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ABSTRACT

We consider the construction of robust prediction and extrapolation designs for

a misspecified generalized linear response. Possible violations from homoscedasticity
_are also taken into account.

Firstly, we find minimax designs and corresponding optimal regression weights in

the context of the following problems:

1. For nonlinear ordinary least squares (OLS) estimation with homoscedasticity,
determine: (a) a prediction design to minimize the maximum value of the inte-
grated mean squared prediction error (IMSPE), (b) a one-point extrapolation
design to minimize the maximum value of the mean squared extrapolation er-
ror (MSEE), and (c) a general extrapolation design to minimize the maximum
value of the integrated mean squared prediction error (IMSEE), with the max-
imum being evaluated over the possible departures (from assumed model and

homoscedasticity) from the response function;

2. For nonlinear OLS estimation with heteroscedasticity, determine (a), (b), and
(¢), with the maximum being evaluated over both the departure from assumed

response function and that from homoscedasticity;

3. For nonlinear weighted least squares estimation, determine both weights and a

design to minimize the maximum IMSPE, MSEE, or IMSEE;

4. Choose weights and design points to minimize the maximum IMSPE, MSEE,
or IMSEE, subject to design unbiasedness.

Secondly, we present the construction of robust designs when the data are cen-

sored. The minimax designs are found for maximum likelihood estimation in the
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context of both prediction and extrapolation problems in case of with or without
restraint of design unbiasedness.

Our study extends the previous work of others in three aspects: (i) by consider-
ing a nonlinear fitted regression response; (ii) by taking a rather general design and
extrapolation spaces; and (iil) most significantly, by dropping all restrictions on the
structure of the regressors. Solutions are derived by a nonsmooth optimization tech-
nique analytically and given in complete generality. Numerical comparisons indicate
that our designs perform well in combining robustness and efficiency and applications
to accelerated life testing are highlighted.

Lastly, we discuss the application of our designs to a real life dose-response exper-
iment. We propose two new implementation schemes for approximating a continuous
design, and also confirm that one of the matching quantile schemes used in the liter-

ature is optimal with respect to certain criteria.
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CHAPTER 1

INTRODUCTION

In this dissertation we study the construction of optimal regression experimental
designs, for both prediction and extrapolation of a response, when the regression
model is misspecified. Throughout the dissertation we divide our work into three
different types of problems: prediction problems, one-point extrapolation problems,
and general extrapolation problems. For a prediction problem, our goal is the response
estimation throughout the design space in which the design (support) points can
be chosen. For an extrapolation problem, we are interested in extrapolation of a
response to an extrapolation space. If such an extrapolation space consists of just
one point outside the design space, we call it a one-point extrapolation problem. If the
extrapolation space has nonzero Lebesgue measure, we name it a general extrapolation
problem. This work contains five chapters. Three of them, Chapter 2, Chapter 3,
and Chapter 4, are independent papers which have been prepared for publication.
The robust one-point extrapolation designs are studied in Chapter 2 while the robust
prediction designs and robust general extrapolation designs are provided in Chapter
3. In addition, we construct the robust optimal designs incorporating censored data
in Chapter 4. Chapter 5 contains implementation methods of continuous designs, and
applications of the optimal designs constructed in this work.

Most previous work for robust optimal designs has been done for linear regression
models; however, this dissertation treats nonlinear regression as well. We take into
account not only the possible misspecification in assumed regression response but also
the possible departure from assumed homoscedasticity. Robustness of the designs on

the parameter-dependency problems in nonlinear regression is also addressed.
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This present chapter provides a review of the literature regarding the previous
work in direction of (1) optimal prediction designs, (2) optimal extrapolation designs,
(3) robust optimal designs against various situations, and (4) robust optimal designs
for accelerated life testing (ALT) and censored data. Several sections are presented in
this chapter. Section 1.1 outlines the purpose of our study; it presents the motivation
of the dissertation that involves an application of life testing and the consideration
of nonlinear regression models. Section 1.2 reviews classical optimal designs for esti-
mation, prediction, and extrapolation problems. It also gives the classical optimality
criteria and some classical optimal design examples. Section 1.3 reviews the robust
optimal designs against various situations. The robust designs, particularly in life
testing literature, are briefly introduced. Some examples of the robust optimal de-

signs which lead to our current study are detailed. Finally, Section 1.4 summarizes

the results of this dissertation.

1.1 Purpose of the Study
1.1.1 Motivation

Nowadays more and more products have high reliability. The time consumed in life
testing for such products at normal conditions is exorbitant. A common approach
to this problem is that of acceleration. ALT provides timely information about a
product’s life by testing a sample of units at higher than usual stress levels and
extrapolating through an assumed statistical model to estimate life at a lower stress
level anticipated in practice. Since this extrapolation is to one point outside of testing
stress space (experimental design space), it is a one-point extrapolation problem.

Fang and Wiens (1999) point out that “extrapolation to regions outside of that in
which observations are taken is of course an inherently risky procedure and is made
even more so by an over-reliance on stringent model assumptions.”

For example, suppose design space is S = [a, b]. The experimenter tries to fit a
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response

a [ b Xo

A true mean; B: fitted mean

Figure 1: Misspecified simple linear regression. A solid line represents the true
regression response while a broken line represents the fitted regression response.

straight line regression model and then extrapolate the fitted line to a point z outside
S. There are a few problems that could possibly occur. Firstly, the extrapolation
in estimation is biased at extrapolation point zo although the fit within S seems
good. See Figure 1 for a demonstration of the danger of extrapolation. Secondly, the
departure from the assumed model cannot even be detected. Furthermore, there is no
information about what kind of departure would occur. Therefore, we are motivated
to explore a “good” design which takes into the consideration of possible but unknown

departure from the model which one is fitting.
1.1.2 Extension from Linear to Generalized Linear Response

This study also aims to treat nonlinear regression. Let us examine a couple of nonlin-
ear regression examples. First of all, we consider an accelerated failure model, which

is commonly used in life testing and survival analysis (Hosmer and Lemeshow, 1998)
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for modelling the relationship between lifetime Y and the stress variable z:
E(Y|z) = exp (6o + 61). (1.1)

The second example is a dose-response curve for modelling the probability P(z) of

showing an adverse effect due to a dose at level x:

P(z) =1—exp (—zk:Gja:j> . (1.2)

This model is frequently applied in the field of cancer dose response. Either (1.1) or
(1.2) is a monotonic function of a linear function of unknown parameters and known
regressors. It is termed the generalized linear regression.

There is a wealth of literature regarding robust optimal regression designs against

misspecification in a linear relationship
E(Y|x) =27 (x)8 (1.3)

between a response variable Y and an experimental vector x, where 8 is the vector of
unknown parameters and z7(x) = (z1(x), 22(x), ..., 2,(x)) is the vector of regressors,
depending on x. However, there seem to be relatively few robust designs dealing with
misspecification in a nonlinear regression. This present study attempts to extend the

previous work on (1.3) to its generalized version
E(Y|x) = h (27(x)6)
for some monotonic function h.

1.1.3 Address both ALT and Censoring

With regard to life testing, the two most commonly used testing time saving plans are
acceleration and censoring, both of which stimulate our study. When life testing runs
at the stress levels within the range of product normally in use, our goal is prediction.

Namely we are interested in the estimation of mean response throughout the region
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of interest. For ALT, in which products are tested at higher than normal usage stress
levels, the goal is extrapolation. For extrapolation problems, if one is interested in
estimating the lifetime at a certain range of normal usage stress levels, we classify it
as a general extrapolation problem; if one is interested in estimating the lifetime at
a particular normal usage stress level which is lower than testing stress levels, it is
a one-point extrapolation problem. Therefore, three types of designs are considered
under this dissertation study to address these three types of problems.

Tests yielding complete data generally take too long to run especially for those
products having long life-spans. To save testing time, the test may be censored in
order that the result can be analyzed before all units fail. Subsequently, the data
obtained from such testing plans will consist of lifetime information on unfailed units
(so called “censored data”). Another purpose of censoring is to permit one to analyze
the most recent test data while the test is still running. The robust optimal designs

incorporating censoring are also a part of our study.

1.1.4 Remove the Restrictions

There is another issue that we have considered in this dissertation. In the robust
design literature, due to the intractability of obtaining an explicit design there are
often certain restrictions put on the regressors’ structure, on the design space, and
additionally on the extrapolation space for general extrapolation problems. For in-
stance, the minimax explicit design problems for high degree polynomials are not
tractable as indicated in Heo, Schmuland, and Wiens (2001). This dissertation aims

to provide a way of constructing a robust optimal design without such restrictions.

1.2 Classical Optimal Designs
1.2.1 Classical Design Problems

Suppose that the linear regression model (1.3) with x € R?, 8 € RP*!, and z(x) €

RP*! a vector of regressors is considered. In order to estimate 8 and explain certain
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aspect of this model, measurements on Y are to be made for each of n points {x;,
X2, ..., Xn} Which need not be distinct.
Because of the experimental errors, the observations (x1,%1), (X2, ¥2), .-cs (Xn, ¥n)

follow a statistical linear model

yi =2 (x,)0 + &, i=12,..,n, (1.4)

where the €,’s are random errors. Two classical assumptions made to this regression
model are:

A1l. The regression response E(Y|x) = zT(x)@ is exactly correct.

A2. The errors ¢; are uncorrelated and have common variance 2.

Define X = (27(x,), 2" (x,), ..., zT(xn))T andy = (11, ¥2, ..., Yn)" . Under assump-
tions A1, A2 and that of X7X being nonsingular, the least squares (LS) estimate 0.5
given by

Bs = (XTX) ' X"y
is the best estimate of @ among all linear unbiased estimates, and the covariance
matrix of 8,5 is the smallest in the sense of the Loewner ordering of nonnegative
definite matrices. Furthermore, we can remove the restriction on linearity if the
random errors are assumed to be normally distributed. This implies that .5 is

efficient. As we know, @5 has covariance matrix
COV(éLs) = 0'2 (XTX) - y

which only depends on X. Hence, the problem of experimental design is to choose the
appropriate X in order that C’OV(@ 1s) will be as “small” as possible. The matrix
COV(8ys) being “small” means that an appropriate real-valued function of it is

small. Different functions will give different minimization criteria, as seen in Section

1.2.3.
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1.2.2 Approximate Design Theory

Suppose we plan or are allowed to perform an experiment for the model (1.4) by
choosing the observation sites {X1, X3, ..., X, } from a design space S C R?. In practice,
a design should tell the experimenter what the design support points are and how
many subjects should be allocated to each of these points. An implementable design,
€, must be a discrete probability measure which puts probability £(x;) at x;. For a
given 7 < n, let x3, Xy, ...,X, be the distinct design points, the number of subjects
allocated to a particular design point X; on design space is then, né(x;). Thus, in
addition, each £(x;), ¢ = 1,2,...,7, should be an integer multiple of n=}. A design
with this integer property is called an exact design, but in general the exact design
problem is mathematically intractable. The situation is analogous to the much simpler
one where we wish to maximize a function defined on the integers. Because of discrete
domain, calculus techniques cannot be exploited in this situation. A commonly used
device for this simpler problem is to extend the definition of the function to all real
numbers and use calculus to find the maximizing real number; and then to argue
that the maximum of the function over integers occurs at an integer adjacent to this
maximizing real number. This idea is adapted for the design problem and leads to
what Kiefer has termed “approximate design theory”. Approximate design theory
extends the class of designs, allowing it to be any probability distribution on S.
Define = to be the set of all probability distributions on S. We seek an optimal
design, &,, within = and hope that an exact design which approximates &, will be

close to optimal. This approach is adopted by us throughout this work as well.

1.2.3 Optimality Criteria

Let € be a design measure, that is, the empirical distribution function of {x;, %2, ..., X, } :

E(X) = % Z L,
1=1
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with I, representing the point mass 1 at x, for any x € S. For any £ € Z, define a

matrix

B; = / z(x)zT(x)dﬁ.

s
It is a nonnegative definite (p + 1) x (p + 1) matrix. Since By = 1 (XTX), we

have COV (8.s) = %Bgl. The classical design problem is to find an optimal design
in order that an appropriate scalar function of Bgl will be minimal. Such a scalar
function is called an optimality criteria or a loss function.

When we are interested in finding the best estimates for the coefficients in regres-
sion function, the optimal design which we are searching for is normally intended to
minimize the generalized variance of parameter estimates. We call such design an
estimation design. The commonly used loss functions for searching for an estimation
design include the determinant, the trace, and the largest eigenvalue of BE_I, and
these give the D-, A-, and E-optimality criterion respectively. Kiefer (1974) gener-
alizes these criteria in terms of the sum of the certain powers of the eigenvalues of
Bgl. Dette, Heiligers, and Studden (1995) investigate the geometric structure of a
class of minimax optimality criteria containing Kiefer’s generalized criteria as special
cases. When we are interested in the best estimation of the response function, the
design problems are to find the optimal prediction designs. Such designs are found
to minimize the variance of predicted response. With d(x,£) = z7(x)Bg'z(x), for
a prediction design the loss function normally is a function of d(x,&). The two com-

monly used ones are maximum: max.csd(X,&) and average: / d(x, £)dx over design
s

space S. They provide the G-, and Q- (or I-) optimality criterion respectively. For
extrapolation designs, the loss functions considered are the maximum and the aver-
age of d(x,&) over extrapolation space T instead of S. We still call them the G-,
and Q- (or I-) optimality criterion. For nonlinear regression, the covariance matrix

depends on not only the design but also the unknown parameter values. Therefore,
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normally the optimal design minimizing the corresponding loss function for nonlinear
regression depends on the unknown parameter values. The corresponding criteria are
called Dg-, Ag-, Eo-, Go, and Qg- (or Ig-) optimality. For details, see Silvey (1980)

who provides us with an elegant reference to the theory of classical optimal designs.

1.2.4 Examples

Example 1: Classical optimal designs for polynomial regression.
Guest (1958) presents the D-optimal design for the polynomial regression. For

the p™* degree polynomial regression model
E(Y|z,0) =00+ 61z + ... + 0pz?

with a parameter vector, 87 = (8, 1, ..., 6,), the D-optimal design has (p+1) design
points with an equal mass of 1/(p + 1). These design points are the solution of the
following equations

(1 -2 2 Fy@) =,

where P,(z) is the p™ Legendre polynomial. Let S = [—1,1]. For instance, when
p = 3 the design points are +1 and +0.447; when p = 4 they are 0, £1, and +0.665.

Example 2: Classical optimal extrapolation designs for polynomial re-
gression.

The G-optimal extrapolation designs for polynomial regression are found by Hoel
and Levine (1964). For S = [-1,1], T = [1,t] or T = {t} with t > 1, and
z(z) = (1, =, 22, ..., a:p)T, the G-optimal extrapolation design is supported by p+ 1
Chebyshev points

1T .
T; = — COoS (;) ,20=0,1,..., p,

and the mass on each point is proportional to the absolute value of the corresponding

Lagrange interpolation polynomial at this specific point. Namely,

L)
S (@) = o @
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where

(=) (= @im) (= is) et — 3)
Lile) = (@i — zg) ... (T — Tio1) (T5 — Tig1) (s —pa:p)'

Example 3: Classical optimal designs for generalized linear regression.
Ford (1976) considers the optimal design problem for nonlinear regression. Sup-
pose that the response Y takes values 0 and 1; the independent variable z is contin-

uous; the parameter vector is 87 = (6o, 61), and
P(Y =1|z,6) = exp (6o + 612) / [1 + exp (80 + 6:17)]

with 8y > 0 and 6; > 0. This is a generalized linear regression model. Let the
design space be S = [—1,1]. Ford has shown that the Dg-optimal design measure is
supported on two points, each having probability of 0.5. The support points depend
on @ in the following way.

Let a = 1.5434 be the positive solution of the equation e* = (z+1)/(z —1). Also,

we make use of the classes below:

T = {0|01—002a, 0o > 0, 01>0},

i

9
T {0‘01—00<a, b0 >0, 61 >0, exp (6o +6;) < 1+1},

;-1
5 - {o

Then, the support points are

0
00>0, 01)0, exp(00+01)>91+1}.
1 —

(i)“—gfﬂand_—“a—_;-@,ifOE'Tl;

(ii) —1 and z*, where z* is the solution of exp (fp + 61z) = :2—2%1%, if 0 € Ty;
(i) —1 and 1, if 8 € T5.
The locations of the support points depend on 8. This dependency may be roughly

summarized by saying that the more nearly linear is the response curve in the interval

[—1,1], the further towards —1 and +1 are the support points pushed.

10
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1.3 Robust Designs

1.3.1 Robustness against Various Situations

The classical optimal designs are sensitive to model assumptions. Box and Draper
(1975) summarized fourteen criteria which can be used to judge a design for fitting a
regression function. One of these is described as to “be insensitive to wild observations
and to violation of the usual theory assumptions.” Robust designs are required to
have this particular property. In the literature, robust designs are constructed to
safeguard against various situations which the experimenter should watch out for.
These situations are listed by us as follows:

(1) misspecification in a regression function;

2) violation of homoscedasticity;

3) misspecified parameter values which the constructed design depends upon;

5) misspecification of an underlying distribution;

6

(
(3)
(4) violation of independence of observations;
(5)
(6) wild observations.

For (4), see Wiens and Zhou (1996, 1999), Zhou (2001), and also the references
therein. For (5), see Chaloner and Larntz (1992), and more recently Pascual and
Montepiedra (2003). For (6), Box and Draper (1975) present a measure of insensitivity
to wild observations so that the robust designs with protection from wild observations
can be determined by minimizing such a measurement.

Our study addresses the situations of (1), (2), and (3). The literature on these

three situations is described in the following three subsections.
1.3.2 Robust Design against (1)

In light of Box and Draper (1959), the optimality criteria using the mean squared
error matrix are broadly adopted. This is the sum of one term related to the variance

of the estimates of the unknown parameters in the regression model and the other
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term related to the bias present because of fitting an incorrect model. Many authors
have dealt with the situation wherein the underlying regression model is assumed to
be some low degree polynomial, and where the possible departures from this model
range from a higher degree polynomial to a very large class of functions. In general,
the regression model under the consideration of robustness is assumed to be approx-
imately known. The true model is a contaminated version of a fitted model (1.4). It

can be written as
v =27 (%,)0+ f(x:) +e, i=1,2,..,n, (1.5)

where the random errors are uncorrelated and have homogeneous variances, and f
represents an unknown contaminant which usually belongs to a predefined contami-
nation class F. Due to the presence of f, the least squares estimator 85 is no longer

unbiased. Its bias vector and covariance matrix are
-~ -~ 0'2
E (HLS) -0= Be—lbf,s, and COV(8.5) = ng_l’

where by s = / z(x) f(x)d¢. Hence, the mean squared error (MSE) matrix of 8¢ is

s
given by

MSE(f,€) = B;'bssb} ;B; ' + %Bg‘.
To obtain the optimal designs under model (1.5), the loss functions are naturally cho-
sen by replacing the covariance matrix with the mean squared error matrix M SE(f,£).
Since M SE(f,£) involves the unknown contaminant f, we use maxscx MSE(f,£) to
safeguard against the worst possible situation. Therefore the determinant, the trace,
and the largest eigenvalue of max;er MSE(f,£) give the D-, A-, E-optimality cri-
terion respectively. Let dp,(x,£) = maxser 2l (x)MSE(f,£)z(x), the loss functions:

max;cs m(X, &) and / dm(x,€)dx provide the G-optimality and Q- (or I-) optimal-

s
ity criterion respectively. Most recently Adewale and Wiens (2006) discuss a new

criterion of robust optimal designs. It replaces the maximum of MSE(f,£) with the
average of MSE(f,§) over F.

12
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These robust optimal designs differ in the choice of the contamination class 7 and
the criterion of optimality. Box and Draper (1959) and Kiefer (1973) considered that
the true regression function is a polynomial of possibly higher degree than that of the
assumed one. Their attention is on finite dimensional F. There are two major types
of less restricted contamination classes, infinite dimensional F, used in the literature.
They are:

Fi=<f: /f2(x)dx < n3, /z(x)f(x)dx =05,
s

S

where 775 is a constant and assumed “small” so that the linear term in (1.5) is still

dominant; and
Fo=4f: |f(x)] < p(x) for any x € S, /z(x)f(x)dx =03,
s

with various assumptions about ¢. The first class F; is used in Huber (1975, 1981),
Wiens (1990, 1991, 1992, 1993, 1994, 1996, 1998) while the second F is used in
Marcus and Sacks (1976), Li and Notz (1982), Pesotchinsky (1982), Li (1984), and
Liu and Wiens (1997). The first class is so full that the optimal designs obtained are
continuous and need to be approximated by a discrete design prior to implementation.
However, the second class is too thin, with the result that the robust designs found
generally have a small number of support points and thus do not allow exploration
of models larger than the fitted one. The review by Chang and Notz (1996) gives a
summary of the previous work in this subject. It is still an open problem to define a
compromise contamination class to accommodate both implementation convenience
and model-exploration enhancement. In an innovative way, Yue and Hickernell (1999)
introduce a class F which is a reproducing kernel Hilbert space admitting a reproduc-
ing kernel function defined on S x S; they have shown that under this contamination
class, the continuous uniform design on S is still the bias minimizing design.

For some resulting robust optimal designs regarding different optimality criteria,

13
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see Pesotchinsky (1982) and Wiens (1992). Both papers address multiple linear re-
gression, i.e. z(x) = (1, XT) . Wiens (1992) constructs the robust D-, A-, E-, Q- and
G-optimal designs under . Pesotchinsky (1982) was interested in the best estimates
for the coefficients in the regression function and obtained the D-, A-, and F-optimal

designs under F5.
1.3.3 Robust Design against both (1) and (2)

To the author’s knowledge, Wiens (1998) is the first paper which takes the consid-
eration of robustness against possible violation of homoscedasticity assumption. He
assumes the model (1.5) where the random errors, although uncorrelated with mean

0, are possibly heteroscedastic with
var [e (x)] = o%g (x),

where g (x) is an unknown member of a fluctuation class G. Prior to this paper, many
authors such as Wong (1992), Wong and Cook (1993), and Dasgupta, Mukhopadhyay,
and Studden (1992) constructed optimal designs for heteroscedastic regression models

with known efficiency functions A (x) = g(x)™'. Wiens (1998) defines

Q={g:'/sg(X)dXS'/de},

and constructs the robust Q-optimal prediction designs in the presence of both pos-
sible variance fluctuation within G and possible regression contamination within F;.
He considers the following problems:

P1) For ordinary least squares (OLS), determine a design to minimize the max-
imum of integrated mean squared error (IMSE), [, zT(x)MSE(f,g,£)z(x), over f
and g;

P2) For weighted least squares (WLS), determine both weights and a design to

minimize the maximum IMSE;

P3) Choose weights and design points to minimize the maximum IMSE, subject

to a side condition of unbiasedness.

14
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The solutions for both P1) and P2) are found for multiple linear regression with no
interaction and with a spherical design space. The solution to P3) is given in complete
generality without restrictions on regressors and design space. This dissertation will
extend these results for P1) and P2) by removing the restrictions on both regressors
and design space in Chapter 3.

Fang and Wiens (1999) extend the work of Wiens (1998) to general extrapolation
problems. They consider the same model as (1.5), same fluctuation class G, and a
similar contamination class to J; but add on a condition for the contaminant on the

extrapolation space T :

FE={1: [Peaxsn, [P, [a@fmax=ot
S T S

where nr is a constant. T is assumed to have nonzero Lebesgue measure and be
disjoint from S. They construct the robust @-optimal extrapolation designs in the
presence of both possible variance fluctuation within G and possible regression conta-
mination within F¥. The corresponding problems to P1)-P3) are addressed. Similarly,
for this general extrapolation case, the solutions to both P1) and P2) are found for
multiple linear regression with no interaction, with a spherical design space, and with
an annular extrapolation space. The solution to P3) is given in complete generality
without restrictions on regressors, design space and extrapolation space. This dis-
sertation will extend these results for P1) and P2) by removing the restrictions on
regressors’ structure, design space, and extrapolation space in Chapter 3. It will also
extend these results for P1), P2) and P3) to the one-point extrapolation case, where

the extrapolation space has Lebesgue measure zero, in Chapter 2.

1.3.4 Robust Design against (3)

There are a few situations wherein the optimal designs generally depend on unknown

parameters which we aim to estimate; such designs are called “locally optimal”. These

situations are:
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(1) For a nonlinear regression model.

(2) For a heteroscedastic linear model with a variance function depending on
unknown parameters (for instance, the variance of a response is an exponential or a
power function of its mean).

(3) For a linear regression yet with the purpose of estimating a nonlinear aspect,
such as the ratio of two parameters.

Several strategies such as a Bayes approach, minimax scheme, and sequential
procedures are used to overcome the parameter-dependency of the designs. For (3), we
refer to Miiller (1995). She uses the maximin efficiency criterion to find the maximin
optimal designs which maximize the minimum relative efficiency over a parameter
space. For (2), we refer to Dasgupta, Mukhopadhyay and Studden (1992). They
assume the parameter vector has a suitable specified prior distribution so that the
Bayes optimal designs can be obtained. However, most designs found in the literature
which deal with the parameter-dependency problem are constructed for (1).

For nonlinear regression, Ford, Titterington, and Kitsos (1989) present various
static and sequential designs for nonlinear models without the consideration of model
uncertainty. Sinha and Wiens (2002) have employed notions of robustness in the con-
struction of sequential designs for approximately specified nonlinear models. However,
in some applications - ALT for example - sequential designs are not feasible (Ford,
Titterington, and Kitsos, 1989); hence our focus in this dissertation is on static de-
signs and therefore the minimax approach (Silvey, 1980) is adopted to find the locally
most robust optimal design for the least favourable parameter value over a parameter

region.
1.3.5 Robust Designs for ALT and Censored Data

The resulting robust optimal designs seen in the literature vary according to a num-

ber of factors. For instance, (1) the contamination class which gives the range of
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departures; (2) optimality criterion; (3) estimation method used for estimating the
quantity of interest such as least squares estimators (Wiens, 1998), linear estimator
(Li and Notz, 1982), M-estimator (Wiens, 1994); (4) the aspect of interest: estimation
of the regression parameters, prediction of the response function, or extrapolation; a
linear aspect such as the difference between two treatment effects (Heckman, 1987), a
nonlinear aspect such as the ratio of two regression parameters (Miiller, 1995). Lastly,
the design also depends on the limitation of the experiments in practice. Censoring
is just such an example. This limitation provides us the special type of data we have
to cope with. We call it “limitation” since this issue not only becomes a part of the
design at the design stage, but also limits the choice of estimation methods in the in-
ference stage. Designs for censored data would wipe out the possibility of using least
squares estimation in addition to the censoring scheme being a part of the design.
Recent work on robust designs for censored data in ALT are reported by Chaloner
and Larntz (1992), Pascual and Montepiedra (2002), and Pascual and Montepiedra
(2003). These studies emphasize the robustness against misspecification of the un-
derlying distribution and assume that the “true” model belongs to, or is distributed
(with a known prior) onto, a set of several known candidates. Both the Bayesian-type
approach and the minimax strategy are used. Ginebra and Sen (1998) investigated
optimal designs for censored data, which are robust against possibly misspecified pa-
rameter values on which the optimal designs depend. The explicit designs obtained
in these works are under straight line regression. Chapter 4 of this dissertation will
extend these works by considering a more general regression model, allowing more ar-

bitrary uncertainty in the fitted regression response, and by dropping the restrictions

on the structure of the regressors.
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1.3.6 Examples

Example 1: Robust optimal design for misspecified simple linear regres-
sion.

Wiens (1992) presents the explicit D-, A-, E-, Q- and G-optimal designs under F;
in the case of fitting a plane, with the design space being a sphere of unit volume in
RP. His work extends Huber (1975) in terms of moving from simple linear regression
to multiple linear regression, and also with regard to considering all admitted loss
functions. Under F; when p = 1, § = [-0.5,0.5], Huber (1975) gives the robust

Q-optimal design. This design has the density of
k(z) = (azx® + b)T, (1.6)

where (2)* := max{z,0}, and @ > 0, b depend on the value of v := i‘% Under the
same condition, Wiens (1992) presents the robust D-optimal design with the density
having the same form as of (1.6) but with different coefficients, and the robust A-

optimal design with the density having a different form of
a
k(z) = (b— F)+

The quantity v can be interpreted as the relative importance of variance versus bias
in the belief of the experimenter. When v is small, one places more emphasis on
reducing the bias. For the extreme case, v — 0, the design reduces the bias alone so
it tends to the continuous uniform design. On the other hand, when v is large, one
places more emphasis on minimizing the variance. The extreme case, v — 00, then
will be the design minimizing variance alone and tends to the classical optimal design
which places half of the observations on each of —0.5 and 0.5. See Figure 2 for the
plots of robust D-, and A-optimal designs obtained in Wiens (1992); and the robust
Q-optimal design obtained by Huber (1975). We take v = 1 in these plots.
Example 2: Restricted robust optimal design for misspecified polyno-

mial regression.
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Figure 2: Robust @-, D-, and A-optimal design densities for misspecified simple
linear regression, minimax in contamination space JF; with v = 1.

Heo, Schmuland, and Wiens (2001) consider approximately polynomial regression
models and illustrate some of the difficulties that can be encountered in the minimax
approach without further restriction on the design densities by considering approx-
imate quadratic regression z(z) = (1, , xz)T . They therefore introduce a restricted
class of designs to avoid the mathematical and numerical intractability found in the
unrestricted minimax theory. They further assume that S is symmetric. For the
polynomial regression with z(z) =(1, z, ..., 2P) , they restrict their search for minimax

designs within the class of design measures with densities of the form

k(x) = (90 + Zp:ojl'zj) .

The restricted robust Q-, D-, and A-optimal designs are constructed explicitly for
both misspecified multiple linear and polynomial regression models. See Figure 3 for
restricted robust @-, D-, and A-optimal designs of quadratic regression. All plots
provided use v = 1.

Example 3: Unrestricted robust optimal design for misspecified poly-
normial regression.

Shi, Ye, and Zhou (2003) extend the results of Heo, Schmuland, and Wiens (2001),

constructing the robust optimal designs by relaxing the restriction on the design
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Figure 3: Restricted robust Q-, D-, and A-optimal designs for misspecified polyno-
mial regressions.

density form; furthermore, they extend the results of Huber (1975) and of Wiens
(1992) by removing the restrictions on the regressor’s structure and on the design
space. This paper uses the key tool from nonsmooth optimization theory and makes
more explicit and applicable results possible even without any of these restrictions
mentioned above. The main result of this paper is that, under J;, the robust optimal
design density has an analytic form

(2T (%)Pz(x) + d\ "
’“(")‘( 2 (x)Qa(x) ) ’

where constant matrices B, D, and a constant d are determined by minimizing a
specified optimality criterion. These robust optimal designs are constructed for mis-

specified linear regression under ordinary least squares estimation. Chapter 3 of this
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Figure 4: Unrestricted robust Q-, D-, and A-optimal design densities for misspecified
quadratic linear regression, minimax in contamination space F; with v = 1.

dissertation will extend their results in three directions: (1) to generalized linear
regression; (2) to extrapolation; (3) to weighted least squares estimation.

The explicit and unrestricted robust Q-, D-, and A-optimal design for misspecified
polynomial and multiple linear regression are given in Shi, Ye, and Zhou (2003). See
Figure 4 for unrestricted robust @Q-, D-, and A-optimal designs of quadratic regression.

All plots provided use v = 1.

1.4 Summary of the Results in this Dissertation

The focus of our study is to construct robust designs for the cases of prediction,
one-point extrapolation, and general extrapolation. Possibly misspecified nonlinear
responses are considered. We assume that our regression model is an approximately
known function of a linear regression function. Our designs are robust against the
various situations including (1), (2), and (3) as listed in Section 1.3.1. We also deal
with different types of data. For complete data, we construct the robust designs when
nonlinear (possibly weighted) leastisquares estimation is used; for censored data, our

robust designs assume maximum likelihood estimation is used.
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The main results of this dissertation are included in three chapters. In Chapter 2,
entitled “Robust Designs for One-Point Extrapolation”, we consider the construction
of optimal designs for the extrapolation of a regression response to one point outside
of the design space. The response function is only approximately specified. As well,
we allow for variance heterogeneity. The minimax designs and corresponding optimal
regression weights are found in the context of the following problems:

(i) For (nonlinear) ordinary least squares (OLS) estimation with homoscedasticity,
determine a design to minimize the maximum value of the mean squared extrapolation
error (MSEE), with the maximum being evaluated over the possible departures from
the response function;

(ii) For OLS with heteroscedasticity, determine a design to minimize the maximum
value of MSEE, with the maximum being evaluated over the departures in both the
assumed regression function and the variance homogeneity;

(iii) For (nomlinear) weighted least squares (WLS) estimation, determine both
weights and a design to minimize the maximum MSEE;

(iv) Choose both weights and design points to minimize the maximum MSEE,
subject to a side condition of unbiasedness.

Solutions to (i)—(iv) are given in complete generality. Numerical comparisons indi-
cate that our designs and weights perform well in combining robustness and efficiency.
Applications to accelerated life testing are highlighted.

Chapter 3 is named “Robust Prediction and Extrapolation Designs for Misspec-
ified Generalized Linear Regression Models”. In this chapter, we study minimax
robust designs for response prediction and extrapolation in biased generalized linear
regression models. Minimax designs have been constructed for the following problems:

(i) For OLS estimation with homoscedasticity, determine optimal extrapolation

designs to minimize the maximum value of the integrated mean squared extrapolation

error (IMSEE);
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(ii) For OLS with heteroscedasticity, determine optimal prediction designs to min-
imize the maximum value of the integrated mean squared prediction error (IMSPE);

(iii) For OLS with heteroscedasticity, determine optimal extrapolation designs to
minimize the maximum value of IMSEE;

(iv) For WLS estimation with heteroscedasticity, determine optimal regression
weights and minimax prediction designs to minimize the maximum value of IMSPE;

(v) For WLS with heteroscedasticity, determine optimal regression weights and
minimax extrapolation designs to minimize the maximum value of IMSEE.

This chapter extends the previous work of others in three aspects: firstly, by
considering a nonlinear fitted regression response; secondly, by taking a rather general
extrapolation space; finally, and most significantly, by dropping all restrictions on the
structure of the regressors.

In Chapter 4, titled “Robust Prediction and Extrapolation Designs for Censored
Data”, we present the construction of optimal designs for both response prediction
and extrapolation with a possibly misspecified generalized linear regression model
when the data are censored. The minimax designs are found for maximum likelihood
estimation in the context of the following problems:

(i) For prediction, determine a minimax design which minimizes the maximum
value of IMSPE, with the maximum value being evaluated over the possible departure
from the assumed response function;

(ii) For one-point extrapolation, determine a minimax design which minimizes the
maximum MSEE;

(iii) For general extrapolation, determine a minimax design which minimizes the
maximum value of IMSEE;

(iv) Determine unbiased minimax design for both prediction and extrapolation
problems.

This chapter extends the work on robust designs for complete data in Chapters 2
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and 3 by incorporating censoring and maximum likelihood estimation. Solutions are
derived by a nonsmooth optimization technique analytically, and are given in complete
generality. A typical example in accelerated life testing is also demonstrated.
Chapter 5 provides applications and implementation of the continuous optimal
designs that we have constructed in the chapters prior to it. A real life dose-response
experiment is discussed. A couple of practical implementation methods are proposed
and displayed after other existing approaches are reviewed. We also state that one
of the existing implementation schemes is optimal under certain criteria. The com-
parison between one of our proposed approaches and an existing one shows that the

proposed one is fairly close to optimal.
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CHAPTER II

ROBUST DESIGNS FOR ONE-POINT
EXTRAPOLATION

Abstract We consider the construction of designs for the extrapolation of a re-
gression response to one point outside of the design space. The response function
is an only approximately known function of a specified linear function. As well, we
allow for variance heterogeneity. We find minimax designs and corresponding opti-
mal regression weights in the context of the following problems: (P1) For nonlinear
least squares estimation with homoscedasticity, determine a design to minimize the
maximum value of the mean squared extrapolation error (MSEE), with the maxi-
mum being evaluated over the possible departures from the response function; (P2)
For nonlinear least squares estimation with heteroscedasticity, determine a design to
minimize the maximum value of MSEE, with the maximum being evaluated over both
types of departures; (P3) for nonlinear weighted least squares estimation, determine
both weights and a design to minimize the maximum MSEE; (P4) Choose weights
and design points to minimize the maximum MSEE, subject to a side condition of
unbiasedness. Solutions to (P1)-(P4) are given in complete generality. Numerical
comparisons indicate that our designs and weights perform well in combining robust-

ness and efficiency. Applications to accelerated life testing are highlighted.

tCo-authored with Professor Douglas P. Wiens. Submitted for publication.
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2.1 Introduction

In this chapter we study the construction of designs for the extrapolation of regression
responses to one point outside of the design space. Such ‘one-point extrapolation’
designs are of interest in problems of accelerated life testing (ALT), in which products
are typically tested at unusual stress levels, with the results then extrapolated to
a lower stress level anticipated in practice. Our model is somewhat similar to a
generalized linear model, in that the response fitted by the experimenter is a function
of a linear function of unknown parameters and known regressors. Our designs are
robust in that we allow both for imprecision in the specification of the response, and
for possible heteroscedasticity.

Robust designs for extrapolation of a, possibly misspecified, linear response were
obtained by Fang and Wiens (1999); see also the references therein, in particular
Dette and Wong (1996), Draper and Herzberg (1973), Huang and Studden (1988),
Huber (1975) and Spruill (1984). The current work goes beyond Fang and Wiens
(1999) in two ways - in the move to a generalized linear response as described above,
and in our emphasis on extrapolation to a single point, thus allowing for more explicit
and applicable results than were previously possible.

For nonlinear regression, Ford, Kitsos and Titterington (1989) present various
static and sequential designs for nonlinear models without the consideration of model
uncertainty. Sinha and Wiens (2002) have employed notions of robustness in the
construction of sequential designs for the nonlinear model. In many ALT applications
however, sequential designs are not feasible (Ford, Kitsos, & Titterington, 1989),
hence our focus in this chapter on static designs.

Fang and Wiens (1999) point out that “Extrapolation to regions outside of that in
which observations are taken is of course an inherently risky procedure and is made
even more so by an over-reliance on stringent model assumptions.” With this in mind,

we shall depart rather broadly from the usual generalized linear response models:
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1. Theresponse is taken to be an approximately known function of a linear function

of known regressors and unknown parameters:
B(Y [x) = h(6F z(x)) +n 2 f(x)

for p regressors z(x) = (21(x), 22(x), ..., p(x))T, depending on a g—dimensional
vector x of independent variables. The function h is strictly monotonic, with
a bounded second derivative. We assume that ||z(x)|| is bounded on S. The
response contaminant f represents uncertainty about the exact nature of the
regression response and is unknown and arbitrary, subject to certain restrictions.
We estimate @ but not f; this leads to possibly biased extrapolations ¥ (x) =
h(éTz(x)) of E(Y|x). The factor n~'/2 is necessary for a sensible asymptotic
treatment. It ensures that losses due to bias remain of the same asymptotic
order as those due to variance, and is analogous to the requirement of contiguity

in the asymptotic theory of hypothesis testing.

2. The experimenter takes n uncorrelated observations Y; =Y (x;), with x; freely
chosen from a design space S. Our goal is to choose these design points from S

in an optimal manner in order to extrapolate the estimates of E(Y|x) to xo.

3. The observations Y; are possibly heteroscedastic, with VAR{Y (x;)} = o%g(x;)

for a function g satisfying conditions given below.

We estimate @ by nonlinear least squares, possibly weighted with weights w (x).
Our loss function is n times the mean squared error of ¥ (x,) in estimating E(Y |xo).

This depends on the design measure £ = n™!X" ,d,, as well as on w, f and g:
MSEE(.f7 g,w, 6) = nE{D’}(XO)_E(leO)F}

We denote unweighted least squares by w = 1, and homogeneous variances by

g = 1. The following problems will be addressed:
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(P1) For ordinary least squares (OLS) estimation under homoscedasticity, determine

designs to minimize the maximum value, over f, of MSEE(f,1,1,¢).

(P2) For OLS estimation under possible heteroscedasticity, determine designs to

minimize the maximum value, over f and g, of MSEE(f,g,1,§).

(P3) For weighted least squares (WLS) estimation, determine designs and weights

to minimize the maximum value, over f and g, of MSEE(f, g,w, §).

(P4) Choose weights and design points to minimize max;, MSEE(f, g, w,§), sub-

ject to a side condition of unbiasedness.

The rest of this chapter is organized as follows. The designs for P1 are provided in
Section 2.4. The designs and weights which constitute solutions to problems P2 and
P3 are given in Section 2.5. Those for P4 are given in Section 2.6. Some mathematical
preliminaries are detailed in Section 2.2. The maximization part of the minimax
designs construction are provided in Section 2.3. Comparisons of these designs are

presented in Section 2.7. All proofs are in the Appendix.

2.2 Preliminaries and Notation

We define the ‘target’ parameter 8y to be that which produces the best agreement,
in the Lo-sense, between h(87z(x)) and E(Y|x) :

60 = erg min{ /s [A(672(x)) — E(Y|x)]2dx}.
We assume that 6 is unique, so that with
fa(x) = v/n [E(Y |x) — h(672(x))]

and

z(x) = h' (672(x)) z(x)

we have [, Z(x)fn(x)dx = 0. Where possible we drop the subscript on f.
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We shall assume that f, = f is an unknown member of the class

F= {11 [ Pogix <o < 10l < 77 < 0, [ 3600k =0

for positive constants g, 7. The departure from homogeneity of variances is mea-

sured by g(x), which is assumed to be an unknown member of the class

o={s1 [Pmsa = [ax<ool. 2.)

The condition in (2.1) is equivalent to defining 0% = sup, { [, var? [e(x)] de}l/2 :
To ensure the nonsingularity of a number of relevant matrices, we assume that
the regressors and design space satisfy
(A) For each a # 0, the set {x € S: aTZ(x) = 0} has Lebesgue measure zero.
We propose to estimate @, using nonlinear least squares (LS) to fit E(Y|x) =
h(6%z(x)) with nonnegative weights w(x).

We make use of the following matrices and vectors:

As = [ 7(x)z" (x)dx, Az = 3(x,)z" (x0),
B = [(Z(x)z" (x)w(x)¢ (dx), D= [,Z(x)z" (x)w(x)g(x)¢ (dx),

bss = [(Z2(x)f(X)w(x)¢ (dx), bysr = Z(xe)f (o)

It follows from (A) that Ag is non-singular. The LS estimator of 8 is
8 = argmin Z[Y, — W67 z(x)) w(x;)
=1
and satisfies 37 | ¢,(8) = 0 for

$(0) = [¥; — h(O"2(x)] [1(672(x,)] w(x:)2(xs).
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In addition, we have

8(6) = 3. 6(0)

= ;[Yi — h(67z(x:))] [A"(672(x:))] wx:)z(x:)zT (x:)
- D] )T,
The information mat’:ix is
7(60) = lim E(—%EIS(BO)) -B
5 {% S 1Y — A(8Fax))] [#(6F2(x)] w(xi)z<xi>zT<x,->}
n Zf ) [W(672(x))] wi)a(xs)a (x)

is O (n’l/ 2) by virtue of our assumptions on f,h and z.

By Taylor’s Theorem,
0=3"60) =3 {5(0:) +4(B)@ -0},

where @ lies between 8 and 8,. Then

V(8 —6,) = ("% 2":@(9)) (\/— Z¢ (0°)>

=1
Note that n~1/2 57 ¢,(8,) is asymptotically normal, with asymptotic mean b #,5 and

covariance
COV{ Z ¢:(00)] = Z [1(872(x.))] ag(x:)z(x:)zT (x:)w?(x:)) = o°D.
As in Seber and Wild (1989, §12.2), the asymptotic distribution of \/n(8 — 6y) is
V(@ — 8y) ~ AN(B'bss,0?B 1DB™),
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and then by the delta method,
Jn (h(éTz(xo)) - h(eg’z(xo))) ~ AN (27 (x,)B " by 5, 025" (x,) B ' DB '%(x,)) .

The loss function MSEE splits into terms due to (squared) extrapolation bias,

extrapolation variance, and model misspecification:
MSEE(f,9,w,€) = nE{[¥(x)-B(Y|xo)}

= nE{ (8" z(x0)) — (BT 2(xo)) — \/Lﬁf(xo)] }

= EB(f,w,&) + EV(g,w,&) + f*(x0)
where the squared extrapolation bias (EB) and extrapolation variance (EV') are

EB(f,w,6) = n{B[h®"a(x)) - n(6F2(x0))] }
~2vf (xa) B [(8"5(x0)) ~ h{6F ()],
and
EV(g,w,€) = nVAR(Y (xo)) = nVAR(A(B" z(x0))).

Asymptotically,

EB(f,w,§) = bjsB'ArB 'bss—2b7 B 'bys,

EV(g,w,£) = %27 (x,)B'DB™'%(x,) = o’trA7B-'DBL,

We have defined £ to be a discrete measure, with atoms of size n~! at the design
points (possibly repeated). We now adopt the viewpoint of approximate design theory
and allow £ to be any probability measure on S. One reason for this is that as in
Lemma 1 of Wiens (1992), the class F is so broad that only absolutely continuous
measures £ can have finite maximum loss. Thus, let k(x) be the density of £, and
define m(x) = k(x)w(x). Without loss of generality, we assume that the mean weight

is [ w(x)€ (dx) = 1. Then m(x) is also a density on S which satisfies

lax =1, (2.2)
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and
B = /s 7(x)Z” (x)m(x)dx,
bs = [ B7GOm(x)ix.

Various methods for implementing designs with continuous measures are discussed
in Heo, Schmuland and Wiens (2001) and the references therein. As an example,
a practical implementation for univariate z is to place the n design points at the
quantiles z; = £ (ﬁ)

From the definitions of B, by s and by 7, we notice that EB(f,w,€) depends on
(w, §) only through m and EV(g,w,§) through m and w. Hence, we can optimize

over m and w subject to (2.2) rather than over k¥ and w. In the next four sections we

exhibit solutions to P1 ~ P4.

2.3 Mazximization over f € F and g€ G

In this section we exhibit the maxima of M SEE, for fixed functions m(x) and w(x).
The minimizing m and w then constitute the solutions to P1 — P4. The maxima are
obtained in a manner very similar to that used in Fang & Wiens (1999), and so their
derivations are omitted.

Define positive semidefinite matrices
K = / 7(x) 77 (x)m?(x)dx,
G = K-BAg 'B= / [(m(x)I — BAGY) 2(x)] [(m(x)I — BAZ?) 7(x)]” dx,

and constants 71 s = /1, reflecting the relative amounts of model response uncer-
tainty in the extrapolation and design space, and v = 0% /n%, representing the relative

importance of variance versus bias. In this notation, we have the following theorem.

Theorem 2.1 The mazimum squared extrapolation bias is

sup EB(f,m) = n% {)\m + 2rr 5/ )\m} )

feF
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where A\, = 27(x,)B"'GB™'%(x,). The mazimum is attained at

2T (%) {m(x)I - A;'B}a,, x€8,
=1 " (x) {m(x)1 Yao, x€

=N, X = Xy,

where ag = B™'Z(x,)/vAm-

We obtain Theorems 2.2 and 2.3 from this result. Theorem 2.2 gives the maximum
M SEE under homoscedasticity while Theorem 2.3 gives that under heteroscedastic-
ity.
Theorem 2.2 The mazimum mean squared extrapolation error in problem P1 is

sup MSEE(f,1,1,m) = {<\/};+7'T,5)2 + yiT(xO)B_li(xo)} , (2.3)
feF

attained at fp,.

Theorem 2.3 Define In(x) = [Z7(x)B1%(xy)]” and am = [ [lm(x)m?(x)]*3dx.

Then the mazimum mean squared extrapolation error in problems P2 — Pj is

VAm+T 2
sup MSEE(f,g,w,m) =15 ( rs) , (2.4)

1e¥ 96 Q12 [ [ {w(X)lm(x)m(x)}2dx]
attained at f,, and

Im,w(%) o W(K)lm(X)m(x).

The following theorem, whose proof is very similar to that of Theorem 2.2(a) in

Fang & Wiens (1999), gives the minimax weights for fixed m(x).

Theorem 2.4 For fivzed m(x) the weights minimizing sup;c r ,e¢ MSEE(f, g, w, m)
subject to (2.2) are given by

Win(X) = m [12,(x)m(x)] 7 I fm(x) > 0].

Then miny{sup;cr o MSEE(f,g,w,m)} =n} {(\//\m+T'T,S)2 + VQ‘I/zaf%{z}.
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2.4 Optimal Designs with Homoscedasticity: So-
lution to P1

Problem P1 has become that of finding a density m.(x) which minimizes (2.3). The
solution is given by Theorem 2.5, which reduces the problem to a (2p + 1)-dimensional
numerical problem. The generality of our solution to P1, as well as those to P2 and
P3, should be compared with the corresponding development in Fang & Wiens (1999).
This generality, and the relative simplicity of the solutions, is made possible by our

use of a one-point extrapolation region.

Theorem 2.5 The density m,(x) minimizing (2.3) for OLS estimation is of the form

z7 (x)y A +
7B T @B

m(x) =

where (2)7 = max(z,0). The p x 1 nonzero vectors v, B and constant \ satisfy: (i)

Jsma(x)dx =1, and (i) minimize (2.3).

Ezample 1. We consider an approximate accelerated failure model in survival
analysis (Hosmer & Lemeshow 1998, p. 272). It is a generalized simple linear regres-
sion with z7(z) = (1,z), p = 6y + 61z, and h(u) = e#. By Theorem 2.5, the optimal

design density has the form

m.(z) =

a1T + a, as ; ]+ (2.5)

asT 4+ as €217 (agz + ay)’
Note that (2.5) is over-parameterized - if one of a; — a5 is nonzero then we can assume
that it is unity. The term 2% has been absorbed into as, but m, still depends on 4;.
To address this issue we adopt a mixture of minimax and local approaches. We start at
some 0; = 0&0). The corresponding optimal design density is m{® (z). Then, we max-
imize (2.3) with m = m{” over an interval containing 0&0) to find the least favourable

value of 6;, say 0%1). We iterate between minimizing over designs and maximizing

over ; until attaining convergence, say to Ofp . Finally, we employ Theorem 2.5 to
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Table 2.1. Numerical values for (2.5)
S =10,1], 8; €[0,2], rs = 1, and 2o = 1.17.
v a3 (/) ag (413 0{"'1
0.5 0.130 0.421 -0.578 0.736 2
1 0.344 0.000224 -0.778 1.28 2
2 0.173 0.000286 —0.885 1.20 2

¢ , ’ : : — | a1z+ta a
construct the ‘locally most robust’ design density mu(z) = | 25322 + T o
corresponding to 627,

To illustrate the approach, we consider the Class-H insulation data from Nelson
(1990, Table 2.1). We transform the temperature variable ¢ used there to our stress

variable z with domain of [0, 1] via the linear transformation

. —1.876 4 1000/(t 4 273.15)
- 0.283 :

The least squares estimate for the nominal model is 6, = 0.946, with standard error
0.0486. The corresponding 99% confidence interval for 6, is (0.814,1.08). Taking the
model misspecification into account, we consider a broader region 6; € [0,2]. We
use the same extrapolation point zo = 1.17 as Nelson (op. cit.). We carried out the
process described above for several values of v, each time starting at 0&0) = 0.946.
In each case we obtained 8F = 2. See Table 2.1 for the numerical values of the
constants, and Figure 5(a) for plots. As a comparison, Figure 5(b) provides the plots
of the locally optimal design densities at §; = 0.946. All plotsuseay =1 and rr g = 1.

2.5 Optimal Designs with Heteroscedasticity

Our problems P2 and P3 have become the following:

(P2) Find a density m.(x) which minimizes

7)52 sup MSEE(f,g,1,m)
G

feF.ge
1/2

= (\/)\_m_+rg~,s)2 + vY/? [/; {ln(x)m(x)}? dx (2.6)
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Figure 5: Optimal minimax design densities m(z) = [G;HM + ’5’(a:z+a4)2} in

Example 1 for zp = 1.17. (a) locally most robust design densities for 6; = 6% in
[0,2]; (b) locally optimal design densities for §; = 0&0) = 0.946. Each plot uses three
values of v: v = 2 (solid line), v = 1 (dotted line), ¥ = 0.5 (broken line).

with Ap, and l,(x) as defined in Theorems 2.1 and 2.3 respectively. Then k,(x) =
m,(x) is the optimal one-point extrapolation design density for OLS estimation.

(P3) Find a density m,(x) which minimizes

ns’ sup MSEE(f,g,Wm,m)

feF gei
= (Vimtres) +v077 [/ [TREN CLPN (2.7)
S
Then the weights
wa(X) = o, {12, (X)ma(x)} " I Ima(x) > 0] (28

and the density
k() = 0! [lm. ()mE(x)] 7, (2.9)

with ap,, defined in Theorem 2.3, are optimal for one-point extrapolation with WLS

estimation.
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2.5.1 Minimax Designs for OLS: Solution to P2

The solution to P2 is provided by Theorem 2.6 below.

Theorem 2.6 The density m.(x) minimizing (2.6) for OLS estimation is of the form

(@ (o) (@ ()8) +2]"
& (x)8)" [1+1(F (x)8)]

The p x 1 nonzero vectors v, 3, positive constant t, and constant X\ satisfy: (%)

ma(x) =

Jsmu(x)dx =1, and (ii) minimize (2.6).

Ezample 2. Consider an approximate polynomial regression model E(Y|z) =
p=2zT(2)8y = 6o + 61z + ... + 6,27, where zT(z) = (1,z,...,27) and the design space

S =[-1,1]. By Theorem 2.6, the optimal minimax extrapolation design density for

1=0
k* (IE) - o 3 » 2 y
| \i=0 =0 n

where 8 = (8,, A1, ...,ﬂp)T #0,v = (70,'71,...,'yp)T # 0, and t > 0. The minimax

OLS has the form

design we obtained is £, with density &, (z) = k.(z).

For p =1, the minimax optimal design density has the form

m.(z) =

(@12 + ag) (asx + ag) + a5 |7
(asz + a4)* + a6 (asz + a4)4] (210)
where ag > 0. Figure 6 gives plots of the minimax extrapolation design densities for
varying z, and v with ay = 1 when rrg = 1. A smaller v (more emphasis on bias)
results in the minimax design becoming more uniform, while a larger v results in a
design resembling that which minimizes variance alone. An extrapolation point z

closer to one end of the design space leads to more design points being placed on the

corresponding side of the design space. As the distance between z; and S increases
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Figure 6: Optimal minimax design densities m,(z) = [
ple 2 with p = 1. (a) o = 1.5; (b) 2o = 5. Each plot uses three values of v: v = 10

(solid line), v = 1 (dotted line), v = 0.5 (broken line).
the design tends to become more symmetric. See Table 2.2 for some numerical values

of the constants.
When p = 2, the minimax optimal design density has the form

(a0 + a1z + a2x?) (by + b1z + boz?) + ¢

+
2.11
(ap + a1z + a2x2)2 +d(ap + a1z + a,2:c2)4] (211)

m.(z) =

where d > 0. See Figure 7 for plots of, and Table 2.3 for numerical values with
ao = 1 for, the minimax extrapolation design densities for varying zo > 1 and v when

rrs = 1. We observe the same qualitative comparisons as when p = 1.

We now compare the minimax design &, found in Example 2 with two common

competitors. Let £y, be the Hoel-Levine design (Hoel & Levine, 1964) which was
Let £y be the

derived under the assumption of an exactly correct fitted model.

continuous uniform design on [—1, 1].
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Table 2.2. Numerical values for m, of Example 2 with p = 1.
To v ay as as as Qg

1.5 0.25 378 0.853 5.96 —0.294 0.00116

0.5 6.59 1.51 783 ~2.43 0.00253

1 14.06 3.18 11.23 —16.52 0.00320

10 29438 55.93 30.15 —2758.06 0.00537

100 1247.25 223.60 39.53 -—17826.34 0.00946

5 0.25 26.55 1.84 31.15 —-34.92 0.000183

0.5 54.39 3.72 45.58 —213.28 0.000188

1 148.64 9.73 80.38 —1712.68 0.000122

10 751.39 4248 66.96 -—15013.05 0.00124

100 2138.31 117.57 45.21 —32404.40 0.0150

Table 2.3. Numerical values for m, of Example 2 with p = 2.

To v bo b1 b2 [75] a9 & d
1.5 025 0.668 —0.521 -237 -0.192 -244 -0.102 0.123
0.5 0.853 -0.644 —2.99 -0.127 -2.30 -0.200 0.280
1 1.23 -0.858 -4.10 -0.0710 -2.17 -0.396 0.627
10 820 377 —-2449 0.0358 -192 -3.83 8.03
100 77.71 -30.61 -—223.96 0.0628 —-1.86 —37.47 86.13
5 025 0829 -0.144 —254 -0.0323 -2.29 -0.116 0.232
0.5 1.12 -0.186 -340 -0.0191 -2.19 -0.237 0.472
1 1.69 —0.255 -5.01 -0.0079 -2.11 -0.482 0.949
10 1168 —1.20 —31.87 0.0147 -1.92 —4.89 9.64
100 111.06 -10.02 -296.67 0.0204 -—1.88 —48.76 97.34
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in Example 2 for p = 2. (a) for zp = 1.5; (b) for o = 5. Each plot uses three values
of v: v =10 (solid line), v = 1 (dotted line), v = 0.25 (broken line).

Figure 7: Optimal minimax design densities m(z) =

When p = 1, the design points of {; are z; = —1 and z; = +1 with mass
€gr(—1) = 32";'(-} and &g, (1) = 52%1' In Figure 8(a), we compare the loss for our min-
imax design &, with that of {5, and that of £;; when the model is exactly correct, for
varying zo. When the model may contain response contamination and heteroscedas-

tic errors, {y; has sup; M SEE = oo. Figure 8(b) provides plots of sup; ;M SEE

for £; and &, when the model contamination is maximal.
For the calculation of the loss at the nominal model we note that when the fitted

model E(Y|z) = z¥(z)8, is correct and the variances are homogeneous, the OLS

estimates are unbiased and the loss is
ns:MSEE(f=0,9=1,w=1,¢) = n§2E'V(1, 1,¢) = vzT(z0) B, 'z(x0),

where By = (bi;)p+1)x(p+1) With element b;; = f_ll z+i-2¢, (dx). For the minimax

design &,, sup;MSEE is given by (2.6). For the uniform design &;;, Theorem 2.3
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Figure 8. Comparisons of loss for a nominal straight line response; v =1, rpg = 1.
(a) ng>PV vs. 3o (b) ng sup; M PSE vs. zy. Each plot uses a dotted line for &,,
and an asterisked line for ;. A broken line is used for £, in plot (a).

gives
1/2
ns'sup; MSEE(f, gw = 1,€) = rps® +2V2w [/ {zT(z)Aglz(xo)}‘*dx] ,
S

For p = 2, {y; has three design points: z; = —1,z, = 0, and 3 = +1 with mass
Ear(-1) = S €u(0) = ﬂ;—%zo——n and €5, (1) = §°2(:§fi - In Figure 9(a), we

2i 21:3—16’ zg—1

compare 75> EV for our minimax design &, with that of £ g and that of £;; when the

model is exactly correct. Figure 9(b) provides plots of ng2sups ,M SEE for design &,

and &, when the model contamination is maximal.
2.5.2 Minimax Designs for WLS: Solution to P3

The solution to P3 is provided by Theorem 2.7 below.

Theorem 2.7 The minimizing m.(x) in (2.7) for WLS estimation is of the form

(o) = [(Z7(x)v) (7 (x)B) + X —d(x)]"
* & (x)B)"

b
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Figure 9: Comparisons of loss for a nominal quadratic response; v =1, rrg = 1. (a)
ng PV vs. zg (b) ng’sups M PSE vs. zo. Each plot uses a dotted line for &,, and
an asterisked line for &;,. A broken line is used for £, in plot (a).

where d satisfies the cubic equation

d® + (27 (x)B)*d — t(Z" (x)B)* [(Z (x)B)(E (x)v) + A] =0.

Explicitly,

1/3

(@™ (x)B)EZT(x)Y) + A] +

1/3 27 (x)B)(ET (x)v) + A)° + (27 (x)B)"
d(x)=<%(iT(x)ﬁ)2> VIET©)B)ET (X)) + N? + £(27(x)B) y

+ [(2T(x)ﬁ)(iT(x)~y) + )‘] -
|| VIETB)E ) + A + £ (08)

The p x 1 nonzero vectors v, B, and constants A andt > 0 satisfy: (i) [ m.(x)dx =1,
(%) minimize (2.7).

Then, (2.8) and (2.9) provide the optimal one-point extrapolation regression weights

and design density for WLS estimation respectively.
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Example 3. Consider an approximate polynomial model as in Example 2. By

Theorem 2.7, the optimal minimax m.(z) = k.(z)w.(z) for WLS has the form

&) (Ere) -]

ma(z) = )

P A 2
(3o
1=0
where d satisfies

The minimax design £, has density &, (z) = k.(z) computed from (2.9). The minimax

weights w, () are obtained from (2.8). Assuming a non-zero intercept we can, without
loss of generality, take 8, = 1.
For p = 1, the minimax optimal m,(x) has the form of

(14 ayz) (ag + azz) + A —d(z)] ™
(1 + alx)2

m.(z) = [ (2.12)

where

1/3
[(1+ a1z)(as + asz) + A] +

/ a1z a 2 4_; a, 2
d(z) = (-;-(1 + alx)2)1 3 \/[(1 +a1z)(az + asz) + A” + (1 + a17) .

[(1 + a1z)(az + asx) + A] —
\/[(1 + a17)(az + asz) + )\]2 + _;1_;_(1 + alx)2

+

.

with ¢ > 0 and a3 + a? > 0.

See Table 2.4 for numerical values of the constants. Figure 10 gives plots of the
minimax extrapolation design densities for S = [—~1, 1] and varying ¢ > 1. For p = 2,
the minimax optimal m,(x) has the form

(14 a1z + a27?) (as + aaz + asz?) + A — d(z)]™

me\T) =
( ) (1 + a1z + 02172)2

(2.13)
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Figure 10: Optimal extrapolation design densities for WLS and simple linear regres-
sion: (a) zo = 1.5; (c) zo = 5. Each plot uses two values of v: v = 10 (solid line),

-10

v = 0.5 (dotted line).

where

; 1/3
(5(1 + a1+ a2x2)2)
18 7]

d(z) =
[(1 + a1z + a22%)(a3 + sz + asz?) + )]

+\/[(1 + 417 + a952)(as + a4 + a522) + A2 + £ (1 4 a1 + apa?)?
1/3

[(1 + a17 + a32?) (a3 + a4z + asz?) + )]

+
——\/[(1 + 012 + a222)(as + a4 + asz2) + A2 + £2(1+az+ aqz?)?

with ¢ > 0 and a2 + a2 + a2 > 0.
See Table 2.5 for some numerical values of the constants, and Figure 11 for plots.
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Table 2.4. Numerical values for Example 3
Wlthp = ]., Trs = 1, S = [—1, 1]

Ty v a G as t A
1.5 0.25 0.287 0.0136 0.388 0.0177 0.675
0.5 -0.0118 0.00215 -0.0124 0.000161 0.541
1 —-0.255 1.70  —0.966 68.73 2.00
10 8.69 8.78 53.96  8625.44  0.000230
100 16.09 149.83 1023.40 47926350 -0.139
9 0.25 40.37 0.634 24.34 0.280 0.000618
0.5 34.69 0.670 21.03 0.227 —0.00118
1 18.99 1.30 21.97 31.95 —0.000154
10 1.47 6.51 1.46 1084194 —0.00368
100 1.07 7.04 1.04 68740870 —0.367
Table 2.5. Numerical values for Example 3 withp =2, rr s =1, S =[-1,1].
To 14 a) a9 as (17} as t A
1.5 0.25 0.469 247 0.00250 0.411 2.18 0.0300 0.767
0.5 0.514 2.83 0.199 0.751 4.18 5.02 1.73
1 0.533 3.15 0.0207 1.64 9.80 141.91 4.87
10 —1.25 0.466 0.000150 -1.52 —-0.30 0.0000641 0.477
100 —2.96 1.92 0.888 —-1.90 0.617 0.034 —0.00813
5 0.25 0.0665 1.76 0.173 0.122 3.38 10.87 2.19
0.5 0.0779 2.14 0.288 0.376  10.97 645.82 7.55
1 0.0878 2.66 0.962 12.87 416.62 36,493,560 285.96
10 -0.000741 -0.603 0.326 0.210 -—11.52 759.74 7.84
100 —-0.00100 -—0.617 0.220 0.632 -36.26 21033.71 23.69
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Figure 11: Optimal extrapolation design densities and minimax weights for WLS
and quadratic regression: (a) design densities for o = 1.5; (b) minimax weights for
zo = 1.5; (c) design densities for zo = 5; (d) minimax weights for o = 5. Each plot
uses two values of v: ¥ = 10 (solid line), v = 0.1 (dotted line).

2.6 Optimal Unbiased Designs: Solution to Pj

We say that a design /weights pair (§,w) is unbiased if it satisfies EB(f, w,§) = 0 for
all f € F, so that sup ;. r EB(f,w,&) = 0. The following theorem, which is essentially
Theorem 2.2(b) of Fang & Wiens (1999), gives a necessary and sufficient condition

for unbiasedness.

Theorem 2.8 The pair (w, &) is unbiased if and only if

We can construct the optimal unbiased extrapolation design mgy(x) by forcing
sup;cr EB(f,w,€) =0, and then minimizing sup,cg EV(g, W, £). Thus let mo(x) =
Q, i.e. ko(x)wp(x) = Q. From Theorem 2.4, the optimal weight function is

Wo(%X) = Wiy (%) =Qaum, [27 (x) A5 ()] 7%, (2.14)
and the optimal unbiased extrapolation design density is

ko(x) = gt [E7 (%) A5 2(x,)]*3,
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with
- fg 37 (x) A 5 (x,)|*dx.

The minimax M SEFE is

min sup MSEE(f,g,w,m) = nb+minsup EV(g, W, &) =n% {res + VQ‘l/zaf,{f} X
(w,€) feF,geg (w,€) geg ’

We summarize these observations below.

Theorem 2.9 The density ko(x) of the optimal unbiased one-point extrapolation de-
sign measure £,, and optimal weights wo, which minimize sup;cr ,o¢ MSEE(f, g,w, )
subject to sup ;. EB(f,w,€) =0 are given by

[27 () A5 2 (xo))*/°
Js[ZT (x) A5 2(x,)]4/2dx’
and wo(x) = Q/ko(x). Minimaz MSEE is

ko (X) =

sup MSEE(f,g,wo,&)

ferF.geg

3/2
= 1% {T;S + Q712 [ / [ZT(x)Agli(xo)]“/?’dx} } : (2.15)
s
attained at go(x) = wy /*(x).

Ezample 4 Consider an approximate log-linear multiple regression model E(Y |x)
~ exp(zT(x)0o) = exp(bp + 6121 + ... + 0,z,).

Note that the designs provided by Theorem 2.9 for this example depend on 8; =
(64, ..., Oq)T but not on 6;. As in Example 1 we can find locally most robust designs in
a neighbourhood © of a starting value 0&0). We first construct the design ko(x, 0&0))
and weights €2 /ko(x, 9&0)) provided by Theorem 2.9. We then find the least favourable
6,.r in ©. From Theorem 2.3, we find that this is equivalent to maximizing

[EnH,
ki(x, 0(0))
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over the occurrences of 84 in the numerator of the integrand. We then construct the
unbiased optimal design for @, and then iterate to convergence.
When ¢ = 1, S = [-0.5,0.5] the unbiased minimax design density is

. opf _ 4/3
{ LF={(c—bzo)+(azo—b)z]} 73—, when 01p #0,

k,‘o(.’r) = —05?5{eeLFz[(C—b$0)+(a/:l;o—b)z]}
(1+12z0x)t _
T_’g”_s(1+12‘;oz)4/adz’ when .7 =0,
where
. sinh(fF) b cosh(frr) — a oo 0.5sinh(fLF) — 2b

OLr 20LF ’ 20LF

For a simple demonstration of the procedure described above, we take © = [0.5,0.7)
and consider the cases £ = +2 and o = £9. For both o = 2 and z, = 9, the

iterates converge to 8, = 0.7. The unbiased minimax design density at £o = 2 is

{€27(.149 — 2.045z)}*/®

ko(z) = ;
(@) I3 {e072(.149 — 2.0452)}*° dr

and that at £g =9 is

{€72(1.006 — 9.631z)}*/®
ff§5 {e%7=(1.006 — 9.63193)}4/3 dr.
When zop = —2 and zq = -9, we find . = 0.5. The unbiased minimax design

k’o(.’L’) =

density at zp = —2 is

{e05(.261 — 2.170z)}*®

ko(z) = ;
o(z) [0 {e0%2(.261 — 2.1702)}*/° dr

and that at zo = —9 is

{60.53:(.859 _ 94651})}4/3
SO0 {€05(.859 — 9.465z)}*/° dz
The corresponding optimal weights are wy(z) = 1/ko(z).

ko(m) =

Ezample 5. Consider an approximate polynomial regression model E(Y|z) =~
27(z)8p = 0y + 617 + ... + 0,2 with S = [-1,1]. By Theorem 2.9, the unbiased

optimal density is

__ [F"(=)Ag 2(=0))*?
ko) = fs[zT(z)Aglz(zo)]"‘/?'dx
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Figure 12: Unbiased optimal densities and weights for SLR: (a) design densities; (b)
weights. Each plot uses two values of zo: o = 1.5 (solid line) and zp = 5 (dotted
line).

with optimal weights wo(z) = .5/ko(z).

When p = 1, we have the design

ko() = 3.52(0.5 + 1.5z0x)*/?
(0.5 + 1.52)778 — (0.5 — 1.53)7/"

See Figure 12 for plots.
When p = 2, the design is

0 0 .
11, 1(1.125 — 1.875a2) + 1520z + (5.62523 — 1.875)z2]*° dz

ko(z) =
For plots, see Figure 13.

2.7 Comparisons and Remarks

In Examples 2 we compared our designs for P2 with two more conventional competing
designs £y, and &;. In this section, we use the approximate polynomial models

(p = 1,2) of these examples to compare the robust minimax designs for P2, P3 and
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Figure 13: Unbiased optimal design densities and weights for quadratic regression:
(a) densities; (b) weights. Each plot uses two values of zo: zo = 1.5 (solid line) and
zo = 10 (dotted line).

P4 with each other and again with £, and &. Let £®, £€®, and ¢® denote the
robust optimal designs that we obtained for P2, P3 and P4 respectively. Table 2.6
gives the comparative values of 5> EV when there is no contamination and Table 2.7
gives those of ng?sup 1a MSEE for £; when there is maximal contamination. Of
course sup; , MSEE for £, is infinite.

When there is no contamination, we denote by 'ref,% (5(')) the efficiencies of £,
£® and €@ relative to & g, and by reg) (6(')) the efficiencies relative to £;;. Under
maximal contamination we write instead regnax) (5(')) and reg}nfx ) (ﬁ(')) = 00. Table
2.8 provides the relative efficiencies 7‘65333 and reg)) while Table 2.9 provides the relative
efficiencies regnax) (5(')).

We have provided methods of constructing optimally robust designs for one-point
regression extrapolation, taking into account various model uncertainties. The results

require extensive numerical work prior to implementation. However, we can give some
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Table 2.6. Comparative values of ng?EV
when there is no contamination.

p=1

Zo v 5(2) 5(3) 5(4) 399 §u
1.5 0.25 1.57 1.44 1.44 0.563 1.94
0.5 2.70 2.88 2.88 1.13 3.88
1 4.71 5.68 5.76 2.25 7.75
10 36.47 42.00 57.62 22.5 77.5
100 347.05 398.60 576.19 225 775
5 0.25 13.77 14.14 14.60 6.25 19
0.5 24 .81 28.27 29.21 12,5 38
1 45.28 51.06 58.41 25 76

10 383.80 432.99 584.13 250 760
100 3726.18 4197.94  5841.26 2500 7600

p=2
Z0 v D ) £@ €aL &
1.5 0.25 7.30 7.96 8.41 3.06 1227
0.5 13.16 15.29 16.82 6.13  24.54
1 23.87 28.82 33.65 1225  49.08

10 198.74 261.10 336.49 122.5 490.78

100 1923.71 2424.7  3364.90 1225 4907.81

5 0.25 1140.24 1240.23 1311.03 600.25 1730.25
0.5 2112.96 2387.43 2622.06 1200.5 3460.5

1 3950.39 4564.29 5244.11 2401.00 6921

10 35092.10 42875.19 52441.14 24010 69210

100 343816.60 417639.3 524411.4 240100 692100
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Table 2.7. Comparative values of 752 sup 1 MSEE
when there is maximal contamination.

p=1

v € & o &

1.5 0.25 3.50 2.59 2.59 3.78
0.5 5.58 4.17 4.17 6.56
1 9.27 7.27 7.35 12.12
10 66.91 58.24 64.49 112.15
100 629.58 552.78 635.90 1112.55

5 0.25 22.42 16.65 16.95 26.71
0.5 40.69 32.30 32.90 52.43
1 74.91 62.85 64.80 103.86

10 648.81 975.17 638.96 1029.60
100  6330.03  5643.09 6380.57  10286.98

p=2
Zo v £D £ £@ o
15 0.25 19.50 14.71 10.39 23.10
0.5 30.85 23.61 19.79 45.20
1 51.63 40.85 38.58 89.40

10 384.07 336.75 376.77 884.98

100 3629.60 3211.04 3758.73 8840.79

5 0.25 1833.70 1422.04 1430.95 2586.07
0.5 3410.07 2780.92 2860.90 5171.13

1 6405.83 5432.51 5720.81  10341.27

10 57275.39 52036.29 57199.07 103403.65

100 561056.9 512051.6 571981.67 1034027.5
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Table 2.8. Relative efficiencies
reg}l (6(')) and reg)) (E(')) .

p=1

o, v E3:HL/U €9 HL/U €% HL/U
15 0.25 0.36/1.14 0.39/1.35 0.39/1.35
0.5 0.42/1.44 0.39/1.35 0.39/1.35

1 048/1.65 0.40/1.36 0.39/1.35

10 0.62/2.13 0.54/1.85 0.39/1.35

100 0.65/2.23 0.56/1.94 0.39/1.35

5 025 045/1.38 0.44/1.34  0.43/1.30
0.5 0.50/1.53 0.44/1.34  0.43/1.30

1 0.55/1.68 0.49/1.49 0.43/1.30

10 065/1.98 0.58/1.76  0.43/1.30

100 0.67/2.04 0.59/1.81  0.43/1.30

p=2

r, v €9 HL/U €% HL/U ¢€9: HL/U
1.5 025 0.42/1.68 0.38/1.54 0.36/1.46
0.5 0.47/1.86 0.40/1.60 0.36/1.46

1 051/2.06 0.43/1.70 0.36/1.46

10  0.62/2.47 0.47/1.88 0.36/1.46

100  0.64/2.55 0.51/2.02  0.36/1.46

5 025 0.53/1.52 0.48/1.40 0.46/1.32
0.5 0.57/1.64 0.50/1.45 0.46/1.32

1 061/1.75 0.53/1.52  0.46/1.32

10 0.68/1.97 0.56/1.61 0.46/1.32

100 0.70/2.01 0.57/1.66 0.46/1.32

Table 2.9. Relative efficiencies regmx) (5('))

p= p=2
Zo v FABN0) &9 €9 ¢ £@
1.5 0.25 1.08 1.46 1.46 1.18 1.57 2.22
0.5 1.18 1.57 1.57 1.47 191 228
1 131 1.67 1.65 1.73 2.19 2.32
16 168 1.93 1.74 230 263 235
100 1.77 2.01 1.75 244 275 235
5 025 119 160 1.58 141 1.82 1.81
0.5 1.29 1.62 1.59 1.52 1.86 1.81
1 139 165 1.60 1.61 1.90 1.81
10 1.59 1.79 1.61 1.81 199 1.81
100 1.63 1.82 1.61 1.84 2.02 1.81
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informative guidelines:

1. As v increases, the designs place more emphasis on variance minimization and
less on protection from bias. As we would expect, the experimenter should
then place relatively more design points closer to the boundary of the design
space. With respect to the position of the extrapolation point relative to the
design space, the experimenter should place relatively more design points in
that segment of the design space which is closer to the extrapolation point,
with this prescription becoming more emphatic when the extrapolation point

is close to the design space.

2. Compared to designs for variance minimization alone, the designs we have found
in this work are substantially more uniform. They can roughly be described as
being obtained by replacing the point masses of the variance minimizing designs

by uniform densities on regions containing, but not restricted to, these atoms.

3. Under heteroscedasticity the designs for P3 are, as expected, the most efficient.
The gains in efficiency are greater when v is at least moderately large. Par-
ticularly for small v, the numerical simplicity of the designs for P4 make them

attractive competitors.
Appendix: Derivations

The proof of Theorem 2.5 is very similar to but simpler than that of Theorem 2.6,

and so is omitted.
Proof of Theorem 2.6. We seek a nonnegative function m(x) minimizing (2.6)

subject to [ sm(x)dx = 1. For a Lagrange multiplier s it is necessary and sufficient

that m minimize

(VAm+r7.5)? + v 12 [/S{lm(x)m(x)}zdx} " —2s/Sm(x)dx
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among all densities, and satisfy the side condition. After a lengthy calculation we

obtain the first order condition

I = /q (PE)M(x) — Qx) — u} (m(x) — my(x))dx > 0 (2.A.1)

for all densities m;, where

P(x) = (Z"x)8)” [1 + t(Z"(x)B)*] and Q(x) = (7(x)) (Z7(x)8),

for
ﬂ = Bgli(xo)v

i = 2o (1+\’;’%)_1 [ / (I () M) dx]_1/2>0,
v = B2 {K+ | [ 208t GO )| |

-1

u = <1+ \7%) s.
To see the consequences of (2.A.1), write S* for the subset of S on which m(x) > 0,
and S° = S\ S*. Let ¢ = supg { P(x)m(x) — Q(x) — u}, let {x;} be a sequence of

l\.')lH~

points in ST with P(x;)m(x;) — Q(x;) — u approaching c, and consider a sequence

{my,} of point masses at x;. Then for this sequence (2.A.1) implies

/S (PGIm(x) — Q(x) —up m(x)dx 2 ¢ 2 sup {PE)m(x) — Q(x) — u},

so that in particular P(x)m(x) —Q(x) —u = con St and —Q(x) —u = P(x)m(x) —
Q(x) —u < con S° Thus

Qx)+u+c
P(x)

Conversely, if (2.A.2) holds and Q(x) +u + ¢ > 0 on S° then

m(x) = , Xx €87, (2.A.2)
I = C/s+ (m(x) — my(x))dx + /so [Q(x) + u] my (x)dx
= c— c/s+ my (x)dx+ /;0 [Q(x) + u + ] my (x)dx — c/s‘J ma (x)dx

c— c/ ma(x)dx+ /0 [Q(x) + u + ] my(x)dx
Oa

fl

v
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satisfying (2.A.1). Thus, in order that (2.A.1) hold, it is necessary and sufficient
that (2.A.2) hold, for any ¢ such that the right hand side of (2.A.2) is non-negative

throughout S. More generally, m has the form
() = (Q(x) +u+ c)+ _ @) E08) + A1
P(x) @ (x)8)" [1 +HEF (x)8)"]’
with A = u 4+ ¢.  Of course 3,4, and t themselves depend on m. Rather than

(2.A.3)

solve (2.A.3) for m it is simpler merely to choose these constants so as to satisfy
fsm(x)dx =1 and minimize (2.6). O
Proof of Theorem 2.7. First, we show that hy(x) = E-E2UE(p+3=8 minimizes
(2.7) subject to [ hm(x)dx =1 but without the restriction of ., (x) being nonnegative

on S. We introduce a Lagrange multiplier A. It is sufficient to show that h,,(x)
minimizes
3/2
(VAmtrrs)? + Q712 {/[lm (x) m2(x)]2/3dx} —2)\/ m(x)dx
s s

for some constant A subject to [ hm(x)(x)dx =1. This is again a simple variational

problem. The minimizing m(x) satisfies

/s {a(x)m'A(x) + b(x)m(x) - c(x)} (m — m1)dx = 0,

where

a(x) = vQ 2 [/S 1273 (x) m4/3(x)dx] v 123 (x),

b(x) = {1+\7}%}lm(x),
{1+3£}B kB~
ex) = {2T(x) Q12 [ [ 12 (x)m4/3(x)dx]1/2 3(x,) p [E7(x)B 2 (xy))
B { [, 2037 (0)In " (x) m#/3(x)dx } B!

+A

for any m; with [ m,(x)dx =1. Therefore, we obtain the minimizing m(x), without

the restriction of m(x) > 0, as a solution of
a(x)m3(x) + b(x)m(x) — ¢(x) = 0. (2.A.4)
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Let m = ¢ — bm. Then, (2.A.4) becomes

3 3
~3 a ac

Since a and b are positive almost everywhere in S, (2.A.5) has only one real solution.

Applying Cardano’s formula for cubic equations, we obtain the only real solution for

m is
1/3

RREEEREY

e V@ @)

Then, the minimizing m(x), without restriction of m(x) > 0, is:

d=

c—d
hm(x) = -

where X in ¢ ensures [ hm(x)dx =1.

The following step is to show the minimizing m(x) with restriction of m(x) > 0,

is

Ba(x) = [c‘dr.

It is sufficient to show that for any nonnegative Ay, (x) in the following form of

hm(x), when h,(x) > 0;
P, (X) =
>0, when A, (x) <0,

being a density, will give a larger loss than h (x) does. We claim that ¢ < 0 almost

everywhere in S, when °‘d < 0. Then, we have
/ {a(x)[RE GO + b(x)hi (%) — ¢} (A (X)(%X) — B, (x))dx
= [ (OOBLEOR 4 bGE0) = e} (B) = By )

= / chm, (x))dx < 0.
snezd<o

Therefore, h,(x) should give the minimum loss. This gives the minimizing design

m*(x) = [c; d]+
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for almost all x € S.

Now, we prove the claim of ¢ < 0 almost everywhere in S, when C'Td <0.

The claim is true due to d being a solution of (2.A.5), which means

3 3 3
%d + f‘b_c = %(c — d) < 0 almost everywhere, when

c—d

d*=—

<0,

since a > 0 almost everywhere. Due to b > 0 almost everywhere, ¢ < d < 0 almost
everywhere.

Therefore, the optimal minimax densities are

m*(x) = [c; d] +

for almost all x € S, where

(51
d=a

@)
V@) |

o = HZF)B)*°, b=(Z"(x)8)’,

c = @F)B)E (X)) +

for some p X 1 vectors ¥ # 0, B # 0, and constants £ > 0, A\, which satisfy: (i)

Jsm*(x)dx =1, and (ii) minimize (2.7). Let t = {* > 0, then d® = —£d + %< gives
& +1(z"(x)B)°d = #(z" (x)B)° [(Z" (x)B)(F (x)7) + ] .

The final evaluation for d and m*(x) completes the proof. O
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CHAPTER III

ROBUST PREDICTION AND
EXTRAPOLATION DESIGNS FOR
MISSPECIFIED GENERALIZED LINEAR
REGRESSION MODELS

Abstract We study minimax robust designs for response prediction and extrapo-
lation in biased generalized linear regression models. We extend previous work of
others by considering a nonlinear fitted regression response, by taking a rather gen-
eral extrapolation space and, most significantly, by dropping all restrictions on the

structure of the regressors. Several examples are discussed.

3.1 Introduction

In this chapter, we investigate the construction of robust designs for both prediction
and extrapolation of regression responses. In our framework the response fitted by
the experimenter is a known function of a linear function of unknown parameters and
known regressors. Our designs are robust in that we allow both for imprecision in the
specification of the regression response, and for possible heteroscedasticity.

Consider a regression model

E(Y|x) =~ h(67z(x)) (3.1)

2Co-authored with Professor Douglas P. Wiens. To appear in Journal of Statistical Planning and
Inference.
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for a g-dimensional vector x belonging to a bounded design space S and for p regressors
z(x) = (z1(x), 22(x), ..., zp(x))T. The function h is strictly monotonic with a bounded
second derivative. We assume that ||z(x)|| is bounded on S. As indicated in (3.1),
the fitted response is typically acknowledged to be only an approximation. The least
squares estimates 8 of 8 and Y = h(z” (x)8) of E(Y|x) are possibly biased if the
response is misspecified. In this situation, robust designs can play an important role
in choosing optimal design points Xj,..., X, € S so that estimates 0 and Y remain
relatively efficient, with small bias caused by the model misspecification.

The true model may be written
E(Y|x) = h(672(x)) + /2 f(x), (3.2)

where the contaminant f is unknown but ‘small’. This may be viewed as arising from
imprecision in the specification of h, or it can arise from a misspecified linear term
and a two-term Taylor expansion: h(07z(x)+ ¢(x)) == h(87z(x)) + h'(87z(x))p(x) =
h(87z(x)) + n~1/2f(x). The factor n=2/? is necessary for an appropriate asymptotic
treatment - see Chapter 2.

The experimenter takes n uncorrelated observations Y; = Y (x;), with x; freely
chosen from a design space S. One possible goal is prediction, or equivalently the
estimation of E(Y|x) throughout the region T'= S. If instead TN S = ¢, the goal is
extrapolation. In this chapter, we discuss both prediction problems and extrapolation
problems. We will as well allow for the possibility that observations on Y, although
uncorrelated, are heteroscedastic: var{Y(x)} = o2g(x) for an unknown function
within a certain class. We estimate @ by nonlinear least squares, possibly weighted
with nonnegative weights w(x).

For the prediction case, our loss function is n times the integrated mean squared
prediction error (IMSPE) of Y(x) in estimating E(Y|x), x € S. For extrapola-
tion, the loss is o times the integrated mean squared extrapolation error (IMSEE)

of Y(x) in estimating E(Y|x), x € T. Both depend on the design measure £ =
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n~1L? I (x = x;) as well as on w, f and g. Formally,

IMSPE(f,g,w,€) = n /S E{[Y(x)—E(Y]x)r}dx,
IMSEE(f,g,w,6) = n /T E{[Y(x)—E(Y|x)]2}dx.

There is a sizeable literature concerning regression designs for a possibly misspec-
ified linear response. Such designs for homoscedastic errors have been studied by Box
and Draper (1959), Huber (1975) and Wiens (1992). Designs for prediction with as
well possible heteroscedasticity were obtained by Wiens (1998). For extrapolation
with homoscedastic errors see Draper and Herzberg (1973), Huber (1975), Lawless
(1984), Spruill (1984), and Dette and Wong (1996) whose extrapolation designs for
polynomial responses are robust against misspecification of the degree of the polyno-
mial. In these studies, the goal was extrapolation to one fixed point on or outside
the boundary of the design space. Robust designs for extrapolation with possible
heteroscedasticity were obtained by Fang and Wiens (1999), and by Chapter 2 of this
thesis.

For nonlinear regression, Atkinson and Haines (1996) and Ford, Titterington and
Kitsos (1989) present various static and sequential designs for nonlinear models with-
out the consideration of model uncertainty. Sinha and Wiens (2002) also employ no-
tions of robustness in the construction of sequential designs for the nonlinear model.
In addition, Chapter 2 discusses the construction of robust designs for a possibly mis-
specified nonlinear model and for extrapolation of a regression response to one point
outside of the design space. The current work goes beyond that of Chapter 2 in that
we deal with both prediction and extrapolation and, in the latter case, we allow the
extrapolation space T' to have nonzero measure. We go beyond Fang and Wiens (1999)
in treating nonlinear models. The major advance, though, is perhaps our treatment
of essentially unrestricted regressors z(x). Explicit designs in almost all problems

involving misspecified regressors were hitherto restricted to cases in which z(x) was
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well structured - e.g. straight line regression (z(z) = (1,z)”) or multiple regression
without interactions on a spherical design space (z(x) = (l,xT)T, Ix|| < const.).
The improvements in the current work are made possible by our adaptation of recent
results of Shi, Ye and Zhou (2003), henceforth referred to as SYZ.

SYZ investigated the analytical form of minimax designs for prediction problems

when the function f was an unknown member of the class

F=<f /z(x)f(x)dx=0,‘/f2(x)dx§172 < oo

s
In our terminology, they considered the case of approximate linearity - h = 1, where
1(x) = x - and homoscedasticity - g = 1. The orthogonality condition in F ensures
that the parameter 6 is uniquely defined in model (3.1). The second condition assures
that overall f is not too large.

The class F is sufficiently rich that any ‘design’ with finite maximum loss must
have a density, and thus must be approximated to make it implementable. Approx-
imation methods are discussed in Heo, Schmuland and Wiens (2001). These can,
for instance, take the form of choosing the design points so as to obtain agreement
between the (i — 1)/(n — 1)-quantiles (¢ = 1,...,n) of the empirical and theoretical
design measures, or between the moments to a sufficiently high order. SYZ show that

the minimax design densities are of the form

m(x) = [ZT(X)PZ(x) + d] +

27 (x)Qz(x)
for almost all x € S, where ¢t = max(c, 0), for suitable constant symmetric matrices
P, Q and a constant d. These constants may then be determined numerically.

In this chapter we extend SYZ so as to obtain robust designs for extrapolation
and prediction, assuming that the regression response is as at (3.2) and that the
errors may be heteroscedastic. If the function h in (3.2) is not the identity then

our designs are only locally optimal. They are however still of substantial practical
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interest - see reasons for this as listed in Ford, Torsney and Wu (1989) and restated
in Ford, Titterington and Kitsos (1992). One typical reason is that where sequential
designs can be carried out in batches, the design for the next batch might be a locally
optimal design based on the estimates obtained from the previous batch. Allowing for
uncertainty in our best guess at a local parameter, we adopt the approach introduced
in Chapter 2 to find ‘locally most robust’ designs which are minimax with respect to
a region containing the initial parameters.

We denote unweighted least squares by w = 1, homogeneous variances by g = 1

and the linear regression problem by h = 1. The following problems will be addressed:

(P1) Ordinary least squares (OLS) estimation with homoscedasticity: determine

designs to minimize the maximum value, over f, of IMSEE(f,1,1,£).

(P2) OLS with heteroscedasticity: determine designs to minimize the maximum

value, over f and g, of IMSPE(f,g,1,¢).

(P3) OLS with heteroscedasticity: determine designs to minimize the maximum

value, over f and g, of IMSEE(f,g,1,£).

(P4) Weighted least squares (WLS) estimation with heteroscedasticity: determine

designs and weights to minimize the maximum value, over f and g,

of IMSPE(f, g,w,§).

(P5) WLS with heteroscedasticity: determine designs and weights to minimize the
maximum value, over f and g, of IMSEE(f,g,w,§).

The rest of this chapter is organized as follows. The designs for P1 are provided
in Section 3.3. Those for P2 and P3 are given in Section 3.4. The designs and
weights which constitute the solutions to problems P4 and P5 are given in Section

3.5. Some mathematical preliminaries are detailed in Section 3.2. We present several
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examples in Section 3.6, and conclude with a few remarks in Section 3.7. Derivations

are provided in an appendix.

3.2 Preliminaries and Notation

The regression models discussed in this chapter are very similar to those in Chapter
2, except that we consider the prediction case as well and allow the extrapolation
space to be any space, of positive Lebesgue measure, outside the design space. For
the reader’s convenience, we briefly describe this model here.

We assume that the contaminant f(-) is an unknown member of

.7-'={f

where p = 07z(x), Z(x) = (%ﬁ-lo:go) z(x) and 7ng, N are positive constants. For

/SfQ(x)dx <ni< oo,/sz(x)dx < n& < oo, fsi(x)f(x)dx = 0} ,
(3.3)

prediction problems (T = S) the second condition in (3.3) merges into the first. The
last condition is required in order that 8, can be uniquely defined, and in fact arises

through the definition

8o = argy min { /S [A(672(x)) — E(le)]zdx}

together with
Jalx) = VA [E(YIx) — h(6T2(x))]
Where possible, we drop the subscript on f.

The observations Y;, although uncorrelated with mean h(67z(x;)) + n~*/2f(x;),

are possibly heteroscedastic with
var{Y (x;)} = o%g(x;), (3.4)

for a function g satisfying conditions given in Section 3.4.
For extrapolation problems, the only assumptions made about T are that it is

disjoint from S and has nonzero Lebesgue measure. To ensure the nonsingularity of
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a number of relevant matrices, we assume that the design and extrapolation spaces
satisfy
(A) For each a # 0, the set {x € SUT : aTZ(x) = 0} has Lebesgue measure zero.

We make use of the following matrices and vectors:

Ag = fSZ(x)ZT(x)dx, Ar= /[, 7(x)z" (x)dx,
B = 20077 (u(E (@), D = fy3(x)5 nA(x)e(x)€ (dx),

bss = [(2(x)f(x)w(x)¢ (dx), bsr = [,Z(x)f(x)dx.
It follows from (A) that Ag is non-singular and that B is non-singular as well if,

as is assumed below, £ is absolutely continuous. The least squares estimate of 8 is
8 = argmin » [Vi — A(072(x))w(x).

i=1

The information matrix is
1(8o) = Tim E(——(8,)) = B,

n—00 n

and the asymptotic distribution of \/n(@ — @) is
V(@ — 8;) ~ AN(B™'b; 5,0’ BT'DB™?).

For prediction, the loss function /M SPE splits into terms due to bias, variance

and model misspecification:
IMSPE(f,g,w,§) = n/s E { [?(x)—E(le)]z} dx
= n [ B{n@72) - nEFa) - T | ax

IPB(f,w, ) + IPV(g,w,€) + f £ (x)dx,
S

I

where the integrated bias (I PB) and integrated variance (IPV) are
IPB(f,w,&) = n /S (B [h@"2(0) - h(@F2(x)] } i
—ovm /S F)B [h®"a(x)) — h(6Ta(x))] dx
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and

IPV(g,w,€) =n /S VAR(Y (x))dx = n /5 VAR(R(® z(x)))dx.
Asymptotically,
IPB(f,w,§) = bisB 'AsB 'byg,
IPV(g,w,&) = otr(B!AsB™!D).
(The second term in IPB vanishes asymptotically by virtue of the orthogonality

condition in the definition of F.)

For extrapolation, the loss function IM SEE decomposes in a similar fashion:
IMSEE(f,g,w,€) = n /T E { [Y(x)—E(Y|x)]2} dx
= IEB(f,w,€)+IEV(g,w,€) + /T FA(x)dx,
where, asymptotically,

IEB(f,w,§) = bﬁsB"lATB’lbf,s—2bf,TB“1bf,s,

IEV(g,w,&) = o’tr (B"'ArB™'D).

Let k(x) be the density of &, and define m(x) = k(x)w(x). Without loss of
generality, we assume that the mean weight is f; w(x)€ (dx) = 1. Then m(x) is also
a density on S which satisfies

m(x)

i mdx =1, (3.5)

and
B = / #(x)2 ()m(x)dx,
brs = /S 7(%) f ()m(x)dx.

From the definitions of B, by s and by 1, we notice that I PB(f,w,£) and IEB(f, w,§)
rely on (w, §) only through m and IPV(g,w,§) and IEV (g, w, §) through m and w.

Hence, we can optimize over m and w subject to (3.5) rather than over k and w.
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Although the I EB may be negative,

IEB + /T F(x)dx = n /T { B [n(0"3(x)) ~ h(673(x)) ~ 02 5(x)] Vx>0,

We define 775 = nr/ng, reflecting the relative amounts of model response uncer-
tainty in the extrapolation and design spaces and v = 02 /n?% representing the relative
importance of variance versus bias. We remark that for prediction our results depend
on the unknown parameters only through v and 6, while for extrapolation they de-
pend on the parameters only through r7.5, v and 8. In the special case h = 1, the
results are independent of 8.

We also require the definitions K = [, Z(x)Z” (x)m?(x)dx, G = K — BAg'B,
Hs =B !AsB!and Hr = B !'ArB~L

In the next three sections, we will exhibit solutions to P1-P5.

3.3 Optimal Extrapolation Designs with Homoscedas-
ticity: Solutions to P1

SYZ provide the form of the minimax density for prediction when h = 1. In this
section, we extend this result to extrapolation and to a general h.
Denote the largest eigenvalue of a matrix X by Apax(X). As in Theorem 2.1(a)

in Fang and Wiens (1999), the maximum extrapolation bias is

feF

2

sup IEB(f,1,&) = n% [(\/)\max(GHT)‘l”TT,S) — T%‘,s] > 0.
Therefore, the maximum IMSEE is

2
sup/IMSEE(f,1,1,m) = n} [(\/ )\max(GHT)*l'TT,s) + V/ET(x)HTi(x)m(x)dx]
feF s

2

’I]g [(\/ Amax(G'HT)"l'rT,S) + vir (B_IAT):I . (36)

A minimax design is one for which the density m minimizes (3.6). This is an

optimization problem with an objective function involving a generally nonsmooth
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function Apax. Employing nonsmooth optimization theory (Clarke 1983; see SYZ for

a useful review), we obtain the following result.

Theorem 3.1 The minimaz design density for extrapolation, when the variances are

homogeneous, is of the form

zT (x)Pz(x) + d] *

mwz[fwmw

(3.7)

for almost all x € S, for constant symmetric matrices P,Q (> 0) and a constant d.

The constants minimize (3.6) and satisfy [ m(x)dx = 1.

Remarks:

1. Asin SYZ, in the examples for linear regression in this chapter, we only consider
symmetric densities when the structure of the design and extrapolation spaces

make this appropriate.

2. The symmetric - in each component of x - minimax density has the form exhib-
ited in Theorem 3.1 but with the odd functions of these components vanishing.

The proof of this is very similar to the proof in Shi (2002) for linear regression.
Example 3.1. For the regression model
Y =60y + 0,12+ 0,2° + f(z) + ¢, = € [—a,d

with symmetric extrapolation space [—rg, —71) U (11,75] with 0 < a < 7y < 79, it is
reasonable to restrict to symmetric designs. According to Theorem 3.1, the symmetric

optimal design for this model with homoscedasticity is of the form

(3.8)

a1 + agz? + azz*\
a4 + asx? + agz?

m@=(

where a4 and ag are nonnegative. Some computations for this case are shown in

Example 6.1.
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Example 3.2. For the linear regression model with two interacting regressors
Y = 6o + 6121 + 023 + 610713 + f(1,72) + €,

with § = [—a,a] x [~a,a] and T = [-r,7] X [-r,7] N\ § (r > a), the minimax
designs for prediction were studied by Adewale (2002) who states that the symmetric,

exchangeable minimax density is given by

a+ b(a? + z3) + ez} \ T
a + b (z2 + 72) + cz373

m(x1, To) = (

From Theorem 3.1, the minimax symmetric and exchangeable density for extrapola-

tion is also of this form.
Ezxzample 3.8. For the nonlinear regression model
Y = et 4 f(z) 46, (3.9)

for which h(z) = €®, we take § = [0,1] and T = (1,r]. The locally most robust

extrapolation design density is given by

m(z) = (

€217 (ay + byz + c122) + d\
e2612(ay + byz + cp2?) ’

where ay > 0, ¢y > 0 and ay, by, c1, @z, by, o and d chosen in order to minimize (3.6)
subject to fol m(z)dz = 1. The dependence of the design on 8, is an issue which will
be addressed in Example 6.2.

3.4 Optimal Prediction and Extrapolation Designs
with Heteroscedasticity for OLS: Solutions to
P2 and P3

In this and the next section we construct designs which are robust against het-
eroscedasticity as well as against departures from the fitted response. The het-

eroscedasticity is governed by g(-) - recall (3.4) - which is assumed to belong to
g={g V Fx)dx <™t = / dx < 00} (3.10)
s s
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In (3.10), the equality condition is equivalent to defining

1/2
0% = sup [ / var? {e(x)} de] .
g LJs
Asin Theorem 1(c) in Wiens (1998) and Theorem 2.1(c) of Fang and Wiens (1999),

for OLS the maximum integrated mean square prediction error and extrapolation

€rror are
sup IMSPE(f,g,1,m) (3.11)
feF.geg
1/2
= "725 {)‘max(KHs) + VQ—'I/z [/{ET(X)Hsi(X)m(X)}de] } y
s
and

max G 2
sup IMSEE(f,g,1,m) =n% (v Amax(GHr)+77,5)*+ .
feF.geg Q-2 [ [ {27 () Hpz(x)m(x) }dx]
(3.12)

respectively. Therefore problem P2 requires finding a density m(-) which minimizes

(3.11) whereas P3 requires finding a density which minimizes (3.12).

Theorem 3.2 The minimazx design densities for both prediction and extrapolation

with OLS estimation, when the variances are possibly heterogeneous, have the form
7T (x)PzZ(x) + d *

27 (x)Qz(x) + {Z7 (x)Uz(x)}"

for almost all x € S, for constant symmetric matrices P,Q (> 0),U (> 0) and a

m(x) = (3.13)

constant d such that (1) [ m(x)dx =1 and (2) for prediction, (3.11) is minimized,

while for extrapolation (3.12) is minimized.
Ezample 4. 1. For the simple linear regression model
Y =80, + 61z + f(z) +¢, (3.14)

with S = [—1, 1], the minimax prediction design was studied by Wiens (1998). It was

shown there that the minimax symmetric density is given by

m(x)z( atbo? )+, (3.15)

14 cz?2 4 dxt
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a form which now follows as well from Theorem 3.2. Similarly, for extrapolation, Fang
and Wiens (1999) derive the form (3.15). More generally, for OLS in the multiple

linear regression model
p—1
Y :00+Z0jo:j+f(x)+e,
=1
with S being a unit hypersphere centred at the origin and T = {x|1 < ||x|| <},
Fang and Wiens (1999) obtained conditions under which the minimax symmetric

extrapolation design density would be given by

o) — a+b x| i
) (c+duxn2+enxn4) '

This form now follows, without conditions, from Theorem 3.2 and Remark 2 in Section

3.3.

Ezample 4.2. For the nonlinear model (3.9) it follows from Theorem 3.2 that the
locally optimal robust design density for both prediction and extrapolation is of the

form

&%(ay + bz + 017) + d ) (3.16)

m(x) = (egalx [(a2 + by + 023;2) + e401z(a3 + by + 03x2)2]

where a; > 0, ¢; > 0, a3 > 0 and ¢3 > 0. When §; =0, (3.16) can be reduced to

e (x) = a1 + ayT + azz? +
1+ asz + agz? + a7z + agzt

where ag and ag are positive. The computation of our designs for this model are

detailed in Example 6.2.

3.5 Optimal Prediction and Extrapolation Designs
with Heteroscedasticity for WLS: Solutions to
Pj and P5

In this section we propose to estimate 8 by weighted least squares, and again consider

both prediction and extrapolation problems. For prediction we proceed as in Wiens

7
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(1998) and obtain

; Amax(KHs)+
sup IMSPE(f,g»U’,m)z"?s 1/2
JEF €6 Q12 [ [ {w(x)2" (x)Hsz(x)m(x)}2dx] "/
(3.17)
The weights minimizing (3.17) for fixed m(x), subject to f; = e ™x) dx = 1, are, in terms
of
- / (27 (x) Hsz ()m? (x))*dx,
s
given by
Wem(X) = agm{{Z (X)HsZ(x)}* m(x)] /1 {m(x) > 0} . (3.18)
Then
min sup IMSPE(f,g,w,m) =1 { Amex(KHs) + 027032 (3.19)
W ferF.geG

and problem P4 becomes that of finding a density m*(x) which minimizes (3.19).
Then the weights wg m-(X) obtained from (3.18) and the design density

m*(x)

Ws,m» (X)

k(%) = = 3L {Z7 (x)Hsz(x)m"?(x)} "

are optimal for WLS prediction.

For extrapolation we follow Fang and Wiens (1999) and obtain

V Amax(GHr) 77 6)%+
150, TMEEE S 8,0,m) = s v 12 | fj{w(x)Z(T(x)I-I)Ti(x);(x)Pdx]1/2
In terms of ‘
= [ B cBrGom? (P ax,
the minimizing weights are given by
wrm(X) = orm {27 (x)Hrz(x)} m(x)] I {m(x) > 0}, (3.20)

with

min sup IMSEE(f,g,m)=n% {(\/ Amax(GHr) +rTS)2+VQ‘1/2a;,/’,2n , (3.21)

Y  feF,geg
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and to solve P5 we seek a density m*(x) which minimizes (3.21). Then the weights

Wr.m+(X) obtained from (3.20) and the design density

2/3

= T*— = Q7 e {7 (x)Hrz(x)m**(x) } (3.22)

are optimal for WLS extrapolation.

The following theorem provides the form of m*(x) for both prediction and extrap-

olation.

Theorem 3.3 The minimaz densities m*(x) for both prediction and extrapolation

with WLS estimation, when the variances are possibly heterogeneous, are of the form

m*(x) = [—c%(—xfﬂ] ’ : (3.23)

where, for constant symmetric matrices P, Q (> 0),U (> 0) and a constant d we have

b(x) = z7(x)Qz(x), c(x) = ZT (x)PZ(x) + d and

ac
K4k — —— =
bk 5 =0

with a(x) = {zT(x)Uz(x)} . Explicitly,

5 V@ @) @@ | o

The constants satisfy (1) [ym(x)dx = 1 and (2) minimize (3.19) for prediction,

(8.21) for extrapolation.

Ezample 5.1. For the simple linear regression model (3.14) with § = [-1,1] and
T = {z|1 < |z| < r} we obtain (3.23) with

c(x) = ay+ axx?

b(z) = a3+ asz?,

a(z) = (as -+ aez?)
79
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where a3 > 0,a4 > 0, a + a2 > 0, as > 0 and ag > 0 are determined as in the
statement of Theorem 3.3. The minimax weights are obtained from (3.18) and (3.20)

with

ZT(x)HsZ(x) = 2+ %aﬂ ( /_ 11 :czm(:c)d-%’) N :

ZT(x)Hrz(x) = 2(r—1)+ g-(re' —1)z? (/:1 xzm(x)dm) N :

1

Ezample 5.2. For the nonlinear model (3.9) with S =[0,1] and T = (1,7] (r > 1) we
attain (3.23) with

c(z) = ao+ € (a1 + asz + a3z?),

b(z) = e2f12 (a4 + asx + asxz) ,

a(z) = e 2012 (a7 + asz + agz )]2/3
where as > 0,a6 > 0, a2 + a2 > 0, a; > 0 and ag > 0 are determined as in Theorem

3.3. Note that the term 2% has been absorbed into aj,...,a9. The minimax weights
are derived from (3.18) and (3.20) with

=T = 2\—2 26z .
z' (x)Hsz(x) = (ul'U'S - Ug) e*1" p(; 81, 89, 53, U1, U2, U3),
=T = 2\—2 20z ;
z (X)HTZ(X) = (U]Us - u2) e! ¢(.’L', tl) t?, t3, Uy, Ug, U3),
where
¢($, $1, 82, 3, Uy, U2, u3)
_ ( 2 ) 2 9 2
= U381 — LU U382 + U583 + UIUSSy — UIU9S3 — UU3S1 + UyS2) T
2 2 2
+ (u153 — 2uqu98s + U281) x°,
e —1 e — s e — 23,
S1 = 26, » 52 = 2641 y 83 = 261 ’
t 6291’!’ — 6201 7.62011‘ _ 6291 — t]. t ,,..262911" — e —_ 2t2
1 = 26, y 2= 26, y W3 — 26, )

1 1 1
u, = / e?*m*(z)dz, u, =/ e¥rm*(x)dz, ug = / 22012 m* (1) dx.
0 0 0

80
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Table 3.1. Coefficient values for the density (3.8)
with a4 = 1 for Example 6.1.

T v al as as as ab Loss
1.5 0.1 0.377 78.22 273.86 278.32 149.87 6.79
0.25 1.16 —6.45 28998 217.64 27.96 9.50
1 116 -=37.05 70.72 —-2.60 18.62 19.70
5 0804 -13.31 16.85 —3.98 4.18 61.06
10 0.923 —20.53 24.57 -3.99 3.98 108.49
100 1.65 -—-124.34 132.51 —3.50 3.06 853.72
5 0.1 0.524 -1.04 1.55 -1.10 1.59 1302.54
0.25 0.654 —4.17 571 —5.02 6.30 2544.55
1 0.822 —6.52 8.38 —4.62 5.33 8508.54
5 121 -16.62 19.64 —4.28 4.59 34294.25
10 147 —-28.05 32.06 —-4.19 4.39 63387.51
100 2.98 —214.47 226.23 —4.02 4.04 534222.2

3.6 Computations and Examples

Ezample 6.1. Recall Example 3.1 and (3.8). We take r; = 1 and denote r; by 7.
If either of a4 or ag is nonzero, we may take it to be unity. We take a4 = 1 and
rr.s = 1. Some numerical values of the constants are shown in Table 3.1. Figure 14
gives plots of the minimax extrapolation densities for varying r and v. The designs
can be roughly described as replacing those points with masses at —1, 1 and 0 in
the variance minimizing designs by more or less uniformly distributed clusters in
neighbourhoods of these points. Decreasing v results in more uniform designs. A
larger r (wider extrapolation region) results in more uniformity as well, especially in
the central region.

Fzample 6.2. Recall Example 4.2 and the nonlinear model (3.9) with possible
heteroscedasticity. The locally optimal design density for prediction is given by (3.16).
See Table 3.2 for the numerical values of the constants in (3.16) and Figure 15(a) for
plots. Here we have taken a; =1 and 6; = 1.

These designs are only locally optimal since they depend on the value of §;. To
deal with this, we obtain ‘locally most robust’ designs as in Chapter 2. For this, we
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Figure 14: Minimax extrapolation densities m(z) = (%) in Example 6.1.
(a) r = 1.5; (b) r = 5. Each plot uses three values of v: v = 0.1 (solid line), v =1
(dotted line), v = 5 (broken line).

Table 3.2. Coeflicient values for the density (3.16)
in Example 6.2 with a; =1 and ¢, = 1.

v ai b1 (4] d b2 Cy Qas b3 Cs

0.5 —513.21 495.36  6.99 782.40 344 46.96 16.07 -—39.74 25.31
1 932.3¢ —2428.57 1892.85 -—322.54 12.23 106.62 25.44 —60.19 38.81
5 2044.47 —4883.06 3303.49 --816.61 795 2545 35.90 -—81.08 50.00

take a further maximum of the loss as §; varies over some interval I, and determine
the coefficients of m(z) so as to minimize this maximum loss. For I = [0,2], the
locally most robust designs are detailed in Table 3.3 for varying v. In each case,
we found that the least favourable §; within 7, say 617, is 2. See Figure 15(b) for
plots. Although, as pointed out in Silvey (1980), local designs tailored for optimality
at a least favourable parameter value are sometimes inefficient at distant points, it
has been our experience that the designs constructed here do not exhibit a strong
dependence on 6,.

Example 6.3.  Recall Example 5.2 and model (3.9) with § = [0,1]. The locally
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Figure 15: Optimal minimax design densities
m(:c) . 6203‘1:(&1 + bz + 6132) +d *
— \ &7 [(1 + byz + cox?) + e¥i%(ag + b3z + c372)?

in Example 6.2. (a) Locally optimal design densities for 8] = 1 ; (b) locally most
robust design densities for 8} = 67 in [0,2]. Each plot uses three values of »: v = 0.5
(solid line), v = 1 (dotted line), ¥ = 5 (broken line).

optimal product of density and weights for the prediction problem is given by (3.23).
We take a4 = 1. For 6, = 1, the numerical values of the constants in (3.23) are given
in Table 3.4. See Figure 16 (a) and (b) for plots of the locally optimal design densities
and the corresponding optimal regression weights.

For I = [0.5,1.5], the locally most robust products of density and weights are
provided in Table 3.5 for varying v. In each case, we found that the least favourable

Table 3.3. Coeflicient values for the locally most robust density (3.16).
v ay b 1 d by Cy as b3 C3
0.5 24022.10 -—-28233.18 4874.55 3336.73 1.78 20.0 158.10 -—291.2 136.26
1 92020.01 -—217292.1 138815.1 -—69222.6 1.3¢ 832 173.63 —362.9 200.60
5 1225214 -—-276528.6 161973.8 —85323.7 9.06 105.1 225.56 —484.0 265.67
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Table 3.4. Coefficient values for the locally optimal product (3.23)
of density and weights in Example 6.3.

v ap (45} a9 as as as ar as Qg

0.5 163.19 582.58 —369.48 211.80 6.18 26.47 18978.42 165.78 1122.10
134.09 2710.50 —2352.19 1737.83 11.92 84.98 138645.0 4451.39 65374.78
2 —3269.9 10678.5 —12184.9 90879 13.45 81.59 b581177.6 20860.9 701666.1

—

Table 3.5. Coefficient values for the locally most robust product (3.23)
of density and weights in Example 6.3.

v ag a1 a2 as as as ar as ag
0.5 45481 1703.6 —838.72 82242 13.29 79.77 92972.48 2543.26 13839.7
439.79 3903.5 —2821.33 2281.76 0.198 81.49 255487.7 299.60 30479.6
2 —4938.2 72376 —6652.43 3692.79 -—3.95 74.05 95311.10 3999.84 56657.3

[y

6 within [ is 0.5. See Figure 16 (c) and (d) for plots.

3.7 Concluding Remarks

We have derived minimax prediction and extrapolation designs for misspecified gen-
eralized linear response models in the following three cases: (i) using OLS estimation
under homoscedasticity, (ii) using OLS estimation under possible heteroscedasticity
and (iii) using WLS estimation under possible heteroscedasticity. For each case with
OLS, we conclude that the minimax extrapolation design density has the same form
as that for the corresponding prediction problem. For case (iii), the product of the
design density and weights function has the same form for both prediction and extrap-
olation. These analytic forms are completely general, but contain several constants
to be determined numerically.

Chapter 2 have derived minimax designs for extrapolation to a single point. Al-
though the current work has assumed an extrapolation space with positive Lebesgue
measure, the designs for one point extrapolation can be derived informally as limits
of those in this chapter, as follows.

(1) The minimax one-point extrapolation design density for (i) above was shown
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Figure 16: Locally optimal and most robust design densities and corresponding
weights for WLS in Example 6.3: (a) locally optimal design densities, (b) optimal
weights corresponding to (a); (c) locally most robust design densities, and (d) optimal

weights corresponding to (c). Each plot uses two values of v: v = 0.5 (solid line) and
v =2 (broken line).

in Chapter 2 to have the form

o~ [FOER ]

This is the special case of form (3.7) with P =Z7T—42’1£ and Q = B37.

(2) The minimax one-point extrapolation design density for (ii) above was shown

to have the form

_[{F @B} {F v} +d ] ¥
) [{ET(X)6}2+b{iT(X)ﬁ}‘ |
This is the special case of (3.13) with P =2Y418% Q = 88T and U = vQ.

(3) The minimax product of design densities and weights for (iii) was shown to
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have the form

m(x) =

(Z7(x)B)(EF (x)7) +d - c] "
(& (x)B)’ ’

where c satisfies the cubic equation

&+ b(ET (x)B)’c = b(ET (x)B)” [(ZT (x)B)(E" (x)V) + d]

and b > 0. This is the special case of (3.23) with P =2'LT§Z£, Q=88 and U =
VoQ.
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Appendix: Derivations

Proof of Theorem 3.1. In what follows a prime (-)’ denotes the Fréchet derivative
of (-), &(-) is the Clarke generalized gradient of (-) and Npx)>0(m) is the normal cone

of {m : m(x) > 0}, ie.

Nocosa(m) = {(x) ¢ [ () = m)ex <0, for any o) 2 0}

(See SYZ for basic definitions.)

Define Ly = sup;. IMSEE(f,1,1,m), given at (3.6), and let m(x) be a density
minimizing L;. (The existence of such a density is established as in Ye and Zhou,
2005.) Then by the non-smooth Lagrange multiplier rule (Clarke 1983, Th. 6.1.1),

there exist real numbers A > 0 and §, not both zero, such that
!
0 € NOLy(m) + 6 (/ m(x)dx — 1) + Ningx)>o(m). (3.A.1)
s

Note that G = [, [{m(x)I - BA3'}2(x)] [{m(x)I - BA3'}2(x)]" dx > 0. We tem-
porarily assume that G is positive definite. Then as at Theorem 2 of SYZ, the gen-

eralized gradient of Ap.x(GHr) at m is

Mmax(GH7) = co { (W—Tlﬁz)l :w EM (m)} ,

wIG-lw
where
M(m) = dw wiHrw max wiHrw
N "wIG-lw  wi=1 wTG-lw
and

coA = {Z,\,-a,i 20,3 A =1, eA}

is the convex hull of set A. From the Chain Rule (Clarke 1983, Th. 2.3.10),

8 (,/,\,,m,((c:,IfIT‘)+,~T,S)2 _ (1 n \/%SGHT)) Omax(GHr) (3.A.2)

_ TT,s WTHTW ! .
= (1 + ————m) co { (__WTG—1W> I W EM(m)} .
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We require the following Fréchet derivatives, which can be calculated as in SYZ:

(tr [B7'A7])’ = —Z7(x)B*ArBi(x), (3.A.3)
(%)m = ZT(X)Mwi(X)+{Bai(x)rm(x). (3.A.4)

In (3.A.4), w is any vector in R and M,, is a p X p symmetric matrix, by a p x 1
vector whose specific values are not important to us.

By (3.A.1), (3.A.2), (3.A.3) and (3.A.4), we have that

0 € A (1 + Tng(i:=HT)> co {ZT(X)MWZ(X) + (l—)ai(x))zm(x) iwWE M(m)}
—vzT (x)B*ArB1Z(x)
8+ Ngyzo(m). (3.A.5)

1/2
_ TT,S / — TT,S T
Let M,, = (1 + m) My, by (1 + \/WGHT)) bw and note that

(fsm(x)dx — 1):” = 1. Then (3.A.5) becomes

0 € M2 [co {zT(x)sz(x) + (b23(x)) m(x) : w € M(m)} - uzT(x)B-lATB-lz(x)]

+J + Nm(x)zo(’rn) .

It can be shown, as in the proof of Theorem 1 of SYZ, that A\ # 0.

By the definition of convex hull, there exists a positive integer N, nonnegative
scalars A;, ..., Ay with Ay +...4+ Ay =1, w; € M(m) C R? and € € Npy(x)>0(m) such
that

SN A{ET ()M, Z(x) + (T, 2(x)) > m(x)}
-vzT(x)B ' ArB~13(x)

0 = Anj +é+e

= M2 A (BT E(x)" m(x) ~

i=1
N
AngzT(x) [vBTIALBT! — Y AM,, | #(x) + 6 +e.

i=1
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Consequently, there exists a constant symmetric matrix
' N
P =)} [vBT'ATB™ =) AM,, |,
=1
a constant positive semi-definite matrix Q = A3 SN, Aibyw, bl and a constant d =
—0 such that
0 = 27 (x)Qz(x)m(x) — 2T (x)Pz(x) — d + &. (3.A.6)
From Proposition 3 of SYZ we see that € = 0 almost everywhere on {x € S : m(x) >
0} and hence
77 (x)Qz(x)m(x) — 7 (x)PZ(x) —d =0
for all x such that m(x) > 0. Since Z7(x)Qz(x) = Y%, X {bL 2(x)}* > 0 for

almost all x € S we obtain

m(x) =ZT(x)PE(x) +d
27 (x)Qz(x)

for almost all x € S such that m(x) > 0. For those x € S such that m(x) = 0

we apply Proposition 3 of SYZ again to infer that ¢ < 0 a.e. and hence by (3.A.6),
z7(x)Pz(x) + d < 0. Consequently,

57 (x)P%(x) + d
27 (x)QzZ(x)

for almost all x € S such that m(x) = 0, and (3.7) follows in the case that G is

positive definite. This unnecessary assumption may now be dropped by arguing in

the same manner as in the proof of Theorem 1 in SYZ. O

Proof of Theorem 3.2. We give the proof only for extrapolation, that for prediction
being similar but simpler. Define I,,(x) = z7(x)HrZ(x). Then from (3.12) we seek

a density m(-) minimizing

2
. vV Amax(GHr)+rrs) +
L,? sup IMSEE(f,g,1,m)=rn} ( ) TS) 1/2
fEF,9cG Q12 [ fs{lm(x)m(x)}zdx]
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" We again initially assume G > 0. As in the preceding proof there exist real numbers

A > 0 and 6, not both zero, such that

0 € ABLy(m) + 6 ( /S m(x)dx — 1)' + Nomgyso(m), (3.A.7)

where the last two terms ([ m(x)dx — l)l and Npx)>0(m) are the same as those in
the proof of Theorem 3.1. Note that L, and L, differ only in their variance terms.

Using

<Us{lm(">m<x) P /> _

</ {m(xym(x) dx) - 22 (x)m(x)—-
S 24 (x)Hir (J In(3x)m? (0)E(x)2" (x)d) B5(x)

in the evaluation of (3.A.7) we obtain

( )

co {zT(x)sz(x) + (bZE(x)) m(x): w € M(m)} +
Q12 x)m(x)}2dx) "
0 € il Q12 ( fs{lm(x)m(x)}2dx) |
17, (x)m(x)-
957 (x)Hir ([ Lm(3)m?(x)2()27 (x)dx) B~ Z(x)
+6 + Nm(x)zo(m).

As in the proof of Theorem 3.1, A # 0.
Employing the definition of convex hull we assert the existence of a positive integer
N, nonnegative scalars Ay,..,Ay with A\; + ...+ Ay =1, w; € M(m) C R? and

€ € Npx)>o(m) such that

A {FOMLE) + (bLE0) m0 )+ |
vQ-172 X 24x) " 1/2
0 = Al Q2 ([s{lm(x)m(x)}2dx)
17, (x)m(x)—
] 227 (x)Hr ([, ln(x)m?(x)Z(x)z7 (x)dx) B~1Z(x)
+d +e€. i
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Consequently, there exists a symmetric matrix

P [VQ-W ( /S {zm(x)m(x)}2dx>

1/2 N
{P,+PT} > )\,-Mwi}

i=1
with Py = Hr ([ lm(x)m?(x)Z(x)z7 (x)dx) B, a positive semi-definite matrix
N
Q = TI?@ Z Aibw.‘ ba;a
t=1

a positive definite matrix

U = ngv'/? (Q /;{lm(x)m(x)}2dx) e Hr,

and scalars
€ é
e=3d=3
such that
0= [T (x)Qz(x) + {F(0Uzx)}’ | m(x) - 7 (x)Pa(x) —d+e.  (3.A8)

The proof is now completed in a manner essentially identical to that of Theorem

3.1. O
Proof of Theorem 3.3. Again we give the proof only for extrapolation. In a
manner very similar to that in the preceding two proofs we find that there exists a

symmetric matrix P, a positive semi-definite matrix Q, a positive definite matrix U

and a constant d such that on the set where m(x) > 0,
77 (x)Qz(x)m(x) + {27 (x)UZ(x) }** m/3(x) — 7 (x)PZ(x) — d = 0.
Therefore the minimizing m(x) is a solution to
a(x)m*3(x) + b(x)m(x) — ¢(x) = 0, (3.A.9)

where a(x) = {27 (x)Uz(x)}*”*, b(x) = 27(x)Qz(x) and ¢(x) = 27 (x)PZ(x)+d. Let
7 = ¢ — bm. Then, (3.A.9) becomes

ad ac

~ 3 &~ _9°
i i — — =0. (3.A.10)
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Since a and b are positive almost everywhere in S, (3.A.10) has only one real solution.
Applying Cardano’s formula for cubic equations (Dunham 1990), we obtain /(x) =
k(x), where k is as at (3.24). Thus

c(x) — k(x)

mx) = "

on the set where m(x) > 0. The rest of the proof is now essentially identical to that

of Theorem 3.1. 0
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CHAPTER IV

ROBUST PREDICTION AND
EXTRAPOLATION DESIGNS FOR CENSORED
DATA

Abstract This chapter presents the construction of robust designs for a possibly
misspecified generalized linear regression model when the data are censored. The
minimax designs and unbiased designs are found for maximum likelihood estimation
in the context of both prediction and extrapolation problems. We extend preceding
work of robust designs for complete data in Chapter 2 and 3 by incorporating cen-
soring and maximum likelihood estimation. It also broadens former work of robust
designs for censored data from others by considering both nonlinearity and much
more arbitrary uncertainty in the fitted regression response, and by dropping all re-
strictions on the structure of the regressors. Solutions are derived by a nonsmooth
optimization technique analytically and given in full generality. A typical example in

accelerated life testing is also demonstrated.

4.1 Introduction

We investigate the construction of designs for both prediction and extrapolation of
a regression response incorporating censored data. Such designs are of interest in
problems of life testing where there are two commonly used testing-time saving plans:
censoring and acceleration. In this chapter, we will address both.

Generally speaking, tests yielding complete data take too long to run especially

for those products having long life-spans. To save time, the testing results can be
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analyzed before all units fail. The data then consist of lifetime information on unfailed
units, so called censored data. If such information is ignored, the estimates of mean
lifetime would be definitely underestimated. Another purpose of censoring is that one
can analyze the most recent test data while the test is still running.

When life testing runs at the stress levels within the range that the product
would be normally used, the goal is prediction, namely the estimation of the mean
response throughout the region of interest. For accelerated life testing (ALT), in which
products are tested at higher than normal usage stress levels, the goal is extrapolation.
For an extrapolation problem, if one is interested in estimating the mean response at
a particular normal usage stress level which is lower than testing stress levels, we call
it a one-point extrapolation problem; if one’s interest falls into estimating that at a
certain range of normal usage stress levels, we call it a general extrapolation problem.

There is considerable literature regarding robust regression designs for a possibly
misspecified linear response when observations are complete. For prediction problems,
those with homoscedastic errors have been studied by Box and Draper (1959), Huber
(1975), and Wiens (1992) and those with possible heteroscedasticity were obtained
by Wiens (1998). For one-point extrapolation problems, those with homoscedasticity
were investigated by Draper and Herzberg (1973), Huber (1975), Lawless (1984),
Spruill (1984); those with possible heteroscedasticity were observed in Chapter 2.
For general extrapolation problems, those with homoscedasticity were discussed in
Chapter 3; those with heteroscedasticity were studied by Fang and Wiens (1999) and
Chapter 3.

For nonlinear regression problems without the consideration of model uncertainty,
Atkinson and Haines (1996), and Ford, Titterington, and Kitsos (1989) presented var-
ious static and sequential designs; for those considering robustness, Sinha and Wiens
(2002) provided the construction of sequential designs which were robust against

model uncertainty, and Chapters 2 and 3 discuss the construction of static designs
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which are robust against possibly misspecification in nonlinear models when observa-
tions are complete.

Recent work on robust designs with censored data in ALT are reported by Chaloner
and Larntz (1992), Pascual and Montepiedra (2002), and Pascual and Montepiedra
(2003), to name a few. These studies emphasize the robustness against model mis-
specification on the underlying distribution and assume that the "true" model belongs
to, or is distributed, with a known prior, onto a set of several known candidates. Both
Bayesian-type approaches and minimax strategies were used. Ginebra and Sen (1998)
investigated optimal designs, which are robust against possibly misspecified parame-
ter values on which the optimal designs depend. The explicit designs obtained in
those works are under straight line regression.

This present work focuses on the robustness against possible misspecification in
regression models that describe the behaviour of mean responses in relation to the
explanatory variables. Such misspecification generates a bias in the estimation of the
mean response. We assume that the "true" model involves an unknown member of
a certain contamination class but may not be the assumed one. This work broadens
the previous work of robust designs with censoring from others by considering both
nonlinearity and much more arbitrary uncertainty in the fitted regression response
and by dropping all restrictions on the structure of regressors. It also extends previous
work on robust designs for such model settings for complete data by incorporating
censoring and maximum likelihood estimation (MLE).

We consider a singly censored design with a specified censoring time for each
stress level. The underlying distribution is assumed to be normal. For the lifetime,
the underlying distribution is usually considered to be normal after the observations
are transformed. For example, suppose some product’s lifetime is possibly a lognormal
distribution. In such case, we take the logarithm of all observations and censoring

times, then carry out the regression method on the data after such transformations.
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Let Y be the random variable, for instance, (transformed) lifetime of the product or
material; let ¢ be the (correspondingly transformed) censoring time which is constant
for a fixed stress level; and let x represent the stress level and be a g-dimensional
vector belonging to a bounded design space S.
We consider
Y (x;) = E(Y|x;) + &,
with design points x;, X3, ..., X, freely chosen from S, where the ¢;’s are uncorrelated
and identically distributed with a normal distribution and a common variance o2.
The mean response is regarded as being an only approximately known function of a

linear function of a given p x 1 regressor vector z7(x), and unknown parameters:

E(Y|x) =~ h (27 (x)8,) .
The function h is strictly monotonic with a bounded second derivative. We assume

|27 (x)|| is bounded on S. The "correct" vector 85 of regression parameters may be

defined by
0= arg mjn/[E(le) — h (2T (x)t)]%dx.
t Js
Then after introducing f,(x) =\/n[B(Y |x) — h (2¥ (x)8,)], we obtain
E(Y |x) = h(zT(x)8,)+n" 12 f,(x). (4.1)

Whenever it is clear from the context, we drop the subscript n on f,,. The contaminant
f is unknown but relatively "small". Such misspecification may be generated by a
transformation of the data for the purpose of enhancing normality. It may also be
"viewed as arising from imprecision in the specification of h, or it can arise from a

misspecified linear term and a two-term Taylor expansion" as discussed in Chapter

3.
We let z(x) = (%Iozg(’) z(x) with p = 27(x)0. By the definition of ,, we have

/ 57 (x) f(x)dx = 0. (4.2)
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To ensure that 8, is well-defined, we need both (4.2) and [ 7(x)z” (x)dx being non-
singular which holds from Assumption (A) in Section 4.2. Let & be the maximum
likelihood estimator (MLE) of 8y obtained from the censored data. We define the
loss functions for the following cases:

(1) For prediction problems, where we attempt to estimate the mean response

E(Y|x) on the entire design space S, let

L = n/SE[h, (zT(x)é) —E(Y |x))%dx;

(2) For extrapolation problems, we take

L=n /T Efh (27 ()8) ~E(Y polw (d),

where w {Xo} =1 in the case of one-point extrapolation when we estimate E(Y|x), at
X0 ¢ S, by Y(x0) =h (zT(xo)é); and w is a Lebesgue measure in the case of general
extrapolation with extrapolation region T assuming w (T') > 0, and T'N.S = ¢, where
we intend to extrapolate E(Y |x) to the entire region T .

These loss functions depend on the design measure £ = n~1X2 I (x = x;), where
I is the indicator function, as well as on f. The following problems will be addressed
in this chapter sequentially:

P1: Determine designs to minimize the maximum value of I; over f;

P2: Determine designs to minimize the maximum value of I; over f for one-point
extrapolation;

P3: Determine designs to minimize the maximum value of I over f for general
extrapolation;

P4, P5, and P6: Determine unbiased designs in the context of prediction, one-
point extrapolation, and general extrapolation respectively.

We assume that the contaminant f involved in P1-P6 varies within certain speci-

fied contamination classes.
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The rest of this chapter is arranged as follows: Some mathematical preliminaries
and notation are detailed in Section 4.2; the designs for P1-P3 are presented in Section
4.3; the designs for P4-P6 are delineated in Section 4.4; the computation of the
resulting designs has been demonstrated using a typical ALT example in Section 4.5;

and derivations of all theorems in this chapter are provided in an appendix.

4.2  Preliminaries and Notation

For any observation y (x) at stress level x, we define an indicator function, ¢ = c(y|x)
in terms of the censoring time ¢ (x) by letting it be 1 when failure occurs and 0 when
an observation is censored, i.e.

1, when y (x) < ¢ (x),

0, when y (x) > ¢ (x).

c(ylx) =

Let ¢ and ® be the standard normal density and cumulative distribution function re-
spectively. Under the fitted regression model E(Y |x) = h (27 (x)8) , the log likelihood
of the ith individual observation (y;,¢;) at stress level x; is

L= —hx(a)—%ln(%)_%(yi_h(ZT(Xi)e)> +

o

- i-o (=2}

Denote the standardized observation and censoring time at a specified stress level x

x)-h({=zT x)—-h{z!(x
by w(x) and 7(x), i.e. w(x) = w&l and 7(x) = It UT( %) Then we

have
ol 27 (x,) W o ¢(7:) an
500, 0 { =TT } ‘
02, _ 7(x,)z" (x,;) . s &) \° __Tig(Ti)
BGBOT 0=00 - 0'2 {01 + (1 01) [(1 - @(Tl)) 1-— @(TI)} } ’

where 7; = 7(x;), & = ¢(x;) and w; = w(x;). Both expressions above involve two
random variables: c¢; and c;w;. The following derives the expectations of, variances

of, and covariance between these two variables based on the "true" model.
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We notice that ¢; and w; have the following distributions:

¢ ~ bin(l,R) with P, = P(c; = 1),
f(X,;)
o~ A% 1Y,
Wi N (\/ﬁa’ ’

. w;, when wy S Ti,
and their product is: cw; =

0, when w; > T;.

According to (4.1), we obtain

B(e) = ®(r)—o(r )ﬁ') (f\(/-)>

Elew) = —(rs) + [8(rs) — rid(r )1i(-’i+o(

7).

Var(e) = (r) =8 () +otr or) — L2 1 o (L)),
Var(eaw) = [@ (1) — 16 (m:) — & (73)]
+o(7) [28(7) = 27i(T3) — 73 +2]{§,—1) (%)
Cov(ci,cows) = —¢(ri)[1 = @ ()]

B0+ -2 () - 2} L2 4o (1),
ol fe)z"(x) | f(x:)
E<6_99=90>=“(“) o (U7

27,
2 z,T
96067 |5,

_ M;T_(il {a(n) + (b(r,) + a(Ts) [(‘T) (dﬂ) 2] N ) %-:7)} +o (%) ’

Hence,

and
Cov (gle o oo>
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2 T 3 T T 2 T
where a(7(x)) = @ (1) — T¢(7) + l‘iq‘,(l) and b(T) = {13’@((1))}2 - 1-?@((1)) — ¢(7). We note

that a(7(x)) is a function of x, 89, and o, but the dependency on x, 8y, and o is only
through 7. For readability, we use a(T) when we emphasize its dependence on 7 and

a(x) otherwise with

x) — b (27 (x g7 ( LT 0%
ax) = @ (C( ) h(E ( )90)) + L §(<(x)-h :T(x)ez)

S0 —h (708 (c () —h (zT(x)%)) |

o

To avoid trivialities and to make sure of the nonsingularity of a number of relevant
matrices, we assume that the design space S and extrapolation space T satisfy

(A) For each vector v # 0, the set {x € SUT : v7Z(x) = 0} has Lebesgue measure
Zero.

We assume
/ F(x)dx < 1 < oo, (4.3)
s

for a positive constant 7g, and also define the following matrices and vectors:

As = [E3(x)ZT(x)dx, A = Z(%,)Z (%),

Ar = [LZ(x)z" (x)dx, B = [,a(x)Z(x)z" (x)&(dx),
Hs=B 'AsB™}, Ho=B'AB™},
Hr=B'ArB7, brs = [5a(x)2(x)f(x)¢(dx),

by = [ 2(x)f(x)dx.
It follows from (A) stated above that As, Ar are nonsingular and that B is also

nonsingular whenever £ does not place mass on sets of Lebesgue measure zero. This
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requirement turns out to be necessary since £ has to be absolutely continuous due to
(4.3) as discussed later in this section.

By virtue of our assumption on f, z and h and the definition of B and by s, we
obtain the following results. The asymptotic information matrix of 8y is

0=90>

n

I(6,) = lim lg —Zﬂ
0 7 nseon 56667

i=1

- -(}13 /S a(x)Z(x)z" (x)€(dx)

The asymptotic expectation of the score function evaluated at 6, is
- 1 .. 1 -
by(0)) = —= lm ~E{vn)_

\/ﬁ n-——0o00 N 9=90)
1 ;
_ \_Féa— / a(x)(x) f (x)é (dx)

al;
86

=1

———bsos.
v/no? £s

And the asymptotic variance-covariance matrix of the score function evaluated at 6,
is
ol;

C(6o) = nli?w%ic"” (“a‘o,,-,,)
- % /S a(x)5(x)37 (x)E(dx)

1
- ;B.

Since the maximum likelihood estimate 8 is a root of the score function which can

be expanded around @, as

1 [ 8l 1 LT
n (Z E] Ho) ta (_ 2 0567

) (8—80)+0 (0807 (6 —60)),

0=0¢

we have

. 1 (= 0l
(0—90)'\';(2%

1=1

) 1-1(8,).
0=0,
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Consequently, the asymptotic distribution of y/n(8 — 6,) is then

V(B 6c) ~ AN(B~(6,)b 5(60), 0"B(6))).
We denote
A= U1 [556x =0, [ Pxax < nf < oo,
2 = {1 [ 3607 =0, [ Fexiax < < oo, 1f(xo) < 7o < o0}, and
Foo= Ul [a60ax =0, [ fegax <o, [ £k <nr? < oo},

for positive constants 7, and 7. For the regression model (4.1), we assume that the
contamination function f(x) is an unknown member of one of the classes above. In
fact, since the contamination classes above are so full, £ has to have a density in
order to guarantee sup;r, i, with (4,7) = (1,1),(2,2), or (2,3), is finite. This can
be established by modifying the proof of Lemma 1 of Wiens (1992). In practice,
¢ must be discrete. A consequence is that the optimal design obtained must be
approximated to make them implementable. Approximation methods are discussed
in Heo, Schmuland, and Wiens (2001) and also in Chapter 5 of this thesis.
Let k(x) be the density of £(x), then we have

B — /S a(x)k(x)Z ()2 (x)dx,
b;s = [ga(x)k(x)i(x)f(x)dx.

We also define K = [, a?(x)k?(x)z(x)z” (x)dx and G = K — BA3'B. There are two
facts we mark:

(1) G is positive semidefinite since, for any vector c,

cTGe = /S {cT[k(x)a(x)I — BAZ")Z(x)]}2dx > 0;
(2) a is a nonnegative function since

a()[1 - &(7)] = [&(7) — 7¢(T)] [L ~ B(7)] + ¢*(7)
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with (1) — 7¢(1) > 0.

4.3 Minimax Designs for Censored Data

In this section, we investigate the optimal designs that minimize the maximum value
of the loss, over f, in the following three cases:

(P1) prediction problems with f € Fi;

(P2) one-point extrapolation problems with f € F;; and

(P3) general extrapolation problems with f € F3.
4.3.1 Minimax Designs for Prediction: Solutions to P1

The loss function for Problem P1 is

I = n/ Elh (zT(x)é) —h (27 (x)6,) —n 2 f(x)]*dx
s
= bl Hg'bss + o’tr(AsB)+ /S FA(x)dx.

Let v := 0 /n% represent the relative importance of variance versus bias. We define
)\S) to be the largest solution to |G—AHg| = 0 and c¢; to be any vector satisfying
(GH3'G-A"G)c =0, and

c’Ge=1. (4.4)

Given fixed k(x), the "max" part of the minimax solution is presented in Theorem

4.1.
Theorem 4.1 The mazimum of I, is

sup I1(f,€) = 22D + 1+ vir(AsB™Y)), (4.5)

fer
attained at

fi(x) = ng 27 (x){a(x)k(x)I — A5'B}e1.
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Problem P1 has becomeone of finding a density k(x) that minimizes (4.5). The

following theorem provides the analytical form of such minimax design density.

Theorem 4.2 The design density k(x) minimizing (4.5) for prediction is of the form

_ [ax)z" (x)Pz(x) + d]
) = o Qe

where (w)* = max(w,0), for some constant symmetric matrizc P, a positive semi-

(4.6)

definite matriz Q, and a constant d that minimize (4.5) and satisfy [o k(x)dx = 1.

The following presents two models with different censoring plans. These two mod-
els will serve as two typical examples throughout this section and the sections hereafter
in the context of all prediction, one-point, and general extrapolation problems. Prior
to introducing these models, we first describe the definitions of the two censoring
plans involved in these upcoming models: (1) Time (Type I) censoring is where the
data are censored at a predefined time; (2) Failure (Type II) censoring is where the
data are censored after a prespecified number of failures. Detailed information about
these and other types of censoring can be found in Nelson (1990).

Model 1: We suppose that the experimenter plans a design under the assumed
regression model:

E(YlIE) = 00 + 0137,

and employs time censoring. The data are collected at a fixed time { (z) = ¢ for all test
units at all stress levels. Note that for life testing, Y and z stand for the transformed
lifetime and stress respectively. Such transformations are sometimes employed for the
purpose of enhancing both linearity and normality simultaneously. So, it is sensible
to consider that the regression model assumed above is approximately true.

Model 2: For the nonlinear regression model:
E(YILE) ~ h(00 + 0137),
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where h(z) = e*, we suppose that the failure censoring is planned with a constant
expected proportion of failures at all stress levels. We assume 7(z) = 7. Namely, the
experimenter expects that about 100 x ® (7) % of the units fail at each stress level.
So, a(7) remains constant as well from its definition.

For both Model 1 and 2, we take S = [by, by].

Ezample 1. According to Theorem 4.2, the locally optimal robust prediction

design for Model 1 is given by

ay + a9 + azx? d +

k(z) = o(7) (as + a5 + agz?)  a?(7) (as + a5T + as7?)

)

where 7 = 5@, as and ag are nonnegative and satisfy 4a4a¢ > a2. In addition,
a;— ag and d are selected in order to minimize (4.5) subject to fol k(z)dz = 1.
Example 2. For Model 2, as a result of Theorem 4.2, the locally optimal design density

for prediction is of the form

k(z) =

a1 + aox + asx? d +
ag + asT + agz? €217 (a4 + a5z + agz?)

where a4 > 0, ag > 0, and 4a4ag > a%. Besides, a;— ag and d are determined so as to
minimize (4.5) subject to fol k(z)dz = 1. The dependence of the design on 6; makes

such a design only locally optimal. This issue will be addressed in Section 4.5.
4.3.2 Minimax Designs for One-Point Extrapolation: Solutions to P2
The loss function for Problem P2 is
I, = nER(z" (x,)8)—h (27(x,)8,) — n ™2 f(x0))?
= bl Hy'bys — 2f(x0)27 (x4)B 'by,s + 0227 (%) B E(x,) + f2(%0)-

Let 74,5 = My /Ns represent the relative amount of model response uncertainty at the

extrapolation point and within the design space. We define ,\53) = ZT(xO)B‘lGB'l'Zr(xO),

and c; = B;/l:._((;)"). For a fixed k(x), the maximization part of the minimax solutions
k

to Problem P2 is given by Theorem 4.3.
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Theorem 4.3 The mazimum of I is

sup I = 3 [(V AP 41y 6)? + 027 (%) B 2(x,)], (4.7
2

attained at

fux) = nSZT(x)[a(x)k(x)I—Ang]cz, X €S,

_770, X = Xo.

Problem P2 has become that of finding a density that minimizes (4.7). The

minimax solution for P2 is presented in Theorem 4.4 below.

Theorem 4.4 The design density k(x) minimizing ({.7) for one-point extrapolation
18
T(x)a A *
) = | e * T
a(x)zT(x)B  a2(x)[Z7(x)0)
for some p x 1 vectors e, B and constant A which satisfy: (i) [ k(x)dx =1, (%)

minimize ({.7).

Ezample 3. Recall Model 1. Suppose that the estimation extrapolates to one
point zg: either greater than b, or less than b;. According to Theorem 4.4, the locally

optimal robust one-point extrapolation design for this model is given by

a1z + ag N as ] t
a(t) (asz + ay) ~ {a(r) (asz + ag)}*] ’

and a;— a5 are chosen in order to minimize (4.7) subject to fol k(z)dz = 1.

k(z) = [

Example 4. For Model 2 with either zq > by or o < by, the locally optimal design

density for one-point extrapolation is given by

a7 + ao as *
k(z) = , 4.8
(=) [as-’ﬂ + aq + €217 (a3x + a4)2] (48)

where a;— as are again selected by minimizing (4.7) subject to j;)l k(z)dz = 1. The
computation of the numerical values for a;— as in this design will be presented in

Section 4.5.
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4.3.3 Minimax Designs for General Extrapolation: Solutions to P3

The loss function for Problem P3 is

I, = n/TE[h (zT(x)é) —h (27 (x)0,) — n~ 12 f(x)]?dx

= bl Hrb;s —2b%,B7'b; s+ otr(ArB )+ [ f3(x)dx.
1.8 I T A r

We denote r7,5 := np/ng for the relative amount of model response uncertainty in
the extrapolation and design spaces. We also denote )\ia) to be the largest solution to
|G—AHz| = 0 and let c; be any vector satisfying (GHTG—)\S)G)C = 0 and (4.4).

The maximum of I, is given by Theorem 4.5.

Theorem 4.5 The mazimum of I, is

sup 1y (f,€) = n{( A 4rrs)? + vir(ArB™Y), (4.9)
€F3
attained at

nsz? (x)[a(x)k(x)I-A5'B]c,, x €S,

fu(x) = _ npET(x)B-1Ge,

@ ’ xeT.
k

Problem P3 now is to find a density that minimizes (4.9). The following theorem
gives the optimal minimax design density for the general extrapolation problem (P3),
which has the same form as (4.6) for P1.

Theorem 4.6 The design density k(x) minimizing (4.9) for general extrapolation is

a(x)z7 (x)PZ(x) + d] *
a?(x)z” (x)QzZ(x)

for some constant symmetric matriz P, a positive semi-definite matriz Q, and a

k(x) = [

constant d that minimize (4.9) and satisfy [; k(x)dx = 1.
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Ezample 5. For Model 1 and in the context of general extrapolation with extrapo-
lation space T' = [t1,t;]\[b1, b2}, as a result of Theorem 4.6, the locally optimal robust
extrapolation design is of the form
(ay + aox + a3z?) d +

k(z) =
(z) (as + asz + asz?)  a(7) (ag + asz + agz?)

where a4 and ag are nonnegative and satisfy 4a4a¢ > a2. Moreover, a;— as and d are
chosen to minimize (4.9) subject to [ k(z)dz = 1.

Example 6. With Model 2 in the context of general extrapolation with extrapolation
space T defined as in Example 5, by Theorem 4.6 the locally optimal design density

for general extrapolation is given by

+
€21 (a1 + ayx + a3z?) + d
€?%1% (a4 + asT + asz?) ’

k(z) =

where ay > 0, ag > 0, 4a4a5 > a,g, and a;— ag, as well as d are selected so as to

minimize (4.9) conditional on [ k(z)dz = 1.

4.4 Unbiased Designs for Censored Data: Solu-
tions to P4-P6

We say that a design/censoring pair (&, ¢) is unbiased if it satisfies
E@®)=0, foral feF,i=1,2 or3
so that sup;IB;(f,£,{) =0 for i = 1,2, or 3, where we define

IB\(f,€,¢) = b} sHg'bys

for P4,
IBy(f,€,¢) = bY sHg'bys — 2f(x0)Z” (x,)B 'by,s
for P5, and
IBs(f,€,¢) = b} ;Hrb;s—2bT B by ¢
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for P6.

P4, P5, or P6 involves finding the design such that the maximum, over f, of its
matching bias: sup;IB;(f,&,¢) for i = 1,2, or 3 is zero. Let oo = { [ a~1(x)dx} .
The following theorem offers a necessary and sufficient condition for unbiasedness,

the unbiased designs and the resulting losses for P4, P5, and P6 respectively.
Theorem 4.7 (a) The design k(x) is unbiased if and only if
a(x)k(x) = o
(b) The unbiased design density is
k(x) = aa™(x);

(c) The corresponding losses under unbiased designs are as follows:
(i) for prediction,
I =n% + apo?;
(i) for one-point extrapolation at Xo,
I = 3 + 00?77 (x,) A5 Z(x,);
(i4) for general extrapolation, I, = nk + ac’tr(ArAz').
We notice that the unbiased designs for the cases of prediction, one-point and
general extrapolations are the same.

Example 7. With Model 1, as stated in Theorem 4.7, the locally unbiased design

is of the form

b(e) ={ [ o @a} "0 @),

where
(—b—biz\ _(~b-0z (~b—bz, (=00
a(x)=¢( (;. 1 )_ (:7 = 8 00 ) T a(Ch

Ezample 8. For Model 2, the unbiased robust design is uniform with density k(z) =

{[fsdz} " since a(z) is constant in this model.
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4.5 Computation

In this section, we demonstrate the computation of numerical values of the constants
in our constructed designs using one typical ALT example: Model 2 with one-point
extrapolation.

As indicated in Example 4, the locally optimal design density for one-point ex-
trapolation is given by (4.8). We assume S = [0,1] and o > 1. We also let 7 be a
predefined constant which is essentially the standard normality quantile correspond-
ing to the expected percentage of failures. For instance, if the experimenter plans to
employ Type II censoring and expects 70% of the units to fail at each stress level,
T = ®1(0.7) = 0.525. Then, a(7) remains constant given by a(r = 0.525) = 0.921.

For Model 2, since the constant term a(7) has been cancelled out in the first
term of (4.7), it is only involved in the second term of (4.7). Let p = v/a(7). For
prespecified model parameters, the design varies when zg, 7, s, or p changes. All of
Zo, Txo,s and p can be determined by the experimenter. We also notice that the term
2% has been cancelled out in both the first and second terms of (4.7). However, for
fixed xg, rx,,s, and p, the optimal design depends still on the value of 6;. Therefore,
it is only locally optimal. To deal with this issue, we search for ‘locally most robust’
designs as discussed in Chapter 2. To do this, firstly we obtain the local optimal
design for an initial value of 8;; secondly, for this optimal design, we take a further
maximum of the loss as 8; varies over some interval I and record the least favourable
6, (written 87); thirdly, we determine the coefficients of k(z) so as to minimize this
maximum loss for 0{’F . We repeat this procedure until 0{‘F converges.

To illustrate the approach described above, we consider the Class-B insulation
data from Nelson (1990, Table 4.1 of Chapter 3). Those data are collected from a
singly time-censored ALT conducted using a uniform design on four specified testing
levels. The acceleration stress is temperature. The intention of this experiment is to

estimate the lifetime for electric motors at the normal usage temperature of 130°C.
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Table 4.1. Numerical values for (4.8)
S =10,1], 6, = 0.987, rx, s = 1, and zo = 1.98.
p a1 a a3 a5
0.5 —0.190 0.0003 -0.730 1.131
1 -—0420 0.002 —0.806 1.146
2 —0.676 0.00003 —0.858 1.196

The failures obtained from this test are at stress levels ranging from 170°C to 220°C.
The Arrhenius-lognormal model is fitted for those data and the MLEs for the model
parameters are computed by Nelson (1990). The transformation of the lifetime used
in this example is the logarithm and that of stress ¢ is 1000 times the inverse of the

absolute temperature in degrees Kelvin, i.e., ' = 1000

= 1+273.16" For simplicity, we transform

z' to our stress variable z with domain of [0,1] through the linear transformation
z = ‘—26%9“". Under such transformations, the MLE of 8; for the nominal model
is §; = 0.987 and the corresponding 99% confidence interval for 6; is (0.730,1.243).
Taking the model misspecification into account, we consider an even broader region
0, € I =[0.5,1.5]. We apply the same extrapolation point z, = 1.98 as employed in
Nelson (1990), which is equivalent to the normal usage temperature: t, = 130°C.

It should be noted that in (4.8), if one of a; — as is nonzero, then we can assume
that it is 1. In the following computation we take a4 = 1. For locally optimal designs
when 6; = 0.987, see Table 4.1 for the numerical values of the constants in (4.8) with
various p and Figure 17(a) for the plots. For locally most robust designs, we carry
out the process described above for I = [0.5,1.5] and several p, each time starting at
6; = 0.987. The locally most robust designs are detailed in Table 4.2. In each case,
we find that the least favourable 6, within I is 1.5. See Figure 17(b) for the plots. All
plots use a4 =1 and 74,5 = 1.

We note that for the extreme case, when the data are complete: 7 — 00, we
have a(7) = 1. In this case, the results obtained in Section 4.3 degenerate into the

exact optimal robust designs for complete data which are presented in Chapter 2 and

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 4.2. Numerical values for (4.8)
S =1[0,1], 6, € [0.5,1.5], rx,.5 = 1, and z = 1.98.
P a1 02 as as GfF
0.5 0.049 0.001 -0.783 1.311 1.5
1 -0.142 0.002 -—-0.855 1.349 1.5
2 —0.318 0.00003 -—0.897 1.417 1.5

(=2 od
00 02 04 06 08 10 00 02 04 06 Q8 10
(a) (b)
+
Figure 17: Optimal design densities k(z) = [Z;:igi + egal,(;fz +a4)2] for S =10,1],

Txo,8 = 1, and zg = 1.98. (a) locally optimal design densities for #; = 0.987; (b) locally
most robust design densities for #; within [0.5,1.5]. Each plots uses three values of
p: p=1 (solid line), p = 0.5 (broken line), p = 2 (dotted line).

Appendix: Derivations

Proof of Theorem 4.1. Since the term 0%tr(AgB™!) in I; does not involve f, the
maximization problem becomes to maximize b} sHg'bss + [ f2(x)dx over f. We
obtain

mex (b sHg'bys) = nAl?,

attained at fi(x) = ng Z7(x){k(x)a(x)I — A~'B}c; in a way akin to that used in
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Theorem 1 of Wiens (1992), and therefore the derivations are omitted here. Theorem
4.1 follows immediately from [, fZ(x)dx =n%. O

The result of Theorem 4.2 is obtained in a manner very similar to but simpler than
that used in Theorem 3.1 of Chapter 3, and so its proof is omitted.

Theorem 4.3 follows Theorem 2.1 of Chapter 2 immediately.

Proof of Theorem 4.4. We look for a nonnegative function k(x) minimizing (4.7)
subject to [ s k(x)dx = 1. We introduce a Lagrange multiplier ¢. It is sufficient to

show that k(x) minimizes

(VAP 41, 5)? + 037 (x,)B 5 (x,) — 2t [ k(x)dx
k 05 0 0 s

among all density functions. After some protracted calculation, we obtain the first

order condition
[ APER0) ~ Qx) — b (k= x> 0

for all densities k;, where

P(x) = [a(x)iT(x)ﬁ]z and Q(x) = [Z7(x)v] [a(x)" (x)B] with
B = Buli(xo)a

-1
N = B~1K+§<1+M) 1| 8,

VAP

-1
’f'xO,s

VAP
The proof now can be completed in the same way as for Theorem 2.6 of Chapter

2.0

u = |1+

Proof of Theorem 4.5. The term vir(ArB™!) in I, does not involve f, so the
maximization problem becomes maximizing by ;Hrby,s —2b7-B b s+ [, f2(x)dx

over f. We obtain
max (b sHrbjs—2b7 B 'bys) = % [(V M) 4rr,g)? — T%,s] :
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attained at

nszt (x)[a(x)k(x)I-A;'Blc,, x €S,
fi(x) = 3
—nr2" (x)B~1Ge,/ ’\5: ), x €T,

in a way essentially identical to that used in Theorem 2.1 (a) of Fang and Wiens
(1999). Theorem 4..5 follows immediately from [, f2(x)dx = n%. O

The proof of Theorem 4.6 is very similar to that of Theorem 3.1 in Chapter 3, so is
omitted. [

Proof of Theorem 4.7. According to the results of Theorem 4.1, 4.3, and 4.5, we

have got

sup IB1(f, k) = m2Aal,

feF1
sup IBy(f, k) = mal(V/ AP 4rags)? — 72 5),
feFa
sup IBs(f,k) = mal(VAE 4rrs)? —rlgl.
feFs

For the unbiased designs, we then have

sup IBi(f,k) = 0 ) =0G=0

feF;
& [a(x)k(x)I —BAZ'] z(x) =0 a. e.

for each i = 1, 2, or 3. We find that a(x)k(x) is a constant almost everywhere on S
in a manner essentially identical to that in the proof of Theorem 2.2 (b) in Fang and
Wiens (1999). This fact together with [ k(x)dx = 1, completes the proof of (a) and
Part (b), (c) follow (a) immediately. O
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CHAPTER V

APPLICATION AND IMPLEMENTATION

This chapter discusses the application of our designs, constructed in Chapter 2, to
a real life dose-response experiment. We propose a couple of new implementation
schemes which are utilized to approximate a robust design having a density, which
in practice is not implementable. We also confirm that one of the matching quantile
schemes used in the literature is optimal with respect to certain criteria. Several
examples are demonstrated for using the implementation schemes proposed. In addi-

tion, a comparison between a proposed approach and an existing one is given.

5.1 Case Study
5.1.1 Introduction

In recent years, the public has become increasingly aware of the presence of harmful
chemicals in our environment. Many people express concerns about pesticide residue
or other foreign substances in food, contaminants in drinking water, and toxic pol-
lutants in the air. How can we determine which of these potential hazards deserve
‘our attention? Dose-response assessment is employed to tackle such problems. Dose-
response assessment is the process of characterizing the relation between the dose
of a chemical and the incidence of an adverse health effect in exposed populations,
and of estimating the incidence of the effect as a function of human exposure to the
chemical. ‘Dose’ is commonly used to indicate the amount of the chemical while ‘re-
sponse’ refers to the effect of the chemical once administered. Generally, increasing
the dose will result in an increase in the incidence of an adverse effect. Our intention

is to estimate the effects of chemicals at low exposure levels using a dose-response
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regression model. Krewski and Brown (1981) provide a guide to the literature for
carcinogenic risk assessment. Crump (1979) reveals that since direct estimates of
effect associated with very low levels of exposure often need very large numbers of
experimental subjects, such estimates are inevitably based on the downward extrap-
olation of the results acquired at relatively high dose levels using a moderate number
of subjects. Fang (1999) also points out that for the low-dose extrapolation problem
it is important to keep an eye on possible violations of the assumed linear model in
constructing the optimal design.

The experimenter takes a set of dose levels and runs an experiment with a pre-
specified number of subjects at each dose level. The number of subjects responding
at each dose level is recorded. Let z be the dose level administrated to the experi-
mental subjects, such as animals, and P(z) be the probability of success in showing
the response at dose level z. The dose-response curve illustrating the relation be-
tween z and P(z) is fitted. This curve can then be employed to estimate the life
risk of a subject exposed to a very low dose level, zo. As indicated in Chapter 2,
this is a one-point extrapolation problem. Since reducing sample sizes is important
in an experiment of the life risk assessment, the optimal designs can be helpful for_
improving the efficiency. However, due to the estimation being extrapolated to zo,
any misspecification in a regression model adopted in obtaining the optimal design
will endanger its optimality. We therefore take into account any possible departures
from the model and seek an optimal robust design for such a one-point extrapolation

problem.
5.1.2 Approximate Generalized Linear Regression Model

To demonstrate the application of a robust design constructed in Chapter 2 for the
one-point extrapolation, we revisit the vinyl chloride data cited by Hoel and Jennrich

(1979). These data (Table 5.1) are recorded from an experiment for the purpose
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Table 5.1. Vinyl chloride data
Doses Animals tested Observed responses

0 58 0
50 59 1
250 59 4
500 59 7

of estimating the probability of developing cancer after an animal is exposed to a
carcinogenic material - vinyl chloride. The dose unit for vinyl chloride is ppm (parts
per million, 1 ppm = 2.6 mg/m3). The commonly used model by many researchers
in the field of cancer dose response is a generalized linear function,
k
P(z) =1—exp (-— Zajxj> . (5.1)
=0

The maximum likelihood fit of P(z) to the vinyl chloride data using (5.1) identified
by Guess, Crump, and Peto (1977) is

P(z) =1 —exp(—azx) (5.2)

with o = 0.000267377.

Hoel and Jennrich (1979) reconsidered this problem and presented the optimal
design for the assumed model (5.2) and a target value of o = 0.000267377 with
zy = 0.5. However, there are no observations at any dose levels between 0 and 50 and
only one observation between 50 and 250. Consequently, within (0, 50) we cannot
detect any possible departures from the assumed model. In addition, within (0, 250),
we can neither validate the model nor possibly obtain any information on how the
model would depart from that which is assumed. Therefore, we suppose that (5.2) is

only approximate for the vinyl chloride data, namely
P(z) ~ 1 —exp (—azx), (5.3)

with an unknown contamination bounded in Ls-norm.
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5.1.3 Optimal Minimax Design for Low-dose Extrapolations

According to Theorem 2.6 in Chapter 2, the locally optimal robust design for (5.3)

has the form of
a + bxle~?= +

k,‘(CL') = x2e—2a:c (1 + Cx2e—2a:c)

We consider the design space as the range of dose levels where subject toxic response
is observed. For this case, S = [50,500]. We take r;, s = 1, which means that the
amount of model uncertainty at the extrapolation point and that in the design space
are regarded as equal. We also take v = 1, to indicate that we consider the importance
of bias reduction and that of variance minimization as being the same. Our goal is
to estimate the probability of observing a toxic response at dose level zo = 0.5. For

o = 0.00053475, the optimal minimax design &, has a density of

8.269 + 13.837z%e 2>
z2e~2%2 (1 + 0.2669z2e~2>%)"

k(z) = (54)

See Figure 18 for its plot. As indicated in Hoel and Jennrich (1979), the optimal
design obtained is very robust against misspecification in the assumed parameter
value within a moderate parameter region containing it, although locally optimal.

The implementation of this design is provided in Section 5.2.2.

5.2 Implementations
5.2.1 Introduction

In the preceding section of the present chapter and in the previous three chapters,
we have obtained a number of robust designs for various cases which turned out to
have densities. Such designs with densities are prevalent in the literature. See, for
instance, Huber (1975), and Wiens (1990, 1992). In addition, Heo (1998) listed quite
a few such continuous designs. Wiens (1992) showed that if the contamination class

is an Lo-type of space, e.g. Class F; in Chapter 1, any optimal design minimizing the
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Figure 18: Optimal minimax design density for the dose-response example.

maximum loss function over such contamination space has to be absolutely continu-
ous. These designs with densities are not implementable. In practice, a design should
tell the experimenter what the design support points are and how many subjects
should be allocated to each of these points. An implementable design, £, must be a
discrete probability measure which puts probability &(z;) at z;. For a given r < n,
let 71,9, ..., Z, be the distinct design points, the number of subjects allocated to a
particular design point z; on design space is then, né(z;). In addition, each £(x;),
i=1,2,...,7, should be an integer multiple of 1—1— A design with this integer property
~ is called an exact design.

A few implementation approaches have been introduced in the literature. Wiens
(1992) suggested a randomized design. That is, the design points are randomly chosen
from an optimal design density. Wiens and Zhou (1996) presented a more systematic
approach of matching quantiles, that places an equal number of observations at the

quantiles of an optimal design density. This type of approach has been used in both
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Heo (1998) and Fang (1999). Its properties are also discussed in Section 5.2.4 of this
chapter. Matching moments is another method that chooses design points such that
the empirical moments match up as closely as possible with the theoretical moments,
obtained from the optimal density, to a sufficiently high order. This approach has
been seen in Heo, Schmuland and Wiens (2001) and Adewale (2002).

An innovation for obtaining an exact design was presented by Fang and Wiens
(2000), who redefined the problem by considering a finite design space and applying
the simulated annealing algorithm. See also most recently in Adewale and Wiens
(2006).

In the rest of this section, we propose two other types of approximation schemes:
equally spaced design and histogram design. We also verify that one of the matching

quantile approximation methods is optimal under the defined criteria.
5.2.2 Equally Spaced Design

An equally spaced design is referred to as a design whose support points are evenly
dispersed within the design space. We recall the matching quantile approach that is
based on uniform y-axis partitioning. Commonly, this leads to a design with non-
equally spaced support points but with an equal number of observations at each
support point. We now propose to partition the z-axis instead, obtaining an equally
spaced design with an unequal (normally) number of observations on its design points.
In many fields, particularly in life testing, such designs are traditionally applied. For
instance, the best traditional designs, the Meeker-Hahn designs (Nelson, 1990), and
the model-robust 4:2:1 design (Pascual and Montepiedra, 2003) are all equally spaced.
Fqually spaced designs are often preferable when adjustment for stress levels is not
as simple as adjustment for the number of test subjects at each level. In reality, the
experimenter will shift from a traditional to an optimal design provided there is a

minimum change/cost in experimental equipment/material settings. Therein lies the
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motivation for the equally spaced implementation scheme.

A given number (r) of design support points (stress/dose levels) are positioned
equidistantly within the design space, while the design space itself is divided into r
equal subspaces. On each subspace, to determine the proportion of subjects assigned
to the design point within we use the integral of the density over this subspace. It
is easy to show that such a design tends weakly to the optimal design as r tends to
infinity. It should be noted that in order to get the exact design, this approximation
usually needs to be rounded. For efficient rounding, we refer to Pukelsheim and
Rieder (1992).

The following gives an implementation of the optimal design (5.4) using the equally
spaced approach. We take r = 10. To obtain an equally spaced design over the design
space of [50,500], the interval is divided into ten equal parts: [50,95), [95, 140), ...,
and [455,500]. The ten dose levels can be chosen at 50, 100, ..., and 500. We still
use the same number of test subjects as in Guess et al. (op. cit.): n = 235. The

allocation of these test subjects can be calculated as

% 8.269 + 13.837z%¢ %7
ngo = 235 =
5o z2e729% (1 4 0.2669x2e-22<)

10 8.260 + 13.837z2e 2" -~
s T2e20% (1 4+ 0.2669x2e~202)

dz ~ 119,

100 = 235 44, ceny

0 8260+13837s% %
s Tle—20% (1 +0.2669z2¢~202)

Then, when r = 10, the resulting design requires 119 animals at a dose level of 50,

Nso0 = 235 3.

44 at 95, ..., and 3 at 500, namely as follows:
dose levels 50 100 150 200 250 300 350 400 450 500

allocation 119 44 23 14 10 7 6 5 4 3.
5.2.3 Histogram Design

We propose using a histogram type of approach to approximate an optimal design

having a density. This approach is inspired by Professor Douglas Wiens’ seminar
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presentation at the University of Alberta in November, 2004. We have noticed that
compared with classical optimal designs (minimizing variance alone), optimal robust
designs against model misspecifications {minimizing mean square error) are obviously
more uniform with mass spread over the design space, yet heavily loaded near those
design points obtained for minimizing variance alone. Such a pattern has been found
in, for example, the robust designs constructed by Fang and Wiens (1999, 2000), and
those achieved in the previous chapters by us. We decompose the design space into
a number of subspaces (the bases of the bars in a histogram). Then, we assign the
relative frequency (the height of a histogram bar) on each subspace to be the average
density over this subspace. We note that such a design tends weakly to the optimal
design as the number of subspaces tends to infinity.

In addition, the density of an optimal design is often much higher in a neighbor-
hood of each of the points, than elsewhere; these design points would have been used
for minimizing variance alone. Consequently, we take the number of support points
for the classical minimizing variance design as the number of subspaces with nonzero

relative frequencies in the histogram design.
5.2.3.1 Ezxamples using histogram designs

In this subsection, we focus on the implementation of the robust optimal designs
constructed in Example 2, Chapter 2. This example presents the resulting optimal
design densities for approximate pth degree polynomial regression models in the case
of one-point extrapolation. For p = 1 (linear), the optimal design densities are exhib-
ited in Figure 6 in Chapter 2, which indicates that there are only two subintervals in
the design space from which we may obtain observations for each of those optimal de-
signs. Figure 7 in Chapter 2 gives the optimal design densities for p = 2 (quadratic).
This figure indicates that there are only three subintervals over which observations

can be made for each optimal design. The remaining of design intervals have densities
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Table 5.2. Histogram designs for Example 2
of Chapter 2 with p = 1.
oy v S;[ hl Al(%) Sz hg Az(%)
1.5 0.5 [-1,-0.401] 0.480 28.8 [0.044,1] 0.745 71.2
1 [-1,-0.488] 0.510 26.2 [0.173,1] 0.893 73.8
10 [-1,-0.675] 0.661 21.5 [0.451,1] 1.43 78.5
[-1
[—1
[—1

5 0.5 ,—0.339] 0.641 423 [0.249,1) 0.769  57.7
1 ,—0.419] 0.717 41.7 [0.341,1] 0.884  58.3
10 ,—0.582] 0.986 41.0 [0.511,1] 121  59.0

of zero. To determine the subintervals of these designs, we solve

(x4 ag)(asz+1)+as
(a3z + 1)* + ag(asz + 1)

for z when p = 1, where the values of a; — a3, as, and ag for diverse v are listed in

Table 2.2 of Chapter 2. We solve

(]. + a1 + 0121,'2) (bo + blx + b2$2) +c -0
(1+a1z + a,2:1:2)2 +d(1+a1z+ G2$2)4

for z when p = 2, where the values of ay, as, b, b1, b, ¢, and d for various v are given
in Table 2.3 of Chapter 2.

The histogram designs are presented in Table 5.2 for p = 1 and in Table 5.3 for
p = 2. In these tables, S; and h; denote the base and the height of the histogram bar
for each subinterval respectively. A; stands for the portion of subjects assigned to
the corresponding subinterval. A result of such approximation using the histogram
approach is exhibited in Figure 19. It should be noted that this scheme might not be
so obvious for finding the appropriate subspaces without a ‘natural’ divider, as is the
case in these examples. Nevertheless, it may serve as a complement to the existing

approaches when the pattern of an optimal design permits.

5.2.3.2 Obtaining exact designs

These histogram designs are still not exact designs that the experimenter can ma-

nipulate in practice. We use each of the portions obtained in Tables 5.2 and 5.3 to
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Figure 19: Histogram approximation for Example 2 of Chapter 2 with p = 2.

Table 5.3. Histogram designs for Example 2 of Chapter 2 with p = 2.

To V S hy  Ay(%) Sy hy  Ay(%) S3 hs As(%)

15 05 [-1,-0.80] 071 143 [-0.50,0.34] 043 36.0 [0.69,1] 1.61 49.7
1 [-1,-0.83] 0.74 135 [-0.47,0.32] 043 352 [0.74,1] 1.93 513
10 [-1,-0.88] 1.01 123 [-0.41,0.31] 0.41 292 [0.84,1] 3.59 585
5 05 [-1,—-0.78 1.03 230 [-047,043] 049 443 [0.75,1] 1.32 327
1 [-1,-0.80] 1.18 23.1 [-0.44,041] 051 434 [0.78,1] 1.54 335
10 [-1,-0.86] 1.72 23.5 [—0.40,0.38] 0.53 41.0 [0.85,1] 2.44 355

assign experimental subjects uniformly over its corresponding subinterval. The design

points within each subinterval, S; = [a;, b;], can be assigned as

b.,; — Q4

szai-l' (2]—1)

1

for j =1, 2,...,n; with n; being a rounded integer of nA;. For a demonstration with

n = 10, the design points are displayed in Figure 20 for p = 1 and Figure 21 for p = 2.
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Figure 20: Exact designs using histogram scheme for Example 2 of Chapter 2 with
p=1

5.2.4 Optimal Approximation

There are two kinds of matching quantile approaches appearing in the literature. In
the first, used in Wiens and Zhou (1996), one observation is placed at each of the

following quantiles:

z® = F&f( 1200y i1, 2,0 n, (5.5)

where £ is an optimal design with a density, and F¢, is the cumulative distribution
function of £,. In the second, used in Heo et al. (op. cit.), one observation is placed

at

z® = Ffol( ),z =1,2,.
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Figure 21: Exact designs using histogram scheme for Example 2 of Chapter 2 with
p=2.

The first approach provides a sample from &, with a smaller Kolmogorov-Smirnov

statistic, since

» Gl 1
R () -5l =

max
1<in
and
(2)) _u|_1
max |F, (= n' o

where t; is the number of design points less than z;. For a fixed number of experimental

subjects n, the following theorem shows that (5.5) is optimal under certain criteria.

Theorem 5.1 The first matching quantile approach provided by (5.5) offers an opti-

mal approzimation which minimizes the overall "distance” between the optimal design
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&, and the resulting one when this distance is defined as

D=/|Fso (€) — Fe (2)|" da,

for any positive m, among all the designs of the form of £(z) = 3 Efz‘.(z), where I
t=1
i8 an indicator function with pointmass 1 at x.

To illustrate this, we put the z; in increasing order, i.e. ; < Z3 < ... < Zp. Let

S = [a, b}, we then have

D = /‘Fgo (x)—Fg(a:)|mdx+/|Feo (z) — Fe(z)|" dz

n—1 Tit1

+; / | P, (2) ~ Fe (z)|™ da.

T;
To minimize D, by taking the derivative with respect to each z;, we find that the
minimizing z; is a solution of the following equation

m

1+1 ’ (5.6)

n

Ffo (13) -

Fu@)- 3| =

fori = 1,2, ...,n. Theorem 5.1 follows because (5.5) satisfies (5.6) for m > 0.

The matching quantile methods are generally problematic for the case that the
design space has a higher dimension, so other methods still may be viable alternatives.
Figures 22 and 23 provide the resulting exact design points using (5.5) for Example
2 of Chapter 2. For this example, the exact designs obtained from the histogram
approximation and those by using (5.5) are very close to each other even with n as

small as 10. A comparison is demonstrated in Figure 24.
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