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ABSTRACT

This work poses a stochastic filtering problem in which there are discon-
tinuities in the signal evolution and in which the form of the observations is
such that solutions require historical or path-space filtering. In combination,
these elements exceed the theory from Ethier & Kurtz (1986) and Bhatt &
Karandikar (1993). Some explanation is given for terms and techniques in the
theories of weak convergence and of collections of functionals on topological
spaces, and then the application of homeomorphic methods yields a separa-
tion result. With this result, measures on the space of signal paths of the type
under consideration can be mutually distinguished. This is a step towards es-
tablishing uniqueness results required to prove convergence of approximations
to equations in a filtering theory and, ultimately, a complete and applicable

theory of approximations to the optimal filter for this class of problems.
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Chapter 1

Introduction

1.1 Motivating problem

Consider the problem of tracking a submarine. The submarine follows some
path, over time, through the ocean. Its position z can be taken as a function
of time ¢ through a function z(¢) or z; defined for all ¢ € [0,00). However,
the submarine can take any one of a number of paths, and it is not known
beforehand which path the submarine will take.

A method to handle this situation is to model the submarine by a random
process X;(w) = X(t,w). That is, for each w € Q, X;(w) is a path through
the ocean. The probabilities of the various paths are then determined by
the probability space (2, F, P) on which the random process is defined. It
is assumed that the signal process is Markov, meaning that the probabilities
of future motion are determined solely by the current position of the signal,
without needing to refer to what path the signal took to enter its current state.

For example, suppose that the submarine position in three-space at any

time is given by
It

Y L (11)

2

X
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or, if the additional elements of lateral orientation @ and velocity v are included,

I
Ye
Xt = 2t . (12)
O,

(]

Here there must be constraints on the variables in order to properly model
the physical situation, say, —100 < 2 < 0,0 < # < 27, and 0 < v < 10.
That is, the submarine stays in the ocean between a depth of 100 units and
the water surface, its orientation is given in radians, and it moves between a
speed of 0 and 10 units of distance per unit time.

This says nothing so far about how the submarine moves. Since the path
that it takes is to be random, there must be a stochastic definition of its
progress in time. The submarine motion can be modeled as an Itd stochastic

differential equation (SDE) as follows:

dxy = v, cos(0,)dt + dW
dy, = vy sin(0,)dt + dWY
dXy = | dze = (=50 — z)dt + /(0 — 2z)(z — (—100))dW7 | . (1.3)
df, = ll—OdVVto

dv, = (5 — vp)dt + /(10 = v,) (v, — 0)dWY

Here, each of W= W¥ W= W? and WV are independent Brownian motions
that drive the overall random process X. Intuitively, in a small time period
dt, each submarine coordinate will move a small deterministic amount given
by the function beside the factor dt in its equation and an additional small
random amount given by the function beside the factor dW,;. It is understood
that the values for @ are taken mod 27, and the equations for change in depth
dz, and change in velocity dv, are formed to allow each value to wander only
within the allowable range while drifting back to the central value within the
range. If the underlying Brownian motions are all almost-surely continuous
versions then, by the theory of Ité integration, the path of the submarine

defined by this SDE is almost-surely continuous.

2
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By this equation, the submarine will travel in the (z,y) plane given by its
orientation and velocity with some small diffusion, will maintain its orientation
subject to some diffusion, and will wander randomly within the possible ranges
of depths and velocities. There must also be some distribution X on S for the
initial submarine position to complete the definition of the stochastic process
X ={X,:te[0,00)}

The space S of possible states of the submarine is then a subset of R?,
that is, X, € S C R® for all ¢ € [0,00). By taking d to be the Euclidean
metric on S, (S, d) is made into a complete, separable metric space. Then the
space of all (almost-surely) possible paths of the submarine lies in the more
complicated set Cs[0,00), the space of continuous paths in the space (S, d).
Handling probability measures defined on Cg[0,00) may require significantly
more mathematical machinery than is needed for such measures on (S, d) itself.
The details about function spaces such as Cs[0, c0) are given in Section 2.2.

A practical filtering problem develops if it is assumed that there is imper-
fect information regarding the state {Xt}tzo of the submarine to be tracked.
In the language of filtering, the signal, .X, is to be tracked given only the
information from the observations YV = {Ys}szo for times s up to some time
t. The observation process Y is taken to be functionally but stochastically
determined by the state of the process X, so that a perfect reconstruction of
the state of X is not possible and instead only a distribution for the state of
X over the space S can be determined from {Y;},,.

As an example, the observation could be the z;pproximate distance from
the submarine to each of some number M of surface vessels, as given by noisy
sonar readings. (In this case, the single “observation” is used to describe the
reception of more than one reading. That is, the observation could be a vector
of read values.) In practical problems, usually the observations are taken to
be discrete in time, so that Y, = Y}, for ¢ € [tk tx41), or more often by simply
defining the observations as a sequence Y = {¥}};2, only at discrete times ¢y
for k € {1,2,...}.

So, suppose that there are M surface vessels that follow the deterministic

paths {(a,{ ,yf )} 500 1 <7 < M through time along the ocean surface. Take
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d; to be the Euclidean metric on R?, and let the M independent random
sequences ij, 1 < j < M be the sequentially independent noise in the sonar

values each given by a normal distribution A'(0, o). Then the observations are

given by
[ Y ] [ d3((Zer Yeor 26)» (21, 01,, 0)) + V! -
Y, = Y.L-Z _ d3 (e, Yerr 200)5 Fl'?ka Yz, 0)) + V2 . (1.4)
] yM || By, 24), (=8l uy!, 0)) + Vi |

The problem is then to find an estimate for the state of the signal given the

information from the observations. Precisely, the requirement is to determine
P(X, € Alo{Y;:j < k) (15)

for Borel subsets A of S and for each time t; in a practical manner that can be
implemented on a computer. Note that the SDE defining {X,},5, is nonlinear,
so the linear filtering theory of Kalman and Bucy [12] will not suffice.

For ease, define the g-algebra 7} = o {V; :j < k}. (This is the informa-
tion contained in the observations up to time t.) Then, define Cy(S) to be the
bounded, continuous functionals ¢ : S — R. (Full descriptions of collections
of functionals like C;(S) are provided in Section 1.2, following.) Take the (op-
erator, domain) pair (£, D(L)) to be the weak generator for the Markov signal
process {X;},5o- The theory of such generators will not be dealt with in this
thesis, so for novice readers its use in the following development can be taken
as the outer framework for the elaboration of the thesis, a framework which
need not itself be precisely understood.

In order to compute P(X,;, € A | FY), methods must be developed which
approximate the solution to the true filtering equations, where the approxi-
mation is in the sense of weak convergence, which is described in Section 2.1.
However, weak convergence is defined in terms of bounded continuous func-
tionals. So, rather than operating on probabilities that the signal is within a

set A, this is expressed instead as
E[ta(Xy) | FY] = P(Xy € A| FY) (1.6)

4
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and then this is approximated by
Elp(Xy) | ] (1.7)

for functionals ¢ € Cy(S), since the collection of bounded continuous func-
tionals can approximate (necessarily bounded) indicator functions 14 on the
Borel sets.

Now, filtering equations that involve the evolution of ¢(X,) for ¢ € [0, c0)
as the process {X,},5, evolves over time can only be defined if ¢ is also in
the domain of the weak generator of the signal {X;},5,. Satisfying this second
condition requires a subcollection M C Cy(S) which is rich enough to approx-
imate the functionals in Cy,(S) and which is also a subset of the domain of the
weak generator for X.

It is necessary that the collection M be at least rich enough to distinguish
probability measures from each other, in order to obtain results on the unique-
ness of solutions to various applicable filtering equations. By Ethier and Kurtz
(1986) [9] Theorem 3.4.5(a), since (S, d) is a complete, separable metric space,
as long as M C Cy(S), M separates points, and M is an algebra, then the
collection M can separate probability measures, that is, distinguish one from
another. (The precise definition of separates points is given in Definition 2.33,
algebra in Definition 3.2, and separating collection in Definition 2.7.)

In this case, it can simply be required of the signal that the domain of
its weak generator, D(L), be contained in the space of bounded continuous
functionals on S, that D(L) separate points, and that D(L) form an algebra.
These conditions turn out not to be onerous. Then, for such signals, the
collection {p : p € D(L)} separates probability measures, and the process of
defining and approximating filtering equations can proceed. (See, for example,
Zakai (1969) [19] for the continuation of the process of defining the filtering
equations.) Approximations that provably converge to the filtering equations
and can be implemented in computer software are candidate solutions to the
practical problem.

Figure 1.1 and Figure 1.2 are pictures of an example simulation of a sub-
marine tracking problem similar to the one described above. Each figure is

composed of three frames, the leftmost of which displays the actual true posi-

5
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Figure 1.1: Example filtering simulation near ¢ = 0.

Figure 1.2: Example filtering simulation at a later time.

tions in the (z,y) plane of the submarine (white circle) and the four tracking
surface vessels (coloured squares), the central of which records the observa-
tions that have been received by each tracking vessel, and the rightmost of
which displays a visualisation of the filter estimate of the (z,y) position of the
submarine, given the information from the observations up to the current time.
The estimate has more probability mass in sections which are more heavily
covered in white, while the red circle is the true location of the submarine and
is only included for reference purposes. The filter estimate is constructed from
a finite approximation method which provably converges to the optimal filter
in the sense of weak convergence. The first figure depicts the simulation at the
early stages, when few observations have been received, and the second figure
depicts a later stage in the simulation when the observations have provided
enough information that the track has become more precise. It is evident that
this is a workable solution to the tracking problem.

Consider, now, a slightly different and more difficult to analyse problem. In
this case, the submarine is controlled purposely to avoid detection. To do this,

the submarine captain takes sharp maneuvers from one set of control settings
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to another at random times. For example, the captain may suddenly set a
new course, speed, and depth through the submarine control mechanism, and
the submarine, while not perfectly responsive, will begin to drift towards these
new settings. Since it is unknown beforehand which maneuvers the captain
will take, they will also be modeled as part of the stochastic process that is to
be filtered.

Let the new stochastic process {X,}t20 reside in a new state space given

by

I
n

2t

X, = , (1.8)

where %, @;, and 7, are control settings that are constrained to lie within the
open interior of the range of each corresponding state coordinate. Then, define

the stochastic evolution by the SDE

dz; = vy cos(6;)dt + dWE
dy, = vy sin(,)dt + dW}?
dz = (2, — 2)dt + /(0 — ) (2 — (—100))dW¢ (1.9)
df, = L([(@, — 0, + ) mod 27] — m)dt + LdW?
dvy = (U — ve)dt + /(10 — v;) (v, — 0)dWY

dX;

for the first five state coordintates, and let the other three coordinates switch
as defined by a continuous state-space Markov chain with rate A in which
transitions, when they occur, are equally likely to bring the chain into any of
the other possible states. That is, at transitions, the chain will enter a new
state selected uniformly from among the three-dimensional domain (—100, 0) x

[0,27) x (0, 10) representing the new submarine depth (%), heading (), and

speed () control settings.
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This new signal resides in a new state space S C R® and, more importantly,
it now has discontinuous paths even if the underlying Brownian motions are
continuous. The reason, of course, is because of the jumps at the times at
which the control settings are switched. Paths of this new signal lie in the
function space Dg[0, 00) rather than in Cg0, 00), a space that is also described
in Section 2.2. An example problem in this class, where the signal model
switches based on a Markov chain, is described in Ballantyne, Chan, and
Kouritzin (2000) [1].

As an additional difficulty, the observations will also be modified so that
they depend on the past path of the submarine. Perhaps the sonar soundings
differ depending on what exact path the submarine took through the layers of
ocean water, or the instrumentation can pick up information from the wake
of the submarine. As a practical matter, sound waves will always take some
time to travel from the submarine to the tracking vessels, and this physical
delay alone means that reference to some amount of data on the historical
position of the signal is unavoidable. This more realistic situation could be
modeled, in a possible example, by observations of the following form. First,
define X; = (2, ¥, ;) to be the three-space position of the submarine at time
t and define T = (2, y7,0) to be the surface position of the j* tracking vessel

at time ¢. Then the observations Y} are defined by
Vi = ds(Xpe-25,70,) + ds(Xty—26, 71, ) + da(N =5, 7, ) + V{ (1.10)

for1 <j < M, k>1, and some ¢ small enough that 36 < ¢;. An example
filtering problem with observations that depend on the historical path of the
signal is described in Kouritzin et al. (2005) [14].

The goal is the same in this new situation, that is, to evaluate
P(X, € A|F)) (1.11)

for Borel sets A and for each time #;. As in the previous problem, this is
expressed as expectations of indicator functions. However, because of the new
form of the observations, it is necessary to take account of the past path of
the signal in the filtering equations. To do so, a new path-space variant of the

weak generator (Lo, D(Lio,y)) is defined for a process ¢t — X4 € Ds(0,00)

8
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that describes the entire path of the signal up to that time at each given point
in time ¢. Necessarily, X,y is Markov.

Functionals defined on path-space are of the form @ : Dg[0,00) — R, and
could be used to approximate the expectations of indicator functions as be-
fore. However, the domain of the path-space generator cannot consist solely of
bounded, continous functionals. They are, in general, bounded and measurable
instead, that is, elements of B(Dg[0,0)), as will be explained in Section 2.2
in the discussion after Proposition 2.32. Because of this, a new collection of
approximating functionals is required that are only bounded and measurable,
not bounded and continuous, and can approximate indicator functions on the
set Dg|0, c0).

A candidate approximating collection is defined as follows. Let {In},,51
where I, = {t1,...,tm} C [0,00), be a dense timepoint mesh (as given—in
Definition 3.15) and let m; be the projection function from Dg[0,00) to S at
time ¢ given by m(X) = X,. Then, define the functionals ®;, : Dg[0,00) — R
by

Or,, (X) = o1 (m, (X)) - - om(me,, (X)) (1.12)

for some functionals ¢; € D(L), where D(L) is the domain of the non-path-
space operator for the signal X. Next, define D(Ljp,) to be the linear span of
functionals of the type ®;,, and take L[ to be an appropriate set of operators
on B(Ds[0, 00)) defined on D(Ljp4). Again, a subcollection M C B(Ds[0, 00))
will be required that is rich enough to separate probability measures.

Since it is no longer the case that M C Cy(Ds|0, 00)), Theorem 3.4.5 from
[9] can no longer be used. Some new theory needs to be developed, potentially
with new requirements on the weak generator (£, D(L)) of the signal that will
ensure properties of (Ljo,y, D(Ly,4)) such that probability measures on paths

can be separated.

1.2 Notation and preliminaries

The set N will always be taken to include zero, that is, N = {0,1,2,...}. When

zero is to be excluded, the notation is N* = {1,2,...}.
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The pair (S, 7s) will be used to denote a topological space, while (E, dg)
will denote a metric space. For metric spaces, 7z is the topology generated by
(E,dg). The notation B(S) refers to the Borel o-algebra generated by 7s on

any topological space S.

Definition 1.1. Suppose that (E, dg) is a metric space. Then the m** product
metric space E™ is the collection {(z1,...,2n) :2; € Efori=1,...,m}. The
metric on this collection is
m
A1, Tm), Wty Ym)) = D dip(mi, 72). (1.13)

i=1
It is possible to put a topology on a space which is constructed as the arbi-
trary product of another topological space, and this underlying space need not
even be a metric space. This canonical topology, called the product topology,

will be assumed in product spaces (especially R*) unless otherwise noted.

Definition 1.2. If (S, 7s) is a topological space and J is some index set, the
product topology on S”7, denoted Tgv, is defined to be the topology generated
by the basis

Bes ={{z €5 :3;,€U;,1<i<m}:meN, ji,....jm€J}. (L14)

This definition is compatible with the definition of product metric spaces
in that the product metric defined in equation (1.13) generates the product
topology on (E,dg)™. In addition, even for a countably infinite product, if

the underlying space E is a metric space then so is the product space E”.

Proposition 1.3. Suppose S’ is a product space on the topological space

(S,7s). Then the net v — z in S’ if and only if xa; — z; in S for all

j€EJ.

Proof: Suppose 2, — 2 in §/. Then for any j € J and any neighbourhood
Uj of z; in S, the set V = {z € S : z; € U;} is a neighbourhood of x in
the product topology, so there exists an A such that o > A = 2, € V =

Zqa,; € Uj, and thus 247 — ;.

Now suppose z,,; — z; for all j € J and let O, be a basic neighbourhood
of zin S7. Then Oy = {x € 7 : &, € Uj;;, 1 < i < m} for some m indices

10
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J1y.--Jm € J. Let A; be such that o = A; = 24,5, € Uj;, 1 <i < m. Then
there exists an A such that A > A;, 1 <i<m, so that a > A = z, € Oy,
and z, — z in S”. [ ]

For this reason, the product topology is often called the topology of point-
wise convergence.

Basic to the analysis of probabilities on topological spaces is the considera-
tion of functionals mapping these spaces into the real line. Recall the following

definitions for functions and functionals on a metric space F.

Definition 1.4. A function f : E — S is continuous with respect to the
topology 7s on S if, for each set U € Tg, f~'(U) € Tg. For a functional
f : E = R, continuity refers to the topology generated by the Euclidean
metric on R; that is, a functional f is continuous if for all U which are open
in R under the standard topology Tz, f~'(U) € Tg.

Definition 1.5. A function f : F — S is measurable with respect to the
o-algebra S on S if, for each set A € S, f~!(A) € B(E). For a functional
f :+ E — R, measurability refers to the Borel o-algebra on R; that is, a
functional f is measurable if for all A € B(R), f~!(A) € B(E).

Note that all continuous functions are (Borel-)measurable.

Definition 1.6. A function f: E — S is bounded with respect to the metric
ds on S if there exists an M > 0 for which ds(f(z), f(y)) < M Vz,y € E. For

a functional f: E — R, boundedness refers to the Euclidean metric on R.

Important classes of functionals are given specific identifications.

Definition 1.7. The collections M(E), B(E), C(E), and C,(E) denote re-
spectively the measurable, bounded and measurable, continuous, and bounded

and continuous functionals f : £ — R.

Recall also that the supremum norm |||, defined by
I/lloe = sup |/ (z)], (1.15)
TeR

11
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is a well-defined (finite) norm on B(E) and C,(E). Under this norm, B(E)
and Cy(E) are complete, that is, (B(E), |||l,) and (Cs(E), ||||s) are Banach
spaces.

Once product spaces have been formed, it is often important to examine
one individual component of an element in the product. Sometimes, a finite
number of components need to be referenced. In these cases, a notion of

projection provides access to the element or elements of the basic space.

Definition 1.8. If SY is a product space on the topological space (S, 7s), then
the projection m; : SY — S for j € J is given by m;(z) = z; for all 2 € S7.
For any finite set of indices ji,...,Jm in J, the finite-dimensional projection

Tirim o 87 = S™ is defined to be the element (zj,,...,z;,) for all 2 € S,

Projections from a product space with the product topology have extremely

nice topological properties.

Proposition 1.9. The finite-dimensional projection =, . ;. : S — 8™ s

both continuoius and measurable in the product topology.

Proof: If U is an open subset of S™,say U = {z € S": 2; € U;, 1 <i < m}
for some m € N* and Uy,...,Un € Ts, then

ml s (U)={zeS§ :a2;,€l;,1<i<m} (1.16)

jly'-njm

is a basic set in the product topology, so that 7. ;. is continuous. Since

Tjijm 1S CONtinuous, it is also measurable. [

By taking m = 1 in the above proposition, single-dimensional projections
7; are also proved to be continuous and measurable.
The next proposition introduces a mathematical object that will have a

central role in this thesis.

Proposition 1.10. Ifg; : S > R for j € J, and T' : S = R’ is defined by
D(2) = [Tye, 9i(z), then

i) T is continuous if and only if g; is continuous for each j € J.

12
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ii) T is measurable if and only if g; is measurable for each j € J.

Proof: First, both forward implications follow from the continuity or mea-
surability of the composition 7; o I'(z) = g;(z).
For the reverse implication in the continuous case, assume that all of the g;
are continuous, that is, that forall j € J, V € Tr = gj"'(V) € Ts. Then
take any U € Bgs, the standard basis for the product topology in R’. The
set U can be expressed as {a: eR: 2, €U; 1 <4 L m} for some m € N*,
Jise-sdm € Jyand Uy, ..., Uy € Tg,s0 -1 (U) = ﬁl_qj_‘.l(U,-) eTs.

i=

If each of the g; is measurable, then to show that I' is measurable, it is
enough to show that inverse images of the measurable rectangles are in

B(S), since the measurable rectangles generate B (RJ ). Let
A={zeR 2 € A, 1<i<m} (1.17)

for some m € N*, ji,...,jm € J, and 4,,..., A, € B(R) be such a mea-

surable rectangle. Then, similarly to the above argument, B € B(R) =

97 ' (B) € B(S) for each j € J, and so [7'(4) = N 95" (4;) € B(S). n
i=1

For now, note that if each of the component functions g; of T' are contin-
uous, and if the inverse of the function I' is defined and is continuous, then
' is a homeomorphism from S to ['(S), that is, a continuous mapping with a

continuous inverse.

13
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Chapter 2

Convergence and

Homeomorphic Techniques

2.1 Weak convergence

One of the core notions of modern filtering theory is the concept of an approz-
imate filter, that is, a class of filters indexed by n such that as n increases, the
approximate filter associated with n converges, in some sense, to the optimal
filter. Approximate filters are useful in situations in which the optimal filter
cannot be readily implemented in a computer algorithm. The notion of con-
vergence used, however, needs not to be so strong that no computable task
can converge. The weak convergence of probability measures is an appropriate
type of convergence for this requirement, and weak convergence therefore plays

a central role in filtering theory.

Definition 2.1. If P is a probability measure on the topological space (S, 7s)
(with Borel sets B(S)) and {P,} is a sequence of probability measures on

the same space, then P, conwverges weakly to P, written wk-limP, = P or

n—oo
P, Tk’ P,if P,f — P for all f € Cy(S). Here
o

n

Pfﬁ-/sfdpﬁfsf(az)l’(da:) (2.1)

for measures P and functionals f. It is also said that P is the weak limit of

{P.}. In the literature, weak convergence is often denoted by P, =, P.

14
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Recall that the standard notation is to supress the dependence of the Borel
sets on the topology of the space, so that B(S) will be the Borel sets generated
by the topology 75 of the topological space (S, 7s), unless otherwise indicated.

To deal readily with the probability measures, it will be helpful to select

those which are from a nice class.

Definition 2.2. A probability measure P on a topological space (S, 7s) is
regular if for every A € B(S) and every € > 0, there exist a closed set F' and
an open set G such that F C AC G and P(G - F) <¢,
or equivalently,
a probability measure P on a topological space (S, 7s) is regular if, for every
A € B(S),
P(A) =inf {P(G): G D A, G open} (2.2)

and

P(A) =sup{P(F): F C A, F closed}. (2.3)

It is good that regular probability measures are the norm, especially in

common topological spaces, as in the following result.

Proposition 2.3. If E is a metric space, then each probability measure on E

is regqular.

The proof, stated in different language, is in Billingsley (1999) [5] as The-
orem 1.1.

Recall that probability measures on a topological space (S, Ts) are defined
on the Borel sets of S, so that for measures P and @, P = @Q means that, for
all B € B(S), P(B) = Q(B). Since all of the probability measures required
for the application will be regular, the following proposition provides a useful
characterization of the equality of such measures through the use of functionals
on the space. This will be the basis for all later work to differentiate probability

measures.

Proposition 2.4. If P and Q are regular probability measures on a topological
space (S, Ts) and Qf = Pf for all f € Cy(S), then P = Q.

The proof is in Theorem 1.2 of Billingsley (1999) [5].

15
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Definition 2.5. A set A in B(S) is a P-continuily set if P(9A) = 0.

Note that 94 is closed and so it is Borel-measurable. Also, S = @, so
for all probability measures P, S is a P-continuity set. For metric spaces, the
following theorem relates the definitional characterisation of weak convergence

using functionals with characterisations using measurable sets.

Theorem 2.6 (Alexandroff’s “Portmanteau” Theorem). If P, and P
are probability measures on the metric space (E,dg), then the following are

equivalent:
i) wk-lim P, = P.
n—oo
it) Pof — Pf for all uniformly continuous f € Cy(E).

iii) limsup P,F < PF for all closed sets F.

n—=oo

i) liminf P,G > PG for all open sets G.
n—oo
v) P,A — PA for all P-continuity sets A.

This useful result is proved in Billingsley (1999) [5] as Theorem 2.1.
The vital notions of what it means to be convergence-determining and

separating are made precise in the next definition.

Definition 2.7. Let A be a subclass of B(S) that includes S and let P, @,
and {P,} all be probability measures on S. The subclass A is a separating
class if, for all P and Q,

PA=QA VAc A = P=Q, (2.4)
and A is a convergence-determining class if, for all {P,},o, and P,
P,A — PA VP-continuity sets A € A = P, 2% P (2.5)
n—oo

Also, if M is a collection of functionals on S, then M is separating if, for all

P and @,
Pf=Qf Vfe M = P=Q, (2.6)
and M is convergence-determining if, for all {P,},—, and P,
P.f = Pf YfeM =>Pn‘—:“:oP. (2.7)
16 -
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Example 2.8. By Proposition 2.3, the closed sets of a metric space are a
separating class and, by an argument on pages 17 and 18 of Billingsley (1999)
(5], the open sets of a separable metric space are a convergence-determining
class.

An easy corollary of Proposition 2.4 is that the bounded continuous func-
tionals on a metric space are a separating collection, and by the definition of

weak convergence, this collection is also convergence-determining.

The above examples are of very large, general collections of sets and func-
tionals that possess the qualities almost or entirely by definition. However,
they do suggest a relationship between the two illustrated concepts which is

stated in the following proposition.

Proposition 2.9. If every probability measure on S is regular, then any class
of sets which is convergence-determining is also separating, and any collection

of functionals which is convergence-determining is also separating.

Proof: Suppose A is convergence-determining and that PA = QA forall A €
A. Let {P,},, be the sequence for which P, = @ Vn € N. Then trivially
P,A — PA for all P-continuity sets in A, and then, since A is convergence-
determining, P, LAY By definition, for all f € Cy(S), P,f — Pf, which

n—o0

means that for all f € Cy(S), Qf = Pf. By Proposition 2.4, P = Q.

The final portion of the above proof, along with the definition of weak

convergence, proves the case for collections of functionals. [

More illuminating examples of separating and convergence-determining

classes can be found among the finite-dimensional sets.

Definition 2.10. The finite-dimensional sets for R™ are defined by
Mt H (2.8)

for finite-dimensional projections my, . k., k1,...,km € N, and Borel sets H
in B(R™).

17
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Proposition 2.11. The finite-dimensional sets on R® are a convergence-
determining class, and the projections on R® are a convergence-determining

collection.

This is Example 2.4 in Billingsley (1999) (5] for sets, and the extension to

projections is clear.

Definition 2.12. The space C[0,1] is the space of real-valued continuous
functions on the set [0,1]. The finite-dimensional sets for C[0,1] are defined
by

7rt_;,1...,tkH (2.9)

for finite-dimensional projections 7, ..., and sets H in B(]Rk).

Proposition 2.13. The finite-dimensional sets on C[0,1] are a separating
class, but are not a convergence-determining class, and the same holds for the

collection of projections.

For the proof, see Example 1.3 and Example 2.5 in Billingsley (1999) [5].
This is an example of a separating class (collection) that is not a convergence-
determining class (collection), proving that the two concepts are not equiva-
lent. The subtlety of weak convergence in function spaces is largely due to
this discrepancy. Much of the work of Chapter 3 is to resolve this difficulty.

The final theorem in this section allows useful transformations of weak
convergence from one space to another if the two are linked by a continuous

function, or at least, one that is nearly continuous.

Definition 2.14. For a measurable function £, let D; be the set of its discon-

tinuities.

Theorem 2.15 (Mapping Theorem). If P, and P are probability measures
on S, B, —w'l; P, and P(Dh) =0, then th“l i’h} Ph-t.
n—o0

n—oco
This is Theorem 2.7 in Billingsley (1999) [5].
As a consequence of the Mapping Theorem, convergence of probability
measures on a product space (with the product topology, as is conventional in
this thesis) implies the convergence of all finite-dimensional distributions on

that product space. For the space R™, the converse also holds.

18
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Proposition 2.16. If {P,} and P are probability measures on R*®, then

k ] 7 - k - . . .
P, = P if and only if Pyn[! ! = P ! .. for all finite-dimensional pro-
n-r00 Iyl 1o Lyeenslke

jections m, .1, from R® to R¥, or equivalently, if and only if the convergence
holds for all finite-dimensional projections o, of the first k +1 coordinates

of elements of R*®.

The proof is given in Example 2.6 in Billingsley (1999) [5], with the equiv-
alence a consequence of Theorem 2.8(ii) from the same source. This Theorem
2.8(ii) from [5] implies that, when the space is separable, the weak convergence
for single-dimensional distributions of a sequence is equivalent to weak conver-
gence for arbitrary finite-dimensional distributions of the sequence, and also
equivalent to weak convergence for all initial finite-dimensional distributions

of the type Pymy " ;.

2.2 Measures on function spaces

Recall from Section 2.1 that the space C[0,1] was defined to be the set of
continuous real-valued functions on [0,1]. This definition can be extended to

include functions on [0, 1] that take values in a metric space E.

Definition 2.17. For any metric space (E, dg), the space Cg[0, 1] is defined
to be the set of all continous functions on [0,1] that take values in E. This
space is metrized by the uniform metric or supremum norm
d(z,y) = sup dg(z(t),y(t)). (2.10)
tef0,1]

If {X,, t €[0,1]} is a continuous random process on the probability space
(2, F, P) that takes values in E, then X (w) is an element of Cg[0,1] and
X, =mX € E, where m, is the projection of Definition 1.8. If the element of
CEkl0, 1] describes the motion of some object of interest over the time ¢t = 0 to
t =1, then it will often be called the path of that object.

Note that the topology defined on Cg(0,1] C E©®Y is not the subspace
topology of the product topology on E®!. A new topology has specifically
been defined by the uniform metric. Since this is a new topology, topological

properties must be assessed anew.
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Proposition 2.18. If the metric space (E,dg) is separable and complete, then
the metric space Cg[0, 1] with the uniform melric is separable and complete.

This is proved in Billingsley (1999) [5] in Example 1.3 for the specific case

of E = R, and the generalization is clear.

Proposition 2.19. The projections m, : Cg[0,1] = E are continuous for each

te[0,1].

Proof: Let B(a,&,), for some a € E and €, > 0, be an open ball in the base for
the topology Tz on E, and let y € m;'(B(a,€,)), so that dg(y(t),a) < €.
Now let g2 = &1 — di(y(t),a), let O, = {z € Cg[0,1}: d(z,¥) < €2}, and
note that

T E Oy = d;.;(m‘(t),y(t)) < €9
= dp(z(t),a) < dp(z(t),y(t) + de(y(t),a) < e
= z€m (B(a,e)). (2.11)

Since O, is an open set such that y € O, C =;'(B(a,&1)), and y was

arbitrary, the set 7, ' (B(a,€1)) is open in Cg[0,1] and =, is continuous. W

Proposition 2.20. The collection of projections {m, : t € [0,1]} is separating
on Cr[0,1].

This is given in Billingsley (1999) {5] in Example 1.3 for finite-dimensional
sets, and the extension to finite-dimensional projections is clear. Note that
it is vitally important to understand that this collection of projections is not
a collection of functionals unless £ = R. To obtain functionals on Cgl0, 1]
from projections, it is necessary to compose the projections with functionals
¢o:E—-R

To handle discontinuous paths, some notion of reasonable discontinuity is
required. If the paths could take any value in, say R®! then a number of
pathogenic cases could occur. The following definition restricts the disconti-

nuities in a common way.
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Definition 2.21. A function f : R — F that is, at any point z € R, continu-
ous from the right at 2 and has a limit which exists from the left at x is called
cadlag (continu & droit, limites a gauche). If the domain of the function f is
the set {u,v], and the function satisfies the continuity and limit properties at

every = € [u,v], then the function is said to be cddldg on [u, v].

Definition 2.22. For any metric space (E, dg), the space Dg[0, 1] is defined

to be the set of all cAdlag functions on [0,1] that take values in E.

Note that no metric was defined on Dg[0, 1] in the above definition. It is
difficult to arrange for a metric on the cadlag functions that will have useful
convergence properties; the naive definition using the uniform metric will suffer

from the following circumstance.

Example 2.23. Let z(t) = Iy=1y and @,(t) = Ijep-1,y) be elements of
Dg[0,1]. Note that the lack of right continuity at the point 1 is irrelevant,
since only the space [0, 1] is at issue. For all n, there exists a point t € (1— -7';, 1)

such that
lz(t) — za(8)] = 1, (2.12)

so that z, cannot converge to z in the uniform metric.

This is unfortunate, since it seems that the functions z, are getting close
to = in some sense, in particular if the parameter ¢ is taken to be time and the
evaluation of the timing of events is understood to be imperfect, say, because
of process noise. A new metric for Dg[0,1] that fixes this problem is the

Skorohod metric.

Definition 2.24. Let A be the collection of strictly increasing, continuous
functions from [0, 1] onto [0, 1]. Then the Skorohod metric on the space Dg[0, 1]

is defined by

t—MAs
t—s

log A ‘ Vsupdg(z(t) — y(At))} . (2.13)

doy(w,y) = inf {Stirt)
S

The argument that the function so defined is a metric is outlined in Billings-
ley (1999) [5] on pages 124 to 126. The Skorohod metric defined here will al-

ways be used as the metric in the space Dg|0, 1]. Note, again, that the product
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topology has been explicitly abandoned in favour of the topology generated
by the Skorohod metric.
While the Skorohod metric looks horrible, it reduces to a nice metric on

spaces in which discontinuities are not an issue.

Proposition 2.25. The Skorohod metric applied solely to elements of Cg[0, 1]

is equivalent to the uniform metric.

This is in Billingsley (1999) [5] in the discussion on page 124.
Asin the case for Cg[0, 1], if the underlying space E has tractable properties

then they transfer over to the space Dg[0, 1].

Proposition 2.26. If the space (E,dg) is a complete separable metric space

then the Skorohod metric on Dg|0, 1] is separable and complete.
This is Theorem 12.2 in Billingsley (1999) [5].

Proposition 2.27. If (E,dg) is a separable metric space then the finite-
dimensional sets 7rt‘ll wH for H € B(]R") are separating on Dg(0,1] and the

Yooy

projections on Dg|0,1] are measurable and, if E = R, separating.

The proof is given in Theorem 12.5 in Billingsley (1999) [5].

The previously defined spaces Cg[0, 1] and Dg0, 1] only allow functions
which, if the parameter ¢ is taken to be time, exist for some finite duration
and are then done. If there is no preconceived end point for a random process,

it needs to reside in a larger domain.

Definition 2.28. For any metric space (E, dg), the space Dg[0, 00) is defined

to be the set of all cadlag functions on [0, c0) that take values in E.

This is a simple extension of the definition of Dg[0,1] to an infinite time
horizon. However, a new Skorohod metric is required on Dg[0,00). First, let
Dg{0,m] be, as one would expect, the collection of cadlag functions on [0, m]

for integers m, and define an analogous Skorohod metric as follows.

Definition 2.29. For each m € N*, let A,, be the collection of strictly in-
creasing, continuous functions from [0, m] onto [0, m], and define the Skorohod

metric on the space Dg[0, m] by

At — A '
diom)(z,y) = inf {sup log Sl Vsupdg(z(t) — y()\t))} . (2.14)
AeAm | s<t t—s ¢
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Definition 2.30. For each m € N*, define

1 if t<m-1,
gm(t)=q m~t if m~1<t<m, (2.15)
0 if t>m,

let ™ be the element of Dz[0, 00) defined by 2™(t) = gm(t)z(t) for all t > 0,
and define the Skorohod metric on Dg[0, 00) by

dooo) (%, 9) = Y 27 ™(dom) (2™, y™) A 1). (2.16)
m=1

That this is a metric is proved in Billingsley (1999) (5] on pages 166 to 168.
Nice properties from the underlying metric space F also transfer to the new

space Dg{0, co).

Proposition 2.31. If the space (E,dg) is a complele separable metric space

then the Skorohod metric on Dg[0,00) is separable and complete.
This is Theorem 16.3 in Billingsley (1999) [5].

Proposition 2.32. If (E,dg) is a separable metric space then the finite-
dimensional sets 7;,' , H for H € B(R*) are separating on Dg[0,00) and

the projections on Dg[0,00) are measurable and, if E = R, separating.

The proof is given in Theorem 16.6 in Billingsley (1999) [5].

Note that on Dg[0,1] and on Dg[0,00), the projections are only measur-
able, rather than being continuous. This is because projections at the exact
time of a jump in the process are not necessarily continuous. It is for this rea-
son that the weak generator of a cadlag historical process must be defined on

the set of bounded functionals, rather than bounded continuous functionals.

2.3 Homeomorphic methods

One of the core techniques of this thesis is to operate with a subset of one
of the basic collections of functionals, but a subset that is rich enough to
maintain some property or condition that is true for the entire collection. The
following definitions are of such useful subsets of functionals on a topological
space (S, Ts)-
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Definition 2.33. Let the collection M C M(S).

i) M separates points (SP) if for any z,y € S with z # y thereisa g € M
for which g(z) # g(y).

ii) M strongly separates points (SSP) if for every 2 € S and neighbourhood
O, of z, there is a finite collection {g,...,gx} C M such that

nf max lg(z) — g(y)| > 0. (2.17)

iii) M is pointwise convergence determining (PWCD) if for any net {z;};c; C
S and point 2 € S, whenever g(z;) — g(z) for all g € M, necessarily
T; > xin S.

The concept of SSP is introduced in Ethier and Kurtz (1986) [9], and the
concept of PWCD is introduced in Bhatt and Karandikar (1993a) (3], although
Bhatt and Karandikar label their definition of PWCD with the name SSP. This
quirk will be explained subsequently.

Note that “separation” and “convergence determining” in these definitions
have no necessary connection with the separation of probability measures and
determination of weak convergence in Definition 2.7. (A connection is possible,

but it will not be detailed in this thesis.)

Example 2.34. Take d to be the distance function of the metric space (S, d),
let gz : S — R be defined by g.(y) = d(z,y), and define the collection M by
M = {g;},cs- Then the collection M SP, SSP, and is PWCD.

Example 2.35. Let S = C([0,1]) with the usual convention that d([,g) =
If — 9ll,- Define 7z(f) = f(z) for all z € [0,1] and f € S and let M =
{mz}se0, Then, if f,g € S and [ # g there exists an = € [0,1] for which

f(z) # g(z), that is, 7x(f) # 7=(g), so that M SP.
Now let f =0, the zero function on [0, 1], and define

n if 053:511l
fH@)=q2-nz if ;<z<? (2.18)
0 if %Smgl
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Note that these functions are all in S and that || f, — f|l,, = 1 Vn. Suppose
that M were to SSP. Then for f = 0 € S given above, and a neighbourhood
taken small enough to exclude all of the f,, there would have to be a finite
collection {mz,,..., 7 } C M such that 1111351&1 max |72, (f) = 7z, (fn)] > 0. But
ifz, = 1Tti<nk z;, then there exists an N such that % < @, and so 7y (fn) =
0, 1 <1 <k, a contradiction. So M does not SSP. Also, f,(z) — 0 = f(z)
Vz € [0,1], that is, 7z(fn) = 7=(f) Yz € [0,1], but f, - f in S, so M is not
PWCD.

Recall that a topological space (S, Ts) is T if, for all z and y in S such that
x # vy, there exists a neighbourhood O, € Ts of z such that y ¢ O,. Note that
a metric space E is always T7. The following proposition states that, not only
is it possible to SSP or be PWCD without SP, but in fact SP is a consequence
of SSP and PWCD.

Proposition 2.36. Suppose S is a T\ topological space and let M C M(S).
i) If M SSP, then M SP.

it) If M is PWCD, then M SP.

Proof: If M SSP, then for any z € S and any neighbourhood O, of z, there
exist an € > 0 and a finite collection {g,...,gx} C M such that

max |o(z) — giv)l <e = y € Ox. (2.19)

So if y # z then, since S is T}, there is an O, such that y ¢ O, and then
one of the above functions g, will satisfy g,(z) # gi(y).

Now, say that M is PWCD and let 2,y € S with  # y. Let 2; = y, Vi.
Then since S is Ty, x; - z, so that by the definition of PWCD, 3¢9 € M
such that g(z;) = g(z), that is, g(y) # g(z). [ |

The following fundamental theorem unites the apparently unconnected
concepts of SSP and PWCD.

Theorem 2.37. If M C M(S), then M SSP if and only if M is PWCD.
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Proof: Suppose M SSP; it is the case that any net {z,} which does not
converge to a point x cannot satisfy the condition that g(z.) — g(z), Vg €
M, so that M must be PWCD. To see this, let z € S and let the net
{Za}taes C S be such that z, - 2. Then there exists a neighbourhood O,
of z, an € > 0, and a finite set {g1,...,gx} C M such that for any g € J,

there is an o > § satisfying z, & O,, and then

axX X - )| > . .
max lg:(za) —qu(@)| 2 € >0 (2.20)

So, not all of the functional values {g(z)},¢\, are converging, and thus SSP
implies PWCD.

The reverse implication will be proven with the contrapositive. Suppose that
M does not SSP, that is, there exist a point 2 € S and a neighbourhood O,

of z for which all finite collections {g1,...,gx} from M satisfy
o gp M = inf max |g(x) - ()| =0. (2.21)

If M is finite, then taking {gi,...,g9x} = M and choosing a sequence of

points {yn}org in S\ Oz such that max lg(z) — g(yn)| < % generates a
q€/
sequence for which g(y,) — g(z), Vg € M, but y, -» =z, so that M is

not PWCD. So, assume that M is infinite.

Define a directed set (J, X) by taking J to be the collection of finite subsets
of M and ordering by inclusion, that is, if o and a9 are both finite subsets
of M then a; < ay if oy C ay. Next, define a net {ya}neJ on S as follows:
if « € J is a subset with & elements, say & = {g1,..., gx}, then choose y,
to be an element of S\ O, such that ax lgi(z) = @i(¥a)| < 3. Naturally,

such an element exists since inf max |g(z) — g/(y)| = 0.
inf max (@) - )]

Now, for any ¢ € M and any € > 0, take 8 € J such that g € B and
B contains a finite number K > % of functions in M. Then a > 8 =
l9(z) — 9(ya)| < & < &, and thus g(ya) — g(z). However, y, -» =, since
Ya & Og, Yo € J. So g(ya) — g(z), Vg € M, but y, - z, and thus M is

not PWCD.

Whether finite or infinite, M is not PWCD, so the contrapositive is shown;

that is, PWCD implies SSP. |
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This explains the terminology of Bhatt and Karadikar in their 1993 papers.
In those papers, Bhatt and Karandikar also introduce and make use of a
homeomorphism between difficult spaces S and subsets of R*®, working out
difficulties in R*® and then passing the managed objects back into S. The

following is a version of a proof that their methods are viable.

Theorem 2.38. Suppose S is Ty and M C C(S). Then ['(z) = {g(z)},cm 18

a homeomorphism between S and ['(S) C R™ if and only if M is PWCD.

Proof: First, suppose that ™ as defined above is a homeomorphism between S
and ['(S) € RM, let {z;},; be any net and z be any point in S, and suppose
that g(z;) — g(z), Vg € M. Let O, be any neighbourhood of x. Then
['(O;) is an open neighbourhood of I'(z) in ['(S) and, by Proposition 1.10,
{9(z)}jem = {9(2)}gess = T(z) in RM, so there exists a j € I such that
iz 3= {9(®)}em € (O:z) = 1 € Oz So {wi},, converges to = in S,
and thus M is PWCD.

Next, suppose that M is PWCD and define I as above. This function I' is
continuous since each component function g € M is, and I'"! is well-defined
because M SP by Proposition 2.36. It only remains to show that I'"! is
continuous. Assume that I'(z;) — ['(2) for some net {;},., and point z
in S. Then necessarily g(z,) — g(z), Vg € M, and thus =, — 2 since M
is PWCD. So I'"! is continuous and I' is a homeomorphism between S and
['(S) c RM. [ |

Note that the above proof that M is PWCD requires only that I'"! be
continuous, and also note that if M is PWCD then I'"! is continuous regardless
of whether M C C(S) or M C B(S). So, if the condition that M C C(S) is
reduced to M C B(S), then it remains true that I' has a continuous inverse if
and only if M is PWCD.

Naturally, M C C(S) strongly separating points is also equivalent to the
above function I' being a homeomorphism because of Theorem 2.37. Because
of this, a proof of this statement is strictly unnecessary, but to complete the
circle of ideas an explicit proof will be provided. First, some lemmas will be

required which are also relevant to later results.
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Definition 2.39. For any finite subcollection {g,...,gx} = M C M C
M(S) define the (My,e)-ball about the point z, By, (,€), by

Bue.e) = {ve Ss pulat -a)l <} (2
The following lemma provides a convenient equivalent definition of SSP.

Lemma 2.40. The collection M C M(S) SSP if and only if for each x and
neighbourhood O, of x, there ezists a finite subcollection {g1,...,9x} = M} C
M such that By, (z,€) C O;.

Proof: If M SSP, then by definition, for each 2 € S and neighbourhood O,

of z there is a finite subcollection {g,...,gx} = My C M such that
i X {gi(z) — , 2.2
,,‘g“& max lo(x) — au(y)| > 0 (2.23)

or equivalently, by taking an € value equal to this infimum, there exists a

collection {g1,...,9x} = My C M and an € > 0 such that

max l9:(z) — a(y)| <e = y € O;. (2.24)

This is the statement that By, (z,€) C O;.

For the reverse implication, let z be in S, let O, be a neighbourhood of
z, and let {g1,...,9x} = M C M be the finite collection for which, by
hypothesis, By, (z,€) C O. Then for any y & O, also y ¢ Bum, (z,€), so
that max lgi(z) — gu(y)| > €. Since this is true for any y & Oy,

inf max |g/(2) — g(y)] > € >0, (2.25)

yg0, 1<I<k

so that M SSP. [ |

Definition 2.41. Define the sets By by
By = {Bum, (z,€) : M C M, M, finite,xz € S,e > 0}. (2.26)

Lemma 2.42. For any M C M(S), the sets By, form a basis for a topology
Tm on S.
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Proof: To show that By, is a basis, it is necessary to show that for any
By and B; in By, and any z € By N B,, there exists a By € By, such
that © € By C Bi N By. So, let By, (71,€1), with My, = {915+, 91, }
and By, (m2,€2), with My, = {h1,...,hx,}, be in By,. Suppose that 2 €

By, (T1,€1) N By, (x9,€2), that is, that

Jnax lgi(z1) — gi(z)] < €, and Jax [ (z2) — ()] < €9 (2.27)

Define

e = (sl - max ladw) - g:(mn) A (52 - max u(a) - m(mn) . (2.28)

1<l

1<k

=49 =t=M , (2.29)
h(l-—kl) sk H1I<I<k +k

and Mk = {fl, ey fk1+kg}- Then
TE B/\dk (.'17,6') C BMkl (mlssl) N BJ\/(k2 (:1:2,62)1 (230)

so By, is a basis. ]

For obvious reasons, the sets By will be called the basis generated by M,
and the topology 7y will be called the topology generated by M.

Lemma 2.43. If M C M(S) SSP then the topology Tyy generated by the basis
Bu is finer than the topology Ts, that is, Ts C Tu.

Proof: It suffices to show that for each x € S and neighbourhood O, of z,
there exists a B € Ty such that x € B C O,. So, taking an 2 € S and
neighbourhood Oy, there exists by Lemma 2.40 a finite collection My C M
such that Buy, (z,€) C Oy, and this set is in the basis that generates 7. B

Theorem 2.44. Let (S, Ts) be a T topological space and suppose M C M (S)
and that T : S — RM is defined by T'(z) = {9(z)},eps- Then ['(z) has a
continuous inverse I'™' : T'(S) — S if and only if M SSP. Further, T is a
homeomorphism if and only if M C C(S) and M SSP.
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Proof: First, suppose M SSP. Then by Proposition 2.36, M SP, so I'"!

exists. By Lemma 2.43, Tg C T, so ['"! is continuous.

Next, suppose ' has a continuous inverse. Take any = € S and neighbour-
hood O; of z. Since I'"! is continuous, ['(O;) is open in RM. Now, the sets
{neRM:n, € Blay,&1),1 <L <k} for gi,...,qc € M, ar,...,ar € R,
and €,...,6x > 0 form a basis in the product topology on RM, so there
exists a set G = {n e RM : p, € B(ay,&),1 <1< k} C T'(O,) such that
['(z) € G. Thus

inf max |(C(#))a; = &al > 0, (2.31)
or equivalently,
. _ -1
inf max |gi(x) - a7 (€)] > 0. (2.32)

Then, since ['"'(G) C O, means that £ ¢ G = I'"'(¢) & Oy,

Jnf max lg(z) = auly)| > 0, (2.33)

so that M SSP.

If it is already known that I'~! is continuous, then, by Proposition 1.10(i), I
is a homeomorphism if and only if each component function g is continuous,
that is, if and only if M C C(S). u

Given a collection M C M(S) that might not SSP, it is still possible to
define a topology Ty through the basis By of (My,e)-balls as defined in
equation (2.26), although it may be that (S, Ty() will be strictly coarser than

(S, Ts)-

Definition 2.45. A function p on a space E is a pseudometric if p is a metric

ezcept that p may have points z,y € E for which p(z,y) =0 but 2 # y.

Example 2.46. Let S = C([0,1]) and define m.(f) = f(z) for all z € [0, 1]
and f € S, as in Example 2.35. If 2y,..., 2% € [0,1] then

k
p(f: g) = Z |7rz1 (f) - Ty (g)l (2'34)
I=1
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is a pseudometric on S: it is clearly positive and symmetric, and the triangle
inequality holds since it holds on each of the £ dimensions. However, any two
functions that are identical at the points xy,...,z; but differ elsewhere will

have p-distance zero.

Definition 2.47. For M = {g;},o, C M(S) define the countable M-pseudo-

metric pap by

o0

pm(z,y) =D 27 (lge(2) — ge(®)l A D). (2.35)

k=0
The following proposition shows that if M is countable, then the countable
M-pseudometric generates a topology identical to the topology generated by
M.

Proposition 2.48. Suppose M = {gi}req C M(S). Then T is equal to T,,,,
the topology generated by the open balls in the countable M-pseudometric pay.

Proof: Define
By (z,e) ={y €S : pulz,y) <e}. (2.36)

Then B,,, = {B,,,(z,€) : x € S,e > 0} is a basis for the topology of open
balls generated by pr. By the definition of Bys and of B,,, and by the tri-
angle inequality, for every € B € By, there exists a By, (z,€) € By
such that By, (z,e) C B, and for every © € B € B,,, there exists a
B, (z,€) € B,,, such that B, (z,e) C B. Thus, to show that 7,,, and
Tam are equal, it suffices to show that for each z € S, finite M C M, and
g > 0, there exists a § > 0 such that B,,,(x,d) C B, (z,€), and that for
each z € S and € > 0, there exists a finite My C M and § > 0 such that
B, (x,8) C By, (,€).

So, first, let x € S, My = {gr;s--» 0k} C M, and € > 0. Let N =
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max k; + 1 and let § = 2=V (e A 1). Then
1<i<m
Yy € By, (z,0) = pmlz,y)<é

= Y 27 (lg(@)a@) A1) <27V(e A1)
k=0

> L2 o) - s AD <27 (e )

: 1<
= lrg,gv |9, (2) — gr (y)l <eAl <e

= y € B, (z,¢). (2.37)

Next, let z € S and € > 0. Let N € N be such that 27V < &, let My =

N
{90,91,---,9n}, and let § = £. Note that Y 27%6 < 26 < £ and that

k=0
k=§+l2—k =27V < £ Then y € By, (z,0) = ogi-ang lgr(z) — gr(¥)] < 9, so
that
[o¢]
om(zy) = D27 (lgk(2) — (@)l A 1)
k=0
N [e5]
= > 27 (lg(@) — a@IAD + Y (lge(z) = g A )
k=0 k=N+1
N
< Do+ Z 2~k
k=0 k=N+1
E ¢
2l = 2.
< ztz=e6 (2.38)
and so y € B, (z,€). [ ]

If, in addition, M SP, then the countable M-pseudometric contains a lot

of additional structure.

Proposition 2.49. If M = {gr}req C M(S) and M SP, then pp, is a metric

and M SSP on (S, Tym).

Proof: Suppose z # y € S. Then, since M SP, there exists a j € N such
that g;(z) # g;(v), so that

pm(@,y) =D 27 (|gr(z) — gk (@) A1) = 279 (Ig(z) — g; (W) A 1) > 0.
=0 (2.39)
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Thus, pyq is a metric. Now, for any z € S, the basis element B, € By is

defined by
B; = By, (z,€) = {y €S: max lgi(z) — gi(y)| < 5} (2.40)

for some ¢ > 0 and {g1,...,g9x} = My C M, so there trivially exists this
finite subcollection Mj C M that satisfies the requirement By, (z,€) C B,
of Lemma 2.40. [ |

Example 2.50. Let S = R* and let g, = 7, & € N. The collection 7 =

{mi}rey € M(S) generates a topology T which is identical to Tre, the product

topology on R® with the standard topology. To see this, note that for any

finite My C 7, the (M, €)-ball is open in the product topology, and that for

any open set B = {.7: ER® 1y, €Uy, 15 < m} in the product topology
and z € B, an ¢ can be chosen so that B(zy;,€) C Uy;, 1 < j < m, so that

By, (z,€) = {y €R™: 12}%§;lﬁkf (z) —m; ()] < e}

= {y € R*®: 121]%::"1 |a:kj - ykj| < e} C B. (2.41)

Further, let p, be as given in equation (2.35). Then, by Proposition 2.48,

Tz = Tp.y 50 that 7, = Tre. Since the projections separate points on R*, by

Proposition 2.49, p, is a metric. Because (R, Tz ) is complete and separable,

(R*, pz) is a complete, separable metric space.

One final useful lemma is provided here. Recall from basic topology that

a topological space is second-countable if it has a countable base.

Lemma 2.51. If S is a T\ second-countable topological space, M C C(S),
and M SSP, then there is a countable collection {gi}y C M that will also

SSP.
Proof: By the homeomorphism of Theorem 2.44, the collection By, defined in

equation (2.26) forms a basis for 75. However, since S is second-countable,
any basis contains a countable basis (see, for example, (15, exercise 4-1.5]),
so only a countable number of the elements of M are required, say {gi}peo-

| |
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Note that the countable collection {gi}re, in Lemma 2.51 can be taken
closed under (countable) multiplication or addition if the containing collection

M is closed under these operations.
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Chapter 3

Separation of Historical

Processes

3.1 Preliminary theorems

Three basic theorems are listed here that are of use in the proofs in this chapter.
The first, Tychonoff’s Theorem, allows the construction of compact spaces as

a product of compact spaces.

Theorem 3.1 (Tychonoft). Any product of compact spaces is compact.

Proof: See Theorem 12.4 of [10]. [ ]

The Stone-Weierstrass theorem allows the approximation of continuous
functions on a compact Hausdorff space K by functions from some subalgebra
of C(K). In order to understand this theorem, it is necessary first to define

the term algebra.

Definition 3.2. An algebra over R is a vector space A over R which has
a multiplication defined between its elements such that it is multiplicatively
closed and that, for any f,g,h € A, (f-g9)-h=f-(g-h), (f+g)-h=
f-h+g-hyand f-(g+h)=f-g+ f-h, and for which scalars ¢ € R satisfy
c(f-g)=1(cf)-g=f-(cg). A subalgebra of an algebra A is a subset of A

which is itself an algebra under the same addition and multiplication as A.
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The algebras this thesis is concerned with are those of functionals over
a topological space, that is, algebras within M (S), Cy(S), and such. The

following example is canonical.

Example 3.3. The collection of functions C(S) forms an algebra over R if,

for f,g € C(S), (f +9)(=) = f(z) + g(x) and (f - g)(z) = f(z)g(z) for all
x € S. This is the algebra of pointwise addition and multiplication.

Theorem 3.4 (Stone-Weierstrass). Suppose that K is a compact Haus-
dorff space and A is a subalgebra of C(K) which includes a non-zero constant

function. Then A is dense in C(K) if and only if A separales points on K.

Proof: The proofis in many textbooks, for example, see Theorem A in section
36 of Simmons (1983) [18]. ]

The next result provides an amazing and powerful method to map measures

on complete, separable metric spaces to each other.

Theorem 3.5 (Kuratowski). Let (Ey,d;) and (E,, d2) be complete, separable
metric spaces. If A| € B(E}) and ¢ : A, = E, is measurable and one-to-one,
then Ay = ¢(A,) € B(E,) and ¢~' is a measurable function from Ay onto A,.

Proof: See Theorem 3.9 and Corollary 3.3 of Chapter I of Parthasarathy
(1967) [16]. [

3.2 Main results

The two main theorems of this chapter provide sufficient conditions for collec-
tions of functionals to be convergence-determining and to be separating. They
generalize results in Ethier and Kurtz (1986) [9], specifically Theorem 3.4.5.

A number of lemmas will be required to prove the first theorem.

Lemma 3.6. If G C R* and the values of G in each component are bounded,

then G is compact.
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Proof: For each k, let R (G) be the closure of the range of values for the k™
coordinate of G, that is,

R (G) = {z1:2€G}CR (3.1)

Then Ry (G) is compact for each k, so that their product Ro(G) x R, (G) X
is compact by Tychonoff’s Theorem, Theorem 3.1. Since G is closed and
G C Ry(G) x Ri(G) x - -+, G is compact. [

Definition 3.7. If G C R*, define a G-enlarged Borel set A C R® by A =
BUDB', where B € B(G) (using the subspace topology) and B'NG = @. Also,

define the G-enlarged Borel o-algebra G to contain all G-enlarged Borel sets.

Note that, since B C G and B’ C (R* \ G), the two components B and

B’ of the decomposition of a given enlarged Borel set will be unique.

Lemma 3.8. The G-enlarged Borel o-algebra G is a o-algebra.

Proof: A verification of the axioms of a o-algebra follows.

i) If B=@ € B(G) and B’ = @ (which satisfies @NG = &), then BUB' =
geg.

ii) Let A € G, say A= BU B’ with B € B(G) and B'NG = @. Then
A4° = (BUB')® = B°n(B)°
= ((G\B)UG°)N(GU B"), where B"NG =2
(G\BYn (GUB")U(G°n (Gu B"))
= ((G\B)NG)U((G\ By nB"YU(G°NnG)U (G°N B")
(G\ B)UB" €@, since G\ B € B(G). (3.2)

iii) Let {A,} C G, say A, = B,UB! with B, € B(G) and B, NG = @. Then

o0 oo
UAn={J(B.uB)) = UB uUB,',eg (3.3)
n=1 n=1 n=1

since U Bx € B(G) and (U2, B,) NG = @. n
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Lemma 3.9. If G € B(R*®), then the G-enlarged Borel o-algebra includes the

Borel sets on R*.

Proof: Let A be any set in B(R*®). Then 4 = (ANG)U (A \ G), where
ANG € B(G) and (A\ G)NG = @. Thus, B(R*) C G. ]

Recall that the restriction fofa function f : § — T to the subset Sy C S'is
defined by the values f(z) = f(z) forallz € So. If (S, Ts) is a topological space
with Borel sets B(S), then by the argument on pages 243-244 of Billingsley
(1999) [5], whenever Sy € B(S) and (S, Ts,) is given the relative topology it
follows that B(Sy) C B(S), so that restriction can be defined for probability

measures on B(S).

Lemma 3.10. Let (S, 7s) be a topological space and let {P,},., and P be
probability measures defined on (S, B(S)). Let So € Tg, assume that P,(Sp) =
P(Sy) = 1 for all n € N, and define the topological space (So, Ts,) to have
the relative topology. If {13,,}00 and P are the restrictions of {Pu}ie, and P

to the space (So, B(S0)), then Py %‘3 P in (S, Ts) implies that B, ~% P in
n—00 n-—o0
(50173'0)'

Proof: Take Gy = G N Sy to be any open set in Sy, where G is open in S.
Then 13,,(3'0 = P,G and PGy = PG, so that

liminf P,G > PG = lim)infﬁnGo > PG,, (3.4)
n—o0 n—o0
and the result follows by the Portmanteau Theorem, Theorem 2.6. |

Theorem 3.11. Suppose (S, Ts) is a T\ separable topological space and M C
Cy(S) satisfies M SSP and M is closed under multiplication. Then, M is
convergence-determining; that is, for all P and P, which are probability mea-
sures on S,

P.g— Pg,VgeM = P, 2% P, (3.5)

n—o0

Proof: By Lemma 2.51, the collection M can be assumed without loss of

generality to be countable, say M = {gr};o,- Now, using Theorem 2.44
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define the homeomorphism ' : § — ['(S) € R® by I'(z) = (go(), 91 (x),..".)
and endow G = ['(S) with the subspace topology.

Given any probability measures P, P, on (S, B(S)), use them to define new
probability measures @ and Q,, on (G, B(G)) by @ = PT'"!and @, = P,I'"!.
Next, let G be the extended Borel o-algebra formed from G and define
probability measures § and @, on G by Q(A) = Q(B), Qu(A) = Qu(B),
where A is the extended Borel set with first component B € B(G).

Since the functions {g;} are bounded, by Lemma 3.6, the closure K = G is
compact. Let KNG ={KNA:Ae€gG}and note that B(K) C KNG C G.
Then § and O, define, by restriction, probabilities on B(K) by @(I\"ﬂ/l) =
@(A) and @n(K NnA) = @n(A) which are equal to @ and @, on B(G).
Using the facts that G € K and G € G, note that Q(G) = @(I() =
QGU(K\G))=Q(G) =1, and Q(K \ G) = 0, and similarly for @Q,.
Now, since @ = PI'™', @, = P,['"', T is continuous, and [, gidP, —
fs grdP by hypothesis, by change of variable

/ '/de@n:/ﬂ'kdanz/ Wk(lanfgkor\—ld(PnF_])
G G

K e}

=/gden—> /gde

S . s

=/gkoF’ld(PF_l)=/7rde=/7rkd@= m:dQ (3.6)
G e G JK

for each projection function 7 : R® — R. Since M is closed under mul-
tiplication, by the same argument as in equation (3.6) but using the my,
such that gx, * gk, = k., fie (, T, )dQn — Jie (T, - Tk, )dQ for each pair
of projection functions m, and m,, and similarly for higher orders of mul-
tiplication. As well, [, 1d0,=1—>1= fK 1dQ. Thus, by linearity of the
integral,

o O Tk, by @ — o Ty 4O (3.7)

for all polynomials f in j variables (from among the countably many pro-

jection functions) on R7.

Let F =, ;(K) C RI*!; then, F is compact because the projections are

continuous and by Tychonoff’s Theorem, Theorem 3.1. The polynomials are
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a subalgebra of C(F) that include the constant functions and SP, so by the
Stone-Weierstrass Theorem, Theorem 3.4, they are dense in C'(F"). Thus,
for any g € Cy(Ri*!), there exists a polynomial [ defined on F such that

sup |f(z) — g(z)| < €. If the function g is restricted to I then, because g
zeF

has @,-measure zero outside of F,

/r gdBums — /r [dOumst | <e (3.8)

sup
neN

and similarly
<e. (3.9)

/r gdOrs" ;- /r JdOn;t

Therefore, by the triangle inequality and equation (3.7),
(Qums. )9 = (@r5! )9 (3.10)
for all g € Cy(R7*!), so that

A -1 wk. A 1
Qn”o,...,j 130 QWo,...,j (3.11)

on RI*+! for each j € N. That is, the finite-dimensional distributions of
Qn converge to @, so that by Proposition 2.16, Q,, n‘_’l;z @ on R*®. Then,
since Qn(K) = Q(K) = 1, by Lemma 3.10 (with § = R® and Sy = K),
Qn LN @ when restricted to .
n—o0

Now take any uniformly continuous functional A on G. It has a uniquely
defined continuous extension A on K, and then Q,h = Q\nﬁ - QTL = Q@h on
G. Since Q = PT'Y, Q, = P,I'"}, and "' is continuous, by the Mapping
Theorem, Theorem 2.15, P, LAY -3 | |

n—oo

The above theorem and proof idea is taken from a preprint of a paper by

Douglas Blount and Michael Kouritzin.

Lemma 3.12. If M = {gx}ee C M(S) and M SP, then each g € M is
continuous on the meltric space (S, par) and on (S, Tym); specifically, M C
C(S,Tm) =C(S, o)
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Proof: First, pas is a metric and Ty = 7,,, by Proposition 2.48 and Propo-
sition 2.49. Let the e-ball B(a, €) be in the base for the standard topology on
R, and take any g, € M. Note that g;'(B(a,e)) ={y € S : |a — ge(y)| < €}.
Now let = € g;'(B(a,€)) and let § be such that 0 < 6§ < € — Ja — gi(z)].
Then, if |gr(z) — gx(y)| < 6,

la = ge(¥)] < 11 = gr(@)l+1gx(2) — ()] < la — gi(2)| +e—la — gi(z) =,
(3.12)
so that y € g;'(B(a,¢€)), and thus

By (@,6) = {y € S [gu(2) - 9:(0)| < 8} C 0" (Bla,e)).  (3.13)

Since B{,,} (%, ) € Tam and z was any element of g ' (B(a,€)), g; ' (B(a,¢€)) €
T = Tou- ]

This last proof is very similar to the proof of Proposition 2.19.

Proposition 3.13. Suppose (E,dg) is a complete, separable metric space,
M = {gr}rey € M(E), M SP, and py is the countable M-pseudometric of
Definition 2.47. Then B(E,dg) = B(E, pam)-

Proof: Define ' : (E,dg) = (R®,p,) by I'(z) = (go(z), 91(z),...), where
(R, p,) is the complete, separable metric space defined in Example 2.50.
By Proposition 1.10, I' is measurable, and since M SP it is one-to-one, so
by Kuratowski’s Theorem, Theorem 3.5, for any A € B(E,dg), I'(A) €
B(R®, p,), and also ™! : (I'(E), px) = (E,dg) is Borel measurable. Addi-
tionally, since M is countable and SP, by Lemma 3.12 T is continuous from
(E, ppm) to (R®, p;), and by Proposition 2.48 and Proposition 2.49 M SSP
on (E,Tm) = (E, T,,,). By Theorem 2.44, T is a homeomorphism between
(E, pm) and (T'(E), pr). Thus

B(E,ds) = {T™'(B): B€ B'(E),p)} = B(Espn).  (3.14)
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Theorem 3.14. Suppose (E,dg) is a complete, separable metric space and
M = {g}rey C B(E) satisfies M SP and M is closed under multiplica-
tion. Then, M is a separating collection; that is, for all P and Q which are

probability measures on S,

Pg=Qg,VgeM = P=Q. (3.15)

Proof: First, define the countable M-pseudometric py as in Definition 2.47.
By Proposition 2.48 and Proposition 2.49, (E, prq) is a metric space, Ty =
Tore» and M SSP on (E, Ty). Also, each g € M is continuous on (E, Tu)
by Lemma 3.12. Since M is bounded, this means that M C Cy(E, Tum).
Now, by Theorem 3.11, M is convergence-determining on (E, Ty), and so

by Proposition 2.9, M is separating on (E, Ty).

Suppose by hypothesis that Pg = Qg, Vg € M. Then, since M is sepa-
rating on (E, Tu), P = Q on B(E, Ty) and thus on B(E,T,,,). Then by
Proposition 3.13, P = Q on B(E,dg). Thus, M is separating on (E,dg).

|

Definition 3.15. If I,, = {¢1,...,tm} C [0,00) for all m € N*, I}, C Iy
for all m, and Ej I, is dense in [0,00), then the collection {I,,}>_, is a
dense increasinénjrlzesh of timepoints. For brevity, this will be shortened to
dense timepoint mesh. Such an object is often called a partition increasing lo
the identity, but note that in this definition the timepoints in the mesh need
not be ordered, that is, there is no requirement that ¢; < ¢; for ¢ < j. (See

Remark 3.18 below.)

With these two main results, it is now paossible to proceed with the con-
struction of the compound functionals that will provide the separating class

for probability measures on spaces of cadlag paths.

Definition 3.16. Let C be a collection of functionals on F, and define the
functional ¢ : E™ — R by

©(2) = p1(z1)p2(22) « - - Pm(zm) (3.16)
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for some fixed ¢i,...,9, € C and each variable 2 = (z;,...,2y). Then
fon @ Dg[0,00) = R, the functional ¢ evaluated at the timepoints I, is

defined as

forn(@) = @ (my, (2), .., M, (2)) = @1(my () - (T, (7)), (3.17)

where the ¢; are those from the timepoint mesh I,,. The notation ¢ € C™ is

used to denote that the functional ¢ is formed from functionals ¢y, ..., om € C.

The overall purpose is to have a collection of functionals defined on the
finite dimensional distributions of elements z € Dg[0, 00), where the particular

timepoint coordinates from which projections are formed are taken from the

%)
m=0"

increasing mesh {/,}
Proposition 3.17. Suppose C C C,(E) and let M be the collection of func-
tionals M = {f,r, :mENY e C™} for some dense timepoint mesh

{Im}oi. Then the following holds:
i) The collection M C B(E).
it) If C is countable, then M is countable.
1) IfC is closed under multiplication, then M is closed under multiplication.

i) If C contains the constant 1 functional and SP on E, then M SP on

DE[O, OO)
Proof:

i) Each m,, is measurable by Proposition 2.32, and each ¢; is measurable,
so each y; o my; is measurable and finite products of such functionals
are measurable. Further, for any ¢, each of ¢y, ..., ¢, is bounded, so

their finite product is bounded.

ii) First, countably index M by the number m of points in the timepoint
mesh. For each such m, there are associated a number of elements in
M given by the cardinality of C, which is countable, to the power of
this m, the number of timepoints to select an element of C from, which
is finite. So M is exhausted by associating with each m a countable

number of elements of M, and so all of M is countable.
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iii) If f,r,, and fy s, are in M then, assuming without loss of generality

that n > m,

fotn  frra(@) = fotn(@) o (@ sz (e (2 )H% e (

1l
.zs

i (e ()i (e H Yilmy(z
1 i=m+l1

i

[

= | (@i - %) (7 () H i(my (T (3.18)

1 i=m+1
SO that f(me ‘ f’Y,[n € M.

1
=

-
I

iv) Let 2 # y € Dg[0,00), say x(t) # y(t) at some t. Since G I, is dense
in [0,00), there exists a subsequence {tn,}re, of the t?ll:époint mesh
that converges to ¢ from the right. Since both z and y are continuous
from the right and x(t) # y(t), there exists a £, > ¢ such that

f(t) = y(@)]

2
Then, there exists a K € N* such that t < ¢,,, < t., and then z(t,,) #
Y(ta,). Let n = ng. Since C SP, there exists a ¢, € C such that

Ou (T, () # @u(m, (1))

Given this particular n and ¢,, let f € M be f,;, where

t<s<to=lz(s) —y(s) > (3.19)

p=1-1---1-0,. (3.20)

Note that there are exactly n functionals g; in this product, and it is
exactly at coordinate n in I, that the above property of ¢, is true.
Then

foun () = @u(m, (7)) # 0u (70, (V) = four.(¥), (3.21)

so this is a functional in M that separates = from y.

Remark 3.18. From the note in part (iv) above, there is no need for a set
of functionals -1---1 at the end of the definition of ¢ (as may be required in

other developments in which the timepoints in the mesh are ordered).
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Chapter 4

Conclusion

4.1 Application to the motivating problem

In the second submarine tracking problem, the discontinuities in the signal
model and the requirement for historical filtering because of the observation
model complicated the traditional filtering problem. Instead of needing a
collection of functionals from Cj(S) which could separate probability measures,
the collection from the new problem was only known to be bounded, that is,
to be a subset of B(Dg[0, c0)). However, by using the weak generator for the
signal (£, D(L)) and the results from this thesis, it is still possible to use this
collection of bounded functionals to separate probability measures.

In particular, require of the signal model that D(£) C Cy(S), and that
D(L) is countable, closed under multiplication, contains the constant 1 func-
tional, and SP on S. Then take some dense timepoint mesh {In}n_;,
find by Proposition 3.17 that the collection M = {f, 1, : m € N',p € C™}
satisfies M C B(S) and M is countable, closed under multiplication, and

and

m

SP on Dg[0,00). So, since (S,ds) is a complete, separable metric space, by
Theorem 3.14, M is a separating collection on Dg[0, 00).

Once a separating collection of functionals is available, filtering equations
can be constructed and this collection can be used in determinations of unique-

ness.
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4.2 Summary

An initial filtering problem was introduced which was tractable using known
methods, but was then extended to a second filtering problem in which the
published methods were not sufficient to begin the process of forming a solu-
tion. In particular, no method was available to separate probability measures,
that is, distinguish one from another, using only a collection of functionals
available from the problem definition.

After outlining the problem and providing some background notation and
definitions, the essential notion of weak convergence was introduced and de-
veloped for function spaces including Dg[0, 00), the space of cadlag paths on
the set [0, 00). The properties of collections of functionals were then explored,
particularly focussed on the notions of separating points, strongly separat-
ing points, and being pointwise convergence determining, and the connections
between these concepts. Some propositions that were important to later devel-
opments were here introduced, including useful knowledge about the basis By,
and the pseudometric pys. Most importantly, the homeomorphism I inspired
by Bhatt and Karandikar was explained and related to the other concepts.

In the core of the thesis, three fundamental theorems from Tychonoff, Stone
and Weierstrass, and Kuratowski were provided and used to prove the two main
theorems. The first theorem, using the homeomorphism I, described condi-
tions under which a collection of functionals on a topological space would be
convergence determining. These conditions were too strict to be used directly
in the application; however, the second main theorem used this weak conver-
gence under stringent conditions to prove that a collection would be separating
under less severe requirements.

These latter, separating requirements were satisfied in the second filtering
problem, showing that probability measures on paths in the space in question
could be determined from each other, and allowing the possibility of continuing
the process of defining filtering equations and attempting to approximate these

equations.
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4.3 Future possibilities

Having a collection that will separate probability measures is only the first
step towards constructing an applicable filter for a given problem. The next
main task is to find further useable conditions under which a collection will be
convergence-determining, so that a start can be made to proving the existence
of solutions to various filtering equations. The results from Chapter 3, in
particular the two main theorems, provide a basis from which such work could

proceed.
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