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Abstract

The main goal of this work is the development of all-speed numerical meth-

ods for the compressible Navier-Stokes equations, i.e. methods that remain

efficient in incompressible, weakly compressible, and compressible regimes. To

achieve this goal we propose algorithms based on the direction splitting ap-

proach in Cartesian and spherical coordinates. First, we consider the case

of the Cartesian coordinates and develop a Linearized-Block-Implicit (LBI)

scheme suitable for computations of low- and high-Mach number flows. Next,

we introduce a second-order direction splitting method for solving the in-

compressible Navier-Stokes-Boussinesq system in spherical geometries coupled

with the artificial compressibility regularization of the incompressible Navier-

Stokes system. Finally, we develop a numerical method for nearly incompress-

ible and weakly compressible flows in spherical shells. Numerical experiments

confirm that the scheme retains stability and convergence for extremely low

values of the Mach number, preserves the incompressibility of the initial data,

and has excellent parallel performance. Thus, we hope that it may serve as a

foundation for the next generation of dynamical cores for weather and climate

models, as well as be useful in other applications.

ii



Preface

The first chapter of this thesis is based on the paper [35]: R. Frolov (2019),

“An efficient algorithm for the multicomponent compressible Navier-Stokes

equations in low- and high-Mach number regimes.”, Computers & Fluids, Vol.

178, pages 15-40. The second and third chapters are joint work with P. Minev

and A. Takhirov.
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Introduction

Fluid flows are said to be in different compressibility regimes depending on

the value of the Mach number (M) – the ratio of the flow velocity to the lo-

cal speed of sound. When the Mach number is small (typically less than 0.3)

compressibility effects are negligible and the flow may be assumed to be incom-

pressible. Mathematically, it corresponds to a singular limit of the governing

set of Partial Differential Equations (PDEs) in which the solution depends

on two drastically different time-scales. Larger values of the Mach number

indicate that compressibility plays a substantial role and cannot be ignored.

Furthermore, compressibility mechanisms of different nature may have differ-

ent effects on the physical process under consideration, e.g. a mechanically

incompressible flow may be thermally compressible, which can be interpreted

as another singular limit of the governing PDEs. Such limiting cases may al-

low one to derive a different set of governing equations as an approximation

to the general Navier-Stokes (NSEs) model. Since designing numerical algo-

rithms for solving the general compressible NSEs, efficient at low values of the

Mach number, is known to be challenging, these sets (e.g. the incompressible

Navier-Stokes equations, the Boussinesq approximation) are often used for nu-

merical simulations if it is known that the flow of interest will remain in the
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corresponding regime. However, some important problems may feature both

regions of low and high Mach numbers, transition between different compress-

ibility regimes, or experience weak but not negligible compressibility effects.

Examples of such flows include atmospheric and oceanic flows, combustion

problems, some important astrophysical phenomena, among others. Hence,

there is a need for methods that remain practical at any value of the Mach

number. The main focus of this thesis is the development of such all-speed

methods, i.e. numerical methods for compressible Navier-Stokes equations

that remain efficient in incompressible, weakly compressible, and compressible

regimes.

When solving complex initial-boundary value problems for systems of PDEs

implicitly, it is often beneficial to split the original problem into a chain of sim-

pler subproblems (see e.g. [124], [101]). These subproblems may be associated

with different parts of the computational domain (domain decomposition/re-

gionally additive schemes), different physical processes, or different spatial

variables (direction splitting schemes), among other methods. Direction split-

ting schemes, also known as Alternating Directions Implicit (ADI) algorithms

(see [28],[80], [114] for early results in this area, and [101] for a comprehensive

review), are particularly appealing for the construction of implicit methods

since solutions of one-dimensional problems can be easily achieved on parallel

machines using direct solvers with low computational complexity and good

scaling properties. This approach had been found successful in numerous ap-

plications but was believed to be unsuitable for low-Mach number flows (see

e.g. remarks in [121] and [56]). In this work, we demonstrate that direction

splitting methods can be successfully adapted for the use in both high- and
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low-Mach number regimes of compressible NSEs, and propose schemes based

on the direction splitting methodology for Cartesian and spherical coordinate

systems.

In particular, Chapter 1 of this thesis presents a direction splitting solver

with an error reduction technique for the compressible NSEs in Cartesian co-

ordinates. This approach, alongside carefully designed stabilization terms for

highly compressible and almost incompressible regimes, allowed maintaining

efficiency in a wide range of Mach numbers (as low as M = 10−6, and as high

as M = 8.96). The algorithm has been extended for multi-component flows

with interfacial physics. Accuracy, stability, and parallel performance have

been rigorously tested in several challenging numerical benchmarks.

Among the most interesting cases of low-Mach number weakly compressible

flows are atmospheric and oceanic flows. An efficient and universal method is

required here to solve a large-scale problem without significant simplifications

of the system of governing equations by removing some of the physical effects

from the consideration. This may improve existing dynamical cores of numeri-

cal weather prediction and climate simulation models. To simulate these flows

using the ADI-type schemes, the direction splitting methodology has to be

extended for the case of spherical shell domains. In Chapter 2, we combined

the ideas of the direction splitting ([42]), artificial compressibility ([44]), and

domain decomposition ([63]) to develop a promising algorithm for the Navier-

Stokes-Boussinesq system in spherical shell geometries. We demonstrate the-

oretically (for the case of a linear parabolic equation) and numerically that

the ADI schemes can be reformulated for spherical coordinates without losing

their stability and accuracy. The artificial compressibility technique used in
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Chapter 2 is inspired by the form of the mass conservation equation in the

low Mach number limit of the compressible NSEs, and thus the method can

be naturally extended to the compressible case. Such extension is presented

in Chapter 3, where ideas of Chapters 1 and 2 are combined to propose a nu-

merical method for weakly compressible flows in spherical geometries, i.e. for

solving the compressible NSEs in spherical coordinates at small and moderate

values of the Mach number. The method is accurate and preserves the correct

scaling of the solution in the incompressible limit (at least for Mach numbers

as low as 10−6), and has excellent parallel scalability on large supercomputers.
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Chapter 1

A numerical method for the

compressible Navier–Stokes

equations in low- and

high-Mach number regimes

1.1 Introduction

The goal of this chapter is to develop an algorithm for solving the compressible

Navier-Stokes equations (compressible NSEs) to be used in various applica-

tions, ranging from supersonic shock-interface or shock-boundary layer inter-

actions to nearly incompressible cases, such as highly subsonic astrophysical

flows. The compressible NSEs have been shown to converge to the incompress-

ible NSEs as the Mach number (M) approaches zero (at least in some sense

under certain conditions, see a review given in Section 1.2.1 for more details).
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However, numerical methods designed for highly compressible flows are known

to experience severe problems in the incompressible limit (see e.g. [50],[49],

main results summarized in Section 1.2.2), such as strict limitations on the

time-step (over-resolution in time) due to the dependence of the Courant-

Friedrichs-Lewy (CFL) constant on the Mach number, and the need for un-

realistically fine meshes (over-resolution in space) due to the incorrect scaling

of the artificial viscosity term. A number of techniques have been proposed in

the literature to overcome these issues, including but not limited to, precondi-

tioners designed to rescale the artificial dissipation term (see e.g. [122],[121]),

and explicit-implicit flux splitting (see e.g. [20],[27],[68], [126]), constructed

to allow for an efficient numerical solution of time-dependent problems (see a

summary in Section 1.2.2). Another way to construct an all-speed algorithm

is to develop an efficient way of solving the fully-implicit Euler system/NSEs.

Linearized block implicit (LBI) factored schemes, such as algorithms from [12],

[9], [10], combine a linearization technique based on Taylor expansions with

an approximate direction splitting factorization strategy. A related scheme is

proposed in this chapter for the compressible NSEs based on a factorization

strategy from [101], (p. 83). Although it had been reported that implicit

algorithms of the ADI-type do not cure the stiffness problem at low Mach

numbers (see [121]), Choi and Merkle demonstrated in [17] that the reason for

the ineffectiveness of these schemes is the splitting error of the factorization,

which dominates the physical fluxes as M → 0. In this study, a reduction

strategy, similar to the one used in [69] for the case of the two-dimensional

Maxwell equations, is employed to solve the issue. It allows for the use of the

method at extremely low Mach numbers without adding extra computational
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cost, as is demonstrated in Sections 1.4.1 and 1.4.3.

Centered-in-space discretization of physical fluxes in a system of hyper-

bolic conservation laws requires an introduction of artificial dissipation terms

to avoid the high-frequency oscillations due to the odd-even decoupling at low

Mach numbers, and spurious oscillations across flow discontinuities for highly

compressible flows. In the proposed algorithm an artificial dissipation term

similar to the one in [48] is added implicitly to the scheme at high Mach num-

bers. A nonlinear adaptive choice of artificial viscosity coefficient based on the

maximum wave propagation speed in local one-dimensional Riemann problems

(see [47] for details) guarantees robust behavior of the method for an arbitrary

system of hyperbolic conservation laws, while being less dissipative than clas-

sical first-order schemes, such as Lax-Friedrichs (see Section 1.4.2 for details).

For the low-Mach number regime this term needs to be rescaled to avoid over-

dissipation, similar to other shock-capturing and artificial viscosity schemes

(see [121], [87], [86]). Instead of using a preconditioning matrix to perform

such rescaling, or introducing a fourth-order difference term, a different ap-

proach is proposed in this study. A novel artificial dissipation term is designed

based on a second-order finite difference with artificial viscosity proportional

to h2. This difference operator is applied to the conservative variables and the

product of conservative variables and the Jacobians. This combination allows

one to maintain control of the kinetic energy and dump high-frequency oscil-

lations, and thus to achieve an efficient solution for low-Mach number flows.

The effectiveness of the proposed stabilization is shown in Section 1.4.1.

Finally, the algorithm allows for the simulation of multicomponent flows

with surface tension. Among conventional methods of simulation of mate-
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rial interfaces are interface-capturing (see e.g. [6],[19],[110],[2],[3],[79],[102]),

interface-tracking (see e.g. [15],[109]), and ghost fluid methods (see e.g. [78]).

The interface-capturing technique based on the advection of the volume of

fluid (VoF) function (similar to [19],[3],[102]) is chosen here alongside the in-

terface sharpening technique from [110] for its numerical efficiency, easiness

of implementation in higher dimensions, ability to automatically deal with

topological changes, and possible implementations of interfacial physics (see

e.g. [96]). Using a diffused interface model and conservative formulation of

the governing equations requires special care to avoid spurious pressure oscil-

lations across the interface and generation of artificial acoustic waves in the

numerical mixture layer (see e.g. [102],[6]). The consistency of the Equation

of State (EOS) in the mixture layer and preservation of contact discontinu-

ity are guaranteed by the appropriate choice of advected flow variables and

their incorporation into the computation of Jacobians and the linearization

procedure, as well as special treatment of the VoF-advection equation that is

consistent with the rest of the governing equations. These results are in line

with the explicit case described in [102] and provide an extension of the LBI

factored schemes to the multicomponent case. The dissipation terms proposed

in this study were also found to preserve the pressure and velocity equilibrium

at interfaces.

The rest of this chapter is organized as follows. Section 1.2 reviews the the-

oretical background and existing literature related to the proposed algorithm

and the types of problems it is designed to tackle. Section 1.3 provides a de-

tailed description of the proposed method, including a new version of the LBI

factored scheme with splitting error reduction (Section 1.3.1), artificial dissi-
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pation terms at high and low Mach numbers (Section 1.3.2), and the extension

of the method to the multicomponent case (Section 1.3.3). The summary of

the algorithm can be found in Section 1.3.5. Numerical test cases are presented

in Section 1.4. Section 1.5 provides some concluding remarks and discussions

on the method and possible directions for future studies.

1.2 Theoretical background and literature re-

view.

1.2.1 Low Mach number limit of compressible flows.

The topic of the low Mach number limit of the compressible Navier-Stokes

and Euler equations has been extensively studied in recent decades. This

section does not attempt to give a comprehensive review of the results and

the literature in this area or explain technical details of the methods typically

used to analyze the limit and prove existence and convergence results. Instead,

it aims to give a brief introduction to the field and present a justification for

the expected behavior of all-speed numerical methods for compressible flows

at small values of the Mach number. For a more comprehensive review please

see [5], [22], [26], [106], among other sources.

In general, the presence of a small parameter in a system of differential

equations may indicate the dependence of its solution on different time-scales.

The limit as the parameter goes to zero is referred to as a singular limit, since

oscillations on the short scale may prevent the convergence of the solution (see

[105]). In particular, the limit of the Mach number (ratio of a characteristic
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velocity of the flow to the sound speed in the fluid) approaching zero is a sin-

gular limit that involves two time-scales (see [5]). This limit is fundamental for

fluid dynamics since it bridges the gap between the mathematical descriptions

of the compressible and incompressible fluid flows ([106]).

Indeed, following the steps outlined in [77], we may consider the non-

dimensionalized compressible Navier-Stokes equations in the isentropic regime,

written in terms of density and velocity (ρ,u)), where µ, ξ, a, and γ are given

parameters:
∂ρ

∂t
+∇ · (ρu) = 0, ρ ≥ 0, (1.1)

∂ρu

∂t
+∇ · (ρu⊗ u)− µ∇2u− ξ∇∇ · u+

∇p
M2

= 0, µ ≥ 0, µ+ ξ > 0, (1.2)

p = aργ, a > 0, γ > 1. (1.3)

and formally obtain the incompressible Navier-Stokes as the limit of (1.1)-(1.3)

when M → 0. The equation of state (1.3) and the momentum equation

(1.2) indicate that ρ = ρ0 + O(M2), where ρ0 can be taken to be equal to 1

without loss of generality. As M → 0, ρ → 1, the mass conservation yields

the divergence-free condition on velocity, and the momentum equation can be

re-written using ∇ργ = ∇(ργ − 1), transforming the system (1.1)-(1.3) into

the incompressible Navier-Stokes system:

∇ · u = 0, (1.4)

∂u

∂t
+∇ · (u⊗ u) +∇π − µ∇2u = 0, (1.5)

where hydrostatic pressure π is the “limit” of renormalized thermodynamic

10



pressure p− 1

M2
. The details of this limiting process, however, are more involved

and may require consideration of additional oscillating terms, depending on

what the initial conditions are (see [77] for further details).

The non-isentropic inviscid case is considered in [50] (note that the deriva-

tion will be essentially the same for the viscous case). The non-dimensionalized

Euler equations can be written as:

∂ρ

∂t
+∇ · (ρu) = 0 (1.6)

∂(ρu)

∂t
+∇ · (ρu⊗ u) +

1

M2
∇p = 0 (1.7)

∂(ρE)

∂t
+∇ · (ρEu+ pu) = 0 (1.8)

where E is the total energy, and the non-dimensional form of the ideal gas

equation of state is given by:

p = (γ − 1)

(
ρE − M2

2
ρ||u||2

)
(1.9)

Next, following [50], we assume the existence of the solution to (1.6)-(1.8) in

the form of an asymptotic expansion in powers of the Mach number:

ρ = ρ0 +Mρ1 +M2ρ2 + ... (1.10)

u = u0 +Mu1 +M2u2 + ... (1.11)

p = p0 +Mp1 +M2p2 + ... (1.12)

E = E0 +ME1 +M2E2 + ... (1.13)
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Substituting the expansions (1.10)-(1.13) into the equations (1.6)-(1.8) and

collecting the terms with equal powers of M , we obtain:

• Order 1
M2

∇p0 = 0, (1.14)

• Order 1
M

∇p1 = 0, (1.15)

• Order 0

∂ρ0
∂t

+∇ · (ρu0) = 0 (1.16)

∂(ρ0u0)

∂t
+∇ · (ρu0 ⊗ u0) +∇p2 = 0 (1.17)

∂(ρ0u0)

∂t
+∇ · (ρE0u0 + p0u0) = 0 (1.18)

The 0-order equation of state becomes:

p0 = (γ − 1)ρ0E0. (1.19)

Thus, from (1.14) and (1.15) we conclude that

p(x, t) = p0(t) +M2p2(x, t) (1.20)

(i.e. the pressure is constant in space up to fluctuations of order M2). If

no open boundaries are present, the thermodynamic pressure p0 may be as-

sumed to be constant in time. Next, from (1.19) ∂ρ0E0

∂t
= ∇(ρ0E0) = 0, and

the energy equation gives the divergence-free condition ∇ · u0 = 0. Using

12



this condition in the mass conservation equation, (1.16) gives zero material

derivative of ρ0, and the 0-order system reduces to the nonhomogeneous in-

compressible Euler equations (i.e. incompressible Euler equations for the case

of non-constant density):

∂ρ0
∂t

+ u · ∇ρ0 = 0, (1.21)

ρ0

(
∂u0

∂t
+∇(u0 ⊗ u0)

)
+∇p2 = 0, (1.22)

∇ · u0 = 0. (1.23)

Thus, as we see from the analysis in [77] and [50], the naive derivation of the

incompressible Navier-Stokes equations from their compressible counterparts

is relatively straight-forward. However, a rigorous mathematical analysis of

M → 0 singular limit is significantly more complicated. Such analysis contains

at least two parts (see [85]): an existence and uniform boundedness result time-

independent of the Mach number, and a convergence result either to the fixed

solution of the limit equations or to a limiting profile. Moreover, the nature of

the low Mach number limit and its analysis depends on several factors (see [4],

[5], [85] for details), such as whether the flow is isentropic or non-isentropic, the

initial data is well-prepared (∇·u(0),∇p(0) = O(M)) or general (ill-prepared),

the domain is bounded, unbounded or periodic, the fluid is viscous or inviscid,

efficient or poor thermal conductor, and whether temperature variations are

small or large. Below we give a brief overview of the results in some of these

cases.

A general framework of quasilinear hyperbolic systems that depend on a
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large parameter was used in [66] to study the behavior of singular limits of

solutions of nonlinear hyperbolic systems and in particular the behavior of so-

lutions of the compressible isentropic Euler and Navier-Stokes equations. This

approach allowed to prove some uniform stability and convergence results for

the Euler and Navier-Stokes equations independent on viscosity using bal-

anced energy estimates (under certain assumptions, e.g. well-prepared, i.e.

incompressible or almost incompressible, initial data). The results from [66]

were further extended in [67]. In particular, assuming global existence of the

solution of the Euler equations for nearby initial data and a uniformly valid

asymptotic expansion on bounded time intervals of the velocity as M → 0,

more general uniform stability estimates independent of M were obtained, as

well as long-term existence for large data solutions of compressible fluid equa-

tions as M → 0. While [66] and [67] considered the isentropic case in the

whole space or periodic domains, a short-time existence result was proven in

[104] for the non-isentropic compressible Euler equations in a bounded domain,

as well as the corresponding convergence results. The case of the isentropic

Euler equations with incompressible initial data in an exterior domain was

also covered in [57] and [58]. The analysis performed in [53], where global

in time uniform convergence of the solutions of the isentropic compressible

Navier-Stokes system to the incompressible solutions was established, under

the assumption of the existence of a reasonable smooth incompressible solu-

tion, reveals that the essential mechanism in this limit process is the hyperbolic

effect that drives density to a constant as the Mach number decreases.

As shown in [123], when the incompressibility assumption of the initial

data is relaxed (i.e. the case of the ill-prepared initial data is considered), it
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is still possible to prove the uniform convergence to the incompressible limit

in the case of the isentropic Euler equations in the whole space domain, but

the uniformity breaks near t = 0 due to the formation of an initial layer.

In this case, the resulting velocity consists of the incompressible limit flow,

and a highly-oscillatory term associated with the sound waves (see [5]). This

highly-oscillatory term can be described by the wave equation, at least locally

in time (see e.g. [70]). The analysis of the low Mach number limit with

ill-prepared initial data is significantly more complicated in the viscous case,

since an additional pressure term is generated in the incompressible limit (see a

discussion in [26] for details). Furthermore, boundary conditions and the type

of the domain have a significant effect on the limit in the case of ill-prepared

initial data. For example, when Dirichlet boundary conditions are imposed

in a generic bounded domain, the acoustic waves are instantaneously dumped

due to a formation of a boundary layer of size
√
M ([24],[25]). Convergence

results for the case of a periodic domain can be found in [21], for the case of

exterior domains see [29].

Consideration of the non-isentropic case with general initial data adds an-

other layer of complexity to the analysis, in particular, due to stronger non-

linearity (the matrix multiplying the time derivative depends strongly on the

dependent variables - see [85] for details). The inviscid case was treated in

[85], where the existence of classical solutions on a time interval independent

of M was proven. The rigorous analysis of the full Navier-Stokes case (includ-

ing effects of large temperature variations and thermal conduction) with some

existence and convergence results can be found in [4], and [5]. The inclusion of

entropy into consideration helps to reveal two distinct routes to incompressibil-
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ity: the low Mach number limit yields the incompressible Navier-Stokes when

entropy variations are small, and nonhomogeneous Navier-Stokes equations

when they are large (see [26]).

In addition to that, the effects of rotation on the low Mach number limit

were considered in [38]. Thus, despite that some questions remain open (e.g.

convergence for data with critical regularity, the case of bounded domains

with more general geometries, and the detailed investigation of the limit for

the full Navier-Stokes system - see a discussion in [22]), the convergence of a

compressible solution to the corresponding incompressible limit is well-justified

under a wide range of conditions, and it is reasonable to expect a well-designed

numerical scheme to maintain its accuracy and efficiency as the Mach number

goes to zero, at least for well-prepared initial data.

1.2.2 All-speed numerical methods.

The purpose of this section is to provide more details on the typical issues that

prevent satisfactory performance of many compressible methods as M → 0 and

give examples of some existing strategies of constructing all-speed methods.

Most methods designed for compressible flows employ explicit time dis-

cretizations, and thus are subject to the CFL stability condition that reads as

τ ≤ h
|λmax| , where τ is the time-step, h is the space-step, and λmax is the fastest

characteristic wave speed, which can be written in terms of flow speed u and

sound velocity c as λmax = u± c (see [20]). In the non-dimensional form this

condition becomes

τ̃ ≤M
h

max |Mũ± c̃|
, (1.24)
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where the tildes denote scaled quantaties (see [20] for details). It is clear

from (1.24) that the time-step restriction becomes more and more severe as

M decreases, leading to larger computational time required (over-resolution

in time). If a flow is time-independent, the number of iterations required to

reach the steady state increases significantly with the decrease of M for the

same reason.

Another common obstacle the compressible solvers face when dealing with

low-Mach number flows is a poor scaling of the artificial dissipation terms used

to stabilize the solution at high Mach numbers. For example, the analysis of

the Roe scheme in [87], which is also applicable for the general Godunov-

type numerical flux functions, reveals that while in the supersonic case the

scaling of the Roe (stabilized) flux is the same as the scaling of the central

(non-stabilized) flux, it becomes inconsistent with the central flux in the sub-

sonic case. The wrong scaling of the artificial dissipation terms significantly

decreases the accuracy of the computations, and the use of unrealistically

fine meshes may be required to produce acceptable results (over-resolution in

space). Furthermore, upwind and Godunov-type schemes were found to gen-

erate pressure fluctuations of the order of O(M), instead of O(M2) that is

expected from the asymptotic analysis of the low Mach number limit (see [50]

and [49]). Such behavior is fundamentally inherent to the Godunov solution

strategy that assumes jumps in the flow variables at the cell interfaces to define

Riemann problems there (see e.g. [87], [49]).

A common strategy to improve the performance of compressible solvers

at low Mach numbers is preconditioning (see e.g. [121], [122],[87],[50], among

other sources). In the steady case, a preconditioner may be used to alter the
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time dependency of the equations to equalize the eigenvalues of the Jacobians,

and thus to cure the stiffness problem that leads to the slow convergence to the

steady-state, as well as to rescale the artificial dissipation term, as it is done

in [122]. If this approach is used, only the steady-state operator is consistent

with the original physical problem, and thus the technique cannot be used

for time-dependent flows. It means that while a suitable preconditioner may

resolve both over-resolution in space and over-resolution in time (i.e. low rate

of convergence) problems for a steady problem, some implicitness of the time-

discretization strategy is required to achieve the same in the case of a time-

dependent flow. Another possible use of a preconditioner for a reformulation

of compressible methods for nearly incompressible flows can be found in [49],

where the fluxes computed by Godunov-type schemes are modified by solving

a preconditioned Riemann problem instead of the original one.

If one wishes to avoid the solution of the full nonlinear Navier-Stokes or

Euler system, an explicit-implicit flux splitting strategy may be developed (see

e.g. [20], [27], [68]). The Asymptotic-Preserving (AP) methodology is often

used to design such schemes (see [20], [27], and references there). Similar to

the continuous compressible model that approaches the incompressible model

as M → 0, a discrete compressible model may be designed to produce a

consistent discretization of the incompressible equations in the limit of zero

Mach number, with an additional requirement that its stability condition is

independent of M . This guarantees that the scheme is consistent with both

compressible and incompressible regimes and can be used for computing mixed

flows where a part of the flow has local Mach number of the order of unity,

and a part of the flow has very small local Mach number ([20]).
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The choice of the implicit-explicit splitting is not unique. In [36] two dif-

ferent approaches were proposed: one based on the splitting of the slow and

fast eigenvalues of the Jacobian matrix of the fluxes and treating only the

“fast” part implicitly, and one based on separating the velocity terms and the

pressure terms and using a fractional step method. Other methods focus on

formulating a pressure equation, e.g. in [20] a suitable elliptic pressure equa-

tion is derived from a semi-implicit methodology where the pressure terms

are treated implicitly while the other terms are treated explicitly. Related

approaches can be found in [68], [27] and references there. Although very

successful, the implicit-explicit flux splitting approach is not without draw-

backs. The stability of several implicit-explicit schemes was analyses in [126],

and among other results a small instability region for the flux splitting from

[68] was found, if this splitting is combined with the IMEX scheme from [90].

Thus, one should be careful when using and implementing these methods, and

their properties should be carefully analyzed.

1.2.3 Hyperbolic conservation laws: Riemann problems

and invariant domains.

The theory of hyperbolic conservation laws and Riemann problems, and related

notions of invariant sets and invariant domains, are in the core of the high-

Mach number stabilization strategy used in this chapter. This subsection

briefly introduces definitions and important properties relevant to the method

described in Section 1.3.2. More detailed and thorough discussions may be

found in [48], [45] and other works referenced there.
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Hyperbolic conservation laws are essential for modeling fluid flows since

the Navier-Stokes system reduces to a system of hyperbolic conservation laws

(Euler equations) when viscous and heat conduction effects are neglected, and

hyperbolic terms of the Navier-Stokes system are responsible for the most

stringent requirements on the numerical methods ([120], Chapter 2). We will

not repeat here the basic theory of hyperbolic partial differential equations,

assuming that the reader is familiar with it (a good introduction may be found

in [120], Chapter 2), limiting the discussion to only a few basic facts directly

relevant to the discussion below.

First, following [120], we define hyperbolic systems of partial differential

equations and systems of conservation laws.

Definition 1.2.1 (from [120], Chapter 2)

A system of partial differential equations

Ut + AUx + B = 0

where U and B are m-dimensional vectors and A is an m×m matrix, is said to

be hyperbolic at a point (x, t) if A has m real eigenvalues and a corresponding

set of m linearly independent (right) eigenvectors. The system is said to be

strictly hyperbolic if the eigenvalues are all distinct.

Definition 1.2.2 (from [120], Chapter 2)

Conservation laws are systems of partial differential equations that can be

written in the form

Ut + F(U)x = 0 (1.25)
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where U is an m-dimensional vector of conserved variables, F = F(U) is the

vector of fluxes.

Thus, a system of conservation laws is hyperbolic, if its Jacobian A(U) =
∂F
∂U

has real eigenvalues {λi} and a complete set of linearly independent eigenvec-

tors {Ki}. λi(U) is also called a characteristics speed.

Definition 1.2.3 (from [120], Chapter 2)

A λi-characteristic field is said to be linearly degenerate if

∇λi(U) · Ki(U) = 0, ∀U ∈ Rm

.

Definition 1.2.4 (from [120], Chapter 2)

A λi-characteristic field is said to be genuinely nonlinear if

∇λi(U) · Ki(U) 6= 0, ∀U ∈ Rm

The precise meaning of the solution of (1.25) for general initial data is

either very technical, or an open problem ([48]), and we concentrate here on

the solutions of one-dimensional Riemann problems formulated for the systems

of hyperbolic conservation laws:

Definition 1.2.5 (from [120], Chapter 2)

The Riemann problem for a general m ×m nonlinear hyperbolic system with

initial data UL, UR is the following initial-value problem:

Ut + F(U)x = 0 (1.26)
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U(x, 0) =


UL if x < 0,

UR if x > 0

(1.27)

The structure of the similarity solution of (1.26)-(1.27) is described in [120],

Chapter 2. It consists of m + 1 constant states separated by m waves, which

can be shock waves, contact waves, or rarefactions ([120], Chapter 2). The

type of waves present depends on the closure of the system (i.e. the equation

of state). If we assume that the constant states UL and UR are connected by

a single wave, the following situations are possible depending on the type of

this wave:

• Shock wave: UL and UR are connected through a jump discontinuity

of speed Si in a genuinely nonlinear field i and the following conditions

are satisfied:

– the Rankine-Hugoniot conditions

F(UR)− F(UR) = Si(UR − UL)

– the entropy condition

λi(UL) > Si > λi(UR)

• Contact wave: UL and UR are connected through a jump discontinuity

of speed Si in a linearly degenerate field i and the following conditions

are satisfied:
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– the Rankine-Hugoniot conditions

F(UR)− F(UR) = Si(UR − UL)

– constancy of the generalized Riemann Invariants across the wave

du1

k
(i)
1

=
du2

k
(i)
2

= ... =
dum

k
(i)
m

where U = (u1, u2, ..., um), Ki = (k
(i)
1 , k

(i)
2 , ..., k

(i)
m ), and dui is the

ratio of change of quantaty ui across the wave structure.

– the parallel characteristic condition

λi(UL) = λi(UR) = Si

• Rarefaction wave: UL and UR are connected through a smooth tran-

sition in a genuinely nonlinear field i and the following conditions are

satisfied:

– constancy of the generalized Riemann Invariants across the wave

du1

k
(i)
1

=
du2

k
(i)
2

= ... =
dum

k
(i)
m

where U = (u1, u2, ..., um), Ki = (k
(i)
1 , k

(i)
2 , ..., k

(i)
m ), and dui is the

ratio of change of quantaty ui across the wave structure.
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– divergence of characteristics

λi(UL) < λi(UR)

Following [48], we assume that there exists a nonempty admissible set

A ⊂ Rm such that for any pair of states (UL,UR) ∈ A × A and any unit

vector n ∈ Rd, the following one-dimensional Riemann problem

Ut + ∂x (F(U)n) = 0, (x, t) ∈ R× R+, (1.28)

U(x, 0) =


UL if x < 0,

UR if x > 0

(1.29)

has a unique entropy satisfying self-similar solution U(n,UL,UR, ξ), where

ξ =
x

t
. An important result for the formulation of the stabilization method

for the high-Mach number regime is the existence of a maximum wave speed,

denoted as λmax(n,UL,UR), such that

U(n,UL,UR, ξ) = UL if ξ ≤ −λmax(n,UL,UR)

and

U(n,UL,UR, ξ) = UR if ξ ≥ λmax(n,UL,UR)

(see [48], [45], [47] for details).

When the notion of a Riemann problem is clearly defined, invariants sets

can be introduced as:

Definition 1.2.6 (from [48])
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We say a set B ⊂ A ⊂ Rm is invariant for

Ut + F(U)x = S(U), for (x, t) ∈ Rd × R+,

U(x, 0) = U0(x), for x ∈ Rd.

if B is convex and for any pair (UL,UR) ∈ B × B, any unit vector n ∈ Rd,

and any t > 0 such that tλmax(n,UL,UR) ≤ 1
2
, the average of the entropy

solution of the Riemann problem (1.28)-(1.29) over the Riemann fan, say

Ũ(t,n,UL,UR), remain in B, and if there exists τ0 > 0 such that for any

U ∈ B and any τ ≤ τ0 the quantity U + τS(U) is in B.

Now, if one considers an approximation process Rh, the notion of invariant

domains can be defined as (see [48] for a more rigorous explanation):

Definition 1.2.7 (from [48])

A convex invariant set B ⊂ A ⊂ Rm is said to be an invariant domain for Rh

if and only if for any state U in B, the state Rh(U) is also in B.

The notions of the invariant sets and invariant domains are extensions of the

maximum principle for scalar conservation laws to the case of nonlinear hy-

perbolic systems, and thus the preservation of the invariant domains is an

important characteristic of a numerical method. Such preservation is achieved

in [48], [45] by using λmax to introduce artificial dissipation terms to a finite

elements numerical scheme. This technique was a foundation for the finite-

difference stabilization proposed in Section 1.3.2.
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1.3 Numerical algorithm.

1.3.1 Linearized block ADI method and error reduction.

Governing Equations and Linearization.

In order to avoid numerical errors introduced by non-conservative schemes

in the presence of shock waves (see [54],[64]), we consider the compressible

Navier-Stokes equations in conservative form. We demonstrate the ideas on

the 2D version of the equations but the proposed schemes extend easily to

three dimensions. For the single-component case, the system can be written

as (see [10]):

∂U

∂t
+
∂F(U)

∂x
+
∂G(U)

∂y
=
∂V1(U,Ux)

∂x
+
∂V2(U,Uy)

∂x

+
∂W1(U,Ux)

∂y
+
∂W2(U,Uy)

∂y
,

(1.1)

where U = (ρ,m, n,E) is the vector of conservative variables (density, momen-

tum in x and y direction, and total energy), F and G are the fluxes associated

with the Euler system, and V1, V2, W1, W2 are the fluxes associated with

the viscous stress tensor (see Appendix A for details).

Using the mixed implicit-explicit Euler time discretization, one can write

a semi-discrete version of (1.1) as:

Un+1 −Un

τ
+
∂Fn+1(U)

∂x
+
∂Gn+1(U)

∂y
=
∂Vn+1

1 (U,Ux)

∂x
+
∂Vn

2 (U,Uy)

∂x

+
∂Wn

1 (U,Ux)

∂y
+
∂Wn+1

2 (U,Uy)

∂y
,

(1.2)
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where τ is the time step. Due to the nonlinearity of the fluxes F, G, V1, and

W2, the space-discretization of (1.2) produces a nonlinear system of algebraic

equations. To approximate the solution of the nonlinear system, a simple lin-

earization, similar to the one in [12], can be employed:

Fn+1 = Fn +

(
∂F

∂U

)n
(Un+1 −Un) (1.3)

Gn+1 = Gn +

(
∂G

∂U

)n
(Un+1 −Un) (1.4)

Vn+1
1 = Vn

1 +

(
∂V1

∂U

)n
(Un+1 −Un) +

(
∂V1

∂Ux

)n
(Un+1

x −Un
x) (1.5)

Wn+1
2 = Wn

2 +

(
∂W2

∂U

)n
(Un+1 −Un) +

(
∂W2

∂Uy

)n
(Un+1

y −Un
y ). (1.6)

Substituting expressions (1.3)-(1.6) into (1.2) and combining explicit terms

(denoted as Rn) and implicit terms in corresponding directions (denoted as

AxU
n+1 and AyU

n+1), equation (1.2) can be written as:

(I + τAx + τAy)U
n+1 = τRn. (1.7)

Folowing the approach in [101] (p.83), equation (1.7) can be approximated by

the following factorized equation:

(I + τAx)(I + τAy)U
n+1 = τRn, (1.8)

with splitting error ER(Un+1
k ) = τ 2AxAyU

n+1, and solved as a sequence of
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two one-dimensional problems

(I + Ax)Û
n+1 = τRn (1.9)

(I + Ay)U
n+1 = Ûn+1. (1.10)

Each of these problems requires the solution of block-tridiagonal linear systems

only, which can be performed by a block-tridiagonal extension of the Thomas

algorithm for tridiagonal systems (e.g. see [31], Volume 1, pp.188-189). The

parallel implementation of the Thomas algorithm using the Schur complement

technique and domain decomposition, as described in [42], can be easily ex-

tended for the block-tridiagonal version of the linear solver. Weak scalability

results for this method can be found in Section 1.4.4.

Remark 1.3.1 The method can be reformulated for different, more accurate

time-marching schemes and different splitting strategies to improve accuracy.

Here the implicit Euler method and the splitting from [101], (p.83) are chosen

for their simplicity and robustness. In particular, this splitting allows for a

multicomponent factorization of non-commutative operators. Therefore, an

extension of the method to the three-dimensional case is possible. However,

more accurate second-order splitting developed in Chapters 2 and 3 can also

be employed here.

Splitting error reduction.

The splitting error introduced by the factorization (1.8) has been found to grow

as the Mach number approaches zero, while in one dimension the LBI factored
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schemes demonstrate a performance similar to the artificial compressibility

method (see [17] for details). There are several possible ways of reducing the

error (see [13] for a review). One of the possibilities is to perform the following

iterations (here the subscript denotes the iteration level):

(I + Ax)Û
n+1
k+1 = τRn + ER(Un+1

k ) (1.11)

(I + Ay)U
n+1
k+1 = Ûn+1

k+1 , (1.12)

with Un+1
0 = Un. This reduction strategy is similar to the one used in [69] in

the context of the two-dimensional Maxwell equations. None of the test cases

presented in this chapter required more than one iteration, i.e. simple addition

of ER(Un) to the right-hand-side of the system provided sufficient reduction

of the splitting error for the tests with low-Mach number flows. Hence, at

every time step the following system was solved:

(I + Ax)Û
n+1 = τRn + ER(Un) (1.13)

(I + Ay)U
n+1 = Ûn+1. (1.14)

Note that the proposed technique is equivalent to the preconditioned Richard-

son iterative method (see e.g. [100], Chapter 6) applied to the linearized

system (1.7). Indeed, if

A = I + τAx + τAy (1.15)
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a preconditioner can be defined as:

P−1 = ((I + τAx)(I + τAy))
−1 . (1.16)

Then A = P − ER where ER = τ 2AxAy. Then, the system (1.11)-(1.12) is

equivalent to

PUn+1
k+1 = ERUn+1

k + τRn (1.17)

or alternatively

Un+1
k+1 = Un+1

k + P−1rk (1.18)

rk = τRn − AUn+1
k . (1.19)

With this preconditioner the iterative method converges very rapidly.

1.3.2 Stabilization.

Guermond-Popov (GP) artificial viscosity scheme.

In the supersonic regions of the flow, we need to introduce stabilization terms

to dissipate the high-frequency oscillations associated with higher-order spatial

discretizations. We use the idea behind the finite element stabilization method

for general hyperbolic systems, proposed in [48] (see [46] for the PDE-version

of the Guermond-Popov invariant-domain preserving regularization). It can

be reformulated in terms of finite differences as follows:

Un+1
i,j −Un

i,j

τ
+

F̂n
i+ 1

2
,j
− F̂n

i− 1
2
,j

hx
+

Ĝn
i,j+ 1

2

− Ĝn
i,j− 1

2

hy
= 0 (1.20)
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with numerical numerical fluxes:

F̂n
i+ 1

2
,j
=

Fn
i+1,j + Fn

i,j

2
− λi+1,j

(
Un
i+1,j −Un

i,j

)
. (1.21)

Artificial viscosity coefficients are defined here as:

λi+1,j = λmax(U
n
i+1,j,U

n
i,j), (1.22)

with λmax(Ul,Ur) being a maximum wave speed estimation for the corre-

sponding local one-dimensional Riemann problem with initial conditions given

by Ul and Ur (see [48],[47] for details).

The original algorithm is fully explicit and preserves all the convex invari-

ant sets, which, in the case of the Euler system, guarantees positivity of density

and internal energy, and produces a solution that satisfies the entropy inequal-

ity for every entropy pair of a hyperbolic system (see [48] for details). These

properties are essential for obtaining an approximation of the physical solu-

tion to the Euler equations and are achieved without any extra constructions

(such as flux limiters or non-oscillatory reconstructions). Unlike Godunov-

type schemes, the method does not require an exact or approximate solution

of local Riemann problems. Only an estimation of the maximum speed of wave

propagation is needed. The efficiency of the algorithm depends on the particu-

lar method used to obtain the estimation. The estimation procedure proposed

in this study can be found in Section 1.3.4. The procedure is developed for

the case of multiple components obeying Stiffened Gas EOS and includes the

effects of surface tension.
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Remark 1.3.2 The original finite element first-order method has been em-

ployed to construct a second-order invariant domain preserving approximation

– see [45]. There invariant domain preserving auxiliary solutions obtained

from the first-order method are used to define local bounds for a high-order,

invariant domain violating but an entropy-consistent algorithm, via a convex

limiting process.

Remark 1.3.3 If λmax(Ul,Ur) = h
4τ

, the finite difference version of the

method reproduces the classical Lax-Friedrichs scheme. Due to the nonlinear

definition of λmax through the maximum wave speed of the local one-dimensional

Riemann problems, the GP-method achieves the same level of robustness as

the Lax-Friedrichs scheme while maintaining sharper flow discontinuities (see

Section 1.4.2 for comparison).

As can easily be seen by substituting expression (1.21) into equation (1.20),

the method adds a second-order artificial dissipation term of the type (GP-

dissipation term):

DGPU = hx
∂

∂x

[
λmax

∂

∂x
Un+1

]
+ hy

∂

∂y

[
λmax

∂

∂y
Un+1

]
(1.23)

to the original explicit centered-in-space scheme. The same second-order sta-

bilizing term can be added to the implicit scheme for the compressible NSEs

in the high-Mach number regime, and this is equivalent to defining the inviscid

fluxes as:

F̂n+1
i+ 1

2
,j
=

Fn+1
i+1,j + Fn+1

i,j

2
− λi+1,j

(
Un+1
i+1,j −Un+1

i,j

)
, (1.24)
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and applying the same linearization and factorization procedures after that.

This implicit treatment of the dissipation term does not disrupt the block-

tridiagonal nature of the resulting linear system and therefore does not increase

the cost of the computations.

Damping of high-frequency oscillations.

Like other artificial dissipation terms designed for stabilization around strong

shocks, DGPU starts dominating the physical solution as the Mach number

approaches zero. Indeed, in the incompressible limit (where the velocity of the

flow is small comparing to the speed of sound, |u| � c), the maximum wave

speed λ = λmax = u ± c ∼ c. The perturbed Euler system in one dimension

can be written as:

∂ρ

∂t
+

∂

∂x
(ρu)− h

∂

∂x

(
λ
∂

∂x
ρ

)
= 0 (1.25)

∂ρu

∂t
+

∂

∂x

(
ρu2 + p

)
− h

∂

∂x

(
λ
∂

∂x
(ρu)

)
= 0 (1.26)

∂E

∂t
+

∂

∂x
((E + p)u)− h

∂

∂x

(
λ
∂

∂x
E

)
= 0. (1.27)

Then, introducing the characteristic scales: length L, density ρ̃, and velocity

Ũ , dimensionless variables can be defined as x∗ = x
L

, ρ∗ = ρ
ρ̃
, u∗ = u

Ũ
, t∗ = t

Ũ/L
,

M = Ũ
c
, p∗ = p

ρ̃c2
, and E∗ = E

ρ̃c2
.

Since λ ∼ c, the system can be rewritten in the following non-dimensional

form:
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∂ρ∗

∂t∗
+

∂

∂x∗
(ρ∗u∗)− h

M

∂2

(∂x∗)2
ρ∗ = 0 (1.28)

∂ρ∗u∗

∂t∗
+

∂

∂x∗

(
ρ∗ (u∗)2 +

p∗

M2

)
− h

M

∂2

(∂x∗)2
(ρ∗u∗) = 0 (1.29)

∂E∗

∂t∗
+

∂

∂x∗
((E∗ + p∗)u∗)− h

M

∂2

(∂x∗)2
E∗ = 0. (1.30)

Hence, the artificial dissipation term indeed becomes dominant as M → 0 if h

is fixed.

At low Mach numbers, the following dissipation term is proposed in this

chapter (Low-Mach (LM-) dissipation term):

DLMUn+1 = DLM
1 Un+1 + DLM

2 Un+1 =

h2ω1∇2Un+1 + h2ω2

(
∂2

∂x2

[(
∂F

∂U

)n
Un+1

]
+

∂2

∂y2

[(
∂G

∂U

)n
Un+1

])
,

(1.31)

where ω1 and ω2 are scalar dimensionless parameters.

The purpose of the first term here (which is the same as the GP-term with

λ ≡ h) is to drain off the kinetic energy and thus maintain the overall stability

of computations. The second and the third terms are used to regularize the

entries of the corresponding matrix operator and connect odd and even nodes,

which are decoupled due to the use of the centered-in-space discretization

for hyperbolic fluxes. Jacobians provide proper weights for every variable

depending on the magnitude of its contribution to the linearized flux. The

effects of both of these terms at different values of the Mach number are
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illustrated by numerical examples in Section 1.4.1.

Remark 1.3.4 A related idea of matching the scaling of the artificial viscosity

matrix with the scaling of the Jacobians to stabilize the system in the low-Mach

number limit was used in [87] in the context of the Roe-Turkel scheme. How-

ever, here instead of choosing scaling parameters to match orders of magnitude

of the Jacobian’s components, these components themselves are used in the sta-

bilizing term. This was found to be more efficient in the context of the present

scheme. Furthermore, as is revealed in Section 1.3.3, this artificial dissipation

term does not disrupt the velocity and pressure equilibrium at interfaces and

is therefore compatible with the Volume of Fluid method.

As for the GP-dissipation term, the LM-term can be straightforwardly

incorporated into the factorization strategy with direction splitting. Since the

splitting error due to the LM-term involves the components of the Jacobian, it

should be taken into account while performing the reduction strategy described

above.

If the flow under consideration features regions of low and high Mach num-

bers, switching between LM- and GP-dissipation terms can be performed based

on the local Mach number Mloc as follows:

DUn+1 = k(HM)DGPUn + k(LM)DLMUn, (1.32)

where k(HM), k(LM) are scalar dimensionless parameters to be defined. Using

an approximation to the Heaviside function and setting a threshold Mach
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number Mtr, k(HM) and k(LM) are defined as:

k(HM) =
1

1 + e−2k(Mloc−Mtr)
, (1.33)

k(LM) = 1− k(HM), (1.34)

where k is a scalar parameter.

The described strategy has been shown to be efficient for Mach numbers

as low as M = 10−6. See Section 1.4.1 for details and numerical illustrations.

Remark 1.3.5 The parameters ω1 and ω2 still have to be tuned manually de-

pending on the particular application. A rigorous theoretically justified adaptive

scaling of these coefficients can lead to an improvement of the algorithm.

The operators Ax and Ay are then redefined to include the implicit artificial

dissipation terms in the corresponding directions.

1.3.3 Multicomponent case.

The interface capturing is based on the following advection equation for the

volume of fluid (VoF) function φ (see e.g. [6],[102],[2],[3],[79],[19]):

∂φ

∂t
+ u · ∇φ = 0, (1.35)

where u = (m
ρ
, n
ρ
) = (u, v) is the flow velocity. Initially, φ is set to 1 for

the first fluid and 0 for the second one. Due to numerical diffusion, this initial

discontinuity is smoothed out and leads to the formation of an artificial mixing

layer where φ ∈ (0, 1). EOS parameters have to be consistently defined in the
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layer to avoid spurious pressure oscillations that appear when a conservative

formulation is employed (see e.g. [6],[79],[3],[64]). Here we use the Stiffened

Gas EOS (SG EOS) (see [32]):

p = (γ − 1)ρe− γπ∞, (1.36)

where γ and π∞ are constants for a given fluid, e is the internal energy, defined

implicitly through

E = ρe+ ρ
u2 + v2

2
. (1.37)

Barotropic Mixture Laws.

The SG EOS is commonly used to model compressible multicomponent flows

of gases, liquids, and solids (e.g. air, water, copper, uranium) (see [19] for

details). Note that the ideal gas EOS is a particular case of the SG EOS with

π∞ = 0.

If ρi, ei, pi (i = 1, 2) are density, internal energy and pressure of corre-

sponding fluids, then:

ρ = φρ1 + (1− φ)ρ2 (1.38)

ρe = φρ1e1 + (1− φ)ρ2e2 (1.39)

p = φp1 + (1− φ)p2. (1.40)

In the regions of pure fluid 1 or pure fluid 2, the pressure is given by the EOS

(1.36). In the artificial mixing layer, where both components are present, the
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following condition must be satisfied (see [6]):

p1 = p2 = p. (1.41)

Then

ρe = φ
p+ γ1π1
γ1 − 1

+ (1− φ)
p+ γ2π2
γ2 − 1

=

p

(
φ

γ1 − 1
+

1− φ

γ2 − 1

)
+

(
φγ1π1
γ1 − 1

+
(1− φ)γ2π2
γ2 − 1

)
,

(1.42)

which leads to the following definition of the proper averaging for the EOS

coefficients in the mixing layer (γ, π∞):

α =
1

1− γ
= φ

1

1− γ1
+ (1− φ)

1

1− γ2
(1.43)

β =
π∞γ

1− γ
= φ

π∞
1 γ1

1− γ1
+ (1− φ)

π∞
2 γ2

1− γ2
. (1.44)

Further considerations will reveal the important role of the parameters α and

β in preserving contact discontinuities at interfaces.

Preservation of contact discontinuities at interfaces.

Another requirement needed to preserve the pressure and velocity equilibrium

in multicomponent flows is that if the velocity and pressure are constants at

the interface at time tn they remain constants at tn+1 (preservation of a contact

discontinuity at interfaces) (see [102] for details):

if uni = u = const and pni = p = const for any i, then un+1
i = u and pn+1

i = p.

To avoid technicalities, the one-dimensional inviscid case will be considered
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here. The following analysis can be easily extended to the multidimensional

case. The viscous part of the equations does not disrupt the velocity and

pressure equilibrium since it only involves terms with velocity derivatives. We

include high- and low-Mach number stabilization terms in the analysis to show

that both satisfy the contact discontinuity preservation property.

For a one-dimensional inviscid flow, system (1.8) becomes (see Appendix

A for details):

Un+1 + τ
∂

∂x

[(
∂F

∂U

)n
Un+1

]
= Un + τ

∂

∂x

[(
∂F

∂U

)n
Un − Fn

]
+τD1(U

n+1) + τD2(U
n+1) + τD3

[(
∂F

∂U

)n
Un+1

]
,

(1.45)

where

D1(U
n+1) = k(HM)h

∂

∂x

[
λ
∂

∂x
Un+1

]
(1.46)

D2(U
n+1) = k(LM)h2

∂2

∂x2
Un+1 (1.47)

D3

[(
∂F

∂U

)n
Un+1

]
= k(LM)h2

∂2

∂x2

[(
∂F

∂U

)n
Un+1

]
. (1.48)

Here, α and β are included in the set of variables, thus extending the set

U = (ρ,m,E) to U = (ρ,m,E, α, β) = (ρ, ρu, ρu
2

2
+ β + αp, α, β)). The

advection equation for the interface is written for α and β, rather than for the

VoF function φ. The following analysis reveals that this is the natural choice

of variables to guarantee the desired preservation property.

Given that uni = u and pni = p, it is assumed that the same holds at the
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next time level, i.e. un+1
i = u and pn+1

i = p. Then, we check if this assumption

provides the solution for the discrete linearized mass, momentum and energy

equations.

Using Appendix A:

Fn =

[
ρnu ρnu2 + p ρnu3

2
+ uβn + upαn + up

]T
(1.49)

(
∂F

∂U

)n
=


0 1 0 0 0

−u2 + u2

2αn 2u− u
αn

1
αn

p
αn − 1

αn

δ1 δ2 u
(
1 + 1

αn

)
− up
αn − u

αn

 (1.50)

where δ1 = −

(
αnp+p+βn+ ρnu2

2

)
u

ρn
+ u3

2αn , δ2 =
αnp+p+βn+ ρnu2

2

ρn
− u2

αn .

(
∂F

∂U

)n
Un =

[
uρn u2ρn u3ρn

2
+ uβn + upαn

]T
(1.51)

(
∂F

∂U

)n
Un+1 =

[
uρn+1 u2ρn+1 u3ρn+1

2
+ uβn+1 + upαn+1

]T
. (1.52)

Hence, (
∂F

∂U

)n
Un − Fn =

[
0 −p −up

]T
(1.53)

and
∂

∂x

[(
∂F

∂U

)n
Un − Fn

]
=

[
0 0 0

]T
. (1.54)
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Using (1.51) the mass conservation equation in a discrete form reads as:

ρn+1
i + τu

ρn+1
i+1 − ρn+1

i−1

h
− ρni −D1(ρ

n+1)−D2(ρ
n+1)−D3(uρ

n+1) = 0, (1.55)

and the momentum conservation as:

ρn+1
i u+ τu2

ρn+1
i+1 − ρn+1

i−1

h
− ρni u−D1(ρ

n+1u)−D2(ρ
n+1u)

−uD3(ρ
n+1u) =

u

(
ρn+1
i + τu

ρn+1
i+1 − ρn+1

i−1

h
− ρni −D1(ρ

n+1)−D2(ρ
n+1)

−uD3(ρ
n+1)

)
= 0,

(1.56)

which is satisfied if (1.55) is. Hence, the assumed solution satisfies the mass

and momentum parts of (1.45). It was achieved by including α and β into the

set of variables. The energy equation can be written as:

En+1 + τu

(
ρn+1
i+1 u

2 − ρn+1
i−1 u

2

2h
+
βn+1
i+1 − βn+1

i−1

h
+ p

αn+1
i+1 − αn+1

i−1

h

)
−En −D1(E

n+1)−D2(E
n+1)−D3(uE

n+1) = 0.

(1.57)

Expressing energy through the EOS as E = αp+ u2

2
ρ+ β, and substituting it

into the previous equations allows one to rewrite it as:
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u2

2

(
ρn+1
i + τu

ρn+1
i+1 − ρn+1

i−1

h
− ρn −D1(ρ

n+1)−D2(ρ
n+1)−

uD3(ρ
n+1)

)
+

p

(
αn+1
i + τu

αn+1
i+1 − αn+1

i−1

h
− αn −D1(α

n+1)−D2(α
n+1)

− uD3(α
n+1)

)
+

(
βn+1
i + τu

βn+1
i+1 − βn+1

i−1

h
− βn −D1(β

n+1)−D2(β
n+1)

− uD3(β
n+1)

)
= 0.

(1.58)

The expression in the first brackets in equation (1.58) is zero if the mass

equation (1.55) is satisfied. The expressions in the second and third brackets

are equal to zero if the discretization of the advection equations for α and β:

∂α

∂t
+ u · ∇α = 0 (1.59)

and
∂β

∂t
+ u · ∇β = 0, (1.60)

is the same as for the energy equation:

αn+1
i − αni

τ
+ un

αn+1
i+1 − αn+1

i−1

h
−D1(α

n+1)−D2(α
n+1)

−D3(u
nαn+1) = 0

(1.61)

βn+1
i − βni

τ
+ un

βn+1
i+1 − βn+1

i−1

h
−D1(β

n+1)−D2(β
n+1)

−D3(u
nβn+1) = 0.

(1.62)
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This analysis can be trivially extended to the multidimensional case, where

the same argument leads to the use of the same factorization and splitting

error reduction strategies for the interfacial advection as for the rest of the

system.

Hence, similar to the Godunov-Rusanov scheme from [102], the contact

discontinuity preservation condition determines the discretization of the ad-

vection equation for the VoF function. Furthermore, this analysis reveals that

the parameters α and β are the natural choice for advected variables and

should be taken into account when constructing the Jacobians and performing

the linearization.

However, solving two similar advection equations for both α and β can be

avoided. Indeed, they both follow from the solution of (1.35) and (1.43)-(1.44).

φn+1 can be found before updating other variables and used to compute αn+1

and βn+1. This allows one to compute their contributions to the remaining

system as a part of the right-hand-sides of (1.9)-(1.10).

In the most general case, the VoF function is updated through an iterative

(until the overall splitting error is reduced enough) solution of:

(I + τun∂x − τDx)φ̂
n+1
k+1 = φn + ER(φn+1

k ) (1.63)

(I + τvn∂y − τDy)φ
n+1
k+1 = φ̂n+1 (1.64)

where

Dxφ = k(HM)h
∂

∂x

[
λ
∂

∂x
φ

]
+ k(LM)h2

∂2φ

∂x2
+ k(LM)h2

∂2

∂x2
(unφ) , (1.65)

43



Dyφ = k(HM)h
∂

∂y

[
λ
∂

∂y
φ

]
+ k(LM)h2

∂2φ

∂y2
+ k(LM)h2

∂2

∂y2
(vnφ) , (1.66)

ER(φn+1
k ) = τ 2(un∂x − Dx)(v

n∂y − Dy). (1.67)

Interface sharpening.

Interface-capturing schemes are known to diffuse interfaces during the course

of computations, due to the introduction of artificial dissipation. A sharpening

algorithm is proposed in [110] to keep the width of the interface constant (typ-

ically several grid cells). To achieve this, ρ and φ are updated by solving the

Euler explicit discretization of the following artificial compression equations

until a steady state with some predefined tolerance tol:

∂ρ

∂T
= H(φ)n · (∇ (εhn · ∇ρ)− (1− 2φ)∇ρ) (1.68)

∂φ

∂T
= n · (εh|∇φ| − φ(1− φ)), (1.69)

where T is an artificial time-like parameter, εh is the parameter that controls

the thickness of the interface, and

H(φ) = tanh((
φ(1− φ)

10−2
)2), (1.70)

is a regularized δ-function that limits the artificial compression to the in-

terfacial layer and prevents the density update to influence other types of

discontinuities, such as shock waves.

The parameter εh is typically chosen to be proportional to the grid size, as

εh = ε · h, where ε is a scalar dimensionless parameter to be defined for each
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particular application. The algorithm is robust and efficient, even for high

density ratios.

However, this algorithm also maintains a relatively sharp interfacial profile

that hampers the computation of the interface normal. Therefore, [110] pro-

posed to use the following function:

ψ =
φα

φα + (1− φ)α
, α < 1 (1.71)

for computation of the normal vector, as:

n =
∇φ
|∇φ|

=
∇ψ
|∇ψ|

. (1.72)

Surface tension effects.

One of the advantages of the interface-capturing approach is a relatively straight-

forward implementation of surface tension interfacial effects, which can be

incorporated into the model by adding a continuous surface force (CSF) ex-

plicitly to the governing equation. Reference [96] proposes two possible ap-

proaches, non-conservative and conservative formulations of the CSF.

The first approach adds the following contributions to the momentum and

energy equations (assuming that φ = 1 for the liquid phase, φ = 0 for the gas

phase):

FST
m = σκ∇φ (1.73)

FST
E = σκu · ∇φ, (1.74)
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where σ [N
m
] is the surface tension coefficient, κ = −∇ · ∇φ

|∇φ| is the interfacial

curvature.

An alternative way is to redefine the total energy by including a term

associated with the interfacial energy:

Ê = E + σ|∇φ| (1.75)

and write the CSF as:

FST
m = −∇ ·

(
−σ
(
|∇φ|Î− ∇φ⊗∇φ

|∇φ|

))
(1.76)

FST
E = −∇ ·

(
−σ
(
|∇φ|Î− ∇φ⊗∇φ

|∇φ|

)
· u
)
. (1.77)

The authors of [96] claim that the conservative approach (i.e. equations

(1.76), and (1.77)) may lead to an attenuation of parasitic currents (see [59],[60]),

however other researchers (see [33]) associate the parasitic currents with cur-

vature computations and related errors, rather than a surface tension model.

A comparison of different CSF models and curvature approximations in the

context of the present numerical method is outside of the scope of this study.

In this study, the non-conservative approach is used, and the interfacial

curvature is computed based on the interfacial normal defined by (1.72) and

the centered-in-space discretization.

Remark 1.3.6 The present method allows for a simple extension: the CSF

can be added implicitly (in the conservative or non-conservative formulation)

as another flux and linearized similarly as all the other fluxes in (1.2). It may

be expected that such implicitness in the computation of CSF could help to
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relax the CFL conditions associated with capillary effects, which is of the type

τ ≤ const ·
(
h3

σ

) 1
2 (see [33]).

1.3.4 Maximum speed estimation for the multicompo-

nent Stiffened Gas EOS.

The Guermond-Popov artificial viscosity algorithm requires an estimation from

above of the maximum speed of propagation in local one-dimensional Riemann

problems. The procedure proposed in [47] has to be modified for the multi-

component case when both fluids obey the SG EOS, and the interfacial jump

in pressure is present due to the interfacial curvature and surface tension. Sup-

pose the following parameters are given: (ρl, ul, el, pl, γl, π∞
l ,φl) and (ρr, ur,

er, pr, γr, π∞
r ,φr), and each of them obeys the EOS:

pz = (γz − 1)ρzez − γzπ
∞
z (1.78)

where z = l, r. The speed of sound can be computed as:

cz =

√
γz(pz + π∞

z )

ρz
. (1.79)

The following one-dimensional Riemann problem is considered (see [47] for

details):

∂tU+ ∂x(F(U) · n)) = 0, (1.80)

where n is a unit vector normal to a face of a finite difference cell, with the

piecewise constant initial conditions described above. The problem is strictly
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hyperbolic and its solution consists of two genuinely nonlinear waves (shock or

rarefaction) and one linearly degenerate middle wave (contact discontinuity)

connecting left and right initial states (see [120], Chapter 4 for details). The

VoF function φ is assumed to have zero jumps across shock and rarefaction

waves, and contact discontinuities. If λ−1 and λ+3 are two extreme wave speeds,

a maximum speed of wave propagation is defined as:

λmax = max((λ−1 )−, (λ
+
3 )+), (1.81)

where (λ−1 )− = max(0,−λ−1 ), (λ+3 )+ = max(0, λ+3 ). This is the quantity used

in the GP dissipation term.

Denoting intermediate pressures by p∗l and p∗r, the following interfacial

condition must be satisfied:

p∗r = p∗l + κσ, (1.82)

where κ = −∇· ∇φ
|∇φ| is the interfacial curvature. The case of σ = 0 is considered

first, then an extension of the proposed solution for nonzero values of σ is

discussed.

Similar to the ideal gas case, described in [120], Chapter 4, the function

η(p) = fl(p) + fr(p) + ur − ul (1.83)
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is considered, where fz is a shock curve if p ≥ pz

fz(p) = (p− pz)

√
2

(γz + 1)ρz

(
p+

γz − 1

γz + 1
pz +

γz
γz + 1

π∞
z

)− 1
2

(1.84)

and a rarefaction curve otherwise (see [51])

fz(p) =
2cz
γ − 1

((
p+ π∞

z

pz + π∞
z

) γz−1
2γz

− 1

)
(1.85)

with z = l, r.

An intermediate pressure p∗l = p∗r = p∗ is given then as a solution of (see

[120], Chapter 4):

η(p∗) = 0. (1.86)

If it is solved for p∗, then

λ−1 = ul − cl, λ
+
3 = ur + cr (1.87)

for rarefaction waves, and

λ−1 = ul −
Ql

ρl
, λ+3 = ur +

Qr

ρr
(1.88)

for shocks, where Qz are the corresponding mass fluxes,

Qz =

√
(p∗ + γ−1

γ+1
pz +

γ
γ+1

π∞
z )(γz + 1)ρz

2
. (1.89)

Finally,

λmax = max((λ−1 )−, (λ
+
r )+). (1.90)
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Now, since both fl and fr are monotonically increasing and concave down, the

Newton-Secant method can be used to solve (1.86) for p∗. Given p1n < p∗ < p2n

one can compute

p1n+1 = p1n −
η(p1n)

η′(p1n)
(1.91)

p2n+1 = p2n − η(p2n)
p2n − p1n

η(p2n)− η(p1n)
(1.92)

until convergence. The procedure gives the estimation of p∗ from above and

below, which is used to estimate the maximum speed of propagation.

Shocks and rarefaction waves can be distinguished by using the signs of

η(pl) and η(pr) (positive for rarefaction waves, negative for shock waves). If

both waves are rarefaction waves, p∗ is not needed for the speed estimation

and the iterative process can be skipped by immediately computing the wave

speeds.

Assuming now a non-zero σ, (1.83) can be reformulated as:

fl(p
∗
l ) + fr(p

∗
r) + ur − ul = 0 (1.93)

which needs to be solved in terms of one of the pressures, then the other one

can be computed using (1.82) if needed (i.e. if the corresponding wave is a

shock).

1.3.5 Summary of the method.

The overall algorithm can be summarized in the pseudocode format as follow-

ing:
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t = 0

Define initial conditions for [ρ,m, n,E, φ]

Compute u0,v0,p0

Initialize φ0 and ρ0 using the interface sharpening procedure (Section 1.3.3)

Initialize U0 = [ρ0,m0, n0, E0, α0, β0] using φ0,ρ0,u0,v0

n = 0

DO WHILE t < Tend

t = t+ τ

Compute all the Jacobian matrices using Un (see Appendix A)

Compute all the artificial viscosity coefficients for the GP-dissipation

term

IF (reduction (Section 1.3.1) is on) THEN

Un+1
0 = Un, φn+1

0 = φn

ELSE

Un+1
0 = 0, φn+1

0 = 0

END IF

k = 0

DO WHILE (ER(Un+1
k ) > tolerance)

Solve advection of the VoF function ((1.63) and (1.64)) for φn+1
k+1

Solve (1.11) and (1.12) for Un+1
k+1

Compute ER(Un+1
k+1)

k = k+1

END DO

Compute un+1, vn+1, and pn+1

Use interface sharpening (Section 1.3.3) to update ρn+1 and φn+1
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Update Un+1 using new values of ρn+1, φn+1, un+1, vn + 1, and pn+1

n = n+ 1

END DO

1.4 Numerical Tests.

In this section, numerical tests that verify the performance of the proposed

method are presented. Note that no analytical or extensive numerical study on

the stability region has been attempted. For each test, the time step (τ) and

the space step (h) are chosen to guarantee the desired accuracy and stability,

but the choice may not be optimal. Based on the performed tests, low-Mach

number applications do not impose significant stability restrictions, i.e. they

allow the value of τ to be at least several times higher than h. Stability re-

gions in high-Mach number applications depend on the types and severity of

discontinuities in the flow. The stability regions for our method were found

to be larger than ones for the explicit version of the same method, for which

CFL-condition is of the type τ < const · h
|λmax| where |λmax| is the maximum

speed of propagation (see [48] for stability analysis of the explicit finite element

Guermond-Popov scheme). The use of explicit non-reflection boundary con-

ditions, as in Sections 1.4.9 and 1.4.10, is expected to strengthen the stability

restrictions (e.g. see [14]).

1.4.1 Gresho Vortex.

The behavior of the scheme in the low Mach number limit is investigated using

the Gresho vortex test (similar to [86]), a time-independent inviscid rotating
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vortex placed in a square periodic domain. Scaling the pressure with respect

to the reference Mach number allows the study of stability and dissipative

properties of numerical methods for different Mach numbers (see [87] as an

example).

Initial conditions are given by (see Figure 1.1 for initial pressure and Mach

number distributions for M0 = 10−1):

p0 =
ρ0
γM2

0

(1.1)

(uφ(r), p(r)) =



(5r, p0 +
25
2
r2),

if 0 ≤ r < 0.2

(2− 5r, p0 +
25
2
r2+

4(1− 5r − ln 0.2 + ln 5),

if 0.2 ≤ r < 0.4

(0, p0 − 2 + 4 ln 2,

if 0.4 ≤ r

(1.2)

where M0 is the reference Mach number, and (r,φ) are polar coordinates with

the origin placed in the center of the vortex.

The range of Mach numbers considered here is [10−6; 10−1]. As can be seen

in Figure 1.2, if no splitting error reduction technique is used the vortex is not

well preserved in time and is completely dissipated after one revolution (by the
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Figure 1.1: Initial Pressure and Mach number distributions for M0 = 10−1. The
domain is [0, 1]× [0, 1].

time t = 1). However, if one step of the splitting error reduction described in

Section 1.3.1 is used, the proper time-independent behavior is recovered (see

Figure 1.3). The method remains efficient in the considered range of Mach

numbers, i.e. choosing the reference Mach number as low as M0 = 10−6 does

not require any decrease of time or space steps. Figure 1.4 shows the time

evolution of the relative kinetic energy for the computations described above.

It can be concluded that the energy loss is due to the splitting error and its

reduction allows one to recover conservative properties up to the influence of

the artificial dissipation, required for stability.

All the tests are performed using the LM-dissipation term, described in

Section 1.3.2. Parameters ω1 and ω2 are chosen for each M0 to guarantee an ac-

ceptable rate of kinetic energy dissipation (ω1) and dumping of high frequency

oscillations (ω2). Figures 1.6 and 1.8 illustrate the effect of these parameters.

Figure 1.7 shows the ineffectiveness of the artificial dissipation operator of the

type DLM
1 U in dealing with node-to-node pressure oscillations, which have an

increasing effect as M0 decreases. Figure 1.9 reveals that an increase of ω2
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Figure 1.2: Pressure and Mach number distributions at t = 1 for M0 = 10−1, no
splitting error reduction. The domain is [0, 1]× [0, 1].

alone leads to an increase of relative kinetic energy and consequently to a rise

of instability, especially for relatively high Mach numbers such as M0 = 10−1.

Therefore one needs to have both components of the LM-dissipation term.

Such a combination allows tuning the algorithm for a wide range of Mach

numbers. Figure 1.5 shows that |p−pmax|
pmax

∼ M2, which is the proper scaling

in the nearly incompressible regime (see [50] for details). Thus, the presented

algorithm remains efficient in the low-Mach number regime, since it maintains

the stability and accuracy of the simulations without any decrease of spatial

or temporal steps, or any other extra computational cost, except explicit error

term computations. Numerical oscillations are successfully removed by the

proposed stabilization.

1.4.2 Sod Shock Tube.

The Sod Shock tube test (originally proposed in [111]) is used here to evaluate

properties of the method when the GP-dissipation term is used, and compare

the implicit version of the scheme (IGP) with the explicit one (EGP) and with
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Figure 1.3.a: M0 = 10−1 Figure 1.3.b: M0 = 10−2

Figure 1.3.c: M0 = 10−3 Figure 1.3.d: M0 = 10−4

Figure 1.3.e: M0 = 10−5 Figure 1.3.f: M0 = 10−6

Figure 1.3: Mach number distributions at t=1 for different M0 computed using
the splitting error reduction technique. In all the tests τ = 10−3, grid size: 100x100.
The domain is [0, 1]× [0, 1].
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Figure 1.4: Time evolution of the Relative Kinetic Energy for different test cases.
In all the tests τ = 10−3, grid size: 100x100.

the classic Lax-Friedrichs method (LF).

The initial conditions are given by:


ρL

pL

uL

 =


1.0

1.0

0.0

 (1.3)


ρR

pR

uR

 =


0.125

0.1

0.0

 (1.4)

The results at Tend = 0.1 for the density (ρ), pressure (p), velocity (u) and

internal energy (e) are presented in Figure 1.10 (h = 10−3) and Figure 1.11
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Figure 1.5.a: M0 = 10−1
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Figure 1.5.b: M0 = 10−2
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Figure 1.5.c: M0 = 10−3
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Figure 1.5.d: M0 = 10−4
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Figure 1.5.e: M0 = 10−5
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Figure 1.5.f: M0 = 10−6

Figure 1.5: Relative pressure variations for different M0, cross-sections at x = 0.5.
In all the tests τ = 10−3, grid size: 100x100.
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Figure 1.6: Time evolution of the Relative Kinetic Energy depending on the value
of ω1. In all the tests ω2 = 0, M0 = 10−1, τ = 10−3, grid size: 100x100.

(h = 0.5 · 10−3). In both cases τ = 10−4.

It can be seen that explicit and implicit versions of the Guermond-Popov

scheme produce almost equivalent solutions in both cases. On a coarser grid,

when the space error term has a dominant contribution to the overall error, the

Guermond-Popov scheme maintains significantly sharper profiles of disconti-

nuities in the solution than the Lax-Friedrichs method. The results of this

test case demonstrate that while the method still adds a first-order dissipation

term in its high-Mach number version, the special scaling of the artificial vis-

cosity (proposed in [48]) reduces the amount of dissipation introduced by the

stabilization term, without loss of robustness.
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Figure 1.7.a: ω1 = 0
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Figure 1.7.b: ω1 = 0.4
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Figure 1.7.c: ω1 = 0.8
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Figure 1.7.d: ω1 = 1

Figure 1.7: Relative pressure variation after one time step, cross-section at x = 0.5,
for different values of ω1. Further integration leads to a numerical failure. In all the
tests ω2 = 0, M0 = 10−6, τ = 10−3, grid size: 100x100.
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Figure 1.8.a: ω2 = 0.01
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Figure 1.8.b: ω2 = 0.1
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Figure 1.8.c: ω2 = 0.5
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Figure 1.8.d: ω2 = 1.1

Figure 1.8: Relative pressure variations after one time step, cross-section at x =
0.5, for different values of ω2. In all the tests ω1 = 1, M0 = 10−6, τ = 10−3, grid
size: 100x100.
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Figure 1.9: Time evolution of the Relative Kinetic Energy depending on the value
of ω2. In all the tests ω1 = 0, M0 = 10−1, τ = 10−3, grid size: 100x100. Note that
the results for ω2 = 0 and ω2 = 0.1 are almost identical.

1.4.3 Manufactured Solution.

The method of Manufactured Solution (see [99]) is used here to verify the

numerical code implementation and convergence properties of the proposed

algorithm. The idea of the method is to choose an analytical solution and

modify the governing equations by the inclusion of source terms, computed

using the solution. Here, we define primitive variables (ρ,u,v, and p) as:

ρ(x, y, t) = ρ0 + ρt sin t+ ρx sin x+ ρy cos y (1.5)

u(x, y, t) = u0 + ut sin t+ ux sin x+ uy cos y (1.6)

v(x, y, t) = v0 + vt cos t+ vx cos x+ vy sin y (1.7)

p(x, y, t) = p0 + pt cos t+ px cos x+ py sin y, (1.8)
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Figure 1.10: Sod Shock Tube test, Tend = 10−1, h = 10−3
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Figure 1.11: Sod Shock Tube test, Tend = 10−1, h = 0.5 · 10−3
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where ξ0, ξt, ξx, ξy (for ξ = ρ, u, v, or p) are constants defined separately

for high- (M0 = 2.14) and low- (M0 = 2.14 · 10−4) Mach number cases in

Tables 1.1 and 1.2. Conservative variables are computed from the primitive

ones as usual. In both cases the single fluid ideal gas equation of state is used

(γ = 1.4, π∞ = 0) with viscosity parameter µ = 1 [kg/(s ·m)]. The low-Mach

number stabilization term DLMU is scaled with the parameters ω1 = 1.1, and

ω2 = 10−2. A single-step version of the splitting error reduction procedure was

used for both, high- and low- Mach number cases.
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Equation,
ξ

ξ0 ξt ξx ξy

ρ (kg/m3) 1 0.5 0.015 −0.01
u (m/s) 8 4 0.05 −0.03
v (m/s) 8 4 −0.075 0.04
p (N/m2) 10 1 0.02 0.05

Table 1.1: Constants for high-Mach number Manufactured Solution.

High-Mach number computations are performed on a [1×1] square domain

with exact Dirichlet boundary conditions:

Ûn+1 = (I + Ay)U
n+1
exact (1.9)

Un+1 = Un+1
exact. (1.10)

In the low-Mach number case, a square [2π×2π] domain with periodic bound-

ary conditions is used.

Figures 1.12 and 1.13 show the expected order of accuracy for smooth so-

lutions (first-order convergence in time for both versions of the scheme, first-

order convergence in space for the high-Mach number version, and second-

order convergence in space for the low-Mach number version). Since the algo-

rithm remains accurate, stable, and oscillation-free for the low-Mach number

case, it is demonstrated to be applicable for time-dependent viscous nearly

incompressible flows.

66



Equation,
ξ

ξ0 ξt ξx ξy

ρ (kg/m3) 1 0.5 0.015 −0.01
u (m/s) 8 · 10−4 4 · 10−4 0.05 · 10−4 −0.03·10−4

v (m/s) 8 · 10−4 4 · 10−4 −0.075 ·
10−4

0.04 · 10−4

p (N/m2) 10 1 0.02 0.05

Table 1.2: Constants for low-Mach number Manufactured Solution.
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Figure 1.12: log-log plots of the discrete L1 norm of the total energy errors at
t = 10−2 (τ = 10−4) for high-Mach number (left) and low-Mach number (right)
manufactured solutions.
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Figure 1.13: log-log plots of the discrete L1 norm of the total energy errors at
t = 1 on 322× 322 uniform grid for high-Mach number (left) and low-Mach number
(right) manufactured solutions.
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# cores 1(1×1) 64(8×8) 256(16×16) 512(16×32) 992(32×31)
Time 31.25 s 36.78 s 39.12 s 41.85 s 45.77 s
Efficiency - 85 % 80 % 75% 68%

Table 1.3: Weak Scalability test, 106 grid points per core.

1.4.4 Weak Scalability.

A weak scalability test is provided here to demonstrate the performance of the

algorithm on parallel machines. Similar to [42], a fixed number of grid points

per CPU core is considered (106, to maximize the size of the problem given the

memory limitations). Then, CPU-time is recorded for an increasing number

of cores. These times, computed while solving the Manufactured Solution

test in the high-Mach number regime, can be found in Table 1.3. Scaling

efficiency, computed as the ratio of the CPU-time on one core to the CPU-

time on n cores, is also presented in Table 1.3. Taking into account that no

attempts have been made to optimize the code in general, or the interprocessor

communications in particular, the algorithm shows reasonable weak scalability

and thus can be considered as a promising one for parallel computations. All

these computations were performed on the GRAHAM cluster provided by

Compute Canada (www.computecanada.ca).

1.4.5 One-Dimensional Interface Advection.

Here the advection of an interface between air (γ = 1.4, π∞ = 0) and water

(γ = 6.12, non-dimensiolized π∞ = 0.1631) under the atmospheric pressure

is considered (similar to [19]). The purpose of the test is to demonstrate

the absence of spurious pressure oscillations and preservation of pressure and
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velocity equilibrium for the method with both GP- and LM- (ω1 = 10, ω2 = 1)

dissipation terms.

The initial conditions are given by:

(ρ, u, p, φ) =


(1, 0.1, 4.819× 10−5, 1), if x ≤ 0.3

(1.204× 10−3, 0.1, 4.819× 10−5, 0), if x > 0.3,

(1.11)

and are regularized after that by performing the interface sharpening procedure

until convergence. It is evolved with τ = 10−2 on a uniform grid of 130 cells

until tend = 4. The results and initial conditions are shown in Figure 1.14.

In both cases (LM- and GP-dissipation terms) contact discontinuity is well

preserved and no spurious oscillations are introduced, despite the high density

ratio. The sharp profile of the interface is well maintained. Hence, the test

confirms the analysis of the contact discontinuities preservation property of the

method, and the compatibility of the presented formulation of the VoF method

and interface sharpening with the discretization strategy and the proposed

stabilization terms.

1.4.6 Two-Dimensional Interface Advection.

The purpose of this test case is to verify the performance of the interface cap-

turing algorithm in two dimensions. A water drop of radius 0.15 is considered.

It is located in the lower-left corner of a square [1× 1] domain at (0.3, 0.3) at

the initial moment of time and surrounded by air (both water and air have

the same parameters as in the previous test). The bubble is then advected to

the upper right corner of the domain, u = v = 0.1. The problem is discretized
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Figure 1.14.a: Relative Pressure Error
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Figure 1.14.b: Relative Velocity Error
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Figure 1.14.c: Density
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Figure 1.14: Interface advection using GP- and LM- artificial dissipation terms
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Figure 1.15: VoF-function at t = 0 (left) and t = 4 (right)

with τ = 10−2 on a 200 × 200 uniform grid. No splitting error reduction was

needed for this test. LM-dissipation was used (ω1 = 10, ω2 = 0).
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Figure 1.16.a: Pressure
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Figure 1.16.b: Velocity

Figure 1.16: Relative Pressure and Velocity Errors, cross-sections at y = 0.3 and
y = 0.7

As can be seen in Figures 1.15 and 1.16, the shape of the bubble is well pre-

served and no spurious oscillations or artificial acoustic waves are introduced.

Thus, the preservation of contact discontinuities property of the method ex-

tends to the multidimensional case as expected. Furthermore, the test shows
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the ability of the interface-capturing methodology chosen for the scheme to

handle nontrivial interface configurations when used in combination with the

proposed discretization technique.

1.4.7 Laplace formula.

Following [96] and [33], the implementation of surface tension is verified by

reproducing the pressure jump across a curved interface, given by the Laplace

formula. In the case of a cylindrical interface:

∆pexact = σ/R, (1.12)

where R is the radius of the cylinder.

At the initial moment of time, a liquid (ρl, γ = 2.4, π∞ = 107 Pa) cylin-

drical drop of radius R = 0.3 m centered at (0.5 m, 0.5 m) is placed in a

[1m×1m] square domain with symmetry boundary conditions, surrounded by

gas (ρg = 1 kg/m3, γ = 1.4, π∞ = 0 Pa). The pressure is given by the Laplace

formula, with the pressure outside of the drop being pout = 100 Pa, and the

pressure inside being pin = pout +∆pexact.

The relative pressure jump error E(∆p) = ∆p−∆pexact
∆pexact

, and the radius of

the cylindrical drop R are computed by an averaging procedure, similar to the

one used in [96]. Nodes with φ ≥ 0.9 are considered to be inside, and nodes

with φ < 0.9 to be outside of the drop. As in [33], spatial convergence of the

method is evaluated by measuring E(∆p) after one time step for different grid

sizes. No splitting error reduction was performed for this test. Results are

shown in Figure 1.17.a.
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Figure 1.17.b shows the increase in the discrete maximum norm of the

velocity (i.e. an increase of the magnitude of parasitic current) under grid

refinement. A similar effect was described in [33] for some other implementa-

tions of the CSF approach. No quantitative results on parasitic currents for

the method were presented in the original paper [96] to compare with, thus

their influence on accuracy and stability of the method remains an open ques-

tion. Figures 1.18-1.19 demonstrate the dependence of pressure and velocity

errors after one time step on the values of σ and ρl. The long-time evolution of

E(∆p) for ρl = 10 kg/m3, σ = 1 N/m, and different values of hx = hy = h is

shown in Figure 1.20. The thickness of the interface is also expected to play a

role in the accuracy of the approximation. As is shown in Table 1.4, a thinner

interface (smaller value of ε) leads to a smaller error in the pressure jump.

For all values of the parameters considered above, errors remain small. The

method is shown to be convergent in space in terms of the pressure error, thus

the Laplace law is reproduced by the algorithm. Further investigation of par-

asitic currents and the influence of various parameters of the problem, as well

as the amount of artificial dissipation, on long-time accuracy and stability of

the method is an interesting problem. Therefore, the test demonstrated a po-

tential of coupling the surface tension formulation from [96] with the interface

sharpening technique from [110], as well as a need for more detailed studies

of its properties and the effects of its coupling with various discretization and

stabilization methods, and interface treatments under different conditions.
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Figure 1.17: E(∆p) and ||u||∞ after one time step on different grids. σ = 1 N/m,
ρl = 100 kg/m3, τ = 10−5 s.
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Figure 1.18: E(∆p) and ||u||∞ after one time step for different σ. h = 5.6 · 10−3

m, ρl = 100 kg/m3, τ = 10−5 s.

ε E(∆p) ||u||∞
0.5 0.0755 1.79 · 10−5

1 0.0793 4.1 · 10−4

1.5 0.1149 2.4 · 10−4

Table 1.4: E(∆p) and ||u||∞ for different values of ε (i.e. for different interface
thickness).
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Figure 1.19: E(∆p) and ||u||∞ after one time step for different ρl. h = 5.6 · 10−3

m, σ = 1 N/m, τ = 10−5 s.
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Figure 1.20: Time evolution of the Relative Pressure Jump Error with different
grid sizes. In all the tests τ = 10−5 s, σ = 1 N/m, ρl = 10 kg/m3.
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1.4.8 One-Dimensional Shock Wave-Interface Interac-

tion.

Next, a one-dimensional shock-interface interaction is studied using a test case

from [78] and [19]. This test verifies the performance of the GP-stabilization in

the multicomponent case, as well as the robustness of the interface capturing

approach. A strong (Mach 8.96) shockwave is travelling in helium (γ = 1.667,

π∞ = 0) towards a material interface with air (γ = 1.4, π∞ = 0). Both

materials are assumed to be inviscid. Following [61], non-dimensional initial

conditions are given by:

(ρ, u, p, φ) =


(0.386, 26.59, 100, 1) if 0 ≤ x < 0.2

(0.1,−0.5, 1, 1) if 0.2 ≤ x < 0.8

(1,−0.5, 1, 0) if 0.8 ≤ x < 2.

(1.13)

Such problems are known to be challenging, since interface sharpening

methods often lead to miscomputations of shock positions and speeds (see

[19]). Here, a numerical solution at Tend = 0.07 (τ = 1 · 10−5, h = 10−3) is

compared with the exact one (derived in [78]). The GP-dissipation term is

employed to stabilize the solution. The interface sharpening procedure is used

with the parameter ε = 0.5. The results are present in Figure 1.21.

As can be seen, the interface remains very sharp, although density ap-

pears to be smeared in the regions adjacent to the artificial mixing layer.

Shock positions and strengths are computed correctly and no oscillations are

present, which validates both the interface capturing technique and the GP-

76



stabilization term, as well as the general discretization strategy used in this

study. So, the present method can be used to compute shock-interface inter-

action problems.
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Figure 1.21: Density, pressure, velocity and VoF-function at Tend = 0.07. Exact
and numerical (τ = 1 · 10−5, h = 10−3) solutions.

1.4.9 Shock Wave Refraction.

Shock-interface interactions in two dimensions are known to produce nontrivial

refraction patterns and they may serve as good tests for multidimensional,

multicomponent algorithms at high Mach numbers. Following [91], a two-
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dimensional shock-interface interaction is studied using the Euler equations

(no surface tension, viscous and heat transfer effects). In a square [1m× 1m]

domain, a normal incident shock wave is propagating to the left in water

(γ = 4.4, π∞ = 6 · 108 Pa) and impacting a planar material interface with air

(γ = 1.4), inclined on an angle β.

The following pre- and post-shock conditions are specified for water in

terms of the primitive variables (p, ρ, u, v) in (Pa, kg/m3,m/s,m/s) (similar

to [91]):

(p, ρ, u, v)pre = (1 · 105, 1000, 0, 0) (1.14)

(p, ρ, u, v)post = (1.9 · 109, 1323.65,−681.58, 0), (1.15)

and the initial state of air is specified as:

(p, ρ, u, v)air = (1 · 105, 1, 0, 0). (1.16)

Initial fields of ρ for angles β = π
6
, π
4.5

, π
3.6

, π
2.5

are shown in Figure 1.22.

Non-reflection boundary conditions (proposed in [119]) are prescribed ex-

plicitly at the left, right, and top boundaries of the domain and symmetry

boundary conditions are used at the bottom. The computations are performed

on a 800 × 800 uniform grid, with τ = 10−7 s. No splitting error reduction

was used for this test.

Figures 1.23-1.26 represent log p, φ, and ρ at Tend = 1.5 · 10−4 s. The

results are in good agreement with those from [91]. The material interface re-

mains thin throughout the computations (ε = 1), and the refraction patterns
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Figure 1.22.a: β = π
6 Figure 1.22.b: β = π

4.5

Figure 1.22.c: β = π
3.6 Figure 1.22.d: β = π

2.5

Figure 1.22: Initial ρ-fields (pseudocolor) for different values of β. Red - water
post-shock state, yellow - water pre-shock state, blue - air.
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are captured correctly. The cases of β = π
6
, π
4.5

, π
3.6

produce regular refraction

patterns with reflected expansion (RRE), while the case of β = π
2.5

gives rise

to irregular concave forward refraction (CFR), as the impacted wave interacts

with the reflected expansion, “which results in a mutual annihilation and for-

mation of a compound wave” (see [91]). The compound wave is curved due

to the speed difference between the incident shock and the refraction node

(intersection of the compound and transmitted waves), and weaker than the

impacting shock. In all the test cases a water jet is formed by the convergence

of shock-induced flows, which is also in agreement with the results of [91].

Therefore, the algorithm has demonstrated its ability to simulate multidimen-

sional inviscid flows featuring shock-interface interactions without topological

changes and successfully capture nontrivial refraction patterns.

Figure 1.23.a: log p and φ Figure 1.23.b: ρ

Figure 1.23: log p (pseudocolor), φ (contour), and ρ (pseudocolor) plots at Tend =
1.5 · 10−4 s for β = π

6
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Figure 1.24.a: log p and φ Figure 1.24.b: ρ

Figure 1.24: log p (pseudcolor), φ (contour), and ρ (pseudocolor) plots at Tend =
1.5 · 10−4 s for β = π

4.5

Figure 1.25.a: log p and φ Figure 1.25.b: ρ

Figure 1.25: log p (pseudcolor), φ (contour), and ρ (pseudocolor) plots at Tend =
1.5 · 10−4 s for β = π

3.6
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Figure 1.26.a: log p and φ Figure 1.26.b: ρ

Figure 1.26: log p (pseudcolor), φ (contour), and ρ (pseudocolor) plots at Tend =
1.5 · 10−4 s for β = π

2.5

1.4.10 Shock Wave-Bubble Interaction.

Finally, a shock-curved interface interaction test is considered to validate the

applicability of the method to this class of problems and demonstrate the

possibility of handling topological changes. In this test case the same materials

and the same initial conditions (pre-, post-shock states, location of the shock

wave) are used as in the previous test, but the interface forms an air bubble

of radius R = 0.2m centered at (0.55m, 0.5m). The full system of NSEs

is considered here, with µwater = 10−3 kg/(s · m), µair = 10−5 kg/(s · m),

σ = 0.073 N/m. Interface sharpening is performed with ε = 1.5. Initial

conditions for air are given by:

(p, ρ, u, v)air = (1 · 105 + σ

R
, 1, 0, 0). (1.17)

The computations are performed on a 800×800 uniform grid, with τ = 10−7

s. No splitting error reduction was used for this test. The fields ρ and φ are
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presented at different times in Figures 1.27-1.30. The results are in good agree-

ment with [110], where a similar test case was presented. The interface remains

thin throughout the computations, and the effects of wave refraction and even-

tual topological change (bubble collapse) with the formation of a high-speed

jet are well-captured. This test reveals the potential of the scheme to solve

a full system of multicomponent NSEs in the high-Mach number regime, as

well as the ability of the methods to handle topological changes of the interface.

Figure 1.27.a: ρ Figure 1.27.b: φ

Figure 1.27: ρ and φ pseudocolor fields at t = 4.5 · 10−5 s

1.5 Conclusion

In this chapter, an efficient numerical algorithm applicable to a wide range

of compressible multicomponent flows has been built based on the linearized

block implicit (LBI) factored schemes. The main contribution of this study

to the development of such schemes is the splitting error reduction technique,

which enables their use for low-Mach number flows.
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Figure 1.28.a: ρ Figure 1.28.b: φ

Figure 1.28: ρ and φ pseudocolor fields at t = 1.75 · 10−4 s

Figure 1.29.a: ρ Figure 1.29.b: φ

Figure 1.29: ρ and φ pseudocolor fields at t = 2.16 · 10−4 s

Figure 1.30.a: ρ Figure 1.30.b: φ

Figure 1.30: ρ and φ pseudocolor fields at t = 2.276 · 10−4 s
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An artificial dissipation term for high-Mach number applications has been

constructed as a finite difference interpretation of a novel finite element tech-

nique from [48], which introduces artificial viscosity coefficients based on the

maximum speed of propagation in local one-dimensional Riemann problems.

The estimation algorithm for the maximum speed of propagation proposed in

[47] has been extended here to the case of the stiffened gas equation of state.

The results presented in this chapter show the advantages of the approach

proposed in [48] and continue the development of this class of schemes.

Another contribution of this work is the novel artificial dissipation term

designed for low-Mach number applications. It is based on second-order dif-

ferences of conservative variables and products of conservative variables and

the Jacobians. Such a combination is shown to be effective in eliminating the

odd-even decoupling problem while controlling the total kinetic energy of the

system. This allows for the use of LBI factored schemes in terms of conserva-

tive variables on non-staggered grids for low-Mach number applications.

A consistent coupling of this technique with the interface-capturing ap-

proach without disrupting the interfacial equilibrium is achieved by introduc-

ing functions of EOS coefficients as variables, as well as the special design of

the stabilization terms. The sharpening technique from [110] is shown to be

compatible with the method, and with the CSF implementation of the surface

tension from [96].

Possible extensions and directions for further research may include the use

of more accurate time-marching methods or a defect-correction technique to

lift the order of accuracy of the algorithm, incorporating implicit non-reflection

boundary conditions, and extending the method to the three-dimensional case
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and more complicated geometries.
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Chapter 2

A direction splitting scheme for

the Navier-Stokes-Boussinesq

system in spherical shell

geometries

2.1 Introduction

This chapter presents a new direction splitting scheme for solving the incom-

pressible Navier-Stokes-Boussinesq system:

∂u

∂t
+ (u · ∇)u+∇p− Pr∆u = gPrRaT in Ω× (0, Tf ]

∇ · u = 0 in Ω× (0, Tf ]

u = 0 on ∂Ω× (0, Tf ]

(2.1)
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∂T

∂t
+ (u · ∇)T −∆T = 0 in Ω× (0, Tf ]

T = 0 on ∂Ω× (0, Tf ]

(2.2)

in a spherical shell domain that can be defined in terms of a spherical coordi-

nate triple (r, θ, φ) as:

Ω = {(r, θ, φ) ∈ [R1, R2]× [0, π]× [0, 2π)} .

In the above, g is the unit vector in the direction of gravity, and Pr,Ra are the

Prandtl and Rayleigh numbers, respectively, R1 >> 0. The system (2.1)-(2.2)

models the flow of a heat-conducting fluid, under the assumption that the

temperature-induced density variation influences significantly only the buoy-

ancy force and the fluid remains incompressible. It is widely applied to model

the flow in the atmospheric boundary layer ([81]), oceanic flows ([112]), as well

as, if combined with an equation for the magnetic field, the flow in the Earth’s

dynamo ([103]) (see a more detailed discussion in Section 2.2.1). Even though

for most of the discussion, we assume homogeneous Dirichlet boundary condi-

tions on the two spherical surfaces r = R1, r = R2, the approach is applicable

to Neumann and Robin boundary conditions as well.

One possible method for numerical approximations of differential equations

in spherical shell geometries is based on the use of a spherical transformation

to transform the domain into a parallelepiped. The obvious advantage of this

approach is the simple computational domain, which allows for the use of

structured grids and the efficient schemes developed for them. Moreover, the

grid can naturally follow the geometry of the domain, without requiring too
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many cells, as would possibly be in the case of a Cartesian formulation. How-

ever, the singularity of the transformation and the grid convergence near the

poles have for many years been a difficulty in the development of accurate nu-

merical schemes. Several different treatments have been proposed for dealing

with these problems. For example, in [55], the pole singularity issue is avoided

by replacing the equations at the poles with equations analogous to boundary

conditions, while in [89] a redefinition of the singular coordinates is proposed.

Other suggested approaches include applying L’Hospital’s rule [40] to singular

terms and switching to Cartesian formulation around the poles [34]. On the

other hand, the grid convergence has been a more serious problem. In par-

ticular, it produces a solution with an uneven resolution, requires very small

time steps for explicit or IMEX schemes since the time step size is limited by

the minimum grid size, and causes convergence problems for iterative solvers.

Therefore, different grid systems with quasi-uniform resolution that avoid the

grid convergence problems have been suggested in the literature. One such

approach is the “cubed sphere” of [98], which is a grid that covers a spherical

surface with six components corresponding to six faces of a cube. Even though

the resulting grid is quasi-uniform, it still has singularities at the corner points

of the faces and it is non-orthogonal. Some of the other suggested unstructured

grids include the icosahedral grid of [8] and the non-orthogonal rhombohedral

grid of [129].

In this study we adapt an alternative method proposed by [63], employ-

ing the so-called Yin-Yang grids. Some advantages of the Yin-Yang approach

are that the metric tensors are simple, the resolution is quasi-uniform, and

it requires modest programming efforts for extending the code from a single

89



latitude-longitude grid, and thus it is better suited for high-performance nu-

merical methods we propose in this chapter. It starts with a decomposition

of the domain into two overlapping subdomains, combined with two different

spherical transforms whose axes are perpendicular to each other, cf. Fig. 2.1.

As a result, both subdomains are transformed into identical parallelepipeds

that can be gridded with the same uniform meshes. This approach automat-

ically removes the transform’s singularities at the poles, at the expense of

the introduction of two subdomains, so that the two local solutions must be

coupled employing the Schwarz-type iterations (see Section 2.2.2 for details on

the Schwarz domain decomposition iterative methods). The Yin-Yang grid has

been used for simulations of mantle convection [115], core collapse supernovae

[125], atmospherical general circulation model [7] and visualization in spheri-

cal regions [93]. The main novelty of this work is that the Yin-Yang domain

decomposition is combined with a direction splitting time discretization that,

in the case of linear parabolic equations, is unconditionally stable in the spher-

ically transformed domains. The advection can be included either in an IMEX

fashion or by including the linearized advection into the entire operator that

is further split direction-wise. The resulting splitting scheme is conditionally

stable, since the direction-wise operators are not positive, but our numerical

experience demonstrated that the second approach yields an algorithm that

has better stability performance. This is why the rest of this chapter concerns

only this type of schemes. To our knowledge, the stability of the direction

splitting approach has not been rigorously studied in the context of spheri-

cal coordinate systems. Therefore, we prove below that it is unconditionally

stable in the case of a scalar heat equation, in a simply shaped domain (in
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terms of spherical coordinates). The case of the full Navier-Stokes-Boussinesq

system is more involved and we do not provide rigorous proof here. However,

our numerical experience shows that the direction splitting is still uncondi-

tionally stable if the advection terms are omitted and if the velocity-pressure

decoupling is done via the AC method proposed in [44].

The rest of this chapter is organized as follows. In the next section, pre-

liminary theoretical background and literature review is given on the Navier-

Stokes-Boussinesq system (Section 2.2.1), Schwarz domain decompositions

methods (Section 2.2.2), and the artificial compressibility approximation of

the incompressible Navier-Stokes equations (Section 2.2.3). Then we briefly

recall the definition of the Yin-Yang domain decomposition in Section 2.3.1.

In Section 2.3.2 we present the numerical scheme for the advection-diffusion

and Navier-Stokes equations on each of the subdomains. In Section 2.3.3, we

discuss the implementation details, and in Section 2.4 we present the numerical

experiments.
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2.2 Theoretical background.

2.2.1 Navier-Stokes-Boussinesq system.

The Navier-Stokes-Boussinesq system (2.1)-(2.2), also known as the Boussi-

nesq or Oberbeck-Boussinesq approximation (see the original papers [11] and

[92]), describes the thermal response of a linearly viscous fluid that is mechani-

cally incompressible but thermally compressible ([97]). In other words, density

variations are neglected in the mass and momentum conservation equations

except when they are coupled to the gravitational acceleration in the buoyancy

force ([113]), where the density changes exist due to the caused temperature

changes that disrupt the hydrostatic equilibrium ([30]). Such flows are common

in natural and industrial processes, and the applications of the Boussinesq ap-

proximation include solar convection, magnetoconvection, and magnetic buoy-

ancy, mantle convection, atmospheric lee waves, Rayleigh–Bénard instabilities,

oceanic general circulation, buoyancy-driven flows in crystal-growth melts, en-

vironmental fluid mechanics, fluid-dynamical problems in Galaxies, and many

others (see [128] and references there for more examples).

A rigorous justification of the Boussinesq approximation from the point

of view of continuum mechanics was given in [97]. Correcting some of the

shortcomings and inconsistencies of previous studies, authors of [97] start with

the mass, momentum, and energy conservation equations (i.e. the Navier-

Stokes system) supplemented by the second law of thermodynamics in form

of the Clausius-Duhem inequality, and find a proper non-dimensional small

parameter (namely ε =
U

(gν)
1
2

, where U is the representative velocity, g is

the gravitational acceleration, and ν is the kinematic viscosity) with which

92



to perturb the physical quantities. An expansion of velocity, temperature,

and pressure in terms of ε leads to the Oberbeck-Boussinesq system as an

approximation to the full Navier-Stokes equations to the order ε4.

In a related work [62], the Oberbeck-Boussinesq system is obtained as a

constitutive limit of the full Navier-Stokes system as the thermal expansion

and the isothermal compressibility coefficients approach zero, provided that

the weak solutions of the full thermo-mechanical system satisfying a uniform

estimate exist. Under certain assumptions on the approximation parameters,

this approach also allows one to recover the results from [97].

A different approach is taken in [30], where the Oberbeck-Boussinesq sys-

tem is derived as a singular limit of the Navier-Stokes-Fourier system (com-

pressible Navier-Stokes equations coupled with the Fourier law of heat con-

ductivity) as both the Mach number and the Froude number (ratio of inertial

and gravitational forces) tend to zero. The convergence is shown in the case

of a large time interval and for ill-prepared initial data.

2.2.2 Schwarz domain decomposition methods.

The Yin-Yang grid described below can be viewed as a composite overlapping

mesh consisting of logically rectangular curvilinear grids with their union cov-

ering the whole domain (see [16] for a detailed description and analysis of this

type of meshes). Each of these grids covers a part of the domain (a spherical

shell, in our case) thus dividing the region into two overlapping subdomains

and allowing one to use the Schwarz domain decomposition methodology to

approximate the solution of the original system of PDEs (see e.g. [127]). Here
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we follow the description from [83] to introduce the basics of the Schwarz

method. Readers are referred to [83] and references there for a more compre-

hensive description.

In general, domain decomposition formulations can be of two types: over-

lapping and non-overlapping. Several methods (also called hybrid formula-

tions) exists to deal with each of the two settings, e.g. the Steklov-Poincare

and the Lagrange multiplier formulations require a non-overlapping decompo-

sitions, while the Schwarz methods are based on overlapping domains. Regard-

less of the type of the domain decomposition chosen, a hybrid formulation is

a coupled system of equations which is equivalent to the original system with

true solutions on each subdomain as unknowns. For the purpose of illustra-

tion of basic ideas of the Schwarz method, we follow the steps from [83] and

consider the case of a 2nd order elliptic PDE (note that the extension of the

method to the case of other types of PDEs is straight-forward):

L(u) = ∇ · (a(x)∇u) + b(x) · ∇u+ c(x)u = f, in Ω (2.1)

u = 0, on ∂Ω (2.2)

for Ω ⊂ Rd. The coefficient a(x) is assumed to satisfy

0 < a0 ≤ a(x), ∀x ∈ Ω,

while b(x) and c(x) ≥ 0 are smooth, and f(x) ∈ L2(Ω). Let us introduce

some important definitions required for the formulation of the Schwarz domain

decomposition methodology:
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Definition 2.2.1 (from [83], Chapter 1)

A collection of two open subregions Ωi ⊂ Ω for i = 1, 2 will be referred to as

an overlapping decomposition of Ω if the following holds:

Ω1 ∪ Ω2 = Ω.

Boundaries of the subdomains will be denoted Bi ≡ ∂Ωi and their interior and

exterior segments by B(i) ≡ ∂Ωi ∩ Ω and B[i] ≡ ∂Ωi ∩ ∂Ω, respectively.

Note that the number of subdomains is limited by two for simplicity, and an

extension to the case of more subdomains is trivial.

Definition 2.2.2 (from [83], Chapter 1)

A partition of unity subordinate to the overlapping domains Ω1 and Ω2 consists

of smooth functions χ1(x) and χ2(x) satisfying:

χi(x) ≥ 0, in Ωi,

χi(x) = 0, in Ω\Ωi,

χ1(x) + χ2(x) = 1, in Ω.

To define a hybrid formulation for the original problem (2.1) one must ensure

that the following requirements are satisfied:

• Consistency: the restriction ui(x) of the true solution of (2.1) to each

subdomain Ωi must solve the hybrid system, i.e. the solution of hybrid

formulation (ω1(x), ω2(x)) must satisfy ωi(x) = ui(x) for i = 1, 2.

• Wel-posededness: the solution of the hybrid formulation (ω1(x), ω2(x))
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must exist, be unique, and depend continuously on the data. This guar-

antees the hybrid formulation is stable and uniquely solvable, which is

essential for stability of the numerical approximation.

The solutions of the original problem is expressed in terms of the local solutions

ωi(x) using an appropriate partition of unity as:

u(x) = χ1(x)ω1(x) + χ2(x)ω2(x).

Thus, a local problem will be solved on each subdomain coupled by an ap-

propriate matching condition to ensure that the hybrid formulation is equiva-

lent to the original problem. In the Schwarz framework it leads to the following

formulation of the local problems:


Lω1 = f , in Ω1

ω1 = ω2, on B(1)

ω1 = 0, on B[1]

and


Lω2 = f , in Ω2

ω2 = ω1, on B(2)

ω2 = 0, on B[2]

(See [83] Chapters 1 and 15 for consistency and well-posedness proofs of the

hybrid formulation given above).

Two iterative methods can be employed to solve these local problems, mul-

tiplicative (sequential or alternating) Schwarz method, and additive (parallel)

Schwarz method. Both are described below.

Definition 2.2.3 Schwarz Alternating Method (from [83], Chapter 1)

1. For k = 0, 1, ..., until convergence do:
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2. Solve for ω(k+1)
1 as follows:


Lω

(k+1)
1 = f1, in Ω1

ω
(k+1)
1 = v(k), on B(1)

ω
(k+1)
1 = 0, on B[1]

Define vk+ 1
2 as follows:

vk+
1
2 =


ω
(k+1)
1 on Ω1,

v
(k)
1 on Ω\Ω1.

3. Solve for ω(k+1)
2 as follows:


Lω

(k+1)
2 = f2, in Ω2

ω
(k+1)
2 = v(k+

1
2
), on B(2)

ω
(k+1)
2 = 0, on B[2]

Define vk+1 as follows:

vk+1 =


ω
(k+1)
2 on Ω2,

v
(k+ 1

2
)

1 on Ω\Ω2.

4. Endfor

Output: v(k)

Definition 2.2.4 Parallel Schwarz Method (from [83], Chapter 1)

1. For k = 0, 1, ..., until convergence do:

2. For i = 1, 2 determine ω(k+1)
i in parallel:
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Lω

(k+1)
i = f , in Ωi

ω
(k+1)
i = χ1(x)ω

(k)
1 (x) + χ2(x)ω

(k)
2 (x), on B(i)

ω
(k+1)
i = 0, on B[i]

3. Endfor

4. Endfor

Output: (ω(k+1)
1 ,ω(k+1)

2 )

If c(x) ≥ c0 > 0 and there is sufficient overlap, the iterates v(k) defined by

v(k) ≡ χ1(x)ω
(k)
1 (x) + χ2(x)ω

(k)
2 (x)

will converge geometrically to the solution of (2.1) (see [83], Chapter 15). Note

that in practice a discrete version of these algorithms is employed, in particular

an interpolation is required for non-matching meshes (such as the Yin-Yang

grid used in this work) to impose the conditions ω(k+1)
1 = v(k) on B(1) and

ω
(k+1)
2 = v(k+

1
2
) on B(2).

These methods can be easily extended to the case of time-dependent prob-

lems, where the subdomain iterations (multiplicative or additive) are per-

formed at each time step until convergence.

2.2.3 Artificial compressibility.

The artificial compressibility methods used in this chapter is a direct imple-

mentation of the scheme described in [44]. This subsection follows [44] to give

more background on the family of the artificial compressibility methods and
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the theory behind the approach from [44]. See [44], and [37] Section 23 for

more details.

One of the main difficulties in solving the incompressible Navier-Stokes

system is the coupling of pressure and velocity. A regularization of the incom-

pressibility constraint ∇ · u = 0 may be performed to resolve the issue, e.g.

by introducing a penalty parameter ε > 0 and replacing the constraint with

εp +∇ · u = 0, as it was proposed in [117]. Such perturbation allows one to

eliminate pressure from the momentum equation and thus the only equation

that needs to be solved is

∂u

∂t
+ (u · ∇)u− ν∇2u− 1

ε
∇∇ · u = 0,

which is similar to the compressible momentum conservation equation. If we

choose ε = τ to make the scheme first-order accurate in time, the PDE that

has to be solved at each time step takes the form of u−∇∇·u+ l.o.t = g. The

discrete variant of this system has a condition number that scales as O(h−2),

while some alternative first-order schemes have a O(h−1) condition number.

Higher order versions of this scheme would require taking ε = τ l which yields

a discrete system with condition number O(τ 1−lh−2), which is impractical for

l ≥ 2.

The described penalty regularization of the ∇ · u = 0 constraint can be

improved by using the time derivative of pressure in the regularization:

ε
∂p

∂t
+∇ · u = 0.
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This particular perturbation can be justified by considering the compressible

mass conservation in the low Mach number limit with ε = M−2. This, or

similar regularizations have been proposed by several authors and used in

combinations with explicit, and various direction splitting schemes (see [118],

[18], and [71] Section 9, Chapter VI). If ε ∼ τ , this method has several appeal-

ing properties, such as uniform stability with respect to ε at the continuous

level, and, if combined with implicit time-discretization, reasonable computa-

tional cost and efficiency that are superior comparing to the non-incremental

projection methods (see [44] for details). One limitation is that a stable and

efficient second-order extension of this strategy cannot be achieved by taking

ε = τ 2 and considering the perturbation of the incompressibility constraint

with the second derivative of pressure ε∂
2p

∂t2
+ ∇ · u = 0, since this pertur-

bation is unstable (see [44] and [107]). Nevertheless, such an extension was

proposed in [44] with the help of a bootstrapping technique. This method is

adapted in this chapter for spherical coordinates.

The following heuristic argument is given in [44] to motivate the strategy.

Let (u, p) be the solution to the incompressible Navier-Stokes system:

∂u

∂t
+ (u · ∇)u+∇p− ν∆u = 0 in Ω× (0, Tf ]

∇ · u = 0 in Ω× (0, Tf ]

u|Γ = 0 in (0, Tf ]

u|t=0 = u0 in Ω.

Let r be some approximation of the exact pressure p. Then one may consider

the following problem with ε > 0:
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∂w

∂t
+ (w · ∇)w+∇p− ν∆w = 0, w|Γ = 0, w|t=0 = w0

ε
∂(s− r)

∂t
+∇ ·w = 0, s|t=0 = p0.

Let e = u−w and δ = p− s, then:

∂e

∂t
+ (e · ∇)e+∇δ − ν∆e = 0, e|Γ = 0, e|t=0 = e0

ε
∂δ

∂t
+∇ · e = ε

∂(p− r)

∂t
, δ|t=0 = 0.

(2.3)

Now, if r is an O(εl) approximation of p, then ε
∂(p− r)

∂t
= O(εl+1) and if

(2.3) is stable with respect to perturbations in the mass equation (see [44]

for the proof), then one should get e = O(εl+1) and δ = O(εl+1), i.e. the

accuracy of (w, s) is increased by one order of ε. Hence, the following family

of approximation methods may be considered. Let l be a positive integer,

s0 = 0, and consider the following velocity-pressure pairs (w1, s1), ..., (wl, sl)

solving:

∂wi

∂t
+ (wi · ∇)wi+∇si − ν∆wi = f, w|Γ = 0, w|t=0 = u0

ε
∂(si − si−1)

∂t
+∇ ·wi = 0, si|t=0 = p0.

This method was further analysed and justified in [44]. Its second-order version

is described in Section 2.3.2.
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2.3 Algorithm.

2.3.1 Spatial discretization and the Yin-Yang grid.

In this section, we briefly recall the definition of the composite Yin-Yang grid

following [63]. The grid consists of two identical overlapping latitude-longitude

grids whose axes are perpendicular to each other. The Yin grid is based on a

spherical transformation


x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ,

and covers the region

Ω1 :=

{
(r, θ, φ) ∈ [R1, R2]×

[
π

4
− ε,

3π

4
+ ε

]
×
[
π

4
− ε,

7π

4
+ ε

]}
,

where ε� 1 is a parameter determining the overlap. The Yang grid is obtained

via another spherical transformation:


x = −r sin θ̃ cos φ̃

y = r cos θ̃

z = r sin θ̃ sin φ̃,
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such that its axes are perpendicular to the axes of the Yin transform, and it

covers the region

Ω2 :=

{(
r, θ̃, φ̃

)
∈ [R1, R2]×

[
π

4
− ε,

3π

4
+ ε

]
×
[
π

4
− ε,

7π

4
+ ε

]}
.

The choice of the second axes should be such that the Yang grid fully covers

the gap of the Yin one, and the overlapping subregions are of the same size

(see Fig. 2.1,). Otherwise, it is identical to the Yin grid modulo two rotations.

The resulting Yin-Yang grids are quasiuniform, the coordinate transformations

from (r, θ, φ) to (r, θ̃, φ̃) and its inverse, as well as the metric tensors on both

grids are identical. As a consequence, the methods and codes developed for

the standard latitude-longitude grid can be applied to both grids.

2.3.2 Direction splitting time discretization.

Preliminaries

For the rest of this chapter we will frequently make use of the following nota-

tions. For a time sequence wk, k = 1, 2, . . . we denote the average between two

time levels as wk+1/2 = (wk+1 + wk)/2, and the explicit extrapolation to level

k + 1/2 by w∗,k+1/2 = 3wk/2− wk−1/2. For two regular enough functions u, v

defined in the spherical shell we denote their weighted L2 inner product as:

(u, v)ω :=
R2´
R1

π́

0

2π́

0

uvωdrdθdφ, where ω denotes a non-negative weight. In most

cases the weight is given by the weight of the spherical transform ω = r2 sin θ,

however, in some of the estimates given below, the weight will be appropriately

modified. The corresponding norm is given by ‖u‖2ω = (u, u)ω.
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Figure 2.1: Yang (left) and Yin-Yang (right) grids. Each subgrid is further decom-
posed into blocks for a parallel implementation corresponding to a CPU distribution
1× 3× 2.
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Direction splitting of the advection-diffusion equation.

Since the PDEs are identical in both domains, it is sufficient to develop the nu-

merical scheme for the Yin domain. Then the Schwarz domain decomposition

method can be used to iterate between the subdomains.

We first present a Douglas-type (see [28]) direction splitting scheme for the

heat equation. Consider

∂tT − κ∆T = 0 in Ω1 × (0, Tf ],

T = 0 on ∂Ω1 × (0, Tf ],

(2.1)

where the Laplacian in spherical coordinates is given by ∆ = Drr+Dθθ+Dφφ,

Drr :=
1

r2
∂r
(
r2∂r

)
Dθθ :=

1

r2 sin θ
∂θ (sin θ∂θ)

Dφφ :=
∂φφ

r2 sin2 θ
.

The Douglas direction splitting scheme for this equation can be summarized

in the following factorized form:

[
I− τ

2
Drr

] [
I− τ

2
Dθθ

] [
I− τ

2
Dφφ

] δT n+1

τ
= ∆T n, (2.2)

where δT n+1 := T n+1−T n denotes the first time difference of the time sequence

T k, τ is the time step, and I is the identity operator. We first notice that this

splitting can be considered as an Euler explicit scheme whose time difference

operator is multiplied by
[
I− τ

2
Drr

] [
I− τ

2
Dθθ

] [
I− τ

2
Dφφ

]
, that is a consistent
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perturbation of I and stabilizes the scheme. If the spatial derivative operators

are positive and commute with respect to some inner product, the stability of

this scheme is not hard to establish.

Unfortunately, Drr,Dθθ, and Dφφ do not commute with respect to the

weighted product (., .)ω, and their positivity is far from being clear. The main

obstacle to the commutativity of the one-dimensional operators comes from

the non-constant terms in the denominators of Dθθ and Dφφ. Therefore, the

scheme (2.2) should be modified as follows. We first introduce the modified

spatial operators:

D̂θθ :=
1

R2
1 sin θ

∂θ (sin θ∂θ) , D̂φφ :=
∂φφ

R2
1 sin

2 θ1
, and ∆̂ := Drr + D̂θθ + D̂φφ,

where θ1 =
π

4
− ε. Then it is easy to check that Drr, D̂θθ and D̂φφ, supplied

with zero Dirichlet boundary conditions, commute. Moreover,

−
(
D̂θθT, T

)
ω
≥ 0, −

(
D̂φφT, T

)
ω
≥ 0 (2.3)

and

−
([

D̂θθ −Dθθ

]
T, T

)
ω
≥ 0 and −

([
D̂φφ −Dφφ

]
T, T

)
ω
≥ 0. (2.4)

These inequalities immediately yield that:

(
−∆̂T, T

)
ω
≥ (−∆T, T )ω . (2.5)

In order to obtain an unconditionally stable second-order scheme, we start
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from the second-order Adams-Bashforth method:

δT n+1

τ
= ∆T ∗,n+1/2,

and stabilize it by multiplying the time difference in the left hand side by[
I− τ

2
Drr

] [
I− τ

2
D̂θθ

] [
I− τ

2
D̂φφ

]
. Since this perturbation is only first-order

consistent with the identity operator, we subtract from the right hand side the

first-order perturbation term, taken at the previous time level. The resulting

splitting scheme reads:

[
I− τ

2
Drr

] [
I− τ

2
D̂θθ

] [
I− τ

2
D̂φφ

] δT n+1

τ
= ∆T ∗,n+1/2 − 1

2
∆̂δT n. (2.6)

Note that, assuming enough regularity of the exact solution in space and

time, this is a second-order perturbation of the second-order explicit Adams-

Bashforth scheme (2.3.2), the perturbation being given by:

τ 2

2
∆̂
δ2T n+1

τ 2
+

[
τ 2

4
(DrrD̂θθ +DrrD̂φφ + D̂θθD̂φφ)−

τ 3

8
DrrD̂θθD̂φφ

]
δT n+1

τ
.

We have the following stability result for the scheme (2.6).

Theorem 2.3.1 Assuming enough regularity of the exact solution T of the

semi-discrete scheme (2.6), it is unconditionally stable; more precisely, it sat-
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isfies the following estimate:

τ
N−1∑
n=1

‖T n+1 − T n‖2ω
τ 2

+
1

2
‖∇TN‖2ω+

1

4

(
‖∂θ
(
TN − TN−1

)
‖2ω1

+ ‖∂φ
(
TN − TN−1

)
‖2ω2

)
≤ 1

2
‖∇T 1‖2ω +

1

4

(
‖∂θ
(
T 1 − T 0

)
‖2ω1

+ ‖∂φ
(
T 1 − T 0

)
‖2ω2

)
,

(2.7)

where ω1 =
(
1− r2

R2
1

)
sin θ ≥ 0 and ω2 =

(
r2

R2
1
− 1
)

sin θ
sin2 θ1

≥ 0.

Proof 2.3.2 Expanding the left hand side of (2.6) we get:

[
I− τ

2
∆̂ +

τ 2

4

(
DrrD̂θθ +DrrD̂φφ + D̂θθD̂φφ

)
− τ 3

8
DrrD̂θθD̂φφ

]
δT n+1

τ

= ∆T ∗,n+1/2 − 1

2
∆̂δT n.

(2.8)

Rearranging all the ∆ and ∆̂ terms, we obtain

δT n+1

τ
− 1

2

[
∆− ∆̂

] (
T n+1 − 2T n + T n−1

)
−∆T n+1/2

+

[
τ 2

4

(
DrrD̂θθ +DrrD̂φφ + D̂θθD̂φφ

)
− τ 3

8
DrrD̂θθD̂φφ

]
δT n+1

τ
= 0. (2.9)

Next we multiply (2.9) by v = δT n+1 and integrate by parts. Then the second

108



term gives

− 1

2

([
∆− ∆̂

] (
T n+1 − 2T n + T n−1

)
, T n+1 − T n

)
ω

=
1

4

[
‖∂θ
(
T n+1 − T n

)
‖2ω1

− ‖∂θ
(
T n − T n−1

)
‖2ω1

]
+
[
‖∂θ
(
T n+1 − 2T n + T n−1

)
‖2ω1

]
+

1

4

[
‖∂φ

(
T n+1 − T n

)
‖2ω2

− ‖∂φ
(
T n − T n−1

)
‖2ω2

]
+
[
‖∂φ

(
T n+1 − 2T n + T n−1

)
‖2ω2

]
.

(2.10)

The third term is

−
(
∆T n+1/2, T n+1 − T n

)
ω
=

1

2

(
‖∇T n+1‖2ω − ‖∇T n‖2ω

)
. (2.11)

The remaining terms are all dissipative:

(
DrrD̂θθδT

n+1, δT n+1
)2
ω
=

ˆ

Ω

r2 sin θ

R2
1

|∂rθδT n+1|2, (2.12)

(
DrrD̂φφδT

n+1, δT n+1
)
ω
=

ˆ

Ω

r2 sin θ

R2
1 sin

2 θ1
|∂rφδT n+1|2, (2.13)

(
D̂θθD̂φφδT

n+1, δT n+1
)
ω
=

ˆ

Ω

r2 sin θ

R4
1 sin

2 θ1
|∂θφδT n+1|2, (2.14)
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and

−
(
DrrD̂θθD̂φφδT

n+1, δT n+1
)
ω
=

ˆ

Ω

r2 sin θ

R4
1 sin

2 θ1
|∂rθφδT n+1|2. (2.15)

Substituting (2.10)-(2.15) into (2.9), and summing for n = 1, . . . , N − 1 com-

pletes the proof.

The factorized scheme for the advection-diffusion equation (2.2) is obtained in

a similar fashion and takes the following form:

[
I− τ

2

(
Drr − un+1/2

r ∂r
)] [

I− τ

2

(
D̂θθ − u

n+1/2
θ

∂θ
r

)]
[
I− τ

2

(
D̂φφ − u

n+1/2
φ

∂φ
r sin θ

)]
δT n+1

τ

= ∆T ∗,n+1/2 − 1

2
∆̂δT n + un+1/2 · ∇T n.

(2.16)

Direction splitting discretization of the Navier-Stokes system.

Now we present the direction splitting scheme for the Navier-Stokes equations

(2.1). Our numerical scheme is based on the AC regularization:

∂tu1 + (u1 · ∇)u1 +∇p1 −
1

Re
∆u1 = 0

χτ∂tp1 +∇ · u1 = 0,

(2.17)

where χ = O (1) is an artificial compressibility regularization parameter, and

Re is the Reynolds number. It is well-known that the resulting approximation

(u1, p1) is first-order accurate in time (see [108]). A second-order scheme can

be constructed using the bootstrapping approach of [44, 41], which requires
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additionally to solve the system:

∂tu2 + (u2 · ∇)u2 +∇p2 −
1

Re
∆u2 = 0

χτ∂t (p2 − p1) +∇ · u2 = 0,

(2.18)

p1 being given by (2.17). In the following, for the sake of brevity, we will only

discuss the direction splitting implementation of the first-order approximation

(2.17). The higher order correction for u2, p2 is solved identically. First, con-

sider the standard semi-implicit Crank-Nicholson approximation of the system

for (u1, p1):

un+1
1 − un1
τ

+ u
∗,n+1/2
2 · ∇u

n+1/2
1 +∇pn+1/2

1 − 1

Re
∆u

n+1/2
1 = 0

χ
(
pn+1
1 − pn1

)
+∇ · un+1/2

1 = 0

Note that we use the second-order velocity u2 as advecting velocity, which

allows us to assemble a single linear system for both systems. We can rewrite

the momentum equation by eliminating pn+1
1 from the first equation:

un+1
1 − un1
τ

+ u
∗,n+1/2
2 · ∇u

n+1/2
1 +∇pn1 −

1

Re
∆u

n+1/2
1 − 1

2χ
∇∇·un+1/2

1 = 0

pn+1
1 = pn1 −

1

χ
∇ · un+1/2

1 .

In order to produce a factorized scheme for each velocity component, the

∇∇· operator must be also split somehow, and we use the Gauss-Seidel type

splitting of the ∇∇· operator, which was originally proposed in [41] in the
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Cartesian case:

∇∇·un+1/2 '



∂r

(
∂r

(
r2u

n+1/2
r

)
r2

+
∂θ

(
sin θu

∗,n+1/2
θ

)
r sin θ

+
∂φu

∗,n+1/2
φ

r sin θ

)

∂θ
r

(
∂r

(
r2u

n+1/2
r

)
r2

+
∂θ

(
sin θu

n+1/2
θ

)
r sin θ

+
∂φu

∗,n+1/2
φ

r sin θ

)

∂φ
r sin θ

(
∂r

(
r2u

n+1/2
r

)
r2

+
∂θ

(
sin θu

n+1/2
θ

)
r sin θ

+
∂φu

n+1/2
φ

r sin θ

)


:=


D11 +D12 +D13

D21 +D22 +D23

D31 +D32 +D33

un+1/2

Equation for the r-component of the velocity. Using the mass conser-

vation equation ∇ · u = 0, it is possible to write the first component of the

system as follows:

∂tur + u · ∇ur −
∆ur
Re

+ ∂rp+
1

Re

2ur
r2

− 1

Re

2

r3
∂r
(
urr

2
)
−
u2θ + u2φ

r
= 0,

where u · ∇v = ur∂rv+ uθ
∂θv
r

+ uφ
∂φv

r sin θ
is the advection operator. Let Lrr,Lrθ

and Lrφ be the differential operators that act in each space direction:

Lrru =
1

Re

(
Drru−

2u

r2
+

2∂r (r
2u)

r3

)
+D11u−u∗,n+1/2

2,r ·∂rur,Lrθu =

(
D̂θθ

Re
− u

∗,n+1/2
2,θ · ∂θ

r

)
u,

Lrφu =

(
D̂φφ

Re
− u

∗,n+1/2
2,φ · ∂φ

r sin θ

)
u and Lr = Lrr + Lrθ + Lrφ
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The factorized scheme for the r-component takes the following form:

[
I− τ

2
Lrθ

] [
I− τ

2
Lrφ

] [
I− τ

2
Lrr

] un+1
1,r − un1,r

τ
= Lru

∗,n+1/2
1,r +

∆̂u
n−1/2
1,r − ∂rp

n
1 +

D12u
∗,n+1/2
1,θ +D13u

∗,n+1/2
1,φ

2χ

+

(
u
∗,n+1/2
θ

)2
+
(
u
∗,n+1/2
φ

)2
r

.

(2.19)

Equation for the θ–component of the velocity. Again using ∇ · u = 0,

the θ-component of the momentum equation can be expressed as:

∂tuθ + u · ∇uθ −
∆uθ
Re

+
∂θp

r
+

1

Re

uθ
r2 sin2 θ

− 2 cos θ

Re

∂θ (uθ sin θ)

r2 sin2 θ

− 2

Re

∂θur
r2

− 2 cos θ

Re

∂r (urr
2)

r3 sin θ
+
uruθ − u2φ cot θ

r
= 0.

Let Lθr,Lθθ and Lθφ be defined as follows:

Lθru =

(
Drr

Re
− u

∗,n+1/2
2,r · ∂r

)
u,Lθφu =

(
D̂φφ

Re
− u

∗,n+1/2
2,φ · ∂φ

r sin θ

)
u,

Lθθu =
1

Re

(
D̂θθu−

u

r2 sin2 θ
+

2 cos θ

sin θ
∂θ (u sin θ)

)
+
u · u∗,n+1/2

2,φ cot θ

r
+u

∗,n+1/2
2,θ ·∂θu

r
+
D22u

2χ
,

and Lθ = Lθr + Lθθ + Lθφ

The factorized scheme for the θ-component takes the following form:

[
I− τ

2
Lθφ

] [
I− τ

2
Lθr

] [
I− τ

2
Lθθ

] un+1
1,θ − un1,θ

τ
= Lθu

∗,n+1/2
1,θ

−∂θp
n
1

r
+
D21u

n+1/2
1,r +D23u

∗,n+1/2
1,φ

2χ
−
u
∗,n+1/2
r · u∗,n+1/2

φ

r

+
1

Re

(
2

r2
∂θu

n+1/2
1,r +

2 cos θ

r3 sin θ
∂r

(
u
n+1/2
1,r r2

))
+ ∆̂u

n−1/2
1,θ .

(2.20)
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Equation for the φ–component of the velocity. The φ-component of

the momentum equation is given by:

∂tuφ + u · ∇uφ +
uruφ + uθuφ cot θ

r
− ∆uφ

Re
+

∂φp

r sin θ

+
1

Re

(
uφ

r2 sin2 θ
− 2 cos θ

r2 sin2 θ
∂φuθ −

2

r2 sin θ
∂φur

)
= 0

Let Lφr,Lφθ and Lφφ be defined as follows:

Lφru =

(
Drr

Re
− u

∗,n+1/2
2,r · ∂r

)
u and Lφθu =

(
D̂θθ

Re
− u

∗,n+1/2
2,θ · ∂θ

r

)
u

Lφφu =
1

Re

(
D̂φφ −

1

r2 sin2 θ

)
u−

u
∗,n+1/2
φ · u
r sin θ

−
u
∗,n+1/2
2,r + u

∗,n+1/2
2,θ cot θ

r
u

and

Lφ = Lφr + Lφθ + Lφφ

The factorized scheme for the φ-component is then:

[
I− τ

2
Lφr

] [
I− τ

2
Lφθ

] [
I− τ

2
Lφφ

] un+1
1,φ − un1,φ

τ
= Lφu

∗,n+1/2
1,φ + ∆̂u

n−1/2
1,φ

− ∂φp
n
1

r sin θ
+

1

Re

(
2

r2 sin θ
∂φu

n+1/2
1,r +

2 cos θ

r2 sin2 θ
∂φu

n+1/2
1,θ

)
+D31u

n+1/2
1,r +D32u

n+1/2
1,θ .

(2.21)

Pressure update.

pn+1
1 = pn1 −

1

χ
∇·un+1/2

1 . (2.22)
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2.3.3 Implementation and parallelization.

The equations (2.16), (2.19)-(2.21) are solved as a sequence of 1D equations

in each space direction. For example, solving (2.16) consists of the following

steps:

ξn+1

τ
:=

1

2
∆T ∗,n+1/2 − 1

2
∆̂δT n + un+1/2 · ∇T n

ηn+1

τ
:=
[
I− τ

2
D̂θθ

] [
I− τ

2
D̂φφ

] T n+1 − T n

τ
⇒
[
I− τ

2
Drr

]
ηn+1 = ξn+1

ζn+1

τ
:=
[
I− τ

2
D̂φφ

] T n+1 − T n

τ
⇒
[
I− τ

2
D̂θθ

]
ζn+1 = ηn+1[

I− τ

2
D̂φφ

] (
T n+1 − T n

)
= ζn+1 ⇒ T n+1 =

(
T n+1 − T n

)
+ T n.

Similar strategy is applied for the Navier-Stokes approximation. Each 1D

system is spatially approximated using second-order centered finite differences

on a non-uniform grid. To ensure the inf-sup stability, the unknowns are

approximated on a MAC grid, where the velocity components are stored at

the face centers of the cells, while the scalar variables are stored at the cell

centers (see [52]).

To solve the system on each domain in parallel we use the approach devel-

oped in [43], where we first perform Cartesian domain decomposition of both

computational grids using MPI and then solve the resulting set of tridiagonal

linear systems using domain-decomposition-induced Schur complement tech-

nique. Note, that the Schur complement can be computed explicitly (see [43]

for details) and so the system in each direction can be solved directly by the

Thomas algorithm, avoiding the need for iterations on each of the two sub-

domains. Then, to obtain the approximation on the entire spherical shell, we
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iterate between the Yin and Yang grids using either additive or multiplicative

overlapping Schwarz methods. The solution on each grid is computed using

only boundary data that is interpolated from the currently available solution

on the other grid, using Lagrange interpolation.

In the additive Schwarz implementation, we use an even total number of

CPUs. Then we split the global communicator into two equal parts, and

assign to each grid one of the communicators. In the multiplicative Schwarz

implementation, we use the global communicator to solve the problem on each

grid sequentially.

The overall solution procedure in the case of the multiplicative Schwarz

iteration can be summarized as follows:

Repeat until convergence:

For i = 1, 2

1) Obtain interpolated boundary values Tbd for ∂Ωi from Ω3−i.

2) Solve the temperature equation in Ωi with using extrapolated ve-

locity values u
∗,n+1/2
2 .

3) Obtain interpolated boundary values ubd for ∂Ωi from Ω3−i.

4) If

∣∣∣∣∣´
∂Ωi

ubd · n

∣∣∣∣∣ ≥ tol, then minimize the functional (ε� 1):

J (v) :=
1

2
|v − ubd|2`2+

1

2ε|∂Ωi|2

∣∣∣∣∣∣∣
ˆ

∂Ωi∩{θ,φ bdry }

v · n+

ˆ
∂Ωi∩{r bdry }

ubd · n

∣∣∣∣∣∣∣
2

,

using the Conjugate Gradient Algorithm until J (·) ≤ tol.
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5) Update ubd := v and solve the momentum equation in Ωi with the

interpolated Dirichlet boundary conditions in θ, φ directions and

with the original boundary conditions in the r direction.

6) Compute the pressure in Ωi using the second equation in (2.17).

7) Interpolate the pressure values at the boundary of ∂Ωi using the

available pressure on Ω3−i.

End for.

Step 4 is meant to ensure that there is no spurious mass flux generated

through the internal (artificial) boundaries due to the interpolation. It is op-

tional, and as our numerical experience shows, it rarely changes the results

significantly. Therefore, it is skipped while producing the numerical results

presented in the next section. Skipping Step 7, however, can seriously reduce

the rate of convergence of the Schwarz iteration, as observed in the numerical

simulations. The AC method for the Navier-Stokes equations does not require

boundary conditions on the pressure. Nevertheless, the exchange of the pres-

sure values does influence the pressure gradient that appears in (2.19)-(2.21),

and thus it seems to influence significantly the convergence of the overall iter-

ation. This effect is not well understood and while some other authors (see for

example [116]) also interpolate the pressure values near the internal bound-

aries, others (e.g. [84]) interpolate only the velocity.

Another interesting feature of the domain decomposition iterations de-

scribed above is that it allows to use the previously computed iterates in order

to reduce the splitting error of the direction splitting approximation. For ex-

ample, if the factorized form of the direction-split approximation for a given
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quantity ψ is given by:

(I − Lψ,r)(I − Lψ,θ)(I − Lψ,φ)(ψ
n,k − ψn−1) = G

where the superscript n denotes the time level of the solution and k denotes the

domain decomposition iteration level, then the splitting error can be reduced

by using the modified equation:

(I − Lψ,r)(I − Lψ,θ)(I − Lψ,φ)(ψ
n,k − ψn,k−1) =

G+ (ψn,k−1 − ψn−1)− Lψ(ψ
n,k−1 − ψn−1),

(2.23)

where Lψ = Lψ,r + Lψ,θ + Lψ,φ. Indeed, in (2.23), the splitting error term

(Lψ,rLψ,θ +Lψ,rLψ,φ +Lψ,θLψ,φ −Lψ,rLψ,θLψ,φ)(ψ
n,k − ψn−1) at iteration level

k has been reduced by the same term at the previous iteration level (Lψ,rLψ,θ+

Lψ,rLψ,φ + Lψ,θLψ,φ − Lψ,rLψ,θLψ,φ)(ψ
n,k−1 − ψn−1). If this error reduction is

employed, then the iteration becomes a block-preconditioned overlapping do-

main decomposition iteration, the preconditioner being the factorized operator

(I − Lψ,r)(I − Lψ,θ)(I − Lψ,φ). We must also remark here that the Schwartz

iterations need to converge to an accuracy of the order of τ 2 for the solution

of equation (2.17) and τ 3 for the solution of equation (2.18), to preserve the

second-order temporal accuracy of the overall algorithm.
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2.4 Numerical tests.

2.4.1 Time and space convergence.

We verify the convergence rates in space and time using the following manu-

factured solution, given in a Cartesian form:

u = cos(t)
(
2x2yz,−xy2z,−xyz2

)T
, p = cos(t)xyz, T = 2 cos(t)x2yz. (2.1)

The parameters used in this test are R1 = 1, R2 = 2, Ra = 1, P r = 1, and

the grids used in the tests are uniform in each direction. The convergence

of the approximation is tested using both, the additive and multiplicative

versions of the scheme. The grid used for the time convergence tests consists

of 20× 92× 192 MAC cells on each of the two subdomains. The solution error

is computed at the final time Tf = 10. For the space convergence tests, the

time step is chosen small enough to not influence the overall error, τ = 0.0001,

and the final time is Tf = 1. The grid diameter is computed as the maximum

diameter of the MAC cells in Cartesian coordinates. In both cases, the domain

decomposition iterations are converged so that the l2 norm of the difference

between two subsequent iterates, for any of the computed quantities, is less

than 10−6 (l2 norm denotes the standard mid-point approximation to the L2

norm). Also, the splitting error reduction, as outlined by equation (2.23), is

employed at each iteration.

The graphs of the l2 norm of the errors in both cases are presented in Figure

2.3. They demonstrate the second-order accuracy of the scheme in space and

time.
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Next, we verify the accuracy of the proposed algorithm on a physically

relevant analytic solution of the Navier-Stokes equations in a spherical setting,

due to Landau (see [72] and [76] for a recent review). The source term of

the equations is equal to zero in this case, and the solution is steady and

axisymmetric. In all cases presented in figure 2.4 the multiplicative Schwarz

version of the algorithm is used with its convergence tolerance being set to

10−6, the time step is equal to 10−3, and R1 = 1, R2 = 2. We first present

in the top graph of figure 2.4 the l2 error for the velocity and pressure as a

function of the grid diameter, at Re = 1 and the overlap is ε = 0.1 The scheme

clearly exhibits the expected second-order convergence rate in space. In the

second graph we demonstrate the influence of the overlap size on the error at

Re = 1, the grid size in the r, φ, θ directions being 2.7778 × 10−2, 1.7027 ×

10−2, 3.6121 × 10−2 correspondingly. The effect of the overlap on the error

is insignificant, however, it seriously impacts the stability of the algorithm

i.e. the increase of the overlap improves the stability, particularly at large

Reynolds numbers. Finally, the bottom graph demonstrates the effect of the

Reynolds number on the error. Again, the overlap is 0.1 and the grid sizes

are equal to 2.7778 × 10−2, 1.7027 × 10−2, 3.6121 × 10−2 . We should note

that the exact solution for the velocity scales like Re−1 and therefore the

errors in the graph are multiplied by the corresponding Reynolds number.

The oscillations in the error decrease slower with the increase of the Reynolds

number. These oscillations are due to the artificial compressibility algorithm,

since the initial data for the pressure corresponds to a divergence-free velocity,

while the pressure evolution is determined by a perturbed continuity equation

(see [94] and [23] for a detailed discussion on this issue).
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Figure 2.2.a: Temporal errors at Tf = 10.

Figure 2.2.b: Spatial errors at Tf = 1.

Figure 2.2: Log-log plot of the errors; multiplicative Schwartz iterations. R1 =
1, R2 = 2, Ra = 1, P r = 1.
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Figure 2.3.a: Temporal errors at Tf = 10.

Figure 2.3.b: Spatial errors at Tf = 1.

Figure 2.3: Log-log plot of the errors; additive Schwartz approach. R1 = 1, R2 =
2, Ra = 1, P r = 1.
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Figure 2.4: l2 errors. Top: convergence in space, Re=1. Center: effect of the
overlap on the error; Re=1. Bottom: effect of the Reynolds number on the velocity
error as a function of time.
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2.4.2 Weak parallel efficiency.

Next, we test the parallel efficiency of the code based on the scheme introduced

in the previous section. Since we are interested in solving large-size problems,

we only measure the weak scalability of our code. The problem size is 100 ×

100 × 100 grid cells per each of the Yin and Yang grids on each CPU, and

the maximum number of CPUs used is 960. Besides, since in the possible

applications of this technique (atmospheric boundary layer, Earth’s dynamo)

the thickness of the spherical shell is much smaller than the diameter of the

shell, we use a two-dimensional grid of processors for the grid partitioning. It

must be noted though, that making the grid partitioning three dimensional

does not change much the parallel efficiency results presented in this section.

The scaling efficiency is computed as the ratio of the CPU time on 32 cores

divided by the CPU time on n ≥ 32 cores. The reason for this definition of

efficiency is that the particular cluster used in the scaling tests has processors

containing 32 cores each, and the efficiency drops significantly between 1 and

32 cores (to about 75%). After this, when the number of cores is a multiple

of 32 the efficiency remains very close to the one at 32 cores. One possible

explanation of this phenomenon is that in the case when the number of cores

is significantly less than 32 cores, they need to share the memory bandwidth

and cache with a smaller number of cores, since presumably the rest of the

available cores on the given processor are idle (see e.g. [65], p. 152). Again,

we are interested in very large computations, and therefore, using a minimum

of 32 cores is reasonable.

The scaling results are performed using the Compute Canada (see https://www.com-
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putecanada.ca/) Graham cluster of 2.1GHz Intel E5− 2683 v4 CPU cores, 32

cores per node, and each node connected via a 100 Gb/s network. The results

were calculated using the wall clock time taken to simulate 10 time steps. We

ran two tests, using a fixed number of 1 and 10 domain decomposition iter-

ations, and we present the scaling results in Fig. 2.5. The parallel efficiency

is very slightly dependent on the number of domain decomposition iterations

and remains above 90% for the number of cores ranging between 32 and 960.

Figure 2.5: Parallel scalability using up to 960 CPU cores

2.5 Conclusion.

This chapter introduced a formally second-order direction splitting method

for solving the incompressible Navier-Stokes-Boussinesq system in a spherical

shell region. The main novelty of this work is the formulation of splitting

strategies for the advection-diffusion and incompressible Navier-Stokes equa-

tions in spherical coordinates in combination with an artificial compressibility
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regularization method for incompressible flows. The equations were solved

on the overset Yin-Yang grid, which is based on spherical coordinates. This

approach allows one to avoid the singularities at the poles and keep the grid

size relatively uniform. The spatial discretization is based on second-order

finite differences on the Marker-And-Cell (MAC) stencil to avoid odd-even

decoupling and ensure inf-sup stability.

The stability, accuracy and parallel scalability properties of the method

were studied using a manufactured solution of the Navier-Stokes-Boussinesq

system and the Landau solution of the Navier-Stokes equations on a sphere.

The algorithm may be used for simulations of natural convection flows, model-

ing of mantle convection, and global ocean and atmosphere in processes where

the Boussinesq approximation is valid. Furthermore, the techniques developed

in this chapter and Chapter 1 lay a foundation for a numerical method for solv-

ing compressible Navier-Stokes equations in spherical geometry in low-Mach

number regime that is described in Chapter 3.
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Chapter 3

An efficient algorithm for

weakly compressible flows in

spherical geometries

3.1 Introduction.

This chapter relies on the progress made in Chapters 1 and 2 to propose a

numerical method for weakly compressible flows in spherical geometries, i.e.

for solving the compressible Navier-Stokes equations in spherical coordinates

at small and moderate values of the Mach number. The main motivation to

design such a scheme comes from the atmospheric science and oceanography,

where reliable dynamical cores for global and local ocean-atmosphere circu-

lations are required to decrease uncertainties in numerical weather prediction

and climate modeling. Despite recent advances in numerical methods for at-

mospheric and oceanic flows, there remain to be several important challenges
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in this field, such as the necessity to take into account nonlinear nature of the

governing equations, avoid simplifications of the model that may only be valid

in certain asymptotic limits, improve the efficiency and increase the accuracy

and resolution of the computations while maintaining stability, consistently

couple ocean and atmosphere models together, and many others. Our goal is

to address at least some of these problems.

Global ocean circulation models are traditionally based on the primitive

hydrostatic equations (see [39]), although some efforts have been made to use

a more general incompressible Navier-Stokes equations (NSEs) model (e.g.

[82]). However, incompressibility assumption holds only under certain con-

ditions on the motion-induced fluctuations of density and pressure (e.g. see

[113] for analysis of Boussinesq approximation for an ideal gas), and compress-

ibility is known to influence certain processes in the ocean, such as tsunami

propagation (see [1]). Since there is a rationale that climate models have to

adequately resolve mesoscale (see [95]), and with growing computational capa-

bilities perhaps move beyond it, the most general and comprehensive physical

models should be used for the ocean circulation at the highest possible res-

olution to resolve as many physical processes as possible, reducing the need

for parametrizations. Besides that, the compressible Navier-Stokes equations

are undoubtedly required for the simulation of the atmosphere, and the use of

the same set of governing equations for both the atmosphere and the ocean

may simplify the coupling of the two models, which is a significant problem

nowadays (some simple ad-hoc strategies are shown to produce inconsistent

results, see e.g. [75], [74]). Solving the compressible Navier-Stokes equations

for the ocean is extremely challenging from the numerical point of view and
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requires a method that is very robust at extremely low Mach numbers. The

need for extreme resolution at global scales imposes strict requirements for the

parallel performance of the numerical methods in use. Although we do not

hope to answers all of the open questions, we present some evidence that the

proposed methodology has potential and may help address some of the issues

discussed above.

The main idea of the proposed methodology is similar to Chapter 1 - an

LBI factored scheme (see [12], [9], [10]) coupled with an iterative splitting

error reduction strategy is used to efficiently solve the full system of govern-

ing equations implicitly. There are several differences between the algorithm

presented in this chapter and the algorithm from Chapter 1. First, the gov-

erning equations are written in spherical coordinates, which leads to more

involved differential operators and non-trivial direction splitting. The equa-

tions are written in non-conservative advection form, which is better suited

for nearly incompressible flows than the conservative formulation. Next, non-

linear Picard iterations are used instead of the simple Taylor-based lineariza-

tion which allows one to solve the full nonlinear system without computing

complicated expressions for Jacobians. These iterations are combined with

the splitting error reduction. The direction splitting strategy is based on the

second-order Douglas-type direction splitting (see [28]) instead of the first-

order direction splitting employed in Chapter 1, to increase the accuracy of

the scheme. Finally, the staggered Marker-and-Cell (MAC) grid is used in-

stead of the centered non-staggered discretization. This helps to avoid the

high-frequency pressure oscillations without the introduction of any artificial

dissipation terms. It is possible to do it in this case since we are not interested
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here in high-Mach number flows with shock waves, and thus do not need to

consider Riemann problems between adjacent cells.

The rest of this chapter is organized as follows. We describe the details of

the proposed algorithm in Section 3.2. Numerical experiments are described

in Section 3.3, and we provide some concluding remarks in Section 3.4.
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3.2 Algorithm.

In this chapter we are interested in simulation of flows at extremely low to

moderate values of the Mach number, and thus we do not expect any shock

waves to be present in the solution. Hence, the non-conservative formulation

with pressure p [Pa], velocity u [m/s, 1/s, 1/s], and temperature T [K] as

unknowns may be employed, which is a more natural setting for the incom-

pressible regime. In case of dry, stratified air, it means solving the following

system of PDEs (see Appendix B for a detailed derivation of this system based

on the conservative equation set for atmospheric modeling from [81]):

∂T

∂t
+ u · ∇T + (γ − 1)T∇ · u−(γ − 1)T

p+ π∞
∇ ·
(µcp
Pr

∇T
)

(3.1)

− (γ − 1)T

p+ π∞
∇u : σ̂ = 0,

∂u

∂t
+ u · ∇u+

1

ρ
∇p− 1

ρ
∇ · σ̂+g + 2(u× ω) = 0, (3.2)

∂p

∂t
+ u · ∇p+ γ(p+ π∞)∇ · u−(γ − 1)∇ ·

(µcp
Pr

∇T
)

(3.3)

− (γ − 1)∇u : σ̂ = 0.

where ω [1/s, 1/s, 1/s] is the rotational velocity of the Earth, σ̂ is the viscous

stress tensor given by

σ̂ = µ

[(
∇u+ (∇u)T

)
− 2

3
(∇ · u)Î

]
,

g [m/s2, 1/s2, 1/s2] is the sum of the true gravity and the centrifugal force, cp

[J/(K ·kg)], cv [J/(K ·kg)], µ [kg/(s·m)], Pr, γ =
cp
cV

, π∞ [Pa] are constant for

each material, and density ρ [kg/m3] is given by the Stiffened Gas Equation
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of State ([32]):

ρ =
p+ π∞

cV (γ − 1)T
. (3.4)

The system (3.1)-(3.3) is solved in a part of a spherical shell similar to the Yin

subdomain introduced in Chapter 2:

Ω :=

{
(r, θ, φ) ∈ [R1, R2]×

[
π

4
,
3π

4

]
×
[
π

4
,
7π

4

]}
.

Although it was not done in this study, the domain decomposition techniques

developed for Chapter 2 can be employed to extend the domain to the whole

spherical shell without any changes in the algorithm.

In order to simplify the notations, we denote the vector of unknowns as

U = [p, ur, uθ, uφ, T ]
T , the gravity vector as Gr = [0, g, 0, 0, 0]T , and combine

all the components of the differential operators in the corresponding directions

into the DrDrDr(U), DθDθDθ(U), and DφDφDφ(U) operators, and all the mixed derivatives,

derivates in staggered directions, and other terms not suitable for implicit

treatment by the direction splitting approach into the DMDMDM(U) operator (see

(C.54),(C.55), (C.56), and (C.57) for definitions of these operators). Then the

system (3.1)-(3.3) can be written in a compact form as (see Appendix C for

details):

∂U

∂t
+DrDrDr(U)U+DθDθDθ(U)U+DφDφDφ(U)U+DMDMDM(U)U+Gr = 0. (3.5)

Using the Crank-Nicolson time-discretization strategy and the Picard itera-
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tions (see e.g. [73], Chapter 3), the semi-discrete version of (3.5) reads as:

Un+1
k+1 −Un

τ
+
1

2
DDDn+ 1

2
,(k)Un+1

k+1 +
1

2
DDDn+ 1

2
,(k)Un+

1

2
DMDMDM

n+ 1
2
,(k)Un+1

k +
1

2
DMDMDM

n+ 1
2
,(k)Un +Gr = 0,

(3.6)

where

DDD(U) =DrDrDr(U) +DθDθDθ(U) +DφDφDφ(U),

DDDn+ 1
2
,(k) =DDD

(
Un+1
k +Un

2

)
,

τ is the time-step, subindex n refers to the time level, subindex k refers to

the iteration level. From now on we skip the upper subindixes of operators

for brevity, assuming that DDD = DDDn+ 1
2
,(k). Next, similar to Section 2.3.2 a

Douglas-type (see [28]) direction splitting scheme can be written for (3.5) in

the following factorized form:

(
I +

τ

2
DrDrDr

)(
I +

τ

2
DθDθDθ

)(
I +

τ

2
DφDφDφ

) (
Un+1
k+1 −Un

)
=

−τDDDUn − τGr − τ

2
DMDMDMUn+1

k − τ

2
DMDMDMUn.

(3.7)

Recalling the discussion in Sections 1.3.1 and 1.4.1 on the adverse effects of

the splitting error at low values of Mach number, the error can be removed

using a strategy similar to the one describe in Section 2.3.3. Indeed, we can

incorporate the splitting error reduction into the Picard nonlinear iterations

by adding

ERERER
(
Un+1
k −Un

)
=
(
I +

τ

2
DrDrDr

)(
I +

τ

2
DθDθDθ

)(
I +

τ

2
DφDφDφ

) (
Un+1
k −Un

)
−(

I +
τ

2
DDD
) (

Un+1
k −Un

)
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to the right-hand-side of (3.7). After rearranging terms for conveniece and

computional efficiency, we obtain the following factorized direction splitting

scheme to be solved until convergence:

(
I +

τ

2
DrDrDr

)(
I +

τ

2
DθDθDθ

)(
I +

τ

2
DφDφDφ

) (
Un+1
k+1 −Un+1

k

)
=

−
(
I +

τ

2
DDD
) (

Un+1
k −Un

)
− τDDDUn − τGr

−τ
2
DMDMDMUn+1

k − τ

2
DMDMDMUn.

(3.8)

This approach is similar to the one used in Section 1.3.1 in the Cartesian case,

and can also be viewed as a preconditioned Richardson iterative method. Note

that as a more accurate direction splitting method, the Douglas scheme has a

O(τ 2) splitting error instead of the O(τ) one, and thus it is less vulnerable to

the defects at low Mach numbers than the first-order scheme from Chapter 1.

Nevertheless, the splitting error reduction strategy described above adds negli-

gible computational cost compared to the nonlinear Picard iterations without

the splitting error reduction.

The system (3.8) can be solved as a sequence of three one-dimensional

problems:

(
I +

τ

2
DrDrDr

) (
ηn+1 −Un+1

k

)
= (3.9)

−
(
I +

τ

2
DDD
) (

Un+1
k −Un

)
− τDDDUn − τGr − τ

2
DMDMDMUn+1

k − τ

2
DMDMDMUn,(

I +
τ

2
DθDθDθ

) (
ζn+1 −Un+1

k

)
= ηn+1 −Un+1

k , (3.10)
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(
I +

τ

2
DφDφDφ

) (
Un+1
k+1 −Un+1

k

)
= ζn+1 −Un+1

k (3.11)

where ηn+1, ζn+1, and Un+1
k+1 are subsequent approxomations of the exact so-

lution at tn+1. The structure of (3.9)-(3.11) is very similar to the one of

(1.11)-(1.12). Each of these problems requires a solution of a block-tridiagonal

linear system only, which can be performed by the block-tridiagonal exten-

sion of the Thomas algorithm for tridiagonal systems (e.g. see [31], Volume 1,

pp.188-189). The parallel implementation of the Thomas algorithm using the

Schur complement technique and domain decomposition, as described in [42],

can be easily extended for the block-tridiagonal version of the linear solver.

Weak scalability results for the method can be found in Section 3.3.2.

Note that since the staggered discretization on the MAC stencil is em-

ployed, no artificial dissipation terms are required, in contrast to the non-

staggered case considered in Chapter 1.
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3.3 Numerical tests.

The numerical experiments presented below confirm the accuracy of the pro-

posed scheme in a wide range of Mach numbers (M ∈ [10−6, 10−1]), the correct

behavior of the numerical solution in the incompressible limit, and excellent

parallel performance of the method.

3.3.1 Well-prepared manufactured solution.

The following manufactured solution has been used to verify the implementa-

tion and study the properties of the algorithm:

ρ =ρ0 = 1,

p =p0 + u20
(
1 + sin(5t) + cos2(πr) cos2(4φ) cos2(4θ)

)
,

ur =
u0(1 + sin t)

2r2
+
u20
c0

(
1 + sin(4t) + sin

(
r2
)
cos3(θ) sin2(φ)

)
,

uθ =
u0(1 + cos(3t+ 2))

2 sin θ
+
u20
c0

(
1 + sin(t) + cos3

(
r2
)
cos2(θ) sin3(φ)

)
,

uφ =
u0(1 + sin(6 + t))

2
+
u20
c0

(
1 + cos(2 + t) + cos (r) sin3(θ) sin2(φ)

)
,

T =
p

cv(γ − 1)
.

Note that this solution provides well-prepared initial data, i.e. it has the

correct scaling with respect to the Mach number. Thus, it can be used to

study the behaviour of the scheme in the incompressible (M0 → 0) limit.

Indeed, since the characteristic density ρ0 = 1, the characteristic sound speed

becomes c0 =
√
γp0 ∼ √

p0, and the characteristic Mach number is equal to
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M0 =
u0
c0

∼ u0√
p0

. Then, non-dimensionalized pressure is given by

p̃ =
p

p0
= p̃0 +M2

0 p̃2(r, θ, φ, t),

and the non-dimensionalized divergence

∇ · u
u0

∼M0,

which is in agreement with the results from [50] (see Section 1.2.1 for details).

Similar to Section 1.4.3, the governing equations are modified by the in-

clusion of source terms, computed using the manufactured solution. In all the

tests presented in this chapter p0 = 6250, γ =
cp
cv

= 1.6, µ = 1, Pr = 1, ω = 0,

g = 0, the inner radius of the shell R1 = 1, and the outer radius of the shell

R2 = 2. Two Picard iterations combined with the splitting error reduction are

performed at each time step, initialized by Un+1
0 = Un. Dirichlet boundary

conditions are imposed for the velocity components at all the boundaries, and

zero Neumann conditions are used for pressure and temperature (satisfied ex-

actly by the manufactured solution). Different values of u0 may be chosen to

study the properties of the algorithm at different characteristic Mach numbers.

First, we examine space and time convergence properties at different values

of M0. Fugure 3.1 demonstrates the expected second order of accuracy in space

for pressure (figures 3.1.a, 3.1.b, and 3.1.c) and φ-velocity component (figures

3.1.d, 3.1.e, and 3.1.f) for M0 = 10−2, M0 = 10−4, and M0 = 10−6 respectively.

Although not shown here, velocity components in r and θ directions, and

temperature exhibit similar convergence rates.
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Figure 3.1: log-log plots of the discrete L2 norm of the pressure and uφ errors
at t = 10−3 (τ = 10−5) for M = 10−2, M = 10−4, and M = 10−6 manufactured
solutions.
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τ M0 = 10−2 M0 = 10−4 M0 = 10−6

2 · 10−3 (1.8, 1.7) (3.2, 3.2) (3.2, 3.2)
1 · 10−3 (1.9, 1.9) (2.7, 2.6) (2.7, 2.5)
5 · 10−4 (1.9, 1.9) (1.6, 1.5) (1.4, 1.5)

Table 3.1: Order of time convergence for (p, T ) computed using the inverse
Richardson extrapolation approach.

τ M0 = 10−2 M0 = 10−4 M0 = 10−6

2× 10−3 (2.3, 2.9, 2.6) (3.2, 2.5, 2.9) (2.5, 2.9, 2.4)
1× 10−3 (2.4, 2.7, 3.2) (2.4, 2.8, 2.6) (2.4, 2.8, 2.3)
5× 10−4 (2.1, 2.4, 2.3) (2.2, 2.6, 2.1) (2.2, 2.6, 2.1)

Table 3.2: Order of time convergence for (ur, uθ, uφ) computed using the inverse
Richardson exptrapolation approach.

Next, we follow [88] to estimate the order of temporal accuracy using the

following time convergence rate (TCR) estimate:

TCR(ui, τ) = log2

[
||uτi − u

τ
2
i ||

||u
τ
2
i − u

τ
4
i ||

]

Due to the form of the TCR, spatial discretization errors cancel (i.e. the

leading order truncation error is const · τ l, where l is the order of accuracy

in time), and TCR ≈ l. This approach is a form of “inverse Richardson

extrapolation”, and allows temporal benchmarking of the algorithm without

extreme grid refinement in 3D. The TCR parameters for pressure and tem-

perature corresponding to different values of τ and M0 are listed in Table 3.1,

while Table 3.2 gives the TCR values for the velocity components. The results

demonstrate that the temporal convergence is consistent with the theoretically

expected second order.

Hence, the scheme retains its convergence properties in case of extremely

low Mach numbers with no extra computational cost. Although the stability
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n M0 = 10−2 M0 = 10−3 M0 = 10−4 M0 = 10−5 M0 = 10−6

1 3.2 · 10−4 3.2 · 10−6 3.2 · 10−8 3.2 · 10−10 3.9 · 10−12

50 3.6 · 10−4 3.6 · 10−6 3.7 · 10−8 4.2 · 10−10 9.6 · 10−12

100 4.0 · 10−4 4.0 · 10−6 4.1 · 10−8 4.9 · 10−10 1.4 · 10−11

Table 3.3: Maximum norm of relative pressure variations (∆p = p−p0
p0

) after n time
steps for different values of M0. τ = 10−3, grid diameter: 0.12.

of the scheme has not been studied rigorously, based on our numerical experi-

ence the scheme is conditionally stable, as expected due to the presence of the

advection terms. The stability restriction does not depend on the Mach num-

ber, at least based on the numerical tests performed for this chapter. Some

dependence on the scaling of the problem, in particular on the value of p0, was

observed.

Furthermore, the numerical solution remains in the incompressible regime.

Table 3.3 provides the maximum norm of the relative pressure fluctuations

(∆p = p−p0
p0

) after n time steps for different values of M0. Theoretically pre-

dicted order of magnitude (∆p ∼ O(M2
0 )) is well preserved by the scheme.

The method does not introduce any artificial acoustic waves (O(M0) pressure

fluctuations) even for extremely low values of M0.
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# cores 1(1×1×1) 32(2×4×4) 256(4×8×8) 512(4×8×16) 1024(4×16×16)
Efficiency
(one core)

– 91 % 85 % 82 % 77 %

Efficiency
(one node)

– – 93 % 90 % 85 %

Table 3.4: Weak Scalability test, 3375 · 103 grid points per core.

3.3.2 Weak scalability.

We evaluate the parallel performance of the method by providing weak scal-

ability results obtained using the same methodology as in Sections 1.4.4 and

2.4.2. Since we are interested in large-scale computations, we consider 3375·103

grid points per core to maximize the size of the problem given the memory

limitations. Then measure the efficiency on 32 cores (1 computational node),

256 cores (8 nodes), 512 cores (16 nodes), and 1024 cores (32 nodes). The

efficiency results are given in Table 3.4. The efficiency is given relative to 1

core and relative to 1 node since the drop in efficiency from 1 to 32 cores is

likely caused by the need to share the memory bandwidth and cache with a

smaller number of cores within the computational node, rather than scaling

properties of the method (see e.g. [65], p. 152, and the discussion in Section

2.4.2). The weak scaling test demonstrates excellent parallel performance.

The scaling tests are performed using the Compute Canada Graham cluster

(see https://www.computecanada.ca/) of 2.1GHz Intel E5 − 2683 v4 CPU

cores, 32 cores per node, and each node connected via a 100 Gb/s network.

The results were calculated using the wall clock time taken to simulate 10 time

steps with two Picard iterations each. These computations were performed

three times for each configuration, and the average wall clock time was used
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to compute the efficiency.
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3.4 Conclusion.

The numerical experiments presented above demonstrate the effectiveness of

implicit methods based on the direction splitting approach for modeling com-

pressible flows in spherical shells in nearly incompressible and weakly com-

pressible regimes. The proposed algorithm retains theoretically expected con-

vergence rates and remains stable for extremely small values of the charac-

teristic Mach number (at least as low as M0 = 10−6). The staggered spatial

discretization on the MAC stencil, commonly used in numerical methods for

incompressible Navier-Stokes equations, was found to be convenient for the

discretization of the compressible Navier-Stokes equations written in the non-

conservative form in terms of the primitive variables. This approach helped to

avoid the high-frequency oscillations without any artificial stabilization terms.

Nonlinear Picard iterations with the splitting error reduction were also im-

plemented to allow one to obtain a solution of the fully nonlinear system of

equations.

These results, alongside excellent parallel performance, prove the viability

of the direction splitting approach in large-scale high-resolution high-performance

simulations of atmospheric and oceanic flows. Possibilities for future studies

and developments include research of monotonicity preserving properties of the

scheme to evaluate the need for stabilization terms for flows under extreme

conditions, such as high Reynolds numbers. The influence of the linearization

error on the monotonicity and stability is worth investigation as well. The

computational domain should be modified to represent realistic topography,

and the adaptive mesh refinement is likely to be necessary for practical appli-
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cations in oceanography and atmospheric sciences.
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Conclusion

The main goal of this work was the development of all-speed numerical meth-

ods for the compressible Navier-Stokes equations, i.e. methods that remain

efficient in incompressible, weakly compressible, and compressible regimes.

This goal has been achieved by the proposed numerical schemes in Cartesian

(Chapter 1) and spherical (Chapters 2 and 3) coordinates.

The main contributions of Chapter 1 are the development of an LBI-scheme

suitable for computations of low Mach number flows (it was believed before

that direction splitting schemes were not suitable for such applications, see

e.g. remarks in [121], [56]), and the design of a novel low-Mach number sta-

bilization term that is effective in eliminating the odd-even decoupling on

non-staggered grids. Furthermore, the method has been extended to the mul-

ticomponent case. The proposed technique has been found to have promising

parallel performance and low computational cost.

Chapter 2 introduced a second-order direction splitting method for solving

the incompressible Navier-Stokes-Boussinesq system in spherical geometries.

Some theoretical stability and convergence results have been proven for a linear

parabolic equation, robustness and accuracy of the scheme for a more compli-

cated case of the Boussinesq system has been demonstrated numerically. This
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proves that the direction splitting approach retains its appealing properties

when formulated for spherical coordinates. The direction splitting scheme was

coupled with the artificial compressibility regularization of the incompressible

Navier-Stokes system inspired by the analysis of the low Mach number limit

of the compressible NSEs.

Finally, Chapter 3 develops the ideas of the first two chapters to formu-

late a numerical method for nearly incompressible and weakly compressible

flows in spherical shells. The algorithm is based on the direction splitting

approach similar to Chapter 1 but applied to the spherical coordinates and

MAC-stencil based staggered discretization similar to the one used in Chapter

2. Nonlinear Picard iterations were combined with the splitting error reduction

technique to obtain a solution of the fully nonlinear system. To the best of our

knowledge, this approach is completely new and has not been used before for

simulations of weakly compressible flows in spherical geometries. Numerical

experiments presented in Chapter 3 confirm that the scheme retains stability

and convergence for extremely low values of the Mach number, preserves the

incompressibility of the initial data, and has excellent parallel performance.

Thus, we hope that it may serve as a foundation for the next generation of

dynamical cores for weather and climate models, as well as be useful in other

applications.
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[30] E. Feireisl and A. Novotnỳ. The Oberbeck–Boussinesq approximation
as a singular limit of the full Navier–Stokes–Fourier system. Journal of
Mathematical Fluid Mechanics, 11(2):274–302, 2009.

[31] C. A.J. Fletcher. Computational techniques for fluid dynamics. Volume
1-Fundamental and general techniques. Volume 2-Specific techniques for
different flow categories. In Berlin and New York, Springer-Verlag, 1988,
p. Vol. 1, 418 p.; vol. 2, 493 p., volume 1, 1988.

[32] H.H. Francis and A.A. Anthony. Technical report LA-4700. Technical
report, 1971.

[33] M.M. Francois, S.J. Cummins, E.D. Dendy, D.B. Kothe, J.M. Sicilian,
and M.W. Williams. A balanced-force algorithm for continuous and
sharp interfacial surface tension models within a volume tracking frame-
work. Journal of Computational Physics, 213(1):141–173, 2006.

149



[34] J. Freund, S. Lele, P. Moin, J. Freund, S. Lele, and P. Moin. Direct
simulation of a supersonic round turbulent shear layer. In 35th Aerospace
Sciences Meeting and Exhibit, page 760, 1997.

[35] Roman Frolov. An efficient algorithm for the multicomponent com-
pressible navier–stokes equations in low-and high-mach number regimes.
Computers & Fluids, 178:15–40, 2019.

[36] J.-F. Gerbeau, N. Glinsky-Olivier, and B. Larrouturou. Semi-implicit
Roe-type fluxes for low-Mach number flows. 1997.

[37] R. Glowinski. Finite element methods for incompressible viscous flow.
Handbook of Numerical Analysis, 9:3–1176, 2003.

[38] E. Grenier. Oscillatory perturbations of the Navier–Stokes equations.
Journal de Mathématiques Pures et Appliquées, 76(6):477–498, 1997.

[39] S.M. Griffies and A.J. Adcroft. Formulating the equations of ocean mod-
els. Ocean Modeling in an Eddying Regime, 177:281–317, 2008.

[40] M.D. Griffin, E. Jones, and J.D. Anderson Jr. A computational fluid
dynamic technique valid at the centerline for non-axisymmetric problems
in cylindrical coordinates. Journal of Computational Physics, 30(3):352–
360, 1979.

[41] J.-L. Guermond and P. D. Minev. High-order time stepping for the
Navier–Stokes equations with minimal computational complexity. Jour-
nal of Computational and Applied Mathematics, 310:92–103, 2017.

[42] J.-L. Guermond and P.D. Minev. A new class of massively parallel di-
rection splitting for the incompressible Navier–Stokes equations. Com-
puter Methods in Applied Mechanics and Engineering, 200(23):2083–
2093, 2011.

[43] J.-L. Guermond and P.D. Minev. Start-up flow in a three-dimensional
lid-driven cavity by means of a massively parallel direction splitting
algorithm. International Journal for Numerical Methods in Fluids,
68(7):856–871, 2012.

[44] J.-L. Guermond and P.D. Minev. High-order time stepping for the in-
compressible Navier–Stokes equations. SIAM Journal on Scientific Com-
puting, 37(6):A2656–A2681, 2015.

150



[45] J.-L. Guermond, M. Nazarov, B. Popov, and I. Tomas. Second-order
invariant domain preserving approximation of the Euler equations using
convex limiting. ArXiv e-prints, October 2017.

[46] J.-L. Guermond and B. Popov. Viscous regularization of the Euler equa-
tions and entropy principles. SIAM Journal on Applied Mathematics,
74(2):284–305, 2014.

[47] J.-L. Guermond and B. Popov. Fast estimation from above of the maxi-
mum wave speed in the Riemann problem for the Euler equations. Jour-
nal of Computational Physics, 321:908–926, 2016.

[48] J.-L. Guermond and B. Popov. Invariant domains and first-order contin-
uous finite element approximation for hyperbolic systems. SIAM Journal
on Numerical Analysis, 54(4):2466–2489, 2016.

[49] H. Guillard and A. Murrone. On the behavior of upwind schemes in
the low Mach number limit: Ii. Godunov type schemes. Computers &
Fluids, 33(4):655–675, 2004.

[50] H. Guillard and C. Viozat. On the behaviour of upwind schemes in the
low Mach number limit. Computers & Fluids, 28(1):63–86, 1999.

[51] K.K. Haller, Y. Ventikos, and D. Poulikakos. Wave structure in the con-
tact line region during high speed droplet impact on a surface: Solution
of the Riemann problem for the stiffened gas equation of state. Journal
of Applied Physics, 93(5):3090–3097, 2003.

[52] F.H. Harlow and J.E. Welch. Numerical calculation of time-dependent
viscous incompressible flow of fluid with free surface. The physics of
fluids, 8(12):2182–2189, 1965.

[53] D. Hoff. The zero-Mach limit of compressible flows. Communications in
Mathematical Physics, 192(3):543–554, 1998.

[54] T.Y. Hou and P.G. LeFloch. Why nonconservative schemes converge
to wrong solutions: error analysis. Mathematics of Computation,
62(206):497–530, 1994.

[55] W. Huang and D.M. Sloan. Pole condition for singular problems:
the pseudospectral approximation. Journal of Computational Physics,
107(2):254–261, 1993.

151



[56] A. Hujeirat, F.-K. Thielemann, J. Dusek, and A. Nusser. Compressed
low Mach number flows in astrophysics: a nonlinear Newtonian numer-
ical solver. arXiv preprint arXiv:0712.3663, 2007.

[57] H. Isozaki. Singular limits for the compressible Euler equation in an
exterior domain. Journées équations aux dérivées partielles, pages 1–9,
1986.

[58] H. Isozaki. Singular limits for the compressible Euler equation in an exte-
rior domain. ii. Bodies in a uniform flow. Osaka Journal of Mathematics,
26(2):399–410, 1989.

[59] D. Jacqmin. An energy approach to the continuum surface tension
method. AIAA paper, (96-0858), 1996.

[60] D. Jamet, D. Torres, and J.U. Brackbill. On the theory and computation
of surface tension: the elimination of parasitic currents through energy
conservation in the second-gradient method. Journal of Computational
Physics, 182(1):262–276, 2002.

[61] E. Johnsen and T. Colonius. Numerical simulations of non-spherical
bubble collapse. Journal of Fluid Mechanics, 629:231–262, 2009.

[62] Y. Kagei and M. Ružička. The Oberbeck–Boussinesq approximation
as a constitutive limit. Continuum Mechanics and Thermodynamics,
28(5):1411–1419, 2016.

[63] A. Kageyama and T. Sato. “Yin–Yang grid”: An overset grid in spherical
geometry. Geochemistry, Geophysics, Geosystems, 5(9), 2004.

[64] S. Karni. Multicomponent flow calculations by a consistent primitive
algorithm. Journal of Computational Physics, 112(1):31–43, 1994.

[65] J.W. Keating. Direction-splitting schemes for particulate flows. 2013.

[66] S. Klainerman and A. Majda. Singular limits of quasilinear hyperbolic
systems with large parameters and the incompressible limit of com-
pressible fluids. Communications on Pure and Applied Mathematics,
34(4):481–524, 1981.

[67] S. Klainerman and A. Majda. Compressible and incompressible flu-
ids. Communications on Pure and Applied Mathematics, 35(5):629–651,
1982.

152



[68] R. Klein. Semi-implicit extension of a Godunov-type scheme based on
low Mach number asymptotics i: One-dimensional flow. Journal of Com-
putational Physics, 121(2):213–237, 1995.

[69] K.-B. Kong, J.-S. Kim, and S.-O. Park. Reduced splitting error in the
ADI–FDTD method using iterative method. Microwave and Optical
Technology Letters, 50(8):2200–2203, 2008.

[70] H.-O. Kreiss, J. Lorenz, and M.J. Naughton. Convergence of the solu-
tions of the compressible to the solutions of the incompressible Navier–
Stokes equations. Advances in Applied Mathematics, 12(2):187–214,
1991.

[71] O.A. Ladyzhenskaya. The mathematical theory of viscous incompressible
flow, volume 2. Gordon and Breach New York, 1969.

[72] L. Landau. A new exact solution of the Navier–Stokes equations. Doklady
Academii Nauk USSR, 43:286–295, 1944.

[73] H. P. Langtangen. Solving nonlinear ODE and PDE problems. Center
for Biomedical Computing, Simula Research Laboratory and Department
of Informatics, University of Oslo, 2016.

[74] F. Lemarié, E. Blayo, and L. Debreu. Analysis of ocean-atmosphere cou-
pling algorithms: consistency and stability. Procedia Computer Science,
51:2066–2075, 2015.

[75] F. Lemarié, P. Marchesiello, L. Debreu, and E. Blayo. Sensitivity of
ocean-atmosphere coupled models to the coupling method: example of
tropical cyclone Erica. 2014.

[76] L. Li, Y.Y. Li, and X. Yan. Homogeneous solutions of stationary Navier–
Stokes equations with isolated singularities on the unit sphere. I. One
singularity. Archive for Rational Mechanics and Analysis., 227:1091–
1163, 2018.

[77] P.-L. Lions and N. Masmoudi. Incompressible limit for a viscous com-
pressible fluid. Journal de mathématiques pures et appliquées, 77(6):585–
627, 1998.

[78] T.G. Liu, B.C. Khoo, and K.S. Yeo. Ghost fluid method for strong shock
impacting on material interface. Journal of Computational Physics,
190(2):651–681, 2003.

153



[79] X.-D. Liu, R.P. Fedkiw, and S. Osher. A conservative approach to the
multiphase Euler equations without spurious pressure oscillations. 1998.

[80] G.I. Marchuk and N.N. Yanenko. The solution of a multi-dimensional
kinetic equation by the splitting method. In Dokl. Akad. Nauk SSSR,
volume 157, pages 1291–1292, 1964.

[81] S. Marras, J.F. Kelly, M. Moragues, A. Müller, M.A. Kopera,
M. Vázquez, F.X. Giraldo, G. Houzeaux, and O. Jorba. A review of
element-based Galerkin methods for numerical weather prediction: Fi-
nite elements, spectral elements, and discontinuous Galerkin. Archives
of Computational Methods in Engineering, 23(4):673–722, 2016.

[82] J. Marshall, A. Adcroft, C. Hill, L. Perelman, and C. Heisey. A
finite-volume, incompressible Navier-Stokes model for studies of the
ocean on parallel computers. Journal of Geophysical Research: Oceans,
102(C3):5753–5766, 1997.

[83] T. Mathew. Domain decomposition methods for the numerical solution
of partial differential equations, volume 61. Springer Science & Business
Media, 2008.

[84] B.E. Merrill, Y.T. Peet, P.F. Fischer, and J.W. Lottes. A spectrally
accurate method for overlapping grid solution of incompressible Navier–
Stokes equations. Journal of Computational Physics, 307:60–93, 2016.

[85] G. Métivier and S. Schochet. The incompressible limit of the non-
isentropic Euler equations. Archive for Rational Mechanics and Analysis,
158(1):61–90, 2001.

[86] F. Miczek. Simulation of low Mach number astrophysical flows. PhD
thesis, Universität München, 2013.

[87] F. Miczek, F.K. Röpke, and P.V.F. Edelmann. New numerical solver for
flows at various Mach numbers. Astronomy & Astrophysics, 576:A50,
2015.

[88] PD Minev and C Ross Ethier. A characteristic/finite element algorithm
for the 3-d navier–stokes equations using unstructured grids. Computer
Methods in Applied Mechanics and Engineering, 178(1-2):39–50, 1999.

[89] K. Mohseni and T. Colonius. Numerical treatment of polar coordinate
singularities. Journal of Computational Physics, 157(2):787–795, 2000.

154



[90] S. Noelle, G. Bispen, K. R. Arun, M. Lukáčová-Medviďová, and C.-D.
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Appendices

Appendix A. Governing Equations and compu-

tation of Jacobians for Chapter 1.

The governing equations (compressible Navier-Stokes and advection of SG

EOS coefficients) can be written as:

∂U

∂t
+A

∂F(U)

∂x
+B

∂G(U)

∂y
=
∂V1(U,Ux)

∂x
+
∂V2(U,Uy)

∂x

+
∂W1(U,Ux)

∂y
+
∂W2(U,Uy)

∂y
+ FST ,

(A.1)

where

U =

[
ρ m n E α β

]T
(A.2)

F =

[
m m2

ρ
+ p mn

ρ
(E + p)m

ρ
α β

]T
(A.3)

G =

[
n nm

ρ
n2

ρ
+ p (E + p)n

ρ
α β

]T
(A.4)

FST =

[
0 σκ∂xφ σκ∂yφ σκu∂xφ+ σκv∂yφ 0 0

]T
(A.5)

V1 =

[
0 4µ

3
∂x

m
ρ

µ∂x
n
ρ

4µm
3ρ
∂x

m
ρ
+ µn

ρ
∂x

n
ρ

0 0

]T
(A.6)
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V2 =

[
0 −2µ

3
∂y

n
ρ

µ∂y
m
ρ

−2µm
3ρ

∂y
n
ρ
+ µn

ρ
∂y

m
ρ

0 0

]T
(A.7)

W1 =

[
0 µ∂x

n
ρ

−2µ
3
∂x

m
ρ

−2µn
3ρ

∂x
m
ρ
+ µm

ρ
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n
ρ
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(A.8)

W2 =

[
0 µ∂y

m
ρ

4µ
3
∂y

n
ρ

µm
ρ
∂y

m
ρ
+ 4µn

3ρ
∂y

n
ρ

0 0

]T
(A.9)

where µ [kg/(s ·m)] is a dynamic viscosity coefficient, σ [N/m] is the surface

tension coeficient, φ is the volume of fluid function, κ = −∇ · ∇φ
|∇φ| is the inter-

facial curvature.

A =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 m
ρ

0

0 0 0 0 0 m
ρ


(A.10)

B =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 n
ρ

0

0 0 0 0 0 n
ρ


(A.11)
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p =
1

α

(
E − m2 + n2

2ρ
− β

)
. (A.12)

After time discretization (A.1) becomes:

Un+1 −Un

τ
+An∂F

n+1(U)

∂x
+Bn∂G

n+1(U)

∂y
=

∂Vn+1
1 (U,Ux)

∂x
+
∂Vn

2 (U,Uy)

∂x
+
∂Wn

1 (U,Ux)

∂y
+
∂Wn+1

2 (U,Uy)

∂y
,

(A.13)

which is linearized as:

Fn+1 = Fn +

(
∂F

∂U

)n
(Un+1 −Un) (A.14)

Gn+1 = Gn +

(
∂G

∂U

)n
(Un+1 −Un) (A.15)

Vn+1
1 = Vn

1 +

(
∂V1

∂U

)n
(Un+1 −Un) +

(
∂V1

∂Ux

)n
(Un+1

x −Un
x) (A.16)

Wn+1
2 = Wn

2 +

(
∂W2

∂U

)n
(Un+1 −Un) +

(
∂W2

∂Uy

)n
(Un+1

y −Un
y ), (A.17)

where
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∂F
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where f1 = −m2

ρ2
+ 1

α
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2ρ2
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where g1 = −n2

ρ2
+ 1

α
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2ρ2
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, g2 = − 1
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.
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where v1 = −4µ
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where w1 = −4µ
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Appendix B. Compressible Navier-Stokes equa-

tions for dry atmosphere in primitive variables.

The dry dynamics of Earth’s atmosphere can be modeled by the compressible

Navier-Stokes equations written in the conservative form in terms of density ρ

[kg/m3], velocity u [m/s,m/s,m/s] – Cartesian or [m/s, 1/s, 1/s] – spherical,

and the total energy per unit volume E [J/m3] (see [81]):

∂ρ

∂t
+∇ · (ρu) = 0 (B.24)

∂ρu

∂t
+∇ · (ρu⊗ u) +∇p+ 2ρ (ω × u) + ρg −∇ · σ̂ = 0 (B.25)

∂E

∂t
+∇ · ((E + p)u)−∇ ·

(µcp
Pr

∇T + u · σ̂̂σ̂σ
)
= 0 (B.26)

where ω [1/s, 1/s, 1/s] is the rotational velocity of the Earth, σ̂ is the viscous

stress tensor given by

σ̂ = µ

[(
∇u+ (∇u)T

)
− 2

3
(∇ · u)Î

]
,

g [m/s2,m/s2,m/s2] – Cartesian or [m/s2, 1/s2, 1/s2] – spherical, is the sum

of the true gravity and the centrifugal force, cp [J/(K · kg)], cv [J/(K · kg)],

µ [kg/(s ·m)], Pr, γ =
cp
cV

, π∞ [Pa] are constant for each material. The total

energy E is the sum of the internal energy (e = cV T +
π∞
ρ

), kinetic energy,
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and gravitational potential energy:

E = ρe+
1

2
ρu · u · u+ ρgr (B.27)

where r [m] is the radial distance from the center of the Earth. The viscous

stress tensor for a Newtonian fluid is given by

σ̂ = µ

[(
∇u+ (∇u)T

)
− 2

3
(∇ · u)Î

]
. (B.28)

Pressure is given through the Stiffened Gas Equation of State:

p = (γ − 1)ρe− γπ∞. (B.29)

The goal of this appendix is to re-write equations (B.24)-(B.26) in the non-

conservative form in terms of the primitive variables p [Pa], u [m/s,m/s,m/s]

– Cartesian or [m/s, 1/s, 1/s] – spherical, and T [K]. Then, density will be

given by the following equation of state (equivalent to B.29):

ρ =
p+ π∞

cV (γ − 1)T
. (B.30)

First, we work with the momentum conservation equation (B.25). Using the

chain rule:
∂ρu

∂t
= ρ

∂u

∂t
+ u

∂ρ

∂t
,

∇ · (ρu⊗ u) = ρu · ∇u+∇ · (ρu)u.
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Hence, (B.25) becomes

ρ

[
∂u

∂t
+ u · ∇u+

1

ρ
∇p− 1

ρ
∇ · σ̂ + g + 2(u× ω)

]
+ u

[
∂ρ

∂t
+∇ · (ρu)

]
= 0

Since the expression in the second brackets is zero due to the mass conservation

(B.24), the momentum conservation can be re-written in the non-conservative

form as:
∂u

∂t
+ u · ∇u+

1

ρ
∇p− 1

ρ
∇ · σ̂ + g + 2(u× ω) = 0. (B.31)

Next, we look at the energy conservation equation (B.26). Fo convinience, we

denote

Q = −∇ ·
(µcp
Pr

∇T + u · σ̂
)
,

and then (B.26) can be re-written as

∂E

∂t
+∇ · ((E + p)u) +Q = 0.

We can express the total energy as:

E = ρcV T + π∞ +
ρu · u
2

+ ρgr =
p+ π∞
γ − 1

+ π∞ +
ρu · u
2

+ ρgr =

p

γ − 1
+

γπ∞
γ − 1

+
ρu · u
2

+ ρgr.

Substituting the last expression for energy into (B.26) gives:

[
∂t

(
p

γ − 1

)
+∇ ·

(
p

γ − 1
u

)
+∇ · (pu)

]
+

[
∂t

(
π∞γ

γ − 1

)
+∇ ·

(
π∞γ

γ − 1
u

)]
+[

∂t

(ρu · u
2

)
+∇ ·

(ρu · u
2

u
)]

+ [∂t(ρgr) +∇ · (ρgru)] +Q = 0
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Considering all the expressions in brackets above one by one, and using (B.24),

one obtains

∂t(ρgr) +∇ · (ρgru) = g(r∂tρ+ rρ∇ · u+ r∇ρ · u+ ρ∇r · u) =

g(r(∂tρ+∇ · (ρu)) + ρ∇r · u) = gr∇r · u = gρur,

1

2
(∂t(ρu · u) +∇ · ((ρu · u)u)) = 1

2
((u · u)∂tρ+ ρ∂t(u · u) + (ρu · u)∇ · u+ u · ∇(ρu · u)) =

u · u
2

[∂tρ+ ρ∇ · u+ u · ∇ρ] + ρ

2
[∂t(u · u) + u · ∇(u · u)] = ρu · [∂tu+ (u · ∇)u] .

Then, using (B.31):

1

2
(∂t(ρu · u) +∇ · ((ρu · u)u)) = ρu ·

[
−1

ρ
∇p− g − 2ω × u+

1

ρ
∇ · σ̂

]
=

−u · ∇p− ρu · g − 2ρu · (ω × u) + u · (∇ · σ̂).

Since u · g = gur and u is perpendicular to ω × u, (B.26) becomes:

∂t

(
p

γ − 1

)
+∇ ·

(
p

γ − 1
u

)
+∇ · (pu) + ∂t

(
π∞γ

γ − 1

)
+

∇ ·
(
π∞γ

γ − 1
u

)
− u · ∇p+ u · (∇ · σ̂) +Q = 0

(B.32)

Let V = u · (∇ · σ̂) + Q. Applying the chain rule to the terms in (B.32) and

re-arranging them we get:

1

γ − 1

[
∂p

∂t
+ p∇ · u+ (γ − 1)p∇ · u+ u · ∇p+ π∞γ∇ · u

]
+ V+

p

[
∂t

(
1

γ − 1

)
+ u · ∇

(
1

γ − 1

)]
+

[
∂t

(
π∞γ

γ − 1

)
+ u · ∇

(
π∞γ

γ − 1

)]
= 0.

168



Since equations

∂t

(
1

γ − 1

)
+ u · ∇

(
1

γ − 1

)
= 0

and

∂t

(
π∞γ

γ − 1

)
+ u · ∇

(
π∞γ

γ − 1

)
= 0

represent the advection of a material interface and thus have to be satisfied,

(B.26) can be written as:

∂p

∂t
+ u · ∇p+ γ(p+ π∞)∇ · u+ (γ − 1)V = 0. (B.33)

Finally, we re-write (B.24) as:

∂ρ

∂t
+ u · ∇ρ+ ρ∇ · u = 0.

Since

ρ =
p

cV (γ − 1)T
+

π∞
cV (γ − 1)T

,

we compute:

∂ρ

∂t
=

1

cV (γ − 1)T

∂p

∂t
− p

cv(γ − 1)T 2

∂T

∂t
+
p

T
∂t

(
1

cV (γ − 1)

)
+
1

T
∂t

(
π∞

cV (γ − 1)

)
− π∞
cV (γ − 1)T 2

∂T

∂t
,

∇ρ = 1

cV (γ − 1)T
∇p− p

cv(γ − 1)T 2
∇T +

p

T
∇
(

1

cV (γ − 1)

)
+
1

T
∇
(

π∞
cV (γ − 1)

)
− π∞
cV (γ − 1)T 2

∇T,
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and the mass conservation equation (B.24) becomes:

1

cV (γ − 1)T

[
∂p

∂t
+ u · ∇p

]
− p+ π∞
cV (γ − 1)T 2

[
∂T

∂t
+ u · ∇T

]
+

p+ π∞
cV (γ − 1)T

∇ · u+

p

T

[
∂

∂t

(
1

cV (γ − 1)

)
+ u · ∇

(
1

cV (γ − 1)

)]
+

1

T

[
∂

∂t

(
π∞

cV (γ − 1)

)
+ u · ∇

(
π∞

cV (γ − 1)

)]
= 0

Since
∂

∂t

(
1

cV (γ − 1)

)
+ u · ∇

(
1

cV (γ − 1)

)
= 0

and
∂

∂t

(
π∞

cV (γ − 1)

)
+ u · ∇

(
π∞

cV (γ − 1)

)
= 0

represent the advection of a material interface and thus have to be satisfied,

and ∂p

∂t
+ u · ∇p can be expressed from (B.33), the mass conservation can be

written in the non-conservative form as:

∂T

∂t
+ u · ∇T + (γ − 1)T∇ · u+

(γ − 1)T

p+ π∞
V = 0. (B.34)

Recall that

V = −∇ ·
(µcp
Pr

∇T
)
−∇ · (u · σ̂) + u · (∇ · σ̂).

Using the symmetry of the stress tensor we obtain:

∇ · (u · σ̂)− u · (∇ · σ̂) = ∂i(ujσij)− uj∂iσji = (∂iuj)σij + uj∂iσij − uj∂iσji =

(∂iuj)σij + uj∂iσij − uj∂iσij = (∂iuj)σij = ∇u : σ̂,
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and thus V becomes

V = −∇ ·
(µcp
Pr

∇T
)
−∇u : σ̂. (B.35)

Substituting (B.35) into (B.33) and (B.34), we finally write the system (B.24)-(B.26)

in the non-conservative form in terms of the primitive variables (p,u, T ):

∂T

∂t
+ u · ∇T + (γ − 1)T∇ · u− (γ − 1)T

p+ π∞
∇ ·
(µcp
Pr

∇T
)

− (γ − 1)T

p+ π∞
∇u : σ̂ = 0,

(B.36)

∂u

∂t
+ u · ∇u+

1

ρ
∇p− 1

ρ
∇ · σ̂ + g + 2(u× ω) = 0, (B.37)

∂p

∂t
+ u · ∇p+ γ(p+ π∞)∇ · u− (γ − 1)∇ ·

(µcp
Pr

∇T
)

− (γ − 1)∇u : σ̂ = 0,

(B.38)

where

ρ =
p+ π∞

cV (γ − 1)T
. (B.39)
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Appendix C. Governing Equations and defini-

tion of operators for Chapter 3.

In Chapter 3 we are concerned with solving the following system of PDEs in

spherical coordinates:

∂T

∂t
+ u · ∇T + (γ − 1)T∇ · u−(γ − 1)T

p+ π∞
∇ ·
(µcp
Pr

∇T
)

(C.40)

− (γ − 1)T

p+ π∞
∇u : σ̂ = 0,

∂u

∂t
+ u · ∇u+

1

ρ
∇p− 1

ρ
∇ · σ̂+g + 2(u× ω) = 0, (C.41)

∂p

∂t
+ u · ∇p+ γ(p+ π∞)∇ · u−(γ − 1)∇ ·

(µcp
Pr

∇T
)

(C.42)

− (γ − 1)∇u : σ̂ = 0.

where

ρ =
p+ π∞

cV (γ − 1)T
. (C.43)

First, we provide expressions for all the spherical differential operators used in

(C.40)-(C.42). Recall that the spherical transformation is given by:


x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ,
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where r ∈ [R1, R2], θ ∈ [0, π], φ ∈ [0, 2π]. We also denote by ererer, eθeθeθ, and eφeφeφ

the corresponding unit vectors in spherical coordinates, and the spherical unit

tensors by ezlezlezl, where z, l = r, θ, or φ. Then,

∇ · u =
1

r2
∂ (r2ur)

∂r
+

1

r sin θ

∂(uθ sin θ)

∂θ
+

1

r sin θ

∂(uφ)

∂φ

∇f =
∂f

∂r
ererer +

1

r

∂f

∂θ
eθeθeθ +

1

r sin θ

∂f

∂φ
eφeφeφ

∇2f =
1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2

∇u =Ĝ =
∂ur
∂r

errerrerr +
∂uθ
∂r

erθerθerθ +
∂uφ
∂r

erφerφerφ+(
1

r

∂ur
∂θ

− uθ
r

)
eθreθreθr +

(
1

r

∂uθ
∂θ

+
ur
r

)
eθθeθθeθθ +

(
1

r

∂uφ
∂θ

)
eθφeθφeθφ+(

1

r sin θ

∂ur
∂φ

− uφ
r

)
eφreφreφr +

(
1

r sin θ

∂uθ
∂φ

− uφ
r tan θ

)
eφθeφθeφθ+(

1

r sin θ

∂uφ
∂φ

+
uθ

r tan θ
+
ur
r

)
eφφeφφeφφ

∇2u =

(
∇2ur −

2ur
r2

− 2

r2 sin θ

∂(uθ sin θ)

∂θ
− 2

r2 sin θ

∂uφ
∂φ

)
ererer+(

∇2uθ −
uθ

r2 sin2 θ
+

2

r2
∂ur
∂θ

− 2 cos θ

r2 sin2 θ

∂uφ
∂φ

)
eθeθeθ+(

(∇2uφ −
uφ

r2 sin2 θ
+

2

r2 sin θ

∂ur
∂φ

+
2 cos θ

r2 sin2 θ

∂uθ
∂φ

)
eφeφeφ

∇ · (µ∇u) =

(
∇ · (µ∇ur)−

2µur
r2

)
ererer+(

− µ

r2 sin θ

∂(uθ sin θ)

∂θ
− µ

r2 sin θ

∂uφ
∂φ

− 1

r2 sin θ

∂(µuθ sin θ)

∂θ
− 1

r2 sin θ

∂(µuφ)

∂φ

)
ererer+(

∇ · (µ∇uθ)−
µuθ

r2 sin2 θ

)
eθeθeθ+(

µ

r2
∂ur
∂θ

− µ cos θ

r2 sin2 θ

∂uφ
∂φ

+
1

r2
∂(µur)

∂θ
− cos θ

r2 sin2 θ

∂(µuφ)

∂φ

)
eθeθeθ+(

∇ · (µ∇uφ)−
µuφ

r2 sin2 θ

)
eφeφeφ+(

µ

r2 sin θ

∂ur
∂φ

+
µ cos θ

r2 sin2 θ

∂uθ
∂φ

+
1

r2 sin θ

∂(µur)

∂φ
+

cos θ

r2 sin2 θ

∂(µuθ)

∂φ

)
eφeφeφ
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∇∇ · u =

(
∂

∂r

[
1

r2
∂ (r2ur)

∂r

]
+

∂

∂r

[
1

r sin θ

∂ (uθ sin θ)

∂θ

]
+

∂

∂r

[
1

r sin θ

∂uφ
∂φ

])
ererer+(

1

r3
∂2 (r2ur)

∂θ∂r
+

1

r2
∂

∂θ

[
1

sin θ

∂ (uθ sin θ)

∂θ

]
+

1

r2
∂

∂θ

[
1

sin θ

∂uφ
∂φ

])
eθeθeθ+(

1

r3 sin θ

∂2 (r2ur)

∂φ∂r
+

1

r2 sin2 θ

∂2 (uθ sin θ)

∂φ∂θ
+

1

r2 sin2 θ

∂2uφ
∂φ2

)
eφeφeφ

Notice that

∇ · σ̂ = ∇ · (µ∇u) +∇
(µ
3
∇ · u

)
.

And finally, the stress tensor is equal to

σ̂ =µ

[
2
∂ur
∂r

− 2

3

(
1

r2
∂

∂r

(
r2ur

)
+

1

r sin θ

∂

∂θ
(sin θuθ) +

1

r sin θ

∂uφ
∂φ

)]
errerrerr

+ µ

[
∂uθ
∂r

+
1

r

∂ur
∂θ

− uθ
r

]
erθerθerθ

+ µ

[
∂uφ
∂r

+
1

r sin θ

∂ur
∂φ

− uφ
r

]
erφerφerφ

+ µ

[
∂uθ
∂r

+
1

r

∂ur
∂θ

− uθ
r

]
eθreθreθr

+ µ

[
2

r

∂uθ
∂θ

+
2ur
r

− 2

3

(
1

r2
∂

∂r

(
r2ur

)
+

1

r sin θ

∂

∂θ
(sin θuθ) +

1

r sin θ

∂uφ
∂φ

)]
eθθeθθeθθ

+ µ

[
1

r

∂uφ
∂θ

+
1

r sin θ

∂uθ
∂φ

− uφ
r tan θ

]
eθφeθφeθφ

+ µ

[
∂uφ
∂r

+
1

r sin θ

∂ur
∂φ

− uφ
r

]
eφreφreφr

+ µ

[
1

r

∂uφ
∂θ

+
1

r sin θ

∂uθ
∂φ

− uφ
r tan θ

]
eφθeφθeφθ

+ µ

[
2

r sin θ

∂uφ
∂φ

+
2uθ
r tan θ

+
2ur
r

− 2

3

(
1

r2
∂

∂r

(
r2ur

)
+

1

r sin θ

∂

∂θ
(sin θuθ) +

1

r sin θ

∂uφ
∂φ

)]
eφφeφφeφφ

To simplify the notations, we define the following operators:

A1A1A1(u)f = u · ∇f (C.44)
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A2A2A2(p,u)v = γ (p+ π∞)∇ · v − (γ − 1)∇u : σ̂ (v) (C.45)

A3A3A3f = − (γ − 1)∇ ·
(µcp
Pr

∇f
)

(C.46)

B1B1B1(ρ)f =
1

ρ
∇f (C.47)

B2B2B2(ρ,u)v = u · ∇v + 2 (ω × v)− 1

ρ

(
∇ · (µ∇v) +∇

(µ
3
∇ · v

))
(C.48)

C2C2C2(T, p,u)v = (γ − 1)T∇ · v − (γ − 1)T

p+ π∞
∇u : σ̂ (v) (C.49)

C3C3C3(T, p,u)f = u · ∇f − (γ − 1)T

p+ π∞
∇ ·
(µcp
Pr

∇f
)

(C.50)

Thus, the system (C.40)-(C.42) can be written as

∂p

∂t
+A1A1A1(u)p+A2A2A2(p,u)u+A3A3A3T = 0, (C.51)

∂u

∂t
+B1B1B1(ρ)p+B2B2B2(ρ,u)u+ g = 0, (C.52)

∂T

∂t
+C2C2C2(T, p,u)u+C3C3C3(T, p,u)T = 0. (C.53)

The operators (C.44) - (C.50) can be splitted direction-wise as following (note

that the operators with the upper subindex M include mixed derivatives,

derivatives in staggered directions, and other terms that cannot be naturally

incorporated into the direction splitting approach implicitly):

A1A1A1f = Ar1A
r
1A
r
1f +Aθ1A

θ
1A
θ
1f +Aφ1A

φ
1A
φ
1f = ur

∂f

∂r
+
uθ
r

∂f

∂θ
+

uφ
r sin θ

∂f

∂φ

A2A2A2v = Ar2A
r
2A
r
2v +Aθ2A

θ
2A
θ
2v +Aφ2A

φ
2A
φ
2v +AM2A

M
2A
M
2 v
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Ar2A
r
2A
r
2v =

(
γ(p+ π∞) +

2µ(γ − 1)

3

(
Ĝrr + Ĝθθ + Ĝφφ

)) 1

r2
∂ (r2vr)

∂r
−

2µ(γ − 1)Ĝrr
∂vr
∂r

− µ(γ − 1)
(
2Ĝθθ + 2Ĝφφ

) vr
r

Aθ2A
θ
2A
θ
2v =

(
γ(p+ π∞) +

2µ(γ − 1)

3

(
Ĝrr + Ĝθθ + Ĝφφ

)) 1

r sin θ

∂ (sin θvθ)

∂θ
−

2µ(γ − 1)
Ĝθθ

r

∂vθ
∂θ

− µ(γ − 1)

(
2Ĝφφ

tan θ
− Ĝrθ − Ĝθr

)
vθ
r

Aφ2A
φ
2A
φ
2v =

(
γ(p+ π∞) +

2µ(γ − 1)

3

(
Ĝrr + Ĝθθ − 2Ĝφφ

)) 1

r sin θ

∂vφ
∂φ

−

µ(γ − 1)

(
2Ĝφφ

tan θ
− Ĝφθ + Ĝθφ

tan θ
− Ĝrφ − Ĝφr

)
vφ
r

AM2A
M
2A
M
2 v =

[
AM2,(r)AM2,(r)AM2,(r),A

M
2,(θ)AM2,(θ)AM2,(θ),A

M
2,(φ)AM2,(φ)AM2,(φ)

]
v = −µ(γ − 1)

(
Ĝrθ + Ĝθr

) ∂vθ
∂r

− µ(γ − 1)
(
Ĝrφ + Ĝφr

) ∂vφ
∂r

− µ(γ − 1)
(
Ĝrθ + Ĝθr

) 1

r

∂vr
∂θ

− µ(γ − 1)
(
Ĝθφ + Ĝφθ

) 1

r

∂vφ
∂θ

− µ(γ − 1)
(
Ĝrφ + Ĝφr

) 1

r sin θ

∂vr
∂φ

− µ(γ − 1)
(
Ĝφθ + Ĝθφ

) 1

r sin θ

∂vθ
∂φ

Let κ = µcp
Pr

. Then:

A3A3A3f =Ar3A
r
3A
r
3f +Aθ3A

θ
3A
θ
3f +Aφ3A

φ
3A
φ
3f = −γ − 1

r2
∂

∂r

(
κr2

∂f

∂r

)
−

γ − 1

r2 sin θ

∂

∂θ

(
κ sin θ

∂f

∂θ

)
− γ − 1

r2 sin2 θ

∂

∂φ

(
κ
∂f

∂φ

)
B1B1B1f =ererer (B

r
1B
r
1B
r
1f) + eθeθeθ

(
Bθ

1B
θ
1B
θ
1f
)
+ eφeφeφ

(
Bφ

1B
φ
1B
φ
1 f
)
= ererer

(
1

ρ

∂(f)

∂r

)
+ eθeθeθ

(
1

ρr

∂f

∂θ

)
+ eφeφeφ

(
1

ρr sin θ

∂f

∂φ

)

Then,

B2B2B2v = ererer

(
Br,r

2B
r,r
2B
r,r
2 v +Bθ,r

2B
θ,r
2B
θ,r
2 v +Bφ,r

2B
φ,r
2B
φ,r
2 v +BM,r

2B
M,r
2B
M,r
2 v

)
+

eθeθeθ

(
Br,θ

2B
r,θ
2B
r,θ
2 v +Bθ,θ

2B
θ,θ
2B
θ,θ
2 v +Bφ,θ

2B
φ,θ
2B
φ,θ
2 v +BM,θ

2B
M,θ
2B
M,θ
2 v+

)
+

eφeφeφ

(
Br,φ

2B
r,φ
2B
r,φ
2 v +Bθ,φ

2B
θ,φ
2B
θ,φ
2 v +Bφ,φ

2B
φ,φ
2B
φ,φ
2 v +BM,φ

2B
M,φ
2B
M,φ
2 v

)
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Br,r
2B
r,r
2B
r,r
2 v =ur

∂vr
∂r

− 1

ρ

[
1

r2
∂

∂r

(
µr2

∂vr
∂r

)]
− 1

3ρ

(
∂

∂r

[
µ

r2
∂

∂r

(
r2vr

)])
Bθ,r

2B
θ,r
2B
θ,r
2 v =

uθ
r

∂vr
∂θ

− 1

ρ

[
1

r2 sin θ

∂

∂θ

(
µ sin θ

∂vr
∂θ

)]
Bφ,r

2B
φ,r
2B
φ,r
2 v =

uφ
r sin θ

∂vr
∂φ

− 1

ρ

[
1

r2 sin2 θ

∂

∂φ

(
µ
∂vr
∂φ

)]
BM,r

2B
M,r
2B
M,r
2 v =

[
BM,r

2,(r)
BM,r

2,(r)BM,r
2,(r),B

M,r
2,(θ)

BM,r
2,(θ)BM,r
2,(θ),B

M,r
2,(φ)

BM,r
2,(φ)BM,r
2,(φ)

]
v = −uθvθ

r
− uφvφ

r
+

2µvr
ρr2

− 2ω sin θvφ

− 1

3ρ

(
∂

∂r

[
µ

r sin θ

∂

∂θ
(vθ sin θ)

])
− 1

3ρ

(
∂

∂r

[
µ

r sin θ

∂vφ
∂φ

])
− µ

ρ

[
− 2

r2 sin θ

∂

∂θ
(sin θvθ)−

2

r2 sin θ

∂vφ
∂φ

]
−

− 1

ρ

[
− 2

r2 sin θ

∂

∂θ
(µ sin θvθ)−

2

r2 sin θ

∂(µvφ)

∂φ

]
Br,θ

2B
r,θ
2B
r,θ
2 v =ur

∂vθ
∂r

− 1

ρ

[
1

r2
∂

∂r

(
µr2

∂vθ
∂r

)]
Bθ,θ

2B
θ,θ
2B
θ,θ
2 v =

uθ
r

∂vθ
∂θ

− 1

ρ

[
1

r2 sin θ

∂

∂θ

(
µ sin θ

∂vθ
∂θ

)]
−

1

3ρ

(
1

r2
∂

∂θ

[
µ

sin θ

∂

∂θ
(vθ sin θ)

])
Bφ,θ

2B
φ,θ
2B
φ,θ
2 v =

uφ
r sin θ

∂vθ
∂φ

− 1

ρ

[
1

r2 sin2 θ

∂

∂φ

(
µ
∂vθ
∂φ

)]
BM,θ

2B
M,θ
2B
M,θ
2 v =

[
BM,θ

2,(r)
BM,θ

2,(r)BM,θ
2,(r),B

M,θ
2,(θ)

BM,θ
2,(θ)BM,θ
2,(θ),B

M,θ
2,(φ)

BM,θ
2,(φ)BM,θ
2,(φ)

]
v =

uθvr
r

− uφvφ
r tan θ

+
µvθ

ρr2 sin2 θ
− 2ω cos θvφ

− 1

3ρ

(
1

r3
∂

∂θ

(
µ
∂(r2vr)

∂r

))
− 1

3ρ

(
1

r2
∂

∂θ

(
µ

sin θ

∂vφ
∂φ

))
− µ

ρ

[
1

r2
∂ur
∂θ

− cos θ

r2 sin2 θ

∂uφ
∂φ

]
− 1

ρ

[
− 1

r2
∂(µur)

∂θ
− cos θ

r2 sin2 θ

∂(µuφ)

∂φ

]
Br,φ

2B
r,φ
2B
r,φ
2 v =ur

∂vφ
∂r

− 1

ρ

[
1

r2
∂

∂r

(
µr2

∂vφ
∂r

)]
Bθ,φ

2B
θ,φ
2B
θ,φ
2 u =

uθ
r

∂vφ
∂θ

− 1

ρ

[
1

r2 sin θ

∂

∂θ

(
µ sin θ

∂vφ
∂θ

)]
Bφ,φ

2B
φ,φ
2B
φ,φ
2 v =

uφ
r sin θ

∂vφ
∂φ

− 1

ρ

[
1

r2 sin2 θ

∂

∂φ

(
µ
∂vφ
∂φ

)]
− 1

3ρ

(
1

r2 sin2 θ

∂

∂φ

(
µ
∂vφ
∂φ

))
BM,φ

2B
M,φ
2B
M,φ
2 v =

[
BM,φ

2,(r)
BM,φ

2,(r)BM,φ
2,(r),B

M,φ
2,(θ)

BM,φ
2,(θ)BM,φ
2,(θ),B

M,φ
2,(φ)

BM,φ
2,(φ)BM,φ
2,(φ)

]
v =

uφvθ
r tan θ

+
uφvr
r

+
µvφ

ρr2 sin2 θ
+ 2ω cos θvθ + 2ω sin θvr
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− 1

3ρ

(
1

r3 sin θ

∂

∂φ

(
µ
∂(r2vr)

∂r

))
− 1

3ρ

(
1

r2 sin2 θ

∂

∂φ

(
µ
∂(vθ sin θ)

∂θ

))
− µ

ρ

[
1

r2 sin θ

∂ur
∂φ

+
cos θ

r2 sin2 θ

∂uθ
∂φ

]
− 1

ρ

[
1

r2 sin θ

∂(µur)

∂φ
+

cos θ

r2 sin2 θ

∂(µuθ)

∂φ

]

C2C2C2v = Cr
2C
r
2C
r
2v +Cθ

2C
θ
2C
θ
2v +Cφ

2C
φ
2C
φ
2 v +CC

2C
C
2C
C
2 v

Cr
2C
r
2C
r
2v =

(
(γ − 1)T +

2µ(γ − 1)T

3(p+ π∞)

(
Ĝrr + Ĝθθ + Ĝφφ

)) 1

r2
∂ (r2vr)

∂r
−

2µ
(γ − 1)T

p+ π∞
Ĝrr

∂vr
∂r

− µ
(γ − 1)T

p+ π∞

(
2Ĝθθ + 2Ĝφφ

) vr
r

Cθ
2C
θ
2C
θ
2v =

(
(γ − 1)T +

2µ(γ − 1)T

3(p+ π∞)

(
Ĝrr + Ĝθθ + Ĝφφ

)) 1

r sin θ

∂ (sin θvθ)

∂θ

− 2µ
(γ − 1)T

p+ π∞

Ĝθθ

r

∂vθ
∂θ

− µ
(γ − 1)T

p+ π∞

(
2Ĝφφ

tan θ
− Ĝrθ − Ĝθr

)
vθ
r

Cφ
2C
φ
2C
φ
2 v =

(
(γ − 1)T +

2µ(γ − 1)T

3(p+ π∞)

(
Ĝrr + Ĝθθ − 2Ĝφφ

)) 1

r sin θ

∂vφ
∂φ

−

µ
(γ − 1)T

p+ π∞

(
2Ĝφφ

tan θ
− Ĝφθ + Ĝθφ

tan θ
− Ĝrφ − Ĝφr

)
vφ
r

CM
2C
M
2C
M
2 v =

[
CM

2,(r)CM
2,(r)CM
2,(r),C

M
2,(θ)CM
2,(θ)CM
2,(θ),C

M
2,(φ)CM
2,(φ)CM
2,(φ)

]
v =

− µ
(γ − 1)T

p+ π∞

(
Ĝrθ + Ĝθr

) ∂vθ
∂r

− µ
(γ − 1)T

p+ π∞

(
Ĝrφ + Ĝφr

) ∂vφ
∂r

−

− µ
(γ − 1)T

p+ π∞

(
Ĝrθ + Ĝθr

) 1

r

∂vr
∂θ

− µ
(γ − 1)T

p+ π∞

(
Ĝθφ + Ĝφθ

) 1

r

∂vφ
∂θ

− µ
(γ − 1)T

p+ π∞

(
Ĝrφ + Ĝφr

) 1

r sin θ

∂vr
∂φ

− µ
(γ − 1)T

p+ π∞

(
Ĝφθ + Ĝθφ

) 1

r sin θ

∂vθ
∂φ

C3C3C3f = Cr
3C
r
3C
r
3f +Cθ

3C
θ
3C
θ
3f +Cφ

3C
φ
3C
φ
3 f
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Cr
3C
r
3C
r
3f = ur

∂f

∂r
− (γ − 1)T

(p+ π∞)r2
∂

∂r

(
κr2

∂f

∂r

)
Cθ

3C
θ
3C
θ
3f =

uθ
r

∂f

∂θ
− (γ − 1)T

(p+ π∞)r2 sin θ

∂

∂θ

(
κ sin θ

∂f

∂θ

)
Cφ

3C
φ
3C
φ
3 f =

uφ
r sin θ

∂f

∂φ
− (γ − 1)T

(p+ π∞)r2 sin2 θ

∂

∂φ

(
κ
∂f

∂φ

)
.

If we denote by U the vector of unknowns:

U = [p, ur, uθ, uφ, T ]
T ,

define Gr as the gravity vector

Gr = [0, g, 0, 0, 0]T ,

and combine operators in corresponding directions by introducing the following

block-operators:

DrDrDr(U) =



Ar1A
r
1A
r
1 Ar2A

r
2A
r
2 0 0 Ar3A

r
3A
r
3

Br
1B
r
1B
r
1 Br,r

2B
r,r
2B
r,r
2 0 0 0

0 0 Br,θ
2B
r,θ
2B
r,θ
2 0 0

0 0 0 Br,φ
2B
r,φ
2B
r,φ
2 0

0 Cr
2C
r
2C
r
2 0 0 Cr

3C
r
3C
r
3


(C.54)
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DθDθDθ(U) =



Aθ1A
θ
1A
θ
1 0 Aθ2A

θ
2A
θ
2 0 Aθ3A

θ
3A
θ
3

0 Bθ,r
2B
θ,r
2B
θ,r
2 0 0 0

Bθ
1B
θ
1B
θ
1 0 Bθ,θ

2B
θ,θ
2B
θ,θ
2 0 0

0 0 0 Bθ,φ
2B
θ,φ
2B
θ,φ
2 0

0 0 Cθ
2C
θ
2C
θ
2 0 Cθ

3C
θ
3C
θ
3


(C.55)

DφDφDφ(U) =



Aφ1A
φ
1A
φ
1 0 0 Aφ2A

φ
2A
φ
2 Aφ3A

φ
3A
φ
3

0 Bφ,r
2B
φ,r
2B
φ,r
2 0 0 0

0 0 Bφ,θ
2B
φ,θ
2B
φ,θ
2 0 0

Bφ
1B
φ
1B
φ
1 0 0 Bφ,φ

2B
φ,φ
2B
φ,φ
2 0

0 0 0 Cφ
2C
φ
2C
φ
2 Cφ

3C
φ
3C
φ
3


(C.56)

DMDMDM(U) =



0 AM2,(r)AM2,(r)AM2,(r) AM2,(θ)AM2,(θ)AM2,(θ) AM2,(φ)AM2,(φ)AM2,(φ) 0

0 BM,r
2,(r)

BM,r
2,(r)BM,r
2,(r) BM,r

2,(θ)
BM,r

2,(θ)BM,r
2,(θ) BM,r

2,(φ)
BM,r

2,(φ)BM,r
2,(φ) 0

0 B
M,2,(r)
2B
M,2,(r)
2B
M,2,(r)
2 BM,r

2,(θ)
BM,r

2,(θ)BM,r
2,(θ) BM,r

2,(φ)
BM,r

2,(φ)BM,r
2,(φ) 0

0 BM,r
2,(r)

BM,r
2,(r)BM,r
2,(r) BM,r

2,(θ)
BM,r

2,(θ)BM,r
2,(θ) BM,r

2,(φ)
BM,r

2,(φ)BM,r
2,(φ) 0

0 CM
2,(r)CM
2,(r)CM
2,(r) CM

2,(θ)CM
2,(θ)CM
2,(θ) CM

2,(φ)CM
2,(φ)CM
2,(φ) 0


(C.57)

the system (C.51)-(C.53) can be written in a compact form as:

∂U

∂t
+DrDrDr(U)U +DθDθDθ(U)U +DφDφDφ(U)U +DMDMDM(U)U +Gr = 0. (C.58)
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