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Abstract

This thesis presents a new finite element method based on a Lagrange multiplier/fictitious 

domain approach for direct simulation of three dimensional multiphase flow problems 

involving Navier-Stokes equations coupled with rigid body equations. The basic idea 

of this new approach is to consider a fluid and particle velocity fields that are de­

fined in the entire domain of interest. The particle field is restricted to be equal to 

zero outside the particles (an L 2 field) and the fluid field is defined everywhere in 

the domain, including the particles. The two systems of equations are additionally 

constrained by the assumption that the two fields are equal in the domain occupied 

by the particles. This additional linear constraint is imposed using a global (defined 

in the entire domain) Lagrange multiplier. The physical meaning of this multiplier is 

of the interaction force between the particles and the fluid. Our implementation uses 

unstructured finite elements for the spatial discretization. The time discretization 

is performed using a time-splitting method. This allows for a separate treatment of 

the generalized Stokes problem, the convection terms, and the rigid body (no-slip) 

constraint. A collision detection mechanism prevents particles from penetrating each 

other or the walls. The linear solver used is a preconditioned conjugate gradient. The 

solver has been successfully parallelized and performance has been explored. The code 

was validated by comparing the results for a spherical particle in different physical 

settings to experimental data obtained in our laboratory. For these experiments the 

motion of steel and nylon spheres was recorded using a high speed camera. The im-
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ages obtained were then analyzed and position and velocity information was obtained 

for each case. Results presented include one particle settling under the gravity in a 

fluid initially at rest, wall effects on the terminal velocity and the interaction between 

several spherical particles where kissing, drafting and tumbling occurs. Speedups 

obtained with the parallel code are also shown.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgm ents

I wish to thank my supervisors Dr. K. Nandakumar and Dr. P. Minev, for their 
valuable ideas, advice and encouragement. I am grateful to them for the freedom 
I had to explore different roads and for making my Ph.D. studies a very enjoyable 
experience.
Many thanks to Eldon and Damian for helping me to obtain the experimental data I 
needed to validate my model.
I would also like to acknowledge NSERC, iCore, the Government of the Province of 
Alberta and the Faculty of Graduate Studies and Research for the financial support. 
Finally, I wish to thank my parents Graciela and John for their love, encouragement 
and advice now and throughout my life.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Contents

1 Introduction 1
1.1 Research g o a l ................................................................................................  1
1.2 Technical background...................................................................................  4
1.3 Thesis overv iew ............................................................................................. 6

2 B asis for the m ultiphase algorithm: 3-D N avier-Stokes solver 8
2.1 Time discretization: Operator S p littin g ...................................................  10

2.1.1 Method of C h arac te ris tic s .............................................................  13
2.1.2 Projection method: Pressure-Correction algorithm .....................  15

2.2 Spatial d iscretiza tion ...................................................................................  17
2.3 Navier-Stokes solver v a lid a tio n ................................................................  21

2.3.1 Case 1: Backward facing s t e p ....................................................... 21
2.3.2 Case 2: Lid-driven cavity f lo w ....................................................... 26

2.4 C onclusions...................................................................................................  31

3 A Lagrange m ultip lier/fictitious dom ain form ulation 32
3.1 Governing e q u a t io n s ...................................................................................  32
3.2 Weak formulation in the combined fiuid-particle sp ace ............................  34
3.3 Fictitious domain fo rm u la tio n .....................................................................  36
3.4 Numerical Scheme ......................................................................................  38

3.4.1 Finite Element D isc re tiza tio n ....................................................... 38
3.4.2 Time Discretization .......................................................................  39

3.5 Code v a lid a tio n ............................................................................................  43
3.6 C onclusions...................................................................................................  52

4 A F ictitious dom ain approach using global Lagrange m ultipliers 55
4.1 Starting fo rm u la tio n ...................................................................................  55
4.2 Discretization p ro c e d u re ............................................................................  59
4.3 C onclusions...................................................................................................  63

5 C om putational im plem entation 65
5.1 Collision s t r a te g y .........................................................................................  65
5.2 Element Searching A lg o r ith m ................................................................... 67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.3 Conclusions 70

6 Parallel im plem entation and other com putational considerations 71
6.1 Parallel linear s o l v e r ..................................................................................... 71
6.2 Other computational considerations...........................................................  73
6.3 C onclusions..................................................................................................... 73

7 Experim ental velocity  m easurem ent o f settling spheres 74
7.1 Experimental s e tu p ........................................................................................ 74
7.2 Particle releasing m echan ism s..................................................................... 75
7.3 2D vs. 3D m easurem ents..............................................................................  77
7.4 Conclusion........................................................................................................  77

8 Num erical and experim ental results: single particle m odeling 79
8.1 One particle settling in a vertical channel.................................................  79
8.2 One particle settling at higher Reynolds n u m b e r....................................  85
8.3 One particle in a rotating cylinder..............................................................  94
8.4 Wall effects on the terminal velocity ........................................................ 99
8.5 Collision with w a lls ........................................................................................ 110

9 N um erical and experim ental results: m ultiple particle m odeling 123
9.1 Two sphere settling in horizontal configuration.......................................  123
9.2 Two sphere settling in vertical configura tion ........................................... 135
9.3 Particle-Particle Interactions: Drafting kissing and tu m b lin g .............. 140
9.4 Three spheres in an horizontal arrangement ........................................... 155
9.5 Three spheres in a vertical arrangem ent....................................................  166
9.6 27 spheres settling ........................................................................................ 166
9.7 Performance of the parallel c o d e .................................................................  182

10 C onclusions 184

A ppendix A . N um erical integration 193
A.l Adapted Gaussian q u a d ra tu re ....................................................................  193

A. 1.1 One dimensional Gauss q u a d ra tu re .............................................  193
A. 1.2 Multi-dimensional Gauss q u a d ra tu re ..........................................  193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Tables

7.1 Physical properties of the f lu id s .................................................................  74

8.1 Wall effects: initial position, horizontal distance traveled and terminal
velocity............................................................................................................... 99

9.1 Three spheres settling. Experimental setup and terminal velocity. . . 155
9.2 Number of processors, average time per pass of the conjugate gradient

and speedup ................      183
9.3 Comparison of mesh size (number of nodes) with time spent in CG and

speedups achieved  ...................     183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List o f Figures

2.1 Finite element discretization: Taylor-Hood tetrahedron.................. 19
2.2 Test case: Backward facing step...........................................................  22
2.3 Backward facing step. Re=100, t=0.3 and 0.5 (dimensionless).............  23
2.4 Backward facing step. Re=100, t=1.0 (dimensionless).................  24
2.5 Backward facing step. R e= l, 50 and 100, t=0.1 (dimensionless). . . .  25
2.6 Lid-driven cavity test case..................................................................  27
2.7 Lid-driven cavity test case, a) Domain b) Re=100, t=0.01 (dimension­

less)  28
2.8 Lid-driven cavity test case. Re=100, t=1.5 (dimensionless)........  29
2.9 Lid-driven cavity. Comparison of velocity results (dimensionless) along

the centerline of the cavity for Re=100.............................................. 30

3.1 Solid particles in a fluid domain...........................................................  33
3.2 Computational domain for one sphere in a channel....................................  45
3.3 Computational domain for one sphere.........................................................  46
3.4 Sphere’s position at different times. Re=21.0 Fr=2.24....................  47
3.5 Sphere settling in a channel, streamlines.....................................................  48
3.6 Sphere settling in a channel, relative motion..............................................  49
3.7 Particle’s vertical velocity vs. time (dimensionless).......................... 50
3.8 Streamlines for Re=183.0 Fr=3.75.......................................................  53
3.9 Streamlines for Re=183.0 Fr=3.75. Wake formation........................ 54

5.1 Two particles near collision...................................................................  66

6.1 Conjugate gradient algorithm for solving A x =  b ............................  72

7.1 Experimental setup.................................................................................  76
7.2 Analysis of data captured with a high speed camera.......................  76
7.3 Experimental setup: 3D information retrieval...................................  78

8.1 One particle settling. Experimental vertical velocity vs. time. Re=28.7. 80
8.2 One particle settling. Comparison of experimental and numerical..ver­

tical velocity vs. time (dimensionless). Re=28.7..............................  81
8.3 One particle settling. Experimental vertical velocity vs. time. Re=6.08. 82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8.4 One particle settling. Experimental and numerical vertical velocity vs.
time (dimensionless). Re=6.0.  ................    83

8.5 One particle falling under gravity. Re=41.................................................. . 84
8.6 Particle falling under gravity. Re=50, Fr=1.12. Velocity vs. time

(dimensionless).......................................................................................  86
8.7 One particle settling under gravity. Re=118.0, Fr=0.01. Streamtraces. 88
8.8 One particle settling under gravity. Re=118.0, Fr=0.01. Wake behind

the sphere.  ......................................................................   89
8.9 One particle settling. Re=220.0, Fr=0.01. Uy contour at x=0 (dimen­

sionless)............................................................................................ ....... 90
8.10 One particle settling. Re=220.0, Fr=0.01. Streamtraces.........................  91
8.11 One particle settling. Re=300.0, Fr=0.01. Streamtraces..................  92
8.12 One particle settling. Re=300.0, F!r=0.01. Streamtraces.........................  93
8.13 Sphere in a rotating cylinder: Angular velocity vs. timestep (dimen­

sionless).  ................................................    94
8.14 Sphere in a rotating cylinder, computational domain...............................  95
8.15 Sphere in a rotating cylinder, t=0.1 (dimensionless)................................  96
8.16 Sphere in a rotating cylinder, t=1.2 (dimensionless)................................  97
8.17 Sphere in a rotating cylinder, t=2.4 (dimensionless)...............................   98
8.18 Wall effects: experimental results................................................................. 100
8.19 Wall effects: experimental results. Vertical velocity vs. time................. 101
8.20 Wall effects: experimental results. Vertical velocity vs. time (dimen­

sionless).............................................................................................................  102
8.21 Wall effects: experimental results. Horizontal displacement vs. time. . 103
8.22 Wall effects: experimental results. Horizontal displacement vs. time 

(dimensionless).  .......................................................................  104
8.23 Wall effects: numerical results. Case 1 -Initial distance to the wall=0.1 

(dimensionless). t= ld t  and 150dt   . 106
8.24 Wall effects: numerical results. Case 1- Initial distance to the wall=0.1 

(dimensionless). t=350dt and 550dt.  ......................    107
8.25 Wall effects: numerical results. Case 1- Initial distance to the wall=0.1 

(dimensionless). t=750dt and 950dt.................      108
8.26 Wall effects: numerical results. Case 1 -Initial distance to the wall=0.1 

(dimensionless). t=1150dt and 1550dt   . 109
8.27 Numerical results. Vertical velocity vs. time (dimensionless). Particle 

released at 0.1 (dimensionless) from the wall............................................. 110
8.28 Numerical results. Horizontal displacement vs. time (dimensionless). 

Particle released at 0.1 (dimensionless) from the wall.............................. I l l
8.29 Numerical results. Displacement in Z vs. time (dimensionless). Parti­

cle released 0.1 (dimensionless) from the wall...........................................  112
8.30 Numerical results. Vertical velocity vs. time (dimensionless). Particle 

released 0.3 (dimensionless) from the wall.  ................................  113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8.31 Numerical results. Horizontal displacement vs. time (dimensionless). 
Particle released 0.3 (dimensionless) from the wall................................... 114

8.32 Numerical results. Displacement is Z vs. time (dimensionless). Particle 
released 0.3 (dimensionless) from the wall.................................................. 115

8.33 Wall effects: numerical results. Streamtraces for t=500dt............... 116
8.34 Wall effects: numerical results. Streamtraces for t=1000dt............. 117
8.35 Wall collision: experimental results. t=0.04s, 0.08s, 0.10s, 0.108s,

0.116s and 0.12s..............................................    118
8.36 Wall collision: experimental results. t=0.124s, 0.132s, 0.14s and 0.148s. 119
8.37 Wall collision: experimental results. t=0.156s, 0.164s, 0.20s, 0.24s. . . 120
8.38 Wall collision: Vertical velocity vs. time for a steel bearing........  121
8.39 Wall collision: Vertical velocity vs. time for a nylon sphere........  122

9.1 Two spheres in horizontal configuration. t=0s, 0.08s, 0.12s. . . . . . .  124
9.2 Two spheres in horizontal configuration. t=0.16s, 0.24s, 0.32s........ 125
9.3 Two spheres in horizontal configuration. t=0.40s, 0.48s, 0.56s. . . . .  126
9.4 Two spheres in horizontal configuration. Experimental results: Verti­

cal velocity vs. time    127
9.5 Two spheres in horizontal configuration. Numerical results at t=0.01

(dimensionless).  ..........................................................  128
9.6 Two spheres in horizontal configuration. Numerical results at t=2.0

(dimensionless).........................    129
9.7 Two spheres in horizontal configuration. Numerical results at t=4.0

(dimensionless)......................      130
9.8 Two spheres in horizontal configuration. Numerical results at t=6.0

(dimensionless).........................        131
9.9 Two spheres in horizontal configuration. Numerical results at t=8.0

(dimensionless).  .........................    132
9.10 Two spheres in horizontal configuration. Numerical results at t=11.0 

(dimensionless).........................    133
9.11 Two spheres in horizontal configuration. Experimental and numerical 

results: Vertical velocity vs. time (dimensionless). .  ................  134
9.12 Two spheres in horizontal configuration. Numerical results: Z vs. time 

(dimensionless)...................................     134
9.13 Two spheres in vertical configuration. Numerical results at t=0.01 

(dimensionless).  ......................................     136
9.14 Two spheres in vertical configuration. Numerical results at t=2.0 (di­

mensionless). . . ...................................................  . . . . . . . . . . . .  137
9.15 Two spheres in vertical configuration. Numerical results at t=4.0 (di­

mensionless). . . . . . . . . . . . . . . . . . . . .  .......................... . . 138
9.16 Two spheres in vertical configuration. Numerical results at t=5.7 (di­

mensionless)........................................................     139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



9.17 Two spheres kissing, drafting and tumbling. t=0.584s, 0.664s, 0.744
and 0.824s.  .........................     141

9.18 Two spheres kissing, drafting and tumbling. t=0.904, 0.984s, 1.064s
and 1.224s.         . 142

9.19 Two spheres kissing, drafting and tumbling. 3D - t=0s, 0.04s and 0.08s. 143
9.20 Two spheres kissing, drafting and tumbling. 3D - t=0.12s, 0.16s and

0.2s.................      144
9.21 Two spheres kissing, drafting and tumbling. 3D - t=0.24s, 0.28s and 

0.32s............................   145
9.22 Two spheres kissing, drafting and tumbling. 3D - t=0.36s...........  146
9.23 Two spheres kissing, drafting and tumbling. Experimental results. 

Vertical velocity vs. time (dimensionless)...............................................  . 146
9.24 Two spheres kissing, drafting and tumbling: Numerical results for 

t=0.01 (dimensionless). Re=108........... ......  .............................................. 148
9.25 Two spheres kissing, drafting and tumbling: Numerical results for 

t=0.20 (dimensionless). Re=108........... ............ .........................................  149
9.26 Two spheres kissing, drafting and tumbling: Numerical results for 

t=0.40 (dimensionless). Re=108..................................................................  150
9.27 Two spheres kissing, drafting and tumbling: Numerical results for 

t=0.60 (dimensionless). Re=108..................................................................  151
9.28 Two spheres kissing, drafting and tumbling: Numerical results for 

t=0.80 (dimensionless). Re=108.................    152
9.29 Two spheres kissing, drafting and tumbling: Numerical results for 

t=1.0 (dimensionless). Re=108.    153
9.30 Two spheres kissing, drafting and tumbling: Numerical results for 

t=1.15 (dimensionless). Re=108..................................................................  154
9.31 Three spheres settling. Experimental results for spheres released at the 

same vertical height. t=0.20s, 0.60s, 0.80s and 1.0s.................................  156
9.32 Three spheres settling. Experimental results. Terminal velocity vs. time. 157
9.33 Three spheres settling. Numerical results. t= ld t  (dimensionless). . . 158
9.34 Three spheres settling. Numerical results. t=150dt (dimensionless). . 159
9.35 Three spheres settling. Numerical results. t=350dt (dimensionless). . 160
9.36 Three spheres settling. Numerical results. t=550dt (dimensionless). . 161
9.37 Three spheres settling. Numerical results. t=750dt (dimensionless). . 162
9.38 Three spheres settling. Experimental and numerical results. Terminal 

velocity vs. time (dimensionless)..........................................     163
9.39 Three spheres settling. Numerical results. X displacement vs. time

(dimensionless)................................................................................   164
9.40 Three spheres settling. Numerical results. Z displacement vs. time

(dimensionless)..........................................................................................  165
9.41 Three spheres in a vertical arrangement. Experimental results: posi­

tions for t=0.04s, 0.08s, 0.16s and 0.32s.  ................................   167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



9.42 Three spheres in a vertical arrangement. Experimental results: vertical 
velocity vs. time...................... ................................ ......................................  168

9.43 Three spheres in a vertical arrangement. Numerical results: t= ld t  
(dimensionless)................................ ...............................................................  169

9.44 Three spheres in a vertical arrangement. Numerical results: t=15dt 
(dimensionless)...................................................    170

9.45 Three spheres in a vertical arrangement. Numerical results: t=25dt
(dimensionless)           . 171

9.46 Three spheres in a vertical arrangement. Numerical results: t=35dt
(dimensionless)........................ .......................................................................  172

9.47 Three spheres in a vertical arrangement. Numerical results: t=55dt 
(dimensionless)................................ ................................................................ 173

9.48 Three spheres in a vertical arrangement. Numerical results: t=75dt 
(dimensionless).  ...................................      174

9.49 Three spheres in a vertical arrangement. Numerical results: t=95dt.
Contour at X=0.12 (dimensionless)......................................................... . . 175

9.50 Three spheres in a vertical arrangement. Numerical results: t=95dt
(dimensionless). Side view.         . 176

9.51 Three spheres in a vertical arrangement. Numerical results: t=95dt.
Contour at X=-0.10 (dimensionless)....................................................   177

9.52 Settling of 27 spheres. Computational domain..........................   178
9.53 Settling of 27 spheres. t=1.00 (dimensionless).....................   179
9.54 Settling of 27 spheres. t=3.00 (dimensionless). . . . . . . . . . . . . .  180
9.55 Settling of 27 spheres. t=4.00 (dimensionless).........................................  181
9.56 Time and Speedup vs. number of processors  ..................   182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Nom enclature

(5 Small real number

(3m Correction factor at iteration level m

X Lagrange multiplier

£Vi Angular velocity of the ith solid particle

4> Quadric basis functions

Tj Radius of the ith particle

<j Stress tensor

Uj Velocity of the center of mass of the ith solid particle

A x Spatial step

A t Time step

A x  Minimum inter-nodal spacing among the elements containing Pi

i  Inner product for the weak formulation, body forces term

Material derivative 

T Boundary of domain

7m Descent direction at iteration level m

O Discretized domain space

&i Angular position (spherical coordinates vector) of the tth solid particle 

D[ ] Rate of strain tensor

f  Force acting on a unit volume of material

Fj Force acting on the *th solid particle

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



g Acceleration of gravity

I Identity matrix

I i Inertia tensor of the ith solid particle

L Gradient matrix

M Mass matrix

N Advection matrix

n Outward normal

S Stiffness or Laplacian matrix

T  4 Torque acting on the ith solid particle

u Velocity of the fluid

u* Intermediate velocity

u n Velocity at time level n

Uo Initial velocity

U n Normal component of the velocity

U T Tangential component of the velocity

V Velocity space

w Weighting functions

X Position vector

X, Position (Cartesian vector) of the ith solid particle

z h Functional space for mesh spacing h

c Convective operator

V Diffusion operator

T Identity operator

C Inner product for the weak formulation, gradient te

M Inner product for the weak formulation, mass term

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



J\f Inner product for the weak formulation, convection term

Q Integrating factor

S Inner product for the weak formulation, diffusion term

Cu Courant number

sup Supreme

p Viscosity

V- Divergence

V Nabla - gradient operator

V Kinematic viscosity

n Open bounded region in R d

dn Boundary of

i> Linear basis functions

R d d dimensional Euclidean space

P f Density of the fluid

To Time factor for the current level

T \ Time factor for the previous level

T l Time factor for two levels before

^95 Time it takes the particle to reach 95% of the limit speed

U Convected velocity

V Velocity test function

V Velocity test function
/ V

I Angular velocity test function

d Space step in the discretized domain

Dc Hydraulic diameter

G Unstructured grid

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



H Hilbert space

h Mesh spacing

H 1 Hilbert space of square-Lebesgue-integrable functions

He\ Hilbert space of continuous square-Lebesgue-integrable functions

L2 Space of square-Lebesgue-integrable functions

Hi,i k, I entry of the gradient matrix in the i direction

Mi Mass of the *th particle

M s Mass of the solid particle

Mi,j i, j  entry of the mass matrix

Ng Total number of points in the unstructured mesh

Nx Number of voxels in the x direction

Ny Number of voxels in the y direction

N z Number of voxels in the z direction

N k,i k, I entry of the advection matrix

Np Pressure degrees of freedom

N v Velocity degrees of freedom

P Pressure

P* Intermediate pressure

pn Pressure at time level n

Pm Point in the unstructured mesh

Q Functional space

q Weighting functions

s Time variable

S ij i, j  entry of the stiffness or Laplacian matrix

t Time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ux Velocity in the x direction

uy Velocity in the y direction

uz Velocity in the z direction
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Chapter 1 

Introduction

1.1 Research goal

Particulate flow exists in numerous engineering applications. During the last years 
numerical simulations have gained popularity since they provide a way to increase 
the understanding of multi-phase problems. The motion of particles through a fluid 
under the influence of gravity and the interaction between these particles is of great 
importance in areas such as sedimenting and fluidized suspensions, slurry transport 
and hydraulic fracturing.

In fluidized beds, a liquid or gas is passed upstream so that weight and drag forces 
are balanced. Fluidized beds are designed to enhance heat transport and promote 
chemical reactions. Example applications are drying processes, coal combustion and 
catalyst cracking for the conversion of light crude oils.

Slurry transport is another important application. Solid-liquid mixtures in pipes 
tend to segregate into a high solid concentration region in the center of the pipe 
surrounded by liquid with low concentration of solids near the walls of the pipe 
walls giving rise to lubrication. The problem here is to determine the nature of the 
forces which push particles away from the wall and to examine the different ways in 
which the holdup of the solids may develop [32], Coal slurries in water, and water 
lubricated transport of heavy crude are well known examples of lubricated transport. 
A particular case of slurry transport is the hydro-transport in the bitumen extraction 
process of the oil sands. Oil sand and water are mixed together to make a slurry that 
is transported via pipeline. While the mixture of oil sand and water flows through 
the pipeline, large lumps of oil sand are broken down and bitumen is separated from

1
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1. Introduction 2

the oil sand in the form of tiny droplets, a process called oil sand conditioning. Oil 
sand hydro-transport is a much less expensive way to move the oil sand than the old 
method of using long conveyors. It is also a more flexible process and pipelines do not 
have to run in straight lines or over level ground. The other important benefit is that 
oil sand can be processed at lower temperatures, thus lowering energy consumption 
[65]. There are still some important questions to answer regarding the oil sand hydro­
transport technology. Some of the major challenges include the effects of fine solids 
(clays), temperature, bitumen content (oil sand grade), and average sand grain size 
on the conditioning process and on pipeline friction losses. Effects of transporting 
large rocks on the pipeline pumps and the pipeline itself have yet to be determined 
[65].

Hydraulic fracturing, is a technique that allows oil or natural gas to move more 
freely from the rock pores where they are trapped to a producing well tha t can bring 
the oil or gas to the surface. After a well is drilled into a reservoir rock that contains 
oil, natural gas, and water, every effort is made to maximize the production of oil and 
gas. One way to improve or maximize the flow of fluids to the well is to connect many 
pre-existing fractures and flow pathways in the reservoir rock with a larger fracture. 
This larger, man-made fracture starts at the well and extends out into the reservoir 
rock for as much as several hundred feet. The man-made or hydraulic fracture is 
formed when a fluid is pumped down the well at high pressures for short periods 
of time (hours). The high pressure fluid (usually water with some specialty high 
viscosity fluid additives) exceeds the rock strength and opens a fracture in the rock. 
A propping agent, usually sand carried by the high viscosity additives, is pumped into 
the fractures to keep them from closing when the pumping pressure is released. The 
high viscosity fluid becomes a lower viscosity fluid after a short period of time. Both 
the injected water and the now low viscosity fluids travel back through the man-made 
fracture to the well and up to the surface [66].

This results in high permeability pathways through the reservoir that increase the 
effective permeability of the rock and therefore, improved extraction of the fluids. 
Due to the high cost involved and the desire to improve the economy of hydrocarbon 
production, computer packages are used to design the most efficient hydraulic frac­
tures possible. The idea is to initiate fractures in the most desirable directions and 
extend them only within the pay-zone thereby being as economical as possible [19].

One of the problems of this technique is tha t during pumping sand particles mi­
grate to the center plane leaving a clear fluid layer. This layer lubricates the motion
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1. Introduction 3

of the slurry thus increasing the settling of the sand which accumulates at the bottom 
of the fracture, reducing the well productivity. It can also interfere with the fracture 
growth process by blocking downward extension. Modeling of these processes could 
increase the understanding of the phenomena that take place and this in turn could 
lead to great cost savings.

Numerical modeling and simulation of scientific and engineering problems contin­
uously demand greater computational power than is currently available. Computer 
output has increased in the last years but so have the problem dimensions, accuracy of 
the results and speed requirements. As our problems become more complex, it takes 
increasingly more time to simulate them. This large and complex problems are known 
otherwise as Grand Challenges. Grand Challenge applications address computation­
intensive fundamental problems in science and engineering whose solutions can be 
advanced by applying high performance computing and communications technologies 
and resources [28]. Grand Challenges involve translating a mathematical model of 
physical phenomena into a program that requires the computer to carry out calcu­
lations and finding an accurate solution could demand teraflop (1012 floating point 
operations per second) of computer performance and 100 gigabyte memories [13]. A 
Grand Challenge problem is one that cannot be solved in a reasonable amount of 
time with today’s computer [76]. These Grand Challenges include climate model­
ing, analysis of fuel combustion, ocean modeling, modeling the universe, modeling of 
dynamical systems, chemical dynamics and economic modeling.

One way of increasing the computational speed, a way tha t has been considered 
for many years, is by using multiple processors operating together on a single problem. 
We have nearly reached our limit as to how fast a single processor can run, due to 
physical restrictions of the silicon used in the manufacture of computer chips as well as 
the speed of light. Faster speeds are being obtained using massively parallel machines 
as well as using very fast networks of machines. Many computer simulation problems 
are inherently parallel, especially the Grand Challenge problems. Combining the 
power of several high performance computers offers one path to achieving teraflop 
performance.

Taking into account the importance of particulate flow in industrial problems and 
considering that simulating such problems is an extremely computational intensive 
task we set the goal of this research:
The primary goal of this research is to explore and implement highly efficient par­
allel algorithms to simulate the motion of many solid particles in three dimensional
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1. Introduction 4

Newtonian fluid flows.
Doing so we want to:

• advance the understanding of multiphase flow;

• provide an alternative way to improve equipment design and process diagnosis;

• provide insight on the form of closure models used in volume averaged equations 
and give a basis for testing and tuning some of the existing averaged multiphase 
flow models.

1.2 Technical background

The mathematical description of multiphase flows, like the mathematical description 
of turbulence, is still a significant challenge for the mathematicians and engineers 
working in the numerical simulation area. The models based on the interpenetrat­
ing continua hypothesis suffer of the same closure problems as in the case of the 
Reynolds-averaged turbulence models. Therefore, in the recent years some efforts 
were concentrated on the direct simulation of multiphase flows which would allow, 
again similar to the turbulence case, for a more accurate solution of the closure prob­
lems. This is a very demanding computational task, which required the development 
on new discretization techniques and computer implementations.

Different approaches have been used to simulate multiphase flows. Traditionally, 
problems involving solid-fluid flows were solved using the continuum theory where 
both phases are viewed as a interpenetrating mixture (see Zang et al. [77]). In such 
an approach, volume average equations for the velocity and the particle concentration 
are solved. The interaction of transfer processes between phases is unknown and has 
to be represented by closure models.

Other simulation techniques that provide a better description of the multiphase 
flow are the Lagrangian particle tracking or Lagrangian numerical simulation (LNS) 
and direct numerical simulation (DNS). In the first case both the particle and fluid 
motion are described. The fluid flow is solved solving the Navier-Stokes equations 
in all the domain, including the volumes occupied by the particles. The particles 
are moved solving rigid body equations. The forces and torques th a t account for 
the interaction between solid and fluid are not computed from the calculated fluid 
field but described by empirical correlation and do not account for particle-particle 
interaction or particle-boundary interactions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1. Introduction 5

In DNS the hydrodynamic forces and torques are solved without approximation 
and computed directly from the fluid field. In these methods the fluid flow is governed 
by the continuity and momentum equations whereas the particles are governed by 
the equation of motion for a rigid body. Flow field around each individual particle is 
resolved; the hydrodynamic force between the particle and the fluid is obtained from 
the solution and is not modeled by any drag law.

Direct simulation of the motion of solid particles in fluids was started by Hu et 
al. [39] who simulated the motion of circular particles in sedimenting and shear flows 
at particle Reynolds numbers in the hundreds. Unverdi and Tryggvason introduced a 
front tracking/finite difference method for computing the unsteady motion of drops 
and bubbles [74]. In their work, the drop surface is tracked by separate computational 
points tha t are moved on a fixed grid by interpolating their velocity from the grid. 
These points form a front that is used to keep the density and viscosity stratification 
and to calculate surface tension forces. Their method has not been applied to solid- 
liquid flows.

Joseph et al. [26] used direct simulations for initial value problems of two- 
dimensional motion of circular and elliptical particles in sedimenting, Couette and 
Poiseuille flows of a Newtonian fluid at particle Reynolds numbers in the hundreds. 
Recently Hu et al. [40] conducted DNS of fluid-solid systems using an Arbitrary- 
Lagrangian-Eulerian (ALE) technique tha t uses a moving mesh scheme to handle the 
time-dependent fluid domain. A new mesh is generated when the old one becomes 
too distorted and the flow field is projected onto the new mesh.

Numerical simulations for flows of incompressible fluids containing rigid bodies 
can be carried out using a body fitted mesh, tha t needs to be updated at each time 
step to account for the body’s movements. Tryggvason and collaborator [73] studied 
extensively this approach. Other examples of such techniques are the ones presented 
by Hu [41] and Johnson and Tezduyar [45]. Moving grids, remeshing and doing 
projections is a time consuming procedure and the remeshing algorithm can be very 
complex.

Another approach is to use a set of fixed Eulerian grids (a grid that would describe 
the solid particles and another that would represent the fluid field) of simpler shapes 
and provide a mechanism for them to interact. This approach is called embedding or 
fictitious domain method. Fictitious domain methods were discussed by Buzbee et al. 
[10] , Astrakhatsev [5], and Peskin [61] and developed further by Glowinski et al. [34], 
[32]. To apply the fictitious domain approach to the problem of particulate flow, the
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fluid flow is computed as if the space occupied by the particles was filled with fluid. 
The rigid body constraints are imposed through a no-slip boundary condition on the 
particle’s boundaries. In the approach developed by Glowinski, Lagrange multipliers 
are associated with the boundary conditions on the particle’s boundaries. This allows 
a fixed grid to be used, eliminating the need for remeshing, a definite advantage in 
parallel implementations. Pan et al. [60] studied the fluidization of a large number of 
spheres. Peskin [61] and LeVeque [50] used non Lagrange multiplier based fictitious 
domain.

1.3 Thesis overview

In the current study we present a new Lagrange multiplier/fictitious domain based 
technique to carry out the direct numerical simulation of incompressible viscous flow 
described by Navier-Stokes equations coupled with rigid body constraints. In our 
view, a fictitious domain approach is an effective method to solve for these complex 
and computational intense problems. Therefore, in a preliminary study we used the 
fictitious domain approach of [33] to develop a formally second order (in space and 
time) finite element scheme [23]. In this study, our numerical solver used unstruc­
tured finite elements for the space discretization and operator splitting for the time 
discretization. The Lagrange multipliers were defined locally to enforce the rigid body 
constraints. Then we modified it, in an attem pt to make it more efficient and as a 
result we devised a new scheme, still based on the fictitious domain idea. The nu­
merical experiments showed an excellent performance of this scheme. Its key novelty 
is that it approximates both, the fluid velocity field and the Lagrange multiplier for 
imposition of the rigid body motion on the same fixed Eulerian grid. This allowed us 
to avoid the gridding of the rigid particles. Using a properly weighted H 1 norm and 
the fact tha t the Lagrange multipliers are expanded over the same basis as the two 
velocity fields we were able to reduce the work for computing the fluid/rigid particles 
velocities and enhance its stability (this was verified only experimentally).

The rest of this thesis is organized as follows: Chapter 2 presents the mathematical 
formulation of the equations that govern the fluid motion and introduces a Navier- 
Stokes solver as the basis for the actual algorithm. Spatial and time discretization 
techniques are discussed in detail. Chapter 3 presents the fictitious domain/Lagrange 
multiplier method and shows the results obtained carrying on simulations using this 
technique. Chapter 4 describes the new algorithm, defining the inner products to
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be used to enforce the rigid body constraints and describing the space and time 
numerical approximation used. Chapter 5 discusses some implementation details 
such as the particle-particle collision strategy implemented and the search algorithm 
used to efficiently locate a given point in an unstructured grid. Chapter 6 describes 
the parallelization of the code, in particular the linear solver and mentions some other 
implementation details. Chapter 7 describes the experimental setup and discusses the 
problems we had to overcome to obtain the terminal velocity measurements for the 
settling of solid spheres. Chapter 8 presents the experimental and numerical results 
for simulations involving a single particle. Chapter 9 presents the experimental and 
numerical results for simulations involving multiple particles. At the end of this 
chapter the parallel linear solver performance is analyzed. Finally, conclusions are 
presented in Chapter 10.
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Chapter 2 

Basis for the m ultiphase algorithm: 
3-D Navier-Stokes solver

When modeling multiphase flow problems a non-linear system of equations has to 
be solved. These equations include those that describe the behavior of the fluid 
and those tha t describe the behavior of the solid particles. The solid particle and 
fluid equations are coupled through hydrodynamics forces and torques. To correctly 
describe the multiphase problem, the global system has to be additionally constrained 
in order to account for this coupling and to enforce the rigid body constraints.

The equations tha t describe the fluid behavior are the Navier-Stokes equations. 
As a first approach to build a multiphase simulation algorithm the Navier-Stokes 
equations were discretized and a code developed to solve three-dimensional incom­
pressible flow problems. This solver and the numerical techniques developed for it 
are described below.

Let H e  R d be and open bounded domain with boundary T (sufficiently smooth). 
The equations that describe the unsteady flow of a fluid are:

M o m en tu m  eq u a tio n

PFJ^: = PFg + v  • <7 in Q(t) (2.1)

M ass C o n serv a tio n  E q u a tio n
The continuity equation can be written as:

^  +  p(V • u) =  0 in Ct(t) (2.2)
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2. Basis for the multiphase algorithm: 3-D Navier-Stokes solver 9

And for an incompressible fluid equation (2.2) can be simplified to:

V • u  =  0 in n(t) (2.3)

where u  is the velocity vector, pp is the density of the fluid, ^  is the material 
derivative ^  ^  +  (u • V )u and cr is the stress tensor.

For a Newtonian fluid the stress tensor takes the form of: cr = —p i  +  2pD  [u],
where p is the pressure of the fluid, I  is the identity matrix, p  is the fluid viscosity
and D[u] is the rate of strain tensor ( D[u] =  l/2 [V u  +  V uT]). Equations (2.1) and 
(2.3) are solved subject to the initial condition:

u(X , t) — u 0 in Q, (2.4)

and the boundary conditions

u(X , t) =  g(X., t) on T (2.5)

Finding a numerical solution for the above equations (momentum and mass con­
servation) is not trivial due to the non-linear characteristic of the system, the incom­
pressibility condition (equation (2.3)) and the coupling of terms [2]. For incompress­
ible fluids the mass conservation equation reduces to the incompressibility constraint 
requiring that the velocity be divergence free instantaneously in the entire computa­
tional domain. This can be achieved by adjusting the pressure. The mathematical 
importance of the pressure in an incompressible flow lies in the theory of the saddle- 
point problems where it acts as a Lagrange multiplier that constrains the velocity to 
remain divergence free [27], [30].

There are many ways to solve the Navier-Stokes equations. Solving the equations 
directly in coupled form leads to a very large system and since the pressure variable 
does not appear in the continuity equation, the matrix associated with such a system 
contains zeros in the main diagonal. To overcome this problem partial pivoting is 
required, but this would destroy the banded structure of the discrete system. Solv­
ing the system directly would require considerable computational time and power. 
Therefore, it would be desirable to find a solution by a method tha t could decouple 
the treatm ent of the velocity and the pressure. Using discrete spaces is a common 
and flexible approach, but the divergence issue must be dealt with directly. Two well 
known methods that use such an approach axe the penalty function method [18] and 
the projection method [21],
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2. Basis for the multiphase algorithm: 3-D Navier-Stokes solver 10

In the first method the continuity equation is modified to:

ep +  V • u  =  0 (2.6)

where e is a small number (perturbation parameter). The pressure can then be elim­
inated from the momentum equation and this equation can be decoupled from the 
continuity one. This introduces finite compressibility and solutions should be checked 
in the limit of e— > 0. A disadvantage of this method is that the perturbation param­
eter must be chosen carefully, small enough for the approximation to be accurate. The 
resulting system for the penalty methods yields an ill-conditioned matrix. Normally 
the penalty method is used for steady Navier-Stokes problems since for the unsteady 
problems the contribution of the unsteady inertia forces makes the system matrix ill- 
conditioned [71]. Another way to solve the unsteady Navier-Stokes equations is using 
a projection method [36], [37]. In this kind of method the velocity and pressure are 
decoupled by taking the divergence of the momentum equation. Thus, two equations 
are obtained: a Poisson equation for the pressure and a general convection-diffusion 
equation. The pressure equation can be solved using a preconditioning technique and 
the convection-diffusion equation can be solved using operator splitting. A projection 
method was used in the developing of the Navier-Stokes solver for the current study. 
The following sections present this method in further detail.

2.1 Tim e discretization: Operator Splitting

Standard Galerkin approximations of convection-diffusion problems are often unsta­
ble due to the fact tha t the resulting system is no longer diagonally dominant. For 
spectral methods the eigenvalues of the diffusion systems are real and strictly negative 
and grow with 0 ( N 4), if N  —*• oo (N  being the order of approximation) [12], whereas 
for the low order finite elements and finite differences methods the eigenvalues of the 
diffusion operator globally grow with the number of collocation points like 0 ( N 2). On 
the other hand, the eigenvalues of the convective system are complex and grow with 
0 ( N 2) [55]. Therefore, the diffusion (or stiff) part requires an integration algorithm 
that is stable in the negative real axis. Since implicit algorithms generally have a sig­
nificantly larger stability region than comparable explicit methods, a (semi) implicit 
method would be an obvious choice since it would be able to provide solutions tha t are 
accurate at slow scales and stable at the fast scales. Also, the diffusion m atrix does 
not depend on time so a suitable iterative solver can be applied at each time step. An
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implicit time integration method requires tha t an algebraic system of equations be 
solve for each time step. In the case of Navier-Stokes equations an implicit method 
would require a significant fraction of the total computational time be devoted to 
solving the convective part (since the system is non-linear and the velocity depends 
on time, the convective matrix would have to be re-calculated at each time step). To 
achieve reasonable performance of the numerical scheme an explicit method has to 
be used. Explicit methods are generally simpler to implement and provide solutions 
of high-order accuracy at all scales. However, their stabilities requirements force the 
maximum integration step to be of the order of the fastest (smallest) time scale. For 
a stiff problem the ratio between the fastest scale and the scale at which the process 
evolves may be very large. For the case of the Navier-Stokes equations the eigen­
values of the convection part grow with 0 ( N 2) so the restriction on the time step is 
not too severe. The eigenvalues for the diffusion part are proportional to the inverse 
of the Reynolds number. Therefore, if an explicit time integration was to be used 
the restriction on the time step would become unreasonable. For the reasons given 
above, it would be desirable to separate the problem into a diffusion and a convective 
subproblem and use different methods to solve for each part. An operator splitting 
technique [51] would allow us to use any combination of time integration schemes for 
the different operators of the Navier-Stokes equations. In the current study we apply 
an operator splitting technique as presented in [54] and [55]. In this way, we solve 
the Stokes and continuity equation separately from the convective terms, using an 
adequate time integration scheme for each operators.

Any advection-diffusion equation can be written as:

dO
—  = v e  + ce + f  (2.7)

where V  and C are operators involving different time levels: V  = (V • pV) is the 
diffusion operator and C =  — (u • V) is the convection operator. Following the work 
of Maday et al. [51] equation (2.7) can be written in terms of an integration factor C:

| (  a P w )  =  a f ''’( » « + f) (2 .8)

with t* an arbitrary fixed time. The integration factor Q^*'^ is defined by the initial 
value problem:

=  -Q f .* )C (2.9)
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= X  (2.10)

where X  is the identity operator.
In our case, C represents a second order Lagrange explicit scheme which is used to 

solve the convective part of the equation, V  corresponds to a second order backward 
scheme used to solve the diffusion part.

The splitting scheme is summarized as follows:
Step 1: Solve the convection problem 

The convection problem is stated as an initial value problem:

r * a = c ( » ) w , o < s < i A i ,
\0(O) =  0B+1-*

It follows that:

(2 .11)

=  9(iAt) (2.12)

Equation (2.11) can be solved with a suitable explicit scheme, such as a Runge- 
K utta method [53] or the method of the characteristics, using a time step A s tha t does 
not need to be equal to that used for solving the diffusion part of the Navier-Stokes 
equation. In the present study we compute the convection part of the Navier-Stokes 
equation using the method of characteristics as described in [54].

Step 2: Solve the diffusion problem 
Equation (2.8) is integrated using a time integration method tha t is stable in the 
negative real axis. The chosen integration method is a backward differences scheme. 
Taking t* = tn+1 and applying a second order backward differences scheme with time 
step A t =  tn+1 — tn to equation (2.8) we obtain the following semi-discrete system:

3nn+ l _  9 o ‘"+1.‘>  i l n ‘n+1r l M - l
r -^ ° + ^ C —  =  m n+1 +  r +1 (2.13)

To integrate equation (2.8) the terms Q£ + ’* + %̂6n+1~l(i =  1,2) have to be evalu-
t+n+1 +n+l—i\

ated. The explicit construction of Qc ' is avoided by solving the initial value
problem described in Step 1. This second order scheme is applied to the Stokes
problem and solved using a pressure-correction method.

The details of the method of characteristics and the pressure correction method 
are presented in the next two sections.
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2.1.1 M ethod  o f C haracteristics

There are mainly two basic ways to implement a characteristics method to solve the 
Navier-Stokes equations in the context of finite elements methods. One approach is 
to solve the diffusion and convection parts of the equation together forming a unified 
Galerkin formulation [62] [14]. This approach has good conservation properties but 
requires integrations of the basis functions based on the Lagrangian mesh within 
the Eulerian grid using numerical quadrature that may reduce the stability of the 
algorithm. The second approach is to treat the convection part separately from 
the other parts of the Navier-Stokes equations. The simplest and computationally 
cheapest way to integrate the convective terms is to integrate them directly point-wise 
along the characteristic lines, avoiding in this way the Galerkin formulation for them 
[54], This second approach is the one developed in the current study.

In both cases interpolation of the Eulerian mesh onto the nodal points associated 
with the Lagrangian elements is required. In the case of unstructured grids this could 
be a complex and time consuming task. The speed of the element searching algorithm 
would highly depend on the goodness of the initial guess, and this in turn will depend 
on the time step used in the algorithm.

The advection part of Navier-Stokes equations can be written as:

■ V)u"-‘(S),0 < » <  (i +  1)A t , i  =  0, 
u”- ‘(0) =  u ' 1

where k = 0 for a first order scheme and 1 for a second order one.

The characteristic method can be applied to equation (2.14) and summarized as 
follows:

1.1) Perform a second order accurate extrapolation of the velocity field.

u n+1 =  2un -  u n_1 (2.15)

1.2) For each point in the Eulerian mesh solve the boundary problem described 
by equation (2.16) and determine the foot of the characteristic.

! S S i l  =  u ( x ;+ 1(<),«) in

x;+l(t”+1) = X
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This can be achieved using a first order Euler explicit scheme as described by 
equation (2.17).

X ”+1(tn_i) =  X£+1(fn+1) -  iA tu n+1 i =  0,1 (2.17)

Here u (X "+1(t),f) is the velocity field obeying Navier-Stokes equations, x  is an arbi­
trary point within the solution where the characteristic terminates at time level t n+1, 
X ”+1 is the characteristic curve ending at point x.

Note: Boukir et al. [8] showed that although this scheme is only first order in 
time, the overall algorithm is second order accurate.

1.3) Determine the elements containing the feet of the characteristics within the 
Eulerian finite element grid X ”+1(fn-1).

1.4) Interpolate the velocity at the feet of the characteristic using the finite element 
interpolant based on the Eulerian grid a t time t n~ \  i = 0,1. This yields the convected 
velocity field u n -i.

u n~’(x) =  u ^ l X ^ ^ r ' ) ) ,  i = 0,1 (2.18)

In this algorithm it is assumed that the characteristics never cross the domain 
boundary T. Difficulty could arise in case of inflow boundaries. To handle this prob­
lem substepping could be performed to guarantee that the characteristics originating 
at the nodes in the vicinity of the inflow boundary remain within the computational 
domain il, but this could lead to a severe time step restriction. In the present al­
gorithm, the characteristics can cross the boundary. If tha t is the case, the inflow 
velocity profile is prescribed at the feet of the characteristic. This is equivalent of 
imposing that

Shjl — 0
£ _ n (2-19) 
dn ~ u

where u n and u T are the normal and tangential components of the velocity u  at the 
inflow and n is the local outward normal to the boundary. At outflow boundaries no 
conditions are required in the Lagrangian substep since they are imposed during the 
solution of the generalized Stokes problem in the form of

u T — 0 (2.20)
p =  0

In the case of moving boundaries with a high curvature mesh (such as a cylinder ro­
tating, presented in a later chapter), the feet of the characteristic are found according
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to the problem’s geometry and the velocity is calculated according to the prescribed 
velocity.

2.1.2 P rojection  m ethod: Pressure-C orrection algorithm

Projection methods are splitting techniques that approximate the Navier-Stokes equa­
tions with an advection-diffusion system for the momentum balance and an elliptic 
Poisson equation for the pressure. Projection methods were first proposed by Chorin 
[16] and Temam [70].

There are basically two approaches to projections methods: velocity correction and 
pressure correction methods. In both cases the incompressibility constraint (pressure) 
and the diffusion are treated in different substeps ([24], [49], [46]). In the first case, 
the divergence free constraint is imposed on the intermediate velocity not on the 
velocity time at the new time level.

In the second case, using an initial approximation of the pressure, the momentum 
equations are solved to obtain an intermediate velocity (’’prediction”). The pressure 
Poisson equation is then solved for a pressure correction which is used to correct 
the intermediate velocity field and enforce incompressibility. When Chorin [16] first 
introduced the pressure-correction method the intermediate velocity was calculated 
neglecting the pressure terms from the Navier-Stokes equations. Subtracting that 
intermediate velocity from the original momentum equation, taking the divergence 
on the results and neglecting the diffusion terms, he obtained a Poisson equation 
for the pressure tha t was used to correct the intermediate velocity. The procedure 
derived by Chorin was first order accurate in time for the velocity. Chorin’s method 
was then improved by van Kan [75] by calculating the intermediate velocity using the 
pressure at the previous time level. Using a Crank-Nicolson time integration scheme 
his method was second order in time for the velocity.

As described by Gresho et al. [36] projection method approximations generally 
proceed as follows:
Given a divergence free velocity field that satisfies the boundary and initial conditions 
perform the following steps:

1. Guess (approximate in some way) the concomitant pressure gradient both at 
t  =  0 and for t > 0.

2. Solve the momentum equations alone up to the projection time t — T. This time 
could be either set a priori or defined as the time at which an appropriate norm of
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the divergence of the resulting intermediate velocity reaches some predetermined 
maximum allowable value.

3. Correct the velocity performing the projection of the intermediate velocity onto 
the appropriate subspace of divergence free vector fields. This completes one 
projection cycle. Reset time and go to Step 1.

The system that results from equation (2.13) after applying the method of char­
acteristics to obtain the convected velocity u  is:

3 „ n + l  _  T )n n+1 —  L_vin-1  _  Y7««+l
2At uxx — Afu 2At ("2 21j
V • u n+1 =  0 V ' ’

Defining: r 0 =  T\ =  — r 2 =  ^  we can rewrite equation (2.21) as:

r 0u n+1 -  V u n+1 = - n u n -  rau "-1 -  Vpn+1
V • u"+1 = 0  ( ‘ }

To calculate the velocity u n+1 the pressure-correction method proceeds as follows:

1. Predict the velocity
Using the pressure at the previous time level the approximated velocity (u*) is 
calculated as:

r0u* -  Vu* = -V p n -  r iu n -  r 2u n_1
u* =  0 on T  ̂ ’

2. Compute the pressure correction
The difference between the actual velocity u n+1and the approximated one u*is 
given by:

r0(un+1 -  u*) -  (V u n+1 -  Vu*) = - V ( p n+1 -  pn) (2.24)

Defining p* =  (pn+1 —pn), taking the divergence of both sides of equation (2.24) 
and neglecting the diffusion terms:

r0V • (un+1 -  u*) =  - V V  (2.25)

Imposing that the velocity should be divergence free V • u n+1 =  0, we obtain 
the following Poisson equation for the pressure correction:

V 2p* =  tqV  ■ u* (2.26)
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2. Basis for the multiphase algorithm: 3-D Navier-Stokes solver 17

3. Correct pressure and velocity 
Correct the velocity according to:

un+1 =  u* -  - V p * (2.27)

Correct the pressure.
pn+i _  p* _)_ (2.28)

2.2 Spatial discretization

Navier-Stokes equations can be spatially discretized using a Galerkin finite element 
approach. This is a specific application of the method of weighted residuals, that 
employs approximating functions for a truncated series expansion of the solution 
of the partial differential equations. The finite element method utilizes an integral 
formulation to generate a system of algebraic equations. It uses continuous piecewise 
smooth functions for approximating the unknown quantity or quantities.

In the finite element discretization, the domain, , is broken up into a set of 
conformal elements (conformal since all elements connect to neighboring elements 
through common vertices). The equations are multiplied by a test function and then 
integrated over the whole domain. This formulation is said to be ’’weak” .

A weak form of the Navier-Stokes equations (2.1) and (2.3), can be derived by 
introducing weighting functions w and q in the momentum and continuity equations 
(w e  L2(Q) and q € L 2(Q)). The pressure can be determined up to a constant which 
can be fixed by the choice of q € Q.

Choosing the weighting functions to be in H 1 (w E H ^fl)) equation (2.30) can be 
integrated by parts and using the tensor identity (cr : Vw) =  V • (er • w) — w • (V • cr)

(2.29)

The weak formulation is

In PF%t •w d n  = In Pf Z •w d n  + fn (V  ‘ ° 0 ' wdfi
(2.30)

we obtain:

fsilPFW  : (Vw)]dSJ =  / n P F g-w dfi + / r(o--n)-wdr
(2.31)
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2. Basis for the multiphase algorithm: 3-D Navier-Stokes solver 18

where n  is the unit normal. Substituting the stress tensor for the constitutive equation 
for Newtonian fluids the weak formulations reads:

fn(PF%t ‘ w  + A*D (U] : D[w] -  pV • w )<Kl =  f Q pFg • wdtt  +  /r(<r • n) • wdT

L ( V  • u )qdtt = 0
(2.32)

where D  is rate of strain tensor as defined before. Defining the space of trial functions

V  =  {v |v  € H 1^ ) ,  v =  g0 on T0} (2.33)

and the space of weighting functions as:

W  =  {w|w G Hj(f l ) ,w  =  0 on T0} (2.34)

the weak formulation reads:
Find v G V  and p G Q such that:

M { y ,  w) +A/"(v, v, w) +  (S(v, w) +  £ (w ,p) = £(w) 

C(v, q) = 0 V<? G Q
(2.35)

where:
r Q\

M (v ,w ) =  / pF— -wdQ  (2.36)
Jn &t

A ^u, v, w ) =  j pF[(u • V)v] • wdQ (2.37)
Jn

S ( \ ,  w) =  j pD[v] : D[w]dfi (2.38)
Jn

£(v , q) = -  /  (V • v)qdQ (2.39)
Jn

£(w) =  /  (f • w )qd£l +  / ( gi • w)qdr  (2.40)
Jn J  r

A necessary condition for convergence with the integrated and penalty function 
methods is that the solution space satisfies the Ladyzhenskaya - Babuska - Brezzi 
(LBB) or divergence - stability condition ([6], [9]):

There exists j3 > 0, independent of the mesh spacing, h, such that

- L ( V - v h)qdft
SUP  if  n n I ^  I3 (2-41)o^v/jev IIv/JIv IMIq
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2. Basis for the multiphase algorithm: 3-D Navier-Stokes solver 19

for the chosen family of solution spaces, Z h = {V, Q}. This condition ensures that 
the discrete divergence free vector field approaches a continuous divergence free field 
in the limit as h —> 0. Z is the weakly divergence free vector space defined as the set 
of subspaces satisfying — / n (V • v)qdQ, = 0. In practice the LBB condition implies 
that the pressure approximation must be taken one or two orders lower than the 
velocity approximations. If divergence-stability is satisfied and a unique solution 
exists (conditions are not turbulent), then convergence is assured. As an end result 
of the LBB condition there is a limit on the acceptable sets of V , Q since not any 
combination will satisfy equation (2.41). An admissible element is the second order 
Taylor-Hood tetrahedron, which is used in our discretization.

Pressure nodes:

Velocity nodes:

Figure 2.1: Finite element discretization: Taylor-Hood tetrahedron.

Using an appropriate discretization space, the weak form of the Navier-Stokes 
equations given in equation (2.35) can be rewritten as an algebraic system of equa­
tions:

' M v ft +  N(v/j)v/j +  ± S v h +  LTph = f 
< (2.42)
k Lvft =  0

Using the Galerkin formulation, the velocities and pressures are expanded over a 
finite basis:

Nv

Vh = Y y Kj<t>i (2.43)
i=i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. Basis for the multiphase algorithm: 3-D Navier-Stokes solver 20

(2.44)
i=1

Where, fa  and fa are the velocity and pressure finite element basis functions for 
node i, fa  e  1 (Q), fa\T — 0 and fa  is linearly independent of fa, ip e  L 2{Pl). N v 
and Np are the velocity and pressure degrees of freedom. For the element shown in 
Figure 2.1 the velocity is approximated using 10 nodes and quadratic basis function 
and the pressure is approximated using 4 nodes (vertices) using linear basis functions.

Introducing the finite dimensional spaces Vh ^  consisting of all linear combinations 

of f a ^  and Qh,ip consisting of all linear combinations of f a f l x the discrete formula­
tion similar to (2.35) is:

Find V/,, e  Y h ^  and ph € Qh,ip such that:

Substituting for v^, ph, fa  and fa in equations (2.36)-(2.40) and dropping the 
subscript h we can rewrite the Navier-Stokes equations in semi-discrete form and 
obtain the following system of differential-algebraic equations:

The matrices M  (mass matrix), N  (advection matrix), S (stiffness or Laplacian 
matrix) and L (gradient matrix) are given by:

{

M { y h,fa )  + Fffan, Vh, fa) +T>(vh, fa) + C(fa,pn) =£(fa),  * =  1 , - , N v

£ ( v h,fa )  =  0, j  =  1,... ,NP
(2.45)

M v +  N (v)v  +  ^ S v  +  LTp =  f
(2.46)

Lv =  0

(2.47)

(2.48)
n

<t>k<t>iVfadtt (2.49)

(2.50)
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2. Basis for the multiphase algorithm: 3-D Navier-Stokes solver 21

where Re is the Reynolds number and f  is a vector that includes the boundary 
conditions. The mass and stiffness matrix are symmetric and positive definite. The 
transpose of the gradient matrix is the negative of the divergence matrix.
The initial conditions are given by:

v(0) =  v 0 with the constraint that [L]v0 =  0 (2-51)

2.3 Navier-Stokes solver validation

A finite element 3-D Navier-Stokes solver was implemented using the discretization 
scheme described in the previous sections. The spatial discretization was done using 
P 2 — P i finite elements. An operator splitting technique was used for the time dis­
cretization. W ithin this method, the convection part of the Navier-Stokes equations 
was solved using the method of Characteristics. The generalized Stokes problem was 
solved using a pressure-correction scheme. The code was validated using some bench­
mark test cases. Two of them are presented here: backward facing step flow and 
lid-driven cavity.

2.3.1 C ase 1: Backward facing step

The flow in a channel over a backward facing step is used as a benchmark to evaluate 
the accuracy of numerical schemes. Figure 2.2 shows a sketch of this case problem. 
The channel is defined to have a height of H , a width of OAH and a length of 15H. 
The upstream inlet area is half of the outlet (0.5H  x OAH). One of the main features 
of the backward facing step flow is a recirculation region just downstream of the step. 
At the enlargement, the flow velocity is suddenly reduced and as a consequence the 
pressure is increased. The governing equations for a two dimensional stationary flow 
are:

Continuity equation
d(pFux) , d{pFUy) A
“ “ a £ ~  +  ~  ( ]

Momentum equation

9(pfu2x) d(pFuxuy) dp (d2ux d2ux ,n r ^
- ~ d T ~ +  By ' “  " S i +  M t e ~  + W '  ( ’
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2. Basis for the multiphase algorithm: 3-D Navier-Stokes solver 22

8 ^ ^  +  £ ( ^  =  _ 3 p  +  A  A )  (2.54)
ox ay oy ox2 oy2

Just downstream of the sudden enlargement a recirculation area is formed. The length 
of this recirculation region is a function of the geometry (enlargement ratio) and the 
Reynolds number (fluid momentum and regime: laminar or turbulent). In the current 
simulation we want to compare our predictions with numerical and experimental 
results available in the literature.

Y

J.
15 H

Inlet

Outlet

- 0.230 0.230 0.2 u

x z
Figure 2.2: Test case: Backward facing step.

The mesh for the simulation was incrementally refined until there was no variation 
in the solution with further mesh refinement. Here we show the solution obtained 
using a mesh with 22525 nodes and 11800 elements. The channel’s geometry is shown 
in Figure 2.2. Its dimensions are: 2 x 0.8 x 30 (height x width x length). Boundary
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0  > - I
u
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-0.13

STP=1000
-1

0 <

u
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Figure 2.4: Backward facing step. Re=100, t=1.0 (dimensionless).
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Figure 2.5: Backward facing step. R e=l, 50 and 100, t=0.1 (dimensionless).
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conditions were prescribed at all the walls: no-slip condition for the top and bottom 
walls (2415 nodes) and symmetry condition for the side walls (9954 nodes). The inlet 
flows through the upper half portion of the front wall (55 nodes) with a prescribed 
parabolic horizontal component given by:

u x(y) =  6.0y(1.0 — y) for 0.0 <  y  < 1.0 (2.55)

This profile produces a maximum inflow velocity of u max =  1.5 and an average velocity 
of âverage =  1- The outflow boundary condition (105 nodes) is of a constant stress 
normal to the boundary. The normal stress condition can be written as:

—p  +  2p—— =  constant (2.56)
CJJu

In this case the constant was set to zero. This is equivalent to setting the pressure to 
zero since the second term of equation (2.56) is negligible at the end of the channel. 
Initially the fluid is at rest and a parabolic profile is prescribed at the inlet. The 
Reynolds number for this simulation was defined as:

Re =  (2.57)

where uaVerage is the mean inlet velocity, D c is the hydraulic diameter of the inlet 
(height of the backward step) and v  is the kinematic viscosity of the fluid. Figures 
2.3-2.5 show the streamtraces obtained for different Reynolds numbers. Our numerical 
results were compared to those of Kim et al. [48], Armaly et al. [4] and Ethier et 
al. [54]. The results matched the ones of Ethier et al. [54] very well (less than 1.5% 
difference). As pointed out by Armaly et al. [4] for smaller Re (less than 400) the 
flow shows only a primary region of separated flow attached to the backward facing 
step. The length of this separated flow region increase non-linearly with the Reynolds 
number. For the case of Re=100, the recirculation length was compared to tha t of 
previous studies. In our case the dimensionless length of the recirculation zone was 
of 3.25 compared to 3.29 obtained by Ethier et al. in their numerical simulations, 3.2 
obtained by Kim et al. in their 2-D simulation and 3.2 measured by Armaly et al. in 
their experimental work.

2.3.2 Case 2: Lid-driven cavity  flow

The one-sided lid-driven cavity flow is also a benchmark test in numerical simulations. 
This flow problem contains discontinuous boundary conditions in the corner regions
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where the moving lid meets the stationary walls. Figure 2.6 shows the system being 
considered. In our case the domain is a cube of unit height, length and width. The 
conditions for the velocity are no-slip at the walls and constant velocity for the lid.

X

0.5

-0.5
0.5

0.5-0.5

Figure 2.6: Lid-driven cavity test case.

The mesh used for this simulation had 60921 nodes and 40000 elements. The 
time step was set to 0.0001 and the Re=100. The total duration of the run was 
2000 time steps. No-slip boundary condition is set for five of the walls. A constant 
velocity is prescribed for the lid (top wall) with uz = 1. Figures 2.7 and 2.8 show the 
simulation domain and the streamtraces as the flow evolves with time. The results 
of these simulation are compared to that of Ethier et al. [54] and Iwatsu el al. [43]. 
Figure 2.9 shows the dimensionless velocity in the z direction along the centerline of 
the cubic cavity (y — 0, z = 0, —0.5 <  2 <  0.5). The results from our Navier-Stokes 
equations solver (NSE solver) are compared to the results presented by these authors. 
The difference of our numerical experiments and [54] was less than 1% and about 2% 
with respect to [43].
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Figure 2.7: Lid-driven cavity test case, a) Domain b) Re=100, t=0.01 (dimensionless).
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Figure 2.8: Lid-driven cavity test case. Re=100, t —1.5 (dimensionless).
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Figure 2.9: Lid-driven cavity. Comparison of velocity results (dimensionless) along 
the centerline of the cavity for Re=100.
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2.4 Conclusions

In this chapter the numerical methods used to solve the Navier-Stokes equations for 
incompressible unsteady flow were presented. Galerkin finite elements were used for 
spatial discretization. A operator splitting technique was used for time discretization. 
This allowed the Stokes and continuity equations to be solved separately from the 
convective terms, using an adequate time integration scheme for each operator. The 
convection problem was solved using the method of characteristics. The generalized 
Stokes problem was discretized using a projection method, in particular a pressure 
correction algorithm second order accurate in time. This pressure-correction method 
allowed us to decouple the pressure and the velocity. The algorithm was implemented 
into a code and this was validated using some available data from the literature. Two 
benchmark cases were presented: lid-driven cavity and backward facing step. Results 
from our simulations were in good agreement with the experimental data.
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Chapter 3

A Lagrange m ultip lier/fictitious  
domain formulation

3.1 Governing equations

For a system of an incompressible Newtonian fluid and rigid solid particles, le t’s 
consider a domain denoted by with boundary T with n  solid particles denoted 
as Pi with boundary dCL (see Figure 3.1). The region occupied by the particles is

p(t)  =  u jL ,a(*).
The equations that govern the fluid m otion can then be written as:

Momentum equation

=  Pf S  +  V • a  in Q\P{t) (3.1)

Mass Conservation Equation
The continuity equation for an incompressible fluid is:

V • u =  0 in Q\P(t)  (3.2)

where u is the velocity of the fluid, pp is the density of the fluid, ^  is the material 
derivative and a  is the stress tensor. The boundary and initial conditions are:

u =  u r(t) on T (3.3)

u =  Uj +  u)i x r, on dtti(t) i = 1 ...n (3.4)

u |t=o =  u 0 in Q \P (0) (3.5)

32
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3. A Lagrange m ultiplier/fictitious domain formulation 33

Figure 3.1: Solid particles in a fluid domain.

where U* is the «th particle’s velocity, u \  is its angular velocity, and Ti is its radius.
The corresponding rig id  b o d y  equations are:

Newton’s second law:
M i^  = M ig + Fi (3.6)

Euler’s rotation equation:
_ dcoi

+u>i y. =  Tj (3-7)

Particle’s position and orientation:

dXi,
dt

ddj
dt

U,

=  Wi

(3.8)

(3.9)

where I,, Uj, uh are the moment of inertia, translational velocity and angular velocity 
of the «th particle, F* and T,: are the hydrodynamic force and torque about the center 
of mass on the «th particle and g is the acceleration of gravity.
The hydrodynamic force and torque can also be expressed as:

F,;
=  “ /  *J ddi

n  dS (3.10)
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3. A Lagrange m ultiplier/fictitious domain formulation 34

T i = -  [  Tj x (<r • n )dS  (3.11)
J dQi

with n the unit normal vector pointing out of the particle.
The boundary and initial conditions can be stated as:

U»|t=o =  U j)0 (3.12)

=  Wi) 0 (3.13)

X j|t=o -  x ii0 (3.14)

@i 11=0 =  ^i,0 (3.15)

3.2 W eak formulation in the combined fluid-particle 
space

Following Glowinski ([34], [32], [31]) a weak form of the governing equations can 
be derived. The hydrodynamic forces and torques that appear on the rigid body 
equation can be eliminated by combining the fluid and particle equations of motion 
and defining a combined velocity space. For simplicity, the following formulation is 
presented for one solid particle. Its extension to take into account many solid particles 
is straightforward.

We introduce the functional space of test functions and define the test functions 
for the fluid and the particle, and impose tha t on the particle’s boundary, the fluid 
and particle velocity should have the same value.

Y( t )  =  {(v, v,Q|v e ^ ( f l W . V e  R3, ( e R 3,
_ ~ _ (3.16)
v =  V  +  £ x r o n  dQ(t), and v  =  u  r (t) on T}

Multiplying the fluid momentum equation by the test functions and integrating 
over the fluid domain we obtain:

[  p F - j ^ - v d f l +  f  pFg ■ vdil — f  (V -(r)-vdQ ,  (3-17)
Ja\p(t) Jn\p(t) Jn\p(t)

Using the tensor identity [3]:

r  : D[v] =  V • (r • v) — (V • r) • v  (3.18)

and integrating, the right hand side of equation (3.17) by parts we obtain:

/  ( V - < r ) - v d f i =  f _V  • (er • v) — f ___ <r : D[v]df2 (3.19)
Jn\p(t) Jn\p(t) Jn\p(t)
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For a volume V, with a closed surface S and a  any vector field defined on V and on 
S, Green’s theorem states that if S is piece-wise smooth with outward normal n  and 
a  continuously differentiable then:

/ / / — / /  a  • nd S  (3.20)
v  s

Applying Green’s theorem (divergence Theorem) to equation (3.19) we get:

f  (V • <t) • \d Q  = f  (cr ■ v) • ndS  — f  cr : D[v]dfl (3.21)
Ja\p(t) Jan Jn\p(t)

Substituting equation (3.21) in equation (3.17):

[ _pF-j^;-vdQ + (  pFg -vd fl  = f  (<t• v ) • ndS — [  cr : D[v]df2 (3.22)
Jn\p(t) U t  Jn\p(t) Jan Jn\p(t)

Multiplying the particle’s motion equation by the test functions:

-  g) • V  =  -  f  a - n - V d S  (3.23)
dt  Ja q

du> ^  f  ^
h~nr ' (  +  (w x  Isw) • £ =  -  /  r  x (<r • n) • £dS (3.24)

dt Jan
XV XV

But on the sphere’s boundary dfl, v  =  V  +  £ x r. Substituting v  in the right side 
of equation (3.22) we obtain:

/ ___ (V-cr)-vdfl =  f  (cr-'V)-ndS+ [  <r-(£xr)-ndS -  [  cr : D[v]dU (3.25)
Jn\p(t) JdQ Jan Jsi\p(t)

Using the identity a  • (b x c) =  b  • (c x a) we can rewrite (3.25) as:

[ ___ (V-cr) -v d t i=  f  (cr-V)-ndS+ [  £-(rx<7 -n)oi£- /  <r : D[v]dfi (3.26)
Jn\p{t) Jan Jan Jn\p(t)

Adding equations (3.22),(3.23) and (3.24) and using equation (3.26) we obtain the 
combined equation of motion:

f  ' vdtt  + f  pFg • vdU +  Ms{^  -  g) • V +
Jn\p(t) m  Jn\p(t) dt

'^ +  (w x  Iaw) • £ -  -  f  cr : D[v]dft
at  Jn\p(t)
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Requiring tha t the pressure p  lie in the Ll(Q \P (t))  space, the weak form of the 
incompressibility constraint is:

Lg(fi\P(i)) = {qe L2(n\P(t)) | /   qdSl = 0} (3.27)
JQ\P(t)

f  qV ■ udQ = 0 for all q € L2(0 \P (t))  (3.28)

The weak formulation is completed with the equations corresponding to the particle’s 
position, equations (3.8) and (3.9), together with the boundary and initial conditions, 
equations (3.3), (3.4),(3.5) and (3.15).

3.3 F ictitious dom ain formulation

To obtain a fictitious domain formulation the problem has to be restated with equa­
tions tha t are valid not only in Cl\P(t) but in the entire domain. This will allow 
us to use a fixed mesh for the flow calculations simplifying greatly the computation 
cost. In such scenario the rigid bodies can be thought as if they were filled with 
the surrounding fluid that behaves as a rigid body. Lagrange multipliers will enforce 
the fluid-solid interaction (hydrodynamic forces and torques) forcing the solution to 
satisfy the no-slip condition on the particle’s boundary.

In order to extend the weak formulation to the entire domain the rigid body 
constraint is enforced throughout the entire solid particle [32]:

u =  U +  u; x r in P(t) 
v =  V  +  £ x r i n  P(t)

(3.29)

This implies:
D u  d U  d w  , . . .
■* =  * - + d t - x r + “ x ( t t , x r ) m P ( t )  (3-30)

and
[  pa^ - v < K l  = M a g - V  (3.31)

Jp(t) at
Taking the inner product of equation (3.30) with psv, integrating over the particle
P(t), using the boundary condition on the particle and subtracting equation (3.31)
from this, we obtain:

J  P s ( ^  -  g) • v d n  = M s(^  -  g) • V  +  ( 1 ^  +  w x Iw) ■ f  (3.32)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3. A Lagrange m ultiplier/fictitious domain formulation 37

The combined weak equation of motion can be now extended to the entire domain 
using equation (3.29). The extended combined variational space is then:

V(t) = { (V , V ,0 |v  e  # w ,  v  g R3,£ g R3, 
v =  V  +  £ x r i n  P(t), and v  =  0 on T}

(3.33)

Multiplying (3.32) by Pf /Ps, adding it to (3.27) and noting that D[v] =  0 in P(t) we 
obtain the combined weak equation of motion for the entire domain:

pF \ / .  f  ,dJJ  , . d w  .
- ) ( M , ( — - g ) - V +  ( ! , - + u , x I su > K )

(t : D[v]eft2, V( v ,V, ( ) G
(3.34)

= - /Jn

The rigid body constraint (enforced through the definition of the combined veloc­
ity space) can be relaxed by enforcing it in a weak sense as a side constraint using 
Lagrange multipliers (see [32]). The problem can be restated as:

For t > 0 find u  G W with W =  {v G TT1(fl)3|v}, p G Lq(Q) with L|j(f2) =  {q G 
L2(Q) | qdil =  0}, U  G R 3, w G R 3, A G A with A =  H l {P(t))2 satisfying:

[  P f{7 7 - — g) • vdfl — f  pV • vgK7 +  f  2pD[u] : D[v]dfl 
Jn Jn Jn

-  ( A ,v - ( V  + f x r ) ) PW 
V v G W, V  G R 3 and ( g R 3

f (l qV ■ udQ =  0 Vq G T2(0)

(a, u  -  (U +  u  x r)) P(t) =  0 V « G  Aft)  

With initial conditions:

(3.35)

V • u 0 =  0 in f l \P ( 0) 

u 0 =  U 0 +  u;0 x r in P(0)
(3.36)

Here {-,)p(t) is an appropriate inner product. For the current algorithm this was 
chosen to be the standard inner product on H l (P(t))3. In Chapter 4 the choice of 
the inner product is discussed in more detail.
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In the above formulation, the Lagrange multipliers can be seen as additional body 
force per unit volume that accounts for the fluid-particle interaction and enforces the 
rigidity inside the particle.

3.4 Num erical Scheme

3.4.1 F in ite  E lem ent D iscretization

Equations (3.35) and (3.36) are spatially discretized using a Galerkin finite element 
approach as described in Chapter 2. Given a discretized velocity and pressure domain, 
D, and a space step in that discretized domain, d, we can define the finite dimensional 
space approximating W, and L2(Q):

where:
P\=  polynomial in three variables of degree 1.
P%= polynomial in three variables of degree 2.

Using the above finite spaces we can approximate the weak extended formulation 
of the problem as:
For t > 0 find u fit)  E Wd, pd(t) G Ld, U(f) e  R 3, u>(t) E R 3 and A E A (t) such

w d  =  {Vd I Vd g  (C°(fi))3, Vd e  P2, WD E Dd} 

Wod =  {vd I Vd E Wd, Vd =  0 on r}
(3.37)

(3.38)

and
L 2d = {qd | qd G C°(n),qd E Pu VL> € Dd} (3.39)

that:

j  -  g) • v ddfl -  I  PdV • Vddfi +  I 2/rD[ud] : D[vd]d^

g ) - V  +  ( I , - + « x I , W) - 0

=  (Ad,Vd- (V +  f  x r))P(t),d

' V v d E W d, V  E R 3 and £ E R 3 (3.40)

f n qdV  ■ u ddQ — 0 Vq d E L%(t2)

(atd, u d — (U +  u> x  r ))pd(t) — 0 V a d E Ah(t)
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W ith initial conditions:

Uh |t=0=  Uo,d in Q 
< fa qdV  ■ u O'ddfl =  0 V qd G L \  (3.41)
k (otd, Uo,d -  (Uo + Wo X r))pd(0) =  0\fad in Ad(0)

For this finite element approximation we can express the fluid velocity and the 
pressure at any give mesh node as a linear combination of some shape functions. 
Using P2 — Pi finite elements and <j> and ^  the basis functions for the velocity and 
pressure respectively we can express the velocity and pressure as:

Nv N p
ui = E J=i U ijfy  and p =J2j=i Pi'^j
N„ are the velocity degrees of freedom and Np are the pressure degrees of freedom and 
are determined by the type of finite element chosen for the particular discretization.

Dropping the d subscript (that denoted the discrete variables) and expanding the 
material derivative for the fluid velocity the system of equations given in (3.40) can 
be rewritten in dimensionless semi-discrete form as:

T. IT d l X  _ T T  T  f  (-1 { p a  P F ) / n r  / d \ J  . — d b }  .M p—- +  N pu +  LFp +  — SpU H---------------{Ms{— — g) • V  +  Is-t t )
dt Re Pf dt dt (3.42)

=  (A, v  -  (V +  f  x r))np(t)

Lpu =  0 (3.43)

Where the matrices M p, N p, Sp and Lp are given by:
M f,j  = M  • , S p tj  = j v ^  • V0(d n ,

n n
N p v

F f u  = E  u»/0n0,v*dn, VFk) = - M g f d n
m=1 n u

3.4.2 T im e D iscretization

Time discretization is performed using a time-splitting method as described in Chap­
ter 2. This approach allows the generalized Stokes and continuity equations to be 
treated separately from the convective terms, and these equations can be decoupled 
from the constraint of the rigid body motion.

Similarly to equation (2.7) the spatially discretized system can be splitted over 
time according to:

d0
-  + Fx{e) +  F2(0) + F3{6) = f (3.44)

where F i,F 2,^3 are the three discrete spatial operators involved in the unified equation 
of motion.
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The splitting scheme is summarized as follows:
Step 1: C onvection

Calculate the convected velocity using the method of characteristics [54]. The sub­
problem to be solved can be stated as:

mn~*(s) = - ( u B- ‘(s) • V )un -i(s), 0 <  8 < (i + 1)At, i =  0,1
(3.45)

u n_*(0) =  u 

where u  is the convected velocity.
To solve for the convected velocity a second order accurate extrapolation of the ve­
locity field is performed. For each point in the Eulerian mesh the boundary problem 
described by equation (2.16) is solved and the foot of the characteristic is determined. 
Using the elements containing the feet of the characteristics within the Eulerian finite 
element grid the velocity field at time tn~l is calculated and the convected velocity field 
u n~l is computed. This second order scheme used to solve the convection subproblem 
is described in full detail in Section 2.1.1.

Step2: G eneralized Stokes 
Solve the generalized Stokes problem using the following second order scheme:

3un+3 -  4un +  u n—1
2A t

= -V p n+s +  V2u n+5 (3.46)

Defining: To =  T\ =  r 2 =  3̂  and using matrix notation we can rewrite the 
fully discretized Stokes problem as :

(r0M f  +  ^ - S F)un+i  =  LTFpn+k* -  TlM Fu n -  r2M Fu n- 1 (3.47)
He

The generalized Stokes problem is solved using the projection method (pressure- 
correction method). An intermediate velocity is first calculated using a pressure at 
the previous step. Following, a pressure correction is computed and used to correct 
both the velocity and the pressure at the new time level. The pressure-correction 
method is described in detail in Section 2.1.2.

Step3: R ig id  b o d y  co n s tra in ts  
Impose the rigid body constraints finding u, U, uj, X  and A.

5. IjCom pute the particle’s velocity and center of mass using a second order pre­
diction procedure:

3Un+I — 4Un +  U n_1 g
2At ~  gFr  ̂ ^
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X n+t -  X n_1
=  U n+i  (3.49)

A t

=  0 (3.50)
3wn+I -  4u>n +  wn-1

2At
3.2) Find un+1, U n+1, a>n+1, X n+1 and An+1satisfying:

r0MF(un+1 -  un+i) + ^ -S Fun+1 + r0( 1 -  ^ i ) ( ^ ( U n+1 -  U n+§) • V
Re pf ps

+ —-=r-(rolso;n+1 -  +  u>"+1 x l su>n+1) • f)  =  <An+1, v  -  (V +  f  x r))pn+§
pL^c

(3.51)

(a, un+1 -  (U n+1 +  w"+1 x rn+I ) ) p n + 2 =  0 V a  E A(f) (3.52)

3.5) Compute the particle’s center of mass using a correction procedure:

X n+ 1 _  X n (X jn+l +  U n+ I )

A t 2
(3.53)

Here the equations are nondimensionalized by introducing the Reynolds number of 
the particle, Re =  , the Froude number Fr =  ^  ,with Dc, Uc, the characteristic
length and velocity of the particle, v  the kinematic viscosity and g is the magnitude 
of the acceleration of gravity.

Step 3.2) is solved using a conjugate gradient algorithm presented by Glowinski 
et al. [32]. Equation (3.52) is actually divided into three equations and solved as 
follows: Step 0: Initialization  
Assume A0 E  A. Find u°, U°, u>° according to:

(t0M f  +  ——SF)u° =  (A0,v)p +  f  V v e W  (3.54)rte

where f  is the contribution from the velocity at previous time levels.

( l _ £ £ ) ( ^ ( roU 0 +  r iU B +  r 2U B- i ) - V  =  -<A0,V)/> V V e R 3 (3.55)
ps P f

(1 _  ^ ) I l ( Toa;o +  TiU;n +  T2UJn-i) _ ^ o ^ x v f e R 3 (3.56)
P s p F

Find Ai G A satisfying:

(a, Ai)P =  (a, u° -  (U° + u ° x r ) ) p  V a  G A (3.57)
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Set A2 =  Ai- For m  iteration steps assuming um, U m, u>m, Am, A™ and A™ are
known compute um+1, U m+1, u)m+1, Am+1, A™+1 and A™+1 finding the corrections:
um U m, u>m, Am, A7 and A2m

Step 1: D escent

(t0M f  +  ^ -S F)um =  (A™, v )P V v G W (3.58)
Re

(1 _  — )(— r0U m • V ) =  -{A™, V )p V V e R 3 (3.59)
Ps P f

(1 ~ — )(— r0d;m -f) =  - < A ^ f x r ) p  V ? g R 3 (3.60)
ps P f

Find A7 G A satisfying:

(a, a7 )p  =  (a, um -  (U™ +  d;m x r))PV a  G A (3.61)

Correct unknowns:
_  ( K , x ? ) p  ( 3 6 2 )

P™ /xm xm\
\ 2 > Ai ;p

Am+1 =  Am _  q  gg)

u m+l =  u m _  (3^

U m+1 =  U m -  /?mU m (3.65)

wm+i =  u>m -  /3mwm (3.66)

A™+1 =  A r - / ? mA™ (3.67)

Step 2: N ew  descent direction /  convergence test
If

( X T +\ K +1) p  ,  ,\  1   ̂ j .  / r  v  / f j  n A \

/xo ----- <  e (3-68)
(A i ,  A i ) p

the iteration has converged and the final values for the unknown variables are those 
at level m +  1. If convergence has not been achieved calculate:

/xm-t-1 xm-)-l\
7rn =  ( * )p  (3.69)

\ A i . A i ) p

A? +1 =  A r 1 + 7 m ^ *  (3.70)

Set m  = m  +  1 and go to Step 1.
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3.5 Code validation

Analytical solutions for flow around and transfer from rigid and fluid spheres are 
effectively limited to Reynolds numbers smaller than 1. In the absence of analytic 
results, information is obtained from experimental observations, numerical solutions 
and boundary-layer approximations [17]. Clift el al. [17] studied the development of 
the flow field with the Reynolds number for a fluid flowing past a rigid sphere. They 
classified the flow into six different regions:

1. U nseparated flow (1 < R e < 20) In this region the flow is axisymmetric and 
perfectly laminar.

2. O nset o f th e separation (R e =  20) Flow separation occurs. The exact 
Reynolds number where the separation occurs has been questioned and debated 
by many authors (see [68], [58], [52], [46], [22],[72]). Many numerical solutions as 
well as the drag determination indicate a change in the flow regime at Reynolds 
=  20 [17].

3. Steady wake region (20 < R e < 130) In this region the separation moves 
forward so tha t the attached recirculation wake widens and lengthens. Taneda 
[68] showed the development of the wake for flow past a rigid sphere.

4. Onset o f th e wake instability (130 < R e < 400) As the Reynolds number 
increases diffusion and convection of vorticity no longer keep pace with vorticity 
generation. The Reynolds at which vorticity shedding begins is called the ’’lower 
critical Reynolds number” . At Reynolds of 130 a weak long period oscillation 
appears in the tip of the wake. For Reynolds up to 200 the flow is steady and 
axisymmetric ([44], [72]). Natarajan and Acrivos [59] studied the stability of 
this axisymmetric flow. They reported a bifurcation at Re=210 and suggested 
this corresponded to the transition from steady axisymmetric to the steady 
non-axisymmetric double-thread wake. At about Re =  270 the large vortices 
associated with pulsation of the fluid circulating in the wake, periodically form 
and move downstream. Vortex shedding appears to result from flow instabilities 
originating in the free surface layer and moving downstream to affect the posi­
tion of the wake tip [63]. A number of researchers including Achenbach [1], Kim 
and Durbin [47] and Sakamoto and Haniu [64] have presented measurements of 
the frequencies present in the unsteady wake.
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5. H igh sub-critical R eynolds number (400 < R e < 3.5 105) As Reynolds 
increases beyond about 400 vortices are shed as a regular succession of loops 
from alternate sides of a plane while processes slowly about the axis. Shed 
loops progressively lose their character and may combine to form vortex balls. 
By Re =  1300 the wake shows three dimensional rotation. Separation occurs 
at a point that rotates around the sphere at the shedding frequency. The wake 
may appear as a pair of vortex filaments [17].

6. Critical transition and supercritical flow ( Re > 3.5 105) Beyond this 
Reynolds number changes in the flow pattern occur. The separation point 
moves and the fluctuation in the position become more marked. The detached 
free surface layer becomes turbulent soon after separation [17].

The code was tested with various flows involving a sedimenting single particle. The 
cases were set for Reynolds numbers smaller tha t 400. Our results were compared to 
those presented by Mordant et al. [57] from their experimental work. In all cases the 
difference between the numerical results and the experimental value was not larger 
than 17% (depending on the mesh resolution).

The first result tha t we show here is for the case of a sphere of radius =  0.5 settling 
in a rectangular channel. The channel’s width is 4 times the diameter of the sphere. 
The dimensions of the channel are (4 x 4 x 12). The fluid’s mesh has 179401 nodes 
and 120000 elements. The sphere’s mesh has 76 nodes and 226 elements. Figures 3.2 
and 3.3 show the discretized domain.

The Reynolds number is set to 21.0 and the Froude number is 2.24. The timestep 
is 0.001. The sphere settles under gravity in a fluid at rest. The boundary conditions 
for the channel are zero velocity for the nodes on the walls. The ratio of densities 
between the sphere and the fluid is set to 2.56.

Figure 3.4 to 3.6 show the result of this simulation. Figure 3.4 shows the sphere’s 
position at different timesteps. The flow pattern is shown in Figures 3.5 and 3.6. In 
the first case the streamlines corresponding to the absolute motion velocity field are 
plotted. In the second case the velocity field is relative to the sphere.

Figure 3.7 shows the sphere’s sedimentation velocity with time. The particle 
accelerates imm ediately after it is released but eventually reaches an approximately 

constant sedimentation velocity when gravity balances buoyancy and the drag force. 
In this figure the velocity obtained with the simulation is compared to the curve 
proposed by Mordant et al. [57]. These authors performed experimental studies of
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Figure 3.2: Computational domain for one sphere in a channel.
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t =

100 d

1 dt

Y

0

2  2

Figure 3.4: Sphere’s position at different times. Re=21.0 Fr=2.24.
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Figure 3.5: Sphere settling in a channel, streamlines.
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Figure 3.6: Sphere settling in a channel, relative motion.
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Figure 3.7: Particle’s vertical velocity vs. time (dimensionless).
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the motion of a solid sphere settling under gravity in a fluid at rest. All their curves 
collapsed onto a single exponential shape given by:

^Terminal

where vexp is the vertical velocity of the particle, Vrerminai is the terminal velocity, t 
is the time, and r95 is the time it takes the particle to reach 95% of the limit speed.

The shape of our simulation curve matches the one produced using the equation 
presented by these authors. The value of the simulation terminal velocity is higher 
(about 15%) than the experimental one. This discrepancy could be attributed to 
the fact tha t our particle is a linear approximation to a sphere since we use linear 
(flat) elements to enforce the boundary conditions. This limitation could be overcome 
using an algorithm with a second order approximation for the Lagrange multipliers 
and isoparametric elements so tha t spherical particles can be exactly discretized.

For a solid sphere moving in a viscous fluid with a constant velocity at moderate 
Reynolds number a recirculation area or wake can be observed. This wake is formed 
due to a positive pressure gradient and can be understood by examining the nature 
of fluids. All fluids naturally flow from regions of high pressure to low pressure (in 
the direction of a negative pressure gradient). When the flow approaches the point 
where it must turn  to go around the maximum cross-section of the sphere a positive 
pressure gradient forms due to the increase in space around the sphere (this positive 
pressure gradient is commonly called an adverse pressure gradient). The positive 
pressure gradient causes the fluid to reverse direction and form a wake. Taneda 
[68] presented photographs of fluid around a moving sphere for Reynolds number 
between 9.15 and 133. The flow pattern was visualized using aluminum dust. In 
his experimental work Taneda analyzed the relation between the size of the vortex 
ring behind the sphere and the Reynolds number. He established tha t for Reynolds 
number lower than 22 the flow around the sphere is perfectly laminar and there is 
no wake formed. When Reynolds number is about 25 a small permanent vortex 
ring is formed in the neighborhood of the rear stagnation point. As the Reynolds 
number increases this wake grows and becomes more elongated in the flow direction. 
Taneda’s experimental work shows tha t the vortex-ring is nearly proportional to the 
logarithm of the Reynolds number. He also determined the center of the vortex-ring 
for Reynolds numbers larger than 50. The flow behind the vortex-ring was found to 
be perfectly laminar until a Reynolds number of about 200 was reached. The front- 
part of the vortex-ring was attached to the sphere up to a Reynolds number of 300

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3. A Lagrange m ultiplier/fictitious domain formulation 52

or so [68]. Nakamura [58] studied the characteristics of the steady wake behind a 
sphere. His work suggested the possibility of the existence of a closed recirculation 
eddy behind a sphere even at Reynolds number as low as 10. His experimental work 
also showed that the eddy could preserve up to the case of Reynolds of 190 (based on 
the diameter of the sphere). He also presented a new profile for the variation of the 
wake separation angles against the steady state Reynolds number. In our simulations 
no wake was produced for Reynolds numbers smaller than 20.

Figures 3.8 and 3.9 show the streamlines for the case of a sphere settling with a 
higher Reynolds number (Re=183.0 and Fr=3.75). At this Reynolds number a pair 
of vortices can be clearly seen behind the sphere.

These results agree to the results shown by Taneda ([68],[69]).

3.6 Conclusions

The goal of this study is to develop an efficient parallel algorithm for computing the 
dynamics of a large number of solid particles in a liquid flow.

As a first approach an algorithm that applies a fictitious domain/ distributed 
Lagrange multipliers method to solve for the incompressible Navier-Stokes combined 
with rigid solid particles equations was developed. The code was tested by comparing 
the results for a sedimenting sphere in different physical settings to some available 
experimental and numerical results. The present algorithm was implemented for the 
case of a single solid particle. The code can be extended to take into account many 
particles but a suitable collision detection mechanism would have to be developed.
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X

Figure 3.8: Streamlines for Re=183.0 Fr=3.75.
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Figure 3.9: Streamlines for Re=183.0 Fr=3.75. Wake formation.
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Chapter 4

A F ictitious domain approach 
using global Lagrange m ultipliers

The Glowinski’s distributed Lagrange multipliers approach [33] requires the use of an 
unstructured grid over each particle, and subsequently solving at each iteration level 
the linear system for each of the particles. This is quite inconvenient algorithmically 
and can be computationally inefficient, particularly in the case of many particles. 
Therefore, we suggested the following global Lagrange multiplier approach.

4.1 Starting formulation

We consider a bounded domain Cli with an external boundary T filled with a New­
tonian liquid with density px and viscosity /q . W ithin this liquid we consider n  rigid 
particles occupying a domain — U”=1fi2,t an(i having densities p2,i, i  =  1, . . .  ,n. 
Let us also denote the interface between fli and fl2 by E. The equations of motion 
of the fluid in fh  are the Navier-Stokes equations (presented here in a dimensionless, 
stress-divergence form)

p i ^ -  = V-&i, V-Ui =  0 in fh  (4.1)

where Ui is the velocity, D /D t  denotes the full derivative in time (including the 
advection terms), is the stress tensor, and p\ is the density. <j\ is defined as 
usual <ri =  p\S  +  2/iiB[ui] with pi being the pressure in the liquid phase, D[ui] =  
0.5[Vui +  (V u i)T] being the rate-of-strain tensor, and S being the Kronecker tensor. 
The boundary conditions on T are not of a concern for the present method and

55
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therefore we assume the simplest case of homogeneous Dirichlet conditions. On the 
internal boundary of fli, E, we presume no slip condition for the velocity. The 
problem requires initial condition for the velocity which we presume to be in the form 
Ui(x, 0) — Uo, V-Uo =  0. The equations of motion of a rigid particle are usually 
written in terms of the velocity of the centroid and the angular velocity , six equations 
in 3D. For the purpose of the present method, however, it is more convenient to define 
a velocity field U2(x, t) which is continuous within the region occupied by any given 
particle, and zero in Di. Clearly, u 2 € L2(fl). If Uj(£), X,: are the velocity of
the centroid, the angular velocity and the coordinate vector of the zth particle then 
U2(x ,t) |n i — Uj(f) x (x — X j(£)). The restriction of the momentum equation
for u 2 on u 2,i can be written in the following integral form

4  f  p2,iU2d C l =  f  p 2, i g d C l +  f  (Tini d s  (4.2)
^  J 0.2,i J H 2 ,i J d Q 2,i

with nj being the outward normal to the surface of the ith particle. The last term 
in this equation represents the total hydrodynamic force acting on the surface of the 
?th particle. Let us denote by <Ti the continuous extension of the stress by over the 
entire domain f2. Such an extension can always be constructed and this is the basis 
for the different fictitious domain methods that are proposed in the literature. Then 
using the divergence theorem we can rewrite (4.2) in the following form

f  (p 2,iU2) d t t  =  f  p 2, i g d n +  f  V - e r i d n .  (4.3)
j q2 . j Qi.

A natural way to extend the stress tensor in Q 2,i is to assume that it is Newtonian 
and extend the velocity field Ui to Ui such that i i i l^  =  Ui, the pressure to some p\ 
such that p i |ni =  pi, and write V-<7i =  -V p i +  /x1V 2u 1. Then (4.3) can be rewritten 
as

/  7 J7 (P2,iU2,i) d f l =  p 2, igd£l  +  I ( -V p i +  /iiV 2Ui) d f l .  (4.4)
J n2 , i  ^  Jn2 ,i  Jsi2,i

Now if we adopt the notation

F  _  /  -P '^ m  + ~  v Pi> in i = l , . . . , n
\  0, in fi! 1 J

the equation for the ith particle momentum becomes

/  TT+ (P2,iU2 - p i u j d n  =  [  ( p 2, ig  +  F ) d Q .  (4.6)
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Because of (4.5) we can now extend the momentum equation (4.1) to the entire as

p l1 5 t = ~ Vpi + MlV2ui “  F ’ v ‘Ul =  0 in a  (4 J)
The additional force per unit volume F in this equation can be interpreted as the 
interaction force between the two phases. As discussed by Glowinski et al. [33] it
enforces the rigid body motion onto the fluid velocity field within each of the particles.
If we adopt this additional constraint onto Ui i.e.

Ui =  u 2 in f l2,i (4.8)

then equation of momentum of the ith particle, (4.6), can be written as

/  Yh [{P2,i ~  Pi)u2] dQ =  f  (p2,ig + F )* l. (4.9)
Jn2,i u t  Ju2,i

Now we recall tha t u 2 is a rigid body velocity field i.e. u 2(x, i)|n4 =  U i(t) + u)i{t) x 
(x — Xj(t)). Then (4.9) implies the following equation for Ui

A M ^  = M i g + [  Fdn. (4.10)
dt Jn2,i

where Mj =  f Q2. P2 ,idfl, AM* =  f Q2.(p2,i — pi)dfl. The angular velocity u;* can be
recovered from the no-slip boundary condition on the surface of the ith particle. It
reads

U j(t) +  o?i(t) x (x -  Xi(t)) =  u i, on dO,2 ,i■

Then clearly

J [(wi(t) x (x -  Xi(t))\ x nds = f  (ui -  U%(t)) x n ds
J 90,2 ,i *'8̂ 2,1

which yields, using the Stokes theorem, that

(t)VQi = [  V x (Ul -  Ui(t))dfi,
JUoif Q2,

where is the volume of the ith particle. Finally, the set of equations of the fictitious 
domain method is given by

=  -V p i + / i iV 2Ui -  F, V - U i = 0 i n f l  (4.11)
JT T /»

A Mi — =  Mig +  /  F dQ, i =  1 , . . . ,  n  (4.12)
dt Jn24

u>i(t)VQi = [  V x (ui -  U  i(t))dCl, i = l , . . . , n  (4.13)
J ,i

U i(t) + u>i(t) x (x -  Xi(t)) = u i, in fl2)i, i = 1, . . . ,  n. (4.14)
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From this set of equations, it is clear tha t F is a Lagrange multiplier that enforces the 
constraint (4.14) onto Ui and U2. It is non zero only within the domain occupied by 
the particles and therefore it is closely related to the distributed Lagrange multiplier 
of Glowinski et al. [33]. However, its impact on the fluid velocity field is global, over 
the entire domain, due to the equation (4.11). This led us to the idea of defining 
another global Lagrange multiplier, A, which is related to F through the following 
boundary value problem

—aA +  u,\ V2A =  F, in Q
4.15

A =  0, on T,

where a > 0 is a constant to be defined later. This is a well posed problem for 
F G L2, and it is more convenient to use its unique solution to impose the constraint 
(4.14). The benefit of using it, is tha t it has the same regularity as Ui and therefore 
they can be discretized on the same grid (i.e. discretization space). It is very similar 
to the distributed Lagrange multiplier A of Glowinski et al. [33] provided tha t the 
constraint is imposed using an H 1 inner product. However, with the present definition 
of A and a proper choice for a, it will become clear in the next section, tha t we can 
significantly decrease the computational expenses for the iterative solution of the 
system (4.11)-(4.14).

Substituting F from (4.15) into (4.11)-(4.14) we obtain the following system which 
will be used further to compute u i, U* and Wj

=  — Vpi + /xiV2Ui +  aA —/i iV2A, V-Ui =  0 i n f l  (4.16)

cZX_T * P P
AM j— 1 =  Mjg -  /  aXdO — A*i /  ^~ds, i = (4.17)

at J<h,i Jdn2,i

VsiiUi = [  V x (ui -  Ui)dQ, i =  1 , . . . ,  n  (4.18)

U  i(t) + u>i(t) x (x -  Xj(f)) =  Ui, in 0,2,%, i = l , . . . , n .  (4.19)

Note that in the second equation we have integrated V 2A by parts. Note also that this 
choice for A is similar to the choice of Lagrange multiplier in [33] if the inner product 
for imposition of the rigid body constraint is chosen to be the H 1 inner product. In 
the present case, however, A is defined over the entire computational domain while 
in [33] it is defined only locally, within the areas occupied by the particles. The
global Lagrange multiplier will allow for a change in the fictitious domain method as 
proposed in [33], which generally increases the efficiency of the method and simplifies 
it (see the next section).
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In addition to the system (4.16)-(4.19) we also need to solve an equation for the 
position of the centre of mass of each particle which reads

d* i  TT . . .—  =  Ui, * =  l , . . . ,ra.

4.2 D iscretization procedure

We discretize the system (4.16)-(4.19) using a finite element procedure although finite 
difference or finite volume based procedures can also be used. Note that only (4.16) 
and (4.19) require weak formulations. Equations (4.17) and (4.18) are an ordinary and 
an algebraic equation. The overall problem is in fact a Navier-Stokes problem with an 
additional constraint (4.19), and therefore we chose to discretize it with a projection 
scheme (for Ui and pi) combined with an additional iteration for the imposition of 
the rigid body constraint. The scheme is derived from the (formally) second order 
in time characteristic/projection scheme described in [56]. In space, we used P 2 — Pi 
finite elements which results in a (formally) second order spatial discretization. The 
algorithm can be summarized in the following four steps.

Substep 1 (advection).
The advective part of the system is integrated with the method of characteristics 

[56]. If x  is an approximation of the foot of the characteristic originating at x  then 
the advected velocity is given by u”(x) =  u”(x), u"-1(x) =  u”-1(x). x  is usually 
approximated with an Euler explicit scheme [56].

The center of mass of the ith particle is predicted explicitly as

x p,n+l = X n-l +  2§tJJn ^  2Q)

where St is the time step.
Substep 2 (diffusion).
If we set To =  3/(2St), t i  =  —2St, r 2 =  1/(2St) then this substep can be written as

PiTo^ -  /ixV u x =  - p i f a u ?  -  t2u? x) -  Vp", in n
(4.21)

u? =  0 on T

Substep 3 (incompressibility)
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T0( u r - u I )  =  -V (p ? +1 - P ? )  inO
V-uJ* =  0 in n  (4.22)

u£* • n  =  0 on T,

n  being the outward normal to T.
S u b step  4 (rigid body constraint)
The rigid body motion is imposed iteratively using the following iteration. Let us 

first set the 0-th approximation for An+1, u ”+1, U ”+1, u>”+1 and u £+1 as

Ao,n+i =  q

0,n+l _  ,,**
U1 — U1

r0U ?'”+1 =  - r ,U "  -  t iU ? - 1 +  ^ - g

Va,*?"*' =  /  V x u f+ 'd S J  
J

u O .n + i  =  u O .n + 1  +  w 0 ,n + l  x  ( x  _  X f n + 1 ) .

We also need to set A1,n+1 =  An. If we denote the difference between two subsequent 
iterations for a quantity Q by 5tQ i.e. StQk+1 — Qk+1 — Qk then the subsequent 
iterates are computed for k > 0 by

f (tqI  -  ^ V 2)5tu k+l'n+l =  {a l -  ^ V 2)5t\ k+l'n+l in Q 
[5tUi+1’n+1 =  0 on T

AMir 0<5tU f+1’n+1 = - f (hi a8tXk+1’n+1dn
n as \ fc+1:n+1

4-^'1 fdn2,i * dn ds i = 1 , . . .  ,n
Vfii(jJi+1’n+1 = jrn . V x u  k+1’n+1dn  i = l , . . . , n  (4-24)

(4.23)

u fc+i,TH-1 = u f+1-"+1 +  wf+1’n+1 x (x -  X f n+1) in 0,2,i i — 1, . . .  , n
/c+l,n+lu r  ’ = 0  in

~  ^ V 2)5tXk+2'n+1
= (Pirol -  MiV2)(<5tut+1’n+1 -  «5tu*+1’n+1) in n %u i = l , . . . , n  

(x +  -  P iV 2)St*k+2'n+1 =  0 in n ,
5 t X k+ 2,n+ l  = 0  o n

(4.25)

where I  is the identity operator. Note that in the last set of equations tha t determines 
the increment of A we used the fact tha t u 2 is a rigid body velocity field inside each 
particle and therefore V 2u 2 =  0 in fl2i .
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Upon convergence for some k =  N  we set u”+1 =  u f +1,n+1,U"+1 =  U f"l"1,n+1, 
u)n+1 = (jjN+i^+i^ ^n+i _  _^Ar+i,n+i 'j'hg equation of the center of mass of the 

particles is solved with a second order predictor-corrector procedure the predictor 
being given by (4.20) and the corrector being given by

X "+1 =  X f n+1 + 0.5<5t(U”+1 +  U?) (4.26)

Similarly to the iteration in [33], instead of the present (Richardson) iteration we 
can also adopt a conjugate gradient type of iterative algorithm for imposition of the 
rigid body constraint. The numerical tests show that only few iterations of the present 
procedure are necessary per time step in order to obtain very reasonable results.

Note that in the above splitting algorithm only equations (4.21), (4.22), (4.23), 
and (4.25) constitute boundary value problems for PDE’s and in order to discretize 
them with finite elements we need to derive proper weak formulations. As it is usual 
for finite element projection schemes [38] we choose u* to be in Hq(U) and p\ to be 
in jEf1(fl). The final velocity of Substep 3, uj*, is also projected onto Hq(U) as 
discussed in [38]. The essentially new element in the present scheme (compared to 
the one suggested by Glowinski et al. [33]) is that the Lagrange multiplier A is no 
longer distributed but rather a globally (over the entire 11) defined quantity. It is also 
a solution to a boundary value problem similar to the problem for Ui and therefore it 
is naturally chosen to be in Hq(12). Actually it plays the role of a correction to both, 
the fluid and particle velocities. Of course, this correction will increase the divergence 
of the fluid field and in order to better control the divergence of this correction one 
may decompose the interaction force F into a divergence free part, A and a curl free 
part, Vp2> and define both to be a solution of a Stokes-like problem. This would 
require to do one projection step for the additional pressure p% at each iteration for 
imposition of the rigid body motion. The present algorithm seems to be reasonably 
stable as it is, and therefore we did not try  this more expensive alternative.

The weak formulations of (4.21) and (4.22) are given by
Find u j 6 H 1(f2) such that

j  (pir0UiV-l-/qVuiVv)df2 — — f  Pi(tiu"+72u"-1)v<A2+ /  p”V-vdfl, Vv G EIo(U). 
J n Jn Jn

(4.27)
Find Pi+1 € H 1^ )  such that

[  V(p?+1 -p J )V ? d fl =  T0 f  p ^ V q d n  Vq G H \Q ) .  (4.28)
Jn Jn
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Find u f  € H 1(Q) such that

f  piTo(u** -  u l)vdn = f  p”+1 V • vdft, Vv G e j( f t) .  (4.29)
Jn Jn

As discussed by [38] the last step can be skipped but it usually reduces the divergence
of the so computed velocity field. In the present context, since we do not control the 
divergence of the iterative correction A, it is advisable to solve (4.29). Before we give

Thus, this choice for a  is very natural. Moreover, this choice yields an inner product 
for imposition of the rigid body motion which is a compromise between the H 1 and 
the L 2 inner products, and given by p iT 0(., .)o +  Pi(V., V.)o where (., .)0 denotes the 
usual L 2 inner product.

Finally, the weak formulation of (4.25) is given by

The surface integral in the right hand side is a result of the integration by parts of 
the Laplacian over each of the particles. The numerical experience shows that this 
integral as well as the surface integral in the first equation of (4.24) are usually very 
small and do not seem to alter significantly the results in case of spherical particles. 
Therefore, they are not taken into account in the results of section 3.

The formulations (4.27)-(4.30) are discretized by means of P 2 — Pi finite elements 
using P2 interpolation for the velocity and A and Pi interpolation for the pressure. 
The grid is a fixed tetrahedral Eulerian grid that discretizes ft. The resulting linear 
systems are solved by means of a parallel version of the conjugate gradients method.

the weak formulation of (4.25) we note tha t if we choose a — p ir0 the problem (4.23) 
can easily be resolved and the solution is

^fc+l,n+l   ^ k , n + l  /^fc+ l,n+l__^ k , n + l \

Find Afc+2,n+1 e  El1 (ft) such that

)(piT05t\ k+2'n+lv  + /i1V5tA*+a’B+1Vv)dft

n  n

/ Plro(^Ui
i= l 2,i

(4.30)

i= i d n 2,i

n V(<ytuJ
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To complete the discussion on the numerical algorithm, we need to specify the quadra­
ture rule tha t is used to compute the integrals in these formulations. These are, of 
course, a Gauss type quadratures tha t ensure the exactness of the integration. Only 
the integrals in the right hand side of (4.30) can cause some problems since the do­
main of integration is not (in general) exactly covered with finite elements. In case 
that the surface of the particle intersects the interior of a given element we adjusted 
the Gaussian integration weights of the Gauss points inside the particle so tha t their 
sum is equal to one. This is a simple procedure tha t is not exact anymore but makes 
the corresponding quadrature consistent. More sophisticated solutions like adaptive 
integration procedures [15] can also be used but this simple fix seems to work well on 
reasonably fine grids.

4.3 Conclusions

The method that we suggested in the present paper is a fictitious domain Eulerian 
method for direct simulation of particulate flows. The main advantages in comparison 
to other methods of the same type (in particular the method tha t we used as a starting 
point for the present study, proposed by Glowinski et al., [33]) are that:

1. It defines a global Lagrange multiplier, A, whose physical meaning is of an ad­
ditional velocity field that imposes the rigid body motion. This allows us to 
completely eliminate the Lagrangian grids used by [33] to discretize the dis­
tributed Lagrange multipliers in their case. This allows for the use of basically 
only one solver on relatively regular grids which facilitates the parallel imple­
mentation of the method.

2. The global Lagrange multiplier, together with a proper choice for the inner 
product tha t is used to impose the rigid body constraint allow to avoid the need 
to solve the linear system for computing the distributed Lagrange multipliers in 
each particle. Although this system is not large, it will eventually be solved on 
each iteration of S u b step  4 of the algorithm above. If the flow contains many 
particles, the savings can be significant.

3. The present algorithm employs a second order in time, incremental projection 
scheme for the resolution of the generalized Stokes problem which, as our nu­
merical experience shows, performs significantly better than a first order scheme
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for almost the same expenses. The spatial discretization is also second order 
accurate for the velocity and first order accurate for the pressure.
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Chapter 5 

C om putational im plem entation

5.1 Collision strategy

For handling more than one particle, a collision treatment mechanism had to be added 
to prevent particles from interpenetrating each other. To avoid this overlapping a 
repulsive force was added to equation (4.10). Two different repulsive forces were 
tried. The first one was of the form suggested by Glowinski et al. [33], where a 
short-range repulsion force between particles tha t are near contact is introduced. For 
two given particles i and j  the force is calculated as:

pR — (^»ij ~  ^  ~  ~  P) GjGj
e p dij

Where citj is a scaling factor, e is a small positive number, ditj is the distance between
the center of the two particles, Rj are the radius of the particles, p is the range of
the repulsion force and Gj, Gj are the center of mass of both particles.

In this approach the choice of the scaling and stiffness parameters (c,j and e) 
is very important and in general the ideal values of these parameters may vary for 
different cases. Since the factors and e had to be changed for every case, a more 
general approach was considered.

In this new approach the repulsive force is calculated in such a way that it would 
compensate the velocity so that the particles do not overlap. The collision algorithm 
first checks if the particles’ separation is larger than a given threshold related to 

the particle’s radius and the mesh resolution. If the distance is less than this value 
then the repulsive force is calculated iteratively so tha t both particles move along the 
line tha t passes through the center of mass of both particles and that the minimum

65
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distance is still maintained.
The algorithm can be summarized as follows (see Figure 5.1):

Figure 5.1: Two particles near collision.

1- Estimate the particle’s position X , with the calculated velocity as in equation 
(4.26).

2- Calculate separation between particles and detect possible collision.

Si,j =  |Xj — X j| — [Ri +  R j ) (5-2)

Where is the separation between two spherical particles i, j ,  X; and Xj are the 
center of mass position of the i and j  particle and Ri and Rj are their radii. If Sjj 
is less than a minimum separation e then the each particle is moved a distance A r 
necessary to maintain that security distance.

3- Establish the distance needed to maintain the minimum admissible separation 
along the direction of the line tha t passes through both center of mass. This direction
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is given by 9 and ip.
Ar — -^ (6 ~  S* j )  (e. o')

^  Mi +  Mj ( ^
Where M,: and Mj are the masses of particle % and j  respectively.

4- The velocity needed to move the particle i a distance A r ^ ^ )  U %,(e,ii>) is then

T T  _  t K  A \u i,{m -  —si— w4)
5- Update the particle’s velocity adding this velocity to the current one.

U”+1 =  U ‘+1 +  U,,(W) (5.5)

6- Update the particle’s position.
In order to impose that the fluid velocity in the region occupied by the particles 

is equal to the new particle’s velocity we need to perform S u b step  4 of the splitting 
algorithm above. However, if we choose e to be very small, of the order of St2, then 
the fluid velocity would be perturbed with a term which is of the order of the time 
discretization error and we can skip this additional iteration.

This algorithm is efficient in preventing collisions. It basically maintains a security 
layer to avoid particle overlapping. Physically speaking, it is well known that before 
the two particles touch each other, the thin film formed between them should drain 
completely. This is a physical phenomenon of a (time and spatial) scale different from 
the scale of the macro-motion described by the equations given above. Therefore, a 
more careful approach would require the development of a separate model for the film 
drainage which has a very different time scale and then merging it with the macro­
model considered in the present paper. The present collision prevention approach 
presumes that the thickness of the film between any two particles is of the order of 
St2.

5.2 Elem ent Searching Algorithm

In the implementation of the method of characteristics an algorithm to locate the 
element tha t contained the foot of the characteristic had to be used. The element 
searching algorithm used was that proposed by Minev and Ethier [54],

When solving the convection part of the Navier-Stokes equations the foot of the 
characteristic has to be found. When the time steps is small, so that the local Courant 
number is small (of order one) then the foot of the characteristic is close to its terminal
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point, x. In this case, a good guess for the element containing the foot is available. 
On the other hand, at large time steps, the foot of the characteristic can be located 
relatively far from its terminal point, and a good guess is not easily available. Such a 
guess is crucial for the effectiveness of the whole algorithm. The algorithm to estimate 
such a guess and conduct the subsequent search is described here.

Let’s consider a computational domain fl, that has been discretized using an 
unstructured grid

G = {Pm]pm e n } % =1 (5.6)

where G is the unstructured, Pm is a point belonging to that mesh and N g is the total 
number of points of this mesh. For such a mesh, the local Courant number is defined 
as:

Cu = UP, £  (5 J)

with Upi the velocity at point Pi and A x  the minimum inter-nodal spacing among 
the elements containing Pt. The Courant number measures the distance traveled by 
advection during one time step. G is overlayed with a structured grid

c  =  {K,}" , (5.8)

consisting of uniform cubes (voxels, Vn) with a side length equal to the maximum 
possible spacing d between two neighboring nodes in G. This structured grid C  is 
a parallelepiped. The idea for such an auxiliary grid was originally sketched out by 
Buscaglia and Dari [11]. This auxiliary grid may contain a huge number of cells. To 
avoid storing empty cells tha t could mean using large amount of memory and reducing 
the overall performance of the algorithm all information is stored in compact storage 
format in which all the empty voxels of C  are excluded, and only non-empty voxels 
are considered. This requires two related data structures that allow rapid searching 
for the nearest grid point Pm to a given point within the computational domain, P*. 
To describe the necessary data structures we introduce the following notation:

• W ithout loss of generality we assume that the x-axis is parallel to the longest 
side of C. We denote the number of voxels in the x, y and z directions by N x, 
Ny and Nz respectively, and the total number of non empty voxels of C  by Ng. 
A region of C  is said to be empty if it contains no nodal points Pm.

• Each voxel is identified with three integers accounting for its position in C  in 
the x, y and z directions. If x 0, y0, z0 are the physical coordinates of the origin
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of C, then the voxel coordinates (i* ,j* ,k*) of the point P* are given by the 
integer parts of:

„■* _  (x*-xO) 
d

< j* =  (5.9)
fc* _  (z*-zO)

< d
Each voxel is then associated with a single label given by

label(i,j, k ) =  iN yN z + j N z +  k (5.10)

The data structures, created and filled in a preprocessing step, designed to map
voxel coordinates (i , j , k ) to a list of unstructured grid points Pm contained in that
voxel are:

• A vector B of dimension N g containing an ordered list of the node numbers of 
the grid G.

• A two-dimensional matrix A  that has Nx rows and is of variable size in the 
second direction. A contains Nx x-slices of the structured mesh C  each of 
which is composed of ”y-columns” of voxels. The number of entries in row i 
of A  is equal to the number of non-empty y-columns in the ith  x-slice of C. 
The entries of A  contains a pair (k-pair, offset), where offset is an index to the 
vector B of the grid point Pm in voxel (i, j-index, k-index).

The searching algorithm works as follows:

1. Given a point P*(xi ,x 2,x 3), determine its voxel coordinates (i* ,j* ,k*) in the 
structured grid C.

2. Perform a search in the i* row of A  to determine which entry has j-index equal 
to j*.

3. Perform a search for the corresponding k-index in the vector of the entry iden­
tified in step 2.

4. Using offset to reference the appropriate node numbers in B, find the closest 
point Pm to P* among the points in the voxel to which P* belongs. Then P* 
belongs to one (or more) of the elements containing Pm. These elements are 
searched to determine which of them contains P*.
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The computational expense for this algorithm is of order log(NyN z) per point P*. 
Then, the total algorithm cost scales as N glog(NyNz), which varies nearly linearly 
with the number of nodes in the mesh. A naive search for the closest point per­
formed by measuring the distance from each point to P* requires order N g(Ng + 1)/2 
operations.

Remarks:

• The above algorithm is useful only if the local Courant number is larger than 1. 
If Cu is smaller than 1, the foot of the characteristic will be contained within 
one of the elements containing its terminal point, and the terminal point is 
then a good initial guess. The efficiency of the above algorithm integration is 
virtually independent of Cu.

•  If the foot of the characteristic is not found in any of the elements th a t contain 
the initial guess (computed as described above), then the time step is subdivided 
into substeps As and the above algorithm is applied within each substep. If 
X ”^ 1 is the foot of the characteristic at the end of the I-th substep, the velocity 
u (X ”j '1) needs to be updated by extrapolating the velocity field at time level 
(n  +  1) A t — I As. Choosing As small ensures that the foot of the characteristic 
X ^  at time roAs =  A t  is always within the computational domain SI.

5.3 Conclusions

In this chapter we addressed necessary issues for the correct implementation of the 
code. A fast searching algorithm is required for the method of characteristics as an 
integration method to solve for the convection part of the Navier-Stokes equation. 
At each time step the feet of the characteristics had to be found and the described 
algorithm was used for that purpose.

For handling multiple particles a collision strategy was developed. It maintains a 
security zone between particles so that they do not overlap.
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Chapter 6

Parallel im plem entation and other  
com putational considerations

6.1 Parallel linear solver

The direct numerical simulation of particulate flow is a computationally intensive 
problem, since we are finding the solution of non-stationary equations to describe 
a flow that evolves in time and over many timesteps. To find the solution at each 
timestep a nonlinear system of equations must be solved, and within each nonlinear 
iteration a linear system is solved. Most of the computing resources needed by this 
kind of finite element codes are spent in the linear solvers.

The time-stepping is handled by a splitting operator technique as described before. 
Each substep requires the solution of a linear system of the form A x =  b. The linear 
systems are large, sparse, symmetric, and definite. For this reason special structures 
have to be designed to store the matrices of this system. For large linear systems using 
a direct method is not a practical solution since the memory requirements become 
unreasonable. Iterative solvers are a natural solution. In our simulations up to 91% of 
the CPU time of the entire simulation is consumed by the linear system solver alone. 
For this reason we focus on addressing this problem, trying to implement a parallel 
solver for a shared memory computer. All the parallel code was done in OpenMP 
and optimized for an SGI Origin model 2400, with 64 processors (400MHZ), 16384 
Mbytes of main memory size, 32 Kbytes of data cache size. For the current algorithm, 
the matrices are symmetric and positive definite so we choose the linear conjugate 
gradient (CG) as our linear solver.
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1 x0 =  initial guess, r0 =  b  — A x0, d0 =  r0, 50 =  Tq P r0
2 do i=  l..Nmax
3 h, =  Adj_i
4 7i =  df-ih i
5 II & i sT

6 Xi =  Xj_i +  Tidi-1
7 Ti =  r(_i +  Tjhj
8 Si =  r f Pr i
9 check for convergence
10 if ( not converged )
11 A =  5 ^ - !
12 d, =  A P d i-i -1- P ri
13 else
14 quit
15 end do

Figure 6.1: Conjugate gradient algorithm for solving A x =  b.

The CG method minimizes the A-norm of the error over the current subspace. 
Figure 6.1 shows the pseudo-code for the CG algorithm. The method proceeds by 
successively approximating the solution, computing the corresponding residuals to 
the current solution and computing directions used to update the iterates and the 
residuals. It can be shown that an upper bound for the number of iterations steps 
required to get the A-norm of the error below some prescribed value e is proportional 
to the square root of the condition number of A and the speed of convergence depends 
on the spectral properties (such as eigenvalues distribution) of this matrix [25]. In an 
attem pt to improve these properties the CG is used in combination with some kind 
of preconditioning. The idea is to construct a matrix K, such that K x =  b is much 
easier to solve than A x =  b. Normally, K is constructed to be an approximation of 
A. A first attem pt was to obtain K by multiplying the A matrix with a m atrix P  
obtained from the inverse diagonal of A.

The conjugate gradient method involves one matrix-vector product, three vector 
updates (x,r,d), and two inner products ( r  and 0) per iteration.

In the above algorithm there are two obvious synchronization points, namely the
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computation of the two scalar constants r  and ft. The algorithm can only update 
Xj and rj after completing the inner product for r*. The same observation applies to 
updating d, .

To calculate the global vector dot product all the local contributions need to be 
summed. This is done using an OpenMP atomic update. Communication is also 
required after the matrix-vector product.

Steps 6, 7 and 12 do no require communication. Steps 6, 7, and 8 can be combined: 
the computation of a segment of 6 be followed immediately by the computation of a 
segment of step 7, and this can be followed by the computation of a part of the inner 
product in 8. This saves on load operations for segments.

6.2 Other com putational considerations

Vector updates were trivially parallelized by dividing and assigning segments of the 
vector to each processor. Matrix-vector products were parallelized by splitting the 
matrix in groups of rows. Since the matrices are extremely large and sparse compact 
storage techniques were implemented. For the serial version of the code the nodes were 
rearrange considering boundary conditions. In this way, all the rows corresponding to 
prescribed nodes could be eliminated from the global matrices and the systems could 
be reduced.

6.3 Conclusions

Most of the CPU time used by the numerical solver is spent in the linear solver. Since 
the systems are large and sparse the conjugate gradient method was implemented as 
the linear solver. This was successfully parallelized. The parallel routines make no 
assumption about the structure of the grid. Further improvements to increase the 
parallel performance of the code could involve implementing a domain decomposition 
on structured grids.
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Chapter 7

Experim ental velocity  
m easurem ent of settling spheres

7.1 Experim ental setup

To validate the numerical code experiments were conducted to measure the velocity 
of settling spheres under different conditions. A tank of 40cm x 68cm x 33cm was 
built as shown in Figure 7.1.

Glycerin and Drakeol 7 mineral oil were used for the different experiments. Table
7.1 shows the physical properties for these fluids. Steel spheres of 0.99, 1.99, 2.20 
and 2.38 mm of diameter and 4.75 mm nylon diameter balls were used. The densities 
were: psteei = 7800 kg/m 3 and pnyim = 1140 kg/m 3 respectively.

The particles were released and the their motion was captured with a Redlake 
high speed digital camera that captured frames at intervals of 0.004 seconds. A 
strong light was used to illuminate the particles. Since the particle terminal velocity 
determined the shutter rate of the camera, the particles were chosen so th a t their 
terminal velocity would allow a rate that would produce images with little blur and 
the particles would be still well lit. The other variable affecting the image brightness

Fluid Density 26C ( kg/m 3) Viscosity ( cPoise)
Glycerin 1177 11.7
Drakeol 826 17.75

Table 7.1: Physical properties of the fluids
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7. Experimental velocity measurement of settling spheres 75

was the aperture. This had to be adjusted according to the focus range needed and 
the amount of light necessary to make the pictures bright enough.

The motion of the particle was then studied by analyzing the different frames of 
the acquired data. To analyze the images Redlake Motionscope Media Player was 
used. The imaging software allowed us to measured distances and velocities. Figure
7.2 shows and example of an image captured with the high speed camera.

While conducting these experiments two main problems had to be overcome. The 
first one was the particle releasing mechanism. A method had to be devised in order 
to be able to release the particle without disturbing the fluid. This method had to 
be capable of handling more than one particle. The second problem encountered was 
that the images provided 2-D information only. For some cases this was insufficient 
to reveal the motion of the particles. An example of this was the case of two particles 
drafting, kissing and tumbling. For images showing the particles settling together 
there was the uncertainty if this was so (they were really touching each other) or if 
they were at the same vertical position but at different depths. For validating particle- 
particle interaction this information was very important. The solutions implemented 
to overcome these problems are discussed in the next sections.

7.2 Particle releasing mechanisms

To minimize the disturbance produced while releasing the spheres three different 
methods were tried: tweezers, a vacuum system, and an electromagnet.

1. Tweezers
At the beginning particles were released using a pair of tweezers. The tweezers 
were good enough for simple, one particle drops at high Reynolds numbers 
(Re > 500). For these velocities, the error caused by the particle clinging and 
rolling off the tweezers arms was slight and experiments were highly repeatable. 
At low Re, however, error was substantial and velocity profiles would often differ 
by as much as 20%.

2. Vacuum  system
Our next attem pt was to develop a vacuum system that could remotely release 
two balls at varied distances by the use of a suction bulb on a long vacuum line. 
The problem with the system was that the two suction holes were very difficult 
to machine to a perfect fit on the spheres. The fluid was often sucked past the
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Figure 7.1: Experimental setup.
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Figure 7.2: Analysis of data captured with a high speed camera.
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spheres and into the vacuum lines, which tended to rush out upon release causing 
substantial error in the experiment. This vacuum system worked well only for 
dropping very light nylon and plastic balls into a glycerin/water mixture.

3. E lectrom agnet
Finally, an electromagnet was designed. Unfortunately, this meant tha t only 
steel ball bearings would have to be used. For this kind of particle a more viscous 
fluid was required. Mineral oil Drakeol 7, was used for the experiments with the 
steel bearings. An Al/N i/Co electromagnet was assembled in a c-shaped iron 
core with an adjoining permanent magnet. A short burst of current was used to 
change the polarity, which changed the flux path and gave a near residual-free 
release of the particles. We found the magnet to work best with an energizing 
current of about 2.0 amps and a release current of about 1.0 amp. Since the 
coil impendence was 20.9 ohms, a power supply capable of about 45 volts was 
used.

7.3 2D vs. 3D m easurem ents

Two dimension videos often did not give an adequate representation of the particles’ 
movement, so a three dimensional view was devised using mirrors. The 3D infor­
mation was particularly important when analyzing particle-particle interactions Two 
mirror were placed inside the tank. A calibration plate was built so tha t the mirrors 
could be places in the correct position at the beginning of each experiment. Figure
7.3 shows an example of an image obtained using this technique.

The images obtained in this way were analyzed in a similar way as before but 
now 3-D coordinates of the particles could be obtained. The vertical displacement 
could also be matched for the different views. Some of the 2-D and 3-D data obtained 
experimentally is presented in Chapter 8 and compared with the results obtained with 
the numerical simulations.

7.4 Conclusion

In order to validate the numerical model, experiments were conducted to measure 
the settling velocity of solid particles settling as well as to obtain data describing 
particle-particle interaction. For this purpose a tank was constructed and fluid and
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jDi r e c t  
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Figure 7.3: Experimental setup: 3D information retrieval.

particles were selected in order to match the capability of the available hardware. 
Data was acquired using a high speed camera. During the experimental work two 
major problems had to be overcome:

• Devising a suitable particle releasing mechanism that would not introduce dis­
turbance in the fluid and would be capable of handling multiple particles.

• Obtaining 3-D data.

Both problems were successfully solved and the necessary experimental data was 
obtained to validate our numerical simulations.
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Chapter 8

Num erical and experim ental 
results: single particle m odeling

The program implemented using the fictitious domain method with global Lagrange 
multipliers was tested for different cases. The first trials were those involving the sed­
imentation of a single particle under gravity in a fluid originally at rest. The different 
program parameters were varied (i.e. Reynolds and Froude number, timestep, density 
ratio, mesh resolution) and the results validated with experimental data. Other test 
performed involving only one particle included influence of the distance to the wall 
of the channel on terminal velocity and wall collisions. At a later stage, the study 
focused on situations where more than one particle are present. The simplest cases 
involving more than one solid particle are those where particles do not interact with 
each other. Particle-particle interaction was taken into account and the program was 
used to simulate collisions. In this chapter we present the results of some of the 
simulations starting with those involving one particle. Simulations involving more 
than one particle are presented in next chapter. All the numerical simulations are 
presented using dimensionless variables.

8.1 One particle settling in a vertical channel

The first case to be tried was that of a single particle settling under gravity in a fluid 
initially at rest. The program was tested for different Reynolds numbers and density 
ratio. In most cases the difference between the experimental terminal velocity and the 
one calculated using the program did not differ in more that 7%. Figure 8.1 shows the
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8. Numerical and experimental results: single particle modeling 80

the experimental values obtained for a steel sphere of radius 1.99 mm and density 
Psoiid — 7800 kg/m 3 settling in a fluid with density py\m(\ =  826 kg/m 3 and viscosity 
/j =  17.8 cPoise. The terminal velocity for the sphere in this case was 30.5 cm/s. 
Based on this terminal velocity the calculated value of the Reynolds number was 
Re=28.7 and the Froude number was Fr=5.0. The experiment was repeated 3 times 
and the error between trials was around 4%. To compare with the numerical results,

Uy vs. time

20  -

1o
D

l g im .Steel B a IT B ea rin g s  ( SG=.7.8) 
akeol 7 (SG==0.826, v isc . = 17.8cp) 
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Figure 8.1: One particle settling. Experimental vertical velocity vs. time. Re=28.7.

the experimental results were made dimensionless. The experimental velocity was 
divided by the terminal velocity, U-m{, and the time by the ratio of the particle’s 
diameter, D sp, and its terminal velocity. The particle’s displacement X  was made 
dimensionless by dividing by the particle’s diameter:

j j _______________ __ U experim ental to
U  dim ensionless  — 77 V**-U

£ /in f

iri\

d *
  X ex p er im en ta l t o  n \

dim ensionless —  p j
' sp

texperim ental

Dsp/Uiinf
(8.3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8. N um erica l and exp erim en ta l results: sing le  particle  m od eling 81

The procedure to calculate the dimensionless variables was repeated throughout 
this thesis whenever a direct comparison between experimental and numerical results 
was needed.

Uy vs. time
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Figure 8.2: One particle settling. Comparison of experimental and numerical vertical 
velocity vs. time (dimensionless). Re=28.7.

Figure 8.2 shows the comparison of the experimental velocity and the results 
for a simulation resembling previous experiment. For the numerical simulation the 
Reynolds number was set to 28.7 and the Fr number was 5.0. The mesh used for this 
case was a rectangular channel with a cross sectional area of (4 x 4) and a length 
of 12. The mesh had 306231 nodes and 205800 elements. The solid particle had a 
diameter of 1. The ratio of densities was set to 9.44. The timestep used was of 0.01.

The particle accelerates immediately after it is released but eventually reaches an 
approximately constant sedimentation velocity when gravity balances buoyancy and
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the drag force. At constant terminal velocity some oscillations occurred. Figure 8.2 
shows tha t the numerical results are in agreement with the experimental data.

A similar experiment was conducted for a steel bearing of diameter 0.99mm. The 
terminal velocity in this case was 13.2 cm/s. The Reynolds number was Re=6.08 
and the Froude number Fr=1.8. Figure 8.3 shows the experimental results (vertical 
velocity versus time).

Uy vs. time

A D ro p  4 
□  D ro p  5 
A  D ro p  6

.6

Time (s)

Figure 8.3: One particle settling. Experimental vertical velocity vs. time. Re=6.08.

The experimental results were used to carry out a simulation using the calculated 
dimensionless numbers. For the simulations the mesh was the same as in the previous 
case (306231 nodes and 205800 elements). The timestep was set to 0.01. The fluid 
density was pFiuid =  826 and the particle’s density psoiid =  7800. The sphere’s radius 
was 0.5. Figure 8.4 shows the evolution of the vertical velocity with time for this 
simulation and for the experimental set up. All variables were made dimensionless 
following the procedure explained for the previous case.

The numerical results agree with the experimental ones.
Our simulation results were also compared to that published by Mordant et al. 

[57]. Figure 8.5 shows the results obtained for a sphere of radius =  0.5 settling in a
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Uy vs. time
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Figure 8.4: One particle settling. Experimental and numerical vertical velocity vs. 
time (dimensionless). Re=6.0.
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rectangular channel with Re=41 and Fr=1.12. The channel’s mesh is the same as the 
one described above. The time step is set to 0.01.

-5
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v
0.80
0.51
0.23

- 0.05

STP=1000

0
X

Figure 8.5: One particle falling under gravity. Re=41.

In figure 8.6 the velocity obtained with the simulation is compared to tha t pre­
sented by Diaz-Goano et al. [23] and to the curve proposed by Mordant et al. [57]. 
The latter authors experimentally studied the motion of a solid sphere settling under 
gravity in a fluid at rest. All their curves collapsed onto a single exponential shape
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given by:
êxp 1 (—-7*-)

------------£-------- =  1  —  e  95

^Terminal

where uexp is the vertical velocity of the particle, Vrerminai is the terminal velocity, t 
is the time, and r95 is the time it takes the particle to reach 95% of the limit speed. 
The shape of our simulation curve matches closely to the one produced using the 
equation presented by Mordant [57] and to the one in [23]. For this comparison 
the code presented in [23] used an auxiliary mesh for the sphere with 76 nodes and 
226 elements. The input file specifying geometry and connectivity tables and other 
parameters such as Reynolds number, Froude number, time step, particle’s radius 
was the same for running both codes: 179401 nodes and 120000 elements, dt=0.01, 
Re=41, Fr=1.12. The time required to complete 100 time steps of this simulation 
was 20% less with the new algorithm. This time difference is expected to be even 
larger when simulating more than one particle. The speedup is a direct consequence 
of defining the Lagrange multipliers globally and expanding them over the same basis 
functions as the fluid and solid particle velocity fields.

8.2 One particle settling at higher Reynolds num­
ber

Figures 8.7 and 8.8 show the streamlines for the case of a sphere settling with a 
higher Reynolds number (Re=118.0 and Fr=0.01). At this Reynolds number a pair 
of vortices can be clearly seen behind the sphere. From our numerical simulation we 
observed tha t the diameter of the vortices formed increased with increasing Reynolds 
numbers. For a three dimensional results it was very difficult to measure exactly the 
length of this vortices. In this case, the recirculation wake is close to one diameter 
long. This can be compared qualitatively with results presented by Taneda [68]. 
Taneda’s experimental work shows the development of the attached wake behind a 
rigid sphere. He presents a plot of dimensions of the attached wake as a function of 
the Reynolds number. From that plot the length of the wake behind the sphere at 
a Re=118 is approximately 0.95 of the sphere diameter. The numerical results agree 
closely with Taneda’s flow visualization results.

The wake separation angle for this simulation can be estimated to be around 68. 
Nakamura [58] studied the wake behind a sphere and presented a curve for variation 
of the wake separation angle with Reynolds number. For a Re=120 the angle is near
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Uy vs. time
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Figure 8.6: Particle falling under gravity. Re=50, Fr=1.12. Velocity vs. time (di­
mensionless).
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60. The larger value we obtained could be attributed to different causes. Nakamura’s 
experiments could not be reproduced exactly since although the experimental setup 
is described, the exact configuration for a given Reynolds number is not stated (for 
example the diameter used for the spheres are in a given range). For this reason, not 
all the parameter could be matched (i.e. Fr number). Other sources of error could 
be:

• the resolution of the discretized domain (i.e. number of points in the domain 
mesh) used in this simulation;

•  the method used to compute the streamtraces by the visualization software;

•  the inaccuracy in determining the the angle of separation from the three-dimensional 
results.

In the range between 210 < Re <  270 the flow becomes non-axisymmetric as 
the ring vortex shifts off-axis. In contrast to the flow past a circular cylinder, which 
becomes unsteady upon the loss of symmetry, the double-thread wake observed here 
remains steady. By Re=270 the double-thread wake is itself observed to become un­
stable and eventually vortex loops begin shedding from the sphere as so-called hairpin 
vortices [17]. Tomboulides [72] presented numerical results from a spectral element 
solution of flow over a sphere for 20 < Re < 1000. He showed steady axisymmetry 
flow for Re <  212. Johnson and Patel [44] implemented a finite difference discretiza­
tion on a three-dimensional mesh with spherical topology. The method provides a 
very good accuracy for resolving finely the spatial structures of the flow but it is 
costly for unsteady simulations. Their simulations were carried out for Re between 
50 and 300 and compared to flow visualization results. Johnson and Patel found a 
critical Reynolds number for axisymmetry breaking at Re =  210. Above this thresh­
old the flow was found to be steady and to have only a planar symmetry. The onset 
of unsteadiness was reported in the interval of Re G [270,280]. Ghidersa et al. [29] 
studied the primary and secondary instabilities of the sphere wake from the nonlinear 
dynamic systems theory viewpoint. For the primary bifurcation they provide a the­
ory of axisymmetry breaking by a regular bifurcation. For the secondary bifurcation, 
basic linear and non linear characteristics are given. The periodic regime is described 
as a limit cycle. In their work they present proof tha t the axisymmetry breaks before 
the Hopf bifurcation sets in and that the axisymmetry gives way to a plane symmetry, 
the plane being arbitrary.
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Figure 8.8: One particle settling under gravity. Re=118.0, Fr=0.01. Wake behind 
the sphere.
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Figure 8.9: One particle settling. Re=220.0, Fr=0.01. Uy contour at x=0 (dimen­
sionless) .
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Figure 8.10: One particle settling. Re=220.0, Fr=0.01. Streamtraces.
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Figures 8.9 and 8.10 shows the results for a sphere settling with Re=220. The 
simulation was carried out using a mesh with 306231 nodes and 205800 elements 
and a timestep of dt=0.001. At this higher Reynolds number the solution no longer 
exhibits axial symmetry. However, the flow remained steady.

Figures 8.11 shows the results for Re=300 and Fr=0.01. The mesh for this simu­
lation had 306231 nodes and 205800 elements. The timestep was set to dt=0.001.
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Figure 8.11: One particle settling. Re=300.0, Fr=0.01. Streamtraces.

These results are in agreement with published results from Johnson and Patel [44].
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Figure 8.12: One particle settling. Re=300.0, Fr=0.01. Streamtraces.
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8.3 One particle in a rotating cylinder

In order to test the angular velocity computations simulations were carried out for 
a case of one spherical particle inside a cylinder. The mesh for this case had 63679 
nodes and 44362 elements, and the time step was dt=0.01. At the beginning of the 
simulation the fluid was at rest and the cylinder’s walls rotate with an angular velocity 
of fi* =  0.01.

Angular velocity vs time
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Figure 8.13: Sphere in a rotating cylinder: Angular velocity vs. timestep (dimension­
less).

Figures 8.15-8.17 show the rotating cylinder and the streamtraces at a plane pass­
ing through the center of the sphere for different timestep. Figure 8.13 shows the 
evolution of the sphere’s angular velocity with time. The angular velocity increases 
until it almost matches tha t of the wall. The difference between the angular velocities 
(sphere and walls) can be attributed to the mesh resolution.
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Figure 8.14: Sphere in a rotating cylinder, computational domain.
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Figure 8.15: Sphere in a rotating cylinder, t=0.1 (dimensionless).
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Figure 8.16: Sphere in a rotating cylinder, t=1.2 (dimensionless).
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STP=240

Figure 8.17: Sphere in a rotating cylinder, t=2.4 (dimensionless).
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Experiment X0 from wall (cm) AX traveled (cm) AX (diameters) Uyirfi cm/s)
1 0.055 0.147 0.739 30.2
2 0.086 0.171 0.860 31.2
3 0.220 0.091 0.457 30.6
4 1.938 0 0 30.6

Table 8.1: Wall effects: initial position, horizontal distance traveled and terminal 
velocity.

8.4 Wall effects on the term inal velocity

It is well known that when a sphere is dropped near a vertical wall in a Newtonian 
liquid it moves away from the wall as it falls downward under gravity [67]. The 
problem of interaction between a sphere and a wall was first studied by Goldman, 
Cox and Bremmer [35] who find tha t a sphere falling in a channel filled with a liquid 
cannot be in contact with the vertical walls, as a lubrication layer develops between 
the wall and the falling sphere. Their study also showed that under certain conditions 
the sphere falls downward while rotating in a clockwise direction as if the sphere was 
rolling up the wall. This sense of rotation is referred as anomalous as opposed to a 
normal rotation when the sphere rotates down an inclined plane without slipping.

Wall effects are examined and numerical and experimentally results are compared 
qualitatively. Figure 8.18 shows the images obtained experimentally for a particle 
that is released closed to the wall.

Figures 8.19 through 8.22 show the vertical velocity versus time and the particle’s 
displacement versus time for four drops at a varying distance from the wall. From 
these plots we can see that the particle moves away from the wall towards the center 
of the tank. For each case the initial distance from the wall, the distance travelled 
and the terminal velocity are summarized in Table 8.1.

From table 8.1 we see that in experiment 2 the sphere traveled a longer distance 
from the wall than in experiment 1 although in the former case it was released further 
away from the wall than in the latter. In comparing these results we should note that 
this could have been caused by the releasing technique on the sphere or on the error 
in analyzing the images.

To evaluate the wall effects on our numerical simulations two different situations 
were tested: a particle released from a starting position of (x,y,z) =  (1.6, 6, 0) giving
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Figure 8.18: Wall effects: experimental results,
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Uy v s .  t im e  (v a r ia b le  d i s t a n c e  o f  p a r t i c le  t o  t h e  wall)
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Figure 8.19: Wall effects: experimental results. Vertical velocity vs. time.
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Uy vs. time ( variable distance of particle to the wall)
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Figure 8.20: Wall effects: experimental results. Vertical velocity vs. time (dimen­
sionless).
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Figure 8.21: Wall effects: experimental results. Horizontal displacement vs. time.
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Horizontal displacement vs. time
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Figure 8.22: Wall effects: experimental results. Horizontal displacement vs. time 
(dimensionless).
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a distance of 0.1 from the wall and a second case where the particle is released from 
a starting position of (1.3, 6, 0) with a distance of 0.3 from the wall. For these cases 
the meshed used had 306231 nodes and 205800 elements and the timestep was 0.01. 
Other parameters used were: Re=100.0 and Fr=0.1 and a ratio of densities of 2.56.

Figures 8.23 and 8.26 show the numerical simulation results.
As in the experimental case the particle settles moving away from the wall till it 

reaches a stable position with respect to the wall of the channel. In both cases the 
horizontal displacement away from the wall finishes when the center of the sphere is 
at x=0.9 and the separation to wall just over one radius of the sphere. The terminal 
velocity reached is almost the same in both cases. The numerical results show the 
sphere exhibits a small oscillation in the z direction as well as rotation with respect 
to the z axis. The rotation is anomalous at first, when the sphere is close to the wall. 
The maximum angular velocity was found to be u)z =  —0.42. As the spheres moves 
to the middle of the channel the rotations changes direction.

The findings regarding the rotation of the sphere could not be confirmed through 
our experiments since we were not able to measure rotations and the very small 
oscillations would be in the order of magnitude of the error of our measures. However, 
we could explain these results by analyzing the velocity and pressure around the 
sphere. The velocity on the particle surface on the side that is closer to the middle of 
the channel is greater than the velocity on the side next to the wall. Because of this, 
the pressure on the side next to center is smaller than the pressure on the side next 
to the wall. Because of this pressure difference there is a net pressure force acting 
on the sphere in the direction away from the wall. As the sphere falls downward the 
fluid has to go around it, and since the velocity is different on each side of the sphere, 
it rotates in an anomalous manner.

Singh et al. [67] studied the sedimentation of a sphere near a vertical wall in 
an Oldroyd-B fluid. They also presented some results of a particle dropping in a 
Newtonian fluid. Their study showed that the particles drifted away from the wall 
with an anomalous rotation till it reached a steady state position somewhere between 
the channel wall and the channel center. When the particle was away from the wall 
it rotated in normal manner. Our simulations reproduce these features qualitatively.
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Figure 8.23: Wall effects: numerical results. Case 1- Initial distance to the wall=0.1 
(dimensionless). t= ld t  and 150dt.
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Figure 8.24: Wall effects: numerical results. Case 1- Initial distance to the wall 
(dimensionless). t=350dt and 550dt.
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Figure 8.25: Wall effects: numerical results. Case 1- Initial distance to the wall=0.1 
(dimensionless). t=750dt and 950dt.
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Figure 8.26: Wall effects: numerical results. Case 1- Initial distance to the wall=0.1 
(dimensionless). t=1150dt and 1550dt.
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Uy vs. time
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Figure 8.27: Numerical results. Vertical velocity vs. time (dimensionless). Particle 
released at 0.1 (dimensionless) from the wall.

8.5 Collision w ith walls

Collisions were first studied experimentally. Figures 8.35 to 8.39 show the results 
obtained. For different kind of sphere (steel bearing and nylon spheres) the behavior 
was quite different. In the case of the steel bearing the sphere will bounce once or 
twice and then stop. On the other hand, the nylon particle came to rest as soon as 
it touched the bottom wall.

The presence of a lubricant has a significant influence on the dynamics of colliding 
bodies. A detailed analysis of these close contact motions requires consideration of the 
dynamic shape and separation of the particles surfaces. Molecular and hydrodynamic 
forces acting upon nearly touching surfaces can cause the particle to deform unless 
they are very rigid. This deformation is caused by normal forces distributed over the 
surface of an elastic solid and it can be modeled by integrating the surfaces-stress 
distribution. The deformed shape can be determined from the pressure profile in the 
fluid layer between the solid surfaces. Davis et al. [20] studied collisions between 
two spheres and between a sphere and a wall. They explained the deformation and 
collision by analyzing the pressure changes. When the sphere is about to collide
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Figure 8.28: Numerical results. Horizontal displacement vs. time (dimensionless). 
Particle released at 0.1 (dimensionless) from the wall.
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Z vs. time
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Figure 8.29: Numerical results. Displacement in Z vs. time (dimensionless). Particle 
released 0.1 (dimensionless) from the wall.
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Uy vs. time
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Figure 8.30: Numerical results. Vertical velocity vs. time (dimensionless). Particle 
released 0.3 (dimensionless) from the wall.

the gap between the surfaces decreases and the pressure increases, this pressure may 
deform the particle. However, the pressure also causes the sphere to slow down. The 
deformation reaches a maximum and then relaxation occurs. The distance of the 
rebound is limited by the viscous dissipation occurring as the sphere recedes and the 
fluid flows back into the gap under suction. Eventually, the non-conservative viscous 
forces damp out the motion.

Barnocky et al.[7] studied the dynamic deformation of a solid clastic sphere im­
mersed in a viscous fluid and in close motion toward another sphere or a plane solid 
surface. Their work provided a rational criteria for prediction whether a solid particle 
will stick or rebound subsequent to impact. If there is a rebound, the hydrodynamic 
pressure which builds up in the thin layer must become large enough to elastically 
deform the sphere. Under these extremes pressures, it is expected that the fluid may 
also compress and that its viscosity may increase by several order of magnitudes. An 
increase in the fluid viscosity may alter the collision dynamics by increasing the hy­
drodynamic pressure and viscous dissipation. Barnocky’s study makes quantitative 
prediction of the influences of the pressure-dependent fluid properties of density and
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Figure 8.31: Numerical results. Horizontal displacement vs. time (dimensionless). 
Particle released 0.3 (dimensionless) from the wall.
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Z vs. time
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Figure 8.32: Numerical results. Displacement is Z vs. time (dimensionless). Particle 
released 0.3 (dimensionless) from the wall.
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Figure 8.33: Wall effects: numerical results. Streamtraces for t —500dt.
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Figure 8.34: Wall effects: numerical results. Streamtraces for t=1000dt.
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Figure 8.35: Wall collision: experimental results. t=0.04s, 0.08s, 0.10s, 0.108s, 0.116s 
and 0.12s.
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Figure 8.36: Wall collision: experimental results. t=0.124s, 0.132s, 0.14s and 0.148s.
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Figure 8.37: Wall collision: experimental results. t=0.156s, 0.164s, 0.20s, 0.24s.
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Uy vs. time
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Figure 8.38: Wall collision: Vertical velocity vs. time for a steel bearing.

viscosity on the collision of spheres in a viscous fluid.
Since the current thesis was not focused on collisions, a simple approach was im­

plemented to handle these situations. Its goal was to avoid particles from penetrating 
the walls without decreasing the code’s performance. To deal with wall collision sev­
eral strategies were tried. The first approach was to reduce the time step when the 
particle was near a wall in order to prevent it from penetrating the walls. In this case, 
because the Lagrange multipliers are defined globally they would cause the particle to 
slow its motion, the particle will come to rest when the distance to the wall was small 
enough. However, no rebound could be modeled, and for some cases the constrain 
on the time step would be too severe. The second approach to deal with collisions 
between a particle and the wall was to simulate an elastic collision where the sphere 
will basically bounce back. Although this approach avoided particle from penetrating 
the wall, caused the particle to bounce several times before going to rest. The next 
approach was to modify the previous method by introducing a dampening coefficient 
to make the particle’s bouncing decay faster. Even though this last approach avoids 
the particle from penetrating the wall, the dampening coefficient had to be tuned 
for each specific case. A more general approach, based on pressure-dependent density
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Figure 8.39: Wall collision: Vertical velocity vs. time for a nylon sphere.

and viscosity on this hydrodynamic collisions should be developed in the future. Such 
an approach would require mesh refinement and should not only follow the motion 
along the line of center of mass of the sphere but also take into account tangential 
component of particle collisions.
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Chapter 9

Num erical and experim ental 
results: m ultiple particle m odeling

9.1 Two sphere settling in horizontal configuration

The code was tried with more than one solid particle. Here we present the case of two 
solid particles tha t are at the same initial vertical position. Two steel spheres were 
released in a fluid at rest. The diameter of the particles was 1.99mm. The Reynolds 
number based on the terminal velocity of one of the particle is approximately Re=29.8 
and the Froude number is Fr= 5.3. Under these conditions both particles settle side 
by side of each other without any interaction between them. The terminal vertical 
velocity reached by each particle is approximately the same: 33 cm/s. The particles 
exhibit small oscillations in their velocities in the other two components (Ux and Uz).

Figures 9.1-9.3 show the experimental results. Figure 9.4 shows the particles’ 
vertical velocity versus time. In this plot P I and P2 refer to the sphere tha t is 
initially to the left and right in the images obtained and analyzed in our laboratory 
(Figures 9.1-9.3).

This experiment was reproduced with our numerical code. For the code the mesh 
had 179401 nodes and 120000 elements. As before, all variables were made dimen­
sionless using a characteristic velocity (terminal velocity) and a characteristic length 
and introducing the Reynolds and Froude number. The particle initial positions were 
(x , y , z ) i  =  (—0.7,6.0,0.0) and (x, y, z )2 =  (0.7,6.0,0.0). and the timestep dt=0.01. 
Figures 9.5 and 9.5 show the particle’s position for different timesteps.

In our numerical experiment the spheres have the same curve of vertical velocity

123
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Figure 9.1: Two spheres in horizontal configuration. t=0s, 0.08s, 0.12s.
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Figure 9.2: Two spheres in horizontal configuration. t=0.16s, 0.24s, 0.32s.
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Figure 9.3: Two spheres in horizontal configuration. t=0.40s, 0.48s, 0.56s.
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Figure 9.4: Two spheres in horizontal configuration. Experimental results: Vertical 
velocity vs. time.
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Figure 9.5: Two spheres in horizontal configuration. Numerical results at t=0.01 
(dimensionless).
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Figure 9.6: Two spheres in horizontal configuration. Numerical results at t=2.0 
(dimensionless).
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Figure 9.7: Two spheres in horizontal configuration. Numerical results at t=4.0 
(dimensionless).
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Figure 9.8: Two spheres in horizontal configuration. Numerical results at t=6.0 
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Figure 9.9: Two spheres in horizontal configuration. Numerical results at t=8.0 
(dimensionless).
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Figure 9.10: Two spheres in horizontal configuration. Numerical results at t=11.0 
(dimensionless).
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Vertical velocity vs. time
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Figure 9.11: Two spheres in horizontal configuration. Experimental and numerical 
results: Vertical velocity vs. time (dimensionless).
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Figure 9.12: Two spheres in horizontal configuration. Numerical results: Z vs. time 
(dimensionless).
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vs. time. The particles also exhibit small oscillations with respect to the x and z axis 
(Figure 9.12). The numerical results agree with our experimental findings.

9.2 Two sphere settling in vertical configuration

In this simulation two spheres of diam eter=l (dimensionless) were placed one on top 
of each other and separated by a distance of 1.5 radius (see Figure 9.13). The particle 
initial positions were ( x , y , z )i =  (0.0,6.0,0.0) and ( x , y , z )2 =  (0.0,4.7,0.0). The 
ratio of densities was 2.56 and the timestep dt=0.01. The mesh was a rectangular 
channel of 4 x 4 x 12 and it had 179401 nodes and 120000 elements. The Reynolds 
number was set to Re=41 and the Froude number to 2.21.

For this case the sphere settled without interaction between each other. The 
simulation could not be compared to experiments since we were not able to release 
the particles in this configuration in a reliable way (without disturbing the fluid in the 
experimental tank and being able to repeat the experiment). Several reasons could 
explain why the upper sphere did not touch the lower one. One possible explanation 
could be tha t for this Reynolds and Froude number (parameters of this simulation) 
the wake formed behind the particle is too small as to be felt by the sphere on top. 
According to Taneda’s [68] data, the length of the wake behind a sphere settling with 
a Reynolds number of 40 is around 0.3 of the diameter. Another reason could be that 
the mesh resolution was not good enough as to reproduce the wake formed.
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Figure 9.13: Two spheres in vertical configuration. Numerical results at t=0.01 (di­
mensionless).
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Figure 9.14: Two spheres in vertical configuration. Numerical results at t=2.0 (di­
mensionless).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



9. Numerical and experimental results: multiple particle modeling 138

(
v

0 .14
-0.39
-0.93
-1.46

STP=400

Figure 9.15: Two spheres in vertical configuration. Numerical results at t=4.0 (di­
mensionless).
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Figure 9.16: Two spheres in vertical configuration. Numerical results at t=5.7  (di­
mensionless).
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9.3 P article-P artic le  Interactions: D rafting  kiss­
ing and tum bling

Particle interaction play an im portant role in particulate flow applications. They are 
a consequence of stresses and inertia. Joseph [26] described the fundam ental interac­
tion between neighboring spheres and studied their drafting, kissing and tum bling in 
Newtonian liquids.

To study the interaction between particles experiments were conducted in our 
laboratory. At a first stage direct images were taken to understand the motion of 
sphere kissing, drafting and tumbling. Unfortunately, we found th a t sometimes the 
two dimensional information provided by these images was not enough to determine 
the motion when the particles are very close together. For example, in frame 186 from 
Figure 9.17 we were not sure if the particles where touching and moving together, 
or if they were just at the same height with a distance in the depth direction. For 
this reason a three dimensional view was designed as explained in Chapter 7. Figures 
9.17-9.22 show the 2D and 3D images obtained from our experiments with 2.2 mm 
steel spheres using the high speed camera.

From these experiments we can see th a t the particles settled under gravity. The 
top sphere accelerates towards the leading sphere. Then they seem to touch and 
both travel together for a short while. They finally separate moving apart one from 
the other till a stable distance is achieved. At th a t stable separation distance they 
continue settling till they reach the bottom  of the tank.

Glowinski et al. [33] recently presented results obtained for the interaction of 
disks and spheres. They simulated the motion of two balls sedimenting in an incom­
pressible fluid. In their simulations two spheres sediment in a rectangular channel. 
The com putational domain was 1 x 1 x 4  (dimensionless). The diam eter of the two 
ball was 1/6 (dimensionless) and the spheres are located less than  one diam eter apart 
from each other. The mesh used to carry the simulations was quite large 2.1 106 
vertices nodes. The collisions were handled using a repulsive force model. For their 
simulation the maximum Reynolds number was Re=111.46. From these simulations 
they present figures showing the kissing, drafting and tumbling phenomenon.

We used the results reported by Glowinski et al. [33] to compare with our sim­
ulations. Comparing with these simulations was easier than comparing with our ex­
periments since from our experiments we could have a qualitative description of the 
particles motion but exact measurements were difficult to obtain. In our experiments
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Bk

Figure 9.17: Two spheres kissing, drafting and tumbling. t=0.584s, 0.664s, 0.744 and 
0.824s.
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I »

Figure 9.18: Two spheres kissing, drafting and tumbling. t=0.904, 0.984s, 1.064s and 

1.224s.
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Figure 9.19: Two spheres kissing, drafting and tumbling. 3D - t=0s, 0.04s and 0.08s.
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Figure 9.20: Two spheres kissing, drafting and tumbling. 3D - t=0.12s, 0.16s and 
0.2s.
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Figure 9.21: Two spheres kissing, drafting and tumbling. 3D - t=0.24s, 0.28s and 
0.32s.
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Figure 9.22: Two spheres kissing, drafting and tumbling. 3D - 1—0.36s.
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Figure 9.23: Two spheres kissing, drafting and tumbling. Experimental results. Ver­
tical velocity vs. time (dimensionless).
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one particle is released before the other and tha t would affect the initial motion of the 
second particle. Another difficulty with using the experimental results was tha t for 
such a Reynolds number, the computational mesh to accurately capture the formation 
of a wake behind the first sphere would have been quite large.

For this case we had to re-scale the problem since before we had made the problem 
dimensionless using parameters such as the Reynolds number and the Froude number, 
so that the terminal velocity would be scaled to the unit. Unfortunately, we could 
not use a mesh as refined as the one used by Glowinski since we did not have the 
corresponding computational resources.

To simulate the interaction between particles, simulations were conducted using a 
mesh of 306231 nodes and 205800 elements. The Reynolds number was set to Re=108. 
The density of the particles is ps = 7.80 and density of the fluid is pp =  0.826. The 
initial conditions axe that the fluid and particle are at rest. No-slip conditions are 
prescribed on all the walls. Both spheres have radius of 0.4. Their initial positions 
are (x,y,z)=( 0.0, 6.0, 0.0) and ( 0.0, 5.0,0.0) respectively.

Figures 9.24 and 9.30 show the particle’s positions and velocity field obtained 
for this case (Re=108). As in the case of our experimental tests and of the results 
presented by Glowinski [33] our numerical simulations show the kissing, tumbling 
and drafting. The upper sphere settles slower than the bottom sphere at first. After 
a while the velocity of this upper sphere increases and the distances between them 
becomes smaller, we can see this sphere moves downwards towards the leading one. 
This is caused by the reduced drag the upper sphere experiments when it enters 
the leading sphere’s wake. The two spheres then kiss and continue dropping together. 
This new configuration is unstable and the pair tumbles. The spheres start to separate 
until a stable distance is achieved. Finally the two spheres fall side by side.
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Figure 9.24: Two spheres kissing, drafting and tumbling: Numerical results for t=0.01 
(dimensionless). R e= 108.
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Particle X0 (cm) AX (cm) with respect to center sphere Uy-mi{ cm/s)
1 -0.28 -0.08 12.5
2 0 0 12.5
3 0.21 0.12 12.5

Table 9.1: Three spheres settling. Experimental setup and terminal velocity.

9.4 Three spheres in an horizontal arrangement

Experiments and numerical simulations were carried out to study the motion of three 
solid particles settling. In this first case the three spheres are released at the same ini­
tial vertical position and spaced horizontally with a distance of one diameter between 
each other. The experiments were carried out using 0.99 mm diameter steel bearings. 
Table 9.1 shows the initial position of each sphere relative to the center sphere, the 
displacement in the x component with respect to the center one (separation between 
center of mass of each sphere) and the terminal velocity obtained in each case. This 
terminal velocity is just an approximation since the value of the terminal velocity of 
each sphere oscillated between 12.4 and 12.7.

Figure 9.31 shows the pictures obtained with the high speed camera. Figure 9.32 
showed the evolution of the terminal velocity with time. The spheres settled increasing 
the separation between each other till the separation distance is about 2 diameters. 
The three spheres reach approximately the same vertical terminal velocity.

Figures 9.33 to 9.40 show the numerical results obtained for this case. The mesh 
used had 306231 nodes and 205800 elements. Reynolds number was set to R e= 84.7 
and Fr=1.2. These values reflect the radius used for this simulation of 0.35. The 
density of the solid was set to pF=7800 and the density of the fluid to ps=826. The 
timestep used was of dt=0.01. Initially the fluid is at rest and the particles are 
released at t=0. The Figures 9.33 and 9.37 show the particle’s positions for different 
timesteps. Figures 9.38 to 9.40 show the evolution of the vertical velocity with time 
and the spheres displacement in the x and z coordinates. For this simulation the 
spheres move downwards with very little displacement in the other two components. 
We should note that the mesh used in this simulation was much smaller than the 
corresponding experimental tank, leaving the spheres with little space to separate 
even further. The sphere closer to the wall reaches a smaller terminal velocity. This 
could have been caused by its proximity to the wall.
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Figure 9.31: Three spheres settling. Experimental results for spheres released at the 
same vertical height. t=0.20s, 0.60s, 0.80s and 1.0s.
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Figure 9.32: Three spheres settling. Experimental results. Terminal velocity vs. time.
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Vertical velocity vs. time
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Figure 9.38: Three spheres settling. Experimental and numerical results. Terminal 
velocity vs. time (dimensionless).
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Figure 9.39: Three spheres settling. Numerical results. X displacement vs. time 
(dimensionless).
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Z vs. time
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Figure 9.40: Three spheres settling. Numerical results. Z displacement vs. time 
(dimensionless).
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9.5 Three spheres in a vertical arrangement

For this experiment three spheres are arranged vertically and released one at a time 
in a fluid at rest. The 3D images are presented in Figure 9.41. As soon as the 
spheres start dropping the second sphere approaches the leading one. They continue 
to drop together while the top sphere accelerates towards them. The three spheres 
fall together for a very short period. This configuration is unstable and the spheres 
tumble and separate. They spread apart and then continue to fall till they reach 
the bottom of the tank. To simulate this case a 306231 nodes and 205800 element 
mesh was used. The timestep was set to 0.01. Other input parameters such as the 
Reynolds and Froude numbers were: Re=110 and Fr=0.1. The ratio of densities was 
set to 9.44. The initial and boundary conditions were that the solids and fluid are at 
rest at time t= 0  and the velocity was prescribed to be zero on all the walls. Figure 
9.43 shows the results obtained for our simulation. Overall, the numerical simulation 
captures all the characteristics of the motion studied in our experiment.

9.6 27 spheres settling

Experiments were limited to a few spheres since it was extremely hard to release 
the sphere in a controlled fashion. Although the electromagnet technique proved 
to be useful it could not handle too many particles. On the other hand, published 
data corresponding to simulations of many particles is scarce. Commercial software 
widely used in the university (i.e. Fluent) could only handle one solid particle. For 
these reasons, the following case was not compared to any experiment. We believe 
its results to be correct since the goodness of the simulations had been determined 
for all previous cases. To simulate twenty seven spheres settling under gravity we 
used a mesh with 653455 nodes and 449280 elements. Reynolds was set to Re=59.35 
and Froude to F!r=1.72. The ratio of density was set to 9.44. The timestep for this 
simulation was of 0.01. Initially the fluid and spheres are at rest. Boundary conditions 
are prescribed for all walls. The spheres are arranged in three groups of 9 spheres 
each, equally spaced and centered with respect to the numerical domain as shown 
in Figure 9.52. Figures 9.53 to 9.55 show the results obtained. The spheres start to 
drop and move horizontally in x and z direction to increase the separation between 
them. As they drop some collisions occurred.
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Figure 9.41: Three spheres in a vertical arrangement. Experimental results: positions 

for t= 0 .04s, 0.08s, 0.16s and 0.32s.
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Uy vs. time
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Figure 9.42: Three spheres in a vertical arrangement. Experimental results: vertical 
velocity vs. time.
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Figure 9.43: Three spheres in a vertical arrangement. Numerical results: t= ld t  
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Figure 9.44: Three spheres in a vertical arrangement. Numerical results: t=15dt 
(dimensionless).
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Figure 9.45: Three spheres in a vertical arrangement. Numerical results: t=25dt 
(dimensionless).
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Figure 9.46: Three spheres in a vertical arrangement. Numerical results: t=35dt 
(dimensionless).
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Figure 9.47: Three spheres in a vertical arrangement. Numerical results: 1 
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Figure 9.48: Three spheres in a vertical arrangement. Numerical results: t=75dt 
(dimensionless).
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Figure 9.49: Three spheres in a vertical arrangement. Numerical results: t=95dt. 
Contour at X=0.12 (dimensionless).
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Figure 9.50: Three spheres in a vertical arrangement. Numerical results: t 
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Figure 9.51: Three spheres in a vertical arrangement. Numerical results: t=95dt. 
Contour at X=-0.10 (dimensionless).
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Figure 9.52: Settling of 27 spheres. Computational domain.
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9.7 Perform ance of the parallel code

Table 9.2 shows the average time spent per pass of the conjugate gradient (with an 

average of 7 iterations to achieve convergence) and the speedup factor for different 

number of processors used in each run. For our comparison the speedup factor S(n),  
is calculated as:

. . tim eseriai , ,
S(n)  =  —-------------  (9.1)

tlTneparaiigi

The test case used to compare execution times was that of one particle sedimenting 

under the influence of gravity. The mesh had 179401 nodes and 120000 elements. The 

cases were run on an SGI Origin model 2000 with 44 Processors (195MHZ), 12 Gbytes 

of main memory.

Time and Speedup vs. number of processors
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Figure 9.56: Time and Speedup vs. number of processors

Table 9.3 shows the good scalability properties of the algorithm. For larger prob­

lems the total CPU tim e spent in the conjugate gradient increases and so does the 
speedup factor.
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Num. of Processors n Average Time (s) Speedup Factor S(n)
1 20.60 1.00
4 10.25 2.01
8 5.51 3.74
12 3.92 5.26
16 3.15 6.54

Table 9.2: Number of processors, average time per pass of the conjugate gradient and 
speedup

Mesh size %Time of CG S(n ) for 16 processors
32579 67.6 6.0
179401 83.5 6.54
396223 90.1 7.09

Table 9.3: Comparison of mesh size (number of nodes) with time spent in CG and 
speedups achieved
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Chapter 10 

Conclusions

A new algorithm to solve for the equations that describe particulate flow is presented. 
The method tha t we suggested in the present paper is a fictitious domain Eulerian 
method for direct simulation of particulate flows. The main advantages in comparison 
to other methods of the same type (in particular the method tha t we used as a starting 
point for the present study, proposed by Glowinski et ah, [33]) are that:

1. It defines a global Lagrange multiplier, A, whose physical meaning is of an ad­
ditional velocity field that imposes the rigid body motion. This allows us to 
completely eliminate the Lagrangian grids used by [33] to discretize the dis­
tributed Lagrange multipliers in their case. This allows for the use of basically 
only one solver on relatively regular grids which facilitates the parallel imple­
mentation of the method.

2. The global Lagrange multiplier, together with a proper choice for the inner 
product that is used to impose the rigid body constraint allows to avoid the need 
to solve the linear system for computing the distributed Lagrange multipliers in 
each particle. Although this system is not large, it eventually is to be solved on 
each iteration. If the flow contains many particles, the savings can be significant.

3. The present algorithm employs a second order in space, incremental projec­
tion scheme for the resolution of the generalized Stokes problem which, as our 
numerical experience shows, performs better than a first order scheme. The spa­
tial discretization is also second order accurate for the velocity and first order 
accurate for the pressure.

184
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In addition to these advantages, this method retains all the advantages of the method 
proposed by Glowinski et al. [33].

The new algorithm was first used to implement a program to solve for one solid 
particle. This program was then extended to handle many solid particles. The math­
ematical formulation remained the same but a collision strategy had to be put into 
place to avoid particles from interpenetrating each other. Finally, the code was par­
allelized and its performance was studied for different size problems and its speedup 
measured. In all cases the program was validated against experimental data obtained 
in the laboratory or from published literature.
Future work could involve improving the collision algorithm using local mesh refine­
ment to provide a finer zone to detect and handle collisions. Thus, we would have a 
multi-scale problem and a more physical representation of those collisions could be put 
into place. The conjugate gradient preconditioner could be enhanced. If the problems 
were restricted to use uniform grids then domain decomposition techniques could be 
used for the parallel solver. A variety of physical settings to better understand and 
visualize particulate flow can now be simulated.
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A ppendix A. Num erical integration

A .l  A dapted Gaussian quadrature 

A . 1.1 One dim ensional G auss quadrature

Gaussian quadrature seeks to obtain the best numerical estimate of an integral by 
picking optimal abscissas at which to evaluate the function /( f )  [42]. The fundamental 
theorem of Gaussian quadrature states that the optimal abscissas of the m-point 
Gaussian quadrature formulas are precisely the roots of the orthogonal polynomial 
for the same interval and weighting function. Gaussian quadrature is optimal because 
it fits all polynomials up to degree exactly. The simplest form of Gaussian Integration 
is based on the use of an optimally chosen polynomial to approximate the integrand 
f ( t )  over the interval [—1, +1]. It can be shown that the best estimate of the integral 
is then: ^

f  f ( t )dt  = Y ] w i f ( t i) (A.l)
J- 1 i=i

where f4 is a designated evaluation point, and Wi is the weight of tha t point in the 
sum. If the number of points at which the function / ( t )  is evaluated is n, the resulting 
value of the integral is of the same accuracy as a simple polynomial method.

The Gauss-Legendre integration formula given before evaluates the integral on the 
interval for t of [—1, +1]. In most cases the integral needs to be evaluated on a more 
general interval, say [a,(3\. This can be achieved by mapping the interval [a,0] onto 
the [-1,4-1] interval using an appropriate transformation.

A .1.2 M ulti-d im ensional G auss quadrature

Multi-dimension quadrature rules can be obtained from products of one-dimensional 
quadrature rules. It is convenient to map the region of integration to a convenient 
unit area or volume. This can be done using an isoparametric transformation. The
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space used to define the element shape functions is the best choice for the region of 
integration. The essential idea underlying this centres on the mapping of the simple 
geometric shape in the local coordinate system (£, 77, ()  into distorted shapes in 
the global Cartesian coordinate system (x, y, z). The mapping from local to global 
coordinates will take the form

N v

x = ' £ tXiMZ>V,0 (A.2)
i=1 

Nv

y = 'Y2yi<i>i& v,0  (a.3)
2=1

N v

2 =  <M£, ??, 0  (A.4)
2= 1

where Nv is the number of points defining the geometry of the element, fa is the ith 
basis function and Xi, yi, Zi are the Cartesian coordinates of the nodal points of the
element. There is a one-to-one correspondence between the nodes in the standard
element and the element in the global coordinate system. Due to the transformation 
equation, the volume integral for a given element can be written as:

I = [  f ( x , y , z )dxdydz  =  [  /(£ ,? /,C)|J|d£cMC (A.5)
Jn Jn

where J  is the transformation Jacobian given by:

/  dx  dy  dz  
di dt di 
dx dy dz  
drj dr) dr) 
dx  dy  dz

\  a< d (  d (

(A.6)

and j J  | is the determinant of J .
The integral equation can be numerically integrated by using Gaussian quadrature. 

This yields

(A.r)
i = l  j = 1 k= 1

where w ^ k  is the weight corresponding to the local coordinate point (6 i rlj, (k)- 
Derivatives are easily converted from one coordinate system to another by means 

of the chain rule of partial differentiation. For example:

df (x ,  y ,  z) =  9 /(g , r), C) d£ df(£,  J], C) dr) df(£,  rj, Q d (  
dx  d£ dx drj dx d (  dx
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