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Abstract

Some 1300 square miles and 450 well cores and
geophysical logs have heen studied, outlining current
reserves of mnatural gas and possible further
accumulations c¢f same from the Lower Cretaceous
Clearwater Formation and McMurray Formataic.: ¢ e
Mannville Group. The McMurray Formation consist: o©u an
interpreted progression of fluvial to marginal marine
deposits representing transgression of the Bullhead sea
within a weil defined paleovalley. The most significant
natural gas reserves are found in Upper McMurray
deposits where distributary channels feeding
northwestern prograding shorelines have completely
eroded the muds of the Middle McMurray, leaving
continuous reservoir throughout the McMurray Formation.
The Clearwater Formation is interpreted as northward
prograding nearshore bars trapping natural gas
stratigraphically to the north, and structurally to the
msast, primarily by the North-South trending salt
collapse structure originating within the Elk Point
Grcup. 18 maps and 9 cross-sections detail the
stratigraphy, structure, and natural gas potential in

the study area.
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Introduction

The Lower Cretaceous Mannville Group in
Northeastern Alberta contains an estimated 909 billion
barrels of bitumen (See Table 1;Keith et al., 1987.),
mostly uneconomical to produce with conventional
methods. It is the relatively high price of enhanced oil
recovery methods currently in practice that has
inhibited exploitation. The major portion of this
bitumen is found in the McMuriay Formation, a highly
complex unit which unconformably overlies Devonian
strata. The main objective of this thesis is related to
evaluating the natural gas which coexists with heavy oil
in the McMurray Formation, the Wabiskaw Member of the
cclearwater Formation, and also in selected horizons
stratigraphically highe: within the Clearwater
Formation. The study area comprises 1300 square miles
and was evaluated by using both core and geophysical
logs for over 450 wells in the area which average 400 m
total depth.

The depositional history of the Clearwater
Formation including the Wabiskaw Member, appears to be
relatively simple to reconstruct, however, the McMurray
Formation has proven highly complex. Previous authors
have interpreted the McMurray Formation as fievial,

deltaic, estuarine, and shallow marine depositional
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units. (Stewart,1963; Flach,1984; Mossop, 1980;
Carrigy,1971; Pemberton et al, 1982; Ranger and
Pemberton,1988; Rennie,1987). This thesis provides an
original interpretation within the study area combining
some of the previously developed ideas into an original,
more refined reconstruction of the McMurray Formation.
Major emphasis has been placed upon interpreting the
uppermost McMurray Formation as it holds the immediate
economic importance.

Major geologic features in the study area include
structure caused by salt collapse within the underlying
Elk Point Group, subsidence of the Peace River Arch,
erosion of the Paleozoic unconformity, and the
characteristic southwesterly dip of the Western Canadian
Sedimentary Basin.

Combining this structure with the depositional
model provides a strong predictive tool for mapping and
developing natural gas rcserves. This thesis will
document the generation and evaluation of potential
plays within the actively explored area; the immediate
result being an exploration and development strategy for

the two most attractive prospicts.



Study Area

The Athabasca o0il sands have an areal extent of
4.68 million hectares and a bitumen ccntent of over 909
billion barrels, by far the largest single accumulation
of hydrocarbons in Alberta and possiby the world. (see
Table 1). An active natural gas exploration area within
the boundaries of the deposit is the focus of this
thesis. The study area encompasses townships 76 through
79 and ranges 3 through 11 West of the fourth meridian,
(Figure 1.); within which are the Leismer, Chard, Hardy
and Graham natural gas fields. The data availiable are
sufficient for the purposes of this study and, because
it is an active exploration area, will continue to
rapidly expand. The first substantial interest in the
area occurred in the late 1960’'s and after a ten year
lapse, has steadily increased. In 1989 alone, over 45
wells were drilled; one can cee how quickly the database
is growing and consequently, how our understanding of
the geology is evolving. The database includes all wells
drilled in the area before the 1989-90 winter drilling
season. Wells drilled after that, due to the one year
confidentiality privelidge etended to the operators of
the wells, were unavailiable for inspection. The study
makes use of :Information gained from approximately 475

wells, of which over 90% were drilled after 1975. The
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few wells drilled in the late 1960's provide only
spontaneous potential and resistivity logs. Post 1975
wells, however have a comprehensive complement of logs
including the spontaneous potential, resistivity, and
compensated neutron formation density logs. In addition
to this extensive geophysical database, 105 wells have
been cored within the Mannville Group from which a
representative suite have been examined. Seimic and
outcrop observations were also incorporated but to a

limited extent.

Stratigraphy

within the study area the Mannville Group
consists of the lowermost McMurray Formation which is
directly overlain by the the Clearwater Formation and
its’ lowermost Wabiskaw Member. This in turn is overlain
by the Grand Rapids Formation. The Mannville group is
bounded unconformably above by the Joli Fou Formation
and below by the angular Sub-Cretaceous unconformity
(Figure 2). The deposition of the Manville Group is in
response to transgression of the Boreal sea over the
erosional unconformity of the underlying Devonian
strata. The Athabasca Channel formed in response to the

salt solution and subsequent collapse in the underlying
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Figure 3. Paleogeography of the Lower Mannville fluvial systems;
The first phase of Mannville Group deposition.
(modified after Master's , 1985)
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Elk Foint Group which will be discussed in greater
detail later. The Athabasca channel is bounded by
Devonian highlands to the west and south, and
Precambrain basement to the east. rthe evolution of the
basement has reversed the predominant southward drainage
of the area south of township 92 to join drainage
patterns that were draining to the northwest into the
Cretaceous Interior Seaway (Flach and Mossop, 1985).
This Early Cretaceous high is thought to be an extension
of the Peace River Arch which reacted to Neocomian
uplift of the Precambrian shield to the northeast
(Christopher, 1980). These fluvial systems incised the
Pre-Cretaceous unconformity surface creating a high
relief area of up to 120 m (Flach, 1984; Figure 3).
Lowermost McMurray Formation deposits are correlative
with more southeasterly Dina Formation deposits near
Lloydminster (Christopher, 1980). During Albian time, a
major rise in sea level created the Cretaceous interior
seaway, also referred to as the Bullhead Sea (Figure 4),
which corresponds to the deposition of the McMurray
Formation. It is this resulting interaction between the
northeasterly draining fluvial system and the
southwestern transgression of the Bullhead sea that
provided the unique characteristics of the resulting
middle McMurray Formation estuarine deposition (Figure

5). The Upper McMurray Formation was deposited as the

10
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fluvial systems’ depocenters begin to again prograde
over the Middle McMurray Formation resulting in the
distributary channels and associated facies of the Upper
McMurray Formation (Figure 6). With renewed trangression
in the early Albian (Figure 4), the area is submerged by
the Clearwater Sea and in response, the Wwabiskaw member
of the overlying Clearwater Formation was deposited

(Figures 7 and 8).

13
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General Geology
The McMurray Formation is clearly the depositional

response to the transgression of the Bullhead Sea. As
previously discussed, The Athabasca Channel is well
defined and easily mapped on a regional scale.
Deposition of the McMurray Formation has been divided
into (Figure 9) the lower, middle, and upper members
(Carrigy, 1966;Mossop and Flach, 1983; Keith et al.,
1987). It is important to note that what is termed
“Upper McMurray” by one geologist in the northwest might
be time equivalent to the “Middle McMurray Formation” in
the southeast where this study takes place (Rennie,
1987). In the study area, the main paleovalley formed on
the SubCretaceous Unconformity is filled through a
progession from fluvial deposits to estuarine deposits.
Upon filling of the paleovalley, further fluvial systems
spread across the area feeding clastic shoreline systems
to the northwest. These fluvial deposits are
stratigraphically equivalent to the upper McMurray
Formation marine shoreline deposits found to the
northwest (Rennie, 1987). This system was subsequently
flooded by the rise of the Clearwater Sea and the
subsequent deposition of the northward prograding
barrier bar gystems referred to as the Clearwater ‘C’,

‘B’, and 'A’ members in ascending chronostratigraphic

16
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orde. . (Maher, 1989)

The type wells shown in Figures 9, 10, and 11 can
be viewed in order to correlate the log picks in this
study witi others. As with all subsurface studies,
internal consistency of stratigraphic correlations is of
prime importance. These picks correspond with those of
recent: studies of the McMurray Formation to the
northwest and the Clearwater Formation picks in the
study by Maher, (1989). The Clearwater ‘A’ and
Clearwater ‘B’ are the first and second major sand
packages from the top respectively. The top of the
Wabiskaw Member is picked as a relative low on the
resistivity log, and represents a pervasive regional
indicator. The McMurray Formation is then considered to
be the first sand underlying the Wwabiskaw Member,
generally associated with a significant resistivity
increase. The logs show a particularily good spontaneous
potential response to gas in the Clearwater ‘B’ sands;
with a small, but distinct, decrease of 5 mv at the
gas/water interface in clean sands. The presence of gas
throughout the interval is detected by the neutron-
density crossover, although some instances were found
where this criteria was not met as gas was produced from
zones without crossover. These data were all considered

to be quite reliably correlatable, markers which

18
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coincide to other studies, as well as, the Energy
Resources Conservation Board’'s mineral rights interval

designations.
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McMurray Formation Facies Interpretation

Facies A : Interdistributary Mud / Levee Facies
This facies is comprised of 1light grey
coloured mud deposited from suspension when currents
have waned to the point where suspended material is no
longer in equilibrium with ~urrent strength. Because of
the varying pulses of flow energv. some thin bands of
coarser material may be founl a.sociated within this
facies. The facies is punctuated by syneresis cracks,
characteristic of the fluctuating salinity of the
system. Planolites are the most dominant of the abundant
traces found in this facies, Asterosoma, Skolithos,
Arenicolites, and Diplocritr~rion traces are also present
in low proportions. Root traces that have been
biodegraded to coal as well as siderite clasts can also
be found (Figures 13a and 13b). No reservoir potential

exists in this facies.

Facies B : Crevasse Splay Sands

Crevasse splay sand facies are comprised
of trough cross-bedded and planar bedded, fine grained
sands; no biogenic structures were found. This facies
was deposited in response to channel currents branching

out of the main channel and rapidly becoming unconfined,

22
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resulting in rapid waning of the flow. The coarsening-up
sequences are similar to distributary mouth bars but on
a smaller scale. Crevasse splay sands, although porous
and permeable, are not considered to be exploration
targets due to limited 1lateral continuity and low

recoverable gas reserves.

Facies C : Crevasse Splay Silt and Mud

The crevasse splay silts and muds are the
lowermost member of the crevasse splay sequence. Small
scale ripples can be found in the coarser sediments,
although most of the deposits are planar laminated,
interbedded silts and muds. The finest sediments exhibit
Planolites and also display syueresis cracks (Figure
14a). The crevasse splay silts and muds are not

reservoir facies.

Facies D : Abandoned Distributary Channel Facies
Abandoned distributary channel facies
consist of interbedc d mud,sand and silt and overlies
the Upper Channel Fill Sand Facies. This further upward
decrease in grain size is a reflection of decreasing
flow energy related to chinnel abandonment. The facies
is planar laminated and Jdisplays the ichnogenera
Planolites and Skolithos. (Figure 14b). The facies is

characterized by root traces, syneresis cracks, and

| =]

w



26

TE31084 3ULRYD SujJenisS] pIuopUEQY WAL-6L-8-LL 118M°SOYIL10YS ‘Sa3itouR)d fuotiequniolg (Qp] By
831003 PN / 3)1)S Au)ds 3339A2.) ‘$831iCUBYd ‘938348 JnOdS ‘sY2eJd sissusuds (Bpl amBrg

431U U

(MIRITIAR ST

L Il
\ ' B e

.




4
1

Gamma Ray

~d

11-1-77-8W¢

Depusitional
Enviruamaent

e D P © W CPEEE—— A~

-~

Q' |
P
< BEE
A8 R
SN
3 N\

.. ...’

Crevasse Spilay

Interdistributary
Bay

Abandoned
Estuarine

i channel

Estuarine
channel

Figure 15. Log-Core correlation of Upper-Middle McMurray Formation.

27



siderite clasts; violent soft-sediment deformation is
present in response to rapid flooding and dewatering of
the clays (Figures 16a and 16b). The overall fining
upwards is found to be gradational with overlying muds .

No reservoir potential is assigned to this facies.

Facies E : Upper Distributary Channel Fill

The Upper Channel Fill Facies is the
uppermost sand in the channel fill sequence. It.is a
well sorted, fine to very fine grained sand. Ripple
structures reflect the upwardly waning current
throughout the channel £fill sequence as does the
increasing abundance of clay drapes. Biogenic structures
are absent in the sand. This facies, although slightly
less desirable than the lower channel fill facies, 1is

considered a good reservoir rock.

Facies F : Intermediate Distributary Channel Fill

The intermediate channel fill is a well
sorted, trough cross-bedded, fine grained send. This
facies overlies the Basal Channel Fill facies in the
channel fill sequence. The facies lacks biogenic
structures and clay drapes averaging 3-20 mm are found.

It is considered a superb reservo‘r rock.

28
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Facies G : Basal Distributary Channel Fill

The basal channel fill is a well sorted,
planar bedded, medium - fine grained sand. Rip-up clasts
are occassionally observed and biogenic structures are
absent from this facies, It overlies the Massive Channel
Fill, (when present). The facies is an excellent

123ervoir rock.

Facies H :Massive Basal Distributary Channel Fill

This facies is a well sorted, medium
grained sand that lacks any apparent structure. It
appears to be the lowermost channel fill, but is not
always present. Rip-up clasts are commonly present.
Biogenic structures are absent and the facies is

considered excellent reservoir rock.

Facies I : Delta Marsh / Tidal Flats

The delta marsh consists of interbedded
mud, sand and silt, punctuated by small tidal creek
deposits. The facies is planar laminated and displays
some burrowing. Planolites is the most dominant trace
found in this facies, Asterosoma, Skolithos,
Arenicolites, and Diplocraterion are also present in low
densities. Rooting has occurred where subaerial exposure
has allowed vegetation to grow. Root traces that have

been transformed to coal, and siderite clasts are also

30
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observed. The facies contains abundant syneresis
cracks, characteristic of the fluctuating flooding and
evaporation in the system. The tidal creek deposits are
less than 5 m in thickness and show fining up profiles
with the same biogenic characteristics as the
surrounding finer grained deposits. The delta marsh
deposits are of little economic importance as reservoir

qualities are poor to nonexistant.

Facies J : Abandoned Estuarine Channel Facies
Abandoned estuarine channel facies consist
of interbedded mud,sand and silt and overlies the Upper
Channel Fill Sand Facies. This further upward decrease
in grain size is a reflection of decreasing flow energy
related to channel abandonment. The facies is planar
laminated and exhibits the following trace fossils;
Planolites, Skolithos, Asterosoma, Diploctaterion, and
Arenicolites, as well as, the presence of root traces,
syneresis cracks, and siderite clasts. The overall
fining upwards is found to be gradational with overlying

muds and underlying sands.

Facies K : Upper Estuarine Channel Fill

The upper estuarine channel fill facies is

the uppermost sand in the channel £ill sequence. It is a
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well sorted, fine to very fine grained sand. Ripple
structures reflect the upwardly waning current
throughout the channel £fill sequence as does the
increasing abundance and thickening of shale breaks.
Prograding ripple sets are a common occurence (Figure
18a), a few Palaeophycus are seen in the sand and
Planolites can be found to have penetrated the larger
shale breaks. The estuarine channels are found to
contain considerably higher occurences of biogenic
components. This facies, although slightly 1less
desirable than the 1lower channel £fill facies, is

considered a good reservoir rock.

Facies L : Intermediate Estuarine Channel Fill

The intermediate estuarine channel fill is
a well sorted, trough cross-bedded, fine grained sand.
The presence of mud-couplets and tidal bundles are
evidence of tidal influence ( Figures 18b and 20a).
These tidal bundles are the main differentiating tool
between distributary channels and estuarine channels
(Smith, 1988). This facies overlies the Basal Channel
Fill facies in the channel fill sequence. This facies
lacks biogenic structures and clay drapes averaging 3-20

mm are found. It is an excellent reservoir rock.
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Pacies M : Basal Estuarine Channel Fill

The basal channel fill is a well sorted,
planar bedded, medium - fine grained sand (Figure 20b).
There is the impression that tidal processes have
influenced deposition, reactivation surfaces and some
subordinate flow structures were observed. Constantly
varying flow structures are prevalent. Rip-up clasts are
occassionally seen in addition to siderite nodules;
biogenic structures are absent from this facies. When
present, it overlies the massive channel fill. The

facies is an excellent reservoir rock.

Facies N : Massive Basal Estuarine Channel Fill
This facies is a well sorted, medium
grained sands that lacks any apparent structure. It
appears to be the lowermost channel fily, but is nct
always present. Rip-up clasts are commonly present and
lag deposits, althoough not observed in this study,
would be expected. Biogenic structures are absent and

the facies is considered excellent reservoir rock.

Facies O : Fluvial Facies

The fluvial facies described 1is the
lowermost deposit of the McMurray Formation and is often
not deposited. When present, it follows che typical

fining upwards sequence dJdisplaying corresponding

38
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structure and grain size trend for a decreasing flow
energy deposit. To briefly describe it, there is a
transition from a lag deposit, to planar bedded sands,
to cross-bedded sands, to small scale ripples, to planar
laminations and finally the uppermost unit is a mud
deposited from suspension;grain size decreasing
constantly upwards. This sequence, of course, is
commonly interrupted and missing some sections. The core
chosen to represent this progression unfortunatelv is
saturated to the extent that recognition of decreasing
flow regime structures is disguised. The grain size in
the 9-1-80-8W4 core does show the traditional transition
from fine grained sand, to very fine grained sand, to
silt and finally the suspension mud cap. A few rip-up
mud clasts are also seen in the core. Although this unit
has reservoir potential, it is generally not at a
sufficient structural elevation to reservoir natural

gas.
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Clearwater Formation Facies Interpretation

Facies P : Marine Shale

This facies is comprised of light grey
coloured mud deposited from suspension when energy has
waned to the point where suspended sediment is no longer
in equilibrium will flow energy. The marine shale
deposit is massive in appearance, and is devoid of
biogenic structures at a visual level. The facies holds

no reservoir potential.

Facies Q : Nearshore Bar Facies

This facies is a sequence of fining
upwards cycles. The sands are well sorted, and grade
from fine grained sand to silt. The unit is devoid of
biogenic or sedimentary structures, appearing massive in

core. The facies is an excellent reservoir rock.

Facies R : Wabiskaw Transgressive Lag

The Wabiskaw Member of the Clearwater
Formation is a fine graired glauconitic sand devoid of
sedimentary stuctures. What appeared to be large
Skolithos or perhaps Macronichnus were present. The
fac.ies, because of its maximum thickness of 4 m sand in
the study a=-2, 1is a relatively insignificant

exploration targ-t, despite good reservoir qualities.
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Ichnology

This section will focus on the ichnological aspects

of the McMurray Formation; the Clearwater Formation is
lacking significant ichnologic record. Trace fossils are
a valuable tool for aiding in the interpretation of the
McMurray Formation. They are generally found in the fine
grained silts and muds in the form of Skolithos,
Arenicolites, Diplocraterion, Asterosoma, and
Planolites (Figures 24, 25, and 26). A study by Mattison
(1987), to the northwest, interpreted to be further
basinward, found an ichnological suite indicating a
Middle McMurray Formation estuarine environment with
increasing marine influence upwards, capped by fully
marine Upper McMurray Formation deposits. Mattison found
the most common traces to be Planolites, Palaeophycus,
Cylindricnus, Teichichnus, and Skolithos; less commonly
were Ophiomorpha, Berguaria, Thalassinoides, Conichnus,
Conostichus, Asterosoma, Monocraterion, Rosellia, and
Gyrolithes. Ranger and Pemberton (1988), investigated an
area to the south at Primrose, once again finding Middle
McMurray Formation estuarine deposits. They found a
brackish water suite comprised of Skolithos,
Planolites, Cylindricnus, in the sands and also

Teichichnus in the shale; special mention of their
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abundance yet low diversity and small size is made to
emphasize the stressed marine influence (Ranger and
Pemberton, 1988). As Pemberton et al., (1987), stated,
the names of the individual traces are not as important
as the general characteristics of the assemblage; a) low
diversity, high intensity; b) typical marine traces of
Cruziana and Skolithos Ichnofacies; c) non-specialized
feeding patterns; and d) vertical and horizontal
ichnofossils common to both Cruziana and Skolithos
ichnofacies are characteristic of the impoverished
marine assemblage and is utilized as another tool for

interpreting depositional environment.
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Depositional Environment

The McMurray Formation was deposited in a highly
complex and diverse environment. In observing the cross-
sections E-E’, and F-F’'(Figure 48-51), one can
appreciate its variability. The sections are both
datumed stratigraphically on the base of the lowermost
marine unit of the Clearwater Formation, which 1is
thought to be a regionally correlatable isochron. The
depositional environment of the McMurray Formation has
been divided into three genetic units based upon these

environmental interpretations (Carrigy, 1959).

Lower McMurray Formation
The lower McMurray Formation was deposited by

fluvial processes filling the topographic lows developed
on the Paleozoic unconformity (Flach, 1984; Figure 19).
It is characterized by fining upwards log signatures
resulting from waning of depositional energy upwards
indicative of fluvial facies as represented by the
decreasing grain size and progressive trend to lower
flow regime sedimentary structures. The presence of
rhizoliths and a general lack of marine ichnofossils
suggest that it is a continental deposit. This

interpretation is consistent with other studies in the
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Figure 27. Depositional Model of the Lower McMurray Formation.

52



same area (Carrigy., 1973; Flach, .3)77; Flach and Mossop,
1985). These fluvial systems in the study area, are
interpreted as having flowed to the northeast in the
undisturbed zone, and to the southeast in the disturbed

zone.

Middle McMurray Formation
Middle McMurray Formation time marked the onset of

transgression of the Bullhead Sea. 1In response to this
sea-level rise, an estuarine environment formed
consisting of tidal flats and tidal channels, along with
marine conditions to the northwest (Figures 28 and 29).
Deposition within the study area kept pace with the rise
throughout middle McMurray time. This environment was,
like all McMurray Formation environments, highly
variable and dynamic. The tidal flat deposits are
generally massive muds and planar laminated silts and
muds. Bioturbation is prevalent as are rhizoliths and
siderite clasts. Rapid salinity changes controlled by
flooding of fresh water and high evaporation rates are
interpreted to have occured as evidenced by syneresis
cracks (Wightman et al., 1987). The high density and
low diversity of the trace suite indicates a marginal
marine brackish environment. Within the actual estuarine

channel deposits, tidal influence is represented by
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Figure 28. Lower-Middle McMurray Formation; Tidal Flat,
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tidal bundles and mud couplets, along with varing flow
energy structures and reactivation surfaces. Within the
Highhill outcrop, located on the Highhill river, a
tributary of the Clearwater River approximately 60 miles
east of Fort McMurray (Figures 31-34), this tidal
relationship is easily seen. The estuarine channel
facies commonly erodes the underlying fluvial and tidal
flat deposits (Figure 30). The tidal influence is well
documented by the tidal bundles and reactivation
surfaces 1implying bi-directional flow (Pemberton

personal comm., 1991).

Upper McMurray Formation
Upper McMurray Formation sediments continue to

conform to Walther’s law; the environment of the Middle
McMurray Formaticn has shifted to the northwest as the
underlying sediaments have filled in the estuarine
environment. So while the estuarine environment still
exists to the northwest, the adjacent distributary
channel system and associated flood plai:u have moved
from the southeast into the study area (Figqure 35). The
environment consists of distributary channels trending
northwest-southeast, and associated flood plain deposits
of crevasee splays and interdistributary bays. The

interdistributary bays are characterized by rooting,
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Figure 30. Tide Dominated Estuarine Environment,
(Modified after Hayes, 1976)



S8

Figure 31a) nighhill Outcrop - On the Nighhill River tributary of the Clearwater River; 65 mi.
East of Fort McMurrsy.

Figurc 31b) 7idsl bundles - Intermediate Estuarine Channel Fill.
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Figure 34a) Tidal bundles, siderite clasts, orgenics in
toe-sets Upper Estuarine Channel Fill.

Figure 34b) Tidel bundlies, siderite clasts, organics in
toe-sets, mud lense. Upper Estusrine Chsnnel Fiil.
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Drsreiautacy CHANNEL

Figure 35. Depositional Model; Upper McMurray Formation.
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bioturbation, syneresis c¢racks, and siderite clasts
within a generally massive mud or planar laminated silt
and mud. Adjacent crevasse splays are generally less
than 6 m thick; these coarsening upwards sequences are
created by flow breaking out of the main channel and
rapidly becoming unconfined (Figure 36). The
distributary channels highlighting the Upper McCMurray
Formation drained northwesterly to the associated
estuarine and associated marine environment.
Distinguishing between the estuarine facies and
distributary facies on logs is virtually impossible,
although in core, the absence of tidal structures and
reduced biogenic activity is quite definitive. The
environment produces sand distributions equally as
uncorrelatable as underlying McMurray Formation deposits

leaving exploration largely to chance (Figure 63).

Clearwater Formation

The Clearwater Formation was deposited in response

to the transgression of the Clearwater Sea. The
lowermost Wabiskaw Member 1is a glauconitic sand
interpreted to be a transgressive lag deposit formed as
the study area was drowned by the rising sea. There are
two main Clearwater sand deposits within the study area;

the Clearwater ‘A’ and the Clearwater ‘B’ (Maher, 1989;
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Figure 36. Tidal Flat Depositional Environent



Figure 59 and 60). The main Clearwater ‘B’ sand is found
covering the majority of the southwest portion of the
study area while the Clearwater ‘A’ sand covers only the
northern edge of the area. Both sands were interpreted
by Maher (1989), as nearshore barrier bar complexes
which prograded northward (Figure 37). The sands are
massive fining upwards sequences with no sedimentary or
biogenic structures to help with interpretation. They
are indeed continuous accross large areas, as shown in
section D-D’ (Figure 47), and are a substantial reservoir

in the study area.
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Figure 37. Clearwater Formation Depositional Model.
Wave-Dominated Micro-Tidal Barrier Bar.
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Structural Regime

The structure in the study area is particularily

complex because of the unique interaction of a variety
of different forces. The study areca has been divided
into two structural regimes along a North - South trend
located approximately in the middle of range 6W4. The
eastern side is referred to as the disturbed, or
collapse zone and the western side is termed the
undisturbed zone. There are four main factors
influencing structure in the area;

a)Erosion of the Pre-Cretaceous unconformity

b) Peace River Arch tectonics

c) Regional Dip

d) Salt Collapse
All of these factors contribute to the overall
structural style in the study area with salt collapse
being the dominant element in the disturbed zone. The
other factors are more important in interpreting the
structural style in the undisturbed zone. It is the
interrelationship between these factors that complicates
the interpretation. Each of the above elements will be
discussed individually to provide information on the

degree and manner of its influence, as well as the

timing of the event.
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SubCretaceous Unconformity EBrosion

The remarkable topography of the Paleozoic
unconformity surface is a result of the erosion by
fluvial systems. The extensive relief of over 120 m on
the unconformity surface can best be seen by examining
Figure 57 (SubCretaceous Unconformity Map), along with
cross sections C.2 (Figure 43) or C.3 (Figure 44) in the
undisturbed zone. The evidence to support the
predepositional existance of this structure lies in
Figure 62 (McMurray Formation Isopach Map), showing the
thickest portions of the McMurray Formation
corresponding with the lows of the unconformity in the
undisturbed zone.

This erosional system can be interpreted to have
drained to the northeast leaving corresponding highs and
lows parallel to flow. This trend is really only seen,
and probably only remains, on the undisturbed side of
the study area. The salt collapse events on the
disturbed side have obscured any evidence of a
southwestern-northeastern drainage trend, replacing them
with northwestern-southeastern oriented collapse
structures and further ercsion along and within the
subsequent structure. The relief shown by the
northwestern-southeastern trending lows of the Devonian

unconformity surface, (Figure 57), is evidence of

68



drainage to the northwest. The erosional element in the
disturbed zone is really quite trivial in relation to

the collapse structures.

Influence of The Peace River Arch

The Peace River Arch, although hundreds of miles to
the northwest, still influenced depositional conditions
within the study area. Initially, it produced relief
extending into the area which controlled drainage
patterns. Secondly, its subsidence during the Laramide
orogeny provided a slight thickening «7 the Mannville
along the western edge of the study area (Christopher,
1980); (Figures 58, 61, 62). It should be noted that the
underlying topography still greatly influenced
sedimentation in the undisturbed Zone through Clearwater

time.

Regional Dip

The characteristic southwesterly dip of the Western
Canadian Sedimentary Basin is present in the undisturbed
zone of the study area (Figure 43). This gently dipping
structure existed until being interrupted by the salt
collapse which, combined with the regional dip, formed

the trapping mechanism for the Athabasca 0il Sands
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Deposit. In addition to this, it provided the necessary
conditions for migration of gas from the basin into the

fields we find today (Moshier et al., 1985).

Salt Collapse Structure

The dominant structural element in the study area
is the salt collapse =tructure created by salt solution
of the Middle Devonian Elk Point Group and subsequent
collapse of the overlying Beaverhill Lake Group. (Hume,
1947; Carrigy, 1959; Stewart, 1963; Martin and Jamin,
1963; Flach, 1984; Keith et al., 1987) This feature is
considered to be the main contributing factor in
trapping the entire Athabasca 0il Sands Deposit
(Vigrass, 1966). The main collapse is found to run north
- south along the boundary between ranges 6W4 and 7w4
through townships 79 and 78 before turning slightly to
the southeast and leaving the study area at the boundary
between ranges 5wW4 and 6W4 (Figure 57). As previously
mentioned, this structure divides the study area into ¢
disturbed zone to the east, and an undisturbed zone to
the west.

There is still some qQuestion as to the timing of
the salt collapse. It is the nature of the event and
lack of deep well control, combined with the other

structural elements in tha area that make a more precise
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assessment impossible. The collapse structure was
initiated after Devonian time as evidenced by the seimic
section (Figure 38), which shows the unconformity
surface parallelling the immediately und. .ying
reflector within the Devonian, probably the bhasal
boundary of the Beaverhill Lake. This feature sugyests
that the struczure at the unconformity surface cannot
simply be eros.onal but that it must be attributed to
some structural e:ecrt. This indicates that salt collapse
must have predated deposition of the McMurray Formation
The general tl'i kening of the entire McMurray Formation
on the distur = side also shows this (Figure 62).
Moving up-s=cti n into the Clearwater Formation, the
saile structur.. pattern can be seen (Figure 52). Post-
McMurrav ¥Formation deposition collapse can be seen by
compa-inag the Clearwater Formation isopach map (Figure
58) and st:ucture map (Figure 52). A general taming of
relief ris occur~d reducing maximum relief to 65 m,
compared with over 120 m maximum relief on the Devonian
unconformity surface. although Clearwater topography
still mimics pre-McMurray Formation topography. It is
proposed that the similarities in structure through time
to the end of Clearwater deposition are a result of a
combination of compaction of the thickest deposits
within the paleo-lows, and continued salt qpllapse. To

summarize, salt collapse had its greatest effect before
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and during deposition of the McMurray Formation,
although it did continue to a lesser extent throughout
Clearwater Time (Figures 52 and 54). A further review
of the seismic section (Figure 38) shows this
rela. onship of thickening deposits in the lows created
by salt collapse, and the effect it had on the eventual
structure in the area. The existence of post Clearwater
deposition structure could be attributed to compaction,
but in 1light of the shallow depth of the lower
Mannville, continued salt collapse is the preferred
explanation.

There are a number of explanations for the
Qccurrence of the salt collapse. The main
characteristics of each of the explanations are that the
removal of Muskeg Formation salt resulted in collapse
that has influenced subsequent deposition and
hydrocarbon migration and trapping (Vigrass, 1966). The
most prominant explanations are:

a) differential/partial dissolution,

b) preferential dissolution along fault
planes/fracture patterns (McPhee, 1991),

c) solution controlled by underlying Keg River

reefs

It should be noted that the very limited number of wells

penetrating the Muskeg Formation hinder the ability to
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provide the answer to what caused the salt ccllapse. The
first possible explanation is that Muskeg Formation salt
was removed east of the study area, and no salt was
removed west of the collapse structure. The implication
is that the groundwater dissolving the salt
preferentially followed northwest-southeast trending
paths resulting in the collapse which also trends in
this direction. The second possibility is that recharge
from the subcrop of the Muskeg to the northeast flowed
southwest till it intercepted fault or fracture systems
trending northwest-southeast resulting in flow along
these vertical systems and subsequent collapse along
thes trends.(Don McPhee, personal communicati 01)
The last explsnation involves dissolution of the .eg
Formation around underlying insoluble Winnepegosis
Formatior reefs. This appears to be the case in the
seismic section (Figure 38) and a particularily good
example is found in well 10-27-81-4W4 where all but 10 m
of the Muskeg Formation has been remove? from above a
relatively thick Winnepegosis reef. The deposition of
the Muskeg Formation was thickest in the lows
surrounding the Keg River reefs and thus its removal
would be greatest in these lows. This suggests that the
Cretaceous structure could be indirectly controlled by
the distribution of Keg River reefs. It could be more

than coincidence thar the northwest-southeast trend of
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the Cretaceous structure in the disturbed zone 1is the
same as the probable trend of the Keg River reefs along
the Devonian paleoshoreline.

Regardless of its cause, the removal of the Muskeg
Fm. evaporites is responsible for the structure which is
the dominant factor in the accumulation of hydrocarbons.
The structure, created by the salt collapse, trends
northwest-southeast, and represents an exploration

strategy for the disturbed zone of the study area.

Conclusion

The four contributing elements of the structural
regime in the study are« are ranked in order of
importance;

1) Salt Collapse,

2) Regional Dip,

3) Erosion of SubCretaceous Unconformity,

4) subsidence of Peace River Arch,

structure is the main trapping mechanism for
hydrocarbons in the area and therefore a ccmprehensive
understanding is necessary for exploration in the area.
The two separate structural regimes should be waapped
specifically with twe theories in mind. The first 1is to

map the undisturbed zone with highs and lows trending
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northeast-southwest; the second is to map the disturbed
zone with trends at right angles to the undisturbed

zone, along a northeast-southwest path.
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Hydrocarbon Potential

There are really six main reservoir facies with

economic potential within the Lower Mannville;

1) McMurray Formation
a)Estuarine Channel
b)Distributary Channels
c)Crevasse Splays

d)Fluvial deposits

2) Clearwater Formation
a) Clearwater ‘A’ sand

b) Clearwater ‘B’ sand

McMurray PFormation

In the McMurray Formation, each of the interpreted
channel, crevasse splay, ur.? filuvial facies successions
have excellent porosity and permeability. However, each
succession is somewhat discontinuous. To further limit
the reservoir facies, the lowermost fluvial facies can,

for tre mcst ravt be ignored as commercial hydrocarbons



are generally not found that low within the section.

Two main types of hydrocarbons exist within the
study area; heavy oil and natural gas. The Athabasca
heavy o0il deposit covers the western two thirds of the
study area. As previously eluded tc, regional dip
combined with the major salt collapse have combined to
create the structural trap responible for its
accumulation. Moshier and Waples (1985), concluded that
underlying sediments of the Devonian could not have
generated the enormous volume of hydrocarbons found
within this deposit. They speculated an up-dip migration
of hydrocarbons from within the Deep Basin, which were
then biodegraded in place. Due to the depth, the only
means for extraction with current techrology is jin-situ
recovery by steam injection, although researchers are
investigating a large number of differing options in
search of a step change in extraction costs. Possible
future means of extraction include electric heating, in-
situ combustion, horizontal drilling and extraction, and
surfactant or polymer flooding. Estuarine and
distributary channel sand facies successions will be the
main economic alternatives for production of the heavy
oil.

The McMurray Formation also holds potential for
natural gas reserves within the study area. In todays

economy, this is the only viable eccnomic resource.
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Natural gas has already undergone one major exploration
and development phase, although further potential
remains. Natural gas pay thicknesses can exceed 15 m, at
pressures of over 300 psi. with porosity in excess of
30%. These make attractive shallow gas prospects for
thrifty explorers. Trending from west to east across the
study area, the gas is underlain by heavy oil, water and
heavy o0il, or water only (Figure 39). Whether the gas is
associated with the migration of the heavy oil or is a
secondary migration is yet to be determined. ([Note that
gas in the western portion of the study area lies above
the heavy o0il within continuous sands suggesting
simultaneous migration of o0il and gas or subsequent
replacement of original gas caps.] Gas accumulation is
found in structural highs (Figure 69), within Chard,
Graham, Newby and Leismer gas fields; none of which are
considered to be single continuous pools (Figure 50).
The gas is further controlled by stratigraphy:; the
thickest gas pays are found in the channel sands (Figure
48) although economic proportions are also in the
crevasse splay deposits of the Upper McMurray.
Exploration plays for natural gas are aimed at finding
the combination of structural highs coupled with
distributary channel sands of the Upper McMurray

Formation.
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Clearwvater Formation

The Clearwater Formation is devoid of any heavy oil
potential but it does possess large reserves of natural
gas. The Clearwater ‘A’ has small accumulations of
natural gas created by very subtle structural closures
(Figure 64). Although it is an excellent reservoir, it
does not display a major up-dip structural closure.
Clearwater ‘C’ stratigraphic levels show romparable gas
reserves to the Clearwater ‘A’ (Figure 66), although the
limiting factor controlling the Clearwater ‘C’ is lack
of reservoir rock with any lateral extent. The lowermost
Wabiskaw Member is also a 1reservoir within the study
area, although it does not occur in sand thicknesses
over 4 m. It is commonly associated with McMurray gas
wells and can easily be produced in conjunction with the
underlying McMurray Fm. gas.

The most economic Clearwater Formation play in the
area 1is the Clearwater ‘B’ sand within the Leismer
Field. Unfortunateoly the majority of petroleum and
natural gas rights <or the main Leismer Field have
already been purchased. Some crown 1land is still
availiable, possibly extending the field boundaries. The
trapping mechanism is a combination of structure created
by the main collapse across the area and stratigraphic

closure of the bar complex with marine shales to the
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north (Figure 65) Significant gas volumes, (202 BCF),
have been produced from the field between 1979 and 1989,
with fourth quarter 1989 production exceeding 6 BCF.

To Summarize, The Upper McMurray Formation and the
Clearwater ‘B’ Formation are the main exploration

targets within the study area.
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Bconomics

Two areas were chosen as potential development

prospects based on the enclosed maps; structure,
reservoir facies, and gas shows in surrounding wells
were all used as criterion for these choices. These are
merely two examples and by no means represent all the
development potential in the study area.

The plays are best summarized in the reserve
calculations and location maps in Figures 40 and 41.
Approximate development costs per MCF of gas are
provided, although the true economics of the play would
need to evaluate the timing and cost of the capital
investment. These general approximations are considered
to clearly justify further study even at today’s low

natural gas prices.

83



Economic Potential Leismer Frield Extension

DHT = 23° C = 73° P = 533° Rankine
Q-((:,SGO'A'h'O)(T./‘l‘.)[(P./lt."z.)-r.llt.t'z.))
Where:

Q= £t3 reserves @ 8.T.P. (60° P, 14.4 psi.

43,560 = converts acres to ttz
A = area in acres

= gas pay(ft)
= effective porosity

formation Temperature(® Rankine)(= 460° + °p)
s formation pressura, psi.
abandonment pressure

compressibility factor @ formation T and P.

N &N o 9w 3 @
"

a
s
a compressibility factor @ abandonment T and P
Assume : avg. gas pay Clearwvater ‘B’ = 4 m;
Q/sec=d3,560%632%13*,33%(520/533)*[(256/14.4*.97) ~

{100/14.4*.99)]
= 1.30 BCFP/sec @ Pa=100 psdi.

= 1.71 BCF/sec @& Pa= 50 psi.
a 2,00 BCP/sec @ P.-ll.d psi.

13 Sections * 1.30 BCP/sec = 16.9 BCP
* 1.71 BCF/sec = 22.2 RCP
2.00 BCF/sec = 26.0 BRCP

Assume : avg. gas pay MNcMurray Pormation = 4 m
Q/8ec=43,560%632%13*,.33*(520/533)*[(301/14.4*.97) -
{100/14.4".99)1}

= 1.68 BCP/sec @ r.-1oo psi.

= 2.08 BCF/uec @ P,= 50 psi.
= 2.37 BCFP/sec @ Pa=14.4 pei.

10 Sections * 1.68 BCPF/sec = 16.6 BCP
* 2.08 BCP/sec = 230.8 BCPF
* 2.37 BCF/mec = 23.7 BCP

Costs:
a) Seismic - 10 miles @ $7,000/mi. = $70,000
b) Land -~ @ §$50/ha. = $294.,400
¢) Wells - 6 @ $125,000/well = §750,000
d) Gathering system - 12 mi. @ $150,000/mi. =
e) Compression -~ §3,000,000 for 10 MMCF/4

$1,800,000

TOTAL = §5,914,400
Successful proposal finding cost incl. dev.s 5,914,400/43 BCP
= $.14 / MCP

*All values approximated*
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r Summary : Reserves = 33.7 BCF - 49.7 KF a
Costa: a) Seismic - 10 nmiles o $7.000/mi. = §70,000
b) Land - 3328 ha. @& $50/ha.¢ 2560 ha. @ §$50/he =~ $294, 400

o) Wells - € @ $125,000/well = #$730,000
d) Gathering systes - 12 =i, o $180,raly .x. *. 800,000
e) Cospression - 3,000,000 tor 10 MNCF/d

TOTAI =~ §..914.400
*aAll values approximated+

Reserves = 1.68 BCF/sec @& P, =100 psi
e 2.08 BCF/sec & P,~ 50 pel.
= 2.37 BCFP/sec & P, =14.4 pai.
10 Sections ¢ 1.68 BCF/sec = 16.8 BCT
§ 2.00 BCF/sec = 20.8 BCP
¢ 2.37 XF/sec = 23.7 BCT

@ - proposed well location
«mm - Wova Pipeline
~— - gatheriag syster
- Wova meater station
t - proposed cemprasior statics

Figure 40a) Leismer Field:McMurray Formation Development Outline



Leismer raiela Extension : Clearwater ‘B’

r

Summary : CLW ‘B’ Reservas = 1.30 BCF/sec § Py=100 poi?
= 1.71 BCF/sec § P,= SO pes.
w 2.00 BCP/sec ¢ Po=14.4 psi.

13 Sections @ 1.30 BCF/sec » 16.% aCP

Q@ 1.71 BCF/sec = 22.2 »CP

§ 2.00 BCF/sec = 26.0 BCPT
w -

@ - Proposad well locstion
- -~ Wova Pipeline
- gatheriag eystes
- WHova meter station
: ~ Proposed compressor station

igure 40b) Leismer Field:Clearwa:er Formation Development Outline
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Economic Potential : McMurray Pormation - GOraham Yield

Exteunsion

BHT = 23° C = 73° P = $533° Rankine
Qu (43,560°A%h*@) (T,/T,) [(P/14.4°2,)-P,/14.4°2,) ]

Where:
Q = tt3 reserves @ 8.T.P. (60° P, 14.4 ps’.

43,560 = converts acres to tt2
A = area in acres

h = gas pay(ft)

@ = effoctive porosity

Te® formation Temperature(° Rankine) (= 460° + °p)
Pa= formation pressure, psi.

P.- abandonment pressure

Z,= compressibility factor @ formation T and P.

Z,* compressibility factor @ abandonment T and P

Assume : avg. gas pay = 8 m;

Q/sec=43,560%632%26*,33*(520/533)*[(241/14.4°.97)-
(100/14.4*.99)]
= 2.36 BCP/sec @ Pa=100 psi.

= 3.17 BCF/sec @ Pa= 50 pei.
= 3.75 BCP/sec @ P.-ld.l psi.

17 Sections * 2.36 BCF/sec = 40.12 BCP
* 3.17 BCF/sec = 53.90 BCP
* 3.75 BCPF/sec = §63.75 BCP

Costs:
a) Seilsmic - 12 miles @ $7,000/mi. = $84,000
b) Land -~ 4352 ha. @ $7G/ha. = $304,640

€) Wells -~ 11 @ $125,000/well = $1,375,000
d) Gathering system - 14 mi. @ $150,000/mi. = $2,100,000
e) Compression - 3,000,000 for 10 MMCP/4

Successful proposal finding cost incl. dev.= 6,064,040/54
= $.13 / MCP

*All values approximated®*

BCP
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Graham Field Extension:Development Outline

Susmary fReserves = 2 16 ICF/sec 1§ P =100 psi
= 3.17 BCF/sec @ P = 50 psi.
= 3.75 BCF/sec @ P, =14.4 pei

17 Sections @ 2.36 BCFP/sec « 40.12 ¥
@ 3.17 BCT/sec = 33.%0 BCF
9 3 15 XT/eec = €3.75 BCF

ailes ¢ $7,000/mi. ' $84,000

. 8 $7¢/ma. = $204.640
3123, 000/wall = $1,375,000
- 14 mi. @ $150,000/mi. = 82,100,000
.008 for 10 WMCY/é
TOTAL = §6,0864,040
1 valwes approximatedr

- proposed well location

- ¥ova Pipelise

- gathering systes

S - Wova meter statioa

- proposed CORPressor station

Tigure 4l3a) Graham TField Extension Development Outline
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Graham Field Extension
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Figure 41 b) Graham Trield Extension base map



Graham Field Extension
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Summary

1)

2)

3)

4)

The McMurray Formation is the depositional response
to the transgression of the Bullhead sea into a well
defined paleovalley informally termed the Athabasca

Channel .

The Cleawater Formation was deposited during

transgression of the Clearwater Sea.

McMurray Formation strata in the study area are
subdivided into lower, middle, and upper units
corresponding to deposition within fluvial,
estuarine, and distributary environments

respectively.

Clearwater Formation Strata in the study area are
comprised of the lowermost Wabiskaw Member
transgressive lag, and a succession of northward
prograding nearshore bar complexes referred to as

Clearwater ‘A’- ‘C’ sands from top to bottom.

Structure is controlled by erosion of the Paleozoic
Unconformity, regional dip, Peace River Arch

subsidence, and salt collapse.

These structural elements have created linear highs

and lows trending northeast-southwest in the



7)

9)

10)
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undisturbed zone; and linear highs and lows trending
nothwest-southeast in the disturbed zone. These two
structural zones are divided by the major north-

south trending salt collapse.

Heavy o0il and natural gas are of economic importance
within the study area. A trend from gas-heavy oil
contacts, to gas-water-heavy oil cotacts, to gas-
water contacts is found to exist from west to east
accross the study area. Present economic conditions

leave only the natural gas as a development target.

Highest Potential Reservoir rocks with economic
potential in the study area are the McMurray

Formation channels and the Clearwater ‘B’ sand.

Gas distribution is controlled by the linear trending
highs and lows in the McMurray Formation; the major
salt collapse coupled with facies distribution is
responsible for heavy o0il and the main Leismer Field

gas accumulation.

Economics for two possible play configuations are
presented with reserves of 40-64 BCF to be developed
for the gross consideration of $6,864,040 at Graham,
or $.14/MCF if successful; and 34-50 BCF to be
developed for $5,914,400 gross, or $.13/MCF if

successful at Leismer.
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APPENDIX A

Core Descriptions
MCMURRAY CORES

10-8-79-8W4

10-14-76-7W4
10-23-76-8W4
11-1-77-8W4
11-2-77-8W8
11-8-79-8W4
11-8-79-6wW4
11-8-79-7W4
3-1-77-5W4

10. 5-16-79-5wWd
11. 6-11-78-7wW4
12. 8-17-78-7w4
13. 9-1-80-8wW4

VOO & WP

CLEARWATER CORES

14. 11-34-77-8W4
15. 6-22-77-8Wd
16. 6-9-77-8W4
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PER PCEJ LEISMER OU 10-8-79-9

10-8-79- w4
nre
BARIN SI2E ?50?
giny
ou
Mot BN S 2 5
serv[ —cuay » I
: X = vig S lightly stained. durrowed, .ing 1\ energy
. = downwards, planas bedding at top.
EICIEIEICION of - = H.0./gas contact @ 349.3 m; x-bedded Ss. fining down.
R | ] iab. Sw/ silvsh. fines down, bloturbaion increases.
" \

.......

== R gy. mud, burrowing- planciite, few cOaree sits are
stained;

.'L—- burrowed sity sad, stained, massive, $.3.0.

.....

j == mud, roating, planoiites, skolithos, asterosoma,
paieaphycus.



Home Leismer 10-14 MN THR
10~14-76-7w4

SAMIN 312K

OBC—-O~-8
) VMR -z
| €O BOS
TMIAC ==t

- R gy mud, organics, planciltes, siolithos, brachiopod shell,

~——  intb sil'sh, Rk gy sh, sid clast, pian, skol, s8d, sid layer @
339.7m

= vig 83., iNCreasing organics upwards, some x-bedded
sands. mostly planar bedded,

~== 1 gy ss. vig, massive-pianar bedded. detrital on bedding
planes

~— R gy ss.. Vig, OFganics and shale cigsts on bedding pianes
and in troughs of xbeds, contact @ 344.5m, ly gy
salt’pepper 10 & bm s,

—  vig 38, fuctuating current sm rippies-planar beds, clay
drapes

- transition from Gil stain 10 gas sand, R stain. below 346.3 m.

1g-vig ss. masive, oil saturated
1g-vig ss.. massive . ol saturated. few rip up ciasts, sh.

{g-viq ss. sad, Ol stain,

1g ss., massive. some prograding ripple sels near top of
box, s ¢m high,

Ig 58, massive, clay drapes 8 cm thiock, sad, lew rip ups.
possible planar bedding.

- {g 38, 30mMe thinner Clay drapes downward. s3d. some
burrows in sh, ol saturated .
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Home HB Leismer
10-23-76-8w4

SARIN SI2E

.......
-
.........

BN
PR
........
........
ettt .
e et
PR PR
PP
ST, J

R
LI . o
D R S R R
o e . DRI
L
e ® 4 v 4o
“« e e e

IR

-.~'=.... DRI
e
. 7!
R R

- s W am o ay
- n an o o o
 an - an o -
- - am
- - - -
- -
- - - - e

BIC -0

L L Dot
L L LRt 1-3 3
BMACS =

~==  Ss, oil stained,
30me planciites n

h increases up.

]
i

mud near base

|~ imb sanmud, mud content increased down, mud
burrowed

~=  vig ss. weil sorted, 90% sand, massive

Intb. Ss. - sh., increasing sand up. durrowing intense,
stained coarser units, planoiites

OvBd

=~ U gy mud, massive, no stain!, burrowing

BB+

=== intb sand/mud, burrowad, stained. plan. asterosoma, 7

——  vig su., oll suained, g scale x-beds, planar beds af 10p,
3 waning current down, palsophycus

2 ——

vig ss. smal scaie rippies, paisophycus,

intd ss/sh, increasing sand up. sand stained.

ly gy mud. sed, burrowed.

intd sand/sh., increasing sand up, rippies in sand, some
higher flow regime beds. sand opd stamed. some clay
drapes,

~ [t gy mud. some planciites. no stain in burrows, mud
massive,




NOME N8 LEISMER 13-1
11-01-077-08w 4

ORRIN 3120

ot T ¥
B=a=AB RO
BMIEC -0

OG-0~

.......
......

......
......

~  intb sand-mud. general continued fining up, plsnoiies,
planar larmnations. ol stauning of sand. Mud component

ncreesng up.
i
8
3 ~—  intb sand-mud. mud is ly gy. planoilies busrows, oil stained
~ traces: Se 8 Vig, maseve ( SOmMe rough w-beds seen,
° Individual sands avg. 5-10 cm thick. mud 2-8 cm thick.

1 ~—=  Sg, ig-vig, continued fining up, oil stained. massive. mud
clasts
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HOME LEISMER 11-2
11-02-077-00w 4

BANIR SI2E

-+ 1T )
WNAR R
=N BBEY
EMIC =0

—  Sa., k gy-green, (g, maseive and some burrowing
= Sa, g, light Dr. 3Gt Ol Stain NCreasng down. maseve

———  Sa. coarsening up, good staining, large scale croes beds.

= This is a large facies unit consisting of intd sand and sik
units with an overall fining up trend represented by the
sands becoming tiner and less ek wivie (he muds become
more domunant Upwards, Planolites is very abundant in the
fine unts. and all the sands and the burows are oil stained.
The uris are iacking structure except for rare cross-beds.
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PEH PCEJ Cherd OV 11-8-79-6

11-8-79-6w4
ne
SARIN SI2€ gsog
ofny
TAGY
we #{
SILT
Sl cuaw 8 I
::I:I:I:I:I:Zﬂ 2 ——  vig gy/green Se. massive, definiely Wabiskaw sand
............... .4
............. i k. ben fg 38. clay drapos, maseive sand with some ripple
434
6
2
<1
8

{0 AARN OB —— b, sifsh. burrowed shaie, planciltes, asterosoma, planar
afuliallaling laminated silts, skoiithos, ripple structures increasing shaie
- ".‘.:. coitent down, coarsening upwards

[
.l.
[
]
l.l
[
[

—-——el = mud, gradationa! contact, planciites, skolithos,
- L asterosoma, coarsening upwards,

]

[]

[]

§

[
SN
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PER PCEJ Leismer 11-8
11-8-79-w4

SRAIN 5128

mmu-mwmup.um
9 8. planer bade, low angie x-beds.

v;nd.lgy. SYNOTIEN Cracke. aaswosoma?(brachish water «
ont,

Rame Structures / dewatenng 3-3-0

inthx planer laminated mud - g Se. Sands ol steined.
thin mud streak, gradstionsd boundary. $-S-0,

19 Se. oil staining. massive

m-ms-/ywm-mwm.:wm.u
Staining in Se. - plancites and syneresia cracks » mud.

= g Sa., ol stained. gradee upwards from planar heds lo
trough x-beda. This impliee ing of pward:

.......
......
........

oou

—-Ou

(X717

[T

1.Ow




=== mxt/ 9l / sand - oil staireng of sand. plancites

~— R gy mud, heavily burrowed, Diplocraterion? planciiles?

e R gy mud

~— Iy gy mud, plant rooting structures - coal filled.

[l ——  Se. possidly storm deposited, oil stained. $-S.0
TS= R gy mud, rooting structures fliled with coal

=== intbd sill-mud, wavy and fiaser bedding, Bitle burrowing
planciites, plant rooting infilled with coal present.

high iron concentration (0 accumulate.
intbd ailt / sand - prograding rppies
"= trough x-bads grading into small rippise.sand convent
increamng, thus porosty and ol staining are increamng aleo,

=== SIDERITE CLAST, Hi Fe+2 conment - posmible reeult of
\Mm-m'

== g Se, massive, oil stained, continued increase in sand
content, ol saturation, and porosty.

T

[RBRY]

3
| ORI ';J-—- 10 Ss. small scale rippies. prograding
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.........
......
......
.....
......

l. mud / s, scoured 10p. gradational bosom

K Sa. planer bedding, od stained
trough »beds
mg Se. Larger scale trough »beds

| {1

Il R gy mud, syneresis cracks

10 8s. trough wbeds,
mud / eik, syneresis cracks, planoiites
1g se. trough x-beds,

mud / sil, synecesic cracia, planolites, sand fraction
increasing upwards
sil, sand increasse up, planciltes

= R gy mud, burmowing, plancites

.......




CWWE Leismer 3-1-727-S

3-1-77-Sw4
eAmIN 3I12€ }giz
o 4238
it A R
1riel rCLAY v
- - ™ [ == shale. fissile, thin sik lensee, burowing Emited

......

OLite

I

cracin, arenicoiites, skolithos, burrowing incresses upwards

~= ly brn ss, well sorted, Massive

TN\- thin laminated intd, mud/sitisand. no stain, SSD,
gradational packages fine up.

== vig Ss. , massive. clay drape frequency increases
upwards, oil satursted

=== vig ss. massive, mud drapes inclued, point
tip-up clasts.
N vig ss. clay drapes, no tip-up clasts, oil saturated, massive

=== {g-vig Ss. massive. random rip-ups, oil saturated, wel
sorted

== ig-vig Ss. massive, ail saturated. clay drapes absent, clay
fip up clasts, ol saturated.
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ICGR CHARD 3-16
5-16-79-35w4

GARIN SI12E anen
HE
e aEd
Wl o 0 i"
creeee ] |2 ~—— viQ Ss., R gy. maseive, similar to channell @ 10-14-78-TWA
................ P Near 10p; NO OMJANICS, NO burrowing, clesn gae sand
PR throughowt.; poor core, washed 100 much?
. Q.. 0.: - l.j .?
e e
SIS I P
. . g1
a
2
b5
0
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HOME LEISMER 6~11
06-11-79-07w4

sANIN S02€C ;

“an-ms
| «~~wonae
{ smac<-a

[ 3]

OB~

b Ak == Sily shale, slight ol stai, pianoies, biowsrbated

)
()
[
]
1)
O

"'
:L:..:'.:::".':l: —— it sit-anale, Incred sing ek comient upwarde, o3t la ok o
- wan, pianciltes and possible Asterosoma.

=~ Sa. Ig. sheie breaks. ol staining. shele breaks show
planoiites, bicturbated
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--------
oooooooo
---------

== $a, lg, shale breaks, shaiee show planoltes. olf stained

~~=2 Thinly laminaied mud. blokurbeted, planciies+, Faces
repiaced with coaresr material



A 0 CORP LEISMER 8-17-78-7
08-17-078-Q7w 4

GAAIN 312K

A -2D

] amac~—a

:
{
:

—

———

———

—

—

e

——

R gy mud, messve

wl. B br, no stain, grediationsl contacts
i sbah, plancibes, o stained races.

Se. 19, o Maned, shale break burrowed, planciites.

Se. Ig. ol stained, shale breaka

Se. 1g. shaie breaks display pisnoaes.

Sa. 1g, only very it o stain?. dont iow why.,

Mud, gy, planciites * Note, this § 1. core is at uUninown

depthe withen the nterval 1326-1048,

—

thay lamwnated mud. planclites, some sand-shale

alemating depoeds as in tidal reghme.
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[™ Sk Rgy. amas sanc Dreek oNs SLANSd. PIANCHISS (X Yeant,

=== ARemating sand and shale packngee, each over 2§ cm,
sand is od stained, shale is Durrowed with piancites, burrows
are il stained,

== mud, R gy, maseive

== 8a. g, oil stained, gradational upper contact shows waning
current

== mud, R gy. massive

Y
1y
‘
'

)
!
N

OQ—~—




116

ROC CORP. PONY CREEK 9-1 00-9

A 0 CORP. PONV IIIK 9-1-80-0
9-01-080-08wis

shmIn 828

——  thais, § grey. Qradesional lower contact.

Se. Ig, 1 b, Mmagewe. srosional lower comact.

|

Sh. R gy. s0me ress rooes preserved.

slly shale, 8 Oy,

shale. Iy gy. s0me sand clasts.

Sa. 1g. £ gy-green, 30me plant roct races.
Ss., br. with hin, G gy shele isyers.

uummmmmmmt

iMb Se-eik, ight siaining, planer laminsted.

/”‘)» 7]

ind So-eikt, i bit. staining, planar laminated, o-9-d.
intb sh-Sa., thin sends in sh. (rades upwarde ino Ss.
Sh. Rgy.

I7)

sandy shale, sand Mled bustows. Ight staining
¥ gy mud
some 88 found in mud

¥ gy mud, rootng
Sa. g, biourbated appearance of staining paltern.

7T 1)

R gy mud, sand clasts
Se, ipmg, stained.

l

planer bedking.

ooareening up Sa. planar bedding
Se. vig. Massive, good saining

/)

"'-’-’-’gl == Ny mud. imd send. planciies.
] o] | | o

AR F —  sity mud, bioturbated. planoliles. foO0tng
R gy mud

l

]
{
[]
§
[}
A
D

] . s0me b s Clasts.
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........ i w——  Sa, i, Sained, some shale clasis and planciltes n the
shale

.........
.........
---------

.........




AMOCO A-6 LEISMER 11-34

11-34-07?7-08w4
sARIN SI2E }g:?
' BER
s QESH
i RSIE
s
- Shale, It gy, Massive,
2
4
=== Sikslone, lan, massive
2

s {—— S, (g. massive, It br.

@ LN

— S8, mq, sait and papper, massive, some carb. clasts
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AMOCO A-ILEISMER 6-22
06-22-077-08w4

SAND
—E-—SILY

SBC~NQ-0

“ME-ma
L= NOBON

EIMAS 4=~

~—— shale, gy, massive

—— s, ly gy, transition from sand to shale.

== Ss, 1g, fining up, tan colour, lighter than below. gradational
grain size transition.

= Ss, m, clean, well sorted, sak and pepper, maseive
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AMOCO R-5 LEISMER 6-9
06-09-077-08w4

oOIC-~o~8

MB-ims

C==NOWCY

TMIAS =

—— shale, gy, massive

-—— silt, R gy, transition from sand 1o shale.

= 8s, 1g, fining up, tan colour, lighter than beiow. gradational
grain size transition.

~——  Ss. clean weil sorted. sak & pepper, massive

120
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Appendix B

Thesis Data

- Clearwater Fm. Structure

- Clearwater ‘A’ §Structure

- Clearwater ‘B’ Structure

- Wabiskaw Memker Structure

- McMurray Fm. Structure

- SubCretaceous Unconformity Structure

- Clearwater Fm. Isopach

- Clearwater ‘A’ ; Top 5 m Ss./Sh. Ratio
- Clearwater ‘B’ ; Top 15 m Ss./3h. Ratio
- Wabiskaw Member Isopach

- McMurray Fm. Isopach

- McMurray Fm. ; Teop 15 m Ss./Sh. Ratio
- Clearwater ‘A’ Net Pay

- Clearwater ‘B’ Net Pay

- Clearwater ‘C’ Net Pay

- Clearwater Fm. Net Pay

- Wabiskaw Member Net Pay

- McMurray Fm. Net ?Pay
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Appendix C

Cross-Sections
Figure 42 C.1 - Crowus-Section Location Map.
Figure 43 C.2 - Section A - A’ : Dip Section Of

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

44

45

46

47

48

49

50

51

Study Area.

C.3 - Section B - B’ : Strike Section
Undisturbed 2Zone.

C.4 - Section C - ¢’ Strike Section

Collapse Zone.

C.5 - Section D - D’ : Structure Of
Clearwater B’ Sand in Leismer FPield.

C.6 - Section D - D’ : Stratigraphic
Section Through Leismer Field.

C.7 - Section BE - B’ : Structure Of
McMurray Fm. Through Chard FPField.

C.8 - Section E - E’ : Stratigraphic
Section Through Chard Field.

C.9 - Section F - P’ : Structure Of

In

In

McMurray Formation Through Graham PField.

C.10- Section F - F’ : Stratigraphic
Section Through Graham Pield.
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Thesis Maps

Structure Maps

Figure
Figure
FPigure
Figure
Figure
Figure

52
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57

D.1
D.2
D.3
D.4
D.5
D.6

130
Appendix D

Clearwater Pm. Structure Map
Clearwater ‘A’ Structure Map
Clearwater ‘B’ Structure Map
Wabiskaw Member Structure Map
McMurray Fm. S8Structure Map
SubCretaceous Unconformity Structure

Isopach and PFacies Maps

Figure

Figure
Map

Figure
Figure
Figure
Figure
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63

Net Pay

Figure
Figure
Figure
Figure
Figure
Figure
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69

D.7

D.9

D.10
D.11
D.12

Maps

D.13
D.14
D.15
D.16
D.17
D.18

Clearwater Fm. Isopach Map
Clearwater’A’;Top 5 m Ss./Sh. Ratio

Clearwater’B’;Top 15 m Ss./Sh. Ratio
Wabiskaw Member Isopach Map

McMurray Fm. Isopach Map

McMurray Pm.; Top 15 m Ss./Sh. Ratio

Clearwater ‘A’ Net Pay Map
Clearwater ‘B’ Net Y:y Map
Clearwater ‘C’ Net Pay Map
Clearwat3r Fm. Net Pay Map
Wabiskaw Member Net Pay Map
McMurray Fm. Net Pay Map



