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Abstract

This thesis consists of the following two parts:

Part I: Positive definite functions on unit spheres.

Part II: Spherical h-harmonic expansions with negative indices.

In the first part, we study positive definite functions on the unit sphere Sd of the

Euclidean space Rd+1 equipped with the usual geodesic distance ρ. A continuous function

g : [−1, 1] → R is called positive definite on Sd if for any N ∈ N and any set of N

distinct points XN := {x1, · · · , xN} on Sd, the N ×N matrix g [XN ] := [g(ρ(xi, xj))]
N
i,j=1

is positive definite, and it is said to be positive semi-definite if the matrix g [XN ] is

nonnegative positive definite. Our main interest in this part is the following longstanding

conjecture on positive definite functions on spheres:

Conjecture. Let δ ≥ d+1
2

. Then for any θ ∈ (0, π), the function

fθ,δ(t) = (θ − t)δ+

is isotropic positive definite on Sd.

We first confirm this conjecture in the case when the dimension d is odd.

Theorem 0.0.1. Let d be an odd integer ≥ 3. Suppose that g is a continuous function

on [0,∞) with compact support in [0, π]. If g is isotropic positive definite on Rd, then so

it is on Sd.

Our next result reveals a close connection between the positive definite functions on

Rd and Sd. In this situation, the restriction on dimensions can be removed. We state it

as below.

Theorem 0.0.2. Suppose that g is a continuous function on [0,∞) with compact support

on [0, π]. Let d ∈ N, if g is isotropic positive semi-definite on Sd, then it is also positive
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semi-definite on Rd.

We also partially confirm the conjecture for small parameters θ when the dimension d

is even. The method used there works for all higher even dimensions. To give numerical

estimate on error terms, we will present proof when d = 2.

Theorem 0.0.3. Let d = 2 and δ ≥ 3
2
. The function fθ,δ(t) = (θ−t)δ+ is isotropic positive

definite on S2 when 0 < θ < CA,B, where CA,B is an absolute constant.

In the second part, we study the spherical h-harmonic expansions with negative indices.

We extend some of the classical results from Chanillo and Muckenhoupt [10] to the Cesàro

means of the weighted orthogonal polynomial expansions (WOPEs) in several variables

with respect to the weight function

hκ(x) :=
d∏
i=1

|xi|κi

on the unit sphere Sd−1 for all parameters κ1, · · · , κd > −1
2
. It is worth to point out that

when the index is nonnegative, that is κmin := min1≤i≤d κi ≥ 0, the problem has been

studied in a series of papers [15–18, 30], where the nonnegative assumption is essential

in these works. However, many arguments do not work if one of the parameters κi is

negative, in which case that the above mentioned WOPEs on the sphere Sd−1 is still well

defined if κmin > −1
2
.

Our aim is to deal with the negative indices. More precisely, we develop a new tech-

nique to establish sharp pointwise estimates for the corresponding Cesàro kernels, which

works for the full range of κmin > −1
2
. This means we fully settle the problem for the case

when min1≤j≤d κj < 0. We believe that this new technique will, in particular, lead to a sim-

pler proof of the estimates of Chanillo and Muckenhoupt [10, Theorem 14.1] on the Cesàro

kernels of the Jacobi polynomial expansions with parameters α, β > −1. We also establish

similar results for the corresponding WOPEs on the ball Bd = {x ∈ Rd : ‖x‖ ≤ 1} and
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the simplex Td = {x ∈ Rd : x1 ≥ 0, . . . , xd ≥ 0, x1 + · · ·+ xd ≤ 1}, as was observed by Xu

[39].
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Preface

Part I of this thesis is contained in a joint paper [23] as H. Feng and Y. Ge, Isotropic

positive definite functions on spheres. (will appear soon)

Part II of this thesis has been published in [14] as F. Dai and Y. Ge, Sharp estimates

of the Cesàro kernels for weighted orthogonal polynomial expansions in several variables,

Journal of Functional Analysis, Volume 280, Issue 4, 15, February 2021.

All of the proofs in this thesis are joint work of Dr. Feng Dai, Dr. Han Feng, and me.
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Part I

Positive definite functions on the

unit sphere Sd−1
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Chapter 1

Introduction

Positive definite functions are very important in both theory and applications of approx-

imation theory, probability, and statistics. One major application of positive definite

functions theory is to analyze radial basis functions for interpolating scattered data; see,

for example [22],[29],[9] and [36]. In particular, identifying positive definite functions,

or, more generally, positive definite kernels, is of great interest as interpolation problems

corresponding to these kernels are guaranteed to be well-posed.

We begin with the general definition of (strictly) positive definite function.

Definition 1.0.4. Given a metric space (Ω, ρ), a radial real-valued function K is called

(strictly) positive definite on Ω if for any integer N ∈ N and XN = {x1, . . . , xN} ⊂ Ω,

the corresponding N ×N symmetric matrix

K[XN ] =
{
K
(
ρ(xi, xj)

)}N
i,j=1

is positive definite, which means

cTK[XN ]c > 0, for all nonzero c ∈ RN .
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Motivations. We consider the problem of interpolating data measured at scattered

locations in general metric space. Let Ω be a metric space. Given a finite set XN :=

{x1, · · · , xN} of distinct points in Ω and a target function f : Ω → R, find a continuous

function Sf (depending on f): Ω→ R that satisfies the interpolation conditions

Sf (xi) = f(xi), 1 ≤ i ≤ N.

Now, assume Sf is a linear combination of certain basis functions K(ρ(x, xj)), j =

1, 2 . . . N , that is

Sf (x) =
N∑
j=1

cjK(ρ(x, xj)),

for cj ∈ R, 1 ≤ j ≤ N . Solving the interpolation problem under this assumption leads to

a system of linear equations of the form

K[XN ] · C = f.

The scattered data fitting problem will be feasible, that is a solution to the above problem

will exist and be unique, if and only if the matrix K[XN ] is non-singular. Therefore, the

situation is favourable if we know in advance that the matrix is positive definite. This

is a motivation to investigate whether a function is positive definite in the given metric

space.

Here are some important remarks of positive definite functions:

• Radial (or isotropic, spherically symmetric) function is a function whose value de-

pends only on the distance between the input and some fixed point.

• If K is a real-valued positive definite function on Ω, then K(ρ(x, y)) = K(ρ(y, x))

for all x, y ∈ Ω.

• Positive definite functions can also be defined for complexed valued functions. We
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can also similarly define positive semi-definite functions in the Definition 1.0.4 if the

matrix K[XN ] is nonnegative definite.

• By Schur’s theorem for Hadamard products of two positive definite matrices, it

follows that if K1, K2 : Ω× Ω→ R are two positive definite functions, so is K1K2.

Since many problems are often generated by real-world applications, we then describe

some results of positive definite functions on both Euclidean space and the unit sphere in

the following chapters. For an abstract theory of positive definite functions, the readers

are referred to the book [28]. In the next chapter, we will study the characterizations of

positive definite functions on Rd and Sd−1, including two remarkable results: Bochner’s

theorem and Schoenberg’s theorem.
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Chapter 2

Preliminaries

2.1 Positive definite functions on Rd

From the previous definition and the discussion done on introduction, if we denote ρ be

the Euclidean metric, we have the following definition.

Definition 2.1.1. A function f : Rd → C is called positive definite on Rd, if for each

finite subset XN = {x1, . . . , xN} ⊂ Rd, the matrix f [XN ] = [f(xi − xj)]Ni,j=1 is a positive

definite matrix. It is said to be positive semi-definite if the matrix f [XN ] is positive

semi-definite.

Comments.

• If f : Rd → C is positive definite on Rd, then f(−x) = f(x) for each x ∈ Rd, and

maxx∈Rd |f(x)| = f(0) > 0.

• If f : Rd → C is positive definite on Rd, and is continuous at 0, then f is uniformly

continuous on Rd.

Examples.
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• If µ is a probability measure on Rd, then its Fourier transform

µ̂(x) =

∫
Rd
e−2πix·ξ dµ(ξ) (2.1.1)

is positive semi-definite on Rd.

• If g ∈ L1(Rd) and g(x) > 0 for a.e. x ∈ Rd, then ĝ(x) is a positive definite function

on Rd.

2.2 Characterizations of the positive definite func-

tions on Rd

One of the most celebrated results on positive semi-definite functions is their characteri-

zation in terms of Fourier transforms, which was established by Bochner in 1932 for d = 1

in [5], and 1933 for general d in [6]. If µ is a positive Borel measure on Rd, then the com-

putation in the example (2.1.1) can be extended to see that µ̂ is a positive semi-definite

function on Rd. Bochner established the converse:

Theorem 2.2.1 (Bochner). In order that a function f : Rd → C be positive semi-

definite and continuous, it is necessary and sufficient that it be the Fourier transform of

a nonnegative finite-valued Borel measure on Rd.

This gives an important tool to characterize the positive semi-definite functions on

Rd. Some examples are worthwhile to list.

• The Gaussian f(x) = e−π|x|
2

is a positive definite function as f̂(ξ) = f(ξ) > 0.

• f(x) = e−π|x| is a positive definite function since f̂(x) = cd

(1+|x|2)
d+1
2
> 0, where cd is

a positive constant.
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• The truncated power function fδ(x) = (1 − |x|)δ+ is a positive definite function on

Rd when δ ≥ d+1
2

. Indeed,

f̂δ(ξ) := cd

∫ 1

0

rd−1(1− r)δj d−2
2

(2πr|ξ|) dr

= c′d|ξ|−d−δ
∫ 2π|ξ|

0

td−1(2π|ξ| − t)δj d−2
2

(t) dt,

where jα(z) = cαz
−αJα(z) and Jα(z) := ( z

2
)α
∑∞

k=0
(−1)k

k!Γ(k+α+1)
( z

2
)2k is the Bessel

function of the first kind for α > 0. The following result was proved by Gasper [26],

which can be stated as follows: for α > −1
2

and x > 0,

∫ x

0

(x− t)α+ 3
2 t2α+1jα(t) dt > 0.

Setting α = d−2
2

, we conclude that if δ ≥ d+1
2

, then f̂δ(ξ) > 0 for all ξ ∈ Rd, and

hence, fδ(x) = (1− |x|)δ+ is a positive definite function on Rd.

2.3 Positive definite functions on Sd−1

For interpolation of some data, such as geodetic, geological, and meteorological infor-

mation gathered over the Earth’s surface, the data locations are known to lie on the

sphere’s surface. This leads us to consider a specialization of the basis function de-

fined on unit spheres. In this section, we study positive definite functions on the u-

nit sphere Sd−1 = {x ∈ Rd : ‖x‖ = 1} equipped with the usual geodesic distance

ρ(x, y) := arccos〈x, y〉, much of which originated with I. J. Schoenberg [34].

Definition 2.3.1. A continuous function g : [−1, 1] → R is called positive definite on

Sd−1 if for any N ∈ N and any set of N distinct points XN := {x1, · · · , xN} on Sd−1, the

N ×N matrix

g [XN ] := [g(cos ρ(xi, xj))]
N
i,j=1 = [g(〈xi, xj〉)]Ni,j=1
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is positive definite.

Examples.

• An important result is that zonal spherical harmonics

Zn(t) :=
n+ λ

n
C

d−2
2

n (t), t ∈ [−1, 1], n ∈ N,

is positive definite function on Sd−1, as can be seen from the fact that the Gegenbauer

polynomial C
d−2
2

n (t) is positive definite on Sd−1. Thus, positive definite functions are

closely related to spherical harmonics.

• Positive definite functions on Rd can be restricted to Sd−1. This can be seen from

the norm relation: ‖x− y‖2 = 2− 2 〈x, y〉.

2.4 Characterizations of the positive definite func-

tions on Sd−1

The importance of (strictly) positive definiteness is its connection with the posedness

of interpolation. Therefore, some easy means of identifying (strictly) positive definite

functions are of great interest as it will enable the assembly of a toolkit of different

kernel-based interpolation methods. Positive semi-definite functions on the sphere have

been studied by Schoenberg [34, Theorem 1], who proved the following theorem of Bochner

type.

Theorem 2.4.1. Let g be a continuous function on [0, π]. The function g is isotropic

positive semi-definite on Sd−1 if and only if g has the Gegenbauer expansion

g(θ) =
∞∑
n=0

anC
d−2
2

n (cos θ), θ ∈ [0, π], (2.4.1)
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in which all of the coefficients

an :=

∫ π

0

g(θ)C
d−2
2

n (cos θ)(sin θ)d−2dθ ≥ 0, ∀n ∈ N0 (2.4.2)

and
∑∞

n=0 anC
d−2
2

n (1) <∞.

The characterization of (strictly) positive definite functions on Sd−1 came somewhat

later. A simple sufficient condition [37] states that g is (strictly) positive definite if, in

addition to the conditions of Theorem 2.4.1, all the Gegenbauer coefficients an are positive.

Chen, Menegatto and Sun [11] showed that a necessary and sufficient condition for g to

be (strictly) positive definite on Sd−1, d ≥ 3, is that, infinitely many of the Gegenbauer

coefficients with odd indices, and infinitely many of those with even indices, are positive.

This was later established for the case S1 in [32]. Dai and Xu also gave a self-contained

proof in [16, Section 14.3].

Schoenberg’s result to characterize positive semi-definite functions is classical. Unfor-

tunately, given a function g, checking the signs of all the Gegenbauer coefficients can be

an impossible task. Therefore, it is natural to seek simpler sufficient conditions that guar-

antee (strictly) positive definiteness. Confronting this difficulty, a Pólya type of criterion

was established in [4] for d ≤ 8.

Theorem 2.4.2. (Pólya type criterion) Let d ∈ {3, 4, ..., 8} and k = dd−2
2
e. Let the

real-valued function g on [0, π] satisfy the following conditions:

(i) g ∈ Ck [0, π] ,

(ii) supp(g) ⊂ [0, π) ,

(iii) the derivative, from the right, g(k+1)(0) exists, and is finite,

(iv) (−1)kg(k) is convex.
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Then g is a positive semi-definite function on Sd−1. If, in addition to the above properties,

g(k), restricted to (0, π), does not reduce to a linear polynomial, then g is a (strictly)

positive definite function on Sd−1.

In the same reference [4], it showed that the Pólya type of criterion continues to hold

for all d > 8, if we can prove the function

fθ,δ(t) := (θ − t)δ+ =


(θ − t)δ, t ≤ θ,

0, t > θ,

where δ > 0, θ ∈ (0, π], is (strictly) positive definite on Sd−1 when δ ≥ dd
2
e.

Our main interest is the following more general longstanding conjecture on positive

definite functions on spheres, stated in [4]. The importance of this conjecture lies in the

fact that it leads to a sharp Pólya type criterion for any dimensions.

Conjecture 1. Let δ ≥ d+1
2

. Then for any θ ∈ (0, π], the function

fθ,δ(t) = (θ − t)δ+

is isotropic positive definite on Sd.

2.5 Some useful formulas

To better describe our results in the following chapters, in this section, we shall introduce

the Jacobi polynomials, some needed preliminaries and standard notions, which will be

used throughout the rest of this part.
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2.5.1 Jacobi and related orthogonal polynomials

For parameters α, β ∈ R and n ∈ N, the Jacobi polynomials are defined by

P (α,β)
n (x) =

1

n!

n∑
k=0

Γ(n+ α + β + k + 1)

Γ(n+ α + β + 1)

Γ(α + 1 + n)

Γ(α + k + 1)

(x− 1

2

)k
,

where x ∈ [−1, 1]. The Gegenbauer polynomials are defined by

Cλ
n(x) =

Γ(λ+ 1
2
)Γ(n+ 2λ)

Γ(2λ)Γ(n+ λ+ 1
2
)
P

(λ− 1
2
,λ− 1

2
)

n (x).

We will use Rλ
n(x) := Cλn(x)

Cλn(1)
as the normalization of Gegenbauer polynomials.

Below, we collect several formulas and properties of the Jacobi polynomials needed in

the proofs. Our main reference is the classical treatise by [35].

(i) [35, (7.32.2)]: For α > −1, β > −1, and x ∈ [−1, 1],

|P (α,β)
n (x)| ≤ P (αβ)

n (1) =
Γ(n+ α + 1)

Γ(n+ 1)Γ(α + 1)
.

(ii) [35, (4.22.2)] For a positive integer 1 ≤ ` ≤ n and β ∈ R,

P (−`,β)
n (x) =

(
n+β
`

)(
n
`

) (x− 1

2

)`
P

(`,β)
n−` (x), n ≥ `. (2.5.1)

(iii) [35, (4.21.7)] For α, β ∈ R,

d

dx
P (α,β)
n (x) =

1

2
(n+ α + β + 1)P

(α+1,β+1)
n−1 (x). (2.5.2)

(iv) [35, (4.1.3)] For α, β ∈ R,

P (α,β)
n (−x) = (−1)nP (β,α)

n (x). (2.5.3)
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Using (2.5.1) and (2.5.3), we obtain that for any positive integers n, `,m with n >

`+m,

P (−`,−m)
n (x) = (−1)`

(1− x
2

)`(x+ 1

2

)m
P

(`,m)
n−`−m(x). (2.5.4)

In particular,

P (−1,−1)
n (x) = −1− x2

4
P

(1,1)
n−2 (x), (2.5.5)

which, by (2.5.2), also implies

∫
Pn(x) dx =

2

n
P

(−1,−1)
n+1 (x) = −1− x2

2n
P

(1,1)
n−1 (x). (2.5.6)

(v) [35, (8.21.18)] For n−1 ≤ θ ≤ π − n−1 and α, β > −1
2
,

P (α,β)
n (cos θ) = π−

1
2n−

1
2

(
sin

θ

2

)−α− 1
2
(

cos
θ

2

)−β− 1
2
[
cos(Nθ + τ) +O(1)(n sin θ)−1

]
,

where N = n+ α+β+1
2

and τ = −π
2
(α+ 1

2
). In particular, in [27, Page 295], we have

for θ ∈ (0, π
2
),

Pn(cos θ) =
2

π
1
2

Π(n)

Π(n+ 1
2
)

cos(Nθ − π
4
)

(2 sin θ)
1
2

+ pn,1(cos θ)

where

|pn,1(cos θ)| ≤ 4

π
1
2

Π(n)

Π(n+ 1
2
)

1

2(2n+ 3)

1

(2 sin θ)
3
2

,

and Π(n) = Γ(n+ 1).

Applying the Gautschi’s inequality: x1−s < Γ(x+1)
Γ(x+s)

< (x + 1)1−s for s ∈ (0, 1), we

have

Π(n)

Π(n+ 1
2
)

=
Γ(n+ 1)

Γ(n+ 3
2
)
< (n+

1

2
)−

1
2 ,
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and thus

Pn(cos θ) ≤ 2

π
1
2

n−
1
2

1

(2 sin θ)
1
2

cos
(
Nθ − π

4

)
+

1

(2π)
1
2 ( 2

π
)
3
2

1

(nθ)
3
2

. (2.5.7)

(vi) [35, (7.32.5)] For α,β ∈ R,

|P (α,β)
n (cos θ)| ≤ C

n
1
2 (n−1 + θ)α+ 1

2 (n−1 + π − θ)β+ 1
2

.

We will need some special cases in the proof:

In [35, (7.3.8)], for α = β = 0 and θ ∈ (0, π
2
],

|Pn(cos θ)| ≤ 1

n
1
2 θ

1
2

, (2.5.8)

and for α = β = 1,

|P (1,1)
n−1 (cos θ)| ≤ C

(n− 1)
1
2 θ

3
2

. (2.5.9)

We can confirm the constant C of the upper bound in (2.5.9) by using the following

result which can be found in [1, Page 213] and [3]:

Proposition 2.5.1. For every θ ∈ (0, π
2
], N = n+ α+β+1

2
,

∣∣∣sin(
θ

2
)α+ 1

2 cos(
θ

2
)β+ 1

2P (α,β)
n (cos θ)

∣∣∣ ≤ (n+ α

n

)
N−α−

1
2 × 2.821. (2.5.10)

Thus using (2.5.10) with α = β = 1 and replace n with n− 1, we have

∣∣∣P (1,1)
n−1 (cos θ)

∣∣∣ ≤ 1

(1
2
)
3
2 (sin θ)

3
2

n

(n+ 1
2
)
3
2

× 2.821 ≤ 2
3
2 × 2.821

( 2
π
θ)

3
2n

1
2

≤ π
3
2 × 2.821

(n− 1)
1
2 θ

3
2

.

(2.5.11)
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(vii) [2, p. 302] For λ 6= 0,

Cλ
n(cos θ) =

n∑
k=0

Γ(λ+ k)Γ(λ+ n− k)

k!(n− k)![Γ(λ)]2
cos[(n− 2k)θ]. (2.5.12)

(viii) [35, (4.5.4)]

P (α,β+1)
n (x) =

2

2n+ α + β + 2

(n+ β + 1)P
(α,β)
n (x) + (n+ 1)P

(α,β)
n+1 (x)

1 + x
. (2.5.13)

(ix) [35, (4.1.5)]

P
(α,α)
2n (x) =

Γ(2n+ α + 1)Γ(n+ 1)

Γ(n+ α + 1)Γ(2n+ 1)
P

(α,− 1
2

)
n (2x2 − 1). (2.5.14)

2.5.2 An extensional relation about Jacobi polynomials

In this section, we prove an extensional relation Lemma 2.5.1 on the Jacobi(Gegenbauer)

polynomials that will be useful in the proof of Theorem 3.1.1. Precisely, we can write

Rλ
n(cos t)(cos t

2
)2λ in terms of the linear combination of the terms Rλ

2j(cos t
2
), with j =

n, ..., n+λ, and more importantly, all the coefficients are nonnegative. This relation plays

an important role in our proof.

Lemma 2.5.1. If λ is a positive integer, then there exists a sequence {aλn,j}2n+2λ
j=n of positive

numbers such that for any t ∈ [0, π],

Rλ
n(cos t)(cos

t

2
)2λ =

n+λ∑
j=n

aλn,jR
λ
2j(cos

t

2
). (2.5.15)

Proof. First, applying the formula (2.5.13), substituting x by cos( t
2
), α by α − 1

2
, and β

14



by β − 1
2
, we get for t ∈ [0, π]

(cos
t

2
)2P

(α− 1
2
,β+ 1

2
)

n (cos t) = Aα,βn P
(α− 1

2
,β− 1

2
)

n (cos t) +Bα,β
n P

(α− 1
2
,β− 1

2
)

n+1 (cos t), (2.5.16)

where

Aα,βn =
n+ β + 1

2

2n+ α + β + 1
, Bα,β

n =
n+ 1

2n+ α + β + 1
.

Thus, using (2.5.16) λ times, we obtain

Cλ
n(cos t)(cos

t

2
)2λ =

n+λ∑
j=n

γjP
(λ− 1

2
,− 1

2
)

j (cos t),

where γj, n ≤ j ≤ n+ λ are some nonnegative coefficients.

Next, to complete the proof, we will use the Lemma 2.5.14 by substituting x by cos( t
2
),

α by α− 1
2
, and get for t ∈ [0, π] and α > −1

2
,

P
(α− 1

2
,− 1

2
)

n (cos t) =
Γ(n+ α + 1

2
)Γ(2n+ 1)

Γ(2n+ α + 1
2
)Γ(n+ 1)

P
(α− 1

2
,α− 1

2
)

2n (cos
t

2
).

2.5.3 A useful bridge for the connection between Bessel func-

tions and Jacobi polynomials

This section provides the following well-known relation [25] [35, (8.21.17)] on Jacobi poly-

nomial and Bessel function that plays a crucial role in our proofs.

Proposition 2.5.2. For α > −1
2
, we have for t ∈ (0, π),

P
(α,α)
n (cos t)

P
(α,α)
n (1)

= 2αΓ(α + 1)
( t

sin t

)α+ 1
2
[
jα(Nt) +O(n−1)

]
, (2.5.17)

where N = n+α+ 1
2
, jα(z) = z−αJα(z), and here and in what follows Jα(z) is the Bessel

15



function of the first kind,

Jα(z) =
∞∑
v=0

(−1)v( z
2
)α+2v

v!Γ(v + α + 1)
.

The O-term is uniform with respect to t ∈ [0, π− ε], ε being an arbitrary positive number.

In particular, when α = β = 0, [25, (4.37), (4.38)] provides a useful consequence in

Legendre polynomial case: for t ∈ [0, π
2
],

∣∣∣Pn(cos t)−
( t

sin t

) 1
2
J0(Nt)

∣∣∣ ≤ 0.1711

n
. (2.5.18)

2.5.4 Two asymptotic expansion formulas

The following useful asymptotic formula can be found in the book [12, p. 24, (11.5),(11.6)]:

Proposition 2.5.3. Let φ(t) be v times continuously differentiable in α ≤ t ≤ β. Let

φ(t) and its first v − 1 derivatives vanish when t = β. Then, if 0 < λ < 1, as N →∞,

∫ β

α

eiNt(x− α)λ−1φ(t)dt =
v−1∑
n=0

Γ(n+ λ)

n!Nn+λ
eiNα+ 1

2
λπi+ 1

2
nπiφ(n)(α) +O(N−v),

where

O(N−v) =
1

N v

∫ β

α

|φ(v)(t)|(t− α)λ−1dt.

By a change of variable, we get

Proposition 2.5.4. Let φ(t) be v times continuously differentiable in α ≤ t ≤ β. Let

φ(t) and its first v − 1 derivatives vanish when t = α. Then, if 0 < µ < 1, as N →∞,

∫ β

α

eiNt(β − t)µ−1φ(t)dt =
v−1∑
n=0

Γ(n+ µ)

n!Nn+µ
eiNβ−

1
2
µπi+ 1

2
nπiφ(n)(β) +O(N−v).
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Chapter 3

The relationship between positive

definite functions on the unit sphere

Sd and the Euclidean space Rd

3.1 Main results

In this chapter, we study the relationship between positive definite functions on the unit

sphere and the Euclidean space. We first consider odd dimensional cases and shall provide

an approach to show that the positive definite property can be inherited from Rd to Sd,

which will immediately verify Conjecture 1 when d is odd. Our first main theorem states

as follows.

Theorem 3.1.1. Let d be an odd integer ≥ 3. Suppose that g is a continuous function

on [0,∞) with compact support in [0, π]. If g is positive definite on Rd, then so it is on

Sd.

Some remarks are worthwhile to list.

Remark 3.1.1. The condition of compact support is necessary. A counter example can

17



be g(t) = exp(−t2), which is positive define on all R but not on S1.

Remark 3.1.2. The result was claimed as well by Nie and Ma [33, Theorem 2.1]. Besides,

another related and similar result was obtained due to Ma and Lu [31], in which the

positive definite was proved to be preserved from Euclidean spaces to unit spheres when

the dimensions are odd.

Remark 3.1.3. Our work is self-contained. In contrast with the proof of Theorem 3.1.1

in [33], we shall first proceed our proof to functions with high regularity, which allows us

to simplify our problem by applying integration by parts. Then through inducing a proper

identity approximation operator, additional regular assumptions will be avoided.

Corollary 3.1.4. Let d be odd and g be an isotropic continuous positive semi-definite

function on Sd with compact support on [0, π], then the function

g(t)
(sin t

t

)d−1

is an isotropic positive semi-definite function on both Rd and Sd.

The converse of Theorem 3.1.1 will be considered for the positive semi-definite func-

tions. In this situation, the restriction on dimensions can be removed. Precisely, we state

the following theorem.

Theorem 3.1.2. Suppose that g is a continuous function on [0,∞) with compact support

on [0, π]. For any dimension d ≥ 1, if g is isotropic positive semi-definite on Sd, then it

is also positive semi-definite on Rd.

We also partially confirm the conjecture for small parameters θ when the dimension

d is even. Actually, the method used there works for all higher even dimensions. To give

a numerical upper estimate of θ, we will focus mainly on the case d = 2. Our main result

can be stated as follow:
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Theorem 3.1.3. Let d = 2 and δ ≥ 3
2
. For 0 < θ < CA,B, the function

fθ,δ(t) = (θ − t)δ+

is isotropic positive definite on S2, where CA,B is an absolute constant.

3.2 Positive definite functions on Sd generated from

those on Rd

3.2.1 The case of odd dimensions

We are now in a position to prove Theorem 3.1.1, that is, for an odd integer d and a

continuous function g on [0,∞) with compact support in [0, π], if g is isotropic positive

definite on Rd, so it is on Sd. According to Schoenberg’s theorem, we need to prove that

the Gegenbauer coefficients of g

an =

∫ π

0

g(t)Cλ
n(cos t) sin2λ tdt > 0, ∀n ∈ N0, (3.2.1)

and

∞∑
n=0

anC
λ
n(1) <∞, (3.2.2)

where λ = d−1
2
.

We first verify the validity of equation (3.2.2). The proof follows a standard argument

in [34]. The series
∑∞

n=0 anC
λ
n(cos t) is Abel-summable for every t ∈ [0, π]. Hence, for

t = 0,
N∑
n=0

anC
λ
n(1) ≤ lim

r→1−

∞∑
n=0

anC
λ
n(1)rn <∞.
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Thus we have
∑∞

n=0 anC
λ
n(1) <∞.

We now embark on proving equation (3.2.1), which will be carried out in three steps.

3.2.1.1 Step 1: Reduction

Let us begin with a series of reductions. In order to prove equation (3.2.1), we claim that

it is enough to prove a slightly stronger statement: for any n ∈ N0, and θ ∈ (0, π],

∫ θ

0

g
(tπ
θ

)
Cλ
n(cos t)(sin t)2λ dt > 0, (3.2.3)

and it is obvious to see equation (3.2.1) is exactly a particular case when θ = π. We now

continue to deal with the claim (3.2.3). Without loss of generality, in (3.2.3), we may

replace f( t
θ
) with g( tπ

θ
), i.e. f(t) = g(πt), where f is isotropic continuous positive definite

on Rd with compact support in [0, 1]. Hence, showing the claim (3.2.3) is equivalent to

show for any n ∈ N0, θ ∈ (0, π],

∫ θ

0

f
( t
θ

)
Cλ
n(cos t)(sin t)2λ dt > 0. (3.2.4)

For simplicity in the proof, we will deal the following integral and verify its positivity:

In(θ) := θ−2λ−1

∫ θ

0

f
( t
θ

)
Rλ
n(cos t)(sin t)2λ dt (3.2.5)

where θ ∈ (0, π], and n ∈ N0.

Thus, by the arguments above, the previous claim equation (3.2.1) reduces to show

In(θ) > 0 for all n ∈ N0 and every θ ∈ (0, π]. Furthermore, with the help of Lemma

2.5.1, we would restrict our analysis on the integral (3.2.5) on a small range of θ. More

precisely, we have if In(θ) > 0, where θ ∈ (0, ε0), and ε0 is a sufficiently small positive

parameter, then In(θ) > 0 for every θ ∈ (0, π]. Indeed, this claim follows from the fact
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that for every θ ∈ (0, π], there exists a θ0 ∈ (0, ε0), where ε0 is a sufficiently small positive

parameter, such that In(θ) can be written as a sum of In(θ0) with positive coefficients,

which establishes the desired claim.

Therefore, in view of the whole reduction arguments above, the proof of the claim

equation (3.2.1) is finally reduced to show the following Lemma:

Lemma 3.2.1. Let d be an odd integer ≥ 3, f ∈ C[0,∞) with supp(f) ⊂ [0, 1]. If f is

an isotropic positive definite function on Rd, then

In(θ) = θ−2λ−1

∫ θ

0

f
( t
θ

)
Rλ
n(cos t)(sin t)2λ dt > 0 (3.2.6)

for all n ∈ N0 and every θ ∈ (0, ε0), where ε0 ∈ (0, 1) is a sufficiently small positive

parameter.

Now, we turn to the proof of the Lemma 3.2.1. We will give the proof in the following

step 2 and 3.

3.2.1.2 Step 2: The proof under additional assumptions

In this step, we shall prove Lemma 3.2.1 for the functions with high regularity, that is,

under the additional assumptions that f ∈ Cλ+3[0,∞), and f ′(0) < 0. We divide the

proof of (3.2.6) into the following three cases: (i) nθ ≥ A; (ii) nθ ≤ B; (iii) B < nθ < A,

where A > 1 and B ∈ (0, 1) are certain parameters depending only on f .

Case (i). In this case, we shall prove that there exists a constant A > 1 depending

only on f such that (3.2.6) holds whenever nθ ≥ A. First, we need a definition.

Definition 3.2.2. Let λ be a positive integer. For j = 1, · · · , λ, we define

F0(t) = f(θ−1t)(sin t)2λ and Fj(t) =
(Fj−1(t)

sin t

)′
.
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Clearly, for 0 ≤ j ≤ λ, Fj ∈ Cλ−j+3[0,∞), Fj(t) = 0 for t ≥ θ and

Fj(t) = O(t2(λ−j)), as t→ 0+.

The functions Fj(t), j = 1, 2, ..., λ we defined in the above Definition 3.2.2 have the

following decomposition.

Lemma 3.2.3. For 0 ≤ t ≤ θ and ` = 1, 2, · · · , λ,

F`(t) =
∑̀
j=0

θ−jf (j)(θ−1t)

[ `−j
2

]∑
k=0

α
(j)
`,k(sin t)

2λ−2`+j+2k(cos t)`−j−2k, (3.2.7)

where the α
(j)
`,k are constants,

α
(0)
`,0 = (2λ− 1)(2λ− 3) · · · (2λ− 2`+ 1), (3.2.8)

α
(1)
`+1,0 = α

(0)
`,0 + 2(λ− `)α(1)

`,0 , α
(1)
1,0 = 1. (3.2.9)

In particular,

Fλ(t) =
[
(2λ− 1)!! cosλ t+

[λ
2

]∑
k=1

α
(0)
λ,k(sin t)

2k(cos t)λ−2k
]
f(θ−1t)

+
λ∑
j=1

θ−jf (j)(θ−1t)

[λ−j
2

]∑
k=0

α
(j)
λ,k(sin t)

j+2k(cos t)λ−j−2k. (3.2.10)

Proof. The proof uses induction by `.

When ` = 1, we have

F1(t) =
(F0(t)

sin t

)′
= θ−1f ′(

t

θ
)(sin t)2λ−1 + (2λ− 1)f(

t

θ
)(sin t)2λ−2 cos t

= the right-hand side of (3.2.7)

22



and α
(0)
1,0 = (2λ− 1), α

(1)
1,0 = 1.

Suppose that the statement holds for `. Applying the Definition 3.2.2, we have

F`+1(t) =
(F`(t)

sin t

)′
=
∑̀
j=0

[ `−j
2

]∑
k=0

(
θ−j−1f (j+1)(

t

θ
)α

(j)
`,k(sin t)

2λ−2`+j+2k−1(cos t)`−j−2k

+ θ−jf (j)(
t

θ
)α

(j)
`,k(2λ− 2`+ j + 2k − 1)(sin t)2λ−2`+j+2k−2(cos t)`−j−2k+1

+ θ−jf (j)(
t

θ
)α

(j)
`,k(j + 2k − `)(sin t)2λ−2`+j+2k(cos t)`−j−2k−1

)

Furthermore, to achieve our decomposition, we can rewrite the

F`+1(t) =
`−1∑
j=0

[ `−j
2

]∑
k=0

(
θ−j−1f (j+1)(

t

θ
)α

(j)
`,k(sin t)

2λ−2`+j+2k−1(cos t)`−j−2k
)

+ θ−`−1f (`+1)(
t

θ
)α

(`)
`,0(sin t)2λ−`−1

+
∑̀
j=0

[ `−j
2

]∑
k=0

(
θ−jf (j)(

t

θ
)α

(j)
`,k(2λ− 2`+ j + 2k − 1)(sin t)2λ−2`+j+2k−2(cos t)`−j−2k+1

)

+
∑̀
j=0

[ `−j
2

]∑
k=0

(
θ−jf (j)(

t

θ
)α

(j)
`,k(j + 2k − `)(sin t)2λ−2`+j+2k(cos t)`−j−2k−1

)
(3.2.11)

Observing the power of each terms in (3.2.11), we can exactly rewrite F`+1(t) by a

double sum in terms of θ−jf (j)( t
θ
), (sin t)2λ−2`+j+2k−2, and (cos t)`−j−2k+1 as j runs from

0 to `+ 1 and k runs from 0 to [ `+1−j
2

]. It remains to prove the coefficient satisfies (3.2.8)

and (3.2.9), that is, we need to verify that

α
(0)
`+1,0 = (2λ− 1)(2λ− 3) · · · (2λ− 2`+ 1)(2λ− 2`− 1), (3.2.12)

α
(1)
`+1,0 = α

(0)
`,0 + 2(λ− `)α(1)

`,0 , α
(1)
1,0 = 1. (3.2.13)

To show (3.2.12), we need to consider the coefficient of the term f( t
θ
)(sin t)2λ−2`−2(cos t)`
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in (3.2.11), from which we have

α
(0)
`+1,0 = α

(0)
`,0(2λ− 2`− 1) = (2λ− 1)(2λ− 3) · · · (2λ− 2`+ 1)(2λ− 2`− 1).

To show (3.2.13), we need to consider the coefficient of the term θ−1f ′( t
θ
)(sin t)2λ−2`−1(cos t)`

in (3.2.11), from which we have

α
(1)
`+1,0 = α

(0)
`,0 + α

(1)
`,0(2λ− 2`).

This proves the identity (3.2.7) holds in the case of `+1 and completes the induction.

Recall the following well-known properties on Gegenbauer polynomials:

(
Rµ−1
n+1(x)

)′
=

(n+ 1)(n+ 2µ− 1)

2µ− 1
Rµ
n(x), (3.2.14)

lim
µ→0+

Rµ
n(cos t) = cos(nt). (3.2.15)

Using (3.2.14), (3.2.15) and integration by parts λ times on (3.2.6), we obtain

θ2λ+1In(θ) = cn(λ)

∫ θ

0

Fλ(t) cos((n+ λ)t) dt (3.2.16)

for some constant cn(λ) > 0.

Note that (3.2.8) and (3.2.9) imply that

α
(1)
`+1,0 + α

(0)
`+1,0 = 2(λ− `)

(
α

(1)
`,0 + α

(0)
`,0

)
,
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which in turn implies that

α
(1)
λ,0 + α

(0)
λ,0 = 2λλ! = (d− 1)!!.

Thus, by our assumptions on the function f , it is easily seen that Fλ has the following

properties:

(i) Fλ ∈ C3[0,∞) and Fλ is supported in [0, θ];

(ii)

F ′λ(0) =
(
α

(0)
λ,0 + α

(1)
λ,0

)
θ−1f ′(0) = (d− 1)!!θ−1f ′(0) < 0,

and |F ′′′λ (t)| ≤ Cfθ
−3 for any t ∈ [0, θ].

To this end, setting N = n + λ, and using integration by parts three times on the

right-hand side of (3.2.16), we obtain

∫ θ

0

Fλ(t) cos(Nt) dt = − 1

N2
F ′λ(0) +

1

N3

∫ θ

0

F ′′′λ (t) sin(Nt) dt

≥ N−2θ−1
[
−(d− 1)!!f ′(0)− C 1

Nθ

]
,

which is positive provided that nθ ≥ A and A = Af is sufficiently large. This proves

(3.2.6) in the case of nθ ≥ A.

Case (ii). In this case, we shall prove that there exists a constant B ∈ (0, 1) depending

only on f such that (3.2.6) is true whenever nθ ≤ B.
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To see this, we first note that

In(θ) = θ−2λ−1
[∫ ∞

0

f(θ−1t)t2λ dt+

∫ θ

0

f(θ−1t)
(
Rλ
n(cos t)

sin2λ t

t2λ
− 1
)
t2λ dt

]
≥
∫ ∞

0

f(t)td−1 dt− Cnθ−2λ−1

∫ θ

0

t2λ+1 dt

≥ cd

∫
Rd
f(|x|) dx− Cnθ

≥ cdf̂d(0)− CB > 0.

For the first inequality, we used Bernstein’s inequality for trigonometric polynomials.

Indeed, for n ≥ 0, we have

|Rλ
n(cos t)(

sin t

t
)2λ − 1| ≤ |Rλ

n(cos t)(
sin t

t
)2λ − (

sin t

t
)2λ|+ |(sin t

t
)2λ − 1|

≤ |(sin t

t
)2λ| · |Rλ

n(cos t)− 1|+ 2

≤ |Rλ
n(cos t)−Rλ

n(cos 0)|+ 2

≤ nt‖Rλ
n(cos t′)‖∞ + 2nt ≤ Cnθ,

where 0 < t′ < t. The last inequality is positive under the condition nθ ≤ B and B is

sufficiently small.

Case (iii). In this case, we shall prove (3.2.6) for the remaining case B ≤ nθ ≤ A.

Let N = n+ λ, and by substitution t = t′

N
, we can write

In(θ) = N−1θ−2λ−1

∫ Nθ

0

f
( t′

Nθ

)
Rλ
n(cos

t′

N
)
(

sin
t′

N

)2λ

dt′.

Using the asymptotic formula (2.5.17), we have that for 0 ≤ t′ ≤ Nθ ≤ A,

Rλ
n(cos

t′

N
) = cλ

( t′/N

sin(t′/N)

)λ[
jλ− 1

2
(t′) +O(n−1)

]
,
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where cλ = 2λ−
1
2 Γ(λ + 1

2
). Set OA,B term is uniform in n, t′, θ but may depend on the

constants A and B. By using substitution x = t′

Nθ
and (2.5.17), we obtain that

In(θ) = cλ

∫ 1

0

f(x)jλ− 1
2
(Nθx)x2λ

(sin(θx)

θx

)λ
dx+OA,B(n−1)

≥ c′λ

∫ 1

0

f(x)jλ− 1
2
(Nθx)x2λ dx+OA,B(n−1)

≥ c′λ min
B≤u:=Nθ≤A

∫ ∞
0

f(x)jλ− 1
2
(ux)x2λ dx+B−1θOA,B(1)

= c′′λ min
B≤|ξ|≤A

f̂(|ξ|)− CA,BB−1θ,

which is positive if θ is small enough. This shows (3.2.6) in this case.

3.2.1.3 Step 3: Additional assumptions avoided

In this step, we will show Lemma 3.2.1 holds for a general continuous positive definite

function f defined on Rd without high regularity. The proof is based on the previous

step 2. The main task in this proof is using the function f to construct a function f ε

with high regularity, such that the Gegenbauer coefficients of f ε can approximate to the

Gegenbauer coefficients of f . The construction requires two ingredients.

The first is a finite Borel measure defined on Rd:

µf := fd · χB1−ε +Mfεmεδ0,

where fd to be the radial function on Rd given by fd(x) = f(|x|) for x ∈ Rd; Br := {x ∈

Rd : |x| ≤ r} is the ball of radius r in Rd; For ε ∈ (0, 1), Mfε := maxt∈[1−ε,1] |f(t)|, δ0

denotes the Dirac measure supported at the origin, and

mε := B1 −B1−ε =
∣∣∣{x ∈ Rd : 1− ε ≤ |x| ≤ 1}

∣∣∣ = d−1|Sd−1|
(

1− (1− ε)d
)
≤ Cε.
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Note that

µ̂f (ξ) =

∫
|x|≤1−ε

f(|x|)e−2πix·ξ dx+mεMfε

= f̂d(ξ) +mεMfε −
∫

1−ε<|x|≤1

f(|x|) cos(2πix · ξ)dx

≥ f̂d(ξ) +

∫
1−ε<|x|≤1

(Mfε − f(|x|))dx > 0.

The second ingredient is an approximate identity:

φ(x) := aλ(1− |x|)λ+6
+ , x ∈ Rd,

where the constant aλ > 0 is chosen so that
∫
Rd φ(x) dx = 1. It has been known that

φ̂(ξ) > 0 for all ξ ∈ Rd (See [26]).

Let x = t
θ
. Note that when |t| < θ, we have 0 < |x| = | t

θ
| < 1. Define f εd( t

θ
) := f εd(x)

and

f εd(x) := φε ∗ µf (x) =

∫
Rd
φε(x− y) dµf (y) = fd · χB1−ε ∗ φε(x) +mεMfεφε(x),

where φε(x) = ε−dφ(x/ε).

Clearly, f εd(x) = f ε(|x|) is a radial function on Rd, and

f̂ εd(ξ) = φ̂(εξ)µ̂f (ξ) > 0, ξ ∈ Rd.

Since φε ∈ Cλ+5
c (Rd) is supported in {x ∈ Rd : |x| ≤ ε}, and since fd ·χB1−ε ∈ L1(Rd)

is supported in {x ∈ Rd : |x| ≤ 1− ε}, it follows that f ε is a (λ+ 5)-times continuously

differentiable function on [0,∞) that is supported in [0, 1], In addition,

(f ε)′(0) = mεMfεφ
′
ε(0) = −ε−d−1mε(fd · χB1−ε)aλ(λ+ 6) < 0.
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Applying the conclusion that has already been proven in step 2, we obtain that for

any ε ∈ (0, 1) and n ∈ N0,

∫ θ

0

f ε(
t

θ
)Rλ

n(cos t)(sin t)2λ dt > 0. (3.2.17)

On the other hand, by |Rλ
n(cos t)| ≤ 1, we have,

∣∣∣∫ θ

0

(
f ε(

t

θ
)− f(

t

θ
)
)
Rλ
n(cos t)(sin t)2λ dt

∣∣∣ ≤ ∫ θ

0

|f ε( t
θ

)− f(
t

θ
)|td−1 dt

≤
∫ ∞

0

|f ε( t
θ

)− f(
t

θ
)| td−1 dt

=
1

|Sd−1|
‖f εd − fd‖L1 .

Furthermore, by the triangle inequality, we have

‖f εd − fd‖L1 ≤ ‖fd ∗ φε − fd‖L1 + ‖(fd − fd · χB1−ε) ∗ φε‖L1 + ‖(fd · χB1−ε) ∗ φε − f εd‖L1

≤ ‖fd ∗ φε − fd‖L1 + ‖fd(1− χB1−ε)‖L1 + Cελ+1.

Now, let ε → 0+, we then have ‖fd ∗ φε − fd‖L1 → 0 by the norm convergence of

approximation to the identity, and the second and third terms go to 0 evidently.

Hence, we deduce that

∣∣∣∫ θ

0

(
f ε(

t

θ
)− f(

t

θ
)
)
Rλ
n(cos t)(sin t)2λ dt

∣∣∣ ≤ ε. (3.2.18)

Thus, letting ε→ 0+ in (3.2.18), we obtain for all n ∈ N0,

∫ θ

0

f(
t

θ
)Rλ

n(cos t)(sin t)2λ dt ≥ 0. (3.2.19)

Finally, we show that if f̂d(ξ) > 0 for all ξ ∈ Rd, then (3.2.19) with strict inequality
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holds. To see this, we need to use the (2.5.15) to obtain that for every θ ∈ (0, π),

In(θ) = θ−2λ−1

∫ θ

0

f(
t

θ
)Rλ

n(cos t)(sin t)2λ dt

= θ−2λ−122λ

∫ θ

0

f(
t

θ
)Rλ

n(cos t)(cos
t

2
)2λ(sin

t

2
)2λ dt

= θ−2λ−122λ

∫ θ

0

f(
t

θ
)
n+λ∑
j=n

aλn,jR
λ
2j(cos

t

2
)(sin

t

2
)2λ dt

= θ−2λ−122λ+1

n+λ∑
j=n

aλn,jI2j(
θ

2
).

Thus, for a fixed n, if we repeat the same process m-times, we have

In(θ) = (θ−2λ−122λ+1)m
n+λ∑
j1=n

2j1+λ∑
j2=2j1

2j2+λ∑
j3=2j2

· · ·
2jm−1+λ∑
jm=2jm−1

aλn,j1a
λ
2j1,j2

· · · aλ2jm−1,jm
I2jm(

θ

2m
).

(3.2.20)

It follows from (3.2.19) that each term in (3.2.20) is nonnegative. We can conclude

that for any m ∈ N,

In(θ) ≥ cn,mI2mn(2−mθ),

where cn,m > 0 for any m ∈ N. Noticing that 2mn · 2−mθ = nθ, which satisfies the case

in section 3.2.3.3, letting m→∞ and following the same argument in Case (iii), we can

conclude that

I2mn(2−mθ) = N−12m(2λ+ 1)

∫ n+λ2−m

0

f(
t

N + 2−mλ
)Rλ

2mn(cos
t

N
)(sin

t

N
)2λdt+O((2mn)−1)

≥ cλ

∫ 1

0

f(x)jλ− 1
2
((n+ 2−mλ)x)x2λdx− Cn2−m

≥ cλ min
n≤u≤n+λ

∫ 1

0

f(x)jλ− 1
2
(ux)x2λdx− Cn2−m,
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which is positive for a sufficiently large integer m. This in turn implies the strict inequality

in (3.2.19).

3.2.2 Proof of a corollary

In this section, we will show the Corollary 3.1.4.

Proof of Corollary 3.1.4. Since g is an isotropic continuous positive semi-definite function

on Sd with compact support on [0, π], by the Schoenberg’s theorem and Lemma 2.5.1, it

can be easily seen that for each positive integer `, and every nonnegative integer n, the

function

Rλ
n(cos 2`t)

(sin(2`t)

2` sin t

)2λ

can be expressed as a convex combination of the polynomials Rλ
j (cos t), j ≥ 0. It follows

that for any ` ∈ N,

g(2`t)
(sin(2`t)

sin t

)2λ

(3.2.21)

is an isotropic continuous positive semi-definite function on Sd.

Let x > 0 and ` ∈ N. Set n = nx,` ∈ N be such that n−1
2`
≤ x < n

2`
. Then by (3.2.21)

0 ≤ n2λ+12−2`λ

∫ 2−`π

0

g(2`t)
(

sin(2`t)
)2λ

Rλ
n(cos t) dt

=

∫ 2−`nπ

0

g(2`tn−1)
(sin(2`tn−1)

2`n−1t

)2λ

Rλ
n

(
cos(

t

n
)
)
t2λ dt

=

∫ xπ

0

g(x−1t)
(sin(x−1t)

x−1t

)2λ

Rλ
n

(
cos(

t

n
)
)
t2λ dt+ o(1),

where the last step uses the fact that |x−1 − 2`n−1| ≤ 1
nx
→ 0 as n → ∞. Thus, letting
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n→∞ and applying the asymptotic formula (2.5.17), we get

0 ≤ x−2λ−1

∫ πx

0

g(x−1t)
(sin(x−1t)

x−1t

)2λ

jλ− 1
2
(t)t2λ dt

=

∫ ∞
0

g(t)
(sin(t)

t

)2λ

jλ− 1
2
(xt)t2λ dt

= cλĜd(ξ),

where ξ ∈ Rd, |ξ| = x and

G(t) = g(t)
(sin t

t

)2λ

, t ≥ 0.

By Bochner’s theorem, G is an isotropic continuous positive semi-definite function on

Rd. Furthermore, when d is odd and by Theorem 3.1.1, G is also a positive semi-definite

function on Sd.

3.2.3 The case of even dimensions (d = 2)

In this section, we deal with the Conjecture 1 when d = 2. Since the convergence of series∑∞
n=0 anC

λ
n(1) < ∞ can be verified by using the same argument in Theorem 3.1.1, we

only need to consider the following conjecture:

Conjecture 2. Let δ ≥ λ+ 1 and λ = d−1
2

. Then for any θ ∈ (0, π) and n ∈ N0,

∫ θ

0

(θ − t)δCλ
n(cos t) sin2λ tdt > 0. (3.2.22)

We first deduce that to prove Conjecture 2, it suffices to consider the boundary case

δ = λ+1. In fact, notice that for a > −1, b > 0, by using the substitution t = u+s(θ−u),
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we have

∫ θ

0

(θ − t)a
∫ t

0

(t− u)bg(u)dudt =

∫ θ

0

g(u)

∫ θ

u

(t− u)b(θ − t)adtdu

=

∫ θ

0

g(u)

∫ 1

0

(θ − u)a+b+1(1− s)asbdsdu

= B(b+ 1, a+ 1)

∫ θ

0

g(u)(θ − u)a+b+1du.

where B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt is the Beta function. Then we have

∫ θ

0

g(u)(θ − u)a+b+1du =
1

B(b+ 1, a+ 1)

∫ θ

0

(θ − t)a
∫ t

0

(t− u)bg(u)dudt.

Now for δ1 > δ2, let a = δ1 − δ2 − 1, b = δ2, and g(u) = Cλ
n(cosu)(sinu)2λ. It follows

immediately that

∫ θ

0

(θ − u)δ1Cλ
n(cosu)(sinu)2λdu

=
1

B(δ2 + 1, δ1 − δ2)

∫ θ

0

(θ − t)δ1−δ2−1

∫ t

0

(t− u)δ2Cλ
n(cosu)(sinu)2λdudt.

Hence, the boundary case δ = λ+ 1 can yield 2.

Our main result is to show that Conjecture 2 is true when the dimension d = 2 under

the restriction when θ small. By the argument above, it suffices to consider the boundary

case δ = 3
2
. More precisely, we state the main theorem below.

Theorem 3.2.4. Let d = 2. The function

fθ,δ(t) = (θ − t)
3
2
+

is isotropic positive definite on S2 when 0 < θ < CA,B, where CA,B is an absolute constant.

Remark 3.2.1. In the proof, we give an upper estimate of CA,B and it can be taken at
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most 1.2644× 10−21. We believe this value could be improved.

For the proof of Theorem 3.2.4, by the above analysis of the Schoenberg’s theorem, it

suffices to show that

∫ θ

0

(θ − t)
3
2Pn(cos t) sin tdt > 0, ∀n ∈ N0. (3.2.23)

The proof of the positivity of (3.2.23) consists of three cases: (i) nθ ≥ A (ii) nθ ≤ B

(iii) B ≤ nθ ≤ A. Next, we will give detailed proofs of the three cases.

3.2.3.1 Case (i): nθ ≥ A

In this case, we shall prove that there exists a constant A > 1 such that (3.2.23) holds

whenever nθ ≥ A. The proof is long and will be divided into several steps.

Step 1: Decomposition of the integral.

We first give the following decomposition on the integral (3.2.23):

Lemma 3.2.5. For θ ∈ (0, π
2
] and n ≥ 1,

4n(n+ 1)

3

∫ θ

0

(θ − t)
3
2Pn(cos t) sin t dt = In,1(θ) +Rn,1(θ) +Rn,2(θ)−Rn,3(θ),

where

In,1(θ) =
2

n(n+ 1)

∫ θ

0

[
1− Pn(cos t)

]√θ − t cos t

sin2 t
dt,

Rn,1(θ) =
1

2n

∫ θ

0

P
(1,1)
n−1 (cos t)

sin t cos t√
θ − t

dt,

Rn,2(θ) =
1

n(n+ 1)

∫ θ

0

[
1− Pn(cos t)

] 1

(sin t)
√
θ − t

dt ≥ 0.

Rn,3(θ) =

∫ θ

0

Pn(cos t)
sin t√
θ − t

dt,
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Proof. Using (2.5.1) and integration by parts, we obtain that

An :=

∫ θ

0

(θ − t)
3
2Pn(cos t) sin t dt = − 2

n

∫ θ

0

(θ − t)
3
2

(
P

(−1,−1)
n+1 (cos t)

)′
dt

= − 3

n

∫ θ

0

P
(−1,−1)
n+1 (cos t)(θ − t)

1
2 dt =

3

4n

∫ θ

0

P
(1,1)
n−1 (cos t) sin2 t(θ − t)

1
2 dt,

where we used (2.5.2) in the first step, and (2.5.5) in the third step. Applying integration

by parts to this last integral once again yields

An = −3

2

1

n(n+ 1)

∫ θ

0

(θ − t)
1
2

(
Pn(cos t)

)′
sin t dt

= −3

4

1

n(n+ 1)

∫ θ

0

Pn(cos t)
sin t√
θ − t

dt+
3

2

1

n(n+ 1)

∫ θ

0

Pn(cos t)(θ − t)
1
2 cos t dt

=: An,1 + An,2.

For the term An,2, we use integration by parts to obtain

An,2 = − 3

n2(n+ 1)

∫ θ

0

(
P

(−1,−1)
n+1 (cos t)

)′
(θ − t)

1
2 cot t dt

= − 3

n2(n+ 1)

∫ θ

0

P
(−1,−1)
n+1 (cos t)

[1

2
(θ − t)−

1
2 cot t+

(θ − t) 1
2

sin2 t

]
dt

=
3

8n2(n+ 1)

∫ θ

0

P
(1,1)
n−1 (cos t)

sin t cos t√
θ − t

dt+
3

4n2(n+ 1)

∫ θ

0

P
(1,1)
n−1 (cos t)(θ − t)

1
2 dt,

where the third step uses (2.5.5). Putting the above together, we then obtian

4n(n+ 1)

3
An = −

∫ θ

0

Pn(cos t)
sin t√
θ − t

dt

+
1

2n

∫ θ

0

P
(1,1)
n−1 (cos t)

sin t cos t√
θ − t

dt+
1

n

∫ θ

0

P
(1,1)
n−1 (cos t)(θ − t)

1
2 dt

= −Rn,3(θ) +Rn,1(θ) +
1

n

∫ θ

0

P
(1,1)
n−1 (cos t)(θ − t)

1
2 dt.
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For the last integral, we apply integration by parts again to obtain

1

n

∫ θ

0

P
(1,1)
n−1 (cos t)(θ − t)

1
2 dt =

2

n(n+ 1)

∫ θ

0

(θ − t) 1
2

sin t

(
Pn(1)− Pn(cos t)

)′
dt

=
2

n(n+ 1)

∫ θ

0

[
1− Pn(cos t)

]√θ − t cos t

sin2 t
dt+

1

n(n+ 1)

∫ θ

0

[
1− Pn(cos t)

] 1

sin t
√
θ − t

dt

= In,1(θ) +Rn,2(θ).

This completes the proof of the lemma.

Step 2: Estimates of In,1(θ), Rn,3(θ), and Rn,1(θ)

In this step, we will give the upper bounds for Rn,1(θ) and Rn,3(θ) (see Lemma 3.2.6

and 3.2.7), and the lower bounds for In,1(θ)(see Lemma 3.2.8).

Lemma 3.2.6. If nθ ≥ 5 and θ ∈ (0, π
2
], then

|Rn,1(θ)| = 1

2n

∣∣∣∫ θ

0

P
(1,1)
n−1 (cos t)

sin t cos t√
θ − t

dt
∣∣∣ ≤ C(nθ)−2θ

3
2 .

where the constant C can be taken to be 42.6909.

Proof. We break the integral
∫ θ

0
into two parts

∫ θ
θ−n−1 +

∫ θ−n−1

0
. For the first part, we use

the estimate (2.5.11) to get

∣∣∣ 1

2n

∫ θ

θ− 1
n

P
(1,1)
n−1 (cos t)

sin t cos t√
θ − t

dt
∣∣∣ ≤ 2.821× π 3

2

2n(n− 1)
1
2

∫ θ

θ− 1
n

(θ − t)−
1
2 t−

1
2 dt

≤ 2.821× π 3
2

2n(n− 1)
1
2

2 arctan
( 1

n

θ − 1
n

) 1
2

≤ 2.821× π 3
2

n(n− 1)
1
2

·
( 1

n

θ − 1
n

) 1
2

≤ 2.821× π
3
2 ×

( 5

4− π

) 1
2
n−2θ−

1
2

≤ 37.9275× n−2θ−
1
2 ,
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where we use arctanx ≤ x in the third inequality and use the following fact in the fourth

inequality: when nθ ≥ 5,

n2θ
1
2 · 1

n(n− 1)
1
2

(
1
n

θ − 1
n

)
1
2 ≤ (

5

4− π
)
1
2 .

For the second part, by (2.5.2), we use integration by parts and the fact (2.5.8) to

obtain

∣∣∣ 1

2n

∫ θ− 1
n

0

P
(1,1)
n−1 (cos t)

sin t cos t√
θ − t

dt
∣∣∣= ∣∣∣ −1

n(n+ 1)

∫ θ− 1
n

0

(θ − t)−
1
2 (cos t) d

(
Pn(cos t)

)∣∣∣
≤ 1

n2

∣∣∣Pn(cos(θ − 1

n
))

cos(θ − 1
n
)√

1
n

∣∣∣+
1

n2

1

θ
1
2

+
1

2n2

∣∣∣∫ θ− 1
n

0

Pn(cos t)(θ − t)−
3
2 (cos t)dt

∣∣∣
+

1

n2

∣∣∣∫ θ− 1
n

0

Pn(cos t)(θ − t)−
1
2 (sin t)dt

∣∣∣
≤
√

5

2

1

n2θ
1
2

+
1

n2θ
1
2

+
1

n2θ
1
2

+
2(π

2
)2

3n2θ
1
2

≤ 4.7634

n2θ
1
2

,

where we use the triangle inequality in the first inequality. The second inequality, by

(2.5.8) and nθ ≥ 5, is followed by the following estimates:

1

n2

∣∣∣Pn(cos(θ − 1

n
))

cos(θ − 1
n
)√

1
n

∣∣∣ ≤ 1

n2

1

n
1
2 (θ − 1

n
)
1
2

1√
1
n

≤ 1

n2(4
5
θ)

1
2

=

√
5

2n2θ
1
2

1

2n2

∣∣∣∫ θ− 1
n

0

Pn(cos t)(θ − t)−
3
2 (cos t)dt

∣∣∣ ≤ 1

2n2

∫ θ− 1
n

0

1

n
1
2 t

1
2

(θ − t)−
3
2dt =

1

2n
5
2

2
√
θ − 1

n

θ
√

1
n

≤ 1

n2θ
1
2

1

n2

∣∣∣∫ θ− 1
n

0

Pn(cos t)(θ − t)−
1
2 (sin t)dt

∣∣∣ ≤ 1

n2

∫ θ− 1
n

0

1

n
1
2 t

1
2

(θ − t)−
1
2 tdt ≤ 1

n
5
2

n
1
2

∫ θ− 1
n

0

√
tdt ≤

2(π
2
)2

3n2θ
1
2

.
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Therefore, combining the above two parts, we get

|Rn,1(θ)| = 1

2n

∣∣∣∫ θ

0

P
(1,1)
n−1 (cos t)

sin t cos t√
θ − t

dt
∣∣∣ ≤ (37.9275 + 4.7634)× n−2θ−

1
2

= 42.6909× n−2θ−
1
2 .

Lemma 3.2.7. If nθ ≥ 5 and θ ∈ (0, π
2
], then

|Rn,3(θ)| =
∣∣∣∣∫ θ

0

Pn(cos t)
sin t√
θ − t

dt

∣∣∣∣ ≤ √2

nθ
sin(Nθ)

(sin θ

θ

) 1
2
θ

3
2 + C × (nθ)−

3
2 θ

3
2 ,

where N = n+ 1
2
, and the constant C can be taken to be 92.1237.

Proof. We first choose a function η ∈ C1(R) where

η(x) =


1, 1

2
≤ x

1
2

cos(4πx) + 1
2
, 1

4
≤ x < 1

2

0, x < 1
4

. (3.2.24)

Then,

∫ θ

0

Pn(cos t)
sin t√
θ − t

dt =

∫ θ
4

0

(1− η(θ−1t))Pn(cos t)
sin t√
θ − t

dt+

∫ θ
2

θ
4

(1− η(θ−1t))Pn(cos t)
sin t√
θ − t

dt

+

∫ θ
2

θ
4

η(θ−1t)Pn(cos t)
sin t√
θ − t

dt+

∫ θ

θ
2

η(θ−1t)Pn(cos t)
sin t√
θ − t

dt

=

∫ θ
2

0

(1− η(θ−1t))Pn(cos t)
sin t√
θ − t

dt+

∫ θ

θ
4

η(θ−1t)Pn(cos t)
sin t√
θ − t

dt.
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For the first integral, by (2.5.6) and integration by parts, we have

∫ θ
2

0

(1− η(θ−1t))Pn(cos t)
sin t√
θ − t

dt = −
∫ θ

2

0

(1− η(θ−1t))
1√
θ − t

d
(sin2 t

2n
P

(1,1)
n−1 (cos t)

)
= − 1

4n

∫ θ
2

0

P
(1,1)
n−1 (cos t)(sin t)2(θ − t)−

3
2 g(t)dt,

where g(t) := 1 − η(θ−1t) − 2θ−1(θ − t)η′(θ−1t). Using (2.5.11) and noting that |g(t)| ≤

4π + 2, this implies that

∣∣∣ ∫ θ
2

0

(1− η(θ−1t))Pn(cos t)
sin t√
θ − t

dt
∣∣∣

=
∣∣∣ 1

4n

∫ θ
2

0

P
(1,1)
n−1 (cos t)(sin t)2(θ − t)−

3
2 g(t) dt

∣∣∣
≤ 2.821× π 3

2

4n

∫ θ
2

0

1

(n− 1)1/2t3/2
(sin t)2(θ − t)−

3
2 |g(t)|dt

≤ 2.821× π 3
2 × (4π + 2)

4n(n− 1)1/2

∫ θ
2

0

(sin t

t

) 3
2
(sin t)

1
2 (θ − t)−

3
2dt

≤ 2.821× π 3
2 × (4π + 2)

4n(n− 1)1/2

(θ
2

) 1
2

∫ θ
2

0

(θ − t)−
3
2dt

≤ 2.821× π 3
2 × (4π + 2)×

√
2

4n3/2
,

where the last inequality follows by n ≥ 2 when θ small. Next, we estimate the second

integral. We claim that

1

θ
3
2

∫ θ

θ
4

Pn(cos t)
η(θ−1t) sin t√

θ − t
dt ≤

√
2

nθ
sin(Nθ)

(sin θ

θ

) 1
2

+ C × (nθ)−3/2, (3.2.25)

where N = n + 1
2

and C will be determined in equation (3.2.28) below. To see this, we
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use (2.5.7) to obtain

∫ θ

θ
4

Pn(cos t)
η(θ−1t) sin t√

θ − t
dt

≤ 21/2π−
1
2n−

1
2

∫ θ

θ/4

η(θ−1t) cos(Nt− π

4
)(sin t)

1
2 (θ − t)−

1
2 dt+

1

(2π)
1
2 ( 2

π
)
3
2

(nθ)−
3
2 θ

3
2 .

We then write

21/2π−
1
2n−

1
2

∫ θ

θ/4

η(θ−1t) cos(Nt− π

4
)(sin t)

1
2 (θ − t)−

1
2 dt

= 2−1/2π−
1
2n−

1
2

∫ θ

θ/4

η(θ−1t)
[
ei(Nt−

π
4

) + ei(−Nt+
π
4

)
]
(sin t)

1
2 (θ − t)−

1
2 dt

=: I+
n + I−n .

However, using Proposition 2.5.3 and 2.5.4 with φ(t) = η( t
θ
)(sin t)

1
2 , θ ∈ (0, π

2
), α = θ

4
,

β = θ, λ = 1
2
, µ = 1

2
, and v = 1, we have

∫ θ

θ
4

η(θ−1t)(sin t)
1
2 eiNt(θ − t)−

1
2 dt ≤ Γ(1/2)

N
1
2

eiNθ−
1
2
· 1
2
πiη(1)(sin θ)

1
2 +

13.0552

N
, (3.2.26)

and

∫ θ

θ
4

η(θ−1t)(sin t)
1
2 e−iNt(θ − t)−

1
2 dt ≤ Γ(1/2)

N
1
2

e−iNθ+
1
2
· 1
2
πiη(1)(sin θ)

1
2 +

13.0552

N
.

(3.2.27)
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Therefore, we obtain that

I+
n = 2−

1
2π−

1
2n−

1
2 e−

πi
4

∫ θ

θ/4

η(θ−1t)eiNt(sin t)
1
2 (θ − t)−

1
2 dt

≤ 2−
1
2π−

1
2n−

1
2 e−

πi
4

[Γ(1/2)

N
1
2

eiNθ−
1
2
· 1
2
πiη(

θ

θ
)(sin θ)

1
2 + 13.0552×N−1

]
≤ 2−

1
2n−1eiNθe−

π
2
i(sin θ)

1
2 + e−

π
2
i

√
1

2π
· 13.0552× (nθ)−

3
2 θ

3
2

≤ 2−
1
2n−1eiNθe−

π
2
i(sin θ)

1
2 + e−

π
2
i5.2080× (nθ)−

3
2 θ

3
2 ,

and

I−n = 2−
1
2π−

1
2n−

1
2 e

πi
4

∫ θ

θ/4

η(θ−1t)e−iNt(sin t)
1
2 (θ − t)−

1
2 dt

≤ 2−
1
2n−1e

πi
2 e−iNθ(sin θ)

1
2 + e−

π
2
i5.2080× (nθ)−

3
2 θ

3
2 .

It follows that

|I+
n + I−n | ≤ 2

1
2n−1 sin(Nθ)(sin θ)

1
2 + 10.4160× (nθ)−

3
2 θ

3
2 .

This proves

1

θ
3
2

∫ θ

θ/4

Pn(cos t)
η(θ−1t) sin t√

θ − t
dt ≤

√
2

nθ
sin(Nθ)

(sin θ

θ

) 1
2

+
( 1

(2π)
1
2 ( 2

π
)
3
2

+ 10.4160
)

(nθ)−3/2.

(3.2.28)

This completes the proof of the claim (3.2.25). By the above two arguments, we thus

conclude the desired estimate for Rn,3(θ):
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|Rn,3(θ)| =
∣∣∣∣∫ θ

0

Pn(cos t)
sin t√
θ − t

dt

∣∣∣∣
≤
√

2

nθ
sin(Nθ)

(sin θ

θ

) 1
2
θ

3
2

+
( 1

(2π)
1
2 ( 2

π
)
3
2

+ 10.4160 +
2.821× π 3

2 × (4π + 2)×
√

2

4

)
(nθ)−3/2θ3/2

≤
√

2

nθ
sin(Nθ)

(sin θ

θ

) 1
2
θ

3
2 + 92.1237× (nθ)−3/2θ3/2.

Lemma 3.2.8. For nθ ≥ 5 and θ ∈ (0, π
2
], we have that

In,1(θ) =
2

n(n+ 1)

∫ θ

0

[
1− Pn(cos t)

]√θ − t cos t

sin2 t
dt ≥ 3

4

2
√
θ

n
− C(nθ)−

3
2 θ

3
2 , (3.2.29)

where

C =
3

4

(
10

√
π

2
+ 2
√
π

√
π

2
+

4√
5

+ 2
( 4

π
(4 +

√
π

2
) + 4

))
< 30.1066.

Proof. Firstly, we claim the following lower estimate.

In,1(θ) ≥ 3

4

2
√
θ

n2

∫ θ

0

1− Pn(cos t)

t2
dt− 3

2n2
θ−

1
2 log(nθ)

[( 4

π
(2 +

√
π

2
) + 2

)
+ 2
]
. (3.2.30)

Indeed, since that

cos t

sin2 t
=

1− 2 sin2 t
2

sin2 t
=
−2 sin2 t

2

sin2 t
+

1

t2
(
t2

sin2 t
− 1) +

1

t2
,
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we may rewrite the integral In,1(θ) to

n(n+ 1)

2
In,1(θ) =−

∫ θ

0

[
1− Pn(cos t)

]2
√
θ − t sin2 t

2

sin2 t
dt

+

∫ θ

0

1− Pn(cos t)

t2

√
θ − t

[ t2

sin2 t
− 1
]
dt+

∫ θ

0

√
θ − t1− Pn(cos t)

t2
dt

≥
√
θ

∫ θ

0

1− Pn(cos t)

t2
dt−

∫ θ

0

1√
θ +
√
θ − t

1− Pn(cos t)

t
dt− 2(

2

π
)2θ

3
2

≥
√
θ

∫ θ

0

1− Pn(cos t)

t2
dt−

(
4

π
(4 +

√
π

2
) + 2

)
θ−

1
2 log(nθ)− 2(

2

π
)2(
π

2
)2θ−

1
2 log(nθ)

≥
√
θ

∫ θ

0

1− Pn(cos t)

t2
dt− θ−

1
2 log(nθ)

(
4

π
(4 +

√
π

2
) + 4

)
,

where the first inequality follows that

∣∣∣− ∫ θ

0

[
1− Pn(cos t)

]2
√
θ − t sin2 t

2

sin2 t
dt+

∫ θ

0

1− Pn(cos t)

t2

√
θ − t

( t2

sin2 t
− 1
)
dt+∫ θ

0

√
θ − t1− Pn(cos t)

t2
dt−

√
θ

∫ θ

0

1− Pn(cos t)

t2
dt+

∫ θ

0

1√
θ +
√
θ − t

1− Pn(cos t)

t
dt
∣∣∣

=
∣∣∣− ∫ θ

0

[
1− Pn(cos t)

]2
√
θ − t sin2 t

2

sin2 t
dt+

∫ θ

0

1− Pn(cos t)

t2

√
θ − t

( t2

sin2 t
− 1
)
dt
∣∣∣

=
∣∣∣ ∫ θ

0

[
1− Pn(cos t)

]√
θ − t

(−2 sin2 t
2

sin2 t
+

1

sin2 t
− 1

t2

)
dt
∣∣∣

≤2θ
1
2

∫ θ

0

∣∣∣−2 sin2 t
2

sin2 t
+

1

sin2 t
− 1

t2

∣∣∣ dt ≤ 2θ
3
2 (

2

π
)2.

And the second inequality follows that

∣∣∣− ∫ θ

0

1√
θ +
√
θ − t

1− Pn(cos t)

t
dt
∣∣∣ ≤ ( 4

π
(4 +

√
π

2
) + 2

)
θ−

1
2 log(nθ). (3.2.31)

Indeed, to show (3.2.31), we need to split the integral into two parts:
∫ 1/n

0
+
∫ θ

1/n
. For

the first part, we use representation (2.5.12). Without loss of generality, we may assume

that n = 2m (The case when n = 2m− 1 can be treated similarly). Then we can obtain
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that

P2m(cos t) =
1

π

(Γ(m+ 1
2
)

Γ(m+ 1)

)2

+
2

π

m∑
j=1

Γ(m− j + 1
2
)Γ(m+ j + 1

2
)

Γ(m− j + 1)Γ(m+ j + 1)
cos(2jt). (3.2.32)

By the identity

1− 1

π

(Γ(m+ 1
2
)

Γ(m+ 1)

)2

=
2

π

m∑
j=1

Γ(m− j + 1
2
)Γ(m+ j + 1

2
)

Γ(m− j + 1)Γ(m+ j + 1)
, (3.2.33)

we have

1− Pn(cos t)

t
=

4

π

m∑
j=1

Γ(m− j + 1
2
)Γ(m+ j + 1

2
)

Γ(m− j + 1)Γ(m+ j + 1)

sin2(jt)

t
.

So,

∣∣ ∫ 1/n

0

1√
θ +
√
θ − t

1− Pn(cos t)

t
dt
∣∣

=
4

π

m∑
j=1

Γ(m− j + 1
2
)Γ(m+ j + 1

2
)

Γ(m− j + 1)Γ(m+ j + 1)

∫ 1/n

0

1√
θ +
√
θ − t

sin2(jt)

t
dt

≤ θ−
1
2

4

π

[m−1∑
j=1

1√
m− j

√
m+ j

∫ 1/n

0

sin2(jt)

t
dt+

√
π

2m

∫ 1/n

0

sin2(mt)

t
dt
]

≤ θ−
1
2

4

π

[ 1

n

m−1∑
j=1

j√
m2 − j2

+

√
π

2

]
≤ θ−

1
2

4

π

[ 1

n

∫ m

0

x√
m2 − x2

dx+

√
π

2

]
≤ θ−

1
2

4

π

[
2 +

√
π

2

]
.

This means

∣∣∣ ∫ 1/n

0

1√
θ +
√
θ − t

1− Pn(cos t)

t
dt
∣∣∣ ≤ θ−

1
2 log(nθ) · 4

π

(
4 +

√
π

2

)
.
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While for the second part, we have

∣∣∣ ∫ θ

1/n

1√
θ +
√
θ − t

1− Pn(cos t)

t
dt
∣∣∣ ≤ 2√

θ

∫ θ

1/n

1

t
dt =

2√
θ

log(nθ).

Combining the two parts, we prove (3.2.31).

To show (3.2.30), since for a large number A and θ ∈ (0, π
2
), nθ ≥ A ≥ 5 implies

n ≥ A
θ
> 10

π
> 3, we then have

In,1(θ) ≥ 2

n(n+ 1)

[√
θ

∫ θ

0

1− Pn(cos t)

t2
dt− θ−

1
2 log(nθ)

(
4

π
(4 +

√
π

2
) + 4

)]
≥ 2

4
3
n2

[√
θ

∫ θ

0

1− Pn(cos t)

t2
dt− θ−

1
2 log(nθ)

(
4

π
(4 +

√
π

2
) + 4

)]
=

3

4

2
√
θ

n2

∫ θ

0

1− Pn(cos t)

t2
dt− 3

2n2
θ−

1
2 log(nθ)

(
4

π
(4 +

√
π

2
) + 4

)
.

This proves (3.2.30).

Next, we will deal with the integral

∫ θ

0

1− Pn(cos t)

t2
dt.

We will apply the representation (2.5.12) again and assume that n = 2m (The case when

n = 2m− 1 can be treated similarly). We then have the identities (3.2.32) and (3.2.33).

Thus,

2
√
θ

n2

∫ θ

0

1− Pn(cos t)

t2
dt =

8

π

√
θ

n2

m∑
j=1

Γ(m− j + 1
2
)Γ(m+ j + 1

2
)

Γ(m− j + 1)Γ(m+ j + 1)

∫ θ

0

sin2(jt)

t2
dt.

(3.2.34)
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Note that for j ≥ 1,

∫ θ

0

sin2(jt)

t2
dt = j

∫ jθ

0

sin2 t

t2
dt ≥ j

∫ ∞
0

sin2 t

t2
dt− 1

θ
= j

∫ ∞
0

sin(t)

t
dt− 1

θ
=
π

2
j − 1

θ
,

(3.2.35)

where we used the identity
∫∞

0
sin θ
θ
dθ = π

2
in the last step (see [2, p. 50]). Thus, by

(3.2.34) and (3.2.35), we obtain

2
√
θ

n2

∫ θ

0

1− Pn(cos t)

t2
dt ≥ 4

√
θ

n2

m∑
j=1

jΓ(m− j + 1
2
)Γ(m+ j + 1

2
)

Γ(m− j + 1)Γ(m+ j + 1)
− 4n−2θ−

1
2

≥ 4
√
θ

n2

m−1∑
j=1

j√
m2 − j2

− 2
√
π

√
π

2
n−

3
2 − 4n−2θ−

1
2

≥ 4
√
θ

n2

∫ m−1

0

y

(m2 − y2)
1
2

dy − 2
√
π

√
π

2
n−

3
2 − 4√

5
· n−

3
2

=
4
√
θ

n2
(m−

√
2m− 1)−

(
2
√
π

√
π

2
+

4√
5

)
(nθ)−

3
2 θ3/2

≥ 2
√
θ

n
−
(

10

√
π

2
+ 2
√
π

√
π

2
+

4√
5

)
(nθ)−

3
2 θ3/2,

where the second inequality obtained by the Gautschi’s inequality: x1−s < Γ(x+1)
Γ(x+s)

<

(x+ 1)1−s,

∣∣∣4√θ
n2

m∑
j=1

jΓ(m− j + 1
2
)Γ(m+ j + 1

2
)

Γ(m− j + 1)Γ(m+ j + 1)
− 4
√
θ

n2

m−1∑
j=1

j√
m2 − j2

∣∣∣
≤ 4
√
θ

n2

∣∣∣m−1∑
j=1

j(
1√

m− j
√
m+ j

− 1√
m2 − j2

) +
mΓ(1

2
)

Γ(1)

1

(2m)
1
2

∣∣∣
=

4
√
θ

n2

m
√
π√

2m
≤ 2
√
π

√
π

2
n−

3
2 ,

and the third inequality follows by the fact 4n−2θ−
1
2 = 4n−

3
2 (nθ)−

1
2 ≤ 4√

5
· n− 3

2 . Hence,
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we have

In,1(θ) ≥3

4

2
√
θ

n2

∫ θ

0

1− Pn(cos t)

t2
dt− 3

2n2
θ−

1
2 log(nθ)

(
4

π
(4 +

√
π

2
) + 4

)
≥3

4

2
√
θ

n
− 3

4

(
10

√
π

2
+ 2
√
π

√
π

2
+

4√
5

)
(nθ)−

3
2 θ3/2 − 3

2n2
θ−

1
2 log(nθ)

(
4

π
(4 +

√
π

2
) + 4

)
≥3

4

2
√
θ

n
− 3

4

(
10

√
π

2
+ 2
√
π

√
π

2
+

4√
5

+ 2
( 4

π
(4 +

√
π

2
) + 4

))
(nθ)−

3
2 θ

3
2 .

Step 3: Estimate of the integral

In this step, we will prove the following estimate:

Lemma 3.2.9. For nθ ≥ 5 and θ ∈ (0, π
2
],

4n(n+ 1)

3θ
3
2

∫ θ

0

(θ − t)
3
2Pn(cos t) sin t dt ≥ (

3

2
−
√

2)(nθ)−1 − 164.9212× (nθ)−
3
2 .

In particular, this implies that there exists a determined constant A > 1 such that

∫ θ

0

(θ − t)
3
2Pn(cos t) sin t dt > 0

whenever nθ ≥ A.

Proof. By the Lemma 3.2.6 3.2.7 and 3.2.8, for nθ ≥ 5, we have

4n(n+ 1)

3

∫ θ

0

(θ − t)
3
2Pn(cos t) sin t dt

≥3

4
· 2(nθ)−1θ

3
2 − 30.1066× (nθ)−

3
2 θ3/2 −

√
2

nθ
sin(Nθ)

(sin θ

θ

) 1
2
θ

3
2

− 92.1237× (nθ)−3/2θ3/2 − 42.6909× (nθ)−2θ
3
2 .
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Thus,

4n(n+ 1)

3θ
3
2

∫ θ

0

(θ − t)
3
2Pn(cos t) sin t dt

≥3

2
(nθ)−1 − 30.1066× (nθ)−

3
2 −
√

2

nθ
sin(Nθ)

(sin θ

θ

) 1
2

− 92.1237× (nθ)−3/2 − 42.6909× (nθ)−2.

≥(
3

2
−
√

2)(nθ)−1 − 164.9212× (nθ)−
3
2 > 0

whenever

nθ ≥
(164.9212

3
2
−
√

2

)2

> 3.6959× 106. (3.2.36)

This means there exists a determined positive constant A such that the desired integral

(3.2.23) is positive when nθ ≥ A.

3.2.3.2 Case (ii): nθ ≤ B

In this case, we shall prove that there exists a constant B ∈ (0, 1) such that (3.2.23) is

true whenever nθ ≤ B.

To see this, we first note that

∫ θ

0

(θ − t)
3
2Pn(cos t) sin t dt = θ

3
2

∫ θ

0

(1− t

θ
)
3
2Pn(cos t) sin t dt.

Thus, what we need to show is

∫ θ

0

(1− t

θ
)
3
2Pn(cos t) sin t dt > 0.
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Indeed,

θ−2

∫ θ

0

(1− t

θ
)
3
2Pn(cos t) sin t dt

= θ−2
[∫ θ

0

(1− t

θ
)
3
2 t dt+

∫ θ

0

(1− t

θ
)
3
2

(
Pn(cos t)

sin t

t
− 1
)
t dt
]

≥ θ−2

∫ θ

0

(1− t

θ
)
3
2 t dt− 2nθ−2

∫ θ

0

t2 dt

=

∫ 1

0

(1− x)
3
2x dx− nθ

=
4

35
− 2nθ > 0.

For the first inequality, we used Bernstein’s inequality for trigonometric polynomials.

Indeed, for n ≥ 0, 0 < t < θ < π
2
, we have

|Pn(cos t)(
sin t

t
)− 1| ≤ |Pn(cos t)(

sin t

t
)− sin t

t
|+ |sin t

t
− 1|

≤ |sin t
t
| · |Pn(cos t)− 1|+ 1

≤ |Pn(cos t)− Pn(cos 0)|+ 1

≤ nt||Pn(cos t′)||∞ + nt < 2nθ,

where 0 < t′ < t < θ. The last inequality is positive under the condition

nθ <
2

35
. (3.2.37)

This means there exists a determined positive constant B such that the desired integral

(3.2.23) is positive when nθ ≤ B.

3.2.3.3 Case (iii): B ≤ nθ ≤ A

In this case, we shall prove (3.2.23) for the remaining case B ≤ nθ ≤ A.

49



We write

∫ θ

0

(θ − t)
3
2Pn(cos t) sin t dt = θ

3
2

∫ θ

0

(1− t

θ
)
3
2Pn(cos t) sin t dt.

It suffices to prove ∫ θ

0

(1− t

θ
)
3
2Pn(cos t) sin t dt > 0.

To simplify our calculation, we will next show

θ−2

∫ θ

0

(1− t

θ
)
3
2Pn(cos t) sin t dt > 0.

Let N = n+ 1
2
, and by substitution t = t′

N
, we have

θ−2

∫ θ

0

(1− t

θ
)
3
2Pn(cos t) sin t dt = N−1θ−2

∫ Nθ

0

(1− t′

Nθ
)
3
2Pn(cos

t′

N
)
(

sin
t′

N

)
dt′.

By (2.5.18) and the fact

∣∣∣N−1θ−2

∫ Nθ

0

(1− t′

Nθ
)
3
2 sin

t′

N
dt′
∣∣∣ ≤ N−1θ−2

∫ Nθ

0

(1− t′

Nθ
)
3
2 | sin t′

N
|dt′ ≤ N−1θ−2·Nθ·θ = 1,

and taking the substitution x = t′

Nθ
, we have

N−1θ−2

∫ Nθ

0

(1− t′

Nθ
)
3
2Pn(cos

t′

N
)
(

sin
t′

N

)
dt′

≥ N−1θ−2

∫ Nθ

0

(1− t′

Nθ
)
3
2

( t′
N

) 1
2
(sin t′

N
t′

N

) 1
2
j0(t′) dt′ − 0.1711× n−1

=

∫ 1

0

(1− x)
3
2 j0(Nθx)x

(sin(θx)

θx

) 1
2
dx− 0.1711× n−1

≥
√

2

π

∫ 1

0

(1− x)
3
2 j0(Nθx)x dx− 0.1711× n−1

≥
√

2

π

∫ 1

0

(1− x)
3
2 j0(ux)x dx− 0.1711×B−1θ, (3.2.38)
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where u := Nθ. To make the last expression be positive, we will find a positive lower

bound for the integral
∫ 1

0
(1 − x)

3
2 j0(ux)xdx when B ≤ u ≤ A. By the reference [24,

Corollary 1.1, Page 551, 552, 556], we have

∫ 1

0

(1− x)
3
2 j0(ux)xdx ≥

Γ(2)Γ(5
2
)

Γ(1)Γ(9
2
)


1− 2

33
u2, 0 ≤ u ≤

√
33
2
≈ 4.0620

2.0963
u3

, u ≥
√

12 ≈ 3.4641

(3.2.39)

Thus, in our case, for B ≤ u ≤ A, we have to separate two cases to find the positive lower

bound:

(1) When B ≤ u ≤
√

12, we have

∫ 1

0

(1− x)
3
2 j0(ux)xdx =

Γ(2)Γ(5
2
)

Γ(1)Γ(9
2
)
(1− 24

33
) =

Γ(2)Γ(5
2
)

Γ(1)Γ(9
2
)

3

11
.

(2) When
√

12 ≤ u ≤ A, we have

∫ 1

0

(1− x)
3
2 j0(ux)xdx ≥

Γ(2)Γ(5
2
)

Γ(1)Γ(9
2
)

2.0963

A3
.

Notice that 3
11
> 2.0963

A3 , thus we will use (2) as the the positive lower bound. Hence, the

last expression (3.2.38) is positive, if we assume θ satisfying the following condition:

θ <
B

0.1711
·
√

2

π
·

Γ(2)Γ(5
2
)

Γ(1)Γ(9
2
)

1

A3
× 2.0963 ≤ 1.2644× 10−21.

This completes the proof of Theorem 3.2.4.

3.3 Positive semi-definite functions on Rd generated

from those on Sd

In this section, we will give the proof of Theorem 3.1.2.
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Proof of Theorem 3.1.2. Fix x > 0. Let n ≥ 2x be an integer and let θ = θn = x
n
. Since

g is an isotropic positive semi-definite function on Sd and supported in [0, π], we have for

θ ∈ (0, 1),

0 ≤n2λ+1

∫ θπ

0

g(θ−1t)Rλ
n(cos t)(sin t)2λ dt =

∫ xπ

0

g
( t
x

)
Rλ
n(cos

t

n
)
(sin(n−1t)

n−1t

)2λ

t2λ dt.

By (2.5.17), letting n→∞ and u = t
x

, we obtain

lim
n→∞

∫ xπ

0

g
( t
x

)
Rλ
n(cos

t

n
)
(sin(n−1t)

n−1t

)2λ

t2λ dt =

∫ xπ

0

g
( t
x

)
jλ− 1

2
(t)t2λ dt

= x2λ+1

∫ ∞
0

g(u)jλ− 1
2
(ux)u2λ du

= cλx
2λ+1ĝd(ξ) ≥ 0,

where ξ ∈ Rd, |ξ| = x. By Bochner’s theorem, we prove that g is a positive semi-definite

function on Rd.
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Part II

Spherical h-harmonic expansions

with negative indices
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Chapter 4

Introduction

It is well known the n-th Cesàro mean σ
(α,β),δ
n f of order δ of the Jacobi polynomial

expansion of f ∈ C[−1, 1] with parameters α > −1 and β > −1 converges uniformly to

f on [−1, 1] as n→∞ if δ > max{max{α+ 1
2
, β + 1

2
}, 0}. This result was obtained in [7]

for α, β ≥ −1
2
, and in [10, p. 78] for α, β > −1 from accurate pointwise estimates of the

Cesàro kernel K
(α,β),δ
n (s, t) given by

σ(α,β),δ
n (f, s) :=

∫ 1

−1

f(t)K(α,β),δ
n (s, t)(1− t)α(1 + t)β dt, s ∈ [−1, 1].

Indeed, accurate estimates of the Cesàro kernels have many other important applica-

tions, including the summability results of σ
(α,β),δ
n f on Lp spaces if p lies between the crit-

ical values, the weak type estimates of the maximal Cesàro operators supn |σ
(α,β),δ
n f |, and

various multiplier theorems for the Jacobi polynomial expansions. (See [7] for α, β ≥ −1
2
,

and [10] for α, β > −1). An accurate estimate of the kernel K
(α,β),δ
n (s, t) was first obtained

by Bonami and Clerc [7, Theorem 2.1] in 1973 for all δ > 0 and α, β ≥ −1
2
. However,

problem for the remaining case of parameters −1 < min{α, β} < −1
2

looks much more dif-

ficult. This was finally solved by Chanillo and Muckenhoupt [10] in 1993, who established

an accurate estimate of K
(α,β),δ
n (s, t) for all parameters α, β > −1.
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Recently, some of these results have been extended to the Cesàro means of weighted

orthogonal polynomial expansions (WOPEs) in several variables on the unit sphere Sd−1 =

{x ∈ Rd : ‖x‖ = 1}, the unit ball Bd = {x ∈ Rd : ‖x‖ ≤ 1}, and the simplex Td = {x ∈

Rd : x1 ≥ 0, . . . , xd ≥ 0, x1 + · · ·+ xd ≤ 1} in a series of papers ([15–18,30]), with weights

being given by

h2
κ(x) : =

d∏
i=1

|xi|2κi , x ∈ Sd−1, (4.0.1)

WB
κ (x) : =

( d∏
i=1

|xi|2κi
)

(1− ‖x‖2)κd+1−1/2, x ∈ Bd (4.0.2)

W T
κ (x) : =

( d∏
i=1

x
κi−1/2
i

)
(1− x1 − · · · − xd)κd+1−1/2, x ∈ Td, (4.0.3)

and with parameters κ1, · · · , κd+1 ∈ R satisfying

κmin := min
1≤i≤d+1

κi ≥ 0. (4.0.4)

Here and throughout this part, ‖ · ‖ denotes the Euclidean norm of Rd. WOPEs on the

sphere Sd−1 turn out to be closely related to WOPEs on the ball Bd and the simplex Td,

as was observed by Xu [39].

It should be pointed out that the condition (4.0.4) is essential in the works of [15–18,

30], where many arguments do not work if one of the parameters κi is negative. On the

other hand, however, it is easily seen that the weights in (4.0.1)–(4.0.3) are integrable on

the underlying domain if and only if κmin > −1
2
, and as a result, the above mentioned

WOPEs on the sphere Sd−1, the ball Bd and the simplex Td are well defined if κmin > −1
2
.

One of the main purposes in this part is to establish accurate estimates of the Cesàro

kernels of the above mentioned WOPEs with less restriction on the parameters κi (i.e.,

κmin > −1
2
), from which we deduce the Cesàro summability results of the WOPEs for

κmin < 0. We develop a new technique to establish accurate pointwise estimates of
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the Cesàro kernels, which works for the full range of κmin > −1
2
. We believe that this

new technique will, in particular, lead to a simper proof of the estimates of Chanillo

and Muckenhoupt [10, Theorem 14.1] on the Cesàro kernels of the Jacobi polynomial

expansions with parameters α, β > −1.

Throughout this part we denote by c a generic constant that may depend on fixed

parameters such as κ and d, whose value may change from line to line. Furthermore we

write A ∼ B if there exists a constant c > 0 such that A ≥ cB and B ≥ cA.

56



Chapter 5

Preliminaries

5.1 Weighted orthogonal polynomial expansions (WOPEs)

on the sphere Sd−1

Let dσ(x) denote the usual surface Lebesgue measure on Sd−1, and ρ the geodesic distance

on Sd−1; that is, ρ(x, y) = arccos x · y for x, y ∈ Sd−1. Denote by B(x, θ) the spherical cap

with center x ∈ Sd−1 and radius θ > 0; that is, B(x, θ) := {y ∈ Sd−1 : ρ(x, y) ≤ θ}. For

κ := (κ1, · · · , κd) ∈ Rd, we define

hκ(x) :=
d∏
i=1

|xi|κi , x ∈ Sd−1. (5.1.1)

Then hκ(x) is a homogeneous function of degree γκ := κ1 + · · ·+ κd, and h2
κ is integrable

on Sd−1 if and only if κmin := min1≤j≤d κj > −1
2
. Unless otherwise stated, we will always

assume that κmin > −1
2

throughout this part.

Next, we denote by µκ the probability measure on Sd−1 given by dµκ(x) := ωκdh
2
κ(x) dσ(x),

where

ωκd :=
(∫

Sd−1

h2
κ(x) dσ(x)

)−1

=
2Γ(κ1 + 1

2
) · · ·Γ(κd + 1

2
)

Γ(γκ + d
2
)

. (5.1.2)
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It is easily seen that for 0 < r ≤ π, (see [13]),

µκ(B(x, r)) ∼ rd−1

d∏
j=1

(|xj|+ r)2κj , x ∈ Sd−1, (5.1.3)

where the constants of equivalence depend only on d and κ. This in particular implies

that µκ is a doubling measure on Sd−1 satisfying that for any x ∈ Sd−1 and θ ∈ (0, π
4
),

measκ(B(x, 2jθ)) ≤ C2jsκ measκ(B(x, θ)), j = 1, 2, · · · , (5.1.4)

where C > 0 is a constant depending only on κ and d,

sκ = d− 1 + 2γ+
κ − 2 max{κmin, 0} and γ+

κ :=
∑
j:κj>0

κj. (5.1.5)

It is easily seen that sκ is the optimal constant for which (5.1.4) holds.

Given 0 < p ≤ ∞, we denote by Lp(h2
κ) ≡ Lp(h2

κ; Sd−1) the Lebesgue Lp-space defined

with respect to the measure dµκ on Sd−1, and ‖ ·‖κ,p the Lp-norm of the space Lp(dµκ). A

spherical polynomial of degree at most n on Sd−1 is the restriction on Sd−1 of an algebraic

polynomial in d variables of total degree at most n. Denote by Πd
n the space of all spherical

polynomials of degree at most n on the sphere Sd−1. Set Πd
−1 = {0}, and letHd

n(h2
κ) denote

the orthogonal complement of the space Πd
n−1 in the Hilbert space Πd

n ⊂ L2(h2
κ) (relative

to the norm of L2(h2
κ)). Then the Hd

n(h2
κ), n = 0, 1, · · · are mutually orthogonal, finite-

dimensional linear subspaces of L2(h2
κ). Denote by Pn(h2

κ) the reproducing kernel of the

space Hd
n(h2

κ); that is,

Pn(h2
κ;x, y) :=

adn∑
j=1

Y κ
n,j(x)Y κ

n,j(y), x, y ∈ Sd−1, (5.1.6)

where adn = dimHd
n(h2

κ) and {Y κ
n,j : j = 1, 2, · · · , adn} is an orthonormal basis of the space
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Hd
n(h2

κ) ⊂ L2(h2
κ). Then the standard Hilbert space theory shows that each f ∈ L2(h2

κ)

can be represented as an orthogonal series converging in the norm of L2(h2
κ):

f =
∞∑
n=0

projn(h2
κ; f), (5.1.7)

where projn(h2
κ) : L2(h2

κ; Sd−1) 7→ Hd
n(h2

κ) is the orthogonal projection operator, which

can be expressed as an integral operator

projn(h2
κ; f, x) = ωκd

∫
Sd−1

f(y)Pn(h2
κ;x, y)h2

κ(y)dσ(y), x ∈ Sd−1. (5.1.8)

Clearly, in the case of hκ(x) ≡ 1, the orthogonal expansion in (5.1.7) coincides with the

ordinary spherical harmonic expansion on Sd−1.

We define the n-th Cesàro mean of order δ > 0 of the WOPE (5.1.7) of f by

Sδn(h2
κ; f, x) :=

1

Aδn

n∑
j=0

Aδn−j projj(h
2
κ; f, x), x ∈ Sd−1,

where Aδj = Γ(j+δ+1)
Γ(j+1)Γ(δ+1)

for j = 0, 1, · · · . According to (5.1.8), the Cesàro (C, δ) operators

Sδn(h2
κ) can be represented as

Sδn(h2
κ; f, x) = ωκd

∫
Sd−1

f(y)Kδ
n(h2

κ;x, y)h2
κ(y) dσ(y), x ∈ Sd−1, (5.1.9)

where

Kδ
n(h2

κ;x, y) =
n∑
j=0

Aδn−j
Aδn

Pj(h
2
κ;x, y), x, y ∈ Sd−1. (5.1.10)

In the case when κmin := min1≤j≤d κj ≥ 0, the Cesàro summability of the orthogonal

expansions (5.1.7) has been well studied in a series of papers (see [17, 18, 30]). Indeed,

in this case, each function in Hd
n(h2

κ) is called a spherical h-harmonic of degree n, and

the general theory of spherical h-harmonic analysis developed by Dunkl (see [19, 21]) is
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applicable. More importantly, Xu [41] proved that if κmin ≥ 0, then the reproducing

kernel Pn(h2
κ) of the space Hd

n(h2
κ) can be expressed explicitly as

Pn(h2
κ;x, y) =

n+ λκ
λκ

∫
[−1,1]d

Cλκ
n

( d∑
j=1

tjxjyj

) d∏
j=1

dνj(tj), (5.1.11)

where x = (x1, · · · , xd) ∈ Sd−1, y = (y1, · · · , yd) ∈ Sd−1, λκ := d−2
2

+ γκ,

dνj(tj) =
Γ(κj + 1

2
)

Γ(1
2
)Γ(κj)

(1− t2j)κj−1(1 + tj)dtj if κj > 0,

and dνj is Dirac measure supported at x = 1 if κj = 0; namely,

∫ 1

−1

g(t) dνj(t) = g(1) = lim
λ→0

Γ(λ+ 1
2
)

Γ(1
2
)Γ(λ)

∫ 1

−1

g(t)(1 + t)(1− t2)λ−1dt.

Here and throughout the paper, Cλ
n denotes the usual Gegenbauer polynomial of degree n

with parameter λ > −1
2
. It should be pointed out that this explicit integral representation

of the reproducing kernel Pn(h2
κ) plays a crucial role in the previous works [17, 18, 30] on

Cesàro summability of the spherical h-harmonic expansions. Unfortunately, this formula

(5.1.11) is not applicable when κmin < 0.

5.2 The extended Jacobi polynomials

We denote by P
(α,β)
k the usual Jacobi polynomial of degree k with indices α and β.

According to [35, (4.21.2)], we have

P (α,β)
n (x) =

1

n!

n∑
v=0

(
n

v

)
(n+ α + β + 1) · · · (n+ α + β + v)×

× (α + v + 1) · · · (α + n)
(x− 1

2

)v
,
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where the general coefficient

(
n

v

)
(n+ α + β + 1) · · · (n+ α + β + v)(α + v + 1) · · · (α + n)

has to be replaced by (α+ 1)(α+ 2) · · · (α+ n) for v = 0, and by (n+α+ β + 1)(n+α+

β + 2) · · · (2n+ α+ β) for v = n. This formula furnishes the extension of the polynomial

P
(α,β)
n (x) to arbitrary complex values of the parameters α and β. It is a polynomial in

x, α, and β satisfying

d

dx
P (α,β)
n (x) =

n+ α + β + 1

2
P

(α+1,β+1)
n−1 (x). (5.2.1)

In the case when α, β are both real, we have the following well known estimate on the

Jacobi polynomials ([35, (7.32.5) and (4.1.3)]):

Lemma 5.2.1. For an arbitrary real number α and t ∈ [0, 1],

|P (α,β)
n (t)| ≤ cn−1/2(1− t+ n−2)−(α+1/2)/2. (5.2.2)

The estimate on [−1, 0] follows from the fact that P
(α,β)
n (t) = (−1)nP

(β,α)
n (−t).

Next, we denote by Cλ
n the usual Gegenbauer polynomial of degree n with parameter

λ > −1
2
. As is well known, for α > −1

C
α+ 1

2
n (x) =

Γ(α + 1)

Γ(2α + 1)

Γ(n+ 2α + 1)

Γ(n+ α + 1)
P (α,α)
n (x). (5.2.3)

For later applications, we introduce the following normalized Jacobi polynomials:

Eα
n (x) =

√
π(n+ α + 1

2
)Γ(n+ 2α + 1)

22α+1Γ(n+ α + 1)
P (α,α)
n (x) (5.2.4)

=
(n+ α + 1

2
)Γ(α + 1

2
)

2
C
α+ 1

2
n (x). (5.2.5)

61



We also define Eα
j (x) = 0 for j < 0. Since

Eα
0 (t) =

√
π

22α+2

Γ(2α + 2)

Γ(α + 1)
P

(α,α)
0 (t) =

1

2
Γ(α +

3

2
),

it follows that Eα
k is an analytic function in the parameter α on the domain {α ∈ C :

Reα > −3
2
} for each integer k. Moreover,

d

dx
Eα
n (x) = Eα+1

n−1 (x).
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Chapter 6

Boundedness of projection operators

and Cesàro means in weighted Lp

space on the unit sphere

6.1 Main results on the sphere Sd−1

In this section, we state our main results on the sphere. The proofs of these results will

be given in later sections.

Our first result gives an explicit integral representation of the reproducing kernel

Pn(h2
κ;x, y) of the space Hd

n(h2
κ). Our main purpose is to extend the explicit integral

representation (5.1.11) of Xu [41] to the case κmin < 0. To be precise, let ek(x1, x2, · · · , xd),

k = 0, 1, · · · , d be the elementary symmetric polynomials in d variables given by

e0(x1, x2, · · · , xd) = 1,

ek(x1, x2, · · · , xd) =
∑

1≤j1<j2<···<jk≤d

xj1xj2 · · · xjk , 1 ≤ k ≤ d.

In Section 6.2, we prove
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Theorem 6.1.1. Let κ = (κ1, · · · , κd) ∈ Rd be such that κmin := min1≤j≤d κj > −1
2
. Let

γκ :=
∑d

j=1 κj and λκ = d−2
2

+ γκ. Then for any x, y ∈ Sd−1,

Pn(h2
κ;x, y) =

1

πd/2

( d∏
j=1

Γ(κj + 3
2
)

Γ(κj + 1)

) d∑
`=0

Pn,`(h
2
κ;x, y), (6.1.1)

where for ` = 0, 1, · · · , d,

Pn,`(h
2
κ;x, y) :=

(n+ λκ)Γ(λκ + `)

Γ(λκ + 1)

∫
[−1,1]d

Cλκ+`
n−`

( d∑
j=1

xjyjtj
)
× (6.1.2)

× e`
(x1y1(1 + t1)

2κ1 + 1
, · · · , xdyd(1 + td)

2κd + 1

)( d∏
j=1

(1− t2j)κjdtj
)
.

Here and throughout the paper, it is agreed that Cλ
j (t) = 0 for j < 0.

After that, in Section 6.3, we prove an accurate estimate of a multiple integral that

takes the form on the right hand side of (6.1.2) with P
(α,β)
n in place of Cλκ+`

n−` . Such an

estimate together with Theorem 6.1.1 allows us to deduce the following sharp estimate of

the reproducing kernel Pn(h2
κ;x, y):

Theorem 6.1.2. Let κ = (κ1, · · · , κd) ∈ Rd be such that κmin > −1
2

. Then for any

x, y ∈ Sd−1,

|Pn(h2
κ;x, y)| ≤ Cnd−2 max

ε∈{±1}d

∏d
j=1(|xjyj|+ n−1ρ(xε, y) + n−2)−κj(

1 + nρ(xε, y)
) d−2

2

.

Here and elsewhere, for x = (x1, · · · , xd) ∈ Rd and ε = (ε1, · · · , εd) ∈ {±1}d,

xε := (x1ε1, x2ε2, · · · , xdεd).

In the case when κmin ≥ 0, Theorem 6.1.2 was proved previously in [17, Theorem 2.1].

In Section 6.4, we develop a new technique to deduce the following sharp estimates of
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the Cesàro kernels, which were previously proved in [17, Theorem 2.1] in the case when

κmin ≥ 0:

Theorem 6.1.3. If δ ≥ 0, then for any x = (x1, · · · , xd), y = (y1, · · · , yd) ∈ Sd−1,

|Kδ
n(h2

κ;x, y)| ≤ cnd−1 max
ε∈{±1}d

[∏d
j=1(|xjyj|+ n−1ρ(x, yε) + n−2)−κj

(1 + nρ(x, εy))δ+
d
2

(6.1.3)

+

∏d
j=1(|xjyj|+ (ρ(x, yε))2 + n−2)−κj

(nρ(x, yε) + 1)d

]
.

We point out here that it seems very hard to prove Theorem 6.1.3 following the method

of [17] or [7]. Indeed, in the case when κmin ≥ 0, the basic idea behind the proof of these

estimates in [17] is to reduce the problem to estimating certain multiple integrals of Jacobi

polynomials, using the following formula for the Cesàro kernels of the Jacobi polynomial

expansions ( [35, p. 261, (9.4.13)]):

K(α,α),δ
n (x, 1) = aδn(α)P (α+δ+1,α)

n (x) +
∞∑
v=1

bδn,v(α)K(α,α),δ+v
n (x, 1), (6.1.4)

where the explicit expression of the coefficients aδn(α) and bδn,v(α) can be found in [35, p.

261].

In the case when κmin < 0, it seems hard to deduce the desired estimates on Cesàro

kernels from (6.1.4), as can be seen in the work of Chanillo and Muckenhoupt [10] on

Cesàro kernels of the Jacobi polynomial expansions with parameter α, β > −1.

One of the main difficulties comes from the fact that if κmin < 0, then the integral

representation of the reproducing kernel Pn(h2
κ;x, y) stated in Theorem 6.1.1 involves

derivatives of the Gegenbauer polynomials Cλ
n , and as a result, an application of (6.1.4)

would require accurate estimates of certain multiple integrals involving the derivatives of

the Cesàro kernels K
(α,α),δ+v
n (x, 1) with parameter α < −1

2
, which are very hard to prove.

Our proof of Theorem 6.1.3 uses neither the formula 6.1.4 nor those estimates of Chanillo
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and Muckenhoupt [10].

Because of the doubling property (5.1.4) of the weight function h2
κ(x) on Sd−1, in many

applications it is more convenient to write the estimates stated in Theorems 6.1.2 and

6.1.3 in the following form:

Corollary 6.1.1. Let κ = (κ1, · · · , κd) ∈ Rd be such that κmin > −1
2
. Let

σκ :=
sκ − 1

2
=
d− 2

2
+ γ+

κ −max{κmin, 0}, (6.1.5)

where sκ is the optimal constant for which (5.1.4) holds. Then for δ ≥ 0 and x, y ∈ Sd−1,

|Pn(h2
κ;x, y)| ≤ C

nwn,κ(x, y)
max

ε∈{±1}d

(
1 + nρ(xε, y)

)σκ+1

, (6.1.6)

|Kδ
n(h2

κ;x, y)| ≤ C

wn,κ(x, y)
max

ε∈{±1}d

[ 1

(1 + nρ(xε, y))δ−σκ
+

1

1 + nρ(xε, y)

]
, (6.1.7)

where

wn,κ(x, y) :=

∫
B(x,ρ(x,y)+n−1)

h2
κ(z) dσ(z), x, y ∈ Sd−1, n ∈ N.

The proof of Corollary 6.1.1 is given in Section 6.5. Corollary 6.1.1 together with the

doubling property of the weight h2
κ implies the following result, which is also proved in

Section 6.5:

Theorem 6.1.4. Let κ = (κ1, · · · , κd) ∈ Rd be such that κmin > −1
2
. Let σκ := sκ−1

2
be

given in (6.1.5), and let δ ≥ 0. Then

sup
x∈Sd−1

∫
Sd−1

|Pn(h2
κ;x, y)|h2

κ(y) dσ(y) ≤ Cnσκ (6.1.8)

and

sup
x∈Sd−1

∫
Sd−1

|Kδ
n(h2

κ;x, y)|h2
κ(y) dσ(y) ≤ CLδn, (6.1.9)
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where

Lδn :=


nσκ−δ, if 0 ≤ δ < σκ;

log n, if δ = σκ;

1, if δ > σκ.

In particular, this implies that if f ∈ Lp(h2
κ;Sd−1) and 1 ≤ p < ∞ or f ∈ C(Sd−1) and

p =∞, then for any δ > σκ,

lim
n→∞

‖Sδn(h2
κ; f)− f‖κ,p = 0.

Since sκ is the optimal constant for which (5.1.4) holds, which behalves like the di-

mension of the measure-metric space (Sd−1, ρ, h2
κ(x)dσ(x)), it is very natural to expect

that the stated estimates in Theorem 6.1.4 are sharp in the sense that the corresponding

matching lower estimates of the integrals are also true. In the case when κmin ≥ 0, this

was proved in [17, Theorem 2.2]. In the case when κmin < 0, we can prove the sharpness

if there exists one and exactly one parameter κj that is negative. The following result is

proved in Section 6.6:

Theorem 6.1.5. If #{j : 1 ≤ j ≤ d, κj < 0} = 1, then there exists a constant c > 0

depending only on κ and d such that

sup
x∈Sd−1

∫
Sd−1

|Pn(h2
κ;x, y)|h2

κ(y) dσ(y) ≥ cnσκ (6.1.10)

max
1≤j≤n

sup
x∈Sd−1

∫
Sd−1

|Kδ
j (h

2
κ;x, y)|h2

κ(y) dσ(y) ≥ cLδn, δ ≥ 0. (6.1.11)

In particular, this implies that if 0 ≤ δ ≤ σκ, then there exists f ∈ C(Sd−1) such that

lim
n→∞

‖Sδn(h2
κ; f)‖∞ =∞.
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In Sections 7.1 and 7.2, we shall also establish similar results for WOPEs on the unit

ball Bd with respect to the weight function WB
κ given in (4.0.2) as well as for WOPEs on

the simplex Td with weights given in (4.0.3), following the approaches developed previously

by Xu [39,40].

6.2 An explicit Integral representation of the repro-

ducing kernels of the space Hd
n(h

2
κ)

This section is devoted to the proof of Theorem 6.1.1, the integral representation of the

reproducing kernel Pn(h2
κ;x, y) of the space Hd

n(h2
κ). We start with the following lemma,

which will play an important role in the proof of Theorem 6.1.1:

Lemma 6.2.1. Let a := (a1, · · · , ad) ∈ Rd be such that ‖a‖1 := |a1| + · · · + |ad| ≤ 1.

Assume that τ = (τ1, · · · , τd) ∈ (0,∞)d, f ∈ Cd[−1, 1] and −1 + ‖a‖1 ≤ s ≤ 1 − ‖a‖1.

Then

( d∏
j=1

2τj
2τj + 1

)∫
[−1,1]d

f(a · t + s)dµd(t) (6.2.1)

=
d∑
`=0

∫
[−1,1]d

f (`)(a · t + s)e`

(a1(1 + t1)

2τ1 + 1
, · · · , ad(1 + td)

2τd + 1

)
dµ̂d(t),

where t = (t1, · · · , td) ∈ [−1, 1]d and

dµd(t) : =
d∏
j=1

(1− t2j)τj−1(1 + tj)dtj and dµ̂d(t) =
d∏
j=1

(1− t2j)τjdtj.

Proof. We use induction on the dimension d. For a positive integer d, set

Id :=

∫
[−1,1]d

f(a · t + s)dµd(t).
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We start with the case of d = 1. Write

I1 :=

∫ 1

−1

f(a1t+ s)(1− t2)τ1−1(1 + t) dt =

∫ 1

−1

f(a1t+ s)(1− t2)τ1 dt+ I1,1,

where

I1,1 :=

∫ 1

−1

f(a1t+ s)(1− t2)τ1−1t(1 + t) dt.

Integration by parts shows that

I1,1 = − 1

2τ1

∫ 1

−1

f(a1t+ s)(1 + t)
(

(1− t2)τ1
)′
dt

=
1

2τ1

∫ 1

−1

[
f ′(a1t+ s)a1(1 + t) + f(a1t+ s)

]
(1− t2)τ1 dt.

Thus,

I1 =
2τ1 + 1

2τ1

∫ 1

−1

f(a1t+ s)(1− t2)τ1 dt+
a1

2τ1

∫ 1

−1

f ′(a1t+ s)(1 + t)(1− t2)τ1 dt, (6.2.2)

which implies (6.2.1) for d = 1.

Next, we assume (6.2.1) holds for some positive integer d. In the case of d + 1, we

write t ∈ [−1, 1]d+1 in the form t = (̃t, td+1), where t̃ := (t1, · · · , td) ∈ [−1, 1]d. Then by

Fubini’s theorem, we have

Id+1 :=

∫ 1

−1

[∫
[−1,1]d

f(a · t + s)dµd(̃t)
]
(1− t2d+1)τd+1−1(1 + td+1) dtd+1.

Applying the induction hypothesis to this last integral
∫

[−1,1]d
that is inside the brackets,

we get

Id+1 =
( d∏
j=1

2τj + 1

2τj

) d∑
`=0

Id+1,`,
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where

Id+1,` : =

∫
[−1,1]d

[∫ 1

−1

f (`)(a · t + s)(1− t2d+1)τd+1−1(1 + td+1) dtd+1

]
×

× e`
(a1(1 + t1)

2τ1 + 1
, · · · , ad(1 + td)

2τd + 1

)
dµ̂d(̃t).

Using (6.2.2) with f (`) and τd+1 in place of f and τ1 respectively, we have

∫ 1

−1

f (`)(a · t + s)(1− t2d+1)τd+1−1(1 + td+1) dtd+1 =
2τd+1 + 1

2τd+1

∫ 1

−1

f (`)(a · t + s)(1− t2d+1)τd+1 dtd+1

+

∫ 1

−1

f (`+1)(a · t + s)
ad+1(1 + td+1)

2τd+1

(1− t2d+1)τd+1 dtd+1.

It follows that

Id+1,` =
2τd+1 + 1

2τd+1

∫
[−1,1]d+1

[
f (`)(a · t + s) + f (`+1)(a · t + s)

ad+1(1 + td+1)

2τd+1 + 1

]
×

× e`
(a1(1 + t1)

2τ1 + 1
, · · · , ad(1 + td)

2τd + 1

)
dµ̂d+1(t).

Thus,

Id+1 =
(d+1∏
j=1

2τj + 1

2τj

)∫
[−1,1]d+1

F`(a, t, s)dµ̂d+1(t),

where

F`(a, t, s) :=
d∑
`=0

[
f (`)(a · t + s) + f (`+1)(a · t + s)

ad+1(1 + td+1)

2τd+1 + 1

]
e`

(a1(1 + t1)

2τ1 + 1
, · · · , ad(1 + td)

2τd + 1

)
.
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Setting uj =
aj(1+tj)

2τj+1
for j = 1, · · · , d+ 1, we have

F`(a, t, s) =f(a · t + s) + f (d+1)(a · t + s)ed+1(u1, · · · , ud, ud+1)+

+
d∑
`=1

f (`)(a · t + s)
[
e`(u1, · · · , ud) + ud+1e`−1(u1, · · · , ud)

]
=

d+1∑
`=0

f (`)(a · t + s)e`(u1, · · · , ud, ud+1).

Thus,

( d∏
j=1

2τj
2τj + 1

)
Id+1 =

d∑
`=0

Id+1,`

=
d+1∑
`=0

∫
[−1,1]d+1

f (`)(a · t + s)e`

(a1(1 + t1)

2τ1 + 1
, · · · , ad+1(1 + td+1)

2τd+1 + 1

)
dµ̂d+1(t),

proving (6.2.1) for the case of d+ 1. This completes the induction.

Now we are in a position to prove Theorem 6.1.1.

Proof of Theorem 6.1.1. Let

Ω :=
{

z = (z1, · · · , zd) ∈ Cd : Rezj > −
1

2
, j = 1, 2, · · · , d

}
⊂ Cd.

For z = (z1, · · · , zd) ∈ Ω and each nonnegative integer n, we define a function Hz
n on

Sd−1 × Sd−1 by

Hz
n(x, y) = g(z)

∫
[−1,1]d

Eαz
n

( d∑
j=1

xjyjtj

)( d∏
j=1

(1− t2j)zjdtj
)

+

+ g(z)
d∑
`=1

∑
1≤i1<i2<···<i`≤d

∫
[−1,1]d

Eαz+`
n−`

( d∑
j=1

xjyjtj

)(∏̀
j=1

xijyij(1 + tij)

2κij + 1

)( d∏
j=1

(1− t2j)zjdtj
)
,

71



where x, y ∈ Sd−1, and

αz : =
d− 3

2
+

d∑
j=1

zj,

g(z) : =
2

πd/2Γ(αz + 3
2
)

d∏
j=1

Γ(zj + 3
2
)

Γ(zj + 1)
.

Clearly, for each fixed x, y ∈ Sd−1, the function Hz
n(x, y) is analytic in each variable zj on

the domain Ω.

With the above notation, it is enough to show that for κ = (κ1, · · · , κd) ∈ (−1
2
,∞)d,

Hκ
n coincides with the reproducing kernel of Pn(h2

κ) of the space Hd
n(h2

κ).

We first consider the case of κmin > 0. Indeed, by (5.2.5) and (5.1.11), if κmin :=

min1≤j≤d κj > 0, then

Pn(h2
κ;x, y) = c(κ)

∫
[−1,1]d

Eακ
n (

d∑
j=1

xjyjtj)
d∏
j=1

(1− t2j)κj−1(1 + tj) dtj, (6.2.3)

where ακ = λκ − 1
2

and

c(κ) :=
2
∏d

j=1 cκj
Γ(λκ + 1)

=
2Γ(κ1 + 1

2
) · · ·Γ(κd + 1

2
)

πd/2Γ(λκ + 1)Γ(κ1)Γ(κ2) · · ·Γ(κd)
.

(6.2.3) together with Lemma 6.2.1 implies that for any κ ∈ (0,∞)d,

Pn(h2
κ;x, y) = Hκ

n(x, y), x, y ∈ Sd−1. (6.2.4)

Next, we prove (6.2.4) for the case of −1
2
< κmin ≤ 0. By definition, clearly,

Hz
n(x, y) = Hz

n(y, x), ∀x, y ∈ Sd−1, ∀z ∈ Ω.

Moreover, for each fixed x ∈ Sd−1, Hκ
n(x, y) is an algebraic polynomial in y of total degree
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at most n; that is,

Hκ
n(x, ·) ∈ Πd

n, ∀x ∈ Sd−1.

Thus, to complete the proof, it suffices to verify that for each κ ∈ (−1
2
,∞)d,

Hκ
n(x, ·) ∈ Hd

n(h2
κ), ∀x ∈ Sd−1, (6.2.5)

and

f(x) : = ωκd

∫
Sd−1

f(y)Hκ
n(x, y)h2

κ(y)dσ(y), ∀f ∈ Hκ
n(h2

κ), ∀x ∈ Sd−1, (6.2.6)

where

ωκd :=
(∫

Sd−1

h2
κ(x) dσ(x)

)−1

=
2Γ(κ1 + 1

2
) · · ·Γ(κd + 1

2
)

Γ(γκ + d
2
)

. (6.2.7)

Clearly, by (6.2.7), we can extend ωκd to an analytic function z→ ωz
d in each variable zj,

j = 1, · · · , d on the domain Ω.

We first prove (6.2.5). Since Hκ
n is the reproducing kernel of the space Hd

n(h2
κ) of

orthogonal polynomials for κ ∈ (0,∞)d, it follows that for z = κ ∈ (0,∞)d and any

f ∈ Πd
n−1,

0 = ωz
d

∫
Sd−1

f(y)Hz
n(x, y)h2

z(y) dσ(y), x ∈ Sd−1. (6.2.8)

Since for each fixed f ∈ Πd
n and x ∈ Sd−1, the integral on the right hand side of (6.2.8)

is an analytic function in each zj > −1
2
, it follows that (6.2.8) holds for all z ∈ Ω. In

particular, this implies that for all κ ∈ (−1
2
,∞)d,

ωκd

∫
Sd−1

f(y)Hκ
n(x, y)h2

κ(y) dσ(y) = 0, ∀f ∈ Πd
n−1, ∀x ∈ Sd−1. (6.2.9)

Since Hκ
n(x, ·) ∈ Πd

n for each x ∈ Sd−1, we prove (6.2.5).
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Next, we prove (6.2.6). For each z ∈ Ω, we define

Gz
n(x, y) :=

n∑
j=0

Hz
j (x, y), x, y ∈ Sd−1.

If κ ∈ (0,∞)d, then by (6.2.4), Gκ
n is the reproducing kernel of the space Πd

n ⊂ L2(h2
κ).

Hence, for z = κ ∈ (0,∞)d and any f ∈ Πd
n,

f(x) : = ωz
d

∫
Sd−1

f(y)Gz
n(x, y)h2

z(y) dσ(y), x ∈ Sd−1. (6.2.10)

Since the integral on the right hand side of (6.2.10) is analytic in each zj > −1
2
, (6.2.10)

holds for all z ∈ Ω.

Now combining (6.2.10) with (6.2.5), and taking into account the fact that Hκ
n(x, y) =

Hκ
n(y, x), we conclude that for any κ ∈ (−1

2
,∞)d, f ∈ Hd

n(h2
κ), and x ∈ Sd−1,

f(x) : = ωκd

∫
Sd−1

f(y)Gκ
n(x, y)h2

κ(y)dσ(y) = ωκd

∫
Sd−1

f(y)Hκ
n(x, y)h2

κ(y)dσ(y).

This proves (6.2.6).

6.3 Estimates of multiple integrals of Jacobi polyno-

mials

For convenience, we shall write the integral representation in Theorem 6.1.1 in the form

Pn(h2
κ;x, y) =

n+ λκ
λκ

Tκ(C
λκ
n )(x, y), x, y ∈ Sd−1, (6.3.1)

where Tκ is an operator defined as follows.
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Definition 6.3.1. Given κ = (κ1, · · · , κd) ∈ (−1
2
,∞)d and f ∈ Cd[−1, 1], define

(Tκf)(x, y) : = c2(κ)
d∑
`=0

1

2`
(Tκ,`f)(x, y), x, y ∈ Sd−1,

where

c2(κ) : =
1

πd/2

d∏
j=1

Γ(κj + 3
2
)

Γ(κj + 1)
(6.3.2)

and

(Tκ,`f)(x, y) :=

∫
[−1,1]d

f (`)(
d∑
j=1

xjyjtj)e`

(x1y1(1 + t1)

2κ1 + 1
, · · · , xdyd(1 + td)

2κd + 1

)( d∏
j=1

(1− t2j)κjdtj
)
.

One of the main purposes in this section is to prove a sharp estimate of a multiple

integral of Jacobi polynomials defined below.

Definition 6.3.2. Let κ = (κ1, · · · , κd) ∈ (−1
2
,∞)d. For α, β ∈ R, define

P(α,β)
n (x, y) := Tκ(P

(α,β)
n )(x, y), x, y ∈ Sd−1.

With the definition, we have

Pn(h2
κ;x, y) = bn(κ)P(ακ,ακ)

n (x, y),

where ακ = d−3
2

+ γκ, and

bn(κ) =
Γ(ακ + 1)

(ακ + 1
2
)Γ(2ακ + 1)

(n+ d−2
2

+ γκ)Γ(n+ d− 2 + 2γκ)

Γ(n+ d−1
2

+ γκ)
∼ n

d−1
2

+γκ .
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Recall that for x = (x1, · · · , xd) ∈ Rd and ε = (ε1, · · · , εd) ∈ {±1}d,

xε := (x1ε1, x2ε2, · · · , xdεd),

and for x, y ∈ Sd−1,

ρ(x, y) = arccos(x · y).

In this section, we will prove the following result, from which the stated estimate of

the reproducing kernel Pn(h2
κ, x, y) in Theorem 6.1.2 will follow immediately.

Theorem 6.3.3. Let κ = (κ1, · · · , κd) ∈ (−1
2
,∞)d. If α ≥ β, then

|P(α,β)
n (x, y)| ≤ Cnα−2γκ max

ε∈{±1}d

∏d
j=1(|xjyj|+ n−1ρ(xε, y) + n−2)−κj(

1 + nρ(xε, y)
)α+ 1

2
−γκ

, (6.3.3)

where γκ = κ1 + · · ·+ κd.

6.3.1 Technical lemmas

The following estimate of a multiple integral of Jacobi polynomials play a crucial role in

the proof of Theorem 6.3.3:

Lemma 6.3.4. Assume that τ = (τ1, · · · , τd) ∈ (0,∞)d, and ϕ1, · · · , ϕd ∈ C∞[−1, 1]. If

α ≥ β, then for any x, y ∈ Sd−1,

∣∣∣∣∣
∫

[−1,1]d
P (α,β)
n

( d∑
j=1

xjyjtj

) d∏
j=1

ϕj(tj)(1− t2j)τj−1 dtj

∣∣∣∣∣ (6.3.4)

≤ cnα−2|τ | max
ε∈{±1}d

∏d
j=1(|xjyj|+ n−1ρ(x, yε) + n−2)−τj

(1 + nρ(x, yε))α+ 1
2
−|τ |

,

where |τ | =
∑d

j=1 τj.
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Lemma 6.3.4 under the additional assumption α ≥
∑d

j=1 τj −
1
2

was proved in [17,

Theorem 3.1].

Here we have to remove this extra condition as it may not be satisfied in the case

when κj = τj − 1 and κmin < 0.

The proof of Lemma 6.3.4 relies on the following estimates proved in [17].

Lemma 6.3.5. [17, Lemma 3.5] Let a = (a1, · · · , am) ∈ Rm, x ∈ R be such that aj 6= 0

for 1 ≤ j ≤ m and
∑m

j=1 |aj| + |x| ≤ 1. Let ξ1, · · · , ξm ∈ C∞(R) be such that supp ξj ⊂

R \ [−1,−1
2
] for 1 ≤ j ≤ m. Then for τ = (τ1, · · · , τm) ∈ (0,∞)d and α ≥ β,

∣∣∣∫
[−1,1]m

P (α,β)
n

( m∑
j=1

ajtj + x

) m∏
j=1

ξj(tj)(1− tj)τj−1 dtj

∣∣∣
≤ cnα−2|τ |

( m∏
j=1

|aj|−τj
)(

1 + n
√

1− |a1 + a2 + · · ·+ am + x|
)−α− 1

2
+|τ |

,

where |τ | :=
∑m

j=1 τj.

Now we are in a position to prove Lemma 6.3.4.

Proof of Lemma 6.3.4. For 1 ≤ j ≤ d, let ξj denote a C∞-function on [−1, 1] such that

ξj(t) = 0 for −1 ≤ t ≤ −1
4
. By symmetry, it is enough to show that

∣∣∣∫
[−1,1]d

P (α,β)
n

( d∑
j=1

xjyjtj

) d∏
j=1

ξj(tj)(1− t2j)τj−1 dtj

∣∣∣
≤ cnα−2|τ |

∏d
j=1(|xjyj|+ n−1ρ̃(x, y) + n−2)−τj

(1 + nρ̃(x, y))α+ 1
2
−|τ |

, (6.3.5)

where

ρ̃(x, y) =

√√√√1−
∣∣∣ d∑
j=1

xjyj

∣∣∣ ∼ max
{
ρ(x, y), ρ(x,−y)

}
.
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Without loss of generality, we may assume that

|xjyj| ≥ c0

(
n−1ρ(x, y) + n−2) for j = 1, 2, · · · ,m, (6.3.6)

|xjyj| < c0

(
n−1ρ(x, y) + n−2

)
for m < j ≤ d, (6.3.7)

where c0 ∈ (0, 1) is a small constant to be specified later. For each fixed t̃ = (tm+1, · · · , td) ∈

[−1, 1]d−m, we define

fn(x, y, t̃) :=
∣∣∣∫

[−1,1]m
P (α,β)
n (

d∑
j=1

xjyjtj)
m∏
j=1

ξj(tj)(1− t2j)τj−1 dtj

∣∣∣.
Using Lemma 6.3.5, we obtain that

fn(x, y, t̃) ≤ Cnα−2θm
( m∏
j=1

|xjyj|−τj
)
×

×
(

1 + n

√√√√1−
∣∣ d∑
j=1

xjyj +
d∑

j=m+1

xjyj(tj − 1)
∣∣)−α− 1

2
+θm

, (6.3.8)

where θm =
∑m

j=1 τj.

We claim that that for any t̃ = (tm+1, · · · , td) ∈ [−1, 1]d−m,

1 + n

√√√√1−
∣∣∣ d∑
j=1

xjyj +
d∑

j=m+1

xjyj(tj − 1)
∣∣∣ ∼ 1 + nρ̃(x, y). (6.3.9)

Indeed, by (6.3.7) ,

∣∣∣ d∑
j=m+1

xjyj(tj − 1)
∣∣∣ ≤ 2

d∑
j=m+1

|xjyj| ≤ 2(d−m)c0(n−1ρ̃(x, y) + n−2). (6.3.10)
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It follows that

n

√√√√1−
∣∣∣ d∑
j=1

xjyj +
d∑

j=m+1

xjyj(tj − 1)
∣∣∣

≤ n
√
ρ̃(x, y)2 + c′n−2(1 + nρ̃(x, y)) ≤ C(1 + nρ̃(x, y)),

which implies the upper estimate of (6.3.9). To show the lower estimate of (6.3.9), without

loss of generality, we may assume that ρ̃(x, y) ≥ n−1. (The lower estimate holds trivially

if ρ̃(x, y) ≤ n−1.) Using (6.3.10), we then obtain

1−
∣∣∣ d∑
j=1

xjyj +
d∑

j=m+1

xjyj(tj − 1)
∣∣∣ ≥ ρ̃(x, y)2 − Cc0

(
n−1ρ̃(x, y) + n−2

)
≥ c1ρ̃(x, y)2,

provided that the constant c0 is sufficiently small. This implies the lower estimate of

(6.3.9).

Now using (6.3.9) and (6.3.8), we obtain

fn(x, y, t̃) ≤ Cnα−2θm
( m∏
j=1

|xjyj|−τj
)

(1 + nρ̃(x, y))−α−
1
2

+θm

≤ Cnα−2|τ |

∏d
j=1

(
|xjyj|+ n−2 + n−1ρ̃(x, y)

)−τj
(1 + nρ̃(x, y))α+ 1

2
−|τ |

,

where the last step uses (6.3.6) and (6.3.7). The estimate (6.3.5) then follows by in-

tegrating both sides of this last inequality with respect to the measure
∏d

j=m+1(1 −

t2j)
τj−1ξj(tj)dtj on [−1, 1]d−m.
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6.3.2 Proof of Theorem 6.3.3

By definition, we have

∣∣∣P(α,β)
n (x, y)

∣∣∣ ≤ Cκ

d∑
`=0

∑
1≤i1<i2<···<i`≤d

Bα,β
i1,··· ,i`(x, y),

where

Bα,β
i1,··· ,i`(x, y) := n`|xi1yi1xi2yi2 · · · , xi`yi` |×

×
∣∣∣∫

[−1,1]d
P

(α+`,β+`)
n−` (

d∑
j=1

xjyjtj)
(∏̀
j=1

(1 + tij)
)( d∏

j=1

(1− t2j)κjdtj
)∣∣∣.

Invoking Lemma 6.3.4 with τ = (κ1 + 1, · · · , κd + 1), we obtain that for 1 ≤ i1 < · · · <

i` ≤ d,

Bα,β
i1,··· ,i`(x, y) ≤ C

(∏̀
j=1

|xijyij |
)
nα+2`−2γκ−2d max

ε∈{±1}d

∏d
j=1

(
|xjyj|+ n−1ρ(x, yε) + n−2

)−κj−1

(1 + nρ(x, yε))α+`+ 1
2
−γκ−d

≤ Cnα+2`−2γκ−2d max
ε∈{±1}d

∏d
j=1

(
|xjyj|+ n−1ρ(x, yε) + n−2

)−κj
(1 + nρ(x, yε))α+`+ 1

2
−γκ−d

(
n−1ρ(x, yε) + n−2

)−d+`

≤ Cnα−2γκ max
ε∈{±1}d

∏d
j=1

(
|xjyj|+ n−1ρ(x, yε) + n−2

)−κj
(1 + nρ(x, yε))α+ 1

2
−γκ

.

6.4 Estimates of the Cesàro kernels

The main purpose in this section is to prove Theorem 6.1.3, which we restate as follows:
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Theorem 6.4.1. If δ ≥ 0, and x = (x1, · · · , xd), y = (y1, · · · , yd) ∈ Sd−1, then

|Kδ
n(h2

κ;x, y)| ≤ cnd−1 max
ε∈{±1}d

[∏d
j=1(|xjyj|+ n−1ρ(x, yε) + n−2)−κj

(1 + nρ(x, εy))δ+
d
2

(6.4.1)

+

∏d
j=1(|xjyj|+ (ρ(x, yε))2 + n−2)−κj

(nρ(x, yε) + 1)d

]
.

For any δ > 0, let

K(α,α),δ
n (t, 1) : =

n∑
j=0

Aδn−j
Aδn

(2j + 2α + 1)
√
π

22α+1Γ(α + 3
2
)

Γ(j + 2α + 1)

Γ(j + α + 1)
P

(α,α)
j (t), t ∈ [−1, 1].

For each fixed x ∈ [−1, 1], this last equation extends K
(α,α),δ
n (t, 1) to an analytic function

of α on the domain G := {z ∈ C : Re z > −3
2
}. For x, y ∈ Sd−1, we have

Kδ
n(h2

κ;x, y) =
n∑
j=0

Aδn−j
Aδn

Pj(h
2
κ;x, y) = Tκ

[
K(ακ,ακ),δ
n (·, 1)

]
(x, y)

=
n∑
j=0

Aδn−j
Aδn

(2j + 2ακ + 1)
√
π

22ακ+1Γ(ακ + 3
2
)

Γ(j + 2ακ + 1)

Γ(j + ακ + 1)
P(ακ,ακ)
j (x, y),

where ακ = λκ − 1
2
.

We break the proof of Theorem 6.4.1 into several steps, which will be given in the

next few subsections.

6.4.1 Decomposition

Let ϕ0 ∈ C∞[0,∞) be such that χ[0,1] ≤ ϕ0 ≤ χ[0,2], and let ϕ(t) := ϕ0(t) − ϕ0(2t).

Clearly, ϕ is a C∞-function supported in (1
2
, 2) and satisfying

∑∞
v=0 ϕ(2vt) = ϕ0(t) for all

t > 0. We set

Ŝδn,v(j) := ϕ
(2v(n− j)

n

)Aδn−j
Aδn

, j = 0, 1, · · · , n, (6.4.2)
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and define

Sδn,vf :=
n∑
j=0

Ŝδn,v(j) projj(h
2
κ; f), v = 0, 1, · · · , blog2 nc+ 2.

Since
∑blog2 nc+2

v=0 ϕ
(

2v(n−j)
n

)
= 1 for 0 ≤ j ≤ n− 1, it follows that

Sδn(h2
κ; f) =

blog2 nc+2∑
v=0

Sδn,vf +
1

Aδn
projn(h2

κ; f). (6.4.3)

Since Ŝδn,v(j) = 0 whenever n − j > n
2v−1 or n − j < n

2v+1 , it is easy to verify by the

Leibniz rule that

∣∣∣∆`(Ŝδn,v(j))
∣∣∣ ≤ c2−vδ

(2v

n

)`
, ∀` ∈ N, 0 ≤ j ≤ n. (6.4.4)

Let

Dδ
n,v(t) :=

n∑
j=0

Ŝδn,v(j)
λκ + j

λκ
Cλκ
j (t).

Then

Sδn,vf(x) = ωdκ

∫
Sd−1

f(y)Kδ
n,v(x, y)h2

κ(y) dσ(y), (6.4.5)

where

Kδ
n,v(x, y) := Tκ

[
Dδ
n,v

]
(x, y). (6.4.6)

Using (6.4.3), we obtain

Lemma 6.4.2. For δ ≥ 0 and x, y ∈ Sd−1,

Kδ
n(h2

κ;x, y) =

[log2 n]+2∑
v=0

Kδ
n,v(x, y) +

1

Aδn
Pn(h2

κ;x, y). (6.4.7)
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6.4.2 Estimates of the kernels Kδ
n,v(x, y)

We start with the case of v ≥ 2.

Lemma 6.4.3. If 2 ≤ v ≤ blog2 nc + 2, then for any given positive integer `, and any

x, y ∈ Sd−1,

|Kδ
n,v(x, y)| ≤ cnd−12v(`−1−δ) max

ε∈{±1}d

∏d
i=1(|xiyi|+ n−1ρ(xε, y) + n−2)−κi

(1 + nρ(xε, y))
d−2
2

+`
.

Proof. We follow the proof of Lemma 3.3 of [8, p.413–414]. We shall use the following

formula for Jacobi polynomials ( see [Sz, (4.5.3) p.71]):

k∑
n=0

(2n+ α + β + j + 1)Γ(n+ α + β + j + 1)

Γ(n+ β + 1)
P (α+j,β)
n (t) (6.4.8)

=
Γ(k + α + β + j + 2)

Γ(k + β + 1)
P

(α+j+1,β)
k (t),

where j = 0, 1, · · · .

Define a sequence of functions {an,v,`(·)}∞`=0 recursively by

an,v,0(j) = 2(j + λκ)Ŝ
δ
n,v(j),

an,v,`+1(j) =
an,v,`(j)

2j + 2λκ + `
− an,v,`(j + 1)

2j + 2λκ + `+ 2
, ` ≥ 0.

Using (6.4.8) and summation by parts finite times, we have for any integer ` ≥ 0,

Dδ
n,v(t) = cκ

∞∑
j=0

an,v,`(j)
Γ(j + 2λκ + `)

Γ(j + λκ + 1
2
)
P

(λκ+`− 1
2
,λκ− 1

2
)

j (t), (6.4.9)

where λκ = d−2
2

+
∑d

j=1 κj. It follows by (6.4.6) that

Kδ
n,v(x, y) = cκ

∞∑
j=0

an,v,`(j)
Γ(j + 2λκ + `)

Γ(j + λκ + 1
2
)
P(λκ+`− 1

2
,λκ− 1

2
)

j (x, y). (6.4.10)
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Note that an,v,`(j) = 0 if j + ` ≤ (1 − 1
2v−1 )n or j ≥ (1 − 1

2v+1 )n, so that the sum is

over j ∼ n. Furthermore, it follows from the definition, (6.4.4) and Leibniz rule that

∣∣∣4ian,v,`(j)
∣∣∣ ≤ c2−vδn−`+1

(2v

n

)i+`
, i, ` = 0, 1, · · · . (6.4.11)

Consequently, using the pointwise estimates (6.3.3), and (6.4.11), we obtain

|Kδ
n,v(x, y)| ≤ cnd−3+2` max

ε∈{±1}d

∏d
i=1(|xiyi|+ n−1ρ(xε, y) + n−2)−κi

(1 + nρ(xε, y))
d−2
2

+`

∑
j∼n

n−j∼ n
2v

|an,v,`(j)|

≤ cnd−12v(`−1−δ) max
ε∈{±1}d

∏d
i=1(|xiyi|+ n−1ρ(xε, y) + n−2)−κi

(1 + nρ(xε, y))
d−2
2

+`
.

Next, we deal with the cases of v = 0, 1.

Lemma 6.4.4. If v = 0, 1, then for any x, y ∈ Sd−1,

|Kδ
n,v(x, y)| ≤ cnd−1 max

ε∈{±1}d

∏d
i=1(|xiyi|+ ρ(xε, y)2 + n−2)−κi

(1 + nρ(xε, y))d
.

Proof. The proof is very similar to that of Lemma 6.4.3. The difference here comes from

the fact that the coefficients Ŝδn,v(j) for v = 0, 1 are supported in 0 ≤ j ≤ 3
4
n rather than

n
2
≤ j ≤ n. Indeed, for the case of v = 0, 1, we have to replace the estimates (6.4.11) by

∣∣∣4kan,v,`(j)
∣∣∣ ≤


cn−k−1, if ` = 1,

cn−1(j + 1)−k−2`+2, if ` ≥ 2.

(6.4.12)

Using (6.4.10), and (6.4.12), we then obtain that for v = 0, 1 and any ` ≥ 2,

|Kδ
n,v(x, y)| ≤ cn−1 max

ε∈{±1}d

n∑
j=1

∏d
i=1(|xiyi|+ j−1ρ(xε, y) + j−2)−κi

(1 + jρ(xε, y))
d−2
2

+`
(j + 1)d−1.
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Thus, to complete the proof, it is enough to show that if ` > d
2

+ 1 +
∑d

j=1 |κj|, then

for each x, y ∈ Sd−1,

n−1

n∑
j=1

∏d
i=1(|xiyi|+ j−1ρ(x, y) + j−2)−κi

(1 + jρ(x, y))
d−2
2

+`
jd−1

≤ cnd−1

∏d
i=1(|xiyi|+ ρ(x, y)2 + n−2)−κi

(1 + nρ(x, y))d
. (6.4.13)

To this end, we write

I := {1, 2, · · · , d} = I1 ∪ I2 ∪ I3,

where

I1 : = {i ∈ I : κi < 0},

I2 : =
{
i ∈ I : κi ≥ 0, |xi| ≥ 4ρ(x, y) + n−1

}
, I3 = I \ (I1 ∪ I2).

We also define

ui(x, y, j) =
(
|xiyi|+ j−2 + j−1ρ(x, y)

)−κi
, i ∈ I, j ≥ 1.

If i ∈ I1, then

ui(x, y, j) ≤ C
[
|xiyi|−κi + j2κi

(
1 + jρ(x, y)

)−κi].
If i ∈ I2, then

ui(x, y, j) ≤ |xiyi|−κi .

If i ∈ I3, then

ui(x, y, j) ≤ j2κi(1 + jρ(x, y))−κi .
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Thus, setting

κ(J) :=
∑
j∈J

κj for J ⊂ I,

we obtain

d∏
i=1

ui(x, y, j) ≤ Cj2κ(I3)(1 + jρ(x, y))−κ(I3)
(∏
i∈I2

|xiyi|−κi
)∏
i∈I1

(
|xiyi|−κi + j2κi(1 + jρ(x, y))−κi

)
≤
∑
J⊂I1

( ∏
i∈(I1∪I2)\J

|xiyi|−κi
)
j2κ(I3∪J)(1 + jρ(x, y))−κ(I3∪J),

where the sum is taken over all finite subsets J of I1. Note that the index sets I1, I2, I3

are independent of j.

Since d + 2κ(I1) > 0 and ` > d
2

+ 1 +
∑d

j=1 |κj|, a straightforward calculation shows

that for each fixed J ⊂ I1,

n∑
j=1

jd−1+2κ(I3∪J)

(1 + jρ(x, y))
d−2
2

+`+κ(I3∪J)
≤ C

(
ρ(x, y) + n−1

)−d−2κ(I3∪J)

. (6.4.14)

This implies that

LHS of (6.4.13)

≤ Cn−1 max
J⊂I1

(ρ(x, y) + n−1
)−d−2κ(I3∪J)( ∏

i∈(I1∪I2)\J

|xiyi|−κi
) (6.4.15)

Set

vi(x, y) = (|xiyi|+ ρ(x, y)2 + n−2)−κi , i = 1, · · · , d.

If i ∈ I1, then −κi > 0, and hence

|xiyi|−κi ≤ vi(x, y) and (ρ(x, y)2 + n−2)−κi ≤ vi(x, y).
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If i ∈ I2, then

|xiyi| ∼ |xi|2 ≥ (4ρ(x, y) + n−1)2 =⇒ |xiyi|−κi ∼ vi(x, y).

Finally, if i ∈ I3, then

|yi| ≤ 5ρ+ n−1 =⇒ |xiyi| ≤ C(ρ2 + n−2)

=⇒ vi(x, y) ∼ (ρ(x, y)2 + n−2)−κi .

Putting the above together, we obtain that for each J ⊂ I1,

(
ρ(x, y) + n−1

)−2κ(I3∪J)( ∏
i∈(I1∪I2)\J

|xiyi|−κi
)

=
( ∏
i∈I3∪J

(
ρ(x, y) + n−1

)−2κi
)( ∏

i∈I1\J

|xiyi|−κi
)(∏

i∈I2

|xiyi|−κi
)

≤ C
( ∏
i∈I3∪J

vi(x, y)
)( ∏

i∈I1\J

vi(x, y)
)(∏

i∈I2

vi(x, y)
)

= C
∏
i∈I

vi(x, y).

Thus, using (6.4.15), we obtain

LHS of (6.4.13) ≤ C
nd−1

(1 + nρ(x, y))d

d∏
i=1

vi(x, y).

This proves (6.4.13), and hence completes the proof of Lemma 6.4.4.

6.4.3 Proof of Theorem 6.4.1

Let

An(x, y) :=
d∏
i=1

(|xiyi|+ n−1ρ(x, y) + n−2)−κi .

Let `0 be a smallest integer ≥ δ + 4. Using (6.4.7), Lemma 6.4.3, Lemma 6.4.4 and

Theorem 6.1.2, we obtain
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|Kδ
n(h2

κ;x, y)| ≤ Cnd−1 max
ε∈{±1}d

∑
2≤v≤log2 n+2

min
1≤`≤`0

2v(`−1−δ) An(xε, y)

(1 + nρ(xε, y))
d−2
2

+`

+ Cn−δ+d−2 max
ε∈{±1}d

An(xε, y)(
1 + nρ(xε, y)

) d−2
2

+ Cnd−1 max
ε∈{±1}d

∏d
i=1(|xiyi|+ ρ(xε, y)2 + n−2)−κi

(1 + nρ(xε, y))d
.

However, for each fixed ε ∈ {±1}d,

n−δ+d−2 1(
1 + nρ(xε, y)

) d−2
2

=
(
n−1 + ρ(xε, y)

)1+δ nd−1(
1 + nρ(xε, y)

)δ+ d
2

≤ C
nd−1(

1 + nρ(xε, y)
)δ+ d

2

.

Thus, it suffices to prove that for each x, y ∈ Sd−1,

∑
2≤v≤log2 n+2

min
1≤`≤`0

2v(`−1−δ)

(1 + nρ(x, y))
d−2
2

+`
≤ C(

1 + nρ(x, y)
)δ+ d

2

. (6.4.16)

If 0 ≤ ρ(x, y) ≤ n−1, then setting ` = 1, we get

LHS of (6.4.16) ≤
∑

2≤v≤log2 n+2

2−δv ≤ C ∼ C(
1 + nρ(x, y)

)δ+ d
2

If ρ(x, y) > n−1, then we break the sum on the left hand side of (6.4.16) into two parts,∑
2v≤nρ(x,y) +

∑
2v>nρ(x,y), and set ` = `0 for the first part and ` = 1 for the second part,

we then obtain

LHS of (6.4.16) ≤ C(nρ(x, y))−
d
2
−`0+1

∑
2v≤nρ(x,y)

2v(`0−1−δ) + (nρ(x, y))−
d
2

∑
2v>nρ(x,y)

2−δv

≤ C(
1 + nρ(x, y)

)δ+ d
2

.
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6.5 Cesàro summability of the WOPEs on Sd−1

In this section, we prove Corollary 6.1.1 and Theorem 6.1.4. We start with the proof of

Corollary 6.1.1.

Proof of Corollary 6.1.1. It is enough to consider the case κmin < 0 as the case κmin ≥ 0

was treated in [18].

Using Theorem 6.1.3, we have

|Kδ
n(h2

κ;x, y)| ≤ C max
ε∈{±1}d

[
Eδ
n(h2

κ;xε, y) +Rn(h2
κ;xε, y)

]
, (6.5.1)

where

Eδ
n(h2

κ;x, y) :=nd−1

∏d
j=1(|xjyj|+ n−1ρ(x, y) + n−2)−κj

(1 + nρ(x, y))δ+
d
2

,

Rn(h2
κ;x, y) :=nd−1

∏d
j=1(|xjyj|+ (ρ(x, y))2 + n−2)−κj

(nρ(x, y) + 1)d
.

Using (5.1.3), one can easily show that for x, y ∈ Sd−1,

Rn(h2
κ, x, y) ≤ C

(1 + nρ(x, y))wn,κ(x, y)
. (6.5.2)

Indeed, (6.5.2) for κmin ≥ 0 was proved in [15, Lemma 3.9]. The proof there works equally

well for the case κmin < 0.

To complete the proof of (6.1.7), it remains to show

Eδ
n(h2

κ;x, y) ≤ C

(1 + nρ(x, y))δ−σκwn,κ(x, y)
. (6.5.3)
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To this end, let

uj(x, y) := (|xjyj|+ n−1ρ(x, y) + n−2)−κj , j = 1, · · · , d.

If |xj| ≥ 4ρ(x, y), then

uj(x, y) ∼
(
|xj|+ ρ+ n−1

)−2κj .

If |xj| < 4ρ(x, y) and κj > 0, then

uj(x, y) ≤ (n−1ρ(x, y) + n−2)−κj ∼ (1 + nρ(x, y))κj
(
|xj|+ ρ(x, y) + n−1

)−2κj
.

If |xj| < 4ρ(x, y) and κj < 0, then

uj(x, y) ≤ (|xj|2 + ρ(x, y)2 + n−1ρ(x, y) + n−2)−κj ∼
(
|xj|+ ρ(x, y) + n−1

)−2κj
.

Putting the above together, and using (5.1.3), we obtain

d∏
j=1

uj(x, y) ≤ Cn−d+1(1 + nρ(x, y))κ(J)+d−1

wn,κ(x, y)
,

where κ(J) =
∑

j∈J κj, and

J = J(x, y) := {1 ≤ j ≤ d : κj ≥ 0, |xj| ≤ 4ρ(x, y)}.

Since

κ(J) ≤ γ+
κ =

∑
j: κj>0

κj,
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we conclude that

d∏
j=1

uj(x, y) ≤ Cn−d+1(1 + nρ(x, y))γ
+
κ +d−1

wn,κ(x, y)
,

which implies the desired estimate (6.5.3). This shows the desired estimate (6.1.7) of the

Cesàro kernel Kδ
n(h2

κ;x, y).

Finally, the above proof with a slight modification also gives the desired estimate

(6.2.2) of the reproducing kernel Pn(h2
κ;x, y).

Proof of Theorem 6.1.4. For simplicity, we write, for E ⊂ Sd−1,

measκ(E) =

∫
E

h2
κ(x) dσ(x).

Then

wn,κ(x, y) = measκ

(
B(x, ρ(x, y) + n−1)

)
, x, y ∈ Sd−1.

Let

a = aδ := min{δ − σκ, 1},

and define

Aδn(x, y) :=
(1 + nρ(x, y))−a

wn,κ(x, y)
, x, y ∈ Sd−1.
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By Corollary 6.1.1, we then have

max
x∈Sd−1

∫
Sd−1

|Kδ
n(h2

κ;x, y)|h2
κ(y) dσ(y)

≤ C max
x∈Sd−1

∑
ε∈{±1}d

∫
Sd−1

Aδn(xε, y)h2
κ(y) dσ(y) ≤ C max

x∈Sd−1

∫
Sd−1

Aδn(x, y)h2
κ(y) dσ(y)

≤ C max
x∈Sd−1

[
1 +

∑
1≤j≤log(Cn)

∫
2j−1≤nρ(x,y)≤2j

h2
κ(y)dσ(y)

2ja measκ(B(x, 2jn−1)

]
≤ C

∑
0≤j≤log(Cn)

2−ja ≤ CLδn.

This proves (6.1.9).

Finally, the estimate (6.1.8) can be proved in a similar way.

6.6 Proof of Theorem 6.1.5

Given an operator T on spaces of functions on Sd−1, we shall use the notation ‖T‖ to

denote the operator norm of T from C(Sd−1) to C(Sd−1); that is,

‖T‖ := sup{‖Tf‖∞ : f ∈ C(Sd−1), ‖f‖∞ ≤ 1}.

Then

‖ projn(h2
κ)‖ = ωκd sup

x∈Sd−1

∫
Sd−1

|Pn(h2
κ;x, y)|h2

κ(y) dσ(y),

‖Sδn(h2
κ)‖ = ωκd sup

x∈Sd−1

∫
Sd−1

|Kδ
n(h2

κ;x, y)|h2
κ(y) dσ(y).
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As is well known (see, for instance, [42, Theorem 3.1.22, p. 78] and [42, Theorem 3.1.23,

p. 78]), for any δ ≥ 0, there exists a constant Cδ > 0,

‖ projn(h2
κ)‖ ≤ Cδn

δ max
0≤j≤n

‖Sδj (h2
κ)‖. (6.6.1)

Without loss of generality, we may assume that κ1 < 0 and κj ≥ 0 for 1 < j ≤ d.

Then

σκ =
d− 2

2
+

d∑
j=2

κj.

First, we show that there exists a constant C > 0 independent of n such that

‖ proj2n(h2
κ)‖ ≥ Cnσκ , (6.6.2)

which together with (6.6.1) will imply that for 0 ≤ δ < σκ,

max
1≤j≤n

‖Sδj (h2
κ)‖ ≥ Cnσκ−δ. (6.6.3)

To show (6.6.2), let

ακ :=
d− 3

2
+

d∑
j=2

κj and βκ := κ1 −
1

2
.

Let

wκ(t) := tβκ(1− t)ακ , t ∈ [0, 1].

For 1 ≤ p ≤ ∞, we denote by ‖·‖p,ακ,βκ the Lebesgue Lp-norm defined with respect to the

measure wκ(t)dt on [0, 1]. Clearly, {P (ακ,βκ)
j (2t−1)}∞j=0 is an orthogonal basis of the space

L2([0, 1], wκ(t) dt), and hence, each f ∈ L2([0, 1], wκ(t)dt) has an orthogonal polynomial
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expansion converging to f in the norm of ‖ · ‖2,ακ,βκ :

f(t) =
∞∑
j=0

projj(wκ; f, t),

where

projj(wk; f, t) := f̂(j)P
(ακ,βκ)
j (2t− 1), j = 0, 1, · · · ,

and

f̂(j) = ‖P (ακ,βκ)
j ‖−2

2,ακ,βκ

∫ 1

0

f(t)P
(ακ,βκ)
j (2t− 1)tβκ(1− t)ακ dt.

For each nonnegative integer n, we define a spherical polynomial ϕκn : Sd−1 → R of

degree 2n by

ϕκn(x) := P (ακ,βκ)
n (2x2

1 − 1), x = (x1, x2, · · · , xd) ∈ Sd−1.

We claim that

ϕκn ∈ Hd
2n(h2

κ); (6.6.4)

Since ϕκn ∈ Πd
2n, for the proof of (6.6.4), it suffices to show that for each α = (α1, · · · , αd) ∈

Zd≥0 with |α| = α1 + · · ·+ αd < 2n,

∫
Sd−1

ϕκn(x)xαh2
κ(x) dσ(x) = 0. (6.6.5)

By symmetry, (6.6.5) holds trivially if one of the αj is odd. Thus, without loss of generality,

we may assume that α = (α1, · · · , αd) ∈ Zd≥0, |α| ≤ 2n − 2 and each αj is even. A
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straightforward calculation shows that for any g ∈ L1([0, 1], wκ(t)dt),

∫
Sd−1

g
(
x2

1

)
h2
κ(x) dσ(x) = cκ

∫ 1

0

g(t)tβκ(1− t)ακ dt, (6.6.6)

where cκ > 0. Since each αj is even, xα =
∏d

j=1 |xj|αj and xαh2
κ(x) = h2

κ+α/2(x). It follows

that

∫
Sd−1

ϕκn(x)xαh2
κ(x) dσ(x) =

∫
Sd−1

ϕκn(x)h2
κ+α/2(x) dσ(x),

which, using (6.6.6), equals a constant multiple of

∫ 1

0

P (ακ,βκ)
n (2t− 1)tα1/2

( d∏
j=2

(1− t)αj/2
)
tβκ(1− t)ακ dt = 0.

This proves (6.6.5) and hence the claim (6.6.4).

Now we define an operator E : C[0, 1]→ C(Sd−1) by

Ef(x) = f(x2
1), x ∈ Sd−1, f ∈ C[0, 1].

From the claim (6.6.4), it is easily seen that for each f ∈ C[0, 1],

proj2j+1(h2
κ;Ef) = 0, j = 0, 1, · · · (6.6.7)

and

proj2j(h
2
κ;Ef)(x) = projj(wκ; f, x

2
1), j = 0, 1, · · · . (6.6.8)
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Thus,

‖ proj2n(h2
κ)‖ ≥ sup

{
‖ proj2n(h2

κ;Ef)‖L∞(Sd−1) : f ∈ C[0, 1], ‖f‖C[0,1] = 1
}

= ‖P (ακ,βκ)
n ‖∞ sup

{
|f̂(n)| : f ∈ C[0, 1], ‖f‖C[0,1] = 1

}
= ‖P (ακ,βκ)

n ‖∞‖P (ακ,βκ)
n ‖−2

2,ακ,βκ

∫ 1

0

|P (ακ,βκ)
n (2t− 1)|tβκ(1− t)ακ dt.

We need the following facts on Jacobi polynomials for α > −1 and β > −1, which can be

found in [35, (7.32.2)], [35, p.391], [35, (4.3.3)] respectively:

‖P (α,β)
n ‖∞ ∼ nmax{α,β,− 1

2
}, (6.6.9)∫ 1

−1

(1 + x)β(1− x)α|P (α,β)
n (x)| dx ∼ n−

1
2 , (6.6.10)∫ 1

−1

(1− x)α(1 + x)β
(
P (α,β)
n (x)

)2

dx ∼ n−1. (6.6.11)

Since −1 < βκ < −1
2
≤ ακ, it follows that

‖ proj2n(h2
κ)‖ ≥ Cnακ+ 1

2 = Cnσκ .

This proves (6.6.2), and (6.6.3) as well.

Finally, we prove (6.1.11) for δ ≥ σκ. Since Sδn(h2
κ, 1) = 1, (6.1.11) holds trivially if

δ > σκ. Thus, it remains to prove (6.1.11) for δ = σκ, or equivalently,

max
1≤j≤n

‖Sσκj (h2
κ)‖ ≥ C log n, (6.6.12)

where C > 0 is independent of n.

To prove (6.6.12), we denote by Sδn(wκ; f) the n-th Cesàro mean of order δ of the

WOPE of f ∈ C[0, 1] with respect to the weight wκ on [0, 1]. Let m be the integer such
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that 2m ≤ n < 2m+2. Using (6.6.7) and (6.6.8), we have that for x = (x1, · · · , xd) ∈ Sd−1,

Sδm(wκ; f, x
2
1) =

m∑
j=0

Aδm−j
Aδm

projj(wκ; f, x
2
1) =

m∑
j=0

Aδm−j
Aδm

proj2j(h
2
κ;Ef, x)

=
2m∑
j=0

µj projj(h
2
κ;Ef, x) + Sδn(h2

κ;Ef, x),

where

µj =


−Aδn−j

Aδn
+

Aδ
m−j/2
Aδm

, 0 ≤ j ≤ 2m

0, j > 2m,

and

Aδx :=
Γ(x+ δ + 1)

Γ(δ + 1)Γ(x+ 1)
, ∀x ≥ 0.

According to [15, (5.10)], we have that for 0 ≤ j ≤ 2m,

|∆iµj| ≤ Cm−δ(m− j/2 + 1)δ−i−1, i = 0, 1, · · · . (6.6.13)

Let ` be an integer such that δ − 1 < ` ≤ δ. Summation by parts ` times shows that

for any f ∈ C[0, 1] with ‖f‖∞ = 1,

∥∥∥ 2m∑
j=0

µj projj(h
2
κ;Ef)

∥∥∥
∞
≤ C

2m−`∑
j=0

|∆`+1µj|(j + 1)`‖S`j(h2
κ;Ef)‖∞

+ Cm` max
0≤i≤`

|∆iµm−i|‖S`2m−i(h2
κ;Ef)‖∞,

which, using (6.6.13), is bounded by a constant multiple of max1≤j≤n ‖Sδj (h2
κ)‖. It follows

that

max
1≤j≤n

‖Sσκj (h2
κ)‖ ≥ C sup

{∫
Sd−1

|Sσκm (wκ; f, x
2
1)|h2

κ(x) dσ(x) : f ∈ C[0, 1], ‖f‖∞ = 1
}
,
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which, using (6.6.6), equals

C sup
{∫ 1

0

|Sσκm (wκ; f, t)|wκ(t) dt : f ∈ C[0, 1], ‖f‖∞ = 1
}
≥ C log n.
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Chapter 7

Boundedness of projection operators

and Cesàro means in weighted Lp

space on the unit ball and simplex

7.1 Weighted orthogonal polynomial expansions (WOPEs)

on the ball and the simplex

In this section, we shall describe briefly some necessary notations and results for WOPEs

on the unit ball Bd and the simplex Td. Unless otherwise stated, most of the results

described in this section can be found in the paper [39] and the books [16,21].

7.1.1 WOPEs in several variables

Let Ω denote a compact domain in Rd endowed with the usual Lebesgue measure dx.

Given a weight function W on Ω, we denote by Lp(W ; Ω) the usual Lp-space defined with

respect to the measure Wdx on Ω, and Vdn(W ) the space of orthogonal polynomials of

degree n with respect to the weight function W on Ω. Thus, if we denote by Πd
n the
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space of all algebraic polynomials in d variables of total degree at most n, then Vdn(W ) is

the orthogonal complement of Πd
n−1 in the space Πd

n with respect to the inner product of

L2(W ; Ω), where it is agreed that Πd
−1 = {0}.

Since Ω is compact, each function f ∈ L2(W ; Ω) has a weighted orthogonal polynomial

expansion on Ω, f =
∑∞

n=0 projn(W ; f), converging in the norm of L2(W ; Ω), where

projn(W ; f) denotes the orthogonal projection of f onto the space Vdn(W ). Let Pn(W ; ·, ·)

denote the reproducing kernel of the space Vdn(W ); that is,

Pn(W ;x, y) :=

adn∑
j=1

ϕn,j(x)ϕn,j(y), x, y ∈ Ω

for an orthonormal basis {ϕn,j : 1 ≤ j ≤ adn := dimVdn(W )} of the space Vdn(W ).

The orthogonal projection operator projn(W ) : L2(W ; Ω) 7→ Vdn(W ) can be expressed

as an integral operator

projn(W ; f, x) =

∫
Ω

f(y)Pn(W ;x, y)W (y)dy, x ∈ Ω, (7.1.1)

which also extends the definition of projn(W ; f) to all f ∈ L1(W ; Ω) since the kernel

Pn(W ;x, y) is a polynomial in both x and y.

Let Sδn(W ; f), n = 0, 1, · · · , denote the Cesàro (C, δ)-means of the WOPEs of f ∈

L1(W ; Ω). Each Sδn(W ; f) can be expressed as an integral against a kernel, Kδ
n(W ;x, y),

called the Cesàro (C, δ)- kernel,

Sδn(W ; f, x) :=

∫
Ω

f(y)Kδ
n(W ;x, y)W (y)dy, x ∈ Ω,

where

Kδ
n(W ;x, y) := (Aδn)−1

n∑
j=0

Aδn−jPj(W ;x, y), x, y ∈ Ω.
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7.1.2 WOPEs on the unit ball Bd

The weight function WB
κ we consider on the unit ball Bd is given in (4.0.2) with κ :=

(κ1, · · · , κd+1) ∈ (−1
2
,∞)d. It is related to the hκ on the sphere Sd of Rd+1 by

h2
κ(x,

√
1− ‖x‖2) = WB

κ (x)
√

1− ‖x‖2, x ∈ Bd, (7.1.2)

in which hκ is defined in (5.1.1) with Sd in place of Sd−1. Furthermore, under the change

of variables y = φ(x) with

φ : x ∈ Bd 7→ (x,
√

1− ‖x‖2) ∈ Sd+ := {y ∈ Sd : yd+1 ≥ 0}, (7.1.3)

we have

∫
Sd
g(y)dσ(y) =

∫
Bd

[
g(x,

√
1− ‖x‖2 ) + g(x,−

√
1− ‖x‖2 )

] dx√
1− ‖x‖2

. (7.1.4)

The orthogonal structure is preserved under the mapping (7.1.3) and the study of

orthogonal expansions for WB
κ on Bd can be essentially reduced to that of h2

κ on Sd. More

precisely, we have

Pn(WB
κ ;x, y) =

1

2

[
Pn(h2

κ; (x, xd+1), (y, yd+1)) (7.1.5)

+ Pn(h2
κ; (x, xd+1), (y,−yd+1))

]
where x, y ∈ Bd, and xd+1 =

√
1− ‖x‖2, yd+1 =

√
1− ‖y‖2. As a consequence, the

orthogonal projection, projn(WB
κ ; f), of f ∈ L2(WB

κ ;Bd) onto Vdn(WB
κ ) can be expressed

in terms of the orthogonal projection of F (x, xd+1) := f(x) onto Hd+1
n (h2

κ):

projn(WB
κ ; f, x) = projn(h2

κ;F,X), with X := (x,
√

1− ‖x‖2). (7.1.6)
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This relation allows us to deduce results on the convergence of orthogonal expansions

with respect to WB
κ on Bd from those of h-harmonic expansions on Sd.

7.1.3 WOPEs on the simplex

The weight functions we consider on the simplex Td are defined by (4.0.3), which are

related to WB
κ , hence to h2

κ. In fact, W T
κ is exactly the product of the weight function

WB
κ under the mapping

ψ : (x1, . . . , xd) ∈ Bd 7→ (x2
1, . . . , x

2
d) ∈ Td (7.1.7)

and the Jacobian of this change of variables. Furthermore, the change of variables shows

∫
Bd
g(x2

1, . . . , x
2
d)dx =

∫
Td
g(x1, . . . , xd)

dx
√
x1 · · ·xd

. (7.1.8)

The orthogonal structure is preserved under the mapping (7.1.7). In fact, R ∈ Vdn(W T
κ )

if and only if R ◦ ψ ∈ Vd2n(WB
κ ). The orthogonal projection, projn(W T

κ ; f), of f ∈

L2(W T
κ ;Td) onto Vdn(W T

κ ) can be expressed in terms of the orthogonal projection of f ◦ψ

onto Vd2n(WB
κ ):

projn(W T
κ ; f, ψ(x)) =

1

2d

∑
ε∈Zd2

proj2n(WB
κ ; f ◦ ψ, xε), x ∈ Bd. (7.1.9)

7.2 Results for Cesàro means of WOPEs on the unit

ball and the simplex

It was observed by Xu [39, 40] that WOPEs on Bd and Td are closely related to WOPEs

on the sphere Sd ⊂ Rd+1 and results on WOPEs on Bd and Td can often be deduced from
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the corresponding results on the unit sphere Sd.

The main purpose in this section is to establish similar results for WOPEs on Bd and

Td. Throughout this section, we will use a slight abuse of notations. The letter κ denotes

a fixed, nonzero vector κ := (κ1, · · · , κd+1) ∈ (−1
2
,∞)d+1. Accordingly, we define

κmin : = min
1≤j≤d+1

κj, γκ =
d+1∑
j=1

κj, γ+
κ :=

∑
j:κj>0

κj, (7.2.1)

(7.2.2)

7.2.1 Results on the ball

For x ∈ Bd, we set xd+1 :=
√

1− ‖x‖2. Let ρB : Bd × Bd → [0, π] denote the metric on

Bd given by

ρB(x, y) = arccos
(
x · y + xd+1yd+1

)
, x, y ∈ Bd.

For x ∈ Bd and θ > 0, define

BB(x, θ) := {y ∈ Bd : ρB(x, y) ≤ θ}.

We write

measBκ (E) :=

∫
E

WB
κ (x)dx, E ⊂ Bd,

where WB
κ is the weight function on Bd given in (4.0.2) with κmin > −1

2
. It is easily seen

that for x ∈ Bd and θ ∈ (0, π],

measBκ (BB(x, θ)) ∼ θd
d+1∏
j=1

(|xj|+ θ)2κj .
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This in particular implies that measBκ is a doubling measure on Bd satisfying that for any

x ∈ Bd and θ ∈ (0, π],

measBκ (BB(x, 2jθ)) ≤ C2jsκ measBκ (BB(x, θ)), j = 1, 2, · · · , (7.2.3)

where C > 0 is a constant depending only on κ and d, and

sκ = d+ 2γ+
κ − 2 max{κmin, 0}. (7.2.4)

It is easily seen that sκ is the optimal constant for which (7.2.3) holds.

Recall that P (WB
κ , x, y) denotes the reproducing kernel of the space Vdn(WB

κ ) of orthog-

onal polynomials of degree n with respect to the weight WB
κ on Bd, Sδn(WB

κ ; f) denotes the

n-th Cesàro mean of order δ ≥ 0 of the WOPE of f with respect to the weight function

WB
κ on Bd, and Kδ

n(WB
κ ;x, y) is the Cesàro kernel of the operator Sδn(WB

κ ).

Theorem 7.2.1. Let κ = (κ1, · · · , κd+1) ∈ Rd+1 be such that κmin > −1
2
. Let

σκ :=
sκ − 1

2
=
d− 1

2
+ γ+

κ −max{κmin, 0}. (7.2.5)

Then for δ > 0 and x, y ∈ Bd,

|Pn(WB
κ ;x, y)| ≤ C

nwBn,κ(x, y)
max

ε∈{±1}d

(
1 + nρB(xε, y)

)σκ+1

,

|Kδ
n(WB

κ ;x, y)| ≤ C

wBn,κ(x, y)
max

ε∈{±1}d

[ 1

(1 + nρB(xε, y))δ−σκ
+

1

1 + nρB(xε, y)

]
,

where

wBn,κ(x, y) :=

∫
BB(x,ρB(x,y)+n−1)

WB
κ (z) dz, x, y ∈ Bd, n ∈ N

and xε = (x1ε1, · · · , xdεd) for x = (x1, · · · , xd) ∈ Bd and ε = (ε1, · · · , εd) ∈ {±1}d.
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Given an operator T on spaces of functions on Bd, we set

‖T‖ := sup{‖Tf‖∞ : f ∈ C(Bd), ‖f‖∞ = 1}.

Theorem 7.2.2. Let κ = (κ1, · · · , κd+1) ∈ Rd+1 be such that κmin > −1
2
. Let σκ be given

in (7.2.5). Then there exists a constant C > 0 independent of n such that

‖Sδn(WB
κ )‖ ≤ C


1, δ > σκ

log n, δ = σκ

n−δ+σκ , 0 ≤ δ < σκ,

and

‖ projn(WB
κ )‖ ≤ Cnσκ .

In particular, if δ > σκ and f ∈ C(Bd), then Sδn(WB
κ ; f) converges uniformly to f on Bd.

In the case when κmin ≥ 0, Theorem 7.2.1 and Theorem 7.2.2 were previously proved

in [17]. These results can be deduced directly from the corresponding results on the sphere

Sd. Since the proofs are almost identical to those in [17], we skip the details here.

7.2.2 Results on the simplex

For x = (x1, · · · , xd) ∈ Td, let |x| = x1 + x2 + · · · + xd and xd+1 := 1 − |x|. Let

ρT : Td × Td → [0, π] be the metric on Td given by

ρT (x, y) = arccos
(d+1∑
j=1

√
xjyj

)
, x, y ∈ Td.
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For x ∈ Bd and θ > 0, define

BT (x, θ) := {y ∈ Td : ρT (x, y) ≤ θ}.

We write

measTκ (E) :=

∫
E

W T
κ (x)dx, E ⊂ Td,

where W T
κ is the weight function on Td given in (4.0.3) with κmin > −1

2
. It is easily seen

that for x ∈ Td and θ ∈ (0, π],

measTκ (BT (x, θ)) ∼ θd
d+1∏
j=1

(
√
xj + θ)2κj .

This in particular implies that measTκ is a doubling measure on Td satisfying that for any

x ∈ Td and θ ∈ (0, π],

measTκ (BT (x, 2jθ)) ≤ C2jsκ measTκ (BT (x, θ)), j = 1, 2, · · · , (7.2.6)

where C > 0 is a constant depending only on κ and d,

sκ = d+ 2γ+
κ − 2 max{κmin, 0}. (7.2.7)

It is easily seen that sκ is the optimal constant for which (7.2.6) holds.

Recall that P (W T
κ , x, y) denotes the reproducing kernel of the space Vdn(W T

κ ) of orthog-

onal polynomials of degree n with respect to the weight W T
κ on Td, Sδn(W T

κ ; f) denotes

the n-th Cesàro mean of the WOPE of f with respect to the weight function W T
κ on Td,

and Kδ
n(W T

κ ;x, y) is the Cesàro kernel of the operator Sδn(W T
κ ).
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Theorem 7.2.3. Let κ = (κ1, · · · , κd+1) ∈ Rd+1 be such that κmin > −1
2
. Let

σκ :=
sκ − 1

2
=
d− 1

2
+ γ+

κ −max{κmin, 0}. (7.2.8)

Then for δ ≥ 0 and x, y ∈ Td,

|Pn(W T
κ ;x, y)| ≤ C

nwTn,κ(x, y)

(
1 + nρT (x, y)

)σκ+1

,

|Kδ
n(W T

κ ;x, y)| ≤ C

wTn,κ(x, y)

[ 1

(1 + nρT (x, y))δ−σκ
+

1

1 + nρT (x, y)

]
,

where

wTn,κ(x, y) :=

∫
BT (x,ρT (x,y)+n−1)

W T
κ (z) dz, x, y ∈ Td, n ∈ N

Given an operator T on spaces of functions on Td, we set

‖T‖ := sup{‖Tf‖∞ : f ∈ C(Td), ‖f‖∞ = 1}.

Theorem 7.2.4. Let κ = (κ1, · · · , κd+1) ∈ Rd+1 be such that κmin > −1
2
. Let σκ be given

in (7.2.8). Then there exists a constant C > 0 independent of n such that

‖Sδn(W T
κ )‖ ≤ C


1, δ > σκ

log n, δ = σκ

n−δ+σκ , 0 ≤ δ < σκ,

and

‖ projn(W T
κ )‖ ≤ Cnσκ .

In particular, if δ > σκ and f ∈ C(Td), then Sδn(W T
κ ; f) converges uniformly to f on Td.

In the case when κmin ≥ 0, Theorem 7.2.3 and Theorem 7.2.4 were previously proved
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in [17]. These results can be deduced largely from the corresponding results on the ball

Bd. Since the proofs are similar to those in [17], we skip the details here.
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