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Abstract

The increasing population and adverse climate conditions are escalating fresh water

scarcity globally. Since irrigation consumes a large portion of fresh water, it is very

important to improve irrigation efficiency. One such method on improving irrigation

efficiency is to use a closed-loop scheme instead of the traditional open-loop irrigation

schemes. There are many challenges in implementing a closed-loop irrigation scheme.

These challenges include soil moisture sensing, soil parameter and state estimation

based on limited measurements, control-oriented model development, scheduler and

controller designs that take into account various constraints in irrigation. In this

thesis, rigorous methods are proposed to overcome some of these challenges.

First, a systematic approach based on system observability analysis and state es-

timation is developed to estimate the soil moisture inside an agro-hydrological system

where measurements are not easily available. A discrete-time state-space model based

on Richards’ equation is used to describe the agro-hydrological system that considers

water dynamics in the system and the interaction between the soil, the plant and the

atmosphere. The nonlinear agro-hydrological system is linearized every sampling time

and the observability of the overall system is determined based on locally linearized

models at every sample instant. Based on the linearized models, we investigate how

the number and location of output measurements affect the degree of observability of

the system. To demonstrate the efficiency of the proposed approach, state estimation

is performed using the extended Kalman filter on both simulated and real field data.

The parameters of the model are estimated using prediction error method based on

historical output measurements.

Next, using the information from estimated states and measurements, we have per-

formed a comparative study between closed-loop and open-loop irrigation scheduling

and control. In agriculture irrigation management, irrigation scheduling is typically
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performed in an open-loop fashion and is done only once at the beginning of a growing

season. In this work, we study whether closed-loop scheduling with closed-loop con-

trol can lead to improved performance in terms of crop yield and water conservation

in agriculture irrigation. The interaction between the soil water, the crop (maize in

this work) and the atmosphere is described by an agro-hydrological model, which is a

partial differential equation. In the proposed scheduling and control scheme, both the

scheduler and the controller are designed using model predictive control (MPC). The

scheduler uses a long time horizon (with a sampling period of one day) that covers

the entire crop growth season and the horizon shrinks as time moves. The primary

objective of the scheduler is to maximize the crop yield. The controller uses a much

shorter prediction horizon and a much finer sampling period. The primary objective

of the controller is to track the soil moisture reference calculated by the scheduler. To

alleviate the computational complexity of the scheduler and the controller, a linear

parameter varying (LPV) model is identified for the scheduler and controller, respec-

tively. The performance of the closed-loop scheduling scheme is evaluated against the

traditional open-loop scheduling scheme under different scenarios.

Furthermore, this thesis has extended research on closed-loop irrigation scheduling

to a special case where irrigation is performed using storm water to irrigate recre-

ational turfs. In this work, a modeling and scheduling approach for an integrated

storm water management and irrigation problem is presented. The primary objec-

tive is to simultaneously ensure that the green space is irrigated appropriately and

the level of the storm water pond is maintained adequately. It is proposed to use

closed-loop irrigation scheduling to achieve this objective. A steady-state model is

developed to calculate the soil water storage for different irrigation amounts. To

handle the uncertainties, real-time feedback from the pond is used to re-evaluate

the scheduling optimization problem every week. Simulation results show that the

proposed closed-loop scheduling gives much improved control performance.
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Chapter 1

Introduction

1.1 Motivation

The basic needs of humans for survival are food and water, where food production

through agriculture also depends on water. Globally, the water consumption rate has

grown to be more than twice the rate of population increase in the 20th century. As

population growth continues, 60% more food will be needed to satisfy the demand

of more than 9 billion people worldwide by 2050 [4], which will lead to great water

stress on the available fresh water resources. It is clear that policies related to water

conservation and new technologies for more efficient water consumption need to be

developed; otherwise, water scarcity will become a global issue in the near future.

70%

19%

11%

Water Consumption Statistics (UN 2016)

Agriculture
Industry
Domestic

Figure 1.1: Worldwide water consumption statistics in 2016.

According to the statistics of the United Nations, agriculture consumes about

70% of the global fresh water [5]. It is clear that even an incremental improvement
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in agriculture water usage efficiency may result in a substantial saving of fresh water.

According to Alberta Irrigation [6], in the province of Alberta even a saving as small

as 1% irrigated water would result in a saving of about 23 million cubic metres of

water each year. The Food and Agriculture Organization (FAO) of the United Nations

identified three aspects in improving agriculture water management [4]:

• Reduce water losses

• Increase water productivity

• Water reallocation

The first option is to increase water use efficiency by reducing water losses. The

second option is to increase crop productivity with respect to water usage and the

third option is to reallocate water to higher value applications. Among these three

options, the most popular and effective one is the first option.

Aside from agriculture, a significant amount of water is used for maintaining lawns,

parks, and sport fields. In Cristina et al. [7], it is reported that the water use for

these outdoor green spaces ranges between 22% and 38% of the total residential water

consumption in cool climate regions and between 59% and 67% in hot climate regions

across North American cities. The total lawn area in US is about 1.5% of the overall

country size, which is significant. Therefore, improving the irrigation efficiency for

lawns, parks and sport fields is also important. The above considerations motivate

this thesis.

1.2 Background

1.2.1 Current irrigation practice

Irrigation science dates back to the early history when people started to grow crops.

While modern irrigation technologies have been adopted in many developed coun-

tries, traditional irrigation methods are still widely used in many parts of the world.

Broadly speaking, the current irrigation methods can be classified into two categories:

traditional and modern methods. The traditional irrigation methods mainly involve

surface irrigation, where irrigation water is either flooded over the crop field (flooding

2



Irrigation

Traditional 
methods

Modern
methods

Surface 
irrigation

Flooding Furrow method

Sprinkler

Center Pivot
Stand-alone 

sprinkler

Drip/ Micro 
irrigation

Figure 1.2: Classification of irrigation methods [1].

method) or water is passed through furrows (furrow method). On the other hand,

modern irrigation methods can be further classified into two types. One is the drip

or micro-irrigation where water is irrigated close to crop roots. The other one is the

sprinkler-based irrigation where the irrigation water is sprayed over the crops through

sprinklers. A sprinkler may be installed as a stand-alone unit or be mounted on a

rotating pivot (center pivot). Figure 1.2 shows the classification of different irrigation

methods. In Canada, the two most popular irrigation methods are central pivots

for crops (around 93% in 2014) and drip irrigation for fruits (around 65% in 2014)

[8]. Sports fields, lawns and parks are mainly irrigated using stand-alone sprinkler

systems.

In current practice, the amount of water to be distributed to a farm is allocated

according to the farmer’s request which is determined primarily based on the farmer’s

experience. From a systems engineering’s perspective, this kind of irrigation manage-

ment, where irrigation decisions are primarily based on the empirical or heuristic

knowledge of the farmer and no real-time feedback information (e.g., soil moisture)
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from the field is used, is called open-loop irrigation.

Weather 
Forecast

Farmer's 
Experience

Actuator
(pumps, sprinklers)

Decision making system
(Farmer)

Field

Irrigation 
prescription

Irrigation 
amount

Figure 1.3: Open-loop irrigation.

Figure 1.3 shows the information flow of the open-loop irrigation strategy. The

open-loop irrigation strategy often leads to either over irrigation or less irrigation.

1.2.2 A brief review of the agro-hydrological system

An agro-hydrological system characterizes the hydrological cycle between the soil,

the atmosphere and the crop. Figure 1.4 gives an illustration of an agro-hydrological

system. In the agro-hydrological system, water transportation takes place by means

of rain, drainage, evaporation, root water extraction and irrigation. The roots of

the crop act as water sinks that extract water from the soil. At the surface when

their is rain or irrigation water may enter the soil depending on the soil moisture

condition. When the soil is unsaturated, water infiltrates the soil; however, when the

soil is saturated, the infiltration tends to cease and ponding starts to occur. After a

certain ponding height, the water level breaks and runoff starts to occur. It is to be

noted that some of the rain or irrigated water may not reach the soil surface and be

intercepted by the crop canopy. Evaporation occurs at the bare soil surface and the

4



crop canopy. The evaporation and transpiration is usually calculated together for a

cropped field and termed as evapo-transpiration. Since we mainly consider the water

dynamics in the root zone inside soil, our work is restricted to the vadose zone. The

vadose zone is the soil profile above the water table.

Evaporation

Rain

Interception

Irrigation
(center pivot)

Root water 
extraction

Surface
runo�

Ground water

Capillary rise

Vadose zone

Transpiration

Ponding

Leaching + 
groundwater 
recharge

In�ltra-
tion

Figure 1.4: An agro-hydrological system.

The modeling of an agro-hydrological system will be described in Chapter 2.

1.3 Literature review

1.3.1 Soil moisture estimation and sensor placement

One major barrier in developing a closed-loop irrigation control system is the avail-

ability of proper soil moisture data. It is not feasible to install sensors at all depths

or at every location in the farm. An alternative is to estimate the soil moisture using

state estimation techniques. The estimation of soil moisture profile has been con-

sidered in many studies as a part of developing advanced climatology and weather
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forecasting models [9]. Different algorithms for soil moisture estimation with syn-

thetic data [10, 11, 12], remote sensing data [13, 14, 15, 16, 17, 18] and ground data

[19, 9, 20, 21] were developed. Specifically, a simplified linear version of the Darcy-

Buckingham equation was used to develop a Kalman filter in Walker et al. [22]. While

the linear Kalman filter is easy to implement and works in certain conditions, the use

of a simplified linear model limits its applicability in extreme weather conditions. In

Reichle et al., a comparative analysis between the extended Kalman filter (EKF) and

ensemble Kalman filter (EnKF) using synthetic remote sensing data was performed

for soil moisture estimation [11]. The requirement of the Jacobian matrix calculation

during linearization makes the EKF computationally expensive which can be avoided

in the EnKF; but for good estimation performance, the EnKF may require a large

number of ensembles. While the performance of both filters were satisfactory, the

authors of the above paper suggested EnKF for soil moisture estimation due to its

flexibility and robustness. Some studies used iterative EnKF algorithm to better

handle nonlinear systems and to enforce constrains [23] and to improve the compu-

tational efficiency [24]. Since Kalman based filters assume Gaussian distribution for

sensor noise and disturbances, the filter performance may drop when non-Gaussian

distribution is present. For EnKF, this problem was addressed in the work of Erdal

et al., where it was pointed out that the relation between pressure head and soil

moisture in extreme weather conditions is non-unique so the ensemble mean may be

affected by some extreme ensemble values and therefore give erroneous results [25].

In their work, they suggested the incorporation of a damping term using a normal

score transform where the non-Gaussian variable is transferred into a Gaussian one.

The use of particle filter to handle non-Gaussian distribution in soil data assimilation

was also discussed in a few studies [26, 27, 28]. While this approach does not depend

on the Gaussian distribution assumption, it may have difficulties in updating if the

realizations are far from the true states [28].

The presence of bias in the soil moisture estimation was also considered in some

studies [9, 29]. In [9], bias estimation was performed along with regular soil mois-

ture estimation using EnKF. The approach was shown to have improved overall per-

formance. However, it was also concluded that bias estimation in layers where no

observations were available is impossible. In another study [30], it pointed out that
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the persistent bias in the Kalman filter estimates evolves from non-Gaussian errors

caused by incorrect soil hydraulic parameters. This confirms the importance of ac-

curate soil parameters in soil moisture retrieval and signifies parameter estimation as

an unavoidable part of state estimation. While in [30] dual parameter and state esti-

mation were performed using EKF, the approach failed to give accurate soil moisture

estimation over the entire profile due to the consideration of homogeneity in param-

eter estimation. In [31, 32], the dual parameter and state estimation approach was

extended to consider soil profile heterogeneity. However, it is still unclear how the

number of states or augmented parameters affects the estimation performance and

what the minimum number of measurements is in order to have reliable state estima-

tion. In [33], sensor failure analysis was performed where they discussed the impacts

of the number of sensors or measurements and their placement in state estimation.

Though this study aimed to determine the number of measurements required for a

reliable observation of the system, they did not perform observability analysis of the

system.

The above consideration motivates the work of Chapter 3 on the development of a

systematic approach to soil moisture data assimilation based on system observability

analysis.

1.3.2 Closed-loop irrigation for agricultural system

The incorporation of feedback information (e.g., soil moisture content) in the irri-

gation decision making can lead to significant water conservation. Different control

algorithms based on real-time field feedback such as soil moisture measurement have

been reported in the literature. For example, it was reported in the work of Belayneh

et al. [34] that the closed-loop irrigation can save 63% water compared to the water

irrigated by an experienced manager for a commercial pot-in-pot nursery, which cor-

responds to an annual saving of $5263. The study by Gutierrez et al. [35] showed 90%

water saving compared to traditional approaches for a wireless distributed network

using on-off controller. Saavoss et al. [36] reported a revenue increase of 62% per year

for a sensor-based irrigation. Goodchild et al. proposed a modified proportional-

integral-derivative (PID) control to improve the irrigation precision [37]. In Bahat

et al., an irrigation controller based on the fuzzy-logic methodology was presented to
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decide on how far to open the water valve and how much water to be added to the soil,

by considering the temperature, air humidity, wind speed and water budget as the

fuzzy variables [38]. In Cid-Garcia et al., a new methodology based on mathematical

models of linear programming and site-specic management zones was presented to

determine the crop pattern and the use of water in agricultural fields considering the

crop requirements in real-time [39]. Kim et al. developed a closed-loop irrigation con-

trol system for a self-propelled lateral-move sprinkler irrigation system [40]. Besides

the above results, closed-loop irrigation were also reported in Pawlowski et al. and

Navarro-Helln et al. [41, 42].

Model predictive control (MPC) has also been investigated in the optimal control

of agriculture irrigation. MPC is a very flexible optimal control framework based on

solving constrained optimal control problem on-line repeatedly, and has been widely

used in modern manufacturing industries due to its ability to handle multivariate

processes and to address state and input constraints [43, 44]. In the MPC based

studies, due to the use of a prediction model, it is possible to incorporate weather

forecast along with other environmental and crop factors. Hence the irrigation amount

can be controlled accurately without hampering crop yields. Park et al. used MPC

to maintain the field at desired soil moisture and salt levels [45]. McCarthy et al.

used crop production models in MPC to optimize irrigation time and amount [46].

Delgoda et al. implemented MPC to minimize root zone soil moisture deficit and

irrigation amount with a limit on water supply [47]. Recently, Mao et al. developed

a zone MPC algorithm to maintain soil moisture within a target zone instead of a

set-point. This approach was shown to lead to further water conservation [48]. The

above mentioned irrigation control studies all focus on short time (hourly or daily)

irrigation management. A typical objective of these studies is to maintain the soil

moisture or root zone soil moisture deficit at a pre-determined set-point or zone.

Irrigation scheduling is another important subject in agriculture irrigation man-

agement, which considers water management over a much longer time period (e.g.,

the entire growing season of a crop). In general, a water balance accounting for plant

water consumption, evaporation and drainage loss, historical weather data and ava-

iable soil moisture is used in irrigation scheduling [49, 50, 51]. Different objectives

were considerd in irrigation scheduling including, for example, profit maximization
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[52], crop yield maximization [53] and irrigation uniformity optimization [54]. One

common feature of the above scheduling studies are that the scheduling optimization

problem is only solved once at the beginning of the crop growing season and the

solution is used for the entire season.

In Chapter 4 of this thesis, we will introduce feedback into irrigation scheduling

and integrate it with irrigation control to form a hierarchical closed-loop scheduling

and control scheme. It is well recoganized in chemical process industries that the

closed-loop scheduling and control can bring improved economic performance [55, 56,

57, 58, 59]. The primary objective of Chapter 4 is to study the closed-loop scheduling

and control in agriculture irrigation management and investigate whether closed-loop

scheduling brings any benefits to irrigation management.

1.3.3 Irrigation for recreational turf using storm water

Increased urbanization and reduced natural vegetation have led to significantly in-

creased stormwater volumes. Stormwater is surface runoff that flows over roofs, drive-

ways and roads rather than infiltrating into the ground during any rain or snow melt

events [60]. Stormwater is typically collected using city drainage system and is ei-

ther stored in stormwater ponds or discharged to downstream water bodies. In the

literature, there are studies on improving stormwater quality [61, 62, 63, 64] and re-

ducing storm water volumes by using permeabale pavements or contruction materials

[65, 66]. The reuse of stormwater in irrigating city green space such as parks, sport

fields and green roofs is advocated for sustainability and has been considered in dif-

ferent studies [67, 68, 69, 70, 71]. When stormwater is used for irrigating neighboring

parks or sport fields, the stormwater is managed near to its source which reduces the

chance of flooding in downstream areas. To increase the efficiency of the stormwater

pond, overflow and dry-out events need to be reduced. Thus instead of using tradition

open-loop scheduling, a closed-loop scheduling problem is studied to understand the

interplay between storm water pond level and irrigation scheduling in Chapter 5.
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1.4 Thesis contributions and outline

In this thesis, we consider closed-loop irrigation scheduling and control as illustrated

in Figure 1.5.

Irrigation Implementing
 System

Field
Field Outputs

Sensing 
Instrument

State and Parameter 
Estimation

(Agro-hydrological model)

Advanced Scheduling 
and Control
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models)
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Current and past weather, 
geographical, and crop 
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Figure 1.5: Closed-loop irrigation.

The rest of this thesis are organized as follows:

Chapter 2 describes an agro-hydrological model and the relevant preliminaries.

In Chapter 3, we propose to use the degree of observability analysis to determine

the minimum number of sensors and to identify the optimal sensor location for state

estimation. The main contributions of this chapter include:

• State and parameter estimation for an agro-hydrological system based on a

thorough degree of observability analysis;

• An optimal sensor placement algorithm based on the degree of observability of

the system.

In Chapter 4, we develop a closed-loop scheduling and control strategy for a crop

field and explore whether this scheme results in water conservation. We have also de-

veloped a Linear Parameter Varying (LPV) model to represent the agro-hydrological

system, which is computationally more efficient and may be used in the design of

MPC. The main contributions of this chapter include:

• An LPV model identification method for the agro-hydrological system;
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• Extensive simulations comparing the performance of the closed-loop irrigation

scheduling with the traditional open-loop scheduling.

In Chapter 5, we explore a special case of irrigation scheduling. In this case, storm

water is used to irrigate city park green space. The main contributions of this chapter

include:

• The integrated control problem formulation and the corresponding closed-loop

scheduler design;

• Extensive simulations illustrating the effectiveness of the proposed approach.

Finally, Chapter 6 ends with concluding remarks followed by proposal for a few

future research directions.
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Chapter 2

Preliminaries on modeling of
agro-hydrological systems

2.1 Richards’ equation and its discretization

The dynamics of water flow in saturated media can be described by the Darcy’s

law, which was developed by Henry Darcy about 1856. In Darcy’s law, the flow

flux is proportional to the pressure gradient and the proportional constant is the

hydraulic conductivity. In 1907, Edgar Buckingham discovered that the water flux

in unsaturated media is proportional to the gradient of the capillary potential in the

media [72]. It was found later that the equation developed by Buckingham was a

generalized version of the Darcy’s law which was applicable to both saturated and

unsaturated media. These two achievements in soil physics gave birth to the Richards’

equation developed by L. A. Richards in 1931 [73]. Richards’ equation is widely used

today to describe the water flow in porous media. In Richards’ equation, the capillary

flow of liquids in porous media is characterized in terms of the impacts of the gravity

and the pressure gradient.

2.1.1 Richards’ equations

1D Richards’ equation is expressed as follows:

∂θ

∂t
=

∂

∂z
[K(h)(

∂h

∂z
+ 1)]− S(h) (2.1)

where θ (cm3/cm3) is the moisture content, z (cm) is the vertical distance (positive

upward), h (cm) is a pressure component that is known as the matric potential in
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unsaturated medium and simply as pressure head for saturated medium [74], S (hr−1)

includes the source and sink terms such as soil water extraction rate by crop roots,

and K (cm/hr) is the hydraulic conductivity. Note that the consideration of 3D

Richards’ equation would improve the overall simulation of the agricultural land but

it also increases computational complexity. Thus for simplicity we considered 1D

model with runoff and run on events at the soil surface.

The relation between the matric potential h and the soil moisture content θ is

described by the Van Genuchten model [75] as shown in equation (2.2) below:

θ(h) = θres + (θsat − θres)(1 + |αh|η)−m (2.2)

where θres (cm/cm) is the residual moisture content, θsat (cm/cm) is the saturated

moisture content, η and m are empirical shape factors, and α (cm−1) is the inverse

of air entry suction. In general, m is considered as a dependent variable of η such

as m = 1 − 1
η
. Thus Richards’ equation can be also written in terms of the matric

potential, which is well known as h−based Richards’ equation as shown below:

C(h)
∂h

∂t
=

∂

∂z
[K(h)(

∂h

∂z
+ 1)]− S(h) (2.3)

where C(h) = ∂θ/∂h (cm−1) is the specific moisture capacity also known as the

hydraulic capacity.

The relation relating the hydraulic conductivity with the soil moisture content

[76] is shown in equation (2.4).

K = KsatS
λ
e [1− (1− S

1
m
e )m]2 (2.4)

where Ksat is the saturated hydraulic conductivity, λ = 0.5 is the shape parameter

[77] and Se is the relative saturation given by

Se =
θ − θres
θsat − θres

. (2.5)

2.1.2 Model discretization

Richards’ equation is a nonlinear partial differential equation, which in general is

difficult to handle analytically [78]. In Van Dam et al. [79], an implicit backward,

finite difference method with explicit linearization of hydraulic conductivities was
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developed to discretize Richards’ equation. In our work, the same discretization

scheme is used. We consider time t ∈ [0, T ] and the length from the top z ∈ [0, L].

The time is discretized with P nodes (k = 1, 2, ..., P ) and the length is discretized

with N unequally spaced nodes (i = 1, 2, ..., N). Note that an adaptive time scheme

is considered in the time step discretization where the time steps can be reduced to

much smaller steps if certain tolerance on the gradient is reached. The subscript .i

denotes a variable at discrete length node i. The discretized equation at node i is

shown below:

Ci(hi(k))
hi(k + 1)− hi(k)

4t
=

1

4zi

(
Ki−1/2(h(k))

hi−1(k + 1)− hi(k + 1)
1

2
(∆zi−1 + ∆zi)

+Ki−1/2(h(k))−Ki+1/2(h(k))
hi(k + 1)− hi+1(k + 1)

1
2
(∆zi + ∆zi+1)

−Ki+1/2(h(k))

)
− Si(k)

(2.6)

where ∆t is the time interval between two consecutive time instants, ∆zi is the

thickness of compartment i and Ki−1/2(h(k)) = 1
2
(Ki−1(hi−1(k)) + Ki(hi(k))), and

h = [h1 h2 ... hN ]T is the entire state vector. Equation (2.6) can be rearranged into

the following equation:

di(h(k))hi−1(k + 1)+bi(h(k))hi(k + 1)+ai(h(k))hi+1(k+1) = ei(h(k))−ui(k) (2.7)

where ai(h) = −
Ki+1/2(h)

1
2
(∆zi + ∆zi+1)

, di(h) = −
Ki−1/2(h)

1
2
(∆zi−1 + ∆zi)

, bi(h) = Ci(hi)
∆zi
∆t
−

ai(h) − di(h), ei(h) = Ci(hi)
∆zi
∆t

hi + Ki−1/2(h) − Ki+1/2(h), and ui(k) = Si(k)∆zi.

Equation (2.7) describes the water content dynamics at node i. Defining vector

E = [e1 e2 ...eN ]T and u = [u1u2 ...uN ]T , and combining the equations for the N nodes

together, we obtain the following matrix equation:

A(h(k))h(k+1) = E(h(k))+u(k) or h(k+1) = A(h(k))−1E(h(k))+A(h(k))−1u(k)

(2.8)

where A(h) is a N ×N tridiagonal matrix as shown below:

A(h) =


b1(h) a1(h) 0 0 ... ... 0
d2(h) b2(h) a2(h) 0 ... ... 0
... ... ... ... ... ... ...
0 ... ... 0 dN−1(h) bN−1(h) aN−1(h)
0 ... ... ... 0 dN(h) bN(h)

 (2.9)
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Note that in matrix A, we do not have d1 and aN . This is related to the boundary

conditions of the system. The effects of the boundary conditions are considered as

the source and sink terms in the model and are included in u and will be explained

in Section 2.1.3. Equation (2.2) is also discretized for the N nodes as follows:

θ(h) =

 θ1(h1)
...

θN(hN)

 (2.10)

Typically, in an agro-hydrological system, soil moisture contents at different depths

(i.e.,nodes) are measured. That is, the measured outputs of the system may be de-

scribed as follows:

y = Dθ (2.11)

where D is a matrix indicating the nodes where the soil moisture contents are mea-

sured.

Equation (2.8) and equation (2.11) define the discretized system and its outputs.

Taking into account additive process noise and measurement noise, the system model

can be written in the following general form:

h(k + 1) = f(h(k), u(k)) + w(k) (2.12)

y(k) = g(h(k)) + v(k) (2.13)

where f(h, u) := A(h)−1E(h) + A(h)−1u, g(h) = Dθ(h), and w and v denote the

process and measurement noise. The above discretized agro-hydrological model is

used throughout this thesis. The model was validated against Hydrus 1D model [80]

as shown in the appendix.

2.1.3 Boundary conditions

The two boundary conditions required for the solution of Richards’ equation are

reflected in u1 and uN terms in vector u. In equation (2.6), when i = 1, either

the term Ki−1/2
hi−1 − hi

1
2
(∆zi−1 + ∆zi)

is replaced by a flux term qtop (cm/hr) known as flux

boundary condition or the term hi−1 is replaced by pressure head term ho (cm) known

as the head boundary condition. Specification of either of these boundary conditions

at the top node or compartment removes the term d1 and are reflected in variable e1
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and u1 as shown below:

b1(hk)hk+1
1 + a1(hk)hk+1

2 = e1(hk)− uk1. (2.14)

Flux boundary condition:

a1(h) = −
K1 1

2
(h)

1
2
(∆z1 + ∆z2)

(2.15a)

b1(h) = C1(h1)
∆z1

∆t
− a1(h) (2.15b)

e1(h) = C1(h1)
∆z1

∆t
h1 −K1 1

2
(h) (2.15c)

u1(k) = qtop + S1(k)∆z1 (2.15d)

Head boundary condition:

a1(h) = −
K1 1

2
(h)

1
2
(∆z1 + ∆z2)

(2.16a)

b1(h) = C1(h1)
∆z1

∆t
− a1(h) +

K−1/2(h)
1
2
(∆z−1 + ∆z1)

(2.16b)

e1(h) = C1(h1)
∆z1

∆t
h1 +K−1/2(h)−K1 1

2
(h) (2.16c)

u1(k) =
K−1/2(h)

1
2
(∆z−1 + ∆z1)

h0 + S1(k)∆z1 (2.16d)

It can be observed that in equations (2.15d) and (2.16d), the input is reflected in the

term qtop or h0 depending on the flux or head condition. The choice of flux or head

boundary condition at the top node depends upon the saturation of soil. If the top

node is saturated and ponding occurs then the head boundary condition is chosen

whereas when the top node is unsaturated, flux boundary condition is chosen. The

switching between these boundary conditions and the estimation of h0 is implemented

in this work following [81]. Similarly, for the bottom node or compartment i = N ,

either the term Ki+1/2
hi − hi+1

1
2
(∆zi + ∆zi+1)

is replaced by a flux term qbot (cm/hr) or the

term hi+1 is replaced by pressure head term hbot (cm) thereby removing the term aN

from the A matrix and is reflected in eN and uN . The bottom boundary condition is

described by the drainage condition of the soil profile.
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2.2 Evapo-transpiration and crop growth models

Richards’ equation describes the water flow inside the soil matrix. Depending on the

boundary of the system under consideration, the complexity of the overall solution to

the Richards’ equation varies. Since crop grows on the soil surface and irrigation along

with the rain all enters the soil from the surface, this makes the agro-hydrological sys-

tem to have a temporal and spatially varying top boundary and makes the problem

very challenging. The crop model is integrated with the Richards’ equation through

the sink term in equation (2.1) and the top boundary condition as explained in Sec-

tion 2.1.3. In this section, the crop model and the crop water requirements will be

explained.

2.2.1 Evapo-transpiration modeling

One of the most common approach for modeling the crop growth for determining

irrigation water requirement is based on the idea of ‘standard’ or ‘reference’ crop as

described in Allen et al. [82]. The reference crop is defined in [82] as “a hypothetical

reference crop with an assumed crop height of 0.12 m, a fixed surface resistance of

70s/m and an albedo of 0.23.” This description of the reference crop closely resembles

the green grass surface which fully shades the soil.

As shown in Figure 2.1, the mass balance of water in the soil-atmosphere interface

is given by:

Q0 = R + I +RN −RF − In− ET (2.17)

where Q0 (cm/hr) is the water that reaches the soil surface, R (cm/hr), I (cm/hr),

RN (cm/hr), RF (cm/hr), In (cm/hr), and ET (cm/hr) are rain, irrigation, run-on,

run-off, interception and evapo-transpiration amount, respectively. Note that Q0 is

the amount of water that reaches the soil surface, not the water that infiltrates the

soil surface. The infiltration rate is governed by Q0 and the saturation condition of

the system (the current pressure head under the soil surface). The interception is

the amount of water that is intercepted by the leaves of the crop before it reaches

the surface. The interception in the agro-hydrological model is designed following the

study by Van Dam et al., [79]. Run-on and run-off events occur when the input flux

becomes higher than the infiltration rate and when the surface is not flat.
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Figure 2.1: Modeling of a reference crop for irrigation water requirement.

The evapo-transpiration value (ET) accounts for the plant water requirement. It

is a combined term for evaporation and transpiration. Evaporation accounts for the

water loss beneath the crop canopy and surrounding exposed soil, where as transpi-

ration is the process of water movement through the crop and its evaporation from

the aerial parts, such as leaves, stems and flowers [48]. Ideally, the amount of water

transpired is equal to the root water extraction (sink term).
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Calculation of the potential evapo-transpiration

The evapo-transpiration (ET) is calculated using Penmon-Montieth equation [82]

using hourly weather data, which is shown as follows:

ET0 =

∆v

λw
(Rn −G) +

ρacp
λw

(es − ea)
ra

∆v + γ(1 +
rs
ra

)
(2.18)

where ET0 (cm/hr) is the potential evapo-transpiration for the reference crop (grass),

Rn (J/cm2hr) is the net radiation, G (J/cm2hr) is the soil heat flux, (es− ea) (kpa) is

the vapor pressure deficit of the air, cp(J/g
0C) is the air specific heat, ρa(g/cm3) is the

mean air density, γ(kPa/0C) is the psychometric constant, ∆v(kPa/
0C) is the slope of

vapor pressure curve, and rs (hr/cm) and ra (hr/cm) are the surface and aerodynamic

resistances, respectively. The potential and the actual evapo-transpiration of a crop

are defined as:

ETp = KcET0 (2.19)

ETa = Ks(θ)ETp (2.20)

where Kc is the crop factor, an empirical value that describes crop evapo-transpiration

with respect to the reference crop and Ks(θ) is the water stress factor which is a

function of the soil moisture. It is to be noted that equation (2.20) is true when

the stress on crops from other factors such as nutrients deficiency or diseases are

considered to be negligible.

In general, the crop factor incorporates the crop characteristics and the averaged

effects of evaporation of the soil [82] and is a function of the crop growth stage. Since

this formulation averages out the effects of crop characters involving transpiration

and evaporation from the crop canopy and soil, to have a more accurate estimation

of the crop potential evapo-transpiration, the approach used in this thesis follows the

work of Van Dam et al. [79]. Instead of determining the potential evapo-transpiration

of the reference crop and then directly using literature values for Kc, equation (2.18)

is slightly modified for the crop which would preserve the same physical aspect of

equation (2.19) but with more accuracy. The Penmon-Montieth equation as shown

in equation (2.18) actually adds up the contribution from two events, the radiation
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term

∆v

λw
(Rn −G)

∆v + γ(1 +
rs
ra

)
and the aerodynamic term

ρacp
λw

(es − ea)
ra

∆v + γ(1 +
rs
ra

)
. These terms can be

directly updated for crops at various growth stage by updating the values of rs, ra and

Rn of a crop at different stages. In the model these terms are calculated separately

from three different scenarios; bare wet soil (ws), dry plant canopy considering full soil

coverage (dp), wet plant canopy considering full soil coverage (wp), which refers to the

calculation of potential evaporation rate from a wet bare soil, potential transpiration

rate from a dry crop and potential transpiration rate from a wet crop, respectively.

The contributions from all these scenarios are used to calculate the ETp value with

more accuracy. The steps of ETp calculation are discussed below:

1 Modify the psychometric constant: The term γ(1 +
rs
ra

) is modified and divided

in three terms to accommodate the three scenarios mentioned above.

γws = γ(1 +
rwss
rwsa

) (2.21)

γdp = γ(1 +
rdps

rdpa
) (2.22)

γws = γ(1 +
rwps
rwpa

) (2.23)

where rwss (hr/cm), rdps (hr/cm), rwps (hr/cm) are surface resistance of wet soil,

dry crop and wet crop, respectively. The values for rwss and rwps are gener-

ally taken as zero and the value of rdps is specific to crop type. rwsa (hr/cm),

rdpa (hr/cm), rwpa (hr/cm) are aerodynamic resistance of wet soil, dry crop and

wet crop, respectively, which is a function of crop height. For soil, rwsa is con-

sidered fixed with the crop height of 0.1 cm.

2 Modify the net radiation: The radiation term Rn is the combined effect of short

wave radiation and long wave radiation. The net short wave radiation is soil

and crop type dependent while the net long wave is independent of crop or soil

and is dependent on geographical location and day time. Thus the net short

wave is divided in three groups as rnws, rnwp and rndp. These three properties

depend on soil and crop type only and do not vary with crop growth stage. Let

us symbolize the net long wave by rl which is the same for the three scenarios.
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3 Contributions from the three scenarios: The contributions from the three sce-

narios, potential evaporation from wet bare soil etws, potential transpiration

from wet crop with full coverage etwp, and potential transpiration from dry

crop with full coverage etdp are as shown below:

etws =

∆v

λw
(rnws − rl −G) +

ρacp
λw

(es − ea)
rwsa

∆v + γws
(2.24a)

etwp =

∆v

λw
(rnwsp − rl −G) +

ρacp
λw

(es − ea)
rwpa

∆v + γwp
(2.24b)

etdp =

∆v

λw
(rndp − rl −G) +

ρacp
λw

(es − ea)
rdpa

∆v + γdp
(2.24c)

4 For partly covered soil: The calculation of the evapo-transpiration shown so far

considers either bare soil condition or fully covered soil, which is not true for

the crop which partially covers the soil at various growth stages. So this step

adjusts the calculated values for partly covered soils.

– For partly covered soil, the potential evaporation reduces with respect to

bare soil as follows:

Wfrac =
Ri

etwp
with Wfrac ≤ 1.0 (2.25a)

Ep = etws(1−Wfrac)e
−κgrLAI (2.25b)

where Wfrac defines the fraction of the day the crop is wet, Ri is intercepted

rain, Ep denotes potential evaporation of partially covered soil, κgr is the

extinction co-efficient for solar radiation and LAI is the leaf area index

which varies with crop type and their growth stage.

– For partly covered soil the potential transpiration is calculated using the

etdp value as follows:

Tp = etdp(1−Wfrac)− Ep (2.26)

Actual evaporation calculation

The potential evaporation amount may undergo more reduction as the surface gets

drier, which accounts for the actual evaporation Ea. As the soil gets drier the soil
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hydraulic conductivity decreases which affects the evaporation rate. The maximum

evaporation rate the top soil can sustain is calculated according to the Darcy’s law

as follows:

Eatm = K1/2

(
hatm − h1 − z1

z1

)
(2.27)

where K1/2 is the average hydraulic conductivity between soil surface and the first

node, hatm is the soil water pressure head in equilibrium with the air relative humidity.

It is to be noted that Emax depends on the thickness of top soil layer and the hydraulic

conductivity K(θ) of that layer. Since this layer undergoes various events such as

splashing rain, dry crust, root extension and different cultivation practice, the true

value of Emax is often limited to erroneous results due to inadequate understanding of

this layer dynamics. Thus an empirical method of calculating the cumulative actual

evaporation during a drying cycle using Black’s method [79] is also considered as

follows:

Ec =
∑

Ea = βlt
1/2
dry (2.28)

where βl is the specific soil parameter (cmd−0.5), characterizing the evaporation pro-

cess and tdry is the time after a significant amount of rainfall. If the precipitation

amount is greater than this significant amount tdry is reset to zero.

In the model, the three evaporation values from equations (2.25b), (2.28) and

(2.27) are compared depending on the rain amount, and the final evaporation amount

is chosen as follows:

Ea = min(min(Ep, Ec),max(0, Emax)) (2.29a)

Actual transpiration and root water extraction

The calculation of the transpiration amount is the most important part in the crop

model, as well as in this whole study. The transpiration amount mentioned in equa-

tion (2.26) is equal to the potential water requirement of the plant through the root

zone. A plant or crop which does not endure any water stress would extract this

amount of water using its roots. But since roots span over a zone in the soil, this

potential transpired water requirement is distributed over the entire root zone as

follows:

Sp(z) =
lroot(z)∫ 0

−Droot
lroot(z)dz

Tp (2.30)

22



where Droot is the root layer thickness, lroot(z) is the length of root upto node z(i)

and Sp(z) is the potential root water extraction for depth z corresponding to node i.

This potential root water extraction will undergo reduction due to various stress as

follows:

Sa(z) = αwrαdrαsrαfrSp(z) (2.31)

where Sa(z) is the actual root water extraction at node i, αwr, αdr, αsr and αfr are

the reduction factors due to wet stress, drought stress, salinity stress and frozen soil

stress, respectively. In this study, αsr and αfr are not considered with the assumption

that soil is not frozen during the simulated period and the soil salinity is at standard

conditions. The actual transpiration amount is given as follows:

Ta =

∫ 0

−Droot

Sa(z)dz (2.32)

2.3 Crop growth modeling

In this thesis, we consider a simple crop growth model. The simple crop growth model

uses the following relation to define the leaf area index (LAI), root depth (RD) and

crop height (CH) all as a function of the crop development stage (DV S). The DV S

value is zero for crop at the day of seeding and two at the day of harvest. In the simple

crop model, one must specify the number of days the crop season includes (kCS) and

then develop a linear function of DV S (equation 2.33a) to describe different crop

growth stages. The values of LAI, RD and CH at different crop growth stage is then

expressed in terms of DV S as shown below:

DV S(k) =
2k

kCS
(2.33a)

dLAI

dk
= fc1(DV S(k)) (2.33b)

dRD

dk
= fc2(DV S(k)) (2.33c)

dCH

dk
= fc3(DV S(k)) (2.33d)

where k is the day number after the crop is sown. Thus the evaporation and the

transpiration values are calculated using these LAI(k), RD(k) and CH(k) values at

23



different crop growth stages. The equation (2.17) is slightly modified to accommodate

the modified evaporation and transpiration calculation.

Q0 = R + I +RN −RF − In− Ea (2.34)

This Q0 flux is the water that is actually present in the soil surface, and depending

on the soil moisture condition this value is used to determine the top flux for flux

boundary condition (Neuman BC) or the surface pressure head for head boundary

condition (Drichilet BC). The transpiration amount is represented by the sink term

in Richards’ equation as follows:

S(i) = Sa(z(i)) = αwr(i)αdr(i)Sp(z(i)) (2.35)

Note that the ratio of the actual to the potential transpiration is given by the stress

factors αwrαdr which is the Ks value in equation (2.20) and is an important parameter

in irrigation decision making.

2.4 Conclusions

The agro-hydrological model includes a few elements including the Richards’ equation

that describes the water dynamics inside the soil, the evapo-transpiration model that

describes how water is consumed by the roots of the crop and the surface, and the

crop growth model that describes how water requirement of the crop changes over

time. These models will be used in the later chapters to simulate the agro-hydrological

systems.
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Chapter 3

State and parameter estimation
based on system observability

3.1 Introduction

In this chapter, a systematic approach based on system observability analysis and

state estimation is developed to estimate the soil moisture inside an agro-hydrological

system where measurements are not easily available. A discrete-time state-space

model based on Richards’ equation is used to describe the agro-hydrological system

as explained in Chapter 2. The nonlinear agro-hydrological model is linearized every

sampling time and the observability of the overall system is determined based on the

locally linearized model every sampling time. Based on the linearized models, we

investigate how the number and location of output measurements affect the degree

of observability of the system.

In Section 3.2, the details on observability analysis for this nonlinear system is

described, and an optimal sensor placement algorithm is proposed. Based on an ob-

servable system, parameter and state estimation is performed in Sections 3.3 and 3.4.

Since linearization is required at each step for the observability analysis, and given

that the system under study considers only vertical one dimensional flow of water,

the filter chosen for state estimation in this study is the EKF. Finally the validation

of optimal sensor placement algorithm is performed on both synthetic and real field

data in Sections 3.5 and 3.6.
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3.2 Observability analysis

A system is said to be observable, if the knowledge of the input(s) and the output(s)

over a finite time interval [t0, tf ] is adequate to uniquely determine the initial state

h(t0) [83]. Since the agro-hydrological system is a nonlinear process, in order to check

observability, the system is linearized at different points of the state trajectory and

the observability of these locally linearized models are investigated [84]. Therefore

the nonlinear model was simulated over some soil moisture range which is within the

operation trajectory and at each time step corresponding to the current states the

system is linearized. The linearization of the system at h(k) (equations (2.12) and

(2.13)) can be described using the following form with the assumption of zero process

and measurement noise (without the loss of generality):

h(k + 1) = F (k)h(k) +B(k)u(k) (3.1)

y(k) = G(k)h(k) (3.2)

where B(k), F (k) and G(k) are obtained numerically using the jacobian matrices as

shown below:

F (k) =


∂f1

∂h1

· · · ∂f1

∂hN
...

. . .
...

∂fN
∂h1

· · · ∂fN
∂hN


h=h(k)

(3.3)

B(k) =


∂f1

∂u1

· · · ∂f1

∂up
...

. . .
...

∂fN
∂u1

· · · ∂fN
∂up


u=u(k)

(3.4)

G(k) =


∂y1

∂h1

· · · ∂y1

∂hN
...

. . .
...

∂ym
∂h1

· · · ∂ym
∂hN


h=h(k)

(3.5)

where N , p and m denote the number of state variables, the number of input variables

and the number of measured outputs, respectively. The observability test can be
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carried out using different approaches. In this study, the rank test is performed, in

which the system is considered to be observable at time k if the observability matrix

O(k) has a full column rank; that is,

rank (O(k)) = n (3.6)

where the observability matrix is given by:

O(k) =


G(k)

G(k)F (k)
...

G(k)F (k)N−1

 . (3.7)

The rank test provides a ‘yes’ or ‘no’ answer to the system observability and does not

provide any information on how strongly or weakly observable a system is. Therefore

we perform a degree of observability analysis of an observable system based on the

observability matrix O(k) to determine to what extent the system is observable [85].

3.2.1 Degree of observability analysis

Following the work of Ham et al., it is considered that the lack of co-linearity of the

rows of the observability matrixO(k) is an indication of the degree of observability [85,

86]. This implies that the degree of observability can be quantified by investigating the

spatial relationships among all the rows of the observability matrix O(k) [87]. Given

that only the angles between the row vectors of O(k) are important in analyzing the

linear independence, the row vectors of O(k) are normalized into unit length vectors.

Let the normalized observability matrix at time k be denoted as N and the rows of

observability matrix O(k) be denoted as Oj(k) where j = 1, 2, ...,mN are the rows.

The normalized element at the j-th row and the i-th column in matrix N is given by:

N j
i =

Oji√√√√( N∑
i=1

|Oji |2
) (3.8)

where i = 1, 2, .., N denotes the elements inside each row. It was shown, that the

smallest eigenvalue of N TN indicates the degree (or lack or weakness) of observabil-

ity of a system and the corresponding eigenvector refers to the direction of weakest

observability [85]. That is,

degN = λmin (3.9)
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where degN is the degree of observability and λmin is the minimum among all the

eigenvalues λi (i = 1, . . . , N). If we denote the eigenvector corresponding to λmin as

Vmin, then Vmin is the direction of weakest observability. The elements of Vmin with

large values correspond to states which contribute more towards unobservability. The

observability of the system is highest when all its eigenvalues are equal to each other.

On the other hand, the system is unobservable when one or more of its eigenvalue is

equal to zero. The relative measure of system observability is given by the ratio of

eigenvalues:

R =
λmax
λmin

(3.10)

where λmax is the maximum eigenvalue of N TN . The system having the value of

the eigenvalue ratio one or closer to one is considered to be a highly observable sys-

tem. Since the system under study is highly nonlinear so this degree of observability

analysis needs to be performed at every instant over the entire time trajectory which

should cover different nonlinear regions. The degree of observability analysis will help

us to determine the minimum number of measurements required for the system to

be observable and the optimal placement of the sensors for an improved degree of

observability.

3.2.2 Optimal sensor placement

The aim of the optimal sensor placement algorithm is to find the smallest number of

measurements that ensures the observability of the entire system and correspondingly

to determine the best locations for measurements. The overall strategy is described

below:

1. Generate input so that the soil moisture stays well between θres and θsat. It

is better to avoid extreme soil conditions such as very low or very high soil

moisture due to a high degree of nonlinearity.

2. Divide the simulation horizon by the sampling time to obtain l sampling points.

Accordingly linearize the nonlinear model for each sample point using the jaco-

bian in equation (3.5) for the state matrix F (q = 1, 2, ..., l).

3. Intially, let us consider that all states N can be measured, so m = N . Thus,
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the set of states which are measured (available measurements) can be defined as

M(m) = Z where Z = {1, 2, ..., N} and m is the number of available measure-

ments. Let us also denote the set of states which are not measured (unavailable

measurements) by U (m). Thus at initial step U (m=N) = ∅.

4. Use equation (3.7) to perform the rank test. If the system is observable then

proceed to next step. If the system is unobservable, this algorithm stops.

5. Normalize the observability matrix using equation (3.8). Then perform the

degree of observabilty analysis using equations ((3.9)-(3.10)) for q = 1, 2, ..., l.

Identify the largest value ofR which stands for the lowest degree of observability

and let us denote the corresponding sample point by qmax. Now perform rest of

the analysis for the sample point qmax.

6. Determine the lowest eigenvalue λmin of the normalized observability matrix

N TN . Analyze the eigenvector Vmin corresponding to λmin. The elements

of Vmin with large values contribute towards unobservability and small values

contribute towards observability. So identify the position or index of the small-

est element in the Vmin vector and let us denote this position by p which also

refers to the state with relatively more observability. Thus remove the mea-

surement corresponding to the position p. Therefore, U (m−1) = {p} ∪ U (m) and

M(m−1) = {r : r ∈ Z and r /∈ U (m−1)}. In this step of the algorithm, measure-

ments with lest effect on the system observability is identified and removed.

7. Go to step 4. Continue until the system becomes unobservable in the rank test

(step 4).

In the algorithm, the rank test at step 4 determines the minimum number of mea-

surements required for the system to be observable. The most important step in this

algorithm is step 6 which actually gives information on sensor placement. Since all the

states in this system refer to the same type of variable, soil moisture, but at different

depths, therefore identifying the right depth for sensor placement is challenging. At

step 6 of this algorithm, measurements are reduced based on the degree of observabil-

ity. Note that in the proposed algorithm, the aim is to find the smallest number of
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measurements that ensures the observability and then accordingly to determine the

best locations for measurements. The algorithm stops when the observability rank

test indicates that the system is unobservable (step 4). The algorithm may be ad-

justed to take other factors into account (e.g., the minimum degree of observability)

by revising the termination criterion in step 4 (e.g., in addition to the rank test, the

degree of observability is also checked).

3.3 Model parameter estimation

The parameters of the model are uncertain and need to be estimated. Due to the

heterogeneity of soil at different depths, several parameters (θsat, θres, Ksat, η and

α) vary with depth. In this work, we consider that there are four different soil types

according to the four layers shown in Figure 2.1 in the region under consideration.

Within each layer, the soil is considered homogeneous. For each layer these five

parameters are estimated.

In this work, we will use the prediction error method (PEM) to estimate the

parameters. PEM is an optimization based approach and its objective is to min-

imize the model prediction error subject to the model parameters that are to be

identified [88, 89]. Let us use Φ to denote the vector containing all the p = 20

parameters that need to be estimated; that is, Φ = [φ1, φ2, φ3, φ4]T with φi =

[θsat,i, θres,i, Ksat,i, ηi, αi]
T and assume that at anytime k we have measurements

y(k) for k = 0, 1, . . . , t and we have all the information about the boundary conditions

(i.e., u). The corresponding PEM optimization problem takes the following form:

min
φ, ĥ(0)

J(φ) = trace

(
t∑

k=1

ε(k)ε(k)T

)
(3.11a)

s.t., ĥ(k + 1) = f(ĥ(k), u(k)), k = 0, . . . , t− 1 (3.11b)

ŷ(k) = g(ĥ(k)), k = 1, . . . , t (3.11c)

ε(k) = y(k)− ŷ(k), k = 1, . . . , t (3.11d)

0 < θsat,i < 1, 0 < θres,i < 1, Ksat,i > 0, i = 1, 2, 3, 4 (3.11e)

where ĥ(0) denotes the initial condition of the system state, ĥ and ŷ denote the

predicted state and output vectors, y denotes the actual measurements and ε is the
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prediction error at each time instant. In the PEM optimization problem, both the

parameters as well as the system initial state are optimized/estimated. The objective

of the PEM is to minimize the trace of the covariance of the prediction error as

shown in equation (3.11a). The nominal model (3.11b)-(3.11c) of the system is used

in PEM to predict the output of the system. The error between the predicted output

and measurements is shown in equation (3.11d) and the constraints imposed on the

parameters are described in equation (3.11e).

3.4 Design of the extended Kalman filter

To handle the nonlinearity of the agro-hydrological model, the state estimation of

the system is performed using the extended Kalman filter. The algorithm consists of

two steps. The first step is the prediction step which uses the model to generate the

output and the second step is the update step where the predicted output is updated

according to the difference between the actual measurement and the predicted output

obtained in the first step. These steps are described as follows:

Prediction step

ĥ(k + 1|k) = f(ĥ(k|k), u(k)) (3.12a)

P (k + 1|k) = F (k)P (k|k)F (k)T +Q(k) (3.12b)

Update step

ỹ(k + 1) = y(k + 1)− g(ĥ(k + 1|k)) (3.13a)

S(k + 1) = G(k + 1)P (k + 1|k)G(k + 1)T +R(k + 1) (3.13b)

K(k + 1) = P (k + 1|k)G(k + 1)TS(k + 1)−1 (3.13c)

ĥ(k + 1|k + 1) = ĥ(k + 1|k) +K(k + 1)ỹ(k + 1) (3.13d)

P (k + 1|k + 1) = (I −K(k + 1)G(k + 1))P (k + 1|k)) (3.13e)

The prediction of states at time instant k based on the model f(ĥ(k|k), u(k)) is given

by ĥ(k + 1|k). The error covariance matrix of ĥ(k|k) is described by P (k|k), and

the predicted error covariance matrix at time k+ 1 based on the corresponding value

at time k is denoted by P (k + 1|k). The matrices Q(k) and R(k + 1) describe the

covariance of process noise and measurement noise of the system, respectively.
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Remark 1 The goal of this study is to develop an optimal sensor placement algorithm

for agro-hydrological systems. While EKF is used in this work, other state estimation

algorithms (such as EnKF, iterative EnKF, and particle filters) may be used in the

proposed framework. Depending on the objective and the degree of complexity of the

specific problem, one method may excel the others.

3.5 Model observability analysis and simulations

3.5.1 Soil profile and problem description

In this work, 110 cm of soil profile with four different homogeneous soil layers are

considered. The first homogeneous layer is 15 cm deep, the second, third and fourth

layers are 25 cm, 40 cm and 30 cm deep, respectively. These homogeneous layers are

further discretized into small compartments to obtain the numerical solution to the

Richards’ equation as shown in Figure 2.1. The states of this system correspond to the

soil moisture of the discretized soil compartments. Thus, the number of states in this

agro-hydrological system varies according to the discretization of the soil profile. The

higher the number of nodes (N), the better is the accuracy of the numerical solution

of the Richards’ equation. On the other hand, the high number of nodes may cause

observability issues due to limited available measurements. Therefore, a trade-off

exists between the number of states and system observability while performing the

discretization of the soil profile. In this study, the soil profile is discretized into 15

compartments, so there are 15 states as shown in Table 3.1. The details on the choice

of 15 states is presented in the appendix. Details on the use of degree of observability

analysis to determine optimal sensor placement and how the observability improves

the overall parameter and state estimation are addressed in this chapter.

3.5.2 Observability analysis and optimal measurement nodes

The algorithm mentioned in Section 3.2.2 is implemented to identify optimal sensor

locations using observability. The weather conditions were simulated for 460 hours for

six weather parameters including maximum and minimum temperatures, humidity,

wind speed, solar radiation and the amount of precipitation on an hourly basis. Since

precipitation has a direct impact on the soil moisture and is considered to be the
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Table 3.1: The discretized soil profile with 15 nodes or compartments. Each of these nodes
corresponds to the states of the system.

soil soil height of height of number of
layer sublayer sublayer, cm compartments, cm compartments

1 1 10.00 2.00 5
1 2 5.00 2.50 2
2 3 25.00 5.00 5
3 4 40.00 20.0 2
4 5 30.00 30.0 1

input of the model, therefore among the weather parameters only the precipitation

values are reported in this chapter.

Input generation: The input is generated with the range of [0, 2] using ‘idinput’ in

MATLAB as shown in Figure 3.1 with the simulation horizon of 460 hours. Therefore

l = 460 in step 2 in the algorithm. It is noted that the hydraulic conductivity function

shown in equation (2.4) makes the linearization challenging when the soil moisture is

very small (highly negative h) or the soil moisture is near saturation (h close to zero).

In these cases, the linearized model may not give appropriate degree of observability

of the original nonlinear system. The input should be generated to avoid extreme soil

conditions such as very low or very high soil moisture.

Optimal sensor placement algorithm: Initialy, all the states are measured (m =

N = 15). At each sampling points the state matrix F (k = 1, 2, ..., l) is linearized

and observability matrix O(k) is generated. Here, measurement setM(15) = Z where

Z = {1, 2, ..., 15}. The system is fully observable in the rank test since the rank is

equal to the number of states, that is 15, as shown in Figure 3.1.

For this observable system the degree of observability analysis (step 5) is per-

formed. The largest R value was observed at few sampling points. We considered

largest R = 172.7 at qmax = 460. The lowest eigenvalue λmin for the N TN matrix

at sample point qmax is 1.00 and the corresponding eigenvector Vmin is shown in Fig-

ure 3.2. In the figure, it is observed that for M(15) there is no minima. Since there

is no minima, so instead of choosing one measurement to be removed, we choose two

points corresponding to the lowest values, states 14 and 15, for further analysis. Fig-

ure 3.3 is used to present the sensor placement results. The y-axis shows the states

corresponding to different depths inside soil and the x-axis shows the number of to-
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Figure 3.1: Input values for optimal sensor placement. The rank and R trajectory is
shown only for measurements m = 15 and the corresponding simulated soil moisture value
at node i = 1 is also shown

tal measurements used in the corresponding analysis. When all states are measured

(m = 15), all the points in y-axis are represented using green circles. The two blue

outer circles indicate the two states (15 and 14) which are further analyzed. It is

observed that when measurement 14 is removed, the largest value of R is 7.498× 108

whereas when measurement 15 is removed, the largest R value is 4.839× 1010. This

implies that if measurement 15 is removed the system is relatively more unobservable.

Therefore, at this step measurement 14 is removed. Thus, whenever the elements in

Vmin as shown in Figure 3.2 does not explicitly show one minimum trajectory, in-

stead, it shows a set of elements with small values then we perform further analysis

to identify the measurement to be removed. The rest of the steps in the algorithm

are performed similarly and are summarized in Table 3.2

If there are few elements in Vmin and all of them have relatively close values, then

all of them must be analyzed further as explained before. Also in some cases, one

must decide the locations based on experience. For example after removing state

4 (M(12)), the next state removed was state 1 (M(11)) though state 15 showed the

lowest value among the elements of Vmin. If we observe the discretization, then it can
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Figure 3.2: Eigenvector corresponding to λmin for different measurement combinations
for degree of observability analysis for optimal sensor placement.
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Table 3.2: Optimal sensor placement algorithm for the simulated problem.

m U (m) M(m) rank(O) Maximum R λmin

Location Measure
for small -ment

values removed
in Vmin

15 {}
{1, 2, 3, 4, 5, 6,

15 172.65 1.00 15,14 147, 8, 9, 10, 11,
12, 13, 14, 15}

14 {14}
{1, 2, 3, 4, 5, 6,

15 7.498× 108 2.126× 10−7 6 67, 8, 9, 10, 11,
12, 13, 15}

13 {14, 6}
{1, 2, 3, 4, 5,

15 5.734× 108 2.5472× 10−7 5,7 57, 8, 9, 10, 11,
12, 13, 15}

12 {14, 6, 5}
{1, 2, 3, 4, 7

15 6.406× 109 2.07× 10−8 4,7 48, 9, 10, 11,
12, 13, 15}

11
{14, 6, {1, 2, 3, 7

15 2.49× 109 2.07× 10−8 1,2,15 15, 4} 8, 9, 10, 11,
12, 13, 15}

10
{14, 6, {2, 3, 7, 8,

15 9.56× 109 3.94× 10−9 12,13,15 125, 4, 1} 9, 10, 11,
12, 13, 15}

9
{14, 6, 5, {2, 3, 7, 8,

15 9.56× 109 3.94× 10−9 2,3,7,11 74, 1, 12} 9, 10, 11,
13, 15}

8
{14, 6, 5, {2, 3, 8,

15 1.98× 1011 3.94× 10−9 10,11,13,15 104, 1, 12, 7} 9, 10, 11,
13, 15}

7
{14, 6, 5, {2, 3, 8,

15 1.99× 1011 1.20× 10−10 2,11,13,15 24, 1, 12, 9, 11,
7, 10} 13, 15}

6
{14, 6, 5, {3, 8,

15 1.89× 1013 7.93× 10−13 9,11,13,15 94, 1, 12, 9, 11,
7, 10, 2} 13, 15}

5
{14, 6, 5, {3, 8,

15 3.38× 1016 4.44× 10−16 3,8,11 114, 1, 12, 11, 13,
7, 10, 2, 9} 15}

4
{14, 6, 5, {3, 8,

15∗ 6.15× 1015 4.4× 10−15 3,8,13,15 134, 1, 12, 7, 13, 15}
10, 2, 9, 11}

3
{14, 6, 5, 4,

{3, 8, 15} 15∗ 8.31× 1018 4.4× 10−15 3,8,15 81, 12, 7, 10,
2, 9, 11, 13}

2
{14, 6, 5, 4, 1,

{3, 15} 15∗ 2.7436× 1019 6.27× 10−1912, 7, 10, 2,
9, 11, 13, 8}
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Figure 3.3: Degree of observability analysis for optimal sensor placement. Green points
indicate the set of measured nodesM(m) and red points shows the set of unmeasured nodes
U (m) for any number of measurements m. The blue outer circles represents the states which
are analyzed in the next step.

be observed that state 15 corresponds to 30 cm inside the soil near the bottom. The

measurement corresponding to state 14 is already removed so removing measurement

from state 15 at this early stage may mislead the sensor placement process in which

case the algorithm may end up giving a higher number of required measurements.

We also observed some other locations including states 1 and 2 for further analysis.

It was found that when state 1 is removed, R = 9.561×109; when state 2 is removed,

R = 1.3156 × 1010; but when state 15 is removed, R = 4.249 × 1019. This confirms

that removing state 15 will highly decrease overall observability. Therefore, based on

this further analysis, measurement was removed from state 1. If we observe the R

value in Table 3.2, then we can have an idea of how the observability is gradually

reduced as the number of sensors decreases. The nonlinearity of the system can

also be noticed. When all the states are measured, R = 172; but even when one
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measurement is removed, the system R becomes as high as 108. For m = 4, 3, 2, the

rank for most of the trajectories was 15 but some rank deficient points were observed

specially for low soil moisture. The ranks for these measurements are shown with an

asterisk. When one measurement was used, the system became totally unobservable.

3.5.3 Parameter estimation based on simulated data

In this section, we evaluate the performance of PEM algorithm described in Section 3.3

based on the observable system identified in Section 3.5.2. The actual soil parameters

for the system is described in Table 3.3 and the simulated soil moisture using the soil

property is shown in Figure 3.4. To demonstrate the effects of data quality and data

quantity in the parameter estimation process the simulated data was generated for

the time period of 1440 hours with inputs varying between different ranges as shown

in the time axis of Figure 3.4(a).

Table 3.3: Actual and estimated parameter values for simulated data set.

Parameter Soil Soil Parameter Initial Parameter Initial Parameter
Layer type value (actual) Pi=1 Pi=2

Ksat (cm/h)

1 Loam 1.0400 1.2480 2.358
2 Sandy loam 4.4208 3.9788 1.248
3 Clay loam 0.2600 0.3640 1.248
4 Sandy clay 1.3100 1.9650 1.703

θres (cm/cm)

1 Loam 0.078 0.0624 0.015
2 Sandy loam 0.065 0.0780 0.0624
3 Clay loam 0.095 0.0665 0.0624
4 Sandy clay 0.01 0.0180 0.015

θsat(cm/cm)

1 loam 0.43 0.3354 0.273
2 Sandy loam 0.41 0.2665 0.3354
3 Clay loam 0.41 0.3690 0.3354
4 Sandy clay 0.39 0.3120 0.234

α

1 Loam 0.036 0.0288 0.0354
2 Sandy loam 0.075 0.0900 0.0288
3 Clay loam 0.019 0.0152 0.0288
4 Sandy clay 0.059 0.0442 0.0472

η

1 Loam 1.56 1.3 1.3
2 Sandy loam 1.89 1.3 1.3
3 Clay loam 1.31 1.3 1.3
4 Sandy loam 1.48 1.3 1.3

The following property of the simulated data can be noticed from the figure.
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(a) 3D plot for soil moisture profile. The rain input is shown along the time-axis.

(b) 2D plot for soil moisture profile. The color intensity represents the
soil moisture values.

Figure 3.4: The time series soil moisture profile for different states.
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• All four soil types can be distinguished based on the soil moisture pattern. The

states that belong to the same soil layer have similar soil moisture profile. The

four measurements belong to the four distinct layers.

• At the beginning all the states have low soil moisture and as precipitation

increases the soil moisture starts to increase. The soil moisture near the top

states increase rapidly. As water flows downward the bottom states tend to

increase in soil moisture (Figure 3.4(b)).

• The saturated soil hydraulic conductivity of layers 1 to 4 are 1.04 cm/hr,

4.42 cm/hr, 0.26 cm/hr and 1.31 cm/hr, respectively. So when water enters

the soil and flows through layer 1 into layer 2, the flow dynamics become faster

since Ksat is much higher in layer 2. As water goes into layer 3 the flow dy-

namics slow down due to low Ksat value. Thus more water accumulates inside

layer 3 increasing its soil moisture. Inside layer 4, the conductivity is higher

and water again flows at a faster rate.

Since the actual parameters of the system are known in this simulation, this study

enables us to investigate the requirements and the performance of the PEM algorithm.

In the PEM algorithm the simulated soil moisture data at the four measurement

locations corresponding to states M(4) = {5, 8, 13, 15} as mentioned in Section 3.5.2

are considered to be known. The soil parameter values and all other states are

unknown. We identify these unknown values and compare them with the known

values to evaluate the performance of the PEM algorithm.

Three data sets were constructed from the simulated data.

• Data set 1: D1 = {M(4)
k |k = 80, ..., 344}

• Data set 2: D2 = {M(4)
k |k = 500, ..., 764}

• Data set 3: D3 = {M(4)
k |k = 200, ..., 550}

where the simulation time (sample point) is denoted by k hours. Three cases are

studied with the three data sets and initial parameter set Pi=1. The fourth case is

studied with data set D3 and initial parameter set Pi=2. The estimated parameter

values are shown in Figure 3.6. The percentage error between the simulated soil

40



moisture profile with true parameter values and estimated parameter values , ei =

100
θ̄i − θi
θi

are shown in Figure 3.5, where θ̄i and θi are the true and estimated values

at compartment i = 1, . . . , N , respectively.

(a) D1 and Pi=1 (b) D2 and Pi=1

(c) D3 and Pi=1 (d) D1 and Pi=2

Figure 3.5: Error plot for the soil moisture profile generated by estimated parameter with
respect to true parameter values. The color bar shows the error for each states at each
sample time.

The estimated parameters for cases (a) D1 and Pi=1 (c) D3 and Pi=1 and (d) D1

and Pi=2 gave fair results since the percentage of error was usually low, less than 5%.

For the first 500 hour, percentage of error was noticed to be higher at the bottom

nodes. Since the actual simulated soil moisture in this region was very low (Figure 3.4)

which corresponds to high nonlinearity, the error was higher. The error for case (b)

D2 and Pi=1 was relatively higher (dark blue and yellow region in Figure 3.5) but was

still within an acceptable range except the first 500 hours. The estimated parameter

41



Figure 3.6: The estimated parameter values.
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values are shown in Figure 3.6. It can be observed that the estimation of θsat and

η showed less variance. The most sensitive parameters are Ksat and θres, and their

estimation depends highly on the data quality. Among these estimated parameter

sets the percentage fit for (a) D1 and Pi=1 was found maximum (around 99%), so this

parameter set was selected for this system.

3.5.4 State estimation

Using the parameter set estimated with D1 and Pi=1 , the EKF algorithm was exe-

cuted to estimate the entire soil moisture profile based on fourM(4), threeM(3) and

two M(2) output measurements, respectively. For the measurement set with three

measurements, two different combinations were used. One is the relatively more

observable system given by the optimal sensor placement algorithm and denoted by

M(3) = {3, 8, 15}. Another measurement combination denoted byM(3)∗ = {3, 13, 15}

is randomly chosen to demonstrate the importance of the optimal sensor placement

algorithm. It can be observed from Figure 3.7 that M(3)∗ performs very poorly with

respect to M(3). Also from the figure, it can be clearly observed that as the number

of measurements are reduced the observability decreases and the estimated values

deteriorate. It can be also noticed that some bias is present from the model plant

mismatch for the unmeasured compartments.

3.6 Application to field data

3.6.1 Data description and problem formulation

The ground data used in this study was collected from the St.Albert Weather Station

(Alberta Agriculture and Rural Development, 2014) located north of Edmonton, Al-

berta, Canada. According to the Canadian soil classification system the area under

consideration has chernozenic soil comprised mainly of fine textured silt [90] as shown

in Figure 3.8.

The hourly soil moistures at depths 5 cm, 20 cm, 50 cm and 100 cm were mea-

sured using Delta-t theta probes. The atmospheric forcing data was collected from

the same weather station which includes precipitation, maximum and minimum air

temperatures, relative humidity, incoming solar radiation and wind speed at 2meter
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Figure 3.7: The error of state trajectory of true soil moisture and the estimated soil
moisture at the 15 states given by EKF algorithm using the estimated parameters.
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Figure 3.8: Black Chernozem soil. Photo taken from [2]

height on an hourly basis. The data was collected over a period of 5 months from 1st

April, 2014 to 25 August, 2014 and is available online [91]. The data set is denoted

by RT , where time T = 1, 2, ..., 3505 hours and is shown in Figure 3.9. It can be ob-

served that the soil moisture at depth 100 cm varied very slightly over the 4 months

period. Only a small change in the soil moisture was observed around k = 800 hours.

So instead of considering free drainage at the bottom, Dirichlet boundary condition

was chosen at the bottom. The soil moisture value at −100 cm was chosen as the

bottom boundary condition. Some irregular features can be observed in this data set.

There was a gradual increase in soil moisture at the beginning though no rain was

noticed. This could be due to the melting of snow during spring (April and May),

so this part of data was not considered in parameter estimation. During the period

T = 1400−1700 hours, there were sudden reduction of soil moisture at depth −20cm

and −50 cm right after rain. This indicates that there may be cracks inside soil and

the water from these layers may have drained out of the system rapidly. Another pos-
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Figure 3.9: Real soil moisture profile for different rain inputs at St.Albert weather station.

sibility is that there may be significant horizontal flow of water which is not captured

in the model. These events cause high model plant mismatch and makes the overall

estimation process highly challenging.

The last measurement available is at depth 100 cm so we consider the overall sys-

tem to be of 110 cm depth and use the simulated studies in the previous section to

construct the soil profile for this real system. Thus, the system is discretized into 15

states similar to the simulated example as shown in Table 3.1. Though the soil type

reported is only silt based on literature, to capture the variations among soil with

depths and their dynamics, in this case we have also assumed four different homo-

geneous layers. Therefore the same observability analysis holds for this real system.

With four, three and two measurements, the system is observable; but with one mea-

surement the system becomes unobservable. Parameter identification is performed

with the maximum number of available measurements that is all four measurements.
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Then state estimation is performed with three and two measurements and the other

measurements are used for validating the results.

3.6.2 Parameter and state estimation

First, we use the PEM algorithm to estimate the parameters of the model based on the

collected data. A study by Carsel et al. [92] gives an estimate of Van Genuchten model

parameters for different soil types, which is used to initialize the system. Though the

soil type mentioned in the literature is silt type, the plot of real data shows different

behaviors at different depths. The measurement at depth −5 cm has high θsat values

and relatively faster dynamics. The measurements at depth −20cm and −50cm show

slow dynamics and the θsat is at medium range. The bottom is not changing which

can be due to shallow ground water, or impervious layers and horizontal flows. To

capture this heterogeneity, we initialized the soil layers with soil property of silt, clay

loam, silty clay loam and sandy clay loam as mentioned in [92]. The initial values as

well as the estimated values are also shown in Table 3.4. The estimated parameters

gave a percentage fit of about 50% for the top three layers which is considered to

be acceptable. The estimated parameters are further used to estimate all the states

using the EKF algorithm.

From the four available measurement data sets, measurement combinationsM(4),

M(3) and M(2) are used in EKF to estimate the rest of the soil profile. The state

estimation results are shown in Figure 3.10. It can be observed that when EKF is not

used, the open-loop prediction of the states are prone to high error. This demonstrates

the importance of simultaneous parameter and state estimation. Introduction of

EKF with measurement set M(4) reduced the error. The result also suggests that

for the cases where we use three measurements (M(3)) for updates and estimate the

remaining one, the EKF performed fairly well. In the case of two measurements

(M(2)) the performance drops compared with the case with three measurements.

To further understand the results, an error analysis is performed. The percentage

error is calculated only at the compartments where measurements are available. If

at time k, the actual and estimated soil moisture at compartments corresponding to

available measurements are given by θ̄M(k) and θM(k), respectively, where M denotes

the compartments where the real measurements are available (M = 3, 8, 13 and 15),
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Figure 3.10: Estimated states and true states for real data.
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Table 3.4: Parameters estimation for real scenario.

Parameter Soil PEM estimation Initial
Layer value Value

Ksat

1 0.238028 0.25
2 0.389312 1.3
3 0.683031 0.94
4 0.185454 0.2

θR

1 0.0794364 0.1
2 0.0959717 0.095
3 0.0957004 0.089
4 0.1 0.1

θS

1 0.439905 0.460
2 0.4336 0.41
3 0.441656 0.43
4 0.401649 0.39

α

1 0.0322652 0.016
2 0.0154362 0.019
3 0.0219894 0.01
4 0.00920637 0.015

η

1 1.13453 1.15
2 1.17903 1.2
3 1.18906 1.25
4 1.09 1.09

the error at time k is given by:

eM(k) = (θ̄M(k)− θM(k)) (3.14)

The percentage error (%Error) at compartment M is calculated as follows:

%ErrorM =
1

n

n∑
k=1

|eM(k)

θ̄M(k)
|100 (3.15)

where n is the total number of data samples. The results are shown in Table 3.5. In

Figure 3.10, the true and estimated state trajectory for all compartments is shown.

It can also be observed that the trajectory for the rest of compartments stays in

agreement with the measured values.

3.7 Conclusions

A nonlinear state-space agro-hydrological model was used for parameter and state

estimation. A detailed observability analysis based on rank test and degree of ob-
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Table 3.5: The percentage error (%Error) observed at the measured compartments.

Measurement % Error at % Error at % Error at % Error at
Set depth -5 cm depth -20 cm depth -50 cm depth -100 cm

M(4) 0.5272 0.0332 0.0130 0.0140

M(3) 0.5583 0.0294 1.0036 0.0155

M(2) 0.5879 2.5375 2.4590 0.0189
Open-loop 10.9373 5.5318 3.4634 5.0712

servability was performed to develop an observable system after discretization and

to determine the optimum measurement locations. The results suggest that defin-

ing the 110 cm of soil profile with 15 states gives a fairly observable system with

four measurements. This system remains observable even with fewer (three or two)

measurements but becomes unobservable with only one measurement. The optimal

sensor placement algorithm identifies the locations where the sensor should be placed

in order to maintain an observable discrete system. This is important to ensure better

parameter and state estimation as shown by the results.

Since the soil parameters were unknown, parameter estimation was performed

using Prediction Error Method (PEM). The estimated parameter set was used to

perform state estimation using the extended Kalman filter where the soil moisture

values at unmeasured depths were estimated. The results have demonstrated a good

estimation since the percentage error with respect to real data is less than 3%. Hence,

the optimal sensor placement algorithm introduces a systematic observability analysis

of the system using a model and thereby reduces the need for numerous experiment

to identify optimal sensor locations. In summary, one can conclude that the proposed

algorithm can be used for optimal sensor placement as well as the estimation of soil

hydraulic parameters and soil moisture profile ensuring that the resulting system is

observable and thereby produces reliable results.
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Chapter 4

Closed-loop scheduling and control
for precision irrigation

4.1 Introduction

In agriculture irrigation management, irrigation scheduling is typically performed in

an open-loop fashion and is done only once at the beginning of a growing season.

In this chapter, we study whether closed-loop scheduling with closed-loop control

can lead to improved performance in terms of crop yield and water conservation in

agriculture irrigation. To alleviate the computational complexity of the scheduler and

the controller, instead of directly using the nonlinear model as discussed in Chapter 2,

a linear parameter varying (LPV) model is identified for the scheduler and controller,

respectively, which is discussed in Section 4.2. In the proposed scheduling and control

scheme, both the scheduler and the controller are designed using model predictive

control (MPC). The problem formulation and design is discussed in Section 4.3. The

primary objective of the scheduler is to maximize the crop yield over a longer horizon,

whereas the primary objective of the controller is to track the soil moisture reference

calculated by the scheduler considering a relatively shorter horizon. The performance

of the closed-loop scheduling scheme is evaluated against the traditional open-loop

scheduling scheme under different scenarios.

Notation

Throughout this chapter, k is used to denote hourly sampled time instants, k is used

to denote daily sampled time instants and k̄ denotes weekly sampled time instants.
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4.2 Scheduling and control model identification

The direct use of the agro-hydrological model, equations (2.12) and (2.13), in the

scheduler and the controller is computational challenging due to the stiffness of the

nonlinear system when the soil moisture is low, the high dimensions of the discretized

system, and the large horizon covered by the scheduler. In order to overcome the

computational challenge, we propose to identify an LPV model for the scheduler and

the controller, respectively. The two LPV models can be identified based on the

simulated input-output data from the agro-hydrological model. LPV models have

been widely used to describe nonlinear processes due to its simple structure and its

ability to approximate complex nonlinear systems [93, 94, 95, 96].

Scheduling model

The output of the scheduling model is the average root zone soil moisture content

described as follows:

θs =
1

Nr

Nr∑
i=1

θi (4.1)

where θs is the root zone soil moisture, θi is determined by equation (2.13), and

Nr < ND is the deepest node that contains the crop roots. Note that Nr changes

over time as the length of roots grows (Figure 4.1).

The LPV model consists of a set of linear models that are connected with varying

parameters which are functions of scheduling variables [97]. The scheduling variables

are the ones that can be used to reflect the nonlinearity of the dynamics of the

system. For the scheduling model, two scheduling variables are used. They are the

soil moisture s1 (s1 = θ) and the root depth s2. The sampling period used in the

scheduling model is one day.

For each scheduling variable, a few working points need to be determined and

around those working points, linear models are identified. Let us assume that we

have H working points for s1 and G working points for s2. These working points

define a mesh with HG nodes. For each of these nodes, a linear model should be

identified. Let us also use (i, j) (i = 1, 2, ..., H, j = 1, 2, ..., G) to denote the node

defined by the i-th s1 working point and the j-th s2 working point. For each node
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Figure 4.1: Maize at different growth stages.

(i, j), a linear model of the following form is identified:

xi,j(k) = −
na∑
p=1

ai,jp xi,j(k − p) +

nb∑
q=1

bi,jq u(k − q) + di,j (4.2)

where k denotes the discrete time with a sampling period of a day, xi,j is the output of

the linear model for (i, j), ai,jp (p = 1, 2, ..., na), b
i,j
q (q = 1, 2, ..., nb) and di,j are model

parameters, u is the manipulated input. The model orders na and nb are determined

prior to the identification process. This model can also be expressed as follows:

xi,j(k) = ϕTi,j(k)βi,j (4.3)

where ϕi,j(k) = [−xi,j(k − 1), ...,−xi,j(k − na), u(k − 1), ..., u(k − nb), 1]T , and βi,j =

[ai,j1 , ..., a
i,j
na
, bi,j1 , ..., b

i,j
nb
, di,j]T .

With respect to s1 (soil moisture), the linear models are combined together using

Gaussian weighting functions as follows:

yj∗(k) =
H∑
i=1

αi(s1(k − 1))xi,j(k) (4.4)
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where yj∗ is an intermediate variable and the weighting function αi is given by:

αi(s1(k)) =
ωi(s1(k))∑H
i=1 ωi(s1(k))

(4.5)

where

ωi(s1(k)) = exp

[
−(−sign(s1(k)− s1,i) + 1)

2
× −(s1(k)− s1,i)

2

2σ2
i1

]
+ exp

[
−(−sign(s1(k)− s1,i) + 1)

2
× −(s1(k)− s1,i)

2

2σ2
i2

]
− 1

with s1,i the soil moisture value of the i-th pre-specified s1 working point, σi1 and

σi2 being two parameters that needs to be identified which are related to the validity

width of the linear model [48].

With respect to s2 (root length), the outputs obtained from equation (4.4) are

further linearly interpolated to get the final output of the LPV model:

y(k) =
s2,j+1 − s2(k)

s2,j+1 − s2,j

yj+1
∗ (k) +

s2(k)− s2,j

s2,j+1 − s2,j

yj∗(k) (4.6)

given that the root length at time k lies between s2,j and s2,j+1 (i.e., s2,j ≤ s2(k) ≤

s2,j+1). Note that the length of the roots grows according to the time after seeding

and is considered as a function of time in this work. In equation (4.6), y is the

average water content within the root zone given by the LPV model. Equation (4.6)

is the model that will be used in the scheduler and may be written equivalently in

the following state-space form:

x(k + 1) = Ax(k) +Bus(k) + d (4.7)

y(k) = C(s1(k − 1), s2(k))x(k) (4.8)

where A, B are composed of elements in βi,j (i = 1, 2, . . . , H, j = 1, 2, . . . , G), C

depends on the two scheduling variables, d is composed of di,j, and us is composed of

the current and previous daily irrigation amounts. The detailed identification of the

above LPV model will be discussed in Section 4.4.

Control model

Since the controller uses a relatively much smaller prediction horizon (a week), we

consider an LPV model with only the soil moisture (s1) as the scheduling variable.
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In this model, we consider the root length of the crop is constant within each control

prediction horizon. The output of the control model is also the average soil water

content within the root zone as defined in equation (4.1). The sampling period of the

LPV model for control purpose is also a day. The LPV takes the following form:

x̃i(k) = −
na∑
p=1

aipx̃i(k − p) +

nb∑
q=1

biqu(k − q) + di (4.9a)

ỹ(k) =
G∑
i=1

αi(s̃1(k − 1))x̃i(k) (4.9b)

where x̃i is the output of a sub-model and ỹ is the final output of the LPV model,

aip (p = 1, 2, ..., na), b
i
q (q = 1, 2, ..., nb) and di are model parameters, αi is a weighting

factor determined following equation (4.5). At different crop growing stages, the

above control model should be re-identified to account for the growth of the crop.

The above model can also be written equivalently in the following state-space form:

x̃(k + 1) = Ãx̃(k) + B̃uc(k) + d̃ (4.10)

ỹ(k) = C̃(s1(k − 1))x̃(k) (4.11)

where Ã, B̃ are composed of aip and biq (i = 1, 2, . . . , H), C̃ depends on the scheduling

variable, d̃ is composed of di, and uc is composed of the current and previous daily

irrigation amounts. The details will be discussed also in Section 4.4.

4.3 Problem formulation and proposed design

4.3.1 Closed-loop scheduling and control problem formula-
tion

In this section, we describe the proposed closed-loop scheduling and control framework

for precision irrigation. The scheduler and the controller form a hierarchical decision

making system. In this work, both the scheduler and the controller will be designed

in the framework of MPC. The primary objective of the scheduler is to maximize

the crop yield at the end of the entire growing season considering a much longer

horizon that covers the entire growing season and the horizon shrinks as time moves.

It uses historical weather data, available weekly weather forecast and soil moisture

measurement from the field to calculate the soil moisture reference trajectories for
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the lower layer controller. The primary objective of the controller is to track the soil

moisture reference calculated by the scheduler. It uses a fixed prediction horizon of a

week and takes into account the soil moisture measurement and daily weather forecast

in its irrigation command calculation. A schematic of the closed-loop scheduling and

control framework is shown in Figure 4.2.

4.3.2 Design of scheduler and controller

Design of the scheduler

As explained earlier, the main objective of the scheduler is to minimize the crop yield

deficiency while reducing the irrigation water usage. The crop yield is modeled as a

function of the potential evapo-transpiration and the actual evapo-transpiration as

follows [52]:

(1− Ya
Yp

) =
T∑
k̄=1

Ky(k̄)(1− ETa
ETp

) (4.12)

where Ya is the actual yield, Yp is the potential maximum yield, ETa is the actual

evapo-transpiration and ETp is the potential evapo-transpiration, and Ky(k̄) is the

crop sensititivity for the growing period at time k̄. When the actual yield is equal

to the potential yield, equation (4.12) takes its minimum value zero. According to

the definition of the potential and the actual evapo-transpirations of a crop as given

in equations (2.19) and (2.20), the following relation can be obtained to describe the

relation between the crop yield and soil moisture:

(1− Ya
Yp

) =
T∑
k̄=1

Ky(k̄)(1−Ks(θ(k̄))) (4.13)

In this work, following the work of Van Dam et al. [79], a simple maize model is used

to calculate the evapo-transpiration amounts at different growing stages.

From equation (4.13), it can be seen that crop yield relates to the water stress

factor Ks. The stress factor characterizes the suppression of root water update due

to either drought or insufficient aeration. Figure 4.3 shows a typical relation of Ks
and soil moisture [3]. When the soil moisture θ is between θL (limiting point) and

θa (anaerobic point), there is no water stress (Ks = 1). When the soil moisture θ is

below θL but larger than θw (wilting point), water stress takes place due to drought.
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Figure 4.2: Structure of the closed-loop scheduling and control system.
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Figure 4.3: The relation of soil moisture content and water stress factor [3].

When the soil moisture θ is above θa but less than θu, there is crop water stress due

to insufficient aeration; when is above θu, crop transpiration stops. For all other soil

moisture region, root water extraction is completely suppressed. Therefore, it is also

important to ensure that the soil moisture is always between θw and θu. Specifically,

the value of the water stress factor Ks is determined as follows [3]:

Ks =



θ − θw
θL − θw

, for θw ≥ θ ≤ θL

1, for θL < θ < θa
θ − θa
θU − θa

, for θa ≥ θ ≤ θU

0, for θ ≤ θw or θ ≥ θU

(4.14)

The scheduler optimization problem is evaluated every week. It uses a prediction

horizon from the current week to the end of the growing season T . Within each week,

the irrigation is considered to be constant. For week k̄, the optimization problem is

shown below:

min
u,ε1,ε2

{(
1− Ya

Yp

)2

Qs1 +
T−1∑
l=k̄

u(l)2Qs2 +
T∑
l=k̄

[
ε1(l)2Qs3 + ε2(l)2Qs4

]}
(4.15a)

s.t.(1− Ya
Yp

) =
k̄∑
l=1

Ky(l)(1−Ks(θs(l))) +
T∑

l=k̄+1

Ky(l)(1−Ks(y(l))) (4.15b)

x(l + 1) = A7x(l) +
6∑

k=0

A6−kBu(l) +
6∑

k=0

A6−kd, l = k̄, . . . , T − 1 (4.15c)

y(l) = Cx(l), l = k̄, . . . , T (4.15d)

x(k̄) = x̄(k̄) (4.15e)
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0 ≤ u(l) ≤ umax, l = k, . . . , T − 1, (4.15f)

y(l)− ε1 < θu, y(l) + ε2 > θw, l = k̄, . . . , T (4.15g)

ε1(l) ≥ 0, ε2(l) ≥ 0, l = k̄, . . . , T (4.15h)

In the optimization problem (4.15), equation (4.15a) defines the cost function to be

minimized. In equation (4.15a), the first term indicates the crop yield deficiency at

the end of the growing season, the second term measures the irrigation amount in the

remaining growing season, the last summation term includes two slack variables that

are used to handle constraints on the soil moisture in equation (4.15g), and Qs1, Qs2,

Qs3 are positive weighting factors. Equation (4.15b) is the model used to calculate the

crop yield deficiency. Note that in equation (4.15b) the first part on the right-hand-

side is calculated based on actual soil water content measurements and the second part

is calculated based on soil water content predicted in the scheduler. Equations (4.15c)-

(4.15d) are the LPV model for scheduling evaluated for a week with constant input.

Note that the sampling period of model identified in the previous subsection is a day.

The scheduler optimization problem, however, evaluates once every week. Within a

week, the input is held constant. Equation (4.15c) reflects this type of consideration.

Equation (4.15e) defines the initial condition of the scheduling optimization problem

and x̄(k̄) denotes the current state measurement. Note that we assume that the state

is measured. Equation (4.15f) requires that all the irrigation should be non-negative

and is less than the maximum allowed limit umax. Equation (4.15g) imposes the

constraint such that θw < y < θu as soft constraints through the introduction of two

slack variables ε1 and ε2. Equation (4.15h) implies that the two slack variables are

non-negative. The weighting factors Qs3 and Qs4 should be tuned to be relatively

higher to avoid constraint violation.

The solution to the above scheduling optimization problem is a sequence of opti-

mal irrigation amount from week k̄ to T . Let us denote the optimal weekly irrigation

as u∗(l|k̄), l = k̄, . . . , T − 1. Let us also denote the corresponding weekly optimal soil

moisture as y∗(l|k̄), l = k̄, . . . , T −1. The first two values of the optimal irrigation val-

ues u∗(k̄|k̄), u∗(k̄+1|k̄) and the corresponding soil moisture values y∗(k̄|k̄), y∗(k̄+1|k̄)

are sent to the controller as references. At the next week, the scheduling optimization

problem is re-evaluated with new soil moisture measurement.
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Design of the controller

In the controller design, the control LPV model is first augmented with an output

disturbance to account for model-plant mismatch. Then, an observer is designed to

estimate the model-plant mismatch. The augmented model is as follows:

x̃(k + 1) = Ãx̃(k) + B̃uc(k) + d̃ (4.16)

p(k + 1) = p(k) (4.17)

ỹ(k) = C̃x̃(k) + p(k) (4.18)

Based on the above augmented model, the following observer is designed to estimate

the output disturbance:

x̂(k|k) = x̂(k|k − 1) + Lx(k)(ȳ(k)− ŷ(k|k − 1)) (4.19)

p̂(k|k) = p̂(k|k − 1) + Lp(k)(ȳ(k)− ŷ(k|k − 1)) (4.20)

x̂(k + 1|k) = Ãx̂(k|k) + B̃uc(k) + d̃ (4.21)

p̂(k + 1|k) = p̂(k) (4.22)

ŷ(k|k) = C̃x̂(k + 1|k) + p̂(k + 1|k) (4.23)

where x̂, p̂, ŷ and ȳ denote the estimated state, estimated disturbance, estimated

output, and output measurement, respectively. The observer gains Lx and Lp are

determined as discussed in Mao et al. [48].

The primary objective of the controller is to track the soil moisture and total

irrigation water consumption references calculated by the scheduler. The controller

is also designed in the framework of MPC. The controller is evaluated every day with

updated soil moisture measurements. The controller uses a fixed prediction horizon

of a week (i.e., 7). At day k, the controller is formulated as follows:

min
u,ξ1,ξ2

k+7∑
l=k

[ŷ(l)− y∗(l)]2Qc +

k+6∑
l=k

u(l)−
k+6∑
l=k

u∗(l)

2

Rc +

k+7∑
l=k

[
ξ1(l)2Qc1 + ξ2(l)2Qc2

]
(4.24a)

s.t.x̃(l + 1) = Ãx̃(l) + B̃u(l) + d̃, l = k, . . . , k + 6 (4.24b)

p(k + 1) = p(k) (4.24c)
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ỹ(l) = C̃x̃(l) + p(l), l = k, . . . , k + 7 (4.24d)

x̃(k) = x̂(k|k), p(k) = p̂(k|k) (4.24e)

0 ≤ u(l) ≤ umax/7, l = k, . . . , k + 6 (4.24f)

ỹ(l)− ξ2(l) ≤ θu, ỹ(l) + ξ1(l) ≥ θw, l = k, . . . , k + 7 (4.24g)

ξ1(l) ≥ 0, ξ2(l) ≥ 0, l = k, . . . , k + 7 (4.24h)

In the optimization problem (4.24), equation (4.24a) defines the cost function to be

minimized. In equation (4.24a), y∗ and u∗ denote the references from the scheduler.

The first term requires that the predicted average soil moisture content within the

root zone should be close to the reference from the scheduler, the second term requires

that the total water consumption over a week is close to the predicted consumption

of the scheduler, and the last terms contain two slack variables. In equation (4.24a),

Qc, Qc1, Qc2 and R are positive weighting factors. Equation (4.24b) is the LPV

model for control. Equation (4.24c) implies that a constant output disturbance is

considered in the optimization of the controller and the disturbance value is given

by the observer as specified in equation (4.24e). This constant output disturbance

is added to the output equation as specified in equation (4.24d). Equation (4.24e)

defines the initial condition of the control optimization problem and x̂ is from the

observer. Equation (4.24f) requires that all the irrigation should be non-negative and

is smaller than or equal to one seventh of the weekly upper limit. Equation (4.24g)

imposes the constraint such that θw < ỹ < θu as soft constraints. Equation (4.24h)

implies that the two slack variables are non-negative.

The solution to the optimization problem (4.24) is a sequence of optimal irrigation

amount for time l = k, . . . , k+ 6 denoted by u∗(l|k), l = k, . . . , k+ 6. At time k, only

the first element from the optimal daily irrigation input is applied to the field. The

rest are discarded. At the next day k + 1, the optimization problem is solved again.

4.4 Results and discussion

4.4.1 LPV model identification and validation

In the identification of the scheduling LPV model, three working points are con-

sidered for each of the two scheduling variables (H = 3, G = 3). In the input-
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Figure 4.4: Root length of maize according to time after seeding.

output data generation, the three s2 working points are s2 = [s2,1, s2,2, s2,3]T =

[10.3571, 55.3571, 99.881]T cm. These working points are picked according to the

root length of maize at different growing stages (see Figure 4.4). Specifically, the

first working point of s2 corresponds to the root length about ten days after seeding

and is picked to represent the baby plant. The second working point is the mean

value of the root length of the rapid growing stage and the last working point is

the root length at the fully matured stage. For each working point of s2, three dif-

ferent s1 working points are considered. For s2,1, the three s1 working points are

s
{1}
1 = [s

{1}
1,1 , s

{1}
1,2 , s

{1}
1,3 ]T = [0.0755, 0.0936, 0.1792]T . For s2,2, the three s1 working

points are s
{2}
1 = [s

{2}
1,1 , s

{2}
1,2 , s

{2}
1,3 ]T = [0.0789, 0.1211, 0.1988]T . For s2,3, the three s1

working points are s
{3}
1 = [s

{3}
1,1 , s

{3}
1,2 , s

{3}
1,3 ]T = [0.0835, 0.1176, 0.1564]T . For each s2

working point, the three s1 working points are determined according to three (small,
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medium, large) steady-state irrigation amounts, which are picked based on extensive

simulations and trail-and-error. In determining these irrigation amounts, one con-

sideration is the possible soil moisture range of the system (about 0.075 - 0.35) and

another consideration is the nonlinearity feature of the agro-hydrological system. The

orders of the local models na and nb are both picked to be one based on the results

of Mao et al. [48].

The input and output data for the LPV identification generated from the agro-

hydrological model is shown in Figure 4.5. In generating the data, the daily weather

Figure 4.5: Input-output data for model identification with two scheduling variables.

condition is kept constant with no rain. Binary input signals are used around the

working points. During the transition from one working point to another of s1 (soil

moisture), constant inputs are used. In the top plot of Figure 4.5, CS1, CS2, CS3

correspond to the three working points of s2 (root depth). During these regions,

binary inputs are used. Region CV 1 and CV 2 correspond to transition periods from

s2,1 to s2,2 and from s2,2 to s2,3. In these two regions, constant inputs are used to
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Table 4.1: Estimated local model parameters and weights for the scheduling LPV model.

Soil moisture \Root length 1 2 3

1
a1 -0.7749 -0.6337 -0.4202
b1 0.0152 0.0074 0.0022
d1 0.0144 0.0235 0.0433

2
a1 -0.8745 -0.7334 -0.1006
b1 0.0542 0.0083 0.0054
d1 -0.0045 0.0106 0.0643

3
a1 -0.5701 -0.8873 -0.3665
b1 0.0264 0.0065 0.0036
d1 0.0575 -0.0072 0.0556

Gaussian

σ2
1 0.0201 0.0193 0.0194

weights

σ2
21 0.0094 0.0129 0.0157
σ2

22 0.0200 0.0210 0.0209
σ2

3 0.0205 0.0203 0.0186

show the effect of crop root zone on soil moisture. As crop root length increases

(from CS1 to CS3), more irrigation is required to maintain the soil moisture as

shown in the top plot of Figure 4.5. Following the approach in Mao et al. [48], the

parameters of the LPV model are identified and shown in Table 4.1. The bottom plot

of Figure 4.5 shows the predicted trajectory and the actual trajectory generated by the

agro-hydrological model. The LPV model overall has a good fit over the entire period

with the percentage difference between the predicted value of the LPV model and

the actual value of the agro-hydrological model about 5% or less except in the region

CV 1 which corresponds to the rapid growing stage (whose percentage difference is

about 18%). To further validate the developed LPV model over the crop growing

season, an open-loop simulation of the agro-hydrological model is performed. Fixed

weather condition is considered with no rain, and an input irrigation of 2.5 cm/day

is considered. The result is shown in Figure 4.6. The overall percentage difference

between the predicted value given by the LPV model and the value generated by the

agro-hydrological model is about 27% with most of it contributed from the period

between day 23 and day 45 which corresponds to the rapid growing stage. In the rest

of the period, the percentage difference is around 15%. Given the complexity of the

agro-hydrological system and the use of feedback, the mismatch between the LPV

model and the agro-hydrological model is considered to be acceptable. Note that the
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Figure 4.6: Validation of the scheduling LPV model.

performance of the LPV model may be improved by including more working points.

In the controller, the three local linear models of each root length working point

are weighted using the corresponding Gaussian weights in Table 3.1 and then is used

in the controller design. For example, in CS1 and upto the middle of CV 1, the local

models of root length working point 1 are weighted and used in the MPC controller.

The switching between root length working points is based on the root length.

4.4.2 Scheduling and control simulation results

The proposed closed-loop scheduling and control is applied to the agro-hydrological

system under different scenarios. The proposed closed-loop scheduling approach is

compared with an open-loop scheduling scheme in which the scheduling optimization

is only solved once at the beginning and applied throughout the growing season. In

the open-loop scheduling scheme, the same closed-loop controller is used. The crop
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Table 4.2: The values of crop sensitivity factor.

Crop sensitivity factor (Ky) Development stage (DVS)
0.4000 0
0.4000 0.2375
0.9000 0.2500
0.9000 0.5625
1.5000 0.5750
1.5000 0.7500
2.3000 0.7625
2.3000 1.3750
0.5000 1.3875
0.5000 1.6250
0.2000 1.6375
0.2000 2.0000

growing season is considered to be 23 weeks from seeding. The values of the crop

sensitivity factor Ky at different crop growth stages (from 0 to 2 with 0 indicating

initial seeding stage and 2 implying mature stage) for maize are shown in Table 4.2

[98]. The weekly irrigation upper limit is umax = 70 cm/week, which implies that the

daily irrigation limit is 10 cm.

Scenario 1: Favorable weather

In the first scenario, we consider that the amount of rain in the current crop season

is similar to that of the historical weather data. In this scenario, we consider that the

actual total rain in the crop growing season is 164.05 cm but the historical weather

data suggests the total rain over the season to be 154.50 cm.

In the closed-loop scheduling, the scheduler is updated at the end of each week

with an update weather forecast for the next two weeks and the current soil moisture

measurement. While in the open-loop scheduling, only the historical weather data

is used at the beginning of the season. As for the controller, in both schemes, the

field soil moisture is updated every day with field measurements and the weather

data is also updated for the next seven days. Uncertainties are considered in weather

forecast.

First, we consider a water conservation case. That is, in the scheduler design,

more emphasis is put on water conservation. In this case, the weighting factors are
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Figure 4.7: Simulation results of the closed-loop scheduling scheme under favorable
weather scenario with more weighting on water conservation.

67



Figure 4.8: Simulation results of the open-loop scheduling scheme under favorable weather
scenario with more weighting on water conservation.
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chosen as Qs1 = 10002, Qs2 = 100, Qs3 = 109 and Qs4 = 1. The value of Qs3 is chosen

very high to ensure that the constraint on the lower soil moisture limit is not violated.

The weight on the upper soil moisture limit is relatively low since it is less important

and can be controlled to some extent by the irrigation amount. Compared with the

next case to be studied, Qs2 = 100 puts more weighting on water consumption. The

values for θu and θw are taken as 0.41 cm/cm and 0.15 cm/cm. The wilting value θw

for the system is considered to be 0.09 cm/cm. Since there is model-plant mismatch,

a lower limit that is higher than the wilting point is used. For the MPC controller,

the weighting factors are Qc = 100, Rc = 0.001, Qc1 = 1000 and Qc2 = 0.01. In

the controller, a different lower limit 0.13 cm/cm on the soil moisture is used since

the controller gets daily feedback of soil moisture from the farm and it can handle

uncertainty better. The simulation results are shown in Figure 4.7 for the closed-

loop scheduling scheme and in Figure 4.8 for the open-loop scheduling scheme. For

simplicity, only one day weather forecast is shown in the figures. In both schemes,

the MPC controller overall is able to track the soil moisture targets well. The over

prediction by the LPV model subplot (c) of Figures 4.7 and 4.8 is relatively significant

in the crop rapid growing stage which is due to the relatively big mismatch of the

LPV model from the actual system in the rapid growing stage. The peak at around

day 15 is due to the sudden increase in the actual rain that is not captured in the

weather forecast. Table 4.3 summarizes the results of this case. From the table, it can

be seen that the open-loop scheme has a slightly (1.5%) better crop yield deficiency

while the closed-loop scheme has a slightly reduced (1.9%) irrigation amount.

Second, we consider a case that we put less emphasis on water conservation (i.e.,

more on crop yield reduction). In the scheduler, the weights are Qs1 = 10004, Qs2 =

1, Qs3 = 109 and Qs4 = 1. The lower soil moisture constraint in the scheduler is

decreased to θw = 0.13 cm/cm whereas for the controller the lower limit is increased

and set to be the set-point from the scheduler. The weights in the controller cost

function are kept same as in the previous case. Thus the controller in this case tries

to track the soil moisture set point from some higher values thereby ensuring less

yield deficiency. A summary of the results is given in Table 4.3. In this case, we can

see that the closed-loop and the open-loop schemes give very similar crop yield while

the closed-loop scheme uses slightly (0.8%) less water.
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Table 4.3: Simulation results under favorable weather scenario.

More water conservation Less water conservation
Closed-loop Open-loop Closed-loop Open-loop

Yield deficiency 12.47 12.29 5.71 5.71
Irrigation implemented

990.10 1009.30 1222.40 1211.90
by controller (cm3/cm2)

Irrigation prescribed
1020.50 993.44 1266.80 1242.00

by scheduler(cm3/cm2)

Scenario 2: Dry weather

In this scenario, we consider that the amount of rain in the current crop season is

significantly less than the average historical weather data. In this set of simulations,

we consider that there is 79.4401 cm of rain in the crop growing season.

As in the previous scenario, we first consider a water saving mode in the scheduler.

The scheduler and controller settings are the same as in the previous scenario. A

summary of the results is given in Table 4.4. It can be observed that the closed-loop

scheme saves more (2.3%) water relative to the open-loop scheme at the cost of (8.2%)

less yield.

We also consider a similar case like in the previous scenario to put less weight

on water conservation. The results are summarized in Table 4.4. From the table, a

similar conclusion can be drawn. That is, the closed-loop scheme is able to use (2.5%)

less water but at a cost of (5.9%) less yield.

To understand the effects of weights in the scheduling optimization, let us look

at the results of the same scheduling scheme (closed-loop or open-loop) in different

operating modes (more water conservation and less water conservation). From Ta-

ble 4.3 (columns 2 & 4), it can be observed that when the objective in the closed-loop

scheduler is changed to consider less water conservation, an increase of 54.24% in

yield can be achieved with the cost of a 23.46% increase of water usage under the

favorable weather condition. From Table 4.3 (columns 3 & 5), it can be seen that an

increase of 53.52% in yield can be achieved with the cost of a 20.07% increase of water

usage for the open-loop scheduler under the favorable weather condition. This may

imply that the yield is more sensitive to the weights and a relatively smaller change

in the consumption of irrigation water may result a much larger change in the yield.
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A similar pattern can be observed from the results of Table 4.4 for the dry weather

condition.

Table 4.4: Simulation results under dry weather scenario.

More water conservation Less water conservation
Closed-loop Open-loop Closed-loop Open-loop

Yield deficiency 17.94 16.57 9.73 9.12
Irrigation implemented

1055.30 1079.60 1234.50 1266.80
by controller (cm3/cm2)

Irrigation prescribed
1092.50 993.56 1273.70 1245.10

by scheduler(cm3/cm2)

In addition to the above cases, we consider another case in which the water price

varies. The water priced is increased in the relatively dry season between week 10 and

15 corresponding to day 70 and 105. The corresponding Qs2 value changes according

to the price as follows:

Qs2(k̄) =

{
1, if k̄ < 10 or k̄ > 15

100, if 10 ≤ k̄ ≤ 15

The results are shown in Figure 4.9 for the closed-loop integrated scheme and in

Figure 4.10 for the open-loop irrigation scheme. A summary of the result is given in

Table (4.5). The result shows that less water is used relatively to open-loop scheme.

In the figures, it can be observed that a tendency to use more water when water price

is low presents. The soil moisture set point before day 60 is around 0.3 cm/cm. This

creates a water storage which later is used when the water price increases. It can be

observed that the actual irrigation during day 59 drops to zero since the soil moisture

set point gets reduced. In this case, the closed-loop scheme leads to a 5.3% water

saving but at the cost of 5.2% crop yield reduction.

4.5 Conclusions

In this work, we investigated closed-loop scheduling together with closed-loop control

for agriculture irrigation. In the proposed design, LPV models were identified and

used in the design of the scheduler and the controller. The designed hierachical

scheduling and control system is applied to a field with maize. In the simulations,

a couple of different weather scenarios were considered. Within each scenario, a few
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Figure 4.9: Simulation results of the closed-loop scheduling scheme under dry weather
scenario with varying water price.
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Figure 4.10: Simulation results of the open-loop scheduling scheme under dry weather
scenario with varying water price.
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Table 4.5: Simulation results under dry weather scenario with varying water price.

Closed-loop Open-loop
Yield deficiency 14.9129 14.1672

Irrigation implemented by controller (cm3/cm2) 1163.6 1228.9
Irrigation prescribed by scheduler (cm3/cm2) 1236.8 1167.7

different cases were studied including different weights on water conservation and

varying water prices. From the simulation results, we can observe that the gain

(either in water conservation or crop yield) in closed-loop scheduling in most of the

cases comes with a cost (either lower crop yield or increased water consumption).

The results in the simulations considered do not show a very clear benefit of using

closed-loop scheduling. One possible reason for the results is that the crop maize

considered in this work requires significant water in the growing season. It may have

a much stronger impact on the irrigation pattern than the impacts of uncertainty in

weather and model. This may have caused the irrigation to be high in most of the

growing season as can be seen in the simulation results and thus makes the difference

between closed-loop scheduling and open-loop scheduling not obvious. Moreover, in

this work, the spatial heterogeneity is not considered and the field only includes maize.

When spatial heterogeneity and more types of crops are considered, the benefits of

a closed-loop scheduling may be more obvious. Further, in this work, we have only

considered the soil moisture as a controlled variable, when other manipulated inputs

(e.g., salinity) are considered, closed-loop scheduling may bring more benefits.
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Chapter 5

Improved storm water
management through irrigation
rescheduling for city parks

5.1 Introduction

City storm water can be a good source for irrigating city green space such as parks

and golf courses. In this chapter, a modeling and scheduling approach for an inte-

grated storm water management and irrigation problem is presented. Specifically,

we consider a park area with a storm water pond, which represents a typical setting

in modern communities. The primary objective is to simultaneously ensure that the

green space is irrigated appropriately and the level of the storm water pond is main-

tained adequately such that pond overflow or dry-out events are minimized. The

overall system is discussed in Section 5.2. We propose to use closed-loop irrigation

scheduling to achieve the objective. In the proposed approach, a steady-state model

is also developed to calculate the soil water storage for different irrigation amounts

which is developed in Section 5.3. Section 5.4 describes the formulation of an opti-

mization problem to calculate the optimal irrigation amount. To handle the uncer-

tainties (in weather forcast and modeling), real-time feedback from the pond is used

to re-evaluate the scheduling optimization problem every week. Simulation results are

presented in Section 5.5 which show that the proposed closed-loop scheduling gives

much improved control performance in that it has less overflow or dry-out events from

the storm water pond as well as maintains good green space soil moisture conditions.

The results also imply that the proposed approach may be used to improve city storm
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water management by integrating it with city park irrigation.

5.2 System description and modeling

5.2.1 System description

City storm water typically is from rain or snow and is collected using city drainage

system and stored in wet ponds. Figure 1 shows the integrated storm water pond and

Surface runoff

Runoff entering city drains

Underground drain lines

Storm water pond

Park area

Figure 5.1: An illustration of the system considered.

city green space system considered in this work. In this system, storm water from the

neighboring community is collected by the stormwater pond, which acts as a settling

tank for the contaminants. Instead of discharging the stormwater directly to down-

stream water bodies, we consider using the less contaminated water at the top of the

pond for irrigating the nearby green space. This helps reduce tap water consumption

in irrigation and adds flexibility to stormwater management. The primary objective

is to simultaneously ensure that the green space is irrigated appropriately and the

level of the storm water pond is maintained adequately such that pond overflow or

dry-out events are minimized.
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5.2.2 Pond level model

The dynamics of the pond level are modeled based on mass balance where the inputs

to the pond include the storm water from city drainage system S (cm3/hr) and pond

precipitation volume Rp (cm3/hr), and the outputs include irrigation Ip (cm3/cm2hr)

and evaporation Ep(cm3/cm2hr) from the pond. The following assumptions are made

while developing the pond level model:

• The pond cross-sectional area is the same at all depths.

• The leakage from the pond is negligible.

The equation that describes the dynamics of the pond level is as follows:

Ap
dPL
dt

= S(t) +Rp(t)− AfIp(t)− ApEP (t) (5.1)

where, PL (cm) denotes the pond level, Ap (cm2) is the cross-sectional area of the pond

and Af (cm2) is the area of the green space that needs to be irrigated. The evaporation

from the pond Ep (cm/hr) is calculated following the methods described in Kohli et

al. [99], where reference evapo-transpiration (ET) is used to model evaporation rate

of open water similar to the pond considered in this work.

The storm water flow rate from city drainage system S(t) is modeled as a function

of the precipitation rate R(t) (cm/hr) and it is assumed that at any time 50% pre-

cipitation on the neighborhood of the drainage, which has an area of Ac (cm2), enters

the storm water collecting drainage system. Therefore S(t) = 0.5AcR(t). Also, the

precipitation on the pond Rp(t) = ApR(t).

Remark 2 In this work, the pond is modeled as a tank with the same cross-sectional

area from the top to the bottom for brevity. In the proposed closed-loop scheduling

framework, different types of pond models can be used in a straightforward manner as

long as the model can represent the dynamics of the pond level adequately. When a

different pond model is used, we should update (5.25c) in the scheduling optimization

problem (5.25) and the scheduling implementation algorithm remains the same.

Remark 3 Note that in this work, we do not consider water run-off or run-on events

due to slopes explicitly. However, we assume that water run-on or run-off affects the
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level of the storm water pond through city drainage system (i.e., S(t) in equation (6)).

It is assumed that at any time 50% precipitation on the neighborhood enters the pond

through the storm water collecting drainage system.

5.2.3 Modeling of weather conditions

To model the weather conditions, two different weather datasets were generated. One

weather dataset represents the historial weather data and the other weather dataset

contains the actual weather data. To simulate realistic weather forecast an algorithm

is developed which generates weather forecast either between or near to historical

and actual weather data. The historical weather data contains weather data for 32

weeks for six weather parameters including maximum and minimum temperatures,

humidity, wind speed, solar radiation and the amount of precipitation on hourly basis.

Since only precipitation has a direct impact on irrigation decision making, therefore

among the weather parameters only precipitation values are reported in the study.

In the actual weather dataset, the precipitation amount may vary considerably from

the historical weather data.

In the proposed scheduling approach, the historical weather data and two weeks’

weather forecast are used. The following algorithm is used to generate the weather

forecast, where the actual and the historical precipitation values are denoted by Ract

and Rhis, respectively, and their percentage deviation is denoted by ∆R.

a. Check whether the difference between the actual and the historical weather data

∆R is smaller than 20%. If so, the actual weather data is used as the forecast

data.

b. If ∆R is greater than 80%, check if Ract > Rhis. If true, then the forecasted

precipitation Rfor = Ract(1 −Nr), otherwise Rfor = Ract(1 + Nr), where Nr ∈

[0, 1]. For both conditions, we have considered Nr = 0.2.

d. If ∆R is between 20% and 80%, check if Ract > Rhis. If true, then forecasted

precipitation Rfor = Ract(1 − Nr), otherwise Rfor = Rhis(1 − Nr). Here, we

have considered Nr = 0.2 when Ract > Rhis is true, otherwise Nr is taken as

0.3.
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For example, if the historical and actual precipitation values of a week is given

by 100 mm and 300 mm, respectively, then the deviation ∆R is 66%. Further, Ract

is smaller than Rhis, so the forecast is given by Rhis(1−Nr) = 0.7Rhis. Note that in

the above algorithm, Nr is a tuning parameter. When Nr is small (close to 0), the

generated weather forecast will be close to the actual weather; when Nr is big (close

to 1), the generated forecast will be close to the historical data. In this work, we use

Nr = 0.2 to make the forecast closer to the actual weather condition and at the same

time to introduce some uncertainty in the forecast.

5.3 Semi-empirical steady-state model for schedul-

ing

The models described in Chapter 2 will be used to simulate the green space and

the pond, but this dynamic soil moisture model is not suitable for scheduling with

large time horizon due to its high computational complexity. In this section, a semi-

empirical steady-state model will be developed for scheduling. Here, we have used

the same water stress co-efficient Ks as explained in Figure 4.3 following the work of

Feddes et al. [3]. The desired stress factor Ks is one, which refers to maximum ET

or maximum root water extraction. In addition to the soil moisture terms θw, θL θa

and θu, another soil moisture value termed as field capacity θF is considered where

θL < θF < θa. In soil moisture deficit model [82], instead of θa, θF is considered as the

upper limit since it is assumed that water above field capacity drains sufficiently fast

and over-irrigation never happens. However, in the problem considered in this work,

water conservation is not the primary objective and the green space may need to be

controlled close to the saturation but below aeration point, to avoid pond overflows.

Therefore, a model that is suitable for scheduling for the problem considered in this

work needs to be developed. The modeling objective is to determine a steady-state

input-output relation between the influx qt and soil moisture θ. Typically, qt =

Ip + Is +Rp − ET , where Is is irrigation from tap water.

The steady-state model is developed based on the analytical solution to Richards’

equation in Tracy et al. [100]. To derive the steady-state model, instead of Van

Genuchten’s model (equation (2.2)), the simplified Gardner’s model as shown in
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equations (5.2)-(5.3) is used to estimate the relative hydraulic conductivity and soil

moisture content.

K(h) = KsatKr = Ksate
αh (5.2)

θ(h) = θres + (θsat − θres)Se (5.3)

where Se = Kr = eαh and α is some empirical parameter depending on soil properties.

5.3.1 Steady-state model development

Using Gardner’s model equation (5.2) for estimating the relative hydraulic conduc-

tivity, Richards’ equation (equation (2.1)) can be rewritten as:

1

Ksat

dθ

dt
=

d

dz
(Kr

dh

dz
) +

dKr

dz
(5.4)

Now, let us define,

h̄ = eαh − ε (5.5)

where ε is a constant. To drive the system into steady-state the input needs to be

kept fixed, so the top flux qt (cm/hr) is fixed. Therefore, we consider ε = qt. Using

equation (5.5) the gradient of h̄ can be derived as follows:

dh̄

dz
= αeαh

dh

dz
(5.6)

Using the Gardner’s model relation Kr = eαh and equation (5.6), the gradient terms

in R.H.S of equation (5.4) can be expressed in terms of the transformed
dh̄

dz
as follows:

Kr
dh

dz
= eαh(

1

α
e−αh

dh̄

dz
) =

1

α

dh̄

dz
(5.7a)

dKr

dz
= αeαh

dh

dz
=
dh̄

dz
(5.7b)

Again, using equation (5.3) and Se = Kr, the change of soil moisture is given by:

dθ

dt
= (θsat − θres)

dSe
dt

= (θsat − θres)
dh̄

dt
(5.8)

Bashed on equations (5.7a), (5.7b) and (5.8), equation (5.4) can be rewritten as

follows:

ca
dh̄

dt
=
d2h̄

dz2
+ α

dh̄

dz
(5.9)
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where ca =
α(θsat − θres)

Ksat

. For steady-state
dh̄

dt
= 0. Therefore, equation (5.9) can be

written as:
d2h̄ss
dz2

+ α
dh̄ss
dz

= 0 (5.10)

and the general solution of which is given by:

h̄ss = A1 + A2e
−αz. (5.11)

To solve this equation, the two boundary conditions need to be defined to get the two

parameters A1 and A2. In the Green-Ampt problem [100], pressure head boundary

conditions were considered for which A1 and A2 can be easily determined. For our

problem, we need the relation between steady-state input flux and soil moisture,

therefore flux boundary conditions are required. In order to consider flux boundary,

equation (5.11) needs to be differentiated. So, if flux boundary is chosen both at the

top and the bottom, the value of A1 cannot be determined. Now to overcome this

problem, a relation from the assumption of steady-state is used and an empirical term

is added.

At steady-state, input is equal to output, which implies qt = −qb. Now for free

drainage condition at the bottom, the gradient
dh

dz
|z=L is equal to zero. According to

VanDam et al. [79] the flux is expressed in terms of pressure gradient as follows:

qb = −K(h)(
dh

dz
|z=L + 1) (5.12)

Now using the relation K(h) = Kre
αh, we get the following relation between hss|z=L

and qt:

qb = −Ksate
αh(

dh

dz
+ 1) (5.13a)

− qt = −Ksate
αhss|z=L (5.13b)

hss|z=L =
1

α
ln(

qt
Ksat

) (5.13c)

From the above equation and equation (5.5) we get:

h̄ss|z=L = eαhss|z=L − qt (5.14a)

h̄ss|z=L =
qt
Ksat

− qt. (5.14b)
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Again, using equation (5.12) and K(h) = Kre
αh for the top boundary (z=0), we get:

qt = −KsatKr(
dhss
dz
|z=0 + 1) (5.15a)

qt = −Ksate
αhss|z=0(

dhss
dz
|z=0 + 1) (5.15b)

qt
−Ksateαhss|z=0

− 1 =
dhss
dz
|z=0 (5.15c)

Using equation (5.6), we can express the above equation in terms of h̄ss as follows:

qt
−Ksateαhss|z=0

− 1 =
1

αeαhss|z=0

dh̄ss
dz
|z=0 (5.16a)

dh̄ss
dz
|z=0 = −α qt

Ksat

− c′ (5.16b)

where c′ = αeαhss|z=0 . Differentiating equation (5.11) at z = 0 and using equa-

tion (5.16b), we get:

dh̄ss
dz
|z=0 = −αA2e

−αz|z=0 (5.17a)

− αA2 = −α qt
Ksat

− c′ (5.17b)

A2 =
qt
Ksat

+ c (5.17c)

where c =
c′

α
. Again, using equation (5.11) for z = L and equation (5.14b), we get:

h̄ss|z=L = A1 + A2e
−αL (5.18a)

qt
Ksat

− qt = A1 + A2e
−αL (5.18b)

A1 =
qt
Ksat

− qt − (
qt
Ksat

+ c)e−αL (5.18c)

Putting the values ofA1 andA2 from equation (5.18c) and (5.17c) into equation (5.11),

we get:

h̄ss = −qt +
qt
Ksat

− (
qt
Ksat

+ c)e−αL + (
qt
Ksat

+ c)e−αz (5.19)

Finally, using the relation from equation (5.5), we get the following expressions:

hss =
1

α
ln(h̄ss + qt) (5.20a)

hss =
1

α
ln(

qt
Ksat

− (
qt
Ksat

+ c)e−αL + (
qt
Ksat

+ c)e−αz) (5.20b)

Equation (5.20b) shows the steady-state pressure hss for fixed input qt as a function

of depth z. The value of c is unknown in this equation since only the flux at z = 0
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is known, not the value of hss. But to our knowledge, there is no analytical means

to identify the value of c. It is assumed that at steady-state condition, hss|z=0 will

remain fixed and the terms in c will generate some constant value. Therefore an

empirical method is used to identify the value of the c term. Since the output of the

steady-state model is θ, so hss from equation (5.20b) is used to estimate θss using

Van Genuchten’s model (equation (5.21)) with the additional term c1 which reflects

the role of the c term in equation (5.20b).

θss(h) = θres + (θsat − θres)(1 + |αvhss|η)−m + c1 (5.21)

Since c1 is unknown in the analytical solution, we propose to identify c1 based on

the data obtained from the system. The dynamic agro-hydrological model described

in Chapter 2 is used to generate soil moisture data for 20 different values of the input

flux qt (cm/hr). In each case, the input flux qt is kept constant for 200 hr. It is

assumed that within 200 hours the soil moisture will reach steady-state and the soil

moisture value at 200th hour is recorded. Based on this simulated data, a steady-state

relation between the input flux qt and the steady-state soil moisture θ is generated.

It can be observed from Figure 5.2, that the relation between the flux qt and soil

moisture θ is similar to exponential growth curve. To capture this relation, c1 is

chosen as an exponential function of qt. We considered c1 = −(0.03 + 0.15e(−5qt))

in equation (5.21) where the numerical values were determined using curve fitting.

The figure shows that equation (5.21) performs considerably well, so this approach

is used to determine the output steady-state soil moisture values. Since Gardner’s

model simplifies relative saturation Se to be equal to eαh (equation (5.3)) instead of

the complex term (1+|αvh|η)−m used in Van Genuchten’s model, the use of Gardner’s

model to determine θss from hss results poor performance and therefore is not used.

Based on equations (5.20b) and (5.21) as well as the expression of qt, the steady-state

input-output model at depth z can be expressed as a compact function as follows:

θss = g(Is, Ip, R,ET, z) (5.22)

In the proposed scheduling algorithm, the water storage of the entire root zone

will be considered. To address this, the entire soil profile under consideration is

divided into N compartments as shown in Figure 5.3. In each compartment, the soil
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Figure 5.2: The steady-state model between input flux qt and output soil moisture θ. Left
figure is for depth 1 cm and right figure is for depth 22.5 cm. The intermediate depths are
not shown but they also have similar results.
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Figure 5.3: The soil water storage inside root zone.

moisture is assumed to be a constant over the week and will be estimated using the

above steady-state model. The compartment where the root ends is denoted by Nr,

where Nr < N .

The water storage within the entire root zone may be approximated as follows:

Ws =
r∑
i=1

θi∆zi (5.23)

where Ws (cm) is the soil water storage, ∆zi and θi are the height and soil moisture of

compartment i, respectively. Based on equations (11) and (12), the relation between

the irrigation inputs and the soil water storage can be expressed as follows:

Ws =
r∑
i=1

gi(Is, Ip, R,ET, z)∆zi (5.24a)

:=f(Ip, Is, ET,R) (5.24b)

5.4 Proposed scheduling algorithm

In the proposed approach, the scheduling problem is formulated as an optimization

problem, which is re-evaluated every sampling time (a week) based on pond level feed-

back to accommodate uncertainty in modeling and weather conditions. The scheduler

determines the (reference) amount of water used from the pond for irrigation and the
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Figure 5.4: The hierarchy formed by the proposed scheduler and the lower-level set-point
tracking controllers. The scheduler determines the (reference) amount of water used from
the pond for irrigation and the (reference) amount of tap water used for irrigation. These
reference amounts are sent to lower-level controllers for implementation.

(reference) amount of tap water used for irrigation based on the steady-state soil

moisture model and the pond model as well as available weather information. These

reference amounts are sent to lower-level controllers for implementation. The overall

hierarchy of the decision making process is shown in Figure 5.4.

5.4.1 Formulation of the scheduling optimization

Scheduling for irrigation using storm water involves solving multiple prioritized objec-

tives using one single objective function. For irrigation scheduling the most prioritized

objective is to maintain soil water storage of the root zone within a desired range.

Some secondary objectives are to minimize the overflow from the pond for wet sea-

sons and to avoid pond drying out and to minimize the use of tap water for irrigation

when there is no water available in the pond for irrigation. The formulation of the

86



scheduling optimization problem at the sampling time k̄ is shown below:

min
Ip,Is,εl,εu,δ

k̄+N∑
i=k̄

(C1εl(i) + C2εu(i) + C3δ(i) + C4Is(i) + C5Ip(i)) (5.25a)

s.t. Ws(i+ 1) = f(Ip(i), Is(i), ET (i), R(i)) (5.25b)

PL(i+ 1) = PL(i) +
0.5Ac + Ap

Ap
R(i)− Ag

Ap
Ip(i)− Ep(i) (5.25c)

Ws + εl ≥ Ls (5.25d)

Ws − εu < Us (5.25e)

PL − δ < Lmax (5.25f)

εl ≥ 0, εu ≥ 0, δ ≥ 0, Is ≥ 0, Ip ≥ 0, PL ≥ 0 (5.25g)

Equation (5.25a) describes the objective function that needs to be minimized over

the horizon i = 1...N to determine the optimal solution. The decision variables of

this optimization are tap water usage Is, pond water usage Ip, slack variables εl and

εu for maintaining soil moisture within range, and slack variable δ for avoiding over-

flow. In the objective function the tap water usage is directly minimized with the

cost C4. The irrigation amount with pond water Ip is also penalized with a small

cost C5 to make the solution unique inside the feasible range. Equation (5.25b) is the

steady-state model that predicts soil water storage Ws as described in Section 5.3.

Equation (5.25c) is the discrete-time version of the pond level model as described

in Section 5.2.2. Equation (5.25d)-(5.25g) are the constraints of this optimization

problem. Equation (5.25d) is used to keep soil water storage Ws above some lower

limit Ls. The variable εl is added to ensure a feasible solution is achieved. Since the

violation of this constraint is not acceptable so the variable εl is associated with the

highest cost C1 in the objective function. Similarly, equation (5.25e) ensures that

Ws stays below some upper limit Us and εu is also associated with large cost C2.

Equation (5.25f) describes that the pond must not overflow and the slack variable δ

is associated with the cost C3. Equation (5.25g) implies all physical constraints. The

irrigation amount, pond level, and the slack variables are all non-negative real num-

bers. In addition, the maximum value for the pond level is equal to the pond height

Lmax. In the design of (5.25), soft constraints are used to incorporate constraints on

soil moisture and overflow to ensure that (5.25) is always feasible. This approach
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ensures that a solution exists for the optimization problem.

5.4.2 Scheduling implementation algorithm

The proposed scheduling optimization problem does not explicitly take into account of

the uncertainties. Two primary uncertainties include modeling uncertainty due to the

use of a simplified steady-state model in the optimization problem and weather fore-

cast uncertainty. Both of the uncertainties have a significant impact on the scheduling

results. To deal with these uncertainties, the scheduling optimization problem is re-

evaluated every week based on new pond level measurement and new weather forecast

to form a closed-loop scheduling scheme as shown in Figure 5.4. At each sampling

time,

• Step 1: A new measurement of the pond level PL(k̄) and the weather forecast

for the following two weeks are obtained.

• Step 2: Based on the new measurement and new weather forecast, the opti-

mization problem (14) is evaluated to generate the future trajectories of Ip(i)

and Is(i) for i ∈ [i = k̄, k̄ +N ].

• Step 3: Only the first step values Ip(k̄) and Is(k̄) are sent to the irrigation

control system for implementation for the current week.

• Step 4: At the next sampling time k̄ + 1, go to Step 1 (k̄ + 1→ k̄).

5.4.3 Lower-level controllers

As shown in Fig. 5.4, the scheduler calculates the reference Ip and Is and sends them

to the lower-level controllers for tracking. In this work, it is assumed that ideal

lower-level controllers are in place and can track the reference values immediately

and perfectly for the simplicity of presentation. In practice, PID controllers may be

used to track these references.

Remark 4 Note that before implementing the proposed approach, a preliminary study

of the field and the pond should be conducted to collect data for model parameter

identification and uncertainty characterization purposes. Once adequate models of
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the pond and the field are identified, extensive simulations based on the models may

be carried out for tuning of the weights, sampling time, prediction horizon in the

proposed design.

5.5 Simulations

In this section, we carry out simulations to demonstrate the performance of the pro-

posed closed-loop scheduling approach. In the simulations, the models described in

Chapter 2 and Section 5.2.2 are used to simulate the dynamics of the pond level

and the soil moisture of the green space. Specifically, the parameters used in the

simulations are shown in Table 5.1.

Table 5.1: Parameters of the experimental setup.

Af = 3× 109 cm2 Area of green space
Ac = 4Af Neighboring area
Ap = 0.2Af Storm water pond area

Lmax = 1500cm Maximum pond level
Lmin = 0 Minimum pond level

SPD = 110 cm Soil profile depth
RZD = 25 cm Root zone depth

θini = 0.15 cm/cm Initial field condition
θres = 0.065 cm/cm, θsat = 0.41 cm/cm, Van Genuchten model parameters

αv = 0.075 cm−1,η = 1.589, Ksat = 4.4208 cm/h for sandy loam soil

5.5.1 Closed-loop v.s. open-loop scheduling

First, we compare the performance of the proposed closed-loop scheduling and an

open-loop scheduling method under two weather conditions over a time period of 16

weeks. In the open-loop scheduling method, the scheduling optimization is solved in

the first week only (no re-evaluation) and the solution obtained in week 1 is used for

the entire 16 weeks.

In the first case, we consider a wet weather condition. As mentioned in Sec-

tion 5.2.3, the historical weather data has precipitation during week 1 − 6 with an

average of 240mm, week 13−14 with an average of 150mm and finally week 23−28

with an average of 340 mm in Figure 5.5(a). The actual weather data is shown for

the first 16 weeks only. It is considered that the actual rain takes place between weeks
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Figure 5.5: Simulated results on open-loop and closed-loop irrigation scheduling under
wet weather conditions. (a) weather conditions, (b) weekly irrigation amount from the
pond, (c) the pond level and (d) overflow incidents
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5− 10 with an average of 340mm. The weather forecast is available real time for two

coming weeks.

The weighting factors in the cost function of the scheduling optimization problem

are selected as follows: C1 = 10000, C2 = 10000, C3 = 100, C4 = 100, C5 = 0.001.

The optimization horizon for both closed-loop and open-loop scheduling is taken as

N = 16 weeks. In the optimization problem, the upper limit for soil water storage is

considered to be Us = 5.00cm corresponding to Uθ = 0.25cm/cm of soil moisture and

the lower limit for soil water storage is Ls = 2.5 cm corresponding to Lθ = 0.1 cm/cm

of soil moisture. Initial pond level is considered to be Lin = 1350 cm. Soil water

storage corresponding to saturation is 12.5 cm. Figure 5.5 shows the simulation

results. Figure 5.5(b) shows the pond irrigation amount. In the open-loop scheduling,

the historical weather data is used. Due to the mismatch of the historical weather

data and the actual weather data, the prescribed pond irrigation is overall much

lower in open-loop scheduling compared with closed-loop scheduling. This renders

more (both time and amount) overflows under open-loop scheduling. In closed-loop

rescheduling scheme, pond irrigation increases after week 6 following the heavy rain

incident thereby reducing the chance of overflow as indicated by the pond level in

Figure 5.5(c) and overflow incidents shown in Figure 6(d). In Figure 5.5(c), during

open-loop scheduling the predicted overflow occurred at only week 6, but due to

heavy rain the overflow took place for the entire period between week 7 and week 10.

Though the period of overflow in the closed-loop rescheduling is similar to open-loop

scheduling but the amount of overflow is much smaller in closed-loop rescheduling as

shown in Figure 5.5(d). The soil moisture condition is shown in Figure 5.6 and the

soil water storage values are shown in Table 5.2. It is clear from Table 5.2 that the

soil water storage value at all time is less than the saturated soil water storage value

of 12.5 cm for both schemes. Except the rainy periods (week 5 to 9) the actual soil

water storage value for the closed-loop scheduling scheme is within the upper Us and

lower limits Ls, but for open-loop scheduling the soil water storage value was much

higher. Similar results were noticed in Figure 5.6. It shows that at the beginning

(week 1), the soil moisture at the bottom of root zone was low for both closed-loop

scheduling and open-loop scheduling scheme. During the actual rainy weeks (week 5

to 9) both schemes give higher soil moisture. But as soon as rain stops, the closed-
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Figure 5.6: Soil moisture condition for wet weather conditions. Results for weeks 1, 5, 9,
13 and 16 are indicated by markers +, ♦, O, � and ., respectively. Dotted lines represent
rescheduling scheme (closed-loop) and dashed lines stand for scheduling without feedback
(open-loop).
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loop scheduling shows better performance in terms of ground condition (week 13 and

16) since the soil moisture remains between field capacity and permanent wilting.

Table 5.2: Soil water storage in root zone for the case of wet weather conditions.

Week no. Closed-loop scheduling Open-loop scheduling
1 3.888 3.888
2 3.889 3.886
3 3.473 7.632
4 2.514 7.660
5 6.303 6.654
6 8.296 6.363
7 8.093 7.295
8 8.420 7.590
9 8.400 7.687
10 8.305 7.510
11 4.136 2.461
12 3.897 2.622
13 3.888 1.986
14 3.888 1.942
15 3.895 3.263
16 3.891 3.345

Table 5.3 shows the summary of the results. It is clear that when closed-loop

scheduling scheme is used, the overflow of the pond can be reduced. It needs to be

mentioned that though the soil moisture is above field capacity (θF = 0.25 cm/cm)

at some periods but it is still below saturation (θsat = 0.41) so there are no ponding

events.

In the second case, we consider a dry weather condition. The dry weather data was

generated using low precipitation amounts as shown in Figure 5.7(a). The historical

weather data contain precipitations during weeks 1-6 with an average of 15 mm of

rain, weeks 13-14 with an average of 14mm and weeks 23-28 with an average of 11mm.

The actual weather has rain between week 4 and week 12 with an average of 17mm.

Table 5.3: Summary of results for the case of wet weather conditions.

Open-loop scheduling Closed-loop scheduling
Total pond water used (cm) 271.8299 453.3219
No of times pond overflows 3 3

Total amount of overflows (cm) 974.7851 341.7129
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It is considered that the maximum tap water that can be used is 10 cm/week. Note

that under significantly different weather conditions, some of the parameters in the

scheduling optimization problem should be re-tuned to obtained good performance.

In particular, the upper and lower limits for soil water storage need to be adjusted.

In the previous wet weather condition, overflow was the main event that needed to

be avoided and the the crop was under stress between θa (some aeration point near

saturation) and θF (field capacity). In the dry weather condition, the pond is more

likely to dry out than overflow. Further, as shown in Figure 4.3, the soil moisture may

violate the lower limit of θW which may create long term damage on the crops. The

cost of the violation of this lower limit is much higher. To accommodate the modeling

mismatch, the lower limit of soil water storage in the optimization is considered to be

Ls = 5.0 cm and the upper limit is considered as Us = 7.5 cm, which are significantly

higher than the previous case. At the same time, the cost associated with the lower

limit is increased. Thus the weighting factors in the cost function of the scheduling

optimization problem are selected as follows: C1 = 1.0 × 109, C2 = 10000, C3 =

100, C4 = 100, C5 = 0.001. The initial pond level is considered as Lin = 600 cm and

the prediction horizon is again N = 16 weeks. The actual soil water storage values

as simulated by the dynamic model are shown in Table 5.4.

Figure 5.7 shows the simulation results. Figures 5.7(b), (c) and (d) show pond

irrigation amount, pond level and potable water irrigation amount, respectively. From

Figure 8(b), it can be seen that in the closed-loop scheduling scheme, the pond

irrigation is lower and the pond level is well maintained above zero for the entire

period. While in the open-loop scheduling case, more pond water is used in irrigation

and the pond level is very close to zero at the end of the period. In both schemes,

tap water is used at its maximum allowable capacity.

The soil moisture condition is shown in Figure 5.8. It shows that both for closed-

loop and open-loop scheduling the soil moisture at the bottom of the root zone reaches

wilting point but the top root zone where most of the root water extraction takes

place stays above the lower limit. In fact, it can be observed from Table 5.4 that the

total soil water storage value stays above the lower limit Ls = 2.5 cm at all times.

Table 5.5 shows the summary of the results for the case of dry events. It is clear that

when closed-loop scheduling is used, the pond level can be maintained by reducing
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Figure 5.7: Simulated results on open-loop and closed-loop irrigation scheduling under dry
weather conditions. (a) weather conditions, (b) weekly irrigation amount from the pond,
(c) the pond level and (d) overflow incidents
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Figure 5.8: Soil moisture condition for dry weather conditions. Results for weeks 1, 5,
9, 13 and 16 is shown by markers +, ♦, 0, � and ., respectively. Dotted lines represents
rescheduling scheme (closed-loop) and dashed lines stand for scheduling without feedback
(open-loop).
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Table 5.4: Soil water storage in root zone for dry weather condition.

Week no Closed-loop scheduling Open-loop scheduling
1 3.401 3.401
2 3.227 3.407
3 3.080 3.117
4 2.996 3.132
5 2.949 3.435
6 2.914 3.430
7 2.918 3.642
8 2.928 3.640
9 2.953 3.647
10 2.965 3.641
11 2.991 3.649
12 2.912 3.629
13 2.813 3.152
14 2.750 3.104
15 2.691 3.407
16 2.634 3.411

Table 5.5: Summary of results for dry weather condition.

Open-loop scheduling Closed-loop scheduling
Total pond water used (cm) 119.5474 75.6760

Pond dry outs Close to drying at 16th week No dry outs
Total amount of

160 160
potable irrigation(cm)
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Table 5.6: Summary of results.

N=12 weeks N=8 weeks
Total pond water used (cm) 436.8951 289.9045
No of times pond overflows 3 5

Total amount of overflows (cm) 331.2093 824.622

the use of pond water for irrigation. It should be noted that in closed-loop scheduling,

the soil water storage is also maintained well. The improved pond level management

is essentially due to the use of feedback from the pond and weather forecast.

Finally, to demonstrate the effect of prediction horizon in closed-loop scheduling a

third case study is performed with the weather data and initial conditions similar to

the first case, but with different prediction horizons N = 8weeks and N = 12weeks.

The results are shown in Figure 5.9. Figures 5.9(a), (b), (c) and (d) show weather

condition, pond irrigation amount, pond level and potable water irrigation amount,

respectively. It can be clearly observed that when prediction horizon N = 12 weeks

is used, pond level (Figure 5.9(c)) is well maintained and less pond overflow occurred

(Figure 5.9(d)). For N = 8 weeks, though the predicted maximum pond level is

reached at week 5 and 10 only, but due to weather uncertainty the overflow actually

starts at week 6 and continues till week 10. The actual overflow which occurred after

maximum pond level is reached is also shown in Figure 5.9(d). The soil water storage

condition is similar to the first case and is not shown.

The summary of results for analyzing the effects of prediction horizon is presented

in Table 5.6. It is clear that horizon N = 12 weeks performs considerably well

relative to N = 8 weeks. This suggests that smaller horizon significantly reduces

the performance of closed-loop scheduling. Again, when this result is compared with

the closed-loop results from the first case with N = 16 weeks (Table 5.3 closed-loop

scheduling), the results for horizon N = 12 weeks performs slightly better. This

confirms that there is some optimal horizon length beyond which the performance of

closed-loop scheduling will not improve significantly anymore.
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Figure 5.9: Results on effects of prediction horizon N for closed-loop irrigation scheduling
for a park using city storm water.
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5.6 Conclusions

Irrigation scheduling using city storm water poses new challenges in irrigation schedul-

ing. There is a need of optimization to ensure better ground conditions and good

pond levels. The results of closed-loop irrigation scheduling suggests that overflows

could be reduced relative to regular open-loop irrigation scheduling. The selection

of horizon for closed-loop irrigation scheduling is important since it affects the over-

all results. Depending on regional weather and associated uncertainties an optimum

horizon needs to be identified for improved closed-loop irrigation scheduling.

The choice of costs in the scheduling problem corresponding to the two-fold ob-

jectives are very important and needs to be decided wisely. Depending on the choice,

whether to emphasize field condition or pond level, the costs would be different and

that would give different optimal solutions. In this study, the costs chosen for both

wet and dry cases were such that the grass would not wilt, though it will face some

water stress in some regions. This is done to minimize undesirable events associated

with pond levels. The development and the use of steady-state model for scheduling

allow us to explore the soil moisture region beyond field capacity and overcome the

limitations of soil moisture deficit model.
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Chapter 6

Conclusions and future work

6.1 Conclusions

In this thesis, we have identified existing challenges associated with precision irrigation

and proposed some systematic approaches for closed-loop scheduling and control in

irrigation.

Feedback is a key aspect of closed-loop scheduling and control, which depends

highly on quality measurements. In agriculture, it is not possible to measure soil

moisture at every location; therefore, state and parameter estimation is important. In

Chapter 3, we designed state and parameter estimation based on system observability

analysis. Specifically, the degree of observability analysis is performed by linearizing

the nonlinear agro-hydrological model locally at different operating points and a novel

optimal sensor placement algorithm was proposed.

In Chapter 4, we designed a closed-loop scheduler and controller to balance crop

yield and irrigation water conservation. Both the scheduler and controller were

designed using model predictive control (MPC). The scheduler determines the soil

moisture set-points and the controller tracks the set-points given various weather and

model uncertainties. An LPV model was designed to tackle the nonlinear time-varying

(crop growth) agro-hydrological model and to reduce the computational complexity

while optimization. The designed hierarchical scheduling and control system was ap-

plied to a field with maize. Simulation studies under different weather scenarios with

different weights on water conservation were considered. It was found that the ben-

efits of closed-loop scheduling (increased yield or reduced water usage) comes with

a price (increased water usage or decreased yield). The results may be explained as
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follows:

• Maize requires relatively huge amount of water in the growing season, which

may have made the differences between closed-loop and open-loop scheduling

less obvious.

• The study considered a farm with one crop Maize and spatial heterogeneity was

not considered. This simplification may have made the benefits of closed-loop

irrigation less obvious.

In Chapter 5, we extended the proposed closed-loop irrigation scheduling to a

special case where irrigation is performed using city stormwater for sustainability. In

this case, the objective of scheduler is two-fold; one is to maintain the pond level to

avoid overflow or dry-out events and the second is to keep the soil moisture within

the desired range. A steady-state model was developed and used to describe the agro-

hydrological system in scheduler optimization. Based on the simulation results, the

proposed approach can reduce the chance of overflow or dry-out events of the storm

water pond and can adequately irrigate the field.

In conclusions, the benefits of closed-loop scheduling for irrigation depend on

a few factors such as irrigation water source, weather uncertainty, field variability,

the type of crop. In some cases, the closed-loop scheduling outperforms the open-

loop scheduling while in other cases the benefits of closed-loop scheduling are not as

obvious.

6.2 Future research directions

6.2.1 Observability and optimal sensor placement for 3D
systems

Observability analysis for higher dimensional or complex systems has gained much

attention in recent years due to the advancement of graph theories. Studies on de-

gree of observability and optimal sensor placement have started to gain interests in

various disciplines including health [101, 102, 103, 104], power and manufacturing

industries [105, 106, 107] based on structural, dynamical and symbolic observability

analysis. The implementation of these new techniques open the door to study the
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observability and optimal sensor placement for soil moisture data assimilation in 3D

spatial temporal systems where high number of states need to be considered.

6.2.2 Computationally efficient agro-hydrological models

The modeling of agro-hydrological systems has also evolved in the past years. While

different models are available to serve different purposes, there is room to develop

computationally efficient 3D models that consider the water dynamics and detailed

crop biology for numeric optimization. More research may be devoted to LPV models.

6.2.3 Closed-loop scheduling and distributed MPC controller

To determine the benefits of closed-loop scheduling in agriculture irrigation, it would

be interesting to perform more studies considering different crops other than maize,

spatial heterogeneity and other manipulated inputs. It would be more interesting to

study 3D cases with multiple crops. Distributed MPC [108, 109] may also be explored

in these cases.

6.2.4 EMPC and closed-loop schedule and control

Economic MPC (EMPC) has also gained attention in recent years. In economic

MPC, a general economic cost is used instead of the conventional quadratic cost

[110, 111, 112]. It would be interesting to compare the performance of economic MPC

with the hierarchical closed-loop scheduling and control in terms of, for example, crop

yield, water usage efficiency and computational complexity.
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Goñi. ASCAT soil moisture data assimilation through the Ensemble Kalman

Filter for improving streamflow simulation in Mediterranean catchments. In

EGU General Assembly Conference Abstracts, volume 18, 2016.
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Appendix A

Model validation

The nonlinear state-space model described in Chaper 2 was validated against HY-

DRUS [113] by simulating the soil moisture for a soil profile of 110 cm with four

different soil layers. The first 15 cm is the first layer; the next 35 cm is the second

layer; the third layer has 40 cm and the remaining 30 cm represents layer 4. In the

Figure A.1: Soil moisture profile at 48 hours given by HYDRUS model and the developed
model.
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simulation, a constant flux of 0.2 cm/h infiltration at the top boundary was consid-

ered. The bottom boundary condition was free drainage. Crops were not considered

and the simulation length was 48 hours with the initial soil moisture 0.24 cm/cm.

The final soil moisture is shown in Figure A.1. The figure clearly shows that the

results from the developed model closely matches the results from HYDRUS.
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Appendix B

More on the discretization of the
agro-hydrological model

Throughout this thesis, we have used a system discretized into 15 compartments,

which is decided based on the following analysis.

B.1 Data description

The study was conducted with synthetic data considering a soil profile of 110 cm with

four different homogeneous soil layers. The synthetic data was generated using the

agro-hydrological model. It is considered that only four measurements are available

at depth 5 cm, 20 cm, 50 cm and 100 cm. The measurement data was collected on

an hourly basis.

B.2 Analysis of the system

To perform the state estimation of this system, the soil profile needs to be discretized

in a way that the observability of the system is ensured with the four measurements.

In this study, the soil profile is discretized into 44, 33, 31, 23 and 15 nodes in order to

create the system with 44, 33, 31, 23 and 15 states, respectively. The observability of

the system was checked based on the linearized models along a typical state trajectory.

It was found that for 44 states, the rank of the observability matrix is not full at any

portion of the trajectory; therefore, the system is unobservable. The cases with 33

states and 31 states were unobservable at some parts of the trajectory as shown in

Figure B.1. When the number of states is reduced to 23 states, the system becomes
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observable in terms of rank test. In the figure, it can be seen that both systems with

15 states and 23 states are observable. Based on this, we further carry out the degree

of observability analysis.

Figure B.1: The rank of the observability matrix of the system with different states.

The results of the degree of observability analysis is shown in Figure B.2. The

figure shows that as we reduce the number of states, the ratio of the largest and

the smallest eigenvalues λmax/λmin decrease, which suggests that the system becomes

more observable. This analysis suggests that a discretization with 15 states is a good

option.

At the same time, we would like to point out that while reducing the number

of states enhances the degree of observability of the system with four output mea-

surements, we may have numerical precision issue or other numerical issues when the

number of states is too few. In this work, the number of states was not reduced to

be less than 15 because of these considerations.
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Figure B.2: The ratio of the largest and the smallest eigenvalues of matrix N TN for
systems with 33, 31, 23 and 15 states along a typical state trajectory, where N is the
normalized observability matrix as defined in Chapter 3.
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