normal to a hyper-'
surface. " The exp11c1t form of the: Interactlon Hamll—
“tonian is determlned up to the fourth order in e. In
’contrast to the ‘'work of Kimel and Nath (8) where the'
.secondary c0nstra1nts has to be used exp11c1tly to
ellmlnate one of the ¢ , adent field.in the _source
,' term, - our ‘method does not ma‘t‘any reference to the C
"constrﬁlnts. ‘The S—matrlx formélly _constructed from
{ﬁthe Interactlon Hamlltonlan 1s exp11c1tly demonstrated
rto satlsfy the qeneraélzed “atthews rules"'(l3) in the‘
'Lperturbatlon calculatlon to. fourth order in e.a In the

‘. context . of thlS formallsm we can generai&y argue that

the antlcommutatlon relatlon of the Helsenberg fleld

r \
1. =



s c ~ T . :
f/‘ ' ' . ’ : ‘ . ’ e ‘f’,'. ‘: "4\ ’ ' : S
LY - P . L met N :
. a ' . L oae . Tt .
o : o

& L
T is always p051t1ve.’ Thus we’ seems to have ob alned e
" -
-a c?n51stent quantlzatlon scheme for the 1nteract1ng. ,
spln 3/2 fleld in terms of perturbatlon calculatlon

[ ‘
However, after going through all the tedlous and leng—'

thly calculatlons, the antrcommutators thus obtalned .7

o

c01nc1des w1th that of Johnson and Sudarshan at least

to fourth order in e if we expand thelr result in the

’

form of poWer series. It seems High@y;unllkely that

- our result will dlsaaree with thosewhr‘Johnson and
Sudarshan S'ln hlgher orderr We are oblldged to con—
clude that lnc0n51stency does occur ‘inthis formallsm.
We*also extended ‘the work by’ Klmel and Wath~to fourthb .v ‘ ii
order in thekcharge in perturbation calculatlon and
~ fouhd that the results agree; hlt ours. - We then‘em—‘

ploy a smearlng technxque (14) to our fleld to study .
thg)p0551b111t/ of ex1stenc€»of the Scatterlng matrlx..
| We found that ‘we have to restrict ourselves to the
.Iweak field case (which is also the case where the ' ‘ v f
* previous method is con51sten£) in d&der to solve the

‘ Cauchy'problem. -We conclude our study in Chapter 6 -

and discuss the p9551b111ty for further 1gvestlgatlon.
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%v\ (\ FUNDAMENTAL STRUCTURE oF Y
- T '. - I
) QUANTUM FIELD THEORY o
To provide us with the"foundatioh for analyzina

8

‘fthe quantlzatlon rocedure of the spin 3/2 fleld ‘we

&

summarlze here ty fundamental'structure of quantum

valeld theory. . | B ; .

We begln with the fleld equgtlons for/the Helsen—

‘berg flelds (say U(x)).

H'A(B)w(xs =//J[w(x)]».s' ) 2.1“‘

. ~ U 4 . L B ) ’:\ oy
T R ' . R
Here A(a) is a dlfferentlal operator and J ,. the &i T
fsource, is a functlonal of the fleld operators
: @
N and thelr der§yat1ves " We éhall be 1nterested in the
case- where the solutlons of 2. l can be expressed
in terms of a certain set of free flelds (say y(x)) _ :
R N - - /
"whlch satlsfy the llnear, homogeneous wave equatxons-' - /’
> . ) . A
- . . o om . _ o _
Hewer = o, - 2.2
. oo - : . ., )

with proper'propagation5characteristic (i.e., the
\ .

e wave equatlons 2.2 should be hyp@rbollc). _When there

—_—

exist such&gélutxons, we have~



vo=wlvl , T 2.3
.,‘ . . \‘7} . 2o P B "’-‘ 4 ("'; : '

o . . A . o

and the parflcles assoc1ated ylth the fleldd w ‘is

. . A L

”ré&erred to as’ qua51part1cle?f} ' R -

o . ¥ A e T . .. Lo "v{}_)'
' We also require that any f/hctlonal of shouﬁd A

~

be er/ﬂéss1ble in terms q 'w', ‘This means. that the ¢ G
quaSLparticle fie?d' ] foEmsva complete set (1 e.,

.an 1rreduc1ble operator rlng)g We must emohas12e here
- < [

the completeness of Y] such that- the above reqplrement

L4

is satlsfled since in the quantlzatlon procedure to,be

dlscussed 1n Chapter 4 (The Takahashlwhmezawa Method),ﬁ? w;

we obtaln a.relation of the form, v \ , Loy

) '_ s ) B . W" » . _,; 4 R :

(whlch is always valld U form a complete set), and

L~
]

by 1nvert1ng 2.4 we 1nd thé structure of u[y] ‘in:

2-3 . ThlS procedure ay lead to inco SlStent results
s ’ .
.
vvlf ] do not form a como%ete set* g . ‘

Y

¥ ( , . . .
-*ThIS may be(the reason why the uantlzatlon ‘of the
q

A
-— ¢

spln 3/2 fle}gt~as presented later leads to 1ncon51stent

results, s1nce we do assume the compléteness of the e

W )

free fleldsf



£

2

'of"w[wjﬂiin 2.3, let us begin

.tonian H()) of the system in the "Schrod’nger p1ct—

&

iThe partlcle plcture ‘is obtained when one chooses

AN
the Fock space of these y as the Hllbent space. To

introduce the Fock space, let .2 stands for annlhl—-

)

k
latlon operators for the’ qua51part1cles ‘and lO> de-

notes the,xgcuum state-') ‘ ' - B

ak|0> = 0 . ‘ . R 2.5
Y | '_
The Fock spac//ls the Hllbert .sSpace Wthh has as its
\ : | 7N
basis the set*- : ‘ o o S~

- b
3

kl..’..aﬁ‘I0>}.. . .

, {lak‘-‘---ak'> "= caf
MR n ' } n

which cOntains;all‘the‘states‘with'fthite n. ¢ is

'the,normaliiatiohhconstant.

N , ' L
Td‘consider the problem;oé?finding the structure
i

th the total Hamll—

- -,

J

ure”, where ¢ :7notes both the canon1ca1 varlablesl‘;siiﬁ‘“"a

,'and thelr conjugdtes. . H(¢) " must be a hermltlan opera-

tor in order to be’ identified as the energy operator

—

ofw%he system. Hence, %e 1ntro\ ce a- unltary trans—

formatlon‘$u which diagonalize: H(¢) " as follows;. K _

LA

-

‘*Strictly speakin¥ we shoulé use Qave,packetsby'Smear—

N

k

s

v

ing the a,'s ‘with a complete"set of squaféfintegrable.}

functions.. S . ’ A o



,procedure.»

related to through u as;.

. . W\ ’ . ‘ ‘

: = by .
.7 . .. ‘T , a
Y wlhgye = Ho(o) , -~ 2.7

>

- where’ H, (¢) is a diagon&;ized matrix'operator. If
we could find such a y which determihes the H, (¢),

the structure of 2.3 iS'established since,'as to

be shown - 2.14 that the Helsenberg flelds are related
to the asymptotlc flelds by . U(t) whlch 1s conné%tﬁd

to u by 2. 13 . We have then solved our problem.

However, in quantum fleld thebry, we make the basic

assumption that H, (o) is of blllnear form in ¢

(plus c—number) whlch 1s the same as the nonlnteract—

© (3

~‘1ng part of the total Hamlltonlan» H(s) (apart from

t- p0551b1e masg renomallzatlon term), and then we &

determlne the U(t) The Valldlllty of this. procedure

és guaranteed by the self con51stenty of the theory.

If lncon51stency does arlse in our cesult we may try

’ \o modlfy our ch01ce of Ho(o) and repeat the whole

~

. . . r.’ - N \‘
To ‘see Tow the knowledge of Ho(o) -enables ua)

to determlne the u , we 1ntroduce the operators b

!

K

¢;\‘JE u¢u—-]§ . = ‘ . | 4 T : '2,8

vit follows from- 2.7 "that,

‘/ L o ' T
A : :



H($) = Hyp(¢o). | N 2.9
: : y) _ .
We introduce the Heisenberg operators ¢(t) by the:
operator elH(¢)t’ as foilow;
‘ o) = e1H_(¢)t¢ -iH(¢$)t . 2.10

.

'Siniliarily we introduce the'"asymptotrc operators" as;

éiHo(¢o)t¢‘e-in‘¢g)? . 211

b0 £) =

- The reason for.calling do (£) ‘as the asymptotlc oper-

ators w111 become apparent later.

The relat10n~‘ : ) e . -
Hp(£)) = Holoo(t)), - 2.12

is establlshed from 2.9 together w1th the transform—
h'atlons 2.10 " ana, 2.11 |
4 Defining

-iH(d)t

eiH(¢)tue

- Ult) ]
= AHeln)t —iH(b0)E
becanse-of 2 12 ’ the'Helsenberg operators can be o

related to the asymptotlc operators as-»

10



L
o) = vl ey L . T2.14
| tb rewrite U () as /
Ute) = el -iH(g)t
— ueifo @)t tintere 2.5
= uvil), ‘
" where -
V@) = elHo(®)t ~iH(9)t N 2.16
The second step in 2.15 is due to 2.7 .
'The.initial chdition:fOr UC() is
v = u . 2.7

7 We can.explicitly.determinev U(t) by dgfining

™o Co : . ) . -

. P ’ /
w = 1-7, - 2.18
and | _' |
L H@ - @) = o6, . 2.19

“»we have'fro@' 2.7 that;

’

H()T w- THo (¢) ‘& H'(s) . S 2.20

A solution to 2.20 can be constructed from;



12

. 0 T N _-‘ [ o ] V
T = —{J apr eI g )il ) E ety o)
by |
| VT AT, “\ ' . 2.22
provided, '

~ lim T = 0 .
) €

‘We can re'write_T8 “as; .
: _ . § 8
L N A - et - : :
T = -if ae V\%t')HI(t')e | 2.23
where _ ‘.
/ He) = efe @)ty il G)E . 2.24
 From the definition of " V(t), 2.16’,{ye have
igvie) = Ho(E)V () , o 2.25
S . ' X
-‘,with;initialﬂcondition,
V() = 1.
| "Multiplyiﬁg 2.25 Jffomlﬁhe'right by V—l(to) ,  We havé;}‘
Ao, =T o S L g
AV (e = HI(t)y(t)V; (to) . %.2.26
A solution to 2.26 is; .
t -

v(t)v‘:(to) = 1'—'i[_ dt' HI(t‘)V(t')Vf}(to)



—

-

or,
Vi) = iee) - iff atr megeryviery L
. _ 0 4 .

Taking the limits ¢t = 0 and t, =~ , we have;

w

. {0 . -
Vi) = 1 +3if tTH (ET)ViEY),

_ <
hence,

. ' 0 . ' , o ‘
Vi) = 1 - if° geo v i, (=ry - L 2.27
R ‘ - _ I : : . o

S : Ve . . ' '
Comparing 2.27 %ith .2.23 and from :2.18, we obtain:
. ) N _ . ’ . . ’

By

- )
_ -1 Kh R
u =V (=) - _ , . . 2.28
and hence from  2.15 we'hébb, o C o .
U = v =veey . . 2.29
A e ! : o o | g
"From 2.29, the. nitiai COﬁaitidn Tor U (:) is
U(=) = 1 .° 2.30
Differentiating  2.13 withlreépect\tob { we have;
- .eFH°(¢g)tH'(¢o)ue'1H°(€€Yt*_~ o 2.31

,=,,H'($o(t))u(t) ‘

'



The $olution to 2.31 with initial condition 2.30 is 3
¢ . | ' S b

v = 1 -4 arr B e UG . 2.32

From the initial oonditioh 2.30 and the relatlon

2.14 we;observe that as ¢t +-—m',' the Helsenberg 0pera-

14

tors ¢(t) and the asvmptotlc operators ¢u(t) c01nc1des."

Thls is the reason why b () is called the'asymptotic
operators. We also note/f/om, '2.12 that the>Tota1
Hamlltonlan expressed ln terms of the Helsenberg opera—
- tors is equal to the dlagonallzed’Hamlltonlan Hy
expressed in terms of _ the asymptotlc flelds.
- Ve usually introduce . the operators in the 1nter--
actlon representatlon by,

-

bple) = el @)E i ()

$)%e 2:33
‘which‘are.related,to thehasymPtOtiélfiEIds as; L
op(t) = w Tty = V(=)o (E)F T () . 2.34

- e
Again,'we note here that the Ho(¢) may differ

-from the one obtalned by ]ust taklng the nonlnteractlng
“'part of the total Hamllt nlan. - _' - . .?_ d u'

" We should not conclude‘from,
A . v | . .

H(p(t)) = «Ho Wole)) . o



( .
/
- ©

that there are no reactlons among the partlcles. Let

us return to the: Schrodlnger representatlon and denote

St

the time dependent state vectors as x(t). Slnce,
-

H<4>) =" Ho (¢0),

S
we have : . -

-~

He) = (60) +H' (o) Ju. .

Thi_SChrOdénget equation_for the‘state,vectot X??).‘is
ggux(t) = :{Ho(¢§) + H'(¢o)}ux(35'. A: f _2;36
Introducingtthe state; ” i t ' " - tc\
i 'eiH°(¢°)tux(£)_, - 4, \H_ 2{3%,

we héye ftdm- 2;36‘thet; X
3—#(&5)'5 ‘H'(¢o:(t)-5‘¥(t) . - - »_2.53.'

e
.Usihg,the definition of U(t) , 2.13 or 2.15 , we can
rewrite"2.37"_as; LT

4 . o .

Y(g) = U(t)elH(¢)t

‘Due to-the_initial'eonditiOn 2.30 “of - U(t) yY(-w) =

(t) S 2.39

15



lH(¢)t (t) &s in fact time 1ndependent we write;

SIiH(P)E

¥ () = X (&),
. < : '
or. ? y
(t) = U (~=) . 2.40
w(—ﬁ) is then the state vector in the Helsenberg re- -

‘pjeSentatlon whlle . (t) is.the state vector in the
asymptotlc representatlon. |

The relatlons between the Helsenberg represent-
atlon, the asymptotic representatlon and the Schrodln-
ger representatlon are as’ follows-‘ . N | 'gﬁgga

ie ?(—m),.F(¢(t)) W(-w) )

® v, F(d)o(t)) v(e) y, 2.42
'f-and‘ . .\' _ o .
( ¥(==), F(g(t)) ,‘y(—o'o)'-) o ‘
= : '-iH(¢)t 1H(¢)t : ' ‘
= (x(t), e Flg(t))e e )
= (xm, F<¢) X(®) ). | o

where F is a functional of the f_:'i‘elc'is..'~

It'is.noQ apparenh:ffom 2.40 that the.operator
‘U(t) descrlbes the evolutlon of the states in the '
’ asymptotlc representatlon._ The tran51tlon probablllty

L
: ,h.

from the state 'a  to the state b 1s given by,

2

o g ,;;a 'v ) v :'m. 12 L
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) L N s . '
a to b  occurs

A Iﬁ\the case when the tran51t10n from
) . N

"in an infinite time interval, the U(t)

~

beeomes the.
S»;‘matrix,'i.e.,

S = U(») .

This concluded our summary for the fundamental -
LA
sbructure of auantum F1eld theory w

. ithin whibh frame , L
o ' o , .
work our quantization proceeds. ; ‘ : ‘



% o |
v CHAPTER 3 : -
‘-'G 'NERAT, PROPERTIES Of THE
.o RARITA—QCHWINGER SPIN 3/2 WAVE EQUATIONS

Before we proceed to quantlze the flelds within
the frame worF of Quantum Pleld Theory summarized in
"the previous chaoter, wé'rev1ew brlefly the general

’
"propertles of the wave equatlons we are concerned w1th.
This also serves to establlsh the notatlons we use in
the later chapters
, We becln with the free fleld To descrlbe partlcle

. of spin 3/2 and unlque mass m, Rarlta and Schw1nger (4)

'used a 51xteen component vector splnor fleld y with

‘each component satlsfylng the Dirac equatlons-

- -

+ m )y B

»'It is;well known thatvthe'vector—spinor fie}d transforms
' according to.theh‘(l,%) ® (%, l) ® .(%,0) ® (0, %) repre—
vsentatlon of the Lorentz group and hence descrlbes a
.spln 3/2 flelé as well as two spln X f%elds ~ The suo—.

51d1ary condltlons-

18

o
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\ I -
are 1mposed to ellmlﬂate the two unwanted spln % bomp-
onents from the vector—splnor fleld 1n/9rder that the

system descr1bés pure spin 3/2 fleld -
[

Starting with a general wave. equation contalnlng

- three arbltrary real parameters a,b and ¢ ;

e \‘Al;v(a /b ,c:?)'w\)“b(x) '4 - | | 33
= —igrl1a'b)ax tmile) Iov,(x) = o,
where_~' ' ’ , ‘ - | | .
X,uv(a,b) = Yxéuv.+ a(Yu&Av4szku) f‘bYquYV'. 
and "‘ ‘/‘“'X ' ' '
8,,(c) = véuv}- Y, Y, 5"

.We can deriVe . both the equatlons of motion 3.1 and

v the sub51d1arv condltlons .3.2'~from 3.3 by imposing

thelrelatlons-'

"~ a # :-!5 9 ‘ | . '
%( 1%2a3+3a2 ), '

o
|

Q
1

( 143a+3a? ). .

A

<

. The parameter a remalnsgfree except that 1t cannot be,—%

The partlcular value of +a is. w1thout -any pthlcal sig- i

nlflcance(51nce éﬁe Lagranglan den51ty*-

Tn

BRI R 3 — . ’
*AHQ(a;a)'denotei'the_‘AUv(a,b;c¢3) when b and ¢ are
related to a by,*3,4;p‘. | . o _

’

19



o N - : . PR ’ ) .
. ‘LR.S. = vpu (x)»AuV(a:a,)w‘\'.) (x) , e
where (
¥ (x) = KD\) (\)f)nvu . : _ .
With ~ ! o | i
| s N +
— - ﬁ -
fluv \ Y‘“guv ’ n n. = n .,

LS

N

- v = v+ a® - a ,
RN w b TS WY
. . . . . \ » - .

o

This transformatlon menely ‘mixes the twé{spin LS

. -

components leav1ng the Spln 3/2 components unchanged

.In most of the folloylng dlscu551ons, we choose for-

‘conv;ence a = -1, then:; )
L= C— oy 8. Ay + v
X,uv Ylduv ‘(Yualv Yvélp) JYquYv
and o /. ' ‘
X o ‘ |
= - s
Sﬁv 6uv YuXv * e/‘ﬂ\‘

v}”"-"&r'

—

‘ t‘denoted simply by k (E) .

:f{xThe d1fferent1a1 operator with thls value of a w1ll be

In thlS case the pro;ectlon matrlces for the two

\

sets of spln % components are;

-~ . s . -7 b

| uo" Zuo
‘and

(P%)UV f %(§ +a )fgchD)%(qbeqﬁVk



' N v . ’ ﬁ N
o RV R o |
. ..‘"-. - o , ” ) A :

B P 1] - ~ - . . »
N . 56,090 ™~ : \\\,_ -
s - . -

’The correspondlnq %ets of components characterlzlng

spin % under space rotatlon are;

':Niwi - and .y, . ",, . \ %

/, ! - B ' o

» -3,  The spin 3/2 components, which are independent of #he

choice of . a , are; ' N A
. < . : e )
. 4
= P {xp = (” -1 ) 3.7
P 4)1 ij j ij §JY Y W ° .
One.readily‘verifies thet} R
ViPifh = Pigvyem 0 5Py P L T Piy i Piy T Pige
The "Klein~Gordon divisor" , dpQ(a) » which reduces
our wave‘equetionsfto the Klein—Cordon EquatiOns,.i.e.,.
R : R S -
) L™ : _ o
e {3)A (g; ;= A  (8)& (3) = -(d—mé56'; ; 8
. '; A Av AR TV S BV S RO TRV R

T

is glven by* LE ﬁ&’ f ©o , o b

e e L
v(ay,— (yA 3 m)d; b (@)= duv(a)(ykai\fﬁ RN

. ) 1

’N;*For the general case w1th A (aia) . .a contact term

"L[ W(D_m )I{i(a+l)y\3>\+am}y Y\7~+(2a+1)Y d +ay a I
E . ( . : . -
‘should be added to the :ight hand‘side of_3.9



£1

where, .-

(Ya—ya)—

1 _ A _ 1
d,, ) - duv('a) - {6 v_§Tqu+3m

N

'.We observe that;

. s /

i
‘ . R
{d@)n}’ = d(-3)n .
v ,
By v1rture of - the ex1stence of the Klein- Gordon
d1v1sor, the solutlons to the wave equatlons can be

decomposed in a Lorentz 1nvar1ant fashlon 1nto positive

s

:and negathe frequenc1es, satlsfylng the tlme 1ndepend—

ent orthonormallty cond1t10ns-

s _
- -1Idol(x) uup(r)r .uv w3 .(X) , 6rr'§(p p') :
/ . X } . . .
,, | N S 3.10
. oS, _ > > _ .
lIdOX (X) qu(x)r ,U\) \)qu (X) —.':\_655'6 (q qv. ) ,
and)the\qloSure_conditions;
,_#x ‘ ' T4 L
Y ld*p u +(x)u +(x ) = id_ (3)27 (x-x")
r=1 o MYV . ' ‘
o S ST 3
¥ [d3q v 7(x)v +(x ) = iad v]a)g—(gfxﬂ).. ‘

s=1 uq ’ : 'u{ -

ui;XX)b,( Vsa(x) ) denotes the positive ('negative)

frequency wave functlon ‘with three momenta E ( q )

)

and he11c1ty r (s) = 1 2, 3 4. qurand A~ are thejfglut-'

ions of the Klein-Gordon Equation.

3m u v

22



constygf;ed fro

k. and spln 1 u51ng the Clebsch -Gordon Coeff1c1ents (16);'

-The expli 1t form of ‘the wave functlons can be
Zivhe wave functions for fleld with spin

To 1mplement mlnlmal electromagnetlc Interactlon

to the sp1n 3/2 fleld we make the’ relat1v1st1c and

-

gauge 1nvar1ant substitution;

-

C e

] el = 9 -ieA’
, ! U

'

‘into the wave equatlons, w1th Au(x) being the Gector
potent1a1 of ‘the electromagnetlc fleld We con51der~
51mu1taneously the follow1ng set of equations;.

@, = g = cteman, gy . . 3.12

-

~and

v L 3.13

[]AA. = IA = —;ey rA,uv v

Féf_-u =4 in 3.12 we have the "ptimary constraints" (Ry*;"

¥

Note that 33;14_ does not contaln any tlme derlvatlves,

hence, is a pure constralnt equatlon. o ST

T *For A(a 3), 1nstead of tak1n99u 4, we multiply,from “he

. - M .
‘-Vleft by - YA{(a+1)(6 +gA )—(3a+l)(6 u_gk Y}, an additiOnal”:

‘term -(a+1‘{y LI —ir}y -appears on the rlght of 03.14 .

.23,
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The “secOndaryvconstrﬂints 'whose structure depends
on the dynamlcs of the system is obtalned by contracting

3.12 by Yu ‘and “ﬁ respectively as;*

.
L
Yuwu - 1lg (YAF)\\) _%YXFXUYUY\)')w\) =0 ’ 3.15
where, - '
€ \e (2e/3m*) .
N\
The commutation relation
L “u'"vj] = fle(auAv—avAu)‘:?ﬁ?—I?FuV
has been used.
3;15’ can alse be written in'a compact form;
.=‘ . F ' . » S | 3.16
Yuwu . %;YSYA quu ' ‘ - S _ ' =
where L . BN &
. . -
o P T BT,
bY:u51ng the relation .{ Yu'gvA ¥ =-21euvkpyoys ,‘e;_ln
a noncovariant form;. . = ¢ ' R
g = ieR Me.4(y.3.a ., - 3.17
| YV, | {g (Y4 4 )8 } vy 3
where '

" R .= g .- eE-E

<>

- = = -3.R. .A. :
ic-B =y, Fle 348;3 i,
Z5 5‘-YiFij,‘f‘aiY4A4fsij .

on right of 3.15 - o “;2 ATAviviTu R

"



The primary constraints 3.14 and the secondary
constraints 3. 15 together reduces the number of in-
dependent components of the interacting field to eight
as in the free case;

Let us analyze the equatlons of motion 3 12 more
'closely.‘ As we have observed that 3.12 implies both
the primary and secondary constraints, also‘the time
derivative of the components ‘147 never.appear in these

equations at all. 'Hence mathematicallv speaking, 3.12
_cannot be - regarded as the true equatlons of motion for
the f1e1d wu .

' We review brlefly how wave flelds may be descrlbed

. 9
mathematically: Wave propagatlon is usually assoc1ated

4

'withfhyperbolic svstems of partiail dlfferentlal equat-
ions; Such equatlons allow an initial value problem
.to be posed on a Glass ofﬁsurfaces,_called spaggllke'
.w1th respect to the equations¢ and’they ‘possess solut—
ions wlth wave fronts that travel alona rays at f1n1te
veloc1t1es. The. ravs through any p01nt form a ray cone
.that is entlrely determlned by the coeFf1c1ents of the
hlghest derlvatlves Thus, for hyperbollc svstems, when
coupling occurs only in lower derivatives, the ray cone
is the’same in the interacting and free-case. The free
Kleln-Gordon and Dlrac equatlons are; fam111ar examples
of hyperbollc systems, and'SO, when thev are coupled :

: s
through lownr -order. derlvatlves, the ray cone remalns

\-ID -

_Vthe llght cone. On the other haud for sp1n greater



‘than one- half the free. equatlons are not hyperbollc,

but constltute 1nstead a degenerate System becauseithey

’1mply constralnts. However, it may be shown that' they

are exylvalent to a system of hyperbollc equatlons,

which describe the wave propagatlon, supplemented by ;%
constraints that .are conserved in time.  But it is not
true that if an% low or\gonderlvatlve cougllng term /ﬁ

is added ‘to the free hlgher spln Lagrangian, the result-

"1ng equatlons remain equlvalent to a hyperbollc system

_'w1th the llght cone as ray cone, supplemented'by.the

same number of,constraints. Even when the system remaln

' hYperbolic, the ray cone may be extended maklng the

propagation acausal. In some cases the system may losev

hyperbollc1ty making it unsultable for the- descrlptlon
of wave propagatlon. Some constralnts may become equat--"

’ 1on of motlon, thus‘lncrea51ng the degree of freedom of

the‘field These dlfflcultles were observed by Velo
and Zwan21ger (3) when they 1nvestlgated spin’ 1 2 and
3/2. |

'To determine the velocity of propaéation of the*
wave fronts; the concept of characterlstlc surfaces is

introduced; The characterlstlc surfaces play the role

of wave fronts whose normals -nu for a llneartsystem

A of the form;

(L18X‘+ B)¢' = 0,

are determlned by the solutlons to the equatlon o

D(n) =» det Lknx'i, 0. o e C }"3.18




3

L

g

non-characterlstlc.

N
Also, a "vspacelike"\i surface is the surface on which

1n1t1al condltlons can be posed and is necessarlly ‘
; :

<

When we apply the criterion 3.18 directly to

the Rar1ta~$chw1nger equation 3.12 , we flnd that-

every surface 1s a characterlstlc surface, correspond—

.ing to the fact that there" are- constralnts.‘ Hence, we

RN

'cannot pose tha'tauchy problem assoc1ated with 3.12
1( w1th prescribed data on a spacellke surface. To .

'01rcumvent thlS dlfflculty, Velo and Zwan21ger (3).

proposed to study the new equatlons of motlon by sub-
stltutlng the constralnts back into the orlglnal equat—
ions. - The new equatlons of motion are- o ('
N
DMty = ar, (M, (my
uv A - Av v _ o
._. ‘ P - 3 . d Y ) . .
= {(yknk+m)6 : 1e(wu_%myu1yskuxvrov : 3.19a

‘or in hermitian form;

My My - | _— -
. L d . 2 ad ad .

= - —Lr - . - ¥

_'{Muv <€?;uAYXY5(Wv,fan) ETEAMAY, (v, 2m)v sToFpy!

= 0. ~ . LT ~ '3.19b

/

5

it can be shown that 3. 19 preserves the constralnts
3.14‘ and 3.15 (1 e., every solutlon of },19 which

satlsfles the constralnts at a g1Ven time satisfies them

.27 .
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for a11 time), and every solutlon of 3.19 which sat-

1sf1es the constralnts at a glven time 1s a holutloa of

the .original equatlon 3.12 . In addltlon, 3.19 speci?'

fies the time derlvatlve of w for any given component.

3.19 is hence called the true equation"of motion. -

\

A

Belllssard and Seiler (17) have a o proved that

the knowledge of a fundamental solutlon E of A(n)d (7)

allows the constructlon of a fundamental soltulon E" 7
(which in fact is ]ust d E) of A(n) by a purely alge-

bralc procedure.

P-4

. -ApPlY1ng .3;18 -to; 3.1%9a ana 3.19 4we-qhtain
respectively; | \. '
. o , ) 'ﬁgﬂ
(nz)s{nz-rl(ign-?d_)z}fi‘=: "0 , |
- and 'v ‘.
| (nz)“{n2+(ien-f‘d)'2}“ = 0. |
or, in a hohco?ariant forﬁxby tak%ﬁé, h = (6,h) , as;
nteq1 - (B2} = o, . 3.20a
gahd . ‘; .. | | |
nl-éfnl :—‘_(E-ﬁ)z}"’ - 0 . o ~ 3.20b

‘Weﬁobser%ed that only in the "weak- -field dase the system
'3.19 ré equlvalent to a hyperbollc svstem of part1a1
dlfferentlal equatlons, allow1ng the deflnltlon of

spacellke surfaﬂe and "future -and past cones™ with

28



respect to the system be made. - These dlffer, however,

]

from the famlllar spacellke surfaces -and llght cones of

spec1al relatlvely, since, one infer from the second
vfactor-ln' 3.20 that the_ray cone is.extendea in other
word, the propagatlon of the wave front is acausal '

If the magnetlc fleld strength is strong, the
system ceases to be hyperbollc and 1s not sultable for
the descrlptlon of wave phenomena. ‘

With this rev1ew,_we‘conc1ude our dlscuss1on of
the class;cal wave equatlons. We. w111 nowmturn our

'_attentlon to the quantlzatlon of the Rarlta Schw1nger

fleld
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s T SR CHAPTER 4

QUANTIZA@ION

e

L e

: - ’ vax :/v. .

We d1v1de the dlscussyon 1n‘

Un}
five sectlons as follows, ‘qu

zatlon of free fleldSaas'well'asqfﬁﬁids w1th general

'1nteract10n.' The ldentltles for the determlnatlon of

the interaction Hamlltonlan 1s derlved The general

relation between the Helsenberg flelds and the asymp—

totic flelds is established.

"In 442 the 1nteract10n Hamlltonlan expressed o

1n term of the asymptotic fields is exp11c1tly deter--
4L
mlned up: to fourth order in e, u51ng the formulas @

stlpu]Qted in. 4 -1." We also.exp11c1tly express the

o

Helsenbcrg operators in terms of the asymptotlc opera—
tors to this order in e.
From the 1nteractlon Hamlltonlan deternlned in

.4-2, we construct in 4- 3 formally the S—matrlx and"

demonstrate that the "generalized Matthew’s rule" [13]

‘is satlsfled

: An argument concernlng the p051t1ve deflnlte— o

ness of the equal time antl-commutatlon relatlon for -
the Helsenherg operator is presented 1n 4~ 4 The

_expllo;t form of this anti-oommutator~is calCulated,

Toe



n

‘_-the quantlty PL:

o>

‘Section 4-5, is devoted to - the exten51on of an

_ alternate computatlonal technlques within the present fﬂ

formalism proposed by Klmel and Nath to fourth order

calculatlgp in €. 1In contrast to: the work in sectlon

ﬂ

4-2, the constralnts have to, be used.exp11c1tly'here,,

\ b

4-1 The Takahashi and Umezawa Formalism_

A method to quantize flelds wlthout the canoni-
cal formallsm was proposed by Takahashl and Umezawa

[ll],' In thlS method the Helsenberg eQuatlon of

Bt

mOtion,,
.—;BuF.(,x) = [F(x) ,_P“] e o | : 4_.1

where F(x) is any dynamlcal varlable, is regarded as

._r)

‘_the most fundémental equatlon. The 1nterpretatlon
of 4.1 may be stated as follows~ from a knowledge

of the evolutlon of - F(x), the quantlty P as well as'd

o

"the commutator can be, determlned Accordlng to thlS

o 4

. of.
vlnterpretatlon there are’ too many unknowns in the
B equatlon. In order to arrlve at a phy51cally neanlng—

’ful theory, the followrng restrlctlons are imposed on




i .4

2) H is non-negative (for it to be the energy) and

’rbl) P. and H =-ip are_Hermitian.

represents the total Hamlltonlan of the system.

3) Only bosons and fermlons exist in nature.

4),~Pu is’ a four-vector. g

5) .All phy51cal quantltles at flnltgld/jtance exterior

tovthe llght—cone are commutative

. L2 .
The method of quantlzatlon may be summarlzed

':as follows. The startlng p01nt is .the fleld equatlon

which contalns all the sub51d1ary conditions.  For

‘frEe fields the equatlon is linear’and of the general

form) i

.Aa-s(a’%(") =0 S | ’ | | »4.2

-We demand that the operator property of the fleld ¢

i.e. its commutation relatlon, must be determlned in

such a way that 4. 2 is con51stent w1th the Helsenberg

equatlons \p

T T ) - A

It 1is 1mportant to note that in thlS approach the

operator P 1tself is an unknown quantity which has

~ to- be determlned In performlng the quantlzatlon, we

J

flrstfsolve'the c—number llnear wave equatlon 4.2»

32



under certaln boundary conditions. When the sclutlonL

'are a comp_ﬂwe set of orthogonal functlons,'we:Zmpose
a normallzatlon condltlon which is 1ndepenaent of ‘ ' t
time. The real- advantage of the normallzatlon, lles.
‘1n the fact that when the fleld Q is expanded 1n
terms of the. c-number solutions so normallzed " the
expan51on coefflclents are nothlng "but the creation “'4
and annlhllatlon operators where 51mp1y commutatlon
relations are 1mposed The Operator property of ¢

'1s then determlhed Wlth these creatlon and annihi-

latlon Operators, the Fock'space is constructed.

.

w The quantlvatlon of 1nteract1ng fields\is essen

tlally the same. A source term is adced to the rlght
J
hand 51de of 4.26 maklng 1t a nonllnear equatlon To

obtain a con51§tent solution of the field equatlon, in~

such- a way that 4 3 1s satlsfled is the whole story

of field quantlzatlon.

Let us, consider the general fleld Q (the.label
a- denotes dlfferent types of fleld as well as thevbom—_
Q-ponents of each field) whose fleld equations are of the'
form, | ‘ !
AaB(a)@B(x) = qa(x) I o 4.4
h_wherehthe.source'Ja(x) takes'on'the»general form,

P
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\ . .. . ’ ‘. L - . .
) - . E . '\“\ _ \
. ) . ] , .

J (x) = J (x)-+a (x)i—... x) . . LA

~a . Zaa =

i

- . . - .
On acconnt of the second identity;_we rewrite the
'-field'equationvinto the inteéral form,
/\ by ) = ¢ (x)+fded (amret(x—x g x") 4us
o . —w o :
.‘Qhere ¢.'1s the as?mptotlc solutlon of the general fleld
, 'equatlon 4.4, satlsfylng the free field eQuation (i.e.
w1th'J =‘0), and so we regard 1t as the quantlty in the -
asymptotlc representatlon. Our objecﬁlve is to 1ntroduce.
a unitary transformatlon U(o) connectlng the Helsenberg
representatlon with, the asympébtlc representatmon.' We
-may not. be able to deflne U(o) as ‘the transformationr
'combining ¢ and ¢ dlrectly 51nce in general ¢Q contalns
dependgnt varlables. ' We 1ntroduc> the aux111ary f1%1d

operatlogge (x,0) whlch is a functlonal of a space-llke

surface o—1n addition to its dependence on the pornt x

b .
whlch may not lle on g. We demand that $q =) satisfy
the fbllow1ng requlrements. - . o, N
i) ¢ (x.o) is connected w1th ¢ (x) by the unltary

transformatlon U(g) whlch depends only on g:
(x.0) = u* (o) U .
g X0 o lode k)L g’ s

~Q

ii) ¢ (x) is. a$¢unctlonal of ¢ (x,c)-at‘the‘same space-

tlme p01nt X,

k& .



b X) = Flo, (x,0)]

where x/o means thé point x lies on the surface a.

From requlrement

-.¢ (x,0) satlsfles the fleld equatlon and

(1) we deduce 1mmed1ately that

commutatlon
S B

' relatlon of the free field for a flxed o;

[¢a(x,g),¢3{x',o)]£~é }déé(a)u(xjx')
®

Aq8(3)¢6(x’o) = 0
il

where d B(a) is the Kleln Gordon lelsor.

Slnce 4.6 is ﬁﬁjulred for every surface g, i
-

follows that there exists a unltary transformati\
- U{o,0 ) such that S o : L el

K2 (x,o)-u (o, o‘)¢ (x,0° )U(o,0
Qith’U(o) = U(o.—wL.

a
© ‘'general; . :

//

Flx/0] = d}(OXF[XjU(US;;' S .?‘/

‘where F[x/o] and F[x] are 1dent1ca1 functlons of ¢

_and ¢ (x) respectlvely.

:

t

')— ut (0)¢ (X)U(O),

For an ar?itrary functional F[x/g}, u;}have in

o (X/3)

o

.



»

We assume that;

U(-=) = UF (-=) =1

C wo)ut(o) = vt o)ue) = 1 . 4.7

These assumptions canﬁbe justified a posteriori.

The assumption 4.40 implies
. 8U(c) ..+, et SU(O); ;
1 So(x) U’(é) = 710 {a) 8o (x) 4.8
therefore, we may pdt"
;;'*‘Ql . . . .
| o o ,
g o) H (n,x)U (o) | 4.9

8o (x)

where H (n;x) is a funct10nal of ‘n,, the norm:1 to

the surface o, ‘and ltS derlvatlves. To be con31stent

w1th 4.8, ji(n £ X) must be a hermltlan operator. We

can later 1dent1fy iL(n x) as the 1nteract10n3
Hamiltonian. E S |

«

'>We’ob£ain_from 4.6 . and 4. % &hp relatlon-

6¢av(x,o) N . x ' ,J ‘@,

Vv
4
-

( : . o
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From 4.5 and the requlrements (1) "and (11) we may

write ¢ (x o) in the folIOW1ng form~

g oo
: ‘ 1na ‘ ]
¢a(x,o)= ¢a(x)+- f'dx D daB(a)A(xe )3

>, (] *
| Iga (X"
5 fo] . . . v
+ f dx'G, (x,x') 4.11
where
Aa8(3)§8(x,x ) =0 . o . 4.12

The term G is as yet arbitrary except that for tH
;case x/b it must be functlon which ie 1ndependent
‘of the flelds in’ the past and hence must be’ a fﬁur

. dlvergence term. The condlt*on 4 12 ensures that

¢ (x,0) uatlsfles the free field’ equatlon.v

. Fcr the surface ¢ which passes through the p01nt

i, we can establlsh A relation between ¢(x,o).and @(x); .

[~ ]

b(x/0) = ¢(x)+-‘f dx'e(x -x )D d(a)A(x -x! )J (x")

-0

~

o(x)
+ axe G(x,x")

-

.~

_We have suppressed the indices a and B's.



x

(>4

=‘9(x)+a_fdx'[e(xo-xg),Dad(a)lA(x—x')ga(xr)

o (x) o _
e
) : o(x) .
: <y . S s T
= ¢(x) + D d(a)ga(x) + J dx'G(x,x'). . 4.13 .

~ Since [6(x s ) D d(a)]A(x x') is proportlonal to -

S8 (x—x" ), we write

o a . > » .
[G(Xb-xo),D cd(3)]A(x-x') =D%d §(x-x') .

Using the notation ¢ ’ R D

M@)o(x/0) = MEBIo(x,0)]

where M(a) is a general differential operator, we have

\'

in general

"o (x) ,
M(3)¢(X/0)-M(3)¢(x)-+iﬁgi; a(i) + J dx'M(a)g(x,X')'
_— o o 4.14;1

)

If we substltute 4 14 into the rlght hand 51de of 4. 13

we can succe551vely express ¢(x) in terms of é(x/o),

a ¢(x/c), cee o Let us wrlte such a relatlon as.

38



0 (X) = ¢ (x/0) + 9o (Rrx/0) ’ - 4.15
. . I
where gkn,X/o) iSfa functional'of nu, ¢(x/o), 3 ¢(x/a
..; ...... and 3u....a ¢(X/0). The functlonal form of
" g(n,x/q) " 1s dlctated by the type of field and its source

and 1s 1n'general an 1nf1n1te serles. Relatlon 4 15

is equlvalent to the assumptlon that the condltlon (11)

can be 1nverted

Differentiating 4.11 with fesPect to ,' we have,

S0U0)
in:conjnnction with 4.102‘we“arrive at the identity -
Wt ‘ \h | .

Lo (x,6), 4 (n,x* /)] =ip%(3)a '(x-,;(")jaw)‘ S EG(x,x') .

Thls 1dent1ty serves to determlne both~the,\p(n 54 /t
f;nd G(x x )._ To obtaln the Hanlltc 1an practlcally,
;the flrst thing we do is to express tne Helsenberg
.operators on’ the rlght hand 51de of 4. 17 by the quan—
t1t1es df x/c u51ng 4.15, we then use the assumed coni—:
'tmutatlon relatlons for ¢(x/s) to determlne .q(n x/o)

. by first settlng G %,0.' If the slso determlned turn -

out to be nonhermltlan, we' then cnoose G in such a- mav

'that the rlght hand 51de of 4 17 enables us to obtaln

- . . '.'
-

oA
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Y

r(‘ ¥ o o |

a hermitian 4. This is due to the fact as stated

‘-rlght after relation 4 9 ‘that . LL must be hermitian.

The &i thus determlned is in general a power

serles of the coupllng constant whose ‘region of con-

vergence is very‘dlfflcult to determine. Aseuﬁfhg

. r . . e

the convergence for 4, it can be shown that.}l(n,x)

v(obtained-by replacing ¢ (x/0) by ¢(x) in K (n, #/0)

satlsfles the 1ntegrab111ty condltlon, also the Hei-

senberg equatlon of motlon is’ satlsfled by deflnrng
- g

P, = @) p -«Jdol‘l'(x)ta (m,x)}u() 418

~H

: _ LB _
with Pu, the” space time dlsplacement operator for the -

free fleld in interaction Tepresentatlon."”

The commutatlon_relatlons_for the Heisenberg

operator can be determined from the assumed commuta-

" tion relations for @(X/o)'4;6 through 4.15,

"We remark that for:the case in‘which the current

J contalns at most first order derlvatlve coupllng and

ivthe spin of the field is at most one,

G(x,x')_ﬁ‘o .

When J contains deriyative coupling'of higher degree or

-

the fleld operator w1th higher spln, ,4(n x) and ¢(x)

'expressed in terms of b (x/3) are. the- 1nf1n1te "trles of

terms contalnlng the hlgher derlvatlves.

40
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To relate this formalism'withftherfundamentalﬁ
structure of quantum fleld theory discussed in
' Chapter 2 we observe here that the flelds ¢ (x) in
4 5 corresponds to the asymptotic fields ¢ (t) in
2.12, whlle the aux111ary flelds ¢ (x/q) take the
' role of canonlcal 1ndependent varlables in the
Helsenberg operator.f And the U(o) in the requirel
ments i) corresponds to the operator U(t) in 2. 13.
The requlrement 11), 1mp11es the 1nvert1b111ty between
'the Helsenberg operators and the asymptotlc operators
51nce ¢ (x/o) and ¢ (x) are related by a unitary trans;

’formatlon. Flnally 4.18 is the covariant version of

.2.19 in terms of the Helsenberg operators..

4-2 Determination of the Interaction Hamiltonian

- The 1nteract10n Hamlltonlan for the Rarlta—
Schw1nger spin 3/2 field w mlnlmally coupled to “the
electromagnetlc fleld AA will now be determlned u31ng f
the formulas stlpulated in the prev1ous sectlon.

,We start with the fleld equatlons, ‘ o o o

n.

v(a).gv(x):. g, ) N . ‘4.19a

0A,(x) = Ly - - 4.9
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and define the auxiliary operators as follows,. -

o ‘ a
‘ wu(x.o)=:wu(x)+ ‘J'dx duA(xfx )g(x )+~»Idx §u(xfx )

.. =—C0 v—. \

.4:20a Z\

I g g |
A (x,0)~:f;(X) +1f @x Dy (e-x") T (x") + I dx'g, (x,x") .

 4.20b

N\
Since

_[9‘xo"xo"duv‘a’léfxin> =§pu(“'a)5(x'xf)

2 s . ‘ , * X
= 5 (g+g_ 3° + £'n3) § (x-x")
3m” ¢ o Hv

. i o . i K _ . )
Ie(xo_xQ).DAA.(x x')] YO‘ . , ,\\\\”;,;r\
- we have from 4.20fwhen x/g.asffpllows; i‘ L | "‘. \{f

. - c B o O(X)"., , B ,
o (X/) =y (x)+3 J(x) + j’ dx'G (x,x') 4.2la
u R e ‘ ,
and —~= g(x)

:AA(X/O) ='Ax(x) +»J dx'gi(x,x') . %L 4.21b

-2

o

* . - - " M .‘ . w“ > ) - .

- Four-vector indices which ‘are contracted have been
suppressed.

*x % .

s =

- . X v 9‘. .."‘ .
.. +nn )3 th %plicit form of £'s are

given in'Appendix.
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Accordlng to 4.17, the: Hamlltonlan must satlsfy

the following 1dent1t1es 51multaneously,

i
!
‘

[wu(x.o),hx(n,x'/o)1%=idu(a)a<x+x')g(x'>+ G (x,x") ,

,

Y

!

4.22a
[A{X}O), 3(01:X'/0)] = ig;?xtx')fx(x') +'igx(x,x')
4.22b
For the case e ;oO in 4.21, we have;*
(x) ='. "(x/c.;‘)' ; AO(;{) "= A (x} ) v4 ‘23'a b
v, - Yy S WSt A g’ =e3ay

substituting this to-the right hand side of 4.54, using

»the‘cOmmutation.relatione;

0, (00,3 (6" /0)) = da | (3) 8 (x-x)

ahd o

we obtain

A (x,0) A, (x'/0)] = D, (x-x*)

’ l | h)... - ;-A, *.*_
_41 (n,x/0) = -ieyr V. 1%/

*

. are. the x/c flelds.t

The superscrlpt 1nd1cates the power in e.

© p———

The symbol 'x/o at the rlght hand corner 1ndlcates

that all field operators on thlS 51de of the equatlon



: idn(Q)Afx—x*){ieTA'a(n;a')J'} + igﬁ(x,x')f

'ahd.‘

fof 4,22 becomes~

'Hence ‘we set:

which is just the interaction Lagrangian with b§posite
sign. Hence ul is hermitian, so we-set cl and gl"

-~

equals to zero. We have then;

= -4 e | | 4.25

Substltutlng 4.25 into 4.22, the right hand side

‘

:x'/o
4.26a
lD}\A'(*-X'.){ie'ﬁTJ'TA..a’(npa')J'+ie[3'a(1"1,‘—)§‘_:l)]-'1—‘.)\‘."4,1}

: + igf(x;x') . '4.26b
B . :x'/o L

We are no longex uble to find a hermltlan Ji

o l

"'by assumlng G ‘and g vanlshes. ThlS is because the ..

dlfferentlatlon in d docs not enter symmetrlcally.

2 .. |"___i__e_.2 ‘ \ N | lAl s ) ‘l
gu(x5X.)—- 7(—%)d, (3)4(x-x )Fé_ax(5:0§ok+g n,)J

3m S ,
b ' 4,27a

H
]

= F(x"/0).

¥



and

gf(x.x') = - 2 (3 ) “.(x-x ){w ry (E':oop €'n )J'
. m?
-7 A GS t vy ? . ' ! 'A;h.
. .I (€-°oop + £ nD)I‘)\lf_} . »_ 4.27b

We observe that both. G and g are four dlmen51onal dlver—

. gence terms in accordance Ylth the requ1rement dlscussed

- in sectlon 4-1. \,—

W1th‘4.26 and 4.27, the hermitian second order -

. Hamiltonian 342 is determined to be - v
o ) ’ \/ - . - * : .
2 . o —_~ 1’? . . f\ ., N .
_hb_(qif/o)- Jd(n'Qd)J', x/o - | 4.28

To determine 313; we must first find the .expres-
sion for wi in terms of” the auxlllary fields. We,have
from 4.20 that
2

thawu(x/c) nay (x)i—d noJ(x) + b J

B N 3m2 =
g (x) _
+ [ ,dx'nagu(x,x')_ D 4.29a R
. -2 . . ' :
and/;‘ o .- 0
' g (x): ",
-riaAA (x}o)=na§ (x)f'[, ' _ciS('nagA (x,x')" -, 4.29b
- . LT o :
_ ,

- since
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2
[0 (x-x') yndd 14 (xox") = (@ n3 4 <2 b Jo (xex)
I v vt a2 Ty -
and - <f

[6 (x-x"') na]D J(x-x') = 0.

AX

'The‘expression for wz is ‘then found to.be

2. .n o A 2.2 90 '3 :
] (x)—‘—led.PAde 1e(——7) g£'TAbJ - ——(———) b F“' .
~H H 3m H ' 2) S ix/0

-

'The third term on the rlght hand 51de of 4. 30 is due to

the contrlbutlon from the G term as follows,» _ -
O'(X) : - . up}v i _ .
B 5 2 . .
ex'G (,x') = - 222y 4 d (3) A (x—x" )rA' x
. 2 3m? . B ;:?b
1 f ¢
= ~x 'y T &S ', ' .
2[?(xo 30),0A][g:060x+€ nA)q,
- ie 2 [ ’
= =~(—=). b.rac'g ,
‘42 3mZ | o~ =
since - .
l[e& “x'),n3']4 (‘B)A(x-x').=..— 2ob  smext)t L
2 ;0 "ot UV ) . . 3m2 BV ’ .I- L e i

_lengthy and tedlous calculatlon, we arrive at the follbw- S

ing results, o . s : s ¢
: v : .o o :

. R N
See Appendix.

N
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) »JJk(n;x/0) 
=] -

ix/c

. - =7 bid - “
—1eyTAy - Jd(n,%3)F ©
¢ | o _
-ieJd (n,%3) rad (n,1%) 3
R S
s
T~ 2 "9{b(n,-3)rA' + £'Tab(n,3) g
- (1e)°3d (0,53 rad (n, %) radin, ) g
-+ %ﬁezljfb(n,—g )FA&'FA&}n,B)
P+ dm,-HTAC'rab(a,3)
+ £'TAd(n,-3)Tab(n,3)
+ b(n,-3)rad(n,3)raz"
+ £'TAb.(n,~5)Tad (n,3)
'+ d(n,-5)TAb(rn,5)ras
1.2 ' s ‘ RN
- (=) 8 TAS+[v3 +mlny)b(n,3) raz "
- 3m ‘ ' !
12, x ra [ XS FARvTYT.
+ 71-(7):’ FAb(n,-2) (n3+([y3 +m]lny)TAZ'}Jg
3m- ’ ; . .
+ e/ {An e n? @i 2
- ) e
- 2yr C'JJsffxw} ,

4.31



. and D' - - . {5’ &

G, (x,x") = —du(a)A(x-x')yg'{é iesi(g:oésk+§‘ni)g"
.- 21\ . ~ ~ .
+(ie) a(n,gs')rg'(d(n,a')ed(n,—§!))g'

~
w3

+(ie)2(b(h,a')-b(n,—§'))rg‘g'g' 4.3°

{(ie)%ic(d(n,5%) rad (n,4%) rad (e,  + &'n)
!

.' 3 R ;. N .
o+ %— (1e9 7+ a_o(g:c + & ‘nU)I‘éE"I‘Z}b'(r_l,a) _

4 ie(ie)2+‘(b(n,a)—)b(n,—g))FAa(n,3)FA£’
' o ¢ - T
- ) ‘» - “,
+ ie(ie)®+ £'Ta(b(n,s) - b(n,-3))rad(n,?)
¢ :

+ G0 43 (6, +E'n )rab(n,a)ract

- $lie) - £ ram} -¥3°nv)b(n,a)raz'1g}

K

while

Xo



4

e

1 s 2 ._ {] TFrt v
7 Be) e inuiirg - Jetr )

"

L. 2ic R
-dJ- adJg - £ =
.wu du 1edur J zig rab 5 buFAg }J

3m’ I
. . ]
' 25 oA Al ~
- (ie) duFAdPA dJg

.- (is)z(%;PAbPAa-+g&rA§rAb-+§rAg'rAb)J :

- %(ie)z(aurAbrAgf+-burAarAgE-+bﬁrAg’fA§)J

.oon

e
7

" —lf(ie)zg;FA{na-(Yas-muny}bFAi' J

¢

+

- (1e) dI%dPAdFAJ-+1e521d rAdlA(g rAb+—brAr')

+(g'Tab + ; b Tag')Tadrad

+‘§urAg!rA(8rAb + brad)

b2
+ %‘(& rab +b radyrac'rad - 4
B TR R .
e +‘£ﬁfkarA(arAbi+ brad):
+ % (bqu3 + aﬁFAb)rAaFAgF}J SR
4 B H -
+ iﬁ—f& ra “'rAb + L bLAL') + 3 b TAZ'TAbTAZ '} -
. 2 .:s? 8 u S \;:‘
-3 183{(3uFA5' "'rAd)iA(na [y5S -m]ny)bFAg

!

+ g rA(na [Yo —m]ny)brA(r FAd+dFAg ) }J

o - : - , L ixX/a
.+-g; times terms containing‘three Y '

49
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_We ha;e explicitly determined uuk(n rX/0) and
have expressed the: Helsenberg operators w in terms
of the auX111ary Ope ators and thelr derivatives to
fourth order 1nlthemcoup11ng constant e. 1In principle,
it is‘possible tokgvaluate the higher order terms by

repeating the same procecure, though the calcuiations

are enormously lengthy‘and complicated. Let us now
examine some features of the procedure and the results

obtained.

[ B
u»"!

We observe that to obtaln the n-th order expan

. Sion for w in terms- of the auxiliary operators, we
‘have to use the (n- l)th order expre551on to construct
the n-th order Hamlltonlan dn(n,x/o) whereby determln—‘d
1ng the n—th order G and g..

The highest order of derlvatlves in the n- th -

order Hamlltonlan as well as the expan51on of w (x)

in terms of x/c flelds 1s n- 1. ‘It seems that the time

b-,derlvatlve (na) in Ql can take the order of n-1,

<

‘however G;Qser examlnatlon reveals that the hlghest

thme derlvatlve 1n the Hamlltonlan is at most of order

E 4

one.

in

Invthe‘expansion'o Uu in ‘terms of x/o flelds,

- we observe that w (x) ar (x/o) are not related

-~

_llnearly, yet, all. the nonllnear terms are proportlonal

)

s to nu, 31nce g = nunynv. Thus,for’the space

. &
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: s
component of w we can write the expan51on in a

compact form as follows,

S, v -X
?u(x) B AQAvwv :x/0"

where Q— is a funct!bnal of A, (x/o) and its deriva-

tlves as’ well as derlvatlve operators actlng on w

/,

4-3 The S-Matrix

Accordlng to the general theory, the fequired

1nteract10n Hamlltonlan w(n,x) in the 1nteract10n-
‘_' “h .
plcture is found merely by replac1ng the aux1llary
7\

flelds in \ﬂ(n x/o) by the asymptotlc flelds (i.e.
flelds in asymptotlc representatlon)

'

With the . ‘b(n x) glven by 4.31, we can. formally

1

' wrlte down the S-matrix of our s;stem as follows-

T (=" T S
= Z =) ﬁ?xlffdxn T(JJ(n,ﬁl),.;.,\o(n,xn))v
4.34
where T stands for the "chronological Ordering o .‘ng‘

i

Our S—matrlx can be wrltten in perturbatlon ex- .-

pan51on expllcltly in terms of the\u [ given by 4,31“




to fourth order in e as;

s = l-+(—i)fdx {ﬂ;fn.X)-+\u3(n,Xi +ig(n.x)-+if(n.X)}

(-1)2

=y

fdxdxl{Tculcn,x),ﬂ?(n,xl))+2Tculcn,x);g?xn,xl))
' v . SN :
+2rat m,0, 58 0, )+ %0 4 (n,xp0) )

N

s R
= jdxdxldxz{T(u (n, x) & (n,x Vo8t »

o+ 3T(3;l(n,x);ﬂ}(n;xl),u?(n,xz))}

N e el 1, ... N |
4+ 7 'dxdxldxzdx3TFur(n,§).&_(n,xl),g (n,xz),h -

. '.ij“f. *'\H}(nfng):-. - , '~ 4.35

'the coefflclents dlrectly in front of the T product

,arlses from the symmetry of the 1nterchange of the

.-'r

space tlme coordlnates
We deflne the T*—product Wthh is relctef to the

T—éroduct forwthe field operators as follows-

;’
s ,.-{_‘

"T(wufoﬁgtxxi)) = T*(wu(x).wv(x')) +oid | 6(x=x")

.T(ngwjkx);ﬁv(x;))}=T*xnaw_kX);Ev(x'>)+~ia“vnaa<x-xf)

2i T - - - .
*=—b  S(x-x') . ' .
-3m2 BV, T C



- o

) ) R
oz : ’ ,_' SR

‘ SR,

T(naw (x):ﬁzna 7, (x )) *T*(nav (x) ind G (e I

4

l - %lauv(naﬂz+-;§5}h3+[iesém1ny)buv]5(xfx‘)

.4.36
and’- o S
T GRG0 <TG 60 )
T(n3A (x),A (x')) =.T*(n3a (x) ,A_(x')) \
L BT Al ‘ '
o s | A ‘ ' . u c-.,. v Rt ;‘a,;.
f‘;siduvd(#-X5).' U 436

W1th 4.36 we can replace the T—products 1n the

S—matrlx 4. 35 by T*—products After a lepgthy calcu—‘

latlon, all the normal dependent terms vanlsh,,and

the S-m‘trlx is lndeed glven by

' iy e A,y o

e

Hence, we have exp11c1tly demonstracted that 1n

_the S—matrlx calculatlon, at least to fourth order 1n

. e »we can replace ‘ﬁin x) by

sy

L -1_;
(J+)effective - jil_- ‘LI

so long as we also replace the T—product by the T*-

product ThlS property of the S-matrlx,'referred to

¢

o

- .53
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- 7/

as the 'generalized Matthew's rule', is satisfied in

our case. This is. 1ndeed the result one expects in a

con51stent theory.~ -

4-4 Commutation Relations : : !

To complete our quantlzatlon ‘we now derlve ‘the

commutatlon relatlons for the Helsenberg field opera-

tors. . Slnce we have expressed the Helsenberg operators

in terms of. the aux111ary flelds whose commutation
relatlons have been assumed, we are now able to deter—
mine the commutators of the Helsenberg operators. *

From 4.33, we write for p-= i, the relation,

| NS D - S
Yi(x) =.in(n,x/o)wv}x/o) Coe , .4538'
with 3
-1 _ L Cm , T
in = div,—le{(8i+ 3 Yy )M-fleA N}AkBkléz - 4.38a
where
1,2 2
M=~ —2- —2-){2‘*' ie (A V - 10 B)" E ([A V] ~+ [ld B] )
o 3m . :

> o
.B-ig.

Q+‘_
m

]21

>+
oy
<4
by
:ﬁ
w+

+ iev(z ¥ Y [ V124R. V[lO B]

-+ higher orderhterms} S o
S | o 1x/0 . 4.38b
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1% 5

E (2 ) {1+ €id.B - 52(% VR 4 (a0 B12)}

Qﬁ higher order terms ' 4.38¢c
' - :x/c

~i

.and

_ . _ ) _ l ’ . - C
Yk 5 Prglp T MYy = B (3w myy)
‘ ; ? | |
' The following_e%galities, which can easily be verified,
‘have been used to arrive at the aboﬁe:resﬁlt:_

x

A ’ _7'. 2 i
a5 R, = () 6y 4

i} ; .
5 Y;)A £ .
3m ? 17k k£ L
\3' .
_ m 13»—»-»
l)\(I‘_A)Mn,\)l— (5-)A; + (3 + 5 ¥;)V.A

. 2 s Y A‘
f»(——i)nyA.Vnynu

-. _ ’ ' : > > o
n-TA.b.TA .n = -nYA.V V.A

Slnce Q # 0 only for v o= ], maklng use of the -
prlmary constralnt, _
Wlb = 5\(7.V : \_2') a.¢.

11 11

-

_enables us to obtain,ffom 4.38 the relation
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90 = sTh g,

L 4.39
1 lJ J &% e :X/U .:
L aadd P %I»
where Yo
 oslop *Q'ils e lgg oo amtl
ij ~. ir*rs'®s3 7 2YY 2 jto-

The equal time commutation relation forxr ¢; becomes

-~

E . v + . ‘ -1
M D 1r{¢r'¢ }s o3
. ' ) x,x"'/o
. ".1 _ 2 . ;1+ . o , . '
= Sir(dts gn? aras) 5'(X“X )SSj ‘?; ] . 4.40

since Q—l; consequently S 1, contalns only space-
derlvatlves hence the electromagnetlc fleld Au’s

commute at equal tlme._ The relatlon

: - 2 s b s (e
.{¢ (x/c)¢ (x /0)} 11(6r$.-;;5 aras)st.§(xfx )

has been -used. o T o : o

If we now 1ntroduce an arbltrary complex splnort»'

.functlon U(x), we can wrlte 4. 40 as -

‘. A‘ ' : o v ' B o \
dx U (x) e ot |
fdde>U(X){gi}x,)gj(x_)}E.T U (x") .
C o | >
s PR R p2 % =1 |
_fdg U(x) S ( 5)(§rs+«§;7_§ras)ssj (+q)u,(x)' 4.41



S, -
. .

When i equals to j, the right hand side of 4.41 is
. = ' : ‘
-obviously positive definite. The problem with the

-1ndef1n1te nature ‘of the anti- -commutator . for o; .

obtaincd‘lhrough the canonical auantiZatiof %
N ;

not»seem to be present here. Wwe %ay then conclude 2

'

that our method of quantization fo& the charged spin—_

3/2 is con81§tent

However, let us deternine the comﬂutator for ¢i

~

’explic1tly to fourth order in e. From 4.38 and its

hermitian conjugate, we have o -

"
1O

oy _
. o (X = P, X x! P_.
(og (vggGm0d L = 2ty 6, gl 3, 0 Prs
.2 RN R
=Pyl 5 anar) l‘-(”nM(a)”eAn“(?')) x
- . 3m ‘ - . e
: x (A - —35 1,Gar)5(k-x')
T o3m
+ de(a +L2 3,0 K) 6 (x-x ") (1 (<3 ) 51 cient (<5)a )
r r
3m”™ .o ,
5 AV VLA G(X-x")x
cooo .
EVRRTT VLTI SR JL PN S ORI :
x (M7 (=815 < ie (\’{ )Ap 1P
+ higher order terms . . B G_ 4.42

Since,
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. Yy
[A. + <=
1 3m2

= - —ibn | :
= (-1) 8u1..§ung(x?.x

Ifinally arrive atr

{?i<*>g$§<X'>}ﬁ o =

_';-iﬁ{an(—ieAr)t(fieAn)artah(eg;g)aé} .

- ——5-{(—ieAn)(-;eAr)+an(e3.§)k4ieAr)
H(-ieA) (e5.B)o +3 (ed.B)a }
- —é; {(-ieA )(eE.§5(—ieA >+s,cea.§>?(-ieg j.
2 n r n- -

+(-iea ) (e8.8)%3 +a (e3.8)% )

e




&

v

- % {(ieA ) (e5.B) 2 (-ien, ), (65,83 iea ).
3m ’ . .

| +(—1eA ) (&3 Ba_+a_(e3.8)% }]P o(x-x)

+ higher order terms .
The rlght hand side of 4.43 001nc1des to fourth order

in e with the power serles expansion of the expre551on

) 5 _ .—1 | o L | ;
Pin{dnr ng(an.re%p)(llso.g) (BrfléAr)}Prj5(¥-Xv)
with-

- -1 . . > n
(1-e3.B)"" = §  (e3.8)

: n>0 -’ '

after collecting terms of the same power in e. This’
in fact is the-well known f//;lt of Johnson and

Sudarshan . We belleve that if we had determlned the

hlgher crder terms, the agreement w;ll Stlll hold

As 1ong as we use perturbatlon expan51on, the antl—

ccommutator for ¢ 1s p051t1ve since tg every-order in.

e the above expression is positive definite It is

only when we have summed the 1nf1n1te serles tnat the

'1ndef1n1teness becomes apparent Our formallsm hence

"suffers the same 1ncon51stency as Johnson and

Sudefrhan.

e
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Before we discusc further the inconsistency
'of our quantlzatlon, let us lock at an alternate
'way of der1v1ng the results.~“ SN |

\ .
4-5 Extension of Kimel and Nath's Work

As we have éeen in Section 4—2 that ifﬁwe had
set G =0 in 4.22, the X (n x/o) that Satlsfles thlS
identity when w express the rlght hand side in terms*
»of the auxiliary-flelds is not hermitian apart from
the first order term in e.; In order to obtaln a
hermltlan Hamlltonlan to second order in e that
satisfies the identity w1thout‘1ntroduc1ng the G
term, Kimel and Nath [8] proposed to modlfy the source
gu. The dependent components ?4 is firstpeiiminated.‘
from the sourcesgu and ;u using ihe seeondary'cons-.r
traint explicitly. The currents J; and I, then contalns
.terms_of the form B'A (x); With thls derlvatlve on’ the
Qu's, gi and E. are then rewrltten into two parts, ‘one
of'whieh has the form of-deriativelcoupling.‘ The general
procedure for quantlzatlon as: dlscussed in Sectlon 4-1
with G =0, is then applled

'Accordlng to the above_discnssion;vtheylwrite

J and I as : o o Lo 4 .

Sy



w5

I = 3,00
J;(x) = j.(x) + auj_'_u(x)

~2

o+ i3 D p XX 1o, (xT) L 4ld6

A ~2:X

{i(x) = 1i(x) + auFi:p(x) .. o ‘ 4.44
Then from 4.13 one arrives at
wi(x/o?==?i(x)+-di4g4(x)+-d (Jk(x)+3 Jk (x))
+ iz 8 4bipdp. . (X) )
3m pa 1K= :‘U
énd 0 - ‘
L mMWe = L 445
- - : (ﬁ\ L N
The 1deﬁ&1§ies to be satlsfled by £ (n, x/o) becomes
fw (x,o),\u(n x/o)] »zd A(x X )J (x* )+ 1d A(x-x )3 (x* )
,4 '(,"‘ : . . -
R © 3 X3 'Y vy
S + ldulalé(x,x )zi:x(x )
j . .~ -
and':

i)
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With these modifications; they have'determined
_the Hamiltonian.and the relation between v, and the'
auxiliary fleld%to second order in e. Thelr results
001nc1de with ours given in Sectlon 4-2. However, to
calculate’ hlgher order terms in thls method, as we can

ea51ly deduced from our calculatlons in 4- 2 ‘the

relatlons 4. 44 should be modified into the°form

Ji(x) =" F 3. .3 5. (x) o )
RS =, TR R T R o | .

and

3 ead 1, (x) . 4.47
M1 “k"l°“1"“k%;'

-

where ‘n depends on the order in e to which we want to.
calculate, for . 1nstance, the fourth order terms '3;

" r@%be dlfflculty 1nvolved in wr1t1ng the J in the form

J‘- 95
o
. ‘.

.47 w1ll prohlblt one to extend the calculatlons to

vyf _
éhlgher order term. However, 1f we observe that the ;

;2 paddltlonal contrlbutlon to 4 45 from wrltlng the

currents in - the form of 4. 41 is due only to the tlme )

derlvatlve, by 51nq11ng out. the role of the tlme

derlvatlve and aIIQW1ng;;he space derlvatlves to be

¥ '
‘symmetrized wherever néeded and further uses the
,equatlon of motlon ‘to keep the tlme derlvatlve in

*Ji and I to at most of flrst order, we are able to
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N

_ compute hlgher order, terms by thlS method. This- 1s

justlfled 51nce three dlvergence terms may be added
to or ubtracted from the Hamlltonlan den31ty w1thout
elterijg the phy51cal content of the theory.

ertlng the equatlon of motlon in the form

1313 S
L l ‘ - . 449
where- | ‘
-
= a3 - " 6 + .m '
My T i% v+ m "
tiin] N \\
, I; _ -,-* '- —' .
Xl] =Yy 3 Y'Aﬁij» Y4A48 .

~

¥

With 4.48 and 3.17, we rewrite J, in the ‘form

gd(x) = iey, 2 2k¢k . h . : o | 4.49e
T = dex;iys + b kPR Yy

=iy 0 h gen2 2 -1 .

=lex..y. + (ie): —<_ R {c.+[y °,A f%

;~l%ej 3mz”~ 3 474°2° "¢
=35 x) + 74843 4(x) | ' o 4f49b
- e L A © - | . .

where : S ‘ : o s
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738, ik kx4{

(i;é'if 2 2ie 2ie
8. A L1 V.A + (B
m2 ik %k /3m2 3m2 X :

+ 0(e’). -/ . 4.s0a

(1e)

1e¥13w -F—;gif'slk{A (2g %j)+[§deg4§1]wsz5.
1 21e

4(§ 2 1kAk{“"—Af& -6 B Y4§‘KY4(€j'Azﬁkj)
. ..

. ,

S>> SR 121e ' ..f
f 1°-$¥*4?4Am]5 s+ g L Blk[Y4a£Akv'Z]Alsl v

1(21e

. 2
A ) BlkAkY {30 3. AY4A1X

J . i <

i

V.

> > e + - )
‘V.A + jioc.B 10.B)Y4(;j-

1l 2ie 4
3m

: 3 .5 a2 o .
+ = .B Ot
7 (io ‘) }84?\282]1,:]

a

1 21e 4 ¢ k’ 3 ‘~> 1 23 -»
;l_ i B2 .-x ‘ "
| *g (10-8)'. }]'Alﬁlj ,’Jj
(5 S S
0(e™) - : 3 . 4.50b



o g’é‘{ ‘ .‘ _' ' ;cx .“v
Note: all field operators’in 4.50 are Hefééh%@gg'opergg K
. : v 2 ' N T
tors. - A
‘ _ Lk ' ‘ S L
Substituting 4.49 into 4.45 we obtgin PR @’
- by (x/0) = Q4 5us(x) D . 4,51
lﬁahere : . RS o i Co ’ | ~ ;-
Q.. =6.. - ie(d, + B v.)a g
=ij ij 2 Vi 272
+ 1.2 3m> T R S P
7 € 15— i ( 7 Y3V %N 1
2ie > - 1. 2ie +:+ > > >, > -
x{-1+ === V.A - =(=18) (3 ¥.% A.V +2 V.Aig.B
2 4. 2
3m 3m
+(13.5)2)1a. 8 |
- 272
+ 0(e”) .. ’
\
N

Agaln all operatorsfln 4.51 are Helsenberg operators.

S

We have taken nhff (o, 1) The component ¢4(x/o) can

be obtalned thmough 4.51 by the relation Y, (x/o) = 0.°

d We formally construct the 1nverse operator Q -1
Such that we can’ express the Helsenberg fleld ?i in -
term of the aux111ary>fields as

o (k) = oty -~ 4.52
o C~1 ] J :x{o ‘ -
% .



' ‘while the e’

third order’in e. The fourthgé¥éer term dlffers

7

slightly as'fa}IOWS:'

»

The e3 term in the expression for M (4.38b) is

replaced by o o S

A : _

S

mietty GBAY -1 VKio bR+ L VX055 % (13.5) 2
-i0.BR.9)?%} o

2 term in N.(4.38c) is replaeed by ‘

K VAR §K 6 + 3 (10 §) )

‘2 1
et {5V 2 ,
These dlfferences can be attrlbuted to the fact o
'hthat the separatlon of the currents J 1nto two parts
¢ } »

- 1s not unique. We have. 1ndeed rewrltten the fourth

~ordervterms in ji and.j.& in such a wayithat no .

\-

Adifferenees'occur; We retain the present form to
. \ :

-111ustrate that even though the relatlon between Ys.

-~

vand the x/o f1elds may appeer to be dlfferent the

. ) .
Qamlltonlan as Well as the commutatlon_relatlons remain

the same.’

" With 4. 52, we express the currents 4. 49 and 4.50

"1n terms of the aux111ary flelds w1th the help of the

| following relatlons,whlch;can ea51ly be verified;



e u',
. B
(3_+ T AV 3 3
Xin'on* 2 ™Vp) = v;A.V- Y.R3; - 8, v A, kBB MY YA,
‘\‘ .
1 - Yy = - - : i)
1e(cj Aznlj)wj 1e1V AyJ aJy .A- 32Y4 B 282j mY4A4Yj}%
| - 1ey4V.Aw4‘+ 1e(y.V+2m)AEB£Jw
=@ +3my )3 +B 4 3
k"2 WMt 3 9y ‘
‘XinAn =.— 3ihAnYuAu
Anxnj =T Y4A48n]
G o+ln ) =-1-’—“iéAB'y p- 17 Vif.é;l'[;é‘l{'g" gl
) :f 32Y4A4@1 3k1-m13.B m[w VY4A4]
»_'.‘ . . . _,:, - ~',.‘f, ‘~ e L. o4
o "oy '“~*,a‘”"" e '
(3 +4£ my )-——y A VY (y. Vi~2n)-+§-m2? .:i
BNk (B k- g?-Vrg Z *

'7‘,?‘/

.we have determined Jd.(x/c) from 4. 46 to fourth order

,f

, ih e. Thls Jd(x/o) 1s 1ndeed 1dent1cal to ‘the b (n, x/v
glven ‘by. 4 31* when we wrrte them lateern a noncova— |
rlant form W1th nu'= (o, 1).' The commutatlon relatlons e
for ‘the Helsenberg flelds derlved through 4.52 is also

1dent1cal to those obtalned 1n Sectlon 4-2,
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The present technlque is in fact equlvalent to
.‘that used in Gectlon 4-2, in the sense @hat the sepa—
ration of-currents 1nto two parts, one of which has

" the form‘cf defivatite coupling, takes the place of
vlntroi§01?g the G's in Section 4 2, Wthh has the
effectg %f etrlzlng the derlvatlves in the current

J. The technlque in 4-2 has the advantage that all

‘field components are treated on‘the same footing while
in the preSent case One has to'eliminate th component
w4 from the current using the constralnts exéllc1tly.'
The mathematlcal_manlpulatlons in the present method is

far more tedious than that encountered in the previous

sections.
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- ' CHAPTER 5

EXISTENCE OF_THEhS—MAiﬁIX
.\\(3 :
- We‘have explicitly constructed the scattering'

‘matrlx for our system in Chapter 4. The validity‘of
our orocedure in this partlcular 31tuat10n and hence
1ts consequences is somewhat 11m1ted by perturbatlons.

) fifg, Further as shown, the 1nteractlon Hamiltonian deter—

W “mined is a poyzf(gerles of the coupllng constant e,
whose reglon of convergence is very dlfflcult to.
determlne. However, in order to prove just the eiis-'
tence of'the S—§atr1x and not to determlne il expli-
citly, we need not resort to perturbatlon. |

Let us start- from the 1ntegral equatlon 4. S

"which.can be.wrltten in the‘form
G KD ex) = g(x) e

where o - S . ' oy

hr

K™¢ (x) fdx"b,ad<am‘e“<x.--x.'.>3a?3<f'>7_-

Thenh 2
.g(g)_= L¢(X)j+‘§‘ci¢i(x)" R o | | )
Qhere thatisfies. : .

‘L = 1 + kK1



a +_Kr)¢i -0, f';l,\f',.*_v,ffa?f‘* ?135

's are arbltrary c0eff1c1e ts._ The term ¢

; N
completely 1gnored in most ca es. However,mwhen %._ .

the flelds ¢(x) do not form a complete set the ?1_“

.r“

‘t

may be the complementary set uch that ¢ and ¢ .

¢.,

together form an 1rreduc1b1e o erator rlng.“'

g

The operator L is closely related to the S-

} T

matrlx whose ex1stence we want to prove.h We shall

%& !St ignore these ¢ and later dlscuss 1ts poss1ble

. - :
\ : . B B .
- g . Vo cra
. . !

We prove the ex1stence of the S—matrlx by

employlng the technlque used by Capr1 (14) where

“the Q-number problem 1s flrst reducéd to a closely

related c-number problem. The formallsm w1ll ‘be

presented in the next sectlon.

-

5-1 Formalism

BERR ¢t
.

We shall sketch here, as an 1llustrat10n of the -

htechnlque, for the case of a spin 1/2 fleld (say
‘ 1nteract1ng w1th external electromagnetlc
We start w1th the basic equatlon

Vﬁ(&)?(k)q=h—(YA8x4~mS?(x)==jieyiég(x)g(x)v

.
.

vix))

5.1
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where A (x) is a sultable smooth functlon that decreases
in a prescrlbed manner as any one of the components of

X approaches o, Rewrltlng 5.1 in integral form, we

1

- have o | S S i
S ‘ AN

P x) = (x) T foue) <+)iejdx' G?‘é?(x—x'>vxék(x'>g(x')

5.2

where 67 (@ (x_x1) = a(a)a*et@av) (o vy,

'd(a) belng the Kleln Gordon d1v1sor for the dlfferen—
’ tlal operator A(a) in 5.1. Smearlng 5.2 w1tn four-

component test functlons f(x), we get°'

r(a)

w(T £) 'wiAn-(°°t"'('f), . 53
',iw‘f);?'fd* f(x)w(X)_,G
r(a)f *-f+-( )1e(f*Gr(a)) A if‘ ‘,_'75.4>

”g'and (f*G)(y) jdx f(x{é(x y) 1s the convolutlon product
of £ and G R ' '

21 ,
"So 1f Tr and Ta ; ex1st and descrlbe a con-

-{tlnuous mapplng of test functlon space onto 1tself

"L_fthen

' e - ‘ _ .

o



) X5 > -=. Also g satlsfles

.a%d the whole problem/ls essentlallykéolved

P = et gy = yOub(paTTy | 5.5

T . - . .

-1 v
To flnd theolnverse mapplng Tr £ requires find-
ing a functlon h such that ‘

Thoh+ietrhya s L L S g

We introduce the auxiliary ‘function
: e ’A : 5 4 '
g *hxt . o s

. {/,,

d
g

-Then g along w1th aLl its derlvatlves vanlsh as

l

.g(x)A(—g) =:h(x)1? if;‘;?f. | v "5.8 ¥

andoreplacing;hfin tetm§”of g ia “~.6 we get

gA (- 3) + 1egyAAA— f » L 5.9
L : % = ’

W1th zero: 1n1t1al condltlons at xo= —®. - If we can

;5 8 to compute h and hence we will. have computed

then solve thlS 1n1t1al value c- number we can use

' -1
TC f. Th a 51mllar manner we compute Ta f by
B

;solv1ng 5 9 Wlth Zero final - condltlons at. x0+-+m

ThlS means that 1f we have proved the ex1stence of

solutlons g for thé 1nhomogeneou§ ‘wave equatlon 5.7

-



i

@ﬁlbed initial condltlons, the existence of -
Jotd .

¥ AN -1 -1 ‘
the inveé#@smapolng Tr and T2 jg establ%shed,

’(

S .
this allowsqu_to write

-1

pOUut(£) = pin(gr 3f) 5,10

which enables us to show that the 1n and out flelds
satisfy the Same commutation relatlons. We need
-only to show that, ,correspondlng to the out fleld
there exists a vacuum state in the Hllbert space of
the in-states, which was flrst constructed by assuming
vthat the in flelds are the same as free flelds, to
conclude that the two fields are unltarlly equlvalent
- [19]. The unltary‘operator connect;ng them is the S-
matrix. | - o
In the follow1ng sectlons, we shall apply this
'formallsm to the spln 3/2 field, the electromagnetlc

hfleld will be assumed as external

[

’

5-2 RedUction to c—number Problem

since the Rarita-Schw1nger fleld yu contalns

.

sixteen components, we' shall use the. 31xteen component
test functlon f (x) with each component taken from the

test functlon space . of 1nf1n1tely dlfferentlable

functlons that are rapldly dec*ea51ng atilnflnity.



The analogues of the spin 1/2 eQuatvons 5.3

and 5.4 become;

v, (Tr(ar‘xf ) = pinfout) o '5.11
. ¥ Yy u .
and
e rT@e _g o, (-)ie (£ +GE (@) (ra) 5.12
HV Y u o vV VA ~"Au ' o
where

‘ Gr(a)(x —x! ) _— (a)Aret(adv)Qﬁ_x,) .
Hv . u y

’

-
By restrlctlng the external electromagnetlc

'potentlal Au to be a functlon in o, the mapplngs T

and Tu define contlnudﬁs mapplngs from < into n],

since fu e 4 and’ Guéa) is a tempe,edvdiftribution,
hence f * Gr(a)
4 t1able functlons of slow growth whlch are multlpllers

" for- gf, Hence we can obtaln the analogues to 5.9 as

y 4 - » . _ '
guAuv(—n) = £ g 5-13;'
.with either zero initial conditions or zero final con-

ey . ' ’ . 1
ditions, where ’ : : N '

 guAuv(-§) = hv

and

€ OM' the space of infinitely differen—
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1 *
9,00 = [h »6} 160 .

‘The next section is devoted to solving 5.13.
\ ) .

5-2 The Cauchy Problem

/

We have established that "if 7% h = f then
: -1 . : HV vy 133
= r 9 £y - ‘ A —+ =
hu Tuv fv is glven by g Avu( 3) where gvﬂvu( )
fu with Zzero initial data.

- Conversely, glven a g € 0M such that: g (*§)=

-1
f_ w1th zero initial data, then Tr fQ exists ‘and is

given by 9,A, ( 5.

We now want to study the solutlons to, the system

et

of homogeneous partlal dlfferentlal equatlons.

gu(x)Auv(-n) = fv(x)_ _— s 5.13
with vanishing_initial data.

However, 51nce 5 13 contalns constralnts, thlS
Cauchy problem is not well posed we are thus ~unable
to study the solutlons to this problem dlrectly.,

From the dlscu551on in Chapter 3, we know that every'

solutlon of the system

6"/‘ +_ o ;_'_r' « _ s 14
S 9MLET =g h el R = o, 5114

which satisfies the'coustraintsvinitially,'is a solution

of the homogeneous:equations,
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-Q:- o ' !
guAuv(_") =0 . | _ o

&

Fnrthermore, in‘the ‘weak field case' 5. 14 is equi-
valent to a hyperbollc system of partlal dlfferentlal
equations where we can prescrlbe initial data on the
surface xo= constant. And only 1n thlS case that we
lcan expect reasonable solutlons to the . system
ex1st _ o

Assumlng that our systenm satlsfles the ‘weak
fleld condltlon', we then have a well posed Cauchy
problem;

9, COR ¥fj;(x) | . | 5.15  °
where o, L

§,(x) = £,00a7 (-F)

o . . ’ } e
\ . .

with vaniShing'initial'data.'

If we can solve this’ system for g v we then have
proveg,the ex1stence of solutions to- our or1g1nal sys—
tem 5.13. To solve 5 15, con51dered as a matrlx _ |

4 L
equatlon w1th 51xteen components, we flrst dlagonélized

'the pPrincipal part of the“matrlx operator M by multl— :

plylng from the rlght by the operator

2

- C ey “+ L+ 2e « _4d.2
Auv( T) =~y HA[N (;—5 T.FT)T138 "™
2ie -+ a 2ie a4 + .4
Y T [2F .ny -y T F° YY +———-F .yn F .y]n .
3m 2.2 A S 'aayp 5. 3m ‘
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Taklnq the transpose of the resultlng equatlon we

obtaln
- 1 Lg= Ng + w

g and w are spxpgpe -onent'column matrices, N is .

arsiitee% by " .ffsquare matrlx operator . with at

‘most thlrd order in derlvatlves; I is tHe sixteen by

.slxteen unlt matrix. Aalso weqﬁ since'fe'd ’ d: and

A are both multipliers of .

Worklng 1n the Lorentz frame in wnlch only the
’ ™
magnetlc fleld surv1ue, the operator L 1s expre551ble

as R
L= (a2 V) (32 - 72 A
with .
a2.=-1.*.(25% ‘B) "> 0 .
1 S 3m Ce

We shall now sketch the proof for the ex1stence

and unlqueness of solutlons to the Cauchy problem

Lg = Ng + w o

el : >3

5.16 -
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-, ‘with initial values.of g's'prescribed'bj .
.k ' ‘. > L ]
with , .
% ; M - " : . : FI‘-\:?S:‘C“' -
CTf, lim 4, (T,X) = 0 " for all k. . - .
T+—c0 -7 ' '
‘The form;of —ék is not spec1fied since our results |
!
‘ . depend only q‘vthe llmltlng values.
ﬂ\wf’i -7 The proof uses the technlque of F. John (1m
N
for system of hyperbollc equétlons, and is broken "

iy n_,
. .

up 1nto three parts.

We flrst use the method of 'Energy Integrals

: to obtaln a”i-

n | . A :! '.“ " . N P L .
. Lg=(a%2 -3 2 - %Yg = u s
- - (o] Ko} . - . < - )
, ";:‘_‘.A . " ’ C; y - )
- e s N
-. with vanishjing initial conditions at x =0, i.e.
Is9| =0 ..., h=0,1,2, and 3. ey
y The akEriorf estimates arxe giveh in‘the foﬂy{of antf R ;f
> e ) o

1nequa11ty that bounds t&e Lz—norm of the solutlon g

~

“ 1n terms of that for w. }}f‘ L 'L

Do -~

Secondly, from the a Erlorl estlmates for the

'solutlons of the pr1nc1pal part of 5 16, an 1terat1ve &Q;

. : ’ !



v

13 _ . wz‘ .
. by showing that the solution g to the’kystem

- ded from the orlglnary lIght cone for nonvanlshlng

' cone subtended by ‘the support of f

[4
.

- procedure is uSéd‘to obtainﬂthe required solutions for

the whole equations. - The sequence of solutlons ‘used

.1n the 1terat1ve process ¥s shown to converge 1n the

a

prescrlbed norm. Pointwise convergefice is achleved by

.

means .of Sobolev [ lemma. [ £g,

TS

~F1nally, the solutions are proved to be‘unique

\

. . N . .
- £
\ - . B b4

I1Lg = Ng

w1th vanlshlng 1n1t1al data, vanlshes 1dent1cally.

The . detalled’proof IS very 1nvolved and will not f

L

-be'biven here.' in the ex1stence proof the support of
. the solution g,ls determlned to be contalned in the

-forward ray cone with normal n deflned by the equatlon

s '_2_2' >2 ) L- " o &

‘ ' :.‘;

:‘subtended by the support of h. ThlS ray cone\ls exten-

»

>

mangetlc fleld hence the effeot is. acausal

;

j N

“ .,

e We thus“conclude thap for all fe Aﬁ we can ﬁand

-

-1 i
T f T f/ T . f and 74 f 1n A : Furthermore, all of
-

- I
Q.

-1
Athese mapplngs are contlnuous.' The support of 'TY "¢

A -1 :
and T f 1s cohtalned in- the forward and. backward ray

.
LA

AN
(-4

S,

&
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»‘the w and w T

L)

5>-4 Commutation Relations and the Out Vacuum

Since we have-established‘the‘existence of the_’-

-1

' o |
inverse mapping T¥ . and Ta , the fields w and wgut

"can then be related dlrectly to the 1n~f1e%ds as

follows,
o $n, r 1 -
TR S € £,
NS .

out i : L »
Yy (£) =39 (T“A TyvEy) oo e

From the commutatlon relation for .the w (X), which

when smeared 1s of the form,

P,

‘ in‘ v oTin, - _ saa b'\ L ..\r N
,{wu‘(fu)'wv (g,) =16, (£,9,) + lGuv(fu’gv) .

- where B o o L

&

‘.—in - i\h * + | ) U
¥y (fu)'?_lwu (fu)]“ de ™ nul ATy ,n{dx{q“wu]

‘
'

uv A

- e . C B N

a(r}(f ) de.dy fu'(.xm;\fr)(xfy,n\)xg;(_y; k

- we are able to derlve Ehe commutatlon relatlons for

. N .o
4 . ) . L . -
t , - 0 . . L, 18,

R

The follow1ng 1dent1t1es whlch can ea51ly be”

" proved by wrltlng out . the expre551on in full are

“needed for our derlvatlon,

5

—0

N

a3

£



4r r(a) _r a(r)
Cuv (Tya "£509,) = Guv‘f Tox 9y
o
(369, = 62 g, 12 (g 5.17

a a' o r - a ‘
(Tul A.gv) * Gy (fu.Tng) =Gy (fu.gv_) + Gw(fu.gv)

”

" the correspondlng 1dent1t1es in terms of the . inverse
mapping can also be obtalned ea51ly.

We now show thatgthe~in~field and the out fleld

(9)1={,: (£)7 (g)} )
. S I
- We have,
: . 3 { '&»
| | y, L " . - o
out’. N i r 4 Tout i rl —a\ ..’
{¢ ; \f ).w ( v);:;tyiﬁpr ,Ta.f?i¢3_‘ﬂrv .T : )} |
é f—l ta  .-'r" r%i ;aA -r—IJ
= lGuJTD . ,‘f'Tv TT }g)+‘1Guv(?u 'f?f‘?fTv .?
o a 'éflj an~.’ a_lj a ] -ri-a—IQ éi H”a-l a
= lGLJTU ,.?>.f,?v.;.T .?{flﬁnﬂiu ﬁ.T ‘f;TL,f]?j
‘-.;,_'a'willf.: . ,. r'“‘§ o : S .t? % -
': v—v lGHV» (s,fuvl_g\));.""’ "lGju\j(fu' gv) - / i

.

- 'h- in in'b : = ’ja , | .. < <

T {?u (f“)( Qv (QV)J@_ s . o '.%”lp
. - v R K e ‘ ' .

Relations_5.17.have,beenfusedf
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B

Pr=1"

‘cv'We arrived at.

5

s

Thls result 5 18 ‘implies that  the out -field can

be expanded in terms of creatlon and annlhllatlon

operators whlch satlsfy the same commutatlon relatlons
'

as. the in- operatozi. Our task~now is to show that
corresponding to‘

. 1
vacuum state in the Hllbert Space to conclude that the

in and out fields are unltarlly equlvalent s ) The

unltary operator connectlng them is the S- matrlx._

{

Recall that

v
o

! o :

out — ln _ ] »” .

N .h wu (f“) - w }JA rR\) \) . ] . -

We first show that ' :
r‘.‘l 4a . o - o A. . - .
T f =§f + ¢ ) o v N . - 5.19
A ATV B Tu C _}J{ -
. T ¢ |

fwhere support of f(5 is contalned in the support of the

y

Au. 'From 5.11 if we rgsdace £ by fAAA (= 5), we have

5

NG ?S)) =j&'f'A' NN
HA Vv
e e

-~ . . A - ) i .\, : . '

ALY

-i, . . Ll)\ R\) \) T( ‘1 }J “ L ' . J» - ., ',
‘where g s a solutlon of ) h
?“: U e '”va 351 : A - o
g A (=m)=T" f = fucﬁ,lg[fO*GvA](FA)Au'ﬁf‘ | 5.29

TVovp e IFRVERRY
&

corresponding .to zero-initial conditions.

82

e out Operators there exists a unlque o
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<

A particular splption gu of 5.22 i

- . ) a '
- le[f\)*d\)u]
) L
* hence ‘
..A, a o, N
.= —le[f *G +
,g“ _ é[ v’ vu] 9,
whére ° .
. 'o‘ _.4-, " .
guhg( -7 ) 7%0 ,
with initial conditions’ B&
_ PP § r
gLl = 1e[fvf(Gvu + G- )] .
s
Thus, %& ‘
o _ o Xy s o,
Fo= 9y vugna) leqy(reivqu

g
“h ey,
RNt

as assérted. s

'Ehéh‘by—codstrﬁdtién“

and e LT

- .

S

Sppportfof f§,C Support'Sf Au._

-

R - S ’
We pick the test function fﬁsu

'!1;f§¥ffu@¥)q

L) =0y v

Pu

r
-

LA

we have

+

\

N

ch

. : .. 4 N . . L, ] -,_‘ _-.. v , ‘.
S wRE) [0t Ty fdx @p £, 0wk Goat @) [0t oo

&

'\a’_Jw
s



84
We now shoWthat the equation

crL
a

out,. .| _out _
b gD (0> =0

has a éolution that.—;.|0>°ut is in thetin?Hilbert $pace.
Let us expand theﬂstate'|0>Out in terms of the qomplete_.
- set’ of orthonormal State—vectors in the in-Hilbert

space_as follows:

. - o |
1 a_out n,m n,m r ©
o> = ) B "y
n,m
H n.m > NS ‘ > ‘
.where B o= B(pl,rl,..., P eI, : ql,sl;.,.; qm,sm) are

- the expan51on coeff1C1ents. If the porms of B's are-
\ flnlte, the above expan51on 1mplles that the out-vacuum

\"state lles in the 1n—H11bert space.

\ . Settlpg ) )
R . . . AN
e ‘out _ ,
3 Yy “ﬁﬁlgé =0 RY -
ﬁ@é get . %
e e 40y 050%F = fdx B (E +£0) T oF
A TN i TER RS L =~ 2
BEES .. ! ) +.' > .
. + £00) BT (p)} § BRTyRm
, 8! n,m
= “ '~ 5.22 ¢



Equatlng the state with' the same number of partlcles
: we obtaln _' - v i . o o i

5

'v,de 335 Bn+l’m45Vﬁ+l (fu+ fS)ui ar(p')‘}"n*l'm
R Pu '

, ' +-
= fdx BTl £0,8 s (a )w“ 2
v b “ q iu o . )

P )
]

Taklng the inner product 6f the above expre551on with:

, 1tself we get

S oyehtl,m, 2 - 1 n,m-1
'»ﬁlB I n+l,m m(n+l)IB l n,m-1 2.23
‘'where ’ )
o)
In+l m fdx dx! dp dp [(f (x )+f (x* ))upé(x )]

. 85

K E R T )] (et (e >wn+l m, (p)?“*l -

[5.24
( and (\_vl ' L . o o &7 —
| . B . ' O '. “ . s ' ' *._, o . | . . h.:‘v .\ . )
_Kn’m_l-fdx d§ [fv(x ,pqi(x )] [fu(x)uqiu(x)] -
. " + o . :+ ' : s -
- ! ‘e ; ' . .‘
x (b° (q )wn’m l, b> (a )w nms l) 5,25

From 5.23 we can expre§sfﬂBﬂ+m'm{'_in terms -of -|B"°|

2
and s*mllarly ]Bn m+n.

“
s

51nce

w (f +f )w“ ;'0' jdx dp%n(fu+f )u a¥ (p) 1@
. . \‘: pU

- : _ 2 L
“in terms: of ]Bo’m[ + however,

\
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LN

hence .

"N ,0

" Similarly we have

_ 4 ) X@
.
B°'™ - 0 for nﬁ? 1 .

v @& _
Thus the only nonvanlshlng terms in I and K are I

’

and K m'. 051ng the commutatlon relatlons of a's and
l

. ,’,. ~

b's and 1ntegrat1ng out the varlab%gs and 51nce f and

fo are square 1ntegrable, we arriv

2
Tn+1,n+1. 162'
, ' r
and " )
Kajaer @rbley 2 < o
Then from 5.25 we' have
an+l n+ll2 an h’,z l ' le_llz .
N g n+l .62 ~
-and hence - R » B L _ | _ ‘
) ‘ 2 .. 1 ) : > el r: : S
Ianlnl 5. ,.h_!_ ,!BOIOI | i_e_v__ .
or. ‘; Y Y
2 e, /e, f
LIB™ " < oo™ o120
AQ'\
3 .
2



Thus we have shown that\the out-field Frocesses

.‘J

a vacuum state in the 1n—Hribe%t space. However,

this method does not allow us to show the . unlqueness
of the out—vacuum Assumlng the proof of unlqueness

4

of the out—vacuum by Labonte and Caprl (20) for the

-

case of spin 1/2 fleld is valid when' generallzed to

(25

the present situation, we can then conclude that a

LY

unitary S—matr1x»exasts for the Rar1ta-Schw1nger spin

‘3/2 f1eld 1nteract1ng with external electromagnetlc

: when we restrlct ourselves to the weak fleld case. If

the field is strong, we‘are551mply unable to solve the

-\

Cauchy problem and hence thlS technique is not appll-
cable. It may worth 1nvestlgat;ng how to 1nclude the
¢ dlSCUSSGd 1n the beglnnlng ‘of thlS chapter and what

Vare ‘the consequences of this 1nclq51on to the Cauchy
problem. JV,‘ S -
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CHAPTER 6

CONCLUSION AND DISCUSSION .

We hate disoussed at length the quantization of
the Rarita- Schwlpger s spin 3/2 field in the presence
of minimal electromagnetlc interaction. Wlthln the
framework of quantum field theory summarized in

. S v — .
Chap*~r 2, and under the assumption that the diago-
»nalized.Hamiltohian HJ in (2.7) is the same as the
noninteracting'part ofﬂthe total Hamiltonian,/we

t  proceeded via the Takahashi and Umezaya method to
determine the interaction Hamiltonian . (n x/o) from«—
which the tlme evolutlon operator U(o) for the state
'Vectors in the asymptotlc represeatatlon is determlned
It follows from the structure of theory that 'if such

a U(c) ex1sts, and the assumptlor concernlng the H is

valid,_ the relatlon
: . 3 ) ; . :
¢ (x/0) = F($(x)) R 6.1
| | ¢ : - _A: - ‘ A I’L»

e ) : L ”: : T
is invertible. ThlS 1nvert1b111ty 1s presupposed before

we. perform our calculatlon. By formally 1nvert1ng thlS
relatlon and- the requlrement that jj(n x/a) - be a Hermn\

tlan operator ‘(since the total Hamlltonlan, and the free.



Hamiltonian must be Hermitianl, we;used the identity
(4.22) to determine the q#(n,k/o) as wellvas'fixing
the four-divergence term‘é. The complete cancella-
tion of the norm;l dependent terms in\th//s—matrix
formally constructed from the 1nteract10n Hamlltonlan
»whé% we replace the T- product by the T*—product was

™

also demonstrated ThlS cancellatlon called the
“Gen@rallzed Matthew s rule" ispin'fact a consequence
of a con51stent theory,‘and as_ long as we stay 1n the
o

perturbatlon expanSLOn of the varlous quantltles of
1nterest as a power ser1és~of the coupllng consttnt e
(1"e., 1n;¢he weak. fleld case), the antlcommutatlo\
.relatlons for the Helsenberg fields remain positive
| deflnlte._ The commutation relatlons and the Hamlltonlan
derived are'compatihle w1th the. HelsenQ:rg equatlons of
'motlon since it was by demandlng this compatlblllty

that the operator propertles of the flelds were esta—'
',bllshed and the Hamlltonlan was determlned Hence we .

Iy -

- can conclude that in the weak fleld case the charged
.spln 3/2 field can be quantlzed con51stently. ThlS “
conc1u51on is also complemented by the work in Chapter 5
where the. ex1stence of the S—matrlx was proved by the

technlque of mapplng in the test functlon space under

"the weak fleld assumptlon

However,'the equal tlme anti- commutator f¢ (x),”

~
1

¢;(x')}x =x! we determlned c01nc1des wlth_nhat glven¥
O . . ) b

A



[

—

A% i
by  Johnson and'Sudarshan evaluated'up to the fourth
order in the coupllng constant and that we belleve

¥
this agreement w1ll hold to whatever order in e

£

our tedious calculatlon allows us to go. This com-
pels us to admlt that our quantlzatlon procedure
suffers the same inconsistency as pointed out by
‘Johnson and Sudarshan when the electromagnetlc freld
1s strong.- We also note that w1thout the weak fleld
restrlctlon, the mapplng technique simply cannot be:
applled 51nce the Cauchy problem cannot be posed.

» -

Thus we conclude that the. quantlzatlon procedure

" we used (also the work of Klmel and Nath since their

~ 7 A\

results agree with ours even up to{/adrth oxder in e), -

- 90

R3S

cannot con51stently quantlze the Rar1ta-Schw1nger spln,‘,”

-

3/2 fiela mlnlmally coupled to the el ctromagnetlc
field w}en the weak fleld condition is Yot satlsfled
It has been speculated by hlmel and Nath that"
“‘the 1nvert1b111ty assumptlon of relatlon 5.1 may become
invalid renderlng the quantlzatlon procedure 1ncon31s—
tent ‘*We have 1nd1rectly shown that when ‘the f1e d
1s strong 1nvert1b111ty does not hold. Thls ‘means that
our set of asymptotic fields is 1ncomplete and hence'
ddjs not form an 1rreduc1ble operator rlng. Recalllng
that the lnvertlblllty between the Helsenberg operators

and the asymptotlc operators is a ba51c structure of

|



',i:«:‘
'

quantdm fleld theory if the\H in (2.7)is the correct
3 dlagonallzed matrix. operator. " Thus the bas1c assump—

tion that H '1s the same as the nonlnteractlng part

of. the total Hamiltonian may not be ]ustlfled in our

&
Case.,

The noninvert§¥1llty may also be due to the‘
acausal propagatlon characterlstlc of our fundamen—

Y , o .
tal fleld equatlon., It has been- known [21] that t1f v

we do not constralnt the parameters b and c.an ouf

‘:\\ general wave - equatlons (3. 3) as we did 3.4 ), (i.e.

:( propagatlon behav1our., ThlS may ‘also be the case for

a con31stent quantlzatlon. Further 1nvestlgatlon is

neceseaJy to see if 1rreduc1b111ty can be satlsfled by
ancludlng the spin 1/2° flelds 1nto our con51deratlo£



‘ - ST _ APPENDIX / ‘ | \ )
- '\\_. _EXPRESSION FOR [el(xo—-x.é) , du'\) (3) 1A (x-x" ) o

oy

A We deflne e - K ) \ o '

[6(xd—x) r2d,y ()18 (x=x") = Ay Q)8 xmxt e,

e ] - ’ -y ! = .n
[ (x x ') %,q?dUV(BZJA(X X ) naéuv ’
wheres, -+ i ’
E ' » o R l . W -~
T DS A—%vlax—.m).{duv—fyuyvf U ACNSACN PE 5279,,, }
We have;. ' Ly . i
i, = S2r(E +e  aSupt gy,
' Hv 3m UV Cuvic g RN
. \\ . N
and
= a . 2 .
! ?aduv B duv?a+§ﬁrpuv )
,,I,' | . )
where, s
. ) m,. n; s I S E
guv L= —ez—(ZanV.Y‘unYn\, nonyy), )
gpv:o;‘_‘_nqunv+6uonan+nunY§vc
' . o ‘ . ' ' ! L
Ch EY o L ,
.«v,.’f,-_.‘éw n.nyn,
buv S ;uv+cuv:030'cuv opaoap ’ e
| coom® s S__ sy | ' -
;“v ='=§—{36uvny+yunyyv} v -
: ‘1= m.s - s _ 3
;uv;o ,'_»rz{élm(Bn\)‘nyyl\))+(3n1.J yugy)a Y, Y a nuYoYv}
L s S .S xS . .8 '
. . = - 2 o+ ] - L
;uvzopv‘ ‘ Yo(qupv Gpﬁgv)‘suoéx§pv n nynvSOD Lt .
Y C ’ ! o s ‘ .
" We also.have;h ” )
y P . . .

6(x —x )d (B)A(x-—x”‘)\ % szuvé(x-x') .

. . - I
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