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ABSTRACT

We consider the construction of robust prediction and extrapolation designs for 

a misspecified generalized linear response. Possible violations from homoscedasticity 

are also taken into account.

Firstly, we find minimax designs and corresponding optimal regression weights in 

the context of the following problems:

1. For nonlinear ordinary least squares (OLS) estimation with homoscedasticity, 

determine: (a) a prediction design to minimize the maximum value of the inte­

grated mean squared prediction error (IMSPE), (b) a one-point extrapolation 

design to minimize the maximum value of the mean squared extrapolation er­

ror (MSEE), and (c) a general extrapolation design to minimize the maximum 

value of the integrated mean squared prediction error (IMSEE), with the max­

imum being evaluated over the possible departures (from assumed model and 

homoscedasticity) from the response function;

2. For nonlinear OLS estimation with heteroscedasticity, determine (a), (b), and 

(c), with the maximum being evaluated over both the departure from assumed 

response function and that from homoscedasticity;

3. For nonlinear weighted least squares estimation, determine both weights and a 

design to minimize the maximum IMSPE, MSEE, or IMSEE;

4. Choose weights and design points to minimize the maximum IMSPE, MSEE, 

or IMSEE, subject to design unbiasedness.

Secondly, we present the construction of robust designs when the data are cen­

sored. The minimax designs are found for maximum likelihood estimation in the
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context of both prediction and extrapolation problems in case of with or without 

restraint of design unbiasedness.

Our study extends the previous work of others in three aspects: (i) by consider­

ing a nonlinear fitted regression response; (ii) by taking a rather general design and 

extrapolation spaces; and (iii) most significantly, by dropping all restrictions on the 

structure of the regressors. Solutions are derived by a nonsmooth optimization tech­

nique analytically and given in complete generality. Numerical comparisons indicate 

th a t our designs perform well in combining robustness and efficiency and applications 

to accelerated fife testing are highlighted.

Lastly, we discuss the application of our designs to a real life dose-response exper­

iment. We propose two new implementation schemes for approximating a continuous 

design, and also confirm th a t one of the matching quantile schemes used in the liter­

ature is optimal with respect to certain criteria.
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CHAPTER I

INTRODUCTION

In this dissertation we study the construction of optimal regression experimental 

designs, for both prediction and extrapolation of a response, when the regression 

model is misspecified. Throughout the dissertation we divide our work into three 

different types of problems: prediction problems, one-point extrapolation problems, 

and general extrapolation problems. For a prediction problem, our goal is the response 

estimation throughout the design space in which the design (support) points can 

be chosen. For an extrapolation problem, we are interested in extrapolation of a 

response to an extrapolation space. If such an extrapolation space consists of just 

one point outside the design space, we call it a one-point extrapolation problem. If the 

extrapolation space has nonzero Lebesgue measure, we name it a  general extrapolation 

problem. This work contains five chapters. Three of them, Chapter 2, Chapter 3, 

and Chapter 4, are independent papers which have been prepared for publication. 

The robust one-point extrapolation designs are studied in Chapter 2 while the robust 

prediction designs and robust general extrapolation designs are provided in Chapter

3. In addition, we construct the robust optimal designs incorporating censored data 

in Chapter 4. Chapter 5 contains implementation methods of continuous designs, and 

applications of the optimal designs constructed in this work.

Most previous work for robust optimal designs has been done for linear regression 

models; however, this dissertation treats nonlinear regression as well. We take into 

account not only the possible misspecification in assumed regression response but also 

the possible departure from assumed homoscedasticity. Robustness of the designs on 

the parameter-dependency problems in nonlinear regression is also addressed.

1
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This present chapter provides a review of the literature regarding the previous 

work in direction of (1) optimal prediction designs, (2) optimal extrapolation designs,

(3) robust optimal designs against various situations, and (4) robust optimal designs 

for accelerated life testing (ALT) and censored data. Several sections are presented in 

this chapter. Section 1.1 outlines the purpose of our study; it presents the motivation 

of the dissertation tha t involves an application of life testing and the consideration 

of nonlinear regression models. Section 1.2 reviews classical optimal designs for esti­

mation, prediction, and extrapolation problems. It also gives the classical optimality 

criteria and some classical optimal design examples. Section 1.3 reviews the robust 

optimal designs against various situations. The robust designs, particularly in life 

testing literature, are briefly introduced. Some examples of the robust optimal de­

signs which lead to our current study are detailed. Finally, Section 1.4 summarizes 

the results of this dissertation.

1.1 Purpose o f the Study
1.1.1 M otivation

Nowadays more and more products have high reliability. The time consumed in life 

testing for such products at normal conditions is exorbitant. A common approach 

to this problem is that of acceleration. ALT provides timely information about a 

product’s life by testing a sample of units a t higher than usual stress levels and 

extrapolating through an assumed statistical model to  estimate life at a lower stress 

level anticipated in practice. Since this extrapolation is to one point outside of testing 

stress space (experimental design space), it is a one-point extrapolation problem.

Fang and Wiens (1999) point out tha t “extrapolation to regions outside of th a t in 

which observations are taken is of course an inherently risky procedure and is made 

even more so by an over-reliance on stringent model assumptions.”

For example, suppose design space is S  — [a, 6]. The experimenter tries to fit a

2
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Figure 1: Misspecified simple linear regression. A solid line represents the true 
regression response while a broken line represents the fitted regression response.

straight fine regression model and then extrapolate the fitted fine to a point Xo outside

S. There are a few problems tha t could possibly occur. Firstly, the extrapolation 

in estimation is biased at extrapolation point Xq although the fit within S  seems 

good. See Figure 1 for a demonstration of the danger of extrapolation. Secondly, the 

departure from the assumed model cannot even be detected. Furthermore, there is no 

information about what kind of departure would occur. Therefore, we are motivated 

to explore a “good” design which takes into the consideration of possible but unknown 

departure from the model which one is fitting.

1.1.2 E xtension from Linear to  Generalized Linear R esponse

This study also aims to treat nonlinear regression. Let us examine a couple of nonlin­

ear regression examples. First of all, we consider an accelerated failure model, which 

is commonly used in life testing and survival analysis (Hosmer and Lemeshow, 1998)

3
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for modelling the relationship between lifetime Y  and the stress variable x:

E(Y\x)  = exp (&o + 9ix).  (1.1)

The second example is a dose-response curve for modelling the probability P(x)  of

showing an adverse effect due to a dose at level x:

P(x)  =  1 -  exp 9ix^ j  • (1-2)

This model is frequently applied in the field of cancer dose response. Either (1.1) or 

(1.2) is a monotonic function of a linear function of unknown parameters and known 

regressors. It is termed the generalized linear regression.

There is a wealth of literature regarding robust optimal regression designs against 

misspecification in a linear relationship

E ( Y  |x) =  zT(x)0 (1.3)

between a response variable Y  and an experimental vector x, where 9  is the vector of 

unknown parameters and zT(x) =  (zi(x), z%(x), ...,zp(x)) is the vector of regressors, 

depending on x. However, there seem to be relatively few robust designs dealing with 

misspecification in a nonlinear regression. This present study attem pts to extend the 

previous work on (1.3) to its generalized version

E(Y\x)  =  h (zT(x)9)

for some monotonic function h.

1.1.3 Address b oth  ALT and Censoring

W ith regard to life testing, the two most commonly used testing time saving plans are 

acceleration and censoring, both of which stimulate our study. When fife testing runs 

a t the stress levels within the range of product normally in use, our goal is prediction. 

Namely we are interested in the estimation of mean response throughout the region

4
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of interest. For ALT, in which products axe tested at higher than normal usage stress 

levels, the goal is extrapolation. For extrapolation problems, if one is interested in 

estimating the lifetime at a certain range of normal usage stress levels, we classify it 

as a general extrapolation problem; if one is interested in estimating the lifetime at 

a particular normal usage stress level which is lower than testing stress levels, it is 

a  one-point extrapolation problem. Therefore, three types of designs are considered 

under this dissertation study to address these three types of problems.

Tests yielding complete data generally take too long to run especially for those 

products having long life-spans. To save testing time, the test may be censored in 

order tha t the result can be analyzed before all units fail. Subsequently, the data 

obtained from such testing plans will consist of lifetime information on unfailed units 

(so called “censored data”). Another purpose of censoring is to permit one to analyze 

the most recent test data while the test is still running. The robust optimal designs 

incorporating censoring are also a part of our study.

1.1.4 R em ove th e  R estric tio n s

There is another issue that we have considered in this dissertation. In the robust 

design literature, due to the intractability of obtaining an explicit design there are 

often certain restrictions put on the regressors’ structure, on the design space, and 

additionally on the extrapolation space for general extrapolation problems. For in­

stance, the minimax explicit design problems for high degree polynomials are not 

tractable as indicated in Heo, Schmuland, and Wiens (2001). This dissertation aims 

to provide a way of constructing a robust optimal design without such restrictions.

1.2 Classical O ptim al Designs
1.2.1 C lassical D esign  P ro b lem s

Suppose that the linear regression model (1.3) with x  £ TV, 0  £  1ZP+1, and z(x) £ 

7ZP+1 a vector of regressors is considered. In order to estimate 0 and explain certain

5
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aspect of this model, measurements on Y  are to be made for each of n  points {xi, 

X2 , x n} which need not be distinct.

Because of the experimental errors, the observations (xi, yi), (X2 , 2/2)1 • ••> (Xn, Vn) 

follow a statistical linear model

2/t =  z T(x i)0 +  eu i = 1,2, (1.4)

where the £,’s are random errors. Two classical assumptions made to this regression 

model are:

Al. The regression response -E(F|x) =  zT(x)0 is exactly correct.

A2. The errors t ,  are uncorrelated and have common variance a2.

Define X =  (zT(x1), zT(x2) , ..., z r (xn))T and y  =  (2/1 , 2/2 , 2i n f  ■ Under assump­

tions A l, A2 and that of X TX  being nonsingular, the least squares (LS) estimate Ols 

given by

&ls =  (X r X )-1 X Ty

is the best estimate of 9 among all linear unbiased estimates, and the covariance 

matrix of 6 i s  is the smallest in the sense of the Loewner ordering of nonnegative 

definite matrices. Furthermore, we can remove the restriction on linearity if the 

random errors are assumed to be normally distributed. This implies tha t Ols is 

efficient. As we know, 9i s  has covariance matrix

COV( 9 l s ) =  a 2 (XTX )_1,

which only depends on X. Hence, the problem of experimental design is to  choose the 

appropriate X  in order tha t C O V ( 9 l s ) will be as “small” as possible. The matrix 

C O V (9i s )  being “small” means that an appropriate real-valued function of it is 

small. Different functions will give different minimization criteria, as seen in Section 

1.2.3.

6

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



1.2.2 Approxim ate D esign Theory

Suppose we plan or are allowed to perform an experiment for the model (1.4) by 

choosing the observation sites {xi, X2 , x n} from a design space S  C lZq. In practice, 

a design should tell the experimenter what the design support points are and how 

many subjects should be allocated to each of these points. An implementable design, 

£, must be a discrete probability measure which puts probability £(x;) at Xi. For a 

given r  <  n, let x 1;X2 , ...,x r be the distinct design points, the number of subjects 

allocated to a particular design point Xi on design space is then, n£(xj). Thus, in 

addition, each £(x,), i — 1 , 2 , r,  should be an integer multiple of n r 1. A design 

with this integer property is called an exact design, but in general the exact design 

problem is mathematically intractable. The situation is analogous to the much simpler 

one where we wish to maximize a function defined on the integers. Because of discrete 

domain, calculus techniques cannot be exploited in this situation. A commonly used 

device for this simpler problem is to extend the definition of the function to all real 

numbers and use calculus to find the maximizing real number; and then to argue 

tha t the maximum of the function over integers occurs at an integer adjacent to this 

maximizing real number. This idea is adapted for the design problem and leads to 

what Kiefer has termed “approximate design theory”. Approximate design theory 

extends the class of designs, allowing it to be any probability distribution on S. 

Define S to be the set of all probability distributions on S.  We seek an optimal 

design, £*, within E and hope tha t an exact design which approximates £* will be 

close to optimal. This approach is adopted by us throughout this work as well.

1.2.3 O ptim ality Criteria

Let £ be a design measure, tha t is, the empirical distribution function of {xi, X2 , ..., x n}

n  i=l

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



with 7X representing the point mass 1 a t x, for any x  € S. For any £ € £ , define a 

matrix

B Z =  J  z(x)zr (x)d£.
s

It is a nonnegative definite (p +  1) x (p +  1) matrix. Since ^ (X r X) , we

have C O V( 0 l s ) =  The classical design problem is to find an optimal design

in order tha t an appropriate scalar function of B j 1 will be minimal. Such a scalar 

function is called an optimality criteria or a loss function.

When we are interested in finding the best estimates for the coefficients in regres­

sion function, the optimal design which we are searching for is normally intended to 

minimize the generalized variance of parameter estimates. We call such design an 

estimation design. The commonly used loss functions for searching for an estimation 

design include the determinant, the trace, and the largest eigenvalue of B^1, and 

these give the D-, A-, and .E-optimality criterion respectively. Kiefer (1974) gener­

alizes these criteria in terms of the sum of the certain powers of the eigenvalues of 

B^1. Dette, Heiligers, and Studden (1995) investigate the geometric structure of a 

class of minimax optimality criteria containing Kiefer’s generalized criteria as special 

cases. When we are interested in the best estimation of the response function, the 

design problems are to find the optimal prediction designs. Such designs are found 

to minimize the variance of predicted response. W ith d(x, £) =  zr (x)B^1z(x), for 

a  prediction design the loss function normally is a function of d(x, £). The two com­

monly used ones are maximum: maxxes d(x,  £) and average: J  d(x, £)dx over design
s

space S. They provide the G-, and Q- (or I-) optimality criterion respectively. For 

extrapolation designs, the loss functions considered are the maximum and the aver­

age of d(x,  £) over extrapolation space T  instead of S. We still call them the G-, 

and Q- (or /-) optimality criterion. For nonlinear regression, the covariance m atrix 

depends on not only the design but also the unknown parameter values. Therefore,

8
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normally the optimal design minimizing the corresponding loss function for nonlinear 

regression depends on the unknown parameter values. The corresponding criteria are 

called De-, Ae-, E q-, Go, and Qo- (or /#-) optimality. For details, see Silvey (1980) 

who provides us with an elegant reference to the theory of classical optimal designs.

1.2.4 E xam ples

E xam ple  1: C lassical o p tim a l designs for po lynom ial regression .

Guest (1958) presents the H-optimal design for the polynomial regression. For 

the pth degree polynomial regression model

E(Y\x ,  0) =  9q ±  6\X +  ... +  0pxp

with a parameter vector, 6T =  (0o, G\, •••, Op), the D-optimal design has (p + 1) design 

points with an equal mass of l /(p  ±  1). These design points are the solution of the 

following equations

(1 -  x 2)-^-Pp{x) =  0,

where Pp(x) is the pth Legendre polynomial. Let S  — [—1,1]. For instance, when 

p = 3 the design points are ±1 and ±0.447; when p =  4 they axe 0, ±1, and ±0.665.

E xam ple  2: C lassical o p tim a l e x tra p o la tio n  designs for po ly n o m ia l re­

gression.

The G-optimal extrapolation designs for polynomial regression are found by Hoel 

and Levine (1964). For S  =  [—1,1], T  =  [l,t] or T  = {i} with t  > 1, and 

z(x) = (1, x, x  , ..., xp) , the G-optimal extrapolation design is supported by p  + 1 

Chebyshev points

Xi =  -  cos , i =  0, 1,..., p,

and the mass on each point is proportional to the absolute value of the corresponding 

Lagrange interpolation polynomial at this specific point. Namely,
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where
=  (t ~  Xo) ... (t  -  Xj.i) (t  -  x i+1) ...(t -  xp)

(Xj -  Xo) ... (Xi -  x ^ )  (Xi -  x i+1) ...{Xi -  xp) ‘

Exam ple 3: Classical optim al designs for generalized linear regression.

Ford (1976) considers the optimal design problem for nonlinear regression. Sup­

pose tha t the response Y  takes values 0 and 1; the independent variable x  is contin­

uous; the parameter vector is 9T — (do, 0i), and

P ( Y  =  l|x , 9) = exp (do + dix)  /  [1 +  exp (0O +  01^)]

with do > 0 and di >  0. This is a generalized linear regression model. Let the 

design space be S  = [—1,1]. Ford has shown that the Dg-optimal design measure is 

supported on two points, each having probability of 0.5. The support points depend 

on 9 in the following way.

Let a ps 1.5434 be the positive solution of the equation ez =  (z + l ) / ( z  — 1). Also, 

we make use of the classes below:

T\ — \ 9  | d\ — 0O >  a, do > 0, d\ > 0} , 

T2 =  { 9 0i -  0O < a, d0 > 0 , 0i > 0, exp (0O +  0i) <  }  ’

T3 =  ^ 0  do > 0 , 0i >  0, exp (0o +  0i) > q ^  •

Then, the support points are

(i) and i f « e r i;

(ii) —1 and x*, where x* is the solution of exp (0o +  01#) =  , if 9 € % ;

(iii) —1 and 1, if 9 £

The locations of the support points depend on 9. This dependency may be roughly 

summarized by saying tha t the more nearly linear is the response curve in the interval 

[—1,1], the further towards —1 and +1 are the support points pushed.
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1.3 Robust Designs
1.3.1 R obustness against Various Situations

The classical optimal designs are sensitive to model assumptions. Box and Draper 

(1975) summarized fourteen criteria which can be used to judge a design for fitting a 

regression function. One of these is described as to “be insensitive to wild observations 

and to violation of the usual theory assumptions.” Robust designs are required to 

have this particular property. In the literature, robust designs are constructed to 

safeguard against various situations which the experimenter should watch out for. 

These situations are listed by us as follows:

(1) misspecification in a regression function;

(2) violation of homoscedasticity;

(3) misspecified parameter values which the constructed design depends upon;

(4) violation of independence of observations;

(5) misspecification of an underlying distribution;

(6) wild observations.

For (4), see Wiens and Zhou (1996, 1999), Zhou (2001), and also the references 

therein. For (5), see Chaloner and Larntz (1992), and more recently Pascual and 

Montepiedra (2003). For (6), Box and Draper (1975) present a measure of insensitivity 

to wild observations so that the robust designs with protection from wild observations 

can be determined by minimizing such a measurement.

Our study addresses the situations of (1), (2), and (3). The literature on these 

three situations is described in the following three subsections.

1.3.2 R obust D esign  against (1)

In fight of Box and Draper (1959), the optimality criteria using the mean squared 

error m atrix are broadly adopted. This is the sum of one term  related to the variance 

of the estimates of the unknown parameters in the regression model and the other
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term  related to the bias present because of fitting an incorrect model. Many authors 

have dealt with the situation wherein the underlying regression model is assumed to 

be some low degree polynomial, and where the possible departures from this model 

range from a higher degree polynomial to a very large class of functions. In general, 

the regression model under the consideration of robustness is assumed to be approx­

imately known. The true model is a contaminated version of a fitted model (1.4). It 

can be written as

yl = z T(xi)6 + f ( x i )  + £i, i =  l,2 ,. . . ,n , (1.5)

where the random errors are uncorrelated and have homogeneous variances, and /  

represents an unknown contaminant which usually belongs to a predefined contami­

nation class T.  Due to the presence of / ,  the least squares estimator Ols is no longer 

unbiased. Its bias vector and covariance matrix are

E  ( e LS)  -  0 =  B ^ b /jS, and COV( 0 LS) =  ^ B ^ 1,

where b /,s =  J  z(x)/(x)d£. Hence, the mean squared error (MSE) matrix of Ols  is
s

given by

M S E ( f ,  0  =  B ^ b y .sb J^ B J1 +

To obtain the optimal designs under model (1.5), the loss functions are naturally cho­

sen by replacing the covariance matrix with the mean squared error matrix M S E ( f ,  £). 

Since M S E ( f , £) involves the unknown contaminant / ,  we use maXf^jr M S E ( f , £ )  to 

safeguard against the worst possible situation. Therefore the determinant, the trace, 

and the largest eigenvalue of max_fe^  M S E ( f ,  £) give the D-, A-,  .E-optimality cri­

terion respectively. Let dm(x,£) = max/ e 5  z T( x ) MS E ( f ,  £)z(x), the loss functions:

maxzes dm(x,£)  and J  dm(x,£)dx  provide the G-optimality and Q- (or I-) optimal-
s

ity criterion respectively. Most recently Adewale and Wiens (2006) discuss a new 

criterion of robust optimal designs. It replaces the maximum of M S E ( f ,  £) with the 

average of M S E ( f ,  £) over T ■
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These robust optimal designs differ in the choice of the contamination class T  and 

the criterion of optimality. Box and Draper (1959) and Kiefer (1973) considered th a t 

the true regression function is a polynomial of possibly higher degree than th a t of the 

assumed one. Their attention is on finite dimensional T .  There are two major types 

of less restricted contamination classes, infinite dimensional T , used in the literature. 

They are:

F i = i /  : J  / 2(x)dx <  r f e ,  J  z(x )/(x )dx  =  0
I s  s

where r]s is a constant and assumed “small” so that the linear term  in (1.5) is still

dominant; and

f  ■ |/(x ) | <  <p(x) for any x  e  S, Jz(x )/(x )d x  =  0 j ,
with various assumptions about ip. The first class is used in Huber (1975, 1981), 

Wiens (1990, 1991, 1992, 1993, 1994, 1996, 1998) while the second Fi  is used in 

Marcus and Sacks (1976), Li and Notz (1982), Pesotchinsky (1982), Li (1984), and 

Liu and Wiens (1997). The first class is so full that the optimal designs obtained are 

continuous and need to be approximated by a discrete design prior to implementation. 

However, the second class is too thin, with the result that the robust designs found 

generally have a small number of support points and thus do not allow exploration 

of models larger than the fitted one. The review by Chang and Notz (1996) gives a 

summary of the previous work in this subject. It is still an open problem to define a 

compromise contamination class to accommodate both implementation convenience 

and model-exploration enhancement. In an innovative way, Yue and Hickemell (1999) 

introduce a class T  which is a reproducing kernel Hilbert space admitting a reproduc­

ing kernel function defined on 5  x S'; they have shown that under this contamination 

class, the continuous uniform design on S  is still the bias minimizing design.

For some resulting robust optimal designs regarding different optimality criteria,
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see Pesotchinsky (1982) and Wiens (1992). Both papers address multiple linear re­

gression, i.e. z(x) =  (l, x r ) . Wiens (1992) constructs the robust D-, A-, E-, Q- and 

G-optimal designs under T\ .  Pesotchinsky (1982) was interested in the best estimates 

for the coefficients in the regression function and obtained the D-, A-, and E-optimal 

designs under

1.3.3 R obust D esign  against both  (1) and (2)

To the author’s knowledge, Wiens (1998) is the first paper which takes the consid­

eration of robustness against possible violation of homoscedasticity assumption. He 

assumes the model (1.5) where the random errors, although uncorrelated with mean 

0, are possibly heteroscedastic with

var [e (x)] =  a 2g (x ) ,

where g (x) is an unknown member of a fluctuation class Q. Prior to this paper, many 

authors such as Wong (1992), Wong and Cook (1993), and Dasgupta, Mukhopadhyay, 

and Studden (1992) constructed optimal designs for heteroscedastic regression models 

with known efficiency functions A (x) =  g (x)- 1 . Wiens (1998) defines

Q  =  {p : J  g (x) dx <  J  dx j ,
and constructs the robust Q-optimal prediction designs in the presence of both pos­

sible variance fluctuation within Q and possible regression contamination within T\ .  

He considers the following problems:

PI) For ordinary least squares (OLS), determine a design to minimize the max­

imum of integrated mean squared error (IMSE), f s z T( x ) M S E ( f ,  g, £)z(x), over /  

and g;

P2) For weighted least squares (WLS), determine both weights and a design to 

minimize the maximum IMSE;

P3) Choose weights and design points to minimize the maximum IMSE, subject 

to a side condition of unbiasedness.
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The solutions for both PI) and P2) are found for multiple linear regression with no

interaction and with a spherical design space. The solution to P3) is given in complete

generality without restrictions on regressors and design space. This dissertation will

extend these results for P I) and P2) by removing the restrictions on both regressors

and design space in Chapter 3.

Fang and Wiens (1999) extend the work of Wiens (1998) to general extrapolation

problems. They consider the same model as (1.5), same fluctuation class Q, and a

similar contamination class to T\  but add on a condition for the contaminant on the

extrapolation space T  :
' >

f  ■ J  f 2(x)dx < r f c ,  j  / 2(x)<ix < r f e ,  J  z (x )/(x )d x  =  0
S T S

where r\T is a constant. T  is assumed to have nonzero Lebesgue measure and be 

disjoint from S. They construct the robust Q-optimal extrapolation designs in the 

presence of both possible variance fluctuation within Q and possible regression conta­

mination within T f . The corresponding problems to Pl)-P3) are addressed. Similarly, 

for this general extrapolation case, the solutions to both P I) and P2) are found for 

multiple linear regression with no interaction, with a spherical design space, and with 

an annular extrapolation space. The solution to P3) is given in complete generality 

without restrictions on regressors, design space and extrapolation space. This dis­

sertation will extend these results for P I) and P2) by removing the restrictions on 

regressors’ structure, design space, and extrapolation space in Chapter 3. It will also 

extend these results for P I), P2) and P3) to the one-point extrapolation case, where 

the extrapolation space has Lebesgue measure zero, in Chapter 2.

1.3.4 R obust D esign against (3)

There are a few situations wherein the optimal designs generally depend on unknown 

parameters which we aim to estimate; such designs are called “locally optimal” . These 

situations axe:
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(1) For a nonlinear regression model.

(2) For a heteroscedastic linear model with a variance function depending on 

unknown parameters (for instance, the variance of a response is an exponential or a 

power function of its mean).

(3) For a linear regression yet with the purpose of estimating a  nonlinear aspect, 

such as the ratio of two parameters.

Several strategies such as a Bayes approach, minimax scheme, and sequential 

procedures are used to overcome the parameter-dependency of the designs. For (3), we 

refer to Muller (1995). She uses the maximin efficiency criterion to  find the maximin 

optimal designs which maximize the minimum relative efficiency over a parameter 

space. For (2), we refer to Dasgupta, Mukhopadhyay and Studden (1992). They 

assume the parameter vector has a suitable specified prior distribution so tha t the 

Bayes optimal designs can be obtained. However, most designs found in the literature 

which deal with the parameter-dependency problem are constructed for (1).

For nonlinear regression, Ford, Titterington, and Kitsos (1989) present various 

static and sequential designs for nonlinear models without the consideration of model 

uncertainty. Sinha and Wiens (2002) have employed notions of robustness in the con­

struction of sequential designs for approximately specified nonlinear models. However, 

in some applications - ALT for example - sequential designs are not feasible (Ford, 

Titterington, and Kitsos, 1989); hence our focus in this dissertation is on static de­

signs and therefore the minimax approach (Silvey, 1980) is adopted to  find the locally 

most robust optimal design for the least favourable parameter value over a parameter 

region.

1.3.5 R obust D esigns for ALT and Censored D ata

The resulting robust optimal designs seen in the literature vary according to a num­

ber of factors. For instance, (1) the contamination class which gives the range of
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departures; (2) optimality criterion; (3) estimation method used for estimating the 

quantity of interest such as least squares estimators (Wiens, 1998), linear estimator 

(Li and Notz, 1982), M-estimator (Wiens, 1994); (4) the aspect of interest: estimation 

of the regression parameters, prediction of the response function, or extrapolation; a 

linear aspect such as the difference between two treatment effects (Heckman, 1987), a 

nonlinear aspect such as the ratio of two regression parameters (Mliller, 1995). Lastly, 

the design also depends on the limitation of the experiments in practice. Censoring 

is just such an example. This limitation provides us the special type of data we have 

to cope with. We call it “limitation” since this issue not only becomes a part of the 

design at the design stage, but also limits the choice of estimation methods in the in­

ference stage. Designs for censored data would wipe out the possibility of using least 

squares estimation in addition to the censoring scheme being a part of the design.

Recent work on robust designs for censored data in ALT are reported by Chaloner 

and Larntz (1992), Pascual and Montepiedra (2002), and Pascual and Montepiedra 

(2003). These studies emphasize the robustness against misspecification of the un­

derlying distribution and assume that the “true” model belongs to, or is distributed 

(with a known prior) onto, a set of several known candidates. Both the Bayesian-type 

approach and the minimax strategy are used. Ginebra and Sen (1998) investigated 

optimal designs for censored data, which are robust against possibly misspecified pa­

rameter values on which the optimal designs depend. The explicit designs obtained 

in these works are under straight line regression. Chapter 4 of this dissertation will 

extend these works by considering a more general regression model, allowing more ar­

bitrary uncertainty in the fitted regression response, and by dropping the restrictions 

on the structure of the regressors.
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1.3.6 Exam ples

Exam ple 1: R obust optim al design for m isspecified sim ple linear regres­

sion.

Wiens (1992) presents the explicit D-, A-, E-, Q- and G-optimal designs under T\  

in the case of fitting a plane, with the design space being a sphere of unit volume in 

W . His work extends Huber (1975) in terms of moving from simple linear regression 

to multiple linear regression, and also with regard to considering all admitted loss 

functions. Under T \  when p =  1, S  =  [—0.5,0.5], Huber (1975) gives the robust 

Q-optimal design. This design has the density of

k(x) =  (ax2 +  b)+, (1.6)

where (z)+ :=  max{2 , 0}, and a > 0, b depend on the value of v  :=  Under the 

same condition, Wiens (1992) presents the robust D-optimal design with the density 

having the same form as of (1.6) but with different coefficients, and the robust A- 

optimal design with the density having a different form of

K*)  =  (6 ~ 4 ) +-
JO

The quantity u can be interpreted as the relative importance of variance versus bias 

in the belief of the experimenter. When v is small, one places more emphasis on 

reducing the bias. For the extreme case, v 0, the design reduces the bias alone so 

it tends to the continuous uniform design. On the other hand, when u is large, one 

places more emphasis on minimizing the variance. The extreme case, v —*■ oo, then 

will be the design minimizing variance alone and tends to the classical optimal design 

which places half of the observations on each of —0.5 and 0.5. See Figure 2 for the 

plots of robust D-,  and ^-optimal designs obtained in Wiens (1992); and the robust 

Q-optimal design obtained by Huber (1975). We take v = 1 in these plots.

Exam ple 2: R estricted  robust optim al design for m isspecified polyno­

mial regression.
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Figure 2: Robust Q-, D-, and A-optimal design densities for misspecified simple 
linear regression, minimax in contamination space T \  with v =  1.

Heo, Schmuland, and Wiens (2001) consider approximately polynomial regression

unrestricted minimax theory. They further assume that S  is symmetric. For the 

polynomial regression with z(sc) =  (1 , x , ..., xp) , they restrict their search for minimax

The restricted robust Q-, D-, and A-optimal designs are constructed explicitly for

restricted robust Q-, D-, and A-optimal designs of quadratic regression. All plots 

provided use v =  1 .

E xam ple 3: Unrestricted robust optim al design for m isspecified poly­

nom ial regression.

Shi, Ye, and Zhou (2003) extend the results of Heo, Schmuland, and Wiens (2001), 

constructing the robust optimal designs by relaxing the restriction on the design

models and illustrate some of the difficulties tha t can be encountered in the minimax

approach without further restriction on the design densities by considering approx-
j i

imate quadratic regression z(x) = (1 , x, x  ) . They therefore introduce a restricted 

class of designs to avoid the mathematical and numerical intractability found in the

designs within the class of design measures with densities of the form

both misspecified multiple linear and polynomial regression models. See Figure 3 for
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Figure 3: Restricted robust Q-, D-, and A-optimal designs for misspecified polyno­
mial regressions.

density form; furthermore, they extend the results of Huber (1975) and of Wiens 

(1992) by removing the restrictions on the regressor’s structure and on the design 

space. This paper uses the key tool from nonsmooth optimization theory and makes 

more explicit and applicable results possible even without any of these restrictions 

mentioned above. The main result of this paper is that, under the robust optimal 

design density has an analytic form

fc(x)
=  (

zT(x)Pz(x) +  +
zT(x)Qz(x)

where constant matrices B, D , and a constant d are determined by minimizing a 

specified optimality criterion. These robust optimal designs are constructed for mis­

specified linear regression under ordinary least squares estimation. Chapter 3 of this
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Figure 4: Unrestricted robust Q-, D-, and A-optimal design densities for misspecified 
quadratic linear regression, minimax in contamination space T \ with u = 1 .

dissertation will extend their results in three directions: (1 ) to generalized linear 

regression; (2) to extrapolation; (3) to weighted least squares estimation.

The explicit and unrestricted robust Q-, D-, and A-optimal design for misspecified 

polynomial and multiple linear regression are given in Shi, Ye, and Zhou (2003). See 

Figure 4 for unrestricted robust Q-, D-, and A-optimal designs of quadratic regression. 

All plots provided use u =  1 .

1.4 Sum m ary o f  the Results in  this D isserta tion

The focus of our study is to construct robust designs for the cases of prediction, 

one-point extrapolation, and general extrapolation. Possibly misspecified nonlinear 

responses are considered. We assume that our regression model is an approximately 

known function of a linear regression function. Our designs are robust against the 

various situations including (1 ), (2), and (3) as listed in Section 1.3.1. We also deal 

with different types of data. For complete data, we construct the robust designs when 

nonlinear (possibly weighted) least squares estimation is used; for censored data, our 

robust designs assume maximum likelihood estimation is used.
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The main results of this dissertation are included in three chapters. In Chapter 2, 

entitled “Robust Designs for One-Point Extrapolation” , we consider the construction 

of optimal designs for the extrapolation of a regression response to one point outside 

of the design space. The response function is only approximately specified. As well, 

we allow for variance heterogeneity. The minimax designs and corresponding optimal 

regression weights are found in the context of the following problems:

(i) For (nonlinear) ordinary least squares (OLS) estimation with homoscedasticity, 

determine a design to minimize the maximum value of the mean squared extrapolation 

error (MSEE), with the maximum being evaluated over the possible departures from 

the response function;

(ii) For OLS with heteroscedasticity, determine a design to minimize the maximum 

value of MSEE, with the maximum being evaluated over the departures in both the 

assumed regression function and the variance homogeneity;

(iii) For (nonlinear) weighted least squares (WLS) estimation, determine both 

weights and a design to minimize the maximum MSEE;

(iv) Choose both weights and design points to minimize the maximum MSEE, 

subject to a side condition of unbiasedness.

Solutions to (i)-(iv) are given in complete generality. Numerical comparisons indi­

cate tha t our designs and weights perform well in combining robustness and efficiency. 

Applications to accelerated fife testing are highlighted.

Chapter 3 is named “Robust Prediction and Extrapolation Designs for Misspec­

ified Generalized Linear Regression Models” . In this chapter, we study minimax 

robust designs for response prediction and extrapolation in biased generalized linear 

regression models. Minimax designs have been constructed for the following problems:

(i) For OLS estimation with homoscedasticity, determine optimal extrapolation 

designs to minimize the maximum value of the integrated mean squared extrapolation 

error (IMSEE);
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(ii) For OLS with heteroscedasticity, determine optimal prediction designs to min­

imize the maximum value of the integrated mean squared prediction error (IMSPE);

(iii) For OLS with heteroscedasticity, determine optimal extrapolation designs to 

minimize the maximum value of IMSEE;

(iv) For WLS estimation with heteroscedasticity, determine optimal regression 

weights and minimax prediction designs to minimize the maximum value of IMSPE;

(v) For WLS with heteroscedasticity, determine optimal regression weights and 

minimax extrapolation designs to minimize the maximum value of IMSEE.

This chapter extends the previous work of others in three aspects: firstly, by 

considering a nonlinear fitted regression response; secondly, by taking a rather general 

extrapolation space; finally, and most significantly, by dropping all restrictions on the 

structure of the regressors.

In Chapter 4, titled “Robust Prediction and Extrapolation Designs for Censored 

Data” , we present the construction of optimal designs for both response prediction 

and extrapolation with a possibly misspecified generalized linear regression model 

when the data are censored. The minimax designs are found for maximum likelihood 

estimation in the context of the following problems:

(i) For prediction, determine a minimax design which minimizes the maximum 

value of IMSPE, with the maximum value being evaluated over the possible departure 

from the assumed response function;

(ii) For one-point extrapolation, determine a minimax design which minimizes the 

maximum MSEE;

(iii) For general extrapolation, determine a minimax design which minimizes the 

maximum value of IMSEE;

(iv) Determine unbiased minimax design for both prediction and extrapolation 

problems.

This chapter extends the work on robust designs for complete data in Chapters 2
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and 3 by incorporating censoring and maximum likelihood estimation. Solutions are 

derived by a nonsmooth optimization technique analytically, and are given in complete 

generality. A typical example in accelerated life testing is also demonstrated.

Chapter 5 provides applications and implementation of the continuous optimal 

designs tha t we have constructed in the chapters prior to it. A real life dose-response 

experiment is discussed. A couple of practical implementation methods are proposed 

and displayed after other existing approaches are reviewed. We also state th a t one 

of the existing implementation schemes is optimal under certain criteria. The com­

parison between one of our proposed approaches and an existing one shows tha t the 

proposed one is fairly close to optimal.
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CHAPTER II

ROBUST DESIGNS FOR ONE-POINT 

EXTRAPOLATION

A b s tra c t We consider the construction of designs for the extrapolation of a re­

gression response to one point outside of the design space. The response function 

is an only approximately known function of a specified linear function. As well, we 

allow for variance heterogeneity. We find minimax designs and corresponding opti­

mal regression weights in the context of the following problems: (P i) For nonlinear 

least squares estimation with homoscedasticity, determine a design to minimize the 

maximum value of the mean squared extrapolation error (MSEE), with the maxi­

mum being evaluated over the possible departures from the response function; (P2) 

For nonlinear least squares estimation with heteroscedasticity, determine a design to 

minimize the maximum value of MSEE, with the maximum being evaluated over both 

types of departures; (P3) for nonlinear weighted least squares estimation, determine 

both weights and a design to minimize the maximum MSEE; (P4) Choose weights 

and design points to minimize the maximum MSEE, subject to a  side condition of 

unbiasedness. Solutions to (P1)-(P4) are given in complete generality. Numerical 

comparisons indicate that our designs and weights perform well in combining robust­

ness and efficiency. Applications to accelerated fife testing are highlighted.

1 Co-authored with Professor Douglas P. Wiens. Submitted for publication.
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2.1 Introduction

In this chapter we study the construction of designs for the extrapolation of regression 

responses to one point outside of the design space. Such ‘one-point extrapolation’ 

designs are of interest in problems of accelerated life testing (ALT), in which products 

axe typically tested at unusual stress levels, with the results then extrapolated to 

a lower stress level anticipated in practice. Our model is somewhat similar to a 

generalized linear model, in tha t the response fitted by the experimenter is a function 

of a linear function of unknown parameters and known regressors. Our designs are 

robust in that we allow both for imprecision in the specification of the response, and 

for possible heteroscedasticity.

Robust designs for extrapolation of a, possibly misspecified, linear response were 

obtained by Fang and Wiens (1999); see also the references therein, in particular 

Dette and Wong (1996), Draper and Herzberg (1973), Huang and Studden (1988), 

Huber (1975) and Spruill (1984). The current work goes beyond Fang and Wiens 

(1999) in two ways - in the move to a generalized linear response as described above, 

and in our emphasis on extrapolation to a single point, thus allowing for more explicit 

and applicable results than were previously possible.

For nonlinear regression, Ford, Kitsos and Titterington (1989) present various 

static and sequential designs for nonlinear models without the consideration of model 

uncertainty. Sinha and Wiens (2002) have employed notions of robustness in the 

construction of sequential designs for the nonlinear model. In many ALT applications 

however, sequential designs are not feasible (Ford, Kitsos, &; Titterington, 1989), 

hence our focus in this chapter on static designs.

Fang and Wiens (1999) point out tha t “Extrapolation to regions outside of tha t in 

which observations are taken is of course an inherently risky procedure and is made 

even more so by an over-reliance on stringent model assumptions.” W ith this in mind, 

we shall depart rather broadly from the usual generalized linear response models:
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1. The response is taken to be an approximately known function of a linear function 

of known regressors and unknown parameters:

# ( y lx ) =  M0 oz(x )) +  n ~1/2 /(x )

for p regressors z(x) =  (^i(x), z2 ( x ) , zp(x))T, depending on a q—dimensional 

vector x  of independent variables. The function h is strictly monotonic, with 

a bounded second derivative. We assume that ||z(x)|| is bounded on S. The 

response contaminant /  represents uncertainty about the exact nature of the 

regression response and is unknown and arbitrary, subject to certain restrictions. 

We estimate 9 but not / ;  this leads to possibly biased extrapolations Y  (x) =  

h(9  z(x)) of E ( Y |x). The factor n - 1 / 2 is necessary for a sensible asymptotic 

treatment. It ensures that losses due to bias remain of the same asymptotic 

order as those due to variance, and is analogous to the requirement of contiguity 

in the asymptotic theory of hypothesis testing.

2. The experimenter takes n  uncorrelated observations Y, = Y  (Xj), with x* freely 

chosen from a design space S. Our goal is to choose these design points from S  

in an optimal manner in order to extrapolate the estimates of E ( Y  |x) to Xo.

3. The observations Y, are possibly heteroscedastic, with YAR{Y(x,)} =  <r2^(x<) 

for a function g satisfying conditions given below.

We estimate 9  by nonlinear least squares, possibly weighted with weights w (x). 

Our loss function is n  times the mean squared error of Y (xo) in estimating E ( Y |x0). 

This depends on the design measure £ =  as well as on w, f  and g:

M S E E ( f , g , w ,  0  -  n £ { [y (x 0 ) - £ ( Y |x 0)]2}.

We denote unweighted least squares by w = 1, and homogeneous variances by 

<? =  ! . The following problems will be addressed:

31

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



( P I )  For ordinary least squares (OLS) estimation under homoscedasticity, determine 

designs to minimize the maximum value, over / ,  of M S E E ( f ,  1 , 1 , £).

(P 2) For OLS estimation under possible heteroscedasticity, determine designs to 

minimize the maximum value, over /  and <7, of M S E E ( f , g, 1, £).

(P 3) For weighted least squares (WLS) estimation, determine designs and weights 

to minimize the maximum value, over /  and g , of M S E E ( f ,  g,w,  £).

(P 4) Choose weights and design points to minimize maXft9 M S E E ( f ,  g,w,£),  sub­

ject to a side condition of unbiasedness.

The rest of this chapter is organized as follows. The designs for P I are provided in 

Section 2.4. The designs and weights which constitute solutions to problems P2 and 

P3 are given in Section 2.5. Those for P4 are given in Section 2.6. Some mathematical 

preliminaries are detailed in Section 2.2. The maximization part of the minimax 

designs construction are provided in Section 2.3. Comparisons of these designs are 

presented in Section 2.7. All proofs are in the Appendix.

2.2  Prelim inaries and N ota tion

We define the ‘target’ parameter 80 to be tha t which produces the best agreement, 

in the L2-sense, between h(0Tz(x)) and E(Y \x )  :

8 0 =  argmin{ f  [h(8 Tz(x))  — E(Y\x)]2dx}.
0 Js

We assume tha t 80 is unique, so th a t with

f n(x) = y/n [E (Y |x) -  /i(0£z(x))]

and

z(x) =  h' ( 0q z (x ) )  z (x ) 

we have Js z ( x ) f n(x)dx — 0 . Where possible we drop the subscript on / .
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We shall assume th a t f n = f  is an ■unknown member of the class

F  = j /  I J  / 2 (x)dx < r)2s <  oo, |/(xo)| <  VT < J  z (x )/(x )d x  =  0  J

for positive constants r]s , r)T. The departure from homogeneity of variances is mea­

sured by <?(x), which is assumed to be an unknown member of the class

Q =  j s  I J  <?2 (x)dx <  •= J  dx.<  o o j  . (2.1)

The condition in (2.1) is equivalent to defining a 2 =  sup9 { f s var2 [e(x)] fldx } 1^2 .

To ensure the nonsingularity of a number of relevant matrices, we assume that 

the regressors and design space satisfy

(A) For each a / 0 , the set {x € S  : aTz(x) =  0} has Lebesgue measure zero.

We propose to estimate 6 0 using nonlinear least squares (LS) to fit £?(Y]x) =  

h(0Q z(x)) with nonnegative weights w(x).

We make use of the following matrices and vectors:

A s =  Js z(x)zT(x)dx, A t  = z(x 0 )zT(xo),

B  =  Is  £(x )z (XM * )£  ( d x ) , D  =  Js  z(x)z (x)w2 (x)5 (x)£ (dx) ,

b/.s =  Is  2 (x )/(x )tu (x )f (d x ), b ftT =  z(xo)/(xo).

It follows from (A) that A s is non-singular. The LS estimator of Go is

n

9 = a rg m in ^ fT j — h(0Tz(x))]2w(xi)
t=i

and satisfies 5 Zr=i &(®) =  0  f°r

0 i(0 ) =  [*i -  /i(0 Tz(xi))] h'(0Tz (x j) ]  w(Xi)z(xi).
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In addition, we have

n

m  =  £ « y « )
1 = 1

=  -  h(BTz(x i ))] [/i"(0 Tz(xi))] w(xi)z(xi)zT(xi)
i=i

[h'(0 Tz(xi) ) ] 2 w(xi)z(xi)zT(xi).^ T" /" NV|2'
i—1

The information matrix is

J ( 0 O) =  lim £ ( - - $ ( 0 0)) -  B,n—>oo n

since

E  i t } Y' ~  h (e oz (*i))] [k"(0 oz(x t))] w(xi)z(xi)zr (xi) 

=  n _ 1 / 2  ' ^  K ( 0O z (x i))] w(xi)z(xi)zr (xi)
i=l

is O ( n r1/2) by virtue of our assumptions on / ,  h and z.

By Taylor’s Theorem,

n n
o = £  0S(«) = £  {«0„) + *,(9)(9 -  «0) } ,

i=l i=l

where 0 lies between 9 and 0 O. Then

-  »o) =  ( - 1  £  « » ) )  £  0 .(9o) j .

Note tha t nT1/ 2 52?= l ^t(^o) is asymptotically normal, with asymptotic mean b /  s  and 

covariance

< ,̂(0°)] =  [^'(0 oz (x »))]2 <j25 (x i)z (xi)zT(xi)K;2 (xi) =  ct2D.
i=l i=l

As in Seber and Wild (1989, §12.2), the asymptotic distribution of n(9  — 0o) is

V̂ ( 0  -  0 O) ~
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and then by the delta method,

sfn (h(0Tz(xo)) -  h{9lz(x0))) ~  AN  (zT(x0)B _1b/i5, a2zr (x0)B _1D B ~1z(x0)) .

The loss function M S E E  splits into terms due to (squared) extrapolation bias, 

extrapolation variance, and model misspecification:

MSEE(f ,g ,w,£)  = n £ { [Y (x 0) -£ (y |x o ) ]2}

=  nE  |  jh(£Tz(x0)) -  h(0lz(x0)) -  - ^ / ( x 0) |

= EB(f,w,£) + EV(g,w,£) + f \ x 0)

where the squared extrapolation bias (EB) and extrapolation variance (EV) are

EB(f,  w,£) = n | E ^h(0Tz(x0)) -  h(9lz(x0))] }

- 2 V n /(x 0) £  ^ (0 Tz(xo)) -  h(0oz(xo))] ,

and

EV(g,w,£) =  nVAR(Y(x  0)) =  nVAR(h(0T z(x0))).

Asymptotically,

EB(f,w,£)  = b ^ B -1ArB -1b/iS-2 b J r B -1b/iS,

EV(g,w,£) — a2z T (x0)B -1D B _1z(x0) =  a2tr  A rB -1D B -1 .

We have defined £ to be a discrete measure, with atoms of size n - 1  at the design 

points (possibly repeated). We now adopt the viewpoint of approximate design theory 

and allow £ to be any probability measure on S. One reason for this is th a t as in 

Lemma 1 of Wiens (1992), the class E  is so broad tha t only absolutely continuous 

measures £ can have finite maximum loss. Thus, let k(x)  be the density of £, and 

define m(x) =  k(x)w(x).  W ithout loss of generality, we assume that the mean weight 

is f s w(x)£ (dx) =  1 . Then m(x)  is also a density on S  which satisfies

=  (2.2)u;(x)
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Various methods for implementing designs with continuous measures are discussed 

in Heo, Schmuland and Wiens (2001) and the references therein. As an example, 

a practical implementation for univariate x  is to place the n  design points at the

quantiles X{ — £ - 1  .

From the definitions of B, b f  s and b^y, we notice that E B ( f ,  w, £) depends on 

(io,£) only through m  and E V ( g ,w , | )  through m  and w. Hence, we can optimize

In this section we exhibit the maxima of M S E E ,  for fixed functions m(x)  and io(x). 

The minimizing m  and w  then constitute the solutions to P I -  P4. The maxima are 

obtained in a manner very similar to tha t used in Fang &: Wiens (1999), and so their 

derivations are omitted.

Define positive semidefinite matrices

and constants rT>s = ’nTfrjs , reflecting the relative amounts of model response uncer-

importance of variance versus bias. In this notation, we have the following theorem. 

T h eo rem  2.1 The maximum squared extrapolation bias is

over m  and w subject to (2.2) rather than over k  and w. In the next four sections we 

exhibit solutions to P I -  P4.

2.3  M axim ization  over f  E T  and g 6  Q

tainty in the extrapolation and design space, and u =  representing the relative
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where Xm =  zT(x0)B 1G B  1z(x0). The maximum is attained at

. , v I ??5 z r (x) {m (x)I -  A ^ B ja o ,  x  e  S,
/m(x) =  <

[ - r i r ,  X  =  Xo,

where ao =  B _1z(x 0 )/\/A ^ .

We obtain Theorems 2.2 and 2.3 from this result. Theorem 2.2 gives the maximum 

M S E E  under homoscedasticity while Theorem 2.3 gives that under heteroscedastic­

ity.

T h eo rem  2.2 The maximum mean squared extrapolation error in problem P I is 

a v p M S E E ( f , l , l , m )  = rfs | ( \ / A ^ + r TiS)  +  i/zr (x0)B _1z(x0) | , (2.3)

attained at f m.

T h eo rem  2.3 Define im(x) =  [zr (x)B _1z(x 0 ) ] 2 and a m =  / 5 [im(x)m 2 (x)]2 |/3 dx. 

Then the maximum mean squared extrapolation error in problems P2  -  P4 is

(VKn+rT,s)

+i/ft_ 1 /2  [/s {u;(x)Zm(x)m (x)}2dx ] 1 /2

sup M S E E ( f , g , w , m ) —r}2s < 
}&r,g£S

^  (2-4)

attained at f m and

</m,«(x) w(x)Zro(x)m(x).

The following theorem, whose proof is very similar to tha t of Theorem 2.2(a) in 

Fang & Wiens (1999), gives the minimax weights for fixed m(x).

T h eo rem  2.4 For fixed m(x)  the weights minimizing s u p M S E E ( f , g , w , m )  

subject to (2.2) are given by

t«;TO(x) =  a m [Z^(x)m(x)j_ 1 /3  /  [m(x) >  0].

Then m inw{s\ipf£:F ^ g M S E E ( f , g , w , m ) }  = rfis { ( V ^ + r r ^ ) 2 +  v Q ' ^ a J 2}.
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2.4 O ptim al D esigns w ith H om oscedasticity: So­
lution to  P I

Problem P I has become that of finding a density m*(x) which minimizes (2.3). The 

solution is given by Theorem 2.5, which reduces the problem to  a (2p  -f l)-dimensional 

numerical problem. The generality of our solution to P I, as well as those to P2 and 

P3, should be compared with the corresponding development in Fang & Wiens (1999). 

This generality, and the relative simplicity of the solutions, is made possible by our 

use of a one-point extrapolation region.

T h eo rem  2.5 The density m ,(x) minimizing (2.3) for OLS estimation is of the form

m*(x) = zT(x )7  +
+

[zT(x)(3 ( z t ( x ) /3 ) 2 J ’

where (z)+ =  max(2 , 0). The p x 1 nonzero vectors 7 , f3 and constant A satisfy: (i) 

f s m t (x)dx  = 1 , and (ii) minimize (2.3).

Example 1. We consider an approximate accelerated failure model in survival 

analysis (Hosmer & Lemeshow 1998, p. 272). It is a generalized simple linear regres­

sion with zT(x) — ( l ,x ) , p — 6o +  Q\X, and h{p) — eM. By Theorem 2.5, the optimal 

design density has the form

n +
m.(x) = CLiX Oi2 t 0>5

; V2 (2.5)
0 3 X +  a4 e2^ 1  (a3x +  o4) .

Note tha t (2.5) is over-parameterized - if one of Oi — a5 is nonzero then we can assume 

that it is unity. The term e2e° has been absorbed into 0 5 , but m* still depends on 6\. 

To address this issue we adopt a mixture of minimax and local approaches. We start at 

some 01 =  OfK The corresponding optimal design density is m ^ \x ) .  Then, we max­

imize (2.3) with m  = over an interval containing 0 ^  to find the least favourable 

value of 0i, say 0 ^ .  We iterate between minimizing over designs and maximizing 

over 0i until attaining convergence, say to 0^F. Finally, we employ Theorem 2.5 to
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Table 2.1. Numerical values for (2.5)
S  =  [0,1], 0i G [0,2], rTS - 1, and x0 =  1.17.

V Oi O2 03 0 5 eL/
0.5 0.130 0.421 -0.578 0.736 2

1 0.344 0.000224 -0.778 1.28 2

2 0.173 0.000286 -0.885 1 . 2 0 2

construct the ‘locally most robust’ design density m*(a;) =  +  2$lfx“s —

corresponding to &fF.

To illustrate the approach, we consider the Class-H insulation data from Nelson 

(1990, Table 2.1). We transform the temperature variable t  used there to our stress 

variable x  with domain of [0 , 1 ] via the linear transformation

-1.876 +  1000/(t +  273.15)
x -

0.283

The least squares estimate for the nominal model is 0i =  0.946, with standard error 

0.0486. The corresponding 99% confidence interval for 0i is (0.814,1.08). Taking the 

model misspecification into account, we consider a broader region 0i G [0,2]. We 

use the same extrapolation point Xq =  1.17 as Nelson (op. cit.). We carried out the 

process described above for several values of u, each time starting a t 0 ^  =  0.946. 

In each case we obtained dFF =  2. See Table 2.1 for the numerical values of the 

constants, and Figure 5(a) for plots. As a comparison, Figure 5(b) provides the plots 

of the locally optimal design densities a t 6\ = 0.946. All plots use a 4 =  1 and rx,s — 1-

2.5  O ptim al D esigns w ith  H eteroscedasticity

Our problems P2 and P3 have become the following:

(P2) Find a density m ,(x) which minimizes

r sup M S E E ( f , g , l , m ) 
f£F,g£G

1 /2

=  (v/A ^+rr.s) +  u Q  1/2 J  {^ (x )m (x )}2 dx (2.6)
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1X1Figure 5: Optimal minimax design densities m(x) =

Example 1  for x0 =  1.17. (a) locally most robust design densities for 0\ = 0^F in 
[0,2]; (b) locally optimal design densities for 0\ =  9 ^  =  0.946. Each plot uses three 
values of w. v = 2 (solid hne), v  =  1 (dotted hne), u =  0.5 (broken hne).

with Am and /m(x) as defined in Theorems 2.1 and 2.3 respectively. Then fc*(x) =  

m*(x) is the optimal one-point extrapolation design density for OLS estimation.

(P3) Find a density m*(x) which minimizes

rjs sup M S E E ( f ,  g, wm, m)
f£F,g£G

3/2

=  +vCl 1/2 f  {Zm(x)m 2 (x)}2/3dx
IJ s

Then the weights

iu,(x) =  a m, {Z^,(x)m*(x)}_1/3/  [m*(x) >  0]

and the density

fc*(x) =  a~\  [Zm.(x)m 2 (x ) ] 2 /3  ,

with a m, defined in Theorem 2.3, are optimal for one-point extrapolation with WLS 

estimation.

(2.7)

(2.8)

(2.9)
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2.5.1 M inim ax Designs for OLS: Solution to  P2

The solution to P2 is provided by Theorem 2.6 below.

T h eo rem  2.6 The density m*(x) minimizing (2.6) for OLS estimation is of the form

[(zr (x)")Q (zr (x)/3) +A] +
*l ;  a ^ ) i 3 f [ i + t ( m x w y

The p x 1 nonzero vectors 7 , (3, positive constant t, and constant X satisfy: (i) 

f s m*(x)dx = 1 , and (ii) minimize (2.6).

Example 2. Consider an approximate polynomial regression model E(Y\x)  Pd 

p  =  z T(x)80 ~  60 + 6\X +  ... +  9pxp, where z T{x) =  (1 , x , ..., xp) and the design space 

S  = [—1,1]. By Theorem 2.6, the optimal minimax extrapolation design density for 

OLS has the form

( 2 > ‘)  ( x > * ) + a 1 +
k*(x) . » = 0 ,»=o

. t = 0 . 1= 0

where (3 =  (P0,/31, ...,/3p)T ^  0, 7  =  (7o,7i, - , 'Y P)T £  0, and t  > 0. The minimax 

design we obtained is £* with density £*(x) =  km(x).

For p — 1, the minimax optimal design density has the form

m t (x) =
(ajz +  a2) (a3x  + a4) +  o5

+
( 2 .10)

_(asx  +  a4 ) 2 +  a6 (a3x +  a4)4. 

where > 0. Figure 6  gives plots of the minimax extrapolation design densities for 

varying x 0 and v  with a4 =  1 when rT S =  1 . A smaller v  (more emphasis on bias) 

results in the minimax design becoming more uniform, while a larger v  results in a 

design resembling tha t which minimizes variance alone. An extrapolation point Xq 

closer to one end of the design space leads to more design points being placed on the 

corresponding side of the design space. As the distance between Xq and S  increases
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(aii+02)(a3i+l)+os  ^------------- in Exam-Figure 6: Optimal minimax design densities m*(x) =  i (Q 3 I+ 1 ^ +Q6(a 3 I + 1 ^4

pie 2 with p =  1. (a) x 0 =  1.5; (b) x0 =  5. Each plot uses three values of v: v  =  10 
(solid line), v  =  1 (dotted line), v =  0.5 (broken line).

the design tends to become more symmetric. See Table 2.2 for some numerical values 

of the constants.

When p — 2, the minimax optimal design density has the form

(a0 +  a^x + a2x 2) (b0 +  bxx  +  b2x 2) +  c 1 +
m±(x) = (2.11)

_(ao +  a\x + a2x 2)2 +  d(ao +  a\x  +  a2x 2)4_ 

where d > 0. See Figure 7 for plots of, and Table 2.3 for numerical values with 

clq =  1 for, the minimax extrapolation design densities for varying Xo > 1 and u when 

Tr.s — 1 - We observe the same qualitative comparisons as when p  =  1 .

We now compare the minimax design found in Example 2 with two common 

competitors. Let £HL be the Hoel-Levine design (Hoel Sz Levine, 1964) which was 

derived under the assumption of an exactly correct fitted model. Let (y  be the 

continuous uniform design on [—1 , 1 ].
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Table 2.2. Numerical values for m , of Example 2 with p — 1.
x 0 V ai 02 a  3 0 5 06
1.5 0.25 3.78 0.853 5.96 -0.294 0.00116

0.5 6.59 1.51 7.83 -2.43 0.00253
1 14.06 3.18 11.23 -16.52 0.00320

10 294.38 55.93 30.15 -2758.06 0.00537
100 1247.25 223.60 39.53 -17826.34 0.00946

5 0.25 26.55 1.84 31.15 -34.92 0.000183
0.5 54.39 3.72 45.58 -213.28 0.000188

1 148.64 9.73 80.38 -1712.68 0.000122
10 751.39 42.48 66.96 -15013.05 0.00124

100 2138.31 117.57 45.21 -32404.40 0.0150

Table 2.3. Numerical values for m* of Example 2 with p = 2.
x 0 V bo ai Oi2 c d
1.5 0.25 0.668 -0.521 -2 .37 -0.192 -2.44 -0.102 0.123

0.5 0.853 -0.644 -2 .99 -0.127 -2.30 -0.200 0.280
1 1.23 -0.858 -4 .10 -0.0710 -2.17 -0.396 0.627

10 8.20 -3.77 -24.49 0.0358 -1.92 -3.83 8.03
100 77.71 -30.61 -223.96 0.0628 -1.86 -37.47 86.13

5 0.25 0.829 -0.144 -2 .54 -0.0323 -2.29 -0.116 0.232
0.5 1.12 -0.186 -3 .40 -0.0191 -2.19 -0.237 0.472

1 1.69 -0.255 -5.01 -0.0079 -2.11 -0.482 0.949
10 11.68 -1.20 -31.87 0.0147 -1.92 -4.89 9.64

100 111.06 -10.02 -296.67 0.0204 -1.88 -48.76 97.34
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Figure 7: Optimal minimax design densities m(x) =

in Example 2 for p  =  2. (a) for x0 =  1.5; (b) for x 0 = 5. Each plot uses three values 
of u: v  =  10 (solid line), v =  1 (dotted line), v  =  0.25 (broken line).

When p  =  1, the design points of £HL are Xi = — 1 and x% = +1 with mass 

£ h l ( ~  1) =  ^ 7  an(i ^ffL(l) =  In Figure 8 (a), we compare the loss for our min­

imax design £„ with tha t of £HL and tha t of when the model is exactly correct, for 

varying x 0. When the model may contain response contamination and heteroscedas- 

tic errors, %HL has su p jgM S E E  =  oo. Figure 8 (b) provides plots of s u p f ^ M S E E  

for £[/ and £* when the model contamination is maximal.

For the calculation of the loss at the nominal model we note tha t when the fitted 

model E(Y\x )  — z t ( x ) 0 q  is correct and the variances are homogeneous, the OLS 

estimates are unbiased and the loss is

r]s2M S E E ( f  =  0 , 5  =  l ,io  =  l , f )  =  ris2E V ( l , l , € )  = uzT(x0)B~1z(x0),

where B* =  (&tj)(p+i)x(,>+i) with element x t+j~2£t (dx). For the mirdmax

design supf >gM S E E  is given by (2.6). For the uniform design Theorem 2.3
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Figure 8: Comparisons of loss for a nominal straight line response; v  =  1 , rT>s  =  1 . 
(a) r]g2P V  vs. Xq (b) T]g2supftg M P S E  vs. x 0. Each plot uses a dotted line for 
and an asterisked line for £v . A broken line is used for £HL in plot (a).

gives

Vsh u PftgM S E E ( f ,  g,w = 1,£) =  rT/  +  2 \f lv  f {zT(x )A s lz (xQ)}Ady.
Js

1/2

For p — 2, £hl has three design points: = —1, £ 2 =  0, and =  +1 with mass

=  I g p i i ’ « « (">  =  “ d C «(> ) =  f s f r l f  1“
compare pi? E V  for our minimax design £„ with that of £HL and th a t of when the 

model is exactly correct. Figure 9(b) provides plots of pi.2supfi9M  S E E  for design 

and £* when the model contamination is maximal.

2.5.2 M in im ax  D esigns for W LS: S o lu tion  to  P 3

The solution to P3 is provided by Theorem 2.7 below.

T h eo rem  2.7 The minimizing m*(x) in (2.7) for WLS estimation is o f the form

_  [(zr (x b ) (zr (x)/3) + A -  d(x)] +
m*(x)

(zt (x)/3)^
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Figure 9: Comparisons of loss for a nominal quadratic response; u — 1, rx,s — 1- (&) 
rfi.2P V  vs. xq (b) r]g2supfjg M P S E  vs. Xq. Each plot uses a dotted line for and 
an asterisked line for A broken line is used for £,HL in plot (a).

where d satisfies the cubic equation

d3 +  £(zT(x)/3)2d -  £(zT(x)/3) 2 [(zT(x)(3)(zT(x)‘y) + X] =  0.

Explicitly,

1/3

+

[(zr (x)/3)(zT(x)7) +  A] +  

0 ( z r (x)/3)(zr (x)7 ) +  A] 2 +  § ( z  r (x)/3)2
V v /

[(zT(x)/3)(zr (x)7) +  A] -

^ / [ ( r - ( x ) « ( r  ( * h )  +  a ] 2 +

1/3

1/3

The p x  1 nonzero vectors 7 , /3, and constants A and £ > 0 satisfy: (i) f s  m*(x)dx  =1, 

(m,) minimize (2.7).

Then, (2.8) and (2.9) provide the optimal one-point extrapolation regression weights 

and design density for WLS estimation respectively.
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Example 3. Consider an approximate polynomial model as in Example 2. By 

Theorem 2.7, the optimal minimax m*(x) = kt (x)w*(x) for WLS has the form

m*(x) =
£ ^ x i ) I £ ^ ;ri I +  A _  d

.i= 0 , t = 0

Y < p ix '
.*=0

where d satisfies 

/  v
d5 + t  d - t (

. i=0 . i=0
=  0 .

\  t = 0  /  \  i= 0  /

The minimax design £„ has density £*(x) =  K(x)  computed from (2.9). The minimax 

weights w*(x) are obtained from (2.8). Assuming a non-zero intercept we can, without 

loss of generality, take /30 = 1.

For p =  1, the minimax optimal m* (x) has the form of

(1 +  a-ix) (o2 +  a3x)  +  A — d(x)1 +
m*(x)

f 1 +  a ix)
(2 .12)

where

n  \ 1 /3
d ( x ) = l ^ ( l  + aix f )

+ <

[(1 +  aix)(d 2 4" a^x} +  A] +  

■\J[(1 +  oix)(fl2 T  O'iX) +  A] + ^ ( l  +  Oix)
1/3

[(1 +  aix)(a 2 +  a3x) +  A] -  

\ J [(1 +  aix)(o2 +  a 3x) -f A] +  11(1 4- Ojx)

with t  >  0  and a2 +  a | >  0 .

See Table 2.4 for numerical values of the constants. Figure 10 gives plots of the 

minimax extrapolation design densities for S  — [—1,1] and varying xq > 1 . For p  =  2 , 

the minimax optimal m*(x) has the form

m*(x) =
(1 +  aiix +  a 2x 2) (a3 +  o4x +  a5x2) +  A — d(x)

( 1  +  a\X +  a 2x 2 ) 2
(2.13)

47

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Figure 10: Optimal extrapolation design densities for WLS and simple linear regres­
sion: (a) xq =  1.5; (c) xq =  5. Each plot uses two values of u: u — 10 (solid line), 
v — 0.5 (dotted line).

where

d{x) = ^ ( 1  +  aix  +  a2x2)2̂
1/3

[(1 +  aix  +  a 2x2)(a3 +  a4x +  a5x2) +  A]
\  1/3

+

+ yj[(l + aix  +  a 2x2 )(a3 +  a4x +  a5x2) + A] 2 +  | |( 1  +  axx +  a2x 2 ) 2

[(1 +  c^x +  a 2x 2 )(a3 +  a4x +  o5x2) +  A]

- 0 ( 1  -I- aix  +  o2x2 )(a3 + 0 4 X  +  a5x2) +  A] 2 +  (1 -f ajx  +  o2x 2 ) 2

with t  >  0  and a 3 +  a \  +  a2 > 0 .

See Table 2.5 for some numerical values of the constants, and Figure 1 1  for plots.

1/3
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Table 2.4. Numerical values for Example 3
with p  =  1 , Tt ,s =  1 ,5  = E-1,1]-

x 0 V Oi a  2 0 3 t A
1.5 0.25 0.287 0.0136 0.388 0.0177 0.675

0.5 -0.0118 0.00215 -0.0124 0.000161 0.541
1 -0.255 1.70 -0.966 68.73 2 . 0 0

1 0 8.69 8.78 53.96 8625.44 0.000230
1 0 0 16.09 149.83 1023.40 47926350 -0.139

5 0.25 40.37 0.634 24.34 0.280 0.000618
0.5 34.69 0.670 21.03 0.227 -0.00118

1 18.99 1.30 21.97 31.95 -0.000154
1 0 1.47 6.51 1.46 108419.4 -0.00368

1 0 0 1.07 7.04 1.04 68740870 -0.367

Table 2.5. Numerical values for Example 3 with p  =  2, t t ,s  =  1 ,5  =  [—1,1].
x 0 V ax a  2 03 Cb£ t A
1.5 0.25 0.469 2.47 0.00250 0.411 2.18 0.0300 0.767

0.5 0.514 2.83 0.199 0.751 4.18 5.02 1.73
1 0.533 3.15 0.0207 1.64 9.80 141.91 4.87

1 0 -1 .25 0.466 0.000150 -1.52 -0 .30 0.0000641 0.477
1 0 0 -2 .96 1.92 0 . 8 8 8 -1 .90 0.617 0.034 -0.00813

5 0.25 0.0665 1.76 0.173 0 . 1 2 2 3.38 10.87 2.19
0.5 0.0779 2.14 0.288 0.376 10.97 645.82 7.55

1 0.0878 2 . 6 6 0.962 12.87 416.62 36,493, 560 285.96
1 0 -0.000741 -0.603 0.326 0 . 2 1 0 -11.52 759.74 7.84

1 0 0 - 0 . 0 0 1 0 0 -0.617 0 . 2 2 0 0.632 -36.26 21033.71 23.69
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Figure 11: Optimal extrapolation design densities and minimax weights for WLS 
and quadratic regression: (a) design densities for Xo =  1.5; (b) minimax weights for 
Xo = 1.5; (c) design densities for Xq = 5; (d) minimax weights for Xo = 5. Each plot 
uses two values of v. v  =  1 0  (solid line), v = 0 . 1  (dotted line).

2 .6  O ptim al Unbiased Designs: Solution to P4

We say th a t a design/weights pair (£, w) is unbiased if it satisfies E B ( f ,  w, £) =  0 for 

all /  e  T ,  so tha t sup^g;F E B ( f ,  w, £) =  0. The following theorem, which is essentially 

Theorem 2.2(b) of Fang &: Wiens (1999), gives a necessary and sufficient condition 

for unbiasedness.

T h eo rem  2.8 The pair (w, £) is unbiased if and only if

m(x) =  Q =  1 .
J s dx

We can construct the optimal unbiased extrapolation design m 0 (x) by forcing 

supf€Jr E B ( f ,  w, £) =  0, and then minimizing supfleg E V (g , wm, ^). Thus let m 0 (x) =  

Cl, i.e. fco(x)wo(x) =  Cl. From Theorem 2.4, the optimal weight function is

tw0 (x) =  Wmo(x) = f2a mo[zr (x)A 5 1z(x0)]_4/3, (2.14)

and the optimal unbiased extrapolation design density is

fc0 (x) =  a - 10 [zr (x)A~1z(x0)]4/3,
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with

a

The minimax M SE E  is

mo = f [zr (x)A s 1z(x 0 )]4 /3dx. 
Js

min sup M S E E ( f ,g ,w ,m ) =  rj^+mmswp E V (g ,w m,()  = {r%s  +  uQ. 1/2 a ^ 2}
( t « , 0  fGF,g&g K O  g£Q

We summaxize these observations below.

T h e o re m  2.9 The density fco(x) of the optimal unbiased one-point extrapolation de­

sign measure £0, and optimal weights wq, which minimize s u p M S E E ( f ,  g, w, £) 

subject to s u p ^ r  E B ( f ,w ,  £) =  0 are given by

, =  [zr (x)A ~1z(x0)]4/3

and wofx.) =  Q/fc0(x). Minimax M S E E  is

sup M S E E ( f ,g ,w 0,£o) 
f€f,gz3

=  V 2S  1^1,5 +  ^ _1/2 ^ [ z T(x)A 5 1z(x0)]4/3dx | ,

attained at <?o(x) =  u ^ ' ^ x ) .

(2.15)

Example 4 Consider an approximate log-linear multiple regression model f£(y|x) 

«  exp(zr (x)0o) =  exp(0o +  9\Xi +  ... +  9qx q).

Note th a t the designs provided by Theorem 2.9 for this example depend on 9\ =  

(91, ..., 9q)T but not on 90. As in Example 1  we can find locally most robust designs in 

a neighbourhood 0  of a starting value 0 f \  We first construct the design fco(x, 0i°^) 

and weights Q/fco(x, 0 ^ )  provided by Theorem 2.9. We then find the least favourable 

0 1 ,l f  in ©• From Theorem 2.3, we find th a t this is equivalent to maximizing

(zr (x) A ^ z fo o ) } 4 

Is  fcg(x, 0(iO))L
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over the occurrences of 9i in the numerator of the integrand. We then construct the 

unbiased optimal design for Ol f > and then iterate to convergence.

When q =  1, S  =  [—0.5,0.5] the unbiased minimax design density is

. when oLF f  0i
J  / - b . 5{ e e L F l K c - 6:>:o ) + ( a ® o - f c ) i ] }  dx

where
sinh(^Lf’) coshf^tj?) — o 0.5 sinh(#£,f) — 26a =    , b = -------—--------- iC — —  ---------

Ol f  ’ 2 0 l f  2 0 l f

For a simple demonstration of the procedure described above, we take © =  [0.5,0.7]

and consider the cases x 0 - ±2 and x0 — ±9. For both x 0 = 2 and x 0 = 9, the

iterates converge to Olf = 0.7. The unbiased minimax design density at Xq =  2 is

k0(x)
{e07a(.149 -  2.045x)}4/3

1-0 5 {e07l(-149 -  2 . 0 4 5 x ) } 4 / 3 d x ’ 
and th a t at x 0 =  9 is

k {e07a (1.006 -  9.631x)}4/3
~  J-0  5 {e°'7:t(l-006 — 9.631a;)}4/3 dx 

When x0 =  —2 and Xo =  —9, we find O lf  =  0.5. The unbiased minimax design

density at Xo =  — 2  is

{ea5a(.261 -  2.170x)}4/3

k° ^  I —0.5  {e05l(-261 -  2 . 1 7 0 x ) } 4 / 3  d x ’
and th a t at x$ — — 9 is

{e05a(.859 -  9.465x)}4/3 

^ _  I ° o .5 {e°-5l(.859 -  9 . 4 6 5 x ) } 4 / 3  dx 

The corresponding optimal weights are Wo(x) = l/fc0 (x).

Example 5. Consider an approximate polynomial regression model E (Y \x )  ~  

z T(x)0o = 0q + 0\X +  ... +  0pxp with S  =  [—1,1]. By Theorem 2.9, the unbiased 

optimal density is

M * ) -
/ s [zt (x)A 5 z(x0)]4/3dx 
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(a) (b)

Figure 12: Unbiased optimal densities and weights for SLR: (a) design densities; (b) 
weights. Each plot uses two values of Xo- Xq = 1.5 (solid hne) and Xq =  5 (dotted 
hne).

with optimal weights wq{x ) =  ,5/ko(x).

When p — 1, we have the design

3.5z0 (0.5 +  1.5x0x ) 4 / 3 

~  (0.5 +  1.5x0 ) 7 /3  -  (0.5 -  1.5x0 ) 7 /3

See Figure 12 for plots.

When p = 2, the design is

. _  [(1.125 -  1.875sg) +  l.bxpx +  (5.625a;g -  1.875)x2]4/3
f l i [(1-125 — 1.875a:§) +  1.5xoa: +  (5.625x[) — 1.875)x2]4̂ 3 dx

For plots, see Figure 13.

2 .7  Com parisons and Rem arks

In Examples 2 we compared our designs for P2 with two more conventional competing 

designs £HL and £v . In this section, we use the approximate polynomial models 

(jp — 1 ,2) of these examples to compare the robust minimax designs for P2, P3 and
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Figure 13: Unbiased optimal design densities and weights for quadratic regression: 
(a) densities; (b) weights. Each plot uses two values of Xo: Xo =  1.5 (solid line) and 
Xo =  1 0  (dotted line).

P4 with each other and again with Chl and £v . Let ^ 2*, and denote the 

robust optimal designs that we obtained for P2, P3 and P4 respectively. Table 2.6 

gives the comparative values of rjg2E V  when there is no contamination and Table 2.7 

gives those of rig2 sup^s M S E E  for when there is maximal contamination. Of 

course supj  g M S E E  for ^HL is infinite.

When there is no contamination, we denote by r e ^ L the efficiencies of

and ^ 4’) relative to ^HL and by r e p  ^  ^  the efficiencies relative to £v . Under 

maximal contamination we write instead rep*** ( ^ )  ( ^  '*) =  oo. Table

2.8 provides the relative efficiencies rePL and reP  while Table 2.9 provides the relative 

efficiencies rep*** (V '*).

We have provided methods of constructing optimally robust designs for one-point 

regression extrapolation, taking into account various model uncertainties. The results 

require extensive numerical work prior to implementation. However, we can give some
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Table 2.6. Comparative values of rjs 2E V
when there is no contamination.

p  =  1

Xo V £00 £(3) £(4)
£ h l t u

1.5 0.25 1.57 1.44 1.44 0.563 1.94
0.5 2.70 2 . 8 8 2 . 8 8 1.13 3.88

1 4.71 5.68 5.76 2.25 7.75
1 0 36.47 42.00 57.62 22.5 77.5

1 0 0 347.05 398.60 576.19 225 775
5 0.25 13.77 14.14 14.60 6.25 19

0.5 24.81 28.27 29.21 12.5 38
1 45.28 51.06 58.41 25 76

1 0 383.80 432.99 584.13 250 760
1 0 0 3726.18 4197.94 5841.26 2500 7600

p = 2

Xo V £(2) £ 13; £W
€ h l

1.5 0.25 7.30 7.96 8.41 3.06 12.27
0.5 13.16 15.29 16.82 6.13 24.54

1 23.87 28.82 33.65 12.25 49.08
1 0 198.74 261.10 336.49 122.5 490.78

1 0 0 1923.71 2424.7 3364.90 1225 4907.81
5 0.25 1140.24 1240.23 1311.03 600.25 1730.25

0.5 2112.96 2387.43 2622.06 1200.5 3460.5
1 3950.39 4564.29 5244.11 2401.00 6921

1 0 35092.10 42875.19 52441.14 24010 69210
1 0 0 343816.60 417639.3 524411.4 240100 692100
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Table 2.7. Comparative values of rjs 7 supj  g M S E E
when there is maximal contamination.

p  =  1

X0 V t & ) £(4)

1.5 0.25 3.50 2.59 2.59 3.78
0.5 5.58 4.17 4.17 6.56

1 9.27 7.27 7.35 1 2 . 1 2

1 0 66.91 58.24 64.49 112.15
1 0 0 629.58 552.78 635.90 1112.55

5 0.25 22.42 16.65 16.95 26.71
0.5 40.69 32.30 32.90 52.43

1 74.91 62.85 64.80 103.86
1 0 648.81 575.17 638.96 1029.60

1 0 0 6330.03 5643.09 6380.57 10286.98
p  = 2

x 0 V £0 ) £(3)

1.5 0.25 19.50 14.71 10.39 23.10
0.5 30.85 23.61 19.79 45.20

1 51.63 40.85 38.58 89.40
1 0 384.07 336.75 376.77 884.98

1 0 0 3629.60 3211.04 3758.73 8840.79
5 0.25 1833.70 1422.04 1430.95 2586.07

0.5 3410.07 2780.92 2860.90 5171.13
1 6405.83 5432.51 5720.81 10341.27

1 0 57275.39 52036.29 57199.07 103403.65
1 0 0 561056.9 512051.6 571981.67 1034027.5
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Table 2.8. Relative efficiencies

reSx. (£(0)  311(1 Te<u (^( ))  •
P =  1

x 0 V £ ‘2): HL/U HL/U HL/U
1.5 0.25 0.36/1.14 0.39/1.35 0.39/1.35

0.5 0.42/1.44 0.39/1.35 0.39/1.35
1 0.48/1.65 0.40/1.36 0.39/1.35

1 0 0.62/2.13 0.54/1.85 0.39/1.35
1 0 0 0.65/2.23 0.56/1.94 0.39/1.35

5 0.25 0.45/1.38 0.44/1.34 0.43/1.30
0.5 0.50/1.53 0.44/1.34 0.43/1.30

1 0.55/1.68 0.49/1.49 0.43/1.30
1 0 0.65/1.98 0.58/1.76 0.43/1.30

1 0 0 0.67/2.04 0.59/1.81 0.43/1.30
P =  2

Xo V fW; HL/U HL/U HL/U
1.5 0.25 0.42/1.68 0.38/1.54 0.36/1.46

0.5 0.47/1.86 0.40/1.60 0.36/1.46
1 0.51/2.06 0.43/1.70 0.36/1.46

1 0 0.62/2.47 0.47/1.88 0.36/1.46
1 0 0 0.64/2.55 0.51/2.02 0.36/1.46

5 0.25 0.53/1.52 0.48/1.40 0.46/1.32
0.5 0.57/1.64 0.50/1.45 0.46/1.32

1 0.61/1.75 0.53/1.52 0.46/1.32
1 0 0.68/1.97 0.56/1.61 0.46/1.32

1 0 0 0.70/2.01 0.57/1.66 0.46/1.32

Table 2.9. Relative efficiencies ^  ^
p  =  1 p  = 2

x 0 V £(ii) * 0 0 | (4)
1.5 0.25 1.08 1.46 1.46 1.18 1.57 2 . 2 2

0.5 1.18 1.57 1.57 1.47 1.91 2.28
1 1.31 1.67 1.65 1.73 2.19 2.32

1 0 1 . 6 8 1.93 1.74 2.30 2.63 2.35
1 0 0 1.77 2 . 0 1 1.75 2.44 2.75 2.35

5 0.25 1.19 1.60 1.58 1.41 1.82 1.81
0.5 1.29 1.62 1.59 1.52 1 . 8 6 1.81

1 1.39 1.65 1.60 1.61 1.90 1.81
1 0 1.59 1.79 1.61 1.81 1.99 1.81

1 0 0 1.63 1.82 1.61 1.84 2 . 0 2 1.81
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informative guidelines:

1 . As v increases, the designs place more emphasis on variance minimization and 

less on protection from bias. As we would expect, the experimenter should 

then place relatively more design points closer to the boundary of the design 

space. W ith respect to the position of the extrapolation point relative to the 

design space, the experimenter should place relatively more design points in 

th a t segment of the design space which is closer to the extrapolation point, 

with this prescription becoming more emphatic when the extrapolation point 

is close to the design space.

2. Compared to designs for variance minimization alone, the designs we have found 

in this work are substantially more uniform. They can roughly be described as 

being obtained by replacing the point masses of the variance minimizing designs 

by uniform densities on regions containing, but not restricted to, these atoms.

3. Under heteroscedasticity the designs for P3 are, as expected, the most efficient. 

The gains in efficiency are greater when u is at least moderately large. Par­

ticularly for small v, the numerical simplicity of the designs for P4 make them 

attractive competitors.

Appendix: Derivations
The proof of Theorem 2.5 is very similar to but simpler than tha t of Theorem 2.6, 

and so is omitted.

P ro o f  o f T h eo rem  2.6. We seek a nonnegative function m (x) minimizing (2.6) 

subject to  f s m (x)dx  — 1. For a Lagrange multiplier s it is necessary and sufficient 

th a t m  minimize

( \A ^ + r r ,s ) 2 +  vVT1!2 f  {lm(x)m (x)}2dx - 2 s  f  m (x)dx
U s  J J s
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among all densities, and satisfy the side condition. After a lengthy calculation we 

obtain the first order condition

I J  (P (x)m (x) — Q(x) — u} (m(x) — m i(x))dx  >  0  (2 .A.1 )

for all densities where

.2P(x) = (zT(x)P) [1 +  t(zT(x)(3) ] and Q(x) = (zT(x )^)  (izT(x)(3) ,

for

/3 =  B z(x0),

* =  ^ ' 1 /2  (1+̂ ==) ^Js Om (x) m (x ) } 2 dx  

7  =  b _ 1 | k  +  |  J  z (x )zT(x)lm (x )m 2(x)dx  j /3 ,

> 0,

- l

(1+V̂ ) s '

To see the consequences of (2.A.1), write S + for the subset of S  on which m (x) >  0, 

and S° = S \  S +. Let c =  sup5  (P (x)m (x) — Q(x) — u}, let {x^} be a sequence of 

points in S + with P (xj)m (xj)  — Q (x j) — u approaching c, and consider a sequence 

{m ij}  of point masses at Xj. Then for this sequence (2.A.1) implies

(P (x )m (x) — Q(x) — u } m (x)dx  > c >  sup{P(x)m (x) — Q(x) — -u},Lls+ s+

so th a t in particular P(x)m (x) — Q(x) — u = c on S + and —Q(x) — u = P (x)m (x) —

Q(x) — u < c on 5°. Thus

(2.A.2)

Conversely, if (2.A.2) holds and Q(x) +  u  +  c >  0  on S° then

I  — c I (m(x) — m i(x ))dx  + I [Q(x) +  u] m i(x)dx 
Js+ Js°

=  c — c j  m 1(x)dx+ I [£?(x) +  u +  c] m i(x)dx — c I mi(x)d> 
Js+ Js° Js°

— c — c m,j(x)dx+ I [Q(x) +  u  +  c] m 1(x)dx  
J s  J  s°

>  0 ,

59

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



satisfying (2.A.1). Thus, in order tha t (2.A.1) hold, it is necessary and sufficient 

tha t (2.A.2) hold, for any c such th a t the right hand side of (2.A.2) is non-negative 

throughout S. More generally, m  has the form

m M  ( 0(X) + “  + CV  [(2T(X)7) (5’/(x ) '3) +A1+
m (x )  -  {  p j — )  (p x * ) « t  ( 5

with A =  u  +  c. Of course /3,7 , A and t  themselves depend on m. Rather than 

solve (2.A.3) for m  it is simpler merely to choose these constants so as to satisfy 

f s m (x)dx  — 1 and minimize (2 .6 ). □

P ro o f  o f T h eo rem  2.7. First, we show that hm(x ) =  (z minimizes

(2.7) subject to f s hm(x)dx  =1 but without the restriction of hm(x) being nonnegative 

on S. We introduce a Lagrange multiplier A. It is sufficient to show th a t hm(x) 

minimizes

( V ^ + r r . s ) 2 +  iAI_ 1 /2  |  J  [lm (x) m 2 (x)]2/3dx j - 2 A J  m (x)dx

for some constant A subject to f s hm(x)(x)dx  =1. This is again a simple variational 

problem. The minimizing m (x)  satisfies

I |a (x )m 1//3 (x) +  b(x)m(x) — c(x)} (m — m \)dx  =  0 ,
Js

where
r 11/2

a(x) =  zA T 1/2 J  (x) m 4 /3 (x)dx Ẑ /3  (x ) ,

b(x) = | l  +  - ^ = | z m(x),

c(x) =  < zT(x)
{i +  i s }

+ I4 V 1 ''2 fx )m 4/’3 fx)rfxj

\

z(x0)

B - 1 1 f s  z(x)zT(x ) lm ^  (x) m4 /3 (x )dx j B _ 1

[zr (x)B - 1

+A

for any mi with Js m 1(x)dx  =1. Therefore, we obtain the minimizing m (x), without 

the restriction of m(x) >  0 , as a solution of

a (x )m ^ 3(x) +  b(x)m(x) — c(x) = 0. (2.A.4)
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Let fh =  c — bm. Then, (2.A.4) becomes

a3c
m  -  — r m  +

b b
(2.A.5)

Since a and b are positive almost everywhere in S, (2. A.5) has only one real solution.

Applying Cardano’s formula for cubic equations, we obtain the only real solution for 

fh is

d — a
{ t + \ Ast ) 2 + ( t ) 3}  

+ -  \ !  ( ^ ) 2+ ( » ) * }

1/3

1/3

Then, the minimizing m(x), without restriction of m (x) > 0, is:

c — d
h m(x)  =

b ’

where A in c ensures f s hm(x)dx  =1.

The following step is to show the minimizing m (x ) with restriction of m (x) > 0,

is

^m(X)
c — d

hmi (x) =  <

It is sufficient to show that for any nonnegative hmi (x) in the following form of

hm(x), when hm(x) > 0 ;

>  0 , when hm(x) < 0 , 

being a density, will give a larger loss than (x) does. We claim that c <  0 almost 

everywhere in S, when ^  <  0. Then, we have

{a(x)[h+(x)]1/3 +  6 (x)A+(x) -  c} (h+(x)(x) -  hmi(x))dx

( a(x)[h+(x)]1/3 +  6 (x)A+(x) -  c} ((h+(x) -  hmi(x))dx
1 /im ( x ) < 0

=  [  chmi(x ))d x<  0 .
Jsri£^<o

Therefore, (x) should give the minimum loss. This gives the minimizing design 

density m*(x) with the form of

* ( \  ̂  ̂m  (x) =

L
-J.
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for almost all x £ S.

Now, we prove the claim of c < 0 almost everywhere in S, when ^  <  0. 

The claim is true due to d being a solution of (2.A.5), which means

a 3 . a3c a3 c — d
d =  — —d H— — =  — (c — d) < 0  almost everywhere, when—-— < 0 , 

b o b  b

since a >  0 almost everywhere. Due to b > 0 almost everywhere, c < d < 0 almost

everywhere.

Therefore, the optimal minimax densities are

c — d
m*(x) =

for almost all x  6  5 , where

d — a
{ t  + yj (^)2 + ( t ) 3} 

+ “  \!  ( ^ ) 2 + ( ^ ) 3}

1/3

1/3

and

a =  t(zT(x)/3)4/3, b =  (zT(x)/3)2, 

c =  ( z t ( x ) / 3 ) ( z t ( x ) 7 )  +  A,

for some p x 1 vectors 7 ^ 0 , ( 3 ^ 0 ,  and constants t  > 0, A, which satisfy: (i) 

f s m*(x)dx  =1, and (ii) minimize (2.7). Let t  =  f3 >  0, then d3 =  — ̂ d  +  ^  gives

d3 +  t(zT(x)(3)2d = t(zT(x)(3)2 [ ( z t ( x ) / 3 ) ( z t ( x ) 7 )  +  A] .

The final evaluation for d and m*(x) completes the proof. □
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CHAPTER III

ROBUST PREDICTION AND  

EXTRAPOLATION DESIGNS FOR 

MISSPECIFIED GENERALIZED LINEAR  

REGRESSION MODELS

A b stra c t We study minimax robust designs for response prediction and extrapo­

lation in biased generalized linear regression models. We extend previous work of 

others by considering a nonlinear fitted regression response, by taking a rather gen­

eral extrapolation space and, most significantly, by dropping all restrictions on the 

structure of the regressors. Several examples are discussed.

3.1 Introduction

In this chapter, we investigate the construction of robust designs for both prediction 

and extrapolation of regression responses. In our framework the response fitted by 

the experimenter is a known function of a linear function of unknown parameters and 

known regressors. Our designs are robust in that we allow both for imprecision in the 

specification of the regression response, and for possible heteroscedasticity.

Consider a regression model

E (Y \x )  fa h (9 Tz(x)) (3.1)

2 Co-authored with Professor Douglas P. Wiens. To appear in Journal of Statistical Planning and 
Inference.
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for a g-dimensional vector x  belonging to a bounded design space S  and for p regressors 

z(x) =  (zi(x), 2 2̂ ( x ) , zp(x))T. The function h is strictly monotonic with a bounded 

second derivative. We assume that ||z(x)|| is bounded on S. As indicated in (3.1), 

the fitted response is typically acknowledged to be only an approximation. The least 

squares estimates 0 of 0  and Y  =  h(zT (x)0) of i?(Y|x) are possibly biased if the 

response is misspecified. In this situation, robust designs can play an important role 

in choosing optimal design points xi,..., Xn € S  so tha t estimates 9  and Y  remain 

relatively efficient, with small bias caused by the model misspecification.

The true model may be written

E (Y \x )  =  h(0T z(x)) +  n _1/,2 /(x ) , (3.2)

where the contaminant /  is unknown but ‘small’. This may be viewed as arising from 

imprecision in the specification of h, or it can arise from a misspecified linear term 

and a two-term Taylor expansion: h{0Tz{x) +  <p(x)) fa h(0Tz(x))  +  h! {0T z{x))4>{x) = 

h(0Tz(x)) +  n - 1/2 /(x ) . The factor n - 1 / 2 is necessary for an appropriate asymptotic 

treatm ent - see Chapter 2.

The experimenter takes n  uncorrelated observations Y =  Y  (x,), with X* freely 

chosen from a design space S. One possible goal is prediction, or equivalently the 

estimation of E ( Y |x) throughout the region T  = S. If instead T P iS  = <p, the goal is 

extrapolation. In this chapter, we discuss both prediction problems and extrapolation 

problems. We will as well allow for the possibility tha t observations on Y ,  although 

uncorrelated, are heteroscedastic: v a r{Y (x)} =  cr2g(x ) for an unknown function 

within a certain class. We estimate 0 by nonlinear least squares, possibly weighted 

with nonnegative weights w(x).

For the prediction case, our loss function is n  times the integrated mean squared 

prediction error (I M S P E ) of Y (x )  in estimating FJ(y|x), x  € S. For extrapola­

tion, the loss is n  times the integrated mean squared extrapolation error (I  M S  E E )  

of Y  (x) in estimating F (Y |x), x  € T. Both depend on the design measure f  =
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n  1E”=17 (x =  x,) as well as on w, f  and g. Formally,

I M S P E ( f ,g ,w ,£ )  = n ^ £ { [ r ( x ) - £ ( y | x ) ] 2 } d x , 

I M S E E ( f , g , w , 0  =  j [ y ( x ) - £ ( y |x ) ] 2Jd x .

There is a sizeable literature concerning regression designs for a  possibly misspec­

ified linear response. Such designs for homoscedastic errors have been studied by Box 

and Draper (1959), Huber (1975) and Wiens (1992). Designs for prediction with as 

well possible heteroscedasticity were obtained by Wiens (1998). For extrapolation 

with homoscedastic errors see Draper and Herzberg (1973), Huber (1975), Lawless 

(1984), Spruill (1984), and Dette and Wong (1996) whose extrapolation designs for 

polynomial responses are robust against misspecification of the degree of the polyno­

mial. In these studies, the goal was extrapolation to one fixed point on or outside 

the boundary of the design space. Robust designs for extrapolation with possible 

heteroscedasticity were obtained by Fang and Wiens (1999), and by Chapter 2 of this 

thesis.

For nonlinear regression, Atkinson and Haines (1996) and Ford, Titterington and 

Kitsos (1989) present various static and sequential designs for nonlinear models with­

out the consideration of model uncertainty. Sinha and Wiens (2002) also employ no­

tions of robustness in the construction of sequential designs for the nonlinear model. 

In addition, Chapter 2 discusses the construction of robust designs for a possibly mis­

specified nonlinear model and for extrapolation of a regression response to one point 

outside of the design space. The current work goes beyond that of Chapter 2 in tha t 

we deal with both prediction and extrapolation and, in the latter case, we allow the 

extrapolation space T  to have nonzero measure. We go beyond Fang and Wiens (1999) 

in treating nonlinear models. The major advance, though, is perhaps our treatm ent 

of essentially unrestricted regressors z(x). Explicit designs in almost all problems 

involving misspecified regressors were hitherto restricted to cases in which z(x) was
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well structured - e.g. straight line regression (z(x) =  ( l ,x ) r ) or multiple regression 

without interactions on a spherical design space (z(x) =  (l, x r ) T, ||x|| <  const.). 

The improvements in the current work are made possible by our adaptation of recent 

results of Shi, Ye and Zhou (2003), henceforth referred to as SYZ.

SYZ investigated the analytical form of minimax designs for prediction problems 

when the function /  was an unknown member of the class

< ooj  z (x )/(x )d x  =  0 , J  f 2(x)dx. < rj2
s s

In our terminology, they considered the case of approximate linearity - h  =  1, where 

l(x )  =  x  - and homoscedasticity - g = 1. The orthogonality condition in T  ensures 

tha t the parameter 9 is uniquely defined in model (3.1). The second condition assures 

tha t overall /  is not too large.

The class J7 is sufficiently rich tha t any ‘design’ with finite maximum loss must 

have a density, and thus must be approximated to make it implementable. Approx­

imation methods are discussed in Heo, Schmuland and Wiens (2001). These can, 

for instance, take the form of choosing the design points so as to obtain agreement 

between the (i — l ) / (n  — l)-quantiles (i =  1 , ...,n) of the empirical and theoretical 

design measures, or between the moments to a sufficiently high order. SYZ show that 

the minimax design densities are of the form

zT(x)Pz(x) +  d l +
m (x) -

zr (x)Qz(x)

for almost all x  € S, where c+ =  max(c, 0), for suitable constant symmetric matrices 

P , Q and a constant d. These constants may then be determined numerically.

In this chapter we extend SYZ so as to obtain robust designs for extrapolation 

and prediction, assuming that the regression response is as at (3.2) and th a t the 

errors may be heteroscedastic. If the function h in (3.2) is not the identity then 

our designs are only locally optimal. They are however still of substantial practical
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interest - see reasons for this as listed in Ford, Torsney and Wu (1989) and restated 

in Ford, Titterington and Kitsos (1992). One typical reason is th a t where sequential 

designs can be carried out in batches, the design for the next batch might be a locally 

optimal design based on the estimates obtained from the previous batch. Allowing for 

uncertainty in our best guess at a local parameter, we adopt the approach introduced 

in Chapter 2 to find ‘locally most robust’ designs which are minimax with respect to 

a region containing the initial parameters.

We denote unweighted least squares by w — 1, homogeneous variances by g — 1  

and the linear regression problem by h — 1 . The following problems will be addressed:

(P I )  Ordinary least squares (OLS) estimation with homoscedasticity: determine 

designs to minimize the maximum value, over / ,  of I M S E E ( f ,  1 ,1 ,0 -

(P 2 ) OLS with heteroscedasticity: determine designs to minimize the maximum 

value, over /  and g, of IM S P E ( f ,g ,  1, £).

(P 3) OLS with heteroscedasticity: determine designs to  minimize the maximum 

value, over /  and g, of I M S E E ( f ,  g, 1,£).

(P 4) Weighted least squares (WLS) estimation with heteroscedasticity: determine 

designs and weights to minimize the maximum value, over /  and g,

of I M S P E ( f , g ,w ^ ) .

(P 5 ) WLS with heteroscedasticity: determine designs and weights to minimize the 

maximum value, over /  and g, of IM S E E ( f ,g ,w ,£ ) .

The rest of this chapter is organized as follows. The designs for P I are provided 

in Section 3.3. Those for P2 and P3 are given in Section 3.4. The designs and 

weights which constitute the solutions to problems P4 and P5 are given in Section 

3.5. Some mathematical preliminaries are detailed in Section 3.2. We present several
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examples in Section 3.6, and conclude with a few remarks in Section 3.7. Derivations 

are provided in an appendix.

3.2  P relim inaries and N ota tion

The regression models discussed in this chapter are very similar to those in Chapter 

2 , except th a t we consider the prediction case as well and allow the extrapolation 

space to be any space, of positive Lebesgue measure, outside the design space. For 

the reader’s convenience, we briefly describe this model here.

We assume that the contaminant /(-) is an unknown member of

F  =  1/ \ J  f 2(x)dx < r f s < 0 0  ̂J  f 2{x)dx. < i}x <  oo, J  z (x ) f ( x )d x  =  0 j  ,
( 3 . 3 )

where /i =  0Tz(x), z(x) =  z (x) and r)s , r)T are positive constants. For

prediction problems (T =  S ) the second condition in (3.3) merges into the first. The 

last condition is required in order that Go can be uniquely defined, and in fact arises 

through the definition

Go =  arg0  min { J [ h M  — £ (y |x ) ]2d x j

together with

/ n(x) =  y/n [£ (F |x ) -  h (0 lz(x))] .

Where possible, we drop the subscript on / .

The observations Yi, although uncorrelated with mean /i(0Qz (Xj)) +  n _1//2 /(x j) , 

are possibly heteroscedastic with

u a r { F ( x i ) }  =  £T2 5 ( x i ) ,  ( 3 . 4 )

for a function g satisfying conditions given in Section 3.4.

For extrapolation problems, the only assumptions made about T  are th a t it is 

disjoint from S  and has nonzero Lebesgue measure. To ensure the nonsingularity of
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a number of relevant matrices, we assume that the design and extrapolation spaces 

satisfy

(A) For each a  ^  0, the set {x G S' U T  : aTz(x) =  0} has Lebesgue measure zero. 

We make use of the following matrices and vectors:

A s = f s z (x )zT (x)dx, A  T = f T z (x )zT (x)dx,

B  = f s z (x )zT(x)w(x)£  (d x ), D =  f s z (x )zT(x)w2(x)g(x)i (d x ) ,

b /.s =  f s  z(x )/(x )w (x )f (d x ), b f p  = f T z (x)/(x)dx .

It follows from (A) that A s is non-singular and th a t B  is non-singular as well if, 

as is assumed below, £ is absolutely continuous. The least squares estimate of Q§ is
n

0 = argmin ̂ [ Y i  — h(0Tz(x))]2w(xi).
i= i

The information matrix is

X(0O) = lim £ ( - I $ ( 0 o)) -  B,
n—► oo n

and the asymptotic distribution of s/n{6  — #o) is

y/n(0 -  00) ~  A A (B -1b /iS,<r2B - 1D B -1).

For prediction, the loss function I M S P E  splits into terms due to  bias, variance 

and model misspecification:

I M S P E ( f t g,w,£)  =  j [ Y ( x ) - £ ( Y |x ) ] 2j d x

=  ?i J  E  | [ h ( 0 Tz(x)) -  h(0 lz(x ))  -  - ^ / ( x ) ] 2|  dx 

=  I P B ( f ,  w, 0  +  IP V (g , v ,Z )  + J  / 2 (x)dx, 

where the integrated bias (I P B ) and integrated variance (I P V ) are

IP B ( f ,w ,£ )  = n  J  { e  [h t f f z fa ) )  -  h(0%z(x))]} dx

—2y/n J  f ( x ) E  ^h(0Tz(x)) — /i(0qz (x))] x̂
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and

IP V (g ,w ,£ )  = n  J  V  A R (Y  (x))dx = n  J  V A R (h(0Tz(x)))dx. 

Asymptotically,

I P B ( f , w , 0  = t f ' s B - ' A s B - ' b f j ,

I P V ( g ,w ,0  = o t t r iB - 'A s B - 'D ) .

(The second term in I P B  vanishes asymptotically by virtue of the orthogonality 

condition in the definition of P.)

For extrapolation, the loss function I M S E E  decomposes in a similar fashion:

I M S E E ( f , g , w , 0  =  n j f  £ { [ v X x ) - £ ( y |x ) ] 2} d x

=  I E B ( f ,  w, 0  +  IE V (g , *>,£) + f  / 2(x)dx,

where, asymptotically,

I E B ( f , w , 0  = -  2b/>rB - 1b /i5,

IE V (g ,w ,£ )  = oHr ( B ^ A r B ^ D )  .

Let fc(x) be the density of £, and define m(x) =  k(x)w(x). W ithout loss of 

generality, we assume that the mean weight is f s w(x)£ (dx) =  1. Then m (x)  is also 

a density on S  which satisfies

(*■*>J s  w(x )
and

B =  J  z(x)zT(x)m(x)dx, 

b /,s =  J  z (x ) f(x )m (x )dx .

From the definitions of B , b  and b  f j , we notice that IP B  ( f ,w ,£ )  and I E B  ( / , w, £)

rely on (w, £) only through m  and IP V (g ,w ,£ )  and IE V (g ,w ,£ )  through m  and w. 

Hence, we can optimize over m  and w subject to (3.5) rather than over k and w.
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Although the I E B  may be negative,

I E B  +  j  f 2(x)dx ~ n J  {-£ — h(0Q z(x)) — n _1/2 / (x ) j  j  dx >  0 .

We define rx,s =  Vt /Vs > reflecting the relative amounts of model response uncer­

tainty in the extrapolation and design spaces and v  =  a2 /rfs representing the relative 

importance of variance versus bias. We remark tha t for prediction our results depend 

on the unknown parameters only through v  and 00 while for extrapolation they de­

pend on the parameters only through rTtS, u and 6q- In the special case h =  1, the 

results are independent of 9q.

We also require the definitions K =  f s z (x )zT(x)m 2(x)dx, G =  K — B A ^ B ,

Hs = B ^ A sB -1 and Hr = B_1ArB _1.

In the next three sections, we will exhibit solutions to P1-P5.

3.3 O ptim al Extrapolation Designs w ith  Homoscedas- 
tic ity: Solutions to P I

SYZ provide the form of the minimax density for prediction when h = 1. In this 

section, we extend this result to extrapolation and to a general h.

Denote the largest eigenvalue of a matrix X  by Amax(X). As in Theorem 2.1(a) 

in Fang and Wiens (1999), the maximum extrapolation bias is

sup I E B ( f ,  1 ,0  =  rfs 
i t ?

( \ A  max ( G H r ) + r x , s )  — T \ ^ > 0.

Therefore, the maximum I M S E E  is

sup I M S E E ( f , 1,1, m)  =  r)2s

=  rfs

( > A  max ( G H r ) + r r , s )  + i ^ ^ z r ( x ) H T z  ( x ) m ( x ) d >  

^\/Amax(GHx)+rx}s^ +  vtr  (B 1A r ) . (3.6)

A minimax design is one for which the density m  minimizes (3.6). This is an 

optimization problem with an objective function involving a  generally nonsmooth
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function Amax. Employing nonsmooth optimization theory (Clarke 1983; see SYZ for

a useful review), we obtain the following result.

T h eo rem  3.1 The minimax design density for extrapolation, when the variances are 

homogeneous, is of the form

The constants minimize (3.6) and satisfy f s m (x)dx  = 1.

Remarks:

1 . As in SYZ, in the examples for linear regression in this chapter, we only consider

ited in Theorem 3.1 but with the odd functions of these components vanishing. 

The proof of this is very similar to the proof in Shi (2002) for linear regression.

Example 3.1. For the regression model

Y  = 9o +  6\x  +  92x 2 +  f ( x )  +  e, x  € [—a, a]

with symmetric extrapolation space [—r2, —ri) U (r i ,r2] with 0 <  a <  7*1 <  r2, it is 

reasonable to restrict to symmetric designs. According to Theorem 3.1, the symmetric 

optimal design for this model with homoscedasticity is of the form

(3.7)

for almost all x  € S, for constant symmetric matrices P , Q (>  0) and a constant d.

symmetric densities when the structure of the design and extrapolation spaces 

make this appropriate.

2. The symmetric - in each component of x  - minimax density has the form exhib-

(3.8)

where <24 and a$ are nonnegative. Some computations for this case are shown in 

Example 6.1.
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Example 3.2. For the linear regression model with two interacting regressors 

Y  — 0o +  0\X\ +  #22-2 +  @\2X\X2 +  f ( x i, X2) +  £,

with S  =  [—a,o] x [—a,a] and T  =  [—r,r] x [—r,r] \  S  (r > a), the minimax 

designs for prediction were studied by Adewale (2002) who states tha t the symmetric, 

exchangeable minimax density is given by

2^2 \  +/  a +  b(xl +  xl)  +  cx\x\ \  
X i ’^ 2) y d +  b’(x\ +x%) + d x \ x l )

From Theorem 3.1, the minimax symmetric and exchangeable density for extrapola­

tion is also of this form.

Example 3.3. For the nonlinear regression model

Y  =  e6o+6lX +  f ( x )  + e, (3.9)

for which h(x) =  ex, we take S  = [0,1] and T  = (1 , r]. The locally most robust

extrapolation design density is given by

, . _  / e26lX(ai +  bix +  C1J 2) +  d\  +
\  e2BlX(a2 +  b2x  +  c2x 2) J

where a2 > 0, C2 >  0 and a\, bi, Ci, 0 2 , b2, c2 and d chosen in order to minimize (3.6)

subject to Jq1 m (x)dx — 1. The dependence of the design on 9\ is an issue which will

be addressed in Example 6.2.

3.4 Optim al P rediction  and Extrapolation D esigns  
with H eteroscedasticity fo r  OLS: Solutions to  
P 2  and P 3

In this and the next section we construct designs which are robust against het­

eroscedasticity as well as against departures from the fitted response. The het­

eroscedasticity is governed by g(-) - recall (3.4) - which is assumed to belong to

G — {9  /  5 2 (x)dx <  fl_ 1  =  f  dx. < 0 0 }. (3.10)
\Js  J s
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In (3.10), the equality condition is equivalent to defining
1/2

G =  SUp 
9

/  var2 {e(x)} Q,dx 
J s

As in Theorem 1(c) in Wiens (1998) and Theorem 2.1(c) of Fang and Wiens (1999), 

for OLS the maximum integrated mean square prediction error and extrapolation

error are

sup I M S P E ( f ,  g, 1, m) 
}£F,g£G

=  i  Amax(K H s ) +  iAT 1 /2

(3.11)

J  {zT(x)H sz(x)m (x)}2dx
1/ 2 '

and

sup I M S E E ( f ,  g, 1, m) =rj2s < 
f£F,g£G

( \ A  max (G H r )+ rr ,s )2+  

i/O- 1 / 2 [J5 {zT(x)H r z(x)m (x)} 2d x ] ^
(3.12)

respectively. Therefore problem P2 requires finding a density m(-) which minimizes 

(3.11) whereas P3 requires finding a density which minimizes (3.12).

T h eo rem  3.2 The minimax design densities for both prediction and extrapolation 

with OLS estimation, when the variances are possibly heterogeneous, have the form

zr (x)Pz(x) +  d
m(x) = (3.13)

,zT(x)Qz(x) +  {zT(x)Uz(x)}2. 

for almost all x  E S, for constant symmetric matrices P , Q ( > 0 ) , U ( > 0 )  and a

constant d such that (1) f s m (x)dx  — 1 and (2) for prediction, (3.11) is minimized,

while for extrapolation (3.12) is minimized.

Example 4-1■ For the simple linear regression model

Y  = d0 + Oix +  f ( x )  + e, (3.14)

with S  — [—1 ,1 ], the minimax prediction design was studied by Wiens (1998). It was

shown there that the minimax symmetric density is given by

. . (  a +  bx2 \ +
m W ° ( 1 +  CT*+<fe4 )  . (3-18)
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a form which now follows as well from Theorem 3.2. Similarly, for extrapolation, Fang 

and Wiens (1999) derive the form (3.15). More generally, for OLS in the multiple 

linear regression model

p -  l

Y  =  0O +  ^ 2  OjXj +  /(x )  +  e,
j =i

with S  being a unit hypersphere centred at the origin and T  =  {x jl <  ||x|| <  r} , 

Fang and Wiens (1999) obtained conditions under which the minimax symmetric 

extrapolation design density would be given by

(  .  +  H M 12 V
} yc + d||x||2 + e ||x||4y '

This form now follows, without conditions, from Theorem 3.2 and Remark 2 in Section

3.3.

Example ^.2. For the nonlinear model (3.9) it follows from Theorem 3.2 th a t the 

locally optimal robust design density for both prediction and extrapolation is of the 

form

t \ = ( ______________e 2eig ( q 1 +  bxx +  Cj X2)  +  d ___________________________________ .

\ e ^ [ { a 2 + b2x  + c2x'i ) + e ^ { a z + bi x ^ c i x ^ ] )  ’ 1 j

where a% > 0, >  0, 0 3  >  0 and C3 > 0. When B\ = 0, (3.16) can be reduced to

m*(x) =
ai +  a%x + a^x2

1 +  0 5 X +  oqx2 +  a 7x3 +  agx4 

where oq and as are positive. The computation of our designs for this model are 

detailed in Example 6.2.

3.5 Optim al P rediction  and Extrapolation D esigns 
with H eteroscedasticity fo r  WLS: Solutions to  
P4 and P 5

In this section we propose to estimate 9  by weighted least squares, and again consider 

both prediction and extrapolation problems. For prediction we proceed as in Wiens
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(1998) and obtain

. , \  Amax(K H s )+
sup IM S P E ( f ,g ,w ,m )  =ris < 

feT,g£G I yQ - 1 / 2 [j’s {i(;(x)z:r(x)H 5 z(x)m (x)}2 dx] 1

(3.17)

The weights minimizing (3.17) for fixed m (x), subject to f s ^ ^ d x  — 1, are, in terms 

of

as,m =  J  [zT(x)H 5 z(x)m 2 (x)]2 /3dx,

given by

u>s,m(x) = a 5 ,m[{z:r(x )H sz(x ) } 2 m(x)]_1/3 / (m (x)  >  0} . (3.18)

Then

min sup IM S P E ( f ,g ,w ,m )  — rfs { Amax(K H s ) +  (3.19)
“ /e^,9e5 1 ’ J

and problem P4 becomes tha t of finding a density m*(x) which minimizes (3.19). 

Then the weights tOs:m*(x) obtained from (3.18) and the design density

k* M  = = a s,m* {zr (x)H 5 z(x)m*2 (x ) } 2 /3
Ws,m- W

are optimal for WLS prediction.

For extrapolation we follow Fang and Wiens (1999) and obtain

(v/A max (G H T)+ r r jS)2+
sup IM S E E ( f ,g ,w ,m )  = rfs < 

fsr,g£S

In terms of

vCL [ /5 {ic(x)zT(x)H r z(x)m (x)}2 dx] 1 /2

otT,m  =  J  [zt(x)H tz (x)m2(x)]2/3dx, 

the minimizing weights are given by

ior,m(x) =  a r ,m[{z:r(x)H Tz(x ) } 2 m(x)]_1/3J {m(x) >  0} , (3.20)

with

min sup IM S E E ( f ,  g, m) =  r/| { (y /  Amax(G H  r ) + r T j5 ) 2 +  vCl , (3.21)
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and to  solve P5 we seek a density m*(x) which minimizes (3.21). Then the weights 

WT,m'(*-) obtained from (3.20) and the design density

m*(x) , r-T /xxxfe.(x) = =  a r,rn* {zT(x)H Tz(x)rn*2 (x)} (3.22)
wr,m’(x)

are optimal for WLS extrapolation.

The following theorem provides the form of m*(x) for both prediction and extrap­

olation.

T h eo rem  3.3 The minimax densities m*(x) for both prediction and extrapolation 

with WLS estimation, when the variances are possibly heterogeneous, are of the form

c(x) — fc(x) 1 +
m*(x) =

6 (x)
(3.23)

where, for constant symmetric matrices P , Q (>  0 ), U  (>  0) and a constant d we have 

6 (x) =  zr (x)Qz(x), c(x) =  zr (x)Pz(x) +  d and

, a3 a3c
fc3 +  — k -  —  =  0 ,

0  0

with a(x) =  {zT(x)U z(x)}2̂ 3. Explicitly,

1/3

k =  a I
1/3'

(3.24)

The constants satisfy (1) f s m (x)dx  = 1 and (2) minimize (3.19) for prediction, 

(3.21) for extrapolation.

Example 5.1. For the simple linear regression model (3.14) with S  =  [—1,1] and 

T  =  {x |1 <  |x| < r}  we obtain (3.23) with

c(x) =  ai +  0 2 X2,

b(x) =  a3 + a4x 2,

a(x) = (a5 +  oqx2)2̂
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where <23 >  0 , a4 >  0 , a | + a\ > 0 , 0 5  > 0  and a6 > 0  are determined as in the 

statement of Theorem 3.3. The minimax weights are obtained from (3.18) and (3.20) 

with

zr (x)H sz(x) =  2 +  § * » ( /  x 2m (x)dx^ ,

zr (x)Hxz(x) =  2(r — 1) +  ^ ( r 3 — l)a; 2 ^ j  x 2m (x)dx

Example 5.2. For the nonlinear model (3.9) with S  =  [0,1] and T  =  (1, r] (r >  1) we 

attain (3.23) with

c(x) =  a0 +  e2*11 (ai +  a2x +  a 3x2) ,

b{x) — e20lX ( 0 4  -f a5x + a^x2) ,

a{x) =  \e26lX (a7 +  a8x  +  agz2 ) ] 2^3

where a4 >  0 , 0 6  > 0, a\ +  a | >  0, <27 >  0 and a$ > 0 are determined as in Theorem

3.3. Note tha t the term e2e° has been absorbed into a 1 ,..., <2 9 . The minimax weights 

are derived from (3.18) and (3.20) with

zr (x)H s z(x) =  ( u ^ s - u i y 2 e26lX4>(x;S!,32, 33, ^ ,  u2,u 3), 

z t ( x ) H t z ( x )  =  (u!U3 -v^y2 e28lX(f>(x;t1, t 2>t3,u 1,u 2,u 3),

where

<Kx,  ̂15 s2i *̂ 1) ^ 2 > ^ 3)

= (u|si -  2U2U3S2 +  u \s3) + 2 («1 U3S2 — U1U 2S3 — U2U3S1 + u \s 2)  X

+  ( u 2S 3 -  2U1U2S2  +  « 2S l )  ® 2 >

e201 — 1 e2ei — Si e201 — 2 s2
Sl ~  Wi ’ 5 2  — 2^  > Ss — 2 ’

e20ir -  e2Sl + re2eir -  e2®1 — + ^ 20^  _  e2Si _  2 f2

~  2?̂  ’ ^ 2 =  2?̂  ’ =  2?̂  ’

ui = f  e20ixm*(x)dx, u2 — f  xe20lXm*(x)dx, u3 =  f  x 2e20lXm*(x)dx.
Jo Jo Jo
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Table 3.1. Coefficient values for the density (3.8)
with 0 4  =  1 for Example 6.1.

r V a l 0 2 03 0 5 a 6 Loss
1.5 0 .1 0.377 78.22 273.86 278.32 149.87 6.79

0.25 1.16 -6.45 289.98 217.64 27.96 9.50
1 1.16 -37.05 70.72 -2.60 18.62 19.70
5 0.804 -13.31 16.85 -3.98 4.18 61.06

1 0 0.923 -20.53 24.57 -3.99 3.98 108.49
1 0 0 1.65 -124.34 132.51 -3 .50 3.06 853.72

5 0 .1 0.524 -1.04 1.55 - 1 . 1 0 1.59 1302.54
0.25 0.654 -4.17 5.71 -5 .02 6.30 2544.55

1 0.822 -6.52 8.38 -4 .62 5.33 8508.54
5 1 .2 1 -16.62 19.64 -4.28 4.59 34294.25

1 0 1.47 -28.05 32.05 -4.19 4.39 63387.51
1 0 0 2.98 -214.47 226.23 -4.02 4.04 534222.2

3.6 C om putations and Examples

Example 6.1. Recall Example 3.1 and (3.8). We take T\ =  1 and denote r<i by r. 

If either of 0 4  or 0 6  is nonzero, we may take it to be unity. We take 0 4  =  1 and 

Tt ,s =  1- Some numerical values of the constants are shown in Table 3.1. Figure 14 

gives plots of the minimax extrapolation densities for varying r and v. The designs 

can be roughly described as replacing those points with masses at —1 , 1 and 0  in 

the variance minimizing designs by more or less uniformly distributed clusters in 

neighbourhoods of these points. Decreasing u results in more uniform designs. A 

larger r (wider extrapolation region) results in more uniformity as well, especially in 

the central region.

Example 6.2. Recall Example 4.2 and the nonlinear model (3.9) with possible 

heteroscedasticity. The locally optimal design density for prediction is given by (3.16). 

See Table 3.2 for the numerical values of the constants in (3.16) and Figure 15(a) for 

plots. Here we have taken 0 2  =  1 and Q\ =  1.

These designs are only locally optimal since they depend on the value of B\. To 

deal with this, we obtain ‘locally most robust’ designs as in Chapter 2. For this, we
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Figure 14: Minimax extrapolation densities m {x) =  ( & S & 2 r )  in Example 6.1.
(a) r  =  1.5; (b) r  =  5. Each plot uses three values of u: v — 0.1 (solid line), v = 1 
(dotted line), 1/ = 5 (broken line).

Table 3.2. Coefficient values for the density (3.16) 
in Example 6.2 with a 2 =  1 and Q\ =  1.

V O i bi C l d 62 c2 0 3 bz c3

0.5 -513.21 495.36 6.99 782.40 3.44 46.96 16.07 —39.74 25.31
1 932.34 -2428.57 1892.85 -322.54 12.23 106.62 25.44 —60.19 38.81
5 2044.47 -4883.06 3303.49 -816.61 7.95 25.45 35.90 -81.08 50.00

take a further maximum of the loss as 6\ varies over some interval / ,  and determine 

the coefficients of m (x) so as to minimize this maximum loss. For I  =  [0,2], the 

locally most robust designs are detailed in Table 3.3 for varying u. In each case, 

we found tha t the least favourable 6\ within / ,  say 0 \F, is 2. See Figure 15(b) for 

plots. Although, as pointed out in Silvey (1980), local designs tailored for optimality 

at a least favourable parameter value are sometimes inefficient a t distant points, it 

has been our experience that the designs constructed here do not exhibit a strong 

dependence on 9\.

Example 6.3. Recall Example 5.2 and model (3.9) with S  =  [0,1]. The locally
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Figure 15: Optimal minimax design densities

( \ _  f _________ e2e*g(ai +  &ix +  CjX2) +  d_________ \  +
m  X l^e20! 1 [ ( 1  +  b2x  +  c2x 2) +  e4eiz(o3 +  b3x + c3x2)2] /

in Example 6.2. (a) Locally optimal design densities for 6\ =  1 ; (b) locally most 
robust design densities for 0\ — 0 \F in [0,2]. Each plot uses three values of v. v  =  0.5 
(solid line), u =  1 (dotted line), v = 5 (broken line).

optimal product of density and weights for the prediction problem is given by (3.23). 

We take a4  =  1. For Q\ ~  1, the numerical values of the constants in (3.23) are given 

in Table 3.4. See Figure 16 (a) and (b) for plots of the locally optimal design densities 

and the corresponding optimal regression weights.

For I  =  [0.5,1.5], the locally most robust products of density and weights are 

provided in Table 3.5 for varying v. In each case, we found that the least favourable

Table 3.3. Coefficient values for the locally most robust density (3.16).
V a i h C l d h c 2 o 3 h C 3

0 . 5 2 4 0 2 2 . 1 0 - 2 8 2 3 3 . 1 8 4 8 7 4 . 5 5 3 3 3 6 . 7 3 1 . 7 8 2 0 . 0 1 5 8 . 1 0 - 2 9 1 . 2 1 3 6 . 2 6

1 9 2 0 2 9 . 0 1 - 2 1 7 2 9 2 . 1 1 3 8 8 1 5 . 1 - 6 9 2 2 2 . 6 1 . 3 4 8 . 3 2 1 7 3 . 6 3 - 3 6 2 . 9 2 0 0 . 6 0

5 1 2 2 5 2 1 . 4 - 2 7 6 5 2 8 . 6 1 6 1 9 7 3 . 8 - 8 5 3 2 3 . 7 9 . 0 6 1 0 5 . 1 2 2 5 . 5 6 - 4 8 4 . 0 2 6 5 . 6 7
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Table 3.4. Coefficient values for the locally optimal product (3.23) 
of density and weights in Example 6.3.

V o 0 O i O 2 a z <25 06 07 Os 09
0.5 163.19 582.58 -369.48 211.80 6.18 26.47 18978.42 165.78 1 1 2 2 . 1 0

1 134.09 2710.50 -2352.19 1737.83 11.92 84.98 138645.0 4451.39 65374.78
2 -3269.9 10678.5 -12184.9 9087.9 13.45 81.59 581177.6 20860.9 701666.1

Table 3.5. Coefficient values for the locally most robust product (3.23)
of density and weights in Example 6.3.

v a o a\ 0>2 o3 <15 06 07 Os 09
0.5 454.81 1703.6 —838.72 822.42 13.29 79.77 92972.48 2543.26 13839.7

1 439.79 3903.5 —2821.33 2281.76 0.198 81.49 255487.7 299.60 30479.6
2 -4938.2 7237.6 -6652.43 3692.79 -3.95 74.05 95311.10 3999.84 56657.3

6\ within I  is 0.5. See Figure 16 (c) and (d) for plots.

3 .7  Concluding Rem arks

We have derived minimax prediction and extrapolation designs for misspecified gen­

eralized linear response models in the following three cases: (i) using OLS estimation 

under homoscedasticity, (ii) using OLS estimation 'under possible heteroscedasticity 

and (iii) using WLS estimation under possible heteroscedasticity. For each case with 

OLS, we conclude tha t the minimax extrapolation design density has the same form 

as th a t for the corresponding prediction problem. For case (iii), the product of the 

design density and weights function has the same form for both prediction and extrap­

olation. These analytic forms are completely general, but contain several constants 

to be determined numerically.

Chapter 2  have derived minimax designs for extrapolation to a single point. Al­

though the current work has assumed an extrapolation space with positive Lebesgue 

measure, the designs for one point extrapolation can be derived informally as limits 

of those in this chapter, as follows.

(1) The minimax one-point extrapolation design density for (i) above was shown
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Figure 16: Locally optimal and most robust design densities and corresponding 
weights for WLS in Example 6.3: (a) locally optimal design densities, (b) optimal 
weights corresponding to (a); (c) locally most robust design densities, and (d) optimal 
weights corresponding to (c). Each plot uses two values of u: v  =  0.5 (solid line) and 
v  =  2  (broken line).

in Chapter 2 to have the form

m(x) =
zT(x)/3z (x ) 7  +  d

{zT(x)/3}2

This is the special case of form (3.7) with P  and Q -  /3{3r .

(2) The minimax one-point extrapolation design density for (ii) above was shown 

to have the form

m (x) —
{zr (x)/3} {zr (x)7 } +  d
{zr (x)/3}2 + b{ zr (x)/3}4 

This is the special case of (3.13) with P  Q — ^ 0 T and U  =  y/bQ.

(3) The minimax product of design densities and weights for (iii) was shown to
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have the form

m ( x )  =
(zT(x)/3)(zT(x ) j )  + d — c

(z T(x)P Y

w h e r e  c  sa t is f ie s  t h e  c u b ic  e q u a tio n

c3 +  b (z r ( x ) /3 ) 2c =  b(z t ( x ) /3 )2 [ (z T ( x ) /3 ) ( z r ( x ) 7 )  +  d]

and b > 0. This is the special case of (3.23) with P  = ~̂f , Q — /3f:

VbQ.

!t and U  =
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Appendix: Derivations
P ro o f  o f  T h eo rem  3.1. In what follows a prime (•)' denotes the Fr6 chet derivative

(See SYZ for basic definitions.)

Define L\ — sup^e^  IM S E E ( f ,  1,1, m ), given at (3.6), and let m(x) be a density 

minimizing L\. (The existence of such a density is established as in Ye and Zhou, 

2005.) Then by the non-smooth Lagrange multiplier rule (Clarke 1983, Th. 6.1.1), 

there exist real numbers A >  0 and 6, not both zero, such that

Note th a t G =  f s [{m(x)I — B A ^1} z(x)] [{m(x)I — B A ^1} z(x )]T dx  >  0. We tem­

porarily assume that G is positive definite. Then as a t Theorem 2 of SYZ, the gen­

eralized gradient of Amax(G H r) at m  is

is the convex hull of set A. From the Chain Rule (Clarke 1983, Th. 2.3.10),

of (•), <9(-) is the Clarke generalized gradient of (•) and iVm(x)>0 (m) is the normal cone 

of {m  : m (x) > 0 }, i.e.

N m(x)>o(m) =  w(x)(m 1 — m )dx  <  0 , for any rai(x) >  0

(3.A.1)

where
w r H rw w r H Tw

and

( \ A  max(G H i’)+ rT]S|  — ^ 5Amax(G H r )

w  eM (m )
VAmax(G H r )
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We require the following Frechet derivatives, which can be calculated as in SYZ:

(tr [B 1A t ] ) / =  —zr (x)B 1A rB  1z(x), (3.A.3)

f e f - )  =  zT(x)M wz(x) +  jb ^ z (x )  j  m(x). (3.A.4)
V /  171

In (3.A.4), w is any vector in R and M w is a p x  p symmetric matrix, bw a p x 1

vector whose specific values are not important to us.

By (3.A.1), (3.A.2), (3.A.3) and (3.A.4), we have that

2

0 € Xrjs
1 + rr.s

\A max (G H  T )
^ co | z T(x)M wz(x) +  ^b^z(x )j m(x) : w € M (m ) |

—v zT(x)B  1A rB  1z(x)

+5 +  A m (x ) > 0 (m) 

Let M w =  ( 1 -\-

(3.A.5)

’’’T . S b w — j 1 1 "v'-WfGHr) J w’ w y V Am«(GHr)
( f s m (x)dx  — l ) ^  =  1. Then (3.A.5) becomes

\ 1 / 2  -
  ' b w and note thatj

0 € Xrfs co | z T(x)M wz(x) +  (b^z(x))2 m(x) : w € M (m) |  — ^zr (x)B  *ATB  *z(x) 

+5 +  Am(x)>o(m).

It can be shown, as in the proof of Theorem 1 of SYZ, that A ^  0.

By the definition of convex hull, there exists a positive integer N , nonnegative 

scalars A i,..., XN with Ai +  ...+ XN — 1, w< € M (m ) C R p and e € N m(x)>o(m) such 

that

0 =  Xr)2s
Z Z i  Xi{zr (x)M Wiz(x) +  (b£ .z(x))2 ra(x)} 

- y z T(x )B -1A TB - 1z(x)
+  S +  £

N

= x V2s Y  Xi (b w ^ W ) 2 ™(x ) -
t=l

Xr)2s z T(x)
N

i= l
z(x) +  5 +  £.
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Consequently, there exists a constant symmetric matrix

N

P  =  X v l  v B - ' A t B - 1
i= 1

a constant positive semi-definite matrix Q =  \rfs X )ili ^tbWib^.. and a constant d — 

—6 such that

0 =  zT(x)Qz(x)m (x) — zr (x)Pz(x) — d +  e. (3.A.6)

From Proposition 3 of SYZ we see tha t £ = 0 almost everywhere on {x £ S  : m (x) > 

0 } and hence

zr (x)Qz (x)m(x) — zr (x)Pz(x) — d =  0

for all x  such that m (x) > 0. Since zT(x)Qz(x) =  ( b ^ z ( x ) } 2 > 0 for

almost all x  G S  we obtain

. . zT(x)Pz(x) +  d m(x) = — .— 
zT(x)Qz(x)

for almost all x  € S  such tha t m(x) > 0. For those x € S  such tha t m(x) =  0 

we apply Proposition 3 of SYZ again to infer that £ < 0  a.e. and hence by (3.A.6 ), 

zr (x)Pz(x) +  d < 0. Consequently,

zT(x)Pz(x) +  d 
zT(x)Qz(x) ~

for almost all x  6  S' such tha t m(x) =  0 , and (3.7) follows in the case that G  is 

positive definite. This unnecessary assumption may now be dropped by arguing in 

the same manner as in the proof of Theorem 1 in SYZ. □

P ro o f  o f T h eo rem  3.2. We give the proof only for extrapolation, tha t for prediction 

being similar but simpler. Define Zm(x) =  zr (x)H r z(x). Then from (3.12) we seek 

a  density m(-) minimizing

T  d e f ■ T U j T Q J P t P f f  1  ' I  2  J  ( v / ^ m a x ( G H r ) + 7 ' r ! s )  +L2 = sup I M S E E ( f ,g , l ,m )  = rfs < v J
f£^ s [Js {Zm(x)rn(x)}2dx] 1 /2
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We again initially assume G > 0. As in the preceding proof there exist real numbers 

A >  0 and 8, not both zero, such that

0 € AdLi(m ) +  8 ^ j  m (x)dx  -  1^ +  Arm(x)>o(w), (3.A.7)

where the last two terms ( f s m (x)dx  — l ) / and Âm(x)>o(m) are the same as those in 

the proof of Theorem 3.1. Note that L\ and differ only in their variance terms. 

Using

J  {lm(x )m (x)}2d

^ f  { { lm (x )m (x )} 2 d x

l/2 \  '

0 G A77I <

- 1 /2  I ^ (x ) m (x ) -

2 z t ( x ) H t  ( f s lm(x)m 2(x )z(x )zT(x)dx) B _1z(x)

in the evaluation of (3. A.7) we obtain

co | z r (x)M wz(x) +  (b ^z(x ))2 m(x) : w G M (m ) | +  

vQ.-1!2 ( / s {Zm(x)m(x)}2 dx ) - 1 / 2  

& (x )m (x )- 

2zr (x)H r  (fs lm(x)m 2 (x)z(x)zT(x)dx) B _1z(x)

+5 +  Nm(x)>o(m).

As in the proof of Theorem 3.1, A ^  0.

Employing the definition of convex hull we assert the existence of a  positive integer 

N , nonnegative scalars A i,..., Â r with Ai +  ...+  A# =  1, Wj G M (m )  C R p and 

£ G Nm(x)>o(m) such that

E fe i {zr (x)M w<z(x) +  (b^ .z(x ))2 m (x)} +  

vQ - 1/ 2 ( / {Zm(x)m(x)}2dx ) " 1 /2
0 =  A rjg (

l2m(x )m (x)~

2zr (x )H r ( f s lm(x)m 2(x)z(x )zT(x)dx) B _1z(x)

+5 + £ ■
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Consequently, there exists a symmetric matrix

P = * ? l
- 1 /2 N

uQ, 1/2 y j  {lm(x)m(x)}2dxJ {Pi + P f}  ~  Y ]  AjMWi

with P i  =  H r  (Js lm(x)m 2(x)z(x)zT(x)dx) B _1, a positive semi-definite matrix

N

Q = ?ls 'y 1 -^ibwibwi)

a positive definite matrix

U  =  % i/ 1 /2  ( f t  J  {Zm(x)ra(x ) } 5

t=l

- 1 / 4

|2d x ) Hr ,

and scalars
£o , 8

£ =  A ’ d = —X

such th a t

0 = zT(x)Qz(x) +  {zr (x)U z(x ) } 2 m(x) — zT(x)Pz(x) — d 4 - e. (3.A.8)

The proof is now completed in a manner essentially identical to th a t of Theorem

3.1. □

P ro o f  o f  T h eo rem  3.3. Again we give the proof only for extrapolation. In a 

manner very similar to tha t in the preceding two proofs we find th a t there exists a 

symmetric matrix P , a positive semi-definite matrix Q, a positive definite m atrix U 

and a constant d such th a t on the set where m(x) >  0 ,

zT(x)Qz(x)m (x) -I- {zT(x)U z(x)} 2 3̂ m 1/,3 (x) — zT(x)Pz(x) — d = 0.

Therefore the minimizing m (x) is a solution to

a(x)m 1/,3 (x) +  b(x)m(x) — c(x) =  0 , (3.A.9)

where a(x) =  {z: (̂x)U z(x)}2/,3, 6 (x) =  zr (x)Qz(x) and c(x) =  zr (x )Pz(x) +  d. Let 

fh = c — bm. Then, (3.A.9) becomes

a a°c
fh  +  — f h  — =  0 . (3.A.10)

91

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Since a and b are positive almost everywhere in S, (3. A. 10) has only one real solution.

Applying Cardano’s formula for cubic equations (Dunham 1990), we obtain ra(x) =

fc(x), where k is as at (3.24). Thus

, N c (x )-fc (x ) 
m(x) = Kx)

on the set where m (x) >  0. The rest of the proof is now essentially identical to that 

of Theorem 3.1. □
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CHAPTER IV

ROBUST PREDICTION AND  

EXTRAPOLATION DESIGNS FOR CENSORED

DATA

A b stra c t This chapter presents the construction of robust designs for a possibly 

misspecified generalized linear regression model when the data are censored. The 

minimax designs and unbiased designs are found for maximum likelihood estimation 

in the context of both prediction and extrapolation problems. We extend preceding 

work of robust designs for complete data in Chapter 2 and 3 by incorporating cen­

soring and maximum likelihood estimation. It also broadens former work of robust 

designs for censored data from others by considering both nonlinearity and much 

more arbitrary uncertainty in the fitted regression response, and by dropping all re­

strictions on the structure of the regressors. Solutions are derived by a nonsmooth 

optimization technique analytically and given in full generality. A typical example in 

accelerated life testing is also demonstrated.

4.1 Introduction

We investigate the construction of designs for both prediction and extrapolation of 

a regression response incorporating censored data. Such designs are of interest in 

problems of life testing where there are two commonly used testing-time saving plans: 

censoring and acceleration. In this chapter, we will address both.

Generally speaking, tests yielding complete data take too long to run especially 

for those products having long life-spans. To save time, the testing results can be
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analyzed before all units fail. The data then consist of lifetime information on unfailed 

units, so called censored data. If such information is ignored, the estimates of mean 

lifetime would be definitely underestimated. Another purpose of censoring is tha t one 

can analyze the most recent test data while the test is still running.

When life testing runs a t the stress levels within the range that the product 

would be normally used, the goal is prediction, namely the estimation of the mean 

response throughout the region of interest. For accelerated life testing (ALT), in which 

products are tested at higher than normal usage stress levels, the goal is extrapolation. 

For an extrapolation problem, if one is interested in estimating the mean response at 

a particular normal usage stress level which is lower than testing stress levels, we call 

it a one-point extrapolation problem; if one’s interest falls into estimating th a t at a 

certain range of normal usage stress levels, we call it a general extrapolation problem.

There is considerable literature regarding robust regression designs for a possibly 

misspecified linear response when observations are complete. For prediction problems, 

those with homoscedastic errors have been studied by Box and Draper (1959), Huber 

(1975), and Wiens (1992) and those with possible heteroscedasticity were obtained 

by Wiens (1998). For one-point extrapolation problems, those with homoscedasticity 

were investigated by Draper and Herzberg (1973), Huber (1975), Lawless (1984), 

Spruill (1984); those with possible heteroscedasticity were observed in Chapter 2. 

For general extrapolation problems, those with homoscedasticity were discussed in 

Chapter 3; those with heteroscedasticity were studied by Fang and Wiens (1999) and 

Chapter 3.

For nonlinear regression problems without the consideration of model uncertainty, 

Atkinson and Haines (1996), and Ford, Titterington, and Kitsos (1989) presented var­

ious static and sequential designs; for those considering robustness, Sinha and Wiens

(2 0 0 2 ) provided the construction of sequential designs which were robust against 

model uncertainty, and Chapters 2 and 3 discuss the construction of static designs
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which are robust against possibly misspecification in nonlinear models when observa­

tions are complete.

Recent work on robust designs with censored data in ALT are reported by Chaloner 

and Larntz (1992), Pascual and Montepiedra (2002), and Pascual and Montepiedra

(2003), to name a few. These studies emphasize the robustness against model mis­

specification on the underlying distribution and assume that the "true" model belongs 

to, or is distributed, with a known prior, onto a set of several known candidates. Both 

Bayesian-type approaches and minimax strategies were used. Ginebra and Sen (1998) 

investigated optimal designs, which are robust against possibly misspecified parame­

ter values on which the optimal designs depend. The explicit designs obtained in 

those works are under straight line regression.

This present work focuses on the robustness against possible misspecification in 

regression models that describe the behaviour of mean responses in relation to the 

explanatory variables. Such misspecification generates a bias in the estimation of the 

mean response. We assume that the "true" model involves an unknown member of 

a certain contamination class but may not be the assumed one. This work broadens 

the previous work of robust designs with censoring Grom others by considering both 

nonlinearity and much more arbitrary uncertainty in the fitted regression response 

and by dropping all restrictions on the structure of regressors. I t also extends previous 

work on robust designs for such model settings for complete data by incorporating 

censoring and maximum likelihood estimation (MLE).

We consider a singly censored design with a specified censoring time for each 

stress level. The underlying distribution is assumed to be normal. For the lifetime, 

the underlying distribution is usually considered to be normal after the observations 

are transformed. For example, suppose some product’s lifetime is possibly a lognormal 

distribution. In such case, we take the logarithm of all observations and censoring 

times, then carry out the regression method on the data after such transformations.
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Let Y  be the random variable, for instance, (transformed) lifetime of the product or 

material; let £ be the (correspondingly transformed) censoring time which is constant 

for a fixed stress level; and let x represent the stress level and be a g-dimensional 

vector belonging to a bounded design space S.

We consider

y  (xi) = £ (y  |xi) + £i,

with design points xi, X2, ..., xn freely chosen from S, where the e ,’s are uncorrelated 

and identically distributed with a normal distribution and a common variance a 2. 

The mean response is regarded as being an only approximately known function of a 

linear function of a given p x 1 regressor vector zT(x), and unknown parameters:

E (Y  |x) fa h (zT(x)0o) .

The function h is strictly monotonic with a bounded second derivative. We assume 

||zr (x) || is bounded on S. The "correct" vector &o of regression parameters may be 

defined by

0o=argm in  f  [E(Y\x) — h (zT(x)t)]2dx.
* Js

Then after introducing / n(x) =y/n[E(Y\x) — h (zr (x)0o)], we obtain

E (Y \x ) = h(zT(x)0o)+n~1/2f n(x). (4.1)

Whenever it is clear from the context, we drop the subscript n  on f n. The contaminant 

/  is unknown but relatively "small". Such misspecification may be generated by a 

transformation of the data for the purpose of enhancing normality. It may also be 

"viewed as arising from imprecision in the specification of h, or it can arise from a 

misspecified linear term and a two-term Taylor expansion" as discussed in Chapter 

3.

We let z(x) =  (^ |e = 0 o)  z(x) with p  = zT(x)0. By the definition of Oq, we have

f  zT(x ) f(x )d x  = 0. (4.2)
J s
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To ensure tha t 90 is well-defined, we need both (4.2) and f s z (x )zT(x)dx  being non­

singular which holds from Assumption (A) in Section 4.2. Let 9  be the maximum 

likelihood estimator (MLE) of 9o obtained from the censored data. We define the 

loss functions for the following cases:

(1) For prediction problems, where we attem pt to estimate the mean response 

E (Y \x )  on the entire design space S, let

11 =  n f  E[h (z T(x )9 )  — F (F |x )]2dx;
J s

(2) For extrapolation problems, we take

/ 2 =  n J  E[h (z t (x )9 ^  — E ( Y |x)]2w (dx) ,

where ui {xo} =  1 in the case of one-point extrapolation when we estimate E ( Y |xo), at 

xo ^  S', by y  (x0) =  h ^zT(xo)#j; and u  is a Lebesgue measure in the case of general 

extrapolation with extrapolation region T  assuming u> (T) > 0, and TT lS  = <t>, where 

we intend to extrapolate E (Y  |x) to the entire region T  .

These loss functions depend on the design measure £ =  n - 1  E”=1/  (x =  X i), where 

I  is the indicator function, as well as on / .  The following problems will be addressed 

in this chapter sequentially:

PI: Determine designs to minimize the maximum value of I\ over / ;

P2: Determine designs to minimize the maximum value of / 2 over /  for one-point 

extrapolation;

P3: Determine designs to minimize the maximum value of J2 over /  for general 

extrapolation;

P4, P5, and P 6 : Determine unbiased designs in the context of prediction, one- 

point extrapolation, and general extrapolation respectively.

We assume that the contaminant /  involved in P1-P6 varies within certain speci­

fied contamination classes.
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The rest of this chapter is arranged as follows: Some mathematical preliminaries 

and notation are detailed in Section 4.2; the designs for P1-P3 are presented in Section 

4.3; the designs for P4-P6 are delineated in Section 4.4; the computation of the 

resulting designs has been demonstrated using a typical ALT example in Section 4.5; 

and derivations of all theorems in this chapter are provided in an appendix.

4-2 Prelim inaries and N ota tion

For any observation y (x) at stress level x, we define an indicator function, c =  c(y|x) 

in terms of the censoring time ( (x) by letting it be 1 when failure occurs and 0  when 

an observation is censored, i.e.
/

1 , when y(x) < C  (x ) ,

0 , when y  (x) >  £ (x ) .

Let 0 and $> be the standard normal density and cumulative distribution function re­

spectively. Under the fitted regression model ■E'(Y’lx) =  h (zT(x)0) , the log likelihood 

of the ith  individual observation (yt, c,) at stress level x, is

c(y|x)

+

( 1  -  d ) { In
'C(x») -  h (zr (x{)0)

Denote the standardized observation and censoring time at a specified stress level x  
1 / \ 1 / \ • / \ l/(x ) - h ( s r (x)0 0^ 1 / \ C(X) — k (zT(x )0o} rmby w{x) and r(x ), i.e. w(x) =  ^ ^  and r(x ) =   Then we

have

dk
de

d2u

Z T ( X i )

d S d e1

e=e0

0 = 0 0

s (Xi)zr (*i)

where T{ — r(xi), c, =  c(x,) and Wi = w (xt). Both expressions above involve two 

random variables: c, and dWi. The following derives the expectations of, variances 

of, and covariance between these two variables based on the "true" model.
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We notice th a t c, and u>, have the following distributions:

Ci ~  bin(l, Pi) with Pi =  P(ci =  1),

" ( S 4
Wi, when Wi <  r,

and their product is: CiWj =
0, when Wj >  Tj.

According to (4.1), we obtain

S (« ) =  +

£?(CitWi) =  -0 (T i) +  [$(Ti) -  Ti^Ti)] +  O )  >

Var(ct) = $ (n) -  $2 (n) + d>(T{) [2$(ri) -  1] + o ,

Var(ciWi) = [$ (ri) -  Ti4> (Tj) -  <t>2 (r*)]
+d>(ri) [2$(t<) -  2^0(7%) -  t\ + 2] + o >

Cov(ci, CiWi) =  -d>(ri) [1 -  $ (ri)]

-  { ^ 2 (r,) + [l -  *  (r,)] M  (n) -  *  M ] }  ^  + o ( ^ )

Hence,

H w e=o0j
- / - n / W ^ O O  ,

=  o(Ti) + 0 ( - ^ j ’

i? -
d2h

dGdOT
-T

0=6 o,

Z X̂^ Z2- i o ( t0  +  ( 6 (ri) +  o (r0 d/i2/  \d /i/
0 =0 0 /

/ ^ l + 0 ( A * r )
y W  I \  v'rz /

and

Cov dli
80 0=00 /  

? * { ■ « > +
z(Xi)zr (Xi)

2 d > ( T i )  -  T?<f>(Ti) + A n )  I M ^ / W ,
i/ncr J / n
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V X / /  x '  ^  v \ ' J  { i _ $ ( r )}.z 1 —4 > ( t )  r

tha t o(r(x)) is a function of x, 0o, and a, but the dependency on x, 0q, and a  is only 

through r .  For readability, we use a (r) when we emphasize its dependence on r  and 

o(x) otherwise with

2  f  C ( x ) - h ( z T ( x ) e 0 ) s \

= I »----- j
\  a  )  1 T / c(»)-fc(»r(x)a0) \

c (x) -  h (zr (x)0o) ^  ^ C ( x ) - h ( z r (x)g0) ^

To avoid triviahties and to make sure of the nonsingularity of a number of relevant 

matrices, we assume that the design space S  and extrapolation space T  satisfy

(A) For each vector v / 0 ,  the set {x € S U T  : v r z(x) =  0 } has Lebesgue measure 

zero.

We assume

J  f ( x ) d x  <rj2s <oo, (4.3)

for a positive constant r)s , and also define the following matrices and vectors:

A s =  I s  z(x)zT(x)dx, A 0 =  z(x 0 )zr (x0),

A T =  f T z (x )zT(x)dx, B =  f s a (x)z(x)zT(x)£(dx),

H 5=  B ^ B 1, H 0=  B _1A 0B _1,

H r =  B _ 1  A j B 1, b fts  = f s a(x)z(x)/(x)£(dx),

b f , T  =  f T z (x ) f ( x )dx- 

It follows from (A) stated above th a t A s ,  A r are nonsingular and th a t B  is also 

nonsingular whenever £ does not place mass on sets of Lebesgue measure zero. This
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requirement turns out to be necessary since £ has to be absolutely continuous due to 

(4.3) as discussed later in this section.

By virtue of our assumption on / ,  z and h and the definition of B and b^g, we 

obtain the following results. The asymptotic information m atrix of 9$ is

\  «=1
aoae1 O=0o,

=  J  a ( * ) i ( x ) z T (x )Z (d x )

The asymptotic expectation of the score function evaluated a t 9 q is

M #  o )  =  A=  f i m  ^
y ^ n — oo  n \  ^ " 9 = 8 0 )

= - i ~ 2  f  a(x)z(x)/(x)£(dx) 
v n<7 Js

7 ^ b /’s -

And the asymptotic variance-covariance matrix of the score function evaluated at 9 q 

is

C (0O) =  hmn—>00 n  \ oO

= ^2 f  a(x)z(x)zT(x)£(dx) 
Js

Since the maximum likelihood estimate 9 is a root of the score function which can 

be expanded around 9 q as

n \ k d0
] + 1

0=oo)  »  V k  dBd0T 0= 0o ,
(19 - 9 0) + o ( ( 9 - B 0)t { 9 - 9 0) ) ,

we have

,i= 1 0=0o,
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Consequently, the asymptotic distribution of — do) is then 

v/ £ ( 8  -  9„) ~  <t2B -■(»„)).

We denote

T \ = {/I [  z(x)/(x)rfx  =0, f  f 2(x)dx <rf2s < 0 0 },
is is

«i*2 =  {/I J  z (x )/(x )d x  =0, J  f 2(x)dx < r ) l< o o ,  | / ( x 0)| <  770 <  0 0 }, and

^ 3  =  { / I  f  z(x )/(x )d x  =0, f  f ( x ) d x  < rj2s <oo, I  f 2(x)dx  <  rjT2 < 0 0 },
is is ir

for positive constants rj0 and rjT. For the regression model (4.1), we assume th a t the

contamination function / (x )  is an unknown member of one of the classes above. In

fact, since the contamination classes above are so full, £ has to have a density in

order to guarantee sup^6:Fj. /*, with (i, j )  = (1,1), (2,2), or (2,3), is finite. This can

be established by modifying the proof of Lemma 1 of Wiens (1992). In practice,

£ must be discrete. A consequence is that the optimal design obtained must be

approximated to make them implementable. Approximation methods are discussed

in Heo, Schmuland, and Wiens (2001) and also in Chapter 5 of this thesis.

Let k(x) be the density of £(x), then we have

B =  J  a (x)k(x)z(x )zT (x)dx,

b / , 5  =  /  a(x)fc(x)z(x)/(x)<2x.
J s

We also define K  — f s  a2(x)k2(x )z(x )zT(x)dx  and G =  K  — B A J1B. There are two 

facts we mark:

(1) G  is positive semidefinite since, for any vector c,

cr G c =  J {cr [fe(x)o(x)I — B A 5 1)z(x)]}2dx >  0;

(2) a is a nonnegative function since

a (r) [1 -  $(r)] =  [$(r) -  [1 -  $(r)] +  <£2(t)
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with $ ( r )  — T<f>(r) > 0.

4.3 M in im ax D esigns fo r  Censored D ata

In this section, we investigate the optimal designs tha t minimize the maximum value 

of the loss, over / ,  in the following three cases:

(PI) prediction problems with /  € T\\

(P2) one-point extrapolation problems with /  € and 

(P3) general extrapolation problems with f  €. T 3 .

4.3.1 M inim ax D esigns for Prediction: Solutions to  P I

The loss function for Problem P I is

/ j  =  n J  E[h ^zT(x)0 ^ — h (zT(x)0 o) — n~1//2f(x )]2dx

=  b fs H ^ b f 'S  + a2tr (A sB ~ 1)+ [  f 2(x)dx.
J s

Let v  :=  o 21tfs represent the relative importance of variance versus bias. We define 

to be the largest solution to |G —AHs| =  0 and Cj to be any vector satisfying 

( G H ^ G —A ^G )c  =  0, and

ctG c =  1. (4.4)

Given fixed k(x), the "max" part of the minimax solution is presented in Theorem

4.1.

Theorem  4.1 The maximum of 1\ is

sup h ( / , 0  = +  1 +  v tr iA s B - 1)], (4.5)
/G^i

cbtrtcaTh&d at

A (x) =  Vs zr (x){o(x)fc(x)I -  A ^B j-ci.
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Problem P I has becomeone of finding a density fc(x) tha t minimizes (4.5). The 

following theorem provides the analytical form of such minimax design density.

T h eo rem  4.2 The design density k(x) minimizing (4-5) for prediction is o f the form

_ [q (x )^ (x )P z (x ) +  d] 4  

a 2 (x)zr (x)Qz(x)

where (w)+ =  max(w, 0), for some constant symmetric matrix P , a positive semi- 

definite matrix Q, and a constant d that minimize (4-5) and satisfy Js k (x)dx  = 1.

The following presents two models with different censoring plans. These two mod­

els will serve as two typical examples throughout this section and the sections hereafter 

in the context of all prediction, one-point, and general extrapolation problems. Prior 

to introducing these models, we first describe the definitions of the two censoring 

plans involved in these upcoming models: (1) Time (Type I) censoring is where the 

data are censored at a predefined time; (2) Failure (Type II) censoring is where the 

data are censored after a prespecified number of failures. Detailed information about 

these and other types of censoring can be found in Nelson (1990).

Model 1: We suppose tha t the experimenter plans a design under the assumed 

regression model:

E (Y \x )  =  0O +  6xx,

and employs time censoring. The data are collected a t a fixed time ( (x) = £ for all test 

■units a t all stress levels. Note tha t for life testing, Y  and x  stand for the transformed 

lifetime and stress respectively. Such transformations are sometimes employed for the 

purpose of enhancing both linearity and normality simultaneously. So, it is sensible 

to consider tha t the regression model assumed above is approximately true.

Model 2: For the nonlinear regression model:

E (Y \x )  «  h(0o +  Oix),
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where h(z) =  e2, we suppose tha t the failure censoring is planned with a constant 

expected proportion of failures at all stress levels. We assume r{x) =  r .  Namely, the 

experimenter expects tha t about 1 0 0  x $  (r) % of the units fail a t each stress level. 

So, o(r) remains constant as well from its definition.

For both Model 1 and 2, we take S  — [fci, 6 2]-

Example 1. According to Theorem 4.2, the locally optimal robust prediction 

design for Model 1 is given by

k(x) —
ai +  a^x + a$x2

+
+

a(r) (a4 + a$x + a^x2) a?(r) (a4 +  a5x  4 - OgX2)] ’

where r  =  £z2s>-gix f a4 and a$ are nonnegative and satisfy 4a4 a6 >  a2. In addition, 

Oj— 0 6  d are selected in order to minimize (4.5) subject to k(x)dx = 1. 

Example 2. For Model 2, as a result of Theorem 4.2, the locally optimal design density 

for prediction is of the form

, oi +  a2x  +  a3x 2 * 1 +
k(x) =  ---- :--------:------   +

a4 + a5x  + a6x 2 e26lX (a4 + a5x  +  a^x2) J ’

where a4 > 0, 0 6  >  0, and 4a406 >  o§. Besides, o j— ag and d are determined so as to 

minimize (4.5) subject to k{x)dx = 1. The dependence of the design on 6\ makes 

such a design only locally optimal. This issue will be addressed in Section 4.5.

4.3.2 M inim ax D esigns for O ne-Point Extrapolation: Solutions to  P 2

The loss function for Problem P2 is

h  =  nE[h(zT(x.o) 0 ) - h  (zr (xo)0o) -  n_1/2/ ( x 0)]2

=  b /,sH o lb /,s -  2 / (x0)zT(x0)B _1b /js +  a 1 zT(x0)B"1z(x0) +  / 2(x0).

Let r x0,s  '•= Vo/Vs  represent the relative amount of model response uncertainty a t the 

extrapolation point and within the design space. We define =  zr (x0)B -1G B -1z(x0

and C2 =  For a fixed fc(x), the maximization part of the minimax solutions
V

to  Problem P2 is given by Theorem 4.3.
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T h eo rem  4.3 The maximum of I2 is

sup h  = v l[ ( \ I W }+rx»,s)2 +  vzr (x0 )B _ 1z(x0)],

attained at

/*(*) =

% zr (x)[a(x)fc(x)I—A s B]c2, x  € S,

-*7o> x  =  x 0.

(4 .7 )

Problem P2 has become that of finding a density tha t minimizes (4.7). The 

minimax solution for P2 is presented in Theorem 4.4 below.

T h eo rem  4.4 The design density k(x) minimizing (4-7) for one-point extrapolation

z r (x )a
is

k(x) = +
A

a(x)zT(x)(3 o2 (x)[zr(x )/3]2J

for some p x 1 vectors ct, f3 and constant X which satisfy: (i) f s k (x)dx  =1, (ii)

minimize (4-7).

Example 3. Recall Model 1. Suppose th a t the estimation extrapolates to one 

point x 0: either greater than b2 or less than bi. According to  Theorem 4.4, the locally 

optimal robust one-point extrapolation design for this model is given by

a\X +  a2 <25
k (x ) = +

a(r) (a3x  +  o4) ' {a(r) (a3x + a4)}2. 

and a i— as axe chosen in order to minimize (4.7) subject to k(x)dx  =  1.

Example 4■ For Model 2 with either x 0 > b2 or Xo < bi, the locally optimal design

density for one-point extrapolation is given by

k(x) =
aix + a2

+ <25 (4.8)
a^x +  0 4  e20lX (a^x -1- a^)2. 

where Oi— <25 are again selected by minimizing (4.7) subject to f j  k(x)dx  =  1. The 

computation of the numerical values for 0 1 — 0 5  in this design will be presented in 

Section 4.5.
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4.3.3 M inim ax D esigns for General Extrapolation: Solutions to  P 3

The loss function for Problem P3 is

/ 2 =  n J  E[h ( z T(x )9 j  — h (zT(x)0o) — n - 1/2/(x )]2<fx

=  b ^ s H r b / jS - 2 b£xB - 1b / iS +  0 -2fr(A TB _1)+  J  f 2(x)dx.

We denote r^ s  :=  r]T/rjs for the relative amount of model response uncertainty in 

the extrapolation and design spaces. We also denote A ^ to be the largest solution to 

|G —AHr| =  0 and let C3 be any vector satisfying (G H yG —A ^G )c  =  0 and (4.4). 

The maximum of / 2 is given by Theorem 4.5.

Theorem  4.5 The maximum of / 2 is

sup I2( f , 0  = V s[(\/> ^+ rT,s)2 + i/tr(A r B _1)], (4.9)
3

Qiti/Q/VTb€'(i Oft

fk (y ) = <
77s zT(x)[a(x)fc(x)I-A5 B]c3, x  6 S,

J?r zr (x )B -1G c3 „ r- rp
vAS*> ’

Problem P3 now is to find a density tha t minimizes (4.9). The following theorem 

gives the optimal minimax design density for the general extrapolation problem (P3), 

which has the same form as (4.6) for PI.

Theorem  4.6 The design density k(x) minimizing (4-9) for general extrapolation is

_  [q ( x ) z t ( x ) P z ( x ) +  cfl + 

a2(x)zr (x)Qz(x)

for some constant symmetric matrix P, a positive semi-definite matrix Q, and a 

constant d that minimize (4-9) and satisfy Js k (x)dx  =  1 .

109

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Example 5. For Model 1 and in the context of general extrapolation with extrapo­

lation space T  = [ti, 2̂]\[^ i5 6 2], as a result of Theorem 4.6, the locally optimal robust 

extrapolation design is of the form

k(x) =;
(ai +  a2x  +  a 3x2)

+
( 0 4  +  0 5 X + a&x2) a(r) (a^ + a$x + a^x2)

where a4  and a§ are nonnegative and satisfy 4a406 > O5 . Moreover, a \— a$ and d are 

chosen to minimize (4.9) subject to k(x)dx  =  1.

Example 6. W ith Model 2 in the context of general extrapolation with extrapolation 

space T  defined as in Example 5, by Theorem 4.6 the locally optimal design density 

for general extrapolation is given by

k(x) =
e29lX ( 0 1  +  a2x  +  o3x2) +  d +

e29lX (a4 +  a5x  +  oqx2)

where a4 >  0 , a,6 >  0 , 4a4 a6 >  a |, and 0 1 — a$, as well as d are selected so as to 

minimize (4.9) conditional on k(x)dx  =  1.

4-4 Unbiased D esigns fo r  Censored D ata: Solu­
tions to P 4-P 6

We say that a design/censoring pair (£, £) is unbiased if it satisfies 

E(0) =  0 O for all /  £ Ei, i — 1,2, or 3 

so tha t s u p £, £) =  0 for % = 1,2, or 3, where we define

for P4,

for P5, and

0  =  b ^ H ^ b , ,*  -  2 /(x 0 )zr (x0 )B - 1b /)S

/B 3 (/,e ,C ) =  bJ;SH Tb /iS- 2 bJ;rB - 1b /iS
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for P6.

P4, P5, or P 6  involves finding the design such tha t the maximum, over / ,  of its 

matching bias: s u p ,£,(,) f°r i =  1,2, or 3 is zero. Let a  = { f s a~1(x)dx}~1. 

The following theorem offers a necessary and sufficient condition for unbiasedness, 

the unbiased designs and the resulting losses for P4, P5, and P 6  respectively.

T h eo rem  4.7 (a) The design k(x) is unbiased if and only if

a(x)k(x) =  a ;

(b) The unbiased design density is

k(x) =  cca_1 (x);

(c) The corresponding losses under unbiased designs are as follows:

(i) for prediction,

h  = rfs  +  a p a 2\

(ii) for one-point extrapolation at xo,

I2 = r /l + a<7 2zr (x0 ) A '1z(x0);

(Hi) for general extrapolation, I 2 = rjj, +  aaHr^ATA.g1) .

We notice tha t the unbiased designs for the cases of prediction, one-point and 

general extrapolations are the same.

Example 7. W ith Model 1, as stated in Theorem 4.7, the locally unbiased design 

is of the form

k(x) = { [  a~1 (a;)(ia:}- 1o_1 (x),
J s

where

a(x)  =  *  _  C - Q q - 01* J( C +
K )  \  a  )  cr (J ) +  l - ^ Q - ^ y

Example 8. For Model 2, the unbiased robust design is uniform with density k(x) = 

{Js  c&r} - 1  since a(x) is constant in this model.
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4*5 C om putation

In this section, we demonstrate the computation of numerical values of the constants 

in our constructed designs using one typical ALT example: Model 2 with one-point 

extrapolation.

As indicated in Example 4, the locally optimal design density for one-point ex­

trapolation is given by (4.8). We assume 5  =  [0,1] and Xo >  1. We also let r  be a 

predefined constant which is essentially the standard normality quantile correspond­

ing to the expected percentage of failures. For instance, if the experimenter plans to 

employ Type II censoring and expects 70% of the units to fail at each stress level, 

r  =  <3>_1 (0.7) =  0.525. Then, a(r) remains constant given by a(r = 0.525) =  0.921.

For Model 2, since the constant term o(r) has been cancelled out in the first 

term of (4.7), it is only involved in the second term of (4.7). Let p = v /a (r ). For 

prespecified model parameters, the design varies when x0, or p changes. All of 

Xo, rXOis and p can be determined by the experimenter. We also notice tha t the term 

e26° has been cancelled out in both the first and second terms of (4.7). However, for 

fixed Xo, r ^ s ,  and p, the optimal design depends still on the value of 0\. Therefore, 

it is only locally optimal. To deal with this issue, we search for ‘locally most robust’ 

designs as discussed in Chapter 2. To do this, firstly we obtain the local optimal 

design for an initial value of secondly, for this optimal design, we take a further 

maximum of the loss as Q\ varies over some interval I  and record the least favourable 

Q\ (written Q\f )\ thirdly, we determine the coefficients of fc(x) so as to minimize this 

maximum loss for 6FF. We repeat this procedure until 0FF converges.

To illustrate the approach described above, we consider the Class-B insulation 

data from Nelson (1990, Table 4.1 of Chapter 3). Those data are collected from a 

singly time-censored ALT conducted using a uniform design on four specified testing 

levels. The acceleration stress is temperature. The intention of this experiment is to 

estimate the lifetime for electric motors at the normal usage temperature of 130°C'.
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Table 4.1. Numerical values for (4.8)
s  = [0 , l ] , 0 i =

r—HIIot?00OJo11 and Xo =  1.98.
p Oi a 2 a, 3 a5

0.5 -0.190 0.0003 -0.730 1.131
1 -0.420 0 . 0 0 2  -0.806 1.146
2 -0.676 0.00003 -0.858 1.196

The failures obtained from this test are at stress levels ranging from 170°C to  220°C. 

The Arrhenius-lognormal model is fitted for those data and the MLEs for the model 

parameters are computed by Nelson (1990). The transformation of the lifetime used 

in this example is the logarithm and that of stress t  is 1 0 0 0  times the inverse of the 

absolute temperature in degrees Kelvin, i.e., x ' = ^^°16. For simplicity, we transform 

x1 to our stress variable x  with domain of [0 , 1 ] through the linear transformation 

x  =  ~20°ff91'1' '- Under such transformations, the MLE of #i for the nominal model 

is Qx =  0.987 and the corresponding 99% confidence interval for 6\ is (0.730,1.243). 

Taking the model misspecification into account, we consider an even broader region 

6i 6  I  =  [0.5,1.5], We apply the same extrapolation point x 0 =  1.98 as employed in 

Nelson (1990), which is equivalent to the normal usage temperature: to =  130°C.

It should be noted that in (4.8), if one of a x — a 5 is nonzero, then we can assume 

th a t it is 1. In the following computation we take a 4 =  1. For locally optimal designs 

when 0\ =  0.987, see Table 4.1 for the numerical values of the constants in (4.8) with 

various p and Figure 17(a) for the plots. For locally most robust designs, we carry 

out the process described above for I  = [0.5,1.5] and several p, each time starting at 

6\ =  0.987. The locally most robust designs are detailed in Table 4.2. In each case, 

we find th a t the least favourable 6\ within I  is 1.5. See Figure 17(b) for the plots. All 

plots use a4 =  1 and r XOis — 1 .

We note th a t for the extreme case, when the data are complete: r  — ► oo, we 

have o (r) =  1. In this case, the results obtained in Section 4.3 degenerate into the 

exact optimal robust designs for complete data which are presented in Chapter 2 and

113

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Table 4.2. Numerical values for (4.8)
S  =  [0,1], 0! e  [0.5,1.5], r ^ s  = 1, and x0 =  1.98.
--------------------------------------------------------------q CF---

P Oi 02 °3 a5 “ l
05  0.049 0.001 -0.783 1.311 L5
1 -0.142 0.002 -0.855 1.349 1.5
2 -0.318 0.00003 -0.897 1.417 1.5

co-

S"-■o

o- o-
Q4 0.6 .0

(b)(a)

Figure 17: Optimal design densities k(x) = ajg+fl2 j _25_ for S  = [0 , 1 ], 
0.987; (b) locally

03X+a4 ~r  eMi*(asz+ a4)a .
fxo,s — 1) and x0 - 1.98. (a) locally optimal design densities for Q\ — 
most robust design densities for Q\ within [0.5,1.5]. Each plots uses three values of 
p : p = 1 (solid line), p = 0.5 (broken line), p =  2 (dotted line).

Appendix: Derivations
P ro o f  o f  T h eo rem  4.1. Since the term  cr2tr (A sB -1) in I\ does not involve / ,  the 

maximization problem becomes to maximize b ^ 5 H ^ lb /,s +  J s / 2(x )dx over / .  We 

obtain

max (b ls H s 'b f 's )  = r?s 

attained at /fc(x) =  %  zT(x){fc(x)a(x)I — A _1B}ci in a way akin to tha t used in
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Theorem 1 of Wiens (1992), and therefore the derivations are omitted here. Theorem

4.1 follows immediately from f s f£ (x)dx  =r)2s . □

The result of Theorem 4.2 is obtained in a manner very similar to  but simpler than 

tha t used in Theorem 3.1 of Chapter 3, and so its proof is omitted.

Theorem 4.3 follows Theorem 2.1 of Chapter 2 immediately.

P ro o f  o f  T h eo rem  4.4. We look for a nonnegative function k(x) minimizing (4.7) 

subject to f s k (x)dx  =  1. We introduce a Lagrange multiplier t. I t  is sufficient to 

show that k(x) minimizes

( \ A F + r x0,s) 2 +  ^ T(x o)B _ 1z(x o) -  2 t j ^ k ( x ) d x

among all density functions. After some protracted calculation, we obtain the first 

order condition

J  (P(x)fc(x) — Q(x) —u } (k  — ki)dx > 0 

for all densities k\, where

P(x) =  a(x)zr (x)/3j and Q(x) =  [zr (x)7] a(x)z'r(x)/3j with 

/3 =  B _1z(x0),

7  = B _1K +  x  (  1 +  ^ L  | I

- l

(3,

u = 1 1  +  I t.

The proof now can be completed in the same way as for Theorem 2.6 of Chapter 

2. □

P ro o f  o f T h eo rem  4.5. The term i/tr(A rB _1) in I2 does not involve f ,  so the 

maximization problem becomes maximizing b ^ H y b ^ s  —2 b ^r B _1b /is +  f T f 2(x)dx  

over / .  We obtain

max (b J s H Tb /iS-2 b J ;TB - 1b /is) =  rfe +rT>s ?  ~  r2TtS
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attained at

/fc(x) =  <
77szT(x)[a(x)fe(x)I-A s 1B]c3, x  G S, 

-rjTzT(x)B-1Gc3/^ f> ^ ,  x e  T,

in a way essentially identical to that used in Theorem 2.1 (a) of Fang and Wiens

(1999). Theorem 4.5 follows immediately from f s f£ (x )d x  = r)2s . □

The proof of Theorem 4.6 is very similar to that of Theorem 3.1 in Chapter 3, so is 

omitted. □

P ro o f  o f T h eo rem  4.7. According to the results of Theorem 4.1, 4.3, and 4.5, we 

have got

su p /S i( / ,fe )  =  
/  6̂ 1

=

I B 2( f , k ) =
>

I B z{ f ,k )  = ril[(\J~ $+ rTtS)2 - r ^ J .
I

For the unbiased designs, we then have

sup
/e ^ 2

sup
/e ^ 3

sup I B t( f ,k )  = O ^ A j ?  =  0 < ^ G  =  0

[a(x)fc(x)I — B A ^1] z(x) =  0  a. e.

for each i — 1, 2, or 3. We find that a(x)k(x) is a constant almost everywhere on S  

in a manner essentially identical to tha t in the proof of Theorem 2.2 (b) in Fang and 

Wiens (1999). This fact together with Js k(x)dx —  1, completes the proof of (a) and 

Part (b), (c) follow (a) immediately. □
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CHAPTER V

APPLICATION AND IMPLEMENTATION

This chapter discusses the application of our designs, constructed in Chapter 2, to 

a real life dose-response experiment. We propose a couple of new implementation 

schemes which are utilized to approximate a robust design having a  density, which 

in practice is not implementable. We also confirm that one of the matching quantile 

schemes used in the literature is optimal with respect to certain criteria. Several 

examples are demonstrated for using the implementation schemes proposed. In addi­

tion, a comparison between a proposed approach and an existing one is given.

5.1 Case Study
5.1.1 Introduction

In recent years, the public has become increasingly aware of the presence of harmful 

chemicals in our environment. Many people express concerns about pesticide residue 

or other foreign substances in food, contaminants in drinking water, and toxic pol­

lutants in the air. How can we determine which of these potential hazards deserve 

our attention? Dose-response assessment is employed to  tackle such problems. Dose- 

response assessment is the process of characterizing the relation between the dose 

of a chemical and the incidence of an adverse health effect in exposed populations, 

and of estimating the incidence of the effect as a function of human exposure to the 

chemical. ‘Dose’ is commonly used to indicate the amount of the chemical while ‘re­

sponse’ refers to the effect of the chemical once administered. Generally, increasing 

the dose will result in an increase in the incidence of an adverse effect. Our intention 

is to estimate the effects of chemicals at low exposure levels using a dose-response
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regression model. Krewski and Brown (1981) provide a guide to the literature for 

carcinogenic risk assessment. Crump (1979) reveals that since direct estimates of 

effect associated with very low levels of exposure often need very large numbers of 

experimental subjects, such estimates are inevitably based on the downward extrap­

olation of the results acquired at relatively high dose levels using a moderate number 

of subjects. Fang (1999) also points out tha t for the low-dose extrapolation problem 

it is important to keep an eye on possible violations of the assumed linear model in 

constructing the optimal design.

The experimenter takes a set of dose levels and runs an experiment with a pre­

specified number of subjects at each dose level. The number of subjects responding 

a t each dose level is recorded. Let x  be the dose level administrated to the experi­

mental subjects, such as animals, and P{x) be the probability of success in showing 

the response at dose level x. The dose-response curve illustrating the relation be­

tween x  and P (x)  is fitted. This curve can then be employed to estimate the life 

risk of a subject exposed to a very low dose level, Xq- As indicated in Chapter 2, 

this is a one-point extrapolation problem. Since reducing sample sizes is important 

in an experiment of the life risk assessment, the optimal designs can be helpful for 

improving the efficiency. However, due to the estimation being extrapolated to xq, 

any misspecification in a regression model adopted in obtaining the optimal design 

will endanger its optimality. We therefore take into account any possible departures 

from the model and seek an optimal robust design for such a one-point extrapolation 

problem.

5.1.2 A pproxim ate Generalized Linear Regression M odel

To demonstrate the application of a robust design constructed in Chapter 2 for the 

one-point extrapolation, we revisit the vinyl chloride data cited by Hoel and Jennrich 

(1979). These data (Table 5.1) are recorded from an experiment for the purpose
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Table 5.1. Vinyl chloride data
Doses Animals tested Observed responses

0 58 0

50 59 1

250 59 4
500 59 7

of estimating the probability of developing cancer after an animal is exposed to a 

carcinogenic material - vinyl chloride. The dose unit for vinyl chloride is ppm  (parts 

per million, 1 ppm  =  2.6 m g /m 3). The commonly used model by many researchers 

in the field of cancer dose response is a generalized linear function,

P (x ) =  1 -  exp • (5-1)

The maximum likelihood fit of P(x) to the vinyl chloride data using (5.1) identified 

by Guess, Crump, and Peto (1977) is

P(x) — 1 — exp (—ax) (5.2)

with cc =  0.000267377.

Hoel and Jennrich (1979) reconsidered this problem and presented the optimal 

design for the assumed model (5.2) and a target value of a  =  0.000267377 with 

Xo = 0 .5 . However, there are no observations at any dose levels between 0 and 50 and 

only one observation between 50 and 250. Consequently, within (0,50) we cannot 

detect any possible departures from the assumed model. In addition, within (0,250), 

we can neither validate the model nor possibly obtain any information on how the 

model would depart from that which is assumed. Therefore, we suppose th a t (5.2) is 

only approximate for the vinyl chloride data, namely

P (x) «  1 — exp (—a x ) , (5.3)

with an unknown contamination bounded in £ 2 -norm.
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5.1.3 Optim al M inim ax D esign  for Low-dose Extrapolations

According to Theorem 2.6 in Chapter 2, the locally optimal robust design for (5.3) 

has the form of

k{x)
a + bx2e~2ax

X2e-2ax _j_ cx2&-2ax'^

We consider the design space as the range of dose levels where subject toxic response 

is observed. For this case, S  = [50,500]. We take rXOts =  1, which means th a t the 

amount of model uncertainty at the extrapolation point and tha t in the design space 

are regarded as equal. We also take v  =  1, to indicate that we consider the importance 

of bias reduction and that of variance minimization as being the same. Our goal is 

to estimate the probability of observing a toxic response at dose level xq = 0.5. For 

at = 0.00053475, the optimal minimax design has a density of

8.269 +  13.837a;2e -2ai 
X x 2e~2ax (1 + 0.2669x2e~2ax)'

See Figure 18 for its plot. As indicated in Hoel and Jennrich (1979), the optimal 

design obtained is very robust against misspecification in the assumed parameter 

value within a moderate parameter region containing it, although locally optimal. 

The implementation of this design is provided in Section 5.2.2.

5.2 Im plem entations
5.2.1 Introduction

In the preceding section of the present chapter and in the previous three chapters, 

we have obtained a number of robust designs for various cases which turned out to 

have densities. Such designs with densities are prevalent in the literature. See, for 

instance, Huber (1975), and Wiens (1990, 1992). In addition, Heo (1998) listed quite 

a few such continuous designs. Wiens (1992) showed that if the contamination class 

is an Z/2-type of space, e.g. Class T \  in Chapter 1 , any optimal design minimizing the
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F ig u re  18: Optimal minimax design density for the dose-response example.

m axim um  loss function over such contamination space has to be absolutely continu­

ous. These designs with densities are not implementable. In practice, a design should 

tell the experimenter what the design support points are and how many subjects 

should be allocated to each of these points. An implementable design, £, must be a 

discrete probability measure which puts probability £(x,) at £,. For a  given r  <  n, 

let x i ,x 2, ...,x r be the distinct design points, the number of subjects allocated to a 

particular design point Xi on design space is then, n£(xj). In addition, each £(xj), 

i  =  1 , 2 ,..., r,  should be an integer multiple of A design with this integer property 

is called an exact design.

A few implementation approaches have been introduced in the literature. Wiens 

(1992) suggested a randomized design. That is, the design points are randomly chosen 

from an optimal design density. Wiens and Zhou (1996) presented a more systematic 

approach of matching quantiles, tha t places an equal number of observations at the 

quantiles of an optimal design density. This type of approach has been used in both
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Heo (1998) and Fang (1999). Its properties are also discussed in Section 5.2.4 of this 

chapter. Matching moments is another method tha t chooses design points such tha t 

the empirical moments match up as closely as possible with the theoretical moments, 

obtained from the optimal density, to a sufficiently high order. This approach has 

been seen in Heo, Schmuland and Wiens (2001) and Adewale (2002).

An innovation for obtaining an exact design was presented by Fang and Wiens

(2 0 0 0 ), who redefined the problem by considering a finite design space and applying 

the simulated annealing algorithm. See also most recently in Adewale and Wiens 

(2006).

In the rest of this section, we propose two other types of approximation schemes: 

equally spaced design and histogram design. We also verify tha t one of the matching 

quantile approximation methods is optimal under the defined criteria.

5.2.2 E qually  Spaced D esign

An equally spaced design is referred to as a design whose support points are evenly 

dispersed within the design space. We recall the matching quantile approach that is 

based on uniform y-axis partitioning. Commonly, this leads to a design with non- 

equally spaced support points but with an equal number of observations at each 

support point. We now propose to partition the r-axis instead, obtaining an equally 

spaced design with an unequal (normally) number of observations on its design points. 

In many fields, particularly in life testing, such designs are traditionally applied. For 

instance, the best traditional designs, the Meeker-Hahn designs (Nelson, 1990), and 

the model-robust 4:2:1 design (Pascual and Montepiedra, 2003) axe all equally spaced. 

Equally spaced designs are often preferable when adjustment for stress levels is not 

as simple as adjustment for the number of test subjects a t each level. In reality, the 

experimenter will shift from a traditional to an optimal design provided there is a 

minimum change/cost in experimental equipment /m aterial settings. Therein lies the
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motivation for the equally spaced implementation scheme.

A given number (r) of design support points (stress/dose levels) are positioned 

equidistantly within the design space, while the design space itself is divided into r 

equal subspaces. On each subspace, to determine the proportion of subjects assigned 

to the design point within we use the integral of the density over this subspace. It 

is easy to show that such a design tends weakly to the optimal design as r  tends to 

infinity. It should be noted tha t in order to get the exact design, this approximation 

usually needs to be rounded. For efficient rounding, we refer to Pukelsheim and 

Rieder (1992).

The following gives an implementation of the optimal design (5.4) using the equally 

spaced approach. We take r  =  10. To obtain an equally spaced design over the design 

space of [50, 500], the interval is divided into ten equal parts: [50,95), [95,140),..., 

and [455,500]. The ten dose levels can be chosen at 50, 100, ..., and 500. We still 

use the same number of test subjects as in Guess et al. (op. cit.): n  =  235. The

allocation of these test subjects can be calculated as

r 95 8.269 +  13.837s2 e~2ai
; 50 x2e~2oa (1 +  0.2669x2e-2a;c)

rl4° 8.269 +  13.837j 2e~2ai 
/ 95 x 2e~2ax (1 +  0.2669a:2e-2Q:;c)

n 50 =  235 I _0  o™. / i  . n  '>r. \̂<̂X ~
J 50

/■ I U  i U J  - r  X.J  o

n 100 -  235 /  ** 44>
J 95

and
_  f 500 8.269 +  13.837x2e -2ai J

n 500 =  235 /  , nftogn_9 :L i ^ dx w 3-
J 45/4 5 5  x 2e~2oa (1 +  0.2669x2e~2ai)

Then, when r  =  10, the resulting design requires 119 animals at a dose level of 50,

44 a t 95, ..., and 3 a t 500, namely as follows:

dose levels 50 100 150 200 250 300 350 400 450 500

allocation 119 44 23 14 10 7 6  5 4 3.

5.2.3 H istogram  D esign

We propose using a histogram type of approach to approximate an optimal design 

having a density. This approach is inspired by Professor Douglas Wiens’ seminar
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presentation at the University of Alberta in November, 2004. We have noticed tha t 

compared with classical optimal designs (minimizing variance alone), optimal robust 

designs against model misspecifications (minimizing mean square error) are obviously 

more uniform with mass spread over the design space, yet heavily loaded near those 

design points obtained for minimizing variance alone. Such a pattern has been found 

in, for example, the robust designs constructed by Fang and Wiens (1999, 2000), and 

those achieved in the previous chapters by us. We decompose the design space into 

a number of subspaces (the bases of the bars in a histogram). Then, we assign the 

relative frequency (the height of a histogram bar) on each subspace to be the average 

density over this subspace. We note tha t such a design tends weakly to the optimal 

design as the number of subspaces tends to infinity.

In addition, the density of an optimal design is often much higher in a neighbor­

hood of each of the points, than elsewhere; these design points would have been used 

for minimizing variance alone. Consequently, we take the number of support points 

for the classical minimizing variance design as the number of subspaces with nonzero 

relative frequencies in the histogram design.

5.2.3.1 Examples using histogram designs

In this subsection, we focus on the implementation of the robust optimal designs 

constructed in Example 2, Chapter 2. This example presents the resulting optimal 

design densities for approximate p th  degree polynomial regression models in the case 

of one-point extrapolation. For p = 1 (linear), the optimal design densities are exhib­

ited in Figure 6  in Chapter 2, which indicates tha t there are only two subintervals in 

the design space from which we may obtain observations for each of those optimal de­

signs. Figure 7 in Chapter 2 gives the optimal design densities for p = 2 (quadratic). 

This figure indicates tha t there are only three subintervals over which observations 

can be made for each optimal design. The remaining of design intervals have densities
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Table 5.2. Histogram designs for Example 2
of Chapter 2 with p =  1.

£ 0 V Si hi Ai{%) s 2 h*2 a 2(%)
1.5 0.5 [--1, -0.401] 0.480 28.8 [0.044,1] 0.745 71.2

1 [--1,-0.488] 0.510 26.2 [0.173,1] 0.893 73.8
1 0  [--1, -0.675] 0.661 21.5 [0.451,1] 1.43 78.5

5 0.5 [--1, -0.339] 0.641 42.3 [0.249,1] 0.769 57.7
1 [--1, -0.419] 0.717 41.7 [0.341,1] 0.884 58.3

1 0  [--1,-0.582] 0.986 41.0 [0.511,1] 1 .2 1 59.0

of zero. To determine the subintervals of these designs, we solve

(aix +  q2)(q3^ +  1) +  as _  Q 
i f l z x  +  l )2 +  a e ( a 3x  +  l )4

for x  when p =  1 , where the values of 0 1  — 0 3 , 0 5 , and Og for diverse u are listed in 

Table 2.2 of Chapter 2. We solve

( 1  +  oax +  a2x 2) (6 0 +  bjX +  b2x 2) +  c _
( 1  +  a\x  +  a2x 2)2 +  d ( 1  +  +  0 2 # 2) 4

for x  when p =  2 , where the values of 0 1 , 0 2 , b0, bi, 6 2 , c, and d for various u are given 

in Table 2.3 of Chapter 2.

The histogram designs are presented in Table 5.2 for p — 1 and in Table 5.3 for 

p = 2. In these tables, 5l and hx denote the base and the height of the histogram bar 

for each subinterval respectively. Ac stands for the portion of subjects assigned to 

the corresponding subinterval. A result of such approximation using the histogram 

approach is exhibited in Figure 19. It should be noted that this scheme might not be 

so obvious for finding the appropriate subspaces without a ‘natural’ divider, as is the 

case in these examples. Nevertheless, it may serve as a complement to the existing 

approaches when the pattern of an optimal design permits.

5.2.3.2 Obtaining exact designs

These histogram designs are still not exact designs that the experimenter can ma­

nipulate in practice. We use each of the portions obtained in Tables 5.2 and 5.3 to
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F ig u re  19: Histogram approximation for Example 2 of Chapter 2 with p = 2.

Table 5.3. Histogram designs for Example 2 of Chapter 2 with p = 2.
X q V Si hi Ai(%) $> h2 A2(%) Sz h3 A z(%)
1.5 0.5 [-- 1 , —0.80] 0.71 14.3 [-0.50,0.34] 0.43 36.0 [0.69,1] 1.61 49.7

1 [-

CO00o1r~Hi 0.74 13.5 [-0.47,0.32] 0.43 35.2 [0.74,1] 1.93 51.3
1 0  [-

coooo1t-Hi 1 .0 1 12.3 [-0.41,0.31] 0.41 29.2 [0.84,1] 3.59 58.5
5 0.5 [-

00N;o11—
11 1.03 23.0 [-0.47,0.43] 0.49 44.3 [0.75,1] 1.32 32.7

1 [" 1 t—1 1̂ o bo o 1.18 23.1 [-0.44,0.41] 0.51 43.4 [0.78,1] 1.54 33.5
1 0  [-- 1 , —0 .8 6 ] 1.72 23.5 [-0.40,0.38] 0.53 41.0 [0.85,1] 2.44 35.5

assign experimental subjects uniformly over its corresponding subinterval. The design 

points within each subinterval, St =  [a,, 5,], can be assigned as

bi Oj . .
Xj =  ~ 2 n ~ ^  3 ~  ^

for j  =  1, 2, with n, being a rounded integer of n A x. For a demonstration with 

n = 10, the design points are displayed in Figure 20 for p = 1 and Figure 21 for p  =  2.
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Figure 20: Exact designs using histogram scheme for Example 2 of Chapter 2 with
p  =  1.

5.2.4 O p tim al A p p ro x im atio n

There are two kinds of matching quantile approaches appearing in the literature. In 

the first, used in Wiens and Zhou (1996), one observation is placed a t each of the 

following quantiles:

* .(1 ) =  ) -  4 =  2 > - >  ( 5 -5 )

where £ 0 is an optimal design with a density, and F^0 is the cumulative distribution 

function of £0. In the second, used in Heo et al. (op. cit.), one observation is placed 

at

 "•
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Figure 21: Exact designs using histogram scheme for Example 2 of Chapter 2 with
p = 2.

The first approach provides a sample from £ 0 with a smaller Kolmogorov-Smirnov 

statistic, since

and

max
l< » < n

max
K t < n

2 n ’

1

n ’

where t, is the number of design points less than X(. For a fixed number of experimental 

subjects n, the following theorem shows that (5.5) is optimal under certain criteria.

T h eo rem  5.1 The first matching quantile approach provided by (5.5) offers an opti­

mal approximation which minimizes the overall "distance" between the optimal design
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£0 and the resulting one when this distance is defined as

d  = J
S

n

for any positive m , among all the designs of the form of £{x) = ^ ^ ^ I Xi(x), where Ix

is an indicator function with pointmass 1 at x.
i=l

To illustrate this, we put the x, in increasing order, i.e. X\ < x^ < ... <  xn. Let 

S  =  [a, b], we then have

Xl b

D  =  J \ F (' ( x ) - F s (x)\m dx + J \ F Sa( x ) - F ( (z) \mdx
a

n —1 Ii+1

1=1 x*

To minimize D,  by taking the derivative with respect to each x t, we find th a t the 

minimizing x t is a solution of the following equation

i + 1
♦ m

f{„ (*) - n
(5 .6 )

for z =  l , 2 , ..., n. Theorem 5.1 follows because (5.5) satisfies (5.6) for m >  0.

The matching quantile methods axe generally problematic for the case th a t the 

design space has a higher dimension, so other methods still may be viable alternatives. 

Figures 22 and 23 provide the resulting exact design points using (5.5) for Example 

2 of Chapter 2. For this example, the exact designs obtained from the histogram 

approximation and those by using (5.5) are very close to each other even with n  as 

small as 10. A comparison is demonstrated in Figure 24.
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