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Abstract 

 

Plants require periods of light and darkness to grow and develop properly. In plants, the 

timing of daily events is facilitated by the circadian clock. Most eukaryotes possess a circadian 

circuit that is entrained by different inputs such as light and temperature. Here, I show that the only 

elucidated activator of the circadian clock, RVE8, and its two homologs, RVE4 and RVE6 are 

required for plants to confer osmotolerance. I show that wild-type (WT) plants perform better than 

rve 4 6 8 plants by examining primary roots under osmotic and salt stress. Subsequent total 

proteome analyses between WT and rve 4 6 8 whole seedlings at zeitgeber (ZT)11 and ZT23 

illustrate that WT plants have differentially abundant proteins which aid in osmoprotection. Next, 

I surveyed the circadian clock for its role in regulating nutrient acquisition by utilizing a series of 

plant lines deficient in different core circadian clock transcription factors. Here, I show that the 

circadian clock has disparate roles in the regulation of nitrogen (N), phosphorus (P), and sulfur (S) 

nutrition, through the observation of nutrient-dependent primary root and hypocotyl etiolation 

phenotypes. After screening a compendium of circadian clock deficient mutants, I undertook a 

focused characterization of the prr5-11 prr7-11, prr5-11, and prr7-11 mutant plants at zeitgebers 

ZT0, ZT4, ZT8, and ZT12, under control (CTL), -N, -P, and -S conditions, as these mutant lines 

exhibited the greatest phenotypic differences under nutrient starvation. Using gas chromatography 

mass spectrometry (GC-MS), I found that the metabolite pool largely differs within each genotype 

and across different nutrient regiments, implicating both PRR5 and PRR7 proteins in the regulation 

of nutrient-mediated outputs in Arabidopsis thaliana. Research conducted throughout my thesis 

finds that the circadian clock has wide-ranging roles in regulating the osmoregulatory and nutrient 

stress responses, laying a foundation for future experimentation aimed at further exploring the 

interplay between the circadian clock and drought or plant nutrition. 
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Chapter 1: 

Introduction 

 

1.1.1 Circadian Circuitry in Arabidopsis 

Plants require periods of light and dark to grow and develop properly (Jabbur & Johnson, 

2022; Steed et al., 2021; Webb et al., 2019). In plants, the precise timing of daily events is 

facilitated by the circadian clock (Dodd et al., 2005; Gottlieb, 2019). Most eukaryotes possess a 

circadian circuit (Ambesh et al., 2018; Dunlap, 1999; Jabbur & Johnson, 2022; Krahmer et al., 

2022; Phillips, 2005; McClung, 2006; Ruben et al., 2019; Salomé et al., 2008; Spoelstra et al., 

2015; Young & Kay, 2001) that is entrained by different inputs such as light (Figure 1; Czeisler 

et al., 1986; Haydon et al., 2013) and temperature (Figure 1; Boothroyd et al., 2007; Eckardt, 

2005; Somers et al., 2000). The circadian clock increases in complexity along the tree of life from 

the older cyanobacteria and photosynthetic algal specimens to the more contemporary flowering 

angiosperms (Jabbur & Johnson, 2022; Maeda & Nakamichi, 2022; Ouyang et al., 1998; Sartor et 

al., 2019).  

Arabidopsis thaliana (Arabidopsis) is a eudicotyledonous angiosperm that is a member of 

the Brassicaceae family. Arabidopsis has been described as an ideal model for studying plant 

molecular biology (Meinke, 1998; Van Norman & Benfey, 2009), due to its short life cycle of 6-

8 weeks (Koornneef & Scheres, 2001; Passardi et al., 2007; Woodward & Bartel, 2018) and 

subjectively low-maintenance characteristics such as the ability to be propagated cheaply indoors 

(Gelvin, 2003; Gelvin, 2012; Chen et al., 2004; Koornneef & Scheres, 2001; Tzfira et al., 2004). 

Arabidopsis is the first plant to have its genome fully sequenced (Kaul et al., 2000) with 11 

revisions since the first iteration (Bevan & Walsh, 2005; Provart et al., 2020). The fact that the 

genome of Arabidopsis has been elucidated and re-annotated multiple times allows plant 

biochemists to apply several technologies derived from analytical chemistry and biochemistry to 

study the molecular changes in Arabidopsis when exposed to different treatment conditions 

(Mergner et al., 2020). 
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Figure 1: Principle behind the circadian circuitry. The circadian circuit in Arabidopsis and 

other eukaryotes is entrained by different factors such as light and temperature, which function as 

inputs into the core clock. The core circuit regulates the expression of downstream genes. This 

output by the clock has been monitored through a series of omics technologies derived from 

analytical chemistry ranging from transcriptomic (Covington et al., 2008; Romanowski et al., 

2020; Yang et al., 2020), to proteomic (Graf et al., 2010; Krahmer et al., 2022; Uhrig et al., 2019), 

to metabolomic (Annunziata et al., 2018; Choudhary et al., 2016; Flis et al., 2019; Moraes et al., 

2019) analyses. 
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Most of the research examining the plant circadian circuitry has been conducted using the 

model plant organism, Arabidopsis (Maeda & Nakamichi, 2022; Mehta et al., 2021; Millar et al., 

1995; Shalit-Kaneh et al., 2018; Steed et al., 2021). In Arabidopsis, the core clock consists of 

morning, afternoon, midday, and evening expressed proteins (Figure 2; Kamioka et al., 2016) that 

form a series of negative feedback loops (Figure 2; Shalit-Kaneh et al., 2018). Correspondingly, 

the circadian clock proteins are transcription factors that are expressed at specific times throughout 

the photoperiod to induce the expression of clock-output genes, while simultaneously repressing 

the expression of the other circadian clock transcription factors (Figure 2; Covington et al., 2008). 

It has been estimated that as much as 40% of the genes in Arabidopsis are under circadian control 

(Romanowski et al., 2020).  

 

1.1.2 Morning-Expressed Transcription Factors 

The morning expressed transcription factors consist of two MYB-like transcription factors 

CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1; AT2G46830) and LATE ELONGATED 

HYPOCOTYL (LHY; AT1G01060) (Gong et al., 2008; Mizoguchi et al., 2002). LHY and CCA1 

are activated by light in anticipation of the dawn (Green & Tobin, 2002). LHY and CCA1 directly 

interact with one-another (Lu et al., 2009). LHY and CCA1 have partially redundant activities and 

additively control the timing of flowering (Figure 3; Mizoguchi et al., 2002). LHY and CCA1 

mediate the timing of starch metabolism (Figure 3; Shor et al., 2017; van Hoogdalem et al., 2021), 

where lhy cca1 knockout lines exhaust all carbon stores by the onset of dawn (Graf et al., 2010). 

Plants deficient in lhy or cca1 flower later than wild-type (WT) plants (Fujiwara et al., 2008), 

which suggests that LHY and CCA1 proteins regulate flowering time (Figure 3; He et al., 2021). 

CCA1 and LHY modulate thermoregulatory responses (Figure 3; Gould et al., 2006; Phan et al., 

2022; van Hoogdalem et al., 2021) and callus developmental processes (Figure 3; Shim et al., 

2021), while also directly influencing phytohormone pools in Arabidopsis (Figure 3; Martı́nez-

Garcı́A et al., 2000).  
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Figure 2: Transcription regulation within the core clock. Schematic depicting the transcription 

regulatory activity of the core clock in Arabidopsis consisting of LATE ELONGATED 

HYPOCOTYL (LHY; AT1G01060), CIRCADIAN CLOCK (CCA1; AT2G46830), PSEUDO-

RESPONSE REGULATOR 9 (PRR9; AT2G46790), PSEUDO-RESPONSE REGULATOR 7 

(PRR7; AT5G02810), PSEUDO-RESPONSE REGULATOR 5 (PRR5; AT5G24470), TIMING 

OF CAB EXPRESSION 1 (TOC1; AT5G61380), EARLY FLOWERING 3 (ELF3; AT2G25930), 

EARLY FLOWERING 4 (ELF4; AT2G40080), and LUX ARRHYTHMO (LUX; AT3G46640), 

as well as the only elucidated activators of the circadian clock REVEILLE 8 (RVE8; AT3G09600), 

REVEILLE 4 (RVE4; AT5G02840), and REVEILLE 6  (RVE6;  AT5G52660) (Adapted from 

Mehta et al., 2021). 
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Figure 3: Outputs of CCA1 and LHY proteins. The morning regulated CCA1 and LHY have 

been shown to mediate the timing of flowering, carbohydrate metabolism, hormone signaling, 

thermoregulation, and callus development in Arabidopsis. 
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1.1.3 Mid-Day-Expressed Transcription Factors 

The mid-day expressed transcription factors of the circadian clock consist of the PSEUDO-

RESPONSE REGULATOR (PRR) proteins: PRR5 (AT5G24470), PRR7 (AT5G02810), PRR9 

(AT2G46790), as well as PRR1/TIMING OF CAB EXPRESSION1 (TOC1; AT5G61380) (Ito et 

al., 2008; Nakamichi et al., 2005; Nimmo & Laird, 2021; Wang et al., 2010). The expression of 

the PRRs occurs in a stepwise fashion, where PRR9 is expressed just after the dawn, followed by 

PRR7, PRR5, and lastly by TOC1 (Farré & Liu, 2013). LHY and CCA1 represses TOC1 (Figure 

2; Alabadı́ et al., 2001; Pruneda-Paz et al., 2009) and TOC1 represses LHY and CCA1 (Figure 2; 

Gendron et al., 2012; Huang et al., 2012; Pokhilko et al., 2012) in a double negative feedback loop. 

TOC1-OX (overexpressing) plants have lower LHY and CCA1 expression (Makino et al., 2002; 

MáS et al., 2003) by way of repressing LHY and CCA1 expression. LHY and CCA1 also represses 

PRRs 5, 7, and 9 (Figure 2; Farré et al., 2005; Kamioka et al., 2016) and are negatively regulated 

by the earlier-expressed PRR5, 7, and 9 proteins (Figure 2; Creux & Harmer, 2019; Joanito et al., 

2018; Nakamichi et al., 2010; Yuan et al., 2021).  

PRRs 5, 7, and 9 regulate flowering under long-day (LD) conditions, where prr7 prr9, prr5 

prr7, and prr5 prr7 prr9 plants develop higher leaf counts than WT plants, in addition to delayed 

flowering (Figure 4; Nakamichi et al., 2007). PRR5 and PRR7 specifically regulate flowering 

time under LD, as flowering time in prr5 prr7 plants under short-day (SD) conditions is not 

delayed (Figure 4; Nakamichi et al., 2005). Plants deficient in PRR5 and PRR7 produce less leaves 

than WT plants before flowering under SD conditions, while the opposite was observed in prr7 

prr9, prr5 prr7, and prr5 prr7 prr9 plants (Figure 4; Nakamichi et al., 2007). TOC1 acts with 

PRR5 to regulate flowering time, where toc1 flowers early in SD conditions, while toc1 prr5 

flowers late in long day conditions by failing to negatively regulate the expression of CYCLING 

DOF FACTOR 1 (CDF1; AT5G62430) (Figure 4; Ito et al., 2008). PRR5, PRR7, PRR9, and 

TOC1 all regulate flowering by increasing the stability of the CONSTANS (CO; AT5G15840) 

transcription factor (Figure 4; Hayama et al., 2017). Triple knockouts for PRR5, PRR7, and PRR9 

have delayed flower opening and closing times, relative to WT (Figure 4; Muroya et al., 2021). 

Quadruple knockout prr5 prr7 prr9 toc1 plants flower later due to a lowered CO expression 

profile, which decreases the binding between CO and the promoter of FLOWERING LOCUS T 

(FT; AT1G65480) (Figure 4; Hayama et al., 2017). 
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TOC1-OX and PRR5-OX have shorter hypocotyls than WT when subjected to a 29oC for 3 

days, which suggests that TOC1 (Figure 4; Phan et al., 2022) and PRR5 could regulate 

temperature-related responses in Arabidopsis (Figure 4; Zhu et al., 2016). PRR7 and PRR9 are 

also involved in thermoregulation (Figure 4; Blair et al., 2019; Li et al., 2020), where prr7 prr9 

plants have a temperature sensitive phenotype which simultaneously causes the clock to reset after 

discrete cold pulses (Salomé & McClung, 2005). PRR5 and TOC1 regulate hypocotyl length 

(Figure 4; Zhu et al., 2016), as prr5 toc1 plants have longer hypocotyls under SD and LD 

conditions, relative to prr5 or toc1 plants (Li et al., 2020). WT, prr5, toc1, and prr5 toc1 plants all 

have sequentially longer hypocotyls, further, prr5 or toc1 deficient plants exhibit distinct 

phenotypes from one another (Figure 4; Yan et al., 2021). WT, prr5, toc1, and prr5 toc1 plants 

have different photoperiod times when transferred to free-running conditions, suggesting that 

PRR5 and TOC1 regulate hypocotyl elongation by different mechanisms (Figure 4; Yan et al., 

2021). TOC1 controls plant development, where TOC1-OX plants exhibit a reduction in plant and 

leaf size (Fung-Uceda et al., 2018; Zhu et al., 2016). PRR5, PRR7, PRR9, and TOC1 could all 

modulate hypocotyl length, as prr5 prr7 prr9 toc1 plants appear to have longer hypocotyl lengths 

than WT under LD and SD conditions (Figure 4; Hayama et al., 2017). 
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Figure 4: Outputs of PRR proteins. The morning regulated PRR9 and PRR7, as well as the 

evening activated PRR5 and TOC1 have been documented to modulate flowering time, hypocotyl 

development, and thermoregulation in Arabidopsis. 
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1.1.4 Afternoon-Expressed Transcription Factors 

To signal the end-of-day, the MYB-like afternoon expressed REVEILLE proteins 

consisting of RVE8 (AT3G09600) and its two homologs, RVE4 (AT5G02840) and RVE6 

(AT5G52660) are expressed as the sole activators of the circadian clock (Figure 2; Hsu et al., 

2013; Xie et al., 2014). Research around the RVE proteins has arguably been slower than the other 

members of the core clock due to their recent discovery (Creux & Harmer, 2019; Farinas & Mas, 

2011; Rawat et al., 2011). Hsu et al., (2013) showed that the circadian period of rve4 and rve6 

single mutant plants was statistically indifferent from WT, while rve4 6 8 plants have a 4 hr longer 

period than WT. This suggests that RVE8, RVE4, and RVE6 maintain the pace of the clock by 

having partially redundant roles, as eliminating all three REVEILLE genes alters the pace of the 

clock more significantly than in rve8 specimens (Hsu et al., 2013).  

RVE8 forms a negative feedback loop with PRR5 (Figure 2; Craigon, 2004; Rawat et al., 

2011), where it directly binds to the promoter of PRR5. RVE8-OX plants have an increased 

expression of PRR5, while the expression of RVE8 decreases in PRR5-OX plants (Craigon, 2004; 

Rawat et al., 2011). RVE8 regulates the activity of TOC1 by directly binding to the promoter of 

TOC1 (Figure 2; Farinas & Mas, 2011). RVE8-OX and rve8 plants increase and decrease the 

expression of TOC1, respectively (Farinas & Mas, 2011). RVE proteins activate the expression of 

evening-expressed transcription factors in Arabidopsis, alluding to the role of the RVE8-like 

proteins in the crucial transition between the morning and the evening, while further cementing 

their roles as activators of the circadian clock (Figure 2; Creux & Harmer, 2019; Harmer & Kay, 

2005; Nohales, 2021; Rawat et al., 2011).  

RVE8 regulates diel production of anthocyanin, with pigment biosynthesis repressed at 

midday and elevated in the evening (Figure 5; Pérez-García et al., 2015). Plants deficient in RVE 

proteins (rve4 6 8 and rve3 4 5 6 8) have larger biomass than WT plants, suggesting that RVE 

proteins could play a role in the regulation of plant architecture and morphology by modulating 

cell size (Figure 5; Gray et al., 2017). RVE8-like proteins regulate thermotolerance (Figure 5; 

Sorkin et al., 2022) by modulating the expression of ethylene-synthesizing genes (Li et al., 2019; 

Kidokoro et al., 2021). REVEILLE proteins have recently been shown to regulate carbohydrate 

metabolism and proteosome function, where rve4 6 8 plants display with starch excess at ZT0 and 

a reduction in proteosome activity at ZT11 and ZT23 (Figure 5; Scandola et al., 2022).  
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Figure 5: Outputs of RVE8-like proteins. RVE8, RVE4, and RVE6 have been shown to regulate 

proteasomal activity, carbohydrate metabolism, plant development, thermoregulation, and 

anthocyanin production in Arabidopsis. 
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1.1.5 Evening-Expressed Transcription Factors 

The evening complex (EC) consists of three proteins: LUX ARRHYTHMO (LUX; 

AT3G46640, a MYB-like transcription factor), EARLY FLOWERING 3 (ELF3; AT2G25930) 

and EARLY FLOWERING 4 (ELF4; AT2G40080) (two unrelated nuclear proteins) (Doyle et al., 

2002; Ezer et al., 2017; Hazen et al., 2005; Hicks et al., 2001; Huang & Nusinow, 2016). The EC 

is active at night, where ELF3 acts as a scaffold between ELF4 and LUX (Herrero et al., 2012; 

Nusinow et al., 2011; Silva et al., 2020). LHY and CCA1 are repressed by the EC in the evening 

(Figure 2; Li et al., 2011; Nusinow et al., 2011). The PRR proteins are also repressed by the EC 

in the evening (Figure 2; Lee et al., 2019; Mizuno et al., 2014; Li et al., 2020).  

The EC regulates thermo-related responses in the evening (Figure 6; Box et al., 2015; Jung 

et al., 2020; Li et al., 2022; Mizuno et al., 2014; Zhu et al., 2021). Plants deficient in any one of 

the members of the EC have been shown to be arrhythmic (Dixon et al., 2011; Helfer et al., 2011; 

Herrero et al., 2012; Hsu & Harmer, 2014; Nusinow et al., 2011). The EC cooperatively regulates 

hypocotyl morphology by regulating the expression of PHYTOCHROME INTERACTING 

FACTOR (PIF) 4 (AT2G43010) and PIF5 (AT3G59060) at night (Figure 6; Nusinow et al., 2011). 

ELF3 also acts alone to solely repress the downstream activity of PIF4, where ELF3-OX plants 

have shorter hypocotyls (Nieto et al., 2015). ELF3 may also regulate flowering time in 

Arabidopsis, through its interaction with CYCLOIDEA AND PCF TRANSCRIPTION FACTOR 

2 (TCP2; AT4G18390) (Figure 6; He et al., 2021). 

The EC has also been implicated in biotic stress responses by altering salicylic acid (SA) 

and jasmonic acid (JA) biosynthesis in Arabidopsis (Figure 6; He et al., 2021; Zhang et al., 2019). 

JASMONATE INSENSITIVE 1 (MYC2; AT1G32640) is an activator of JA-promoted leaf 

senescence (Zhang et al., 2018). The interaction between ELF3 and MYC2 likely alters JA pools, 

as elf3-1 myc2 plants display with delayed JA-mediated senescence (Zhang et al., 2018). 

Alternatively, LUX binds to the promoters of ENHANCED DISEASE SUSCEPTIBILITY (EDS1; 

AT3G48090.1) and JASMONATE-ZIM-DOMAIN 5 (JAZ5; AT1G17380) to regulate SA and JA-

controlled defense-related mechanisms, respectively (He et al., 2021).  
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Figure 6: Outputs of the EC proteins. The evening activated ELF3, ELF4, and LUX have been 

shown to regulate flowering time, hypocotyl development, thermoregulation, and biotic 

responses in Arabidopsis. 
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1.2.1 Osmoregulation in Plants 

Climate change is having a significant impact on food production worldwide and is one of 

the main contributors of global food insecurity, requiring the need for more resilient crop cultivars 

(Dhankher & Foyer, 2018; Long et al., 2015; Mahajan & Tuteja, 2005; Zhu, 2016). Plants exhibit 

both molecular and phenotypic changes when exposed to abiotic stress conditions, such as 

alterations in stomatal aperture and differential changes in metabolite profiles (Abdullah et al., 

2021), in addition to changes in the primary root architecture (Smolko et al., 2021). Oxidative 

stress results in the accumulation of reactive oxygen species (ROS) (Hossain et al., 2015) such as 

hydrogen peroxide (Zwiewka et al., 2019) within the plant cell, directly impeding plant root growth 

by altering phytohormone profiles at the cellular level (Huang et al., 2018). In response to 

osmoregulatory stress, plants upregulate the biosynthesis of the phytohormone abscisic acid 

(ABA) (Wang et al., 2020). ABA mediates plant germination (Lopez-Molina et al., 2001) and 

stomatal pore perforation diameter (Yoshida & Fernie, 2018) to elicit adaptive changes in plants 

(Bartels & Sunkar, 2005; Guo et al., 2020; He et al., 2021; Shinozaki & Yamaguchi-Shinozaki, 

2006). Endogenous ABA is utilized for proper growth and development by interlinking external 

inputs with internal regulatory mechanisms to confer biological homeostasis (Humplík et al., 

2017). 

To induce osmoregulatory stress in plants, a proxy for osmotic stress or salinity stress is 

often exogenously supplied (Perez-Alfocea et al., 1993). Polyethylene glycol (PEG) and mannitol 

have both been utilized to simulate osmotic stress in plants by conferring a hyperosmotic plant cell 

environment (Lawlor, 1970; van den Broeck et al., 2017). However, PEG has been shown to cause 

the premature differentiation of root stem cells, resulting in increased lateral root growth coupled 

with a cessation in primary root growth (Ji et al., 2014). PEG has also been shown to promote 

heavy metal toxicity as well as osmotic stress in plants, preventing biochemical botanists from 

parsing out the effects of two different stressors on plant homeostasis (Plaut & Federman, 1985). 

Alternatively, mannitol exposure inhibits cell division and thus leaf growth in plants exposed to 

osmotic stress (Kalve et al., 2020; Claeys et al., 2014). It has also been shown to impact ribosome 

function (Skirycz et al., 2011) and decrease metabolite and redox-related gene expression 

(Nikonorova et al., 2018). Arabidopsis plants exposed to either salt or mannitol stress over 24 hrs 

have been found to exhibit significant changes in protein phosphorylation (245 phosphosites), 

lysine acetylation (35 acetylation sites), and protein abundance (107 proteins), illustrating that 
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osmoregulatory-mediated abiotic stress elicits multiple protein-level changes (Rodriguez et al., 

2021). With rising sea levels, increasing saline concentrations in coastal areas is becoming a 

pervasive issue (Guha & Panday, 2012). Salt stress has been shown to have deleterious effects on 

plant growth and development (Munns & Tester, 2008) by decreasing germination rates (Li et al., 

2021) and delaying flowering time (Li et al., 2007; Lutts et al., 1995; Hongqiao et al., 2021). The 

bioengineering of crop cultivars with enhanced salt tolerance is of profound importance, however 

due to the multigenetic nature of salt stress tolerance, this has been a challenging endeavor (Zhu, 

2016).  

 

1.2.2 Osmoregulation and the Circadian Clock 

Intersections between abiotic stress and the clock have been resolved, with several 

circadian clock genes suggested to mediate drought-like responses in Arabidopsis (Covington et 

al., 2008; Kamrani et al., 2022; Wilkins et al., 2010). The pool of ABA in leaves as well as its 

biosynthesis is under circadian control (Seung et al., 2011). For example, LHY has been shown to 

directly affect the rate-limiting step of ABA production by binding to the promoter of ABA-

synthesizing genes, while simultaneously repressing the synthesis of 9-cis-epoxycarotenoid 

dioxygenase enzymes (Adams et al., 2018). LHY-OX and lhy plants decrease and alter the synthesis 

of ABA, respectively, which further suggests that LHY could be involved in the ABA-regulated 

osmoregulatory stress response (Adams et al., 2018). When methyl viologen (MV is a known 

proxy for osmotic stress that increases superoxides in plants) is added to CCA1-OX plants, genes 

that were shown to be down-regulated in WT plants are upregulated CCA1-OX plants (Ding et al., 

2018; Lai et al., 2012). When subjected to MV, the number of wilted leaves was also found to 

increase in cca1, lhy, and lhy cca1 plants, while the number of compromised leaves decreased 

significantly for CCA1-OX plants, suggesting that CCA1 and LHY could be cooperatively 

involved in the osmoregulatory process (Lai et al., 2012). Beyond Arabidopsis, when rice plants 

deficient in CCA1 (oscca1) were exposed to NaCl or mannitol, they were found to maintain a 

survival rate of 10%–30%, relative to the much higher survival rates of 50% to 70% found in WT 

plants (Wei et al., 2022).  

Further, PRR5, 7, and 9 have also been implicated in ABA-dependent abiotic stress 

responses (Yang et al., 2021). ABSCISIC ACID INSENSITIVE 5 (ABI5; AT2G36270) has been 

suggested to be a key regulator of ABA-dependent germination through ABA (PYR/PYL/RCAR) 
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synthesizing genes (Zhao et al., 2020). ABI5 is also involved in ABA-induced anthocyanin 

biosynthesis (An et al., 2020), ABA signaling (Bhagat et al., 2021), drought responses (Li et al., 

2021), amongst other regulatory processes (Collin et al., 2021). ABI5 directly interacts with PRR5 

and PRR7, suggesting that PRR5 and PRR7 could have a role in the ABI5-modulated synthesis of 

ABA (Yang et al., 2021). Further, prr5 prr7 prr9 plants have a higher germination rate than WT, 

prr5 prr7, or prr5 prr9 plants (Yang et al., 2021). Taken together, the observations of Yang et al., 

(2021) suggests that PRR5, PRR7, and PRR9 could have different roles in ABA signaling. TOC1 

binds to the promoter of ABAR/CHLHGUN5 to regulate the endogenous pools of ABA in plants 

(Legnaioli et al., 2009). ABA further induces the binding between TOC1 and 

ABAR/CHLH/GUN5, which also possibly implicates TOC1 in the ABA-dependent 

osmoregulatory process (Legnaioli et al., 2009).  

Scandola et al., (2022) recently suggested that RVE8-like transcription factors could be 

involved in the abiotic-stress response through the regulation of multiple salt-induced, osmotic-

mediated, and sulfur-assimilating (which have been observed to increase in response to persistent 

osmotic stress) proteins (Rodriguez et al., 2021; Torres-Franklin et al., 2009). Further, ELF3 

exhibits salt tolerance by modulating the expression of osmoregulatory protein GIGANTEA (GI; 

AT1G22770) (Sakuraba et al., 2017; Yu et al., 2008). Here, ELF3 interacts with CO to form a 

complex, which destabilizes and represses GI (Yu et al., 2008). ELF3-OX plants perform better 

than WT when exposed to NaCl, where ELF3-OX plants have higher chlorophyll concentrations, 

elevated shoot fresh weight, and longer primary root lengths (Sakuraba et al., 2017). 

Prior work has suggested that the RVE8-like proteins could have a role to play in drought-

like responses. Namely, Scandola et al., (2022) has shown that proteins regulating ABA and sulfur 

metabolism are enriched between rve 4 6 8 and WT plants. Simon et al., (2020) has shown that 

there is a non-significant difference between WT and rve8 and rve4 in water use efficiency (WUE; 

another proxy for drought-like stress looking at stomatal aperture parameters), wherein plants 

deficient in rve8 showed a slight non-significant increase in WUE relative to WT, while rve4 plants 

showed the converse (Simon et al., 2020). RVE8-like proteins activate PRR and EC complex 

proteins (Figure 2; Creux & Harmer, 2019; Harmer & Kay, 2005; Nohales, 2021; Rawat et al., 

2011) and prr9 and elf3 plants have been observed to have significantly lower WUE than WT 

(Simon et al., 2020). Thus, it could be that plants lacking in rve 4 6 8 fare worse than WT, as 

opposed to plants deficient in any one of RVE8, RVE4, or RVE6 proteins (Scandola et al., 2022; 
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Simon et al., 2020). It is also plausible that RVE8-like proteins could also be affecting 

osmoregulatory homeostasis through its interaction with PRR9 and ELF3 (Simon et al., 2020). As 

such, elucidating the role of the sole activator of the circadian clock in the osmoregulatory 

response, and unraveling the precise plant cell metabolic processes and pathways that are 

implicated is of paramount importance in contemporary botanical chronobiology. 

 

1.3.1 Nutrient Stress in Plants 

Nitrogen (N), phosphorus (P), and sulfur (S) are essential macronutrients required for plant 

growth, development, and effective crop production (Kopriva et al., 2012; Zenda et al., 2021). The 

deprivation of essential nutrients can limit growth, by driving extensive molecular changes (Forieri 

et al., 2016). For example, elevated levels of ethylene (a stress-related phytohormone) has been 

shown to develop in response to N, P, and S related nutrient deprivation, indicating a partially 

shared response to macronutrient deprivation in plants (García et al., 2015). Further, transcriptomic 

analysis of N, P, and S starved plants have demonstrated a common molecular senescence response 

under nutrient deprivation, irrespective of the type of nutrient that is lacking (Watanabe et al., 

2010). 

N, which is utilized in vivo as bioavailable nitrate is ubiquitous with proper plant growth, 

development, homeostasis, and metabolism due to its presence in all 20 naturally occurring amino 

acids (Flis et al., 2019; Miller et al., 2007; Zhu et al., 2018) and critical plant pigments such as 

chlorophyll (Allison et al., 1997; Bassi et al., 2018) and anthocyanin (Ibrahim et al., 2011; 

Soubeyrand et al., 2014). Plants preferentially increase the abundance of nitrates within the source 

cells to promote the biosynthesis of amino acids within the leaves (Nunes-Nesi et al., 2010). In 

response to low N pools, characteristic changes in root architecture have also been observed in 

Arabidopsis (Gruber et al., 2013). In response to N stress during development, plants have been 

found to recycle the existing N pools by breaking down N-containing compounds in older leaves 

and transporting the components to younger leaves (Fan et al., 2009). Amino acids and proteins 

also get transported to reproductive organs (Nunes-Nesi et al., 2010) or are unloaded into sinks, 

such as plant seeds (Tegeder et al., 2000). Nitrogen remobilization and transportation occurs across 

all stages of plant development from seeds to mature plant specimens (Fan et al., 2017). 

P, which is utilized in vivo as bioavailable phosphate is critical to multiple metabolic 

processes, representing ~2% of the total dry biomass in Arabidopsis (Kumar et al., 2018). Its 
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importance is highlighted by its requirement for adenosine triphosphate (ATP) biosynthesis 

(Igamberdiev & Kleczkowski, 2015). ATP is an energy molecule that drives many universal 

eukaryotic processes such as gene expression (Lim et al., 2014; Zhu et al., 2019), metabolism 

(Hong et al., 2022; Liang et al., 2015), protein transport (Kim et al., 2006; Thomas et al., 2000), 

and key plant cellular mechanisms including gravitropism (Tang et al., 2003), pollen-tube growth 

(Reichler et al., 2009), root hair growth (Kim et al., 2006), amongst others (Hao et al., 2012; Liang 

et al., 2015). ATP is also required for reversible protein phosphorylation, which has been estimated 

to regulate the function of approximately 75% of all proteins in eukaryotes (Sharma et al., 2014). 

Phosphorylation is a key post-translational modification (PTM) which alters the function and 

activity of a substrate protein (Haubrich & Swinney, 2016; Uhrig et al., 2019), amongst other roles 

(e.g., subcellular localization). In response to P deprivation, root architecture modification at the 

cellular level occurs due to cortical root cell alterations (Janes et al., 2018). In response to P stress, 

proteomic changes and differential protein profiles (Chevalier & Rossignol, 2011; Mehta et al., 

2020) as well as gene expression alterations (Scheible et al., 2022) have been found, emphasizing 

the important role that P plays in the maintenance of plant homeostasis. 

S, which is utilized in vivo as bioavailable sulfate has been described as a growth-limiting 

macronutrient due to the utilization of sulfur in essential amino acids cysteine and methionine in 

plants (Dietzen et al., 2020; Koprivova & Kopriva, 2014). Cysteine amino acids are required for 

ABA biosynthesis, whereby ABA DEFICIENT3 (ABA3; AT1G16540) utilizes cysteine to 

synthesize ABA in response to low-water conditions (Batool et al., 2018). Furthermore, the 

application of exogenous cysteine was met with an increased amount of endogenous ABA, further 

coupling cysteine amino acids to ABA biosynthesis (Batool et al., 2018). Glucosinolates are S-

containing secondary metabolites that regulate plant homeostasis in response to abiotic stress 

inputs (Chowdhury, 2022). More specifically, under salinity conditions (López-Berenguer et al., 

2008; Steinbrenner et al., 2012) and water-limiting conditions (Radovich et al., 2005), 

glucosinolate pools were shown to increase. Plants deprived of S demonstrate with a 23-fold 

decrease in glucosinolate metabolites (Forieri et al., 2016), directly tying S metabolism to 

Arabidopsis homeostasis (Wittstock & Halkier, 2002). Further, S has also been shown to be an 

essential component in protein persulfidation (PTM where hydrogen sulfide is utilized as a 

signalling molecule (Filipovic & Jovanović, 2017), where it has a function in protein protection 

from excess oxidation (Filipovic & Jovanović, 2017). At least 5% of the Arabidopsis proteome is 



18 

 

capable of being persulfidated (Aroca et al., 2017). S also comprises ~2% of the dry biomass in 

Arabidopsis (Kumar et al., 2018). Under S depletion, a 2-fold decrease in root biomass and 

alterations in root architecture has been observed (Forieri et al., 2016; Joshi et al., 2018), 

illustrating that S pools have a role to play in proper plant development. 

 

1.3.2 Nutrient Stress and the Circadian Clock 

Given the intimate tie between N, P, and S stress and deviations from plant homeostasis, 

greater analyses into the effects of N, P, and S deprivation in plants are required. The systemic role 

of the Arabidopsis circadian circuitry in the nutrient stress response is yet to be elucidated, unlike 

the preliminary interplay between the clock and other abiotic stressors. Currently, it is known that 

in response to diel light regiments global amino acid profiles differentially change in prr7 prr9 

and elf3 plants, relative to WT, suggesting that the clock could have a role in the regulation of N 

pools in Arabidopsis (Flis et al., 2019). Further, TOC1 decreases the expression of AUTOPHAGY-

RELATED PROTEIN 8D (ATG8D; AT2G05630) when exposed to N-deficient media (Chen et al., 

2022), with ATG8D expression observed to be higher in toc1 plants, suggesting that TOC1 likely 

represses N deficiency-mediated autophagy (Chen et al., 2022). CCA1 has also been shown to 

directly bind to N-assimilating proteins, which suggests that N-transporter proteins could be under 

circadian control (Gutiérrez et al., 2008). CCA1 could also regulate P assimilation by regulating 

the rhythmic expression of PHOSPHATE TRANSPORTER 4;1 (PHT 4;1; AT2G29650), as the 

expression of PHT4;1 was observed to be largely dysregulated in CCA1-OX plants (Wang et al., 

2014). Under P stress, it seems that LHY, CCA1, PRR9, and RVE8 expression is induced, further 

implicating the clock in the mitigation of nutrient-dependent homeostasis in Arabidopsis (Scheible 

et al., 2022). Approximately 20 sulfur-related genes are differentially regulated when exposed to 

sulfur deficient conditions, such as RVE2 (an RVE8-like protein; AT5G37260), which is down-

regulated at the end-of-night in root tissue subjected to sulfur stress (Forieri et al., 2016; Peixoto 

et al., 2021).  

Although there is some evidence suggesting that the circadian clock could play a role in 

the N, P, and S stress responses, a systematic analysis of the interplay between the clock and 

nutrient stress has not been pursued. Further, evidence linking the clock to nutrient stress mediated 

responses has been largely transcriptomic, with few studies looking into the proteomic or 

metabolomic landscape of plants deprived of N, P, or S. This distinction is important because 
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changes in protein levels largely deviate from alterations in transcriptomic profiles (Graf et al., 

2017), thus elucidating the role of the clock in the nutrient stress response at the proteomic level 

remains of paramount importance and is largely unexplored in contemporary plant chronobiology. 

 

1.4 Project Significance, Potential Applications, and Research Objectives  

Contemporary agricultural practices aim to minimize inputs (e.g., nutrients) and maximize 

yield (e.g., biomass) to ensure sustainable crop production and improve food security (Fan et al., 

2011). Given that the circadian clock regulates the expression of approximately 30-40% of the 

genes in Arabidopsis, botanical researchers can utilize the features of the clock in order to uncover 

potential targets for agricultural improvement (Romanowski et al., 2020; Steed et al., 2021). 

Arabidopsis plants deficient in ELF3 flower faster than WT, as elf3 plants have approximately half 

the number of rosette leaves of WT plants in LD conditions (Zagotta et al., 1996). Loss of ELF3 

causes the accumulation of CO and GI which causes early flowering in plants (Hicks et al., 2001; 

Yu et al., 2008; Zhao et al., 2021), such that plants ELF3-OX plants exhibit late flowering in LD 

(Liu et al., 2001). Recently, it has been reported that breeders have indirectly been selecting for 

knockouts of wheat (Triticum turgidum) homologues of ELF3 (TtELF3), which increases the 

heading (flowering time in wheat) date (Wittern et al., 2022). With rising global temperatures in 

the wake of climate change, especially within the harsh summer months, accelerating the flowering 

time of crop cultivars would allow for the benefit of increased yield by avoiding crop loss due to 

heat stress (Suraweera et al., 2020). 

Drought and water limitations due to climate change is another constraint on contemporary 

agriculture, requiring the breeding of more water-efficient crop cultivars (Kijne et al., 2003). Water 

loss throughout the day occurs primarily through the stomata, where water is lost via transpiration 

(Bertolino et al., 2019). Select members of the core clock, including PRR5 and ELF3 have higher 

expression levels in the guard cell versus the whole plant leaf organ, suggesting that these genes 

could have especially large effects in the regulation of stomatal aperture and perhaps WUE 

(Hassidim et al., 2017). Plants where stomatal aperture is no longer under circadian control fare 

worse under significant drought stress (50% of field capacity) by having a smaller plant biomass 

than WT (Hassidim et al., 2017). Recent reports have shown that plants deficient in ELF4 and 

LUX have a slight increase in WUE relative to WT, while plants deficient in PRR5 and ELF3 

show a decrease in WUE (Simon et al., 2020), which illustrates the disparate roles of the EC in 
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regulating water loss in the evening. Agricultural specialists could utilize the features of the clock 

to increase WUE in crops, which would decrease the input of water in crop production (Steed et 

al., 2021).  

In my project, I aim to further elucidate the role of the RVE8-like proteins in the 

osmoregulatory response and systematically evaluate the N, P, or S nutrition responses by using a 

wide-range of circadian clock-deficient mutants (Chapter 2; 3). In Chapter 2, I show that plants 

deficient in RVE8-like proteins fare worse than WT plants when subjected to salt and osmotic 

stress. I also show that the total proteome of WT and rve 4 6 8 plants differ at key circadian time-

points when subjected to drought-like conditions (Figure 7). In Chapter 3, I subject a series of 

well characterized circadian clock deficient plants to nutrient stress. Here, I was able to show that 

several members of the clock show statistically significant alterations in key plant phenotypes 

(primary root length and hypocotyl length) when subjected to N, P, or S stress. I then characterized 

the changing metabolome of a specific subset of circadian clock mutants at ZT0, ZT4, ZT8, and 

ZT12 when subjected to nutrient stress conditions (Figure 8). Collectively, these systems level 

results provide new insights into the circadian clock and its role in drought-like and nutrient stress 

responses, providing a clear foundation for future endeavors in these areas within the field of 

botanical chronobiochemistry. Within the context of agricultural application, my project could 

provide targets for improving osmoregulatory tolerance and nutrient use efficiency in crops. 

  



21 

 

 
Figure 7: Proteomic workflow schematic. 
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Figure 8: Metabolomic workflow schematic. 
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Chapter 2: 

Quantitative proteomic analysis illustrates that REVIELLE clock genes are involved in the 

salt and osmotic stress response 

2.1 INTRODUCTION 

Plants are entrained by environmental cues such as light and temperature to grow and 

develop properly (Webb et al., 2019). In plants, the precise timing of daily events is facilitated by 

the circadian clock (Dodd et al., 2005; Gottlieb, 2019). The circadian clock transcription factors 

are expressed at specific times in the day-night cycle to activate the expression of key genes, while 

simultaneously repressing the expression of the other circadian clock transcription factors in order 

to precisely time diel molecular cell processes (Covington et al., 2008; Kamioka et al., 2016; 

Shalit-Kaneh et al., 2018). The MYB-like REVEILLE transcription factor proteins consisting of 

RVE8, RVE4, and RVE6 act as activators of the core circadian clock genes comprising of either 

the morning or evening loop (Farinas & Mas, 2011; Hsu et al., 2013; Rawat et al., 2011; Xie et al., 

2014). RVE8, RVE4, and RVE6 function to cooperatively pace the end-of-day (Li et al., 2019; 

Hsu et al., 2013; Gray et al., 2017), with plants lacking in rve 4 6 8 possessing a longer circadian 

period with smaller oscillation amplitudes (Hsu et al., 2013). Compared to rve 4 6 8 plants, WT 

plants possess shorter hypocotyls, have smaller leaf size, and a reduced leaf biomass (Gray et al., 

2017), while both Gray et al., (2017) and Scandola et al., (2022) have shown that rve 4 6 8 plants 

possess a delay in flowering relative to WT. 

Upon examining proteome changes between WT and rve 4 6 8 at the end-of-day (ED; 

ZT11) and the end-of-night (EN; ZT23), gene ontology (GO) clusters for ABA and S metabolism 

were shown to be enriched suggesting that RVE8-like proteins could play a role in the regulation 

of osmoregulatory stress (Scandola et al., 2022). Further, proteomic analysis of Arabidopsis plants 

subjected to osmotic and salt stress also found enriched GO categories for S metabolism, 

suggesting that S assimilation and metabolic processes could play a role in the mitigation of 

drought-like stress (Rodriguez et al., 2021). Bioavailable sulfate is needed for the synthesis of the 

amino acid cysteine in vivo (Kopriva, 2004). Cysteine is incorporated into ABA by ABA3 (Batool 

et al., 2018). Pools of ABA are increased in response to drought-like conditions (Batool et al., 

2018). Under salt and osmotic stress, ABA has been shown to mitigate water loss by regulating 

the stomatal aperture (Guo et al., 2020). Upon supplying exogenous cysteine to plants, greater 
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pools of ABA has been reported, further tying ABA production to sulfur metabolism via the 

production of cysteine. 

Interestingly, in soybean (Glycine max) crops, an RVE8-like ortholog (GmMYB133) has 

been implicated in osmoregulatory stress regulation (Shan et al., 2021). Here, GmMYB133-OX 

plants fared better under salt stress by increasing the expression of CATION EXCHANGER 3 

(CAX3; AT3G51860), EARLY ARABIDOPSIS ALUMINUM INDUCED 1 (EARLI1; AT4G12480), 

AZELAIC ACID INDUCED 1 (AZI1; AT4G12470), and MITOGEN-ACTIVATED PROTEIN 

KINASE 3 (MPK3; AT3G45640) (Shan et al., 2021). Moreover, GmMYB133-OX plants exhibited 

an altered rhythmic expression of PRR5, suggesting a clock connection to RVE8-like proteins 

(Shan et al., 2021). In Arabidopsis, PRR5 has been shown to directly modulate the expression of 

ABI5 (Yang et al., 2021), which directly influences ABA-dependent germination through the 

regulation of ABA (PYR/PYL/RCAR) synthesizing genes (Li et al., 2021; Zhao et al., 2020). RVE8 

has been shown to directly regulate the activity of PRR5 in Arabidopsis by binding to the promoter 

of PRR5 (Craigon, 2004; Rawat et al., 2011), as RVE8-OX plants have elevated gene expression 

of PRR5. Conversely, PRR5-OX plants have lowered levels of RVE8 (Craigon, 2004; Rawat et al., 

2011), illustrating a tightly regulated feedback loop between RVE8 and PRR5. 

In chapter 2, I investigate whether RVE8-like proteins are directly involved in the 

osmoregulatory stress response in Arabidopsis by undertaking a quantitative proteomic analysis 

of WT versus rve 4 6 8 plants at ZT11 and ZT23 when exposed to drought-like stress conditions. 

Given that RVE8-like proteins are associated with multiple agronomically important traits such as 

plant biomass (Gray et al., 2017), carbohydrate metabolism (Scandola et al., 2022), and 

thermotolerance (Li et al., 2019; Chen et al., 2020; Kidokoro et al., 2021), elucidating if plants 

deficient in RVE8-like proteins are more or less susceptible to osmotic and/or salt stress conditions  

is prudent for the bioengineering of climate change resilient crops (Rodriguez et al., 2021; Shan et 

al., 2021). 

 

2.2 MATERIALS AND METHODS 

2.2.1 Plant Growth and Preliminary Phenomics 

WT (wild-type, Columbia ecotype) and rve 4 6 8 (in the Columbia background; Hsu et al., 

2013) seeds were rinsed firstly in a 70% (v/v) ethanol solution for 2 minutes, followed by a 30% 

(v/v) bleach (Clorox® 7.5%) wash for 7 minutes, and lastly with three sequential washes with 
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distilled water. The seeds were then immediately imbibed on 0.5x MS media (Caisson Labs MS 

Media with macronutrients and micronutrients; MSP01) and 7 g/L of agar (control; CTL) at pH 

5.8 (with KOH). All seeds were stratified for 3 days at 4oC in the dark and then exposed to 12h 

light and 12h dark photoperiod of 100 µmol/m2/s of florescent light for 5 days at 22oC, before 

being transferred onto experimental plates. Seedlings were transferred to either CTL, 50 mM 

mannitol, 100 mM mannitol, 200 mM mannitol, 25 mM NaCl, 50 mM NaCl, or 100 mM NaCl 

experimental plates for a subsequent 8 days. Primary Root measurements were obtained every 24 

hours over the course of an 8-day time course. Photographs of the seedlings were taken on the last 

day of the time course, along with hypocotyl length, number of lateral roots, and plate-wise wet 

biomass measurements. 

 

2.2.2 Plant Harvesting and Storage for Proteomics 

WT and rve 4 6 8 seeds were sterilized, stratified, and germinated on CTL plates under a 

12h light and 12h dark photoperiod of 100 µmol/m2/s of florescent light for 5 days at 22oC. WT 

and rve 4 6 8 seedlings were then transferred onto and grown on CTL, 50 mM mannitol, or 100 

mM NaCl experimental plates for another subsequent 8 days. Whole seedlings were harvested at 

ZT11 and ZT23, and were immediately snap frozen in liquid N2. Samples were stored at -80oC 

until they were ready to be grounded in liquid N2 to be used for quantitative proteomics and 

subsequent downstream data analyses. Ground samples were aliquoted into ~50 mg fractions for 

proteomic experiments. 

 

2.2.3 Quantitative Proteomics Sample Preparation - LC–MS/MS 

Aliquoted samples were extracted at a 1:2 (w/v) ratio with a solution of 50 mM HEPES-

KOH pH 8.0, 50 mM NaCl, and 4% (w/v) SDS. Samples were then vortexed and placed in a 95oC 

table-top shaking incubator (Eppendorf) at 1100 xg for 15 mins, followed by an additional 15 mins 

shaking at room temperature. All samples were then spun at 20,000 xg for 5 min to clarify 

extractions, with the supernatant retained in fresh 1.5 mL Eppendorf tubes. Sample protein 

concentrations were measured by bicinchoninic acid (BCA) assay (23225; Thermo Scientific). 

Samples were then reduced with 10 mM dithiothreitol (DTT) at 95oC for 5 mins, cooled, then 

alkylated with 30 mM iodoacetamide (IA) for 30 min in the dark without shaking at room 

temperature. Subsequently, 10 mM DTT was added to each sample, followed by a quick vortex, 
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and incubation for 10 min at room temperature without shaking. Total proteome peptide pools 

were then generated using a KingFisher Apex (5400910; Thermo Scientific) automated sample 

preparation device as outlined by Leutert et al. (2019) without deviation. Sample digestion was 

performed using sequencing grade trypsin (V5113; Promega), with generated peptide pools 

quantified by Nanodrop and acidified with formic acid (FA) to a final concentration of 5% (v/v) 

prior to being desalted using 1cc tC18 Sep Pak cartridges (WAT036820; Waters) as previously 

described (Scandola et al., 2022; Uhrig et al., 2019). All peptides were then dried and re-suspended 

in 3% (v/v) ACN / 0.1% (v/v) FA immediately prior to MS analysis. 

 

2.2.4 BoxCarDIA Mass Spectrometry (BoxCar DIA LC–MS/MS)  

Changes in protein abundance was assessed using a FAIMS mounted Fusion Lumos 

Tribrid Orbitrap mass spectrometer (Thermo Scientific) in a data independent acquisition (DIA) 

mode using the BoxCarDIA method (Mehta et al., 2022; Scandola et al., 2022). Dissolved peptides 

(1 µg) were injected using an Easy-nLC 1200 system (LC140; Thermo Scientific) and separated 

on a 50 cm Easy-Spray PepMap C18 Column (ES803A; Thermo Scientific). A spray voltage of 

2.2 kV, funnel RF level of 40 and heated capillary at 300oC was deployed, with all data acquired 

in profile mode using positive polarity, with peptide match turned off and isotope exclusion 

selected. All gradients were run at 300 nL/min with the analytical column temperature set to 50oC. 

Peptides were eluted using a segmented solvent B gradient of 0.1% (v/v) FA in 80% (v/v) ACN 

from 4% - 41% B (0 - 107 min). FAIMS using compensation voltages (CVs) of -30, -50, and -70 

were used with a static gas flow rate of 3.5 L/min. Within each CV, BoxCar DIA acquisition was 

performed as previously described (Mehta et al., 2022; Scandola et al., 2022). MS1 analysis was 

performed by using two multiplexed targeted SIM scans of 10 BoxCar windows each, with 

detection performed at a resolution of 120,000 at 200 m/z and normalized AGC targets of 100% 

per BoxCar isolation window. Windows were custom designed as previously described (Mehta et 

al., 2022; Scandola et al., 2022). An AGC target value for MS2 fragment spectra was set to 2000%. 

Twenty-eight 38.5 m/z windows were used with an overlap of 1 m/z. Resolution was set to 30,000 

using a dynamic maximum injection time and a minimum number of desired points across each 

peak set to 6. 

 

2.2.5 BoxCarDIA LC–MS/MS Data Analysis 
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All acquired BoxCar DIA data was analyzed in a library-free DIA approach using 

Spectronaut v16 (Biognosys AG) using default settings. Key search parameters employed include: 

a protein, peptide and PSM FDR of 1%, trypsin digestion with 1 missed cleavage, fixed 

modification including carbamidomethylation of cysteine residues and variable modifications 

including methionine oxidation. Data was Log2 transformed, globally normalized by median 

subtraction with significantly changing differentially abundant proteins determined and corrected 

for multiple comparisons (Bonferroni-corrected p-value ≤ 0.05; q-value ≤ 0.05). 

 

2.2.6 Bioinformatics and Data Visualization 

To identify the biological functions of enriched proteins, a gene ontology (GO) analysis of 

biological processes was performed using the ONTOLOGIZER (http://ontologizer.de; Bauer et 

al., 2008). A parent–child intersection analysis approach was used (Benjamini–Hochberg FDR 

correction p-value ≤ 0.05). The foreground used for the study were the significantly changing 

proteins identified between time-points and between genotypes (Log2FC > 0.58; q-value ≤ 0.05) 

allowing for comparisons of phase-change differences and genotypic alterations, respectively in 

GO categories, while the background was all proteins identified in the study (6300 proteins). 

Identified biological process terms corresponding to elucidated GO terms with ≥ 5 and ≤ 80 

proteins were subsequently assembled into a heat map based on FDR-adjusted p-value (r package 

Superheat). Packages were implemented in r 4.2.2 (R Core Team 2022, https://www.r-

project.org/). Contextualization of significantly changing proteins (Log2FC > 0.58; q-value ≤ 0.05) 

was performed through association network analyses using the Cytoscape STRING-DB plugin 

StringApp (http://apps.cytoscape.org/apps/stringapp; Szklarczyk et al., 2016) with an overall 

STRING-DB association score threshold of ≥ 0.7. Cytoscape version 3.9.1 

(http://www.cytoscape.org/). Proteins with an association score < 0.7 were removed from 

visualisation. Metabolic pathways were defined using significantly changing proteins (Log2FC > 

0.58; q-value ≤ 0.05) and compiled into a heatmap (r package Superheat) by utilizing the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway database. The number of significantly 

changing proteins pertaining to each KEGG pathway identifier were exported from Cytoscape 

after conducting a GO category-informed STRING-DB network at each timepoint. 

 

2.3 RESULTS 
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2.3.1 Examination of rve 4 6 8 phenotypes unveils preliminary connection between 

osmoregulatory stress responses and RVE8-like proteins. 

Given the results of Scandola et al. (2022), which resolved STRING-DB clusters for ABA 

and S metabolism proteins between WT and rve 4 6 8 plants and that these two interconnected 

metabolic processes are related to osmotic stress, it suggests that RVE8-like proteins could be 

involved in conferring salt and osmotic stress tolerance. If RVE8-like proteins are involved in 

mitigating drought-like stress responses, then plants with functional RVE expression (WT) should 

fare better than plants lacking in several of the RVE genes (rve 4 6 8). Correspondingly, I examined 

WT and rve 4 6 8 seedlings under three concentrations of mannitol (50 mM, 100 mM, or 200 mM) 

or NaCl (25 mM, 50 mM, or 100 mM) to see if I could detect a clear phenotype (Figure 2 - 5) 

prior to going further in my study (Figure 1). My results showed that the primary root length was 

longer in WT compared to rve 4 6 8 (p-value ≤ 0.05; Student’s t-test). I have detected that the 

hypocotyl length was shorter in WT compared to rve 4 6 8 under 50 mM mannitol (Figure 2 - 3). 

I also found that WT seedling roots were also consistently longer (p-value ≤ 0.05; Student’s t-test) 

than rve 4 6 8 plants under 50 mM mannitol, beginning at day 5 after being transplanted (Figure 

1) from CTL plates (Figure 3). I did not observe a significant difference between WT and rve 4 6 

8 primary root, hypocotyl length, or final fresh weight measurements under 100 mM mannitol or 

200 mM mannitol (Figure 2 - 3), suggesting a moderate susceptibility to osmotic stress conditions 

(Figure 2 - 3; Kumar et al., 2019). I also observed that the primary root and hypocotyl length was 

longer and shorter in WT, respectively under 100 mM NaCl, relative to rve 4 6 8 (Figure 4 - 5). I 

was not able to observe a discernable phenotypic difference between WT and rve 4 6 8 plants 

under 25mM NaCl or 50mM NaCl (Figure 4 - 5). Given my phenotyping screen of WT and rve 4 

6 8 plants under osmoregulatory stress, it appears that plants that lack RVE8-like proteins are more 

susceptible to mannitol stress, over salt stress (Figure 2 - 5). Moreover, my data also suggests that 

WT plants do better than rve 4 6 8 plants under mannitol and salt stress (Figure 2 - 5). 
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Figure 1: Total proteome changes between time-points and genotypes. Experimental workflow 

schematic (a) and number of significantly changing proteins (Log2FC > 0.58; q-value ≤ 0.05) 

across biological replicates (n=4) at ZT11 (b), ZT23 (c), and within WT (d) and rve 4 6 8 (e) 

genotypes under CTL, mannitol, and NaCl conditions. 
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Figure 2:  Phenotypic differences between WT and rve 4 6 8 plants under osmotic stress. 

Quantitative phenomic analysis of the final hypocotyl (a), plate-wise final fresh weight 

measurements (b), and final primary root lengths (c) of seedlings at the end of 8 days in diel 

conditions after being transplanted from CTL germination plates onto CTL, 50mM mannitol, 100 

mM mannitol, or 200 mM mannitol experimental plates. An asterisk (*) denotes statistical 

significance (p-value ≤ 0.05; Student’s t-test). All measurements were conducted with 20 

biological replicates with 5 plants per genotype, per plate (a total of 4 plates were used per 

treatment). Data are presented are mean ± standard deviation. 
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Figure 3: Time-dependent primary root differences between WT and rve 4 6 8 plants under 

osmotic stress. Quantitative phenomic analysis of the changing root lengths of seedlings across 8 

days in diel conditions after being transplated from CTL germination plates when exposed to CTL 

(a), 50 mM mannitol (b), 100 mM mannitol (c), or 200 mM mannitol (d) experimental plates. An 

asterisk (*) denotes statistical significance (p-value ≤ 0.05; Student’s t-test). All measurements 

were conducted with 20 biological replicates. Data are presented are mean ± standard deviation. 
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Figure 4: Phenotypic differences between WT and rve 4 6 8 plants under salt stress. 

Quantitative phenomic analysis of the final hypocotyl (a), plate-wise final fresh weight 

measurements (b), and final primary root lengths (c) of seedlings at the end of 8 days in diel 

conditions after being transplanted from CTL germination plates onto CTL, 25mM NaCl, 50 mM 

NaCl, or 100 mM NaCl experimental plates. An asterisk (*) denotes statistical significance (p-

value ≤ 0.05; Student’s t-test). All measurements were conducted with 20 biological replicates 

with 5 plants per genotype, per plate (a total of 4 plates were used per treatment). Data are 

presented are mean ± standard deviation. 



61 

 

  

Figure 5:  Time-dependent primary root differences between WT and rve 4 6 8 plants under 

salt stress. Quantitative phenomic analysis of the changing root lengths of seedlings across 8 days 

in diel conditions after being transplated from CTL germination plates when exposed to CTL (a), 

25 mM NaCl (b), 50 mM NaCl (c), or 100 mM NaCl (d) experimental plates. An asterisk (*) 

denotes statistical significance (p-value ≤ 0.05; Student’s t-test). All measurements were 

conducted with 20 biological replicates. Data are presented are mean ± standard deviation. 
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2.3.2 Quantification of protein abundance changes between time-points and genotypes 

Based on my preliminary phenotyping screen (Figure 2 - 5), I then decided to look at the 

changing proteins (Log2FC > 0.58; q-value ≤ 0.05) of WT and rve 4 6 8 plants under CTL, osmotic 

(50 mM mannitol), and salt stress (100 mM NaCl) at ZT11 and ZT23 to further examine the role 

of RVE8-like proteins under these drought-like conditions (Figure 1). I quantified a total of 6630 

proteins, with 1029, 1303, 1101, and 885 significantly changing proteins (Log2FC > 0.58; q-value 

≤ 0.05) at ZT11 and ZT23 and between time-points, respectively (Figure 1). At ZT11 in WT 

plants, a total of 142, 177, and 167 proteins were detected to be significantly changing (Log2FC > 

0.58; q-value ≤ 0.05) under CTL, mannitol and NaCl conditions, respectively (Figure 1), while a 

total of 90, 210, and 243 proteins were observed to be significantly changing (Log2FC > 0.58; q-

value ≤ 0.05) in rve 4 6 8 under the same respective conditions (Figure 1). At ZT23 in WT plants, 

a total of 604, 178, and 107 proteins were observed to be significantly changing (Log2FC > 0.58; 

q-value ≤ 0.05) under CTL, mannitol and NaCl conditions, respectively (Figure 1), while a total 

of 131, 172, and 111 proteins were observed to be significantly changing (Log2FC > 0.58; q-value 

≤ 0.05) in rve 4 6 8 under the analogous respective conditions (Figure 1).  

In WT plants at ZT11, a total of 70, 139, and 67 proteins were observed to be significantly 

changing (Log2FC > 0.58; q-value ≤ 0.05) under CTL, mannitol, and NaCl conditions, 

respectively, while 249, 161, and 186 proteins were observed to be significantly changing (Log2FC 

> 0.58; q-value ≤ 0.05) in rve 4 6 8 seedlings at ZT11 under the same respective conditions (Figure 

1). At ZT23 in WT organisms, a total of 169, 238, and 202 proteins were observed to be 

significantly changing (Log2FC > 0.58; q-value ≤ 0.05) under CTL, mannitol and NaCl conditions, 

respectively, however, 104, 104, and 214 proteins were observed to be significantly changing 

(Log2FC > 0.58; q-value ≤ 0.05) in rve 4 6 8 plants at ZT23 under identical respective conditions 

(Figure 1). The total proteome data reveals differences in protein abundance across CTL, 

mannitol, and NaCl conditions between time-points and genotypes (Figure 1). Differences 

between time-points within a genotype relate to potential phase-related differences, while 

differences between WT and rve 4 6 8 at a time-point illustrate genotypic differences at that 

specific time-point (Figure 1). 
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2.3.3 Total proteome between WT and rve 4 6 8 under CTL conditions further alludes to 

connection between RVE8-like proteins and drought-like responses 

 Before exploring the changing proteome between WT and rve 4 6 8 under mannitol and 

salt stress, I wanted to examine the cellular processes changing under CTL conditions at ZT11 and 

ZT23 to see if I could detect similar results to Scandola et al., (2022), with respect to drought-like 

proteins. My experimental setup differs from Scandola et al., (2022) in several key aspects (Figure 

1). I grew my seedlings in nutrient-supplemented (0.5x MS) media under 100 µmol/m2/s of 

florescent light at 22oC, while Scandola et al., (2022) grew their plants in the soil under precision 

narrow-band LED light at a temperature regiment ranging between 21oC during the day and 19oC 

at night. However, given these key experimental differences between my experiments and 

Scandola et al., (2022), I wanted to see whether I could detect similar protein differences between 

WT and rve 4 6 8 in my proteomics experiments. Scandola et al., (2022) and I both looked at the 

changing proteome (Log2FC > 0.58; q-value ≤ 0.05) between WT and rve 4 6 8 genotypes at ZT11 

and ZT23, thus, it would be interesting to see whether I could replicate key observations identified 

by Scandola et al., (2022) in my series of experiments. 

As a result, I performed a GO enrichment (Figure 6 - 9; Figure 11) and KEGG identifier 

(Figure 10) analysis for GO terms pertaining to biological processes and KEGG pathways. I found 

a series of drought-related STRING-DB cluster proteins (Figure 6 - 10) that have previously been 

shown to be enriched by Scandola et al., (2022). These include (Figure 6 - 8; Figure 11): jasmonic 

acid biosynthetic process (GO:0009695), response to abscisic acid (GO:0009737), response to 

temperature stimulus (GO:0009266), and response to oxidative stress (GO:0006979) (Figure 6 - 

9 Figure 11), which were similarly higher in WT plants versus rve 4 6 8. I also found several 

drought-like STRING-DB clusters in my experiment that were absent in Scandola et al., (2022), 

such as: response to salt stress (GO:0009651), response to mannitol (GO:0010555), sulfur 

compound metabolic process (GO:0006790), and reactive oxygen species metabolic process 

(GO:0072593) (Figure 6 - 9; Figure 11). In my experiments, there are more drought-related 

proteins in WT than in rve 4 6 8, which further alludes to RVE8-like proteins being involved in 

drought-stress responses in Arabidopsis. 
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Figure 6: Gene ontology (GO) enrichment analysis of the identified proteome between rve 4 

6 8 and WT at ZT11. A heat map of GO biological processes with the false discovery rate (FDR)-

adjusted p-value data (FDR) ≤ 0.05 and ≥ 5 and ≤ 80 proteins. Red-to-blue coloration represents 

decreasing FDR p-values from 0.05 towards 0. The resulting heat map was generated using the r 

package superheat (https://rlbarter.github.io/superheat/) from the significant GO terms pertaining 

to biological processes, which were initially obtained from the ONTOLOGIZER 

(http://ontologizer.de; Bauer et al., 2008). 
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Figure 7: Gene ontology (GO) enrichment analysis of the identified proteome between rve 4 

6 8 and WT at ZT23. A heat map of GO biological processes with the false discovery rate (FDR)-

adjusted p-value data (FDR) ≤ 0.05 and ≥ 5 and ≤ 80 proteins. Red-to-blue coloration represents 

decreasing FDR p-values from 0.05 towards 0. The resulting heat map was generated using the r 

package superheat (https://rlbarter.github.io/superheat/) from the significant GO terms pertaining 

to biological processes, which were initially obtained from the ONTOLOGIZER 

(http://ontologizer.de; Bauer et al., 2008). 
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Figure 8: Gene ontology (GO) enrichment analysis of the identified proteome between ZT11 

and ZT23, within WT plants. A heat map of GO biological processes with the false discovery 

rate (FDR)-adjusted p-value data (FDR) ≤ 0.05 and ≥ 5 and ≤ 80 proteins. Red-to-blue coloration 

represents decreasing FDR p-values from 0.05 towards 0. The resulting heat map was generated 

using the r package superheat (https://rlbarter.github.io/superheat/) from the significant GO terms 

pertaining to biological processes, which were initially obtained from the ONTOLOGIZER 

(http://ontologizer.de; Bauer et al., 2008). 



67 

 

 
Figure 9: Gene ontology (GO) enrichment analysis of the identified proteome between ZT11 

and ZT23, within rve 4 6 8 plants. A heat map of GO biological processes with the false discovery 

rate (FDR)-adjusted p-value data (FDR) ≤ 0.05 and ≥ 5 and ≤ 80 proteins. Red-to-blue coloration 

represents decreasing FDR p-values from 0.05 towards 0. The resulting heat map was generated 

using the r package superheat (https://rlbarter.github.io/superheat/) from the significant GO terms 

pertaining to biological processes, which were initially obtained from the ONTOLOGIZER 

(http://ontologizer.de; Bauer et al., 2008). 
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Figure 10: KEGG pathway enrichment analysis of proteomes at ZT11 and ZT23 under 

control (CTL), mannitol, and NaCl conditions. A heat map summarizing the number of 

differentially abundant proteins identified per pathway. Red-to-blue coloration represents an 

increasing number of proteins from 0 to ≥ 20. The resulting heat map was generated using the r 

package superheat (https://rlbarter.github.io/superheat/).



69 

 

Figure 11: Association network of significant genotypic (WT vs rve 4 6 8) total proteome 

fluctuations between ED (ZT11) and EN (ZT23) under control conditions (CTL). STRING 

database (STRING-DB) association network illustrates significant Log2FC fluctuations in protein 

abundance between WT and rve 4 6 8 at ZT11 versus ZT23 (q-value ≤ 0.05). Networks were 

generated using Cytoscape (version 3.9.1) and the STRING-DB and enhancedGraphics plugin 

applications. Only nodes with edges ≥ 0.7 were included. Increasing blue (WT) or red (rve 4 6 8) 

coloration intensity indicates the relative increase in measured Log2FC protein abundance for that 

corresponding genotype. Highlighted node clusters were manually curated using the STRING-DB 

provided GO annotations for biological processes. 
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2.3.4 Proteome changes between WT and rve 4 6 8 under osmotic stress  

After analyzing the genotypic differences in total proteome between WT and rve 4 6 8 

under CTL (Figure 6 - 11), I went on to look at the changing proteome (Log2FC > 0.58; q-value 

≤ 0.05)  under mannitol (Figure 6 - 10; 12) and salt stress (Figure 6 - 10; 13) to elucidate what 

plant cell processes were aiding WT plants to do better than rve 4 6 8 seedlings under 50mM 

mannitol and 100mM NaCl (Figure 1 - 5). Upon compiling a drought-related STRING-DB 

association network (Figure 6 - 9; 12), I found protein clusters related to reactive oxygen species 

metabolic process (GO:0072593), sulfur compound metabolic process (GO:0006790), response to 

oxidative stress (GO:0006979), and response to temperature stimulus (GO:0009266) to all be 

enriched. However, more proteins appear to be differentially abundant in rve 4 6 8 under mannitol 

(Figure 12), relative to rve 4 6 8 under CTL (Figure 11), suggesting that plants which lack RVE8-

like proteins increase the abundance of drought-like proteins under osmotic stress (Figure 12). 

Under osmotic stress, I also detect that proteins which are part of glutathione metabolism 

(ath00480) remain differentially abundant in WT plants (Figure 10; 12). 

 

2.3.5 Proteome changes between WT and rve 4 6 8 under NaCl stress  

After analyzing the drought-related STRING-DB clusters under NaCl between WT and rve 

4 6 8, I was able to uncover drought-related STRING-DB cluster proteins (Figure 6 - 9; 13), such 

as: jasmonic acid biosynthetic process (GO:0009695), response to abscisic acid (GO:0009737), 

and response to oxidative stress (GO:0006979). Jasmonic acid biosynthesis proteins remain 

differentially abundant in WT plants, relative to rve 4 6 8 under salt stress, suggesting that plants 

that lack RVE8-like proteins have an inability to regulate jasmonic acid-related processes (Figure 

6 - 9; 13). Response to abscisic acid proteins also remain differentially abundant in WT plants, 

relative to rve 4 6 8 under salt stress, illustrating that plants that lack RVE8-like proteins have a 

hampered ability to regulate drought-like stress responses via ABA signaling. Oxidative stress 

response proteins are less abundant in WT, relative to rve 4 6 8, suggesting that plants that lack 

RVE8-like proteins have an exaggerated response to oxidative stress. I also detect that proteins 

which are part of glutathione metabolism become differentially abundant in rve 4 6 8 plants, 

suggesting that glutathione metabolism protein pools are largely altered in plants which lack 

RVE8-like proteins under NaCl stress (Figure 13). 
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Figure 12: Association network analysis of significant genotypic (WT vs rve 4 6 8) total 

proteome fluctuations between ED (ZT11) and EN (ZT23) under osmotic stress (mannitol). 

STRING database (STRING-DB) association network illustrates significant Log2FC fluctuations 

in protein abundance between WT and rve 4 6 8 at ZT11 versus ZT23 (q-value ≤ 0.05). Networks 

were generated using Cytoscape (version 3.9.1) and the STRING-DB and enhancedGraphics 

plugin applications. Only nodes with edges ≥ 0.7 were included. Increasing blue (WT) or red (rve 

4 6 8) coloration intensity indicates the relative increase in measured Log2FC protein abundance 

for that corresponding genotype. Highlighted node clusters were manually curated using the 

STRING-DB provided GO annotations for biological processes. 
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Figure 13: Association network analysis of significant genotypic (WT vs rve 4 6 8) total 

proteome fluctuations between ED (ZT11) and EN (ZT23) under salt stress (NaCl). STRING 

database (STRING-DB) association network illustrates significant Log2FC fluctuations in protein 

abundance between WT and rve 4 6 8 at ZT11 versus ZT23 (q-value ≤ 0.05). Networks were 

generated using Cytoscape (version 3.9.1) and the STRING-DB and enhancedGraphics plugin 

applications. Only nodes with edges ≥ 0.7 were included. Increasing blue (WT) or red (rve 4 6 8) 

coloration intensity indicates the relative increase in measured Log2FC protein abundance for that 

corresponding genotype. Highlighted node clusters were manually curated using the STRING-DB 

provided GO annotations for biological processes. 
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2.4 DISCUSSION 

2.4.1 Seedling and rosette organ proteomes confer different diel protein-level responses 

Scandola et al., (2022) and I both analyzed the changing proteome (Log2FC > 0.58; q-value 

≤ 0.05) between WT and rve 4 6 8 at ZT11 and ZT23 (Figure 1), but at different stages of plant 

development. As mentioned, there were key experimental differences between the experimental 

setup of Scandola et al., (2022) and me. In particular, I grew my seedlings in nutrient-supplemented 

(0.5x MS) media under 100 µmol/m2/s of florescent light at 22oC, while Scandola et al., (2022) 

grew their plants in the soil under precision narrow band LED light, using a temperature range 

between 21oC to 19oC. Given these marked differences in experimental design, it seems likely that 

we should detect similar (identical plant genotypes), but may see different (diverging experimental 

setups and developmental stages sampled) total proteome data (Scandola et al., 2022; Figure 1). 

In my experiment approach, I detected several drought-related protein groups (STRING-DB 

clusters) that were previously reported by Scandola et al., (2022), such as: jasmonic acid 

biosynthetic process (GO:0009695) and response to temperature stimulus (GO:0009266) (Figure 

6 - 8; 11) in addition to others. Consistent with Scandola et al 2022, the proteins highlighted within 

the jasmonic acid biosynthetic process cluster are more abundant in WT in both of our diel 

proteomes (Figure 6 - 9; 11; Scandola et al., 2022).  

In my study, I also found key differences between my total proteome data and the data of 

Scandola et al., (2022). I was able to uncover enriched carbohydrate metabolic process 

(GO:0005975) proteins in my experiments (Figure 6 – 9; 11), which were also highlighted by 

Scandola et al., (2022), however, I (Figure 6 - 9; 11) could not replicate the data which illustrates 

that RVE8-like proteins are regulators of proteasome activity (Scandola et al., 2022). Given these 

observations, it seems, that although we have broad consistency with respect to drought-like 

protein abundances, it appears that my whole seedling analysis (Figure 6 - 9; 11) and the rosette 

analysis of Scandola et al., (2022) have total WT and rve 4 6 8 proteomes that differ from one 

another, suggesting that the clock has organ-specific responses in Arabidopsis. Distinct shoot and 

root circadian clocks have been elucidated (Bordage et al., 2016), where the root systems are 

entrained by low light intensities. CCA1 periods are longer with a smaller amplitude in the guard 

cell compared to mesophyll cells in leaves (Yakir et al., 2011). The comparison also suggests that 

the drought-response pertaining to RVE8-like proteins is likely not organ-specific, but rather 

genotypic, as we could detect similar responses with respect to the abundance of osmoregulatory 
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proteins at the whole seedling (Figure 6 - 9; 11) and rosette (Scandola et al., 2022) organ-level 

between WT and rve 4 6 8. 

 

2.4.2 WT plants perform better than rve 4 6 8 plants under osmotic and NaCl stress 

Upon dissecting the total proteome between WT and rve 4 6 8 whole seedlings at ZT11 

and ZT23, it appears that plants which lack RVE8-like proteins have a hampered response to 

drought-like stress (Figure 6 - 9; 11). I found a series of previously identified (Scandola et al., 

2022) and novel (Figure 6 - 9; 11) drought-related STRING-DB clusters between WT and rve 4 

6 8. These include (Figure 6 - 9; 11): jasmonic acid biosynthetic process (GO:0009695), response 

to abscisic acid (GO:0009737), response to temperature stimulus (GO:0009266), response to 

oxidative stress (GO:0006979), response to salt stress (GO:0009651), response to mannitol 

(GO:0010555), sulfur compound metabolic process (GO:0006790), and reactive oxygen species 

metabolic process (GO:0072593) (Figure 6 - 9; 11). I identified several Responses to Mannitol 

(GO:0010555) proteins to be differentially abundant in WT at ZT23 relative to rve 4 6 8, including: 

SUCROSE SYNTHASE 1 (SUS1; AT5G20830; Log2FC = 1.45) and SUCROSE SYNTHASE 3 

(SUS3; AT4G02280; Log2FC = 1.51) (Figure 6 - 9; 11). I also characterized several Response to 

Salt Stress (GO:0009651) proteins to be differentially abundant in WT at ZT23 relative to RVE8-

lacking plants including: ARABIDOPSIS THALIANA SULFOTRANSFERASE 1 (SOT12; 

AT2G03760; Log2FC = 1.01), ARABIDOPSIS THALIANA CALEOSIN 3 (RD20; AT2G33380; 

Log2FC = 1.76), and DELTA1-PYRROLINE-5-CARBOXYLATE SYNTHASE 1 (P5CS1; 

AT2G39800; Log2FC = 1.72) (Figure 6 - 9; 11).  

SUS1 and SUS3 are part of the sucrose synthase (SUS) family enzymes in Arabidopsis 

(Xu et al., 2019). SUS enzymes catalyze the reversible reaction of sucrose and uridine diphosphate 

into uridine diphosphate-glucose and fructose (Avigad & Milner, 1966). Under mannitol stress 

comparable to that applied here, SUS1 and SUS3 expression was shown to increase by 4X and 

37X, respectively, suggesting that RVE8-like proteins could be mediating the osmotic response in 

Arabidopsis through SUS enzymes to modify metabolism and/or the osmotic environment of the 

cell (Baud et al., 2004), by increasing the abundance of sugar-containing compounds and thereby, 

decreasing the osmotic potential (Dejardin et al., 1999). SOT12 proteins sulphonate (where a 

sulfonate group is added onto a target) salicylic acid in plants in response to stressful conditions, 

where plants which over-express SOT12 seem to fare better under stressful conditions and sot12 
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plants are more sensitive to plant stressors (Baek et al., 2010). SOT12 expression is induced in 

response to the application of exogenous methyl jasmonate, which suggests that SOT12 activity 

could be JA-mediated (Lacomme & Roby, 1996). SOT12 expression is induced in response to 

different abiotic stressors (200mM sorbitol for 12h, 100mM NaCl for 12h, and 100µM ABA for 

3h) (Baek et al., 2010). Further, WT plants have a higher germination rate over SOT12-lacking 

(sot12) plants under 8 days of 100mM NaCl or 0.5µM ABA, illustrating that plants with lower 

SOT12 abundance fare worse under drought-like stress (Baek et al., 2010). 

  RD20 proteins belong to the caleosin family of proteins which are used by plants to store 

energy in the form of oil bodies (Partridge & Murphy, 2009). RD20 expression is induced by ABA 

during drought-like conditions (Gordon et al., 2008). Under 150 mM NaCl conditions, rd20 plants 

have more leaf senescence relative to WT, illustrating that plants deficient in RD20 are more 

vulnerable to salt stress via ABA-mediated responses (Aubert et al., 2010). Lastly, P5CS1 has been 

characterized as a key protein in the biosynthesis of proline, a critical metabolite for mitigating 

NaCl stress. Proline works by counteracting the ionic potential that is experienced by plant cells 

under NaCl stress, by preferentially increasing K+ influx and decreasing NaCl intake (de Freitas et 

al., 2019). Proline also stimulates the biosynthesis of antioxidant enzymes to confer osmotolerance 

under high salt conditions (Nounjan et al., 2012). Plants with compromised P5CS1 expression 

(p5cs1) have a 15-30% lower amount of proline within rosette leaves under CTL conditions, as 

P5CS1 enzymes catalyze the committed (rate-limiting) step of proline biosynthesis (Szekely et al., 

2008). Compared to WT plants, p5cs1 plants exhibited reductions in primary root length under salt 

stress (150mM and 200mM NaCl) due to a difference in proline profile (Szekely et al., 2008). 

These examples support my quantitative primary root phenotyping data which found that plants 

deficient in RVE8-like proteins fare worse when subjected to drought-like stress conditions 

(Figure 2 - 5). Under osmoregulatory stress, WT plants have longer primary roots relative to rve 

4 6 8 plants (Figure 2 - 5). Osmotic (Cajero-Sanchez et al., 2019) and salt (West et al., 2004) stress 

causes plants to have shorter primary roots due to smaller root apical meristem (RAM) cell 

numbers and shorter cell lengths in the elongation zone (Kiani et al., 2007). Under drought-like 

conditions, plants preferentially synthesize ABA to reduce growth promotion and increase 

stomatal closure to mitigate water loss through transpiration (Figueiredo et al., 2008; Ooi et al., 

2017). JA also seems to also intervene, as it is characterized to partially regulate the primary root 

responses by decreasing the number and/or size of cells in the elongation zone (Valenzuela et al., 
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2016). It appears that plants which lack RVE8-like proteins fare worse due to a distinct lack of 

osmoprotectant proteins and protein products (Figure 6 - 8; 11), causing a discernable reduction 

in plant root growth in response to drought-like stress (Figure 2 - 5). 

 

2.4.3 Osmolytes likely confer added tolerance to WT under mannitol relative to RVE8-

lacking plants 

Under mannitol stress, I detect several tryptophan biosynthetic process (GO:0000162) 

proteins to be differentially abundant in WT at ZT11, including: 

PHOSPHORIBOSYLANTHRANILATE ISOMERASE 1 (PAI1; AT1G07780; Log2FC = 0.98), 

ANTHRANILATE SYNTHASE BETA SUBUNIT 1 (ASB1; AT1G25220; Log2FC = 0.60) A-

METHYL TRYPTOPHAN RESISTANT 1 (ASA1; AT5G05730; Log2FC = 0.62) 

TRYPTOPHAN SYNTHASE BETA-SUBUNIT 1 (TSB1; AT5G54810; Log2FC = 0.99) 

TRYPTOPHAN SYNTHASE BETA-SUBUNIT 2 (TSB2; AT4G27070; Log2FC = 0.84), 

suggesting that WT seedlings likely have longer primary root under mannitol, relative to rve 4 6 8 

due to elevated tryptophan biosynthesis-mediated osmotolerance (Figure 2 – 5; 12; 14). Melatonin 

is an osmoprotecting osmolyte, which is synthesized in plants from tryptophan amino acids (Chen 

et al., 2009; Mannino et al., 2021). White lupine plants treated with exogenous tryptophan (100, 

200, or 300 µM) or melatonin (50, 100, or 150 µM) have higher shoot lengths, number of leaves, 

and fresh weight under drought conditions (Sadak & Ramadan, 2021). SEROTONIN N-

ACETYLTRANSFERASE 1 (SNAT1; AT1G32070) is an enzyme that catalyzes one of the rate-

limiting steps in melatonin biosynthesis in vivo (Lee & Back, 2018). Under increasing titrations of 

mannitol, progressively higher SNAT1 relative expression is documented (Wang et al., 2021). WT 

plants fare better than plants deficient in proper SNAT1 (snat1) expression under osmotic stress 

(300mM mannitol over 5days), due to reduced endogenous melatonin pools under mannitol stress 

(Wang et al., 2021). Together, it appears that plants which lack RVE8-like proteins fare worse 

under mannitol stress due to a distinct lack of tryptophan biosynthesis, partially causing rve 4 6 8 

plants to have shorter roots than WT under osmotic stress (Figure 2 – 5; 12; 14). 

 

2.4.4 Differing jasmonic acid biosynthesis activity possibly explains root response differences 

between RVE8-lacking plants under osmotic and salt stress 
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Under salt stress, JA has been shown to partially regulate the primary root response by 

decreasing the number or size of cells in the elongation zone, restricting root elongation 

(Valenzuela et al., 2016). Prior transcriptomics studies have shown that AOC1 and AOC2 

expression is induced in response to salt stress (Jiang & Deyholos, 2006). In wheat, the 

overexpression of AOC1 (TaAOC1) showed enhanced tolerance to salt stress (200 mM for 8 days) 

(Zhao et al., 2013). AOC1 and AOC2 JA biosynthetic enzymes have been previously shown to be 

more abundant in WT relative to rve 4 6 8 in plant rosette tissue (Scandola et al., 2022). I identified 

several jasmonic acid (JA) biosynthetic proteins to be differentially abundant in WT at ZT23, 

including: AOC1 (Log2FC = 1.09) and AOC2 (Log2FC = 0.83) (Figure 11). Under salt stress, I 

also detect a differential abundance of AOC1 (Log2FC = 0.68) and AOC2 (Log2FC = 0.82) proteins 

in WT at ZT11. Given this, it seems plausible that the root truncation between WT and rve 4 6 8 

under salt is less significant than under mannitol, due to a distinct lack of JA biosynthesis in RVE8-

lacking plants under NaCl stress. 

 

2.4.5 Glutathione metabolism partially explains why RVE8-lacking plants fare worse under 

osmotic stress 

Glutathione is a sulfur-containing plant metabolite comprised of glutamine, cysteine, and 

glycine (Lim et al., 2007). Plants completely devoid of glutathione do not survive past the embryo 

stage in the life cycle, illustrating how essential glutathione production is to the lives of plants 

(Cairns et al., 2006). Glutathione reductase (GR) enzymes produce glutathione by reducing 

glutathione disulfide (Wu et al., 2015). WT plants have a smaller reduction in root length under 

salt stress (100 mM NaCl for 7 days) relative to GR3-deficient (gr3) rice plants (Wu et al., 2015), 

illustrating that reduced glutathione production can increase plant susceptibility to drought-like 

stress. Upon comparing the total proteome between WT and rve 4 6 8 whole seedlings at ZT11 

and ZT23, under CTL, mannitol, and NaCl stress, it appears that glutathione metabolism 

(ath00480) proteins remain enriched (Figure 6 - 13), suggesting that glutathione metabolizing 

proteins may partially explain the differing phenotypes between WT and RVE8-lacking proteins 

under osmotic and salt stress.  

Under CTL conditions, I detect several glutathione transferase (GST) proteins to be 

differentially abundant in WT at ZT23, including: GLUTATHIONE S-TRANSFERASE PHI 

(GSTF) 5 (AT1G02940; Log2FC = 2.04), DEHYDROASCORBATE REDUCTASE (DHAR) 1 
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(AT1G19570; Log2FC = 0.87), and GLUTATHIONE S-TRANSFERASE TAU (GSTU) 1 

(AT2G29490; Log2FC = 0.98), suggesting that WT plants likely have an elevated GST-mediated 

osmotolerant response under CTL due to higher GST protein levels (Figure 11). GST enzymes 

participate in detoxification reactions by adding glutathione to various plant toxins such as 

xenobiotics, tagging the toxic substances for vacuolar isolation (Mauch & Dudler, 1993). 

Arabidopsis possesses 54 GST proteins that are part of 7 classes, including: phi (GSTF), 

dehydroascorbate reductase (DHAR), and tau (GSTU) classes (Dixon et al., 2002). GST enzymes 

are ubiquitous with plant osmotolerance, such that a high degree of redundancy has been elucidated 

within the supergene family due to a large degree of functional (Gullner et al., 2018) and genetic 

(Sappl et al., 2009) overlap. In response to 100mM NaCl over 7 days, GSTF4, DHAR2, GSTU6, 

GSTU23, and GSTU26 expression was induced in tomato crops (Csiszár et al., 2014). Further, the 

overexpression of rice GSTU4 (OsGSTU4) in Escherichia coli has elevated growth % (relative to 

untransformed colonies) under 300mM NaCl and 300mM mannitol, illustrating that 

overexpressing GSTs can confer osmoprotective properties (Sharma et al., 2014).  

In Arabidopsis, GST levels have been shown to increase in response to abiotic stress (Sappl 

et al., 2004). Under 10 mM of H2O2 (a proxy for oxidative stress) for 3 hours, transcript levels of 

several Arabidopsis GSTF and GSTU genes are induced, as well as DHAR2 (AT1G75270), relative 

to CTL (Sappl et al., 2009). Under mannitol conditions, I detect several GST proteins to be 

differentially abundant in WT including:  GSTF2 (AT4G02520; Log2FC = 1.75), GSTF3 

(AT2G02930; Log2FC = 1.94), GSTF7 (AT1G02920; Log2FC = 3.49), GSTF6 (AT1G02930; 

Log2FC = 3.47), GSTF9 (AT2G30860; Log2FC = 0.62), GSTU26 (AT1G17190; Log2FC = 0.62), 

and GSTU22 (AT1G78340; Log2FC = 0.72), suggesting that WT seedlings likely have a less 

significant shortening of the primary root under mannitol due to elevated GST-mediated 

osmotolerance relative to their responses under NaCl (Figure 2 – 5; Figure 12). However, under 

NaCl, many GST proteins are differentially abundant in rve 4 6 8, including: GSTF4 (AT1G02950; 

Log2FC = 0.68), GSTF6 (Log2FC = 0.89), GSTF7 (Log2FC = 0.68), DHAR3 (Log2FC = 0.61), 

and GSTU18 (AT1G10360; Log2FC = 0.69) (Figure 13). It appears that NaCl conditions cause a 

greater induction in GST-mediated responses, relative to mannitol, suggesting that rve 4 6 8 plants 

fare worse under mannitol versus NaCl, due to a lack of GST protein abundance (Figure 2 – 13). 

 

Summary 
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Together, the data presented within chapter 2 suggests that RVE8-like proteins are 

involved in the osmotic and salt stress response (Figure 1 - 14). More specifically, it seems that 

plants with rve 4 6 8 alleles fare worse under mannitol and salt stress, illustrating that proper RVE8-

like expression (WT) is needed to confer osmotolerance (Figure 2 - 5). I have shown that WT 

plants have more osmoprotecting proteins, relative to rve 4 6 8 which might partially explain why 

RVE8-lacking plants fare worse, because they do not have a sufficient pool of osmoprotectants 

(Figure 11). I also explain why rve 4 6 8 plants do worse under mannitol stress as opposed to salt 

stress, as salt stress appears to increase the amount of osmoportection-conferring proteins (Figure 

12-13). As rve 4 6 8 plants fare worse under drought-like stress, proper RVE8-like protein levels 

are needed for crops to be resilient to drought-like conditions. 

 
Figure 14: Tryptophan biosynthesis pathway. Tryptophan biosynthetic pathway highlighting 

the differentially abundant proteins in WT at ZT11 under mannitol stress, with the corresponding 

Log2FC. 
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Chapter 3: 

Exploring the Arabidopsis circadian responses to nitrogen, phosphorus, and sulfur nutrient 

stress responses through phenomics and quantitative metabolomics 

3.1 INTRODUCTION 

Plants require a diel cycle consisting of light and dark to grow and develop properly (Mehta 

et al., 2021). To do this, plants rely on a functional circadian clock comprised of a series of 

transcription factors that function to interpret internal and external cues and control time of day 

outputs (Creux & Harmer, 2019; Hsu et al., 2013). In Arabidopsis, the core clock consists of 

morning, afternoon, midday, and evening expressed proteins that form a series of highly regulated 

negative feedback loops (Kamioka et al., 2016). The morning loop consists of LHY, CCA1, PRR7, 

and PRR9, while the evening loop consists of PRR5, TOC1, and the evening complex (EC) 

proteins (Creux & Harmer, 2019; Mehta et al., 2021). Approximately 40% of all genes in 

Arabidopsis have been suggested to be under direct circadian regulation (Romanowski et al., 

2020), indicating how integral circadian control is to the daily lives of plants. 

Plants deficient in these core circadian clock transcription factors have a number of 

observable phenotypes. Plants with lhy cca1 alleles flower earlier, are smaller, maintain paler 

leaves, possess shorter stems, and have smaller rosette leaves (Mizoguchi et al., 2002). Plants with 

prr5 prr7 alleles (Nakamichi et al., 2005a), as well as prr7 prr9, or prr5 prr7 prr9 alleles all have 

longer petioles and hypocotyls under diel conditions (Nakamichi et al., 2005b). Triple knockout 

prr5 prr7 prr9 plants have very tall and thick stems, coupled with abnormally dark green leaves 

(Nakamichi et al., 2005b). Plants deficient in TOC1 proteins flower earlier under SD and LD 

conditions (Somers et al., 1998) and have elongated hypocotyls, relative to WT (Strayer et al., 

2000). Plants with elf3 (Zagotta et al., 1996), elf4 (Doyle et al., 2002), or lux (Hazen et al., 2005) 

alleles all flower earlier and have longer hypocotyls than WT plants. 

Despite the extensive control of the circadian clock over plant cellular processes, the role 

of the Arabidopsis circadian circuit in managing diel nutrient-related cell processes has not been 

resolved (see General Introduction). Recently however, under phosphorus (P) stress, the 

expression of CCA1, LHY, and PRR9 were all found to be induced, implicating morning loop 

transcription factors in the regulation of P-dependent homeostasis and P metabolism in 

Arabidopsis (Scheible et al., 2022). Further, previous examination of the diel Arabidopsis rosette 

proteome revealed Nitrate Metabolic Processes (GO:0042126) was enriched in the dark-to-light 
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transition (ZT23 – ZT1) in WT plants, suggesting that nitrogen (N) metabolism could be regulated 

in a diel manner (Uhrig et al., 2020). The studies above suggest that nutrient acquisition and 

metabolism could be under circadian control, while not directly addressing whether diel nutrient-

related metabolic processes are regulated by the circadian circuitry. 

In chapter 3, I attempt to assess whether the clock is involved in the regulation of N, P, 

and/or S nutrition by utilizing a variety of well-characterized circadian clock mutants exposed to 

different nutrient stressors (Table 1). To do this, I initially examined the nutrient-dependent 

photomorphogenic (primary root) and skotomorphogenic (hypocotyl etiolation) responses of lhy 

cca1, prr7-3 prr9-1, prr5-11 prr7-11, prr5-11, prr5-1, prr7-11, toc1, elf3, elf4, and lux seedlings 

when subjected to -N (lacking N), -P (lacking P), or -S (lacking S) conditions (Table 1). I 

hypothesize that if the clock is involved in the diel regulation of plant nutrition, that there should 

be a discernable difference in seedling phenotypes between nutrient fed and starved plants. I then 

decided to further examine the diel metabolome of prr5-11 prr7-11, prr5-11, and prr7-11 plants 

under CTL, -N, -P, and -S conditions, as prr5-related mutants exhibited the most diverse nutrient-

dependent phenotypes. After conducting a gas chromatography mass spectrometry (GC-MS) 

characterization of prr5-11 prr7-11, prr5-11, and prr7-11 plants under nutrient stress, I go on to 

explain plausible reasons as to why PRR5-lacking mutants tend to fare worse under nutrient 

starvation through the differential pools of metabolites detected (Table 2). I specifically use a 12h 

light: 12h dark photoperiod for my study, and not free-running conditions (e.g., lights always on), 

as it is representative of what is observed in nature. My study attempts to address which of the 

circadian clock mutants could become clear targets for agricultural biotechnology, while also 

systematically elucidating which of the clock components are affected by nutrition-lacking 

conditions.  

 

3.2 MATERIALS AND METHODS 

3.2.1 Nutrient-dependent photomorphogenesis primary root phenomics 

WT (wild-type, Columbia ecotype), lhy cca1 (Blair et al., 2019), prr7-3 prr9-1 (Farré et 

al., 2005), prr5-11 prr7-11 (Yamashino et al., 2008), prr5-11 (Yamashino et al., 2008), prr5-1 

(Eriksson et al., 2003),  prr7-11 (Yamashino et al., 2008), toc1 (Más et al., 2003), elf3 (Hicks et 

al., 1996), elf4 (Khanna et al., 2003), and lux (Hazen et al., 2005) seeds (all in the Columbia 

background) were rinsed firstly in a 70% (v/v) ethanol solution for 2 minutes, followed by a 30% 
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(v/v) bleach (Clorox® 7.5%) wash for 7 minutes, and lastly with three sequential washes with 

distilled water. The seeds were then immediately imbibed on 0.5x MS CTL (Caisson Labs MS 

Media with macronutrients and micronutrients; MSP01) media, 1% sucrose, and 7 g/L of agar 

(regular plates) at pH 5.8 (with KOH). For photomorphogenesis root assays, seeds were stratified 

for 3 days at 4oC in the dark and then exposed to a 12h light and 12h dark photoperiod of 

100µmol/m2/s of florescent light for 5 days at 22oC, before being transferred onto experimental 

plates. Seedlings were transferred to CTL, -N (MS media with macronutrients, and micronutrients, 

without ammonium nitrate; MSP05), -P (MS media with macronutrients and micronutrients 

without phosphate; MSP19), or -S (Caisson Labs MS media with macronutrients and 

micronutrients without sulfur; MSP44) experimental plates for a subsequent 8 days under 12h light 

and 12h dark photoperiod of 100µmol/m2/s of florescent light at 22oC. All plants were grown 

vertically with their roots covered to limit root light exposure (Gao et al., 2021). Primary root 

measurements were taken over an 8-day time-course, with representative photographs obtained at 

the end of the 8 days. 

 

3.2.2 Nutrient-dependent skotomorphogenesis phenomics 

WT, lhy cca1, prr7-3 prr9-1, prr5-11 prr7-11, prr5-11, prr5-1, prr7-11, toc1, elf3, elf4, 

and lux seeds were sterilized as previously described. The seeds were then immediately imbibed 

on CTL, -N, -P, or -S plates, with 1% sucrose, and 7 g/L of agar at pH 5.8. All seeds were stratified 

for 3 days at 4oC in the dark, and then exposed to a 6h pulse of florescent light (100µmol/m2/s at 

22oC), followed by 4 days of darkness with a temperature of 22oC as previously described 

(Woloszynska et al., 2017). Hypocotyl etiolation measurements and representative photographs 

were taken at the end of four days in darkness. 

 

3.2.3 Plant growth and harvesting for metabolomic analysis 

WT, prr5-11 prr7-11, prr5-11, and prr7-11 seeds were sterilized, stratified, germinated 

(CTL) as described above, then transferred onto, and grown on experimental plates (CTL, -N, -P, 

or -S) for 8 days, as previously described. Whole seedlings were then harvested at ZT 0, 4, 8, and 

12, after which, the plant matter was immediately snap frozen in liquid N2. Samples were stored 

at -80oC until they were ready to be grounded in liquid N2 to be used for metabolomics data 

analysis. 
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3.2.4 Time-course Nutrient-Dependent Metabolomics by utilizing Gas Chromatography Mass 

Spectrometry (GC-MS) 

Metabolite extraction and preparation was performed with modifications as previously 

described (Hill & Roessner, 2013; Liu et al., 2016; Scandola et al., 2022). Approximately ~50 mg 

of pulverized tissue was prepared and homogenized in 700 µl of iced-cold methanol, after which, 

the samples were vortexed twice for 30 seconds. Samples were incubated for 15 min at 70oC and 

850 xg in a table-top shaking incubator (Eppendorf). Tubes were then centrifuged for 20 min at 

12000 xg, whereby the supernatant was transferred into new tubes. Samples were extracted twice, 

with the second extraction containing the internal standard (0.4 mg.mL-1 ribitol). The internal 

standard consisted of 25 µL of ribitol at 0.4 mg.mL-1 in water. Both the first and second extracts 

contained 500µl of supernatant. Extraction supernatants were pooled into one tube (1mL), where 

200µL of extracted metabolites were thoroughly dried. Dried metabolite samples were derivatized 

with 100 μL of 25 mg.mL-1 methoxylamine hydrochloride (AC210490050; Fisher Scientific) in 

pyridine for 60 min at 30oC and 850 xg in the table-top shaking incubator (Eppendorf), followed 

by an additional incubation with 50 µL of N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA, 

AA4392806; Fisher Scientific) at 55°C for 3hrs and 850 xg in the table-top shaking incubator 

(Eppendorf). Derivatized samples were injected in splitless mode and analyzed using a 7890A gas 

chromatograph coupled to a 5975C quadrupole mass detector (Agilent Technologies, Palo Alto, 

CA, USA). In the same manner 1 µl of retention time standard mixture Supelco C7–C40 saturated 

alkanes standard (1,000 µg.mL-1 of each component in hexane) diluted 100-fold (10 µg.mL-1 final 

concentration) was injected and analyzed. Alkanes were dissolved in pyridine to a final 

concentration of 0.22 mg.mL-1. Chromatic separation was done with a DB-5MS capillary column 

(30 m × 0.25 mm × 0.25 µm; 5183-4647, Agilent, USA). Inlet temperature was set at 280oC. Initial 

GC Oven temperature was set to 80oC and held for 2 min after injection, after which, GC oven 

temperature was raised to 300oC at 7oC min-1, and held at 300oC for 10 min. Injection and ion 

source temperatures were adjusted to 300oC and 200oC, respectively with a solvent delay of 5 min. 

The carrier gas (Helium) flow rate was set to 1 mL.min−1. Sample detector was operated in EI 

mode at 70 eV and in full scan mode (m/z 33–600).  

 

3.2.5 GC-MS Data Analysis, Bioinformatics, and Data Visualization 
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Compounds were identified by a combination of mass spectra and retention time index 

matching to the mass spectra of the National Institute of Standards and Technology library 

(NIST20, https://www.nist.gov/) and the Golm Metabolome Database (GMD, http://gmd.mpimp-

golm.mpg.de/). Metabolite quantification was performed by using MassHunter (Agilent, USA). 

Peaks were integrated, and after blank subtraction, samples were subsequently normalized by 

dividing blank-subtracted sample peak values with the peak area values of the internal standard 

ribitol and the sample fresh weight (ng per mg of sample fresh weight). Identified metabolite pools 

pertaining to prr5-11 prr7-11, prr5-11, and prr7-11 genotypes were each normalized to WT and 

Log2 transformed (relative Log2 fold change). The corresponding metabolite amounts were 

assembled into heat maps based on relative Log2 fold change (FC) value (r package Superheat) 

for each condition (control, nitrogen deficient, phosphorus deficient, and sulfur deficient) at ZT 0, 

4 ,8, and 12. Euclidean distance clustering was executed to highlight metabolite profiles that trend 

with a similar Log2 fold change (FC) (r package Superheat). Packages were implemented in r 4.2.2 

(R Core Team 2022, https://www.r-project.org/). 

 

3.3 RESULTS 

3.3.1 Phenotyping data implicates morning loop proteins in the regulation of N, P, and S 

nutrient stress responses 

In order to systematically address whether the circadian clock was involved in regulating 

plant N, P, or S nutrition, I subjected the seedlings of circadian clock deficient plant lines to 

nutrient stress to observe the effects of nutrition starvation on primary root elongation and 

hypocotyl etiolation (Table 1). I saw that plants with lhy cca1 alleles have shorter and longer 

hypocotyls under -P and -S conditions, respectively (Figure 2; p-value ≤ 0.05; Student’s t-test; n 

≥ 30). However, I was unable to report any significant differences between lhy cca1 hypocotyls 

under CTL verses -N conditions (Figure 2), nor between lhy cca1 primary roots under -N, -P, or 

-S (Figure 1), suggesting that LHY and CCA1 proteins likely do not have an obvious primary root 

phenotype, nor a hypocotyl response under N, P, or S stress (n ≥ 30). Plants with prr7-3 prr9-1 

alleles have shorter hypocotyls under -N conditions, implicating the morning loop in the -N 

response in Arabidopsis (Figure 4; p-value ≤ 0.05; Student’s t-test; n ≥ 30). I did not detect 

significant differences between prr7-3 prr9-1 hypocotyls under -P nor -S conditions, suggesting 

that PRR7 and PRR9 proteins likely do not have an obvious hypocotyl response under P or S stress 
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(Figure 4; n ≥ 30). I did not find a significant difference in the primary root of prr7-3 prr9-1 

seedlings under -N, -P, or -S conditions (Figure 3; n ≥ 30). I found plants that with prr5-11 prr7-

11 alleles had shorter primary roots under N, P, and S starvation (Figure 5; p-value ≤ 0.05; 

Student’s t-test; n ≥ 30). I also found that plants with prr5-11 prr7-11 alleles had longer hypocotyls 

under P and S stress (Figure 6; p-value ≤ 0.05; Student’s t-test; n ≥ 30). 

 

3.3.2 The evening loop appears to preferentially regulate P metabolic processes 

Here, I found that toc1 plants have shorter hypocotyls under -P conditions (Figure 8; p-

value ≤ 0.05; Student’s t-test; n ≥ 30), implicating the evening loop in the P hypocotyl response. I 

was unable to observe any other clear phenotypes between toc1 plants under N or S deficient 

conditions (Figure 7 - 8; n ≥ 30). I was also able to report that elf4 seedlings have longer primary 

roots when subjected to P stress (Figure 11; p-value ≤ 0.05; Student’s t-test; n ≥ 30). I was unable 

to detect any discernable phenotypes between elf4 seedlings under N or S stress (Figure 11 - 12; 

n ≥ 30). I was also unable to detect any significant phenotypic differences between elf3 (Figure 9 

- 10; n ≥ 30) and lux (Figure 13 - 14; n ≥ 30) seedlings under -N, -P, nor -S. Given the evaluation 

of lhy cca1, prr7-3 prr9-1, prr5-11 prr7-11, toc1, elf3, elf4, and lux seedlings for nutrient 

dependent responses, I believe that the morning and evening loop is involved in the N, P, and S 

responses, but to differing degrees (Figure 21). Of the circadian clock deficient genotypes 

examined, I found the most extensive phenotype response to be between nutrient stress and PRR5 

and PRR7 through the prr5-11 prr7-11 mutant (Figure 5 - 6). Thus, to tease apart the roles of 

PRR5 and PRR7 under nutrient deficiency, I then subjected prr5-11, prr7-11, and prr5-1 seedlings 

to nutrient stress conditions (Figure 21; Yamashino et al., 2008). 

 

3.3.3 Phenotyping screen implicates PRR5 proteins in the S metabolic response 

Seedlings with prr5-11 alleles have shorter primary roots when subjected to -S conditions 

(Figure 15; p-value ≤ 0.05; Student’s t-test; n ≥ 30). Plants with prr7-11 alleles show longer and 

shorter hypocotyl lengths when subjected to P and S stress, respectively (Figure 18; p-value ≤ 

0.05; Student’s t-test; n ≥ 30). Plants with prr5-11 prr7-11 alleles showed a greater number of 

phenotypic responses to nutrient stress (Figure 5 – 6). This suggests that plants that lack both 

PRR5 and PRR7 have disparate phenotypes compared to plants that lack either PRR5 or PRR7 

alone (Figure 21). I also analyzed one additional plant line, prr5-1, which showed a similar short 
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primary root phenotype to prr5-11 when subjected to -S conditions and longer hypocotyls under 

N, P, and S stress (Figure 19-20; p-value ≤ 0.05; Student’s t-test; n ≥ 30). Based on this screen 

and the immediate connections between N, P and S to plant growth and development as 

macronutrients, I next examined the time-of-day metabolome of WT, prr5-11 prr7-11, prr5-11, 

and prr7-11 plants under N, P, or S limiting conditions at ZT 0, 4, 8, and 12 to elucidate the roles 

of PRR5 and PRR7 proteins in regulating nutrient-related processes in Arabidopsis (Figure 22). I 

chose ZT 0, 4, 8, and 12 for my time-course experimentation as PRR5 and PRR7 expression peaks 

between ZT 6 and ZT 12 under 12L:12D diel conditions, making ZT 0 to 12 the best time-points 

to elucidate the roles of PRR5 and PRR7 proteins in nutrient-related processes (Nakamichi et al., 

2010). 

 

Table 1: Arabidopsis mutants of interest in characterizing the circadian response to nutrient 

stress. 

AGIs Mutant Line ARBC Stock ID Citation 

AT1G01060 

AT2G46830 
lhy cca1 N/A Mizoguchi et al., (2002) 

AT5G24470 

AT5G02810 
prr5-11 prr7-11 CS2107711 Nakamichi et al., (2005a) 

AT5G02810 

AT2G46790 
prr7-3 prr9-1 N/A Farré et al., (2005) 

AT5G02810 

AT2G46790 

AT5G24470 

prr5-11 prr7-11 prr9-10 N/A Nakamichi et al., (2005b) 

AT5G24470 prr5-11 CS2107708 Yamamoto et al., (2003) 

AT5G24470 prr5-1 CS9384 Eriksson et al., (2003) 

AT5G02810 prr7-11 CS2107709 Yamamoto et al., (2003) 

AT5G02810 prr9-1 CS9385 Eriksson et al., (2003) 

AT5G61380 toc1 CS2107710 Más et al., (2003) 

AT2G25930 elf3 N/A Hicks et al., (1996) 

AT2G40080 elf4 CS68093 Khanna et al., (2003) 

AT3G46640 lux N/A Hazen et al., (2005) 
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Figure 1: Root length changes in lhy cca1 plants under nitrogen, phosphorus, and sulfur 

stress. Quantitative analysis of seedling primary root length after 8 days of growth under control 

(CTL; a-b, d-e, g-h), -N (a, c), -P (d, f), or -S (g, i) conditions. An asterisk (*) denotes statistical 

significance (p-value ≤ 0.05; Student’s t-test). Data are presented as mean ± standard deviation; n 

≥ 30. 
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Figure 2: Hypocotyl length changes in lhy cca1 plants under nitrogen, phosphorus, and sulfur 

stress. Quantitative analysis of seedling hypocotyl etiolation lengths at the end of 4 days in the 

dark (post a 6-hour pulse of white light) under control (CTL; a-b, d-e, g-h), -N (a, c), -P (d, f), or 

-S (g, i) media. An asterisk (*) denotes statistical significance (p-value ≤ 0.05; Student’s t-test). 

Data are presented as mean ± standard deviation; n ≥ 30. 
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Figure 3: Root length changes in prr7-3 prr9-1 plants under nitrogen, phosphorus, and sulfur 

stress. Quantitative analysis of seedling primary root length after 8 days of growth under control 

(CTL; a-b, d-e, g-h), -N (a, c), -P (d, f), or -S (g, i) conditions. An asterisk (*) denotes statistical 

significance (p-value ≤ 0.05; Student’s t-test). Data are presented as mean ± standard deviation; n 

≥ 30. 
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Figure 4: Hypocotyl length changes in prr7-3 prr9-1 plants under nitrogen, phosphorus, and 

sulfur stress. Quantitative analysis of seedling hypocotyl etiolation lengths at the end of 4 days in 

the dark (post a 6-hour pulse of white light) under control (CTL; a-b, d-e, g-h), -N (a, c), -P (d, f), 

or -S (g, i) media. An asterisk (*) denotes statistical significance (p-value ≤ 0.05; Student’s t-test). 

Data are presented as mean ± standard deviation; n ≥ 30. 
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Figure 5: Root length changes in prr5-11 prr7-11 plants under nitrogen, phosphorus, and 

sulfur stress. Quantitative analysis of seedling primary root length after 8 days of growth under 

control (CTL; a-b, d-e, g-h), -N (a, c), -P (d, f), or -S (g, i) conditions. An asterisk (*) denotes 

statistical significance (p-value ≤ 0.05; Student’s t-test). Data are presented as mean ± standard 

deviation; n ≥ 30. 
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Figure 6: Hypocotyl length changes in prr5-11 prr7-11 plants under nitrogen, phosphorus, 

and sulfur stress. Quantitative analysis of seedling hypocotyl etiolation lengths at the end of 4 

days in the dark (post a 6-hour pulse of white light) under control (CTL; a-b, d-e, g-h), -N (a, c), -

P (d, f), or -S (g, i) media. An asterisk (*) denotes statistical significance (p-value ≤ 0.05; Student’s 

t-test). Data are presented as mean ± standard deviation; n ≥ 30. 
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Figure 7: Root length changes in toc1 plants under nitrogen, phosphorus, and sulfur stress. 

Quantitative analysis of seedling primary root length after 8 days of growth under control (CTL; 

a-b, d-e, g-h), -N (a, c), -P (d, f), or -S (g, i) conditions. An asterisk (*) denotes statistical 

significance (p-value ≤ 0.05; Student’s t-test). Data are presented as mean ± standard deviation; n 

≥ 30. 
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Figure 8: Hypocotyl length changes in toc1 plants under nitrogen, phosphorus, and sulfur 

stress. Quantitative analysis of seedling hypocotyl etiolation lengths at the end of 4 days in the 

dark (post a 6-hour pulse of white light) under control (CTL; a-b, d-e, g-h), -N (a, c), -P (d, f), or 

-S (g, i) media. An asterisk (*) denotes statistical significance (p-value ≤ 0.05; Student’s t-test). 

Data are presented as mean ± standard deviation; n ≥ 30. 
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Figure 9: Root length changes in elf3 plants under nitrogen, phosphorus, and sulfur stress. 

Quantitative analysis of seedling primary root length after 8 days of growth under control (CTL; 

a-b, d-e, g-h), -N (a, c), -P (d, f), or -S (g, i) conditions. An asterisk (*) denotes statistical 

significance (p-value ≤ 0.05; Student’s t-test). Data are presented as mean ± standard deviation; n 

≥ 30. 
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Figure 10: Hypocotyl length changes in elf3 plants under nitrogen, phosphorus, and sulfur 

stress. Quantitative analysis of seedling hypocotyl etiolation lengths at the end of 4 days in the 

dark (post a 6-hour pulse of white light) under control (CTL; a-b, d-e, g-h), -N (a, c), -P (d, f), or 

-S (g, i) media. An asterisk (*) denotes statistical significance (p-value ≤ 0.05; Student’s t-test). 

Data are presented as mean ± standard deviation; n ≥ 30. 
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Figure 11: Root length changes in elf4 plants under nitrogen, phosphorus, and sulfur stress. 

Quantitative analysis of seedling primary root length after 8 days of growth under control (CTL; 

a-b, d-e, g-h), -N (a, c), -P (d, f), or -S (g, i) conditions. An asterisk (*) denotes statistical 

significance (p-value ≤ 0.05; Student’s t-test). Data are presented as mean ± standard deviation; n 

≥ 30. 
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Figure 12: Hypocotyl length changes in elf4 plants under nitrogen, phosphorus, and sulfur 

stress. Quantitative analysis of seedling hypocotyl etiolation lengths at the end of 4 days in the 

dark (post a 6-hour pulse of white light) under control (CTL; a-b, d-e, g-h), -N (a, c), -P (d, f), or 

-S (g, i) media. An asterisk (*) denotes statistical significance (p-value ≤ 0.05; Student’s t-test). 

Data are presented as mean ± standard deviation; n ≥ 30. 
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Figure 13: Root length changes in lux plants under nitrogen, phosphorus, and sulfur stress. 

Quantitative analysis of seedling primary root length after 8 days of growth under control (CTL; 

a-b, d-e, g-h), -N (a, c), -P (d, f), or -S (g, i) conditions. An asterisk (*) denotes statistical 

significance (p-value ≤ 0.05; Student’s t-test). Data are presented as mean ± standard deviation; n 

≥ 30. 
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Figure 14: Hypocotyl length changes in lux plants under nitrogen, phosphorus, and sulfur 

stress. Quantitative analysis of seedling hypocotyl etiolation lengths at the end of 4 days in the 

dark (post a 6-hour pulse of white light) under control (CTL; a-b, d-e, g-h), -N (a, c), -P (d, f), or 

-S (g, i) media. An asterisk (*) denotes statistical significance (p-value ≤ 0.05; Student’s t-test). 

Data are presented as mean ± standard deviation; n ≥ 30. 
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Figure 15: Root length changes in prr5-11 plants under nitrogen, phosphorus, and sulfur 

stress. Quantitative analysis of seedling primary root length after 8 days of growth under control 

(CTL; a-b, d-e, g-h), -N (a, c), -P (d, f), or -S (g, i) conditions. An asterisk (*) denotes statistical 

significance (p-value ≤ 0.05; Student’s t-test). Data are presented as mean ± standard deviation; n 

≥ 30. 
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Figure 16: Hypocotyl length changes in prr5-11 plants under nitrogen, phosphorus, and 

sulfur stress. Quantitative analysis of seedling hypocotyl etiolation lengths at the end of 4 days in 

the dark (post a 6-hour pulse of white light) under control (CTL; a-b, d-e, g-h), -N (a, c), -P (d, f), 

or -S (g, i) media. An asterisk (*) denotes statistical significance (p-value ≤ 0.05; Student’s t-test). 

Data are presented as mean ± standard deviation; n ≥ 30. 
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Figure 17: Root length changes in prr7-11 plants under nitrogen, phosphorus, and sulfur 

stress. Quantitative analysis of seedling primary root length after 8 days of growth under control 

(CTL; a-b, d-e, g-h), -N (a, c), -P (d, f), or -S (g, i) conditions. An asterisk (*) denotes statistical 

significance (p-value ≤ 0.05; Student’s t-test). Data are presented as mean ± standard deviation; n 

≥ 30. 
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Figure 18: Hypocotyl length changes in prr7-11 plants under nitrogen, phosphorus, and 

sulfur stress. Quantitative analysis of seedling hypocotyl etiolation lengths at the end of 4 days in 

the dark (post a 6-hour pulse of white light) under control (CTL; a-b, d-e, g-h), -N (a, c), -P (d, f), 

or -S (g, i) media. An asterisk (*) denotes statistical significance (p-value ≤ 0.05; Student’s t-test). 

Data are presented as mean ± standard deviation; n ≥ 30. 
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Figure 19: Root length changes in prr5-1 plants under nitrogen, phosphorus, and sulfur 

stress. Quantitative analysis of seedling primary root length after 8 days of growth under control 

(CTL; a-b, d-e, g-h), -N (a, c), -P (d, f), or -S (g, i) conditions. An asterisk (*) denotes statistical 

significance (p-value ≤ 0.05; Student’s t-test). Data are presented as mean ± standard deviation; n 

≥ 30. 
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Figure 20: Hypocotyl length changes in prr5-1 plants under nitrogen, phosphorus, and sulfur 

stress. Quantitative analysis of seedling hypocotyl etiolation lengths at the end of 4 days in the 

dark (post a 6-hour pulse of white light) under control (CTL; a-b, d-e, g-h), -N (a, c), -P (d, f), or 

-S (g, i) media. An asterisk (*) denotes statistical significance (p-value ≤ 0.05; Student’s t-test). 

Data are presented as mean ± standard deviation; n ≥ 30. 
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Figure 21: Heatmap summarizing primary root and hypocotyl responses of clock-deficient 

plants under N, P, or S stress. Coloration represents either a decrease (grey) or increase (black) 

in root and/or hypocotyl length, respectively, while white coloration indicates no statistically 

significant change in length. The resulting heat map was generated using the r package superheat 

(https://rlbarter.github.io/superheat/). 
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Figure 22: Time-of-day metabolomics workflow schematic. Depicted is the workflow for WT, 

prr5-11 prr7-11, prr5-11, and prr7-11 seedlings under control (CTL), -N, -P, or -S conditions at 

ZT 0, 4, 8, and 12. 
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Table 2: Classification of metabolites identified through GC-MS analysis. 

Amino Acid Fatty Acid Organic Acid Organic Alcohol Sugar Other 

Alanine Benzoic Acid Aspartic acid Erythritol Fructose Neophytadiene  

Asparagine  Oleic Acid Citric acid Glycerol Glucose Putrescine 

Glutamine Palmitic Acid Fumaric acid Myo-inositol Sucrose Uracil 

Glycine Stearic acid Glutamic acid Stigmasterol  Urea 

Lysine  Glyceric acid    

Oxoproline  Glycolic acid    

Phenylalanine  Malic acid    

Serine   Myristic acid    

Threonine  Nicotinic acid    

Valine  Shikimic acid    

  Sinapinic acid    

  Succinic acid    

 

 

3.3.4 Diel metabolome analysis implicates PRR5 and PRR7 in N, P, and S nutrient stress 

responses   

Given the results of my phenotyping screen (Figure 21), I wanted to further explore the 

roles of PRR5 and/or PRR7 in N, P, and S nutrient-related cell processes (Figure 22). As a result, 

I have analyzed the changing metabolome of WT, prr5-11 prr7-11, prr5-11, and prr7-11 under 

control (CTL; Figure 23), -N (Figure 24), -P (Figure 25), or -S (Figure 26) conditions at ZT  0, 

4, 8, and 12 (Figure 21; Table 2). The corresponding metabolite changes for each knockout line 

observed throughout the time-course were assembled into Euclidean distance clustered heat maps 

based on their Log2 fold change relative to WT metabolite levels for each condition at ZT 0, 4 ,8, 

and 12. First, to assess genotypic differences in diel metabolite changes, I analyzed each knockout 

plant line under CTL conditions. By analyzing the changing metabolite pools under CTL 

conditions, I can explore the genotypic effect of each knockout line early in the day, before adding 

the effect of nutrient stress. By conducting these series of analyses first, I am able to show that any 

modification in metabolite pools observed under nutrient stress are due to nutrition stress and not 
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an unforeseen confounding effect. Under CTL conditions, it appears that the largest pools of amino 

acids, fatty acids, organic acids, organic alcohols, and sugars, occur in the morning (namely 

at/between ZT0 and ZT4), while discernable reductions occur later in the day (specifically 

at/between ZT8 and ZT12) (Figure 23; Table 2). 

Urea which are rich sources of N that can be used to synthesize amino acids de novo (Witte, 

2011), pools at ZT0 are discernably lower in prr5-11 prr7-11 and prr5-11 (Figure 23). Citric acid 

and fumaric acid, which are important tricarboxylic acid (TCA) cycle intermediates used to 

synthesize ATP (Nakamichi et al., 2009), amounts are all notably elevated in prr5-11 prr7-11 and 

prr5-11 in the morning (Figure 23). The pool of aspartic acid, an organic acid which can be used 

to synthesize amino acids such as threonine (Alfosea-Simón et al., 2021), is the highest at ZT0 and 

decreases at ZT4 (Figure 23). Amounts of asparagine, oxoproline, glutamine, lysine and 

phenylalanine amino acids all drop in prr5-11 prr7-11 and prr5-11 at ZT12 (Figure 23). Levels 

of oleic acid, which is used in the biosynthesis of JA (Gao et al., 2010), metabolites remain elevated 

at ZT0 in prr5-11 prr7-11 and prr5-11, before dropping at ZT4 and remaining low throughout the 

day (Figure 23). The levels of glucose and sucrose appears to drop around ZT4 in both prr5-11 

prr7-11 and prr5-11, before increasing at ZT8. Levels of glucose decrease in prr5-11 prr7-11 and 

prr5-11 at ZT0 and continues to decrease until ZT8, before increasing slightly at ZT12. Under 

CTL conditions, the metabolite profile seems to be quite similar between prr5-11 prr7-11 and 

prr5-11, where pools are generally at the highest at ZT0 and lowest at ZT12 (Figure 23; Table 2). 

 

3.3.5 Time-course metabolomics illustrates that prr5-11 prr7-11 and prr5-11 plants have 

different organic and fatty acid profiles, but similar amino acid pools under N and P stress 

After examining metabolite profiles under CTL conditions, I then went on to explore how 

metabolite levels change under N, P, or S stress to elucidate which select metabolite perturbations 

might explain the root phenotype response detected under nutrient-deprived conditions (Figure 21 

- Figure 26). Levels of glycine remain elevated in prr5-11 prr7-11 and prr5-11 at all timepoints, 

but levels increase marginally around ZT8 to ZT12 in prr5-11 prr7-11 under N stress (Figure 24). 

Under N stress, glutamine levels rise at ZT8 in prr5-11 prr7-11 and prr5-11, where levels continue 

to remain elevated at ZT12 for both (Figure 24). Asparagine levels rise at ZT4 in prr5-11 prr7-11 

and prr5-11, before reaching the highest amounts at ZT8, and dropping at ZT12 in both (Figure 

24). Levels of phenylalanine and asparagine are lowest at ZT0 for prr5-11 prr7-11 and prr5-11 
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and reach maximal levels at ZT4 to ZT8 (Figure 24). Alanine levels peak at ZT0, before dropping 

at ZT4 and remaining low in prr5-11 prr7-11 and prr5-11 (Figure 24).  

Levels of palmitic acid, which is important for lipid biosynthesis and metabolism (Carta et 

al., 2017) have maximum levels at ZT0, before decreasing and remaining relatively low throughout 

the day in prr5-11 prr7-11, prr5-11, and prr7-11 (Figure 24). Fumaric acid amounts remain low 

throughout the day in prr5-11 prr7-11, however, levels rise slightly in prr5-11 prr7-11 around 

ZT8 (Figure 24). Levels of citric acid and shikimic acid, which is important for aromatic amino 

acid biosynthesis (Leistner, 1999), differ greatly between prr5-11 prr7-11, prr5-11, and prr7-11 

(Figure 24). Levels of citric acid and shikimic acid are elevated at ZT0 in prr5-11 prr7-11 and 

continue to rise slightly at ZT8, while levels remain consistently low in prr5-11 and rise abruptly 

at ZT8 in prr7-11 (Figure 24). Levels of glucose and fructose are lowest at ZT0 in prr5-11 prr7-

11, rise at ZT4, and peak at ZT8 before dropping once more at ZT12. Levels of sucrose are the 

highest in prr5-11 prr7-11 at ZT0 and drop throughout the day (Figure 24). 

I then went on to analyze the perturbations in metabolite profiles under P stress to see if I 

could detect selected metabolite changes which would explain the primary root phenotypes 

observed in prr5-11 prr7-11 (Figure 21; Figure 25). Levels of glycine rise in prr5-11 prr7-11, 

prr5-11, and prr7-11 around ZT8 to ZT12 under P stress (Figure 25). Under P stress, glutamine 

levels rise at ZT4 in prr5-11 prr7-11 and reach maximum amounts at ZT8 (Figure 25). Asparagine 

levels rise at ZT4 in prr5-11 prr7-11 and prr5-11, before reaching the maximal amounts at ZT8, 

and dropping at ZT12 in both (Figure 25). Levels of phenylalanine are lowest at ZT0 for prr5-11 

prr7-11 and prr5-11 and reach the highest levels at ZT8 in both genotypes, before dropping at 

ZT12 (Figure 25). Alanine levels rise at ZT0, in prr5-11 prr7-11 and prr5-11, before reaching the 

highest levels at ZT4, and dropping at ZT12 in both (Figure 25). Fumaric acid pools start to rise 

at ZT0 in prr5-11 prr7-11, before reaching maximum levels at ZT8, and dropping at ZT12 (Figure 

25). In prr5-11, levels of fumaric acid rise around ZT4, where levels reach maximum amounts at 

ZT12 (Figure 25). Levels of glucose are lowest at ZT0 in prr5-11 prr7-11 and prr5-11, where 

levels rise at ZT4 and peak at ZT8, before dropping once more at ZT12 (Figure 25). Levels of 

fructose are lowest at ZT0 in prr5-11 prr7-11 and prr5-11, but levels rise at ZT4, and peak at ZT8, 

before dropping once more at ZT12 (Figure 25). Levels of sucrose remain low throughout the day 

in prr5-11 prr7-11 (Figure 25). 
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3.3.6 Time-of-day metabolomics suggests that prr5-11 prr7-11 and prr5-11 plants have 

similar metabolite profiles under S stress 

Lastly, I analyzed the metabolite profile under S stress, to see if I could detect similar 

metabolite trends between prr5-11 prr7-11 and prr5-11 seedlings, which might partially explain 

why PRR5-deficient plants seem to have a similar phenotype response under S-lacking conditions 

(Figure 21; Figure 26). Levels of alanine rise to reach maximum amounts in both prr5-11 prr7-

11 and prr5-11 at ZT8, before dropping at ZT12 (Figure 26). Under S stress, valine and threonine 

levels drop at ZT4 in prr5-11 prr7-11 and prr5-11, before reaching maximum amounts at ZT8 

(Figure 26). Glycine levels remain elevated at all timepoints in both prr5-11 prr7-11 and prr5-11 

(Figure 26). Levels of serine and phenylalanine rise very sharply at ZT8 in prr5-11 prr7-11 and 

prr5-11, before dropping at ZT12 (Figure 26). Glutamine levels drop at ZT0 in prr5-11 prr7-11 

and prr5-11, before rising to reach maximal levels at ZT8 and dropping at ZT12 in both (Figure 

26).  

Levels of palmitic acid start to drop at ZT0 before rising to maximum levels at ZT8 in prr5-

11 prr7-11 and prr5-11 and decrease at ZT12 (Figure 26). Levels of oleic acid increase at ZT4 in 

prr5-11 prr7-11 and prr5-11, before dropping at ZT12 in both (Figure 26). Aspartic acid levels 

decrease slightly from ZT0 to ZT8 in prr5-11 prr7-11 and prr5-11 before rising slightly at ZT12 

(Figure 26). Levels of sinapinic acid, an organic acid that regulates seed germination (Bi et al., 

2017), decrease in both prr5-11 prr7-11 and prr5-11 at ZT0, before rising at ZT8 and dropping 

again at ZT12 (Figure 26). Citric acid levels drop at ZT0 in prr5-11 prr7-11 and prr5-11 before 

rising to reach the highest levels at ZT8 in both (Figure 26). Levels of palmitic acid begin to drop 

at ZT0 in prr5-11 prr7-11 and prr5-11 and rise sharply at ZT8, before dropping once more at ZT12 

(Figure 26). Levels of glucose are lowest at ZT4 in prr5-11 prr7-11 and prr5-11, rise to peak 

amounts at ZT8, before dropping once more at ZT12 (Figure 26). Levels of sucrose seem to rise 

steadily from ZT0 in prr5-11 prr7-11, where maximum levels are reached at ZT8, before dropping  

once more at ZT12 (Figure 26). Levels of fructose also seem to rise in prr5-11 prr7-11 

and prr5-11 at ZT4, to peak at ZT8, before dropping once more at ZT12 (Figure 26). 
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Figure 23: Relative Log2FC in diel metabolite pools in prr5-11 prr7-11, prr5-11, and prr7-11 

seedlings, relative to WT at ZT0, 4, 8, and 12 under control (CTL) conditions. A heat map of 

diel metabolite changes within prr5-11 prr7-11, prr5-11, and prr7-11 whole seedlings, relative to 

WT. Scale represents Log2 fold-change (FC). Blue-to-white-to yellow coloration represents 

increasing Log2FC values. Log2FC values from ≤ -3 towards 0 and values from 0 ≥ 3 are shown. 

The resulting heat map was generated using the r package superheat 

(https://rlbarter.github.io/superheat/). 
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Figure 24: Relative Log2FC in diel metabolite pools in prr5-11 prr7-11, prr5-11, and prr7-11 

seedlings, relative to WT at ZT0, 4, 8, and 12 under N-deficient (-N) conditions. A heat map 

of diel metabolite changes within prr5-11 prr7-11, prr5-11, and prr7-11 whole seedlings, relative 

to WT. Scale represents Log2 fold-change (FC). Blue-to-white-to yellow coloration represents 

increasing Log2FC values. Log2FC values from ≤ -3 towards 0 and values from 0 ≥ 3 are shown. 

The resulting heat map was generated using the r package superheat 

(https://rlbarter.github.io/superheat/). 
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Figure 25: Relative Log2FC in diel metabolite pools in prr5-11 prr7-11, prr5-11, and prr7-11 

seedlings, relative to WT at ZT0, 4, 8, and 12 under P-deficient (-P) conditions. A heat map 

of diel metabolite changes within prr5-11 prr7-11, prr5-11, and prr7-11 whole seedlings, relative 

to WT. Scale represents Log2 fold-change (FC). Blue-to-white-to yellow coloration represents 

increasing Log2FC values. Log2FC values from ≤ -3 towards 0 and values from 0 ≥ 3 are shown. 

The resulting heat map was generated using the r package superheat 

(https://rlbarter.github.io/superheat/). 
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Figure 26: Relative Log2FC in diel metabolite pools in prr5-11 prr7-11, prr5-11, and prr7-11 

seedlings, relative to WT at ZT0, 4, 8, and 12 under S-deficient (-S) conditions. A heat map of 

diel metabolite changes within prr5-11 prr7-11, prr5-11, and prr7-11 whole seedlings, relative to 

WT. Scale represents Log2 fold-change (FC). Blue-to-white-to yellow coloration represents 

increasing Log2FC values. Log2FC values from ≤ -3 towards 0 and values from 0 ≥ 3 are shown. 

The resulting heat map was generated using the r package superheat 

(https://rlbarter.github.io/superheat/). 
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3.4 DISCUSSION 

3.4.1 Time-of-day quantitative metabolomics implicates PRR proteins in the regulation 

organic acid metabolic processes 

Metabolomic screens of PRR-family mutants have implicated PRR5, PRR7, PRR9, and 

TOC1 in regulating plant metabolism (Cervela-Cardona et al., 2021; Flis et al., 2019; Fukushima 

et al., 2009). Plants with prr5 prr7 prr9 alleles have enhanced levels of TCA cycle intermediates, 

including, citrate, fumarate, and succinate from ZT 7 to ZT 19 in diel conditions (Fukushima et 

al., 2009). Further, levels of proline was shown to be elevated at all time-points in prr5 prr7 prr9, 

relative to WT (Fukushima et al., 2009). Moreover, elevated pools of glycine, glutamate, and 

shikimate was also reported to be elevated throughout the day in prr5 prr7 prr9, relative to WT 

(Fukushima et al., 2009). Plants lacking in proper PRR7 and PRR9 expression have higher amounts 

of malate, fumarate, citrate, isocitrate, and aconitate between ZT6 and ZT16, along with elevated 

pools of shikimate (Flis et al., 2019). Plants deficient in TOC1 have increased pools of fumarate 

at ZT11 and ZT23, consistent with the metabolite pools observed in prr5 prr7 prr9 (Fukushima et 

al., 2009), implicating PRR-family proteins in the regulation of TCA cycle intermediates (Cervela-

Cardona et al., 2021). In my study, I find that plants deficient in PRR5 and/or PRR7 proteins have 

high levels of organic acid metabolites in the morning under CTL conditions (Figure 23). In 

particular, I find elevated amounts of fumaric acid (FA) and citric acid (CA) at ZT0 in prr5-11 

prr7-11 (Log2FC = 0.06 and 0.10, respectively) (Figure 23). My data illustrates that pools of TCA 

cycle intermediates are elevated in plants deficient in PRR5, while prior works show elevated 

levels of the same metabolites in prr7 prr9 and toc1 plants (Cervela-Cardona et al., 2021; Flis et 

al., 2019). Taken together, my work adds to the observations of prior works by showing that plants 

lacking in only PRR5, have elevated levels of TCA intermediates, which shows that there is 

specificity with respect to the regulation of TCA intermediates. 

My results differ from the more extreme phenotypes of prr5 prr7 prr9 plants, where pools 

of FA were observed to be elevated at all timepoints, suggesting that plants deficient in PRR5, 

PRR7, and PRR9 are unable to regulate TCA pools throughout the day (Figure 23; Fukushima et 

al., 2009). Plants with prr5 prr7 prr9 alleles are arrhythmic and do not show a typical circadian 

peak and trough expression pattern throughout the day (Nakamichi et al., 2005b). Carbon 

metabolism is under tight circadian control, such that plants with clock knockout alleles have 

starch profiles that differ from WT throughout the day under diel conditions (Flis et al., 2019).  
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TCA cycle intermediates are used in ATP biosynthesis and carbon assimilation (Nakamichi et al., 

2009). Thus, taken together, it seems that arrhythmic nature of prr5 prr7 prr9 plants prevents these 

genotypes from regulating carbon stores in a circadian manner. 

 Plants with prr7 prr9 alleles have a longer period than WT (Nakamichi et al., 2005b), 

while prr5-11 prr7-11 plants have a faster period than WT (Nakamichi et al., 2005b). Flis et al., 

(2019) show that prr7 prr9 have elevated pools of FA throughout the day, while I show that FA 

pools are elevated at ZT0 in prr5-11 prr7-11, but levels remain comparable to WT levels later in 

the day (Figure 23). It appears that plants with a faster clock seem to assimilate TCA intermediates 

faster than plants with a slower clock. Cumulatively, it seems that the clock is intimately tied to 

TCA intermediate pools and C metabolism, such that plants with a faster clock accumulate TCA 

pools earlier, while plants with a later clock do not (Figure 23; Flis et al., 2019; Fukushima et al., 

2009).  

 

3.4.2 Plants with prr5-11 prr7-11 alleles increase select pools of amino acids and organic acids, 

partially explaining the primary root response under N stress 

Plants with prr5-11 prr7-11 alleles have shorter primary roots under N-stress, which is not 

detected in prr5-11 or prr7-11 plants (Figure 21). Thus, I wanted to elucidate what the impact of 

N stress is on prr5-11 prr7-11 plants at the metabolome level (Figure 24). Upon subjecting prr5-

11 prr7-11 seedlings to N-stress, glycine pools increase throughout the day from ZT0 (Log2FC = 

1.93) to ZT12 (Log2FC =3.75) (Figure 24). My data suggests that prr5-11 prr7-11 positively 

upregulates glycine levels under N stress to mediate the effects of N starvation (Figure 24), while 

also stunting its own primary root growth (Figure 21). Interestingly, approximately 18–29% of 

the total N that is taken up by plants consists of glycine (Ma et al., 2016). Glycine is an organic 

amino acid that increases carbon assimilation, resulting in higher levels of sucrose and glucose in 

plants (Liu et al., 2016). The application of exogenous glycine increases the abundance of 

antioxidant compounds, such as anthocyanin (Yang et al., 2017). N-mediated anthocyanin 

production aids Arabidopsis plants under nitrogen stress, where plants which cannot accumulate 

anthocyanin showed a lower germination rate under N stress (Liang & He, 2018). ARABIDOPSIS 

THALIANA PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1; AT1G56650) is an 

enzyme that regulates anthocyanin production in plants (Liang & He, 2018). Plants void of proper 

PAP1 (pap1) have a much lower germination rate than WT under N stress (Liang & He, 2018). 
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Glycine inhibits root growth and causes an increase in carbohydrate concentration in plant roots 

(Domínguez-May et al., 2013), which is consistent with our observed decrease in root length 

(Figure 21).  

Subjecting prr5-11 prr7-11 to N stress directly causes asparagine pools to increase 

throughout the day from ZT0 (Log2FC = 0.11) to ZT8 (Log2FC = 3.23) (Figure 24). Asparagine 

is a highly abundant amino acid in plant xylem tissue, being the amino acid with the largest number 

of N per carbon unit, making asparagine an effective store of nitrogen that moves N throughout 

the plant (Gaufichon et al., 2010). Asparagine is synthesized de novo in plants via a two-step 

process, where glutamine synthetase (GS) enzymes incorporate free-flowing ammonium into 

glutamine which can then be synthesized into asparagine via asparagine synthetase (Oddy et al., 

2020). Asparagine has protective characteristics, such that plants treated with exogenous 

asparagine have increased chlorophyll pools (Kaya et al., 2013). Consistent with our results, plants 

treated with exogenous asparagine also have shorter roots, but perform better, having higher 

nitrogen use efficiency in N-free conditions, as similar to glycine, asparagine can be utilized as an 

organic N source (Qu et al., 2019; Han et al., 2022). Thus, it appears that prr5-11 prr7-11 

positively upregulates asparagine levels under N stress to improve its N usage in low N conditions 

(Figure 24). However, while this may confer homeostatic properties, it is also a way in which 

prr5-11 prr7-11 seedlings are stunting their primary root growth (Figure 21). 

Upon subjecting prr5-11 prr7-11 plants to N stress, benzoic acid (BA) levels increase 

before the end of the day from ZT4 (Log2FC = 0.25) to ZT8 (Log2FC = 3.72) (Figure 24). BA is 

an organic acid that functions as a precursor to SA (Widhalm & Dudareva, 2015). SA limits root 

growth under nitrogen-limiting conditions (Conesa et al., 2020), aiding in the plant’s response to 

low N conditions by increasing the concentration of osmoprotecting compounds, such as 

anthocyanin (Heidari, 2020; Liang & He, 2018). Plants accumulate higher amounts of SA under 

N-starvation, compared to N-fed conditions (Singh & Chaturvedi, 2012). Plants treated with 

exogenous SA also have higher N use efficiency, compared to control conditions (Singh & 

Chaturvedi, 2012). More directly, plants treated with exogenous BA present with shorter primary 

roots due to shorter and smaller numbers of apical meristematic cells in Arabidopsis root organs 

(Zhang et al., 2018). Cumulatively, it appears that prr5-11 prr7-11 positively upregulates BA 

levels under N-stress, suggesting a likely increase in SA production (Figure 24), which could also 

partially explain its primary root phenotype (Figure 21). 
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3.4.3 Plants with prr5-11 prr7-11 alleles increase organic alcohols and TCA intermediates 

under P stress 

Plants with prr5-11 prr7-11 alleles also have shorter primary roots under P-stress (Figure 

21), to explain why this occurs, I characterized the changing metabolome of prr5-11 prr7-11 plants 

under P-stress (Figure 25). Upon subjecting prr5-11 prr7-11 to P-stress, glycerol pools increase 

early in the day from ZT0 (Log2FC = 0.18) to ZT8 (Log2FC = 3.46) (Figure 25). Glycerol 

represents an important precursor to the central primary metabolite glycerol-3-phosphate 

(Venugopal et al., 2009). The application of exogenous glycerol results in a buildup of glycerol-

3-phosphate in plant cells, as opposed to bioavailable phosphate (Aubert et al., 1994). The buildup 

of glycerol-3-phosphate then prevents metabolic flux through the pentose-phosphate pathway due 

to a lack of endogenous phosphate, leading to stalled plant growth and development (Andriotis & 

Smith, 2019). Plants under phosphate stress also have increased levels of glycerol-3-phosphate 

(Ramaiah et al., 2011). Further, the addition glycerol increases pools of SA in plants (Kachroo et 

al., 2005), which is also increased in response to P-stress (Gulabani et al., 2021). In particular, 

PHOSPHATE TRANSPORTER 4;1 (PHT4;1; AT2G29650) acts upstream of SA-biosynthesizing 

gene SALICYLIC ACID INDUCTION DEFICIENT 2 (SID2; AT1G74710), to regulate endogenous 

pools of SA. Collectively, the upregulation of glycerol in prr5-11 prr7-11 under P-stress suggests 

that a combined increase in two downstream root truncating metabolites glycerol-3-phosphate and 

SA may be responsible for the observed root phenotype.  

Upon subjecting prr5-11 prr7-11 plants to P-stress, FA levels increase throughout the day 

from ZT0 (Log2FC = -0.17) to ZT8 (Log2FC = 2.90) (Figure 25). FA is synthesized from succinic 

acid via succinic dehydrogenase, which is also supported by my dataset, as succinic acid levels 

also rise from ZT0 (Log2FC = 0.68) to ZT8 (Log2FC = 1.56) (Figure 25; Jardim‐Messeder et al., 

2015). TCA cycle intermediates accumulate in plants due to the incomplete oxidation of 

carbohydrates yielding lower pools of adenosine triphosphate (ATP) (Igamberdiev & Eprintsev, 

2016). P-stress reduces the concentration of bioavailable phosphate in plant cells, which can lower 

the production of ATP (Carstensen et al., 2018). Plants lacking in proper PHT4;1 function have 

reduced levels of ATP and more acidic thylakoids, suggesting that ATP synthase relies on the 

proper functioning of PHT4;1, and that a lack of proper P assimilation results in more acidic leaf 

tissue (Karlsson et al., 2015). Phosphate transporter 2;1 (PHT2;1; AT3G26570) also resides within 
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the chloroplast and increases the amount of phosphate in plant leaf tissue under CTL/P-fed 

conditions (Versaw & Harrison, 2002). Plants with deficiencies in ATP synthase fare poorly by 

having defects in male and female gametophyte tissue (Geisler et al., 2012). Further, acidic cellular 

conditions causes an increase in ROS accumulation in plants (Hasanuzzaman et al., 2020). Plants 

function optimally at a pH of 7 to 7.5 (Shavrukov & Hirai, 2015), where more acidic conditions 

disrupts cellular protein function (Kochian et al., 2015). Thus, with greater accumulations of TCA 

intermediates in the chloroplast, it is plausible that due to a disruption of ATP synthase activity or 

an overaccumulation of ROS, that prr5-11 prr7-11 plants would fare worse under P-stress (Figure 

21). 

 

3.4.4 Plants with prr5-11 prr7-11 and prr5-11 alleles fare worse under S stress due to increases 

in fatty acids and differential pools of select amino acids 

Plants with prr5-11 prr7-11 and prr5-11 alleles have shorter primary roots under S stress, 

which is not detected in prr7-11 plants (Figure 21). To elucidate why PRR5-lacking plants fare 

worse under -S, I characterized the changing metabolome of prr5-11 prr7-11 and prr5-11 plants 

to elucidate the underlying metabolic changes at the cellular level (Figure 26). Both prr5-11 prr7-

11 and prr5-11 show an increase in oleic acid (OA; an unsaturated fatty acid) pools from ZT0 

(Log2FC = -0.71 and -0.77, respectively) to ZT8 (Log2FC = 2.94 and 2.81, respectively) under S 

stress. Plant organic fatty acids are synthesized in response to stress (He & Ding, 2020). OA is 

required for the activation of JA-mediated responses in Arabidopsis (Wasternack & Hause, 2002), 

such that a reduction in OA is met with a corresponding reduction in JA-derived responses (Gao 

et al., 2010; Kachroo et al., 2003). Plants with improper fatty acid desaturation enzymes such as 

FATTY ACID BIOSYNTHESIS 2 (FAB2; AT2G43710), when treated with exogenous OA, 

showed a restored JA response (Kachroo et al., 2001), illustrating how essential OA is to JA-

mediated processes.  

JA and sulfur metabolism are intimately linked, such that key sulfur-metabolizing enzymes 

also regulate JA pools in Arabidopsis. MYB DOMAIN PROTEIN (MYB) 34 (AT5G60890), 51 

(AT1G18570), and 122 (AT1G74080) regulate glucosinolate biosynthesis in Arabidopsis, wherein 

MYB-lacking plants (myb34 myb51 myb122) have lower glucosinolate pools (Frerigmann & 

Gigolashvili, 2014). Glucosinolates are S-rich metabolites that function as stores of bioavailable 

sulfate in plants, which are remobilized in response to S-deficiency (Aarabi et al., 2020). Plants 
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treated with exogenous JA have decreased expression of MYB51, suggesting that JA preferentially 

decreases glucosinolate biosynthesis (Frerigmann & Gigolashvili, 2014). JA has been shown to 

mediate the primary root length by decreasing the number or size of cells in the elongation zone, 

restricting root elongation (Valenzuela et al., 2016; Yang et al., 2016). More directly, the 

exogenous application of OA results in shorter plant roots in Arabidopsis (Di Fino et al., 2020). It 

is possible that prr5-11 prr7-11 and prr5-11 plants have shorter roots under S stress, due to an 

increased amount of OA later in the day, which may be the result of S-compound breakdown and 

S remobilisation (Figure 21; Figure 26; Aarabi et al., 2020). 

Subjecting prr5-11 prr7-11 and prr5-11 plants to S-stress also causes serine pools to 

decrease late in the day from ZT8 (Log2FC = 0.55 and 0.51, respectively) to ZT12 (Log2FC = -

1.01 and -1.02, respectively) (Figure 26). Serine is an important amino acid, in that it is a precursor 

for cysteine: under S-stress, pools of cysteine are consumed, leading to the breakdown of N-rich 

proteins to biosynthesize S-containing compounds (Nikiforova et al., 2006). Under S-stress, 

Arabidopsis plants seem to maintain elevated pools of cysteine-intermediate metabolite O-

acetylserine in leaf tissue (Krueger et al., 2010). Plants subjected to S-deficient conditions also 

have increased activity of acetylserine sulfhydrylase, the enzyme responsible for catalyzing the 

production of cysteine, suggesting that the biosynthesis of cysteine from serine is induced under 

S-stress (León et al., 1988). Cysteine is also a key player in sulfur metabolism, being the only 

amino acid capable of forming the disulfide bridge in proteins (Wiedemann et al., 2020). The 

application of exogenous cysteine results in shorter plant roots in a concentration-dependent 

manner, where higher amounts of cysteine inhibit root elongation through auxin accumulation in 

the root tips (Wang et al., 2014). Overall, my data suggests that prr5-11 prr7-11 and prr5-11 plants 

have shorter roots under S stress, due to decreased amounts of serine late in the day, which might 

contribute to the increased levels of cysteine biosynthesis under S stress (Figure 21; Figure 26; 

Hu et al., 2014). 

 

Summary 

Together, the data presented within chapter 3 suggests that the clock is intimately involved 

in nutrient stress responses in Arabidopsis (Figure 21). More specifically, it seems that plants with 

prr5-11 prr7-11 alleles fare worse under N-stress, P-stress, and S-stress, while plants lacking in 

prr5-11 seem to fare worse under S-stress, suggesting that PRR5-controlled proteins are especially 
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impacted by S-stress (Figure 26), consistent with my phenotyping screen (Figure 21). I have 

shown that under N-stress, prr5-11 prr7-11 plants increase the pools of glycine, asparagine, and 

BA, which all partially explain the shorter root phenotype that is observed (Figure 24). I have 

illustrated that under P stress, prr5-11 prr7-11 plants increase the concentration of glycerol and 

FA, which might explain the root truncation that is observed (Figure 25). I have shown that prr5-

11 prr7-11 and prr5-11 plants increase and decrease the amount of OA and serine, respectively at 

selected time-points which could partially explain the phenotypes observed (Figure 26). Since 

prr5-11 prr7-11 fare worse under N-stress, P-stress, and S-stress, a closer look at the impact of 

each stressor needs to be explored to understand precisely which regulatory processes are at play 

to confer the reported phenotypes. This will allow for the complete characterization of how prr5-

11 prr7-11 plants operate under diverse nutrient stressors, while providing new insights as to the 

full impact of nutrient stress on plant homeostasis. 
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Chapter 4: 

Overarching Perspectives, Conclusions, and Future Directions 

4.1 Summary and significance 

As the circadian clock regulates approximately 40% of the genes in Arabidopsis 

(Romanowski et al., 2020), understanding the impact of different inputs on the clock is of 

paramount importance in the field of plant chronobiology. In Chapter 2, I analyzed the role of 

REVIELLE proteins (the sole elucidated activator of the circadian clock) in the osmoregulatory 

process in Arabidopsis using rve 4 6 8 knockout lines (Hsu et al., 2013). I subjected WT and rve 

4 6 8 plants to osmotic and salt stress to see if I could detect phenotypic differences under drought-

like stress (Chapter 2). I showed that plants lacking in RVE8-like proteins fare worse when 

subjected to osmotic or salt stress (Chapter 2). 

I then looked at the changing proteome of WT and rve 4 6 8 whole seedlings at ZT11 and 

ZT23 under CTL conditions (Chapter 2). I found that proteins which confer osmotolerance were 

differentially abundant in WT (Chapter 2), illustrating that plants which lack RVE8-like proteins 

fare worse under drought-like stress due to a lack of osmoprotection-conferring proteins. Given 

this encouraging set of results under CTL conditions, I then analyzed the proteome differences 

between WT and rve 4 6 8 seedlings under osmotic and salt stress (Chapter 2). Under osmotic 

stress, I showed that tryptophan biosynthesis proteins were differentially abundant in WT plants 

(Chapter 2). This suggests that plants lacking in RVE8-like proteins could have lower pools of 

the osmoprotecting osmolyte, melatonin due to lower tryptophan pools (Chen et al., 2009; 

Mannino et al., 2021), partially explaining why WT do better under mannitol (Chapter 2).  

Under salinity stress, I saw that JA biosynthetic proteins were differentially abundant in 

WT, relative to rve 4 6 8, indicating that plants lacking in RVE8-like proteins might have lower 

pools of endogenous JA (Chapter 2). This difference in JA biosynthesis between WT and rve 4 6 

8 may explain why the difference in root length under mannitol between WT and RVE8-lacking 

proteins is more exaggerated, as opposed to the root truncation observed under salt stress (Chapter 

2). JA partially mediates primary root truncation, by decreasing the number or size of cells in the 

elongation zone (Valenzuela et al., 2016), such that higher levels of JA biosynthesis might partially 

result in shorter primary roots. 

I then went on to discover differences in Glutathione transferase (GST) enzymes under 

CTL, mannitol and NaCl (Chapter 2). Here, I found that under CTL conditions, there is a 
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differential abundance of the GST supergene family proteins in WT, which could contribute to the 

elevated osmotolerant response of WT under abiotic stress (Chapter 2). GST proteins catalyze the 

fusion of glutathione metabolites to toxins for vacuolar isolation (Mauch & Dudler, 1993), 

preventing toxic compounds from causing irreparable damage to the cell. I show that the pools of 

GST enzymes remain differentially abundant in WT under mannitol stress, which might directly, 

partially confer osmotolerance under osmotic stress (Chapter 2). I also show that the pools of 

GST enzymes become differentially abundant in rve 4 6 8 under salt stress (Chapter 2). Given 

this, I make the case that RVE8-lacking plants seem to fare better under salt stress, as opposed to 

mannitol stress, because of a greater abundance of GST enzymes under salt stress in rve 4 6 8 

(Chapter 2).  

In Chapter 3, I explore the role of the clock in the N, P, and S plant nutrition processes. I 

screen a large number of clock deficient plant lines for their growth under each nutrient deficient 

condition (Chapter 3). Here, I found that the morning loop deficient mutants were susceptible to 

N, P, and S deficient conditions, while the evening loop was more susceptible to P stress (Chapter 

3). In my phenotyping screen, I measured changes in both root and hypocotyl elongation (Chapter 

3). Based on this screen, I then went on to further examine prr5 and prr7 deficient plants in more 

detail by using prr5-11, prr7-11 and prr5-1 mutant lines (Chapter 3). These series of phenomic 

results suggested that plants that lack both PRR5 and PRR7 proteins fare worse than plants which 

lack either PRR5 or PRR7 proteins, while also suggesting that PRR5 and PRR7 proteins seem to 

have disparate roles in nutrient related phenotype processes (Chapter 3). 

After doing these sets of experiments, I attempted to elucidate the roles of PRR5 and PRR7 

proteins in the N, P, and S metabolic response by using time-of-day GC-MS metabolomics 

(Chapter 3). In these series of experiments, I looked at the changing metabolome of prr5-11 prr7-

11, prr5-11, and prr7-11 plants under CTL and -N, -P, or -S conditions at ZT 0, ZT 4, ZT 8, and 

ZT 12, as the PRR proteins are expressed between ZT 0 and ZT 12 (Chapter 3; Nakamichi et al., 

2010). I was able to show that, while metabolite pools tend to be the highest at ZT0 and the lowest 

at ZT12 under CTL conditions, under -P and -S stress, nearly all mutants had the highest 

concentration of metabolites at ZT8 (Chapter 3). Further, I was also able to detect nuanced 

differences in metabolite profiles between CTL and -N conditions, where the overall pool of 

glycine amino acid metabolites remained significantly elevated in prr5-11 prr7-11 at all time-

points tested (Chapter 3). I go on to show that the metabolite profiles between prr5-11 prr7-11 
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and prr5-11 seem to trend similarly under -S conditions, illustrating congruency between the 

phenotyping data and the metabolomics results obtained (Chapter 3). 

Overall, the results I present throughout my MSc. thesis functions as a foundation, from 

which future analyses concerning the interplay between the clock and osmoregulatory or nutrient-

dependent processes can be explored. Given this, I outline a selected number of projects which 

would serve as logical next steps in elucidating the interplay between the circadian circuit and 

drought-like or nutrient-related responses in Arabidopsis. 

 

4.2 Unraveling the role of RVE8-like proteins in the regulation of osmolyte pools under 

drought-like stress  

Overall, In Chapter 2, I use proteomics to illustrate why WT plants do better than RVE8-

lacking plants under drought-like conditions. Although it does appear that WT plants have more 

osmoprotection-conferring proteins, elucidating how the metabolite pool differs between WT and 

rve 4 6 8 under mannitol and salt is certainly of interest (Chapter 2). I have shown that WT plants 

seem to have higher pools of JA-biosynthesizing proteins, proline-synthesizing proteins, and 

tryptophan biosynthesis proteins, thus, it would be interesting to elucidate how the pools of 

osmoprotecting osmolytes differs between WT and rve 4 6 8 under drought-like stress (Chapter 

2). 

 

4.3 Phenotyping of PRR9-deficient seedlings and plants with improper PRR5, PRR7, and 

PRR9 expression under nutrient stress 

In Chapter 3, I attempt to parse out the effects of PRR5 and/or PRR7 proteins through 

phenotyping screens and subsequent GC-MS metabolomics (Chapter 3). While conducting my 

preliminary phenomic screen, I found that plants deficient in PRR7 and PRR9 proteins have a very 

clear hypocotyl phenotype under -N conditions (Chapter 3). Further, metabolomic analyses of 

prr7-3 prr9-1 rosette leaves under diel conditions have unveiled an excess of organic acid 

metabolites between ZT 6 and ZT 16 (Flis et al., 2019). I have analyzed the metabolome of PRR7-

lacking plants under diel light and could not report an excess of organic acids, which might indicate 

that PRR9 could be regulating TCA acid intermediates throughout the day (Chapter 3). Thus, I 

believe that the examination of PRR9-deficient plants under nutrient stress is certainly of interest 

to further understand how PRR-deficient plants cope under nutrient stress. Prior metabolomic 
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experiments have shown that plants void of proper PRR5, PRR7, and PRR9 expression present 

with an inability to regulate metabolite profiles throughout the day, such that prr5-11 prr7-11 prr9-

10 plants present with elevated pools of TCA cycle intermediates at all time-points throughout the 

day under diel light (Fukushima et al., 2009). Thus, it would certainly be interesting to unveil how 

plants with perturbed PRR5, PRR7, and PRR9 expression would function under nutrient stress. 

The phenotyping of prr9-1 and prr5-11 prr7-11 prr9-10 plants would allow us to parse out the 

effects of PRR5, PRR7 and/or PRR9 in nutrient assimilation, extending the story of how PRR 

proteins regulate plant nutrition responses. 

 

4.4 Time-of-day quantitative proteomics analysis of PRR-deficient seedlings under nutrient 

stress 

After conducting the last phenotyping screens of PRR-lacking plants under nutrient stress, 

uncovering which proteins are differentially abundant under nutrient stress would most certainly 

be of interest. Time-of-day quantitative proteomics at ZTs 0, 4, 8, and 12 of PRR-deficient plants 

would illustrate which proteins are involved in conferring the differing phenotypes. I show that 

PRR5 and 7-deficient plants fare worse (to differing degrees) under disparate nutrient stress 

conditions (Chapter 3), however, elucidating which protein groups are involved in conferring the 

diverging phenomic and metabolomic responses would provide agrobiotechnologists with targets 

for knockdown or overexpression. Further, by conducting a time-course total proteome 

experiment, we would be able to uncover why PRR-lacking plants fare worse under nutrient stress, 

which would provide new insights into the interplay between the clock and nutrient metabolism. 

This experiment would also allow us to directly implicate the clock in nutrient-mediated 

metabolism, which has not been established. 
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