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ABSTRACT

.Rcscrvuirs producing under gravity drainage are known to achieve high
recoveries. In this work mathematical models are developed for thermal gravity drainage
of heavy oil and bitumen. Naturally fractured reservoirs are considered first, and by
means of a time scale analysis it is shown that the two processes of heat and fluid flow
can be decoupled for a typical single block. The time scale analysis is used later to
develop a scaling criterion for physical modelling of thermal gravity drainage. The Heat
Integral Mcthod (HIM) is then used which permits an analytical solution for thermal
gravity drainage in a single block. The solution indicates that the production rate is
lincarly proportionai to oil mobility at steam temperature. It is also found that the average
block temperature can be used as a representative temperature for oil rate calculations
with minimal error. Using this assumption, very simple equations are obtained which are
then used to examine the importance of thermal gravity drainage in fractured reservoirs.
Three analytical and semi-analytical models are developed to show the application of
HIM in thermal recovery processes. The models are then used to study the relevant
processes. Thermal gravity drainage is a moving boundary process in high permeability
systems. A new interface equation is derived to model accurately the interface behaviour.
This is then combined with the conservation laws for energy, mass and momentum to
develop a numerical model for a Steam-Assisted Gravity Drainage (SAGD) process. A
wansformation is used to make the interface stationary, which allows fine-gridding where
high accuracy is required. The model is validated against a newly developed analytical
model for a moving boundary process in porous media and other available analytical
solutions. By performing a case study, it is found that the application of the numerical
model is limited to cases where the interface does not completely separate from the
vertical axis. Using the 2-D temperature and potential profiles from the numerical model
it was tound that the potential distribution can be assumed to be steady-state; however,

heat flow should be modeled as an unstecady-state process.
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1. INTRODUCTION

Heavy oil occurring in carbonate reservoirs, mostly fractured, is an important
resource which accounts for one-third of the total heavy oil world-wide. Many fractured
reservoirs in the Middle East, the former Soviet Union and Canada are candidates for
thermal recovery. Processes such as steam injection were not applied to the fractured
reservoirs until the last decade or so. It was believed that the injected steam would bypass
the oil through the fractures, leaving most of the oil unrecovered. Later, publication of the
field results of steam injection in fractured reservoirs showed very promising results.
Initial mathematical studies indicated that the very large surface area of the matrix blocks
exposed to the fractures provided a means for effective heat transmission, alleviating the
problem of steam breakthrough. The same behaviou had been observed previously in
geothermal reservoirs. In the latter case, projects could be designed such that the cold

water injected through the fractures of a geothermal reservoir turned to steam before it
reached the production well.

A review of the literature indicated that satisfactory models for predicting the
performance of steam injection in fractured reservoirs are not available, and there is no
consensus on the major mechanisms responsible for heat and fluid flow in such
operations. This work was initially aimed to take a first step by modelling the matrix-
fracture heat transfer accompanied with thermal gravity drainage of the oil. Gravity
drainage was considered, because this mechanism achieves high displacement and high
sweep efficiency if implemented under stable conditions. Field results indicate recovery
factors as high as 70% for gravity drainage under favourable conditions. Gravity drainage
is known to be the major recovery mechanism for many light oil fractured reservoirs.

Improvement of the gravity drainage of heavy oil from a single block was previously
studied experimentally by the author.

Thermal gravity drainage of heavy oil from a single block of a fractured reservoir
is a combined heat and fluid flow process. Heat is transferred to the oil, and the oil drains
simultaneously due to the gravity force. If the drainage rate is slow enough compared
with the heat flow rate, the two processes can be decoupled. The low permeability of
fractured reservoirs permits the decoupling assumption. In high permeability formations,
however, heat transfer and fluid flow compose a combined process. Large resources of
heavy oil and bitumen occur in such high permeability reservoirs, and recovery processes
based on thermal gravity drainage have been shown to be attractive in such formations.

1



Butler. McNab and Lo introduced the £team-Assisted Gravity Drainage (SAGD) process
for thermal recovery from high permeability formations. The SAGD process takes
advantage of the gravity drainage of the heated oil ahead of an expanding steam zone.
Numerous experimental and theoretical studies and field results indicate that the SAGD
process is an atiractive recovery method for the bituminous reservoirs of Alberta.
Simplistic mathematical models of the SAGD process have been used for the purpose of
some mechanistic studies, and computationally expensive thermal simulators have becn
used for field studies. It seems that the capability of incorporating complex input data,
and a lack of confidence in the assumptions involved in the simpler analytical and semi-
analytical models have persuaded industry to use the complex thermal simulators. A
review of the literature indicated that there is no thermal simulator that is specifically
designed for the SAGD process. Avariabiinty of such a model is needed, because in
commercially available thermal simulators, accurate modelling of the heat and fluid flow
processes in the vicinity of the steam interface, where most of the oil flow occurs, is only

possible if fine-gridding is implemented for the global domain. This, in turn, results in
impractical coraputational time.

In the SAGD process, a steam-oil interface is formed which passes through the
reservoir. The petroleum literature indicates few attempts at numerical modelling of
moving boundary phenomena. In other engineering fields, however, various
transformation and dynamic gridding techniques have been developed which permit
accurate modelling of the process of interest. A requirement for accurate modelling of a
moving boundary problem is availability of an interface equation which reveals the
interface location. An objective of this work is to develop a numerical model for the
thermal gravity drainage of heavy oil in high permeability porous media, which permits
mechanistic studies as well. A new interface equation is to be derived and state of the art
modelling of moving boundary processes is to be implemented. An atlempt will be made
to combine the advantages of previous analytical and numerical models. In order to
validate the model, an analytical solution is to be developed which is analogous to the
SAGD process in one dimension and without temperature effects. Similar to other
mathematical models, especially the first attempts, it will be found that the developed

model has its own limitations. These limitations and suggestion as how to alleviate them
are discussed in parts of this study.

In the process of developing the anaiytical model for thermal gravity drainage in
fractured reservoirs, an integral method is used to simplify the solution of heat flow

2



problem. Such integral methods have been used rarely in the petroleum literature. This is
despite their broad application for modelling diffusion dominated processes such as those
explaining heat conduction and single phase fluid flow in porous media. To show the
application of the Heat Integral Method (HIM) in modelling thermal recovery processes,
three relevant analytical and semi-analytical models are developed as another part of this
work. Figure 1.1 illustrates the scheme of this work.

Mathematical modelling of non-isothern:al gravity
drinage of heavy oil and bitumen in porous media

v y

Low permeability formations . . .
(Fractured reservoi:s) —r] High permeability formations
Chapters 4 and 5 ' Chapters 7 and 8
* * Application of the
transformation and
_ . Derivation of fine-gridding
2°Cf) tf:errgt;\l?‘tgn anew techniques applied
? interface to moving boundary
process: . .
equation problems in
computational fluid
dynamics

Analyticai modelling of Magnitude and time
the matrix-fracture heat scale analyses
transfer

Integral methods
commonly used in the

boundary layer theory
I v v _ Vv ¢

Analytical modelling App“:aﬁi.o" ‘t’:‘ HIM :“ Development of a new
of thermal gravity modeliing therma 2-D numerical model
drainage in tractured recovery processes for the SAGD process

reservoirs Chapter 6

Figure 1.1 Schematic presentation of different parts of the current work and their inter-relation.
(The major contributions of this work are high-lighted)




2. REVIEW OF LITERATURE

The oil sand and bituminous resources of Canadian reservoirs are estimated to be
as large as those of conventional crude oil, world-wide [Farouq Ali 1994]. In Alberta,
bituminous reservoirs are of two types: high permeability porous media (and/or tar
sands), and low matrix permeability naturally fractured reservoirs!. Athabasca, Cold Lake
and Peace River reservoirs are examples of the former, and the fissured vugular

Grosmont formation with more than one trillion barrels of bitumen in place [Cordell
1982] is an example of the latter.

It is essential to heat the immobile bitumen systematically so that a high sweep
efficiency is attained, and to avoid cooling of the bitumen before it reaches the production
site. Pilot tests in the Grosmont formation [Cordell 1982}, and field results in the former
U.S.S.R. [Antoniadi, Budnikov and Garushev 1988] have indicated that the fracture
network permitted fast distribution of the injected steam in the formation. Subsequently,
the oil in the matrix blocks was heated and drained to the fracture network. In high
permeability porous media, Steam-Assisted Gravity Drainage (SAGD) has shown
promising results. In both cases of low and high permeability systems, gravity drainage
has been found to be an important recovery mechanism.

Reservoirs producing und«r gravity drainage are known to achieve high recoveries
[Saidi 1987, Hagoort 1980, Dykstra 1978, Cardwell and Parsons 1948]. This is becausc
stable gravity drainage leads to both high displacement efficiency and high sweep
efficiency. King, Stiles, and Waggone [1970] reported a displacement efficiency of 87%
due to gravity drainage from the Hawkins filed in Texas. Saidi [1991] presented an
example of 70% recovery from the Lakeview pool of the Midway Sunset field under
natural depletion and gravity drainage mechanisms. A recovery factor of 40% was
reported by Murty, Al-Saleh, and Dakessian [1987] due to gravity drainage in the 0.050
pm2 Mauddud reservoir. As early as 1953, Higgins [1953] reported an experimental study
on the gravity drainage of light and heavy oil. He suggested that *recoveries by gravity
drainage may be higher than those expected by waterflooding.” Based on his
experimental studies and field performances, he suggested that “a combination of sand
permeability, gravity of the oil (hence, its viscosity) and formation thickness may be such

In this work the term “high permeability porous media” is used to refer to usual, non-fractured
reservoirs in contrast to “naturally fractured reservoirs” or simply “fractured reservoirs”.
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that gravity drainage is a more efficient recovery mechanism than encroaching edge-
water.”

In steam drive projects, pressure forces are the main driving force for oil
production before breakthrough; however, the production rate might be low due to the
low mobility of heavy oil [Vogel 1992]. After breakthrough. the pressure drop in the
steam zone drops to a small value which exerts minimal driving force on the oil bark, and
gravity drainage of the heated c*l below the expanding steam zone dominates the process.
Vogel [1992] believed that the main recovery mechanism in such reservoirs was gravity
drainage of a thin layer of heated oil adjacent to the steam interface.

In such cases where the hot fluids drain along the steam interface and do not
penetrate ahead of the interface, heat transfer is dominated by conduction ahead of a
moving boundary. Experimental and theoretical studies as well as field results have
indicated that gravity drainage of the heated oil in high permeability porous media is a
moving boundary phenomenon [Butler ez al. 1981, Edmunds, Kovalsky, Gittins, and
Pennacchioli 1994]. Heat flows ahead of a steam-oil interface that travels through the
formation due to drainage of oil ahead of the interface. In natrally fractured reservoirs,
however. the effect of the moving boundary can be negligible, if the permeability of the
formation is low enough. Under the latter conditions the two processes of heat and fluid
flow can be decoupled as will be shown in this study. Due to the difference in behaviour,
the two problems of thermal gravity drainage in naturally fractured reservoirs and in high
permeability porous media have been discussed separately in the literature. The previous
studies concerning thermal processes in naturally fractured reservoirs are reviewed first
with an emphasis on gravity drainage, and later the literature on non-isothermal gravity
drainage in high permeability porous media will be reviewed.

2.1. Non-isothermal Gravity Drainage in Nat::rally Fractured Reservoirs

Heavy oil occurring in carbonate reservoirs, mostly fractured, is an important
resource which accounts for one-third of the total heavy oil world-wide [Briggs, Barron,
Fulleylove, and Wright 1988]. Many fractured reservoirs in the Middle East [Macaulay,
Krafft. Hartemink., and Escovedo 1995}, the former Soviet Union [Antoniadi et al. 1988,
Baibakov and Garushev 1989] and Canada [Cordell 1982] are candidates for thermal
heavy oil recovery. Processes like steam injection, or other thermal recovery methods,
which have extensively been used to recover heavy oil from non-fractured reservoirs,
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were not applied to fractured reservoirs until the last decade or so. This was primarily
because of the belief that the injected steam would bypass the oil through the fractures,
leaving most of the oil unrecovered. The results of the experimental, theoretical and pilot
tests published since the early 1980’s show the feasibility of heavy oil recovery from
fractured reservoirs using steam injection. However, satisfactory models are not available
to predict the performance of this process, and there is no consensus on the major
mechanism responsible for heat and fluid flow in these reservoirs. as reviewed below.

2.1.1. Experimental Studies

Nolan, Ehrlich, and Crookston [1980] performed experimental studies to show the
applicability of steam injection in fractured reservoirs. They placed live-oil saturated
cores in a steam environment, and observed that the bubble point pressure of the oil
within the core was excceded because of the temperature increase, and that the solution
gas drive mechanism caused oil expulsion. Sahuquet and Ferrier [1982] reported hot
water and steamflooding of fractured cores at high pressure and temperature. They found
that natural imbibition was responsible for 13% recovery, another 9.5% was produced
when hot water was used, and steamflooding caused an additional 44.5% recovery of the
original oil-in-place (OOIP). Dreher, Kenyon, and Iwere [1986] performed experiments
on fractured cores and found that imbibition at high temperature and CO2 generation
were among the active recovery mechanisms. Baibakov and Garushev [1989] tested the
effect of temperature on imbibition and found that more oil was recovered at higher
temperatures. It is worth noting that the imbibition process can be explained by a
nonlinear diffusion equation [Dutra and Aziz 1992]. It is well known that the time scale
of diffusion processes is inversely proportional to the second power of the characteristic
length of the domain. Performing experiments under laboratory conditions with very
small length scales compared to field conditions is believed to have exaggerated the role
of capillary forces and the imbibition mechanism in many of the previous studies.

In order to investigate the recovery mechanisms during pressure cycling of
fractured reservoirs under steam injection, Briggs, Beck, Black, and Bissel! {1992]
conducted several experiments. They found ti:at flashing of the steam condensate and
CO> generation were two of the important mechanisms in oil production. Reis [1992-a}
reported low and high temperature imbibition experiments on various rock samples. He
found that the average oil recovery at high temperatures was 50% more than that at low
temperatures. He also conducted some experiments on samples with high carbon content,
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that is kerogen, and found an increase of 13% in the porosity and 20-30% in the OOIP.
The increase in OOIP was due to chemical alteration of the kerogen to liquid
hydrocarbon. Jensen and Sharma [1991] conducted steam and hot waterflooding
experiments through fractured and non-fractured cores. They found that imbibition was
not an important recovery mechanism in oil-wet carbonate rocks. Instead, thermal
expansion was found to be the dominant mechanism.

2.1.2. Field Studies

Few field tests of steam injection in fractured heavy oil reservoirs have been
reported; however, positive results were obtained. Sahuquet and Ferrier [1982] reported a
pilot test on the highly fractured carbonate reservoir of Lacq Supérieur in France. In spite
of a high initial water saturation, and a low matrix permeability, the results of the pilot
test have been promising. They observed an increase in the production rate shortly after
steam injection, and reported no heat breakthrough during the operation. Cordell [1982]
reported on the encouraging results obtained from a single well cyclic steam stimulation
pilot test performed on the fractured vugular formaticn of Grosmont. The OOIP of the
reservoir was estimated to be above one trillion barrels of bitumen [Cordell, 1982].
Antoniadi er al. [1988] reported on cyclic steam injection in the heavy oil fractured
reservoir of Zybza in the former U.S.S.R. Initial cycles increased the production rate 10
to 20 times. The cumulative steam-oil ratio (SOR) was 3-3.5. Continuous steam injection
in the fractured Usinskoye reservoir was reported also by Antoniadi er al. {1988]. Due to
early steam breakthrough the operation was later changed to water alternating steam
injection. This improved the thermal efiiciency of the operation and the SOR averaged 2.
A pilot steam drive operation on the het.:rogeneous fractured formation of Emeraude was
reported by Couderc, Monfri~ Quettier, and Sahuquet [1989]. After 14 years of primary
production only 3% of the OOIP was recovered. A pilot steam drive was initiated to
decrease the viscosity of the 100 mPa s crude and to introduce an additional drive
mechanism into the reservoir. After two years of operation, the production rate had
increased significantly in some of the producing wells. Although the expansion of the
steam zone was not uniform and a temperature increase in some of the producing wells
was observed, no steam breakthrough had been reported after two years of operation. The
cumulative SOR was about 3.6 during this period.



2.1.3. Mathematical Studies

Different numerical and a few analytical predictive models have been developed
to study steam injection in heavy oil fractured reservoirs. Based on the assumption that
heat conduction from steam carrying fractures to the matrix blocks can smooth out the
propagation of the heat front, Nolan et al. {1980] used a conventional thermal simulator
with average matrix-fracture properties. Later, double-porosity models were used. Briggs
[1989] developed a simulator for predicting the performance of cyclic steam injection in
naturally fractured reservoirs and investigated the process. No attempt was made to use
grid refinement. However, single block studies using sub-domain techniques have shown
that erroneous results are obtained if the matrix block is modelled as a single grid point.
Dividing individual matrix blocks into several computational grids for refined modelling
of transient phenomena such as gravity drainage and gas diffusion was suggested by Saidi
[1975]. He used a double-porosity model incorporating the fine-gridding approach to
match the history of a naturally fractured reservoir in Iran [Saidi, 1975] . While Saidi
[1983] qualitatively explained the sources of error that would occur when matrix blocks
are simulated by a single grid, recent studies [Palatnik, Shandrygin, and Segin 1992}
quantified some of these errors. The first double-porosity thermal simulator which
incorporated fine-gridding was developed by Pruess and Narasimhan [1985]. They used
their model to study the behaviour of geothermal reservoirs. Later, Chen, Wasserman,
and Fitzmorris [1987] allowed sub-gridding in their thermal simulator and studied steam
injection in a five-spot in a naturally fractured reservoir. They found that gravity drainage
could be one of the important recovery mechanisms. The authors concluded that heat was
transferred by both conduction and convection mechanisms. Dreher er al. [1986] studied
heat and fluid flow in fractured reservoirs numerically, and found that conduction only,
was the dominant mechanism for heat transfer. Lee and Tan [1987] incorporated a triple
porosity idea [Abdassah and Ershaghi 1986] in their thermal model. They also accounted
for fluid flow between matrix blocks; that is, their model applied to multiple permeability
systems as well. Through their isothermal single phase examples, Lee and Tan [1987]
showed that fine-gridding was necessary for modelling the transient behaviour within the
matrix blocks. Jensen and Sharma [1991] used fine-gridding in a conventional thermal
simulator to model their experimental results of water and steamflooding through
fractured cores. Oballa, Coombe, and Buchanan [1993] performed a sensitivity analysis
to study different fine-gridding techniques in various double-porosity and double-
permeability thermal models. Recently Sumnu, Aziz, Brigham, and Castanier [1994] used



a commercial thermz! model o perform sensitivity studies on certain flow properties,
e.g., capillary pressure, and also to design their experimental study.

Several investigators using mesh refinement have concluded that modelling
wransient phenomena within individual blocks is crucial in accurate modelling of the
response of fractured reservoirs [Saidi 1983, Gilman 1986, Chen ez al. 1987, Hoire,
Firoozabadi, and Ishimoto 1990]. Although such models were able to predict the detailed
behaviour of individual blocks with significant accuracy, these models incorporated large
systems of equations and required increased computational time and memory. In an
attempt to overcome this problem Pruess and Wu [1993] developed a semi-analytical
double-porosity model, which used simple trial functions representing the transient
temperature distribution due to heat conduction from fractures into the matrix blocks. The
functions were obtained at each time step by satisfying an integrated form of the heat
equation for the corresponding block. As this assumed no convective heat transfer, the
authors used their model for a fracture network within an impermeable medium where no
fluid flow could occur between the fracture and the matrix blocks. They extended their
model to single phase non-isothermal flow between a fracture system and permeable
matrix blocks, where gravity and capillary forces were not important, such as geothermal
reservoirs containing hot and cold water. In such a system, fluid flow could be explained
by a single phase diffusivity equation, which is analogous to the heat conduction
equation. Satman [1988] used an analytical approach to study heat flow in a fractured
geothermal reservoir. He ignored the effect of fluid flow within the blocks and solved the
heat equation analytically for the fracture and the matrix.

As noted, different studies have revealed different mechanisms to be the dominant
one in heavy oil recovery from fractured reservoirs. This is due to the fact that thermal
recovery of heavy oil from fractured reservoirs is a complicated process. Heat transfer
mechanisms — conduction and convection — are coupled with fluid flow in two different
media, through the temperature dependence of viscosity in Darcy’s law. Multiphase fluid
flow occurs under the interaction of gravity, capillary and viscous forces, with different
degrees of importance of the forces in the fracture network and in the primary porosity.
Considering capillary forces, for example, recovery is enhanced from a water-wet matrix
block when these forces are stronger and water imbibition is active, and the reverse is true
when gas-oil gravity drainage is active. In the fracture medium the role of capillary forces
is traditionally neglected. However, many studies show a large effect of fracture
capillarity on the behaviour of double-porosity systems [Saidi, Tehrani, and Wit 1979,
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Firoozabadi and Hauge 1990, Labastie 1990, Oballa ez al. 1993]. Although the interest in
understanding the behaviour of naturally fractured reservoirs has grown considerably,
recent studies [McDonald, Beckner, Chan, Jones, and Wooten 1991, Palatnik ez al. 1992]

show that there are even more areas that should be investigated thoroughly, before one
can model even the isothermal processes effectively.

2.1.4. Gravity Drainage

In the process of oil recovery from fractured reservoirs different recovery
mechanisms are involved. However, imbibition and gravity drainage are believed to play
the largest role [Saidi, 1987). There is ongoing debate on the superiority of gravity
drainage over imbibition [Saidi 1987, Chen er al. 1987, Briggs et al. 1992]; however,
different studies have indicated that in fractured reservoirs that exhibit eil-wet behaviour
the displacement efficiency by gas-oil gravity drainage is higher than that by water [Saidi
1987, van Wunnik and Wit 1992, Macaulay et al. 1995]. Unfortunately, few pieces of
information on thermal gravity drainage of heavy oil in fractured reservoirs have been
published. Pooladi-Darvish [{1992] and Kharrat, Jamialahmadi, Pooladi-Darvish, and
Vossoughi [1993] reported on experimental results of thermal gravity drainage of heavy
oil from a single block. Their experiments were not scaled and they chose a high
permeability for a 2-D sand pack model to be able to perform their experiments in a
reasonable time. They concluded that the process was dominated by heating of oil in a
thin layer ahead of the steam-oil interface, reducing the oil viscosity to a small value, and
then the drainage of the oil due to the density difference with steam. In their experiments
gravity drainage of heating oil occurred ahead of an advancing steam-oil interface which
swept the porous medium from top and lateral fractures toward the bottom of the sand
pack. van Wunnik and Wit [1992] assumed gravity drainage of heated oil from blocks of
fractured reservoirs. They proposed the 1mproved gas-oil gravity drainage of the heavy
oil of the Qarn Alam reservoir in Oman by steam injection. They considered small matrix
blocks and assumed thermal equilibrium between the fracture and matrix media. In other
words no temperature gradient was allowed in the blocks hence, the gravity drainage
occurred always as a 1-D top down process. The numerical studies of Chen ez al. {1987}
indicated that gravity drainage became an important recovery mechanism during the later
stages of steam injection in a double-porosity system. However, this was not confirmed
by other studies. Using a thermal simulator, Dreher er al. [1986] found that gravity

drainage was not an important recovery mechanism in thermal recovery from fractured
reservours.
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2.2 Non-isothermal Gravity Drainage in High Permeability Porous Media

Thermal oil recovery by steam injection is by far the most important enhanced oil
recovery (EOR) method. In 1988 and 1994, respectively, more than 70% and 60% of the
oil recovered by various EOR methods in the U.S. was produced by the application of
steam [Blevins 1990, Moritis 1994]. Traditionally, two methods of steam injection have
been implemented: steamfizoding and cyclic steam stimulation (CSS). However,
advances in technology and ease in drilling of horizontal wells on one hand, and special
fluid and rock properties of different reservoirs on the other, have resulted in innovative
methods of heavy oil recovery by steam injection. In reservoirs which contain a heavy oil
with very high viscosity and low initial steam injectivity, formation parting has been used
to introduce the required heat into the reservoir. Formation fracturing has been
implemented in CSS techniques at Cold Lake [Denbina, Boberg, and Rotter 1991}, and in
stcamflooding techniques in the bituminous reservoirs of Texas [Soni and Harman 1986].
Numerous studies have shown that gravity drainage of heated oil is an active recovery

mechanism in all of the above techniques. This is especially true for thick reservoirs with
high vertical permeability.

The large contact area of the horizontal wells with the formation provides the
condition to take advantage of the slow process of gravity drainage and satisfy economic

requirements of a project through the Steam-Assisted Gravity Drainage (SAGD) process
[Edmunds er al. 1994].

In the following the above techniques are briefly reviewed, and the role of gravity
drainage is explained as an important recovery mechanism.

2.2.1 Cyclic Steam Stimulation (CSS)

Farouq Ali [1994] recently reviewed the success of the CSS process in Canada,
and pointed out the modifications that the process has experienced to achieve high
performance in the bituminous reservoirs of Alberta. While CSS might vary from field to
field [Farouq Ali 1994], the basic process uses a single well as an injector and producer.
Steam is injected into the reservoir for two to four weeks, and the formation is allowed to
absorb the heat for a few days after injection ceases. The injection well is then put on
production. and the heated oil around the well is produced. The cycles may be repeated as
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long as the process is economical. CSS is mostly known as a stimulation technique, and
its success relies on the drive mechanisms in the reservoir which were less active prior to
steam injection due to the high oil viscosity. In the CSS process the heated mobile oil is
produced without any necessity to drive it through the cold reservoir, as required in the
steamflooding technique. Hence, CSS is an attractive recovery method when high in-situ
viscosity of the oil does not permit a continuous steam drive. The disadvantages of the

process are the low ultimate recovery achieved by the process. and the high density of the
wells required.

As previously mentioned the success of the process mostly relies on the recovery
mechanisms present in the reservoir. During the initial cycles the primary drive
mechanism is often reservoir compaction and solution gas drive [de Haan and van
Lookeren 1969. Denbina er al. 1991]. Later, however, these mechanisms lose their
importance and gravity drainage of the heated oil plays a stronger role. A comprehensive
simulation study of CSS operations in Cold Lake [Denbina et al. 1991] indicated that
gravity drainage became a significant recovery mechanism in later cycles. Unfortunately,
modelling of CSS is complicated by severe multiphase flow in the heated region and
repeating saturation and desaturation of the porous medium. Solutions of the highly
nonlinear equations of such a process are obtained by numerical methods using thermal
simulators [Tortike and Farouq Ali 1993] and is beyond the scope of this study. Under
major simplifications, however, an analytical model was developed. Towson and Boberg
[1967] developed the earliest model for predicting gravity driven oil flow by cyclic steam
injection. They considered a heated zone saturated with heavy oil at a constant viscosity
where most of the oil flow occurred. In their model the authors accounted for gravity and
pressure driven flow. The study showed that gravity drainage of the heated oil was an
important recovery mechanism, especially in thick formations with high permeability.

2.2.2. Steamflooding

In steam drive projects pressure forces are the main driving force for oil
production before breakthrough; however, the production rate might be low due to the
low motility of heavy the oil [Vogel 1992]. After breakthrough the pressure gradient in
the steam zone drops to a small value which exerts a minimal driving force on the oil
bank, and gravity drainage of the heated oil below the expanding steam zone dominates
the ;rocess [Vogel 1992]. A steamflood project is called mature if the overlying steam
breaks through to the production well. Edmunds [1984] studied the effect of pressure
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drop due to steam flow on oil production after breakthrough. He concluded that steam
was not an efficient fluid for creating a pressure drop because its kinematic viscosity is
too small as compared to its heat content.

Several analytical and semi-analytical models have been reported in the literature
to predict the behaviour of thermal recovery processes under strong overlay conditions.
Miller and Leung [1985] considered a horizontal stationary oil-steam interface and used
the analytical solution for heat conduction in a semi-infinite reservoir to describe the
temperature distribution. Numerical integration was used to obtain the oil flow. Kumar,
Patel, and Denbina [1986] accounted for the downward movement of the horizontal
interface and obtained the temperature solution. Again, numerical integration was
necessary to incorporate the effect of varying viscosity on the flow rate, and also to
proceed in time. Closmann [1995] considered mature steam drive projects under strong
override conditions. He used the exponential form of the temperature distribution ahead
of a horizontal interface which corresponded to steady-state conditions, obtaining
analytical solutions for the oil rate under gravity drainage where oil was allowed to flow
horizontally only. Recently, Kimber, Deemer, Luce, and Sharpe [1995] developed a
model to calculate the oil flow rate by gravity drainage and pressure forces in mature
steamfloods. They used a normalized equation to approximate the unsteady-state
temperature distribution ahead of an advancing steam front. The authors assumed a
heated region with a constant viscosity around the production well. They found that
implementing an extra pressure -‘rop by producing steam beyond the heat requirement of
the process marginally increases thic net oil production rate when the steam zone is small.
It was shown that it is detrimental to the process to produce extra steam for an additional
pressure drop when the steam zone gets large in the later periods of the process.

Most of the predictive models either neglected the effect of a moving interface or
assumed steady-state for the heating process. These two cases refer to two extremes
considering the movement of the interface. The effect of the moving boundary can be
neglected when the interface is moving very slowly. and the steady-state assumption may
be justified when the interface is moving fast. However, none of these assumptions may
be valid when many of the heavy oil reservoirs are considered. This is because the
interface movement is fast enough to affect the heating process considerably, but is not
fast enough for steady-state conditions to be assumed.



As noted, most of the available models assumed an a priori known shape of the
oil-steam interface; that is, horizontal in the case of override problems. A major
contribution in modelling the shape of an oil-steam interface was due to van Lookeren
[1983]. He analytically obtained an equation for the steam zone thickness. His solution
incorporated a pseudo-mobility ratio M°, which was a function of oil viscosity at an
unknown temperature. In practice the oil viscosity at steam temperature has been used
[van Lookeren 1983, Palmgren, Bruining, and de Haan 1989]. The parameter M®
included the local steam and oil velocities, which were unknown unless the flow
equations were completely solved. Nevertheless. the equation derived by van Lookeren

satisfactorily predicted the oil-steam interface in several cases [van Lookeren 1983,
Palmgren et al. 1989].

Palmgren et al. [1989, 1991] developed a numerical model for steam drive
processes which was fundamentally different from other thermal simulators. They
assumed a sharp interface between the steam and oil zones, and used an interface
equation in analogy with fresh-sal: water interface movement in porous media. This
interface equation was coupled with a steady-state heat balance on the interface, and fluid
flow equations written in the stream function formulation. Their formulation applied to -
incompressible fluids. The steady-state heat and fluid flow assumptions permitted de-
coupling of the processes and offered major simplifications in the model [Bruining,
Duijn, and Palmgren 1990]. They considered two possibilities for the steam condensate to
penetrate ahead of the interface. The two fluids were considered to make a single phase
with average properties, or the water was permitted to form an under-running water
tongue under steady-state conditions. The mathematical model was then solved using
finite element techniques. They included heat loss effects and concluded that heat loss to
the cap rock postponed steam breakthrough. The authors performed experimental studies
to validate their model and reported qualitative agreements. Palmgren and Bruining
[1992] presented a similar model applying to steady-state heat and fluid flow ahead of the
interface. They invoked the Dupuit assumption and obtained a first order nonlinear
hyperbolic equation for the location of the interface. The latter was subsequently solved
using the method of characteristics. The authors compared their solutions with those of
van Lookeren [1983], and Marx and Langenheim [1959].

The Dupuit assumption or segreg'aled flow theory, as used by many of the
previous investigators, neglects any flow in the vertical direction; that is, normal to the
bedding in tilted formations. The fluids are considered to flow horizontally due to
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potential gradients caused by gravity forces. It has been shown by Dietz [1953] and
Yortsos [1991] that segregated flow theory can be a good approximation for 2-D flow in
homogeneous systems; however, its application to thermal recovery processes, where a
large viscosity variation is present over short distances, is not yet justified.

2.2.3. Fracture-Assisted Steamflood Technology (FAST)

Steam injectivity in bituminous reservoirs is usually very low. This is due to the
high viscosity and immobility of the in-situ oil. Fracturing is used to attain the necessary
injectivity. The Fracture-Assisted Steamflood Technology (FAST) was developed and
implemented in the bituminous reservoirs of Texas [Britton, Martin, Leibrecht, and
Harman 1983]. In the FAST process, each producing well is hydraulically fractured to
create horizontal fractures and then stimulated to heat the formation around the wellbore.
Subsequently, the injection well is fractured to create communication between the
injector and producers. This is followed by high rate steam injection to keep the
horizontal fracture open. Subsequent to communication between the injector and
producers, the injection rate is lowered to permit distribution of steam over a larger
portion of the pay zone. Water injection through the horizontal fractures is used as the last
stage in the process to recover additional oil.

Application of the FAST process in two pilot tests has been reported in the
literature. Britton et al. [1983] presented the results of bitumen recovery from the Street
Ranch pilot containing -2 °API crude. They achieved a steam-oil ratio (SOR) of 10.9. In
- a second pilot the SOR was improved to 8.02 [Stang and Soni 1987]. Soni and Harman
[1986] performed simulation studies to investigate the important recovery mechanisms in
the FAST process. The authors concluded that gravity displacement of the tar from the
rock matrix to the horizontal fracture was the primary recovery mechanism in the FAST

process. The tar in the fracture was then pushed towards the production well as an oil-
water emulsion.

Counter-current flow of oil and steam above steam-heated fractures was observed
previously by Closmann and Smith [1983]. The authors found that a steam-oil interface
was formed and traveled upwards through the reservoir, while the oil above the interface
was heated and drains downwards to the fracture. Edmunds {1984] referred to this
process as ceiling drainage. Of course, not much of the oil below the fracture is produced
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due to gravity forces, as the lighter steam is already located in a stable situation above the
heavy oil.

The gravity drainage of oil from the rock matrix as obscrved in the FAST process.,
and its subsequent transfer to the production well is very similar to the underlying
recovery mechanism in steamflooding of naturally fractured reservoirs as practiced in the
Usinskoye field [Antoniadi et al. 1988]. In the latter case, of course, fracturing of the
injection and production wells is not required.

2.2.4. Steam-Assisted Gravity Drainage (SAGD)

Conventional steamflooding has been used for many years in heavy oil reservoirs
where the in-situ oil is mobile at the reservoir temperature. However, application of the
same process for bituminous reservoirs is limited due to the high viscosity of the bitumen
flowing towards the production well through the cold reservoir. The Steam-Assisted
Gravity Drainage (SAGD) process was proposed as a thermal recovery method which
permits bitumen production while it is hot {[Butler, McNab, and Lo 1981]. In the SAGD
process, for the most part, the gravity forces are responsible for the stable displacement of
the oil. The stability of the process ensures a high displacement efficiency at the pore
level. Gravity forces, however, create a limited potential gradient in a reservoir, resulting
in a low flow rate. For example in a heavy oil reservoir the maximum potential gradient
created by gravity forces is about 10 kPa/m.

The oil recovery methods based on gravity drainage are successtul only if a large
portion of the reservoir is contributing to flow. A high production rate from the light oil
naturally fractured reservoirs of Iran with a matrix permeability in the range of 1 md, for
example. is possible only because a large number of matrix blocks located in the
secondary gas cap of these reservoirs contribute to flow. The high permeability of the
fracture network ensures a minimal required pressure gradient in the fractures for oil
flow. Hence, the producing wells can be located far from each other [Saidi 1987]. A well-
spacing of 1000 m is not rare in these cases. The gravity drainage process in this case is
analogous to rain. Although the rainfall per unit area might not be high, high flow rates in
the coliecting strears might be attained if the water is collected from a large area. In the
SAGD process the large surface area required for flow is provided by the application of
horizontal wells. The application of horizontal heaters to improve gravity drainage of
heavy oil was investigated as early as 1953 by Higgins. His experimental studies showed
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increased ultimate recovery from 40.4% to slightly above 52% when the viscosity of the
oil was lowered from 6000 mPa s to about 50 mPa s. Realizing the importance of uniform
heating, he used a horizontal heater and concluded that “the application of heat to
stimulate gravity drainage from field reservoirs containing viscous oil will be practical if
and when means are devised to heat the formation uniformly and at low cost.” It seems
that the SAGD process offers one means of achieving this goal.

Ir the original version of the SAGD process [reviewed by Butler 1991] two
horizontal wells are drilled at the base of the oil-bearing formation, one above the other.
During the initial stage, steam is circulated through both of the wells to heat the bitumen
located between the tyo wells and hence to establish communication between them.
Subsequently, the upper well is used as the injection well, while the condensate and the
heated oil is produced from the lower well as it is mobilized by the process. It is essential
to avoid excessive differential pressure between the injector and producer to eliminate the
chance of high steam production. During the early stages of the process, steam flows
upwards in the reservoir while the bitumen located above the steam drains downwards in
an unstable manner. Once, the steam reaches the top of the formation the process enters a
new stage. The tendency of steam to override the bitumen ensures that the oil would be
located below the steam. A steam-oil interface is formed that travels sideways through the
reservoir as the oil adjacent to the interface is heated and flows downwards due to gravity
forces. As the steam zone expands the inclination angle of the interface with the horizon
decreases and the potential gradients due to gravity forces along the interface decrease.

The systematic expansion of the steam zone ensures a high volumetric efficiency for the
process.

Modifications of the SAGD process were proposed later to improve upon its
performance. Application of vertical wells as injectors and producers was suggested by
Griflin and Trofimenkoff [1985] and Joshi and Threlkeld [1985].

In order to avoid the cost of drilling two horizontal wells, a vertical injector
together with a horizontal producer was used in Cold Lake. In such cases it is difficult to
achieve uniform steam throughout the length of the horizontal well. This would deciease

the active length of the well and would reduce the superiority of the horizontal wells over
the vertical ones.
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Hamm and Ong [1995] discussed the application of Enhanced Stcam-Assisted
Gravity Drainage (ESAGD). In the ESAGD process a pressure differential between two
adjacent steam zones is created, once bitumen mobility far from the interface is obtained.
This would accelerate the expansion of the steam zone, and is reported to improve the
ultimate oil recovery [Hamm and Ong 1995].

The SAGD process is similar to the cyclic steam stimulation (CSS) in the sense
that the hot oil is produced without any requirement to drive it through the reservoir.
Many theoretical and experimental studies, as well as pilot tests have been performed to
study the feasibility of the process and to determine if the low potential gradients created
by the gravity forces are adequate for economical oil production.

2.2.4.1. Experimental Studies

Butler er al. [1981] reported limited experimental data using a 2-D model
representing the application of horizontal wells in the SAGD process, and a 3-D modcl
representing the expansion of the steam zone around a vertical well. The authors
explained that the physical models were scaled to the Cold Lake reservoirs using two
dimensionless groups. One of them ensured similarity of heat conduction between the
field and model, and the other one was related to the movement of the interface. The
authors presented an analytical model for the SAGD process that slightly overpredicted
the experimental data. Griffin and Trofimenkoff [1985] presented experimental data,
using 2-D and 3-D models. They investigated the expansion of a steam zone created
around a vertical injector located above a horizontal producer. The authors modified the
original SAGD theory [Butler er al. 1981] to obtain closer agreement with their
experimental data. They concluded that the surface area of the stcam zone exposed o the
overburden for heat loss was not as predicted by the original theory, and that the process
was feasible. Joshi and Threlkeld [1985] performed experiments (o study the effect of
various well configurations on the SAGD process. They examined threc well
configurations: a horizontal wellpair, a vertical injector located above a horizontal
producer, and a single vertical well with dual completion used as injector and producer.
As mentioned earlier, it is possible to perform the SAGD process with short distances
between the injector and producer sites, because the pressure drop between them can be
kept minimal. The authors varied the withdrawal rate from the producer and found that
the increased production rate resulted in steam breakthrough, reducing the efficiency of
the process. Among the three well configurations, the authors concluded that the
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horizontal wellpair performed the best. Joshi and Threlkeld [1985] studied the effect of
fractures on the process and found that vertical fractures improved gravity drainage of the
heated oil, hence improving the performance of the process.

Chung and Butler [1988-a, 1988-b] reported the results of several 2-D
experiments representing the application of horizontal wells. Their experiments were
scaled based on a criterion given by Butler [1985-b] for Cold Lake and Athabasca
reservoirs. The authors reported general agreement between the experimental data and the
theoretical predictions of a semi-analytical model presented by Butler [1985-b], and
indicated that closer spacing between horizontal wells improved the performance of the
SAGD process; however, it did not affect the ultimate recovery. Chung and Butler [1988-
b] also studied the effect of location of the injeciion well. When the injection site was
located farther up in the reservoir the heat communication between the two wells was
established by circulating steam in a vertical injector. Of course, this would not be easily
possible if a horizontal injector were located up in the reservoir. Introducing steam from
the upper pait of the reservoir enhanced the performance of the process by reducing the
amount of water-oil emulsion that was produced, particularly when the steam zone rose in
the reservoir. Of course, the relative importance of the location of the injector would
depend on the duration of the upward movement of the steam zone compared with the
period of sideways spreading of it under field conditions.

Further experiments on the application of the vertical wells as injectors were
reported by Licbe and Butler [1991]. The authors used a scaled cylindrical model where
the scaling was performed based on dimensionless groups found previously for the linear
case and application of horizontal wells [Butler 1985-b}. A combination of a vertical
injector with three types of producer were studied. Vertical, horizontal and planar
production wells were used. The producing wells could be thought of as a point, a line,
and a planc sink at the bottom of the steam zone, for the three well types named above,
respectively. Although the experiments were scaled for gravity forces as the driving
mechanism, pressure forces were implemented, too. Steam production was avoided,
however. The results indicated that the planar well achieved the highest production rate
followed by the horizontal and the vertical well. A ratio of 2 to 3 was the difference in
production rate when different production wells were implemented. The authors reported
experimental results for two different pressures and two different reservoir crudes.
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Recently, Zhou, Zhang, Shen, and Pu [1995] reported the results of several scaled
experimental studies where they investigated various well configurations for heavy oil
recovery from a reservoir containing an 11,000 mPa s crude at the initial reservoir
temperature. The experiments were scaled for gravity and pressure forces using the
criteria developed by Pujol and Boberg [1972). Their reported experimental data showed
that the scaling criterion given by Butler [1985-b] was nearly satisfied in their
experiments. The results indicated that application of horizontal wells in a line drive
configuration gave much better results compared to the other configurations
experimented with, including the wellpair configuration in the SAGD process. The
authors explained that a process based on gravitational forces. SAGD. was much slower
than a line drive process where gravitational and pressure forces were both implemented.
In a slow thermal process there is much time for heat loss. resulting in a poor thermal
efficiency. Regarding the above conclusiors twe important points should be considered.
Realizing the fact that heat loss would be more severe in a slow process with the same
degree of override behaviour, it is not clear if the experiments performed by Zhou et al.
[1995] were scaled with respect to heat loss effects. If not. their results would not show
the performance of a thermal project under field conditions with respect to heat
efficiency. Secondly, pressure forces can be used in a reservoir where the oil at initial
reservoir temperature has some mobility. For the bituminous reservoirs of Alberta with
initial viscosities in the range of 105 to 109 mPa s, pressure forces cannot play a major
role unless significant heating has occurred. In the case of the bituminous reservoir the
advantage of the horizontal injectors is to improve sweep efficiency. This is because high
injectivities can be obtained by the application of horizontal injectors while keeping the
local steam velocity low, establishing a more stable process compared with vertical wells.
The large contact area of the horizontal injector with the formation provides the

opportunity to create a large steam zone in a stable manner and in a relatively short period
of time, minimizing the heat loss.

The study reported by Zhou er al. [1995], however, suggests that in a SAGD
process after appreciable heating of oil beiween adjacent steam zones has occurred,
pressure forces may be used to accelerate the process and to improve efficiency. The
ESAGD process, as explained previously, aims to take advantage of the pressure forces
by creating a differential pressure between adjacent steam zones and creating some drive
mechanism. while the oil drained by gravity forces is produced as well. It can be

speculated that changing the process from SAGD to a line drive might be more efficient
at a certain time in the project.
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The benefits that horizontal wells offer in performing thermal oil recovery with
improved efficiency is an area of active research and interest. Escovedo [1995] proposed
different conceptual steamflood designs using horizontal wells for three different fields
with the aim of maximizing project profitability. In his conceptual designs he tried to
maximize the sweep efficiency before breakthrough and to minimize the negative effects
of steam on producing wells, should breakthrough occur.

2.2.4.2 Fleld Studies

Adegbesan, Leaute, and Courtnage [1991] described the first pilot test of the
SAGD process. In this pilot a single vertical injector was placed above a horizontal
producer in the oil sands of Cold Lake. After the initial stimulation of the production
well, steam was injected above formation parting pressure and the horizontal well was put
on production. A combination of log analysis, temperature measurements, seismic data
and mathematical modelling was used to investigate the process and estimate the
contribution of the different drive mechanisms. It was found that the main drive was due
1o pressure forces at the initial stages vii the process, whereas gravity drainage of the
heated oil played an important role during the later years of the operation. The authors
concluded that the horizontal well produced about 20 to 30 percent of the oil in the heated
area in 8 years of operation with a cumulative SOR of 2.85. It was believed that about
40% of the length of the horizontal well actively contributed to the production, and the
other 60% was located beyond the steam zone, and did not contribute to the production.

The first pilot test of the SAGD process using horizontal wellpairs was performed
by AOSTRA and industry at the Underground Test Facility (UTF) at Fort McMurray,
Northern Alberta. Numerous articles have discussed different stages of Phase A of this
operation, which was performed by using three welipairs of 60 m length, located about 25
m apart from each other [Edmunds 1987, Edmunds ez al. 1988, 1994]. Design
considerations, preliminary numerical simulation studies and discussion of the sources of
uncertainty in the operation were presented by Edmunds [1987]. The effect of vertical
permeability and accumulation of non-condensable gases were thought to be the most
critical parameters affecting the performance of the process. Lower vertical permeability
than expected would have caused a lower drainage rate. On the other hand, non-
condensable gases would have accumulated at the oil-steam interface and resulted in a
lower steam temperature. This was believed to lower the drainage rate, but not to increase
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the SOR due to the insulation effects of the gases at the cap rock. A single horizontal well
cyclic steaming process was examined using a thermal simulator and was suggested as an
alternative to the wellpair process. As pointed out previously, ~ae of the benefits that
horizontal wells offer over vertical wells is the extended area exposed to the reservoir. In
the SAGD process this factor can be considered to be beneficial to the process if the total
length of the well is exposed to the hot oil draining from beyond the steam zone. In a
cyclic steam stimulation process it is difficult to achieve uniform steam injection over the
length of the horizontal injector [Faroug Ali 1994]. The experience of the UTF preject

indicated that this can be more easily achieved in a continuous steam injection and oil
production process.

In a later paper, Edmunds, Haston, and Best [1988] investigated in more detail the
different stages of a SAGD process and examined the effect of different variables on the
performance of each stage of the process. During the initial stage of upward movement of
the steam zone, the process was believed to be governed by a counter-current flow of oil
and steam. The authors explained that a CSS process was not used because in such a
process counter-current flow would take much longer. Of course, due to relative
permeability effects, counter-current flow of oil and steam is much slower than single
phase flow of steam behind and that of oi’ ahead of the interface. The second stage, called
slope drainage, occurred after the steam zone reached the cap rock and expanded

sideways. During the latter stage the heated oil ahead of the interface drained downwards
due to gravity forces.

Recently, Edmunds er al. [1994] reviewed the experience of Phase A of the
SAGD process at the UTF site. Three years of operation were explained in detail. The
SAGD process as implemented at the UTF site was followed by a blowdown period
during which a large portion of the heat accumulated in the steam zone was recovered by
evaporation of the irreducible water while pressure dropped. After three years of
operation. 50% of the original bitumen in place within the pattern area was recovered at a
cumulative SOR of 2.5. No major probiems, common to in-situ operations were reported.

The authors briefly described Phase B of the operation involving three horizontal
wellpairs of 500 m length.

After the successful experience of the SAGD process at the UTF site in Fort
McMurray much interest has been shown in using the SAGD process for thermal
recovery of heavy oil and bitumen in Canada. This is becausce large resources of bitumen
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in Alberta seem to be amenable to economical production using this process [Donnelly
and Chmilar 1995]. Variations of the process are being considered should they improve
the economy and performance of the project. Flue gas injection was suggested by
Edmunds and Suggett [1995] as a means of heat recovery after substantial heat is stored
in the steam zone. The injector and producer were designed to be far from each other,
although above one another, to partially take advantage of pressure forces before steam
communication between the two wells is established. Of course, initial mobility of
reservoir crude is necessary for such a design.

Hamm and Ong [1995) discussed the application of an Enhanced Steam-Assisted
Gravity Drainage (ESAGD) process to the bituminous reservoirs of Peace River, Alberta.
In the ESAGD process a differential pressure is created between adjacent steam zones,
once the oil far from the interface is adequately heated. Simulation studies of Hamm and
Ong [1995] indicated that a relatively small differential pressure, of the order of 500 kPa,
was required to achieve the desired enhancements. After sufficient time, 10 years for the
cases studied, up to 50% increase in oil recovery was observed. This did not adversely
affect the thermal efficiency of the process and an SOR of about 3 was obtained. The
authors studied the effect of different factors, including the magnitude of the pressure
differential, pattern spacing and accumulation on non-condensable gases. They found that
the accumulation of the non-condensable gases was negligible if limited steam production
from the production wells was allowed, and negligibly affecied the steam zone
temperature. The ESAGD process is believed to improve the economy of thermal

recovery methods presently employed in Peace River, and is currently in the production
phase.

2.2.4.3. Mathematical Studies

Buts -IcNab and Lo [1981] introduced the concept of the SAGD process, and
presented the first analytical model for predicting the performance of this thermal
recovery method. The analytical model was developed for the sideways expanding phase
of the steam zone, and offered closed form solutions for the shape of the curved interface,
and the oil production rate. It should be noted that the SAGD process is a combined heat
and fluid flow problem ahead of a moving boundary. The shape and location of the
boundary is unknown a priori, and is found as a part of the solution. Such moving
boundary problems are nonlinear, and analytical solutions can be obtained only under
simplified conditions. Butler er al. [1981] neglected the time dependence of both the
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processes of heat and fluid flow. The gravity driven fluid flow process approaches steady -
state quickly. because oil reservoirs typically have a very large hydraulic diffusivity. T his
is especially true in the heated zone, where most of the flow is occurring. A steady-state
assumption for the heat flow problem. however. might not be realistic. Butler [1985-b)
presented an improved semi-analytical model by relaxing the steady-state assumption in
the heat flow problem. In addition to the steady-state assumption, both the heat and fluid
flow processes were considered to be one dimensional. Hence. the temperature
distribution ahead of the moving interface was approximated by an analytical solution of
1-D heat conduction ahead of an interface moving with constant velocity. The velocity
was allowed to vary in the vertical direction, but was assumed to be independent of time.
Fluid flow, that is, gravity drainage of heavy oil, was considered to occur parallel to the
interface at any location. Many other authors (for example. see Towson and Boberg
[1967]. van Lookeren [1983]) neglected the potential gradients in the vertical direction
and assumed horizontal oil flow. It has been shown by Dietz [1953] and later by Yortsos
[1991] that this assumption, that is. a segregated flow, can be a good approximation for 2-
D flow in homogeneous systems, but its application for thermal recovery processes,
where a large viscosity variation is present over short distances, has not been investigated
yet. More discussion of this assumption is presented in Section 4.3 and in Chapter 8.

An additional implicit assumption in the development of the analytical SAGD
model concerns the production of the drained oil from the bottom of the steam zone. It
was assumed that all the heated oil ahead of the interface was produced once it reached
the bottom of the steam zone. In other words no horizontal potential gradient was
considered necessary for production of the oil ahead of the interface at the bottom of the
steam zone. In practice, the required potential gradient may be provided by the
established differential pressure between the injector and the produccr. In the SAGD

process, the production pressure is adjusted such that excessive steam production is
avoided.

The analytical model predicted a curved steam-oil interface that traveled through
the reservoir. A singularity was found for the location of the top of the interface just
below the cap rock. This behaviour was also observed in a later 1-D model reported by
Butler [1985-b]. The analytical model presented by Butler er al. 11981] successfully
matched the production rate as obtained from a 2-D experimental model. Butler and
Stephens [1981] presented a modification of the original SAGD model, that resulted in a
more realistic shape for the interface. The bottom of the interface, as predicted by the
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original model, moved horizontally away from the production site. In reality, the bottom
of the interface must be at the production site to avoid steam production. The authors
suggested that tangents drawn from the production site to the curves predicted by the
original theory would represent the actual steam-oil interface more realistically. The
authors showed that the modification decreased the predicted production rate to about
87% of that predicted by the original model. The modification improved the match
between the model and the experimental data. In a second part of their paper, Butler and
Stephens [1981] developed a semi-analytical model that incorporated the effect of a no-
flow boundary. In practice, a series of horizontal wellpairs are drilled parallel to one
another. After sufficient time, the steam zones expand and coalesce. This would result in
a reduced gravity head and decreased flow rate. The production rate as predicted by the
original model for a steady-state moving interface in a semi-infinite medium was
invariant with time. Incorporation of the no-flow boundary, that is, the coalescence of the
adjacent steam zones, resulted in a production rate that decreased with time.

A further improvement on the original SAGD model was given by Butler [1985-
b]. when the 1-D heat flow was considered to be unsteady-state. A hot zone at steam
temperature was considered ahead of the interface, and the extent of the hot zone was
called the heat penetration depth. By performing a heat balance on the interface, the
author derived an ordinary differential equation explaining the variation of the heat
penetration depth with time. This method for finding an approximate temperature
distribution for conduction dominated processes is very similar to the Heat Integral
Mecthod (HIM) as detailed in Section 4.3.

Using the above modification, Butler [1985-b] developed a semi-analytical model
to oredict the advance of a vertical element of interface with time. Hence, the shape of the
interface and the production rate were found. An important measure of success of a
thermal recovery method, i.e., thermal efficiency, unresolved by the previous models was
discussed in more detail using this model. As mentioned previously, the singularity of the
location at the top of the interface provided an infinite surface area of the overburden
exposed to heat loss. Unfortunately, the same behaviour was observed in the semi-
analytical model [Butler 1985-b] if small vertical elements were chosen. The author
explained that there were other mechanisms controlling the velocity of the tip of the
interface which were not considered in the model. The existence of a capillary region that
restricts the steam flow behind the interface. and the effect of non-condensable gases that
by reducing the steam temperature reduce the interface velocity, were mentioned among
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others. Nevertheless. Butler [1985-b] presented his results using 20 vertical elements. The
same number of elements was later used by Chung and Buter [1988-b}. The results
indicated an oil rate of the same order as that obtained from the earlier models. Using this

model, the authors studied the effect of variables such as well-spacing and steam
temperature [Chung and Butler 1988-b].

Butler [1985-b] introduced a dimensionless group, B; in the development of the
theory. The dimensionless group was a measure of convective fluid flow to the
conductive heat transfer, as is the Rayleigh Number. More details on the effect of the
Rayleigh No. in the SAGD process are given later. The serai-analytical model developed
by Butler [1985-b] was later used in the study of the SAGD process [1988-a, 1988-b].

Reis [1992-b] presented a simple analytical model to predict the behaviour of the
SAGD process. In addition to the major assumptions used by Butler er al. [1981], other
sir:lifying assumptions were made to simplify the model. The shape of the steam zone
was appraximated by an inverted triangle. In other words, the author neglected any
curvature in the shape of the interface. The bottom of the interface remained at the
production site, and the top of the interface slid away along the cap rock. Reis [1992-b]
assumed a temperature distribution in an exponential form, similar to the steady-state
solution to 1-D heat conduction ahead of a moving boundary. He also incorporated an
empirically found constant, so that the proposed model matched the previous
experimental data. Due to the simplicity of the model, Reis [1992-b] was able to obtain
closed-form solutions for the energy balance and the steam-oil ratio. The author
compared the predictions of his model with the previous experimental data. Recently,
Donnelley and Chmilar [1995] used Reis’s approach to screen the bituminous reservoirs
of Alberta for the SAGD process, and to select those that would meet certain economical
limits. The authors indicated that Reis’s model matched the results of the numerical
simulation models for the UTF Phasc B project more closely, when the shape of the

steam zone was approximated by a half-ellipse rather than an inverted triangle. The
authors assumed this would hold for all the cases studied.

Reis [1993] used an approach similar to that used in his linear model, to model the
SAGD process in cylindrical coordinates for a vertical injector. He approximated the
shape of the steam zone by an inverted cone. Again, an exponential expression was used
to approximate the temperature distribution ahead of the interface. Analogous equations
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for flow rate and heat requirement were found. His example showed an ever-increasing
oil production rate with a constaat slope.

Apart from the analytical and semi-analytical models reviewed above, commercial
thermal simulators have been used to study the SAGD process [for example see Edmunds
et al. 1988, 1994]. The numerical approach is totally different from that used in the
analytical models. The thermal simulators evenly treat the whole domain under
consideration, whereas the analytical models focus on the phenomena occurring ahead of
the interface only. Additionally, more rigorous equations are solved in the commercial
thermal simulators. Heat flow is modelled by solving a 2-D? conduction-convection
equation and the potential distribution is found by solving a 2-D diffusive equation
accounting for physical property variations with spatial coordinates. Both processes are
considered to be unsteady-state. Other major differences concern the modelling of steam
flow in gaseous and condensate forms and incorporation of capillary phenomena in
thermal simulators. Despite the rigour of thermal simulators, they have their cwn
drawbacks. In steam injection processes the potential gradients created in the steam zone
are negligible compared to those in the oil zone. This results in a steam zone with an
approximately constant steam temperature. A thermal simulator, however, does not
distinguish between the steam zone and the oil zone, and performs all the calculations for
both regions. Additionally, a process such as SAGD is believed to be minimally under
multiphase flow. Numerical studies of the SAGD process have shown little dependence
on the shape of the relative permeability curves assumed [for example see Kisman and
Yeung 1995). Capillary effects were also found to have minimal effect at the oil-steam
interface in thermal processes [Palmgren er al. 1989]. In a thermal simulator, however,
the highly nonlinear equations of multiphase flow are solved at each grid block without
any optimization to use them if and where they are needed. The combination of the above
effects makes it expensive to run a thermal simulator using fine grids. Additionally, in the
SAGD process the maximum heat and fluid flow occurs in the vicinity of the moving
steam-oil interface. The majority of thermal simulators, however, are based on fixed
global coordinates, and are not designed for adaptive gridding with time.

In conclusion, thermal simulators might not be able to calculate accurately the
temperature and potential distribution where these variables are most needed, that is at the
interface. Nevertheless, the application of thermal simulators for field case studies is

2 3-D numerical modeling of the SAGD process has rarely been repurted due to high computational

expense of running thermal simulators for 3-D geometry.
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practical due to the complexity of the input data. For mechanistic studies, however,
simpler models are desirable. Development of a numerical model that is properly
designed for the SAGD process, and accurately calculates the temperature and pressure
potential fields where they are most important, that is, in the vicinity of the interface. and
perform more approximate solutions in other regions is most needed. A first attempt to
develop such a numerical model is discussed in Chapters 7 and 8.

2.3 Mathematical Modelling of Moving Boundary Problems

In many areas of engineering, formulation of a physical phenomenon considers a
domain with moving boundaries. In these systems, equations can be written that specify
the conditions on the moving interfaces; however, the shape and location of the
boundaries are not known prior to the solution of the problem. Such problems occur in a
wide range of engineering applications. Fluid flow through porous media, diffusion and
heat transfer accompanied with change of phase or chemical reactions, formation of
shock waves in gas dynamics and propagation of cracks in solids are among the examples
named by Crank [1988]. The wide occurrence of moving boundary phenomena, and the
challenge of modelling such processes have motivated researchers to develop
mathematical models which have been published as numerous articles and books. In
order to clarify the choice of the numerical model developed in Chapter 7, the different
mathematical strategies are pointed out and their properties and behaviour are discussed
briefly. The following review is restricted to numerical methods only.

2.3.1 Moving and Stationary CGrids

Solution of partial differential equations of conservation laws for mass,
momentum and energy in moving boundary processes which are formulated in the form
of convection-diffusion equations are generally performed using two methods with
respect to the computational grids. In the traditional fixed grid method a stationary
computational domain is superimposed on the whole physical domain, and the
conservation equations are solved for all the computational nodes. In such methods the
moving interfaces travel through the computational domain. Voller, Swaminathan, and
Thomas [1990] reviewed such methods with reference to the solution of one family of
moving boundary problems, i.e., problems involving change of phase.
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Alternatively, the moving physical domain may be transformed onto a general
curvilinear and often non-orthogonal computational domain, where the moving
boundaries are immobilized. In such methods, additional equations are required to follow
~ the location of the interface. The solution of the interface equation is used to generate a
new computational domain at each time step. The advantage of the latter method is that
the governing equations can be solved on a fixed rectangular and often uniformly spaced
grid system, with no loss of accuracy of computation near the curved boundaries. A
comprehensive review of such adaptive gridding techniques is given by Hawken [1987].

A few articles have been presented that compare different aspects of both
methods. Lacroix and Voller [1990] studied the problem of melting of a pure metal using
the above methods. They considered conduction heat transfer in the solid region, and
allowed for natural convection in the melt region. The authors concluded that for
processes which involve a sharp moving interface, introducing a transformed
computational domain was the obvious choice. If there was a considerable transition
zone, of the order of the block sizes used, the fixed boundary methods appeared more
attractive. This is because fixed grid systems smear the interface behaviour over one or
more grids. The authors also pointed out that obtaining a higher accuracy in the vicinity
of the moving interface where the flow variables changed more rapidly could be easily
achieved in the transformed techniques. Hawken [1987] showed that, by locating more
computational nodes in the regions of high gradient, higher accuracy and/or a saving in
computational time was obtained. The authors discussed various methods that are used to
properly distribute the computational grids over the region of interest. Viswanath and
Jaluria [1993] studied a problem similar to that of Lacroix and Voller [1990], and
compared the behaviour of models developed using the fixed and the moving grid
techniques. The authors found that among the two computational strategies the
transformed-grid method showed higher accuracy in predicting the interface location.
Their transformed grid method typically required half of the computational time as
compared to that required by the fixed grid method [Viswanath and Jaluria 1993].

A review of the literature indicates that in some studies involving flow through
porous media, a sharp interface assumption has been used successfully to model a given
process [Bear 1972, Crank 1988). This assumption would of course, facilitate using the
transformed grid approach. In many other studies, however, the transition capillary region
was not neglected. Beckmann and Viskanata [1988] and Weaver and Viskanta [1986]
studied problems involving change of phase in porous media. In these studies a fixed grid
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approach was used and the conservation equations were solved over the whole domain.
This approach is similar to what is used in the commercially available thermal simulators.
To the best of the author’s knowledge, apart from the simplistic analytical and semi-
analytical solutions that were previously reviewed, there has been no numerical simulator
developed for thermal recovery processes satisfying the transient conservation laws over
an explicitly defined interface. In Chapter 7 a numerical model is developed which is
based on conservation of mass, momentum and energy for the oil phase ahead of a
moving boundary. An additional equation is derived to model the behaviour and location
of the interface. In Chapter 8 the model is validated, and its applications and limitations
are discussed. In the following section the transformed grid techniques, as used in the
present numerical model, are discussed.

2.3.2. Discretization Approaches

Differential equations are generally solved using finite difference or finite element
techniques. The traditional finite difference formulation is mostly replaced by a
geometrically conservative form of this technique, called a finite volume formulation. In

the latter technique, conservation is guaranteed regardless of the size of the grid blocks
used in the modelling [Patankar 1980].

Hawken [1987] pointed out that the finite difference techniques require a higher
degree of orthogonality and grid smoothness, compared with finite element methods,
when used for the solution of moving boundary problems. Both of the methods have,
however, their own advantages, and either of them may be chosen depending on the
problem of interest and personal preference. Ramanathan and Ranganathan [1988]
studied the problem of transient heat conduction in complex geometries, using both
methods of finite volume and finite element techniques. They used a transformation
through the solution of a set of elliptic equations in order to transfer the physical domain
onto a simpler computational domain for their finite volume formulation. The technique
guaranteed a high degree of orthogonality as will be reviewed next. For the cases studied
they found that the transformed grid technique resulted in more accurate solutions while
requiring less storage and computational time. Kececiouglu {1993] showed that adaptive
gridding can be successfully used through a finite element formulation to accurately
model convection-diffusion equations encountered in some porous media problems.
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2.3.3. Transformed Gridding — Numerical versus Algebraic Techniques

There are generally two techniques available to map a physical domain with
arbitrary and/or moving boundaries onto a fixed regularly shaped computational domain.
To generate the computational coordinate system, algebraic transformations or solution of
partial differential equations may be used. Thompson and Warsi [1982] and Thompson,
Warsi, and Mastin [1985] presented a comprehensive discussion of the application of
these techniques. In the algebraic method simple techniques such as normalization of
boundary curves, and interpolation from boundary surfaces are implemented. The
numerical technique, however, involves solution of a set of elliptic or hyperbolic
differential equations. In many studies involving stationary but arbitrarily shaped
domains, the numerical technique is preferred because it provides a higher degree of
orthogonality and grid smoothness. This not only simplifies the development of the
mathematical model, but also reduces the errors encountered when highly skewed grids
are used. In the case of moving boundary problems, however, solution of the differential
equations to generate the appropriate coordinate system at each time step might be
computationally more expensive than solution of the actual conservation equations
[Lacroix 1989]. In such cases an algebraic transformation is normally chosen.

A transformation named after Landau [1950] and its variants have been the most
popular ones in the algebraic transformation of moving boundary problems incorporating
change of phase. Landau [1950] introduced a normalization transformation to immobilize
the moving interface between liquid and solid regions in a 1-D melting problem, and
obtained an analytical solution. Other investigators used the above transformation in the
numerical solution of multidimensional problems [Duda, Malone, and Notter 1975, Hsu,
Sparrow, and Patankar 1981, Kim and Kaviany 1990, Lacroix and Garon 1992].

2.3.4. Complexities of Solution on General Curvilinear Coordinates

Thompson and Warsi [1982], among others, presented the general form of the
partial differential equations on a non-orthogonal curvilinear coordinate system. The
general transformation used created additional terms absent in the original equatioﬁs.
Physical interpretation and accurate modelling of such terms have been the subject of
many articles. In the following the physical interpretation of these additional terms, when
conservation equations are transformed onto a general non-orthogonal system, is
reviewed, and their incorporation in the mathematical model is discussed.
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2.3.4.1 Convective Term

When a transformation is used to immobilize a moving boundary. the coordinate
lines of the new system pass through the physical transport domain, as if a convective
flow existed in the final coordinate system. Hawken [1987] pointed out three methods
that are commonly used to incorporate the additional convective term. In two of the
approaches the convective term is initially ignored. In such cases the field variables
obtained at the end of one, or a few, time steps are shifted to the new location of the
coordinate system. An interpolation scheme is generally used for this purpose. If the
movement of the coordinates is accounted for after every time step the method is called
alternating node movement. The method is called a periodic node movement, if the
adjustment is performed after a few time steps. The third approach is called simultaneous
node movement and implies a technique where the convective terms are modelled as a
part of the final differential equation. Earlier works on modelling moving boundary
systems implemented the periodic and alternating approaches [Sparrow, Patankar, and
Ramadhyani 1977]; however, the recent works consider the more accurate simultaneous
node movement. Hawken [1987] pointed out that in processes that involve different time

scales, stiff systems, instabilities may occur if the simultaneous node movement is not
implemented.

In cases where the coordinate lines move in space, a geometric constraint, called

the Geometric Conservation Law, has to be satisfied along with the original conservation
laws. This is discussed later.

2.3.4.2. Cross-Diffusion Terms

Implementing a conservation law on diffusive flow involves flux terms that are
perpendicular to the boundaries of a particular control volume. On a non-orthogonal
coordinate system, the fluxes can only be computed along the coordinate lines which are
generally not perpendicular to the boundaries of an element. For a 2-D problem then,
fluxes along both coordinate lines should be incorporated to represent accurately a
perpendicular flux. One of these terms, called the cross-diffusion term [Hsu ez al. 1981},
takes the form of a cross derivative term in the differential form of a conservation
equation on non-orthogonal grids. Hsu ez al. [1981] called these terms cross-diffusion
terms in analogy with diffusion fluxes in anisotoropic systems, where a potential gradient
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alung one coordinate line creates fluxes along the other. The cross-diffusion terms have
been neglected in earlier works [Sparrow ez al. 1977], however, this is not recommended.
Neglecting the cross-diffusion terms might lead to large errors depending on the degree
of non-orthogonality of the coordinate system, and the importance of diffusive fluxes
compared to convective ones. A review of the literature indicates that many articles were
published in recent years to present a better physical interpretation of the cross-diffusion
terms and to offer more accurate and trouble-free strategies to model them [Peric 1987,
Halal and Lilley 1988, Karki and Patankar 1988, Schreiber 1990].

For a 2-D problem, incorporation of cross-diffusion terms in a finite volume
formulation involves all 8 neighbouring nodes around a central node. This might result in
a non-diagonally dominaii matrix of coefficients which can lead to divergence in
jterative solution techniques. It is for this reason that in the numerical solution of
transport equations on non-orthogonal grids most of the researchers have treated the
cross-diffusion terms as explicit, so that they appear at the constant side of the system of
equations. For processes which involve different time scales. explicit incorporation of
such terms can lead to unstability, unless very small time steps are selected.

2.3.4.3. Geometric Conservation Law

Thomas and Lombard [1979] explained that, when a transformation is applied to a
differential form of a conservation equation, extra terms are introduced into the equation,
and the Jacobian of the transformation appears as a multiplier inside the unsteady-state
term. In cases where the Jacobian of the transformation is time-dependent, a geometric
equation must be satisfied. The authors showed that the geometric constraint was in the
form of the original conservation equations. Hence, the geometric constraint was named a
Geometric Conservation Law (GCL). Thomas and Lombard [1979] solved the GCL
simultaneously with the other conservatien equations in the transformed domain.
Demirdzic and Peric [1988] pointed out that the volume of a space element may change
with time, if the problem is modelled on a general curvilinear coordinate with moving
coordinate lines. They showed that the volume change of the space element should be
accounted for. in order to avoid introduction of artificial mass sources. The Jacobian of a
ransformation is a representation of the volume of a space element in the transformed
domain, and that the latter explanation of the Geometric Conservation Law was in
accordance with that of Thomas and Lombard [1979]. Demirdzic and Peric [1988]
showed that GCL is naturally satisfied if the coordinate system is moving in one direction
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only. The authors introduced a procedure to satisfy the geometric conservation law in the

solution of the conservation equations in the transformed domain, without any
requirement to solve the GCL separately.

Hindmun [1982] compared four different ways that a transformation may be
performed on an unsteady-state iransport equation in a differential form. The four
methods were named non-conservation law form and strong, weak, and chain rule
conservation law forms. He discussed the errors introduced if inconsistent methods are
used for solving the equations in the transformed domain. His examples indicated that the
chain rule conservation law form did not require any special condition, while it captured
the shock behaviour of a nonlinear equation more accurately than the other methods. The
computational time for sclving the equations in the chain rule conservation law form was
shown to be the minimum. The author concluded that: “More work is needed on the idea

of geometrically induced errors,” when conservation equations are solved on a general
curvilinear coordinate system.
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3. STATEMENT OF THE PROBLEM

Existing analytical models of gravity drainage do not consider thermal effects.
The first objective of this work is to find analytical solutions for the fracture-matrix heat
transfer and the gravity drainage problem under non-isothermal conditions. This model is
to be used to study thermal gravity drainage in fractured reservoirs and the major factors
affecting it. A scaling criterion for designing physical models for the study of non-
isothermal gravity drainage #n fractured reservoirs is to be derived.

The second objective of this work is to devise a new formulation and numerical
model for non-isothermal gravity drainage in a porous medium. A new interface equation
is to be developed, which could be used to locate the moving boundary to achieve the
above goal. The numerical model is to be used to study the Steam-Assisted Gravity
Drainage (SAGD) process, and the major parameters affecting it.

A third objective of the current work is to introduce the Heat Integral Method
(HIM) for modelling diffusion dominated processes in porous media.



4. DEVELOPMENT OF THE ANALYTICAL MODEL

It was previously mentioned that gravity drainage is one of the most important
recovery mechanisms in naturally fractured reservoirs [Saidi 1987]. However. an
analytical model for non-isothermal gravity drainage of heavy oil in naturally fractured
reservoirs, allowing for the unsteady-state temperature distribution in a single block, has
not yet been reported. A previous analytical model [van Wunnik and Wit 1992] neglected
the temperature gradients and assumed thermal equilibrium between the matrix and the
fracture. Accurate modelling of gravity drainage requires an accurate model for heat flow.
This is especially true for heavy oil and bitumen, since the viscosity of these liquid
hydrocarbons is strongly dependent on temperature. There has been no consensus on the
dominant heating mechanism in fractured reservoirs. Dreher ez al. [1986] concluded that
the rate of conducted heat into matrix blocks was the controlling factor; however, Chen ez
al. [1987] found that conduction and convection were both important. Experimental
studies on high permeability matrix blocks reported by Kharrat ez al. [ 1993] indicated
that convective flow of steam into the porous medium was coupled with heat conduction
into the cold oil. In their experiments a moving boundary was formed which was
separated from top and vertical fractures and formed a concave downward interface
between the steam and the oil {[Pooladi-Darvish 1992, Kharrat ez al. 1993]. Hence, these
authors concluded that heat is transferred via conduction ahead of a moving boundary.

The first objective of this chapter is to examine if heat conduction is the only
important heat transfer mechanism when a matrix block saturated with heavy oil is

surrounded by fractures filled with steam. After this is confirmed the gravity driven oil
flow will be modelled analytically.

4.1 General Features and Assumptions of the Model

Figure 4.1 shows schematically a cross section of a fractured s wvoir where
steam injection has driven the oil in the fracture network, and a steam zone is created
surrounding low permeability matrix blocks saturated with heavy oil. Double-porosity
theory [ Warren and Root 1963] assumes that fractures are the only path for flow and
matrix blocks act as individual sinks or sources in the fracture system. Based on the
hypothetical behaviour explained above, it was decided to study a single block of a
fractured reservoir under steam injection. By using the assumption involved in the theery
of double-porosity models any interaction between individual matrix blocks was ignored.
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Consider a single block in the shape of slab or cylinder with a large ratio of height to
width. This assumption is made so 1-D heat flow may be considered. In reality, a matrix
block has a 3-D configuration, and steam will be in contact with a single block from all
six surfaces. It is believed that the steam-oil interfaces at the top and the bottom of the
block are not as active as the lateral ones. This is because the downward movement of the
heated oil at the top is hindered by the cold viscous oil located beneath it, and the
movement of the interface from the bottom is restricted by counter-current flow of oil and
steam. Limited single block experimental observations performed by Pooladi-Darvish
[1992] confirms these ideas. On the other hand, the other four vertical sides of the block
are effectively identical. A vertical slab of thickness 2L or a vertical cylinder of radius R
will be analyzed.

Steam
Injection

Oil
; I->Production

Figure 4.1. Cross section of an ideal fractured reservoir after steam injection.

The other assumption is to neglect the capillary transition zone. As will be
discussed later, conclusions of this study are not violated if this assumption is relaxed.
Also, it is assumed that the only flowing phase behind the oil-steam interface is steam,
and that ahead of the interface is oil, that is, a sharp interface separating the two zones is
assumed. This assumption states that the steam condensate and the heated oil do not flow
across the interface, but flow downwards along the interface, that is, any convective heat

37 )



flow is caused by advance of the steam-oil interface only. This approximation has been
previously used in thermally enhanced gravity driven processes, where the oil-steam
interface advances upon removal of the heated oil [Butler 1991]. Many other models of

oil recovery by steam injection used the above assumption [Miller and Leung 198S,
Kumar et al. 1986).

There are a large number of recovery mechanisms that become active in a steam
injection process in a fractured reservoirs. The interaction of these mechanisms such as
imbibition, induced gas drive, CO2 generation and thermal expansion on gravity drainage
are not considered so as to be able to obtain an analytical solution. Pooladi-Darvish
[1992] reviewed and presented discussions of the following mechanisms being active ina
steam injection process in a fractured reservoir. (1) Chemical reactions, such as rock
dissolution, and chemical alteration of kerogen to liquid hydrocarbon at steam
temperature. (2) Recovery mechanisms, other than gravity drainage, such as thermal
expansion, water imbibition, induced gas drive, and oil distillation. (3) Change in flow

behaviour due to changes in interfacial tension, relative permeability, and absolute
permeability.

In the following, a brief description of some of the neglected effects are presented.
For a detailed discussion, Pooladi-Darvish [1992] can be referred to.

1) Thermal Expansion: Heating of a matrix block, due to the surrounding steam in the
fractures, expands the fluids within, and causes expulsion of the fluids from the block.
Nolan er al. [1980] and Reis [1992-a] reported that thermal expansion is one of the major
recovery mechanisms in fractured reservoirs. Fractured reservoirs with smaller blocks
benefit more from this mechanism, since the heating period of the individual blocks is
shorter. Butler [1986] pointed out that the thermal expansion of heavy hydrocarbons is
about 50% more than that of water. A 200 °C increase in temperature creates 10% to 15%
additional fluid volume [Pruess and Narasimhan 1985]. The additional pressure caused
by thersmal expansion drives the fluids out. Similar to any other flow problem in porous
media, it is the mobility of the fluids that determines the ratio of the fluids produced.

Should there be gas or water present at a mobile saturation in the block, their low
viscosity would favour their production.

Butler [1986] found that, the extra pressure generated within the pore space,
caused by thermal expansion, can exceed the formation parting pressure. He considered
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rocks with a range of permeability of 0.0645 to 4 darcy. Lower permeability of carbonate
rocks reduces the chance of the expanded fluids to flow, before the pressure exceeds the
fracturing pressure. This, if occurs, can improve the matrix permeability.

2) imbibition: During a steam injection process, steam condenses around a block, and the
condensate is imbibed into the block. It was reviewed in Chapter 2 that many
experimental studies indicated that counter-current imbibition is one of the important
recovery mechanisms in fractured reservoirs. It is worth noting that, an increase in water
saturation in the outer part of a block reduces the effective permeability to the oil, and
traps the oil inside the block. Dreher et al. [1986] pointed out that the initial saturation
distribution was a major factor affecting the effectiveness of imbibition. Another major
factor in the performance of the imbibition process is the wetability of the matrix. Jensen
and Sharma [1991] found that imbibition was not a major recovery mechanism in their
experimental studies of steam injection through fractured oil-wet rocks.

3) Induced Gas Drive: There are three ways that gaseous phase may be generated in a
matrix block of a fractured reservoirs.

a) The reduced solubility of the hydrocarbon gases in liquids at high temperatures
can initiate a solution gas drive process. Nolan ez al. [1980] studied this process
experimentally, and Dreher er al. [1986] performed theoretical studies to
investigate the importance of solution gas drive.

b) Carbonate rocks, most common in fractured reservoirs, decompose at high
temperatures. The generated CO2 creates an extra drive mechanisms. CO3
generation was reported and studied by many investigators, inclhding Sahuquet ez
al. [1982). Briggs et al. [1992], and Reis [1992-a]. Rock dissolution not only
creates additional drive, but also increases the matrix permeability by enlarging the
pores.

c) Reis [1992-a] pointed out that “pressure may drop more quickly than the
temperature of matrix can decline by thermal conduction. Thus flashing of hot
condensate might occur during the blow down phase.” Flashing of the hot
condensate during the blow down period was studied by Baibakov and Garushev
[1989] and Briggs et al. [1992]. This is a complex process, where thermodynamics
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and kinetics of nuclei generation and bubble growth interact with flow mechanisms
in porous media.

4) Capillary Effects: Capillarity plays many roles in the process of heavy o1l recovery
from fractured reservoirs. The role of capillary forces in the imbibition process was
briefly described. In a gas-oil, i.e., steam-oil gravity drainage, the final saturation in a
block is determined by the capillary-gravity equilibrium [Saidi 1987]. Considering a
single low permeability block, as will be considered in this study, more than 50% of the
oil may be held in the block when the equilibrium is reached. (see Saidi [1987] for the
exact figures and more discussion). Recent studies [Saidi 1987, Dindoruk and
Firoozabadi 1994}, however, indicated that, depending on the fracture characteristics,
there may be large effects of capillary continuity between blocks. That is. the matrix
blocks located vertically above each other can behave close to a continuous column. The
subject of capillary continuity in fractured reservoirs is an ongoing area of research.

It should be noted that none of the above mechanisms are incorporated in the
present study. These are ignored so that an analytical solution for thermal gravity
drainage of the heating oil from a single block can be obtained. What will be considered,
consists of heating of a single block heated by the steam surrounding it, and non-

isothermal gravity drainage of the heating oil, accounting for the trangient temperature
distribution within the block.

4.2. Heat Flow Problem

Consider a single block of a natu. 4ily fractured reservoir saturated with heavy oil
and surrounded by steam in fractures as in Figure 4.1. Heat conduction occurs from sicam
to oil, and oil drains simultaneously due to the gravity force. If the drainage rate is slow
enough, compared with the conduction rate, the process can be represented by two
different periods. In the first period the block is heated by conduction with minor oil

production, while in the second period drainage of heated oil from the matrix occurs
which is now approximately at constant temperature.

Production during the latter period can simply be modelled in one dimension, i.c.,
vertical flow of oil with a constant viscosity as explained by Saidi [1987]. However, if the
drainage rate is fast compared to conduction [Kharrat e al. 1993], a thin layer of oil is
heated and flows downwards, allowing further contact of steam with the unheated oil.
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Figure 4.2 shows the schematic shape of the moving interface detected by

temperature measurements and visual observations from a single block study [Pooladi-
Darvish 1992].

Figure 4.2
Schematic behaviour of non-isothermal gravity drainage in
a high permeability single block [Pooladi-Darvish 1992].

The moving interface introduces a nonlinearity into the problem, because the
location of the boundary is not known a priori. Bear [1972] discussed the difficulties of
modelling isothermal free and moving boundary problems in porous media. Crank [1988]
reviewed many approximate methods to solve moving boundary problems mostly using
numerical models. In the context of heavy oil recovery, Palmgren and Bruining [1992]
solved approximately a moving boundary problem using the method of characteristics to
predict the shape of the interface in a steam drive affected by steam override. Butler and
his co-workers (reviewed by Butler [1991]) modelled the moving boundary process of
Steam-Assisted Gravity Drainage (SAGD). They originally used the steady-state
assumption for-temperature distribution ahead of the moving interface [Butler et al.
1981]. The SAGD model was successfully used for the experimental results of drainage
of oil from a single block surrounded by steam [Kharrat e al. 1993]. However, scaling
considerations shown later indicate that the high permeability of the sand pack in the
experiments had altered the response of the system, so that the SAGD theory [Butler er
al. 1981] would not be valid for modelling the response of a typical matrix block.
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One-dimensional3 heating of the matrix block in the shape of a slab of thickness
2L can be expressed by the heat conduction equation ahead of a moving boundary as
ar
—_— 1)<sx<L >0
E s(<x >

where o is the thermal diffusivity of the medium, and s(r) is the interface location. The
initial and boundary conditions of the problem can be expressed as

T=Tx shsx<L 1=0 e e 4.2.2)
T=Ts x=s(n 3 o 4.2.3)
-331:0 x=1 150 et 4.2.4)
ox

The location of the moving boundary is not known until the complete heat and
fluid flow problem is solved. The unknown location of the boundary condition is avoided
by introducing a coordinate system, £, that travels with the interface. The location of the
moving interface in one dimension can be expressed as s(r), and so;

...................

E(x1) = x—s(0 (4.2.5)

where,

sty = j;Udv ................... (4.2.6)

where U is the velocity of the interface, and v is the variable of integration. The
transformation fixes the moving boundary at ¢= 0 for all time. Using the chain rule
[Crank 1988] one obtains

3 It will be discussed later that the conclusions of this analysis would be cqually valid for

two-dimensional heat conduction.
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and substituting from Equations (4.2.7) and (4.2.8) into (4.2.1) and rearranging,

9T udr _ 1dr
?4- -&-é—g- = aa[ ................... (4.2.9)

Equation {4.2.9) is a convection-diffusion PDE, where the convective term, -l‘—’-%%,

enters into the equation because of the movement of the coordinate system. This term acts
as a convective flow of heat in a direction opposite to ¢ and causes steepness in
temperature gradients that are created by the diffusive term.

Although Equation (4.2.9) expresses different terms, i.e., the diffusive, the
convective, and the unsteady-state term, the equation does not reveal the relative
importance of the different terms with respect to each other. In the next section the

normalization technique is used on Equation (4.2.9) that enables one to comment on the
relative importance of the different terms.

4.2.1 Magnitude Analysis

Analyzing the governing differential equations of a physical process in
dimensionless and normalized form enables one to evaluate the importance of different
terms with respect to others. Magnitude analysis, a form of scale analysis [Farouq Ali and
Redford 1977, Farouq Ali, Redford, and Islam 1987] is used in this section to evaluate
the effect of the moving boundary. In this technique, the value of each variable is divided
by its maximum value, to normalize the variable between zero and one. The magnitude of
the coefficients for cach term in the final dimensionless equation is an estimate of the

importance of the corresponding term [Lock 1986]. The dimensionless variables are
defined such that they are scaled between zero and unity:

o - IT=Te e 4.2.1.1)
Is-Tp
- & :
s=% (4.2.1.2)
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Although time cannot be scaled between zero and one, Equation (4.2.1.3) ensures
that the unsteady-state term is normalized with respect to the ditfusive term, as
8,. =1 @ T=1 in a conductive problem [Carslaw and Jaeger 1959]. On substituting the
dimensionless variables in Equation (4.2.9), one obtains

e
22 + 775' =35 e 4.2.14)

In Equation (4.2.1.4) the convective and the diffusive terms are properly
normalized and the unsteady-state term is normalized with respect to the diffusive term.
Thus, the value of the coefficient %, also called the Peclet Number, Np,, signifies the

importance of the convective term. In the study of forced convection, Np, represents the

thickness of the thermal boundary layer. A small thermal layer, that is, a highly
convective system, corresponds to a large Np, [Gebhart 1971].

4.2.2. Evaluating the Importance of the Convective Term, that is, the
Peclet Number

To evaluate Np,, a set of rock and fluid siroperties should be considered. Some of
the parameters of fractured reservoirs, such as matrix permeability and block size vary by
orders of magnitude from a reservoir to another. For example, matrix permeability can
vary from essentially zero to 102 md, and the block size can vary from a fraction of a
meter to tens of meters. Table 4.1 shows a range, which is most common in naturally
fractured reservoirs containing heavy oil, and a selected value which represents the
naturally fractured reservoirs of Iran [Saidi 1987, Moshtaghian, Malekzadeh, and
Azarpanah 1988], together with the heavy oil properties of the Grosmont formation in

Alberta [Cordell 1982]. In most of the calculations in this work the representative value,
referred to as “typical” value, is used.

The values of L and e can be directly substituted from Table 4.1. The velocity of
the interface is generally unknown and variable with time and position. However, for the
simple case where the temperature distribution ahead of the front is approximated by the
steady-state equation, an analytical solution for the advance rate of the interface was
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obtained [Butler et al. 1981], and will be used to give an upper limit for U as explained
later.

kga -
U - e 4221
2mu, 2¢AS, ( )
Table 4.1
Typical physical properties of heavy oil naturally fractured reservoirs
Permeability k (0.1-10md) 1 md {10-!° m?}
Oil viscosity at steam temperature [, (2-10cp) 10 cp [102 Pas]
Oil density p 1 g/cm?3 1000 kg/m 3]
Porosity x Saturation change ¢ASO (5%-15%) 10%
Block height (size) H(2L or 2R) (3-10m) 4m
Thermal diffusivity o (0.7-1.5 mm?2/s) 1 mm?s [10 m?/s]

See Equation (4.3.2) m ’ (3-4) 4

Equation (4.2.2.1) indicates that, under steady-state conditions, the velocity of
interface is independent of time, and is a function of the height of any point at the
interface. z. Equation (4.2.2.1) gives an unrealistic velocity of infinity at z=0 (top of
formation) and decreases as the bottom of the formation is approached [Butler 1991].
Evaluating the velocity half way from the top of the block, z=2 m, an approximate value
for the velacity of the interface can be calculated using the typical values of Table 4.1.

v=000-8ms- 4.2.2.2)

Using these values Np, can be evaluated.
L-0wd (4.2.2.3)

Using the most extreme data of Table 4.1, a maximum value of Np.=04 is

obtained. However, it should be noted that, in the above analysis the steady-state velocity
of the interface was considered which is its maximum value. A steady-state situation is
achieved when the rate of heat transferred ahead of the interface is equal to the rate of
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heat left behind the interface. Under unsteady-state conditions the rate of heat transferred
ahead of the interface is more than that left behind. The latter situation occurs when the
interface moves with a velocity less than the steady-state value. Of course, the unsteady -
state moving boundary process with a slower interface velocity approaches the steady-
state conditions at large times; however, at a constant time the interface velocity for the
steady-state process is larger than the corresponding unsteady-state one. For example, the
process of heat conduction in a semi-infinity medium does not reach steady-state for the
limiting case of zero interface velocity.

Furthermore, capillary forces were ignored previously. In a steam-oil drainage
system, steam is the non-wetting phase. Thus, capillary forces are in favour of uniformly
distributing fluids in the block, holding back oil from drainage. Hence, Equation (4.2.2.3)
shows the upper limit, and indicates that for the typical propertics of Table 4.1 the
coefficient of the convective term is two orders of magnitude smaller than the coetticient

of the diffusive ternt, which is equal to one in Equation (4.2.1.4). In other words, the
effect of the moving boundary is negligible.

Although the above calculation gives an upper limit for Np,, however; the range
of data in Table 4.1 indicates the effect of the moving interface may not be negligible in
some reservoirs. In such cases, errors in heat flow calculations would occur if the moving
boundary effect is neglected. This is discussed in Sections 4.2.5 and 5.4 again.

In analyzing the heat flow process ahead of the moving steam-oil interface a 1-D
conduction model was considered. In general, the shape of the interface is unknown and
the heat flows in two dimensions. However, the above analysis suggests that the effect of
the moving boundary on the heat flow process is negligible. In other words, the average
temperature of the block approaches that of steam, before much of the oil is produced,
and the shape of the interface is affected. This justifies the assumption of 1-D heat
conduction ahead of the steam-oil interface.

The above analysis was performed for the typical properties of Table 4.1;

however, the theory of normalization suggests [Lock 1986] that for other cases the
importance of the convective term varies proportionally with Np,.
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4.2.3. Time Scale Analysis

In order to compare the importance of the convective term with respect to the
diffusive term a magnitude analysis was performed in Section 4.2.2 based on the
differential equation describing the process. Here, a similar analysis is performed to
compare the time scales of the two different, but interacting processes, that is, heat flow
and fluid flow. Of course the latter is responsible for the movement of the interface, as
indicated by the convective term in Equation (4.2.9). It is intended to compare the
characteristic time required for each of the two transfer mechanisms. If one assumes that
heat transfer is governed by conduction, the characterisiic time can be estimated using
Equation (4.2.3.1) [Carslaw and Jaeger 1959].

Tpe =— . emesseceesme s
L3 a

(4.2.3.1)

where 7, is the characteristic time for heat conduction. A characteristic time for drainage
can be obtained by dividing the block height by the frontal velocity due to drainage,

clx

=2 ...(4232)

where 7, is the characteristic time for drainage, H is the block height, and U is the

frontal velocity due to drainage. Ignoring capillary forces and steam viscosity, an upper
lirit for Ucan be obtned by writing the frontal velocity due to Darcy flow,

k_ Apg
v=-—"2£_ e 4.2.3.3)
Hos $AS, ¢ ‘

where isothermal drainage at steam temperature is considered as an upper limit for U.
Using the typical values of Table 4.1 and Equations (4.2.3.1) 10 (4.2.3.3) one obtains

T4>>Che . sesemssesacsenene (4.2.3.4)

The inequality (4.2.3.4) demonstrates that the heat conduction process acts much
faster than does the drainage process. Hence, production of oil during the heating period
minimally affects the heat transfer process.
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4.2.4. Evaluating the Unsteady-State Term

It was pointed out previously that, in Equation (4.2.1.4) the diffusive and the
unsteady-state terms are of similar importance. The same conclusion can be obtained
considering a heat balance on the moving interface. In the problem of interest. heat is
transferred ahead of the interface by conduction, and heat is left behind the interface as it
moves forwards in the matrix. The difference between these two corresponds to the
accumulated heat and signifies the importance of the unsteady-state term. Heat flux to the
rear, defined as the rate of heat left behind the moving interface per unit area of the
interface, can be written as Equation (4.2.4.1)

O = UpcTs—Te) e (4.2.4.1)

Note that the coordinates are moving with the interface, and account should be
taken for oil as well as rock left behind the intcrface, as in Equation (4.2.4.1). Heat flux
ahead of the interface is found from Fourier’s law,

ar
, = —k —-l ....................... 4.2.4.2)
Q._ (4 ag §=0

The dimensionless heat flux is defined as

- __or
Ob =ty e (4.2.4.3)

Thus. the dimensionless heat flux to the rear and that ahead of the interface can be
written as Equations (4.2.4.4) and (4.2.4.5), respectively,

Op = % ....................... (4.2.4.4)
and,
op, = _gg ....................... (4.2.4.5)
E=0

48




The dimensionless heat flux to the rear is the Peclet Number, Np.. written as
Equation (4.2.4.4), which was found to be of the order of 10-2 for a typical case. Based
on the theory of magnitude analysis Q,, =()(1). since the variables on the right hand side

of Equation (4.2.4.5) are normalized [Lock 1986]. It can be concluded that there is a large
accumulation of heat in the system.

Under certain approximations, Equation (4.2.4.5) can be evaluated. First, the
effect of the moving interface can be neglected, since it was shown to have little effect.
Using the exact solution for pure conduction in a slab with initial zero temperature and a
boundary condition of unit step-function, the dim~nsionicss heat flux can be found as
1< and Jaeger 1959]

A2 ’(2"-1)2“2’ 4.2.4.6)
a £=0 Zex;{ o R T ( .

n=

As another model the unsteady-state heat transfer ahead of a constant velocity
moving boundary into a semi-infinite medium can be considered. For such a system
[Carslaw and Jaeger 1959], Equation (4.2.4.5) can be evaluated as

p[(ﬁ_) }
_%Z_l _ J_”z? o Nee erfc(_ N;e 4?) ..................... (4.2.4.7)
£=0 <

It should be noted that for Np, =0, Equation (4.2.4.7) simplifies to

_981  _ _1__ which corresponds to the heat flux from the surface of a semi-infinite
o0& =0 Jrt

medium in a 1-D conduction problem [Carslaw and Jaeger 1959].

Equations (4.2.4.6; and (4.2.4.7) are plouted along with Equation (4.2.4.4) in
Figure 4.3. As shown in Figure 4.3, the heat flux to the rear is%’i, and is of the order of

10-2. This value is much less than the heat flux ahead of the interface. as shown in
Figure 4.3, where the dimensionless time is between zero and one. Carslaw and Jaeger
[1959] showed that the average temperature in the slabat 7=1 is Tn = T;. This is why the
heat flux for the slab case approaches the value of 0.01. In fact for much larger times it
will be almost zero because heat transfer ceases when the block is at steam iemperature.

49



s ywever, dimensionless times greater than one are not of interest, since gravity drainage
+: gcecurring approximately at constant temperature.

10
2,
é Heat tlux at the rear

e,
- 1 M,_,‘ _____
[+ e R e e da et R R L PRI,
£ T~ ——— | TT" Heat flux ahead
a —- (slab, st. boundary)
o 041
g """" Heat flux ahead
é 0.01 (semi-infinite, mv.
= bounda
(=] ndary)
0'00] | A S 1 [ 1 i 1 1 1 3

0.1 02 03 04 05 06 07 08 09 1

Dimensionless Tme
Figure 4.3. Heat flux ahead and at the rear
of the moving interface

Before proceeding to the next step, note that magnitude analysis, in the heat flow
part of this study, has limitations [Lock 1986]. As an example, it was found previously
that the dimensionless heat flux ahead of the interface was a normalized quantity; hence,
it should be of the order of unity. Figure 4.3 indicates that this prediction is valid for the

semi-infinite case but. the behaviour of the finite thickness slab is over-predicued by the
normalization theory.

4.2.5 The Alternate Linear Heat Flow Problem

Using magnitude analysis it was found that, for the typical propertics of Table 4.1,
the moving boundary term has a negligible effect in the heating process and that the
diffusive and unsteady-state terms are dominant. Based on these findings, it is proposed
%43 steam heating of a typical single block under gravity drainage can be modelled by the
linear problem of unsteady-state conduction from stationary boundaries. This idea is
examined by considering a semi-infinite problem, since exact solutions are available for
the latter case. The semi-infinite assumption is valid while the no-flow boundary of the
actual block does not affect the interface behaviour. Discussion of this assumption is

50



given later. A solution to the moving boundary problem with con=zsnit frontal velocity is
given by Carslaw and Jaeger [1959], as Equation (4.2.5.1),

_ _1_ 6+NPe1 ~-N,& c(é‘NPeT)
8 = z[effC(-—g;—)ﬁ-e x erfi -—m— ....(4"2.5.1)

Here, it is suggested to use the well-known solution to unsteady-state heat
conduction ahead of a stationary boundary,

o = erfc(?jt-) ............................ 4.2.5.2)

The temperature distributions predicted by Equations (4.2.5.1) and (4.2.5.2) are
compared in Figure 4.4 for two different dimensionless times before the temperature rises
much at the no-flow boundary. The two solutions are identical to the third decimal place.
The temperature distribution corresponding to the steady-state solution of Equation
(4.2.1.3) as used in the SAGD theory [Butler er al. 1981] is very close to one, for the
entire range of the dimensionless distance between zero and one as shown in Figure 4.4.
This confirms that behaviour of a matrix block is far from sicady-state for the typical
properties of Table 4.1.

For the purpose of plotting Figure 4.4, a value of Np, =0.01 was used in Equation
(4.2.5.1). as was found before. Figure 4.4 indicates that the dimensionless time
corresponding to the approach of the heat front to the no-flow boundary is less than 0.1.

In Equation (4.2.5.1) dimensionless distance varies between zero and one. Hence, the
value of Np,t is in the order of 10-3, and for the most part much less than ¢. In this case,

Equation (4.2.5.1) can be simplified to Equation (4.2.5.2). which further justifies using
the stationary instead of the moving boundary model.

The above numerical and analytical treatments indicate that using Equation
(4.2.5.2) instead of Equation (4.2.5.1) is permissible before the effect of the no-flow
boundary is felt. In theory, the temperature at the no-flow boundary of a finite thickness
system is affected instantaneousiy as a result of any change at the surface [Zauderer
1989]. However, this effect dies out 10 aimost zero far from the surface. For the case
studied in Figure 4.4, it can be assumed that there is no disturbance at £=1 for 7<0.05,
for example. Based on this argument the above conclusion can be extended to finite size
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problems, and the unsteady-state solution of heat conduction from stationary boundaries
can be used to mode! heat flow in a single matrix block in the shape of slab and cylinder.
However, the proper boundary condition at the no-flow boundary will be accounted for.

1 guec e e s et - —— - —————- _— Mv.
boundary(1=0.02)
®
S os
s I\™W |- Mv.
5 boundary(t=0.06)
E o6
|; -------- St. boundary
] (t=0.02)
j"% 0.4
g —_—————- St. boundary
@ 1=0.06
aE' 0.2 ( )
\\ . ——————— Mv. boundary,
o ) \s,} R steady-state
0 0.2 0.4 0.6 0.8 1

Dimensionless Distance from Boundary
Figure 4.4. Comparison between
prediction response by different models

It should be noted that, if the flow properties of a fractured reservoir are such that
there is a considerable effect of the moving interface, larger errors in heat flow
calculations would occur if its effect is neglected. In the next section the effect of the
moving interface is neglected. as found for the typical properties of table 4.1. Solution
methods for the cases where the effect of the moving interface should be incorporated are
discussed in Chapters 6 and 7.

Next, a detailed solution for non-isothermal gravity drainage for cylindrical
blocks is presented and the correspunding solution for matrix blocks in the shape of a slab
is given in Appendix A.

Many numerical and experimental studies have indicated that cylindrical blocks
can duplicate the behaviour of cubic blocks [Saidi 1975, Chen er al. 1987, Saidi 1987].
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Obviously 2-D modelling of cylindrical blocks is a major advantage over the 3-D
modelling required for cubic blocks. For a cylindrical block of infinite height with the
same initial and boundary conditions as the slab block. the solution of the pure
conduction problem is given as Equation (4.2.5.3) [Carslaw and Jaeger 1959]

6 = 1- 22 ﬁO(,ﬁ(n[i) exp( B,,‘r) ........... (4.2.5.3)

where y is the dimensionless radius of the cylinder and B, n=12,.., are roots of
Jo(B) = 0. Using Equation (4.2.5.3) the heat consumption by a single cylindrical block
can be found as a function of time. Gravity flow calculations can also be performed for a
circular element of constant distance from the surface. However, as it is shown below, a
simpler form of temperature distribution is required for analytieal integration of flow.

4.3 Fluid Flow Problem

To obtain the gravity driven oil flow rate from a single biock, three equations
should be coupled. One is Darcy’s law, which is written for a circular element of
thickness dr of constant temperature as:

dg = ——— Apg(2mrdr
0(7) p&( )

where piston-like displacement over the element is assumed and capillary pressure is
ncglected.

In Equation (4.3.1), viscosity is a function of temperature. Hence. an equation is
needed defining the dependence of viscosity on temperature, which will be called an
equation of state (EOS). In this work, the equation suggested by Butler er al. [1981] is

used, which was introduced in the development of the Steam-Assisted Gravity Drainage
(SAGD) theory.

Vg _ T=Tg m
s - (n-u) ................... (432)



After being used successfully in the SAGD theory (reviewed by Butler [1991]).
Closmann [1995] and Reis [1992-b) used Equation (4.3.2) in the analytical solution of the
flow of heavy oil in steam injection processes. It is noted that by using Equation (4.3.2)it
is implicitly assumed that oil flow at initia! reservoir temperature is zero. In the cases
where oil flow at reservoir temperature is significant, the additional flow can be estimated
separately and added to the oil flow resulting from thermal processes., as suggested by
Butler [1985-a). Butler [1985-a] offered a new interpretation for the exponent m, so that
m could be evaluated by using the viscosity-temperature relationship of the particular
heavy oil. However, the assumption of zero oil flow at initial reservoir temperature was
not relaxed. Recently, Butler [1994] gave another calculation procedure for finding n1.
The latter method was derived for the steady-state SAGD process. An example of
calculating m for the bitumen of Grosmont is given in Appendix B.

The last required equation is the temperature distribution within the block,
Equation (4.2.5.3). The analytical coupling of Equations (4.2.5.3) to (4.3.2) is not
possible. For this purpose, the Heat Integral Method (HIM) is used to find a simple form
of temperature distribution. Analytical incorporation of such a solution into the oil flow
equation is possible in some cases. and is shown here. The ease of application of HIM
relies on the fact that simple polynomial equations are found to approximate the
temperature distribution within the formation. As HIM is essential in this study and is
little used in the petroleum literature, it is reviewed in the following section before itis
applied to the problem of interest.

4.3.1. Temperature Distribution Using the Heat Integral Method (Him)

Integral methods have been used to approximate the solution of diffusion
dominated nonlinear problems. In the field of fluid mechanics they were first introduced
1o solve boundary layer problems [Pohlhausen 1921]. Schlichting [1955] presented a
detailed discussion on the use of integral methods in boundary layers. In the study of
unsteady-state heat conduction the method was first used by Goodman [1958] for solving
problems involving a phase change. As reviewed by Crank [1988], onc advantage of
using integral methods in linear heat transfer problems is that: “only the value of the
unknowns on the boundaries of the domain enter into the formulation.”

HIM will be used only to find a good approximation to the exact solution in
polynomial form which is appropriate for later integration. In HIM, a particular form of
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temperature distribution, for example, a polynomial, is considered which pertains to an
unknown heat penetration depth corresponding to the boundary layer thickness in
hydrodynamics. The coefficients of the polynomial are found using the actual as well as
the auxiliary boundary conditions. The latter are defined using the definition of heat
penetration depth, so that there is no effect of heat transfer beyond the penetration depth.
Having obtained the equation for temperature distribution, the heat transfer equation is
integrated over the appropriate interval, and the two equations are combined to obtain an
ordinary differential equation for the unknown penetration depth. Upon solving this
differential equation, the heat penetration depth is obtained which can then be used to
find other parameters, in particular the temperature distribution.

In the petroleum literature a few cases are available where integral methods were
used in heat flow problems; however, no reference was given to the Heat Integral
Method. Vinsome and Westerveld [1980] used an integral method to approximate 1-D
heat loss to the cap and base rocks in thermal recovery processes. They used the product
of a polynomial with an exponential function to represent a trial function approximating
the temperature distribution. The coefficients of the trial functions were numerically
obtained for the case of a time-dependent boundary temperature. Their examples showed
the high accuracy of the integral method. Later, Pruess and Wu [1993] used Vinsome and
Westerveld’s method in a semi-analytical model to obtain the temperature distribution in
matrix blocks of geothermal reservoirs. They modelled cooling of non-permeable blocks
by conduction. In a semi-analytical model for predicting the behaviour of the SAGD

process, Butler | 1985-b} used a step function to approximate the heat penetration depth
by using an integral method.

It should be noted that the Heat Integral Method provides only an approximation
for the solution. since the assumed function describing the temperature distribution is
forced to satisfy only the integrated form of the original equation. The accuracy of the
solution can be increased by defining different profiles at different regions of the heated
interval [Bell 1978]. In the following, HIM is used to obtain the proper temperature
distribution in a cylindrical matrix block. After the temperature rises at the center of the
block. two profiles are required corresponding to two intervals, each one half of the
domain, as it leads to higher accuracy compared to a single profile.
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A temperature distribution in a polynomial form¢ will be considered, similar to
the expansion of Bessel function of zeroth order Jo(x). which is the basis of the exact
solution. Equation (4.2.5.3)

0 = a(m)~b@y*+c)y’

Using the actual boundary condition (4.3.1.2) and the auxiliary boundary
conditions (4.3.1.3) and (4.3.1.4) one can obtain the coefficients of the polynomial
(4.3.1.1), and 6 can be writien in the form of Equation (4.3.1.5)

8 =1 @ x=1

........... 4.3.1.2)

0 =0 @ x=1-6 .. 4.3.1.3)

20 |

2 -0 @ y=1-6 (4.3.1.4)
2_q-67f

o = [ -0-oy] 4.3.1.5)

[] - (1 - 5)2]2 ...........

Note that the auxiliary boundary conditions (4.3.1.3) and (4.3.1.4) indicate that
there is no effect of heat flow ahead of the penetration depth 6. Next, the dimensionless

form of the heat equation in radial coordinates is integrated over the heat penetration
depth, obtaining

20 a6 d -9
- — | = — Yoay e s e s e e s . ra s e 4. .].6
xaxl-ﬁ anl dtj]xedx (4.3.1.6)

Upon substitution of the temperature profile (4.3.1.5) in Equation (4.3.1.6) and by

using the auxiliary boundary condition (4.3.1.4), an ordinary differential equation (ODE)
is obtained for the heat penetration depth

It is shown by Lardner and Polhe [1961] that an equation in the form of a product of a logarithmic
term and a polynomial offers more accuracy for approximating the wemperature distribution in
cylindrical coordinates. However, the logarithmic term will be excluded: otherwise, it will not be

possible to obtain analytically the drainu:ge rate by combining the three equations (4.2.5.3) to
(4.3.2).
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d[l -(1-6)] 24
— = F-(l—&)ﬂ ................. 4.3.1.7)

Equation (4.3.1.7) along with the initial condition (4.3.1.8) can be solved to obtain
the heat penetration depth as Equation (4.3.1.9)

5=0 20 4.3.1.8)
1-6 = 1-+a8t rszlg ................. (4.3.1.9)

By combining Equations (4.3.1.5) and (4.3.1.9), the unsteady-state temperature
distribution can be written as a function of r and

- 2
(x* —1+4/487) i
e = a87 ‘L’SR ................ (4.3.1.10)

Equation (4.3.1.10) is valid so long as &<1, since Equations (4.3.1.3) and
(4.3.1.4) are not valid afterwards. In fact there is no meaning for the heat penetration
depth after the temperawre at the no-flow boundary of the cylinder is raised above the
initial value. Any attempt to represent the temperature distribution using a single
polynomial after this time would result in poor accuracy. Hence, two different
polynomials are considered each pertaining to half of the cylinder radius. The coefficients
of the polynomials are obtained using the actual boundary conditions of the problem, and
the statements of continuity of temperatare and heat flux where different polynomials

meet. This method is used below to obtain better accuracy for the temperature distribution
compared to that obtained using a single polynomial.

6 = a(t) + b(o)y + c(1)x> —;—sxSI ....(43.1.11)
8, = e+ f(Dx+gDx° Osxs-;- ....(4.3.1.12)

Four of the coefficients can be found using the appropriate boundary conditions
(4.3.1.13) 10 (4.3.1.16)
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.......... (4.3.1.13)
26+

P2 _ =0 . 4.3.1.14
£ X (4.3.1.14)
6, = 6; x=% .......... (4.3.1.15)
26, 06, 1

% _ 9% L 43.1.16
x - x =3 ( )

The temperature distribution equations can be simplified using the above
equations to:

6, = 1+b(T)(x-D+cTx* =1 %SxSI .......... 4.3.1.17)

6>

1+ bt (x* - %)+ T -1 0Sx<= e (4.3.1.18)

to | =

Now, Equations (4.3.1.17) and (4.3.1.18) are forced to satisfy the integrated form
of heat equation over their corresponding half radii. Hence,

1
X&L'hhwm .......... (4.3.1.49)
1
do- |2 5
— I — 2 eqd .......... 4.3.1.2()
x x|, dtJo x020% ( )

After doing the required algebra one obtains two ODEs for b(7) and «(7) as:

5 db(t) 7 dC(T) 4
T)+ T = o e—— — e e— e s e e e -3.1.21

— __l_db(T)_idC(T) 4.3.1.2
b(1) + 3c(7) it -l S (4.3.1.22)

Simultaneous solution of Equation (4.3.1.21) and (4.3.1.22) with the
corresponding initial conditions yields b(r) and c(7) as functions of 7
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b(t)

]

24.47112A, exp(ny 1) — 1.47112A; exp(mn, T) ... (43.1.23)

«(1)

1

A, explm, )+ Ay exp(m;T) ....(43.1.24)

where  my = -6.30105
my = —42.3946

Coefficients A, and A, are obtained by satisfying the equality of temperature and

heat flux, when the second set of temperature profiles (4.3.1.17), (4.3.1.18) are used
instead of the first Equation (4.3.1.10)

[}
(X

]

o

x=0 ... (4.3.1.25)

% _
ax

NS
i
&
=N
l

....(4.3.1.26)

Using Equations (4.3.1.25) and (4.3.1.26) which are valid at r=21§, and A, are

obtained:

A> =9.49929

Figures 4.5 and 4.6 compare the exact solutions with the approximate ones. These
figures indicate that a reasonable approximation is obtained by using HIM. Note that the
approximate solutions follow the exact solution both in space and time.
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Figure 4.5. Temperature distribution by
HIM and exact solution ( Cylinder)
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Figure 4.6. Temperature distribution by
HIM and exact solution (Slab)
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4.3.2 Thermal Gravity Drainage from a Single Block

To obtain non-isothermal gravity drainage Darcy’s law. Equation (4.3.1) is
combined with the EOS (4.3.2) :0 oblain:
kg

R
q= m—— o er"2rdr . eeess (4.3.2.1)
s

where it has been assumed that Ap = p,,. The parameter ¢ is the production rate per unit
surface area of the block.

To ke able to perform analytically the above integration and to obtain a closed-
form solution for non-isotherms! gravity drainage, the approximate temperature
distributions in polynomial form that were found in Section 4.3.1. are used. Hence,

- Y+
(481’ + ‘\/_4_8? _ l)..m-H _ (m _ l)- n+1 ]
qp(1) = T€E—  cee-- (4.3.2.2)
(2m + 1(487)" 48

In Equation (4.3.2.2) gp is normalized with respect to the maximum drainage rate
at steam temperature:

ap(0) = ﬂ‘;fl ....................... (4.32.3)
where,
g, = %“— ....................... (4.3.2.4)

Thus. gp(t)=1 corresponds 1o isothermal gravity drainage at steam lemperature.
Equations (4.3.2.3) and {(4.3.2.4) indicatwe that non-isothermal gravity drainage from a
single block. similar to the corresponding isotherms! one, is inversely proportional to the
oil viscosity at stcam temperature and linearly proportional to matrix permeability.

Equation (4.3.2.2) is valid for r < Zl§; however, forr 2 7}8- Equations (4.3.1.17) and
(4.3.1.18) arc used and the analytical integration is performed for a value of m=4, as
obtained in Appendix B for the Grosmont bitumen of Alberis. The sciusion is plotted in
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Figure 4.7. which shows that the drainage rate approaches that at sicam temperature after
7 =1. For comparison the thermal gravity drainage is plotted when the exact temperature
distribution. Equation (4.2.5.3), is considered. Obviously. the latter is obtained using
numerical estimation of the infinite series and numerical integration of the final flow
integral. Also. the solution from a free equation of state, that is. Equatior ¢ .3 from
Appendix B. is shown. The close similarity of the solutions indica. th> the
approximations involved in using the temperature distribution from HIM and also in
evaluating the exponent m in Appendix B are all justified.

)
©
% Analytical solution
g (HIM, Eq.4.3.2)
®
s - £ 0 TT/" Numerical solution
§ (Exact, £q.4.3.2)
c
'% """""" Numerical solution
é (Exact, Eq. B.3)
5 0 1 1 1 1 |

0 0.4 0.8 1.2 1.6 2

Dimensionless Time

Figure 4.7. Thermal drainage from a
single block (cylinder)—Analytical and
numerical solutions

The corresponding solution for a slab is shown in Figurce 4.8. A comparison is
shown between the analytical solution with the numerical solutions using the exact
temperature distribution (see Appendix A) and two different EOS. Again, the close
similarity indicates that the analytical solution proposed here is successful in predicting
the thermal gravity drainage from a single block.
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Figure 4.8. Thermal drainage from a single
block (slab)—Analytical and numerical
sciutions

4.3.3. Average Tempearature Assumption

In the previous section the temperature distribution was analytically incorporated
into the integral of the flow rate from a single block. If at any time, the average
temperature is accurate enough to approximate the flow rate at that time, then an
analytical solution of flow equation using the exact temperature solution with any EOS is
possible. Under the average temperature assumption thermal gravity drainage from a
single block can be evaluated using

- ke v
= - = S e i h e ee s s e e s e s e e 4.3.3.1
KU N T ) ¢ )

or,

L S R R EERE (4.3.3.2)

Gp(1)= —Yos ___
D V(B (D)

where the bar sign indicaics a production rate at the average temperature.



Equation (4.3.3.2) is valid for both the cylinder and the slab cases. It the Equation
of State of (4.3.2) is used. Equation (4.3.3.2) can be writien as

W

gp(m =58, Ty e (4.3.3.3)

By using temperature distributions from HIM (see Table 5.2), one obtains

gp(n)= (-%6- 1)? T< _41—8 ................ (4.3.3.4)
_ _ —11- —l m .l_
gp(t)= [l o6 b(r) 5 c(r)] T2 eeeeeeeeeeeees (4.3.3.5)

for cylinders, and

Gp(0) = (1.57)3 r< ;,': ................ (4.3.3.6)
?iD(t)=[l+H-b(r)+—l-c(r)]m 1'2l ................ 4.3.3.7)
24 4 24

for slabs. where b(r) and () are listed in Table 5.2 for both cases of the cylinder and the
slab.

The drainage rate at the average temperature, Equations (4.3.3.6) and (4.3.3.7), is
compared in Figure 4.9 with the drainage rate using the exact temperature distribution,
Equation (4.2.5.3) and EOS (B.3). Figurc 4.9 indicates that the drainage rate is
underpredicted at early times using the average temperature, and the reverse i1s true at
later times in the heating period. The solutions tor the slab case, based on the Equations
presented in Appendix A, are shown in Figure 4.10.

It was found that the arca under the average temperature curve is only 2% less
than that for the exact curve, for the time in Figure 4.9. This suggests that using average
iemperature due o conduction in a block under thermal gravity drainage is a very good
approximation for the exact drairage rate, and that Equation (4.3.3.2) is accurate. This is

a general conclusion and does not require implementation of HIM. However, by using
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HIM very simple equations, such as E£quations (4.3.3.4) 10 (4.3.3.7), are obtained for
drainage rate calculations. Figure 4.10 present similar resulis for the slab case.

Dimensionless Production Rate

0 0.4 0.8 1.2 1.6 2
Dimensionless Time

Figure 4.10 Thermal drainage from a
slab (Evaluating the average
temperature as:sumption)
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Figure 4.9. Thermal gravity drainage
from a cylinder (Evaluating the average
temperature assumption)
1 ¢
0.8 }
HIM

(Average, Eq. 4.3.2)

(Eqs. A.1.5 and B.3)
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5. RESULTS AND DISCUSSION — ANALYTICAL MODEL

5.1 Dual Behaviour of Thermal Gravity Drainage — Time Scale and
Magnitude Analysis

In the analysis of heating of a matrix block a magnitude analysis was
implemented and it was concluded that for typical propertics of naturally fractured
reservoirs, the effect of the moving interface, i.e., the Peclet No. is small. Previous
experimental studies of non-isothermal gravity drainage from single blocks, however,
indicated a significant effect of the moving boundary [Pooladi-Darvish 1992, Kharrat er
al. 1993]. Table 5.1 gives the physical propertics used in the thermal gravity drainage
experiments performed by Pooladi-Darvish 11992].

Table 5.1
Physical properties of two experimental models [Pooladi-Darvish 1992]

Height H
Width2 L
Thickness L,
Permeability &
Porosity ¢
Thermal difiusivity &
(estimated)
Saturation change AS,
taitial lemperature Tg
Steam temperatuee T
m
Density difterence Ap
Kinematic viscosity at steam

lemperalre Ug,g

Model (1)
36 ¢ [0.36 m]
34 cm [0.34 m]

2.5 cm [0.025 m]
650D 16.5 x 10710 m?}
%3S
0.75 mm /s [7.5 x 107 ms)

08
31 C
100 C
2.76
0928
58.7 ¢S 15.87 x 107 m?s)

Model (2)
30 ¢in (0.3 m)
30cm (0.3 m]

5.5 cm [0.055 m]
6501 16.5 x 1010 m3|
%35
0.75 mm/s 17.5 x 1077 m?hsj

OR
35 °C
100°C
2.57
1928
58.7 ¢S [5.87 > 105 m2)
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If N, is calculated using the data of Table 5.1 and if a frontal velocity of 5-10
em/hr ( about 2 x 10-5 mis). as observed during the experiments of Pooladi-Darvish
[1992] is used, a Peclet No. of the order of one is obtained, which explains the strong

moving boundary behaviour of the experiments.

A time scale analysis can be periormed to compare the velocity of the two
simultaneous processes of heat flow and gravity drainage. Using Equations 4.2.3.1) 10
(4.2.3.3) it is found that 7, << 7). This suggests that the heated oil could easily flow and

allew further movement of the steam-oil interface.

The above comparisons exp’zin why using a high permeability sand pack had
altered the behaviour of the process, and that for typical properties of naturally fractured
reservoirs the heating process acts much faster than the fluid flow process, and hence, the
effect of fluid flow on heat transfer can be ignored.
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Figure 5.1 Different stages of heating and drainage of heavy oil from a single
block. Above: reservoir conditions, Below: experimental conditions
of Poolaci Darvish [1992]
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Figure 5.1 shows schematically the gravity drainage of heavy oil from a single
block under typical field conditions and under experimental conditions of Pooladi-
Darvish [1992].

5.2. Scaling Considerations for Physical Modelling of Non-Isothermal
GGravity Drainage from Fractured Reservoirs

Pooladi-Darvish [1992] used a high permeability matrix block so that he could
perform his experiments in a reasonable time. It was discussed above, that his
experiments did not represent the behaviour of gravity drainage under ficld conditions.
Thus a question may be raised. as to whether it is possible to perform experimental
studies of thermal gravity drainage from single blocks that represent ficld conditions. To
answer this question the above time scale analysis is used to design experiments that
represent a constant ratio between the time scales of heat flow and gravity drainage,
between the ficld and the model.

(ﬂ_) =(ﬁ_) ............. (5.2.1)
Td Jgad \ Td Jmodel

Using Equations (4.2.3.1) to (4.2.3.3) it is concluded that Equation (58.2.1) will be
satisfied if other than the geomeuric similarity, Equation (5.2.2) is followed.

(Nradgsg = VR e (5.2.2)

where the Rayleigh No., Ng,. signifies the importance of convective flow to conductive

heat transfer. In this problem, the convective flow is duc to gravity drainage of oii from
the block.

kginir
Np,=—2=2Fox— e (5.2.3)
o™ eASau,s

In subsequent chapters it will be shown that the Rayleigh No., as defined by
Equation (5.2.3), is an important dimensionless group in non-isothermal gravity drainage
of oil in high permeat:iity systems, too.
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It is interesting to note that the above criterion satisfies the equality of the Peclet
No. in the model and prototype, as was found to be important in Chapter 4. Once the
scaling criterion is obtained it should be checked if materials can be found to satisfy the
criterion, and also to allow performing the experiments in reasonable time and space.
Suppose one would like to scale an actual case with the typical properties of Table 4.1
with materials representing a mobility of 1 darcy/cp. This would allow performing the
experiments in a reasonable period of time. To satisfy Equation (5.2.2) one has to choose

an experimental model such that LAp s smaller than that in the field by a factor of 104.
aMSO

By having dimensions in the range of 10 to 100 times smaller than the actual case and by
having a thermal diffusivity 102 times larger than field, for example, by using metal
beads, it is possible to satisfy Equation (5.2.2).

Cure should be taken such that, while non-isothermal gravity drainage is scaled,
other recovery mechanisms are not enhanced or suppressed. For example, using metal
beads might increase the effect of oil recovery due to thermal expansion. As another
example, it was pointed out in Chapter 2 that capillary forces affect the recovery more,
when the size of the model is reduced. On the other hand, increasing the permeability
reduces the capillary forces. Here, it is not intended to present a complete set of scaling
criteria for thermal recovery from fractured reservoirs, but it is desired to consider non-
isothermal gravity drainage and present guidelines for experimental study of the process.

5.3. The Error introduced by the Assumption of Thermal Equilibrium

The detailed discussions in Chapter 4 indicated that, for typical properties of
naturally fractured reservoirs, one can approximate the nonlinear problem of heating of a
matrix block by a linear conduction problem. In a later part of the same chapter, the Heat
Integral Method was used to obtain conductive temperaturce distributions in polynomial
form. A summary of the temperature profiles for the slab and cylindrical cases cbtained
from HIM along with the exact solutions [Carslaw and Jaeger 1959] are given in Table
5.2. The approximate profiles were compared with the exact ones in Figures 4.5 and 4.6.

and it was shown that HIM provided good approximations for the linear conductive
problems.

Figures 4.5 and 4.6 indicated that the average temperature of a matrix block
approached that of steam after a dimensionless time of r=1. This corresponds
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approximately 2 months for the typical properties of Table 4.1. By assuming thermai
equilibrium between the fracture and the matrix a two months period during which oil
drainage is significantly lower than that at stcam temperature is ignored. This may or may
not be sig:iificant in the design and evaluation of a thermal project. van Wunnik and Wit
[1992] assumed thermal equilibrium between the fracture and the matrix, and studied
gravity drainage of oil from matrix blocks. They never estimated the error that the
thermal equilibrium assumption might have introduced.

Table 5.2 Summary of exact and approximate temperature profiles

« Single block-slab

. ((2!1—1)7!
o sin| ———m—

) o {252

Exact: 1—-—
T

2n-1 2
n=1

g Y |
A imalte: 1 - —=— g
pprox ¢ ( 4241) 24
9 1 1
: <E<~ >—
1+ b+ (T 0<gé 5 T >4
14 )=+ 28— Ey s c(r)= 2 + 26— &) lee< >t
4 2 2 24

where

i

b(1) —0.58579A, exp(m 1) — 3.41421A; exp(moT)

o) = Ajexp{myT)+ A exp(msT)

ny =-31.689
my =-2.5967
A; =7.32903
Az =0.60492

» Single block-cylinder

( 1 - O(an 2
Exact ZHZ;ﬂ AT exp( B.*t)
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where B, n=12,.. arerootsof Jo(B) = 0.

0 (zz —1+-\/481)' 1
R = < —
Approximate: a8t TS a8
8 = 1+b(r)(x - +c@)x? -1 %5151 rzzlg

2 3 2 1 1

= 2 2 2_ <y<— >—

?] 1+b(t)x 4)+C(T)(X 1)) O<y< 5 T2 2

where

b(t)

(1)

24471124, exp(nmy7) —1.47112A4; exp(maT)

i

Ajexp(mT) + Ay exp(my )
my =-6.30105
mo =-42.3946
Al = 0.08283
A> =9.49929

5.4. Importance of Thermal Gravity Drainage in Fractured Reservoirs

In Section 4.3 the temperature distribution obtained from HIM was combined
with a viscosity-temperature relationship and Darcy’s law. This permitted a closed-form
solution for thermal gravity drainage for some values of m. The average temperature
assumption was then examined, and it was concluded that the viscosity of the oil at an
average block temperature at any time was representative of the average viscosity of the
block. By using the average temperature assumption very simple equations were: obtained
that described thermal gravity drainage from single blocks. The relations are expressed in
dimensional form as Equations (5.4.1) and (5.4.2) for cylinders and slabs, respectively.

mn

_ kApsz(l6 o1 )? R’

=o0be | 22 1€—— ..., 54.1.a

q o L3 = 130 ( )

_ kqu[ ot . a 1" R

7 = ——=11-0.696 exp} my — |~ 0.237exp| mz — J 12— ... (5.4.1.b)
os ! R~ . R* 48cx
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where,

my =-6.30105
my =-42.3946

and,
m N
- kApg(3 ar)z L
=2\ == 1S— ... 5.4.2.a
1= 21 2ace ( )
g= kApg 1-0 135exp(m —%)—0 7‘)Sexp(nh 9’_) X 12 L (5.4.2.b)
e 130 le L 10 ~L2 Z S ae P & A
where,

m; = -31.689
> = -2.5967

In Equations (5.4.1) and (5 4.2), m is a characteristic of heavy oil and is found
using the viscosity-temperature relation of the heavy oil and Equation (B.1) in Appendix
8. To develop Equations (5.4.1) and (5.4.2) capillary forces were neglected. Their elfect
can be incorporated when the block height is much larger than the threshold height of the
block, by multiplying the right hand side of the above equations by l—%’-. where A, is

the threshold height of the block [Saidi 1987].

M - Equations (5.4.1) and (5.4.2) arc very casy L0 us¢ and that they relate the
productic 1o the physical properties of the rock and fluids and the time of
consideration.

The non-isothermal gravity drainage from a cylindrical and a slab biock wilis
typical properties of Table 4.1 is shown in Figures 5.2 and 5.3, respectively. It can be
observed that the drainage rate increases at the beginning, because of the reduction of the
viscosity of the heavy oil during the heating period, and it levels off when the
temperature of the whole block has approached that of steam. At this time the drainage
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rate corresponds (o the isothermal drinage rate at steam temperaturc. Note that at large
times, the term in the square bracket. in Equations (5.4.1) and (5.4.2) approaches one.
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Figure 5.2. Non-isothermai drainage rate from a single block (average
temperature for a cylinder)
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Figure 5.3. Non-isothermal drainage rate from a single block (average
temperature for a slab)




Figures 5.2 and 5.3 indicate that the heating period is very short compared to the
drainage time for typical fractured reservoirs (see also Equation 4.2.3.4). After the
heating period. oil production corresponds to gravity drainage of the heated oil at stcam
temperature; hence. it can be concluded that the effectiveness of thermal gravity drainage
depends on the ability to spread steam in the fracture network so that a large number of
blocks start to be heated early in the operational life of the reservoir. Naturally fractured
reservoirs allow high injection rates because of the high transmissibility of the tractures.

Figures 5.2 and 5.3 indicate that for the typical properties of Table 4.1 gravity
drainage is a slow process for heavy oil recovery from fractured reservoirs. For exampile,
if it is assumed that only one single block in the vertical direction contributes to drainage,
for a production rate of 100 m?/day a drainage arca of 106 m 2 would be required tor cach
well.

It is worth noting that fraciu: 4 resesvoirs are characterize.d dy high formation
thickness. If we assume that fracturee :--s.'1voirs behave as that piedicted by the double-
porosity theory [Warren and Root {2627 ihat is, if we assume that individual blocks act
as individual source units and do n«t interact, a drainage area of 104 m?2 is required 10
achieve a production rate of 100 msday in a 4CY m thick formation®. This thickness is
not rare among {ractured reservisiis | Saidi 1987].

For more favourable cases, however, gravity drainage may be an important
mechanism. For example, Equations (5.4.1) and (5.4.2) suggest that the oil produced in a
104 m?2 pattern is about 100 m3/day, if the viscosity of the heavy oil is about | mPa s at
steam temperature and the matrix permeability is about 10 md. It should he noted that,
due to high transmissibility of the fracture network in fractured reservoirs, larger patterns
are usually implemented. One notes that, Equations (5.4.1) and (5.4.2) give conservative
results for such cases. This is because for higher mobilities at stcam temperature, than
typical valucs of Table 4.1, the effect of the moving boundary may not be negligibie and
a shorter time is required for the temperature in the matrix block to approach that of
stcam.

An example in Chapter 6 indicatcs that the error introduced by neglecting the
effect of the moving boundary, even at a Peclet No. of 0.1, is not large (sce Figure 6.5). In

A value of 4 m was assigned for block height as reported in Table 4.1,
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such cases Equations (5.4.1) and (5.4.2) should give good approximations for thermal
gravity drainage from single blocks.

5.5. important Parameters Affecting Thermal Gravity Drainage

Onc of the important motivations in sceking analytical solutions is that the effect
of different parameters can be studied easily once a closed-torm solution 1s obtained.
Equations 5.4.1 and 5.4.2 indicate that thermal gravity drainage of heavy oil in typical
fractured reservoirs is proportional to the 0il mobility at steam temrerature. Although this
may not sound surprising at first, a study of thermal gravity drainage in high pcrmeability
systems will indicate that this is not a general conclusion, and the thermal gravity
drainage rate in such systems is proportional to ihe square root of the oil mobility at
steam temperature [Butler er al. 1981]. The rcason is that, in high permeability systems,
not all of the oil is heated to steam temperature in a short time, as compared o the time
scale of the process, whereas this occurs in low permeability systems®.

Equations (5.4.1) and (5.4.2) indicate that average block size of a fractured
reservoir is the other important parameter that affects thermal gravity drainage. A larger
block size postpones the time corresponding o the maximum drainage rate. Other
parameters, such as Ap=p,-p; and a do not vary drastically among petroleum
reservolrs.

5.6. Range of Application of HIM

The Heat Integral Method was used in Section 4.3 to obtain approximate solutions
for a conduction problem. HIM simplifies the process of obtaining analytical solution by
providing a means to find simple polyiiomial function to approximate conductive
processes. The polynomial solutions are then combined with other equations and closed-
form solutions may be obtained. HIM was used in Chapter 4 and it will be used again in
Chapter 6 to obtain simple mathematical models for different thermal recovery processes.

6 In many places in this work the term “high permeability” systemns in conteast with “low

permeability” ones is used. The proper tenn is: systems with “high Rayleigh No.™" and the ones
with “low Rayleigh No.™.
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To the hest of the author's knowledge this is the first time that systematic application of
HIM is introduced into the petroleum liwerature 7.

The application of HIM was explained in Section 4.3 and the derivation of the
equations was shown in detail. Here, comments will be given on the range of its
applications. (for a detailed discussion and further references, Crank [1988] and Ozisik
[1980] may be referred t0).

In HIM. a trial function is introduced and then is forced to satisfy an integrated
form of the corresponding equation. The challenge is to propose an appropriate trial
function which does not require complicated mathematical manipulation and offers a
good approximation for the problem of interest. The use of high order polynomials does
not necessarily increase the accuracy of the method. Applying HIM over subsequent sub-
intervals, however, is known as a systematic way of improving the accuracy of the
method. An example of such an exercise was given in Section 4.3, where the temperature

distribution in a cylinder was approximated with two polynomials after the heat flow had
affecied the no-flow boundary.

An advantage of the Heat Intcgral Method is that it can be applied readily to
nonlincar problems as well as linear ones. Solutions have been given for cases where the
nonlincarity has been due to the differential equation itself and/or due to the boundary
conditions. The solution of phase change problems is an example of the latter and that of
heat conduction in a medium with temperature dependent properties is an example of the
former. Although there have been successful attempts to use HIM for two- and three-
dimensional problems, its use is most suited for 1-D problems. Finally. application of
HIM has not been limited to the problems with uniferm initial conditions. and solutions
have been given for those with non-uniform initial conditions, too.

7 I'he fundamentals of HIM were previously used by Vinsome and Westerveld [1980] and Buder

{ 1985-b]. however. no reference o HIM was given. This is the first tine that HIM is introduced as
a general method for approximating diffusion dominated processes in the petroleum literature.
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&. APPLICATION OF THE HEAT INTEGRAL METHOD (HIM) FOR
MODELLING THERMAL RECOVERY METHODS UNDER CONDUCTION
HEATING

It was shown in Chapter 4 that the oil flow rate from a single block under
conduction heating could be modelled using analytical methods. A closed-form solution
was possible, because the exact temperaiure distribution, typically expressed as infinite
series or error function solutions, could be approximated by a polynomial function. The
polynomial was forced to satisfy the original heat equation in an integrated form along
with the appropriate initial and boundary conditions. Hence, the Heat Integral Mcthod
(HIM) provided an approximate solution for the problem. Comparisons showed,
however. that the approximate solutions were in good agreement with the exact ones.
Review of the literature indicates that HIM has been used successfully in approximating
temperature distributions under conduction hcating. In thermal recovery mcthods, heating
is achieved by either or both of the heating mechanisms, namely conduction and
convection. Field experience and modelling studies have indicated that conduction plays
a major role in a variety of processes. It was shown in Scctien 4.2 that matrix hcating
under gravity drainage is governed by conduction. Conduction causes mobilization of
heavy oil in the vicinity of artificial fractures created by steam injection above the
formation parting pressure [Closmann and Smith 1983]. In mature stcam drives with
complete override. gravity drainage of oil hcated by conduction was shown to be the
major recovery mechanism [Closmann 1995]. Analytical and semi-analytical models of
the SAGD process have considered conduction as the only heating mcchanism, and
numerous comparisons with experimental data suggest the validity of the assumption [sce
Butler 1991 and the references there).

In thermal recovery methods utilizing conduction heating, a stcam-oil interface is
considered and heating occurs ahead of the interface. The interfuce moves through the
reservoir. while oil is produced. To simplify the modelling task, two assumptions have
been used in the literature with respect to the behaviour of the moving interface. Some of
the predictive models neglected the effect of the moving boundary, while others assumed
a steady-state condition. It was shown in Section 4.2 that the movement of the interface
can be neglected if the interface velocity is small. The criterion for cstimating the
importance of the interface velocity was given there. It can be shown, however, that

steady-state conditions can be approached in a short period of time if the velocity of the
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interface, i.c., the Peclet No.. is large. If the velocity of the interface is somewhere in
between, none of the above assumptions may be justified.

In this chapter simple predictive models are developed for such cases where the
process is far from steady-state. Steady-state cases were previously discussed in the
litcrature [Butler er al. 1981, Closmann 1995]. Both cases where the interface velocity is
negligible and intermediate are considered. Through the application of HIM it will be

possible to analytically perform a large portion, if not all, of the mathematical derivation
and develop simpler and/or more accurate models.

As the first case, an analytical solution for a mature steamflood under steam-drag
forces is developed, where the interface velocity can be neglected. Later, semi-analytical
models are developed for the SAGD process in linear and cylindrical geometries. It will
be shown that the effect of the moving interface cannot be neglected in the latter cases. In

cach case the model is first developed, and then some of the assumptions involved in the
derivaiion are justified.

6.1. An Analytical Steam-Drag Model

Numerous researchers have developed simple mathematical models to calculate
the oil production rate in mature stcamflood projects under conduction heating. Miller
and Leung [1985] considered a horizontal, stationary oil-steam interface and used the
analytical solution of heat conduction in a semi-infinite reservoir to describe the
temperature distribution. Numerical integration was used to obtai.. the oil flow. Kumar er
al. [1986] accounted for the downward movement of the horizontal interface and
obtained the temperature solution. Again, numerical integration was necessary (o
incorporate the effect of the varying viscosity on the oil flow rate, and a’so to proceed in
time. Closmann [1995] used the exponential form of the temperature distribution ahead of
a horizontal interface which corresponded to steady-state conditions. He obtained
analytical solutions for gravity driven oil flow. Recently, Kimber er al. [1995] developed
an analytical model to calculate the oil flow rate by gravity and pressure forces in mature
steamfloods. They used a normalized equation to approximate ihe unsteady-state
temperature distribution ahead of an advancing steam front. The authors assumed a
heated region with a constant viscosity around the production well.
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In this section, oil flow is found from a closed-form solution tor those cascs which
are far from steady-state. and the temperature distribution corresponds to unsteady-state
heat flow ahead of a stationary boundary. As was #hown is Scction 4.2 the stationary
boundary assumption is valid provided that the velocity of the interface is small. The oil
flow mechanism is considered to be drag flow caused by the pressure difference between
the injector and producer. Different studies, reviewed earlier, have shown that the oil
production rate due to pressure forces after stecam breakthrough is minimal however, a
review of the literature indicates that there is interest in obtaining a simple solution for
such a problem. This is achieved in this section by using the Heat Integral Method.
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Figure 6.1. Schematic diagram of a mature steamflood project

Figure 6.1 shows a schematic diagram of a mature steamflood, where an
overlying steam zone is considered above the oil column. Heat is transferred by
conduction ahead of the steam-oil interface, assumed to be horizontal, and reduces the oil
viscosity. The heated oil is driven towards the production well by the pressure difference
between the injector and the producer. Single phase oil flow is assumed and capillary and
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gravity forces are neglected. The steam zone temperature is assumed to correspond to the
saturated steam temperature at the average steam zone pressure. The problem of interest
is a combined heat and fluid flow problem. In the following an approximate solution for
the heat flow problem is found. The latter is then used to obtain the oil production rate.

6.1.1. Heat Flow Problem

Heat conduction ahead of a horizontal oil-steam interface can be explained by
Equations (6.1.1.1) to (6.1.1.4.), provided that the thermal diffusivity of the base rock is
equal to that of the reservoir. This is assumed to be the case.

3T

o - %-';l 220 150 s (6.1.1.1)
T=Tg 220 120 o 6.1.1.2)
=T, 2=0 I (6.1.1.3)
T=1g z— oo >0 ... 6.1.1.4)

where - =0 is the location of the stationary horizontal interface and : is considered
positive downwards. Dimensionless variables are defined by Equations (6.1.1.5) to
(6.1.1.7)

_ I-Tk '
6 = T e 6.1.1.5)
n = T ........... (6.1.1.6)
T = 2;'- ........... 6.1.1.7)

The semi-infinite conduction problem of (6.1.1.1) to (6.1.1.4). in terms of
. dimensionless variables, can be expressed as:

%0 _ 90 -
a—nf- e n=0 T30 e (6.1.1.8)
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9=0 n20 r=0 (6.1.1.9)

...........

..........

=1 ' n=0 >0 (6.1.1.10

6=0 71— oo >0 (6.1.1.11)

The analytical solution of the Equations (6.1.1.8) to (6.1.1.1 1) can be written as
Equation (6.1.1.12)

0=erfc( ) .......... (6.1.1.12)

n
2t
By using the Heat Integral Method and by performing steps very similar to those

performed in Appendix A, one can find a third order polynomial to approximate Equation
(6.1.1.12)

3
g= (l— —'51) 0<n<é >0 .- (6.1.1.13)

where

§=~P4r e (6.1.1.14)

Equation (6.1.1.13) is the same as Equation (A.1.15) obtained in Appendix A, and
is valid in the heated region. that is, 0<n<+24t. Based on the definition of the heat
penetration depth, the temperature is equal to its initial value for n2>+247.

Figure 6.2 compares the exact solution with the solution found by the application
of HIM. In Equations (6.1.1.6) and (6.1.1.7) the vertical direction is normalized by unit
height. However, this does not affect the comparisons shown in Figure 6.2 since
Equations (6.1.1.12) and (6.1.1.13) are independent of the valuc used for the

normalization of z. Figure 6.2. indicates that the HIM solution is in good agreement with
the exact solution. - -

In the next section Equation (6.1.1.13) is used as the temperature distribution in
th2 heated zone to find an approximate solution for oi} production ratc.
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Exact (t=0.01)
_____ HIM (t=0.01)
-------- Exact (t=0.1)
—————- HIM (t=0.1)

—-me—e-- Exact (t=1.1)

Dimensionless Temperature

HIM (t=1.1)

0 0.2 0.4 0.6 0.8 1

Dimensionless Distance from Boundary
Figure 6.2. Temperature distribution by HIM
and exact solution (semi-infinite case)

6.1.2. Fluid Flow Problem

Because of the low mobility of cold oil far from the interface, oil flow is
considered 10 be horizontal and induced by the pressure difference between the producer
and the injector. In bituminous reservoirs where steam injection is carried out after
creating horizontal fractures in the formation, the steam-drag model applies for oil flow
below the fracture. Closmann and Smith [1983] showed that the temperature distribution
below a steamed fracture could be duplicated precisely by using a heat conduction model
from a stationary interface, that is, by Equation (6.1.1.12).

Faor an element of dn, located at a constant distance from the horizontal interface,
and having a constant viscosity, similar to that proposed by Kumar ez al. [1986] one can
write

k k
cAPCd: = ——cAPCdnxl e
H,(T) Ho(T)

dg = (6.1.2.1)
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where AP is the differential pressure between the injector and the producer, C is the net
to gross ratio, and ¢ is a geometric factor to account for the patiern shape. For a five-spot
pattern. ¢ is given by Equation (6.1.2.2) [Prats 1982]

n

—r (6.1.2.2)
m[-‘i) - 0.964

hy

c=

where d is the distance between the two production wells, and ny is the wellbore radius.

The total flow rate in the heated area can be obtained by integrating Equation (6.1.2.1)

. 5. keAPC ¢ dn
= = Sh e .1.2.3
4 I()dq ol 0 v,(0) o< h 6.1 )

The viscosity-temperature relationship of Equation (6.1 2.4)% is used again.

........... (6.1.2.4)

*\‘I

T-
b - (R

B3] =
~ /

By combining Equation (61,4332, (@.7.4 .13, (6.1.2.3) and (6.1.2.4) a closed-
form solution can be obtained tor the production rate, Equation (6.1.2.5),

. h
gy = DT PSom— (6.1.2.5)
where,
kcAPC
D = G +l)4 ........... (6.1.2.6)

Equation (6.1.2.5) is valid before the heat penctration depth 8 cquals the height of
the oil column. The available oil column decreases with time as production continues.
Henze. the value of # in Equation (6.1.2.5) is less than the initial height of the oil
column. However, it was previously assumed that heat conduction occurs ahead of a
stattionary boundary. Now, it is stated that the steam-oil interface is advancing duc to oil

For a discussion on Equation (6.1.2.4) please refer to Section 4.3,
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production, It was previously shown that the stationary boundary assumption for the heat
flow process is valid so long as the velocity of the steam-oil interface is small. In other
words, the effect of the moving boundary in the heat flow process is neglected, but it is
accounted for in the oil flow calculations. A quantitative estimation of the introduced
error in the heat flow process will be discussed later. Using the assumption that the heat
flow is not affected by the movement of the interface, one can say that the heat
penetration depth reaches the base rock when

_ )
1= ori L (6.1.2.7)

where # is the remaining oil column. In order to find the value of h at any time the
material balance Equation (6.1.2.8) is used.

_dh 4

itrvor- S (6.1.2.8)

where A is the pattern arca. Substituting from Equation (6.1.2.5) into Equation ( 6.1.2.8)
and performing the integration one obtains

H-n=Dat% S (6.1.2.9)
where
___ 2D
e e (6.1.2.10)

By substituting from Equation (6.1.2.7) into Equation (6.1.2.9) one obtains a
cubic cquation that can be solved for .

3 3
1, (24a)? ,’_(240:)- H=0 .
D, D,

- -

h

(6.1.2.11)
After the heat penetration depth equals the available oil column as obtained by
Equation (6.1.2.11), Equation (6.1.2.3) can not be used any more; instead

= /;1(.1 _ keAPC J"' dn
0 p Jov,080 T

(6.1.2.12)
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or upon integration

Am+1
gy =Dy|1-|1- " NT (6.1.2.13)
:/24011

In Equation (6.1.2.13) & is a variable. Hence, Equation (6.1.2.13) should be
simultaneously solved with the material balance (6.1.2.8). This can be done in the
following sequence:

1) Find the time when the heat penetration depth equals the available oil column
from Equations (6.1.2.11) and (6.1.2.7).

2) Prior to the above time, analytically calculate the production rate from Equation
(6.1.2.5).
3) Calculate the remaining # for a time step of Ar from Equation (5.1.2.8), using

the final production rate.
4) Find the flow rate using the value of # from step (3) and Equation (6.1.2.13).

5) Go back to step (3).

The above semi-analytical scheme had to be devised, since the analytical solution
of Equations (6.1.2.13) and (6.1.2.8) was not possiblc. However, il onc assumes that
Equation (6.1.2.5) is valid for « 23'5;. Equations (6.1.2.5) and (6.1.2.8) can be combined

and solved for 1

wlw

n=H-Dyi (6.1.2.14)

Substituting from Equation (6.1.2.14) into Equation (6.1.2.13) onc obtains a

closed-form solution for the non-isothermal oil production rate, similar to Equation
(6.1.2.5)
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R O A SRS (6.1.2.15)

where /1 is found from Equation (6.1.2.11).
6.1.3. Results and Discussion of the Steam-Drag Model

Kumar et al. [1986] presented a field example, and showed comparisons of their
semi-analytical model as well as the semi-analytical model of Miller and Leung [1985]
with actual ficld data. The same example will be used to examine the accuracy of the
closed-form solutions (6.1.2.5) and (6.1.2.15). The important assumptions made in the
development of the above model will be discussed, and finally some guidelincs for their
range of applicability will be given.

Rock and fluid properties of the steamflood project at Kern River Canfield
reservoir are given in Table 6.1

Tabie 6.1
Rock and fluid properties of Kern River Canfield [Kumar et al. 1986, Closmann 1995]

Permeability & 300 md [296 x 10-15 m?]
il viscosily at steam temperature [ 3.17 ¢p [3.17 x 103 Pas)
Pattern area A 1.09 x104m?
Porosity x Saturation change @AS,, 0.31 x0.27
Formation thickness H 36.6m
Thennal diffusivity @ 1.18 x 106 m%/s
See Equation (6.1.2.4) m 2.573
Wellbore radius ny 0076 m
Differential pressure AP 350 kPa
Ratio of the net to gross thickness C 0.667

Using the physical properties of Table 6.1 the height of the oil column is
calculated at the time that the heat penetration depth reaches ihe base rock. Using

86



Equation (6.1.2.11) it is found that #=34.59, and the corresponding time is 1.34 years. In
other words it takes about 1.34 years tfor heat to reach the base rock, and during this
period the steam zone has expanded about 2 m.

To obtain the oil flow rate Equation (6.1.2.5) is uscd prior to above time, and
Equation (€.1.2.15) thereafter. For comparison, the ¢il flow rate found using the
calculation procedure described in Section 6.1.2. is performed also. The results are shown
in Figure 6.3. along with the predictions of the semi-analytical models of Miller and
Leung [1985] and Kumar er al. [1986].

=
@©
B
o
é + Fie'd Data
(]
& ——@— Miller and Leung
c
.S
S ———— Kumar et al.
°
o ———@—— Closed-form
0 L 2 ) ) O Semi-analytical
0 2 4 6 8
Time (year)
Figure 6.3. Oil production rate for Kern River
Canfield

The results obtained from the closed-form solution, that is, Equations (6.1.2.5)
and (6.1.2.15), are identical to those obtained from the semi-aralytical scheme for the
first six years, after which they differ slightly as shown in Figure 6.3. The closed-form
solution, Equation (6.1.2.15), predicts a smaller production rate for the last two ycars,
because Equation (6.1.2.5) accounts for oil flow in the total heated zone. A larger heated
zone results in a larger production rate, especially at later times when the available oil
column is small, and hence, a smaller available oil column for production. The remaining
oil column as predicted by the iwo methods is shown in Figure 6.4.
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Figure 6.4 indicates that the closed-form solution predicts a smaller oil column
lefi in the reservoir compared to that predicted by the semi-analytical method.
Substitution of the remaining oil column as predicted by the two methods, in Equation
(6.1.2.13) results in slightly different production rates as shown in Figure 6.3.

——— Closed-form

~==—{J— Semi-analytical

Remaining oil column {m)

O '] 1 1
0 2 4 6 8

Time (year)

Figure 6.4. Dil column for Kern River Canfield

Kumar er al. [1986] used a permeability of 300 md. about one eighth of the
formation pcrmeability, to achieve a good match. The same data were used in this study
as listed in Tabie 6.1. A combination of factors contribute to a lower permeability in the
mathematical model than the absolute permeability of the formation. The effective
permeability of the formation below an oil-steam interface is much less than the absolute
permeability of the reservoir. The steam condensate penetrates ahead of the interface, and
reduces the effective permeability to oil. Butler typically uses a reduction factor of 2.5 for
the effective permeability of the formation ahead of a sloped oil-steam interface [see, for
example, Butler 1994, P.178]. Additionally, the differential pressure between the injector
and the producer was used as the effective pressure drop for driving the heated oil. The
steam flow rate. however, decreases from the injector toward the producer due to steam
condensation. Consequently. the effective pressure drop acting on the 0il zone is less than

88



the differential pressure between the injector and producer. A quantitative evaluation of
the effective pressure drop is not possible, unless more data regarding the steam injection
and production rates. for example. are available. Due to the above factors. accuracy of the
proposed model is best estimated if it is compared with s#milar models. i.c.. those of
Kumar er al. [1986] and Miller and Leung [ 1985].

In order to perform the oil flow rate calculations, Miller and Leung [1985] used
the oil rate prior to steam injection enhanced by the reduced viscosity ctfects. The authors
noted that. in order to keep the model simple, they did not consider any change in the
driving mechanisms in the reservoir subsequent to steam injection, such as pressurization
of the reservoir, etc. The authors incorporated an empirical factor to account for the size
of the steam condensate region belows the steam zone. Figure 6.3 indicates that their

model follows the field data closely for the first six years, but declines much faster than
the actual data thereafter.

Figure 6.3 shows that, the present model predicts smaller flow rates cspecially in
the early stages of the project, compared to those obtained by Kumar er al. [1986]. This
could be due to the fact that Equation (6.1.2.4) assumes a viscosity of infinity at reservoir
temperature, while the actual viscosity is only 1700 mPa s. Hence, the present model
predicts smaller 1low rates when the reservoir is relatively cold, and as the reservoir
temperature approaches that of stcam the difference becomes smaller. This is because
Equation (6.1.2.4) predicts a value equal to the actual oil viscosity at stcam tempcrature.

Similar behaviour was previously observed when Equation (6.1.2.4) was usced | Griffin
and Trofimenkoff 1985]).

In the development of the stcam-drag model, the effect of the moving interface in
the heat flow solution was neglected. By using the data of Figure 6.4 one can estimate the
velocity of the interface. The calculations indicate that the velocity of the interface in a
dimensionless sense, the Peclet No., is very small initially and that it increases with time.
Peclet No. reaches a value as high as 0.1 after about 3.5 years from the beginning of the
project and stays fairly constant up to the end of project.

Figure 6.5 compares the exact temperature distribution ahcad of a moving

boundary with a constant Np, of 0.1, with that predicted by HIM, that is, Equations
(6.1.1.13) and (6.1.1.14). Please note that the HIM solution is in good agreement with the

89



moving boundary solution where the oil flow rate is most important, that is in the hot
region.

For such cases where the movement of the interface can not be neglected, an
ordinary differential equation can be obtained that explains the behaviour of the heat
penetration depth with time. This can be solved simultaneously with the fluid flow
problem. In the next two sections the moving boundary problem of SAGD, in linear and
cylindrical coordinates, is solved and account is taken for the movement of the interface.
The same methodology can be used for similar 1-D conduction problems ahead of a
moving boundary.

It is believed that the availability of simple closed-form solutions as obtained
above. is useful for such cases where the interface velocity is negligible, or at least as an
initial ool for evaluating the complexity of the problem, and choosing the appropriate
mathematical model. '

@ Exact (1=0.02)
3

2\ T TSN, e HIM (t=0.02)
[ %

g -

R B N P, SR H Exact (1=0.2)
[72]

3 ———-—- HIM (1=0.2
< (t=0.2)
3

S —————-- Exact (t=1)
E

o HIM (t=1)

0 0.2 0.4 0.6 0.8 1

Dimensionless Distance from Boundary
Figure 6.5 Stationary boundary HIM vs exact
moving boundary solutions

90



6.2. A Semi-Analytical Model for the Linear SAGD Process

In this section a semi-analytical model is presented for predicting the behaviour of
the SAGD process with the application of horizontal wells. It was noted previously that in
the SAGD process steam is injected through a horizontal well. After the steam zonce
reaches the cap rock, the steam zone expands sideways while the heated oil ahead of the

interface is drained in a stable manner. The sidewavs expanding stage of the process will
be considered.

Reis [1992-b] assumed the curved interface could be represented by a straight line.
Here, the shape and location of the interface are found as a part of the solution. Butler er
al. [1981] presented an analytical model for the above process, assuming that the heat and
flnid flow processes occurred one dimensionally and under steady-state conditions. Later,
an improvement on the original SAGD model was given by Butler [1985-b]. and the 1-D
heat flow was considered to be unsteady-state. Since the present method is very similar to
that presented by Butler [1985-b] the latter model is examined in more detail. Butler
considered a hot zone at steam temperature ahead of the interface, and the extent of the
hot zone was called the heat penetration depth. By performing a heat balance on the
interface, Butler developed an ordinary differential equation describing the variation of
the heat penetration depth with time. This method for finding an approximate temperature
distribution fer conduction dominated processes is very similar to the Heat Integral
Method (HIM) as explained in detail in Section 4.3. However. no reference to the Heat
Integral Method was given [Butler 1985-b).

In the Heat Integral Method, a polynomial is considered to approximate the
temperature distribution. It was shown in Section 4.3. that the heat balance performed at
the boundary relates the raie of heat flow from the boundary to the accumulation of heat
in the medium. In order to approximate the accamulation term, Butler [1985-b] used a
temperature distribuiion in the form of a step function. To improve upon this, the term
explaining the flow rate of heat was approximated using a lincar variation between two
limiting cases, that is, the unsteady-state temperature distribution al. .ad of a stationary
boundary (error function solution) and the steady-state temperature distribution ahead of
a moving boundary interface. Finally the heat penetration obtained by the above
procedure was used in the steady-sate, i.c., the exponential solution, to represent the
temperature distribution ahead of the interface. Butler [1985-b] showed that the amount
of accumulated heat ahead of the interface predicied by the approximate integral solution
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was in good agreement with that obtained from an exact solution. No comparison,
however, was given for the temperature distribution ahead of the interface as predicted by
the two methods.

Here, HIM will be used to find an appropriate differential equation for the heat
penetration depth. Later, the heat flow solution will be combined with other equations to
find the flow rate and the shape and location of the interface with time.

6.2.1. Assumptions in the Linear SAGD Model

In developing the mathematical model, the following assumptions are made,

1) The fluids are incompressible.

2) Steam pressure is constant in the steam zone. This is a good approximation for
modelling the SAGD process, because there is negligible pressure drop in the steam zone.

3) The only flowing phase behind the oil-steam interface is steam, and that ahead of the
interface is oil, that is, a sharp interface is assumed separating the two zones. This
assumption states that:

a) There is no capillary zone at the oil-steam interface. Palmgren er al. [1989]

found that capillary forces are negligible at the steam-oil interface under field
conditions.

b) The stcam condensate does not penctrate ahcad of the interface, but flows
downwards along the interface, i.c., convective heat flow is neglected. This
approximation has been previously used in thermally enhanced gravity driven
processes, where the oil-steam interface advances upon removal of the heated oil
(Butler er al. 1981, Reis 1992-b].

4) Temperature distribution in the oil zone, is found by solution of the 1-D heat equation
along the horizontal direction.

In the above proklem. the interface is an isotherm. Similar to that considered by
Butler [1985-b]. normal to the interface should be considered as the direction of heat
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flow. since heat flows perpendicular to isotherms. In this model. however, the 1-D heat

equation in the horizontal direction is used. This is chosen due to the following three
reascas.

Firstly, in the SAGD process. the interface is curved-shaped. In the development of
the semi-analytical models for the SAGD process, discrete straight scgments are
used to represent the interface (for example, see Butler {1985-b] or the following
sections). In such cases, and depending on the curvature of the interface, either
multiple values for temperature ahead of the interface is obtained. or some parts of
the formation are left out, if the normal direction is chosen. This is because,
normals 10 a curved interface intersect either ahead or behind the interface.

Secondly. in order to find the oil flow rate ahead of cach element, the oil flow
integration is performed in the total extent of the heated zone (sce Equation (12) of
Butler [1985-b] or Equation (6.2.3.2) in this work). It can be noted, however, that
for the lowest part of the interface (sec Figure 7 of Butler [1985-b] for example).
the extent of the oil-bearing formation normal to the interface is limited. Hence, the
flow integration in the heated region includes the base rock too. Accurate flow rate
calculations for the lowest interface element is important, since the oil draining
from this element is the one representing the produced oil from the SAGD process.
The error due to the extra oil flow considered in the base-rock, however, may be
small, since drainage rate declines sharply away from the interface. If the horizontal
direction is considered as the primary direction of modelling, the above integration
is totally performed in the oil-bearing zonc.

Thirdly. development of a semi-analytical model bascd on the normal dircction
resulted in very elongated interface elements at the top of the interface.

Improvements were obtained, when the horizontal direction was chosen for
modelling purposes.

It was due to a combination of the above reasons that the horizontal direction was
chosen as the primary direction of modelling.

5) The heated oil flows parallel to the interface.
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Segregated flow theory, as used by many of previous investigators, neglects any
flow in the vertical direction, i.e., normal to the bedding in tilted formations. The fluids
ave considered to flow horizontally due to potential gradienis caused by gravity forces.
Here, the segregated flow theory will not be used; however, it is assumed that the oil
hcated by conduction flows parallel to the interface.

In an incompressible system, an oil droplet on a tilted oil-steam interface (see
Figure 6.6) does not move vertically, because the oil located vertically below the drdplet
is farther from the interface, and cannot flow at the same speed as the heated droplet. It
will be assumed that the oil droplet moves along the least resistant path, that is, along the
interface, and the droplets behind the interface move parallel to the interface.

The SAGD model, as developed in this work, neglects many mechanisms that

occur in a field application of the process. A brief description of the neglected effects is
presented in the following.

1) The SAGD model in this work considers the side-ways expansion of the steam
zone. In the application of the SAGD process, as was reviewed in Chapter 2, steam flows
initially upward from the horizontal injector, while the bitumen located above the steam
is heated and drains downwards in an unstable manner. The duration of this initial stage
is normally much shorter than the sideways expansion period [Butler 1991]. Butler
[1987] developed a model to find the upward velocity of the rising steam fingers. The

velocity was found to be proportional to reservoir permeability, and strongly dependent
on oil viscosity at steam temperature.

2) The sharp interface assumption, as used in this study (see also Butler er al
[1981] ana Butler [1985-b]), avoided the nonlinearities caused by multiphase flow. It is
clear. however. that under actual conditions, multiphase flow occurs at least within a
limited interval from the steam front. Steam flow through the multiphase region requires
a driving force which is neglected in this work. The error due to this assumption may be
small along a large portion of the interface, however; the ability of the formation to
deliver the required steam at the top of the interface may be a controlling factor on the
advancement of the interface there [Butler 1985-b). This was reviewed in Chapter 2.

One of the fluid phases created at the steam front is a water-oil emulsion. The high
viscosity of the in-situ generated emulsion can adversely affect the process [Chung and
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Buter 1988-a). The complexities involved in the generation, flow and coalescence of the
emulsion hinders their inclusion in mathematical models. Chung and Butler | 1988-a]
studied the SAGD process experimentally, and found that if the injection well was

located low in the reservoir, large amounts of emulsion was produced due to the counter-
current flow of steam and oil.

3) It is well known that the displacement of oil by steam is not a piston-wise
displacement process. Hence, appreciable amount of oil is Ieft in the sicam zone, while
the steam front is advancing in the reservoir, contacting the virgin formation.

Although the oil in the steam zone is at steam temperature, hence has a uniform
viscosity, its mobility is not constant. This is due to the variation of the oil saturation in
the steam zone. Dykstra [1987] found an equation for the free fall gravity drainage of oil
lett behind the gas front. Butler [1991] suggested that the same equation can be used to
find the additional oil produced in the stecam zone. The above behaviour suggests that the
oil saturation does not reduce abruptly to the residual oil saturation. This in turn, means

that the velocity of the steam-oil interface is larger than that corresponding 1o an abrupt
reduction in saturation to its final value.

In this study a sharp interface is assumed, which passes through the reservoir,
leaving the residual oil behind. While performing mechanistic studies, however, a
dimensionless group incorporating the value of the saturation change will be varied by
orders of magnitudc to study the behaviour of the process.

4) In steam injection processes, some amount of non-condensable gas, soluble in
the steam generator water, may be injected together with the steam, and some may be
generated in the reservoir. Such gases accumulate in the reservoir, especially at the
interface, and reduce the steam temperature due to the reduced partial pressure of stcam.
Their effect was studied by Butler [1983-b, 1991] and Edmunds [1987], and was
reviewed in Chapter 2.

5) In a thermal recovery process, fluids expand when heated. In a SAGD process,
the oil ahead of the steam front expands. It was pointed out in Section 4.1 that the volume
of the hydrocarbons can increase 10% to 15% when their temperature is increased about
200 °C. If the expanded oil partially saturates the porous media, such that it does not
restrict the advancement of the steam interface, a thicker layer of oil will be draining at
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the interface region. The effect of this increase in the draining oil is expected to affect the
total production rate only minimally, as the oil production rate is measured at standard
conditions.

It was mentioned previously, that the above mechanisms are neglected in the
development of the SAGD model in this work. Incorporation of such mechanisms
requires development of a comprehensive thermal simulator, which is beyond the scope
of this work. The SAGD process, as modelled in this work, can be explained as follows.

Figure 6.6. Schematic presentation of cil-steam interface under
non-isothermal gravity drainage.

Figure 6.6 shows the oil-steam interface at an arbitrary time. The bottorn of the
interface is kept at the perforation site, to avoid any steam production. The top of the
interface is either at the overburden or is connected to another interface creating a
continuous steam zone above the oil column. The heat is conducted ahead of the interface
and the heated oil drains towards the production site. Subsequently, the oil-steam
interface advances in the reservoir. The velocity of the inteiface is generally a function of
time and vertical position along the interface. Hence, a number of vertical elements are
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considered parallel to each other, one of them shown in Figure 6.6. The temperature
distribution in each element defines the velocity of the oil drained from the element. The
difference tetween the amount of oil entered to cach element, with that delivered to the
next element dictates the velocity of the interface for that element. The latter, in turn,
defines the available time for heat conduction ahead of the interface and hence the
temperature distribution for that element. The physical problem as explained above is a
combined heat and fluid flow problem. Each part is discussed separately.

6.2.2. Heat Flow Problem

Heat is transferred ahead of the interface by conduction. The 2-D problem is
approximated by a 1-D heat equation,

T
ox*

1 or
— == e 221
= 3 6 )

It was explained in Section 6.2.1 that Equation (6.2.2.1) will be used along the
horizontal direction to find the temperature distribution in the oil zone.

Performing very similar steps as those performed in Section 4.2 a dimensionless
conduction-convection PDE similar to Equation (4.2.1.4) is obtained,

3°8 00 _ 96
gy R 6.2.2.
ozt Ve T 5 (6.2.2.2)

where the dimensionless variables are normalized with respect to the reservoir thickness,
H.

o = L=Tr (6.2.2.3)
Tg - Tr
< 6.2.2.4
=% (6.2.2.4)
= (6.2.2.5)
H‘.
Npe = %’i ................. (6.2.2.6)

97



where ¢ is the horizontal distance from the interface. Equation (6.2.2.2) is a nonlinear
convection-diffusion PDE. The convective term is related to the moving interface. Note
that convection due to penetration of hot fluids ahead of the front is neglected. From now
on. the definition of convection is due to the second term on the left hand side of PDE
(6.2.2.2). The nonlinearity of the problem is due to the dependence of Np, on 6. A higher

temperature results in a lower viscosity which in turn causes a higher interface velocity.

Now, the Heat Integral Method (HIM) is used to transform Equation (6.2.2.2)10a
first order ODE, which can easily be solved using several numerical methods, e.g.,
Runge-Kutta methods. By performing steps very similar to those in Appendix A, or

Scction 6.1, onc obtains a third order polynomial to describe the unsteady-state
temperature distribution

g 3
0= (I - —5—(-1:—)') ................. (62.2.7)

where 8(r) is the dimensionless heat penetration depth. Equation (6.2.2.2) is integrated
over the heated region, 8(t), to find the heat penetration depth,

:,Zgl
124

26| / d 9
s ‘7;5{0 + Npe(fls o) = ;,;joedé ................. (6.2.2.8)

Equation (6.2.2.8) can be simplified by substituting from the actual and auxiliary
boundary conditions

a8 d 9
———] ~ Np,=— e, 29
(7‘:_1\\ be dt J.Oeds . (6 2 2 9)

Equation (6.2.2.9) is the same Equation obtained by Butler [1985-b]. As explained
previously, the first term on the left hand side of Equation (6.2.2.9) was approximated by
a lincar variation of heat flux from a steady-state moving boundary solution and that from
an unsteady-state stationary boundary solution. The right hand side was approximated by
an accumulation term corresponding to a constant temperature in the heated zone [Butler
1985-b]. In this study HIM is used, and the appropriate expressions from the temperature
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distribution (6.2.2.7) are substituted into Equation (6.2.2.9) to find an ordinary
ditferential equation (ODE) tor heat penetration depth, 8(r).

(1(62) :
=8(3-NpS(T) e (6.2.2.10)
dr
with the initial condition
5(1)=0 T=0 o (6.2.2.11)

Solution of ODE (6.2.2.10). with Equation (6.2.2.7) defines the temperature
distribution ahead of the interface. Note that Npe is known only when the fluid flow part
of the problem is solved and the velocity of the interface is known.

It can be shown easily that for a polynomial of the order of n the corresponding
ODE is in the form of

d(é’z)
dr

=2+l n-NpdD) e (6.2.2.12)

The ODE suggested by Butler | 1985-b] can be written in the form of Equation
(6.2.2.13) and the corresponding temperature distribution as Equation (6.2.2.14)

d(:;) - :7‘;(1 CNpB(T) e (6.2.2.13)
6= exp[— —E—J ................ (6.2.2.14)
(1)

Figure 6.6 compares the temperature distribution as obtained from the Heat
Integral Method, that suggested by Butler [1985-b] and the numcrical solution of the

exact differential equation (6.2.2.2) for a moving boundary problem with an interface
velocity of Np, = exp(-1), after a dimensionless time of z=1.

The function Np, = exp(~7) represents an interface velocity of Np, =1 at early time,
This corresponds to a conduction convectiont process in which both of the heating
mechanisms are of the same order. The interface vlocity was considered to decrease with
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time, as happens in reality. Figure 6.7 indicates that both of the approximate methods are
in good agrcement with the numerical solution of the exact PDE, although the HIM
solutions offer better accuracy. In the numerical solution a transformation was used so
that a semi-finite domain could be modelled. Equal grid spacing in the computational
domain has resulted in variable grid spacing in the physical domain in Figure 6.7. the
grid sizes in the physical domain are smaller where the temperature gradients are highest,
to increase the accuracy. The numerical model was validated against the analytical
solution of Equation (6.2.2.2) (see Equation 4.2.5.1). A constant interface velocity of
Np. =1 was used for validation of the numerical model.

—— Exact

—T—— HIM

——— o —-—— Butler (1985-b)

Dimensionless Temperature

0 i '
0 0.5 1 1.5 2 2.5 3
Dimensionless Distance from the Boundary

Figure 6.7 Temperature solution from different models (moving
boundary semi-infinite case)

6.2.3. Fluid Filow Problem

The oil flow rate ahead of the interface can be expressed using Darcy’s law (see
Section 4.3.2. 6.1.2 or Butler er al. [1981]). For an element of constant viscosity and unit
width in the direction parallel to the horizontal one can write

. ApgHk .
dg= L sinf(@)dE e (6.2.3.1)
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where 1-D steady-state fluid flow parallel to the interface is assumed, and the viscosity of
steam and the capillary forces are neglected The total flow rate in the heated zone can be
obtained by integrating Equation (6.2.3.1)

‘—ﬁi'—k Hsin((a)‘rs———dl E (6.2.3.2)
q= 0(1— 8. o v,,(T) ................. L.Ad

where it has been assumed that Ap=p,, and the integration is performed in the heated
region since the oil flow in the cold region is assumed to be negligible. Once again
Equation (6.2.3.3) is used to define the viscosity-temperature relationship.

RN
Yoo _(T=TR )L (6.2.3.3)
Yy T;—TR

Combining Equation (6.2.3.2) and (6.2.3.3) and substituting tor dimensionless
temperature from Equation (6.2.2.7) one obtains

g=KeHsn@®)% (6.2.3.4)
U, (3m+1)

Equation (6.2.3.4) determines the production rate as a function of some dynamic
variables as well as constant rock and fluid properties. The dynamic variables include the
dimensionless heat penetration depth, §, and the local angle of the interface with the
horizon. The parameter § is obtained from: Equation (6.2.2.10).

To find the location of interface, the continuity cquation (6.2.3.5) is written.

D
=0

(d

=—gAS,U e (6.2.3.5)

|

where U, the location of the interface, is related to ¢, the interface location, by

~9¢ (6236
v=2% (6.2.3.6)
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The slope of the interface can be obtained by knowing the interface velocity from
Equation (6.2.3.6) and by using the geometric relation (6.2.3.7),

2 ,
ano=2% e (6.2.3.7)
J_CL&

By combining Equations (6.2.3.4) and (6.2.3.5), and writing the results in terms of
dimensionless variables, one obtains

2 __ Np, sin(©)9) .
i e e A A (6.2.3.8)

where £ and n are the dimensionless location of the interface and the dimensionless
height, respectively {with definitions similar 10 Equation (6.2.2.4)].

In Equation (6.2.3.8) the Rayleigh Number, Ng,, is a dimensionless group
signifying the importance of convective flow to the conductive heat transfer. In the above
problem the convective term is caused by the movement of the interface, and Ng, is
defined by

Ng, =" YR =R AR (6.2.3.9)

A similar definition of Ng, was previously given by Saidi [1987, P. 312], where
the conductive erm was due to the diffusion of chemical species.

Butler er al. [1981] and Butler [1985-b. 1991] had previously introduced three
similar dimensionless groups. B,, By, and B,. by examining the conduction process and
the movement of the interface, whereas here, Ng, was naturally found when the two flow
processes were combined using dimensionless variables. The parameter Ng, is related to
the above three dimensionless groups by simple relations

Nia =-"’,—f= o S (6.2.3.10)
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6.2.4. Initial and Boundary Conditions

Consider a cold reservoir subjected to steam injection. Accordingly the initial
conditions of the problem are:

T = T. everywhere, which was previously expressed as Equation (6.2.2.11). At

the beginning, the steam-oil interface is located on a vertical plane directly above the
horizontal well, and

sin®=1 0<n<l1 T=0 .. euainn. (6.2.4.1)

=0 0<n<l T=0 ........... (6.2.4.2)

Drainage starts when heat is introduced into the reservoir, which causes §>0.
This results in g(r) >0 from Equation (6.2.3.4). The interface becomes tilted because oil
is produced from the bottom; howcver, it is not replaced from the top of the reservoir. In

other words in Equation (6.2.3.5), %‘f— <0, since

Gg=0 n=1 >0 ... (6.2.4.3)

Equation (6.2.4.3) holds as the required boundary condition of Equation (6.2.3.5).
Note that Equation (6.2.4.3) is similar to the proper boundary condition in two phase
immiscible displacement, where the fractional flow of the displaced phase is set equal to
zero at the inlet {Bentsen 1978, Shen and Ruth 1994].

When the interface reaches the drainage radius, or another interface, the
horizontal movement of the interface is terminated and the available oil column decreases
in height. Then, Equation (6.2.4.3) holds at the upper most point of the interface.

In the SAGD process, the production pressure is adjusted such that excessive
steam production is avoided. For this to happen, the steam-oil inicrface should be at the

production site. In the mathematical model, the condition (6.2.4.4) is introduced, which
holds the interface at the perforation site.

E=0 n=0 >0 e (6.24.4)



Having defined the differential equations and the initial and boundary condition,
a numerical scheme is explained next to solve the equations.

6.2.5. Numerical Procedure

1) At the beginning of each time step & is obtained from Equation (6.2.2.10). In this
study a value of n=3is used.

2) An oil rate corresponding to each node is calculated from Equation (6.2.3.4).

3) The interface velocity is found by using Equation (6.2.3.5) and (6.2.4.3). ard then the
interface location is found from Equations (6.2.3.6) and (6.2.4.2).

4) Finally, the interface inclination is obtained from Equation (6.2.3.7).

5) The drsinage rate depleting the corresponding element is set to zero when the interface
reaches the drainage radius; that is, a neighbouring steam-oil interface, as explained
betore. This leads to an interface velocity of zero from Equation (6.2.3.5), and the
available oil column decreases in height.

The calculations can be repeated in an iterative form until convergence is
obtained, before proceeding to the next time step. This is suggested due to the implicit
nature of the Equations (6.2.2.10), 16.2.3.4). (6.2.3.5).

In practice, using a very large number of elements decreases the maximuin time
step before instabilities occur. Also. it unrealistically causes high interface velocities for
the top clement. The latter happens because, in Equation (6.2.3.5). the absolute value of

%{’-‘ grows rapidly, as Az — 0. Note that ¢|,_,, has a finite positive value from Equation
~k=H ~

(6.2.3.4). Of course the interface velocity at the top of formation is limited. Buter [1985-
b] suggested that the interface velocity is limited by the ability of the formation to
provide the required amount of steam at the top of the interface. Steam condensation is at
maximum there, because of the maximum effect of heat loss to the overburden, as well as
the maximum amount of required steam to heat the formation ahead of the fast moving
interface. The effect of steam flow behind the interface is ignored in this study.
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It is interesting to note that there is no explicit representation of the available oil
column in the equations. However, the combined behaviour of the equations realistically
predicts a smaller oil rate, after the interface reaches the drainage radius. and the available
oil column decreases in height. This can be explained by the fact that if the available oil
column is small. the oil supplied to the upper most moving node is zero always. which
leads to less preduction rate build-up as the horizontal producer is approached.

The above procedure was used and an implicit semi-analytical model was

developed to study improved gravity drainage due to steam injection in heavy oil
TeSErvoirs.

6.2.6. Results and Discussion of the 1-D Linear SAGD Model

Experimental studies of the SAGD process were reviewed previously. Chung and
Butler [1988-b] performed SAGD experiments using 2-D physical models that were
scaled to the Cold Lake and Athabasca fields. The rock and fluid properties which were
reported by the above authors and are listed in Table 6.2 were used. Comparisons will be

shown with the experimental data reported by Chung and Butler [1988-b] and the semi-
analytical model developed by Butler [1985-b].

Table 6.2
Rock and Fluid properties of 2-D SAGD experiments [Chung and Butler 1988-a, 1 988-b)

Permeability k 944 x 1019 m?

Oil viscosity at steam temperature U, 104 %106 m3/s

Formation width L 0.175m
Porusity x Saturation change @AS,

0.37
Height of the model H 02lm
Thermal diffusivity o 5.87 x107 m3#s
m 36
Oil density 2, 980 kg/m3
Thickness of the model L, 003m

105



6.2.6.1. Semi-infinite Case

If the SAGD process is performed using a single wellpair in a large reservoir, the
extent of the formation ahead of the steam-oil interface may be assumed infinite. Figure
6.8 shows the oil production data for such a case. The physical properties of Table 6.2
were used for the calculations. A second semi-analytical model was written based on the
model described by Butler [1985-b], and the results are shown in Figure 6.8 along with
the predictions obtained from the present model.

Figure 6.9 shows the interface location of the same problem at equal intervals of
an hour as predicted by the 1-D linear SAGD model.
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Figure 6.8. Production rate ohtained from 1-D linear SAGD models

Figure 6.8 indicates thai production rate increases from an initial value of zero to
its maximum value in a relatively short period of time. The production rate drops slowly
thereafter. A study of Figure 6.8 along with Equation (6.2.3.4) indicates that a relatively
thin layer of oil ahead of the interface is heated during the early time, and the thickness of
the heated zone stays relatively constant thereafter. In Equation (6.2.3.4). and for a
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constant heat penetration depth, the production rate decreases with decreasing angle of
the interface. Figure 6.9 indicates that the angle of the interface decreases as the steam
zone expands side-ways.
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Horizonted Distance from the Well (cm)
Figure 6.9. Interface location as predicted by the 1 -D linear SAGD model

It is worth noting that the steady-state production rate, as predicted from ine

original SAGD theory [Butler et al. 1981], predicts a constant production rate of

q =2Ll M =318 g/hr
J MUy

The corresponding production raw from the Tandrain theory [Butlcr and Swcphens

1981] is ¢ =277 g/r, which is in general agreement with the predictions of the above semi-

analytical models.

6.2.6.2. Finite Case

Figures 6.8 and 6.9 indicate that in the SAGD process, the production rate

decreases with time while the surface area exposed to the cap rock increases. The above

behaviour reduces the thermal efficiency of the project and reduces its profitability. In
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commercial projects, however, a series of wellpairs are drilled to deplete the reservoir
before heat loss effects dominate the process. This was studied by Butler and Stephens
{1981}, and its application was reported by Edmunds ez al. [1988, 1994]. In such cases a
symmeltry plane exists between the adjacent steam zones (symmetry line for a 2-D case).
When the neighbouring steam-oil interfaces reach the symmetry plane, a singlc steam
zone is created, and the available oil column decreases as oil is produced. To model the
above process, the oil production rate for the element at the drainage radius was set equal
to zero, and the usual caiculations were performed for the other elements®. This method
was used to predict the oil rate and interface location for the experiments of Chung and
Butler [1988-b], and the results are shown in Figures 6.10 and 6.11.
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Figure 6.10. Production rate obtained from
1-D linear SAGD model

Butler [1985-b] suggested that the interface movement can be modelled along the
vertical direction when coalescence of the steam zones occur. A model based on the
above method was written. The predictions of the latier model indicated an artificial
increase in production rate at the time of coalescence. The same anomaly was observed in

9 In reality. the symmetry plane is felt by the process when the heat penetration depth, and not the
interface, reaches the no-flow boundary. It was noted before that the heat penetration depth is
small for the above cases. This is especially the case for the moving element at the top of the
interface. where the velocity of the interface is the largest. In the above model the effect of the no-
flow boundary was considered when the steam-oil interface reached the symmetry plane.
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the calculations performed by Butler [1985-b, Figure 12]. The reason for the increase in
production seems to be related to a redistribution of heat, i.e., the mobile fluids, when the
length and direction of the movement of the elements are changed.
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Figure 6.11. Interface location as predicted by the 1-D linear SAGD model
(finite case)

Figure 6.10 indicates that the fluids are mobile at the beginning of production.
Chung and Butler {1988-b] noted that they initially heated the formation using a vertical
well that was located directly above the producer. The authors reported that a temperature
of 77 “C was measured at a distance of 0.02 m away from the vertical well. The initial
reservoir temperature and the steam temperature were 25 °C and 107 “C, respectively. In
the above calculations the initial dimensionless heat penetration depth was calculated
from Equation (6.2.2.7) and was set equal to §=0.644 for all the elements.

Figure 6.10 exhibits a maximum in production rate in about half an hour from the
beginning of the experiment. This corresponds to the time when appreciable oil is heated
ahead of the steam interface, while the inclination of the interface is not so large to
counter-act the reduced viscosity effect. Production rate falls thereafter similar to that
observed and explained in Figure 6.8. In Figure 6.10, however, the production rate
declines fast after about an hour and half in the experiment. This corresponds to the time,
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when the steam interface has reached the drainage radius and the thickness of the
remaining oil column is decreasing. Such a behaviour was not observed in Figure 6.8
since the formation extended semi-infinitely there.

Figure 6.11 shows the location of the steam-oil interface for the above example at
equal intervals of 30 minutes. Obviously, at later stages of the process, when the available
oil column is small the accuracy of the above semi-analytical method is low due to very
elongated elements. A redistribution of the initial number of elements over the
descending interface can be performed after coalescence occurs. Again care should be
taken to conserve the amount of heat stored ahead of the interface. Such a model was
developed; however, the oil rate as predicted by such a model exhibited small oscillations
and unrealistic behaviour (not shown here). This was possibly due to the fact that the
model tried to conserve the amount of heat ahead of the interface. However, this does not
necessarily ensure conservation of the mobile fluids.

The linear SAGD process is governed by 2-D heat and fluid flow mechanisms. A
more accurate predictive model can be obtained if the transfer phenomena are considered

to be 2-D. Chapier 7 of this work elaborates on 2-D modelling of the linear SAGD
process.

6.2.6.3. A Study on the Fffect of Different Parameters

It was noted previously that the steady-state analytical model [Butler ez al. 1981]
showed a singularity for the location of the interface at the top of the interface. Butler
[ 1985-b] reported the same behaviour in his semi-analytical model, when he used small
clements. In order to study this effect, calculations similar to those of Figure 6.9 were
performed using 40 and 200 elements. Figure 6.12 shows a comparison of the two cases.
Data corresponding to 20 elements were previously shown in Figure 6.9.

Figure 6.12 indicates the sensitivity of the location of the top of the interface with
the grid size chosen. The reason might be the one explained in Section 6.2.5. Briefly, in

Equation (6.2.3.5), the absolute value of —‘ grows rapidly, as Az — 0. This is because
z=H

dl. <y has a finite positive value from Equation (6.2.3.4). Figure 6.12. suggests that the oil

production rate is not very sensitive to the grid size chosen, as the area above the steam-
oil interface of Figure 6.12 does not vary much with the grid size. The area exposed to
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cap-rock, which is an important paramaeer in the calculation of the thermal efficiency of a
thermal recovery method, however, is sensitive to the grid size chosen. Ignoring one or a
combination of the mechanisms that control the movement of the iriterface under the cap
rock is believed to create the singularity there. The ignored mechanisms include flow of

steam behind the interface, capillary phenomena, and 2-D heat and fluid flow ahead of
the interface.

It was shown previously that one of the dimensionless groups controlling the
behaviour of the SAGD process is the Rayleigh No.. Ng,. The Rayleigh No. signifies the

importance of convective flow to conductive heat transfer.
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Figure 6.12. Interface location using different size of elements

- . ope k .
In petroleum reservoirs, the oil mobility at steam temperature, Pt might vary by

os
orders of magnitude from one reservoir to another, or by injecting steam at different
temperatures. It is noted that changing the steam temperature, hence v,;. affects the
movement of the interface by changing m (sec Equation 6.2.3.8). However, any change in
m may be neglected, since the range over which m varies is small {Butler 1985-b].
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The data of Table 6.2 were used, and the oil mobility at steam temperature was
varied to obtain an average production rate of 400 g/hr as a base case. Figure 6.13 shows
the oil production rate as predicted by the present semi-analytical model, when oil
mobility at steam temperature varied by multiples of 4.
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Figure 6.13. Effect of oil mobility at steam
temperature on non-isothermal gravity drainage

Figure 6.13 indicates that if oil mobility at steam temperature is large, i.e., the
Rayleigh No. is large, production rate is proportional to the square root of oil mobility.
This behaviour was previously predicted by Butler ez al. [1981]. However, Figure 6.13

indicates that for smaller values of the

Rayleigh No., the production rate is approximately

proportional to oil mobility itself. It seems that there has been no consensus on the effect
of oil mobility on the production rate!©. It is worth noting that the latter conclusion is in

accordance with the analytical solut

ion of non-isothermal gravity drainage from low

permeability systems detailed in Chapter 5. For cases where the Rayleigh No. is similar

to the base case, or smaller, Figure 6.

13 indicates that oil production rate is proportional

to oil mobility at steam temperature to a fractional power, and the exponent of the
proportionality is between one and one half.

10 See the discussions of the fourth UNITAR conference, Edmonton, Alberta, 1988.
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A similar study was performed to evaluate the cffect of formation height. A
relationship as simple as before was not observed. The effect of other parameters such as
well-spacing and steam temperature were previously studied by previous researchers

using similar semi-analytical models [Chung and Butler 1988-a, 1988-b, Butler 1985-b].
and they will not be presented here.

6.3. A Semi-Analytical Model for the Radial SAGD Process

Thermal recovery processes are traditionally implemented with the application of
vertical wells. Mathematical models were developed for the steam drive process which
assumed a radially expanding steam zone with a steam interface perpendicular to the
formation bedding [Yortsos and Gavalas 1981-a, 1981-b, 1982]. Later, Neuman [1985]
assumed gravity forces to be important, and considered a steam zone that expanded
radially as well as vertically. Faroug Ali [1982] presented a unified approach for
modelling the steamflood process. He considered an areally expanding steam zone with a
tilted interface before breakthrough. The behaviour of the steam interface during this
stage was predicted by a combination of Mandl and Volek [1969] and van Lookeren’s
[1983] models. Upon breakthrough the process was considered to be dominaied by a top
down expansion of the steam zone, and steam production was assumed to be negligible.
Numerous articles showed the accuracy and practicality of Farouq Ali’s model [Faroug
Ali 1982, Chen and Sylvester 1990, Harrigal and Wilcox 1992, Farouq Ali 1992].

Restricting steam production after an overlying steam zone has broken through
the producer, as suggested by Faroug Ali [1982], is believed to increase the profitability
of a steamflood project [Kimber et al. 1995]. Under the condition of negligible steam
production, gravity drainage of the heated oil becomes the dominant producing
mechanism [Vogel 1992, Closmann 1995]. Due to the restriction created by the radially
converging path-lines, however, the productivity of vertical wells is much smaller than
their horizontal counter-parts. Joshi and Threlkeld [1985] found that a SAGD process
using a dually completed vertical well, i.e., concentric production and injection wells, did
not perform as well as a horizontal wellpair. Nevertheless, many California type heavy oil
reservoirs are believed to be operating under gravity drainage in radial coordinates [Vogel
1992]. The purpose of this section is to develop a mathematical model to study a thermal
recovery project with a radially expanding steam interface, where the oil flows due to
gravity forces. In contrast with the previous models [Reis 1992-b, Closmann 1995] the
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shape of the interface is considered unknown a priori and is found as a part of the
solution.

The physical problem is very similar to that shown in Figure 6.6 with x replaced
by r. As the mathematical treatment is similar to that presented in Section 6.2, the
development of the model is only discussed briefly, and the differences are emphasized.
The assumptions in the radial SAGD model are very similar to those considered for the
linear one. The temperature distribution, however, will be approximated by a vertically
averaged solution of radial heat conduction ahead of the moving interface. This
assumption is detailed later.

6.3.1. Heat Flow Problem

Heat is transferred ahead of the interface by conduction. For now, the 2-D
problem is approximated by a 1-D heat equation, ’

ar lor_tor . (6.3.1.1)
ars

where a is the thermal diffusivity and T, and r are the temperature and space coordinate
in the radial direction, respectively (For a discussion of the 1-D heat equation, see Section
6.2.1). Equation (6.3.1.1) holds ahead of an interface with a general equation of 7 =7(z,n),
where

= j(') Udv +r, (6.3.1.2)

is the local stcam zone radius, and U is the interface velocity in the radial direction.

By performing a transformation similar to that in Section 6.2 one obtains a
convection-diffusion PDE as

3°0 1 0 98
5+ = +Np, | —=— e 6.3.1.3
ax* [ x+x(n7) P ]ax ar ( )

where the dimensionless variables are defined as
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ToT e (6.3.1.4)
_r—ren
ST e (6.3.1.5)
1o
T—-F ........... (63 | 6)
NpeZE 6.3.1.7)
a
- t o
x(n.7)= "-ONped\' +—l‘-‘{- ........... (6.3.1.8)

where, %(n.t) is the dimensionless location of the steam-oil interface and y is the
dimensionless distance ahead of the interface. Equation (6.3.1.3), similar to Equation
(6.2.2.2), is a nonlinear convective-diffusive PDE. The convective term has a component
related to the radial geometry and a second one related to the moving interface. Note that
convection due to penetration of hot fluids ahead of the front is neglected.

Having obtained the proper second order PDE (6.3.1.3), the Heat Integral Method
(HIM) is used to transform Equation (6.3.1.3) to a first order ODE, which can be solved

easily using several numerical methods., e.g., Runge-Kutta methods.

A polynomizl is assumed to describe the unsteady-state temperature distributiox
ahead of the interface,

0=ay(7)+a(D)x +ax(Dx* + . . .+ (1Y

As in HIM, a heat penetration depth, 8(z), is considercd beyond which there is no
effect of heat transfer. Hence, 6 and its derivatives with respect Lo n are zero there.
Applying the latter boundary conditions to Equation (6.3.1.9) one obtains,

9=(]—5_(‘5) 0< y<é(1) >0 ... ...... (6.3.1.10)
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To find &(z), Equation (6.3.1.5) is integrated between zero and 8(r), and @ is

substituted for from Equation (6.3.1.10). By using th:e¢ mentioned boundary conditions
one obtains,

d(s%) 1
dt =2(n+l{ﬂ—(m+Np¢)5] .......... (6.3.1.11)

-~

with the inital condition

8(r)=0 =0 .......... (6.3.1.12)

Solution of ODE (6.3.1.11), with Eguation (6.3.1.10) defines the temperature
distribution ahead of the interface. Note that Npe is known only when the fluid flow part
of the problem is solved and the velocity of the interface is known.

The validity of the 1-D HIM solution was checked by comparing it with the
solution of PDE (6.3.1.3), assuming a varying front velocity. The comparison is shown in
Figures 6.14 and 6.15 for an example discussed next. The HIM solution tends to
underestimate the temperature distribution, especially when the steam zone radius is
small. The discrepancy can be explained by the fact that HIM solutions are mostly suited
for conductive problems. When steam zone radius is small, e.g., at the bottom of interface
where steam interface is kept at the well perimeter, a large convective component is
present. See the term in square bracket of Equation (6.3.1.3). This deficiency of the 1-D
HIM model can be circumvented by vertically averaging the variables which determine
the heat penetration depth in Equation (6.3.1.11).

Heat conduction ahead of the interface is a 2-D process. By neglecting the
derivative of the interface location with respect to the vertical distance, the 2-D version of
PDE (6.3.1.3) can be written as,

e 3*
= +
o= on

L~

1 a0
Z2Z e 3.1.13
+[n+R‘(z.t)+NP’]3n 3 (6.3.1.13)

(&
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Figure 6.14. Dimensionless temperature distribution ahead of the moving interface of Equation
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It was found that the 1-D repiesentation of the 2-D convective-diffusive PDE
(6.3.1.13) results in poor accuracy for cases of variable interface velocity along the
vertical axis, and small wellbore radius. To illustrate the limitations of the 1-D model,
and justify the averaging process, consider an example where Np. is defined by,

Npe=(8n)exp(-ty e (6.3.1.14)

The above equation represents an interface which is stationary at the bottom of
formation. At the top of the formation (n=1), Npe has a maximum value of 8. Np.=8
represents a front sweeping a formation of 10 m thickness with a well spacing of 100 m,
i.c.. a drainage area of 2 acres per well, within 2 years. Hence, Equation (6.3.1.14) covers
the range from stationary boundary problem to a fast moving boundary problem. Also,
the interface velocity, represented by Equation (6.3.1.14). decreases with time, as it
happens in reality.

Figures 6.14 and 6.15 show the numerical solutions of the 2-D PDE (6.3.1.13) as
well as those of the 1-D PDE (6.3.1.3) and the 1-D HIM solution, for a dimensionless
well radius of 0.01 in an infinite medium for different times. A dimensionless time of one
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corresponds to about 3 years for the above hypothetical example, assuming a thermal
diffusivity of 10-6 m2/s. Note that the horizontal axis. that is the distance from the
moving interface, is stretched to magnify the differences. A comparison between Figures
6.14.a and 6.14.c (or 6.14.b and 6.14.d) indicates that the conductive component in
vertical direction can not be neglected from Equation (6.3.1.13). To avoid complications
of solving the 2-D PDE (6.3.1.13) at each time step, an average Peclet No., Np.. and
average steam zone radius in Equation (6.3.1.11) are assumed to obtain a 2-D
representation of the heat penetration depth. This approximation is used to account for the
averaging behaviour of the diffusive component of PDE (6.3.1. 13) in vertical direction, as
well as circumventing the underestimation of the temperature distribution by 1-D HIM
model. Figure 6.16 shows the magnitude of the term in the square brackets of Equation
(6.3.1.11). Note that the above term is very large at the bottom of interface, and that the
maximum peak of temperature profile in Figures 6.15.a and 6.15.b corresponds to the
minimum of Figure 6.16. Figures 6.15.c and 6.15.d show the temperaturce distribution of
Equation (6.3.1.14), predicted by Equations (6.3.1.10) to (6.3.1.12) and the averaging

process explained above. Obviously, the computer effort for solving Equation (6.3.1.10)
to (6.3.1.12) is much smaller than that for Equation (6.3.1.13).

Accurate modelling of oil flow requires accurate temperature distributions in the
region very close 1o the interface. For example, the mobility of an oil particle on the 0.5
isotherm is only 12% of that on the interface, assuming a typical value of m=3 in
Equation (6.3.2.2). A comparison between Figures 6.14.a and 6.15.c (or 6.14.b and
6.15.d) indicates that the proposed model is a good approximation of the 2-D process.
especially in the region close to the interface.

Figures 6.14 and 6.15 indicate that heat transfer ahead of the interface is an
unsteady-state problem for the example considered. The same behaviour is expected
under most field conditions. Also Figures 6.14.a and 6.14.b show that iso-temperature
lines are aligned almost parallel to the moving interface. This is in spite of the fact that
the interface is stationary at the bottom of the formation and is moving with a Np, of 4 10
8 at the top.

Using the fact that the isotherms are approximately paraliel to the moving
interface, the approximation was introduced that oil particles move parallel to the
interface; i.c., along the iso-viscosity lines.
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6.3.2. Fluid Flow Problem

At some particular time, temperature and hence viscosity are functions of the
distance from the oil-steam interface. At a distance r from the axis of the vertical well,

the oil flow due to gravitational forces can be expressed using Darcy’s law for an element
of thickness dr as,

dq = k(p, — Z,)gsine 2rdr
0

........... 6.3.2.1)

where a piston-like displacement is assumed over the element of dr and capillary
pressure is neglected. Using the viscosity-temperature relationship of (6.3.2.2) and the

temperature distributions of Equation (6.3.1.10), Equation (6.3:2.1) can be integrated to
obtain the flow rate,

Vs _ T—Tge m

v (_Ts - TR) ........... (6.3.2.2)
. 27[1{2 : si 5 nm -~

i) =B Plo_gymgedney e (6.3.2.3)

272 gk sin© 8[6 +fam + 2)x(n.7)]

i(e)= U,y (wm+2)m+1y TTTronrTe

(6.3.2.4)
where it has been assumed that p, -ps =p,-

In wyuation (6.3.2.3) the integration is performed within the heated zone, as oil
flow in the cold region is assumed negligible.

Equation (6.3.2.4) determines the production rate as a function of some dynamic
variables as well as constant rock and fluid properties. The dynamic variables include the
dimensionless heat penetration depth, &, the local angle of the interface with the horizon,
and the dimensionless steam zone radius, ¥(n.7). The parameter & is obtained from
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Equation (6.3.1.11). The continuity equation (6.3.2.5) provides the required relation
between ¥(n,t) and the drainage rate from each element,

g_i ==2meAS,FU e (6.3.2.5)

where 7, the steam zone radius., is defined in Equation (6.3.1.2). By knowing the interface

velocity from Equation (6.3.2.5), the slope of the intertace can be obtained using the
geometric relation (6.3.2.6),

&
@an © = ;L; ........... (6.3.2.6)

To complete the formulation of the radial SAGD model, initial and boundary

conditions similar to those explained in Section 6.2.4, and a numerical procedure similar
to that in Section 6.2.5 will be used.

6.3.3. Results and Discussion of the 1-D Radial SAGD Model

Liebe and Butler [1991] reported the results of steam injection from a vertical
injector in a cylindrical model to study improved gravity drainage due to stcam injection.
The physical properties of the rock and fluids are given in Table 6.3. The authors did not
report the properties of the porous medium; however, they mentioned that they used 2

mm glass beads. In this study the data of Chung and Butler [1988-a], who uscd the same
porous material, were used.

In Figures 6.17 and 6.18 a comparison is shown between the predictions of the
above semi-analytical model and their experimental results. As shown, the model predicts
oil production and steam interface movement accurately.
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Licbe and Butler [1991] performed their experiments at two different pressures.
As they noted, the experimental pressure was the maximum pressure available for driving
oil to the production well. The authors did not report the production pressure; however,
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they avoided any steam production. This minimizes the eftect of external pressure as a
drive mechanism, since the injection and production sites were less than 0.05 m apart.
Liebe and Butler [1991] noted that, at the higher injection pressure the oil steam interface
was driven farther from the injection site. This provided more surface area for the
draining oil behind the interface, as area increases proportional to the second power of
radius in radial coordinates. To accommodate this effect a value of 0.018 m was used for

well radius, about four times the actual value. A similar match was obtained for the
experimental results reported at the second pressure.

As a second test the radial SAGD model is examined against the ficld data of two
Californian heavy oi! reservoirs. Their physical properties are given in Table 6.3. The
same data as reported by Closmann [1995] were used. Figures 6.19 to 6.21 show the
production rate and interface location for the Inglewood and Kern River 10-pattern fields,
respectively, as obtained using the above gravity drainage model. For comparison the
actua’ field data are also given [Closmann 1995]. In each case two well radii were used;
one corresponding to the actual well radius, and the second one was chosen such that the
production rate from the model matches with that using the field data. In reality the
additional production from the reservoir is believed to be due to other mechanisms such

as withdrawal of oil due to pressure forces at the production site, which provides more
surface area for the flow of the heated oil.

The larger well radius is used to indicate the high potential of gravity drainage for
producing Californian reservoirs, especially if the production surface is increased.
Vertical wells restrict the fluid production due to congestion of the streamlines close to
the wellbore, but horizontal producers provide a larger surtace for oil flow, which can be
highly beneficial in the case of such recovery mechanisms as gravity drainage, where the
driving forces are low, and they act such that high sweep efficiencies can be obtained.
The lauer is shown in Figures 6.20, where the interface location is shown as a function of
time. Gravity drainage under stable conditions achieves high sweep efficiencies [King e
al. 1970, Vogel 1992].
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Table 6.3
Rock and Fluid properties for the 1-D radial SAGD model

Experimental study Inglewood Field Kem 10 pattern
{Liebe and Butler 1991) {Closmann 1995] [Closmann 1995]
Height H 20 cm [0.20 m] 13.1m 21.3m -
Permeability & 944 pm? 5.8 um? 7.5 pm?
Porosity x Saturation 0.39 x0.95 0.39 x0.42 0.33 x0.29
change @AS,
Kinematic oil viscosity 36.7 x106 m%/s 4.35 %106 m?/s 7.19 x 106 m?/s
at steam temperature U,g
Thermal diffusivity & 5.87 x107 m?/s 9.68 %107 m?/s 9.35 x107 m?/s
m 2.79 2344 2.619
100
80
A Model (rw=0.5 m) S
60
(%) A A
O Model (rw=0.09 m) Y A o a P A
g 40 2 lo
(s O
I Data [Closmann 1995) | = =]
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0 i:g
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Figure 6.19. Oil rate from Inglewood field
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For plotting Figures 6.20, a saturation change as reported by Closmann [1995]
was used. If gravity drainage is implemented as the major recovery mechanism, higher

recoveries might be obtained due to the low residual saturation obtained under gravity
drainage.
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7. DEVELOPMENT OF A 2-D NUMERICAL MODEL FOR THE SAGD
PROCESS

The mathematical models commonly used for studying the SAGD process were
reviewed in Chapter 2. It was indicated that the available analytical and semi-analytical
models incorporated some assumptions that in many instances have not been yet justified.
Nevertheless, they have been very useful in mechanistic studies of the SAGD process.
Simple formulation and easy application of these models have made it possible to study
the effect of the major parameters affecting whe process.

On the other hand, rigorously developed thermal simulators are commonly used
for field case studies. It seems that the capability of incorporating complex input data, and"
a lack of confidence in the assumptions underlying the simpler models have persuaded
the industry to use the complex thermal simulztors. Unfortunately, there is no thermal
simulator that is specifically designed for the SAGD process. The availability of such a
model is needed, because in commercially available thermal simulators accurate
modelling of the heat and fluid flow processes in the vicinity of the steam interface is
only possible if fine gridding is implemented for the global domain. This in turn, results
in impractical computational time. The purpose of this chapter is to develop a
conceptually simple numerical model, which permits high modelling accuracy ahead of
the steam interface. Some of the assumptions involved in the previous simple models are
relaxed, and incorporation of complex input data is permitted. The formulation is kept
simple, such that mechanistic studies are possible. To develop such a model some of the
assumptions that seem to be acceptable for the SAGD process are used. In Chapter 8 and
through a comparison of the results with the experimental data, the applicability of the
assumptions will be discussed.

7.1 General Features and Assumptions

Figure 7.1 shows a 2-D cross-section of the SAGD process perpendicular to the
axis of the horizontal well. Focusing on the side-ways expansion phase of the process, 2-

D heat conduction ahead of the interface accompanied with fluid flow due to gravity
forces is modelled.

Similar to the previous 1-D semi-analytical models, a sharp interface is assumed
10 separate the steam and oil regions. Any potential gradients in the steam zone are
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neglected due to the low viscosity of the steam as compared to the oil. This is believed to
be one of the major assumptions of the present model, since the potential gradients
required for steam flow through the capillary region may not be negligible. Some studies,

however, have shown that capillary forces are insignificant at the steam oil interface,
under field conditions [Palmgren er al. 1989].

Figure 7.1 Schematic presentation of steam-oil interface under non-isothermal
gravity drainage in the SAGD process

By considering a heat conduction problem, any convective effect due to
penetration of the hot fluids ahead of the interface is neglected. Using typical thermal
properties of a heavy oil reservoir it can be shown easily that temperature of the fluids
produced from a unit volume of a reservoir drops by about S units in order to increase the
temperature of the same volume of the formation ahead of the interface by one unit (the
data reported by Chung and Butler [1988-b] were used). This happens if all the produced

hot oil penetrates ahead of the interface. In the 3AGD process, the hot fluids drain mostly
downwards along the interface.
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For a detailed discussion of the neglected mechanisms, please refer to Section
6.2.1.

7.2 Conservation Laws

In a 2-D system, where heat flows by conduction only, the conservation of energy
can be expressed as

d(IrY, dfary_1ar 3
:?;(79;)*.5;(-8—{)—11 3 x 2z x(z,1) 0<sz<H >0 ....... (7.2.1)

where a. the thermal diffusivity of the formation is considered to be constant. The initial

and boundary conditions of the heat flow problem can be written as Equation (7.2.2) to
(7.2.6)

T=Tx x20 0<z<H t=0 ....... (7.2.2)

=g X2 xz,0) z=H t>0  ....... (7.2.3)

Z o = EZ o x 2 X0 z=0 >0 ....... (7.2.4)
T=T, x=X(z,1) 0<z<H >0 ....... (7.2.5)
T=Tg X oo 0<z<H >0 ....... (7.2.6)

where € is the ratio of the thermal conductivity of the surrounding rock to that of the
formation, and %(z) is the location of the steam interface. Equations (7.2.3) and (7.2.4)
express that heat is lost to the cap and base rock by a 1-D conduction process. '

Liquid hydrocarbons are kitown to obey the behaviour of slightly compressible

fluids, Equation (7.2.7) describes the behaviour of the density of a siightly compressible
fluid with pressure.

o= ;1)_%"% ....... (7:2.7)
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where the compressibility of the fluid, ¢, is small and constant.

In a 2-D system, conservation of mass can be expressed as
~ 9 ou )= (pu.) = 0%
ax(pu,) az(pu:)-cz) - RERE (7.2.8)

where «, and u, are average flvid velocities in porous media. The fluid velocities can be
found using Darcy’s law, which has been shown to be an approximation :or the steady-

state Navier-Stokes equation of flow for viscous fluids when the inertial forces can be
neglected [Hubbert 1956, Slattery 1969].

__kor
v (7.2.9)
k (P i
u, = —L:(';“i' pg) ...... (7.2.1())

where & the permeability of the formation is considered to be independent of flow

direction. A discussion of the formulation of the problem in an anisotropic formation is
given later.

Combining Equations (7.2.7) to (7.2.10) and neglecting the nonlinear terms,
which are shown to be small for typical rescrvoirs [Odeh and Babu 1988], Equation
(7.2.11) is obtained for pressure distribution in the formation,

o[k (aPY]. [k (9P __op
51__[;:(3;)]4,2[&:(;4, pg)] e (7.2.11)

Using a potential function ¢ defined as Equation (7.2.12), Equation (7.2.11) can
be simplified as Equation (7.2.13)

e=Prpgz (7.2.12)

CARNE) _B_L(a_fp)_ ) )
I ) N
...... (7.2.13)
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The :nitial and boundary conditions of Equation (7.2.13) can be expressed as
Equations (7.2.14) to (7.2.19).

?=0r x20 0<z<H =0 ...... (7.2.14)
%z‘ﬂ:o x2 k) z=H T (7.2.15)
%1:0 x2x, 2=0 >0 ...... (7:2.16)
¢=Pr 0<x<zx, z=0 >0 ...... (7.2.17)
@=@Qr+pg2 x = x(z,0) 0<sz<H >0  ...... (7.2.18)
@=0p X —»oo 0<z<H >0 ...... (7.2.19)

In Equation (7.2.18) the density of steam is neglected and a constant steam
pressure at the interface is considered. Equation (7.2.17) specifies the well condition.
Eaations (7.2.17) and (7.2.18) indicate that there is no differential pressure between the
interface and the well. This ensures no steam production. Additionaily, it has been
assumed that steam is injected into the reservoir at the initial reservoir pressure. Should

the injection pressure be greater than the initial reservoir pressure, Equations (7.2.17) and
(7.2.18) would have to be adjusted accordingly.

Equations (7.2.1) to (7.2.6) and (7.2.13) 10 (7.2.19) explain the heat and fluid flow
processes. respectively. However, both of these processes occur ahead of an interface
i=.n. In the next section an equation is found for the interface, such that the formulation
of the problem is complete. Before doing so, the above equations are written in terms of
appropriate dimensionless variables defined as Equations (7.2.20) to (7.2.25).

X

|

...... (7.2.20)

N
]
mln

...... (7.2.21)
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...... (7.2.22)
_9P—0r

ocffe (7.2.23)
_I-Tr

o= (1.2.24)

®z1)= f‘;” ...... (1.2.25)

Using the above dimensionless variables the heat and fluid flow problem can be

expressed as

and

d(30) 9 (90) o0 .
5}-(5),»5(5) -2 X2zt  0<z<1 >0 ...... (7.2.26)
=0 X=20 0<Z<1 t=0 ...... (7.2.27)
0 a9 .

=g X=X(Z.1) Z=1 >0 ...... (7.2.28)
azZ=l azZ:l’
26 @l -

=g X2X(Z71) Z=0 >0 ...... (7.2.29)
Zlzo0r  Zlz-0-
6=1 X =X(Z,1) 0<Z<1 >0 ...... (7.2.30)
6=0 X oo 0<Zs<l >0 ...... (7.2.31)
a’p,,,(azb) 2 &,,_(a:n) ) :
aXI,u,, F )|t 2\ F )85 X2ken  oszs >0

...... (7.2.32)

d=0 X220 0<Z<1 =0 ...... (7.2.33)
ékp -
7.‘E=0 X2X(Z71) Z=1 >0 ...... (7.2.34)
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$=0 0<X<X, Z=0 >0 ...... (7.2.36)
=2z X =X(Z.7) 0<Z<1 >0 ...... (7.2.37)
b=0 X o0 0<Z<1 >0 ...... (7.2.38)

where B is the ratio of thermal diffusivity to hydraulic diffusivity of the formation at
steam temperature, and typically is a very small number. For incompressible systems B is
zero, and the parabolic Equation (7.2.32) becomes elliptic.

B= ﬂ'z-ixa ...... (7.2.39)

7.3 A New Interface Equation

To obtain an equation for the interface the property of the interface, namely the
condition of constant pressure there is used. Hence, at the interface one can write

DP P - .
—=Z_+U0UVP= = 3z, <zg
=5 tOvP=0 x=X(z.0 0 H

where U is the velocity of the interface and is related to Darcy velocity. i.e., potential
gradient by,

-1 k dp Kk dp )
g=—t (ko kd) 7.3.2
¢Aso( Ho ox Ho oz ( )

The pressure gradient in Equation (7.3.1) can be related to potential gradient using
Equation (7.2.12)

_(2e 20 _ )
vp ( ) PP (1.3.3)
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Substituting from Equations (7.3.2) and (7.3.3) in Equation (7.3.1) and replacing
aP Jdop

tor =3 interface Equation (7.3.4) is obtained, similar to that derived by Bear
[1972, P. 255].

k(20 (o) _pp2) s i
a msapw[(ax * N Pgaz xX=Xx(z.0 O<z:<H  ....... (7.3.4)

Bear [1972] suggested an iterative procedure to find the location of the interface
such that Equation (7.3.4) is valid there. Here, an explicit equation is derived for the
location of the interface. The boundary condition (7.2.18) can be expressed as

o{x(z.1).z.1} = g + pgz X =3(z.0 0<zs<H  ....... (7.3.5)

By differentiating Equation (7.3.5) with respect to 1 and z one obtains

3_(p_3i(z.t)+_§(£=0

A o ot X = X(z,1) 0<:<H  ....... (7.3.6)
o HB(z1) I _ . ’
* = T3P x=3x(z,1) O<z<H  ....... (1.3.7)

By substituting from Equation (7.3.6) and (7.3.7) into Equation (7.3.4) and
simplifying one obtains

Ry ___ koo (ai(z,x))z _ d(z)
Y. {ax[ + — pg-—-—az ....... (7.3.8)
where it has been assumed that assumed %”;#0. For the interface to st it s-ing in the

formation from its initial location it is required that %%: 0. The weli “onuition Equation

(7.2.17) indicates that ‘—;%: 0 at z=0. However, a boundary condition will be introduced

there that wiil overrule Equation (7.3.8).

The interface equation (7.3.8) relates the movement of the interface to the shape
of the interface and potential distribution in the formation. To the best of the author’s
knowledge, this is the first time that the interface Equation (7.3.8) has been introduced
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into the literature. An analogous, but different, equation was previously derived for melt
propagation due to conduction heating [Patel 1969].

Using the dimensionless variables defined by Equations (7.2.20) to (7.2.25), the
interface Equation (7.3.8) can be expressed as

aR(Z,T) | (axz)| akzr)
T— —N&{E[I-FL Z ] }— Z } ....... (7.3.9)

where Ng, is the Rayleigh No. which was previously found to be an important

dimensionless group in thermal gravity drainage in porous media (see Section 5.2, 6.2.3,
and 6.2.6.3)

kgH xl

Np, = — Ll i
Ra = oS, v, @

(7.3.10)

The initial condition of the interface Equation (7.3.9) is Equation (7.3.11), which
states that the interface is initially located vertically at the origin.

X(z,t)=0 - 0<sz<1 =0  L..... (7.3.11)

It was previously pointed out that in the SAGD process, the steam-oil interface is
kept at the production site. This is achieved by adjusting the production pressure such that
excessive steam production is avoided. To incorporate this in the mathematical model,
condition (7.3.12) is introduced which holds the interface a1 the production well. It should
be noted that the interface Equation 1 7.3.9) is not valid at the bottom of the interface,
because the condition -3%:0 is violated there. Hence, Equatior (7.3.9) together with

Equation (7.3.12) describes the behaviour of the interface.

X(2.1)=0 Z=0 >0 ..., (7.3.12)

At the top of the formation where %:0, the intertace Equation (7.3.9) is

expressed as

D N[22
Hzo)_ NR“(ax) ...... (7.3.13)
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7.4. Transformation

In Section 7.3 an equation was found to locate the oil-steam interface. This
completes the formulation of the combined heat and fluid flow ahead of the moving
interface, as discussed in Sections 7.2 and 7.3. Having a system of first and second order
nonlinear partial differential equations makes it impossible to obtain analytical solutions.
To develop an accurate numerical model, the physical domain is transformed onto a
computational one such that the location of the moving interface is always known and
constant. Immobilizing the interface by the transformation enables one to locate smaller
grid blocks in the vicinity of the now stationary interface. It will be shown, however, that
the transformation complicates the diffusion Equations (7.2.26) and (7.2.32).

A two dimensional diffusion Equation of (7.4.1) can be transformed from (X, Z,7)
to the moving coordinate (& n.7) defined by Equations (7.4.2) and (7.4.3)

3 (. ar\ 3 (.ar\_ar

ﬁ(rﬁ)ﬂugz-(rg)_ Z (1.4.1)
E=&X.2,7y (7.4.2)
n=n(x.zxy L (7.4.3)

where T is the temperature or potential, and I is the diffusion coefficient. Kim and
Kaviany [1992], among others, showed that Equation (7.4.1) translates to Equation
(7.4.4) in the computational domain.

9| % pdr 9| %y 0T _ O (B ar)_ 3By ar)_aun
ag(ngrag+X'T)+an[h,,ran+Z’T] ( r ] ( Faé

where
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a, = —hl:i ...... (7.4.6)
B = ”J"' ...... (1.4.7)
By = ‘"J’s‘ ...... (7.4.8)
n=J(x3+28) (7.4.9)
m=Jxi+z2) (7.4.10)
A=XeXg+ZeZy (7.4.11)
J=XeZp-ZeXy (7.4.12)

and subscripts on the independent variables X and Z denote partial derivatives.

In this study the transformation Equations (7.4.13) and (7.4.14) are intraduced to
immobilize the moving interface .

E=X-X(Z,1) (7.4.13)

n=Z e (7.4.14)

Equation (7.4.13) ensures that the interface is always located at £=0. Equation
(7.4.13) permits one to use the so called “‘simultaneous node movement” technique
{Hawken 1987). In this technique the movement of the coordinate system is incorporated
into the conservation equations. The alternative techniques are periodic and alternating
node movement. In the latter techniques, the conservation equations are solved on
stationary coordinates, and then the field variables are calculated at the new coordinate
location using interpolation. For stiff problems, where the time scales of different flow
processes differ by orders of magnitude, the latter technique may result in instabilities,
unless the time steps are kept very small {Hawken 1987].
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Using the Equation (7.4.13) and (7.4.14) and the relations (7.4.5) to (7.4.12) one
can transform the 2-D diffusion Equations of (7.2.26) and (7.2.34), and their
corresponding initial and boundary conditions. In doing so one obtains

o)L (EY |20, E,l, 2 () 2 (2w a(aEam)_ s
85“14—[8"] }3§+819}+3n(8n) 35(317 3’1] 3'1[3'7 ag) 35 e (7.4.15)

The cross-diffusion terms on the left hand side of Equation (7.4.15) are created
because of the non-orthogonality of the computational domain, as was explained in
Chapter 2. The convective term at the left hand side of Equation (7.4.15) represents the
movement of the imerface in the horizontal direction. If the transformations (7.4.13) and
(7.4.14) are applied to Equation (7.2.26) through a chain rule or strong conservation law
forms of Hawken [1987], Equation (7.4.15) is consistently obtained. Hence, using the
transformations used in this study, the geometric errors that might be introduced due to
inconsistent application of some transformations are not present. It is worth noting that by

using the transformation (7.2.13) and (7.2.14) the interface Equation remains the same,
that is,

&n.7)= X(z.7) (7.4.16)

.....

The initial and boundary conditions of Equation (7.4.135) are

=0 £E=0 0<n<li =0 ..... (7.4.17)
2 =eaa E=0 n=1I >0 ..... (7.4.18)
oan n=1- an n=1"

8 _ .20 £>0 n=0 >0  ..... (7.4.19)
on n=0" 371,,___0-

=1 E=0 0<n<l >0 ..... (7.4.20)
6=0 E— oo 0<n<l >0 ..... (7.4.21)

The corresponding equations for the potential distribution is
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..... (7.4.22)
with the following initial and boundary conditions

®=0 20 0<n<1 =0 ..... (7.4.23)
X _o £20 n=1 >0 ..... (7.4.24)
an
®_ 0 E=E,. n=0 >0 ..... (7.4.25)
on
B0 0<E<E, n=0 £50 ... (7.4.26)
&=n E=0 o<n<1 >0 ..... (7.4.27)
=0 E— oo 0<n<1 >0 ..... (7.4.28)

Similarly, and by applying the chain rule to Equation (7.3.9), one can find the
interface Equation in the computational domain,

3(n.7) _ #&m.7)\ | @)
= ,.{ ag[l ( = ” o ] ..... (7.4.29)

Correspondingly, Equations (7.3.11) and (7.3.12) can be writien as,

En.7)=0 0<n<1 =0 ..... (7.4.30)
En.t)=0 n=0 50 ..... (7.4.31)

7.5 Solution Method

Equations (7.4.15), (7.4.22) and (7.4.29) form a system of coupled partial
ditferential equations which, along with their initial and boundary conditions, describe
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the behaviour of the 2-D linear SAGD process. The coefticients of the potential equation
(7.4.22) are strongly dependent on the solution of the temperature Equation (7.4.15) due
to the strong dependency of viscosity on temperature. Solution of potential Equation
(7.4.22) in turn, affects the location of the interface in Equation (7.4.29). Due to the
strong interaction between the above equations an implicit method will be used.

The interface is initially located vertically at the origin. By knowing the location
and shape of the interface one can solve for the temperature distribution using Equations
(7.4.15) to (7.5.21). The temperature solution is subsequently used to evaluate the
coefficients of the potential Equation (7.4.22), which is then solved along with the initial
and boundary conditions (7.4.23) to (7.4.28). The potential solution is then used to find
the interface location by using Equation (7.4.29) to (7.4.31). By knowing the shape and
velocity of the interface, the temperature and potential equations can be solved again. The
calculation is repeated iteratively until a convergence criterion is met. Time is then
incremented and the above cycle is repeated with the initial conditions of the equations
replaced by the values obtained from the previous time step. Should the number of
iterations before convergence be too high or low, the time step is adjusted accordingly.

The interface Equation (7.4.29) is an important part of the solution, especially in
the case of fast moving boundary systems. The accuracy of its solution is increased by
implementing a two-step procedure. At the end of each time step and after convergence is
obtained. the location of the interface is obtained from Equation (7.4.29) for the
following time step. An average of this location with the solution of Equation (7.4.29) at
the next time step is considered as the location of the interface at any iteration. This is
similar to the two-step Euler’s method for solving first order differential equations.
Figure 7.2 schematically shows the flow chart of the calculations as explained above.

It was briefly discussed in Section 7.2 that the effect of the unsteady-state term in
the potential Equation is much smaller than that in the temperature Equation. This causes
a large difference in the time scales of the two flow processes, being of the order of 106
for typical Canadian bituminous reservoirs. In order to obtain a stable solution and/or not
to require impractically small time steps, each of the equations are solved implicitly. This
is discussed in more detail later, when the system of algebraic equations are formed.
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7.6 Discretization

Different methods of solving partial differential equations in gencral, and
conservation equations in moving boundary problems in particular, were reviewed in
Chapter 2. Among the three methods of finite element, finite difference and finite
volume, the finite volume technique is used. It is shown in the literature that the latter
approach is very successful in modelling conservation equations [Patankar 1980]. The

advantage of a finite volume method lays in the fact that it achieves conservation, no
matter how coarse the grid blocks.

In the finite volume method, each of the spatial derivative terms is integrated over
a control volume (control surface for a 2-D problem). Then Green’s theorem is
implemented to write the expression as a boundary integral of the flux terms. The
conservation property of the method is guaranteed because the flux terms are evaluated at
the boundaries of the control volumes. In other words, what leaves a control volume
enters the next one through the common control volume face. The integration of the
unsteady-state term over a control volume is performed by assigning a constant value to
the dependent variable over the corresponding control volume. The finer the control
volumes the more accurate the approximation for the unsteady-state term.

Another advantage of the control volume approach is that it facilitates the
understanding of the extra terms that are introduced due to the coordinate transformation.
For example. the cross-derivative terms can be related easily to the non-orthogonality of
the coordinate axes. Consider a control volume denoted by “P” in Figure 7.3. A flux
entering the west boundary, for example, should be evaluated along the normal to the
west boundary. The neighbouring nodes, however, are not aligned along the normal to the
boundary. A proper representation of the normal flux requires using two other
fluxes which are parallel to the non-orthogonal coordinate system, and which can be
evaluated using the values obtained at the computational ncdes [see for example Faghri,
Sparrow, and Prata 1984, Halal and Lilley 1988].

In a numerical calculation, where unequal grid blocks are used, a question should
be answered, whether the nodes are chosen at the center of the corresponding control
volumes, or the two subsequent computational nodes are placed at equal distances from
the common control volume face. The former approach provides more accuracy in
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estimating the unsteady-state term, whereas, the latter approach more accurately
represents the flux terms [Patankar 1980, Aziz 1993]. Nacul and Aziz [1991] showed that
for the cases they studied, the solution accuracy was higher when priority was given to a
higher accuracy for the flux terms rather than to the unsteady-state term. More accuracy
in representing the flux terms is considered in this study. This offers simple expressions
for approximating the cross derivative terms, as will be discussed later.

® N e NE
- '.J:;ae
. W e P | e e E

//W/ / -

Figure 7.3 A schematic representation of the control volumes in the physical domain

The physical problem of interest suggests that temperature gradients are highest
along the horizontal direction. Hence, unequal grid spacing along the horizontal axis is
uscd to obtain high accuracy in the regiss: sslose to the interface, and equal grid spacing is
used along the vertical axis in the corey«i.stional domain.

In the following a discretized system cof equations for the potential Equation
(7.4.22), given here again for convenience, is presented. The temperature Equation

(7.4.15) can be similarly handled. Incorporation of the boundary conditions is explained
later.
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Starting with the left hand side, the first term of Equation (7.6.1) can be integrated
over a control volume denoted by “P” in Figure 7.4, which shows the computational

domain after performing the transformations denoted by Equations (7.3.13) and (7.3.14).
Similar 10 that given by Patankar [1980] one can write

[0 3t e [ 22)] -[t2(32)] oo
) o) e

Equation (7.6.2) can simplified as:

aNld)N +asl¢s +aﬂd>p ...... (7.6.3)
where

_A8p [ Hos 6.4

aN| = AN (ya 1‘ ...... (7. B )

as, = 3‘5&(&-} ...... (1.6.5)

Ho Jg
aR = —(aNl +asl) ...... (7.6.6)
Similarly integration of the second term at the left hand side of Equation (7.6.1)
yields
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Figure 7.4 A schematic representation of the control volumes in the computational domain

Patankar | 1980] gavc a detailed discussion, and suggested that the right hand side
of Equation (7.6.7) is best approximated for a 1-D steady-state convection-diffusion
problem if a power law scheme is used. The power law approximation simplifies to an
upwind difference if the cell Peclet No. is greater or equal to 10, and degenerates to a
central difference for a purely conductive problem. By using this approach, Equation
(7.6.7) can be expressed as

a ¢£+aw¢u/ +ag¢p ...... (7.6.8)
E 4 d

where
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ap, =—{aw, +ag,)

}A n .. (7.6.9)

..... (7.6.11)

where || | denotes the maximum value of its arguments, and the cell Peclet No.. P, can be
expressed as Equation (7.6.12) and the function F as Equation (7.6.13).

9k
22(8
S -1 )ﬂ = (7.6.12)
Hos |y, | %€
(uo 1”(&:1)}
Fe=f.a-ony .. (7.6.13)

Integration of the cross-diffusion terms is performed as suggested by Karki and
Patankar [1988].

en #os —é-ip- B _
J I an[ (a,, I ]}’""5 =e,me . (7.6.14)

where
= | Hos. iﬂ £ = E&i?_é - 7
Al our
Similarly,
o |Ha [k _(es 3 - 7.6.16
“ [“u [an o5 ):\, x4 (”o an]‘(q).w q"“") """ (7.6.16)
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Using linear interpolation for finding the temperature at the corners of the control
volume, and collecting terms, the integral (7.6.14) can be written as

(lsw"bsw +(lw)¢w +am¢Nw +asﬁ¢sg +a£:d>E +a~E‘¢~E ..... (7.6.17)
where
asw 4[110 an]s """ (7.6.18)
1 (as B) _1(ptas 2 7.6.19
aw: 4[#.. an)" 4(u(, 8171 """ (7.6.19)
1 po IE
NW, 4{”0 anJ ..... (7.6.20)
asg; =-( 35’7) ..... (7.6.21)
~ 1| Hos 92 &iﬁ 7.6.22
“E; 4(;:0 an) (#o an]" """ (7.6.22)
= _ 1| Hes 9 ) 7.6.23
4NE, (“ an) ----- (7.6.23)
Similarly the integration of the other cross derivative term results in
poc (00N, _ 34
” ag[ ( o J]ugdq -t (7.6.24)
where
Hes [ 9E 00 Hos O
e =— = 2 — Ap=-|=2=221(op,.-®,) ... 7.6.25
¢ [uo (an an)lx 1 [#o anl( ’ ( )
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Using linear interpolation as before one can express the integral (7.6.24) as

asw, Psw + anw, Pyw +as,Ps +an Py +asg, Pse + ave, Pne:

..... (7.6.27)
wliere
SW =‘%(%L-3—§J ..... (7.6.28)
anw, =%£%£ gi) ..... (7.6.29)
o i 1
_1( s 9B _1{1es 38 2
as _4(;10 801 4(;10 311]“ """ (7.6.30)
o =M os 3B) 1 Hor 38 . ....(1.6.31)
MTa\p,0n) 4w, on) "
1 .”_nz.fzi 3
dgg, = 4(”0 3’1]‘, ..... (7.6.32)
ang, = -%(“7—%”5-] ..... (7.6.33)

Integrating the right hand side of Equation (7.6.1), and assuming a constant valuc
of potential over the control volume yields

ne

[ S rdan =255 Bop - 05)= s +ahod

s w

..... (7.6.34)
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where

al - -élAAfﬂ B (1.6.35)
ap=-ay (7.6.36)

By collecting all the terms, the diffusion Equation (7.6.1) can be approximated by
the algebraic expression (7.6.37)

asw®sw + ayPw + anwPnw + asPs +apPp +any®y + aspPse + apPp + ANgPNE = a®pdd

..... (7.6.37)
where
asw = asw, + aSW: =‘%("%%J "‘i’[’;‘” ‘3‘5‘} ..... (7.6.38)
) _ (M &Y |FAad) | % 1 Hos &) _ 1 1os
"‘”'"“‘*“‘”z‘{(uo )w[‘*(anJ }(65).‘. TP ™ 3\ u, 9n) "4\, o0,
..... (7.6.39)
anw =dyw, +any, = %(‘:l"‘ gi] +%[‘;"‘ g%) ..... (7.6.40)
- _AZp (o) 1 [ Bos 9B) _ 1 (1o
s = ds, * s, =3y (#,. ),+ 4( Ho an]c 4( Mo %]‘. """ (7.6.41)
_ A% (o) 1 Hos &) _1(pos
N = AN T AN =3 (uo J,,+4(#o 8n)“_ 4(#., 301 """ (7.6.42)
dsp = aSE‘ +aSE: = %[L;—‘&g-‘:;i] + i—{!:l&g%} ..... (7.6.43)
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..... (7.6.44)

1( s 35 os O
ang = aNg, + GNE, = —z(-’-;—-g%] -%[ﬁ—%} ----- (7.6.45)
ap =ap +ap.ap =—(awI +as +ay +dg, —ag) ..... (7.6.46)

The mid-point viscosity ratios are approximated by the harmonic average of the
neighbouring values as shown by Equation (7.6.47)

L S (7.6.47)
BEENE
ll() n “lo N l‘l(’ P

To approximate the shape-factor, Equations similar to those expressed as
Equation (7.6.48) and (7.6.49) are used.

dn.7)) _(%m)) _[%mn.1) 4
( . JW _( l [ o ),, ..... (7.6.48)
,1 ) n ..... .6.4

Equation (7.6.37) is written such that all of the terms at the left hand side
including the central node and its eight neighbouring nodes are solved for simultaneously.
The term at the right hand side of Equation (7.6.37) is from the previous time step. An
implicit solution of all nine nodes, as in Equation (7.6.37), is necessary since the potential
solution has a very small time scale in the regions close to the interface, and approaches
the steady-state solution in a very short time. The algebraic Equation (7.6.37) is solved
implicitly for all the nodes in order to avoid very small time steps or unstability problems.
It was noted in Chapter 2, that most of the numerical models on non-orthogonal grids
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handle the corner points at the previous time step as a source lerm at the right-hand side
of Equation (7.6.37).

7.7 Boundary Conditions

Boundary conditions for the temperature and potential Equations (7.4.15) and
(7.4.22) indicate second and first type boundary conditions for the horizontal and vertical
boundaries in the computational domain, respectively. Here, the effect of heat loss from
the horizontal boundaries as indicated in Equations (7.4.18) and (7.4.19), is neglected and
a numerical model is developed for insulated conditions. Including the heat loss effects
can be performed similarly.

The computational nodes are chosen on the vertical baundaries, and the faces of
the boundary control volumes on the horizontal boundaries, as shown in Figures 7.3 and
7.4. This configuration ensures that both types of boundary vonditions can be satisfied
exactly. To satisfy the Drichlet conditions all of the coefficients of Equation (7.6.37) are
simply forced to be zero except ap and a) which are set equal to one. To satisfy the no-
flow boundary conditions the total flux entering from the horizontal boundaries is forced
to be zero [Demirdzic and Peric 1990]. For example at the lower boundary, Equations
(7.6.2) and (7.6.14) are replaced by Equations (7.7.1) and (7.7.2), respectively.

I n_a_--&s_ ﬂ _ E.‘E. ﬂ B & ¢'N -®
N an| Ho (3'1 )]d"dé B {[ Ho ( on J]. }Ag,, B {[( Ho J( R H}Ag” """ (7.7.1)

j j "33,,’ Zf,‘,’;;’ }’""5 e (7.1.2)

The above Equations will be used to evaluate the corresponding coefficients. The
derivative-type boundary conditions do not affect Equations (7.6.7) and (7.6.34);
however, Equation (7.6.24) will be modified as follows.

After performing the integration of (7.6.24) for a control volume adjacent to the
lower boundary. the values of &, and &, in Equations (7.6.25) and (7.6.26) are

evaluated such that the southern nodes are not incorporated. It can be shown easily that
by the application of the Neuman boundary condition one can write
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®p =3 L1-;- AE -q)w + 2[ AE anj‘d)p ..... (7.1.3)

1. anaE] 1[. anel

D, = — —_]]- =12
«=3|* 2 an-q’p‘*.,‘:l o (1.7.4)

For an orthogonal system, that is, ?—i:o. and on a no-flow boundary, Equation

(7.7.3) simplifies to @, =.;_(¢w +®p). It should be noted that Equations (7.7.3) and

(7.7.4) are not valid if the aspect ratio of the boundary control volumes %i— is above two

and the non-orthogonality is more than 45 degrees. However, such distorted control
volumes will not be considered, because in such cases there will large errors involved in
the estimation of the fluxes. As a general rule calculations are not recommended on
highly non-orthogonal coordinates.

7.8. Calculation of the Flow Rate and Flow-Paths

The solution of the two diffusion-convection equations of (7.4.15) and (7.4.22)
results in a 2-D temperature and potential distribution in the formation. These profiles can
be analyzed to study the process. In a thermal recovery project, however, the important
parameter is the rate of oil production. The low compressibility of the oil, and its high
viscosity. does not allow appreciable compression or flow in the cold region. Hence, the
interface location is used to calculate the production rate by assuming that the displaced
oil is produced.

In order to obtain a qualitative feel for the flow patterns ahead of the interface, a
stream function ¥ can be defined which is related to the potential gradient by

N _ Uy I 7.8.1
L= e (7.8.1)

Bear [1972] pointed out that in an unstecady-state process: “we can speak of
instantaneous pictures of streamlines as the picture varies continuously.” He used the
term “‘path-lines” as the corresponding term for unsteady-state processes. Here, the time-
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dependency of the flow field is ignored, and Equation (7.8.1) is used to obtain a
qualitative measure of the stream-lines ahead of the interface.

7.9. Anisotropic Effects

It is well known that the mathematical formulation of fluid flow through an
anisotropic formation involves cross-diffusion terms. Should one be interested in
modelling the SAGD process in such a formation, the corresponding cross-diffusion
terms can be added to the existing ones in Equations (7.4.15) and (7.4.22). It should be
noted that in the current formulation the coordinate lines change direction in time; hence,
the contribution of the cross-diffusion terms due to the anisotropy changes with time.



8. RESULTS AND DISCUSSION - NUMERICAL MODEL

Development of a 2-D unsteady-state numerical model for the linear SAGD
process was detailed in Chapter 7. The transient conservation equations of mass,
momentum and energy for the oil phase were coupled ahead of a moving interface. An
additional equation was derived for the first time that explicitly revealed the location of
the steam-oil interface with time. The solution of the final system of nonlinear differential
equations was then discussed. In this chapter, the numerical model or its components will
be validated against the available literature. Analytical solutions will be used for
comparison. Then the numerical model will be used to study the behaviour of the linear
SAGD process. Before doing so the features of the 2-D SAGD model will be reviewed
and the choices in the development of the model will be discussed.

8.1 Features of the Numerical SAGD Model

The development of thermal simulators for heavy oil recovery processes is not a
recent event. Almost without any exception however, a fixed grid approach was chosen,
and a stationary computational grid was superimposed on the physical domain. The
nonlinear equations of transport were then solved for the whole domain. Different
strategies were later suggested to increase the accuracy of the solution where field
variables varied most rapidly [for a review sec Aziz 1993]. The fine-gridding techniques
were mostly developed for fixed locations in the reservoir, e.g., around the wellbore. A
society of petroleum engineers comparative solution project on gridding techniques
[Quandalla 1993] studied the fine-gridding techniques implemented by five major
institution on petroleum reservoir simulation to study an oil recovery project. In all the
cases static fine gridding techniques were used. Initial attempts have been made to use
dynamic fine-gridding techniques using Cartesian grids [Biterge and Ertekin 1992], for
such attempts however, questions of accuracy and computer efficiency have yet 1o be
resolved [Aziz 1993].

Most of the EOR methods are designed based on the development of an oil bank
ahead of a displacing phase with sharp interfaces. In such cases, and in many other
examples of multiphase flow through porous media, sharp interfaces occur; however,
capillary forces tend to smear them out. It is believed that it is due to the ctfect of these
forces, and to heterogeneity effects under field conditions, that researchers have chosen a
stationary grid approach, and no additional equation for following the location of the
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interface has been used. In contrast 1o the comprehensive reservoir simulators which use
an Eulerian approach, numerous simpler models have been developed that emphasize the
modelling of a front. Buckley and Leverett [1942] found that the problem of two-phase
flow in porous media under pressure forces can be explained by a first order hyperbolic
equation. This study suggested that the process of two phase flow exhibits a frontal
behaviour if capillary forces are neglected. Bentsen [1978] studied the conditions under
which capillary forces may be neglected, and showed that if capillary forces are included
a second order parabolic equation is obtained. He showed that a frontal behaviour will be
observed, if the capillary term is small. The Buckley-Leverett method was later extended
to model three phase flow in porous media including temperature variations [Wingard
and Orr 1994].

The Steam-Assisted Gravity Drainage process is one of those processes that might
permit a sharp interface assumption. This is the case because firstly, the SAGD process is
normally implemented in high permeability reservoirs where capillary forces are small,
and secondly there are minimal pressure forces across the steam-oil interface to drive the
steam condensate ahead of the interface and extend the two-phase region. Based on the
above arguments, a transformed gridding method was chosen to take advantage of the
special properties of this technique and study the SAGD process. To the best of the
author’s knowledge this is the first numerical model for predicting the behaviour of a
thermal recovery project by satisfying thc transient conservation laws ahead of an
explicitly defined steam-oil interface. Steady-state models were pre\"iously reviewed
[Buter at al. 1981, Palmgren er al. 1989, 1990].

In order 10 solve accurately the conservation laws ahead of the interface a simple
algebraic transformation was used to immobilize the interface. An algebraic
transformation was preferred over a numerically generated coordinate system, because
solution of the partial differential equations to perform the latter transformation might
become computationally too expensive to be performed at each time step. A recent article
by Sharp and Anderson [1993] used the numerical approach to impose a nearly
orthogonal computational grid over an irregularly shaped reservoir. In such cases where

the computational domain needs to be generated only once, the numerical approach is
generally preferred.

A simple transformation was chosen to avoid many difficulties that might occur
with the application of more complicated transformation functions. Hindman [1982]
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showed that for some complicated transformations the solutions became unstable, unless
specific conditions were satisfied. By using a simple transtormation a single cquation in
the transformed domain was obtained if cither the chain rule or the strong conservation
law forms of Hindman [1982] were applied. Additionally the Jacobian of the
transformation is independent of time, and the geometric conservation law (GCL) is
naturally satisfied [Thomas and Lombard 1979]. Demirdzic and Peric [1988] showed that
if the transformed grids move along one coordinate line only, the GCL is satisfied
always. Using the present transformation, the control volumes in the transformed domain
do not change in shape, but travel along one of the coordinate lines only. Most
importantly, the application of the transformation enables one to locate the interface
position so that fine-gridding is possible in the vicinity of the interface where the
temperature gradients are the highest, and high accuracy is required for estimation of
potential gradient to model accurately the interface behaviour (see Equation 7.4.29). In
order to keep the computational time o a m’nimum, the grid spacing is increased away
from the interface where less accuracy is required.

A finite volume technique rather than a finite element one was selected, due 1o
personal preference and to the lack of popularity of the latter in the petroleum literature.
A discretization based on the finite volume approximation ensured global conservation
and lack of error on the boundaries of the domain, as compared to a traditional finite
difference approximation [Thomas and Lombard 1979]. The boundary nodes were
selected on the boundaries where Drichlet conditions were specified. On the derivative
type boundaries, however, the faces of the boundary control volumes formed the
boundaries of the domain. These configurations were chosen so that both of the boundary
conditions could be satisfied exactly on application of the control volume approach.

It was pointed out previously that the time scales of the fluid and heat flow
processes differ by about 6 orders of magnitude. In order to avoid instabilities the
simultaneous node movement technique was preferred over the periodic and alternate
node movement methods. For the same reason, the system of linear equations obtained
from discretization of the conservation equations are solved directly considering all the
field values implicitly. A sequential method of solution was chosen to solve the three
equations and an “‘outer iteration” was used to achieve convergence. Other methods such
as simultaneous solution of the three nonlinear equations and a Newton-Raphson
technique, which are computationally more intensive, were not found necessary.
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8.2. Validation of the 2-D Numerical SAGD Model

In this section, the accuracy and validity of the numerical model developed in
Chapter 7 will be examined. Simple tests will be performed first, and the complexity of
the test problems will be increased step by step.

8.2.1. 1-D Heat Conduction Ahead of a Constant Velocity Moving interface
in a Semi-Infinite Medium

The energy conservation equation on the transformed domain was formulated as
Equation (7.4.15). In a one-dimensional domain Equation (7.4.15) simplifies to the
differential equation of heat conduction ahead of a moving interface, Equation (8.2.1.1)

99 £ |
ac(ag N "f") = e 8.2.1.1)

The analytical solution of Equation (8.2.1.1) for a constant frontal velocity and
initial and boundary conditions expressed as Equation (7.4.17), (7.4.20) and (7.4.21) can
be written as [Carslaw and Jaeger 1959]

6 = ‘-[erfc(é—ﬁf_."—) e‘Nf'gxerfc(g—:z—iv—[f_"—T-)] ..... (8.2.1.2)

Figure 8.1 shows the accuracy of the numerical solution as compared with the
analytical solution, obtained from Equation (8.2.1.2). To examine the incorporation of the
boundary condition a 2-D test was performed on an orthogonal grid with Equations
(7.4.15) and (7.4.17) 10 (7.4.21). The top and bottom boundary conditions of Equations
(7.4.18) and (7.4.19) were replaced by insulated conditions such that a 1-D case is
represented. A Peclet No. of 1 was chosen. In a semi-infinite medium any arbitrary length
can be chosen to introduce the dimensionless quantities. However, if the height of
formation is chosen as before a dimensionless time of one in Figure 8.1 corresponds to
about 12 years for a 20 m thick formation.
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Figure 8.1 indicates that The error is about 0.01% in the vicinity of the interface,
and it increases to about 1% at a dimensionless distance of about i, and then rapidly
decreases farther from the interface. In the above example the grid size incrcased by
multiples of 1.5, starting from an initial value of (L005. Twenty grid blocks were selected
and a time step equal to 0.005 was used. The fact that the error is increasing farther from
the interface indicates that the rate by which the grid blocks sizes are increasing is greater
than the accuracy requirement of the equation. This is especially true at earlicr time when
the gradients are larger. It was not attempted to improve upon this as the same method is
used in the SAGD numerical model, and the accuracy adjacent to the interface is high.
For modelling a semi-infinite case a finite medium was considered; however, it was
chosen large enough such that the effect of the far boundary on the solution is negligible.

8.2.2. 2-D heat Conduction in a Square
After examining the accuracy of the numerical model for a 1-D problem, a similar

study for a 2-D geometry is performed. Again a problem with an analytical solution is
chosen.
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Consider a square initially at zero temperature, which is exposed to a boundary
condition in the form of a step function from all four sides. Considering an element of
symraetry, the problem can be formulated using dimensioniess variables as Equations
(8.2.2.1) 10(8.2.2.6),

e
6=0 0<s&<1 0<n<l1 =0 ..... (8.2.2.2)
=1 E=0 0<n<l1 >0 .....(8.2.2.3)
%:0 E-1 0<n<=l >0 ..... (8.2.2.4)
=1 0<éx<l n=0 >0 ..... (8.2.2.5)
-‘-92=0 0<é<i n=1 >0 ..... (8.2.2.6)
an

The analytical solution for the above problem can be found by separation of
variables, or by multiplying two 1-D solutions simiiar to that found in Appendix A.

Q2n—-r 5) sin((Zm— D

. oo oo Sin n 2 2

i6 o ( 2 2 ) (2:1-—1) (2»1—1) -
0=1- - 2

7 2.2 2n-1 2m—1 exp 5 ) "\ i

m=ln=1

..... 8.2.2.7)

The above problem was solved using a numerical code similar 1o what is used for
solving the conservation laws in the 2-D numerical SAGD model. Figure 8.2 shows the
ciror of the numericai model at £=0.5 and n=0.5.

A base case was run using 10 grid blocks in each direction and a dimensionless
time step of 0.00S was chosen. Figure 8.2 indicates thai a maximum error of about 2%
occurs at carly times, which then decreases as the sysiem approaches the steady-state
conditions. A limited sensitivity study indicated that the error could be significanily
reduced using smaller time steps. Increasing the number of grid blocks did not improve
the accuracy. suggesting that the time truncation error was dominant. Nevertheless,
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Figure 8.2 indicates very good accuracy after early times for all the cases studied. In all of
the calculations a constant block size was chosen.
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Figure 8.2 Error estimation at x=0.5,
=0.5 (2-D conduction)

8.2.3. 2-D Heat Conduction in a Parallelepiped

Some of the articles discussing the incorporation of the cross-diffusion terms that
are the result of non-orthogonality of a computational coordinate system were reviewed
in Chapter 2. In this section it is intended 10 examine the accuracy of the numerical code
in predicting diffusive flow using nen-orthogona! grids.

Figure 8.2 shows a parallelepiped cut into a rectangle. Sclution of the hzat
conduction prublem in a rectangle can be obtained using an analytical solution similar to
that of Section 8.2.2. All four boundaries of the rectangle are kept at ¢ = 1. The analytical
solution is used to obtain the temperature on AB and CD in Figure 8.3. This will serve as
the time-dependent boundary condition for the heat conduction problem in the
parallelepiped ABCD. The solutions as obtained from thie numerical code on EF is
compar:d with the analytical values obtained at the same location,
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Figure 8.4 shows the error of the calculations using 20 grid blocks aiong the
horizontal axis and 10 along the vertical one. A dimensionless time step of 0.005 was
chosen for the calculations in Figure 8.4.

’&T 1.50E-02
2
g 1.00E-02

time=0.1
g 5.00E-03 '
: [ ————— time=0.3
% 0.00E+00 = F — —
.g T —F=F=xr / |-------- time=0.5
S -500E-03
@
‘g \/ — e - —— time=1.0
S .1.00E-02
]
w .1.50E-02

o 0.4 0.8 1.2 1.6 2
Dimensionless Height
Figu:e 8.4 Error estimation on EF of
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Figure 8.4 indicates a maximum error of about 1% of the boundary temperature at
early times. Figure 8.5 shows the same comparison increasing the number of grid blocks
by a factor of two. It seems that the error at early times has decreased by a tactor of two.
In other words reducing the size of the grid blocks by half reduced the error by half when
the gradients are steeper. However, the late-time error has not changed significantly. This
might suggest that the dominant error is that related to time truncation error. To examine
this the time step size was decreased by a factor of five.
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Figure 8.5 Error estimation on EF of
Figure 8.3 (40 x 20, dt=0.005)

Figure 8.6 shows the error for a dimensionless time step of .(4)1. A close look at
the results indicated that the average error decreased by a factor of 3, 8, 4, and 4, for
dimensionless time equal to 0.1, 0.3, 0.5, and 1.0, respectively. In other words decreasing
the time step size by a factor of five decreased the error by the same order. This is in

agreement with the time truncation error in the present formulation which is of the order
of one.
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8.2.4 Fluid Flow Ahead of a Moving Boundary

In Sections 8.2.1 to 8.2.3 solutions of the conservation laws were tested on
different geometries. In all of the cases examined the flow occurred on a domain wit
stationary boundaries, and the equations were linear. In this section an analytical solutioi
is developed for a nonlinear 1-D moving boundary problem in a semi-infinite domain.
The accuracy of the numerical model will then be studied using the analytical results.

8.2.4.1 An Analytical Solution for Gas Injection in a Semi-Infinite Medium

Consider a semi-infinite linear porous medium saturated with oil. An inviscid gas
is injected at a constant pressure into the porous medium which drives the oil down
stream. A sharp interface is considered between the oil and gas regions. The pressure at
the front is equal to the injection pressure, since the viscosity of the gas is neglected. The
pressure distribution in the oil phase can be expressed by a diffusivity equation similar to
Equation (7.2.11)

2 (P

3(3)=%¢% X2 3(7) .. (82.4.1.1)

162



The initial and boundary conditions of the problem can be expressed as

P=P : x20 =0 ...(8.24.1.2)
P=pPp x=i(r) >0 ...(8.24.1.3)
P="Py X — oo (>0 ...(8.24.14)

where x = i(r) is the gas-oil interface location, and Pr is the gas pressure at the front
which is equal to the injection pressure. The statement of constant pressure at the

interface, Equation (8.2.4.1.3), is used in order to obtain an equation for the interface
location,

—DT=§—+ l}_VP:() x:_i‘([) PR (8.2.4-.1.5)

where U the interface velocity is related to Darcy's law, that is. potential gradient by
Equation (8.2.4.1.6)

= 1 &
U=- —VpP ... (8.2.4.1.6)
9AS, Ho

By substituting Equation (8.2.4.1.6) into Equation (8.2.4.1.5) one can obtain

»__k (95)2
ox

= ...(8.24.1.7
o QULAS, (8.2 )

By differentiating Equation (8.2.4.1.3) with respect 10 time one can obtain

P _ap
o

% _ s
S+ 20 x= (1) ... (8.2.4.1.8)

Substituting from Equation (8.2.4.1.8) into Equation (8.2.4.1.7) and noting that
%}5 # 0 one obtains

E___k_op

_ ...(8.24.19)
o ou,AS, ox
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Equation (8.2.4.1.9) is the one-dimensional version of the interface Equation
(7.3.8), and its initial condition can be expressed as

x(1)=0 =0 ...(8.2.4.1.10)

Equations (8.2.4.1.1) to (8.2.4.1.4) with the interface Equation (8.2.4.1.9) and its
initial condition (8.2.4.1.10) constitute the 1-D problem of interest. To solve the above
problem the similarity solution method in diffusion problems is used. Before doing so,
the following dimensionless variables and parameters are defined.

_P-F ...(8.2.4.1.11)
Pr— Pg
= __'E'__T .. .(8.2.4.1.12)
o ()
X = ,:, ...(8.2.4.1.13)
L po)
st .. .(8.2.4.1.14)

Using the above dimensionless quantities the 1-D problem can be expressed as
Equations (8.2.4.1.16) to (8.2.4.1.20)

5‘?;(%‘%): %“; X > %(r) . (8.2.4.1.15)
n=0 X20 t=0 ...(8.2.4.1.16)
n=1 X = X(7) >0 ...(8.2.4.1.17)
n=0 X~ oo >0 .(8.2.4.1.18)
%’ti - _,,%.’;. . (8.2.4.1.19)
X(1)=0 =0 ...(8.2.4.1.20)

164



A solution to Equations (8.2.4.1.15) and (8.2.4.1.18) can be expressed as

n= Aerfc(—z%) ‘ . A8.2.4.1.21)

By applying Equation (8.2.4.1.21) to Equation (8.2.4.1.17) onc can obtain

1= Aerf 5’7‘?) .. (8.2.4.1.22)

Equation (8.2.4.1.22) can be an identity only if the argument of the
complementary error function is a constant, that is,

X(z)=2AJT .. (8.2.4.1.23)

where 4 is 2 constant, and the multiplier 2 is introduced for later convenience. The initial
condition (8.2.4.1.20) is satisfied by the interface Equation (8.2.4.1.23). Solving from

Equations (8.2.4.1.22) and (8.2.4.1.23) for A and substituting in Equation (8.2.4.1.21),
one obtains

_..FT(I)— .. .(8.2.4.1.24)

By differentiating Equations (8.2.4.1.23) and (8.2.4.1.24) and substitutisng in the
interface Equation (8.2.4.1.19) one obtains

-\I—}”;— = At 1)exp(/'lz) .. (8.2.4.1.25)

The constant A can be obtained by solving Equation (8.2.4.1.25) for any specific
valuc of y., and then can be substituted in Equations (8.2.4.1.23) and (8.2.4.1.24) w0
obtain the interface lncation and pressure distributior in the oit phus svspectively.

The 1-D moving boundary problem as formulated above is analogous to the
ablation problem, where a constant temperature melting front propagates through a semi-
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infinite solid which was initially at a temperature below the melting temperature. In the
ablation problem the melt is removed immediately after formation. To the best of the
author’s knowledge this concept is used here for the first time to model a single phase
moving boundary flow problem through porous media.

Development of the above 1-D model mostly is of academic interest only. This is
because, in the above problem, oil is not produced from the porous medium, but is
compressed in the semi-finite formation. The analytical solution, however, can be used to
examine the accuracy of the numerical models developed for some moving boundary
problems. This is done in the following section.

8.2.4.2. Accuracy of the Numerical Model vs. the Analytical Solution
(1-D Moving Boundary Problem)

The 1-D moving boundary problem discussed above, i.e., Equations (8.2.4.1.15)
1o (8.2.4.1.20). describes the one-dimensional version of the problem investigated in
Chapter 7, neglecting the temperature effects. Hence, it can serve as an ideal model to

examine the nonlinear coupling of the potential distribution in the formation with the
interface velocity. Figure 8.7 shows the interface location for a typical value of y =0.00111

as obtained by the analytical and numerical models.

Figure 8.7 indicates a very close match between the two models. Using the
interface location as obtained from the numerical model, the value of A4 is back calculated
from Equation (4.2.4.1.23). The numerical results started from 4 = 56.8x107° and leveled
off very quickly at a value of A=57.0x107. The value of A using the analytical solution,
i.c., Equation (8.2.4.1.25), was 4= 56.45x 10>, which indicates less than 1% error in the
numerical results.

For the numerical calculations 40 grid points were used, which were distributed
similar to the previous semi-infinite case in Section 8.2.1, and a dimensionless time step
of 0.1 was used.

iy A compressibility of about 10-¢ vol./vol./kPa, and a differential pressure of about 103 kPa were

considered.
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8.3. Mechanistic and Case Studies

The accuracy of the 2-D SAGD numerical model w.is cxamined in Section 8.2 by
predicting the behaviour of different phenomena involved in the SAGD process. 1t was
shown that the conservation laws were accurately modelled in the 1-D and 2-D
geometries. Application of the orthogonal and non-orthogonal grids was tested. A 1-D
nonlinear problem was also studied, where the conservation law was satisticd ahead of a
moving boundary. The velocity of the moving boundary was found as a part of the
solution. Comparison with analytical solutions indicated that in all the cases studied, the
magnitude of the error was about 1% or less. Having obtained confidence in the accuracy
of the numerical model, in this section it is intended to study the SAGD process.

8.3.1. A Case Study

The experimental studies of the SAGD process [Chung and Butler 1988-a, 1988 -
b] were modelled in Section 6.2 using the 1-D SAGD modcl. Here, the same
experimental data are used in the 2-D numerical model. The production well is explicilly
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incorporated by assigning a constant potential to the boundary nodes representing the
well. Three nodes were needed to represent the well radius.

Figure 8.8 shows the production rate and Figure 8.9 presents the interface location
at one hour intervals, as obtained from the numerical model. Twenty grid blocks were
used in the vertical direction, and 40 in the horizontal one. The latter were variably
spaced 1o represent the semi-infinite medium, and also to obtain high accuracy close to
the interface. A total length of above 50,000 dimensionless units was covered by using 40
control volumes in the horizontal direction. Two features are notable from Figures 8.8
and 8.9. The small oscillations in Figure 8.8 are believed to be due to numerical effects.

350
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150 |

100

Production rate (g/hr)

50

Time (hr)
Figure 8.8. Production rate obtained from the 2-D numerical SAGD model

The production rate as predicted by the 2-D numerical model is somewhat higher
than that obtained from the 1-D semi-analytical model (see Figure 6.8)12. A study of
Figure 8.9 indicates that the steam-oil interface sepavates almost completely from the
vertical axis, regardless of the fact that the lowest node is kept at the origin. This causes a
large non-orthogenality for the boundary controi volumes which in turn reduces the
accuracy of the calculation. The large error can acceierate the separation of the interface
cven further. It was thought that if the accuracy of the calculaticn of the non-

12 The predictions of the 1-D semi-analytical model were in good agreement with those obtained

trom the experiments of Chung and Butler [1988-b].
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orthogonality coetficient, the derivative of the interface location, is increased better
results may be obtained. An exponential spline was used to fit the interface location using
the discrete data at every time step. The exponential spline was preferred over the cubic
one, because the latter can exhibit extraneous inflection points, wiggles |Rentrop 1980,
McCartin 1983). Application of the exponential spline, however, did not change the
results. An auempt was made to decrease the effect of the discretized boundary condition
on the results, by increasing the number of the grid blocks in the vertical direction. Forty
and then fifty grid blocks were used, but the same behaviour was observed as betore.

s 2 | -7
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Q /. \ \
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8 7 b
jg 1 hr Time=2|hr Time=3 h4 Time=4 hr
o 0
>
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Horizontal Distance from the Well (cm)
Figure 8.9. Interface location obtained from the 2-D numerical SAGD
model

.evere separation of the interface at the lower part of the interface creates o
very hig ... . orthogonality, resulting in low calculation accuracy. as explained before.
Figure 8.10 and 8.11 show the 2-D temperature and potential distribution ahcad of the
interface at one and three hours, respectively. It can be observed that at carly time the iso-
temperature and iso-potential lines are perpendicular to the upper and lower boundarices
indicating accurate representation of the no-flow boundaries. Figurce 8.11, however,
indicates that at a later time when the coordinate lines at the lower boundary arc highly
non-orthogonal a large error in calculation has occurred. Figures 8.10 and 8.11 show also
the streamlines. Their significance will be discussed later.
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Temperature Distributton (3 hrs)
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The sharp edges and wiggles observed in the 2-D profiles shown in the previous
and following pages are belicved v be due o interpolation used by the contouring
program used. In examining the 2-D profiles. one should note that the horizonial scale of

temperature, potential, and streamline distributions are 10, 2, and 0.5 dimensionless units,
respectively.

It was noted previously ihat in the present formulation the multiphase flow
phenomena and the capillary forces were neglected. It is interesting to note that capillary
forces play a stronger role at the lower part of the steam-oil interface where the threshold
height is approached. To alleviate the limitations obscerved in the application of the
numerical model. a transformation which easures a low degree of non-orthogonality is
suggested. This is not, however, included in the present work.

8.3.2. A Time Scale Study

The SAGD process. as formulated in Chapier 7, exhibits three different time
e . . H* .
scales. The characteristic time for heat conduction, —, can be thought of as the
. @

operatienal time of a thermal recovery process. For a typical bituminous reservoir of
Alberta with the physical properties of Tuable 8.1, a dimensionless time of one
corresponds to about 12 years. The characteristic time for heat conduction was selected as
the basis since it corresponds to a reasonable project time.

Table 8.1
Rock and Fluid properties of typical bituminous reservoir or Alberta

Permeability & 1 <101 -
Formaticn height H 20m
Porosity x Satration change @AS,, 0.35 x0.37
Density difference Ap 1000 kg/m?
Therma! diffusivity o 1 > 100 m?/s
Formation compressibility ¢ 1 <10 1/Pa

Oil viscosity at steam temperature g, 10 % 103 Pas
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The potential distribution for a low viscesity, slightly compressible fluid exhibits
a very small characteristic time. The ratio of the characieristic time of the potenual
distribution to that of heat conduction was previously defined by Equation (7.2.39),
[j:ﬂ%’—‘;xa. The value of B for the data of Table 8.1 is about 4 x10° . Another

characteristic time in the SAGD process is that of drainage of the heated oil due to gravity
forces. Its ratio to the characteristic time of heat conduction is the inverse of the Rayleigh

No., Ng, = fﬁﬂe_xl. The Rayleigh No. is about 150 for the dawa of Table 8.1, and its
WS s

inverse is of the order of 1 x 102, Hence, for the above data, the drainage of the heated oil
acts about 150 times faster than heat conduction, and the potential distribution acts about
HKX) times faster than the drainage.

The experience of Section 8.3.1. indicated that large errors are incurred if the 2-D
numerical model is used for a SAGD process in which the drainage rate acts 100 times
faster than heat conduction !3. For the purpose of some mechanistic studies a base case is
chosen where the process is governed by an inverse Rayleigh No. of 10-1, and a B of

10-6. Other information used for the base case are listed in Table 8.2

Table 8.2
Physical properties used for the mechanistic studies (base case)

Ra = —‘&L{ﬂ)— x 1 10
PAS s @ _
B= -‘D—”f"i X 1 x10°
Oil viscosity at stecam - mperature U, 10 x 103 Pas

Initial reservoir temperature 7Ty 10°C
Steam temperature 75 190 C
Dimensionless wellbore radius 0.0025

Number of control volumes used 40 %20

Porosity x Saturation change PAS,, 1

Figurc 8.12 shows the production rate and Figure 8.13 presents the interface
location at intervals of a dimensionless time equal to 0.1.

13 For the experimental data of Chung and Butler [1988-b]. N, was about 90. and B was of the

orderof 1 x 108,
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Figure 8.13 indicates that about half of a dimensionless area of one is recovered
by a dimensionless time of 0.4. Figure 8.14 shows the temperature and potential
distribution and the streamline pattern ahead of the interface at a dimensionless time of
0.3. The iso-tnmpératur‘e and iso-potential lines indicate that the boundary conditions are
modelled accurately. In Figure 8.14 isotherms are closely located at the top of the
formation. This is of course due to the large convective effect caused by the movement of
the interface. This cannot be observed in the potential solution, since the movement of the
interface is negligible with respect to the very small time scale of potential distribution in
the formation. An interesting point to be observed from Figure 8.14 is that the streamlines
are neither horizontal, nor parallel to the interface. It was reviewed previously that some
studies assumed flow parallel to the steam-oil interface [Butler ez al. 1981, Butler 1985-b,
Reis 1992-b] and some others invoked the Dupuit assumption and considered the
streamlines to be horizontal [Towson and Boberg 1967, van Lookeren 1983, Palmgren er
al. 1989, Bruining er al. 1990, Kimber er al. 199S).

A carcful study of the 2-D potential distribution close to the interface of Figure
8.10 (or Figures 8.14 and 8.15) indicates clearly that there is a component of the potential
gradient which is normal to the interface. This creates a component of oil velocity which
is normal to the interface, as the oil viscosity is finite, and in fact small at the interface.
The normal component of oil flow was neglected in the previous semi-analytical models
of the SAGD process. such as that reported by Butler [1985-b]. and those developed in
Chapter 6. It is important to notice, that most of the oil flows parallel to the interface,
however; streamlines of Figures 8.10 and 8.14 indicate that, appreciable error can occur if
the flow normal 1o the interface is neglected. Similar behaviour ¢! the streamlines can be
observed in the unsteady-state free surface gravity flow of water as illustrated in Figure
7.1.3 of Bear [1972]. For a corresponding steady-state process, however, Figure 7.1.2 of
Bear [ 1972] shows that the free boundary is a streamline.

It is worth noting that Equation (7.3.2), which relates the interface velocity to the
Darcy velocity, suggests that, application of a no-flow boundary condition along the
vertical direction. at the contact line between the formation and the cap-rock, results in a
single component of the interface velocity, that, is along the horizontal line. In other
words, the direction of the interface velocity below the cap-rock is horizontal.
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8.3.2.1. Potential Distribution

One of the assumptions often used in the modellimg of thermal recovery processes
is to neglect the compressibility of the fluids ahcad of the stcam-oil interface. In Chapter
6 the above assumption was invoked and it was assumed that the potential gradients was
due to gravity forces on an inclined surface under steady-state conditions. Here two runs
similar to the base case are performed, and the value of 8 is varied by four orders of
magnitude. Figure 8.15 shows the potential distribution in the formation for the above
two cases and the base case at a dimensionless time of (1.4, It can clearly be noted that
potential disturbances diffuse much faster if the hydraulic diffusivity of the formation is
higher, i.e., B is lower. Interestingly, however, there is no difference in production rate
for the above threc cases. A careful study of Figure 8.15 indicates that the potential
distribution is almost identical in the vicinity of the interface. The low viscosity of the oil
adjacent to the interface allows diffusion of potential disturbances to be so fast that
changing the corresponding diffusion coefticient, that is, the hydraulic diffusivity by four
orders of magnitude does not alter the final state. This can be observed clearly in Figure
8.16, where streamlines are plotied. Figure 8.16 indicates that the sircamlines disappear
rapidly away from the heated zone, and that the streamlines exhibit a very similar pattern
for the three cases studied. It should be noted that the horizontal scale of Figures 8.15 and
8.16 are different.

Using the above observation one can conclude that, for the purposce of flow rate
calcuiations adjacent to the interface the potential distribution can be assumed at steady-
state conditions. This is of course only true for a slightly compressible fluid, with very
low 0il mobility in the cold region.
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at a dimensionless time of 0.3 (Base case)
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(Evaluation of the steady-state assumption for potential distribution)
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8.3.2.2. Heat Conduction

Figures 8.15 and 8.16 indicated that the potential distribution approaches that of
steady-state conditions in the heated region. As the heat diffuses in the formation the
extent of the formation contributing to flow expands. This can be observed through a
comparison of the streamlines shown in Figure 8.14, and those in Figure 8.16, for
dimensionless imes of 0.3, and 0.4, respectively.

The expansion of the heated zone ahead of the interface is shown in Figure 8.17.
The unsteady-state behaviour of heat flow in the formation and its major ctfect in the
development of the streamlines suggests that large crrors are incurred it the heat tlow
process is considered steady-state. In fact, for the lower part of the tormation, where the
interface velocity is zero, a steady-state assumption is meaningless.,

8.3.2.3. Drainage Rate

It was #inwd pigviously that the ratio of the characteristic times of drainage of the
heated oil to tha% of keav conduction is repr worted as the inverse of the Rayleigh No.
Figure 8.18 shows the drainage rate for ine des¢ ¢ise wad for those with smaller values of
Ng.. A Rayleigh No. of (.04 corresponds to the typical fractured reservoir considered in
Table 4.1.

Figure 8.18 indicates that production rate decreases lincarly with the Rayleigh
No., when Ng, is small. One can equally say that the thermal gravity drainage rate is
proportional to the oil mobility at stcam temperature for the range of Figure 8.18. The
hydraulic diffusivity of a formation is proportional to its permeability, and formations
with different permeability exhibit different potential diffusion rates. It was previously
found however, that variation of hydraulic diffusivity over the practical range does not
affect the process. Hence, extending the conclusions of Figurce &.18 to oil mobility at
steam temperature is independent of the potential solution.
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8.3.3. Effect of Welibore Radius

Figure 8.19 shows the drainage rate of a SAGD process with physical properties
of Table 8.2. Two wellbore radii are chosen. The smaller one corresponds 10 a wellbore
radius of 2 in. in a formation with 20 m thickness. No difference in production rate can be
observed. This suggests that even the smaller wellbore radius could freely receive the
heated draining oil. It should be noted that the diameter of the production well should be
designed such that it not only receives the drained oil freely, but also does not cause large
pressure drops due to flow in the wellbore.

In Section 6.3 it was found that the radius of a vertical well affected the
production rate in a SAGD process. Application of horizontal wells facilitates the oil
production rate by avoiding strongly converging streamlines, as happens in the case of
vertical wells. The other major advantage gained by the application of horizontal wells is
related to the length of the horizontal well at the base of the stcam zone. In the case of a
vertical well, the heating area around the expanding conical stcam zone is determined

solely by drainage and production of oil. In the case of a horizontal well, the heating arca
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is directly proportional to the length of the horizontal well, should uniform injection and
production be achieved. In other words, a horizontal well acts as a line sink at the base of
a steam zonce, whereas a vertical well acts as a point sink.

2.5
2
&
pet 2
.Q
g
1.5 ® rw=0.0025
g annt®
@ A rw=0.01
1
g =
9 ‘!
(7]
5 0.5 |—B—
£ a
5 k
0
(0] 0.1 0.2 0.3 0.4
Dimensionless Time

Figure 8.19. Effect of Wellbore radius on production rate

In a single phase flow process, the potential distribution around a vertical well
corresponds to that of a line sink penetrating the formation. Their application in a SAGD
process, however, represents a point sink only. On the other hand, the total length of a
horizontal well participates in flow in both the cases of single phase flow and in thermal
projects. Hence, application of horizontal wells as producers in thermal recovery
processes based on gravity drainage offers more advantage than their application in
primary oil recovery projects.

8.3.4. Effect of Number of Vertical Elements

It was noted previously that the interface location as obtained by the 1-D SAGD
models was sensitive to the number of grid blocks used in the vertical direction. Figure
8.20 shows the interface location for the data of Table 8.2, using 40 control volumes
along the vertical direction for dimensionless times of 0.1 and 0.2. A similar sensitivity is
apparent. Possible reasons of this sensitivity were discussed betore.
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9. CONCLUSIONS AND RECOMMENDATIONS

In this work, the problem of non-isothermal gravity drainage of heavy oil in
fractured and non-fractured porous media was studied by means of analytical and
numerical techniques. The study leads to the following conclusions,

1) The nonlinear fracture-matrix heat transfer can be modelled analytically, neglecting
convective heat flow. The magnitude of the error introduced by this approximation
depends on the oil mobility at steam temperature, and was found to be of the order of 1%
for typical fractured reservoirs.

2) A time scale analysis indicated that the large effect of the convective heat flow
observed in some experimental studies was an artifact of the physical properties of the
experiments, that is, the high matrix permeability. Application of this technique revealed
that in order 10 perform scaled experimental studies of thermal gravity drainage, the
Rayleigh No. should be the same for the model and the prototype.

3) The developed analytical solutions of thermal gravity drainage from a single block
indicated that oil rate is linearly proportional to oil mobility at steam temperature. The
secondary parameters are block size and thermal diffusivity. Oil viscosity at average
temperature can be used in the thermal gravity drainage calculations with minor error.

4) The Heat Integral Method (HIM) can be used effectively to obtain simple solutions for
thermal recovery processes dominated by diffusion phenomena. The developed models
included an analytical solution for thermal gravity drainage from a single block, a closed-
furm solution for the steam-drag process, and semi-analytical models for linear and radial
Steam-Assisted Gravity Drainage (SAGD). It was found that

a) Semi-analytical models of the SAGD process can be used to match the
experimental data in the literature.

b) Production rate varies linearly with the first power of the Rayleigh No. when
the latter is small, and with the half power of the Rayleigh No. when it is large.

5) Dynamic gridding techniques can be used to calculate more accurately flow processes
in the SAGD process. The study indicated that the potential distribution can be
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considered steady-state; however. transient effects of heat conduction should be
accounted for. It was found that streamlines in the oil zone and ahcad of the a steam
interface are neither horizontal nor parallel to the interface. The applicability of the
Dupuit assumption for such systems should be reexamined.

Recommendations

1) The experience gained through this research indicated that the adaptive gridding
techniques offer compelling attractions for accurate and efficient numerical modelling of

flow processes in porous media. It is suggested that application of such methods for
reservoir simulation be investigated further.

2) The study showed that the application of the 2-D numerical SAGD model was limited
to the cases where the interface did not completely separate from the origin. To alleviate
this limitation, application of a transformation which ensures a higher degree of
orthogonality of the coordinate system is recommended.

3) Development of a similar numerical model as that in this study, however in terms of a
stream function rather than a potential function is recommended. This can be used to
examine the Dupuit assumption and the possibility of 1-D modelling of the oil flow ahead
of the steam interface.
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APPENDIX A

A.1. Temperature Distribution in a Siab Using HIM

It was shown in the main text that matrix heating in a typical fractured reservoir

can be explained by conduction. Equations (A.1.1) to (A.1.4) describe 1-D heating of a
slab:

g;f=i:_£ 0<E<1 20 ...... (A.L.1)
=0 0<é&<1 =0 ...... (A.1.2)
6=1 E=0 >0 ...... (A.1.3)
a0

8_«5-0 E=1 >0 ...... (A.1.4)

where the dimensionless variables are defined in the main ext (see Equation (4.2.1.1) to
(4.2.1.3). '

An analytical solution for the above problem can be obtaincd by using the method
of separation of variables:

- Si“((211—1)71' é) ,
4 2n—-1Y\
9=1-;— Zn‘-z-l cxr{—(—n,;—) ﬂ'T} ...... (A.1.5)

2
n=1

Analytical coupling of the temperature distribution Equation (A.1.5) with Darcy’s
law and an EOS is not possible. Hence, the Heat Integral Method will be used to obtain a
good approximation for the above solution that permits analytical solutions. In order to
approximate the exact equation a third order polynomial is considered in terms of
dimensionless distance from the boundary.

9=a(t)+b(rE+c(T)E> +ul(r)®> .. (A.1.6)
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For an unsteady-state problem, the coefficients a, b, ¢ and d are functions of
dimensionless time, and can be obtained using the actual boundary condition of the
problem, Equation (A.1.3), and the auxiliary boundary condition (A.1.7) to (A.1.9)

8=0 g=5 .. (A1)
%‘Z-=o S (A.1.8)
%;:g-=0 5:6 ...... (Alg)

The auxiliary boundary conditions state that there is no effect of heat flow beyond
the penetration depth. Equation (A.1.9) is referred to as a smoothing condition because it
tends to make the temperature profile go smoothly in the initial temperature. The
smoothing condition has been used before [Goodman 1959], where a third order
polynomial was chosen.

In HIM different auxiliary boundary conditions can be chosen. Goodman [1961]
states that “In selecting a derived constraint at one end of the interval in order to
determine an additional constant in the profile, the accuracy will be improved only if
‘preference is given to one which involves the lower order derivative. If the highest order
derivative involved in both possibilities is the same, then the choice is arbitrary.” For a
problem of constant temperature at the boundary, however. Goodman [1961] explains
that it is impossible to follow the above rule.

Using Equations (A.1.3) and (A.1.7) to (A.1.9) one can obtain the temperature
distribution as:

(, _ %)3 ... (A.1.10)

The integrated form of heat conduction equation over the heat penetration depth
can be writicn as

6| a6 _d s
'afL—ﬁgL'EIowg ..... (A.1L.11)
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Upon substitution of the temperature profile (A.1.10) into Equation (A.1.11) and
by using the auxiliary boundary conditions, an ordinary differential equation is obtained
for the heat penetration depth

dé(r) _ 12
ar oo e (A.1.12)

Equation (A.1.12) along with the initial condition (A.1.13) can be solved to obtain
the heat penetration depth as Equation (A.1.14)

6=0 =0 ... (A.1.13)
=24 (A.1.14)
and the temperature distribution Equation (A.1.10) can be written as
(x - )3 sk L (A.1.15)
2ar 24

Equation (A.1.15) is the unsteady-state temperature distribution for the slab
before the heat penetration depth equals half of the block thickness. However, Equation

(A.1.15) is not valid after t= -2-12, when temperature at the center rises. This is because

Equations (A.1.7) and (A.1.9) can not be used any more. In fact there is no meaning for
penetration depth afterwards. As it was indicated in the text two temperature profiles have
to be considered to obtain an accurate solution.

6; = a(T) + (D + ()& 0<éc< 72— .....(A.1.16)

87 = e(T) + f(T)E + g(T)E? <E<l| T2— ..... (A.1.17)

Four of the coefficients can be found using appropriate boundary conditions
(A.1.18) 10 (A.1.21),

9]=1 €=0 ..... (A.l.lg)
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96, _ -
E=0 E=1 ... (A.1.19)
6, =6, g:% ..... (A.1.20)
30, _ 36, _1

== E=5 (A.1.21)

Equations (A.1.16) and (A.1.17) can be simplified using the above boundary

conditions,
6, =1+b()E+ c(r)E? 0<éx< % T2 -2—2— ..... (A.1.22)
92=1+b(r)(——;—+2§—§2)+c(t)(——;-+2§—§2) %5551 12% ..... (A.1.23)

Now, Equations (A.1.22) and (A.1.23) are forced to satisfy the integrated form of
the heat equation over their corresponding half intervals. Hence,

1
| 96 _d 3
|1 "3, dr (62 (A.1.24)

00+ _iq; =ij
E) ST ()

RA

e.de (A.1.25)

FIr=—yr’

3| —

After performing the required algebra, two ODEs for b(r) and «(r) are obtained.

_ldb(t) _l_dc(r) .
8 dr 24 .dr e (A.1.26)

o)

_l_db(r)_ S de(7)
3 dr 2 dr ot (A.1.27)

DY+ (D)=~

Simultaneous solution of Equations (A.1.26) and (A.1.27) yields the relation of

b(r) and () with dimensionless time,
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b(D)

—-0.585794, exp(m 1) - 34182 expinaty L. (A.1.28)

(1)

Ayexp(m )+ Ay explnaty (A.1.29)

where m; = -31.689
my =—-2.5967

There are two more conditions that should be used to find the coetficients 4, and
A>. These conditions correspond to continuity of temperature and heat flux, when the

second set of temperature profiles (A.1.22) and (A.1.23) are replaced for the first
Equation (A.1.15),

6, =0 E=1 L. (A.1.30)
36, 96,

—— T em—— = e aase . o3
FT £=0 (A.1.31)

Using equations (A.1.30), (A.1.31), which are valid at 7= ;% the cocflicients A,

<

and A, are obtained

A] = 7.32903
Ay = 0.60492

Figure 4.6 compares the exact solution, Equation (A.1.5) with the approximate
ones obtained by using HIM, that is, Equations (A.1.15), (A.1.22) and (A.1.23).

A.2. Analytical Solutions for Thermal Gravity Drainage in a Slab

To obtain the gravity driven oil flow rate from a single block Darcy’s law, which
is written for an element of thickness dx of constant temperature as Equation (A.2.1), is
combined with EOS (A.2.2):

k

dg = RG] Apg(2Ldx)
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where a piston-like displacement was assumed over the element, and capillary pressure
was neglected.

Vo _ | T-1g "
v, [7;"7}1) .................. (A.2.2)

In order to obtain non-isothermal gravity drainage the above equations are
combined,

= ..!.ig_ j.L 9'”dx
L Uy 70

{J

where it has been assumed Ap = p,. The variable ¢ is the production rate per unit area of
the block.

In order to perform analytically the above integration and to obtain a closed-form
solution fur non-isothermal gravity drainage, the approximate temperature distributions in
polynomial form that were found in Section A.1 are used. Hence,

J2at 1
—_ K —
gp(T) el TS5y .- (A.24)

In Equation (A.2.4) g, is normalized with respect to the maximum drainage rate
at steam temperature:

=92, (A.2.5)
where,
g =3eL” . (A.2.6)
v(’s

Thus, ¢p(r)=1 corresponds to isothermal gravity drainage at steam temperature.
Equations (A.2.5) and (A.2.6) indicate that non-isothermal gravity drainage from a single
block, similar to the corresponding isothermal one, is linearly proportional to the oil
viscosity at steam temperature and matrix permeability.
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Equation (A.2.4) is valid for r s;%; however, forr > ,l—_‘ Equations (A.1.26) and

(A.1.27) are used and the analytical integration is performed tor a value of m=4, as
obtained in Appendix B for the Grosmont bitumen of Alberta. The solution is plotted in
Figure 4.8, which shows that the drainage rate approaches that at steam temperature atter
t=2. For comparison the thermal gravity drainage with the exact temperature
distribution, Equation (A.1.5), is plotted also. Obviously, the latter is obtained using
numerical estimation of the infinite series and numerical integration of the final flow
integral. Also, the solution from a free equation of state, Equation (B.3) from Appendix
B, is shown. Similar to the solutions for the cylindrical block, the close similarity of the
solutions indicates that the approximations involved in using the temperature distribution
from HIM and also in evaluating the exponent m in Appendix B arc all justified.

A.3. Average Temperature Assumption

In the previous section the temperature distribution was analytically incorporated
in the integral of the flow rate from a single block. Here, it is intended 10 examine the
average temperature assumption as performed for the cylindrical block. Under the
average temperature assumption thermal gravity drainage from a single block can be
evaluated as

kg = Vg A3.1
o) s o @) e (A.3.1)

q=

or,

v
7 =——=U85 e A.3.2
9D = G, D) (A-3.2)

where the bar indicates the production rate at the average temperature.

As mentioned in the text, Equation (A.3.2) is valid for both the cylinder and the
slab cases. If one uses equation of state (A.2.2), Equation (A.3.2) can be written as

I =[6,@" (A.3.3)

Using temperature distributions from HIM, as found in Section A.1, one obtains
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dp(0)= (1.50)7 T (A.3.4)

N R TV BN 1
gp(t)= [l + 2 W)+ 2 c('r)] T2 54 creereeeeeeees (A.3.5)

where b(1) and c(r) are expressed as Equations (A.1.28) and (A.1.29).
The drainage rate under average temperature, Equations (A.3.4) and (A.3.5), is
compared in Figure 4.10 with the drainage rate using the exact temperature distribution,

Equation (A.1.5) and EOS (B.3). Figure 4.10 indicates that the drainage rate is under-
predicted at early time using the average temperature when the flow rate is small.
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APPENDIX B:
CALCULATION OF THE EXPONENT m FOR THE GROSMONT CRUDE

To calculate the exponent m for a particular heavy oil, Butler | 1985-a] suggested
Equation (B.1)

)7
- T V, VoR
m= DMITR T-Tx 1| e (B.1)

This equation was obtained for assumptions which do not apply to the single
block problem. However, Equation (B.1) will be used here to calculate m, and later the
error introduced in flow rate calculations will be evaluated.

The Grosmont formation contains a 7 “API bituminous heavy oil of viscosity
1.6 < 108 (mPa s) at a reservoir temperature of 11 “C [Cordell 1982]. Svreek and Mehrotra
[1988] presented a single parameter correlation for bitumen viscosity in Alberta

log[log(p, +0.7)] = by - 3.63029 log(T)

where the viscosity is in (mPa s) and the temperature is in (K). It has been reported that
the corvesponding correlation in terms of kinematic viscosity is [Buter 1991

log[llog(v, +0.7)] = b2 -3.5556log(1) ...l (B.3)

Using the single viscosity data of the Grosmont bitumen and Equation (B.3), the
exponent m is evaluated by numerically integrating Equation (B.1). A trapezoidal method
was used and the number of intervals was increased until a convergence of the order of
10-5 was obtained. At a steam temperature of 195 “C, corresponding 1o saturated steam at
an initial reservoir pressure of 1400 kPa [Cordell 1982], the exponent m was found 10 be
4.00, which is used in this study.

Recently, Butler [1994] presented another calculation method for finding m. The
latter method was developed for the 1-D steady-state SAGD process. Similar results were
obtained provided that the lower limit of integration was set close to the initial reservoir
temperature.
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