Synthesis of Hepta-1,3,6-trien-5-ols for Potential 8π Electrocyclizations

Bryce J. Kirk and Dr. Owen Scadeng*

Hepta-1,3,6-trien-5-ols have the potential to act as electrocyclization precursors in anionic 7 carbon / 8π conrotatory transformations¹. We explored a sequence to produce the precursor with diversity available at three key connection. The 4-step procedure involved a Vilsmeier Haack type reaction, a 1,2-vinyl addition, and a Suzuki coupling². The final step was the functionalization of the alcohol³ to facilitate deprotonation leading to the desired electrocyclization.

1,2 – Vinyl Addition

Suzuki Coupling

Alcohol Functionalization

Acknowledgements

I would like to thank Concordia University of Edmonton for the Concordia Student Research Grant and the department of Chemistry to access to their lab space, equipment, and wealth of knowledge.

References

- 1. Cardenas, C. G. J. Org. Chem. 1970, 35, 264
- 2. Molander, G.; Felix, L. J. Org. Chem. 2005, 70, 3950-3956
- 3. Chedid, R. B.; Frohlich, R.; Wibbeling, B.; Hoppe, D. *Eur. J. Org. Chem.* **2007**, 3179-3190

Introduction

Hepta-1,3,6-trien-5-ols have the potential to act as electrocyclization precursors in anionic 7 carbon / 8π conrotatory transformations¹. We explored a sequence to produce the precursor with diversity available at three key connection. The 4-step procedure involved a Vilsmeier Haack type reaction, a 1,2-vinyl addition, and a Suzuki coupling². The final step was the functionalization of the alcohol³ to facilitate deprotonation leading to the desired electrocyclization.

Vilsmeier Haack

1,2 – Vinyl Addition

(63%)

(28%)

(26%)

(25%)

Suzuki Coupling

Alcohol Functionalization

Synthesis of Hepta-1,3,6-trien-5-ols for Potential 8π Electrocyclizations

Bryce J. Kirk and Dr. Owen Scadeng*

Hepta-1,3,6-trien-5-ols have the potential to act as electrocyclization precursors in anionic 7 carbon / 8π conrotatory transformations¹. We explored a sequence to produce the precursor with diversity available at three key connection. The 4-step procedure involved a Vilsmeier Haack type reaction, a 1,2-vinyl addition, and a Suzuki coupling². The final step was the functionalization of the alcohol to facilitate³ deprotonation leading to the desired electrocyclization.

1,2 – Vinyl Addition

Suzuki Coupling

Alcohol Functionalization

Acknowledgements

I would like to thank Concordia University of Edmonton for the Concordia Student Research Grant and the department of Chemistry to access to their lab space, equipment, and wealth of knowledge.

References

- 1. Cardenas, C. G. J. Org. Chem. 1970, 35, 264
- 2. Molander, G.; Felix, L. J. Org. Chem. 2005, 70, 3950-3956
- 3. Chedid, R. B.; Frohlich, R.; Wibbeling, B.; Hoppe, D. *Eur. J. Org. Chem.* **2007**, 3179-3190