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Abstract
In this thesis, we study the impact of random times to model and manage

unpredictable risk events in the financial models. First, as a generalization of

the classical Neyman-Pearson lemma, we show how to minimize the probabil-

ity of type-II-error when the null hypothesis, alternative and the significance

level all are revealed to us randomly. This randomness arises some measurabil-

ity requirements that we have dealt with them by using a measurable selection

argument. Then, we consider a regime-switching financial model which is sub-

ject to a default time satisfying the so-called the density hypothesis. For this

model, we present a Girsanov type result and an explicit representation for the

problem of superhedging. In both cases, the desired representation is decom-

posed into an after-default and a global before-default decomposition. Another

problem consists in minimizing the expected shortfall risk for defaultable se-

curities under initial capital constraint. The underlying model is exposed to

multiple independent default times satisfying the intensity hypothesis. We il-

lustrate the results by numerical examples and the applications to Guaranteed

Minimum Maturity Benefit (GMMB) equity-linked life insurance contracts.

Finally, we construct a framework to consider a Guaranteed Minimum Death

Benefit (GMDB) equity-linked life insurance contract as a Bermudan option.

Under an initial capital constraint, we provide closed-form solutions for the

quantile hedging problem of a GMDB contract with a constant guarantee.
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Chapter 1

Introduction

The main focus of this thesis is to study random times and their applications

in modelling and managing the risk induced by unpredictable events in finan-

cial and insurance markets. It is formed of five chapters; the first chapter is

the introduction and the other four chapters investigate rather independent

problems in statistical test theory, default times, shortfall minimization, and

minimum guarantee equity-linked life insurance contracts.

Chapter 1 provides a brief introduction about the main problems and re-

sults presented in Chapters 2, 3, 4, and 5. In this chapter, we outline the

main techniques and ideas utilized in the thesis. This is organized in separate

sections with each section introducing one chapter of the thesis.

In Chapter 2, we want to generalize the classical Neyman-Pearson lemma

to the case that the null hypothesis and alternative are selected randomly by

two random times τ1 and τ2. Let
(
Ω, (Ft)t∈[0,T ] ⊆ G) be a filtered measur-

able space. The classical Neyman-Pearson lemma evaluates a null hypothesis

corresponding to a probability measure Q on (Ω,FT ) against an alternative

hypothesis corresponding to a probability measure P on (Ω,FT ). In this case,

both P and Q are known at time t = 0 and the testing problem is performed
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at t = 0 for P and Q defined on (Ω,FT ). In contrast, we consider a setting

that P and Q are determined stochastically. To do so, suppose τ1 and τ2 to be

two random times which are not necessarily F-stopping times. For ω ∈ Ω, let

τ1(ω) = s ∈ [0, T ) and τ2(ω) = t ∈ (s, T ]. The random pair (s, t) reveals the

probability measures sP t and sQt defined on (Ω,Ft) where τ1(ω) = s indicates

that we evaluate sP t against sQt conditioned on Fs. To be precise, for a given

x̃ ∈ [0, 1], we solve the following problem:

ess sup
ϕ∈Rt

E
sP t[

ϕ
∣∣Fs

]

subject to the constraint

E
sQt[

ϕ
∣∣Fs

] ≤ x̃ ,

where Rt :=
{
ϕ : Ω −→ [0, 1]

∣∣ ϕ is Ft-measurable
}
.

Chapter 3 deals with a regime-switching financial model which the jump

to a new regime occurs at a random time τ . This random time satisfies the so-

called density hypothesis, i.e. there exists a conditional density process for the

survival process associated to τ . This model was considered by Jiao and Pham

[20] to study the utility maximization problem for the case of a CRRA utility

function. To avoid the complexity of the dynamic programming in these types

of problems, we provide explicit representations for the probability martingale

measures and the superhedging problem. Both representations are given in

terms of after-default and before-default decompositions in complete markets.

We decide to investigate the applications of our results in the future research.

In Chapter 4, we work on efficient hedging problem for defaultable securi-

ties with multiple default times and non-zero recovery rates. First, we convert

the efficient hedging problem into a Neyman-Pearson problem with compos-

ite hypothesis against a simple alternative. Then we apply the non-smooth
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convex duality to provide a solution in the framework of a defaultable Black-

Scholes model. Moreover, in the case of zero recovery rates, we find a closed

form solution for the problem. The original problem is formulated in a fil-

tration enlarged by geometric Brownian motion and the multiple independent

default times. Our results give us an algorithm to reduce the efficient hedging

problem into a similar optimization problem in the default-free Black-Scholes

model. As an application, it is shown how to use such type of results in pricing

equity-linked life insurance contracts. In addition, we demonstrate the results

by some numerical examples.

In the last chapter, Chapter 5, we study a Guaranteed Minimum Death

Benefit (GMDB) equity-linked life insurance contract. Under an initial capital

constraint, we want to maximize the probability of a successful hedge for a

GMDB contract with a constant guarantee. In other words, we solve the

quantile hedging problem for a GMDB contract. In the first step, we consider

the client’s death time, T (x), as a random time. Then, using the progressively

enlargement of filtrations, the filtration generated by the underlying equity is

enlarged by T (x). This allows us to treat the GMDB contract as an American

option with a finite set of permitted exercise dates. Applying the superhedging

approach from Schweizer [48], we provide a simple method to hedge the GMDB

contract in this framework. Moreover, the max-min problem corresponding

to the quantile hedging problem is converted into a straightforward quantile

hedging problem for a put option in a complete market.
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1.1 Neyman-Pearson Lemma for Randomly Se-

lected Hypotheses

In statistical test theory, as a statistical inference method, the main concern

is to evaluate two nonempty complementary classes of hypotheses H0 and H1.

The statistician, after observing the sample, must test H0 (known as the null

hypothesis) against H1 (known as the alternative). In other words, s/he must

decide between the following two options:

• Accepting H0; the null hypothesis is true for the observed sample (re-

jecting H1).

• RejectingH1; the alternative hypothesis is false for the sample (accepting

H0).

This decision procedure is called a hypothesis test. In performing a test for

such a problem, two types of errors might occur:

1. Rejecting H0 when it is true (Type-I-error).

2. Accepting H0 when it is false (Type-II-error).

In general, it is not possible to minimize the probability of these two errors

simultaneously. However, we can fix a threshold α̃ ∈ (0, 1) called the signif-

icance level to control the probability of type-I-error (size) of the acceptable

tests. Then, considering this constraint, the optimal test is defined as a test

with the size less than or equal to α and the minimum probability of type-II-

error. For a given test, one minus the probability of type-II-error is called the

power of the test which is equal to the probability of rejecting H0 when it is

false. If a class of hypothesis (or alternative) consists of only a single element
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it is called simple, otherwise it is called composite. For more details about

this theory, see for instance Ferguson [13] and Lehmann and Romano [32].

Suppose that P and Q are two probability measures on the measurable

space (Ω,F). Let R = 1
2
(P + Q), H0 = dQ

dR
and H1 = dP

dR
. For the testing

problem Q versus P , the randomized tests are given in terms of F -measurable

random variables ϕ : Ω −→ [0, 1]. For ω ∈ Ω, ϕ(ω)
(
resp. 1 − ϕ(ω)

)
is the

conditional probability of rejecting (resp. accepting) Q given ω. Taking into

account the probability measure Q on (Ω,F), then the size of randomized test

ϕ is EQ[ϕ] =
∫
Ω
ϕ(ω)Q(dω). Similarly the power of ϕ is given by EP [ϕ] =∫

Ω
ϕ(ω)P (dω). For a fixed significance level α̃ ∈ (0, 1), define the randomized

test ϕ̃ as follows

ϕ̃ := 1{ d P
dQ

>ã
} + γ̃ 1{ d P

dQ
=ã
} for some constant ã > 0,

where γ̃ :=
α̃−Q(dP

dQ
> ã)

Q(dP
dQ

= ã)
if Q(dP

dQ
= ã) �= 0, and γ̃ equal to zero otherwise.

Moreover, the constant ã is computed from the constraint EQ[ϕ̃] = α̃. By the

classical Neyman-Pearson lemma, it is well known that ϕ̃ has the maximal

power on the significance level α̃.

Cvitanić and Karatzas [8] and Rudloff and Karatzas [47] studied the above

problem with two families of probability measures {Qi}i∈I and {Pj}j∈J con-

sidered as composite null hypothesis and alternative, respectively. In Cvitanić

and Karatzas [8], first the set of null hypotheses denisities is enlarged. Then

techniques of non-smooth convex analysis along with a theorem by Kolmós are

applied to find a dual solution and an algorithm for computing the optimal

test. By contrast, Rudloff and Karatzas [47] use Fenchel duality and avoid

enlarging the set of densities. Under some compactness assumptions, strong

duality and existence of a dual solution are obtained simultaneously.
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Follmer and Leukert [14] and Follmer and Leukert [15] take a Neyman-

Pearson lemma approach to minimize the risk of shortfall in a financial model.

In a complete market, to provide explicit solutions, they reduced the origi-

nal problem to a problem of testing a simple null hypothesis against a simple

alternative. Nakano [42] and Melnikov and Nosrati [36] investigated the effi-

cient hedging problem in defaultable markets, this leads to testing a composite

null hypothesis versus a simple alternative. They adapted the techniques of

generalized Neyman-Pearson lemma from Cvitanić and Karatzas [8] to obtain

explicit solutions in these types of incomplete financial models.

In Chapter 2, we consider a filtered probability space
(
Ω, (Ft)t∈[0,T ] ⊆ G)

with two nonnegative G-random variables τ1 and τ2 known as G-random times.

We assume that probability measures sP t and sQt, defined on (Ω,Ft), are re-

vealed to us by the random instants τ1 = s ∈ [0, T ) and τ2 = t ∈ (s, T ].

Taking sQt and sP t as the simple null hypothesis and alternative, respectively,

we want to solve the problem of testing sQt against sP t conditioned on the

σ-field Fs. In the case of the classical Neyman-Pearson lemma, the only avail-

able information regarding ω ∈ Ω is the fact that ω belongs to Ω, i.e. the

σ-field F0 = {∅,Ω}. However, in Chapter 2, we make the decisions at time s

and the available information is Fs. Thus we take the corresponding condi-

tional expectations E
sP t[

ϕ
∣∣Fs

]
and E

sQt[
ϕ
∣∣Fs

]
as the power and the size of

the randomized test ϕ. To deal with the arising measurability requirements,

we exploit a measurable selection argument to determine an Fs × B(R+)-

measurable random variable ãs similar to the constant ã. Combining this with

the classical Neyman-Pearson lemma, we provide a closed form for the opti-

mal test with maximal power on the given significance level. We are mainly

motivated by the application of this result to efficient hedging problems for

regime switching financial models under default density hypothesis. Chapter 2
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is structured as follows:

In Section 2.1, we formulate the problem and present the main results

and their proofs. Section 2.2 illustrates the theory with several examples

originated from mathematical finance and insurance. In the appendix, we

recall a measurable selection theorem used in the proof of Theorem 2.1.

1.2 Girsanov Theorem and Superhedging in a

Default Density Framework

Motivated by Jiao and Pham [20] and Karoui et al. [25], in Chapter 3 we

study a Black-Scholes regime switching model where the rate of return and

the volatility of the model jump to a new regime at a random time τ .

τ can be interpreted as the default time of a counterparty which induces

a jump in the price of the underlying risky asset (St)t∈[0,T ]. Let (Ω,G, P ) be a

complete probability space. We assume the following representation for S on

(Ω,G, P ):

St = SF

t 1{t<τ} + Sd
t (τ)1{t≥τ}, t ∈ [0, T ], (1.1)

where (SF

t )t∈[0,T ] and (Sd
t (τ))t∈[0,T ] are governed by geometric Brownian motion

models. Before the default occurrence, i.e. on {t < τ} we have St = SF

t with

dSF

t = SF

t (μ
F

t dt+ σF

t dWt), SF

0 = S0 > 0, t ∈ [0, T ].

After the default, on {t ≥ τ}, the processes μF and σF switch to
(
μd
t (θ)

)
t∈[θ,T ]

and
(
σd
t (θ)

)
t∈[θ,T ]

respectively with θ = τ denoting time of the default. In this
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case, St = Sd
t (θ) with

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dSd
t (θ) = Sd

t (θ)
(
μd
t (θ)dt+ σd

t (θ)dWt

)
, t ∈ (θ, T ]

Sd
θ (θ) = SF

θ (1− γθ)

The process (γt)t∈[0,T ], satisfying −∞ < γt < −1 for all t ∈ [0, T ], represents

the size of the jumps.

Let F be the filtration generated by
(
SF

t

)
t∈[0,T ]

, and H :=
(
σ(τ ∧ t)

)
t∈[0,T ]

.

Then by progressive enlargement of the filtrations define G := F ∨ H. We

assume that there exists a family of positive Ft×B(R+)-measurable functions

αt(θ) such that

P
(
τ ∈ dθ|Ft

)
= αt(θ)dθ.

This assumption is well-known as the density hypothesis for the random time

τ .

Considering the above framework, Jiao and Pham [20] studied the utility

maximization problem in the enlarged filtration G for the CRRA function

U(x) =
xp

p
, p < 1, p �= 0, x > 0. They decomposed the problem into

two subproblems: an after-default utility maximization problem, and a global

before-default optimization problem. The after-default problem can be solved

by a standard duality approach. But the global before-default problem is

more challenging, Jiao and Pham [20] used a dynamic programming approach

to characterize the optimal solution in terms of backward stochastic differential

equations (BSDE). Although their approach is very interesting, it heavily relies

on their choice of utility function. In particular, the global before-default

problem becomes too complicated when the utility function is not a CRRA

function.
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To find an easier way to deal with these types of problems for the financial

model (1.1), in Chapter 3, we are looking for an explicit representation for

the Radon-Nikodým density of probability martingale measures of (St)t∈[0,T ]

with respect to (G, P ). In fact, by having these representations we can use the

classical techniques of utility maximization in incomplete markets. We point

out that decomposing the problem into after-default and global before-default

problem transfers the complexity of the problem to the second problem. The

global-before default problem turns into a stochastic control problem which

it is in general difficult to find a closed-form solution. In Chapter 3, we only

work on the structure of probability martingale measure and the superhedging

problem as the first step; the application of the results will be investigated in

our future research.

In the case of infinite time horizon, Karoui et al. [25] give a characterization

of G-martingales in terms of F-martingales. We adapt their techniques to find

a similar result for the case of finite time horizon. This result enables us to

determine the desired representation for the probability martingale measures.

As is expected, the after-default part of Radon-Nikodým derivatives is given

by the standard Girsanov theorem. However, the global before-default part

satisfies a different SDE which, in addition to the rate of return and volatility,

incorporates the size of jumps (γt)t∈[0,T ] into the equation.

Using our characterization for the probability martingale measures, we

solve the superhedging problem for a general GT -measurable contingent claim

on the probability space (Ω,G, P ). Again, we decompose the superhedging

problem into two parts:

1. An after-default perfect hedge by investing in
(
Sd
t (θ)

)
t∈[θ,T ]

for θ ∈ [0, T ].

2. A global before-default perfect hedge by investing in
(
SF

t

)
t∈[0,T ]

.

9



1.3 Efficient Hedging for Defaultable Securi-

ties and its Applications to Life Insurance

It is known that in a complete market, starting with a large enough initial

capital, there is a perfect hedge for every contingent claim. However, if the

market is incomplete the initial cost of superhedging (see El Karoui and Quenez

[12] or Karatzas [22]) is too high. As we know, defaultable markets usually

turn into incomplete markets. In fact the default time which is represented by

a random time can not be hedged by investing in the available assets in the

market. This issue makes superhedging too expensive in defaultable markets.

Therefore, we are forced to introduce new measures of risk and start investing

with a smaller initial capital than the superhedging cost. But high cost of

superhedging is not the only reason that makes the efficient hedging interesting.

It is true that the perfect hedge or superhedge eliminates risk but it eliminates

opportunities too. There are financial institutions that seek out risk, financial

institutions as insurance companies expose themselves intentionally to risk and

exploit risk to generate value.

In the framework of Black-Scholes models with a differentiable loss function

l, we consider the efficient hedging problem as the following minimization

problem:

min
π∈AG(v)

v≤ũ

E
[
l
(
(Hδ − V v,π

T )+
)]

(1.2)

where H is a default-free contingent claim, Hδ = H
n∏

i=1

(
1{τi>T} + δi1{τi≤T}

)
defaultable with recovery rates δi’s, and τi’s represent the default times. Also,

ũ is the available initial capital, and V v,π
T the terminal value of value process

corresponding to the admissible strategy π.
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In the context of general incomplete markets, Follmer and Leukert [15]

studied the minimization of the expectation of shortfall risk weighted by a gen-

eral loss function l, problem (1.2), in a general semimartingale setting. They

emphasized the Neyman-Pearson lemma and provided an explicit solution for

differentiable loss functions in complete markets. Nakano [42] adapted the con-

vex duality approach introduced by Cvitanić [7] and Cvitanić and Karatzas

[8] for defaultable claims with a single default time. Then for a linear loss

function l(x) = x, recovery rate δ = 0 and under some assumptions on the

solution of the dual problem, ϕ̃, it was shown that there exists a solution for

the partial hedging problem in defaultable markets.

In contrast to Nakano [42] that only shows the existence of the solution,

we work with more general loss functions (not necessarily linear) and there

is no restriction on ϕ̃. Moreover, if the recovery rates are zero, our approach

provides an explicit solution for problem (1.2) with multiple default times.

For a given initial capital, we find a relation between the minimum value of

shortfall risk in the defaultable market and its corresponding value in the

default-free market. Chapter 4 is organized as follows:

In Section 4.1, we introduce our financial model. We also recall some

definitions and notations regarding default times and incomplete markets.

Section 4.2 presents the formulation of the problem. The first step to solve

problem (1.2) is to notice that this problem is clearly a dynamic optimization

problem with respect to time. Follmer and Leukert [15] proved that (1.2) is

equivalent to a static optimization problem and there exists a solution to the

static problem. Our idea is to reduce problem (1.2) to this static problem,

then using Gateaux derivative we find a max-min problem for testing a com-

posite hypothesis against a simple alternative. The results of Cvitanić and

Karatzas [8] on generalized Neyman-Pearson lemma give us a representation
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for the solution (ϕ̃) of the max-min problem. Then the optional decomposi-

tion of the modified claim ϕ̃Hδ provides the optimal solution to problem (1.2).

Furthermore, we show that, for the zero recovery rates, the efficient hedging

problem in the defaultable market can be reduced to the study of problem in

the default-free market.

To demonstrate our results, in Section 4.3, we apply them to equity-

linked life insurance contract. Equity-linked life insurance contract is a well-

developing area of theory and applications now. We consider these contracts

from point view of their pricing using efficient hedging techniques. See the

book of Hardy [17] as a good reference for such contracts; and Melnikov and

Romaniuk [38] as one of the first papers with insurance applications of efficient

hedging techniques. To our knowledge, the problem of pricing of equity-linked

life insurance contracts has not been studied yet in defaultable markets, and

we are going to adapt these techniques to this case. We know that the equity-

linked life insurance contracts usually are long-term contracts with maturity

T = 15, 20 or 25, so it is reasonable to take into account the default possibility

of insurance company during the life of the contract. By solving problem (1.2),

we can find a competitive premium to offer to the insured for the accepted level

of risk by the insurer. Also we are interested to calculate the corresponding

shortfall risk for a given premium as the available initial capital. Finally, we

illustrate our method with numerical results and compare the efficient hedging

problem in a default-free market with the analogous problem in the presence

of default. For the reader’s convenience, the results of Follmer and Leukert

[15]; and Cvitanić and Karatzas [8] are summarized in the Appendices.
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1.4 Bermudan Options and their Connections

to GMDB Contracts

To provide both investment opportunities and the mortality protections, in-

surance companies have designed equity-linked life insurance contracts. This

type of life insurance contracts became popular in the United Kingdom in

the late 1960’s through to the late 1970’s. Gradually equity-linked life con-

tracts were introduced in the countries where the UK insurance companies

were influential such as Australia, South Africa, and the United states. In the

late 1990’s, segregated fund contracts as a type of equity-linked life insurance

became available in Canada. Segregated fund structure is usually a complex

combination of guaranteed values upon the death or survival of the client dur-

ing the term of the contract. See Hardy [17], Aase and Persson [1] and Ekern

and Persson [11] for a detailed and comprehensive study of the equity-linked

life insurance contracts.

Two sources of randomness are involved in equity-linked life insurance con-

tracts: the mortality risk of the insurer and the financial risk associated to the

underlying equity. On one hand, the insurer sells a large number of contracts

to different clients, and on the other hand, the survival of the insureds and

the financial risk are highly independent. By these two features, traditionally

the strong law of large numbers is utilized to estimate the total number of

claims at the maturity. Then this mean value of the total claims, which is still

exposed to the financial risk, is hedged by using a dynamic-hedging approach.

This method was introduced by Brennan and Schwartz [5] to price and hedge

guaranteed minimum maturity benefit equity-linked life insurance contracts.

After diversifying the mortality risk by the strong law of large numbers, they

decomposed the benefit into a constant guarantee and a call option. The
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constant value is hedged by investing in a risk free bond, and Black-Scholes

formula provides a perfect hedge for the embedded call option.

In Chapter 5, we study the Guaranteed Minimum Death Benefit (GMDB)

life insurance contracts where the benefit is paid upon the insured’s death

over the term of the contract. The payoff process of a GMDB contract with a

constant guarantee is given by

Ut := Max(K,St), for t ∈ R := {1, 2, ..., T}, (1.3)

where K > 0 is the constant amount of guarantee and (St)t∈[0,T ] is the price

process of the underlying asset. The finite set R is a suitable subset of [0, T ],

for instance months.

Inspired by Schweizer [48] and the techniques of enlargement of filtrations,

we construct a framework which allows us to view the GMDB contract as an

American option with the predetermined finite exercise dates R. These types

of American options are known as Bermudan options. In this setting, one

can also compare the GMDB contract (1.3) with the Option Based Portfolio

Insurance (OBPI) dynamic hedging introduced by Leland and Rubinstein [33].

Let us denote the filtration generated by S by F and the filtration generated

by the client’s lifetime by H. To make the exercise date of the GMDB contract

a stopping time, we progressively enlarge F with H and denote the enlarged

filtration by G.

Assume ṽ0 > 0 and a G-predictable S-integrable process (πt)t∈[0,T ] to be

given. Define the corresponding value process as follows:

V ṽ0,π
t := ṽ0 +

∫ t

0

πsdSs, P -a.s., for all t ∈ [0, T ].
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We represent the set of all process π satisfying

V ṽ0,π
t ≥ 0 P -a.s. for all t ∈ [0, T ]

by AG(ṽ0).

Using the independency assumption, as described above, we provide an

explicit form for the Radon-Nikodým density of the probability martingale

measures of S with respect to the new filtration G.

The superhedging method and the techniques of Schweizer [48] are adapted

to price the embedded Bermudan option in the GMDB contract. From the

independency and the Radon-Nikodým density representation, we show that

superhedging value process of the GMDB contract is equal to the perfect

hedging of the European option Max(K,ST ). In addition, by the separate

account design of GMDB, the actual liability of the insurance company be-

comes (K − ST )
+, i.e. the shortfall in the case that the guarantee K matures

in-the-money.

Our main aim, in Chapter 5, is to solve the quantile hedging problem

for the Bermudan option (Ut)t∈R. More precisely, max-min problem (1.4) is

solved and the optimal trading strategy that achieves the maximal value is

determined. Let S0,T (R) be the set of all G-stopping with values in R, then

we investigate the following problem:

sup
π∈AG(ṽ0)

(
inf

τ∈S0,T (R)
P
(
V ṽ0,π
τ ≥ Uτ

))
. (1.4)

We prove that for any π ∈ AG(ṽ0) the worst scenario always occurs at

τ ≡ T , i.e.

inf
τ∈S0,T (R)

P
(
V ṽ0,π
τ ≥ Uτ

)
= P

(
V ṽ0,π
T ≥ UT

)
. (1.5)

15



This result simplifies (1.4) significantly, without (1.5) we need to find a saddle

point for the objective function P
(
V ṽ0,π
τ ≥ Uτ

)
. However, the existence of a

saddle point is not always guaranteed, in particular for a stochastic dynamic

problem such as (1.4). Aguilar [2] studied the quantile hedging problem for

American options in a general semimartingale setting. He reformulated the

problem as a hypothesis testing problem and applied a convex duality method

similar to Cvitanić [7] and Cvitanić and Karatzas [8], but he only achieved an

upper bound for this problem. In a Black-Scholes framework, we solve (1.4)

for its optimal value with equality.

At the end, we show that the optimal trading strategy π̃ belongs to AF(ṽ0),

this helps us to give an explicit representation for the maximal probability of

success and its optimal trading strategy.
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Chapter 2

Conditional Neyman-Pearson

Lemma for Randomly Selected

Hypothesis and Alternative

2.1 Problem formulation and the main results

For a fixed T > 0, let
(
Ω,F := (Ft)t∈[0,T ] ⊂ G) be a complete measurable

space equipped with the filtration F := (Ft)t∈[0,T ] such that Ft ⊆ G for any

t ∈ [0, T ]. We consider the families of probability measures
{
(sP t)t∈(s,T ]

}
s∈[0,T )

and
{
(sQt)t∈(s,T ]

}
s∈[0,T )

where, for 0 ≤ s < t ≤ T , both sP t and sQt are

probability measures on the complete measurable space (Ω,Ft).

For any t ∈ [0, T ], let us defineRt :=
{
ϕ : Ω −→ [0, 1]

∣∣ ϕ is Ft-measurable
}
.

In this chapter, we consider a setting that sP t, sQt and Ft are randomly selected

according to two G-random times (positive G-measurable random variables) τ1

and τ2 such that τ1 = s and τ2 = t with s < t. We point out that τ1 and

τ2 are not necessarily F-stopping times. For a given x̃ ∈ [0, 1] and these ran-

dom choices of s and t, our main goal is to solve the following maximization
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problem:

ess sup
ϕ∈Rt

E
sP t[

ϕ
∣∣Fs

]
(2.1)

subject to the constraint

E
sQt[

ϕ
∣∣Fs

] ≤ x̃ (2.2)

In the following, Theorem 2.1, Theorem 2.2 and Theorem 2.3 together

fully characterize the solutions to problem (2.1)-(2.2). Consider the G-random
times τ1 and τ2. At τ1 = s and τ2 = t, with 0 ≤ s < t ≤ T , let us introduce

sRt := 1
2

(
sP t + sQt

)
and

d sP t

d sQt
:=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d sP t

d sRt
·
(d sQt

d sRt

)−1

; on
{d sQt

d sRt
�= 0

}

+∞ ; otherwise.

(2.3)

For a given positive Fs⊗B(R+)-measurable random variable (ω, x) −→ ãs(ω, x)

define:

ϕ̃(s, t) := 1{ d sPt

d sQt>ãs

} + γ̃s1{ d sPt

d sQt=ãs

} tRs-a.s., (2.4)

where

γ̃s :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 ; sQt
(
d sP t

d sQt = ãs
∣∣Fs

)
= 0

x̃− sQt
(
d sP t

d sQt > ãs
∣∣Fs

)
sQt

(
d sPT

d sQt = ãs
∣∣Fs

) ; otherwise.

(2.5)

Theorem 2.1. For any x̃ ∈ [0, 1], there exists a positive Fs⊗B(R+)-measurable

random variable (ω, x) −→ ãs(ω, x) such that ϕ̃(s, t), defined by (2.3)-(2.5),
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satisfies the constraint:

E
sQt[

ϕ̃(s, t) | Fs

]
= x̃, tRs-a.s. (2.6)

Proof. Our main idea is to extend the proof of the classical Neyman-Pearson

lemma and combine it with a measurable selection argument. For any ω ∈ Ω

and a ∈ R, let us define:

Xs(ω, a) :=
sQt

( d sP t

d sQt
> a

∣∣Fs

)
(ω) = 1− sQt

( d sP t

d sQt
≤ a

∣∣Fs

)
(ω). (2.7)

By the properties of a distribution function, Xs(ω, ·) is a non-increasing right

continuous function. Define

ãs(ω, x̃) := inf
{
a ≥ 0

∣∣ sQt
( d sP t

d sQt
> a

∣∣Fs

)
(ω) ≤ x̃

}
. (2.8)

Since gs(ω, x̃) = sQt
(
d sP t

d sQt > a
∣∣Fs

)
(ω) − x̃, as a function of (ω, x̃) ∈ Ω ×

R+, is Fs ⊗ B(R+)-measurable, we can show that Graph
(
ãs(·, ·)

) ∈ Fs ×
B(R+). Therefore, there exists an Fs ⊗ B(R+)-measurable selection ãs : Ω ×
R+ −→ R+ for ãs(·, ·) such that ãs(ω) := ãs

(
ω, x̃

)
for all ω ∈ Ω. For the

reader’s convenience we recall the Aumann’s measurable selection theorem in

Appendix C.

It is easy to see that

sQt
( d sP t

d sQt
= ãs(ω)

∣∣Fs

)
(ω) = Xs(ω, ãs(ω)−)−Xs(ω, ãs(ω)). (2.9)

Now let us consider ϕ̃(s, t), constructed as in (2.4). If

Xs(ω, ãs(ω)−) �= Xs(ω, ãs(ω))
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then from (2.5) and (2.9) we get

E
sQt[

ϕ̃(s, t)
∣∣Fs

]
(ω) = sQt

( d sP t

d sQt
> ãs(ω)

∣∣Fs

)
(ω)

+
( x̃− sQt

(
d sP t

d sQt > ãs(ω)
∣∣Fs

)
(ω)

sQt
(
d sPT

d sQt = ãs(ω)
∣∣Fs

)
(ω)

)
sQt

( d sP t

d sQt
= ãs(ω)

∣∣Fs

)
(ω)

= x̃.

In the case that Xs(ω, ãs(ω)−) = Xs(ω, ãs(ω)), the function Xs(ω, ·) is contin-
uous at ãs(ω). This with Xs(ω, ·) being decreasing and definition (2.8) implies

that

sQt
( d sP t

d sQt
> ãs(ω)

∣∣Fs

)
(ω) = x̃. (2.10)

From (2.5), in this case, one can see that γ̃s(ω) = 0. This with (2.10) shows

that again

E
sQt[

ϕ̃(s, t)
∣∣Fs

]
(ω) = x̃. (2.11)

This completes the proof.

Theorem 2.2. Under the same assumptions as in Theorem 2.1, ϕ̃(s, t) ∈ Rt

defined by (2.4)-(2.5) solves the maximization problem (2.1)-(2.2).

Proof. Using the Lebesgue decomposition of sQt with respect to sP t, one gets

sP t(A) =

∫
A

d sP t

d sQt
d sQt + sP t

(
A ∩

{d sQt

d sRt
= 0

})
(2.12)

for all A ∈ Fs, see Föllmer and Schied [16]. Notice that d sP t

d sQt is defined by

(2.3) and sQt
(
d sQt

d sRt = 0
)
= 0.

Consider ϕ ∈ Rt satisfying the constraint condition

E
sQt[

ϕ
∣∣Fs

] ≤ x̃ = E
sQt[

ϕ̃(s, t)
∣∣Fs

]
, (2.13)
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where ϕ̃(s, t) is determined from Theorem 2.1. Using decomposition (2.12),

for any A ∈ Fs we have:

∫
A

E
sP t[

ϕ̃(s, t)
∣∣Fs

]− E
sP t[

ϕ
∣∣Fs

]
d sP t =

∫
A

E
sP t[

ϕ̃(s, t)− ϕ
∣∣Fs

]
d sP t

=

∫
A

ϕ̃(s, t)− ϕ d sP t

=

∫
A

(
ϕ̃(s, t)− ϕ

) d sP t

d sQt
d sQt

+

∫
A

(
ϕ̃(s, t)− ϕ

)
1{ d sQt

d sRt =0
} d sP t

≥
∫
A

ãs
(
ϕ̃(s, t)− ϕ

)
d sQt

=

∫
A

ãsE
sQt[

ϕ̃(s, t)− ϕ
∣∣Fs

]
d sQt ≥ 0.

(2.14)

To get the inequality, notice that:

• ϕ̃(s, t) = 1 ≥ ϕ sRt-a.s. on
{

d sP t

d sQt > ãs
} ∪ {

d sQt

d sRt = 0
}

• (
ϕ̃(s, t)− ϕ

)(
d sP t

d sQt − ãs
)
= 0 sRt-a.s. on

{
d sP t

d sQt = ãs
}

• ϕ̃(s, t) = 0 ≤ ϕ sRt-a.s. on
{

d sP t

d sQt ≤ ãs
}

Therefore, in any case, we can see that

(
ϕ̃(s, t)− ϕ

)( d sP t

d sQt
− ãs

)
≥ 0, sRt-a.s. (2.15)

In the last equality of (2.14), we used the fact that ãs ∈ Fs. Now, (2.14)

means that for any arbitrary A ∈ Fs:

∫
A

E
sP t[

ϕ̃(s, t)
∣∣Fs

]− E
sP t[

ϕ
∣∣Fs

]
d sP t ≥ 0,
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which is equivalent to

E
sP t[

ϕ
∣∣Fs

] ≤ E
sP t[

ϕ̃(s, t)
∣∣Fs

]
, sP t-a.s. (2.16)

This inequality with (2.13) proves that ϕ̃(s, t) is a solution to problem (2.1)-

(2.2).

Theorem 2.3. For x̃ ∈ [0, 1], and s < t given as in Theorem 2.1, suppose

ψ̃(s, t) ∈ Rt satisfies the condition

E
sQt[

ψ̃(s, t)
∣∣Fs

]
= x̃, sRt-a.s. (2.17)

and it also solves problem (2.1)-(2.2). Then

ψ̃(s, t) = ϕ̃(s, t), sRt-a.s. (2.18)

where ϕ̃(s, t) is the random variable given by (2.4)-(2.5).

Proof. Since ψ̃(s, t) satisfies the constraint (2.2) and ϕ̃(s, t) is a solution to

problem (2.1)-(2.2), we have

E
sP t[

ψ̃(s, t)
∣∣Fs

] ≤ E
sP t[

ϕ̃(s, t)
∣∣Fs

]
, sP t-a.s. (2.19)

With a similar argument, it is easy to see the reverse inequality which together

with (2.19) yields to E
sP t[

ψ̃(s, t)
∣∣Fs

]
= E

sP t[
ϕ̃(s, t)

∣∣Fs

]
, sP t-a.s.

Now, by applying the Lebesgue decomposition (2.12) one more time, we
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have

0 =

∫
A

E
sP t[

ϕ̃(s, t)
∣∣Fs

]− E
sP t[

ψ̃(s, t)
∣∣Fs

]
d sP t

=

∫
A

(
ϕ̃(s, t)− ψ̃(s, t)

) d sP t

d sQt
d sQt +

∫
A

(
ϕ̃(s, t)− ψ̃(s, t)

)
1{ d sQt

d sRt =0
} d sP t

(2.20)

for all A ∈ Fs. From (2.6), (2.17) and ãs ∈ Fs:

∫
A

ãs
(
ϕ̃(s, t)− ψ̃(s, t)

)
d sQt =

∫
A

ãsE
sQt[

ϕ̃(s, t)− ψ̃(s, t)
∣∣Fs

]
d sQt = 0 ,

(2.21)

where ãs is defined as in Thereom 2.1. By combining(2.20) and (2.21), we can

write

∫
A

(
ϕ̃(s, t)−ψ̃(s, t)

)( d sP t

d sQt
−ãs

)
d sQt+

∫
A

(
ϕ̃(s, t)−ψ̃(s, t)

)
1{ d sQt

d sRt =0
}d sP t = 0.

(2.22)

Using (2.15) and sQt � sRt, we find that

(
ϕ̃(s, t)− ψ̃(s, t)

)( d sP t

d sQt
− ãs

) ≥ 0 sQt-a.s.

A similar argument and sP t � sRt imply

(
ϕ̃(s, t)− ψ̃(s, t)

)
1{ d sQt

d sRt =0
} ≥ 0 sP t-a.s.

Therefore, we have ψ̃(s, t) = ϕ̃(s, t) sQt-a.s. on
{

d sP t

d sQt �= ãs
}
, and

ψ̃(s, t) = ϕ̃(s, t), sP t-a.s., on
{d sQt

d sRt
= 0

}
. (2.23)
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In other words, by the definition of ϕ̃(s, t) we can write

ψ̃(s, t) = 1{ d sPt

d sQt>ãs

} + γ̄s1{ d sPt

d sQt=ãs

}, sQt-a.s., (2.24)

for some nonnegativeFs-measurable random variable γ̄s. Since E
sQt[

ψ̃(s, t)
∣∣Fs

]
=

x̃ sQt-a.s., we can choose γ̄s such that γ̄s = γ̃s
sQt-a.s. This with (2.24) and

the definition of ϕ̃(s, t) prove that

ψ̃(s, t) = ϕ̃(s, t), sQt-a.s. (2.25)

By (2.3), it is clear that sP t � sQt on
{

d sQt

d sRt �= 0
}
. From this, (2.23) and

(2.25):

ψ̃(s, t) = ϕ̃(s, t), sP t-a.s. (2.26)

Finally, by combining (2.25) and (2.26) with the definition of sRt, equation

(2.18) is concluded.

As a particular case, let us consider the following modification of prob-

lem (2.1)-(2.2):

ess sup
A∈Ft

sP t
(
A
∣∣Fs

)
(2.27)

under the constraint

sQt
(
A
∣∣Fs

) ≤ x̃ (2.28)

Corollary 2.4. Let ãs ∈ Fs be given as in the proof of Theorem 2.1. Also,

assume that there exists an Ft-measurable set Ã(s, t) such that

Ã(s, t) =
{ d sP t

d sQt
> ãs

}
, sRt-a.s. (2.29)

24



and it satisfies the constraint

sQt
(
Ã(s, t)

∣∣Fs

)
= x̃, sRt-a.s. (2.30)

Then Ã(s, t) is a solution to problem (2.27)-(2.28). Moreover, if Â(s, t) is any

solution to problem (2.27)-(2.28) satisfying condition (2.30) then

Â(s, t) = Ã(s, t), sRt-a.s. (2.31)

Proof. Similar to the arguments of the proof of Theorem 2.2, we can verify that

Ã(s, t) given by (2.29) and (2.30) solves problem (2.27)-(2.28). Equation (2.31)

is proved analogous to Theorem 2.3.

Notice that, on the contrary to Theorem 2.1, for any x̃ ∈ [0, 1], the existence

of Ã(s, t) ∈ Ft in the form of (2.29) and satisfying (2.30) is not guaranteed.

Remark 2.5. If τ1 ≡ 0 and τ2 ≡ T then our results coincide with the classical

Neyman-Pearson lemma. The case of τ1 ≡ 0 and τ2 as an F-stopping time

can be used to study the problem of efficient hedging of American contingent

claims in financial models. Similarly, the results of the general case with the G-
random times τ1 and τ2 potentially can be explioted to solve the quantile hedging

problem (or risk minimization problem) in financial markets with successive

defaults τ1 and τ2.

Remark 2.6. We point out that the maximization problem (2.1)-(2.2) depends

on the random pair s < t, i.e. the optimal set as a measurable random variable

needs to satisfy some measurability requirements depending on both s and t.

For example, assume that τ1 represents a default time (with an F-conditional

density process
(
α(s, t)

)
s,t≥0

in a financial model. At the default occurrence
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time τ1 = s < T , following Follmer and Leukert [14], we can formulate the

quantile hedging problem with the initial time τ1 = s and the maturity time

τ2 ≡ T . The corresponding problem depends on the available initial capital

(significance level), sP t (the physical probability measure) and sQt (the equiv-

alent martingale probability measure), which all of these components depend on

τ1 = s (and the default density α(s, T )). Therefore, to determine the optimal

test and the optimal trading strategy we need to deal with some measurability

requirements depending on both τ1 and τ2. In the next section, we explain this

point with several examples from mathematical finance and insurance.

2.2 Examples

In this section, we demonstrate the results of Section 2.1 with some explicit

examples for τ1, τ2,
{
(sP t)t∈(s,T ]

}
s∈[0,T )

and
{
(sQt)t∈(s,T ]

}
s∈[0,T )

.

Let us consider the probability space
(
Ω, (Ft)t∈[0,T ] ⊂ G, P) such that

the filtration F := (Ft)t∈[0,T ] is generated by a P -standard Brownian motion

(Wt)t∈[0,T ]. In addition, assume that τ2 ≡ T and the G-random time τ1 admits

an F-density α, i.e.

P (τ1 ∈ ds|Ft) = αt(s)ds, t ∈ [0, T ], (2.32)

where (ω, s) −→ αt(s)(ω) is a positive Ft ⊗ B(R+)-measurable function. For

any s ≥ 0, the process
(
αt(s)

)
t∈[0,T ]

is a (P,F)-martingale, see Karoui et al.

[25] for more details.

Keeping in mind the Girsanov theorem, we introduce the family of uni-

formly bounded stochastic processes
{(

Θt(s)
)
s≤t≤T

, s ∈ [0, T ]
}

where Θt(s)
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is Ft ⊗ B(R+)-measurable for all t ∈ [0, T ]. Set

Zt(s) := exp
(∫ t

s

Θu(s) dWu − 1

2

∫ t

s

Θ2
u(s) du

)
, for 0 ≤ s < t ≤ T. (2.33)

It is easy to check that, for a fixed s ∈ [0, T ],
(
Zt(s)

)
s≤t≤T

is a
(
P, (Ft)s≤t≤T

)
-

martingale with Zs(s) = 1. Using the martingale property of α, for each

s ∈ [0, T ] we define the following probability measures on (Ω,FT ):

d sP t

dP
:=

αT (s)

E
[
αT (s) | Fs

] =
αT (s)

αs(s)
and

d sQt

dP
:= ZT (s). (2.34)

Example 2.1. For a given x̃ ∈ [0, 1] and the probability measures defined as in

(2.34) with τ1, τ2 as above, we utilize Corollary 3.13 to find an explicit solution

to problem (2.27)-(2.28). By taking into account (2.3), at τ1 = s ∈ [0, T ) set

Ã(s, T ) introduced by (2.29) is given by

Ã(s, T ) =
{ d sP T

d sQT
> ãs

}
=
{d sP T

dP
> ãs

d sQT

dP

}

=
{αT (s)

αs(s)
> ãs ZT (s)

}
.

(2.35)

From (2.30), ãs ∈ Fs can be determined by:

sQT
(
Ã(s, T )

∣∣Fs

)
= x̃. (2.36)

By sP T ≈ P and sQT � P , we get

d sQT

d sRT
=

d sQT

dP
· dP

d sP T
· d

sP T

d sRT
,

this easily implies
{d sQT

d sRT
= 0

}
=

{d sP T

d sRT
= 0

}
. In addition, using the defi-

nition of conditional expectation, it is straightforward to see that sP T
(d sP T

d sRT
=
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0
∣∣Fs

)
= 0 and sQT

(d sQT

d sRT
= 0

∣∣Fs

)
= 0. In fact, we have used this argument

to get the second equality in (2.35) and show that this new representation for

Ã(s, T ) satisfies (2.36).

To find a more explicit form for ãs, in the remainder of this example, let us

consider τ1 to be independent of the Brownian motion (Wt)t∈[0,T ]. In addition,

assume that for some λ > 0 constant

P (τ1 ∈ ds | Ft) = P (τ1 ∈ ds) = λe−λs ds, for t ∈ [0, T ].

In this case, αt(s) is only a deterministic function of s, i.e. αT (s) = αs(s) and

we have P (τ1 ≤ s | Fs) = P (τ1 ≤ s) = 1 − e−λs. Therefore, for all s ∈ [0, T ],

the probability measure sP T is equal to P and Ã(s, T ) simplifies to

Ã(s, T ) =
{
ZT (s) <

1

ãs

}
. (2.37)

Moreover, we suppose that for any s ∈ [0, T ]

(
Θt(s)

)
s≤t≤T

≡ Ks+ 1,

for some constant K > 0. Recall that, by Girsanov’s theorem,
(
Wt−Θt(s)

)
s≤t≤T

is a
(
sQT , (Ft)s≤t≤T

)
-standard Brownian motion. Thus (2.36) becomes

x̃ = sQT
(
WT −Ws <

− ln ãs +
1
2
(Ks+ 1)2 (T − s)

Ks+ 1

∣∣Fs

)

=
1√
2π

∫ d̃s

−∞
exp(

−y2

2
) dy = Φ(d̃s),

(2.38)

where d̃s :=
− ln ãs +

1
2
(Ks+ 1)2 (T − s)

(Ks+ 1)
√
T − s

and Φ is the standard normal distri-

bution function. Now the constant d̃s, as a priori ãs, can be determined from
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equation (2.38).

Example 2.2. Let
(
Ω,FT ,F, P

)
:=

(
Ω1 × Ω2,F1

T × F2
T ,F1 × F2, P1 × P2

)
where

(
Ω1,F1

T ,F1, P1

)
is the probability space described in Example 2.1, and(

Ω2,F2
T ,F2, P2

)
is a probability space as given below.

Suppose that Ti : Ω2 −→ R
+, for i = 1, ..., n, is a positive F2

T -measurable

random variable defined on
(
Ω2,F2

T ,F2 := (F2
t )t∈[0,T ], P2

)
such that the Ti’s are

i.i.d with F2
t := σ

(
Ti ≤ t ; i = 1, ..., n

)
for t ∈ [0, T ]. Considering this setting,

define process
(
Nt

)
t∈[0,T ]

as the following:

Nt :=
n∑

i=1

1{Ti≤t} . (2.39)

Let us also introduce p(t) := P2(Ti > t), for all t ∈ [0, T ], with the convention

that p(0) ≡ 1. Now, take τ1 ≡ s for some s ∈ [0, T ] and τ2 ≡ T . We define

the probability measures sP T and sQT on
(
Ω,FT

)
by

d sP T

dP
:=

n−NT

EP2
[
n−NT |F2

s

] and
d sQT

dP
:= ZT (s) · n−NT

EP2
[
n−NT |F2

s

] ,
(2.40)

where ZT (s) is given by equation (2.33) and EP2
[
n−NT |F2

s

]
means the con-

ditional expectation of n−NT w.r.t the probability measure P2 and the σ-field

F2
s . Notice that sP T and sQT depend on the constant n, but for simplicity of

the notations we omit n in the left side of the definitions of sP T and sQT in

(2.40).

For a given x̃ ∈ (0, 1), we find the optimal solution to the corresponding

problem (2.27)-(2.28). Using Corollary 3.13, we get

Ã(s, T ) =
{d sP T

dP
> ãs

d sQT

dP

}
=
{
ZT (s) <

1

ãs

}
,

(2.41)
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such that ãs ∈ Fs is determined from

x̃ = sQT
(
Ã(s, T ) | Fs

)
= sQT

1

(
ZT (s) <

1

ãs
| F1

s

) · EP2
[
n−NT |F2

s

]
EP2

[
n−NT |F2

s

] , (2.42)

and
d sQT

1

dP
:= ZT (s) is defined on

(
Ω1,F1

T

)
. Therefore, ãs is given by a similar

calculation as in equation (2.38).

In the above example,
d sP T

dP
is simplified in (2.41)-(2.42) and it does not

have any impact on the size of the optimal test Ã(s, T ). But the power of

Ã(s, T ) is weighted by
d sP T

dP
depending on τ1 and τ2. This framework is

used to study pure endowment life insurance contracts linked to an equity

independent of the clients lifetime, see for instance Melnikov [35].

Example 2.3. Let Π = (Πt)t≥0 be a Poisson process with the intensity λ > 0

on the probability space (Ω,F, P ) where the filtration F := (Ft)t≥0 is generated

by Π. The Poisson process (Πt)t≥0 has jumps of size only +1 and it is constant

between two jumps. For m ∈ N, define

Tm := inf{t ≥ 0 : Πt = m}. (2.43)

It is easy to see that {Tm ≤ s} = {Πs ≥ m} for any s ≥ 0 and m ≥ 1. Thus,

for T > 0 fixed and s < T , by the properties of Π, we get

P (Tm ≤ T | Fs) = P (ΠT ≥ m | Fs)

= P (ΠT ≥ m |Πs)

= P (ΠT − Πs ≥ m− Πs |Πs)

=
+∞∑

k=(m−Πs)+

e−λ(T−s)

(
λ(T − s)

)k
k!

.

(2.44)
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Let τ1 = Tm for a fixed m ∈ N, and τ2 ≡ T . If s = Tm(ω0) < T for

some ω0 ∈ Ω we introduce the probability measures sP T and sQT on (Ω,FT )

as follows:

d sP T

dP
:=

1

P
(
Tm ≤ T | Fs

)
(ω0)

· 1{Tm≤T}, (2.45)

and

d sQT

dP
:= exp

{
(λ− λ∗)(T − s) + (lnλ∗ − lnλ)(ΠT − Πs)

}
, (2.46)

where the constant λ∗ > λ is the intensity of (Πt)t≥0 with respect to 0QT .

The probability measure 0QT is obtained from (2.46) with s = 0. Using Theo-

rem 2.1, the solution ϕ̃(s, T ) ∈ RT is given by

ϕ̃(s, T ) = 1{ d sPT

dP
>ãs(ω0)· d sQT

dP

} + γ̃s(ω0)1{ d sPT

dP
=ãs(ω0)· d sQT

dP

}, (2.47)

for a random variable ãs ∈ Fs, and γ̃s is determined from:

γ̃s(ω0) =
x̃− sQT

(
d sPT

dP
> ãs(ω0) · d sQT

dP
| Fs

)
(ω0)

sQT
(
d sPT

dP
= ãs(ω0) · d sQT

dP
| Fs

)
(ω0)

(2.48)

if sQT
(
d sPT

dP
= ãs(ω0) · d sQT

dP
| Fs

)
(ω0) �= 0, and γ̃s(ω0) = 0 otherwise.

Again, the optimal solution ϕ̃(s, T ) satisfies the constraint condition

E
sQT[

ϕ̃(s, T )
∣∣Fs

]
(ω0) = x̃. (2.49)

Notice that, henceforth, we drop ω0 in our calculations. Let

b̃s :=
− ln

(
ãsP (Tm ≤ T | Fs)

)
+ (λ∗ − λ)(T − s)

ln(λ
∗
λ
)

, (2.50)
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with P (Tm ≤ T | Fs) given by (2.44).

Since (Πu −Πs)s≤u≤T is an
(
(Fu)s≤u≤T ,

sQT
)
-Poisson process with the in-

tensity λ∗ > 0, condition (2.49) becomes

x̃ = sQT
({ΠT − Πs < b̃s} ∩ {Tm ≤ T} | Fs

)
+ γ̃s · sQT

({ΠT − Πs = b̃s} ∩ {Tm ≤ T} | Fs

)
= sQT

({ΠT − Πs < b̃s} ∩ {ΠT ≥ m} | Fs

)
+ γ̃s · sQT

({ΠT = b̃s +Πs} ∩ {ΠT ≥ m} | Fs

)
= sQT

(
m− Πs ≤ ΠT − Πs ≤ b̃s − 1 | Fs

)
+ γ̃s · sQT

({ΠT − Πs = b̃s} ∩ {m ≤ b̃s +Πs} | Fs

)
.

(2.51)

By (2.8) and (2.50), and the fact that Π takes only nonnegative integer values,

we suppose that b̃s is a nonnegative integer. In fact, we assume

b̃s = inf
{
b ∈ Z

+∪{0} : sQT
(
{ΠT −Πs < b}∩{ΠT ≥ m} ∣∣Fs

)
≤ x̃

}
. (2.52)

Taking into account the distribution of (Πu − Πs)s≤u≤T under the probability

measure sQT , equation (2.51) simplifies to

x̃ =
b̃s−1∑

k=(m−Πs)+

e−λ∗(T−s)

(
λ∗(T − s)

)k
k!

+ γ̃s e
−λ∗(T−s)

(
λ∗(T − s)

)b̃s
b̃s!

1{
m≤b̃s+Πs

},
(2.53)

32



and γ̃s is given as follows:

γ̃s =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ;
{
m > b̃s +Πs

}

x̃ −
b̃s−1∑

k=(m−Πs)+
e−λ∗(T−s)

(
λ∗(T−s)

)k

k!

e−λ∗(T−s)

(
λ∗(T−s)

)b̃s

b̃s!

; otherwise

(2.54)

For the applications of Poisson process and its induced probability measures,

such as (2.46), to modeling and pricing of contingent claims in financial mar-

kets see Melnikov et al. [40].

Example 2.4. Let W be a one-dimensional standard Brownian motion on the

probability space (Ω,F ⊂ G, P ) where F := (Ft)t≥0 is the filtration generated by

W . Similar to Example (2.1), we consider G-random time τ1 with the following

F-conditional density

α1
t (s) = λ1e

−λ1s, for some λ1 > 0,

for all t ≥ 0. Let (Πt)t≥0 be a Poisson process independent of W with the

intensity λ2 > 0. For a �= 0, take

τ(a) := inf{u ≥ 0 : Wu = a} and ξ := inf{u ≥ 0 : Πu ≥ 1}. (2.55)

Define G-random time τ2 as follows:

τ2 := τ(a) ∧ ξ
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From Jiao and Li [19], the F-conditional density of τ2 is given by

α2
t (s) = λ2e

−λ2s
[
1{s≤t}1{τ(a)>s} + 1{s>t}1{τ(a)>t}erf

( Wt − a√
2(s− t)

)]
, (2.56)

for all s, t ≥ 0, with erf(z) =
2√
π

∫ z

0

e−u2

du. By the independence assumption

between τ1, W and Π, the joint F-conditional density of (τ1, τ2) is the product

of α1 and α2 and we denote it by αt(s1, s2):

αt(s1, s2) = α1
t (s1)α

2
t (s2), for all s1, s2, t ≥ 0 . (2.57)

Similar to the α introduced in (2.32), for any fixed (s1, s2) ∈ R
2
+,

(
α1
t (s1)α

2
t (s2)

)
t≥0

is an (F, P )-martingale.

Let τ1 = s and τ2 = t such that s < t, we take the probability measures sP t

and sQt on (Ω,Ft) as follows

d sP t

dP
:=

αt(s, t)

E[αt(s, t)|Fs]
=
[
erf

( Ws − a√
2(t− s)

)]−1

1{τ(a)>t},

and sQt is defined by (2.33) and (2.34) with Θu(s) ≡ σ > 0 constant. For

this setting, we find an explicit form for the solution to problem (2.27)-(2.28).

Let x̃ ∈ [0, 1] to be given, again we need to determine ãs ∈ Fs such that

Ã(s, t) =
{d sP t

dP
> ãs

d sQt

dP

}
satisfies the following equation

x̃ = sQt
(
Ã(s, t) | Fs

)
= sQt

({W ∗
t −W ∗

s < b̃s} | Fs

)
− sQt

({W ∗
t −W ∗

s < b̃s} ∩ {τ(a) ≤ t} | Fs

)
= 1{τ(a)>s} sQt

({W ∗
t −W ∗

s < b̃s} | Fs

)
− sQt

({W ∗
t −W ∗

s < b̃s} ∩ {s < τ(a) ≤ t} | Fs

)
,

(2.58)
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where b̃s =

− ln
(
ãs erf

( Ws − a√
2(t− s)

))
+ 1

2
σ2(t− s)

σ
and W ∗

u = Wu − σu for

u ≥ 0. The first term on the right hand side of (2.58) is easily calculated as

below:

sQt
({W ∗

t −W ∗
s < b̃s}|Fs

)
=

1√
2π(t− s)

∫ b̃s

−∞
exp

( −y2

2(t− s)

)
dy. (2.59)

Now let us calculate the second term in (2.58). Conditioned on Fs, we have

τ(a)1{τ(a)>s} = inf{u > s : Wu = a}
= inf{u− s > 0 : Wu −Ws = a−Ws}
= τ(a−Ws)1{τ(a−Ws)>0}.

(2.60)

For the ease of notation, in the following we set τs := τ(a − Ws) and t̄ :=

t− s− τs. By taking into account (2.60), one can write

sQt
(
{W ∗

t −W ∗
s < b̃s} ∩ {s < τ(a) ≤ t} ∣∣Fs

)
= sQt

(
{W ∗

t−s < b̃s} ∩ {τs ≤ t− s}
)∣∣∣

Ws=z

= sQt
(

sQt
({W ∗̄

t+τs
−W ∗

τs < b̃s −W ∗
τs}

∣∣Fτs

)
1{τs≤t−s}

)∣∣∣
Ws=z

=

∫ t−s

0

1√
2π(t− s− u)

∫ b̃s−a+Ws+σu

−∞
exp

( −y2

2(t− s− u)

)
dy sQt

(
τs ∈ du

)∣∣∣
Ws=z

.

(2.61)

We point out that W ∗
τs = a − Ws − στs, and for a given Ws = z, τs is an

F-stopping time. Thus {τs ≤ t − s} ∈ Fτs and
(
Wu+τs − Wτs

)
u≥0

is a sQt-

Brownian motion.

To proceed, we provide an explicit formula for the probability density func-
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tion of 1{u>0} sQt
(
τs ∈ du | Fs

)
. For u ≤ t− s, we have

sQt
({τs ≤ u} | Fs

)
= sQt

(
τs ≤ u

)∣∣
Ws=z

= E
[
exp

(
σWt−s − 1

2
σ2(t− s)

)
1{τs≤u}

]∣∣
Ws=z

= E
[
E
[
exp

(
σ(Wt̄+τs −Wτs) + σWτs −

1

2
σ2(t− s)

) ∣∣Fτs

]
1{τs≤u}

]∣∣∣
Ws=z

=

∫ u

0

1√
2π(t− s− v)

∫ +∞

−∞
exp

(
σw + σ(a−Ws)− 1

2
σ2(t− s)

)

× exp
( −w2

2(t− s− v)

)
dw

|a−Ws|√
2πv3

exp
(−(a−Ws)

2

2v

)
dv

∣∣∣
Ws=z

.

In the last equality, we used the probability density of τs, see for instance

Jeanblanc et al. [18]. By taking derivative with respect to u, we obtain

sQt
(
τs ∈ du | Fs

)
1{u<t−s}

=
1√

2π(t− s− u)

∫ +∞

−∞
exp

(
σw + σ(a−Ws)− 1

2
σ2(t− s)

)

× exp
( −w2

2(t− s− u)

)
dw

|a−Ws|√
2πu3

exp
(−(a−Ws)

2

2u

) ∣∣∣
Ws=z

(2.62)

Finally by combining (2.58), (2.59), (2.61), and (2.62), the Fs measurable

random variable b̃s can be determined.

Notice that

{d sP t

dP
= ãs

d sQt

dP

}
= {W ∗

t −W ∗
s = b̃s} ∩ {τ(a) > t}

⊆ {W ∗
t −W ∗

s = b̃s}.
(2.63)

On the other hand, W ∗
t −W ∗

s conditioned on Fs is normally distributed. There-

fore, sQt
({W ∗

t − W ∗
s = b̃s}

∣∣Fs

)
= 0 and as an immediate consequence the

assumption of Corollary 3.13 is satisfied.

Example 2.5. Let W = (W1,W2) to be a two-dimensional standard Brownian
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motion on the probability space (Ω,F ⊂ G, P ) with F := (Ft)t≥0 the filtration

generated by W .

Following Karoui et al. [26], we introduce the random times τ1 and τ2 such

that

P (τ1 > s | Ft) = Φ
(σW1(t)− s

σ
√
T − t

)
, for some constant δ > 0,

and

P (τ2 > s | Ft) =
1√

1 + 2(T − t)s
exp

( −sW 2
2 (t)

1 + 2(T − t)s

) (2.64)

for all s, t ≥ 0. Using the definition of standard normal distribution function Φ

and then differentiating w.r.t s in (2.64), we obtain the F-conditional density

of τ1 and τ2, respectively, as follows:

αt(s) =
1√

2πσ2(T − t)
exp

(−(σW1(t)− s
)2

2σ2(T − t)

)
,

and

βt(s) =
[
(T − t)

(
1 + 2(T − t)s

)
+W 2

2 (t)
] P (τ2 > s | Ft)(

1 + 2(T − t)s
)2 .

(2.65)

Considering α and β, we assume that τ1 and τ2 are independent and their joint

Ft-conditional density, denoted by γt(s, t), is given by

γt(s, t) = αt(s)βt(t), for all s, t ≥ 0. (2.66)

Now for s < t we take sP t and sQt as below

d sP t

dP
:=

αt(s)βt(t)

αs(s)βs(t)
, (2.67)
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and
d sQt

dP
:= exp

(
σ1

(
W1(t)−Ws(s)

)− 1

2
σ2
1(t− s)

)
× exp

(
σ2

(
W2(t)−W2(s)

)− 1

2
σ2
2(t− s)

)
,

(2.68)

for some constant σ1, σ2 > 0. To solve problem (2.27)-(2.28), for a given

x̃ ∈ [0, 1], we investigate Ã(s, t) =
{d sP t

dP
> ãs

d sQt

dP

}
for some ãs ∈ Fs to

be determined from Corollary 3.13. By (2.65) and (2.68) and some tedious

calculations, we can see that

Ã(s, t) =
{
σ1W

∗
1 (t) + σ2W

∗
2 (t)

+

(
W ∗

1 (t) +W1(s) + σ1(t− s)− s
σ

)2

2(T − t)
+

t
(
W ∗

2 (t) +W2(s) + σ2(t− s)
)2

1 + 2(T − t)t

+ ln
((

W ∗
2 (t) +W2(s) + σ2(t− s)

)2

+ (T − t)
(
1 + 2(T − t)t

))
< b̃s

}
,

where W ∗
i (t) = Wi(t)−Wi(s)−σi(t−s) for i = 1, 2. Let us define the function

F as the following

F (x1, x2) =σ1x1 + σ2x2

+

(
x1 +W1(s) + σ1(t− s)− s

σ

)2

2(T − t)
+

t
(
x2 +W2(s) + σ2(t− s)

)2

1 + 2(T − t)t

+ ln
((

x2 +W2(s) + σ2(t− s)
)2

+ (T − t)
(
1 + 2(T − t)t

))
.

Using the above calculation, Corollary 3.13 and the Girsanov theorem, we write

x̃ = sQt
(
Ã(s, t) | Fs

)
= sQt

({
F
(
W ∗

1 (t),W
∗
2 (t)

)
< b̃s

} ∣∣∣Fs

)
=

1

2π(t− s)

∫∫
{F (x1,x2)<b̃s}

exp
(−(x2

1 + x2
2)

2(t− s)

)
dx1 dx2.

Solution to this equation gives us b̃s or equivalently ãs.
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2.3 Conclusion

The main objective of this chapter is to generalize the classical Neyman-

Pearson lemma to the case that a simple null hypothesis and alternative are

revealed to the statistician as a surprise. Traditionally, it is supposed that

the hypotheses of a statistical test are determined at time t = 0. We study a

setting that the time, and the hypotheses of the hypothesis test all reveal to

us stochastically. This randomness is modelled by using random times in the

underlying filtered probability space.

Our results have interesting and meaningful applications in insurance and

financial markets in terms of mortality risk and default times. As an example,

we can consider a defaultable financial model which after an unpredictable

default time we want to maximize the probability of a successful hedge with the

available random capital at the time of default. The main point of dealing with

this problem is the measurability requirements which we utilized a measurable

selection argument to deal with.
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Chapter 3

Change of probability measures

and superhedging in a

default-density framework

3.1 A regime switching model

We study a financial model exposed to a counterparty risk, this exogenous

source of risk results in a jump in the price of the underlying asset. After the

default event, the rate of return and volatility switch to a new rate of return

and volatility. In fact, this is the model considered by Jiao and Pham [20] to

study the problem of optimal investment with counterparty risk.

In our model, we denote the price of the underlying asset by (St)t∈[0,T ].

Depending on the default timing, St is described with different stochastic

differential equations. In the following, we introduce this family of SDEs:

• The before-default asset price:

Let us consider a probability space (Ω,G, P ) equipped with F = (Ft)t∈[0,T ], for
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T < +∞, where F is the filtration generated by a standard Brownian motion

W = (Wt)t∈[0,T ]. The dynamic of before-default asset price (SF

t )t∈[0,T ] is given

by

dSF

t = SF

t (μ
F

t dt+ σF

t dWt), SF

0 = S0 > 0, t ∈ [0, T ], (3.1)

where μF and σF are F-adapted process with σF

t > 0 for all t ∈ [0, T ], and

S0 is the initial asset price. To guarantee the existence and uniqueness of the

solution to (3.1), we assume that

∫ T

0

|μ
F

t

σF
t

|2dt+
∫ T

0

|σF

t |2dt < +∞, P -a.s. (3.2)

At time t ∈ [0, T ], if the default has not occurred yet then St = SF

t .

• The after-default asset price:

We represent the default time by a nonnegative and finite random variable

τ on (Ω,G, P ) such that P (τ = 0) = 0. At the time of default τ = θ, the

asset price jumps to a new value Sd
θ (θ) := SF

θ (1−γθ), where γ is an F-adapted

process determining the size and direction of this jump. For t ∈ (θ, T ], process

Sd
t (θ) is governed by the following SDE:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dSd
t (θ) = Sd

t (θ)
(
μd
t (θ)dt+ σd

t (θ)dWt

)
, t ∈ (θ, T ]

Sd
θ (θ) = SF

θ (1− γθ)

(3.3)

where (ω, θ) → μd
t (θ)(ω), σ

d
t (θ)(ω) are Ft ⊗ B(R+)-measurable functions for

all t ∈ [0, T ] with σd
t (θ) > 0 for all θ ∈ [0, T ] and t ∈ [θ, T ]. Similar to μF and

σF, we impose the following condition:

∫ T

θ

∣∣μd
t (θ)

σd
t (θ)

∣∣2dt+ ∫ T

θ

|σd
t (θ)|2dt < +∞, P -a.s., for all θ ∈ [0, T ]. (3.4)
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In addition, to make Sd
θ (θ) > 0 P -a.s., for all θ ∈ [0, T ] we assume that

−∞ < γθ < 1, and

∫ T

0

| γt
σF
t

|2dt < +∞, P -a.s., (3.5)

for all θ ∈ [0, T ].

• The global asset price:

At each moment of time t ∈ [0, T ], we aggeregate information from the

counterparty risk τ with the information generated by SF to include both

sources of randomness in our model. In other words, we enlarge the filtration

F = (Ft)t∈[0,T ] with H = (Ht)t∈[0,T ] :=
(
σ(τ ∧ t)

)
t∈[0,T ]

, the enlarged filtration

is denoted by G := (Gt)t∈[0,T ] where Gt := Ft ∨ Ht for all t ∈ [0, T ]. Using

SDEs (3.1) and (3.3), the G-adapted process (St)t∈[0,T ] is given by:

St = SF

t 1{t<τ} + Sd
t (τ)1{t≥τ}, t ∈ [0, T ]. (3.6)

We recall the next proposition without the proof to describe the connection

between measurability in G and F filtrations.

Proposition 3.1. Let G = F ∨H be introduced as above. Then:

1. For any G-optional process (Yt)t∈[0,T ], we have a decomposition as:

Yt = Y F

t 1{t<τ} + Y d
t (τ)1{t≥τ}, t ∈ [0, T ],

where (Y F

t )t∈[0,T ] is an F-optional process, Y d
t (θ) is Ft⊗B(R+)-measurable

for all θ ∈ [0, T ] and t ∈ [θ, T ], and
(
Y d
t (θ)

)
t∈[θ,T ]

is F-optional.

2. For any G-predictable process (Yt)t∈[0,T ], we have a decomposition as:

Yt = Y F

t 1{t≤τ} + Y d
t (τ)1{t>τ}, t ∈ [0, T ],
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where (Y F

t )t∈[0,T ] is an F-predictable process, Y d
t (θ) is Ft⊗B(R+)-measurable

for all θ ∈ [0, T ] and t ∈ [θ, T ], and
(
Y d
t (θ)

)
t∈[θ,T ]

is F-predictable.

Proof. For a generalization of this result to the case of multiple default times

consult with Pham [44].

• Density hypothesis:

We assume that for any t ∈ [0, T ] there exists an Ft ⊗ B(R+)-measurable

positive function (ω, θ) → αt(ω, θ) such that

P
(
τ ∈ dθ|Ft

)
= αt(θ)dθ,

We can show that for any fixed θ ≥ 0 the process
(
αt(θ)

)
t∈[0,T ]

is an (F, P )-

martingale. Given Ft, the family αt(.) is the conditional density of τ w.r.t the

Lebesgue measure. This means that for any bounded Borel function f :

E
[
f(τ)|Ft

]
=

∫ +∞

0

f(θ)αt(θ)dθ, P -a.s.

In particular, we have

∫ +∞

0

αt(θ)dθ = 1, P -a.s.

The survival process of τ with respect to Ft is defined as follows:

Gt := P
(
τ > t|Ft

)
=

∫ +∞

t

αt(θ)dθ, P -a.s., (3.7)

for any t ∈ [0, T ].

For a comprehensive study of the density hypothesis and it applications in

defaultable markets see Karoui et al. [25], Pham [44], and Karoui et al. [27].
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• Density hypothesis versus the intensity hypothesis:

In comparison to the density hypothesis, a global default rate for τ , it is

possible to consider a local default rate for τ , i.e. a non-negative F-predictable

process (λt)t∈[0,T ] such that:

P
(
τ ∈ (t, t+ dt)|Ft

)
= λtdt, P -a.s., for any t ∈ [0, T ].

The process (λt)t∈[0,T ] is called the F-intensity process of τ and it is well known

that under this assumption 1{τ≤t}−
∫ τ∧t

0

λsds follows a (G, P )-martingale. The

intensity process can be recovered from the conditional density αt(θ). In fact,

we can show that for any t ∈ [0, T ]

λt =
αt(t)

Gt

, P -a.s.

However, the intensity λ determines αt(θ) only partly, more precisely only

for t ≤ θ. For more discussion about this subject, see Karoui et al. [25] and

Jiao and Pham [20].

The main advantage of the density hypothesis is that fact that it provides

more information about the behaviour of the model after the default. The

intensity hypothesis fails to describe τ after the default. In practice, this

restriction does not allow us to provide explicit solutions for problems in de-

faultable models. For instance, the optimization problems studied by Nakano

[42] under the intensity hypothesis for which explicit solutions are derived only

for the case of zero recovery rate. With a nonzero recovery rate, due to the lack

of information from the intensity hypothesis, he could not solve the underlying

maximization problem explicitly.

Motivated by Karoui et al. [25], Karoui et al. [27], Jiao and Pham [20],

and also the above discussion, we consider the density hypothesis for our fi-
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nancial model in this chapter. In the following, first we provide an explicit

representation for the family of probability martingale measures for (St)t∈[0,T ]

with respect to (Ω,G ⊆ G, P ). Then we apply our results to find an explicit

form for the problem of superhedging in the underlying defaultable market.

The main idea is to utilize the density hypothesis to break down the desired

representations into filtration F and the F-Brownian motion W . In fact, to

get simpler representations we want to avoid using a G-Brownian motion.

Definition 3.2. Let πt = πF

t 1{t≤τ}+πd
t (τ)1{t>τ}, t ∈ [0, T ], be a G-predictable

process where (πF

t )t∈[0,T ] is F-predictable, and for any fixed θ ∈ [0, T ] process(
πd
t (θ)

)
t∈[θ,T ]

is F-predictable. In addition, πd
t (θ) defines a family of Ft ⊗

B(R+)-measurable functions.

Then π is called a G-adapted portfolio process if for all θ ∈ [0, T ]:

∫ T

0

|πF

t σ
F

t |2dt+
∫ T

θ

|πd
t (θ)σ

d
t (θ)|2dt < +∞, P -a.s.

Definition 3.3. A nonnegative G-optional process

(ct)t∈[0,T ] = (cFt 1{t<τ} + cdt (τ)1{t≥τ})t∈[0,T ]

such that

∫ T

0

cFt dt+

∫ T

θ

cdt (θ)dt < +∞, for all θ ∈ [0, T ], P -a.s.

is called a consumption process. Notice that (cFt )t∈[0,T ] is a nonnegative F-

optional process, cdt (θ) is nonnegative and Ft ⊗ B(R+)-measurable for all θ ∈
[0, T ] and t ∈ [θ, T ], and

(
cdt (θ)

)
t∈[θ,T ]

is F-optional.

Definition 3.4. For an initial wealth x0 > 0, a G-adapted portfolio π is called

a self-financing portfolio process corresponding to the consumption process c if
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the associated wealth process to (π, c) is defined as follows:

Xx0,π,c
t = XF

t 1{t<τ} +Xd
t (τ)1{t≥τ}, t ∈ [0, T ] . (3.8)

Processes XF and Xd(τ) are described by the following SDEs:

dXF

t = XF

t π
F

t

dSF

t

SF
t

− cFt dt , XF

0 = x0 , t ∈ [0, T ]. (3.9)

Similarly, for any fixed θ ∈ [0, T ], and t ∈ (θ, T ], we have:

dXd
t (θ) = Xd

t (θ)π
d
t (θ)

dSd
t (θ)

Sd
t (θ)

− cdt (θ)dt , Xd
θ (θ) = XF

θ (1− πF

θ γθ) . (3.10)

The process πF

t represents the fraction of total wealth invested in SF

t before

the default, and πd
t (θ) denotes the fraction of the total wealth invested in Sd

t (θ)

after the default at time τ = θ.

Definition 3.5. For a given initial wealth x0 > 0, a pair of a G self-financing

portfolio process and consumption process (π, c) is called G-admissible if the

corresponding wealth process satisfies

Xx0,πF,cF

t > 0 and πF

t γt < 1 , P -a.s. for all t ∈ [0, T ],

and for any fixed θ ∈ [0, T ]

Xd,πd,cd

t (θ) ≥ 0, P -a.s. for all t ∈ (θ, T ].

The set of all G-admissible (π, c) for the initial wealth x0 > 0 is denoted by

AG(x0).

The set of all F-admissible pairs (πF, cF) is defined similarly, and is denoted

by AF(x0).
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Notice that in the case of ct ≡ 0, conditions x0 > 0 and πF

θ γθ < 1 along

with (3.9) and (3.10) guarantee that

Xx0,π
t > 0, P -a.s. for all t ∈ [0, T ].

In other words, the condition πF

θ γθ < 1 is equivalent to the positivity require-

ment of Xd
t in the traditional definition of admissibility of a portfolio.

Remark 3.6. For any t ∈ [0, T ], let μt = μF

t 1{t<τ} + μd
t (τ)1{t≥τ} and σt =

σF

t 1{t<τ} + σd
t (τ)1{t≥τ}. Then, from price process representation (3.6), we can

write

dSt = St−
(
μtdt+ σtdWt − γtd(1{τ≤t})

)
=
(
SF

t 1{t≤τ} + Sd
t (τ)1{t>τ}

)[
μF

t 1{t<τ}dt+ μd
t (τ)1{t≥τ}dt

+ σF

t 1{t<τ}dWt + σd
t (τ)1{t≥τ}dWt − γtd(1{τ≤t})

]
.

(3.11)

This is reduced to:

dSt = 1{t≤τ}dSF

t − γtS
F

t d(1{τ≤t}) + 1{t>τ}dSd
t (τ), (3.12)

for all t ∈ [0, T ] with S0 = SF

0 .

Let x0 > 0 be a constant, and π =
(
πF, πd(τ)

) ∈ AG(x0) satisfies Defini-

tions 3.2 and 3.4. In addition, choose F-predictable processes (φF

t )t∈[0,T ] and

(φd
t (τ))t∈[0,T ] such that:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φF

t S
F

t = πF

t X
F

t ; t ∈ [0, T ]

φd
t (τ)S

d
t (τ) = πd

t (τ)X
d
t (τ) ; t ∈ [τ, T ]

(3.13)
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Hence, by above we get

Xx0,π
t = XF

t 1{t<τ} +Xd
t (τ)1{t≥τ}

=
(
x0 +

∫ t

0

φF

udS
F

u

)
1{t<τ} +

(
XF

τ − γτφ
F

τS
F

τ +

∫ t

τ

φd
u(τ)dS

d
u(τ)

)
1{t≥τ}

= x0 +

∫ τ∧t

0

φF

udS
F

u − γτφ
F

τS
F

τ 1{t≥τ} +
∫ t

τ

φd
u(τ)dS

d
u(τ). (3.14)

Combining (3.12) and (3.14), we have shown that

Xx0,π
t = x0 +

∫ t

0

φG

udSu, for all t ∈ [0, T ], (3.15)

where φG

t = φF

t 1{t≤τ}+φd
t (τ)1{t>τ} can be interpreted as the number of shares of

the defaultable asset S held at time t ∈ [0, T ]. In other words, Definitions 3.2

and 3.4 for a portfolio and G-admissible wealth process is consistent with the

classic definition of admissibility using a stochastic integral with respect to

(St)t∈[0,T ].

3.2 Change of probability measures in filtra-

tion G

In the next theorem, we provide a representation to fully characterize the

Radon-Nikodym density of any change of probability in the setting of Sec-

tion 3.1. This result can be considered as a version of the Girsanov’s theorem

for the model described by (3.1) - (3.6).

Theorem 3.7. For an F-adapted cadlag process (qt)t∈[0,T ] and an O(F) ⊗
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B(R+)-optional process (qt(θ))t∈[θ,T ], both strictly positive, define:

ρGt :=
qt
M0

1{τ>t} +
qt(τ)

M0

1{τ≤t}, t ∈ [0, T ], (3.16)

where M0 > 0 is a constant value. Then ρG is the Radon-Nikodym density

of a change of probability measure on (Ω,G ⊆ G, P ) if and only if all of the

following conditions hold:

1. For any θ > 0, there exists a strictly positive (F, P )-martingale
(
βt(θ)

)
t∈[θ,T ]

such that

qt(θ) =
βt(θ)

αt(θ)
, t ∈ [θ, T ]. (3.17)

We set βt(θ) := E[βθ(θ) | Ft] for any t < θ.

2. There exists a positive FT -measurable random variable YT such that qt

satisfies:

qtGt = E
[
YTGT +

∫ T

t

βs(s)ds | Ft

]
, for any t ∈ [0, T ], (3.18)

where Gt is the survival process defined by (3.7).

3. Let Mβ
t := E[YTGT | Ft] +

∫ T

0
βt(s)ds. Then E

[ ∫ T

0
βθ(θ)dθ

]
< +∞, and

M0 = E[Mβ
t ] = q0, for all t ∈ [0, T ].

Proof. By part 1, process
(
qt(θ)αt(θ)

)
t∈[θ,T ]

is an (F, P )-martingale. In addi-

tion, part 2 implies that qtGt +
∫ t

0
qs(s)αs(s)ds is an (F, P )-local martingale.

Using Proposition 5.6 of Karoui et al. [25], we can see that (ρGt )t∈[0,T ] is a

positive (G, P )-local martingale and consequently a supermartingale. By the
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definition of ρG we have

E[ρGt ] =
1

M0

E
[
E[qt1{τ>t} + qt(τ)1{τ≤t} | Ft]

]
=

1

M0

E
[
qtGt +

∫ t

0

qt(s)αt(s)ds
]

=
1

M0

E
[
qtGt +

∫ t

0

E[qt(s)αt(s)|Fs]ds
]

=
1

M0

E
[
qtGt +

∫ t

0

qs(s)αs(s)ds
]

=
1

M0

E
[
YTGT +

∫ T

0

qs(s)αs(s)ds
]
.

(3.19)

From (3.18), similar to (3.19) one can see

q0 = E
[
YTGT +

∫ T

0

qs(s)αs(s)ds
]
= E[Mβ

t ], for any t ∈ [0, T ]. (3.20)

Combining equations (3.19) and (3.20), we conclude that ρG is a (G, P )-

supermartingale with constant expectation which proves its martingale prop-

erty. By (3.20) and M0 = E[Mβ
t ] from part 3, we also see that E[ρGt ] = 1.

This proves the sufficiency of conditions 1− 3 for the theorem.

On the other hand, let us suppose that (ρGt )t∈[0,T ] is the Radon-Nidokym

density of a change of probaility, i.e., it is a positive (G, P )-martingale with

E[ρGT ] = 1. Therefore, by Karoui et al. [25] we have

(i) βt(θ) = qt(θ)αt(θ), t ∈ [θ, T ], is a positive (F, P )-martingale.

(ii) qtGt +
∫ t

0
qs(s)αs(s)ds, t ∈ [0, T ], is a positive (F, P )-martingale.

Now part 1 of the theorem is immediate by (i), and we define βt(θ) for t < θ

as described in part 1. By (ii), one can write

E
[
qTGT +

∫ T

0

qs(s)αs(s)ds
∣∣Ft

]
= qtGt +

∫ t

0

qs(s)αs(s)ds,
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by taking YT = qT , we get part 2. To verify the last part, we combine (3.19)

and (3.20) with E[ρGT ] = 1, and taking into account positivity of YTGT , (3.20)

implies E
[ ∫ T

0
βθ(θ)dθ

]
≤ q0 < +∞.

Remark 3.8. Let us elaborate more on representations (3.16) and (3.17)

in Theorem 3.7. The main ideas behind these two forms are the fact that

(ρGt )t∈[0,T ] is a (G, P )-martingale and the computation of Gt-conditional expec-

tations in terms of Ft-conditional expectations.

Suppose that ρGt =
qt
q0
1{τ>t} +

qt(τ)

q0
1{τ≤t}, for t ∈ [0, T ]. To determine qt

and qt(τ), first we use the (G, P )-martingale property of (ρGt )t∈[0,T ], and then

Theorem 3.1 of Karoui et al. [25]. This gives us:

ρGt = E[ρGT | Gt] =
1

Gt

E
[ ∫ +∞

t

ρGT (θ)αT (θ)dθ
∣∣Ft

]
1{τ>t}

=
1

αt(θ)
E
[
ρGT (θ)αT (θ)

∣∣Ft

]∣∣∣
θ=τ

1{τ�t},
(3.21)

where

ρGT (θ) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

qT
q0

; θ > T

qT (θ)

q0
; θ � T

(3.22)

Hence:

ρGt =
1

q0Gt

E
[ ∫ T

t

E
[
qT (θ)αT (θ) | Fθ

]
dθ +

∫ +∞

T

qTαT (θ)dθ
∣∣Ft

]
1{τ>t}

=
1

q0αt(θ)
E
[
qT (θ)αT (θ)

∣∣Ft

]∣∣∣
θ=τ

1{τ�t}.
(3.23)

By setting βt(θ) = E
[
qT (θ)αT (θ)

∣∣Ft

]
for t ∈ [θ, T ] and comparing (3.23) with
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(3.16), we get:

qt =
1

Gt

E
[
qTGT +

∫ T

t

βθ(θ)dθ
∣∣Ft

]
, for t ∈ [0, T ], (3.24)

and

qt(θ) =
βt(θ)

αt(θ)
, for t ∈ [θ, T ], (3.25)

as desired.

Using the above theorem, now we determine an explicit representation for

those (ρGt )t∈[0,T ] where process (ρGt St)t∈[0,T ] is a (G, P )-local martingale, i.e.

the family of probability martingale measures for (St)t∈[0,T ] with respect to

(Ω,G ⊆ G, P ).

To proceed, let us define

Zt := exp
(
−
∫ t

0

μF

u

σF
u

dWu − 1

2

∫ t

0

(μF

u

σF
u

)2
du

)
, for any t ∈ [0, T ], (3.26)

and for any fixed θ ∈ [0, T ] introduce:

Zd
t (θ) := exp

(
−
∫ t

θ

μd
u(θ)

σd
u(θ)

dWu − 1

2

∫ t

θ

(μd
u(θ)

σd
u(θ)

)2
du

)
, (3.27)

for all t ∈ [θ, T ].

Definition 3.9. Let
{
β̃θ(θ); θ ∈ [0, T ]

}
be a family of positive Fθ ⊗ B(R+)-

measurable random variables such that:

(i) E
[ ∫ T

0

β̃θ(θ)dθ
]
< +∞.

(ii)

∫ T

0

( β̃θ(θ)γθ
σF

θ

)2

dθ < +∞, P -a.s.
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(iii) 1 +

∫ T

0

β̃θ(θ)γθ
ZθσF

θ

dWθ +

∫ T

0

β̃θ(θ)

Zθ

( γθμ
F

θ

(σF

θ )
2
− 1

)
dθ > 0, P -a.s.

The family of all
{
β̃θ(θ); θ ∈ [0, T ]

}
satisfying the above conditions is denoted

by B.

Keeping in mind the above definition, the next theorem presents an additive

form for the class of probability martingale measures for S on (Ω,G, P ). We

denote the family of all of these probability martingale measures by Q.

Theorem 3.10. Consider positive G-adapted process (ρGt )t∈[0,T ]. Then dQ
dP

:=

ρGT defines a probability martingale measure for (St)t∈[0,T ] with respect to (Ω,G, P )

if and only if there exists a positive F-adapted process (qt)t∈[0,T ], and a family

of positive F-adapted processes
{(

qt(θ)
)
t∈[θ,T ]

; θ ∈ [0, T ]
}
such that

ρGt :=
qt
q0
1{τ>t} +

qt(τ)

q0
1{τ≤t}, for any t ∈ [0, T ]. (3.28)

Moreover, there exists
{
β̃θ(θ); θ ∈ [0, T ]

} ∈ B such that (
qt
q0
)t∈[0,T ] and

(qt(θ)
q0

)
t∈[θ,T ]

satisfy the following conditions:

1. For any fixed θ ∈ [0, T ], we have

qt(θ)

q0
=

β̃θ(θ)Z
d
t (θ)

αt(θ)
, (3.29)

for all t ∈ [θ, T ].

2. Process
( qt
q0

)
t∈[0,T ]

is determined from:

qt
q0
Gt = 1 +

∫ t

0

( β̃u(u)γu
σF
u

− quGuμ
F

u

q0σF
u

)
dWu −

∫ t

0

β̃u(u)du. (3.30)
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Equivalently, we have:
qt
q0
Gt = ZtΨt, (3.31)

where

Ψt := 1 +

∫ t

0

β̃u(u)γu
ZuσF

u

dWu +

∫ t

0

β̃u(u)

Zu

( γuμ
F

u

(σF
u)

2
− 1

)
du . (3.32)

Proof. Recall that, from Theorem 3.7, Q is a change of probability measure if

and only if ρG has a representation as (3.28). Furthermore, by definition, Q

is a probability martingale measure for (St)t∈[0,T ] with respect to (Ω,G, P ) iff

(ρGt St)t∈[0,T ] is a (G, P )-local martingale. From the definition of ρG and S, we

get

ρGt St =
1

q0

[
SF

t qt1{τ>t} + Sd
t (τ)qt(τ)1{τ≤t}

]
, t ∈ [0, T ],

where we used the fact that M0 = q0 as it was proven in Theorem 3.7.

By Proposition 5.6 of Karoui et al. [25], (G, P )-local martingale property

of ρGt St holds true iff:

(i) For any θ ∈ [0, T ],
(
Sd
t (θ)qt(θ)αt(θ)

)
t∈[θ,T ]

is an (F, P )-local martingale.

(ii) Process (Nt)t∈[0,T ] :=
(
SF

t qtGt+

∫ t

0

Sd
u(u)qu(u)αu(u)du

)
t∈[0,T ]

is an (F, P )-

local martingale.

Let Q be a probability martingale measure. Then, as described in The-

orem 3.7, for any θ ∈ [0, T ] there exists a strictly positive (F, P )-martingale(
βt(θ)

)
t∈[θ,T ]

with βt(θ) := E[βθ(θ)|Ft] for t < θ. Thus, by martingale represen-

tation theorem for Brownian filtrations, there is an (Ft)t∈[θ,T ] adapted process

(ft(θ))t∈[θ,T ] such that βt(θ) = βθ(θ) +
∫ t

θ
fu(θ)dWu with

∫ T

θ
f 2
u(θ)du < +∞,

P -a.s. We recall that βt(.) is Ft ⊗ B(R+)-measurable, thus by measurable

selection theorem, we can choose ft(θ) as a family of Ft ⊗ B(R+)-measurable

functions. In addition, from Theorem 3.7 part 3, we have
∫ T

0
βθ(θ)dθ ∈ L1(P ).
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By applying the Ito formula, we obtain

Sd
t (θ)βt(θ) = Sd

θ (θ)βθ(θ) +

∫ t

θ

Sd
u(θ)fu(θ)dWu +

∫ t

θ

βu(θ)S
d
u(θ)σ

d
u(θ)dWu

+

∫ t

θ

βu(θ)S
d
u(θ)μ

d
u(θ)du+

∫ t

θ

Sd
u(θ)σ

d
u(θ)fu(θ)du.

(3.33)

To guarantee the martingale property of Sd
t (θ)βt(θ), we must have

βu(θ)μ
d
u(θ) + σd

u(θ)fu(θ) = 0, for all u ∈ [θ, T ].

This implies
dβt(θ)

βt(θ)
=

ft(θ)

βt(θ)
dWt = −μd

t (θ)

σd
t (θ)

dWt. (3.34)

If for any θ > 0 we set

β̃θ(θ) :=
βθ(θ)

q0
, (3.35)

then (3.17) and the solution to the above SDE give us (3.29). Condition (i)

of Definition 3.9 can be easily seen as a result of (3.20) and (3.35).

To show the second part, by Theorem 3.7, one can see that qtGt+

∫ t

0

βu(u)du

is an (F, P )-martingale, thus

qtGt +

∫ t

0

βu(u)du = q0 +

∫ t

0

hudWu, t ∈ [0, T ], (3.36)

for some F-predictable process (ht)t∈[0,T ].

On the other hand, we apply the Ito formula on SF

t (qtGt) to get

dNt =
[
SF

t ht + SF

t σ
F

t qtGt

]
dWt

+
[
SF

t μ
F

t qtGt + SF

t σ
F

t ht − SF

t βt(t) + Sd
t (t)βt(t)

]
dt.

(3.37)
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Taking into account (ii) and Sd
t (t) = SF

t (1− γt), we can write

SF

t σ
F

t ht = βt(t)γtS
F

t − SF

t μ
F

t qtGt, (3.38)

which implies

ht =
βt(t)γt
σF
t

− qtGt
μF

t

σF
t

. (3.39)

Keeping in mind the integrability condition from part (ii) of Definition 3.9,

then equation (3.36) and (3.39) give us

d(qtGt) =
(βt(t)γt

σF
t

− qtGt
μF

t

σF
t

)
dWt − βt(t)dt. (3.40)

This is a non-homogeneous SDE and we use Melnikov and Shiryaev [39] to

find its solution:

qt
q0
Gt = E

(
−
∫ ·

0

μF

u

σF
u

dWu

)
t

[
1 +

∫ t

0

E−1
(
−
∫ ·

0

μF

v

σF
v

dWv

)
u
dψu

]
, (3.41)

where E(·) denotes the stochastic exponential and the process ψt is defined as

ψt := 1 +

∫ t

0

β̃u(u)γu
σF
u

dWu +

∫ t

0

( β̃u(u)γuμ
F

u

(σF
u)

2
− β̃u(u)

)
du, (3.42)

for all t ∈ [0, T ]. Taking into account the definition of E(·), representation
(3.31) is concluded by equations (3.41) and (3.42).

In addition, to satisfy the positivity of process (qt)t∈[0,T ], we need to intro-

duce appropriate constraints on β̃θ(θ). In part 2 of Theorem 3.7, since both

βθ(θ) and Gt are positive, YT = qT > 0 ensures positivity of qt for all t ∈ [0, T ].

Using q0 > 0 and (3.31), qT > 0 if and only if ΨT > 0, P -a.s., i.e. β̃θ(θ) must

be chosen such that condition (iii) of Definition 3.9 holds true.

To complete the proof, suppose that ρG satisfies part 1 and 2 of the the-

56



orem. Using the above arguments, we can see that ρG fulfills the criteria of

Theorem 3.7 and also
(
ρGt St

)
t∈[0,T ]

is a (G, P )-local martingale.

Remark 3.11. In fact Theorem 3.10 parametrizes Q by parameter β̃ ∈ B. As,
it is expected, it determines infinitely many probability martingale measures for

the incomplete model S on (Ω,G, P ). For instance, in the case of γ ≡ 0 for

n ≥ 2 let β̃(t;n) :=
Zt

nT
for all t ∈ [0, T ]. It is a straightforward calculation to

show that β̃(.;n) ∈ B. From the Fubini’s theorem and the martingale property

of (Zt)t∈[0,T ] with Z0 = 1:

E
[ ∫ T

0

Zu

nT
du

]
=

1

nT

∫ T

0

E
[
Zu

]
du =

1

nT

∫ T

0

du =
1

n
< +∞

This corresponds to condition (i) of Definition 3.9, condition (ii) is trivial for

γ ≡ 0, and to see (iii) in the definition, notice that

ΨT = 1−
∫ T

0

Zt

nTZt

dt = 1− 1

n
> 0, for all n ≥ 2.

Thus probability measure Qn defined by β̃(.;n), as in Theorem 3.10, belongs to

Q, i.e. {Qn}n≥2 ⊆ Q.

We point out that Theorem 3.10 does not use a G-Brownian motion in the

decomposition of ρG. Although we study our model in the enlarged filtration

G but the calculations are reduced to the filtration F. In the next section, this

property helps us to determine superhedging trading strategy of a G-contingent
claim in terms of SF

t and Sd
t (θ) rather than St.

3.3 Superhedging in the defaultable market

In the remaining of this chapter we investigate the superhedging problem in

the incomplete defaultable market described in Section 3.1.
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Let H = HF1{τ>T}+Hd(τ)1{τ≤T} be a nonnegative GT -measurable contin-

gent claim such that

sup
Q∈Q

EQ[H] < +∞ ,

where HF is a nonnegative FT -measurable random variable and Hd(τ) is a

nonnegative FT ⊗ σ(τ)-random variable. We are looking for a minimal initial

capital U0 and a G-admissible portfolio process which cover H at the maturity

time T . Mathematically speaking, this problem is identified by the upper Snell

envelope of H with respect to the set Q, i.e.

Ut := ess sup
Q∈Q

EQ
[
H
∣∣Gt

]
, t ∈ [0, T ], (3.43)

where U0 = supQ∈Q EQ[H] determines the initial cost of superhedging H.

From the optional decomposition theorem, we know that there exists a G-

prdictable process (ϕt)t∈[0,T ] and a nonnegative G-optional process (Ct)t∈[0,T ]

with C0 = 0 such that

Ut := U0 +

∫ t

0

ϕs dSs − Ct, t ∈ [0, T ]. (3.44)

See El Karoui and Quenez [12] for more details on pricing in incomplete mar-

kets, and consult with Föllmer and Schied [16] for an excellent demonstration

of the problem in a discrete time setting.

To obtain the superhedging G-admissible portfolio π = (πF, πd), first we

find a decomposition for Yt in terms of St and Sd
t (τ). This result, Theorem 3.14,

provides us a tool to characterize G-admissible wealth processes in our model.

The next proposition is a well-known result in complete markets, for reader’s

convenience, we recall this result from Karatzas and Shreve [23].

Proposition 3.12. Let (Y F

t )t∈[0,T ] be a positive F-adapted process. Then
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(ZtY
F

t )t∈[0,T ] is an (F, P )-local martingale iff

Y F

t = Y F

0 +

∫ t

0

πF

uY
F

u

dSF

u

SF
u

, t ∈ [0, T ], (3.45)

where (πF

t )t∈[0,T ] is an F-predictable process such that

∫ T

0

(πF

t σ
F

t )
2dt < +∞, P -a.s. (3.46)

In particular, (Y F

t )t∈[0,T ] is an F-wealth process corresponding to the F-admissible

trading strategy πF and the initial capital Y F

0 .

Proof. If (ZtY
F

t )t∈[0,T ] is a positive (F, P )-local martingale then, by martin-

gale representation theorem, there exists an F-predictable process (φt)t∈[0,T ]

satisfying

∫ T

0

φ2
tdt < +∞, P -a.s., such that

ZtY
F

t = Y F

0 +

∫ t

0

φudWu, for all t ∈ [0, T ]. (3.47)

Define

πF

t := (σF

t )
−1
( φt

ZtY F
t

+
μF

t

σF
t

)
. (3.48)

Then, one can show that

∫ T

0

(πF

t σ
F

t )
2dt ≤ 2

[ ∫ T

0

φ2
t

(ZtY F
t )

2
dt+

∫ T

0

(μF

t

σF
t

)2
dt
]

≤ 2

mint∈[0,T ](ZtY F
t )

2

∫ T

0

φ2
tdt+ 2

∫ T

0

(μF

t

σF
t

)2
dt < +∞,

(3.49)

since ZtY
F

t is a continuous positive process, and due to assumption (3.2). Since

dZ−1
t = Z−1

t

(μF

t

σF
t

dWt +
(μF

t

σF
t

)2
dt
)
, (3.50)
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and Y F

t = Z−1
t

(
ZtY

F

t

)
, using equations (3.47) , (3.48), and (3.50) along with a

straightforward calculation by Ito formula we can prove (3.45).

Conversely, suppose that (3.45) and (3.46) hold true. Having πt, we can

define φt using (3.48) which deduces (3.47). In addition, similar to (3.49), we

can see that

∫ T

0

φ2
tdt ≤ 2 max

t∈[0,T ]
(ZtY

F

t )
2
[ ∫ T

0

(σF

t π
F

t )
2dt+

∫ T

0

(μF

t

σF
t

)2
dt
]
< +∞. (3.51)

The last part of the proposition is an immediate result of (3.2) and Defini-

tion 3.2.

As a consequence of Proposition 3.12, we can characterizeG-adapted wealth

processes in terms of (F, P )-local martingales:

Corollary 3.13. Let (Yt)t∈[0,T ] be a positive G-adapted process. Then Yt

is the wealth process corresponding to a G-admissible portfolio process π =

(πF, πd) with c ≡ 0 iff there exists an F-adapted process (Y F

t )t∈[0,T ] and an

O(F)⊗B(R+)-optional process Y d
t (.), both positive, such that Yt = Y F

t 1{t<τ}+

Y d
t (τ)1{t≥τ} and the following conditions hold:

(i) (ZtY
F

t )t∈[0,T ] is a positive (F, P )-local martingale.

(ii) For any fixed θ ∈ [0, T ],
(
Zd

t (θ)Y
d
t (θ)

)
t∈[θ,T ]

is a positive (F, P )-local

martingale.

(iii) For all θ ∈ [0, T ], we have Y d
θ (θ) = Y F

θ (1− πF

θ γθ), P -a.s.

Proof. First, let us assume that Yt = Xπ
t = XπF

t 1{t≤τ}+Xπd

t (τ)1{t>τ} for some

G-admissible portfolio π = (πF, πd). Set Y F

t = XπF

t and Y d
t (θ) = Xπd

t (θ) then

part (i) can be easily seen from Proposition 3.12, and part (ii) is verified
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similar to the proof of this proposition. Part (iii) comes from Definition 3.4

for Xπ
t .

Keeping in mind Definition 3.4, one can also show the reverse statement

using the arguments of the proof of Proposition 3.12.

The next theorem can be considered as a counterpart to Proposition 3.12 in

the enlarged filtration G. However, in this case, G-local martingale property

w.r.t probability measures Q ∈ Q does not fully characterize the G-wealth

processes. We need to add (F, P )-local martingale property of the before-

default process as well:

Theorem 3.14. A positive G-adapted process Yt = Y F

t 1{t<τ} + Y d
t (τ)1{t≥τ}

is the wealth process associated to some G-admissible porfolio π = (πF, πd) iff

(ZtY
F

t )t∈[0,T ] is a positive (F, P )-local martingale, and for any Q ∈ Q process

(Yt)t∈[0,T ] is a positive (G, Q)-local martingale.

Proof. Taking into account representation (3.28), Proposition (5.6) of Karoui

et al. [25] shows that ρGt Yt =
qt
q0
Y F

t 1{τ>t}+
qt(τ)

q0
Y d
t (τ)1{τ≤t} is a positive (G, P )-

local martingale iff both of the following conditions are satisfied

(1)
( qt
q0
Y F

t Gt +

∫ t

0

qu(u)

q0
Y d
u (u)αu(u)du

)
t∈[0,T ]

is a positive (F, P )-local mar-

tingale.

(2) For any fixed θ ∈ [0, T ],
(qt(θ)

q0
Y d
t (θ)αt(θ)

)
t∈[θ,T ]

is a positive (F, P )-local

martingale.

If Yt is a G-wealth process, condition (2) results from part (ii) of Corollary 3.13

and (3.29). To show (G, P )-local martingale property of (Yt)t∈[0,T ], it is enough

to prove condition (1).
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From (3.30) and (3.31), Y F

t = XF

t , and Ito formula we have

qt
q0
Y F

t Gt +

∫ t

0

qu(u)

q0
Y d
u (u)αu(u)du = ZtΨtX

F

t +

∫ t

0

β̃u(u)Y
d
u (u)du

= XF

0 +

∫ t

0

ZuΨudX
F

u +

∫ t

0

XF

ud(ZuΨu) +
[
ZΨ, XF

]
t
+

∫ t

0

β̃u(u)Y
d
u (u)du

= XF

0 +

∫ t

0

ZuΨuX
F

uπ
F

u

(
σF

udWu + μF

udu
)
+

∫ t

0

XF

u

( β̃u(u)γu
σF
u

− ZuΨu
μF

u

σF
u

)
dWu

−
∫ t

0

XF

u β̃u(u)du+

∫ t

0

XF

uπ
F

uσ
F

u

( β̃u(u)γu
σF
u

− ZuΨu
μF

u

σF
u

)
du+

∫ t

0

β̃u(u)Y
d
u (u)du

= XF

0 +

∫ t

0

XF

u

(
ZuΨuπ

F

uσ
F

u +
β̃u(u)γu

σF
u

− ZuΨu
μF

u

σF
u

)
dWu

+

∫ t

0

β̃u(u)
(
Y d
u (u)−XF

u

(
1− πF

uγu
))

du (3.52)

By the last equality and part (iii) of Corollary 3.13, condition (1) is now

satisfied. The (F, P )-local martingale property of (ZtY
F

t )t∈[0,T ] is given by part

(i) of Corollary 3.13.

On the other hand, if (ρGt Yt)t∈[0,T ] is a positive (G, P )-local martingale then

conditions (1) and (2) are immediate as discussed above. From (2), it is easy

to drive part (ii) of Corollary 3.13. Keeping in mind equation (3.52), condition

(1) is fulfilled iff we have part (iii) of Corollary 3.13. Therefore, by combing

these with the (F, P )-local martingale property of (ZtY
F

t )t∈[0,T ], Corollary 3.13

finishes the proof.

Now, we turn back to the superhedging problem (3.43) and finding Yt and

Ct in the optional decomposition (3.44). The next proposition reduces the

underlying Q-conditional expectations in G to P -conditional expectations in

the original filtration F.

Proposition 3.15. Let H = HF1{τ>T} + Hd(τ)1{τ≤T} be a nonnegative GT -
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measurable contingent claim such that

sup
Q∈Q

EQ[H] < +∞ ,

where HF is a nonnegative FT -measurable random variable and Hd(τ) is a

nonnegative FT ⊗ σ(τ)-random variable. Then for any Q ∈ Q we obtain:

EQ[H|Gt] = 1{t<τ}
1

ZtΨt

E
[
ZTΨTH

F +

∫ T

t

β̃θ(θ)E
[
Zd

T (θ)H
d(θ)

∣∣Fθ

]
dθ
∣∣∣Ft

]
+ 1{t≥τ}

1

Zd
t (θ)

E
[
Zd

T (θ)H
d(θ)

∣∣∣Ft

]∣∣∣
θ=τ

(3.53)

for all t ∈ [0, T ].

Proof. Using Theorem 3.10, for an arbitrary Q ∈ Q we can write
dQ

dP
= ρGT =

qT
q0

1{T<τ} +
qT (τ)

q0
1{T≥τ} with

qt
q0

and
qt(τ)

q0
as described therein. Hence:

EQ[H|Gt] =
1

ρGt
E
[qT
q0

HF1{T<τ} +
qT (τ)

q0
Hd(τ)1{T≥τ}

∣∣∣Gt

]

= E
[qT/q0
qt/q0

HF1{T<τ}
∣∣∣Gt

]
+ E

[qT (τ)/q0
qt/q0

Hd(τ)1{t<τ≤T}
∣∣∣Gt

]

+ E
[qT (τ)/q0
qt(τ)/q0

Hd(τ)1{t≥τ}
∣∣∣Gt

]
.

(3.54)

In the following, we simplify these three conditional expectations to reduce

them into conditional expectations with respect to the F filtration. To do so,

we utilize (3.31) and Corollary 5.1.1 of Bielecki and Rutkowski [3] to get

E
[qT/q0
qt/q0

HF1{T<τ}
∣∣∣Gt

]
= 1{t<τ}E

[(qT/q0)GT

(qt/q0)Gt

HF

∣∣∣Ft

]
= 1{t<τ}E

[ZTΨT

ZtΨt

HF

∣∣∣Ft

]
.

(3.55)
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To compute the second term in (3.54), we apply Theorem 3.1 of Karoui et al.

[25]. By approximating
qT (τ)/q0
qt/q0

Hd(τ)1{τ≤T} by
(qT (τ)/q0

qt/q0
Hd(τ)1{τ≤T}

)
∧ n

and then using monotone convergence theorem, we have

E
[qT (τ)/q0

qt/q0
Hd(τ)1{τ≤T}1{t<τ}

∣∣∣Gt

]

=
1

(qt/q0)Gt

E
[ ∫ T

t

qT (θ)

q0
Hd(θ)αT (θ)dθ

∣∣∣Ft

]
1{t<τ}

=
1

ZtΨt

E
[ ∫ T

t

β̃θ(θ)E
[
Zd

T (θ)H
d(θ)

∣∣Fθ

]
dθ
∣∣∣Ft

]
1{t<τ}, (3.56)

to obtain the last equality, we used (3.29) and the property of conditional

expectation w.r.t Fθ and Ft for t ≤ θ.

Finally, let us focus on the third term in (3.54). This is done with a

similar argument as used in (3.56), i.e. Theorem 3.1 of Karoui et al. [25],

approximating by a bounded sequence and monotone convergence theorem:

E
[qT (τ)/q0
qt(τ)/q0

Hd(τ)1{t≥τ}
∣∣∣Gt

]

= 1{t≥τ}E
[(qT (θ)/q0)αT (θ)

(qt(θ)/q0)αt(θ)
Hd(θ)

∣∣∣Ft

]∣∣∣
θ=τ

= 1{t≥τ}E
[Zd

T (θ)

Zd
t (θ)

Hd(θ)
∣∣∣Ft

]∣∣∣
θ=τ

,

(3.57)

where again we applied (3.29) in the second equality.

The following theorem and its proof provide an algorithm how to determine

the superhedging trading strategy and the consumption process for an arbi-

trary G-measurable contingent claim H. The strategy consists of two parts:

(1) A before-default trading strategy in the original filtration (F)t∈[0,T ] with

investing in (SF

t )t∈[0,T ].

(2) An after-default trading strategy in the filtration (F)t∈[θ,T ] with investing

64



in
(
Sd
t (θ)

)
t∈[θ,T ]

, where θ = τ is the default occurrence time.

Theorem 3.16. Let H = HF1{T<τ} + Hd(τ)1{T≥τ} ∈ GT be as in Proposi-

tion 3.15. Then, the superhedging value process of H is given by:

ess sup
Q∈Q

EQ
[
H
∣∣Gt

]
= 1{t<τ} ess sup

β̃∈B

1

ZtΨt

E
[
ZTΨTH

F +

∫ T

t

β̃θ(θ)E
[
Zd

T (θ)H
d(θ)

∣∣Fθ

]
dθ

∣∣∣Ft

]

+ 1{t≥τ}
1

Zd
t (θ)

E
[
Zd

T (θ)H
d(θ)

∣∣∣Ft

]∣∣∣
θ=τ

(3.58)

In particular, we have

sup
Q∈Q

EQ[H] = sup
β̃∈B

E
[
ZTΨTH

F +

∫ T

0

β̃θ(θ)E
[
Zd

T (θ)H
d(θ)

∣∣Fθ

]
dθ
]
. (3.59)

Proof. Let us define

Y F

t :=
1

ZtΨt

E
[
ZTΨtH

F +

∫ T

t

ZθΨ̃θE
[
Zd

T (θ)H
d(θ)

∣∣Fθ

]
dθ

∣∣∣Ft

]
, (3.60)

for any t ∈ [0, T ]. In addition, for any fixed θ ∈ [0, T ], we introduce Y d
t (θ) as

follows

Y d
t (θ) :=

1

Zd
t (θ)

E
[
Zd

T (θ)H
d(θ)

∣∣∣Ft

]
, for all t ∈ [θ, T ]. (3.61)

Let Yt = Y F

t 1{t<τ}+Y d
t (θ)1{t≥τ}, for t ∈ [0, T ]. By the definition of Y d

t (θ), it is

clear that
(
Zd

t (θ)Y
d
t (θ)

)
t∈[θ,T ]

is a nonnegative (F, P )-local martingale. Hence

there is an F-predictable process
(
π̃d
t (θ)

)
t∈[θ,T ]

such that

Y d
t (θ) = X π̃d

t (θ) = Y d
θ (θ) +

∫ t

θ

X π̃d

u (θ)π̃d
u(θ)

dSd
u(θ)

Sd
u(θ)

. (3.62)

By applying a measurable selection argument, we can choose the family of

π̃d
t (θ) such that they are Ft ⊗ R+-measurable functions for all t ∈ [0, T ].
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To obtain (3.58) it is enough to combine (3.43) and (3.53) with (3.62).

3.4 Conclusion

In this chapter, we study a regime-switching model exposed to a counterparty

risk where the associated default time satisfies the so-called density hypothesis.

Our main goal is to provide closed form representations for the class of

probability martingale measures and the superhedging problem for this model.

This framework is an interesting case with potential applications in stochastic

volatility models, defaultable markets, risk minimization and utility maxi-

mization problems. Our explicit solutions facilitate the studying of pricing

and optimization problems in defaultable markets which lack concrete exam-

ples with explicit representations. Another importance of our results is the

fact that our techniques introduce a method to reduce the calculations in the

enlarged filtration G to the Brownian filtration F.
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Chapter 4

Efficient Hedging for

Defaultable Securities and its

Application to Equity-Linked

Life Insurance Contracts

4.1 Model Setting

In this Chapter we consider a financial model consisting of two assets B and

S, defined by their prices processes (Bt)0≤t≤T and (St)0≤t≤T . Let us call this

model (B, S)-market and assume its price evolution as follows

dSt = St

(
mtdt+ σtdWt

)
, S0 ∈ (0,∞)

dBt = Btrtdt, B0 = 1
(4.1)

for t ∈ [0, T ]. (rt)0≤t≤T is the risk free interest rate of our bank account B,

volatility and appreciation rate of S as the risky asset are given by σ > 0 and
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m respectively, and (Wt)0≤t≤T is a standard Brownian motion on the complete

probability space (Ω,F = (Ft)0≤t≤T ⊆ G, P ). For the sake of simplicity, we

assume r ≡ 0.

We postulate that (B, S) is a complete market. In other words, there exists

a unique equivalent martingale measure P ∗ defined by

dP ∗

dP
:= ρ∗T

such that

ρ∗t := exp
(
−
∫ t

0

ms

σs

dWs −
∫ t

0

1

2
(
ms

σs

)
2

ds
)

(4.2)

for t ∈ [0, T ]. In addition, (ρ∗t )0≤t≤T satisfies the following integrability condi-

tions

(1)
∫ T

0
(ms

σs
)2ds < +∞, P -a.s.

(2) E[ρ∗T ] = 1

The default times are represented by τi for i = 1, ..., n. They are some

positive G-measurable random variables (G-random times) with P (τi = 0) = 0

such that P (τi > t) > 0 for all i = 1, ..., n and t ∈ [0, T ]. For J ⊆ {1, ..., n},
by progressively enlargement of the filtrations, define

GJ
t := Ft ∨HJ

t and G
J := (GJ

t )0≤t≤T

where HJ
t := σ

(
τi ∧ t; i ∈ J

)
, for t ∈ [0, T ]. If J = {1, ..., n}, we simply write

Gt, Ht, and G.

We make the following assumptions on the default times:

Assumption 4.1. The default times {τi : i = 1, ..., n} and (Wt)0≤t≤T are

mutually independent.
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Assumption 4.2. P (τi = τj) = 0, for all i, j = 1, ..., n and i �= j.

In fact, Assumption 4.1 with the help of Bielecki and Rutkowski [3] (Lemma

6.1.2) imply that any F-martingale remains a G-martingale. This guarantees

no arbitrage condition in the defaultable (B, S, τ)-market.

There are some crucial processes associated to each random time τi for

i = 1, ..., n:

• The F-supermatingale

Gi
t := P

(
τi > t|Ft

)
(4.3)

is called the Azéma supermatingale or the survival process of τi with

respect to F. We assume that Gi
t > 0 for all t ∈ [0, T ]. Due to Assump-

tion 4.1, in our model (4.3) is simplified to Gi
t = P

(
τi > t

)
.

• For i = 1, ..., n, if there exists a nonnegative F-predictable process (μi
t)0≤t≤T

such that

Gi
t = exp

(
−
∫ t

0

μi
sds

)
, t ∈ [0, T ] (4.4)

then (μi
t)0≤t≤T is called F-intensity of the random time τi. This assump-

tion on the default time is well known as intensity hypothesis. Since

Gi
t = P

(
τi > t

)
by Assumption 4.1, for all i = 1, ..., n the intensity μi

t is

only a nonnegative function of the variable t ∈ [0, T ].

• If (μi
t)0≤t≤T exists then

M i
t := 1{τi≤t} −

∫ τi∧t

0

μi
sds, t ∈ [0, T ]

is a G-martingale.
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We can interpret the intensity process as a local default rate, i.e.

P
(
τi ∈ (t, t+ dt]|Ft

)
= μi

tdt. (4.5)

For more details regarding the above processes, see for example Bielecki

and Rutkowski [3] or Nikeghbali [43].

Let us define

D :=
{
(κt)0≤t≤T : bounded,G-predictable and κt > −1 dt× dP a.e.

}
.

Keeping in mind the above assumptions and notations, we can show that the

class of equivalent martingale measures for our defaultable model is given by:

Q :=
{
Qκ | κ := (κ1

t , ..., κ
n
t )0≤t≤T ∈ Dn

}
(4.6)

where the set Dn consists of all n-tuples of the elements of D, and

dQκ

dP
:= ρ∗Tρ

κ
T , κ ∈ Dn

with

ρκt = 1 +
n∑

i=1

∫ t

0

κi
sρ

κi

s−dM
i
s, t ∈ [0, T ],

for more details, see Bielecki and Rutkowski [3] or Kusuoka [31].

Due to Assumption 4.2, it is not difficult to see that the jumps of τi and

τj for i �= j do not coincide. Thus we can use the definition of stochastic

exponential to prove that

ρκt =
( n∏

i=1

(
1 + κi

τi
1{τi�t}

))
exp

(
−

n∑
i=1

∫ τi∧t

0

κi
sμ

i
sds

)
, t ∈ [0, T ]. (4.7)
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Based on the available information (G) to the traders in the defaultable

market, we have the following definition for admissible strategies.

Definition 4.3.

1. A G-trading strategy is a G-predictable process π :=
(
π0
t , π

1
t

)
t∈[0,T ]

such

that ∫ T

0

|π0
t |dt < ∞, and

∫ T

0

(
π1
tSt

)2
dt < ∞ P -a.s.

2. At time t ∈ [0, T ], the value process associated to
(
π0
t , π

1
t

)
t∈[0,T ]

is defined

by

Vt := π0
t + π1

tSt.

(Since we assume that r ≡ 0.)

3. For a given initial value v0 � 0, the trading strategy π is called self-

financing if its corresponding value process satisfies

Vt = v0 +

∫ t

0

π1
sdSs, P -a.s.

for all t ∈ [0, T ].

4. A self-financing strategy
(
v0, πt

)
t∈[0,T ]

is called G-admissible, if for its

corresponding value process (Vt
v0,π)t∈[0,T ] we have

Vt
v0,π ≥ 0, P -a.s. ∀t ∈ [0, T ].

The set of all G-admissible strategies with initial value v0 is denoted

by AG(v0). In a similar way to above, we can define AF(v0), the F-

admissible strategies with initial value v0.
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In this chapter we investigate the efficient hedging problem of the default-

able contingent claims defined as

Hδ := H
n∏

i=1

(
1{τi>T} + δi1{τi≤T}

)
(4.8)

where H is a nonnegative FT -measurable random variable and δi ∈ [0, 1] is

called the i-recovery rate, for i = 1, ..., n.

To formulate the problem of minimizing the shortfall risk weighted by a

loss function l we recall the following definition from Follmer and Leukert [15].

Definition 4.4. A loss function l is an increasing convex function on [0,+∞)

with

(i) l(0) = 0

(ii) E[l(H)] < +∞

Additionally, we make some differentiability assumptions about l.

Assumption 4.5. l has the following properties:

• l ∈ C1(0,+∞)

• l′ is strictly increasing on (0,+∞)

• l′(0+) = 0 and l′(+∞) = +∞

By above, the inverse function of l′ exists and is denoted by I, I := (l′)−1.

In this framework, we apply the superhedging techniques to hedge Hδ in

the incomplete market (B, S, τ). The initial cost of superhedging is defined by

U0 := inf
{
u ≥ 0 : V u,π

T ≥ Hδ, for some π ∈ AG(u)
}
.
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Equivalently, we can show that

U0 = sup
Q∈Q

EQ
[
Hδ

]
(4.9)

where Q is the class of all martingale measures for S with respect to (Ω,G, P ).

If we define

X̄t := ess sup
Q∈Q

EQ
[
Hδ

∣∣Gt

]
(4.10)

for t ∈ [0, T ], then it is known that for some π̄ ∈ AG(U0) and an increasing

optional process C̄ with C̄0 = 0 we have

X̄t = U0 +

∫ t

0

π̄sdSs − C̄t. (4.11)

This decomposition is called the optional decomposition of Hδ, see El Karoui

and Quenez [12] or Karatzas [22].

Using the structure of Q we provide a useful representation for U0. Nakano

[42] has a similar result for the case n = 1 and δ ∈ [0, 1]. In the following, the

expectation E[ρ∗TH] is denoted by E∗[H].

Lemma 4.6. If E∗[H] < +∞ then U0 = E∗[H].

Proof. For simplicity of notations, we suppose that n = 2, δ1 �= 0 and δ2 = 0,

other cases can be treated similarly. In this case, {Hδ > 0} = {H > 0}∩{τ2 >
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T} and

U0 = sup
κ∈D2

E
[
ρ∗Tρ

κ
THδ

]
= sup

κ∈D2

{
E
[
ρ∗Tρ

κ
TH1{τ2>T}∩{τ1>T}

]
+ δ1E

[
ρ∗Tρ

κ
TH1{τ2>T}(1− 1{τ1>T})

]}
= sup

κ∈D2

{
δ1E

[
ρ∗Tρ

κ
TH1{τ2>T}

]
+ (1− δ1)E

[
ρ∗Tρ

κ
TH1{τ2>T}∩{τ1>T}

]}
.

(4.12)

Now, let us consider κ = (κ1, κ2) ∈ D2 with κ1 ∈ D arbitrary but κ2 ∈ D
constant such that κ2 ↘ −1. Then we have

U0 ≥ lim
κ2↘−1

{
δ1E

[
ρ∗Tρ

κ1

T ρκ
2

T H1{τ2>T}
]

+ (1− δ1)E
[
ρ∗Tρ

κ1

T ρκ
2

T H1{τ2>T}∩{τ1>T}
]}

= δ1E
[
ρ∗Tρ

κ1

T exp
(∫ T

0

μ2
sds

)
H1{τ2>T}

]
+ (1− δ1)E

[
ρ∗Tρ

κ1

T exp
(∫ T

0

μ2
sds

)
H1{τ2>T}∩{τ1>T}

]
.

(4.13)

We work on each term of the right-hand side of (4.13), separately:

E
[
ρ∗Tρ

κ1

T H1{τ2>T}
]
= E

[
ρκ

1

T E
[
ρ∗TH1{τ2>T}|FT ∨H2

T

]]
. (4.14)

However, by Kusuoka [31],
(
ρκ

1

t

)
t∈[0,T ]

and
(
E
[
ρ∗TH1{τ2>T}|Ft∨H2

t

])
t∈[0,T ]

are

two orthogonal (G, P )-local martingales. This implies that their product is a

(G, P )-local martingale as well. By considering (H ∧ m)m≥1 and then using

the monotone convergence theorem as m → +∞, Eq. (4.14) becomes

E
[
ρκ

1

T E
[
ρ∗TH1{τ2>T}|FT ∨H2

T

]∣∣G0

]
= ρκ

1

0 E
[
ρ∗TH1{τ2>T}|F0 ∨H2

0

]
= exp

(
−
∫ T

0

μ2
sds

)
E∗[H].

(4.15)
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On the other hand, if we first apply (4.15) in (4.13), and then choose κ1 ∈ D
constant such that κ1 ↘ −1 in the second term. Then

U0 ≥ δ1E
∗[H] + (1− δ1)E

∗[H] = E∗[H], (4.16)

where we used the fact that FT and {τi}i=1,2 are independent and P
( 2⋂

i=1

{τi >

T}
)
= exp

(
−

2∑
i=1

∫ T

0

μi
sds

)
.

To prove the reverse inequality in (4.16), notice that since κ > −1, we have

ρκT1{τ2>T} = ρκ
1

T exp
(
−
∫ T

0

κ2
sμ

2
sds

)
1{τ2>T}

≤ ρκ
1

T exp
(∫ T

0

μ2
sds

)
1{τ2>T},

(4.17)

and

ρκT1{τ2>T}∩{τ1>T} ≤ exp
( 2∑

i=1

∫ T

0

μi
sds

)
1{τ2>T}∩{τ1>T} (4.18)

for any κ = (κ1, κ2) ∈ D2. By (4.12) and inequalities (4.17) and (4.18), we get

U0 ≤ δ1E[ρ∗Tρ
κ1

T H] + (1− δ1)E
∗[H]

= δ1E
∗[H] + (1− δ1)E

∗[H] = E∗[H].
(4.19)

To get the first equality in (4.19), we need to repeat the arguments applied to

E
[
ρ∗Tρ

κ1

T H1{τ2>T}
]
in (4.14) and (4.15) for the case of E[ρ∗Tρ

κ1

T H].

4.2 Formulation of the Problem and Main Re-

sults

Clearly, the client is not willing to pay E∗[H] for buying Hδ. S/he can buy H

in the default-free market for this price and receive H, P -a.s., without the risk
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of default. To offer a competitive price which is reasonable for the client, the

premium charged by the company should be less than E∗[H]. However, if the

premium is less than E∗[H] there is a possibility of shortfall for the company

(still there is the possibility of payment H). This naturally leads us to the

problem of minimizing the shortfall risk with an initial capital ũ < E∗[H].

In this case, we consider the problem of minimizing the expectation of the

shortfall risk weighted by a loss function. More precisely, we want to solve the

following problem

min
π∈AG(v)

v≤ũ

E
[
l
(
(Hδ − V v,π

T )+
)]
. (4.20)

Due to Proposition 3.1 and Theorem 3.2 of Follmer and Leukert [15], there

exists a solution for (4.20). We recall these results in A.

In the next lemma, we show that the solution to the minimization prob-

lem (1.1) solves a maximization problem. Then applying this lemma and the

results of Cvitanić and Karatzas [8], we can find a closed form expression for

the solution, ϕ̃.

Lemma 4.7. Let us define R :=
{
ϕ : Ω −→ [0, 1]

∣∣ ϕ ∈ GT

}
, and ϕ̃ ∈ R to

be determined from Theorem 1. Then the random variable ϕ̃ is a solution to

the following maximization problem

max
ϕ∈R

EP̄ [ϕ] (4.21)

subject to the constraint

sup
κ∈Dn

E
[
ρ∗Tρ

κ
TϕHδ

] ≤ ũ, (4.22)
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where

dP̄

dP
:=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

l′
(
(1− ϕ̃)Hδ

)
Hδ

E
[
l′
(
(1− ϕ̃)Hδ

)
Hδ

] ; on
{
Hδ > 0

} ∩ {
ϕ̃ �= 1

}

0 ; otherwise

(4.23)

Proof. Let us define the function F : L1(P ) −→ R as F (ψ) := E
[
l
(
(1−ψ)Hδ

)]
for ψ ∈ L1(P ). Then Theorem 1 indicates that ϕ̃ minimizes F over the convex

set

R(ũ) :=
{
ϕ ∈ R ∣∣ sup

κ∈Dn

E
[
ρ∗Tρ

κ
TϕHδ

] ≤ ũ
} ⊂ L1(P ).

As a consequence, above and Theorem 7.4.2 of Luenberger [34] imply that

the following inequality holds for the Gateaux derivative of F at ϕ̃ with the

increment ϕ− ϕ̃

dF
(
ϕ̃+ t(ϕ− ϕ̃)

)
dt

∣∣
t=0

= DF
(
ϕ̃;ϕ− ϕ̃

)
� 0, for all ϕ ∈ R(ũ).

Using monotone convergence theorem we have

− E
[
l′
(
(1− ϕ̃)Hδ

)
(ϕ− ϕ̃)Hδ

] ≥ 0, (4.24)

for all ϕ ∈ R(ũ). Equation (4.24) implies the following crucial inequality

E
[
l′
(
(1− ϕ̃)Hδ

)
ϕ̃Hδ

] ≥ E
[
l′
(
(1− ϕ̃)Hδ

)
ϕHδ

]
.

This inequality proves the optimality of ϕ̃ to the desired problem.

Remark 4.8. Lemma 4.7 can also be proved by the method of Karlin (see

Karlin [24]) that was used by Follmer and Leukert [15] in the proof of Theo-

77



rem 5.1, therein. In fact, both ideas reduce to the same calculation analogous

to Eq. (4.24).

Let L be the closed convex hull of {ρκT}κ∈Dn under P -a.s. convergence. It

is clear that L is a convex, bounded set in L1(P ) such that

{
ρκT

}
κ∈Dn ⊆ L.

Now notice that

EP̄ [ϕ] = E
[
ϕ
(dP̄
dP

− zρ∗TLHδ

)]
+ E

[
zρ∗TLϕHδ

]
� E

[(dP̄
dP

− zρ∗TLHδ

)+]
+ zũ,

(4.25)

and

E
[
ρ∗TLϕHδ

]
� ũ (4.26)

for all ϕ ∈ R(ũ), L ∈ L and z > 0. To get inequality (4.26), we applied

Fatou’s lemma and (4.22).

By (4.25) and (4.26), we introduce the dual problem of primal problem

(4.21)−(4.22) as follows:

V∗(ũ) := inf
z>0
L∈L

{
ũz + E

[(dP̄
dP

− zρ∗TLHδ

)+]}
. (4.27)

Cvitanić and Karatzas [8] adapted the techniques of nonsmooth convex anal-

ysis along with a theorem of Komlós (Komlós [28]) to prove that there exists

a solution (z̃, L̃) ∈ R
+ ×L to this dual problem. Using inequality (4.25), they

showed that ϕ̃ has the following representation

ϕ̃ = 1{
z̃ρ∗T L̃Hδ<

dP̄
dP

} + B̃1{
z̃ρ∗T L̃Hδ=

dP̄
dP

}, P -a.s. (4.28)
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where B̃ is a GT -measurable random variable with values in [0, 1]. In addition,

ϕ̃, L̃, and z̃ satisfy the following conditions

E
[
ρ∗T L̃ϕ̃Hδ

]
= ũ, (4.29)

and if we introduce

Ṽ (z̃) := inf
L∈L

E
[(dP̄

dP
− z̃ρ∗TLHδ

)+]
, (4.30)

then Ṽ (z̃) = E
[(

dP̄
dP

− z̃ρ∗T L̃Hδ

)+]
.

In B, for the convenience of reader, we summarize the algorithm of finding

(z̃, L̃). In the next lemma, we provide a more explicit description of L̃.

Lemma 4.9. Consider the dual problem (4.27). For ũ < U0, let Ṽ (z̃), z̃ and

L̃ to be defined as above. Then

1. Ṽ vanishes, more precisely:

Ṽ (z̃) = E
[(dP̄
dP

− z̃ρ∗T L̃Hδ

)+]
= 0, (4.31)

and

EP̄ [ϕ̃] = V∗(ũ) = ũz̃. (4.32)

2. Moreover, we have:

L̃

n∏
i=1

1{τi>T} =
( n∏

i=1

1{τi>T}
)
exp

( n∑
i=1

∫ T

0

μi
sds

)
. (4.33)

Proof. (1) First, notice that by l(0) = 0 we can assume ϕ̃ = 1 on the set{
Hδ = 0

}
. Now taking into account (4.28), we describe ϕ̃ on

{
Hδ > 0

}
.
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From representation (4.28), we have ϕ̃ = 1 on

A1 :=
{
z̃ρ∗T L̃Hδ <

dP̄

dP

}
, (4.34)

and ϕ̃ = B̃ on

A2 :=
{
z̃ρ∗T L̃Hδ =

dP̄

dP

}
=
{
α̃z̃ρ∗T L̃ = l′

(
(1− ϕ̃)Hδ

)}
, (4.35)

where α̃ := E
[
l′
(
(1− ϕ̃)Hδ

)
Hδ

]
. Furthermore, it is clear that ϕ̃ = 0 on

A3 :=
(
A1 ∪ A2

)c
. (4.36)

Let us recall that we defined dP̄
dP

= 0 on ϕ̃ = 1. On the other hand, we

know all z̃, ρ∗T , L̃ and Hδ are nonnegative. This implies that A1 = ∅,
and consequently Ṽ (z̃) = 0. Equation (4.32) is now obvious from (4.31)

and (2.1).

(2) Without loss of generality, we suppose that δ = (δ1, ..., δn) ∈ [0, 1)n. In

addition, let j ∈ {1, ..., n} to be chosen such that δ1, ..., δj ∈ (0, 1) and

δi = 0 for all i = j +1, ..., n (up to a rearrangement of τi’s). If δi = 0 for

all i = 1, ..., n we take j = 0. For the case that δ ≡ 1 see Remark 4.12.

Now, we split the proof into two cases:

(i) δi = 0 for all i = 1, ..., n. We already proved that A1 = ∅ and

ϕ̃ = 0 on A3. In this case, we only need to investigate (4.35) on

{Hδ > 0} = {H > 0}∩( n⋂
i=1

{τi > T}). Since for all κ ∈ Dn we have
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κ > −1, then

ρκT

n∏
i=1

1{τi>T} ≤ L̄ :=
( n∏

i=1

1{τi>T}
)
exp

( n∑
i=1

∫ T

0

μi
sds

)

= lim
κ̄↘−1

κ̄ consatnt

ρκ̄T

n∏
i=1

1{τi>T} ∈ L.
(4.37)

In particular, this implies

L̃

n∏
i=1

1{τi>T} ≤ L̄. (4.38)

This inequality gives us

0 ≤ E
[(dP̄

dP
− z̃ρ∗T L̄Hδ

)+ n∏
i=1

1{τi>T}
]
≤ Ṽ (z̃). (4.39)

Combining with part (1), L̄ is, in fact, a solution to Ṽ (z̃).

(ii) For some j ∈ {1, ..., n}, δ1, ..., δj ∈ (0, 1) and δi = 0 for all i =

j + 1, ..., n. In this case, we have

{Hδ > 0} = {H > 0} ∩ ( n⋂
i=j+1

{τi > T}).
By (4.37) and (4.38), similar to (4.39) we can show that:

0 ≤ E
[(dP̄
dP

− z̃ρ∗T L̄Hδ

)+ n∏
i=1

1{τi>T}
]

≤ E
[(dP̄
dP

− z̃ρ∗T L̃Hδ

)+ n∏
i=1

1{τi>T}
] ≤ Ṽ (z̃).

(4.40)

Using this and a similar argument as in case (i), (4.33) is proved.
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Remark 4.10. Let us point out that if the recovery rate δ �= 0, L̃ does not

necessarily coincide with
( n∏

i=1

1{τi>T}
)
exp

( n∑
i=1

∫ T

0
μi
sds

)
on

{
Hδ > 0

}
. In

this case, inequality (4.38) does not hold on
( j⋂
i=1

{τi > T})c ∩ ( n⋂
i=j+1

{τi >

T}) ∩ {H > 0} ⊂ {
Hδ > 0

}
. For instance, for n = 1 and δ �= 0, the family of

GT -measurable random variables ρκT1{τ≤T} = (1+κτ ) exp
(−∫ τ

0
κsμsds

)
1{τ≤T},

for κ > −1, does not possess an upper bound. However the modified option

ϕ̃Hδ, with ϕ̃ given by (4.28), still provides an implicit solution for the efficient

hedging problem (4.20).

In the case of δ ≡ 0, (4.33) fully describes L̃ on
n⋂

i=1

{τi > T} ⊇ {
Hδ > 0

}
.

Considering this discussion, we will find an explicit representation for ϕ̃ when

the recovery rate δ ≡ 0.

Henceforth, in this chapter, we assume that the recovery rate δi = 0 for all

i = 1, ..., n. In particular, let us define

H0 := H
n∏

i=1

1{τi>T}, (4.41)

where H is a nonnegative FT -measurable random variable.

Theorem 4.11. Under assumption 4.5 on the loss function l, the optimal

randomized test ϕ̃ described in Theorem 1 is given by

ϕ̃ =

⎧⎪⎨
⎪⎩
1− (

I(λ̃ρ∗T )/H0

) ∧ 1 ; {H0 > 0}

1 ; {H0 = 0}
(4.42)

where the constant λ̃ can be determined by the constraint

E∗[H − I(λ̃ρ∗T ) ∧H] = ũ. (4.43)
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Moreover, (ũ, π̃) obtained from the optional decomposition of the modified claim

ϕ̃H0 gives us the the optimal strategy for the efficient hedging problem (4.20).

Proof. From (4.28) and Lemma 4.9 we can see that

ϕ̃ = B̃1{
z̃ρ∗T L̃H0=

dP̄
dP

},
on {H0 > 0} and ϕ̃ = 1 on {H0 = 0}. Since δ ≡ 0, recall that L̃ = L̄ by (4.37)

and Remark 4.10. By some straightforward calculations, this becomes

ϕ̃ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1− I(λ̃ρ∗T )/H0 ;
{
ϕ̃ = 1− I(λ̃ρ∗T )/H0

} ∩ {H0 > 0}

0 ;
{
ϕ̃ > 1− I(λ̃ρ∗T )/H0

}
1 ; {H0 = 0}

(4.44)

where λ̃ := α̃z̃ exp
( n∑

i=1

∫ T

0

μi
sds

)
is a constant. (4.44) is still an implicit form

for ϕ̃. To find an explicit representation, we exploit a similar idea to Follmer

and Leukert [15]. To do so, for λ > 0, let us define

ϕλ :=

⎧⎪⎨
⎪⎩
1− (

I(λρ∗T )/H0

) ∧ 1 ; {H0 > 0}

1 ; {H0 = 0}
(4.45)

Because {τi}i=1,...,n and FT are independent, we get

E
[
ρ∗T L̃ϕλH0

]
= E∗[H − I(λρ∗T ) ∧H

]
. (4.46)

By dominated convergence theorem, it is easy to see that E∗[H− I(λρ∗T )∧H
]

decreases continuously from E∗[H] to zero as λ increases from 0 to +∞. Thus,
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for ũ ∈ (
0, E∗[H]

)
, there exists λ̃ > 0 such that

E
[
ρ∗T L̃ϕλ̃H0

]
= ũ. (4.47)

Let us consider ϕλ̃ defined by (4.45) and λ̃ chosen by (4.47). In the following,

we show that ϕλ̃, in fact, satisfies (4.44).

On the set
{
ϕλ̃ = 1− I(λ̃ρ∗T )/H0

} ∩ {H0 > 0}, it is clear that

I(λ̃ρ∗T )/H0 = 1− ϕλ̃ ≤ 1.

This implies ϕλ̃ = 1 − (
I(λ̃ρ∗T )/H0

) ∧ 1 = 1 − I(λ̃ρ∗T )/H0, same as (4.44).

Similarly, if ϕλ̃ > 1− I(λ̃ρ∗T )/H0 then one can see that

(
I(λ̃ρ∗T )/H0

) ∧ 1 = 1− ϕλ̃ < I(λ̃ρ∗T )/H0, (4.48)

where the equality comes from the definition of ϕλ̃, Eq. (4.44). This means(
I(λ̃ρ∗T )/H0

) ∧ 1 = 1, and again by the definition of ϕλ̃, it gives us ϕλ̃ = 0.

Finally, if we suppose that
{
ϕλ̃ < 1 − I(λ̃ρ∗T )/H0

} �= ∅ we get the following

contradiction (
I(λ̃ρ∗T )/H0

) ∧ 1 > I(λ̃ρ∗T )/H0.

The last statement of the theorem is an immediate consequence of Theorem 1

part (2).

Remark 4.12. δ ≡ 1 implies that Hδ = H is default free in a complete

market. In other words, for all τi’s we have 1{τi>T} ≡ 1. By repeating the
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same arguments as above on {H > 0} and {H = 0} we get

ϕ̃ =

⎧⎪⎨
⎪⎩
1− (

I(λ̃ρ∗T )/H
) ∧ 1 ; {H > 0}

1 ; {H = 0}
(4.49)

such that E∗[ϕ̃H] = ũ. In this case, our result is consistent with Theorem 5.1

of Follmer and Leukert [15].

Corollary 4.13. For δ ≡ 0 and given ũ ∈ (0, E∗[H]), the following conclusion

holds:

Consider l(x) =
xp

p
for some p > 1 and let ϕ̃p to be the corresponding ϕ̃

represented in Theorem 4.11. Then there exists c > 0 such that

(1− ϕ̃p)H01{H0>0} −→ (c ∧H)
n∏

i=1

1{τi>T}1{H>0} (4.50)

almost sure and also w.r.t L1(P ∗)-norm, as p −→ +∞. The constant c is

determined by E∗[c ∧H] = E∗[H]− ũ.

Proof. Let us consider λ̃p as the corresponding λ̃ in Theorem 4.11. First of

all, similar to Follmer and Leukert [15], Proposition 5.3, we can show that for

some c > 0

lim
p→+∞

λ̃
1

p−1
p = c.

Due to Theorem 4.11, we have

(1− ϕ̃p)H01{H0>0} =
(
λ̃

1
p−1
p (ρ∗T )

1
p−1 ∧H

) n∏
i=1

1{τi>T}1{H>0},
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and in addition by (4.29)

ũ = E∗[L̃ϕ̃pH01{H0>0}
]

= exp
( n∑

i=1

∫ T

0

μi
sds

)
E∗

[(
H − λ̃

1
p−1
p (ρ∗T )

1
p−1 ∧H

) n∏
i=1

1{τi>T}
]
.

Since lim
p→+∞

(ρ∗T )
1

p−1 = 1, P -a.s., the above equations together with dominated

convergence theorem prove the corollary.

Now, let ESR(ũ) to be the minimum of the expectation of the shortfall

risk for the default free contingent claim H and initial capital ũ < U0 =

E∗[H], defined as (4.20) . Similarly, define ESRτ (ũ) as the minimum of the

expectation of shortfall risk for H0 and the available initial capital ũ. The

next theorem provides a useful relation between ESR(ũ) and ESRτ (ũ).

Theorem 4.14. Let ũ ∈ (0, E∗[H]) to be given, then the following properties

hold:

1. We have

ESRτ (ũ) = exp
(
−

n∑
i=1

∫ T

0

μi
sds

)
ESR(ũ). (4.51)

2. Suppose that π̂ ∈ AF(ũ) is the optimal trading strategy that attains

ESR(ũ) in the default-free market (4.1). Then the optimal trading strat-

egy associated to ESRτ (ũ) is given by

(π̃t)t∈[0,T ] :=
(
π̂t

n∏
i=1

1{τi≥t}
)
t∈[0,T ]

∈ AG(ũ). (4.52)
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Proof. 1. By the results of Theorem 4.11 and Theorem 1:

ESRτ (ũ) = E
[
l
(
(1− ϕ̃)H0

)]
= E

[
l
(
(I(λ̃ρ∗T ) ∧H)1{H>0}

n∏
i=1

1{τi>T}
)]

= P
( n⋂

i=1

{τi > T}
)
E
[
l
(
I(λ̃ρ∗T ) ∧H

)
1{H>0}

]
.

(4.53)

From (4.43), the constant λ̃ can be determined from

ũ = E∗
[(
H − I(λ̃ρ∗T ) ∧H

)
1{H>0}

]
, (4.54)

keeping in mind this equation, Remark 4.12 implies

ESR(ũ) = E
[
l
(
I(λ̃ρ∗T ) ∧H

)
1{H>0}

]
. (4.55)

Now, comparing (4.55) with (4.53) verifies equation (4.51).

2. Since π̂ ∈ AF(ũ) is a solution to ESR(ũ), by Theorem 1 and Remark 4.12

V ũ,π̂
T = H − I(λ̃ρ∗T ) ∧H, (4.56)

where λ̃ satisfies (4.54). On the other hand, from Theorem 4.11 we know

that the optional decomposition of ϕ̃H0 gives us the the optimal solution

corresponding to ESRτ (ũ). It is easy to see that

ϕ̃H0 =
(
H − I(λ̃ρ∗T ) ∧H

) n∏
i=1

1{τi>T}

= V ũ,π̂
T

n∏
i=1

1{τi>T}.
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Keeping in mind Assumptions (4.1) and (4.2), we apply the multidimen-

sional Ito formula for
(
V ũ,π̂
t

n∏
i=1

1{τi>t}
)
t∈[0,T ]

. Then the optional decom-

position of ϕ̃H0 is given as follows:

ϕ̃H0 = ũ+

∫ T

0

π̂t

n∏
i=1

1{τi≥t}dSt − V ũ,π̂
τ1

1{τ1≤T}
n∏

i=2

1{τi>T}

−
n−1∑
i=1

(∫ τi+1

0

π̂t

i∏
j=1

1{τj>t}dSt

)
1{τi+1≤T}

n∏
k=i+2

1{τk>T},

where we set
n∏

k=i+2

1{τk>T} ≡ 1 for i = n− 1. We used the fact that the

continuity of S allows us to write

∫ T

0

π̂t

n∏
i=1

1{τi>t}dSt =

∫ T

0

π̂t

n∏
i=1

1{τi≥t}dSt.

Using the decomposition of G-predictable processes in terms of τi’s and

the F-predictable processes, see Pham [44] Remark 2.1, clearly
(
π̂t

n∏
i=1

1{τi≥t}
)
t∈[0,T ]

is a G-predictable process. In addition, we recall that F-admissibility of

π̂ implies

ũ+

∫ θ

0

π̂sdSs ≥ 0, P -a.s.

for all θ ∈ [0, T ]. Now, since
(∧n

i=1 τi
) ∧ t ∈ [0, T ] almost sure we have

ũ+

∫ t

0

π̂s

n∏
i=1

1{τi≥s}dSs = ũ+

∫ (
∧n

i=1 τi)∧t

0

π̂sdSs ≥ 0, P -a.s.

for all t ∈ [0, T ]. This argument proves that, in fact, π̃ ∈ AG(ũ).

In fact, Theorem 4.14 reduces the efficient hedging problem in the default-

able market to the corresponding problem in the default-free market. The

advantage of this result is to avoid the complication of working with the op-

tional decomposition of ϕ̃H0 in the enlarged filtration G. By equations (4.51)

and (4.52), for δ ≡ 0 we only need to find the perfect hedging strategy of
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H
(
1− (

I(λ̃ρ∗T )/H
) ∧ 1

)
∈ FT to solve problem (4.20).

In the next lemma, we investigate smoothness of the minimum of shortfall

risk as a function of initial capital.

Lemma 4.15. Let us consider ESRτ :
(
0, E∗[H]

) −→ (
E[l(H0)], 0

)
as a

function of available initial capital ũ. Then ESRτ ∈ C1
((

0, E∗[H]
))

and

dESRτ

du
(ũ) = −z̃E

[
l′
(
(1− ϕ̃)H0

)
H0

]
(4.57)

for all ũ ∈ (
0, E∗[H]

)
.

Proof. Define U : Ψ −→ R as

U(ψ) := E∗[L̃ψH0] for ψ ∈ Ψ,

where Ψ :=
{
ψ ∈ L1(P )

∣∣ E∗[L̃ψH0] < +∞}
. Consider ϕ̃ defined as (4.42),

then by equation (4.29) we get

ESRτ (ũ) = ESRτ
(
U(ϕ̃)

)
. (4.58)

To proceed, our idea is to exploit Frechet derivative of ESRτ , and Gateaux

derivative of U and ESRτ ◦ u. By equation (4.51), it is clear that ESRτ ∈
C1

(
(0, E∗[H])

)
iff ESR ∈ C1

(
(0, E∗[H])

)
. We can apply Theorem 7.1 of

Follmer and Leukert [15] to see that for δ ≡ 1 (a complete market) ESR ∈
C1

(
(0, E∗[H])

)
. It is also known that ESRτ ∈ C1

(
(0, E∗[H])

)
implies Frechet

differentiability of ESRτ . Moreover, we can compute Gateaux derivative of

function U at ϕ̃ with the increment ϕ̃ as follows

DU(ϕ̃; ϕ̃) =
dU(ϕ̃+ tϕ̃)

dt
|t=0

= E∗[L̃ϕ̃H0] = ũ.

(4.59)
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By the above arguments, the Frechet derivative of ESRτ exists and U

is Gateaux differentiable. Thus we can apply the chain rule to evaluate the

Gateaux derivative of ESRτ ◦ U

D(ESRτ ◦ U)(ϕ̃; ϕ̃) = DESRτ
(
U(ϕ̃);DU(ϕ̃; ϕ̃)

)
, (4.60)

see for instance Kurdila and Zabarankin [30]. On one hand, we have

D(ESRτ ◦ U)(ϕ̃; ϕ̃) =
dE

[
l
(
(1− ϕ̃− tϕ̃)H0

)]
dt

|t=0

= −E
[
l′
(
(1− ϕ̃)H0

)
ϕ̃H0

]
= −α̃V∗(ũ) = −α̃ũz̃,

(4.61)

we used Eq. (4.32) and also recall that α̃ = E[l′
(
(1− ϕ̃)H0

)
H0]. On the other

hand

DESRτ
(
U(ϕ̃);DU(ϕ̃; ϕ̃)

)
= DESRτ

(
ũ; ũ

)
=

dESRτ (ũ+ tũ)

dt
|t=0

= ũ
dESRτ

du
(ũ).

(4.62)

Finally, combining (4.60), (4.61) and (4.62) together, we have

dESRτ

du
(ũ) = −α̃z̃ < 0 (4.63)

for all ũ ∈ (
0, E∗[H]

)
.

With the help of the above lemma, we can provide more qualitative features

of ϕ̃ and z̃ corresponding to maximization problem (4.21) and its dual problem

(4.27), for δ ≡ 0.

Lemma 4.16. Let us consider z̃, λ̃, α̃, and ϕ̃ (defined above) as functions
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of ũ ∈ (
0, E∗[H]

)
. Assume that {ũm}m�0 ⊂ (

0, E∗[H]
)
and ũm −→ ũ0 as

m −→ ∞. Then lim
m→+∞

λ̃(ũm) = λ̃(ũ0), moreover

ϕ̃(ũm) −→ ϕ̃(ũ0) P -a.s. and w.r.t L1(P )-norm (4.64)

as m −→ ∞. In particular, we have lim
m→+∞

z̃(ũm) = z̃(ũ0).

Proof. By λ̃(u) = α̃(u)z̃(u) exp
( n∑

i=1

∫ T

0

μi
sds

)
and α̃(u)z̃(u) = −dESRτ

du
(u) ∈

C
((

0, E∗[H]
))

, it is clear that

lim
m→+∞

λ̃(ũm) = λ̃(ũ0).

Using the representation of ϕ̃ in Theorem 4.11, continuity of I and the domi-

nated convergence theorem, we can prove (4.64).

Since E∗[L̃ϕ̃(ũm)H0

]
= ũm ∈ (

0, E∗[H]
)
for all m � 0, it is easy to see

that ϕ̃(ũm) �= 1 P-a.s and as a result α̃(ũm) �= 0 . Therefore, continuity of

z̃(.) on
(
0, E∗[H]

)
can be deduced from the same property for α̃(.) and λ̃(.).

The following inequality, (4.64) and dominated convergence theorem together

establish the continuity of α̃(.):

0 � E
[
l′
(
(1− ϕ̃(ũm))H0

)
H0

]
� E

[
l′
(
I(λ̃(ũm)ρ

∗
T )
)
H
]
= λ̃(ũm)E

∗[H].

To demonstrate our results, we consider the power function l(x) =
xp

p
for

some p > 0. In this case, problem (4.20) turns into problem of minimizing the

lower partial moments with the random target H0.

Example 4.1. Assume n = 1, δ ≡ 0, and H = (ST −K)+ for some K > 0

91



as the strike price of the call option H. Hence

H0 = H1{τ>T}.

Working in the framework of Black-Scholes model with constant parameters σ

and m > 0, we get

dP ∗

dP
:= ρ∗T = exp

(
− m

σ
WT − 1

2
(
m

σ
)
2

T
)

= S
m
σ2

0 exp
(m2

2σ2
T − 1

2
mT

)
S
− m

σ2

T

(4.65)

for t ∈ [0, T ]. Clearly, by Girsanov’s theorem, (W ∗
t )0≤t≤T :=

(
Wt +

m
σ
t
)
0≤t≤T

is an (F, P ∗) standard Brownian motion.

Now, by our results, problem (4.20) can be solved in two ways:

1. Directly, using our result for defaultable markets (i.e., Theorem 4.11).

In this case, we need to find the optional decomposition of ϕ̃H0 in the

enlarged filtration G. However, this method demands some tedious cal-

culations and finally gives us a complicated hedging strategy.

Suppose ũ < E∗[(ST −K)+], then Theorem 4.11 implies

ϕ̃pH0 =

⎧⎪⎨
⎪⎩
H − (λ̃ρ∗T )

1
p−1 ∧H ; {H > 0} ∩ {τ > T}

0 ; {H = 0} ∪ {τ ≤ T}

By Follmer and Leukert [15], Theorem 3.2, we know that (ũ, π̃) obtained

from the optional decomposition of the modified claim ϕ̃pH0 solves the

efficient hedging problem (4.20). Similar to (4.10) and (4.11), for t ∈
[0, T ] define

X̃t := ess sup
κ∈D

EQκ[
ϕ̃pH0

∣∣Gt

]
.
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For κ ∈ D and t ∈ [0, T ], first we simplify the underlying conditional

expectation:

EQκ[
ϕ̃pH0

∣∣Gt

]
=

1

ρκt ρ
∗
t

exp
(
−
∫ t

0

κsμsds
)

× E
[
ρ∗T exp

(
−
∫ T

t

κsμsds
)(

H − (λ̃ρ∗T )
1

p−1 ∧H
)
1{τ>T}

∣∣Gt

]
.

Let H̃ := H − (λ̃ρ∗T )
1

p−1 ∧ H. Then Corollary 5.1.1 of Bielecki and

Rutkowski [3] and some calculations give us

E
[
ρ∗T exp

(
−
∫ T

t

κsμsds
)
H̃1{τ>T}

∣∣Gt

]
=

1{τ>t}E
[
ρ∗T H̃ exp

(∫ t

0

μsds−
∫ T

t

κsμsds
)
1{τ>T}

∣∣Ft

]
.

Therefore, by above

EQκ[
ϕ̃pH0

∣∣Gt

]
=

1

ρ∗t
1{τ>t}E

[
ρ∗T H̃ exp

(∫ t

0

μsds−
∫ T

t

κsμsds
)
1{τ>T}

∣∣Ft

]
.

(4.66)

Now, if κ is constant in (4.66) and κ ↘ −1 then by Fatou’s lemma and

the definition of X̃t we get

X̃t �
1

ρ∗t
1{τ>t}E

[
ρ∗T H̃ exp

(∫ T

0

μsds
)
1{τ>T}

∣∣Ft

]
=

1

ρ∗t
1{τ>t} exp

(∫ T

0

μsds
)
E
[
ρ∗T H̃E

[
1{τ>T}

∣∣FT

]∣∣Ft

]
= 1{τ>t}E∗[H̃∣∣Ft

]
.

(4.67)

On the other hand, due to (4.66) and κ > −1 ds × dP -a.e. it can be
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seen that

X̃t �
1

ρ∗t
1{τ>t}E

[
ρ∗T H̃ exp

(∫ T

0

μsds
)
1{τ>T}

∣∣Ft

]
= 1{τ>t}E∗[H̃∣∣Ft

]
.

(4.68)

The inequalities (4.67) and (4.68) show that

X̃t = 1{τ>t}E∗[H̃∣∣Ft

]
= E∗[H̃∣∣Ft

]− 1{τ�t}E∗[H̃∣∣Ft

] (4.69)

for t ∈ [0, T ].

By martingale representation theorem for Brownian filtrations, we have

E∗[H̃∣∣Ft

]
=E∗[H̃] +

∫ t

0

π′
udSu

for some F-predictable process π′.

Applying Ito formula on the second term of (4.69) (in the second equal-

ity) and using the above representation along with the continuity of the

process S, we get

X̃t = ũ+

∫ t

0

π′
u1{τ≥u}dSu

−
(
ũ+

∫ τ

0

π′
udSu

)
Nt

(4.70)

where Nt := 1{τ�t}. Furthermore, notice that similar to (4.54)

ũ = E∗[H − (λ̃ρ∗T )
1

p−1 ∧H
]
.

We can interpret the optional decomposition (4.70) as follows: Starting

with ũ as the initial capital, if we hold π′
t1{τ≥t} number of shares of the
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stock at time t ∈ [0, T ], and withdraw the amount
(
ũ +

∫ τ

0
π′
udSu)

)
Nt

then we can guarantee to generate ϕ̃pH0 at time t = T .

2. In contrast to above, we can apply Theorem 4.14 and Remark 4.12.

In other words, instead of solving the efficient hedging problem in the

defaultable market, we first solve our problem in the complete market.

Then, we apply (4.51) and (4.52) to determine the minimum of shortfall

risk and the optimal strategy in the defaultable market.

Keeping in mind the second approach, let us fix r ≡ 0, m = 0.02, σ = 0.2,

S0 = 1, K = 0.8, and T = 15 (years), thus U0 = E∗[(ST −K)+] = 0.3819. In

addition, assume μ ≡ 0.01 which implies P (τ > T ) = 0.8607 (a probability of

P (τ � T ) = 0.1393 default before the maturity time T = 15).

Consider l(x) =
x2

2
and the available initial capital ũ = 0.17 < U0 to hedge

H0. Applying Remark 4.12, we have

ESR(ũ) = 0.0971.

In the next section, for an analogous claim H = (ST −K)+ +K, we provide

the details how to compute ESR(ũ) = 1
p
E
[(
(1− ϕ̃(ũ))H

)p]
and the associated

optimal trading strategy π̂.

By Theorem 4.14 and above, starting with ũ = 0.17, the minimum of the

expectation of shortfall risk weighted by l for H0 becomes

ESRτ (ũ) = P (τ > T )ESR(ũ) = 0.8607× 0.0971 = 0.0836.

For some fixed values of initial capital, Table 4.1 presents the associated min-

imum shortfall risk versus ũ. For a given ũ, since H0 ≤ H, as it is expected

ESRτ (ũ) is less than ESR(ũ).
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Table 4.1: ESRτ (ũ) vs. ESR(ũ) for a defaultable call option.

Initial capital ESRτ (ũ) ESR(ũ)

ũ δ = 0 δ = 1

$0.32 0.0051 0.0059
$0.27 0.0183 0.0213
$0.22 0.0429 0.0498
$0.17 0.0836 0.0971

4.3 Application to Equity-Linked Life Insur-

ance Contracts

In this section, we want to study equity-linked life insurance contracts in the

framework of Section 4.1. Although there are different types of equity-linked

life insurance contracts, we concentrate on the contracts called “pure endow-

ment”. Mathematically speaking, a pure endowment equity-linked insurance

is defined as

H1{T (x)>T} (4.71)

where H is a nonnegative FT -measurable random variable and T (x) is a pos-

itive random variable defined on the probability space (Ω,G, P ). In fact, H

is a future payment at time t = T which its size depends on the evolution of

the risky asset S during the contract period [0, T ], and T (x) represents the

remaining lifetime (or the future lifetime) of a client who is currently at age

x. The quantity

Tpx := P
(
T (x) > T

)
(4.72)

is called the survival probability of the client. Using “Life Tables” (see for

instance Bowers et al. [4]) we can find Tpx of each client for our pricing and

hedging purposes. Clearly, Tpx depends on some factors such as age, race,
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sex, etc. We do not touch a mortality modeling in this chapter, while an

appropriate stochastic mortality modeling can bring reasonable advantages

in such pricings (see, Melnikov and Romaniuk [37]). For a pure endowment

contract (4.71), if the insured is still alive at maturity of the contract the

payment is H otherwise zero.

Similarly, we can define a defaultable (pure endowment) equity-linked life

insurance contract with recovery rate δ as a contract with the following payoff

function

Hδ

(
τ, T (x)

)
:=

(
H1{τ>T} + δH1{τ�T}

)
1{T (x)>T} (4.73)

where τ is a default time for insurance company. Therefore, to receive the

payment H the client must be alive at time T and also the insurance company

should not default up to this time. In the following, to provide explicit solu-

tions (by applying Theorem 4.11), we let δ ≡ 0. In this case, (4.73) is denoted

by H0

(
τ, T (x)

)
.

Assumption 4.17. We postulate that S, T (x), and τ are mutually indepen-

dent.

The three elements of our model, S, T (x) and τ , generate two types of

risks. There is an uncertainty associated to the asset price and the default

time. This risk depends on the behaviour of the financial market, and it is

known as financial/credit risk from financial literature. Another source of

risk is the so-called mortality risk from insurance terminology, and it is the

risk caused by the mortality time of the client, T (x), which is independent of

the financial market. There are different approaches to hedge and price the

contingent claim H0

(
τ, T (x)

)
, we focus on superhedging approach (El Karoui

and Quenez [12]) and Brennan-Schwartz approach (Brennan and Schwartz

[5]) to deal with these two sources of risk (respectively) in this chapter. See
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Moller [41] for a survey on different financial and insurance principles to hedge

equity-linked life insurance contracts.

4.3.1 Brennan-Schwartz Approach

By Brennan-Schwartz approach, size of the life insurance contracts is consid-

ered to be large enough to use the strong law of large numbers. In other words,

if the insurer sells the insurance contract (4.73) to N clients then we have

N∑
i=1

1{Ti(x)>T} ≈ NTpx. (4.74)

This means that by applying strong law of large numbers, the mortality

risk is managed (diversified) by the size of the contracts. Hence, hedging

H0

(
τ, T (x)

)
reduces to hedging the modified claim TpxH1{τ>T}.

Keeping in mind that Gt = Ft∨Ht andHt = σ(τ∧t) for t ∈ [0, T ]. To hedge

the credit risk associated to H0

(
τ, T (x)

)
, we apply superhedging techniques for

H1{τ>T} in the incomplete market (B, S, τ) equipped with the filtration G =

(Gt)0�t�T . In fact, for a single contract H0

(
τ, T (x)

)
the insurance company

should superhedge Tpx short positions of H1{τ>T} in the defaultable market.

As a particular case, we study equity-linked life insurance contracts with

constant guarantee K, i.e.,

H = max(ST , K) = (ST −K)+ +K

in (4.73). Using Brennan-Schwartz argument and Lemma 4.6, we consider the
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following amount as the premium of insurance contract (4.73)

ũ := TpxU0 = TpxE
∗[max(ST , K)

]
= TpxE

∗[(ST −K)+
]
+ TpxK

(4.75)

obviously, ũ < U0 = E∗[max(ST , K)
]
.

Same as Example 4.1, we take l(x) =
xp

p
for some p > 1. Starting with

the premium ũ = TpxU0 as the initial capital, we want to solve the efficient

hedging problem (4.20) for the insurance contract H0

(
τ, T (x)

)
. Let ϕ̂p to be

the optimal solution corresponding to the initial capital ũ and the problem

introduced in Remark 4.12. Then Theorem 4.11 and 4.14 show that the per-

fect hedging of the modified claim ϕ̂p.max(ST , K) solves our efficient hedging

problem. We follow a similar argument to Follmer and Leukert [15] to find the

explicit solution. By Remark 4.12:

ϕ̂p.max(ST , K) = max(ST , K)− (
c

1
p−1ST

−β
p−1

) ∧max(ST , K), (4.76)

where β :=
m

σ2
, and constant c comes from the constants involving Theo-

rem 4.11 and Eq. (4.65). By ũ = E∗[ϕ̂p.max(ST , K)
]
, depending on the value

of ũ, the decreasing convex function c
1

p−1 s
−β
p−1 intersects with max(s,K) at

s = K1 < K or s = K2 � K. More precisely, we have:

(i) If ũ > E∗[(ST −K(ST

K
)

β
1−p

)
1{ST�K}

]
then (4.76) becomes

= K1{K1�ST<K} + ST1{ST�K} −K(
ST

K1

)
β

1−p1{ST�K1}. (4.77)
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(ii) If ũ � E∗[(ST −K(ST

K
)

β
1−p

)
1{ST�K}

]
then, in this case, (4.76) is equal to

= ST1{ST�K2} −K2(
ST

K2

)
β

1−p1{ST�K2}. (4.78)

Now, applying Theorems 1 and 4.11, we provide an analytic expression

for the minimum value of shortfall risk. Additionally, the optimal strategy is

derived by using replication principle in complete markets. We only provide

the details for the first case, (4.77), the corresponding results for the second

case can be obtained by some straightforward modifications. Let us define

Vt := E∗
[
ϕ̂p.max

(
St exp

[
σ(W ∗

T −W ∗
t )−

1

2
σ2(T − t)

]
, K

)∣∣∣Ft

]
= Fp(t, St)

(4.79)

for t ∈ [0, T ]. In the case of (4.77), the Markov property and log-normal

distribution of St imply that

Fp(t, s) = KΦ
(
d−(t, s,K1)

)
−KΦ

(
d−(t, s,K)

)
+ sΦ

(
d+(t, s,K)

)
−K(

s

K1

)
β

1−p exp
[m(T − t)

2(p− 1)

( β

p− 1
+ 1

)]

× Φ
(
d−(t, s,K1) +

m
√
T − t

σ(1− p)

)
,

(4.80)

where Φ is the standard normal distribution function and

d±(t, s,K) =
Lns− LnK

σ
√
T − t

± 1

2
σ
√
T − t.

The constant K1, and a priori c, can be determined from

ũ = E∗[ϕ̂p.max(ST , K)
]
= Fp(0, S0).
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After finding K1, by Theorem 4.14 the minimum shortfall risk can be cal-

culated as follows

ESRτ (ũ) = P (τ > T )ESR(ũ) =
1

p
P (τ > T )E

[((
1− ϕ̂p(ũ)

)
H
)p]

=
Kp

p
P (τ > T )

{
1− Φ

(
d−(0, S0, K1) +

m
√
T

σ

)

+ (
S0

K1

)
pβ
1−p exp

[ pβT

p− 1

(1
2
σ2(

pβ

p− 1
+ 1)−m

)]

× Φ
(
d−(0, S0, K1) +

m
√
T

σ
+

mp
√
T

σ(1− p)

)}
.

(4.81)

Moreover, the optimal strategy corresponding to ESR(ũ) is given by

π̂t =
∂

∂s
Fp(t, s)|s=St

=

{
K

sσ
√

2π(T − t)

[
exp

(
− d2−(t, s,K1)

2

)

− exp
(
− d2−(t, s,K)

2

)
+

s

K
exp

(
− d2+(t, s,K)

2

)]

+ Φ
(
d+(t, s,K)

)
− K

s
(
s

K1

)
β

1−p exp
[m(T − t)

2(1− p)

( β

p− 1
+ 1

)]

×
[

β

1− p
Φ
(
d−(t, s,K1) +

m
√
T − t

σ(1− p)

)

+
1

σ
√
2π(T − t)

exp
(
−

(
d−(t, s,K1) +

m
√
T−t

σ(1−p)

)2
2

)]}∣∣∣∣
s=St

.

(4.82)

Therefore, by (4.52) and (4.82), the trading strategy (π̂t1{τ≥t})t∈[0,T ] is a solu-

tion to ESRτ (ũ).
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4.3.2 Superhedging Approach

Alternative to above discussion (Brennan-Schwartz method), it is possible to

treat both τ and T (x) as independent default times. In this case, we work in

the filtration enlarged by both τ and T (x), i.e.,

Gt = Ft ∨Ht

where Ht = σ(τ ∧ t) ∨ σ(T (x) ∧ t) for t ∈ [0, T ]. We know that there exists a

nonnegative function μ̂ such that for all t � 0

tpx := P
(
T (x) > t

)
= exp

(
−
∫ t

0

μ̂(x+ s)ds
)
. (4.83)

μ̂ is known as the force of mortality or the hazard rate function, see for example

Bowers et al. [4].

Then considering τ1 = τ , τ2 = T (x), and δ1 = δ2 = 0 in (4.8), we can use

Theorem 4.14, Eq. (4.51), to get

ESRτ,T (x)(ũ) = TpxP (τ > T )ESR(ũ). (4.84)

Notice that ESR(ũ) can be computed as presented in Subsection 4.3.1. Eq. (4.84)

means that if we add the information regarding the survival of clients at each

t ∈ [0, T ] to the filtration G, then the minimum of shortfall risk is reduced by

the ratio of Tpx.

Example 4.2. Let us consider l(X) =
X2

2
and the parameters of our model

same as Example 4.1. In this example, we suppose that the client is at age

x = 30. For T = 15 and x = 30, using the life table in Bowers et al. [4], the

client will survive to the maturity time of the contract with the probability of

Tpx = 0.949. Moreover, it is easy to see that U0 = E∗[max(ST , K)
]
= 1.182.
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Taking the Brennan-Schwartz approach into consideration and starting with

the premium ũ = TpxU0 = 1.122 as the initial capital, we can employ (4.81)

to see that

ESRτ (ũ) = 0.0014

for δ ≡ 0, and ESR(ũ) = 0.0016 (δ = 1).

In the case of superhedging approach, with the same ũ = 1.122, we apply

(4.84) this time to obtain

ESRτ,T (x)(ũ) = 0.0013

for δ1 = δ2 = 0, and ESRT (x)(ũ) = 0.0015 where δ1 = 1 and δ2 = 0.

In Table 4.2, we compare Brennan-Schwartz and superhedging methods for

some given values of ũ. Similar to Table 4.1, from the insurer’s point of view,

ESRτ (.) is still a decreasing function of the initial capital, and for a fixed ũ it

decreases with a higher possibility of the default event.

Obviously, using superhedging approach generates smaller values for ESRτ (ũ),

and this is consistent with our intuition. In the case of Brennan-Schwartz

method, we eliminate the mortality risk of the clients by the constant number

Tpx, but in the superhedging method, more accurate information is available.

In the latter case, by the enlargement of the filtrations and adding the new

source of randomness to our model, we can provide a better approximation of

the risk.

4.4 Conclusion

In the framework of a defaultable Black-scholes model subject to a capital

constraint, this chapter studies the problem of minimizing the expectation of
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Table 4.2: A comparison of the minimum shortfall risk for equity-linked life in-
surance contracts with guarantee: Brennan-Schwartz approach vs. superhedging
approach.

Initial capital
Brennan-Schwartz approach Superhedging approach

ESRτ (ũ) ESR(ũ) ESRτ,T (x)(ũ) ESRT (x)(ũ)

ũ δ = 0 δ = 1 δ1 = δ2 = 0 δ1 = 1, δ2 = 0

$1.122 0.0014 0.0016 0.0013 0.0015
$1.066 0.0050 0.0058 0.0048 0.0055
$1.010 0.0110 0.0128 0.0105 0.0121
$0.954 0.0193 0.0225 0.0184 0.0213

shortfall risk weighted by a loss function. The underlying defaultable contin-

gent claim, with nonzero recovery rates, is exposed to multiple independent

default times satisfying the intensity hypothesis. We convert the considered

dynamic optimization problem with respect to time into a max-min problem

for testing a composite hypothesis against a simple alternative. The latter

problem is solved by the techniques of non-smooth convex duality studied by

Cvitanić and Karatzas [8]. In the case of the zero recovery rates, we provide

an explicit solution for the optimal solution to the desired efficient hedging

problem. Moreover, it has been proved that the efficient hedging problem in

the defaultable market (the enlarged filtration) can be reduced to a similar

problem in the reference default-free market. The results are demonstrated

by their application to equity-linked life insurance contracts with guaranteed

minimum maturity benefit.

We decide to analyze further measures to quantify and reduce risk in de-

faultable models. In particular, VaR, CVaR and CaR minimization prob-

lems (see, e.g., Rockafellar and Uryasev [45], Rockafellar and Uryasev [46] and

Dmitrasinovic-Vidovic et al. [10]) in models with dependent defaults, mod-

els subject to default times satisfying the density hypothesis, and the case of
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American contingent claims are some of our future research plans.
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Chapter 5

Bermudan Options and

Connections to Equity-Linked

Life Insurance Contracts

5.1 An investment bridge between mortality

protection and equity benefits

In Chapter 4 we studied the guaranteed minimum maturity benefit (GMMB)

equity-linked life insurance which guarantees the policyholder the maximum

between a predetermined amount (the guarantee) and an underlying stock

index at the maturity time. If the guarantee matures in-the-money then the

insurer is liable for the shortfall, otherwise the policyholder receives the stock

index and the insurer’s liability is zero.

The equity participation of the contract exposes the insurer to the market

risk in terms of a European call/put option. By traditional actuarial approach,

the mortality risk of the contract is usually managed by the client’s survival
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probability over the term of the contract. In contrast to this approch, we

used the concept of random times and the enlargement of the filtrations to

determine a hedging strategy which takes into account both financial risk and

mortality risk dynamically.

In this chapter, we investigate another type of investment guarantee that

resembles an American option. Using this connection and enlargement of

filtration techniques, from the insurer’s point of view, we study the problem

of maximizing probability of a successful hedge under a capital constraint.

Definition 5.1. The guaranteed minimum death benefit (GMDB) is a type

of equity-linked life insurance contract with two main characteristic features,

investment opportunity and protection guarantee. Upon the insured’s death

during the term of the contract; if the underlying asset price rises then the

insured enjoys the benefits of the equity investment, and in the case of a down-

side risk investment the insurer guarantees a minimum payment to protect the

insured against the market risk.

We consider contracts designed with a separate account format. This means

that the insurer manages the fund available (from the premium) in the account

by investing in the underlying equity, but the actual owner of the account is

still the insured. Let Ft be the market value of the separate account and St

be the price of the underlying equity investment at time t. Then

Ft = F0
St

S0

(1−m)t, (5.1)

for t = 0, 1, 2, ..., T , where T is the maturity time and m denotes the manage-

ment charge rate deducted from the account at the end of each month.

If the insured dies in the time interval (t− 1, t], for t = 1, 2, ..., T , the pol-

icyholder receives Max(K,Ft). Mathematically speaking, a GMDB contract
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with guarantee K > 0 and the maturity time T has the following payoff:

T∑
t=1

e−rt Max(K,Ft)1{t−1<T (x)≤t}, (5.2)

where r is the risk free interest rate, and T (x) represents the life time of a

client who is currently at age x. For a comprehensive study of the investment

guarantees and their valuations approaches consult with Hardy [17], Aase and

Persson [1] and Ekern and Persson [11].

We suppose that the dynamic of the underlying asset price (St)0≤t≤T is

governed by the following Black-Scholes model:

⎧⎪⎨
⎪⎩
dSt = St

(
μtdt+ σtdWt

)
;S0 > 0

dBt = Btrtdt ;B0 = 1

(5.3)

for t ∈ [0, T ]. (Wt)0≤t≤T is a standard Brownian motion on the complete prob-

ability space
(
Ω,F = (Ft)0≤t≤T ⊆ G, P), (μt)0≤t≤T and the positive process

(σt)0≤t≤T are F-adapted processes representing the appreciation rate and the

volatility of S respectively. The nonnegative deterministic process (rt)0≤t≤T

denotes the risk free interest rate.

On the probability space
(
Ω,G, P), the equivalent martingale measure P ∗

for (5.3) is defined as:

dP ∗

dP
:= ρ∗T

where

ρ∗t := exp
(
−
∫ t

0

μs − rs
σs

dWs −
∫ t

0

1

2
(
μs − rs

σs

)
2

ds
)

(5.4)

for t ∈ [0, T ].

To satisfy the no-arbitrage condition and make the above model complete,
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we impose the following integrability conditions:

(1)

∫ T

0

(
μs − rs

σs

)2ds < +∞, P -a.s.

(2) E[ρ∗T ] = 1

Assumption 5.2. For the sake of simplicity, we assume that rt ≡ 0 with

μt ≡ μ ∈ R and σt ≡ σ > 0 constant. In addition, we take the management

rate m ≡ 0 and F0 = S0 in (5.1).

In this setting, the GMDB contract (5.2) is simplified to:

H(D) :=
T∑
t=1

Max(K,St)1{t−1<T (x)≤t} (5.5)

In general, the mortality risk and the financial risk are not correlated. Hence

it is natural to assume that:

Assumption 5.3. T (x) is a G-measurable random variable which is indepen-

dent of the risky asset S.

5.2 GMDB contract and Bermudan option

Minimum guarantee equity-linked life insurance contracts are traditionally

priced and hedged by a combination of actuarial methods and modern tech-

niques of mathematical finance. By the law of large numbers, the mortality

risk of the client is replaced by its expected value; and the financial risk associ-

ated to the underlying equity is managed by the methods of Black and Scholes.

See Brennan and Schwartz [5] and Hardy [17] for more details on pricing and

hedging principles of these types of contracts. In the setting of Section 5.1, by
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the aforementioned method, instead of (5.5) the following modified version of

H(D) is analyzed:

H̃ :=
T∑
t=1

P
(
t− 1 < T (x) ≤ t

)
Max(K,St) . (5.6)

Let P ∗ be the unique probability martingale measure of the model (5.3). Then

initial price of the modified payoff H̃ is given by

H̃(0) :=
T∑
t=1

P
(
t− 1 < T (x) ≤ t

)
E∗[Max(K,St)

]
, (5.7)

where E∗ denotes the expectation with respect to the probability measure P ∗.

In this chapter, rather than using the law of large numbers, through con-

structing a new filtration we consider H(D) as an American option with only

finitely many permitted exercise dates {1, 2, 3, ...., T} in an incomplete market.

To do so, by progressively enlargement of filtrations, let us define

Gt := Ft ∨Ht, for all t ∈ [0, T ], (5.8)

where Ht := σ
(
T (x) ≤ t

)
is the σ-field generated by T (x) up to time t ∈ [0, T ].

We denote the enlarged filtration (Gt)t∈[0,T ] by G := F ∨H.

The financial model (5.3) equipped with the probability space (Ω,G, P ) and

the new filtration G = (Gt)t∈[0,T ] is an incomplete market because, for instance,

1{T (x)>T} is not attainable in this model. Assumption 5.3 combined with

Lemma 6.1.2 of Bielecki and Rutkowski [3] imply that any (F, P )-martingale

remains a (G, P )-martingale. This guarantees the no arbitrage condition in

the new model.

From Bowers et al. [4], we know that there exists a nonnegative function

μ̂, known as the force of mortality or the hazard rate function, such that for
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all t � 0

tpx := P
(
T (x) > t

)
= exp

(
−
∫ t

0

μ̂(x+ s)ds
)
. (5.9)

We do not touch a mortality modelling in this chapter, while an appropriate

stochastic mortality modelling can bring reasonable advantages in such pricing

methods (see, Melnikov and Romaniuk [37]).

Let us introduce

D :=
{
(κt)0≤t≤T : bounded,G-predictable and κt > −1 dt× dP a.e.

}
.

For any κ ∈ D, define

ρκt = 1 +

∫ t

0

κsρ
κ
s−dMs, t ∈ [0, T ],

with Mt = 1{T (x)≤t} −
∫ T (x)∧t

0

μ̂(x+ s)ds which is a (G, P )-martingale.

Using the definition of stochastic exponential, the unique solution to the

above SDE is given by

ρκt =
(
1 + κT (x)1{T (x)�t}

)
exp

(
−
∫ T (x)∧t

0

κsμ̂(x+ s)ds
)

(5.10)

Keeping in mind the above notations, by Bielecki and Rutkowski [3], Kusuoka

[31], or Nakano [42], we can provide an explicit representation for the Radon-

Nikodým density of the probability martingale measures of (St)t∈[0,T ] on
(
Ω,G =

(Gt)0≤t≤T ⊆ G, P) as follows:

Q :=
{
Qκ

∣∣ dQκ

dP
= ρ∗Tρ

κ
T for some κ ∈ D

}
(5.11)

To see the GMDB life insurance H(D) defined in (5.5) as a Bermudan
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option, we recall the next definition from Schweizer [48]:

Definition 5.4. A Bermudan option is a particular type of American option

which can be exercised only at a predetermined region of permitted exercise

dates R ⊆ [0, T ]. The payoff process is a nonnegative adapted RCLL process

denoted by U = (Ut)t∈[0,T ] such that Ut = 0 for t �∈ R. The option is exercised

by choosing a G-stopping time τ with values in R.

In this chapter, we consider R = {1, 2, 3, ...., T}, a suitable finite subset of

[0, T ]. The underlying Bermudan option with the payoff process

U = (Ut)t∈[0,T ] =
(
Max(K,St)

)
t∈[0,T ]

and the region of permitted exercise dates R is represented by the pair (U,R).

Remark 5.5. The exercise date of the GMDB contract H(D) is not exactly

T (x). In fact, it is the smallest integer greater than or equal to T (x). Let

us denote this positive discrete time GT -random variable by τ̃ , we can use the

ceiling function to represent τ̃ , i.e.

τ̃ :=]T (x)[ (5.12)

To view H(D) as a Bermudan option, first we need to prove that the

random exercise time τ̃ is a G-stopping time.

Lemma 5.6. Let τ̃ be defined as in (5.12), then τ̃ is a G-stopping time.

Proof. For any t ∈ [0, T ], we have

{τ̃ ≤ t} = {τ̃ ≤ [t]} = {T (x) ≤ [t]} ∈ G[t] ⊆ Gt,
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where [t] is the floor function of t, the largest integer less than or equal to

s.

We consider the superhedging approach to price and hedge the Bermudan

option (U,R) =
((

Max(K,St)
)
t∈[0,T ]

, R
)
. By using optional decomposition

of supermartingales, Kramkov [29] investigated this approach for the general

case of American options . Schweizer [48] utilized a backward argument to find

an analytic formula for the superhedging value process of a Bermudan option.

In the next section, the Schweizer’s techniques are adapted to price H(D) on

the probability space
(
Ω,G = (Gt)0≤t≤T ⊆ G, P).

The superhedging value process of (U,R) at time t ∈ [0, T ] is defined as

follows:

Xt := ess sup
κ∈D

τ∈St,T (R)

EQκ[
Uτ |Gt

]
, (5.13)

where St,T (R) is the set of all G-stopping times with values in R ∩ [t, T ], and

EQκ
[·] denotes expectation w.r.t probability Qκ.

First, Schweizer [48] shows that Xti at ti ∈ R is equal to the Q-uniform

snell envelope of all the finite possible payoffs Utj for j = i, i+ 1, ..., n, i.e. he

drops the stopping times τ ∈ Sti,T (R) from the calculation of Xti . Then Xt

between two possible exercise dates ti and ti+1 is determined by the price of a

European option initiated at time ti, maturity time ti+1 and the payoff Xti+1

at time ti+1.

For the reader’s convenience, we summarize the Schweizer’s method in

Appendix D.
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5.3 A stochastic game between the death time

and financial decisions

Let v0 > 0 be a given initial capital, and (πt)t∈[0,T ] a G-predictable S-integrable

process. Then the self-financing value process
(
V v0,π
t

)
t∈[0,T ]

corresponding to

(v0, π) is defined as:

V v0,π
t := v0 +

∫ t

0

πsdSs, P -a.s., for all t ∈ [0, T ].

If V v0,π
t ≥ 0 P -a.s. for any t ∈ [0, T ], then the self-financing strategy (v0, π)

is called G-admissible. The set of all G-admissible trading strategies with the

initial capital v0 is denoted by AG(v0).

Assume that the available initial capital to superhedge the Bermudan op-

tion (U,R) is ṽ0 > 0 which is subject to the constraint:

ṽ0 < sup
κ∈D

τ∈S0,T (R)

EQκ[
Uτ

]
. (5.14)

Since ṽ0 is strictly less than the initial cost of superhedging (U,R), for any

choice of π ∈ AG(ṽ0), always there is a possibility of shortfall risk, i.e.

∀π ∈ AG(ṽ0) ∃j ∈ {1, ..., n} s.t. P
(
Max(K,Stj) > V ṽ0,π

tj

)
> 0. (5.15)

In this chapter, we are looking for an optimal trading strategy π̃ ∈ AG(ṽ0) such

that it minimizes the worst possible scenario of a shortfall risk as described

in (5.15). Equivalently, we formulate the quantile hedging problem for the

Bermudan option (U,R) with the available initial capital ṽ0 as follows:

sup
π∈AG(ṽ0)

(
inf

τ∈S0,T (R)
P
(
V ṽ0,π
τ ≥ Uτ

))
(5.16)
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This max-min problem is a stochastic game between the death time of the

insured and the insurer’s trading strategy to hedge (U,R). From the insurer’s

point of view, by problem (5.16) we want to maximize the worst probability

of a successful hedge over all permitted exercise dates in R.

As the first step to deal with problem (5.16), we exploit the Schweizer’s

method to determine the superhedging value process Xt introduced in (5.13).

The next proposition gives us a tool to compute the underlying Gt-conditional

expectations in the definition of Bi’s, in (4.2), in terms of Ft-conditional ex-

pectations.

Proposition 5.7. Let H be an FT -measurable random variable. Then, for

any κ ∈ D and t ∈ [0, T ], we have

EQκ[
H
∣∣Gt

]
= E∗[H∣∣Ft

]
. (5.17)

Proof. Using Bayes formula, one can write

EQκ[
H
∣∣Gt

]
=

1

ρκt ρ
∗
t

E
[
ρκTρ

∗
TH

∣∣Ft

]
, for any κ ∈ D. (5.18)

(
E
[
ρ∗TH

∣∣Fu

])
0≤u≤T

is an (F, P )-martingale which, due to Assumption 5.3, fol-

lows a (G, P )-martingale too. In addition, (ρκu)0≤u≤T is a (G, P )-martingale

orthogonal to
(
E
[
ρ∗TH

∣∣Fu

])
0≤u≤T

, since their quadratic covariation is equal to

zero. This implies their product
(
ρκuE

[
ρ∗TH

∣∣Fu

])
0≤u≤T

is a (G, P )-local mar-

tingale. By passing through (H ∧m)m≥1 and using the monotone convergence

theorem, we get

E
[
ρκTE

[
ρ∗TH

∣∣FT

]∣∣Gt

]
= ρκtE

[
ρ∗TH

∣∣Ft

]
. (5.19)

115



Hence
1

ρκt ρ
∗
t

E
[
ρκTρ

∗
TH

∣∣Gt

]
=

1

ρ∗t
E
[
ρ∗TH

∣∣Ft

]
, (5.20)

from this equation, we can easily derive (5.17).

Keeping in mind Appendix D, in the following theorem we now compute

process (Xt)t∈[0,T ]:

Proposition 5.8. Let (Xt)t∈[0,T ] be the superhedging value process of the Bermu-

dan option (U,R) =
((

Max(K,St)
)
t∈[0,T ]

, R
)
. Then we have

Xt = St + E∗[(K − ST )
+
∣∣Ft

]
, for all t ∈ [0, T ]. (5.21)

In particular, the initial cost of superhedging is given by

X0 = S0 + E∗[(K − ST )
+
]
. (5.22)

Proof. By the definition of Bn in (4.1):

Bn = Utn = Max(K,Stn).

From this and (4.2), we obtain

Bn−1 = Max
(
Utn−1 , ess sup

κ∈D
EQκ[

Bn|Gtn−1

])
= Max

(
Max(K,Stn−1), E

∗[Max(K,Stn)
∣∣Ftn−1

])
,

(5.23)

where to get the second equality we have used Proposition 5.7. On the other

hand, it is easy to see that

E∗[Max(K,Stn)
∣∣Ftn−1

] ≥ K (5.24)

116



and

E∗[Max(K,Stn)
∣∣Ftn−1

] ≥ E∗[Stn

∣∣Ftn−1

]
= Stn−1 (5.25)

Hence (5.23) becomes

Bn−1 = E∗[Max(K,Stn)
∣∣Ftn−1

]
= E∗[Stn + (K − Stn)

+
∣∣Ftn−1

]
= Stn−1 + E∗[(K − Stn)

+
∣∣Ftn−1

]
.

(5.26)

By induction, we can show that for all i = 0, 1, ..., n− 1

Bi = Max
(
Uti , ess sup

κ∈D
EQκ[

Bi+1|Gti

])
= Max

(
Max(K,Sti), ess sup

κ∈D
EQκ[

E∗[Max(K,Stn)
∣∣Fti+1

]∣∣Gti

])
= Max

(
Max(K,Sti), E

∗[Max(K,Stn)
∣∣Fti

])
= E∗[Stn + (K − Stn)

+
∣∣Fti

]
= Sti + E∗[(K − Stn)

+
∣∣Fti

]

(5.27)

In this case, we applied Proposition 5.7 on H = E∗[Max(K,Stn)
∣∣Fti+1

]
with

the fact that Fti ⊆ Fti+1
. In particular, as a side product of (5.27), we can see

that (Bi)i=0,1,...,n is an (F, P ∗)-martingale.

Having Bi’s determined, by Appendix D and Proposition 5.7 we now cal-

culate Xt for t ∈ (ti, ti+1] for each i = 0, 1, 2, ..., n− 1 as follows:

Xt = ess sup
κ∈D

EQκ
[
Sti+1

+ E∗[(K − Stn)
+
∣∣Fti+1

]∣∣Gt

]
= E∗

[
Sti+1

+ E∗[(K − Stn)
+
∣∣Fti+1

]∣∣Ft

]
= St + E∗[(K − Stn)

+
∣∣Ft

]
(5.28)
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Since
(
St + E∗[(K − Stn)

+
∣∣Ft

])
t∈[0,T ]

is a continuous process and consump-

tion process C i
t ≡ 0 on each subinterval (ti, ti+1], it is clear that the overall

consumption process (Ct)t∈[0,T ] defined by (4.6) is zero.

Combining above with equations (4.5)-(4.7) completes the proof.

Let us come back to the main problem of this chapter, the quantile hedging

problem (5.16). Aguilar [2] also studied this problem for a general American

option but he only established an upper bound for this max-min problem.

In the setting of this chapter, we solve problem (5.16) for its precise optimal

value. In addition, explicit form solutions will be provided for the maximal

probability and the optimal hedge which achieves this value.

Theorem 5.9. For the quantile hedging problem (5.16), we have

sup
π∈AG(ṽ0)

(
inf

τ∈S0,T (R)
P
(
V ṽ0,π
τ ≥ Uτ

))
= sup

π∈AG(ṽ0)

P
(
V ṽ0,π
T ≥ UT

)
(5.29)

Proof. For an arbitrary π ∈ AG(ṽ0), let AT := {V ṽ0,π
T ≥ UT} ∈ GT . Then

EQκ[
V ṽ0,π
T 1AT

∣∣Gti

] ≥ EQκ[
UT1AT

∣∣Gti

]
, (5.30)

for all κ ∈ D and i = 0, 1, 2, ..., n. Since
(
V ṽ0,π
t

)
t∈[0,T ]

is a (G, Qκ)-supermartingale,

we get

V ṽ0,π
ti ≥ EQκ[

V ṽ0,π
T

∣∣Gti

] ≥ EQκ[
V ṽ0,π
T 1AT

∣∣Gti

]
. (5.31)

On the other hand, Proposition 5.7 implies

EQκ[
UT1AT

∣∣Gti

]
+ EQκ[

UT1Ac
T

∣∣Gti

]
= EQκ[

UT

∣∣Gti

]
= E∗[UT

∣∣Fti

]
= E∗[Bn

∣∣Fti

]
= Bi ≥ Uti ,

(5.32)
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where we used the martingale property of (Bi)i=0,1,...,n from the proof of Propo-

sition 5.8, and also the fact that by the definition Bi dominates Ui. Combing

(5.30) - (5.32), we can see that

V ṽ0,π
ti ≥ Uti − EQκ[

UT1Ac
T

∣∣Gti

]
. (5.33)

Multiplying both sides of the above inequality by 1AT
and then applying

Lemma 1 to EQκ[
UT1Ac

T

∣∣Gti

]
1AT

, we have shown that

V ṽ0,π
ti 1AT

≥ Uti1AT
. (5.34)

Therefore, on AT = {V ṽ0,π
T ≥ UT} ∈ GT , one can write

V ṽ0,π
ti 1{τ=ti} ≥ Uti1{τ=ti}, for any τ ∈ S0,T (R). (5.35)

This leads to

V ṽ0,π
τ =

n∑
i=0

V ṽ0,π
ti 1{τ=ti} ≥

n∑
i=0

Uti1{τ=ti} = Uτ . (5.36)

Hence we obtain

{
V ṽ0,π
T ≥ UT

} ⊆ {
V ṽ0,π
τ ≥ Uτ

}
, for any τ ∈ S0,T (R), (5.37)

which this concludes that

inf
τ∈S0,T (R)

P
(
V ṽ0,π
τ ≥ Uτ

)
= P

(
V ṽ0,π
T ≥ UT

)
(5.38)

and the proof is complete.

Theorem 5.9, in fact, reduces quantile hedging problem of the Bermu-
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dan option (U,R) to the corresponding problem for the European option

UT = Max(K,ST ) at the maturity time T . We recall that GMDB contract

is managed in a separate account format. This means the underlying asset

(St)t∈[0,T ] is reserved and available at the maturity to be paid to the insurer,

and the actual liability of the insurer to fulfill his financial obligation is the

put option (K − ST )
+ not Max(K,ST ) = ST + (K − ST )

+.

By Theorem 5.9 and the above discussion, problem 5.16 simplifies to

sup
π∈AG(ṽ0)

P
(
V ṽ0,π
T ≥ (K − ST )

+
)
. (5.39)

Notice that the above maximization problem runs over trading strategies

π ∈ AG(ṽ0). We will exploit a Neyman-Pearson lemma argument from Follmer

and Leukert [14], Assumption 5.3 and the decomposition of G-adapted pro-

cesses in terms of F-adapted processes to replace AG(ṽ0) with AF(ṽ0).

Theorem 5.10. Let Y be a nonnegative FT -measurable random variable and

ṽ0 > 0. Then we have

sup
π∈AG(ṽ0)

P
(
V ṽ0,π
T ≥ Y

)
= sup

π∈AF(ṽ0)

P
(
V ṽ0,π
T ≥ Y

)
. (5.40)

Proof. Let Â ∈ GT be a solution to the problem

Max
A∈GT

P (A) (5.41)

subject to the constraint

sup
κ∈D

EQκ

[Y 1A] ≤ ṽ0 . (5.42)

Then the trading strategy π̂ ∈ AG(ṽ0) obtained from the optional decomposi-
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tion of

ess sup
κ∈D

EQκ[
Y 1Â

∣∣Gt

]
solves the problem

sup
π∈AG(ṽ0)

P
(
V ṽ0,π
T ≥ Y

)
. (5.43)

Moreover, the maximal probability of success is given by:

P
(
V ṽ0,π̂
T ≥ Y

)
= P (Â) . (5.44)

Similarly, suppose Ã ∈ FT is a solution to the following problem:

Max
A∈FT

P (A) (5.45)

subject to the constraint

E∗[Y 1A] ≤ ṽ0 . (5.46)

Then π̃ ∈ AF(ṽ0) the perfect hedge of the modified claim Y 1Ã solves the

problem

sup
π∈AF(ṽ0)

P
(
V ṽ0,π
T ≥ Y

)
, (5.47)

and the maximum probability is equal to:

P
(
V ṽ0,π̃
T ≥ Y

)
= P (Ã) . (5.48)

Since AF(ṽ0) ⊆ AG(ṽ0), it is easy to see that

P (Ã) ≤ P (Â) . (5.49)

To finish the proof, we establish the reverse inequality. By Pham [44], there ex-
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ists an F-predictable process (π̂F

t )t∈[0,T ] and a family of Ft×B(R+)-measurable

functions {(
π̂d
t (θ)

)
θ≤t≤T

: for θ ∈ [0, T ]
}

where for any fixed θ ∈ [0, T ] the process
(
π̂d
t (θ)

)
θ≤t≤T

is F-predictable. More-

over, the G-predictable process (π̂t)t∈[0,T ] ∈ AG(ṽ0) admits the following de-

composition:

π̂t = π̂F

t 1{t≤T (x)} + π̂d
t (θ)1{t>T (x)}, (5.50)

for any fixed θ ∈ [0, T ] and t ∈ [θ, T ].

This, in particular, implies

V ṽ0,π̂
T = V ṽ0,π̂F

T 1{T<T (x)} + V
ṽ0,π̂d(θ)
T 1{T≥θ}

∣∣
θ=T (x)

. (5.51)

By (5.47) and (5.48), we get

P
(
V ṽ0,π̂F

T ≥ Y
) ≤ P (Ã) . (5.52)

With a similar argument, for any θ ∈ [0, T ]

P
(
V

ṽ0,π̂F(θ)
T ≥ Y

) ≤ P (Ã) . (5.53)

Using the results of Dellacherie and Meyer [9] and Coculescu and Nikeghbali

[6] for computing expectation involving random times, we write

P
(
V

ṽ0,π̂F(θ)
T ≥ Y

)
P
(
T (x) = θ

) ≤ P (Ã)P
(
T (x) = θ

)
∫ T

0

P
(
V

ṽ0,π̂F(θ)
T ≥ Y

)
P
(
T (x) = θ

)
dθ ≤

∫ T

0

P (Ã)P
(
T (x) = θ

)
dθ

E
[ ∫ T

0

1{
V

ṽ0,π̂
F(θ)

T ≥Y
}P(T (x) = θ

)
dθ
]
≤ P (Ã)

∫ T

0

P
(
T (x) = θ

)
dθ
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P
({

V
ṽ0,π̂F(T (x))
T ≥ Y

} ∩ {
T (x) ≤ T

}) ≤ P (Ã)P
(
T (x) ≤ T

)
(5.54)

By multiplying both sides of (5.52) by P
(
T (x) > T

)
and then combining with

(5.54) and (5.44), we can see that

P (Â) = P
(
V ṽ0,π̂
T ≥ Y

)
= P

({
V ṽ0,π̂F

T ≥ Y
} ∩ {

T (x) > T
})

+ P
({

V
ṽ0,π̂F(T (x))
T ≥ Y

} ∩ {
T (x) ≤ T

})
≤ P (Ã)

Therefore the reverse inequality of (5.49) is proved, and this means Ã ={
V ṽ0,π̃
T ≥ Y

}
solves problem (5.41)-(5.42). As an immediate consequence,

π̃ ∈ AF(ṽ0) is a solution to problem (5.39) and the proof is finished.

Finally, we utilize the techniques of Follmer and Leukert [14] to provide an

explicit form solution:

Theorem 5.11. For a given initial capital ṽ0 > 0 consider the optimization

problem (5.39). Define the European option H̃ as follows

H̃ := (K − ST )
+ − (K̃ − ST )

+ − (K − K̃)1{ST≤K},

where K̃ ∈ (0, K) is a constant subject to the constraint

E∗[H̃] = ṽ0 .

Then the perfect hedge (π̃t)t∈[0,T ] ∈ AF(ṽ0) for H̃ solves problem (5.39), and

the maximal probability of success is given by:

P
(
V ṽ0,π̃
T ≥ (K − ST )

+
)
= 1− Φ

( ln K̃ − lnS0

σ
√
T

+
1

2
σ
√
T
)
,
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where Φ is the standard normal distribution function.

Proof. Keeping in mind Theorem 5.10, define

Ã :=
{ dP

dP ∗ > const. (K − ST )
+
}
.

By Follmer and Leukert [14], the replicating strategy (π̃t)t∈[0,T ] ∈ AF(ṽ0) for

the modified claim (K − ST )
+1Ã is an optimal solution to the problem

sup
π∈AF(ṽ0)

P
(
V ṽ0,π
T ≥ (K − ST )

+
)

(5.55)

with the maximal probability of success

P
(
V ṽ0,π̃
T ≥ (K − ST )

+
)
= P (Ã) .

By the definition of P ∗ from (5.4) and the unique solution to SDE (5.3),

we can rewrite Ã as follows

Ã =
{
S

μ

σ2

T > λ̃(K − ST )
+
}
, (5.56)

where λ̃ is a positive constant that can be determined from

E∗[(K − ST )
+1Ã

]
= ṽ0 . (5.57)

Regardless of μ
σ2 ≤ 1 or μ

σ2 > 1, the increasing function s
μ

σ2 intersects with

λ̃(K − s)+ at exactly one point K̃ ∈ (0, K). Hence, from (5.56), we obtain

Ã =
{
ST > K̃

}
=
{
S0 exp

(
σWT + (μ− 1

2
σ2)T

)
> K̃

}
=
{
S0 exp

(
σW ∗

T − 1

2
σ2T

)
> K̃

}
=
{
W ∗

T > K̄
}
,

(5.58)
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where K̄ > 0 is again a constant to be determined, and

(
W ∗

t

)
t∈[0,T ]

:=
(
Wt +

μ

σ
t
)
t∈[0,T ]

,

by Girsanov’s theorem, is a standard (F, P ∗)-Brownian motion.

To exploit the Black-Scholes formula, we represent the modified claim (K−
ST )

+1Ã as follows

(K − ST )
+1Ã = (K − ST )

+ − (K̃ − ST )
+ − (K − K̃)1{ST≤K}

By this and (5.57), constant K̃ can be computed from

ṽ0 = E∗[(K − ST )
+1Ã

]
= KΦ(−d−(K))− S0Φ(−d+(K))

− K̃Φ(−d−(K̃)) + S0Φ(−d+(K̃))− (K − K̃)Φ(−d−(K))

= S0Φ(−d+(K̃))− K̃Φ(−d−(K̃))− S0Φ(−d+(K)) + K̃Φ(−d−(K)),

(5.59)

where for any z > 0

d±(z) :=
lnS0 − ln z

σ
√
T

± 1

2
σ
√
T .

After finding K̃ from (5.57) and (5.58), the maximal probability of success is

given by

P (Ã) = P
(
S0 exp

(
σWT + (μ− 1

2
σ2)T

)
> K̃

)
= 1− Φ

(− d−(K̃)
)
.

(5.60)
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5.4 Conclusion

Considering a Black-Scholes model, we define a Guaranteed minimum Death

Benefit (GMDB) life insurance contract in this market. The main aim of

this chapter is to solve the quantile hedging problem (5.16) under an initial

capital constraint. To do so, we progressively enlarge the filtration generated

by the underlying asset with the filtration generated by the survival process

of the insured. Then the GMDB contract is considered as a Bermudan option

on the probability space equipped with the enlarged filtration. Independency

assumption between the mortality risk and the financial risk combined with

the minimum guarantee structure of the payment simplifies the superhedging

method into a perfect hedge in the original complete market. Moreover, the

max-min problem corresponding to the quantile hedging problem of the GMDB

contract in the enlarged filtration is converted into a straightforward quantile

hedging problem for a European put option in the filtration generated by the

Black-Sholes model.

Our approach has the potential to be generalized to the case of any Ameri-

can style contingent claim exercised at random times independent of the under-

lying risky asset. The results of this chapter show how to deal with conditional

expectations and value processes in the enlarged filtration, these results can

be applied in a similar framework.
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Appendix A

An Equivalent Static
Optimization Problem

The following theorem by Follmer and Leukert [15] guarantees a solution for
the minimization problem (4.20).

Theorem 1. Let R =
{
ϕ : Ω −→ [0, 1]

∣∣ ϕ ∈ GT

}
, defined as in Lemma 4.7,

then

1. There exists ϕ̃ ∈ R that solves the problem

min
ϕ∈R

E
[
l
(
(1− ϕ)Hδ

)]
(1.1)

under the constraint

sup
κ∈Dn

E
[
ρ∗Tρ

κ
TϕHδ

] ≤ ũ.

Since l′ > 0 then any two solutions are equal P -a.s. on {Hδ > 0}.
Moreover we can assume that ϕ̃ = 1 on {Hδ = 0}.

2. The hedging strategy (ũ, π̃) of the modified claim ϕ̃Hδ (obtained from the
optional decomposition theorem) solves minimization problem (4.20).
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Appendix B

The Algorithm of Solving the
Dual Problem

By Cvitanić and Karatzas [8], the solution to the dual problem (4.27), (z̃, L̃),
is determined by the following method:

(1) For any z � 0, there exists L̃(z) ∈ L that solves

Ṽ (z) := inf
L∈L

E
[(dP̄

dP
− zρ∗TLHδ

)+]

(2) For any given ũ ∈ (0, E∗[H]), let V∗(ũ) to be defined as (4.27) then we
have

V∗(ũ) = inf
z>0

{
ũz + Ṽ (z)

}
.

In addition, there exists z̃(ũ) > 0 that attains this infimum.

(3) For any given ũ ∈ (
0, E∗[H]

)
, there exists (z̃, L̃) :=

(
z̃(ũ), L̃

(
z̃(ũ)

)) ∈
R

+ × L such that

V∗(ũ) = ũz̃ + E
[(dP̄

dP
− z̃ρ∗T L̃Hδ

)+]
. (2.1)

(4) By above, (z̃, L̃) is given by

z̃ := arg min
z>0

[
ũz + Ṽ (z)

]
and

L̃ := L̃(z̃).

After finding (z̃, L̃) by the above algorithm, the optimal randomized test
ϕ̃ is given by
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ϕ̃ = 1{
z̃ρ∗T L̃Hδ<

dP̄
dP

} + B̃1{
z̃ρ∗T L̃Hδ=

dP̄
dP

}, P -a.s.

where B̃ is a GT -random variable with values in [0, 1], and ϕ̃ satisfies the
constraint

E
[
ρ∗T L̃ϕ̃Hδ

]
= ũ.

Moreover, we have

EP̄
[
ϕ̃
]
= V∗(ũ). (2.2)
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Appendix C

Measurable Selection

Suppose that (Ω,F , P ) is a complete probability space and (M,B(M), d) is a
complete separable metric space with the Borel σ-field B(M) and the metric
d.

Theorem 1 (Aumann’s Measurable Selection Theorem). Let Γ : Ω −→
2M be a nonempty set-valued F ⊗B(M)-measurable function. In other words,
for all ω ∈ Ω, Γ(ω) is a nonempty subset of M and

Graph(Γ) :=
{
(ω,m) : m ∈ Γ(ω)

} ∈ F ⊗ B(M).

Then there exists a measurable function f : Ω −→ M such that

f(ω) ∈ Γ(ω), for all ω ∈ Ω.

The function f is known as a measurable selection for the set-valued function
Γ.

See, for instance, Wagner [49] and Kabanov and Pergamenshchikov [21] for
more details on this topic.

In the proof of Theorem 2.1, we have applied the above theorem for the
set-valued function

Γ : Ω× R+ −→ 2R+

with Γ(ω, x̃) = ãs(w, x̃) defined as in equation (2.8).
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Appendix D

Bermudan Option Hedging

In the following, we recall the superhedging strategy of a Bermudan option
from Schweizer [48]:

Assume (U,R) be a Bermudan option with R = {t1, t2, ...., tn} ⊆ [0, T ] for
some n ∈ N and 0 =: t0 < t1 < t2 < ... < tn = T such that

X0 = sup
κ∈D

i=1,2,...,n

EQκ[
Uti

]
< +∞.

Using a backward induction argument, let us define process (Bi)i=0,1,2,...,n

as follows
Bn := Utn (4.1)

and
Bi := Max

(
Uti , ess sup

κ∈D
EQκ[

Bti+1
|Gti

])
(4.2)

for i = 0, 1, 2, ..., n− 1.

Then for the superhedging value process (Xt)t∈[0,T ] introduced in (5.13) we
have

Xti = Bi P -a.s., for all i = 0, 1, 2, ..., n. (4.3)

Moreover, process (Xt)t∈[0,T ] has an RCLL version on each subinterval (ti, ti+1)
such that

Xt = Xti+ +

∫ t

ti

π(i)
s dSs − C i

t for t ∈ (ti, ti+1], (4.4)

for some S-integrable R-valued G-predictable process (π
(i)
t )t∈(ti,ti+1] and a non-

negative increasing G-optional process (C
(i)
t )t∈(ti,ti+1] with C

(i)
ti ≡ 0. We set

X0+ := X0.

By attaching all the above n trading strategies π(i) and the consumption
processes C i, for all t ∈ [0, T ] we now define:

πt :=
n−1∑
i=0

π
(i)
t 1�ti,ti+1� (4.5)
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and

Ct :=
∑
ti≤t

i=0,1,...,n−1

C i
ti
+

n−1∑
i=0

C i
t 1�ti,ti+1� +

∑
ti<t

i=0,1,...,n−1

(Xti −Xti+). (4.6)

Combining (4.5) and (4.6), we obtain

Xt = X0 +

∫ t

0

πsdSs − Ct for t ∈ [0, T ]. (4.7)

We used the next lemma in the proof of Theorem 5.9.

Lemma 1. Let s ≤ t and A ∈ Gt. Then for any nonnegative Gt-measurable
random variable Y , we have

E
[
Y 1Ac

∣∣Gs

]
1A = 0, P -a.s. (4.8)

Proof. We prove this lemma by contradiction. Let

B :=
{
ω ∈ A : E

[
Y 1Ac

∣∣Gs

] �= 0
}
.

Then, by B ∈ Gs, we get

0 <

∫
B

E
[
Y 1Ac

∣∣Gs

]
dP =

∫
B

Y 1AcdP =

∫
B∩Ac

Y dP (4.9)

On the other hand, B ⊆ A implies

∫
B∩Ac

Y dP = 0. Therefore B must be P

almost sure empty and (4.8) is satisfied.
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