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Abstract

A key component of any process control upgrade project is the initial benefits analysis, which
evaluates the feasibility of the project based on economic and process information. The core
of this analysis is benefits calculation, which is commonly based only on the reduction of
variance. In this thesis, an optimization approach was proposed and a structured benefits
analysis procedure was discussed.

With the information contained in key process variables, product economics and process
operation conditions, the process performance evaluation can be formulated as a chance
constrained optimization problem. The solution of the optimization problem is the optimal
process operating point and the optimum economic performance, which will allow direct
comparison of the different alternatives. This thesis provides an algorithm for the solution
of the benefits analysis problem and develops sensitivity expressions for optimal process
profitability and operating point.
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Chapter 1

Introduction

With the development of process control technology and its wide application in industry,
control system upgrade projects have been recognized to be one of the best ways to improve
the profitability of plants. The first step in any control system upgrade project is a benefits
analysis study (Marlin et al., 1991). The analysis goals are to identify the control upgrade
opportunities and estimate the associated costs and benefits. This study evaluates the
efficiency of the project based on economic and process information. The core of the benefits
analysis is a benefits calculation. The approach now used to benefits calculation is based
only on the variance reduction for key process variables. In this thesis, an optimization-
based approach is proposed and a structured benefits analysis procedure is discussed.

The improvement of process economic performance comes from variation reduction for
key process variables and selecting operating conditions that best exploit this variance. Pro-
cess variation is often considered a crucial limitation to process performance. Usually the
products are characterized by several attributes, which have specifications associated with
them. Without market demand changing, the value of the products depends on whether
these product attributes fall within pre-defined ranges of the product specification. Even
with the best control, the products attributes cannot be guaranteed to be right on specifi-
cation. Juran (1980) described two causes of off-specification in product: Common causes
and Special causes. Common causes are frequent, short-term, random disturbances that are
inherent in every process. Special or assignable causes are larger, less frequent disturbances
that are identifiable and hopefully preventable. A solution to the variation reduction is pro-
cess control. Automatic process control (APC), or regulatory control, tries to compensate
for common causes or upsets by making frequent adjustments to the process that counteract
their effects. Statistical process control (SPC) seeks to identify and remove root causes for
the Special causes variability (Shunta, 1995).

The result of benefits analysis not only identifies the opportunities and prioritizes them,
but also forms the basis for economic justification and subsequent capital investment. Marlin
et al. (1991) provides several examples of how benefits analysis has been successfully applied
in a variety of processes. Such benefits studies are typically carried out in following steps:



e Formulate overall objectives for improving the process performance,
e Identify where control improvements are needed,

e Generate a list of potential improvement opportunities,

e Estimate the potential benefits and costs for the improvements,

e Prioritize and select the best opportunities based on business impact and feasibility,

Develop design concepts to capture the benefits,

Report the results and make recommendations.

1.1 Existing Benefits Analysis Methods

Many methods have been posed to carry out the benefits analysis. These methods can be
divided into four groups (Harskin, 1996)

e Experience

For budgetary estimates, “rules of thumb” can be used based on experience. Experience
provides an order-of-magnitude estimate, but advanced process control projects are seldom
funded on this basis because each plant is unique. As a result, this approach is unlikely
to produce accurate results. More accurate methods such as best operator and statistical
methods are required.

e Best operator

Of the two methods that require plant data, the best operator method is the easiest,
because it requires only historical values of key process variables. The average value of a
variable is compared with the best value achieved by an operator. The difference between
the average and the best operator performance represents the possible improvement with
the advanced process control. However, this method assumes that the advanced controller
consistently performs like the best operator. It does not consider the fact that the advanced
control may do better (or worse) than the best operator. Therefore, the benefits may be
underestimated (or overestimated).

e Statistical methods

Statistical methods can be used to analyze the historical data. The means and the
standard deviations of the data are calculated. Since it is assumed that improved process
control will result in a reduction of standard deviation, a new operating point can be chosen
closer to the product specification, which should increase the profitability of the process.
The difference between the mean/standard deviation before and after the process control
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upgrade is used to capture benefit that is expected to arise from the upgrade. A hypothesis
test is used to check whether this new operating point should be implemented or resulting
change is significant.

o Simulation

Simulation is another attractive approach as it can be used to evaluate operations both
within normal operation and outside of historical conditions. However, the cost of obtaining
a dynamic model to be used for benefits analysis can be substantial.

Of the four methods discussed above, the experience-based approach is often used for
estimating advanced process control benefits for budgetary purposes, and the statistical
method is most popular for estimating benefits for project funding appropriations. In
practice, these methods are usually combined to carry out a detailed benefits analysis.

Marlin et al. (1991) gives a comprehensive framework for justifying control upgrade ben-
efits. They addressed technical issues such as the required calculations and plant tests to
predict control benefits. In the study undertaken by the Warren Centre for Advanced En-
gineering (Marlin et al., 1987), a general method for control benefits analysis was proposed.
A key finding in this report is that economic benefits usually result from driving operating
process variables closer to their targets than is possible in the base case (i.e., when process
is running at the nominal point). The analysis identifies the causes for poor control and
selects an appropriate upgrade which leads to tighter control and a smaller standard devi-
ation. The resulting operation is closer to the target. The difference between the averages
before and after the control upgrade is the improvement from the control upgrade and can
be calculated from the statistical distributions. Marlin proposed an equation for benefits
analysis calculation, which summarizes the relevant factors:

Benefits = Improvement x Incremental value
x Unit throughput x Time x Service factor (1.1)

where, the improvement is the difference between the base case and the improved operation.
The incremental value is the economic value of the predicted improvement. The service
factor is the fraction of the time that the process unit will be in the mode of operation.
Latour (1996) proposed an approach to control benefits calculation called CLIFFTENT,
which involves the estimation of the reduction in variability of key process variables resulting
from a control system upgrade. Latour made the point that a more “natural” way to view
the economic performance of an automation system is in terms of the trade-off between
the economic incentives for pushing the process toward the product specifications and the
costs associated with violation of these specifications. This is accomplished via an economic
model of the “trade-off”. In Latour’s approach, the probability density function (PDF) for
the key process variables is either determined directly from the process operating data or
estimated. Given the PDF for the process variables and an economic function that expresses
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Figure 1.1: Common benefits estimation approach

the cost of deviation from the specification (for deviations that are within specification and
those that violate them), the average operating point can be determined that best reflects
the economic trade-off within the process variation. This operating point depends not just
on process variance, but also on market conditions. Latour used a heuristic approach to
determine the “best” operating point.

mm=[:¢mfrﬂm@ﬁwy (12)

Grosdidier (1997) used the similar idea in the study of refinery products blending. He
showed the improvement by reducing the standard deviation in the operating data after
the control upgrade. By using a simple economic model, he calculated the benefits and
associated cost.

Bao et al. (2000) proposed a structured approach to benefits analysis. They extended
the CLIFFTENT idea to evaluate the control system performance by solving a chance con-
strained optimization problem. In the same way, the control system performance limit and
the proposed control upgrade based on current system and proposed system are evaluated.
They also provided a simple tabular form for benefits comparison.

Craig and Henning (2000) provided a new framework for the evaluation of advanced con-
trol projects. The approach is to investigate how improvements brought about by advanced
control can be measured to a required level of statistical significance, after the controller
has been commissioned. They used hypotheses to determine whether a significant differ-
ence exists between means of two sets of data (before and after the control upgrade). A
statement of their problem is:

He : p=m
H : p>m
a = 005



To reject Hy with 95% confidence, the observed difference of the sample means would
need to fall sufficiently high in the right trail of the distribution. Then, the hypothesis that
Ky > ps cannot be rejected at the specified confidence level. The test assumed that the data
were normally distributed and that the sample variances were not significantly different.

Craig and Henning (2000) discussed ways of obtaining controller benefits through not
only the reduction of product variations, but also the reduction of downtime (i.e., when the
process has to be shut down). Measured improvements were translated into increases in
cash flow that resulted from implementing an advanced controller. In the benefit analysis
procedure, experimental design and data generation were followed by data analysis and
hypothesis testing, then monetary benefits were estimated by simply multiplying the quan-
tity of product by the product value. Finally, an economic project evaluation was made to
determine if the expected new control system yields larger benefits.

In the controller comparison phase, instead of doing “before and after” comparisons
which are traditionally used, they included two controllers into the control loop and switched
them as frequently as possible. But each switching period should be significantly longer than
the longest time constant of the process. This is mainly due to the impossibility of ensuring
that all factors are identical except for those being tested.

Ossthuizen et al. (2000) used the principles described in Craig and Henning (2000), but
suggested an optimal on-off time for switching between controllers. It is said that using this
strategy, the variations in unmeasured disturbances do not bias the measured plant data
significantly. However, the economic evaluation of control systems was not provided.

Lant and Steffens (1998) presented a quantitative statistical tool, which can be used
for performing control system benefits analysis. They stated that a major outcome of the
Warren Centre study (1987) was the Process Control Opportunities and Benefits Analysis,
which has been customized and extensively applied by many process companies around the
world. Whilst the Process Control Opportunities and Benefits Analysis is a useful tool
in evaluating process control projects, it does require specialist control expertise and an
up-front investment of 1-2% of the final project cost. Therefore, a simpler and cheaper
means of determining preliminary evaluation of control system performance is proposed.
The Process Control Self-Assessment Proforma forms the basis of the benchmark exercise
(Brisk and Blackall, 1995). After filling out the table, the scope for improvement in control
technology is identified.

The statistical approach cited by Shunta (1995) was used to identify the extent of
improvement in terms of reduced variability, which can be expected from improving the
process control. The two criteria used in the analysis were the Process Performance Index
Py and Process Capability Index Cpi(Kittlitz, 1987) that were defined as:

|average — nearer speci fication|
3(stot)

Pk = (1.3)
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Figure 1.2: Performance index illustration

|average — nearer speci fication|
3(Scap)

where, s¢, is the standard deviation of the data under analysis, sc,p is the estimated ca-
pability standard deviation and is calculated using short periods of data containing only
short-term random variability.

Py indicates how well the current controls can keep the actual variability within the
desired range, and Cp represents the smallest variability achievable. By comparing the
value of both Py and Cp in Table 1.1 (Shunta, 1995), a decision can be made if there
exists a potential benefit to perform control improvement.

(1.4)

Table 1.1: Performance index

Change Process
Improve Control

(Cor < 1) Change Process

Little incentive for

(Cpk > 1) | Improve Control Impr ents

Guidelines for interpreting the process performance indicator are:

e Cpi > 1 indicates that the process has the capability to meet specifications. The
inherent random variability presented is acceptable.

e Cpi < 1 indicates that the process is not capable of meeting customer specification,
even under statistical process control. There is excessive random variability inherent
in the process that must be reduced by a change in the process.



® Py < Cpi indicates that the process is not operating up to its capability. There
are long term drifts, cycles, shifts, or changes in variability caused by special events
that may be reduced by improved process control or eliminated by removing the root
causes.

® Py ~ Cpi indicates that the process is operating close to a state of statistical process
control.

Shunta (1995) provided a simple tabular form for control performance evaluation. But
the performance index only deals with the single variable case, and was not applied to
multivariable case. In addition, this method ignores process economics and focuses on
ensuring that the product distribution is within the range between the lower and upper
specification (99.73%), leaving almost no room for any violation.

Bhullar (1988) studied the opportunities for advanced process controls in various oper-
ating units in a case study of a major west coast (U.S.) refinery instrument modernization
projects. The benefits of using advanced controls to increase product yield, throughput
and quality were expressed in economic terms based on actual plant operating data. In his
paper, Bhullar listed a summary of typical economic data as basis for benefits calculation.
Also, he suggested that the overall potential benefits analysis were accomplished by break-
ing down global objectives into lower levels of refinery objectives, unit objectives, section
objectives and finally down to equipment level objectives. Once the specific objectives were
agreed upon, the plant data was used to analyze how close to the defined objectives the
operation already was. The next step was to calculate where they should operate using
regulatory controls while taking into consideration of safety, equipment or other physical
constraints. The improvements were converted into monetary units and benefit credits ex-
pressed in terms of dollars. However, there is no detailed solution method given in the
paper.

1.2 Issues & Problems

These existing methods give a basic framework for carrying out control system benefits
analysis. It is clear that both experience and statistical methods should be used in any
analysis. The key point is to identify the business drivers and the opportunities for im-
provement. Using process control, a reduction of variation of these key variables may be
achieved. There, however, exist some shortcomings in these available methods.

Marlin et al. (1991) provided a general framework for benefits analysis. It contained a
complete procedure from process information collection to the final ROI estimation. The
calculation of benefits used the common approach and was based on variation reduction.
Craig et al. (2000) modified the framework by suggesting an optimal switch between the
current controller and the upgraded controller instead of comparing the result “before” and
“after” the controller upgrade. In the control performance comparison, a hypotheses test
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is used to justify the control improvement. Shunta (1995) used performance index created
by Kittlitz (1987) to form a table as a standard for control performance evaluation. This
method is simple and easy for an engineer to apply in a real process. However, none of these
methods take into account the economic value of different products (or different product
grades).

Latour (1996) introduced an economic performance function into the benefits calcu-
lation. He proposed a trade-off between profit gain and specification violation, using a
piece-wise economic performance function for processes where the variables can be consid-
ered independent. Latour’s method cannot handle constraints that do not lend themselves
to the economic penalty approach. Also, he did not provide a clear, simple method for
benefits calculation.

Bao et al. (2000) proposed that any comprehensive approach to benefits estimation
should accurately estimate: 1) the current economic performance of the process operation;
2) the best achievable economic performance for the existing automation system; 3) the best
achievable economic performance for any improvement; and 4) the maximum theoretically
achievable economic performance for the system. However, no detailed solution method is
given. Also, the sensitivity of process performance with respect to the process parameters
is not studied.

To sum up, these existing methods either ignore economic information or fail to give
a comprehensive solution approach (e.g., considering multivariable case). Further, none of
these methods gives a solution method to deal with the key variable constraints.

1.3 Thesis Objectives & Scope

Marlin et al. (1991) provided a good basis for performing the work of this thesis. However,
the benefits calculation method proposed in Marlin et al. (1991) fails to consider all of the
economic information, such as cost of constraint violation. Latour (1996) includes the effect
of economic information in the CLIFFTENT integral. Therefore, a modified framework
combines Marlin et al. and Latour’s approaches.

The objective of this thesis is to provide a structured procedure for benefits estimation
and complete the procedure of benefits analysis by incorporating process performance sensi-
tivity analysis into it. The new approach frames the benefits calculation as an optimization
problem. Upon the completion of benefits analysis procedure, the current performance can
be evaluated using the information from both process and market.

The heart of the benefits analysis procedure, the benefits calculation, not only deals with
the deterministic constraints but also deals with probability constraints both individually
and jointly. This helps to identify the opportunity of improving the profitability of the
process by taking appropriate risks.

The proposed method combines four methods (Figure 1.3) discussed by Harskin (1996)
and forms a complete benefits analysis procedure based on a stochastic programming ap-



Experience Best operator

OPTIMIZATION
with
PROBABILITY
CONSTRAINTS

Figure 1.3: Proposed benefits analysis method

proach to benefits calculation. The multivariable case is considered including constraints.
The proposed calculation approach is applied to evaluate: 1) the current economic perfor-
mance of the process operation; 2) the best achievable economic performance for the existing
automation system; 3) the best achievable economic performance for any improvement; and
4) the maximum theoretically achievable economic performance for the system. The bene-
fits are compared using the procedure similar to Analysis of Variance (ANOVA). Also, the
sensitivity of process performance with respect to the process parameters is studied to jus-
tify the results from the performance evaluation problem. Then, decision on whether there
is potential process profitability achievable by control system upgrade is made. Finally,
performance on the implemented control is monitored.

1.4 Thesis Structure

This thesis begins with an introduction to and motivation for this project, followed by a
literature survey of current control system benefits analysis approaches. In Chapter 2, the
stochastic programming approach to benefits analysis is introduced. The performance eval-
uation problem is formulated incorporating an economic performance function, process data
probability density function and constraints. An example is given to illustrate the methods
used to solve individual probability constraints problem and joint probability constraints
problem.

In Chapter 3, a general benefits analysis procedure is proposed including process in-
formation collection, performance evaluation. The sensitivity of process performance with
respect to the process parameters is studied.

In Chapter 4, proposed benefits analysis procedure is used on two case studies. One is
two tank heaters in series. The optimal process profitability of different control systems are
compared, and one of them is chosen to be implemented based on the process profitability,



implementing cost and sensitivity study. The second is ALPAC’s bleach plant D stage.
Process data are collected and analyzed, the current control performance and performance
limit are evaluated to find whether there is sufficient potential to warrant further study into
control system improvement. Chapter 5 contains summary and conclusions for this thesis.
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Chapter 2

Optimization-based Performance
Evaluation

Marlin et al. (1991) provided a comprehensive procedure for benefits analysis, which has
been adopted as the framework for the approach proposed in this thesis. However, the
heart of any benefits analysis procedure is the performance estimation, which is posed as
an optimization problem in this work. Bao et al. (2000) proposed that any comprehensive
approach to benefits estimation should accurately estimate: 1) the current economic perfor-
mance of the process operation; 2) the best achievable economic performance for the existing
automation system; 3) the best achievable economic performance for any improvement; and
4) the maximum theoretically achievable economic performance for the system.
Latour (1996) proposed performance evaluation in terms of a CLIFFTENT integral.

E[P] = ¢(y1 3.) - f(ya g’&)dy (2‘1)

Although Latour’s approach provided an effective performance metric, it did not give an
effective means for evaluating CLIFFTENT integral. Further, Latour’s method does not
handle hard constraints that must be enforced; rather it treats all constraints via an eco-
nomic penalty approach.

In this chapter, a more comprehensive method is proposed for performance evaluation.

2.1 General Problem Formulation

The performance evaluation problem can be expressed in terms of determining the operat-
ing point that would provide the “best” economic performance of a given control scenario.
Then, it is natural to form the performance evaluation calculation as an optimization prob-
lem. This optimization problem should contain constraints that ensure a feasible operating
point and must incorporate the uncertainties in both process operation and economics.
The inclusion of these uncertainties into the optimization problem result in a stochastic
programming problem. Thus, the performance evaluation can be formulated as stochastic
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programming problem (Zhou et al., 2000):

max Process Profitability
s.t.:
Product Specification
Product Demand

Resources Limitations Uncertainties StochastlF (22)
. . Programming
FEquipment Limitations =
Problem

Environmental Limitations
Safety Requirements

The first step of forming the performance evaluation calculation is to set up the objec-
tive function listed in Problem (2.2). The key part of the objective function is economic
performance function (EPF). This function defines the economic values for different product
grades. Since the formulation of this function needs detailed knowledge of process operat-
ing costs, it is usually very difficult to obtain an accurate EPF. Latour (1996) proposed a
piece-wise linear function, which was adopted as the form for EPF in this thesis.

Another part of the objective function is the probability density function (PDF). Be-
cause of inherent disturbances in the process operation, the process output data typically is
described by a probability distribution. In this thesis, the process output data is assumed
to be adequately described by a Normal distribution, and this distribution is independent
of operating point. A Normal distribution is characterized by two moments: mean and
variance. Both of these can be easily estimated from the process data. The PDF for a
Normal distribution is:

flygo) = \/21703‘%@3 2.3)

and the objective function can be expressed as:

J= /EPF - PDF dy (2.4)
Y

Equation (2.4) is Latour’s CLIFFTENT integral for the single variable case; however, La-
tour did not consider the multivariable case. The solution of unconstrained optimization
problem that uses Equation (2.4) as the objective would provide the “best” performance for
the current system, however, when the process operation must respect equipment limita-
tions, safety requirement, product specifications, and so forth, this “best” solution may be
infeasible. Therefore, the performance evaluation problem needs to incorporate constraints
such as those listed in Problem (2.2). Some of those constraints can be expressed as deter-
ministic constraints, which are easily handled; while others can be expressed as probabilistic
constraints and require special solution methods. These probabilistic constraints change the
performance evaluation problem to stochastic programming problem of the form:

max  J= {r (@(y.s*) - f(y.¥.Q))dy
subject to: (2.5)
Pr(Hy >s*) > a
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where: J is the process performance; f is the probability density function for the process
variables; H is constraint model coefficients matrix, H = [hy, hy, - - - hg]T; Pr denotes prob-
ability; 8* represents the constraint limits that must be enforced to some level of confidence
a; y is a vector representing the key process variables; ¥ represents the most desirable oper-
ating point; Y is the space of possible values for the process variables; and ¢ is a economic
performance function, which is usually defined in terms of “profit/cost”. The economic
performance function reflects the relationship between product qualities and product values
(i.e., ¢ has a higher value if the product quality meets specification, on the other hand,
it has a different value, usually lower, when the specification is violated). A detailed ex-
planation of this is given in Chapter 3. Constraints considered in this thesis are expressed
in probabilistic form: individual probability constraints (IPC) and joint probability con-
straints (JPC). The JPC in Problem (2.5) states that all of the process constraints have to
be satisfied at or beyond a specific level of probability, simultaneously. Such joint probabil-
ity constrained problems have proven very difficult to solve (Prekopa, 1995). As a result,
the individually constrained problem:

Pr((H(i,:)y) 2 8f) 2 a (i=1,2,---,k) (2.6)

has received much more attention in the literature (Prekopa, 1995).

Thus, the performance evaluation calculation can be expressed in either IPC problem
form:

max J= ‘f{ (o(y,s®) - f(y.¥,Q))dy
SubjeCt to: (2'7)
p; = Pr((H(i,)y) 2 s}) 2 a;
(i = 1a27"' 1k)

or JPC problem form:

max  J = [(¢(y,s")-f(y.¥,Q))dy
y Y

subject to: (2.8)
Pr(Hy >s*) > a

Although both problems attempt to achieve an optimal solution, which ensures that the
inequality constraints are satisfied at some level of probability, there is a distinct difference
between them. In the JPC problem, satisfaction of the whole set of probability constraints
is represented by one probability constraint with the risk level of a, and it is guaranteed that
the solution is feasible with respect to all of the constraints at no less than the specified
probability level. Whereas, each individual constraint in IPC problem is satisfied at a
certain probability level a;. However, the probability level at which all of the constraints
are satisfied is less than any one of individual probability levels. For example, consider
solution of an IPC problem with 10 probability constraints. Each probability constraints
are assumed to be satisfied at or beyond the probability level of 90%. Then, the worst case
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(i.e., lower bound) probability level at which this solution satisfies all of the constraints is

equal to: a = I'[ a; = (90%)'0 = 35%. A comparison of the IPC and JPC is given at the
end of this chapter.

The relationship of PDF, EPF and constraints can be explained in this way: the data
of the key variables vary as described by a given probability distribution. The operating
point for the process should be set conservatively to guarantee that no constraint violation

occurs and to exploit the process economics. Thus, there is a trade-off between constraint
violation and process economics.

2.2 Uncertainty in Objective Function

In the problem formulation given in last section, it was assumed that the economic perfor-
mance function ¢ was deterministic. However, it is possible that this function is stochastic
due to the changing market prices and demands. Prekopa (1995) discussed several ways to
handle a random objective function.

One approach is the probability maximization formulation. This form is used in situ-
ations where a precise performance valuation is given (e.g., Jnax) and the probability of
satisfying this objective should be maximized:

max Pr(J(x,£) > Jmax) (2.9)

where, J is process performance, x is a vector of operating conditions and £ is a set of
stochastic parameters. This formulation requires the solution to be such that the probability
of performance lower than the specification is the least out of all possible solutions. This
approach is not applicable to the benefits analysis problem, as there is no way to a priori
set Jmax-

Another possible formulation is to convert the objective function J(x,£) into a deter-
ministic objective function by taking the expectation E[J(x,€)]. If J(x,£) is linear in
x, J(x,&) = €7 x, then E[J(x,€)] = [E(€)]Tx is also lineer in x. Both IPC and JPC con-
straints can be incorporated into the problem to make sure the achieved process performance
is practically realizable.

max  E[J(x,§)]

st.: IPC or JPC (2.10)

Finally, another possible formulation is to take a linear combination of the expectation
and the standard deviation of the objective function with constraints:

max E[J] +v./Var[J] (2.11)
st.: IPCorJPC

where 7 is a user specified constant. The first term E[J] represents the expected value of
the objective function with respect to the economic performance function ¢; and the second
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term 'y\/mf]- represents the “spread” of the distribution of objective function values
about the expected value. The solution of Problem (2.11) results in a trade-off between the
expected value and the variance of the objective function (i.e., an operating point that is
the best compromise between profitability and expected variation of the profit). The choice
of v is arbitrary and reflects the decision maker’s opinion as to the relative importance of
the expected value and the variance of the optimum objective function value.

It is clear that the incorporation of stochastic economic parameters into the objective
function makes the problem more difficult to solve. Thus, for the purpose of this thesis,
the market prices and demands for specific products were assumed to be known. Therefore,
the economic performance function is deterministic. The solution methods discussed in the
following is based on this assumption.

2.3 Solution Methods

As was discussed in the first section, the process performance evaluation problem can be
formulated in either IPC or JPC form (see Problem (2.7) and (2.8)). The solution methods
for both problems are discussed below and the solution approaches of these two problems
are compared.

2.3.1 IPC Algorithm

The only difference between probabilistic programming (covered in this thesis) and lin-
ear/nonlinear programming is the form of the constraints. The common strategy for solving
the IPC problem is to convert the probabilistic constraints to deterministic constraints. For
each individual constraint, the process key variables can be standardized in terms of the
optimal operating point, and the constraint converted to a deterministic form, which allows
solution via conventional linear/nonlinear programming.

The individual constraints described in Problem (2.7) can be rewritten as

h;y — h;y s; - hiy }
; = Pr Z : Z Qy 2.12
b= P e oo 212
1=1.2,--- ,k
where, Q is the covariance matrix of y = [y1,¥2,--- ,yk]T , 8* = [},53,--- ,s;]7 and a; is
a scalar which denotes the individual probability level.
Let
¢ _ by-hi
' (h:Qh])1/2

then §; is the standardized variable which follows a standard Normal distribution (i.e.,
§; ~ N(0,1)). This constraint can be rewritten as:
5 - by

p; =Pr(€; > mu—z

) >y (2.13)
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Figure 2.1: IPC algorithm illustration for single variable case

then
s; —hiy
;i =Pr(§; < ——F"—)<1-a
o= Prle = o qury)
Assuming that the cumulative distribution function of §; is given by F,
1 2 1 V2 1
F(z) _/_mﬁe Tdr = s ert(l) + 5
where “erf” is the error function denoted by
_ 2 _tz
erf(z) = 7= ) e tdt
then
s; —hy
F———=)<1-a;
NCXTOE

hi¥ > sf — (b:QhT)V2F~1(1 — )

(2.14)

(2.15)

Thus, the probabilistic constraint is converted to deterministic form. This approach can

be easily understood using Figure 2.1.
Assuming that the IPC dealt with in Figure 2.1 has the form:

Pr(y; > s7) < a:

where, s; is the product specification and a; is the pre-defined constraint violation level.
This constraint requires that the probability of constraint violation (i.e., y; > s?) should be
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no more than a;. However, it is clear from Figure 2.1 that the current constraint violation
is:

Pr(y; > 8])=8; > a;

where (; is the measured current constraint violation. This means that the product does
not satisfy the IPC. Therefore, the corresponding mean §; of the data should be shifted left
to a new point ¥, ensuring that all the data satisfy the IPC.

2.3.2 JPC Algorithm

The solution method for the IPC problem could be used for solving JPC problem; however,
due to the distinct characteristic of JPC, more effort is needed. Consider the JPC, which
has the form:

Pr(Hy >s°) 2a (2.16)
Using the same method as in IPC algorithm:

o =Pr(l 2 i hy > (2.17)

and the JPC can be rewritten as:
Pr { hiy 2 s} — (:QhY)'/%, } > a
i=1,2,.-- k

Let

n; = s — (hQh]) /2, (2.18)
then 7; has Normal distribution

n: ~ N(s7, (h:Qh])'?)
Therefore, the joint constraints can be written as

po=Pr{Hy 2n}2a (2.19)

where, H= [h, hy --- ,h]7 and 5 = [y, %5, - ,7]T. In Constraint (2.19), the left hand
side of the inequality Hy > 1 contains the decision variable ¥ of the optimization problem
and the right hand side of Hy > 7 is a vector of variables satisfying a Normal distribution.
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Note that y in left hand side of Constraint (2.16) was changed to the decision variable ¥ in
Constraint (2.19). Finally, the original JPC problem was rewritten as:

max J= f(¢(y7 S') - f(yry: Q))dy
y Y

subject to: (2.20)
Pr{Hy>n}>a

Zhang et al. (2000) adopted the JPC algorithm presented by Prekopa (1995) and Szantai
(1988), which is based on the Supporting Hyperplane Method. This method was used for
solving optimization problem with a linear objective function. In this thesis, this method
was expanded to nonlinear objective function case. The JPC algorithm consists of two
phases:

Phase 1: Find two initial solutions. One is feasible, that is ¥, € K(!), where K(!) =
{¥ | Pr(H¥ >1n) > a}; and the other is an infeasible solution, §'1), ¢ K1,

To obtain y;n, the following linear programming problem is solved:

min 5L, (bafi + baffe + -+ bindn = iy, )/,
s.t.: (2.21)
Hy 2 p,, + 7oy,

where the recommended value for T is 3, as given by Szantai (1988). A strategy for adjusting
the value of 7 is also given: if the optimal solution to the problem is out of the feasible
domain K1, then the value of T should be increased; however, a relatively large T value
may make the problem too restrictive to solve. An effective way to obtain a starting value
for you: (i.e., if,}‘),) is to solve the corresponding IPC problem.

Phase 2: There are two steps in Phase 2 for iteration i:

Step(a) Let A¥) be the largest A (0 < A < 1), for which

Pr(H(Fin + ATk — Fin)) 2 1) 2 a (2.22)
is satisfied. Denote
SO _ 5w _3,
¥y =Y¥in+ A¥oue — ¥in) (2.23)

Pr(Hy.) > 1) —-Pr(Hy", >n) <«

where ¢ is a user specified tolerance, then if\i) is an appraximate solution to problem.
Otherwise, define

KD = {§| ¥ € K9 and (V3 Pr(Hy > Mo (§ - ) > 0} (2.24)

then go to step (b)
Step (b) Let ?f,:: 1 be an optimal solution to the following problem:
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!n.yin -J= —{'(‘#(ya 8.) i} f(ya ya Q))dy
subject to: (2.25)
y € K(i+1)

Pr(HY Y >n) > a

then S"f,';:l) is an optimal solution to problem; otherwise, go to Step (a), using (i +1) instead

of (3).
The algorithm can be speeded up if a fixed ¥;, in Phase 2 is replaced by an adaptive
term. Prekopa (1995) showed that the choice:

Tl =7 + 5GP -5 (2:26)
is efficient in many cases. Note that in the Supporting Hyperplane Method it is necessary
to calculate the probability values and gradient vector of the probability as a function of the
variables y at the actual boundary point S"&i). For a multivariate Normal distribution, given
the mean values and covariance matrix of the random variables, a Monte Carlo approach
is often used for probability calculation and is adopted for the purpose of this work. Care
must be exercised in using the Monte Carlo approach to ensure that a sufficient number of
simulations are performed to ensure an accurate approximation of the underlying distribu-
tion is obtained for optimization purposes. In addition, although this method was used to
solve the optimization problem with nonlinear objective function, the limitations are: the
EPF was assumed to be a piece-wise linear function and the closed form of integral was
used to obtain an analytical expression of the nonlinear objective function.

2.4 Illustrative Example

The Wood-Berry distillation column (Seborg, 1989) was used to illustrate the benefits cal-
culation algorithm. This is a multi-input, multi-output system. Two controlled variables
are Xp and Xpg. Xp is the distillate composition and Xp is the bottom composition. Two
manipulated variables are R and S. R is the reflux flow rate and S is the steam flow rate.

PI controllers are designed and tuned for each loop. At the steady-state conditions, data
for Xp and Xg were recorded. The product should satisfy the given product specification
with the minimum operating cost (i.e., yield loss and steam cost).

[XD] [—%&‘"?‘"1 —‘1281'9‘]3'] R
[ e e
Xs et e LS

Assuming that the probability level is no less than 90% for the overhead product having
a minimum purity of 0.87 (mole fraction) and/or the bottom product having a minimum
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purity of 0.90 (mole fraction). This defines both individual probability constraints (Inequal-
ities (2.28) and (2.29)) and joint probability constraints (Inequalities (2.30)) as follows:

p1 =Pr(Xp > 0.87) > 90% (2.28)
p2 =Pr(Xg > 0.90) > 90% (2.29)
_ Xp >0.87

Po = Pr{ X5 > 0.90 } > 90% (2.30)

It is reasonable for the real process that we need tighter control on some key variables
to guarantee the product quality; however, for those variables that are not as important,
the probability can be lower. Joint probability constraints require all of the constraints be
satisfied simultaneously and usually the result will be quite different, if there exist strong
correlation between key variables. In this example, Xp and X g have strong correlation.

In both cases, the economic performance functions are the same and can be expressed

—001  Xp <085
_ ) 0axp-035 Xp <090

®X0 =\ _Xp+095 Xp <096 (2:31)
001  Xp>096

—0.02 Xp <090
B X5-092 Xp <095

PXs =\ —25Xp+2455 Xp <099 (2.32)
—0.02 Xp > 099

As shown in Figure 2.2, the product is of the highest value at the desired product
specification (Xp = 0.90). To the left of this specification, the product is off-grade and
therefore some discount may apply on the product price until the point when the quality is
too low and must be sold at a loss. On the other hand, if the product is of higher composition
than the specification, the market price will not be higher while the production cost typically
increases with an increase in the amount that the specification is exceeded.

In the case of individual probability constraints, the desired operating point for Xp or
X are 0.9158 and 0.9606. Both of them are slightly higher than the product specification.
The constraint satisfaction for Xp and Xz are 90.02% and 90.43%. However, the proba-
bility of satisfying both constraints jointly is only approximately 85%. This is due to the
correlation between the constraints and the inability of the IPC algorithm to handle this
correlation.

R—| 1 0709
=lo7006 1
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Figure 2.3: Economic performance function for Xg
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In this example, the joint constraint satisfaction probability delivered by the IPC approach is
only slightly less than the specified level of 90%. This is due to the comparatively small size
of the problem. In general, the joint constraint satisfaction probability level obtained using
the IPC algorithm will depend on two main factors: the number of probability constraints
and the amount of correlation among them. To satisfy both constraint simultaneously, the
probability level of either Xp or X or both can be increased, this leads to a large profit
loss and it is hard to get values of Xp and X g that satisfy the constraints. Further, this is
a “trial and error” type procedure and is time consuming.

In the JPC case, the desired operating point for Xp and Xz are 0.9269 and 0.9711.
The joint probability constraint is satisfied at the expense of reduced profit (i.e., from 17
$/ton to 14.7 $/ton). The comparison of two cases is listed in Table 2.1.

Table 2.1: Comparison of IPC and JPC

IPC  JPC
Xp 0.9158 0.9269
Xs 0.9606 0.9711
'y 90.02 93.99
Pa 90.43 93.55

Po 84.88  90.01
Profitability (K$/ton) 0.0170 0.0147

The JPC algorithm can be illustrated in Figure 2.4 and Figure 2.5. The vertical line is
the overhead composition specification (Xp = 87%), and the horizontal line is the bottom
composition specification (Xg = 90%). The ellipses are constant probability contours for
the joint normal distribution for Xp and Xg with 99.73% confidence. A is the current
operating point. Assuming that at this point, the IPC constraints are satisfied (i.e., p, =
90.02% and p, = 90.43%); while the JPC constraint is not satisfied (i.e., p, = 84.88%). The
problem is how to locate the new operating point which gives the best process performance
without violating the pre-defined probability level (i.e., py = 90%). Although the final goal
is to satisfy the joint probability level, the individual probability constraints should be
increased appropriately to achieve this final goal.

A simple way is to keep one constraint probability level fixed, and increase the other
constraint probability level by shifting the operating point. For this example, it equals
to either keeping the probability level of bottom composition satisfaction fixed (i.e., p, =
Pr(Xp > 0.90) = 90%), and increase the probability level of head composition satisfaction
(i.e., py = Pr(Xp > 0.87) = 99%); or, keeping the p, fixed and increase p,. This can be
illustrated from Figure 2.4: either the operating point for X can be changed, which may
lead to operating point B, or the operating point for Xp can be changed, which may lead
to operating point D. However, the benefits derived from B or D will be smaller because
this change does not consider the correlation between these two variables and the resulting
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D= 0.87

Figure 2.5: Illustration of JPC algorithm

increase in off-specification rate.

Another way is “trial and error” method, which tries to increase p, and p, sequentially.
It, however, can be time consuming even for this two constraints problem. The JPC algo-
rithm discussed in this section locates the optimal operating point (C in Figure 2.5), which
gives the best performance by increasing p, and p, appropriately.
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Chapter 3

Benefits Analysis

As was discussed in Chapter 2, process control system performance can be evaluated using
an optimization-based approach. Results of this evaluation provide the optimal operating
conditions for the process and the optimal process profitability. This is a crucial part of
benefits analysis. However, a complete benefits analysis includes a number of additional
steps (or phases). Marlin et al. (1991) provided a framework, which was adopted as the
basis of benefits analysis in this thesis.

In the benefits analysis procedure (see Figure 3.1) proposed by Marlin et al. (1991),
the opportunity for control upgrade was identified and prioritized by a team performing the
benefits study. However, the method they used for benefits estimation is variance reduction,
which is a commonly used approach. An optimization-based approach was discussed in
Chapter 2 and will be used in the modified benefits analysis procedure. Also missed in
the existing methods is a sensitivity analysis of the benefits results to the information (i.e.,
data) used in calculating benefits.

In this Chapter, a modified benefits analysis is proposed (see Figure 3.2). This analysis
includes: information collection, current performance evaluation, opportunity identification,
sensitivity analysis, decision making and performance monitoring.

3.1 Information Collection

The benefits analysis study begins with information collection, which typically includes in-
formation about: the process, process control system(s), product(s) and economics. Marlin
et al. (1991) suggested that a team be assembled for the benefits analysis study and should
include: engineers experienced in plant operation, economics, instrumentation and control
engineering, and senior operator. Also, a member who is not familiar with the day-to-day
operation of the plant should be included to bring a fresh view to the benefits analysis
study.

The team begins with reviewing the plant operation. This review includes a brief fa-
miliarization of the plant, its operation and control equipment, etc. The team should then
prepare a detailed questionnaire for the plant personnel. An in-depth review of the plant

24



Prepare team

)
Interview Plant

personnel

y
Establish basis

Generate opportunity
list

L] 1

Recycle as
needed for
additional

information

Calculate benefit and cost for each
opportunity

b

)

Select controls for implementation

Figure 3.1: Major activities in Marlin et al. (1991) benefits study

then begins with gathering information from process engineers, control engineers, operators,
economics and lab personnel. Before the information collection can commence, a question-
naire should be developed. An outline for such a questionnaire, as given by Marlin et al.

(1991), is listed in Table 3.1.

Table 3.1: Outline of questionnaire for control upgrade review (Marlin et al., 1991)

Process flow diagram, and P&ID review

Statement of operating goals
Brief economics overview

List of key operating variables and product qualities

List of troublesome or missing measurements, controllers,
alarms and final control elements
List of parameters used to monitor the unit performance

List of potential process equipment changes

The first interviews might not achieve all of the goals for this phase of the study, or some
new issues might arise during the interview process. Therefore some follow-up discussions
are usually necessary. The results of the interview should give the team not only general
plant information on which the benefits analysis is to be performed, but also detailed infor-
mation regarding the key process variables and relationships between process performance
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Figure 3.2: Modified benefits analysis procedure

and these key variables.

In the benefits study questionnaire, there is a list of key operating variables and product
qualities. These variables are of great importance and related to the quality of the product.
Data for these key variables should be recorded or retrieved from historical data. Also,
the economics of the process should be discussed in detail to develop the EPF, which is a
crucial component of the benefits analysis. Also, through the interview process, production
constraints and process bottlenecks should be identified, and the violation frequency of these
constraints should be recorded for the use in the probability constraints of the performance
calculation. Thus, sufficient information is collected to set up the performance evaluation
problem which is discussed in the next section.

3.2 Optimization-Based Performance Evaluation

A detailed explanation of optimization-based performance evaluation was given in Chap-
ter 2. An example was also presented to illustrate: the proposed performance evaluation
approach; the methods used to deal with the probabilistic constraints (IPC and JPC); the
solutions obtained for both IPC and JPC cases and the relationship between the solutions.

3.2.1 Key Process Variables Data Analysis

During the information collection, the key variables are identified and data for these vari-
ables are recorded or retrieved from historical databases. Data analysis includes checking
data trends, checking data distributions, calculating means and variances and calculating
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auto-correlations and cross-correlations.

If the key variables are independent of each other, each variable has an independent Nor-
mal distribution; however, in many cases, the key process variables are correlated. Then,
setpoint changes for one variable influence the other correlated variables. This correlation
can be calculated from process data of these variables and a joint distribution is used to de-
scribe the data distribution. For the purposes of this thesis, correlated data will be assumed
to follow a joint Normal distribution, then for a single variable or independent variables the
Normal distribution can be characterized by mean and variance, and for correlated variables
the joint Normal distribution that is characterized by a mean and covariance matrix Q.

3.2.2 Economic Performance Function

As introduced in Chapter 2, EPF is an important part in forming the objective function for
the performance evaluation problem. In the example in Chapter 2, an economic performance
function is set up for the key variables, which was a piece-wise linear function with negative
value on both ends. The function was explained in the example. In this section, guidelines
are given for what information should be obtained and how the information should be used
to set up the EPF.

The information required for developing the EPF is often difficult to gather. Market
prices for both products and feedstocks can be quite volatile and can vary substantially
with market conditions (i.e., economic recessions, etc.). Thus, some basis set of economic
information must be assumed for the purpose of a benefits analysis. Not only should the
price of the products and the raw materials be considered, but also the market demands
for the products and the availability of the raw materials must be considered. In addition,
the demand for different product grades also needs to be considered. Price and demand
are two elements that affect the plant economic performance, and it is these two factors
that dictate the direction for improving process profitability. When the process produces
different products grades, which each have individual prices and market demands, the total
effect of different production modes must be integrated into the EPF.

3.2.3 Constraints

The last step in the benefits calculation is to determine the constraints that must be con-
sidered for the purpose of benefits analysis. Possible process constraints include: product
specifications, product demands, raw materials availability, equipment limitation, environ-
mental limitation, etc. The only constraints considered in this thesis are product specifi-
cations and some other key variables specifications. The constraints can be divided into
linear constraints and nonlinear constraints, and in another way, deterministic constraints
and stochastic constraints.

Some of the constraints must be satisfied abeolutely, such as safety constraints; some
of them are less restrictive, such as product specification and can be violated with some
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frequency. In most cases, the product key variables specification is allowed to be violated
with some degree of freedom. For more important variables, the probability of constraint
satisfaction should be higher; while for those that are less important, the probability of
constraint satisfaction might be lower. When the variables are correlated, a joint probability
may be assigned and the constraints should not be treated as independent.

Some constraints should be treated as deterministic constraints (e.g., safety). Since
safety constraints can limit process profitability, they should be carefully investigated (and
specified in the benefits calculation) to ensure they are appropriate and not too restrictive.

IPC is used when the constraints are to be satisfied at different probability levels. As
illustrated in Chapter 2, the IPC problem is easier to solve. Therefore, the formulation of
the performance evaluation problem in IPC form is often preferred; the IPC formulation
fails to deal with the variables with correlations between each other, which is common in
multi-input and multi-output system. JPC is used when the constraints are to be satisfied
simultaneously with the same probability.

To sum up, the three components of the performance evaluation are: probability den-
sity function for the process variables, the economic performance function and the process
constraints. Given this information for a specific process, a performance evaluation prob-
lem can be formulated, the solution of which yields an optimal operating point and the
maximum process performance that can be expected.

3.3 Current System Performance Evaluation

One objective for evaluating the current control system performance is to confirm if the
current operating point is optimal (i.e., the mean values of the key process key variables
are as close as possible to the product specification). This is done by checking where the
location of current operating point, the variance of process key variables data distribution
is and percentage of product specification satisfaction.

Since, for the purpose of this work, the key process variables are assumed to be Normally
distributed, the measured variance is used in the performance evaluation problem for the
current control system. The decision variable in the optimization problem is the mean of
the key variables. Thus, the calculated mean (optimal operating point) is compared with
the current operating point and product specification. Results fall into three cases: 1) the
calculated operating point is closer to the specification than the current operating point;
2) the calculated operating point is the same as the current one; 3) the current operating
point is closer to the specification than the calculated one.

In the first case, the current operating point is not as close to the specification as possible,
potential profitability is lost. This lost profit can be reduced by simply shifting the current
operating point to the optimal operating point that is calculated from the performance
evaluation problem. In the second case, the current operating point is optimal, shifting the
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operating point will not create more profitability. In the last case, the current operating
point is running too close to the specification, which will make the operating cost higher
than expected. Thus, shifting the current operating point farther back should improve the
profitability of the operation.

3.4 Performance Limits

Generally automation improvements are credited with increasing process performance by
reducing the variance of key process variables, which allows the mean operating point to
be shifted closer to the specification. It is not clear, however, how much it is possible
to reduce the variance and as a result, how close the operating point can be moved to the
specification. A standard or benchmark needs to be adopted for the performance evaluation,
against which various automation upgrade options can be compared. Minimum variance
control is used as a benchmark for controller performance assessment in this thesis. The
calculated minimum variance is used as the theoretically achievable minimum variance in the
performance evaluation problem. Then, the maximum theoretically achievable improvement
for process performance is calculated based on this minimum variance. It, however, does
not mean that this potential can be fully achieved. Nevertheless, three choices exist to
improve the current performance. One is tuning of the existing control system, the second
is to design a more advanced control system, the third is redesigning the process. Only the
first two can be addressed via automation and will be focus of this thesis.

It has been shown (Harris, 1989) that for a single input single output (SISO) system
with time delay d, a portion of the output variance is feedback control invariant and can be
estimated from routine operating data. This is the minimum variance portion. To separate
this invariant term, the closed-loop output data needs to be modeled by an infinite-order
moving average (MA) process (Huang and Shah, 1999):

Ye = foar + foar + - + fa-101_(a-1) + faOt—d + fa+18t_(a+1) + - (3.1)

o

€t

where, a, is a white noise sequence and e, is the portion of the output that is independent
of feedback control (Harris, 1989). The minimum variance of the invariant portion of the
output can be estimated by time series analysis of routine closed-loop operating data, and
can be used subsequently as a benchmark for the theoretically achievable absolute lower
bound of output variance to assess control loop performance.

The FCOR (Filtering and Correlation analysis) algorithm was used to calculate the
minimum variance of a stable closed-loop process (Huang and Shah, 1999). Multiplying
Equation (3.1) by a¢,a¢—1,-- ,8:—4+1 respectively and then taking the expectation of both



sides of the equation yields

ra(0) = Elpa] = foo?
ra(l) = Elyar,] = fio3
rya(2) Elya,2] = fo0?

rya(d—1) = Elyt_ai1] = fa-102 (3.2)

where, a§ is the variance of a;. Therefore the minimum variance or the invariant portion of
output variance is

ore =R+ +fB+--+f1))02 (3.3)

Although a, is unknown, it can be replaced by the estimated innovations sequence ;. The
estimate a, is obtained by pre-whitening the process output variable y, via time series
analysis (Huang and Shah, 1999). Thus, 02 can be estimated from &, and 62, is then
achieved.

Minimum variance control benchmark may or may not be achievable in practice de-
pending on process invertability and other physical constraints on the processes; however,
as a benchmark, it provides useful information as to the quality of the current controller
performance and how much “potential” there is to improve controller performance.

The key information needed for minimum variance estimation algorithm discussed above
is the dead-time d of the SISO process. The difference between SISO and MIMO (multi-
input, multi-output) is the characterization of dead-time. For SISO case, dead-time is a
scalar quantity. For MIMO case, one way to characterize the dead-time is the interactor
matrix D (Huang and Shah, 1999). To obtain the minimum variance for MIMO system,
the interactor matrix D was introduced by Wolovich and Falb (1976), Wolovich and Elliott
(1983), as well as Goodwin and Sin (1984), which is the generalization of the SISO time
delay for the MIMO case. The definition and calculation of interactor matrix D, and the
algorithm for MIMO system minimum variance estimation are available (Huang and Shah,
1999).

3.5 Best Performance for Existing Control System

The different process variance between the current system and the minimum variance control
bench mark is the driving force for further control system upgrades. Since the current
controller may not be optimally tuned, the first approach to control system upgrade is
retuning the existing control system. Some of the following steps are typically involved
in this approach: small changes will be made to controller configurations; sensors need
to be checked and upgraded; control valves should be checked. The product trends after
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the retuning procedure will be analyzed. The process variance after retuning is 02,,,,,, Or
Qretune-

The difference between the current process variance and variance after retuning is the
basis for the performance evaluation of the retuned system. Using the same algorithm as
discussed in Chapter 2, the optimal operating point ¥ etune and the best achievable process

performance Jretune are estimated.

3.6 Best Performance for Proposed Control System

If the retuned performance is still far less than the theoretically achievable performance,
the potential process profitability may be achieved through designing an advanced control
system for the existing process. Since the performance of the proposed system needs to be
known before it is implemented, simulation is used to examine the potential process variance
reduction. Using the same algorithm as above, the optimal operating point ¥redesign and
the best achievable process performance Jyedesign are estimated.

3.7 Benefits Comparison

Performance evaluation algorithm is applied on four different control systems: current con-
trol system, retuned, redesigned and minimum variance control system. The key character
of these systems performance is the process variance. The performance of different control
systems is due to the process variance resulting from use of different control systems. This
can be illustrated from Figure 3.3.

As shown in the diagram, A, B,C and D represent the single process key variable data
distribution achieved under different control systems. The associated process performance
can be symbolized as J,4, Jg, Jo and Jp. The means of all these curves are located at the
estimated optimal operating points. Also, all of these distributions satisfy the same specifi-
cation violation frequency. Because of the different process variance, the distances between
the operating point and the product specification are different for these four systems, which
yield different economic performance.

The mean of A distribution is the farthest from the specification while the mean of
D distribution is the closest to the specification. The difference between the J4 and Jp
represents the maximum available profitability improvement that can be achieved through
control system upgrade. Improvement of the existing control system or designing a new
advanced control system leads to better control performance (represented by Jg, and J¢).
Process variation can be reduced and the operating point can be pushed closer to the
specification. Comparison of performance for these four systems are given in Table 3.2.

Benefits analysis not only evaluates the performance of the proposed control system,
but also considers the cost of implementing these upgrades. Thus, the implementation
and maintenance costs of different control systems should be deducted from the according
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Figure 3.3: Performance comparison (single variable)

Table 3.2: Performance comparison

Js — Ja Profitability available for retuning

Jc — Ja Profitability available for proposed changes

Jp —Jg Uncaptured profitability after retuning

Jp — Jc Uncaptured profitability after proposed changes
Jc — Jp Profitability for proposed changes beyond retuning

performance. The net benefits of different systems can then be compared (see Table 3.3).

Table 3.3: Benefits comparison

Jg —Ja — (Costg — Cost,) Benefits available for retuning

Jc —Ja — (Costc — Cost,) Benefits available for proposed changes

Jp —Jp — (Costp — Costg) Uncaptured benefits after retuning

Jp —Jc — (Costp — Costc) Uncaptured benefits after proposed changes

Jc — Jg — (Costc — Costg) Net benefits for proposed changes beyond retuning

3.8 Sensitivity Analysis

As discussed in Chapter 2, the optimal operating point is calculated by solving the perfor-
mance evaluation problem. Due to uncertainties and/or variations of the problem param-
eters, an optimal solution gained from a deterministic optimization problem may not by
itself be entirely useful (Ganesh and Biegler, 1987). Therefore, post-optimality analysis (or
sensitivity analysis) becomes necessary to ascertain how parametric variations affect the op-
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timal results under normal operations. An efficient and rigorous strategy for evaluating the
first-order sensitivity of the optimal solution to changes in process parameters is proposed
by Ganesh and Biegler (1987), and was adopted for sensitivity analysis of the performance
evaluation problem.

Consider the general performance evaluation problem:

m;?x J=£(¢(Yas.sc) 'f()'aiQ))dy
st.: (3.4)
hiy > s} — (h:Qhy)/2F (1 - &)

where,
C = economics
Q = estimated variance matrix of key variable data
s; = product specifications
a; = constraints probability levels
h; = model coefficients

The problem can be written in the general form:

max J(¥,p)

e

8.
gy,p) <0

where, g is a vector of inequality constraints, and p = [ Q sf] ai h; ¢ ]T . With the
assumptions discussed in Ganesh and Biegler (1987), the KKT conditions at the optimum
S_'o are:

V3L(Yo.po) = O (3.9)
g8a(Yo,po) = O

where L = J + u”g (Lagrangian function) and g4 are the active inequality constraints.
Using the Implicit Function Theorem, the first-order variation of the constraints is:
d[V3L(¥o.po)] = VyyLldy + Vyghdu+V,zL™dp =0 (3.6)
d[ga(¥o.po)] = Vyg ldy+V,gldp =0

Rearranging these expressions in the form of linear system of equations:

[ Vs LTO ] __ [ VssL? Vil ] [ V¥ ] 3.7)

Vpgio V?Sio 0 Vpu

The sensitivity of the setpoint for process variables to the parameters can be obtained
by solving Equation (3.7). However, not all of the parameters are of interests in this thesis.
It is assumed that the EPF is fixed during the benefits analysis period, as are the economic
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parameters c. The product specifications (s}) are also assumed to be known and fixed
during the benefits study. The model parameters h;, used in the probabilistic constraints,
will affect the solution to the performance evaluation problem; however, for the purpose of
this study, h; was assumed to be fixed while the key variables were assumed to follow a
Normal distribution.

The remaining parameters are Q and a;. For each particular control system, the covari-
ance matrix Q is assumed to be fixed in this work. Then, only the parameter a;, which are
specified (somewhat arbitrarily) during the benefits analysis, are considered here. There-
fore, the changes of process profitability J and process operating point ¥ with respect to
probability levels a; is the focus of this sensitivity analysis study.

It is clear that from Equation (3.7),

(V58] Va¥ = —Vag}’ (3.8)

and has a unique solution when V;g£° is invertible. This assumption is satisfied if any of
following two cases applies:

Case 1: If there is one independent active constraint for each §; at the optimum (i.e.,
gA = B), since % = H, the sensitivity of ¥ with respect to a is:

Vaoy = -H_IvagA

where
d9; o anryi29F N1 - aj)
dF Y(a;)
= —(h;Qh])" 2_da—jL
1
= —(h; hT i/2_%
( JQ '3 ) pde
and pdf; is the probability density function of h;y. Therefore,
i - 1
;’zj = (H):(h,Qb]) 22 (3.9)
where, (H™!); denotes the i*" row of H™!. Then,
B _ gy WQEDY L Sl
da, =(H )sz]—— = V2r(H™"):(h;Qh; Je ™™ (3.10)
At the optimum operating point,
di (h;i®—n;5°)2
B%? = V2r(H™)i(h;Qh])e *™ " = v2x(H')(h;Qh]) (3.11)



It is clear that the first-order change in the i** optimal operating condition with respect
to the j** probability level is a multiplication of it* row of H~! and variance which char-
acterize the distribution of h;y. Therefore, small change Aa; leads to a change of Ay; in
the same direction.

The sensitivity of the process profitability with respect to the change in probability level

d] dJ _ .,
da = dy- Y

Case 2: If not all of the probability constraints are active at the optimum, the optimal
solution can be partitioned as:

(3.12)

i=[y¢:lyu]

where, y. are constrained process variables and y, are unconstrained process variables.
Since the constraints are of the form:

hi¥ > s — (:Qh,)2F(1 — o)
which can be rewritten as:
7 >8] — (hiQh)2F(1 — ) — (@) i#3j (3.13)

Then, y. and ¥, can be identified through the optimization results. Equation (3.8) can be
written as:

Va¥e = - [V5.87] ' Vgl (3.14)

and Equation (3.11) becomes:
% = V2W(H-l)i(thh?) (3.15)
j

If the relationship between each key variables can be determined, the constraint param-
eter matrix H can then be developed. It, however, needs thorough understanding of the
process dynamics and process models, which is not the purpose of this thesis. In many
cases, it is easy to define each process variable specification individually, which leads H
matrix to be an identity matrix. Further, when the individual probability constraint levels
are assumed to be identical:

@ = m=aj=---=a (3.16)
H =1 (3.17)

Since
= = VERH)(b,QH]) (3.18)
(b;QbT) = VEwo? (3.9)
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at the optimum:

W _W_ f
da, ~ da V2 (3.20)

To this point sensitivity analysis discussions have focused only on the IPC case. For the
JPC case, the sensitivity of the process profitability with respect to the joint probability
level a can be obtained if the change of each individual probability level were known. For
example, the individual probability constraints are:

P =Pr(yi 2 s]) 2 an

and the joint probability constraint is:

Yi 28}
PJo=P1'( T ) >ay

The solution of the JPC problem not only finds p;; but also the associated p;

psi = Pr(y: 2 87) 2 ay;

It turns out that p;; > p;;, which means the individual probability level should be all
or partially increased to satisfy the joint probability level. The final probability level is
achieved through a combination of each individual probability movement. The basis 7 of
the joint probability movement can be calculated if each individual moving direction and
length is determined. Then, from p;; and p;;, the length is determined to be Ap; = p;; —py;-
Then, the basis is calculated:

S_180 8oy - L I
”[ Apy Dpy Opy ]T”2

It also can be seen from the illustration in Figure 3.4 that the basis is the combination of
each movement of individual probability level. Then the sensitivity of process performance
with respect to the JPC probability level a; is:

L
da; dag
where ax; = [ apn arp -+ Qe ]T . % can be calculated following the same procedure

as that of IPC case.

Once the sensitivity of process profitability and process operating conditions with respect
to the change in probability level (i.e., 2 and %) is obtained, from small changes in
probability level Aa, the corresponding change in the process profitability and process
operating conditions (i.e., AJ and A¥y) can be estimated:

A = %Aa
Ay = %Aa
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Figure 3.4: Illustration of basis of senstivity analysis for JPC case

Then, AJ for different control systems are calculated (i.e., AJ4y,AJg,AJc and AJp,
representing the performance of current system, retuned system, redesigned system and
minimum variance control systemn respectively) at the same probability level a. From Table
3.3, if it is assumed that based on nominal analysis, a decision is made to choose SY'S; as
the result of the benefits analysis study. The sensitivity of the performance of SY S; can
be easily seen from % There is also an alternative solution to this benefits analysis SY S;,
which yields the performance slight lower than the proposed system. The sensitivity of the
performance of SY'S; can be easily seen from %‘2— Comparing SY' S; and SY'S;, it is easy
to see that the profitability difference is AP = J; — J; — (Cost; — Cost;) > 0. However,
this conclusion is based on a specific probability level ag. The sensitivity of performance of
different systems with respect to a is different, which means the change of a may affect the
conclusion that SY'S; yields higher profitability than SY'S;. A key issue is :“ how much a
must change to affect the decision (i.e., SY S; yields no more profit than SY S;)?”. The first-

order Taylor series approximation of the net profitability of each system at the probability
level a is:

Ji(@) — Cost; = J;(ag) — Cost; + ﬂ:@%I (a — ag)
[7:]

Jij(a) — Cost; = Jj(ag) — Cost; + d(‘lj_%j—) (a —ap)
ag

Let Aa = (a —ag), Cost; and Cost; are assumed to be constants. Assuming that there
exists an a such that

J; — Cost; = J; — Cost;

37



which means SY'S; yields the same profit as that of SY'S;. Then,

Ji(ao) — Jj(ag) — (Cost; — Cost;) = ﬂ"j‘iﬂ Aa

Aa is then determined by:

The results fall within three cases:

Case 1: |Aa| > Aag, where Aag is a user defined constant. For the purpose of this
thesis, Aag is determined to be: Aag = 20%, which means if increasing or decreasing the
probability satisfaction level by 20% will not lead to AP = J;—J;—(Cost;—Cost;) = 0. The
original decision (i.e., SY' S; yields higher profitability than SY S;) is reliable. The evaluated
profitability for SY'S; is not sensitive to the probability level. Therefore, implementing SY S;
is appropriate.

Case 2: |Aa| < Aa,, where Aa; is also a user defined constant, Aa; < Aag. For the
purpose of this thesis, Aap is determined to be: Aag = 5%, which means if increasing or
decreasing the probability satisfaction level by 5% will lead to AP = J; — J; — (Cost; —
Cost;) = 0. The original decision is not reliable considering the change in probability level.
Therefore, implementing SY'S; is not the recommended solution to this benefits analysis,
and SY'S; should be considered as a candidate for control system upgrade.

Case 3: Aa; < |QAa| < Aag, the decision should be made based on both a and |Aa].
For example, if |Aa| = 10%, and the current probability level ag is 80%, at which SY'S;
yields higher profitability than SY S;. If probability level is raised up to @ = ag + |Aa| =
90%, the profitability of two systems drops to the same level. If 80% is good enough for
the production, then SY'S; should be implemented; however, if more than 90% is often
required, then SY'S; should be considered as a candidate.

-1
] [Ji(ao) — Jj(ag) — (Cost; — Cost;))

To sum up, two parameters are defined as lower bound and higher bound to justify
whether a decision should be kept. If |{Aa| > 20%, the decision should be kept; if |[Aa| < 5%,
the decision is sensitive to a and therefore should be discarded; if 5% < |Aa| < 20%, the
decision can be kept based on the values of both |Aa| and a.

Note that AP is a random variable, then AP = 0 is reliable only within a statistical
confidence interval. When the data used in the benefits evaluation is small, the variance
of AP should be calculated (i.e., oap), and AP £ oap = 0 is used in the sensitivity
calculation. However, in this thesis, the data set is large enough, AP can be taken as an
expected value AP.

3.9 Decision Making

Based on the information of benefits comparison and sensitivity study, a decision can be
made by choosing one of the options: keep the current control system; retune the current
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Figure 3.5: Decision making flow chart

control system; redesign an advanced control system. The procedure can be illustrated in

Figure 3.5. The symbols used in this diagram agree with those in Figure 3.3 and Tables 3.2
and 3.3.

3.10 Performance Tracking

The proposed control system is implemented because it yields the best performance for the
existing system. It, however, will not always be optimal because the assumptions made in
the performance evaluation (e.g., the market prices do not change, the operating mode is
fixed, and so forth). In addition, the controller performance will degrade with time, which
will also make the product deviate from the expected value. Therefore, it is necessary to
perform performance tracking.

The reasons of the unexpected poor performance should be analyzed, and the perfor-
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mance of the system should be reevaluated based on the changed informations.

3.11 Summary of Benefits Analysis Procedure

A complete control system benefits analysis procedure was discussed in this chapter, which
is based on the study by Marlin et al. (1991). The key part of benefits analysis, benefits
estimation, is performed with an optimization approach. Also, this procedure incorporates
the sensitivity analysis of process performance with respect to the probability level, which
is not considered in Marlin et al. (1991).

The modified benefits analysis procedure is illustrated in Figure 3.6. Work enclosed
by solid lines are discussed and performed in this thesis; work enclosed by dash lines are
recommended for future study.

The top part of this diagram, which is enclosed in a dash rectangle, denotes a flow chart
of a process. Products from this process are sold according to different market prices and
demands. At the same time, key process variables distributions are examined to evaluate the
product quality. The smaller the variance, the better the product quality. From the product
distribution and market prices, PDF (characterized by ¥ and Q) and EPF are developed,
which are used to formulate the performance evaluation problem. Incorporating the product
specifications as IPC or JPC into the problem, the performance evaluation problem is
formulated as a stochastic programming problem. The solutions to this problem are the
maximized process performance and the optimal operating points. Sensitivity analysis of
process performance with respect to the change of probability level is performed at the
optimal operating points. If process performance is sensitive to the probability level, the
proposed control system upgrade should not be implemented.

The performance of four different control systems alternative are determined. The im-
plementation cost should be deducted from the performance of associated control system.
The resulting benefits of four systems are then compared. Combining the results of bene-
fits comparison and sensitivity study, a decision can be made on whether a control system
upgrade can improve the process performance, and if yes, which proposed control system
(i.e., retuned control system or redesigned control system) should be implemented. The
final step is performance tracking.

Note that the work not discussed in this thesis are: modeling between process key
variables and product demands, raw materials availability, equipment limitations, environ-
mental limitations, and so forth; sensitivity analysis of process performance with respect to
the process or model parameters other than probability level; control upgrade auditing.



Deterministic

Stochastic

——'—ﬂController——

spot market future market:

}

Disturbance

U U R =

]

Key variables

data (quality)

'

PDF (y,Q)

Yes Norma No
distribution?

Data
transform

Economic performance

:

3 fun 1
i Model (empirical) ! ction
iProduct demands E J = | (EPF - PDF) dy
iRaw materials availability | ! ( _
Equipment limitation ' [Product specifications
EEnvironmental limitation + with probability level)
SOptimization
Optimal Maximized Sensitivity analysis | __ ! Sensitivity analysis
operating point| | profitability .I.L. probaility level] — :w.r.t other parameters:
Costcumn( quml
Cos’mng -—.J Jretune
Costmv S Juv
Yes No
e A i—ACOSt,-)O.
No Control |,
Upgrade
S Control Performance
! Aud e - I
;_-l_l_'_ti':g_“:‘ Upgrade { Trackin
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Chapter 4

Case Studies

The benefits analysis procedure outlined in this thesis was used on two case studies. In
the first case study, a benefits analysis was performed on a simulation of a pilot plant in
the Computer Process Control Lab at the University of Alberta. This pilot plant consists
of two stirred tank heaters in series. In the second case study, a similar benefits analysis
procedure was performed on a final stage of bleaching plant at Alberta Pacific Forest In-
dustries Inc.(ALPAC). However, different from the first case study, real data was used to
formulate the performance evaluation problem. The current control system performance
was evaluated against the performance limit calculated using the real data. The purpose of
the second case study is to determine whether there is a sufficiently large potential economic
benefit for ALPAC to warrant further study of the possible automation improvements for
this part of their bleach plant.

4.1 Two Stirred Tank Heaters in Series

The objective of the this case study is to illustrate the proposed benefits analysis procedure
using a simulation of two stirred tank heaters in series. In this study, the optimal process
profitability of different control systems was compared, and one of thern was chosen to be
implemented based on the results of the benefits analysis and sensitivity study.

4.1.1 Process Description

The process considered in this case study is two stirred tank heaters in series. For the
purpose of this study, the cold water and steam flow rates are the manipulated variables
(see Figure 4.1) . Inlet temperature T> and second tank level h; are the controlled variables.
The control objective is to keep T> and h; at the specified values hy = 40 cm and Ts = 35
°C. This process may be affected by disturbances such as the ambient temperature and by
the manipulated variables. Both the process model and the disturbance model are given in
Figure 4.2.
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Figure 4.1: Two stirred tank heaters in series
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Figure 4.2: Two stirred tank heaters in series model
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The Simulink diagram of this process is shown in Figure 4.3. Current control system for
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Figure 4.3: Simulink diagram for two stirred tank heaters in series

this MIMO system are PI controllers, whose parameters are:

Table 4.1: PI controllers parameters

P 1
Controller; 1 0.08
Controller, 2 0.6

Since the current performance will be compared with the retuned and redesigned (MPC)
control systems, the implementation costs of these two systems were assumed to be 0.08 M$/year
and 0.2M$/year respectively (These values were chosen arbitrarily for illustration purposes,
but a representative relative costs).



EPF

The key variables for this process are defined to be the controlled variables, T5 and h>. The
EPF for both key variables are expressed as following:

[ -2 hy < 35¢cm
b =] Laha—51 35cm < hy < 40cm )
1= —0.6hg + 25 40cm < hy < 45¢em :
| -2 ho > 45cm
[ -2 T, £ 25°C
4 =] OTR-195 25°C<T:<35°C 42)
2 =\ _06Tn+22 35°C < T» < 40°C .
| 2 T; > 40°C

The expressions for both ¢; and ¢, are formulated based on the process profitability at
different product qualities. The expressions were arbitrarily chosen for illustrative purpose.
At the product specifications, ¢; and @, are of the highest values, ¢, = 58/ton, ¢, = 58/ton.
To the left, process profitability goes down gradually to ¢, = —28/ton and ¢, = —28/ton
at the points hy = 35 cm and T, = 25 °C} to the right, process profitability falls down
dramatically to ¢; = 1$/ton and ¢, = 1§/ton at the points ho = 40 cm and T = 35°C ,
then goes down slowly to ¢, = —28/ton and ¢, = —28/ton at the points ha = 45 cm and
T, = 40°C. It is clear from the expressions that each EPF is a function of only one key
variable. Since it was assumed that the process profitability can be obtained individually
from the values of hs and T5, ¢, and ¢, are independent to each other.

PDF

At current operating condition, the data for h; and 7> were recorded and plotted in Figure
4.4. A Q-Q plot was used to check the normality (Johnson and Wichern, 1992) of the data
distribution (see Figure 4.5 and Figure 4.6). As seen the Q-Q plot is approximately linear
(Normally distributed data should produce a linear Q-Q plot). For the purpose of this case
study, the data was recognized to satisfy Normal distribution. The standard deviations were
calculated from the data and found to be, 01 = 1.0577, 02 = 0.7346. Thus, the probability
density function for each set of data can be expressed as

N 1 _(v,-—if)z )
pdfl = f(yiy yi-:ai) = \/ﬁﬂ'e 2 1=1,2 (4'3)

Note that y; denotes the mean value for one of process variables and o; denotes the corre-
sponding standard deviation.

Constraints

Although many constraints might be incorporated into the process, only key variable specifi-
cations are constrained with an assumed probability leve] in this case study. The constraints
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Figure 4.6: Q-Q plot of T data

were formulated as

p1 = Pr(he > 37 em) > 90%
po =Pr(Tz > 33 °C) > 90%

4.1.2 Case Study Procedure

This case study was performed in the following steps:

1.

N o s W

Current control system performance evaluation

Performance limits (Minimum variance control system evaluation)
Retuned control system performance evaluation

Redesigned control system performance evaluation (MPC)
Performance comparison

Benefits comparison

. Sensitivity analysis on the proposed control system upgrade

Current System Performance Evaluation

As discussed in Chapter 3, with the information of EPF, PDF and constraints, the perfor-
mance evaluation problem for this case study is formulated as

max J= [($-fi)dn + [(¢:- f2)dy2
y Y Y2

subject to: (4.4)
IPC p1 = Pr(y, > 37 cm) > 90%
p2 =Pr(y2 > 33 °C) > 90%
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or

max J= [(¢- fi)dyr + [(¢2- fo)dyo
y Y1 Y2
subject to: (4.5)

— y1=237cm
JPC pO—Pr(y2233°C)290%
where, y = [y1,¥2]’, y1 denotes h; and y, denotes T>.
Current performance was evaluated using the variance from the current data. An op-

timal operating point was obtained by solving the IPC and JPC problem. The individual
probabilistic constraints can be converted to:

7. 237+136 cm
%2 >33+0.94 °C

The optimal operating points were found at the constraints:

y; = 38.36 cm
Yy =33.94°C
The total optimized profitability was J = 4.25 $/ton.
In the above calculation, it was assumed that two controlled variables are independent.

In fact, they are correlated to some degree. The correlation between the two variables was
found to be:

1 -0.024
k= [—0.024 1 ]

It is easily seen that the correlation between two variables is not large, however, for the
purpose of illustration in solving JPC optimization problem, the correlation is considered.
The joint probability constraints are specified as:

wore [ RIRE ]2

Performance Limits

The model used in this simulation is specified:

-2_ -3
[ ha ] _ [ _—g—r—a—rlg%%q- 3.},0%41,,- 0 ] [ cold water flow rate }
= —0.0084¢~3+0.0061¢—* 0.0017¢—2+0.0115¢—3
T 1-0.8404¢g-1-0.0957¢—2 1—1.1342q 1+0.2883¢—2 steam flow rate

The interactor matrix D was calculated using the algorithm by Huang and Shah (1999).
The calculations yield:

o-[¢ 8]
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The minimum variance for this MIMO system could be calculated using the algorithm by
Rogozinski et al. (1987) and Peng and Kinnaert (1992) or, since the interactor matrix is a
simple matrix, the minimum variance of each variable can be calculated individually from
each output data (i.e., treated as two independent SISO systems respectively) (Huang and
Shah, 1999).
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Retuned system and Redesigned system

The current controllers were tuned and the parameters of retuned controllers are given in
Table 4.2. A Model Predictive Controller was used as the redesigned system for this case
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study. This controller was designed using the MPC Toolbox in Matlab (Version 5.3). The
parameters for this controller are given in Table 4.3.

Table 4.2: PI controllers parameters for retuned system

P I
Controllery 5 0.13
Controller, 2 0.4

Table 4.3: MPC controller parameters

Parameters Value
r = [ 00 ]
M = 2
P = 6
ywt = 11
uwt = [ 31
ug = 00
Ugat = [ -10 -10 10 10 10 2 2J

4.1.3 Results

Current System Performance

The simulation results for both IPC and JPC are compared in Table 4.4.

Table 4.4: Comparison of IPC and JPC results

IPC JPC
% om 38.36 39.37
% °C 3394 33.98
p1 % 90.18 98.72
po % 90.14 91.25
po % 81.16 90.11

Process Profitability (8/ton) 4.26 4.04

As can be seen from Table 4.4, the individual probability constraints were satisfied,
with one probability reaching 90.18% and the other 90.14%. However, the probability of
satisfying both constraints was only approximately 81%. This was due to the correlation
between the constraints and the inability of the IPC algorithm to handle this correlation.
The JPC algorithm delivered the specified 90% constraint satisfaction frequency at the
expense of decreasing the objective profits to 4.04 §/ton, which is a little smaller than the
value of 4.26 $/ton delivered by the IPC algorithm.
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Process Variation Comparison for Four Control Systems

The complete results for process data variation are listed in Table 4.5.

Table 4.5: Comparison of different control systems

Current Retune Redesign MV Limit
oy 10577 0.9251 0.9117 0.6377
o2 0.7346 0.7187 0.7090 0.5114

The process variation reduction is shown in Table 4.6. It is seen from Table 4.6 that there
exists large potential process improvement opportunities, which can be partially achieved
by retuning or redesigning the system. The second choice, however, seems not encouraging
because the process variation delivered by redesigned system is only marginally smaller than
that of retuned system.

Table 4.6: Process variation reduction

Current vs Current vs Current vs Retune vs

MYV Limit Retune Redesign Redesign
Aoy /oy (%) 65.90 12.54 13.80 0.46
Doafoa (%) 30.38 2.16 2.56 0.40

Performance Comparison

Results of performance evaluation for four different control systems were compared in three
cases: unconstrained optimization problem; IPC problem; JPC problem. They were given
in Tables 4.7, 4.8 and 4.9 respectively.

Table 4.7: Comparison of different control systems — no constraints

Unconstrained . . .
optimization Current Retune Redesign MV Limit
Yiu CM 36.82 36.65 39.40 38.50
Pou °C 33.84 33.86 34.91 34.67

Ju (8/ton) 6.55 6.71 6.73 7.29

It can be seen from Tables 4.7, 4.8 and 4.9 that Jeyrrent < Jretune < Jarpe < Jarv.
For the purpose of this case study, JPC results were used for further comparison. The
maximum potential profitability for current control system is 5.51 —4.00 = 1.51 $/ton. The
best achievable profitability for existing system is 4.14 — 4.00 = 0.14 $/ton, compared with
the best achievable profitability for proposed advanced control system, which is 4.19—4.00 =
0.19 $/ton, the former profitability is just slightly smaller than the latter one. Since

process net benefits = process profitability — costs
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Table 4.8: Comparison of different control systems with IPC constraints

IPC Current Retune Redesign MYV Limit
Yy cm 38.36 38.19 38.17 37.82
Yy °C 34.93 34.92 34.90 34.66
p % 89.93 90.12 89.92 89.81
po % 90.02 90.14 90.04 90.24
po % 80.93 81.17 90.16 81.03
J (8/ton) 4.72 4.88 4.93 5.97

Table 4.9: Comparison of different control systems with JPC constraints

JPC Current Retune Redesign MV Limit
yi cm 39.56 39.31 39.40 38.50
¥y °C 34.94 34.95 34.91 34.67
o % 99.14 99.36 99.44 99.21
P2 % 90.84 91.16 90.69 90.67
po % 90.01 90.46 90.16 90.01
J (8/ton)  4.00 4.14 4.19 5.51

The throughput of the system was 2Mton/year. Then, benefits for retuning the control
system were 0.14 8/ton x 2Mton/year — 0.08 M$/year = 0.20M$/year. The benefits from
redesigning a MPC controller for the process were 0.19 $/ton x 2Mton /year —0.2M$ /year =
0.18 M8 /year. The process profitability/benefits for different systems are compared and

given in Table 4.10.

Table 4.10: Benefits comparison for Two Tank Heaters in Series

Profitability /Benefits comparison

(MS$/year) Description
Jretune — Jourrent = 0.28 Profitability available for retuning
Jrarpe — Jeurrent = 0.36 Profitability available for proposed changes
Irav = Jretune = 2.74 Uncaptured profitability after retuning
Jarv — Jarpc = 2.64 Uncaptured profitability after proposed changes
Irepc — Jretune = 0.10 Net profitability for proposed changes beyond retuning
Jretune - qurrent" = 020
Costretune . Net benefits after retuning
JA[PC - qurrent = 0.18
—Costprrpe : Net benefits after proposed changes

Since the cost of implementing the proposed control system was much higher than
retuning the system, the total benefits for designing advance control system was less than
that of retuned system. Therefore, the proposed MPC was not economically acceptable
in this case study. Before the decision of retuning the current control system is made, a

52




sensitivity analysis of process operating condition with respect to the probability constraint
level should be performed.

Sensitivity Analysis

The sensitivities of optimal operating point for controlled variables y (f’g and Eg) with
respect to the change of probability level a can be determined using the developments of
Chapter 3. The sensitivity results for the retuned system were given in Table 4.11.

Table 4.11: Sensitivity analysis of process profitability with respect to a

IPC_JPC
Opt. Process Profitability($/ton) 4.88 4.14
= -0.5961  -0.6

& 2.0194 -2.1281

of -4.3863 -1.5825

Aa +1% +1%

Predicted Opt. Profitability($/ton) 4.76 3.98
Calculated Opt. Profitability($/ton)  4.83 4.12

As can be seen from Table 4.11, at the optimal operating point, the process profitability
for IPC and JPC problems are 4.88 $/ton and 4.14 $/ton respectively. The first-order
change of process profitability with respect to the change of process key variables — h, and
T, are -0.59, -0.60 and -2.02, -2.13. This implies that the increase in ko and T operating
point leads to the decrease of total process profitability for both IPC and JPC problems.

The first-order change of process profitability with respect to the individual proba-
bility level was calculated to be -4.39. This means when probability level increase from
90% to 91%, the total process profitability will decrease by 4.39%. The predicted prof-
itability and calculated one were given in the table. For JPC, T was calculated to be
[ 0.9836 0.1801 ]T, the predicted optimal process profitability after the 1% change in
probability level was calculated to be 3.98 $/ton. The simulation result was also given in
the last row of the table.

For IPC case, if there is a small change in the probability level, say Aa = +1%, the
associated process profitability will decrease by 4.3863 x 1%/4.88 = 0.9%. For JPC case,
the predicted optimal process profitability changes from 4.14 $/ton to 3.98 $/ton after the
probability level increased from 90% to 91%.

Following the same procedure, the sensitivity results for different systems were obtained
and given in Table 4.12. Based on the results in Table 4.12, a decision was made to
implement the retuned system. However, is the retuned system really reliable compared
to the current system? Following the method discussed in Chapter 3, Aa for the current
system and the retuned system were calculated to be 45.97%. It is clear that to achieve the
same benefit as the current system, the probability satisfaction level of the retuned system

53



should be increased by 45.97% > 20%. Therefore, the performance yielded by the retuned
system is reliable according to the sensitivity analysis discussed in Chapter 3.

Table 4.12: Sensitivity analysis of process profitability with respect to a for different systems

JPC Current Retune Redesign MV Limit
Opt. Process Profitability($/ton) 4.00 414 4.19 5.51
Operating Cost ($/ton) 0 0.04 0.1 0.5
o -1.8005  -1.5825  -1.6120 -1.3872

4.1.4 Discussion

Combining the results from the performance evaluation and comparison of different control
systems, the conclusion can be drawn: 1) There is substantial opportunity to improve the
process profitability for this case study; 2) The retuned control system is recommended to be
implemented based on the control system performance, implementation cost and sensitivity
to the probability level.

4.2 ALPAC Bleach Plant D, Stage

In the first case study, the proposed benefits procedure was applied on a simple simulated
process. In this section, the proposed procedure was applied on a real process, a bleaching
plant D> stage, and real process data was used in the benefits analysis. The objective of
the study is to determine whether there is sufficient potential to warrant further study into
control system improvement.

4.2.1 Bleaching Plant Description

“Bleaching is a chemical process applied to cellulosic materials to increase their brightness.
Brightness is the reflectance of visible light from cellulosic cloth or pulp fibers formed into
sheets. Bleaching increases the capacity of paper for accepting printed or written images
and so increases its usefulness.” (Dence and Reeve, 1996) gives the simple definition and
objective for bleaching.

In the bleaching process, chemicals (including oxidants such as Cls,ClO2, 02, H2O2,
and alkali such as NaOH) are mixed with pulp suspensions. The required brightness can
be sequentially achieved by controlling the retention time, temperature, pH and so forth.
The costs associated to the bleaching process include those of chemicals, steam, and electric
power, etc.

ALPAC is one of the first kraft pulp mills specifically designed to incorporate 100%
chlorine-dioxide bleaching. The pulp mill is designed to produce a minimum of 1,500 ADt
(Air Dry metric tones) per day of bleached hardwood pulp or 1,250 ADt of bleached softwood
pulp. In ALPAC’s bleaching system, chemicals are charged sequentially with intermediate
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washing between treatments (stages), because it is not possible to achieve sufficient removal
or decolorization of lignin by the action of any one chemical in a single stage. Four stages
Dy, Do, Eop, and D, were designed to achieve the required product specification. However,
Dy stage is only used as a pre-washer because of the good satisfaction of the product.

Dy stage This stage was originally designed as the third stage in the whole bleaching
series. Now, only the washer in this stage is used as a pre-washer of the feed stock coming
from digester.

Dg stage In this stage, the pre-washed pulp was mixed with H>SO; and steam to adjust
the pH, followed by the charge of CiO,. As ClO; bleaching proceeds, the concentration
of chemical structures in the pulp that cause the color in the pulp decreases. The pulp
brightness increases fast initially, then it slows down and another stage is needed to achieve
higher brightness.

Eop stage In this stage, three chemicals are charged sequentially. NaOH is used to
remove the lignin made potentially soluble by the previous acidic oxidizing stage. The
addition of O; and/or H,0; result in a reduced requirement for ClO, dosage in later stages
to attain the same brightness target. Or, certain brightness can be reached with fewer
stages.

D, stage This is the final stage of bleaching process. According to the pH and brightness
of the incoming feed from the Eop stage, H2SO4 and ClO: are charged into the pulp. After
almost two hours of reaction time, the high brightness pulp goes through the final washer,
then goes to the pulp machine system.

This stage plays a very important role in the whole bleaching plant. The measurement
of some key variables are included in this stage. Therefore, Ds stage is chosen as the object
for benefits analysis.

4.2.2 D, Stage Process Description

The mixture from Eop stage is retained at a prescribed pH, temperature, and concentration
for a specified time period. The progress of the bleaching reaction is monitored by measuring
pulp lignin content (Kappa Number), pulp brightness, and residual chemical. Bleaching
processes are monitored by on-line sensors and process control algorithms that have been
devised to achieve product quality targets (i.e., Brightness) with efficient use of chemicals
and energy.

The rrincipal objective of pulp bleaching is to achieve a high brightness with several
other secondary objectives. Such secondary objectives are usually end use specific and
can include high brightness stability, pulp cleanliness (freedom from colored particles), and



cellulose content. These objectives must be achieved without compromising the strength of
the final product.

Bleaching costs include those for ClO., H2SO,, steam, electrical power and so forth.

Capital costs and operating costs associated with the bleach plant must also be taken into
consideration.

Typical bleach plant control systems incorporate both feedback and feedforward control
loops.

Bleach Plant Variables

The process variables considered in D, stage are divided into manipulated, disturbance and
controlled variables (see Tables 4.13 and 4.14).

Table 4.13: ALPAC bleaching plant D, stage process variables

Manipulated Variables Disturbances
ClO; flow Incoming pulp flow
H>SO4 flow Incoming consistency
Dilution water flow Incoming brown stock kappa number
Steam flow Incoming temperature
Bleach chemical strength

Table 4.14: ALPAC bleaching plant D, stage process variables cont’d.

Controlled Variables Sensors
Brt. Brt.
Kappa (Lignin Content) Chemical Residual
pH pH
Viscosity Temperature
Chemical Residual Level
Dirt Consistency

Flow

Disturbances may occur prior to the bleach plant or may occur between the bleaching
stages. For example, washer disturbances can alter the consistency and flow into each stage.
In addition, the concentration of the bleach chemical solution being charged to each stage

can vary with time. Other disturbances may include the production mode switching or
equipment failure, etc.

Key Variables Analysis

Key variables in D, stage are chosen from the 15 process variables listed in Tables 4.13
and 4.14. These variables are related directly or indirectly to the product quality and/or
process cost. Thus, product type and associated specifications need to be identified.
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The main products include high brightness pulp, normal brightness pulp (hardwood)
and normal brightness pulp (softwood). The product changes based on market demand.
Normal brightness pulp (hardwood) has the largest demand, while high brightness pulp has
the lowest demand. The brightness (Brt.), tower temperature (Temp.) and pH after the
retention tower are the key variables considered in this thesis.

Feeds to the D- stage include pulp from the Eop stage (disturbance), HoSO,, steam,
ClO; and water into the washer are manipulated variables. Key variables in D, Stage are
listed in Table 4.15.

Water
S
Temp. ---
| Brightness
Steam -PH
 S—
Pulp from
Eop Stage ? t
H,SO, ClO,

Figure 4.7: D, stage flow chart

Table 4.15: Key variables in D, Stage

Key variables Target Current
Brt. %ISO 90.5
pH 48 5.37
Residual, g/L 0 0
Acid charge, Kg/ton 74
ClO; charge, Kg/ton <20 1.0
Steam
Tower Temp., °C 70 75
Tower level, % 70 67

EPF

Economic information such as market price for the product and operating cost were col-
lected. For the purposes of this thesis, only chemical cost and steam cost are considered.
The pulp was valued according to its brightness and dirt percentage.
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Figure 4.8: Economic performance function for brightness

Product Price The price of the normal brightness (hardwood) is 5008/ton, while the
brightness is a little lower (88%1SO ~ 90.5%JS0), it will be repulped with higher brightness
pulp, therefore, the estimated price is 300$/ton. The pulp with very high brightness requires
a lot of chemical charge, which dramatically reduces the profitability of the pulp. On the
other hand, if the pulp brightness is too low, it requires too much high brightness pulp
to repulp it, which makes the production economically unacceptable. Considering the cost
of ClO: charge, royalty for producing the chemicals on line and other costs (including
sale cost), the profitability for the pulp at the specification is 508/ton. The profitability
for off-specification pulp is no more than 308/ton. The profitability for producing very
high and very low brightness pulp is —108/ton Based on these consideration, the economic
performance function for brightness was defined as:

-10 Brt < 85%ISO
bys(8/tom) = 7.27Brt - 628.18 85%ISO < Brt < 90.5%ISO (46)
brt —17.14Brt +1601.43 90.5%ISO < Brt < 94%ISO :
-10 Brt > 94%ISO

Operating Cost

ClO; cost was included in the brightness economic performance function. Thus, only steam
cost and H2S04 cost are considered here. If the effect of the temperature and pH on
pulp brightness is ignored, the cost function is linear. A low operating temperature reduces
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Figure 4.9: Bleach plant D, stage key variables data

steam costs and a high pH reduces H>SO; charge. The temperature, however, must be kept
within a range where a specific brightness can be achieved. For a very precise calculation,
a model of the relationship between temperature and brightness, pH and brightness would
be required. This level of accuracy should not be required for the purposes of this work and
is not possible given the inaccuracies of some of the problem data (e.g., economics). Then,
the cost functions relating steam and temperature, as well as acid cost and pH are:

Cremp = 0.1667 x Temp — 4.8333
Corr = —0.7565x pH + 10.2756

In this case study, data was retrieved from the same operation mode —normal brightness
and hardwood. The data was recorded in 12 minute interval, which yielded 2300 data that
were used for benefits analysis. Raw data for Brt., Temp. and pH are shown in Figure 4.9.

From Figure 4.9, it can be seen clearly that brightness is approximately 91.5 ISO%, but
there are two large spikes in the data. The spikes stay far below the specification (90.5
ISO%) for 70 minutes before it is changed back to the normal value. This is due to a
disturbance from an upstream process. Note that it takes appraximately 70 minutes to
observe the effect before operator can compensate for off-specification product. For the
purpose of performance evaluation, the obvious outliers were discarded.
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Figure 4.10: Q-Q plot of Brt data

The data distribution was checked for Normal distribution and the mean, variance and
the correlation between key variables were calculated. (The mean, variance and correlation

between key variables are given in Table 4.16).

Table 4.16: Key variables data analysis

mean standard deviation minimum maximum

Brt. 91.3822 0.7287 87.0649 93.2278
Temp. T71.8553 1.5077 62.6125 75.1828
pH 4.6254 0.2212 3.5946 6.2232

The covariance matrix of the key variables was calculated as:

0.5310 02413 0.0144
Q=1 02413 22731 -0.0240
0.0144 —-0.0240 0.0489

The correlation matrix was determined to be:

1.0000 0.2196 0.0895
R=1] 02196 10000 -0.0721
0.0895 —0.0721 1.0000

As can be seen that the correlation between Brt and Temp was 0.2196, slightly larger than
that between Brt and pH, which was 0.0895, and pH and Temp, which was -0.0721.
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Figure 4.11: Q-Q plot of Temp data

Constraints

As discussed in Chapter 3, a lot of constraints could be considered for a comprehensive
benefits analysis. However, for the purpose of this case study, only product specification
and operating limits are considered. Product demands, throughput, feed availability and
so forth were not considered in this study. This is usually the most important constraint in
the performance evaluation calculation.

The objective is to maximize the product profitability with the minimum cost; however,
based on the market prices and buyers’ requirements, it is not wise to produce as high
quality product as the process can without considering the chemical charge and other costs.
Therefore, a reasonable probability level for product specification satisfaction is made either
by the customer or engineers. Similar to the first case study, 90% was chosen as the
probability level. The constraint was specified as:

Pore = Pr(ysre = 90.5 %ISO) > 0%

To achieve specified brightness, the key variables (e.g., reactor temperature and pH)
are limited to a small range. It was assumed that within this specific range, Temp or pH
changes do not impact the brightness. These two constraints were specified as:

PTemp = Pr(68 °C < yremp < 72 °C) > %0%
Pporr = Pr(4.2 < ypy <5.2) > %0%
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Some constraints that were not considered in this case study include product demands,
plant limitation, feed availability, production rate limitation and so forth. Product demands
can have a substantial impact on the process operation (i.e., operating mode). In this thesis,
operation mode changes are not included and only one operation mode was used through
the whole benefits analysis. The designed throughput of ALPAC bleaching plant is 1800
ton/day and was used as a constant in the case study. Wood chips are fed to the digester
continuously, chemical are produced on site. Therefore, no feed limitation is considered.

4.2.3 Case Study Procedure

This case study was performed in the following steps:
1. Current control system performance evaluation
2. Performance limits (minimum variance control system evaluation)
3. Performance comparison
4. Benefits comparison
5. Sensitivity analysis on the minimum variance control system upgrade

Performance Evaluation Problem

Based on the information collected during the first phase of the benefits study, the perfor-
mance evaluation problem was specified as:

max J= f (¢Brt - fBrt)dyBre — f (CTemp . fTemp)dyTemp - f (CpH : fpﬂ)dypﬂ
Yy Y: Y2 Y2

subject to:
PBrt = Pr(yBrt > 90.5%130) > 90%
IPC PTemp = PT(68°C < Yremp < 72°C) > 90%
Pprr = Pr(4.2 < ypur < 5.2) 2 90%

or
yare 2 90.5%ISO
JPC po=Pr| 68°C < yremp <72°C | > 90%

(4.7)

In solving this performance evaluation problem, the expected profitability is maximized

by integrating the economic performance over the product key variable distribution and
deducting the associated steam and acid cost, subject to the appropriate set of constraints.

Performance Limits

To calculate the minitnum variance, the process model was identified using Identification
Toolbox in Matlab Version 5.3:

—0.0753+0.0602¢"% 4
Tge 1-1.9164¢-1+0.93533-24 0 0
T=|T — 0 —0.0264+0.0267¢} -2 —0.0059
= | fTemp | = 1—1.8668¢-1+0.8669—2 1 1-1.9990¢~1+0.9998q—2
Tou 0.0481

62

q—2

-2 —0.0002 -2 0.0351-0.0379¢~> _ _1
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This process has a diagonal interactor matrix
gt 0 0
D=|0 ¢ 0
0 0 ¢

lim DT = lim T=K
q-l._.o q—l_.o

that

Since the interactor matrix of this MIMO system is a diagonal matrix, the minimum
variance of each variable can be calculated from each individual output.
For brightness, the system time delay is estimated from Figure 4.12.
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Figure 4.12: Impulse response estimate (Brt.)
4.2.4 Results

Current Operation Performance Analysis

The current control strategy is to keep the product as far above the specification as possible
without much consideration of the cost of chemical charge. Current performance is analyzed
by checking both constraint satisfaction and the profit flow at the mean operating point.

It can be seen from Table 4.17 that the two of three key variables are satisfied, while
the specification satisfaction of Temp. is only 57.24%, which leads to the JPC satisfaction
only to be 49.96%.
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Figure 4.13: Correlation analysis for residuals (Brt.)

Table 4.17: Current performance evaluation

Variables Operating Point IPC JPC  Profitability ($/ton)
Brt. 91.3822 %ISO  92.47%
Temp. 71.8533 °C 57.24%
pH. 4.6254 97.76%

49.96% 17.7211

Current Performance Improvement

The optimal operating point for current system was calculated and the profitability was
compared with the current one. The improvement was listed in Table 4.18.

Comparing the results in Tables 4.17 and 4.18, it is clear that the optimal operating
points for three key process variables are located. The associated IPC profitability is 17.7709
$/ton, which is larger than the current process profitability, 17.7211 $/ton. The JPC prof-
itability is less than that of IPC case, which mainly because the number of the variables in
the constraints and the correlation involved in these variables.



Table 4.18: Current performance improvement

IPC JPC
Brt. 91.2439%1S0O 91.6827%ISO
Operating Point Temp. 69.9322°C 71.3793°C

pH. 4.9165 47179

Brt. 89.94 94.35
Spec satisfaction (%) Temp. 90.17 97.82

pH. 89.96 97.83
Spec satisfaction (%) Joint 73.71 90.20
Profitability (3/ton) 17.7709 14.5201

Performance Limits

Using the FCOR algorithm (Huang and Shah, 1999), the standard deviations of these
variables were:

OmeBre = 0.3129
Tmypti = 0.0436

The same performance evaluation problem is solved using the minimum variance. The
results are listed in Table 4.19.

Table 4.19: Performance limits

1PC JPC

Brt. 90.9010%1SO 90.9208%1S0O
Operating Point Temp. 69.6099°C 70.8948°C

pH. 5.1441 5.0451

Brt. 89.91 94.22
Individual Spec Satisfaction (%) Temp. 90.01 97.98

pH. 89.82 97.97
Joint Spec Satisfaction (%) 73.31 90.20
Profitability ($/ton) 20.9012 20.5962

As can be seen from Table 4.19, with the reduction of variance, the operating point can
be moved closer to the variable specification without violating the probability constraints.
The profitability could be increased 18% to 20.9012 $/ton with individual probability con-
straints. If the joint probability constraints are used in the optimization, the profitability
could be increased 44% to 20.5962 $/ton. If the throughput was taken as 1800 ton/day,
the total potential profitability for current production is:

(20.5962 — 14.5201) $/ton x 1800 ton/day = 10.8 K'$/day
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However, this is theoretically achievable profitability without considering the cost and prac-
ticality of implementing the minium variance controller. Nevertheless, a significant improve-
ment can still be expected from using retuning controllers or redesigning controllers.

Sensitivity Analysis

The sensitivities of operating condition of controlled variables y (E;t, Il‘e\‘r-r; and Efi ) with
respect to the change of probability level a follow the relationship developed in Chapter 3.

The sensitivity analysis was performed on Minimum Variance control system to justify
the potential achievable process profitability improvement. The results of sensitivity study
were given in Table 4.20.

Table 4.20: Sensitivity analysis of ALPAC bleaching plant D> stage profitability with respect
to probability level change

IPC JPC
Opt. Process Profitability ($/ton) 20.90 20.596
d—;!— 0.1982 -0.1315
4
Tor— —-0.1667 -0.1667
yTemp
d—g.L 0.7565  0.7565
H
o —0.6070 —0.4594
Na +1% +1%

Predicted Opt. Profitability ($/ton) 20.895  20.591
Calculated Opt. Profitability (8/ton) 20.872 20.530

As can be seen from Table 4.20, at the optimal operating point, the ALPAC bleaching
plant D, stage profitability for IPC and JPC problems are 20.901 $/ton and 20.596 $/ton
respectively. The first-order change of process profitability with respect to the change of
process key variables — Brt, Temp and pH are 0.1982, —0.1667, 0.7565 and —0.1315, -
0.1667, 0.7565. The result shows the different direction on process profitability with respect
to the change in Brt for IPC and JPC cases.

For IPC case, the sensitivity of the process profitability with respect to the change of
probability constraints level was calculated to be -4.3863. This means that if there is a
small change in the probability level, say Aa = +1%, the associated process profitabil-
ity will decrease by 0.607 x 1%/20.596 = 0.003%. For JPC case, @ was calculated to
be [ 0.0984 0.6958 0.7114 ]T, the predicted optimal process profitability changes from
20.596 to 20.591 after the probability level increased from 90% to 91%. The percentage of
decrease is (20.596 — 20.591)/20.596 = 0.0024%.

The sensitivity of process profitability with respect to probability level for the current
system is also calculated to be: d—;’;‘ = —1.0869. The assumed implementation cost for
minimum variance control system is 58/ton.

Based on the profitability yielded by the minimum control system, there is large potential
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benefit between the current system and the minimum control system. However, is this result
reliable if there is some change in probability level a? According to the sensitivity analysis
procedure discussed in Chapter 3, to change the decision that there is obvious potential
benefit for the current system upgrading, |Aa] is:

|Aaj = (—1.0869 + 0.4594)71(20.596 — 14.52 — 5)
= 171.2% >> 20%

Therefore, the potential profitability between the current system and the minimum variance
control system is reliable.

4.2.5 Discussion

It was shown from the results of sensitivity study that the first-order change of process
profitability with respect to the change in probability level is very small. Also, to achieve
the same benefits, the current control system should decrease the probability level to
90% — 171.2% = —81.2%, which means the probability change will not affect the conclu-
sion that the minimum variance control system yield much more benefits than the current
system. Combining the result of benefits comparison and sensitivity analysis, the conclu-
sion can be drawn: There is substantial opportunity to improve the process profitability
for ALPAC bleaching plant D, stage. Further information about controller tuning and ad-
vanced controller can be collected and future work on improving the process profitability is
recommended.
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Chapter 5

Conclusions & Future Work

Process control upgrades have been recognized as an efficient way to improve process prof-
itability. Benefits analysis studies are performed to justify the potential profitability that
can be delivered through a control system improvement. Control system benefits analysis
uses process information, customer requirements, as well as economic data to evaluate the
process performance. Current approaches to benefits analysis do not make full use of avail-
able information in a systematic manner. An optimization approach to benefits analysis
was proposed in this thesis, which efficiently uses the available information to provide an
estimate of both the maximum performance that can be expected from a given automation
system and the operating conditions that yield this performance.

The optimization problem at the heart of the proposed method consists of process eco-
nomic performance function EPF, probability density function for the key process variables
and individual or joint probability constraints. This problem is solved for the expected
process variation resulting from different proposed control systems. The expected process
performance for different systems was evaluated by solving the performance estimation prcb-
lem, and compared to prioritize the best opportunity. Sensitivity analysis was performed
to ensure the estimated performance is reliable. Then, a final selection of the appropriate
control system upgrade is made.

The proposed benefits analysis procedure was used on two case studies. One was a
simulation of a pilot plant in Computer Process Control Lab at the University of Alberta.
This pilot plant consists of two stirred tank heaters in series. The other was ALPAC
bleaching plant D stage. For the first case study, the expected performance of different
control systems were compared. Based on the benefits study results, retuning the existing
controllers is expected to yield the highest process profitability. For the ALPAC bleaching
plant D, stage case study, an economic performance function was developed based on
the market price for different pulp products; and probability constraints for key variables
were defined according to the customer requirements. The current control system was
evaluated against a minimum variance benchmark, and based on this economic performance
comparison, it was found that there exists a considerable opportunity to improve the current
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control system and achieve higher process profitability.

5.1 Thesis Contributions

One of the main contributions of this thesis is the modification of algorithm used to solve
control system performance evaluation problem. Zhang et al. (2000) modified the algorithm
(originally proposed by Prekopa (1995)) for solving the JPC problem with a linear objective
function. This algorithm was modified in this thesis to solve the JPC optimization problem
with nonlinearities in the objective function.

The other contribution in this thesis is the sensitivity analysis of process profitability
and process operating point with respect to the change in constraint satisfaction probability
level. It was shown that the first-order change of process profitability with respect to the
change of constraint satisfaction probability level is a function of model parameter matrix
H and the probability density function of the joint Normal distribution. Typically, if the
process performance is not sensitive to the changing parameter (i.e., |Aa| > 20%), the
proposed control system upgrade should be implemented.

The proposed optimization-based process performance evaluation and sensitivity anal-
ysis were integrated into a comprehensive benefits analysis procedure.

5.2 Future Work

In the objective function formulation, the process data were assumed to satisfy normal
distribution. Use of a non-Normal distribution in the performance estimation should be
fully investigated.

Also, the EPF was considered to be a linear piece-wise function, which was also assumed
to be deterministic in the performance evaluation problem. Further work on multivariable,
nonlinear stochastic EPF's is required to encompass the range of possibilities for operating
plants.

Probability constraints used in the performance evaluation problem were only for process
key variables specification. Approximate modelling (i.e., development of H matrix) methods
for probabilistic constraints should be considered in the future work.

In the sensitivity study, AP = Jc — Jg — (Costc — Costg) is a random variable, then
AP = 0 is reliable only within a statistical confidence interval. When the data used in the
benefits evaluation containing significant stochastic behavior, the variance of AP should
be calculated (i.e., 0 p) using appropriate statistical methods. Further sensitivity study
needs to be done for these data.

The JPC problem required substantially more computation than that of IPC problem.
The increased computation load was primarily due to Monte Carlo simulations required
to characterize joint probability density function and the cutting plane method used for
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optimization. More efficient methods in these two areas would reduce the computation
expense.

The benefits analysis was proposed for the control system upgrade, however, it may be
possibly expanded to any automation system upgrade (i.e., instrumentation, RTO, etc.).
It, again, requires more accurate model for EPF and faster JPC problem solving methods.
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Appendix A

Introduction to Stochastic
Programming

Stochastic programming deals with situations where some or all the parameters of the
problem are described by random variables rather than by deterministic quantities. Such
cases seem typical of real-life problems where it is difficult to determine the values of the
required parameters exactly. In the linear programming, sensitivity analysis can be used to
study the effect of changes in the program. This, however, represents a partial answer to
the problem especially when the parameters are actually random variables. The objective
of stochastic programming is to consider these random effects explicitly in the solution of
the model.

We will use a branch of Stochastic Programming (i.e., probability programming) to solve
the proposed problem in this paper. The basic idea of probability programming models is
to convert the probabilistic nature of the problem into an equivalent deterministic model.

“Stochastic Programming handles mathematical programming problems where some of
the parameters are random variables...” (Prekopa, 1995) is one of the simpler definitions
given for Stochastic Programming.

A.1 Optimization Under Uncertainty

Consider the general optimization problem

min f(#,9)
subject to: (A.1)
h(y) > s*

where: f is the objective function, ¢ is the economic performance function, ¥ is the

operating point for key variable vector, y is the data set for key variable, s* is the product

specification vector. Equality constraints are not considered in the above formulation as

it has been assumed that any equality constraints have already been used to reduce the

dimensionality of the optimization problem (i.e., the optimization problem is considered in
its reduced space).
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The constraint in the above problem has a stochastic variable y. Assume y satisfies a
Normal distribution. Then, y can be split into two parts:

y=y+¢§ (A.2)

where, £ ~ N(0,Q). Q is the variance matrix of data set y. The problem can be
converted to

mgin f(6,9)
subject to: (A.3)
h(y,§) 2 s
Stochastic programming problems can be split into three categories based on the location
of uncertainty in the optimization problem:

e uncertainty in economics performance function ¢
e uncertainty in product specifications s*

e uncertainty in the constraint function £

These categories are illustrated by showing the effect of uncertainty on an LP problem in
two dimensions. All the arguments presented below can be generalized to an n-dimensional
NLP problem.

Uncertainty in economic data translates to uncertainty in the gradient of the profit
function. Figure A.1 shows that the uncertainty in the slope of the economic performance
function can cause the apparent optimum to shift to a sub-optimal operating point. Un-
certainty in product specifications can cause the feasible region expand or shrink, which
can be easily seen from Figure A.2. The change of feasible region will definitely affect the
optimal operating point. Uncertainty in the last category is in the data set y. This is also
the most important problem that we have to tackle in the benefits analysis. As seen in
the Figure A.3, the random variable £ will make the operating point change. This change
will be much more complex than the changes occurred in the former two categories.In this
thesis, the third category is the main concern, only a simple discussion was given to the
uncertainty in the first category.

A.2 Simple Example of IPC Problem

A chance-constrained model is defined generally as:

mzax E?=1 Csz‘,
bject t (A4)
ol ° Pt{2?=1 a;;z; < b} 2 a;, i=12,...m, z;>0.
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Actual = . = Apparent Profit Contours
Optimum = = = Actual Profit Contours
Constraints

G
Feasible\ .

Region

Figure A.1: Uncertainty in economics function parameters

Apparent = = = Profit Contours
\ Optimum == . = Apparent Constraints
k \ \ Actual Constraints

Figure A.2: Uncertainty in constraint parameters (RHS)
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t = = = Profit Contours
l Op “\nmn N\ / = - = . Apparent Constraints
\ \ \ ° = Actual Constraints

Figure A.3: Uncertainty in constraint parameters (LHS)

The name “chance-constrained” follows from the fact that each constraint,

n
z:aijzj < b, (A.5)
i=1
is realized with a minimum probability of a;,0 < a; < 1.

In the general case, it is assumed that c;,a;j,and b; are all random variables. The fact
that c; is a random variable may be treated by replacing it by its expected value. The cases
in which a;; or b; is treated as random variables in the constraint are analyzed as follows.
In both cases it will be assumed that the parameters are Normally distributed with known
means and variances.

Case 1:

In this case it is assumed that each a;; is normally distributed with mean E{a;;} and
variances Var{a;;}. It is further assumed that the covariance between a;; and a ; is given
by Cav{a'ij’a:‘j' }

Consider the i** constraint,

n
Pr{) ayz; <b}>1-0o; (A.6)
=1

and define

h; = Zaij:tj. (A'7)

—1

Then h; is normally distributed with mean

E{h} =) _ E{ay}a;. (A.8)

=1

(4



and variance

Var{h;} = XTD;X (A.9)
where
X = (II,...,:D")T,
D; = i covariance matrix
( Var{ai} --- Cov{ai,ain} )
Covfainan} ---  Var{am} |
Now,
hi — E{h:} _ b — E{h;}
P{h; <b;} =P < = 21l—-a, A.10
thshd {(War{m} \/—Var{h,-})} = (410

where(%f%{%) is Normally distributed with zero mean and unit variance. This means
that

<b}=o b Eik}
Pr{h.sb,}-«b( WT}) (A.11)

where represents the cumulative density function of standard normal distribution.
Let K,, be the standard Normal value such that

®(Ka)=1-o (A.12)

Then the statement, Pr{h; < b;} > a;_ is realized if and only if

bi — E{h:}
—_— > K, A13
Var{h;} — ™ (4-13)
This yields the following nonlinear constraint
(Z E{a,-j}z_-,- + Kagv XTD.X) < b; (A.14)
=1

which is equivalent to the original stochastic constraint.
For the special case where the Normal distributions are independent, then Cov{a;;,a, i }=
0 and the last constraint reduces to

(i E{aij}z; + KQ‘J i Var{a.-,-}z?) <b (A.15)

Jj=1 j=1



This constraint can now be put into the separable programming form (Taha, 1971) using
the substitution

n
vi= J Y Var{a;}=? (A.16)
Jj=l
Thus the original constraint is equivalent to
(Z E{ai;}z; + Kmyi) <b (A.17)
Jj=1

and

(i Var{aij}zf - yf) =0 (A.18)

Jj=1
Where y; > 0. The constraint is now properly separable.
Case 2:
In this case it is assumed that only b; is a Normal random variable with mean E{b;}

and variance Var{b;}. The analysis in this case is very similar to that of Case 1 above.
Consider the stochastic constraint.

Pr{b; > iaijzj} 2a; (A.19)
Jj=1
Thus, as in Case 1,
b; — E{b;} _ Xj-1 %z — E{b:} _
Pr { ( Var{b;} 2 VVar{b} ) } = (A.20)

This can only hold if,
. 6i;iT; — E{b;
2 =1 %ii%; {b:} <K, (A.21)
\/ Var{b,-}
This means that the stochastic constraint is equivalent to the deterministic linear constraint,

Xn:a.-,-z,- < (E{b,— } + Ko \/Var{b; }) (A.22)

=t

This shows that in Case 2 the chance-constrained model can be converted into an equivalent
linear programming problem.

The solution method can be illustrated using the following example. Consider the
chance-constrained problem:

max 9z + 6z + 3x3
subject to
Pr {a11z1 + a12z2 +a13z3 < 8} > 0.95 (A.23)

Pr{5z; + zo + 6z3 < by} > 0.10
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with all z; > 0 . Suppose a,;;’s are independent Normally distributed random variables
with the following mens and variance.

E{a;;} =1 E{a;2} =3 E{a3} =9
Var{a;1} =25 Var{a;2} =16 Var{a;3} =4

The parameter is Normally distributed with mean 7 and variance 9.
From the standard normal tables

Kcn = KO,S ~ 1.645

K,, = Ko,; ~ 1.285

Now, for the first constraint, the equivalent deterministic constraint is given by

(:1:1 + 3z; + 93 + 1.645\/25::% + 1623 + 4z§) <8
and for the second constraint

[5z1 + z2 + 623] < [7 + 1.295(3)] = 10.855

Let

y = /2523 + 1623 + 473
the complete problem then becomes:

max 5z, + 6x2 + 33,
subject to
) + 3z2 + 923 + 1.645y < 8, (A.24)
2522 + 1623 +412 -y =0 :
9Z) + 2 + 6z3 < 10.855
z1,T2,Z3,Y Z 0

which can now be solved by separable programming (Taha, 1971).



Appendix B

Benefits Analysis Interview
Checklist

Table B.1: Interview list

Responsibility

Questionnaire/Duty

Review historical data to determine normal
and unusual operations

Operator Process Operation Determine the process disturbances
(repeated or infrequent)
Process flow diagram Equipment limitation & potential changes
Prqcess Operating goals Product supply & demand
Engineer . . Feed quality, availability
Products pecification . R
Environmental limitations
Process model
Important parameters
Control Process control Controllers, sensors, alarms, final
Engineer strategies/objectives Quallity of control good (based on variance?)
Controller maintenance requirements
maintained (related cost)?
Required benefits analysis frequency
Finance Process Economics and period
/Marketing Market data

Economic performance function
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