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Abstract

Cographs are graphs arising from various applications and the study of these has been 

pivota l in  the  development o f various algorithm ic graph theory  techniques and properties, 

such as m odula r decomposition.

Perfectly orderable graphs do n o t typ ica lly arise from  application modeling. Instead, 

they are defined as those graphs w ith  a desirable property  making certain o p tim iza tion  

problems solvable on them in a simple and efficient manner.

(P5 , P,5 )-free graphs generalize cographs and have a ttracted  much a tten tion  in  recent 

years. The class o f (P5, P 5, C5)-free graphs is a self-complementary class o f pe rfec tly  or­

derable graphs on which several optim iza tion  problems are solvable in  linear t im e , yet the 

recognition problem for th is class has no known a lgorithm  faster than 0 (n 3 ) -tim e . When 

applying m odular decomposition, recognizing (P5, P 5, CVJ-free graphs is suffic ien t to  rec­

ognize (P 5 , Ps)-free graphs.

We investigate the structure of (P 5 , Psj-free and (P5 , P 5 , CrJ-froc graphs. T h is  thesis 

reveals some properties, gives counterexamples, and develops some conjectures concerning 

this s tructure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgem ents

Engaging in  graduate studies at the U niversity of A lbe rta  has been both an hon ou r and a 
privilege, so I  wish to  thank everyone contribu ting  to  th is opportunity. I  am indebted to  
my fam ily, form er teachers and professors and a ll m y supportive friends.

The facu lty  and graduate students in  the departm ent of Computing Science have made 
my (too many) years here a pleasurable and rewarding experience. The friendliness and 
openness o f the researchers w ith  whom  I  associated made scientific research a jo y  beyond 
m y expectations. I  would like to th a n k  my fellow graduate and undergraduate students 
who have always been available for general chatting, encouragement, discussion o f research, 
helping w ith  technical issues and sharing o f thesis woes. I  wish to  acknowledge W . Sean 
Kennedy’s graph-drawing program, w hich  I  found very useful in  m y thesis w ork.

I  thank m y supervisor, Ryan B. Hayward, for his patience w ith  me, confidence in my 
abilities and fo r taking me as his student. Lunch outings were always a delight, especially 
when he shared personal stories of his days as a graduate student. The financia l assistance 
during the terms he supported me was generous and o f great help. W orking alongside h im  
has been an enlightening and hum bling experience; an hour o f his thoughts, observations 
and conjecture-form ing would often surpass an week’s w orth  o f m y work. O ur t r ip  to the 
Perfect G raph Theorem workshop in  Palo A lto  w ill always be remembered. Above all, I  
appreciate the eternally-frank and often-jocular relationship we have had.

F ina lly, I  thank V iv ian  fo r moving w ith  me to  Edmonton, whose companionship I  would 
have longed fo r had she not.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Contents

1  I n t r o d u c t io n  to  G ra p h s  and  G ra p h  C lasses 1
1.1 G rap hs ................................................................................................................................. 1

1.1.1 N ota tion  and D e fin ition s ................................................................................... 2
1.2 O ptim iza tion  and C o m p le x ity ......................................................................................  4
1.3 Graph Classes....................................................................................................................  5

1.3.1 Classes from  Applica tion  M o d e lin g ...............................................................  5
1.3.2 Classes from  Generalizations or S pecifica tions...........................................  6

1.4 R e c o g n itio n ....................................................................................................................... 7

2 G ra p h  T o o ls  8

2.1 Lexicographic B readth-F irst Search............................................................................  8

2.2 Greedy C o lo u r in g ............................................................................................................. 9
2.2.1 Perfectly Orderable G ra p h s ............................................................................  9
2.2.2 O ptim iz ing  w ith  a Perfect O r d e r ......................................................................11

2.3 M odular D e c o m p o s it io n ................................................................................................... 11
2.3.1 Homogeneous S e ts ................................................................................................ 12
2.3.2 Prim e G ra p h s ..........................................................................................................13
2.3.3 M odular Decomposition and P a rtia l C losure..................................................14

2.4 Relevant Properties o f Prime G ra p h s ............................................................................ 15

3 M o t iv a t in g  (P5, P 5)-fre e  G ra p h s  17
3.1 (P5 , Ps)-free as a Generalization o f S u b c la s s e s .........................................................17

3.1.1 S p lit Graphs ..........................................................................................................17
3.1.2 Recursively Sp lit Substitute G r a p h s ...............................................................18
3.1.3 C o g ra p h s .................................................................................................................19

3.2 (P5, P 5 , C 5  )-free Graphs as a Special Case o f Superclasses..................................... 19
3.2.1 Welsh-Powell Perfect G r a p h s ............................................................................ 19
3.2.2 M eyniel G ra p h s ........................................................................................................20
3.2.3 Weakly Chordal and M u rk y  G r a p h s ................................................................21
3.2.4 B r it t le  and HHD-free G ra p h s ............................................................................22
3.2.5 D om ination and HH-free G ra p h s ..................................................................... 24

4 P re v io u s  W o rk  o n  (P5 , P 5 )-fre e  G ra p h s  26
4.1 (P5, P 5 ,bu ll)-free  G r a p h s ................................................................................................ 26
4.2 Semi-Pi-Sparse Graphs ..................................................................................................... 27
4.3 (P5 , Ps)-Sparse G r a p h s ..................................................................................................... 29

5 F o u r O th e r  S e lf-C o m p le m e n ta ry  C lasses o f  P e r fe c t ly  O rd e ra b le  G ra p h s  30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6  C o n tr ib u t io n s :  T h e  S tru c tu re  o f  P r im e  (P 5 , P s j- fre e  G ra p h s  36
6.1 Prim e Non-Split (P5 , P 5 , C sj-free G ra p h s ......................................................................36
6.2 Relationships Between Vertex Partition  S e ts .................................................................38

6.2.1 Refinement o f the Ve-Vertex S e t .......................................................................38
6 .2 . 2  P j-w ing  O rien ta tio n s ..............................................................................................40

6.3 Structures W ith in  Prime (P 5 , P 5 )-free G r a p h s .......................................................... 43
6.4 Towards the P 6~ C o n je c tu re .............................................................................................. 45

6.4.1 Adjacency Properties ...................................................................................45
6.4.2 B ipa rtite  S u b s tru c tu re s ................................................................................. 49

7 C o n c lu s io n s  and  F u tu re  R esearch  53

B ib lio g ra p h y  55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Figures

1 . 1  A  cycle .............................................................................................................................. 3

2.1 A n  o b s tru c t io n .....................................................................................................................10
2.2 The fork and its complement .......................................................................................... 12
2.3 Various g ra p h s .....................................................................................................................13
2.4 A  prim e (P5 , P 5 )-free graph w ith  a C4 (filled) th a t is not in  an H q ........................14

4.1 The other forbidden induced subgraphs o f P 4 -sparse g ra p h s ................................... 27

5.1 A n  orientation from  a P04  vertex ordering ............................................................... 31
5.2 The net graph .................................................................................................................... 32
5.3 T w o  m inim al non-P04 graphs w ith  one-in-one-out o r ie n ta t io n s ............................ 33
5.4 Three d istinct P 0 4  orderings o f a P5  ..........................................................................35

6.1 O rientations corresponding to  Lemma 6.2.10  42
6.2 The arms of an H e and the tunne l of an H q (induced by solid vertices) . . .  44
6.3 A  prim e (P5 , P 5 )-free graph w ith  a P4 in  b o th  an He and an H e ........................ 45
6.4 A  prime (P5 , P 5 )-free graph G  w ith  no vertex o f degree one in  G  o r G  . . .  47
6.5 A  prime (P5, P 5 , C5)-free graph w ith  a ve rtex o f smallest degree th a t is no t

s im p l ic ia l ...............................................................................................................................48
6 . 6  The complement o f a perfect matching jo in in g  sets A  and B  from  F igu re  6.5 49
6.7 Some prime Ps-free b ipartite  g ra p h s .............................................................................49
6 . 8  In  a maximal P3 ,3 , an 0 1  th a t is not s im p lic ia l ........................................................ 51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1

Introduction to  Graphs and 
Graph Classes

1.1 Graphs

A  graph can be thought o f as a p ic to ria l representation of objects and re lations between 

the objects, typ ica lly  by denoting objects w ith  dots (called vertices) and re lations between 

objects w ith  lines (called edges) jo in ing  the dots.

To fo rm a lly  define a graph, the vertices are denoted by a set V (G )  and the edges are 

denoted by the set E (G )  which is a set o f pairs o f elements from  V (G ). W hen th e  graph 

in  context is clear, V (G) and E(G ) are often sim plified  to  V  and E . To specify a graph 

w ith  vertex set V  and edge set E , we w rite  G =  (V ,E ) .  Graphs can model a w ide  variety 

o f problems and scenarios. For instance, the vertices could be com m unication centres and 

the edges could represent communication channels, such as a network o f com puters or a 

collection of cities connected by tra in  tracks. V isual examples o f graphs are available in  Fig­

ure 2.3, and examples o f objects and relations th a t are represented by graphs are discussed 

in  Section 1.3.1.

The terms we use are standard, and w ill be defined later in  Section 1.1.1. Chapter 1 

covers some fundamentals in  graph theory a lgorithm s and analysis, and also provides exam­

ples which m otivate the general study o f graph classes. Chapter 2 reviews some im portan t 

notions in  a lgorithm ic graph theory th a t are necessary to  fu lly  appreciate and understand 

the approach taken in  the study of (P 5 , Psj-free graphs follow ing. Chapter 3 provides 

m otiva tion  fo r the study o f (P5 , P rj-fre e  graphs by showing th a t they are a re levant and 

im portan t graph class to study, pa rticu la rly  for the associated recognition problem . Chap­

te r 4 reviews three papers which characterize and recognize classes related to  (P 5 , Pgj-free 

graphs: (P5 , P 5 ,bu ll)-free graphs, the semi-Pj-sparse graphs, and (P5 , P 5 (-sparse graphs. 

Chapter 6  presents new w ork on prime (P 5 , Ps)-free and (P5 , P 5 , Cs)-free graphs by cate­

gorizing the vertices depending on how they exist in  induced p s  in  the graph. Chapter 7

1
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recaps and concludes our thesis.

We w i l l  qu ickly describe the goal o f the thesis here, noting th a t the fo llow ing  w ill be 

discussed in  fu rthe r detail in  the chapters to come. The task o f recognizing a g raph  class 

involves decid ing whether a graph belongs to the class in  question. M odular decomposition, 

discussed in  Chapter 2, allows us the libe rty  o f restricting our effort to  recognizing those 

graphs in  th e  (P5 , Pg)-free and (P5 , P 5 , C5  )-free classes w itho u t modules. S p lit  graphs 

(discussed in  Section 3.1.1) are an easily-recognizable subclass o f these two classes, and so 

we can remove these graphs from our consideration. A  theorem o f Hayward, H ougardy and 

Reed [31] te lls  us th a t every vertex in  a non-split prime graph is in  an induced P 4 , and 

so, in  an a ttem p t to  characterize the structure  of prim e (P 5 , Ps)-free and (P 5 , P 5 , CYj-frec 

graphs, we p a rtitio n  the vertex set in to  vertices th a t exist as the ends o f P4 S, the  m iddle  o f 

P4 S, or b o th . Some simple properties fo llow , such as the end-only vertices are the  s im plic ia l 

vertices in  the  graph and so necessarily form  an independent set. S im ilarly, the m id-on ly 

vertices are the co-simplicial vertices and so always form  a clique. The rem ain ing vertices 

are classified in to  several different types depending on how they relate to  the end-only and 

m id-only vertices, and properties of each type are investigated. Even though m any o f these 

properties seem to  be local to  a vertex and its neighbourhood, they lead to  some theorems 

and conjectures on the global structure o f prime (P5, P 5)-free and (P5, P 5, C5)-free graphs.

1.1.1 N otation  and D efinitions

In  this subsection we present many o f the basic graph theoretic definitions we w ill  use in  

th is thesis. A  reader fam ilia r w ith  the fie ld  of a lgorithm ic graph theory w ill be able to  skip 

th is section w itho u t any loss o f continuity.

For vertices u and v in  the vertex set V  o f a graph G. we say th a t u and v are adjacent 

is {u ,u }  is in  the edge set E (G ). We also say th a t vertex u sees vertex v i f  u  is adjacent to  

v, and u misses v otherwise. We say an edge {u . v }  is adjacent to  vertex u  and to  vertex 

v. We write G =  (V (G ). E (G ))  to  describe the (undirected) graph G  w ith  vertex set V(G ) 

and edge set E (G ). I f  the elements o f E  are ordered pairs (u, v ) instead o f sets {u , u ), then 

G  is a directed graph. Unless otherwise stated, any graph mentioned in  th is  thesis w ill be 

an undirected graph. When the context is clear, V  and E  w ill be used in  place o f V  (G) and 

E (G ). The size  o f a graph is the ca rd ina lity  o f V.

The open neighbourhood o f a vertex v, denoted N (v ) ,  is the set o f a ll vertices adjacent 

to  v. The closed neighbourhood o f a vertex v, denoted N  [?;], is N (v )  U { v } .  The nonneigh­

bourhood of v  is the set V  — AT[v]- We call elements o f N (v )  (respectively, V  — N  [u]) the 

neighbours (respectively, nonneighbours) o f v.

A  subgraph H  o f a graph G  is a graph (Vh , E h ) where V jj is a subset o f V  and E h  is a 

subset of E. Given a subset S of vertices o f a graph G  =  (V ,E ),  the induced  subgraph  on S

2
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b d a e

c

Figure  1.1: A  cycle

is the graph (S ,E s ) where an edge { it ,  a ) is in Eg  i f  and only i f  u  and v are in S  and  { it, v }  

is in  E . We w ill use H  C G  to  mean i f  is an induced subgraph o f G.

Two graphs G i, G 2  are isomorphic i f  there exists a b ijection /  : V  (G i ) h* V (G 2 ) such 

th a t { it, u ) is in  E (G i)  i f  and only i f  { f ( u ) ,  f ( v ) }  is in  E (G 2 ). The complement G  o f a 

graph G  is the graph (V ,E ) where fo r every pa ir o f d is tinct vertices u ,v  £ V  we have 

{ u , a} 6 E  { it ,  v }  £  E.

A p a th  is a sequence o f d istinct vertices iq , i ;2 , • • - ,Ufc such th a t { iq , iq + i }  G U ( G )  fo r 

i  =  1 . . .  k  — 1. Note th a t th is defin ition uses an ordered sequence o f the vertices in  a path. 

For instance, in  Figure 1.1 b, c, e, a  is a  path  while b, c, d  is not. For a path iq , V2 , • • - ,  iq , an 

edge { v i , V j }  fo r | i  — j \  1 is called a  chord. A  path  is a chord less p a th  (equivalently, an 

induced p a th )  i f  i t  has no chord. An induced path on k vertices is denoted Pk- A  cyc le  is a 

sequence o f vertices iq ,V 2 , - • • such th a t {iq , iq + i}  is an edge fo r i  =  1 . . .  k — 1 as well as 

{ iq ,  ?q } . In  F igure 1.1 a, d, b ,c ,e  is a cycle while o, b ,c ,d ,e  is not. For a cycle ?q , iq  

any edge { v t ,V j}  fo r i  — j  ^  ± l(m o d u lo  k) is called a chord. A  cycle is a cho rd less  cycle  

(equivalently, an induced  cyc le )  i f  i t  has no chord. A  hole  is a chordless cycle on five or 

more vertices. Chordless cycles on k vertices are denoted Ck, and the complement o f a hole 

is referred to  as an an tiho le .

Given a path  v i , . . . , i q  we call the vertices ?q and iq  the endpoints o f the p a th . A ny 

vertex in  the path  which is not an endpoint is called a m idpoint o f the path. A  graph G is 

connected i f  fo r every pa ir o f vertices v  and w there exists a path  in  G  w ith  endpoints v and 

w. A  graph is disconnected i f  i t  is not connected. The (connected) components o f G  are the 

subgraphs o f G  which axe m axim ally connected ( “m axim al”  here meaning w ith  respect to  

subgraph inclusion.) The wings o f a Pk>s are the two edges adjacent to  the endpoints.

A  subset H  o f the vertices V  o f a graph is called a stable set (also known as an independent 

set) i f  every pa ir o f vertices in  H  are nonadjacent, and a clique (also known as a complete 

graph) i f  every pa ir o f vertices of H  are adjacent. A  (vertex) colouring o f a graph is a 

function /  : V  —► {1,2,..., k }  such tha t { i t ,  v \  <E E  => f ( u )  7  ̂ f ( v ) .  The size o f the  colouring 

is the value k. The clique number (o r clique size) o f a graph G, denoted co(G), is the

3
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size o f the  largest induced subgraph o f G  tha t is a clique. S im ilarly, the s tab ility  number 

(or independence number) o f a graph G, denoted a (G ), is the size o f the largest induced 

subgraph o f G  th a t is a stable set. For sim plicity, we w ill say “ a graph is a c e rta in  other 

graph” in  place o f “a graph is isomorphic to  a certa in other graph.” The chromatic number 

o f a graph G , denoted y (G ), is the size o f the smallest colouring o f G.

For more details o f the above concepts and fo r other graph theoretic de fin itions not 

mentioned here, refer to  [23] or [60].

1.2 Optim ization and Com plexity

The reader is assumed to  have p rior exposure to  basic complexity theory including a lgo rithm  

tim e/space analysis, polynom ial time algorithm s and the theory o f NP-Completeness, which 

are concepts covered in  a standard in troducto ry undergraduate a lgorithms course. A  suitable 

in troduction  to  these topics is covered in  [10]. A  deeper, more advanced trea tm en t can be 

found in  [49].

The problems o f finding a maximum independent set, m axim um  clique, and m in im um  

colouring o f a graph are all NP-hard and so polynom ia l-tim e algorithms to  solve these are 

currently unknown and may not even exist. As a result, one is often interested in  solving 

these problems on a certain class o f graphs, perhaps general enough fo r certain applications 

bu t restricted enough so th a t these problems can be efficiently solved. One such class o f 

graphs is the set o f perfect graphs, defined as those graphs G  such th a t fo r every induced 

subgraph H  C G, we have x {H )  =  uj(H ) .  In  1977, Grotschel, Lovasz and Schrijve r [25], 

found th a t the above-mentioned optim ization problems can be solved in  po lynom ia l tim e 

on perfect graphs. These algorithms are not considered efficient fo r use in  applications. 

They rely on Khachiyan’s ellipsoid m ethod [42] from  linear programming, an a lgorithm  

th a t is rarely preferred over the simplex method and its  variants despite the polynom ia l 

runtim e o f the ellipsoid method [8 ]. F ind ing  efficient optim iza tion  algorithms in  b o th  theory 

and practice is one reason perfect graphs have been extensively studied, as well as many 

subclasses o f perfect graphs.

As is common in  graph theory, for a graph G  =  (V ,E ), n  refers to  [F (G )| and m  refers 

to  \E (G )\. Labeled graphs (graphs whose vertices are labeled from  1 to  n ) are commonly 

represented either as an adjacency m atrix  or as an adjacency list.

The adjacency m a trix  M  o f a graph G is a m a tr ix  o f dimension n  x  n  whose rows and 

columns are indexed by the vertices of the graph and entry M [ i , j ]  =  1 i f  vertices w ith  labels 

i  and j  are adjacent in  G, and M [ i , j ]  =  0 otherwise. M  is thus a sym metric { 0 , l} -m a tr ix  

w ith  main diagonal a ll zeroes, and so even w ith  the removal o f redundant in fo rm a tion , th is 

representation requires 0 (n 2) space. Testing the adjacency o f two vertices takes constant 

tim e. In  general, a ll a lgorithm  runtimes mentioned are w ith  respect to  the R A M  model o f

4
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com putation using a single processor machine. A lg o rithm  runtimes w ill always be given as 

a measure o f the worst-case analysis, unless otherwise mentioned.

The adjacency lis t o f a graph is a lis t o f rows indexed by the vertex labels. T he  i th row 

is a lis t o f a ll vertices adjacent to  vertex i .  This representation o f a graph requires 0 ( m  +  n) 

space. Testing the adjacency of two vertices by scanning these lists 0  (n) tim e.

A lgorithm s are, unless otherwise noted, described in  a manner which is representation- 

independent and the analysis o f algorithm s w ill assume constant-time adjacency testing. 

Th is is a reasonable assumption, as creating a 0 (n 2)-space representation o f a g raph w ith  

constant-tim e adjacency testing from an adjacency lis t is a standard textbook problem  [1 ],

1.3 Graph Classes

The study o f graph classes and a lgorithm ic graph theory has flourished over the past fifty  

years, resulting in  various books surveying the general field o f graph classes (fo r example, 

the survey by Brandstadt, Le and Spinrad [3], or the book by Golumbic [23]) as well as 

books on specific graph classes (for example, tolerance graphs [24] or perfect graphs [50].) 

In  th is section we show how some graph classes are introduced, both  from  app lica tions and 

from  the natura l generalization or restric tion  o f other classes.

1.3.1 Classes from A pplication M odeling

Consider an ind iv idua l try ing  to  decide on what lectures to  attend during a one-day confer­

ence. Every lecture at th is  conference spans a contiguous tim e interval and can be of any 

length. Two lectures are said to  conflict i f  the ir tim e frames overlap, and so th is  ind iv idua l 

can only attend non-conflicting lectures. We are interested in  find ing  a largest set o f non­

conflicting lectures. Thus, i f  we create a graph whose vertex set is the set o f lectures on 

th a t day and create an edge between tw o vertices i f  and only i f  the corresponding lectures 

conflict, then the task is solved by find ing  a m axim um  independent set in  the  resulting 

graph. If, instead, the ind iv idua l wants to  hire note-takers, and the fewest num ber o f such 

note-takers, so th a t every lecture can be recorded, then we are interested in  the size of the 

maxim um  clique o f the graph as this w ill  be the largest number o f lectures th a t are occurring 

a t any one instant in  tim e. An optim al colouring o f the graph w ill provide the schedule each 

note-taker should take, as each colour class w ill provide a conflict-free lis t o f lectures.

As noted above, m axim um  independent set and clique are N P-hard op tim iza tio n  prob­

lems. However, since the graph created fo r th is application was constructed from  a  specific 

structure (time intervals on a single tim e line,) the resulting graph w ill have some exploitable 

properties. For instance, i f  there exists any cycle o f size four or more in  th is  graph, then  tha t 

cycle must have a chord. We call graphs obtained (as described in  the preceding paragraph) 

from  the intersection o f intervals on a line in te rva l graphs. The N P-hard problem s o f max-

5
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im um  clique, maximum independent set, m inim um  colouring a ll become polynom ia l-tim e 

solvable when the graph considered is an interval graph [26].

Now consider th is  ind iv idua l a llow ing a few m inutes to  be spared a t the beginning or 

end o f each lecture, since sometimes a rriv ing  several m inutes late does not affect th e  overall 

value o f attending the lecture. In  our problem fo rm ula tion , we associate a tolerance w ith  

each tim e  interval. I f  we define two intervals to be in  conflict i f  and only i f  th e ir  intersection 

size is greater than a t least one of the two tolerances, then the resulting graphs obtained 

from  th is  problem are called tolerance graphs. See [24] fo r more in form ation on these graphs.

1.3.2 Classes from Generalizations or Specifications

Here we describe a class o f graphs and derive from  i t  other graph classes whose definitions 

may have seemed a rtific ia l when removed from the context o f the original graph class.

To solve a problem such as M A X IM U M  C LIQ U E on a graph G, i t  is clear th a t i f  th e  graph 

is disconnected, w ith  components C i and C-2 , then we may treat each connected component 

separately, find u j{C \) and u(C-2 ), and use the m axim um  o f each as cj(G ). Th is  provides 

a simple decomposition in to  smaller problems. We can take th is fu rthe r by n o tin g  that i f  

we are looking for a clique in  a graph, then th is is  equivalent to  finding an independent 

set in  the complement o f the graph. We further decompose our problems by now  taking 

complements o f each component and decomposing these in to  the ir connected components 

while keeping in  m ind th a t any m axim um  independent set o f a graph is form ed b y  taking 

the union o f the m axim um  independent sets of its  components.

Such a decomposition is natura l to consider and is useful for a simple approach to  solving 

some poten tia lly  hard problems. A  problem, o f course, occurs when the complem ent of a 

large graph is also connected and so no further decomposition is available. We henceforth 

define a class o f graphs fo r which th is never happens: G  is a complement reducible graph 

(or sim ply a cograph) i f  i t  can be decomposed in  the  above way u n til every subproblem is 

reduced to  a single vertex.

The class o f cographs is a w idely-studied class th a t arise in  applications. A  simple 

characterization o f such graphs is th rough a forb idden induced subgraph characterization, 

namely, a lis t o f graphs th a t never appear as induced subgraphs. For instance, the  interval 

graphs never contain a chordless four-cycle, and so C i  is one forbidden induced subgraph 

o f interval graphs. For in terva l graphs in  particu la r, there exists an in fin ite  lis t o f m inimal 

such forbidden induced subgraphs. On the other hand, th is lis t is very short fo r cographs: 

G  is a cograph i f  and on ly i f  G  is P-t-free [55].

Since restricting  P 4 S results in  useful s tructura l properties in  the graphs, m any cograph 

generalizations have been considered. For instance, Hoang [33] defined Pi-sparse  graphs 

as those graphs w ith  the p roperty  th a t every set o f five vertices induces a t m ost one P4.

6
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Jamison a n d  O la riu  [39] define P^-reducible graphs as those graphs such th a t every vertex is 

contained in  a t most one P 4 . Many o the r sim ilar graph classes have been defined t o  restric t 

the P4 S in  some way, such as P4 -extendible graphs [40], P4 - lite  graphs [41], and P 4-laden 

graphs [22]. Later, we w ill discuss semi P4-sparse graphs, introduced in  [19]. A l l  these 

classes lead to  useful decomposition schemes and generalize cographs (in the sense th a t i f  a 

graph is a cograph then i t  also belongs to  any of these classes.)

1.4 R ecognition

Now th a t we are aware o f many graph classes, a na tu ra l question should be asked: Given 

a graph, is i t  a member o f a particu la r graph class? Th is is called the recognition problem  

fo r a graph class. For the above cases, cographs (and a ll the other P4-re s tric tin g  classes 

mentioned) can be recognized in  linear tim e. I t  can be the case th a t a recognition problem 

is NP-complete, as w ith  the case of perfectly orderable graphs [47]. Interval graphs can be 

recognized in  linear time, while tolerance graph recognition is s till unknown to be p o ly tim e  

solvable.

The purpose o f th is thesis is to  explore the recognition o f (P5 , P 5 )-free graphs, w h ich  are 

introduced and discussed in  Chapter 3. To the best o f the author’s knowledge, th is  is per­

formed in  0 ( n 3) tim e using the HHD-free graph recognition a lgorithm  [36], or O (n m  + m 2) 

tim e using the  Meyniel graph recognition algorithm  [52]. A  deeper structural understand­

ing often helps improve an a lgorithm , and structura l results on (P5, P 5)-free graphs are 

presented in  Chapter 6 .

7
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Chapter 2

Graph Tools

2.1 Lexicographic Breadth-First Search

The standard breadth-first (BFS) search a lgorithm  is well known and often ta u g h t in any 

in tro du c to ry  algorithms course, so is om itted here. Refer to  [10] for a descrip tion  o f BFS. 

Here, we describe a variant o f BFS called Lexicographic B readth-F irst Search [53] (LexBFS). 

LexBFS is an algorithm  producing an ordering o f the vertices V \, v-2 , ■.., vn o f a g raph  which 

is a BFS ordering but o f a specific type. The a lgo rithm  begins as a normal BFS , starting 

a t an a rb itra ry  start vertex which w ill become vertex V i, and all vertices are in tia lize d  w ith  

an em pty label. For every neighbour u  o f of Vi, concatenate the label ‘1’ to  the  end of the 

label o f u. Vertex Vi is marked as having been seen o r visited, and of the u nv is ited  nodes, 

we select a vertex of lexicographically strongest label (a t th is po int, a vertex w ith  label ‘ 1 ’ 

is the “strongest”  label.) V is iting  one of these vertices and calling i t  V2 , we concatenate 

the label ‘2 ’ to  (the end of) a ll of the  labels o f V2 ’s neighbours. The earliest labels are 

considered lexicographically strongest (i.e. ‘ 1 ’ is stronger than ‘2 ’) and any non-em pty label 

is considered stronger than an empty label. The possible labels o f a vertex in  o u r graph a t 

th is  po in t are ‘ 1 2 ’ , ‘1 ’, ‘2 ’ , ” , and these are presented in  a lexicographically decreasing order. 

LexBFS chooses the next vertex to  v is it as the vertex w ith  the strongest lexicographical 

label. This process is continued u n til a ll nodes are v is ited . The labelling scheme essentially 

serves as a tie-breaking measure w ith  respect to  vertex choices in  the standard B FS . In the 

case th a t two or more vertices share the lexicographically strongest label, any ve rtex  w ith  

the strongest label may be chosen a rb itra rily .

As one more example o f a lexical comparison, label ‘ 125’ comes before labe l ‘ 13456’ , 

since ‘ 125’ is stronger in  its  second component. A  search sim ilar to  BFS, called maximum  

card inality search (MCS), w ill favour the longer labels over the shorter labels regardless o f 

w ha t the contents of the labels are. In  the case th a t tw o or more vertices have th e  longest 

labels, an a rb itra ry  vertex o f longest label may be chosen next. The te rm  ’’m axim um  

card ina lity ” refers to the choice of p icking a vertex whose set o f a lready-visited neighbours

8
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is o f m axim um  cardinality. For some classes of graphs, i t  has been shown th a t an  MCS is 

equivalent to  a LexBFS ordering [53].

MCS and LexBFS can be implemented to run  in  linear (0 (m  +  n)) tim e. See [53] for 

details.

2.2 G reedy Colouring

We defined earlier the concept o f graph colouring and mentioned th a t com puting an optim al 

(m in im um ) colouring is NP-hard. Here, we present a simple algorithm  to  co lour a graph in  

a not-necessarily-optimal manner.

We w ill equate colours w ith  the integers 1 , 2 , . . . ,  k, and use the term  ‘sm allest’ colour to  

mean the colour w ith  smallest corresponding integer. One obvious colouring m e thod  is to  

colour vertex u, w ith  colour i .  This provides a tr iv ia l upper bound to  the ch rom atic  number 

(x(G ) <  |W1,) and this upper bound is realized when the inp u t graph is a c lique. Note 

th a t any va lid  colouring o f the graph provides an upper bound on the chrom atic  number. 

The greedy colouring algorithm, in  its most general fo rm , takes an a rb itra ry  o rde ring  of the 

vertices o f a graph and proceeds to  v is it the vertices in  th is  order, colouring each ve rtex  w ith  

the lowest colour available (tha t is, th e  lowest colour no t already assigned to  a neighbour 

of th a t vertex.) This process runs in  0 (m  +  n) tim e  and provides a va lid  co lou ring  size 

less than  or equal to  |P |. Graphs exist w ith  specific vertex orders fo r which th e  difference 

between the greedily obtained colouring size and the chromatic number o f th e  graph are 

a rb itra rily  large [59].

2.2.1 P erfectly  Orderable Graphs

I t  is interesting to note th a t fo r any graph there does exist some ordering o f the  vertices 

such th a t the greedy colouring a lgorithm  w ill provide an op tim a l colouring. T h is  is  easy to  

see, since from  any optim al colouring, i f  we firs t lis t ou t the vertices of co lour 1  and then 

the vertices o f colour 2 , and so on, a greedy colouring o f th is  order w ill always produce a 

colouring w ith  x (G ) colours. Thus, fo r general graphs, find ing  such an order is sufficient to  

find an optim al colouring, and so the problem o f find ing  th is  vertex order is N P -ha rd .

In  1984, Vasek Chvatal [6 ] defined perfectly orderable graphs as those graphs fo r  which 

there exists a vertex ordering such th a t, fo r every vertex subset, i f  th a t ordering  is observed 

for th a t subset, then the greedy colouring method o p tim a lly  colours the associated induced 

subgraph. Such an ordering, i f  i t  exists, is called a perfect order. To illus tra te  th e  usefulness 

o f such a defin ition, imagine a colouring problem on a graph, say, a channel assignment 

problem to  a set o f cell phone users. G iven a perfect order, we can colour the  e n tire  graph 

optim ally. Now i f  any subset o f cell phone users tu rn  o ff th e ir phones, the resu ltin g  users 

(creating an induced subgraph o f rem aining vertices) can also be coloured greed ily  using the

9
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Figure 2.1: An obstruction

already-known perfect order, w ithout having to  recompute anyth ing. Two w orthy questions 

are now asked: given a graph, is i t  perfectly orderable? Given a perfectly orderable graph, 

how quickly can we find a perfect order?

As an example o f a small graph and an ordering which is no t perfect, consider a P4  

(i-’i , V‘2 . Vo, , iq ) and an ordering V\ , iq , v-2 , v3. Then the two endpoints V\ and V4  receive 

colour 1 and then u2  must take colour 2  and v3  is assigned colour 3. A  P4 , however, is easily 

coloured w ith  two vertices. A  simple way to capture th is scenario is to  orient every edge 

from  Vi to  Vj i f  Vj comes before u,- in the ordering. Then in  the above case, since the two 

endpoints come earliest in  the ordering, the wings o f the P 4  are oriented outward, w h ile  the 

middle edge is oriented a rb itra rily  (see Figure 2.1.) When a P4  is oriented as in  F igure  2.1, 

we call i t  an obstruction.

For graphs w ith  oriented edges, we call an directed cycle a sequence o f vertices v i , . . . ,V k  

where {«,,?;,+ 1 } is an edge oriented from  u, to 1 and {v k ,v  1 } is an edge oriented from  Vk 

to  v \ . I f  a directed graph has no directed cycle, we call i t  acyclic.

For an orienta tion o f a graph to  represent a perfect order, i t  must be acyclic (so tha t a 

corresponding linear order exists) and i t  can not have such an obstruction.

Chvatal showed th a t these necessary conditions are also sufficient.

T h e o re m  2.2.1 [ 6 ]  A graph is a perfectly orderable graph i f  and only i f  there exists an

acyclic obstruction-free edge orientation.

The above-mentioned questions were answered by M iddendorf and Pfeiffer in  1986 [47] 

when they proved th a t perfectly orderable graph recognition is NP-Com plete. I t  follows 

th a t finding a perfect order (even in a graph known to  be perfectly orderable) is N P-hard, 

since i f  we had an a lgorithm  to  find a perfect order we could apply i t  to  any graph, construct 

the associated acyclic orientation and check i f  i t  is valid s im ply by checking the wings o f 

every P4 to  ensure a ll P4 S are obstruction-free. The va lid ity  o f the orien ta tion  w ou ld  then 

answer the question o f whether the o rig ina l graph is perfectly orderable.

Many subclasses o f perfectly orderable graphs have been introduced. B r itt le  graphs [7] 

are perfectly orderable and polynom ia lly  recognizable, bu t no forbidden induced subgraph 

characterization is known fo r them. A  subclass o f b r it t le  graphs which have are characteriz- 

able by forbidden subgraph is the class o f (house, hole, domino)-free  graphs [34] (HHD-free 

graphs). These two classes are described in  subsection 3.2.4, as HHD-free graphs are an 

im portant class in  re lation to  the (P5, P 5, C5)-free graphs.
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2.2.2 O ptim izing w ith a Perfect Order

Chvatal [6 ] showed tha t perfectly orderable graphs are perfect; tha t is, he showed th a t for 

every ind uce d  subgraph o f a perfectly orderable graph, the maximum clique size is equal to  

the ch ro m a tic  number. Since the defin ition  of a perfect order provides an op tim a l colouring 

in  linear t im e  when a perfect order is known, the fact th a t these graphs are perfect also 

gives the m ax im um  clique size as well.

To f in d  a maximum clique in  a perfectly orderable graph G, consider a perfect order <  

on the vertices. Consider a vertex v o f largest colour, and due to  the colouring scheme, we 

know i t  m u s t have a neighbour in  each colour class corresponding to colours sm aller than 

x(G )- W e can in itia lize  the clique w ith  two vertices, v  and one o f its neighbours o f the  next 

highest co lou r, call i t  w. Chvatal proved the fo llow ing lemma:

L e m m a  2 . 2 . 2  [6 ] Let G be a graph w ith  a perfect order <  and a clique C  w ith  every w in  

C  having a neighbour p(w ) not in  C. Let P  =  {p (w ), fo r  every w  € C }. I f  P  fo rm s  a stable 

set, then some p(w ) in  P  is adjacent to a ll of C.

Here, we have a C =  { v ,w } ,  and choose the neighbours p(v) and p(w) to  be in  the next 

lowest co lour class so th a t we know they have no edge between them. The p ro o f o f the 

lemma is a lgorithm ic, as so provides us w ith  the desired p(w ) vertex adjacent to  a ll of C. 

The clique is extended to include th is  vertex, and the  process is repeated.

The problem  o f finding a m axim um  independent set in  a perfectly orderable g ra ph  can be 

solved in  polynom ial tim e by v irtue  o f  the fact th a t perfectly orderable graphs are perfect. 

However, as we discussed earlier, the algorithms on perfect graphs are no t ve ry  practical. 

The problem  o f finding a maximum independent set o f a perfectly orderable g raph  w ith  a 

polynom ia l-tim e combinatorial a lgorithm  is s till open, w ith  or w ithou t a given perfect order. 

In  fact, i t  is s t il l unknown as to  how one could produce an optim al colouring and maxim um  

clique in  a perfectly orderable graph w ith  a purely com bina toria l method in  p o lynom ia l time 

when a perfect order is not provided.

2.3 Modular D ecom position

A  common problem-solving technique is to  break a large problem into  smaller subproblems, 

usually in  hopes o f making the subproblems simple enough to  solve and whose so lutions can 

be somehow combined to  solve the orig ina l, large problem . This section discusses a method 

fo r decomposing graphs using a m ethod called m odular decomposition. W hen  modular 

decomposition is applied to  cographs, i t  is exactly the same as cograph decomposition 

already discussed (in  Subsection 1.3.2,) and so i t  can be considered a kind o f generalization 

o f the cograph decomposition.
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fork co-fork

Figure 2.2: T he  fork and its  complement

When a graph is no longer decomposable w ith  respect to  successive graph com plem enta­

tions or m odula r decomposition, i t  is called prime. The prim e cographs are s ing le  vertices. 

Later, we w ill see how the m odular decomposition has been used to  recognize (P 5 , P 5 ,bu ll)- 

free graphs, whose prime graphs are sim ply b ip a rtite  or complements o f b ip a r t ite  graphs. 

The prim e semi-P4-sparse are either b ipa rtite  graphs, complements o f b ip a r t ite  graphs, or 

a special k in d  o f sp lit graph.

2.3.1 H om ogeneous Sets

Cographs were introduced in  Subsection 1.3.2. Recall th a t cographs are those graphs to ­

ta lly  decomposable (to single vertices) by successively tak ing  complements o f  connected 

components. A  co-connected component (or co-component) is a set o f vertices w h ic h  form  a 

connected component in  the complement of the graph. Hence, the cograph decom position 

breaks the graph in to  its components and then each component in to  co-components, and so 

on. Observe th a t a component C% has the  property th a t every vertex in  V  — C\ sees none o f 

C i , and s im ila r ly  a co-component (7-2 has the property  th a t every vertex in  V  — C i  sees every 

vertex in  C i.  We say tha t w ith  respect to  a graph, a vertex subset S is indistinguishable  

i f  every ve rtex outside the set either sees every vertex in  S o r misses every v e rte x  in S. 

Indistinguishable sets have also been called homogeneous sets or modules.

D e f in i t io n  2 .3 .1  S C V  is a module i f  1  < |5| <  |V| ,  and every v G V  — S  e ithe r sees 

every s 6  S o r misses every s G S.

D e f in i t io n  2 .3 .2  A graph is prime i f  i t  has fo u r o r more vertices and contains no module.

A n example of a graph which is connected and co-connected (and so can n o t  be decom­

posed in  the  way th a t cographs can be) while s till having a module is the fo rk, w hose graph 

and complement are depicted in  F igure 2.2. I f  a set M  C V  is a module o f G, th e n  th a t set 

is also a m odule  in  G  since the sets o f vertices in  V  — M  th a t miss a ll o f M  a n d  see all o f 

M  switch roles.

Note some basic properties o f modules:
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d r h r

Figure 2.3: Various graphs

P ro p o s it io n  2 .3.3  [3 ] Let G  =  (V, E ) be a graph and let A , B  be two modules o f  G. Then 

the fo llow ing properties hold:

( i)  A n  B  is a module

( i i)  i f  B  A , then A \ B  is a module 

i f  A n B  7  ̂ 0, then A l l  B  is a module.

These properties allow us to have a well-defined notion o f m axim al modules, since i f  two 

modules intersect, either one is completely contained in  another or the union o f the two 

modules form a larger module.

2.3.2 Prim e Graphs

Recall th a t graphs w ith  no modules are called prime. A ny graph w ith  more than one vertex 

th a t has no P4  (and hence is a cograph) w ill have a module (a component or a co-component,) 

and so any prim e graph must have a P 4 . In  fact, the only prim e graph on four o r fewer 

vertices is the P4 . The prime graphs on five vertices are the bull, P5, P 5, C 5  (see figure  2.3).

I t  was earlier stated th a t modules are invariant under complementation, so a g raph G is 

prime i f  and only i f  G  is prime. More prim e graphs include the Pk>$, Pk> 6 , Cfc>6 , Ck>e- 

Even though a graph such as C 4  is n o t prime itse lf, the defin ition  o f p rim a lity  does not 

restric t C4 from existing in  a prime graph. The defin ition  o f p rim a lity  sim ply im plies that 

the rest of the graph must adjoin to  the  C4  so th a t the  modules in  the C4  are no t modules 

in  the entire graph. This suggests the existence o f theorems o f the sort i f  a graph is  prime
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Q Q

F igure  2.4: A  prime (P5, P 5)-free graph w ith  a C 4  (filled) th a t is not in  an H e.

and has a certain non-prime subgraph, then that non-prim e subgraph must extend in  some 

way to some prim e structure. One o f the first theorems o f th is sort is given by Hoang and 

Reed:

T h e o re m  2 .3 .4  [35] I f  a prim e graph has an induced C 4  then the graph must have at least 

one o f a D e, H s or a P 5  (Figure 2.3).

Graphs such as Dq, Hq and P5 are called m in im a l p rim e  extensions o f the graph C4, since 

any prim e graph containing a C4 m ust contain one o f these. The m in im al prim e extensions 

o f small graphs (those one five or fewer vertices) have been completely characterized; some 

graphs have an in fin ite  number of m in im a l prime extensions [2 ].

I t  should be noted here th a t the te rm  “prime extension” may be misleading. L e t S be 

set o f four vertices inducing a C4  in  a prime graph G . Theorem 2.3.4 tells us th a t  G  must 

contain six vertices which induce one o f D q or H q o r else has five vertices induc ing  P 5. Let 

T  be a set of five or six vertices in G  inducing one o f the  m in im al prime extension o f  S. The 

reason “extension” may be m isleading is because i t  is no t necessarily the case th a t 5  is a 

subset o f T . Figure 2.4 shows such an example.)

In  a graph G  w ith  a module M , we can shrink M  to  a single vertex %  such th a t v m  

sees the vertices in  G  th a t were universal on the m odule M  and sees no other vertices. This 

leaves behind the graph induced by the  vertex set V  \  (M  \  v m ), where v m  can be taken as 

any vertex in  M .  When each m axim al modules o f G  has been replaced by a single vertex, 

we call the resulting graph G* the characteristic graph o f G. Note th a t G* is p rim e  and is 

an induced subgraph o f G.

2.3.3 M odular D ecom position  and P artia l Closure

W hen a module M  o f a graph G  has been replaced w ith  a single vertex, the g raph G  is said 

to  have been decomposed in to  the fo llow ing two graphs: the graph induced by V  \  ( M  \  v m )
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and the graph induced by M , and these two graphs can be decomposed fu r th e r. This 

procedure o f successively decomposing a graph is the modular decomposition. T h e  linear 

tim e recognition algorithm  for decomposing cographs by Corneil, Perl and S tew art [11] led 

to  the development o f a linear time a lgorithm  fo r constructing the m odular decomposition 

tree (by McConnell and Spinrad [44] and by Courn ier and Habib [12].)

The general linear tim e decomposition a lgorithm  is d ifficu lt and not discussed here. 

A  sim pler linear time a lgorithm  for m odular decomposition exists for various classes, for 

example, chordal graphs [37].

For computer-aided searches during the research fo r th is  thesis, a m odular decomposition 

was no t used. We found a ll prime graphs on ten or fewer vertices using a simple recognition 

a lgorithm . For a set o f vertices S in  G, i f  v is a vertex in  V  (G ) — S we call v p a rtia l on 

S i f  v sees a vertex in S and misses a vertex in  S. Follow ing [31], for any ve rtex subset S 

o f V  w ith  |S| >  1, define P T L (S )  to be the set of vertices in  S together w ith  any  vertices 

in  V  — S  which are partia l on the set S. As is usual w ith  functional n o ta tio n , we let 

P T L 1 {S) =  P T L (S )  and P T L l {S ) =  P T L (P T Z M 1 (S )) , for i  >  1. Since \P T L {S ) \  >  |S|, 

we are guaranteed to  have some k$ fo r which P T L ks (S) =  P T L ks~ l (S). Define th e  partia l 

closure o f S, P T L *(S ),  as the set of vertices obtained after ite ra ting  the P T L (S )  function 

ks  times. In  particu lar, notice tha t i f  S  is homogeneous in  G, then P T L (S )  =  S.

A  simple (while not necessarily efficient) a lgorithm  to  determine whether a graph is 

prime relies on the fact th a t i f  there exists a module M  in  a given graph, and i f  S  is some 

set o f vertices w ith  S C M  and \S\ >  1, then P T L * (S )  =  M 2  where M 2 is some module 

such th a t M 2  C M  w ith  possibly M 2  =  M . I t  fo llows th a t the partia l closure ju s t  needs 

to  be tested fo r all S w ith  |S| =  2 , and i f  any such p a rtia l closure is a s tr ic t subset of the 

whole graph then we have found a module, otherwise the graph is prime.

2.4 Relevant Properties of Prim e Graphs

There are some im portant properties o f  prime graphs to  note. For any pair o f vertices {a;, y }  

in  a proper vertex subset S o f V  in  a p rim e graph, there must be some vertex d \ th a t sees 

x  and no t y, or sees y and not x. However, since the  three vertices { d \ , x, y )  also cannot 

form  a module, there must be another vertex cfo p a rtia l on th is set, and by con tinu ing  this 

process we do not exp lic itly  know w hich d, vertices are inside o r outside the  set S  (even 

though we know S is not a module and there must ex is t a vertex outside S  w h ich  is partia l 

on it ,  possibly seeing m ultip le  vertices and missing m u ltip le  vertices o f S.) For specific local 

in form ation , the follow ing lemma is indispensable. C a ll a set big i f  i t  has size a t  least two.

L em m a  2 .4 .1  [19] Let G be a prim e graph and S a s tr ic t subset o fV (G ) w ith  |S | >  1. Let 

the big connected components o f S be Q 1 , Q 2 , - ■., Qk, (respectively, co-connected components
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R i,  R-2 , ■. -, R i-)  Then fo r  any 1  <  i  <  k  ( 1  <  j  <  k )  there exists some vertex in  V  (G) \  S 

which is p a rtia l on some edge in  Q i (non-edge in  R j) .

Recall th a t a vertex in  a graph is called sim plicia l i f  its  neighbourhood induces a  clique. 

Call a ve rtex co-simplicial i f  the vertex is simplicial in  the graph’s complement. T h a t is, a 

vertex is co-simplicial i f  its  non-neighbours induce a stable set.

L e m m a  2 .4 .2  The set o f sim plicial vertices in  a p rim e  graph induces a stable set.

Proof. L e t v  and w  be two simplicial vertices in  a prime graph. There must e x is t some 

d  d istinguishing {?;, w \,  so say d sees v  and misses w. I f  v sees w  then v sees b o th  d and 

w, bu t d  was chosen to  miss w  which is contrary to  v being simplicial. Thus v  must m iss w. □

A pp ly ing  the above argument to  the graph complement, we have:

C o ro l la ry  2 .4.3  The set o f co-simplicial vertices o f a prim e graph induces a clique.
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Chapter 3

M otivating (P5, PgJ-free Graphs

The purpose o f th is chapter is to reveal the connection between (P5, P 5)-free or (P 5 , P 5, C5 )- 

free graphs and other other well-known classes. La te r, we w ill see theorem 4.1.1 o f Fouquet 

te lling  us th a t, w ith  respect to  prime graphs on six o r more vertices, the (P 5 , P s)-free  and 

(P 5 , P 5 , Csj-free graphs are identical.

3.1 (P5 , P 5)~free as a Generalization of Subclasses

A  natura l use o f generalization is to  take known results on certain graph classes and try  to  

extend those results to  a larger class, thereby so lving a larger problem. Here, we present 

some im p orta n t subclasses which are contained in  the  class o f (P 5 , P 5, C5)-free graphs.

3.1.1 Sp lit Graphs

A  graph is b ip a rtite  i f  its  vertices are partitionab le  in to  two stable sets; equiva lently, a graph 

is b ipa rtite  i f  i t  can be coloured w ith  tw o  colours. B y  changing the vertex p a r t it io n  property 

from  two stable sets to  one stable set and one clique, we arrive a t the sp lit graphs.

D e f in it io n  3 .1 .1  A graph is split i f  its  vertices can be partitioned in to  two sets S  and C, 

where S is empty or induces a stable set and C is empty or induces a clique.

Note th a t the complement of a s p lit graph is a s p lit graph, as the stable set S  and clique 

set C  switch roles in  the complement. In  fact, the class o f sp lit graphs is set of g raphs  which 

are both chordal and co-chordal.

T h e o re m  3 .1 .2  [16] A  graph G is sp lit i f  and only i f  G  and G are chordal.

Through forb idden induced subgraphs, one may also characterize sp lit graphs as ( C 4 , C'5 , 2 K 2 )- 

free graphs [16] (where 2 K 2  is a graph on four vertices w ith  two d is jo in t edges.)

There are many other characterizations of these graphs, including an in te rsection  model 

(involving th e  intersections o f d isjo in t stars on a tree, mentioned in  [45]) as w e ll as vertex-
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ordering properties involving degree sequences [27], [58], which lead to  a linear t im e  recog­

n itio n  a lgorithm  (in fact, i f  the degree sequence is given, the algorithm  runs in  0 (ra)-time.)

Since recognizing sp lit graphs can be performed in  linear time, when tes ting  whether 

a graph is a (P5 , P 5 , C5 )-free graph, we can afford to  firs t test i f  the graph is s p lit .  I f  i t  

is, having no 2 K 2  ensures th a t there is no P5  and having no C4  tells us th a t th e re  is no 

P 5 . The forbidden induced subgraph characterization fo r sp lit graphs provides the  fac t that 

sp lit graphs are a (s tric t) subclass of (P 5 , P 5 , C 5 )-free graphs. In  the case th a t tes ting  for 

split-ness fails, we s till gain from  our a ttem pt: there are linear tim e algorithm s to  recognize 

sp lit graphs such th a t i f  the inpu t graph is not sp lit, a C4 , 2 K 2  or C5  is found [51]. When 

testing a graph for containment in (P5, P 5, C5)-free graphs, knowing th a t i t  is n o t split 

provides us w ith  inform ation on the location o f one o f these subgraphs.

Yet another benefit from  firs t testing the split-ness o f a (prime) graph is th a t i f  th e  graph 

is not sp lit, we can apply the follow ing theorem:

T h e o re m  3 .1 .3  [31] I f  a p rim e graph is not sp lit, then every vertex is in  a P 4 .

This theorem appears in  the context o f ^ -s t ru c tu re  [31]. However, th is  fo rm u la tion  o f 

the theorem aides our study in to  the structure  o f p rim e  (P 5 , P 5 , C 5 )-free graphs.

3.1.2 R ecursively Split Substitute G raphs

The operation o f substitution  is the opposite of contracting  a module to a single vertex: we 

replace a vertex v  in a graph G  w ith  a graph H  m aking  every vertex in  H  ad jacent to all 

the vertices in  G  th a t were adjacent to  v. In  the resu lting  graph, the subgraph induced by 

H  is a module. For any class o f graphs, we can ask whether the substitu tion  o f  a graph o f 

th a t class in to  any vertex o f a graph o f th a t class m ainta ins containment w ith in  th a t class. 

For instance, in  the case o f sp lit graphs, i f  we substitu te  a sp lit graph in to  ano the r split 

graph, is the result necessarily a split graph? The answer here is ‘no’ as we can substitute 

two nonadjacent vertices in to  the m iddle-vertex o f a P3 and obtain a C4 .

The class obtained from  substitu ting  sp lit graphs in to  sp lit graphs is called th e  recursively 

split substitute graphs. The forbidden induced subgraphs fo r th is class are the C 5 , P3, P 5 , He , 

and the I I q (see Figure 2.3) [35] [32],

There is a theorem th a t characterizes a graph class obtained from  su bs titu tion :

T h e o re m  3 .1 .4  [61] Let Z  be a hereditary class o f graphs with forbidden induced subgraphs 

{ F i , F 2 ,F 3, . . . }  (possibly in fin ite  list) then the class obtained from  substitu ting a Z-graph 

in to  a vertex in  a Z-graph has forbidden induced subgraphs M P E (F i)  U M P E ( F 2 ) U . . . ,  

where M P E {F ()  is the set o f a ll m in im a l prim e extensions of F i [61].

As a corollary to th a t theorem, i f  a ll the Fi graphs are already prime, the class o f  graphs
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is closed under substitu tion. For instance, (P5 , P 5 )-free and (P5 , P 5 , CYj)-free graphs are 

closed under substitution.

The weak bipolarizable graphs [48] are defined as the chordal substitute graphs-, th a t is, 

a graph is weak bipolarizable i f  i t  is obtained from  substitu ting  a chordal graph in to  any 

chordal graph. The forbidden induced subgraphs o f weak bipolarizable graphs are C k > 5  and 

a ll m in im a l prim e extensions o f C4 , namely P 5 , I I q , and D$. Note th a t these graphs can be 

characterized as those for which every prime induced subgraph is chordal.

The s p lit substitute graphs can be easily recognized through the fact th a t a g ra ph  is sp lit 

substitu te  i f  and only i f  i t  and its  complement are bo th  weak bipolarizable. This fo llow s from 

the forb idden induced subgraph defin ition  of weak bipolarizable graphs by O la riu  in  [48]. 

The paper also gives a linear tim e recognition a lgorithm  for weak bipolarizable graphs. Since 

((7 5 , P 5 , P 5 , H q, Pg)-free graphs can be recognized in  o (n3) tim e, i t  is na tu ra l to  wonder i f  

the (P 5 , P 5 , C5)-free graphs can be as well.

3.1.3 Cographs

M uch discussion has already been devoted to cographs (P i-free graphs) and th e ir  im por­

tance in  the study o f graph classes and graph a lgorithm s. One m ight wonder i f  th e  simple 

generalization from  P^-free graphs to  Ps-free graphs would yield as fru itfu l a s tu d y  as the 

study o f cographs has been. Surprisingly, very l i t t le  is known about P 5 -free graphs. In  fact, 

the m ax independent set problem is o f unknown com plexity [2 1 ] on th is  class o f graphs, 

while i t  is easily polytim e solvable on P j-free  graphs (as already described) and i t  is known 

to  be NP-complete on P6-free graphs.

The cograph decomposition tree (through graph complements) and its  use in  solving 

such problems as max independent set, max clique, m in colouring and m in  c lique  cover 

relies heavily on the fact th a t Pj-free graphs are self-complementary. Since P^-free graphs 

do no t share th is property, the self-complementary class o f (P5, P 5)-free free graphs may 

exh ib it generalizations o f properties o f cographs.

3.2 (P5 , P 5 , C5 )-free Graphs as a Special Case o f Super­
classes

Rather than relaxing restrictions to a rrive  at more general graph classes, one m ay impose 

fu rthe r restrictions to  gain more structure and properties in  graphs. We w ill see here how 

our (P5 , P 5 , (7 5 )-free graphs serve as an im portan t subclass o f other well-studied classes.

3.2.1 W elsh-Powell Perfect Graphs

E arly  investigations in to  graph colouring led to the em pirical analysis of heuris tic  methods 

to  colour graphs. One such heuristic was to  sort the  vertices o f a graph by th e ir  degree
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(from la rg e s t to  smallest) and then to  apply a greedy colouring to  this ordering [59]. The 

in tu ition  here  being to  colour the po ten tia lly  most-constrained vertices first. T h e  vertex 

ordering based on degree is sometimes referred to  as a Welsh-Powell ordering. In  1987, 

Chvatal e t. at. [9] defined and studied several subclasses o f perfectly orderable graphs, one 

o f which th e y  called Welsh-Powell perfect graphs:

D e f in i t io n  3 .2 .1  [9 ] A graph G is Welsh-Powell perfect i f  every Welsh-Powell ordering is 

a perfect ordering  fo r  that graph.

In  [9], a forbidden induced subgraph characterization is given for Welsh-Powell perfect 

graphs, w h ich  includes 17 forbidden subgraphs. One of these is the C5 , and i t  was ob­

served th a t every other forbidden subgraph contained a P5  or its  complement, and  so the 

(P5 , P 5 , C 5 )-free graphs are Welsh-Powell perfect. Hence, i t  is easy to find a p e rfec t order­

ing for (P 5 , P 5, C ^-free  graphs using the degree sequence, and moreover, these graphs are 

self-complementary. Linear tim e algorithm s were given in  [9] to  solve clique, co louring , inde­

pendent set and clique cover on Welsh-Powell perfect graphs, and thus on (P5, P 5, C ^-free  

graphs.

These (P5, P5, C§)-bee graphs are no t the largest self-complementary class o f perfectly 

orderable graphs. Clearly, the largest such class is the class o f perfectly orderable graphs 

intersected w ith  the co-perfectly orderable graphs, bu t no a lternate characterization for 

th is class is known to  exist (particu larly , no forbidden induced subgraph characterization 

is known fo r th is .) We w ill see in Subsection 3.2.4 the self-complementary class o f  brittle  

graphs th a t do no t include a ll perfectly orderable co-perfectly orderable graphs, but do 

include the (P5, P5, C5)-free graphs as a subclass.

3.2.2 M eyniel Graphs

Recall th a t a graph G  is is perfect i f  fo r every induced subgraph H  o f G the clique size of H  

is equal to  the chromatic number o f H .  The long-standing Strong Perfect Graph Conjecture 

( “ SPGC” resolved in  2003, [5]) conjectured tha t a G  is perfect i f  and only i f  G  and G had 

no induced odd cycles o f size five or more. (Calling a graph G  Berge i f  G  contains no odd 

holes o f size five o r more, nor complements o f odd holes, we can re-state the SPG C  to  be: 

G  is perfect i f  and only i f  G  is Berge.)

Note tha t the statement “no induced odd cycles”  is equivalent to  saying “ every odd cycle 

has a chord.”  In  the  1970’s, Meyniel proved a theorem weaker than  the SPGC:

T h e o re m  3.2.2 [4 6 ]  Let G  be a graph where every odd cycle has at least two chords. Then 

G is perfect.

Such graphs are now called M eyniel Graphs. M eynie l graphs have been studied fo r their 

recognition problem extensively, and graph tools such as the amalgam (not described here,
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see [4]) have been developed as a resu lt of investigations into Meyniel graphs. Recognition  

a lgorithm s fo r  Meyniel graphs have o ften been useful in  the recognition of other g ra p h  classes 

such as i-triangu la ted  graphs [52] and quasi-Meyniel graphs [15]. Meyniel graph recognition 

has been im proved to  0  (m 2  +  mn) b y  Roussel and Rusu [52].

The fo rb idden  induced subgraphs fo r Meyniel graphs are odd holes and odd cycles w ith  

exactly one chord. In  particular, C 5  and P 5  are tw o o f the forbidden subgraphs. The 

rem ainder o f the forbidden graphs -  the  next smallest o f which are the 7-cycle and  the two 

ways th a t a 7-cycle can have a single chord -  conta in  a P5 .

T h e o re m  3 .2 .3  A graph G is a p  -free Meyniel graph i f  and only i f  i t  is a (P 5 , P 5 , C ^-fre e  

graph.

Using the  fact th a t Meyniel graphs are Ps-free, we see th a t co-Meyniel graphs are P5 - 

free, and since the C5  is self-complementary, the largest self-complementary class o f M eyniel 

graphs (the  M eyniel co-Meyniel graphs) are exactly the (P5 , P 5 , C ^-free  graphs [3].

T h e o re m  3 .2 .4  [3 ] A graph G is (P 5 , P 5 , C ^-fre e  i f  and only i f  G and G  are M eyniel.

3.2.3 W eakly Chordal and Murky Graphs

Meyniel graphs were a natura l special class of Berge graphs and were shown to  be perfect. 

Another n a tu ra l special class of Berge graphs can be formed, not by forcing m ore chords in  

the odd cycles, bu t instead by forb idd ing all large cycles rather than  jus t the odd  ones.

D e f in i t io n  3 .2 .5  [28] A graph G is weakly chordal i f  neither G  or G has a chordless cycle 

o f size five  o r more.

Recalling th a t chordal graphs are graphs w ith  no induced cycles o f size fo u r o r  more, 

and no ting  th a t the complements o f odd holes o f size six or larger must have an induced 

subgraph isomorphic to  a C4 , i t  follows tha t weakly chordal graphs contain b o th  chordal 

graphs and complements o f chordal graphs.

As chordal and co-chordal graphs are known to  be perfect [23], the genera lization to  

weakly chordal graphs as a step closer to  the SPGC as weakly chordal graphs are Berge 

graphs. In  1985, Hayward showed the following:

T h e o re m  3 .2 .6  [28] Weakly chordal graphs are perfect.

Weakly chordal graphs have come to  be known as a large class o f graphs con ta in ing  many 

other well-studied classes such as b r it t le  graphs (see Section 3.2.4,) HHD-free graphs (Sec­

tion  3.2.4,) HH-free graphs (Section 3.2.5,) dom ination graphs (Section 3.2.5,) (P 5 , -P5 , C5 )-
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free graphs, and many others not mentioned in  th is  thesis. Recently, weakly chorda l graphs 

have found  themselves used in  the fie ld  o f b ioinformatics 1 [43].

In  continu ing  the class-broadening towards Berge graphs from  weakly chordal graphs, 

Hayward introduced murky graphs.

D e f in i t io n  3 .2 .7  [29] A graph is m u rky  i f  i t  contains no C \, Pq, or P q.

M u rk y  graphs were also shown to be perfect [29], bu t have received litt le  a tte n tio n  since 

then. T ak ing  these definitions a step fu rthe r would call for restricting  the C5 , C7, C 7, Ps 

and P s , w h ich  is a class which has not been studied to  the best o f the author’s knowledge.

In  the  same way tha t m urky graphs are a subclass o f Berge graphs by the use o f a 

fin ite  num ber o f forbidden subgraphs, the  (P5, P 5, C5)-free graphs are a subclass o f  weakly 

chordal graphs, as the P5  and the P 5  are the common subgraphs to  the holes and antiholes 

o f size six and larger. Perhaps an improved recognition o f (P 5 , P 5 , C ^-free  graphs could  be 

useful in  recognizing weakly chordal graphs, which can be currently recognized in  0 ( m 2) [57] 

or 0 (n 4)-tim e  [30].

3.2.4 B rittle  and HHD-free Graphs

A fte r in troduc ing  perfectly orderable graphs [6 ], Chvatal introduced a subclass o f perfectly  

orderable graphs called the brittle  graphs [7].

D e f in it io n  3 .2 .8  A graph G is b r it t le  i f  fo r  every induced subgraph H  o f G e ithe r there 

exists a vertex that is not the m idpoint o f any P4  in  H  or there exists a vertex th a t is not 

the endpoint o f any P4  in  H .

Since m id -P j vertices and end-Pt vertices swap roles under graph com plem entation, 

b ritt le  graphs are self-complementary. To see th a t b r it t le  graphs are perfectly orderable, 

note th a t fo r an ordering to  be obstruction-free, i t  suffices to  colour -  for each P 4  -  the 

two mid-vertices before colouring the tw o  end-vertices. So, i f  a graph is b rittle  and there is 

a vertex which is no t the end of some P 4 , then we can safely p u t th a t vertex a t th e  s ta rt 

o f a vertex ordering knowing th a t i t  w i l l  not lead to  any obstruction. S im ilarly (as is seen 

through complementation) i f  there is a vertex th a t is no t the m id  o f some P4 , th en  we can 

pu t th a t vertex a t the end o f a vertex ordering. Once one such vertex is placed in  a  vertex 

ordering, the remaining graph (w ithou t the already-placed vertex) can be considered, and 

since i t  is an induced subgraph o f the orig inal graph, the defin ition  o f b ritt le  graphs tells

1A specia l case  o f th e  b io in fo rm atics  p ro b le m  “S ingle N u c leo tid e  P o ly m o rp h ism  H ap lo ty p in g ” w a s  re d u c e d
to  f in d in g  a  m a x im u m  in d e p e n d e n t se t in  a  c la s s  o f  g rap h s , a n d  th e  p a p e r  p ro v ed  th e ir  c la ss  o f  g r a p h s  w ere
w eakly  ch o rd a l, w h ich  allow ed fo r th e  use o f  th e  0 ( n 3) - t im e  a lg o r ith m s  fo r m a x im u m  in d e p e n d e n t  se t  
on  w eak ly  ch o rd a l g ra p h s . T h e  a u th o r s  o v erlo o k ed  th e  fa c t t h a t  th e y  h a d ,  in  fac t, p ro v e n  t h e i r  g ra p h s  
w ere  w eakly  ch o rd a l c o -c o m p a ra b ility  g ra p h s  o n  w hich  th e r e  e x is t l in e a r - t im e  a lg o r ith m s  fo r  m a x im u m  
in d e p e n d e n t se t. W eak ly  ch o rd a l c o -c o m p a ra b ili ty  g rap h s h a v e  b e e n  s tu d ie d  in  th e ir  ow n r ig h t ,  s e e  [14].
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us th a t th e re  is another vertex which can be properly placed in to  th is ordering. C ontinu ing 

th is process u n til all vertices have been placed yields an obstruction-free ordering . This 

proves th a t  b r it t le  graphs are perfectly orderable.

The o rdering  described is more specific than a perfect order and does not necessarily 

exist fo r a ll perfectly orderable graphs, so sometimes th is  ordering is referred to  as a brittle 

ordering [3].

B r it t le  graphs are d ifficu lt to study fo r the ir general structure. For instance, no complete 

characterization through forbidden induced subgraphs is known. Clearly, an induced cycle 

o f size five o r more is not b rittle  since every vertex is a m id-po in t and an end-point o f a P4 , 

so b ritt le  graphs are hole-free. In  [34], Hoang and Khouzam show th a t HHD-free graphs are 

b ritt le  graphs.

T h e o re m  3 .2 .9  [34] Graphs with no P 5 , De, and Ck> 5  are brittle.

These graphs have come to be known as house, hole, domino free graphs, or HHD-free 

graphs. Using the forbidden subgraph characterization, HHD-free graphs can be recognized 

in  0 (n 6) tim e. I t  is not d ifficu lt to  describe a faster, and perhaps ju s t as simple, a lgorithm  

to  recognize these graphs [50]. For every edge { x , y }  find N xy, the common neighbourhood 

o f x  and y, N x , the neighbours of x  and no t y, and N y, the neighbours of y  and n o t x. Let 

M  =  V (G )  — N x y — N x — N y — { x ,y } .  To test whether the edge {x , y ]  is the b o tto m  of a 

house or the bottom  o f a domino, perform  a path-searching a lgorithm  (say, BFS) from  the 

set o f vertices in  N x, through the set M ,  to  the set o f vertices in  N y. I f  a path  is found  from 

some s in  N x to  some t  in  N y using on ly  one vertex from  M ,  then the vertices on the s to  

t  path, together w ith  {x , y }  form  a house i f  s and t  are adjacent or a C5  i f  they are not. I f  

two vertices from  M  are in  the s to  t  pa th , then a domino is found i f  s sees t, o r  a  Cg is s 

and t  are not adjacent. I f  more than tw o  vertices from  M  are in  the found s to t  p a th , then 

a large hole is found regardless of whether s sees t.

Build ing the sets N xy, N x , N y, and M  and perform ing path-searching can be imple­

mented to  run in  0 (m  +  n)-tim e. T h is  process may need to  be repeated fo r every choice 

o f { x ,y } ,  so th is a lgorithm  runs in  0 (m 2  +  m n), o r 0 (m 2) tim e, an im provem ent on the 

brute-force 0 (n6)-tim e algorithm.

The recognition o f HHD-free graphs has been improved to  0 (n 3)-tim e by Hoang and 

Sritharan [36] using an a lgorithm  th a t decides whether a given sim plic ia l vertex is the top 

o f a house. In  general, HHD-free graphs do not necessarily have sim plicia l vertices, b u t they 

make use of the fo llow ing theorem:

T h e o re m  3.2 .10  [34] Every HHD-free graph has a s im plic ia l vertex or a homogeneous set.

By restricting the consideration o f HHD-free graphs to  prim e HHD-free graphs, Hoang 

and Sritharan are able to  find sim plic ia l vertices. Since the only way a s im p lic ia l vertex
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can be in  a  house, hole, or domino is i f  the vertex is a top  o f a house, th is  is th e  only 

cond ition  th a t  need be checked. Verify ing tha t a s im p lic ia l vertex is not the to p  o f  a house 

allows fo r  th e  removal o f the vertex w ithou t affecting the graph’s containment in  the  class 

of H H D -free  graphs, thus reducing the recognition problem  to  than on a sm aller graph on 

which a m od u la r decomposition can again be applied and the process of checking sim plic ia l 

vertices repeated.

The o n ly  benefit o f considering the HHD-free graphs w ith  no modules is to  guarantee the 

existence o f  a  simplicial vertex. The authors o f th a t a lgorithm  comment th a t a significant 

im provem ent w ill like ly u tilize new in form ation about the structure o f p rim e  HHD-free 

graphs. T h is  was the firs t m otiva tion fo r the au thor o f th is thesis to study the  class of 

(P5 , P 5 , C*5 )-free graphs, as these are the largest self-complementary class o f HHD-free 

graphs.

3.2.5 D om ination  and HH-free Graphs

Recall th a t a graph is chordal i f  and on ly i f  i t  has a perfect elim ination o rdering , namely, 

an ordering o f the vertices v i,V 2 , . . .  ,v „  where Vj is sim plic ia l in  the graph induced by 

« i , . . . ,  Vj - 1  fo r every j .  B y  generalising the notion o f a sim plicial vertex and m ain ta in ing  

the e lim ina tion  ordering property, a new class o f graphs w ill be described. F irs tly , we note 

th a t i f  v is a sim plicia l vertex then each neighbour u  o f v  sees all of N (v ). T h is  motivates 

the de fin ition  o f domination  in  graphs:

D e f in it io n  3 .2 .11  [13] Let u and v be vertices in  a graph. Then u  dominates v  i f  N (v )  C 

N (u )  U { u } . Furthermore, u  s tr ic tly  dominates v i f  N (v )  is a s tr ic t subset o f N (u ) .

For nota tiona l purposes, u dominates v can be represented by v <  u. We say th a t u is 

comparable to v i f  either u <  v o r v <  u. Note th a t dom ination is self-complementary in  

th a t i f  u <  v  in  G, v <  u in  G. I f  there are vertices u, v  such th a t u <  v and v  <  u, then 

{u ,v }  forms a non triv ia l module. Thus, in  a prime graph, comparable vertices w i l l  always 

come from  s tr ic t domination.

A k in  to  the idea o f a perfect e lim ination ordering, a domination e lim ina tion  ordering 

(or d.e.o.) is an ordering v \ , . . . ,  vn such th a t every v 3  is dominated by some Vi w ith  i  < j .  

This leads to  the class o f domination graphs:

D e f in it io n  3 .2 .12  [13] A graph is a dom ination g raph i f  i t  has a dom ination e lim ination  

ordering.

Again, analogous to  the characterization of chordal graphs which states th a t a graph is 

chordal i f  and only i f  every induced subgraph has a s im p lic ia l vertex, dom ination graphs can 

be characterized as those graphs which have a pa ir o f  comparable vertices in  every induced
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subgraph. The inherent properties o f vertex dom ination  provide the fact th a t dom ination 

graphs are self-complementary. Dom ination graphs do no t share a ll the convenient properties 

o f the chorda l graphs; for instance, while chordal graphs can be recognized in  linear t im e  [53], 

there are no known polynom ial-tim e recognition a lgorithm s fo r dom ination graphs, and i t  

is unknow n whether th is recognition problem is po ly tim e  or NP-complete.

In  a C A the  nonadjacent vertices dominate each o ther, bu t in  chordless cycles o f size five or 

more there are no comparable vertices. Hence dom ination  graphs can not contain chordless 

cycles o f size five or more. Since dom ination graphs are self-complementary, i t  fo llow s tha t 

dom ination  graphs are a subset o f weakly chordal graphs. This subset relation was shown to  

be s tr ic t when a weakly chordal graph w ith  no comparable vertices on 24 vertices was found 

by Hayward [28]. I t  is unknown i f  th is graph is the smallest such example. Though i t  would 

seem th a t dom ination graphs and weakly chordal graphs form  sim ilar classes considering 

the size o f the smallest known graph distinguishing them , Rusu and Spinrad [54] show this 

is not the case when large graphs are considered. T hey  constructed in fin ite ly  m any weakly 

chordal graphs which are m in im a l non-dom ination graphs.

Recall th a t i t  is NP-complete to recognize perfectly  orderable graphs [47]. As a  result, 

HHD-free graphs were developed as they form  class having the properties o f pe rfec tly  order- 

able graphs while being easier to  recognize. S im ilarly, dom ination graphs are no t y e t easily 

recognized, so the class o f house, hole-free graphs (HH-free graphs) were in troduced  in  [13] 

and shown to  be dom ination graphs. Furthermore, the authors showed th a t every MCS 

ordering (th a t is, the breadth-first search ordering where ties between vertices are broken 

by choosing a vertex adjacent to  the largest numbers o f vertices already v is ited ) on any 

HH-free graph is a d.e.o.

As HH-free graphs have been studied in  the ir own righ t, th is provides more m otiva tion  

to  study the (Ps, Ps, Cs)-free graphs since they are exactly the class o f graphs G  fo r  which 

G  and G  are HH-free.

To summarize th is chapter, (P5, P 5, C ^-free  graphs are exactly the class E f lE ,  and also 

jP5-free E, where E is any o f the well-studied classes o f Meyniel graphs, H H D -free  graphs 

or HH-free graphs. (P5, P 5, C ^-free  graphs also fo rm  a natura l subclass o f the  Welsh- 

Powell perfect graphs and a superclass o f other well-known classes. In  add ition  to  a ll this, 

(Ps, Ps, CsJ-ffee graphs are interesting in  their own r ig h t, as they can be optim ized in  linear 

tim e, though i t  takes s ign ificantly longer to  recognize when a graph is in  th is  class.
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Chapter 4

Previous Work on (P5, P5)-free 
Graphs

In  th is  chapter we recite the results o f three different papers on classes th a t are either 

subclasses o f -  or closely related to -  the class o f (P5 , P 5 )-free graphs.

4.1 (P5 , P 5 , bull)-free Graphs

In  a paper tit le d  “A decomposition fo r  a class o f (P 5 , P 5 ) -free graphs” , J.L . Fouquet [17] 

studies the class o f (P5 , P 5 , bull)-free graphs. As the b u ll and P 5  are prim e, i t  is sufficient 

to  show how to  recognize prim e (P5 , P 5 , bull)-free graphs (tha t is, prime w ith  respect to the 

homogeneous set, or m odular, decomposition.) Before a ttacking the problem, a relationship 

between (P5, P 5)-free and (P5, P 5, C 5 )-free graphs was given:

T h e o r e m  4 .1 .1  [17] For each (P5, P 5 ) -free graph G  at least one of the fo llow ing  holds:

i ) G has a homogeneous set 

i i )  G  is isomorphic to C 5  

H i) G is Cfj -free

This theorem implies th a t prim e (P 5 , P 5 )-free graphs are exactly the prim e (P 5 , P 5 , C'r])- 

free graphs on six or more vertices. T he  task of characterizing the prime (P5, P 5 ,bu ll)-free 

graphs was completed w ith  a fa ir ly  elegant solution resulting in  a simple s tructu re  o f these 

graphs.

T h e o r e m  4 .1 .2  [17] Let G be a p rim e  (P5, P5, bull)-free graph on 6  o r more vertices. Then 

G is either bipartite or the complement o f a bipartite graph.

I t  is not hard to  see th a t every b ip a rtite  graph is bull-free and P 5 -free, so the (P5, P 5, bu ll)- 

free graphs which are b ipa rtite  are exactly  the P^-frce b ipa rtite  graphs. Recognizing prime
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F igure  4.1: The other forbidden induced subgraphs o f Pj-sparse graphs

(P5, P 5, bu ll)-free  graphs thus reduces to  recognizing P5-free b ipartite  graphs. Fouquet’s 

analysis o f  the recognition a lgorithm  lead to an 0 (rr3) runtim e, bu t th is result predates the 

linear tim e  m odular decomposition algorithm s o f [1 2 ] or [44], and so (P5 , P 5 , bu ll)-free  can 

now be recognized in  linear tim e [18].

4.2 Semi-P 4 -Sparse Graphs

As cographs are an im portant class in  the study o f a lgorithm ic  graph theory, m any gener­

alizations to  th is class have been studied which exh ib it s im ilar properties. P 4 -sparse graphs 

were introduced in  [33] as a natura l generalization o f cographs and fo r which a fo rb idden in­

duced subgraph characterization is easily obtainable. The class is a lgorithm ica lly  significant 

because o f its  linear time recognition through another decomposition scheme, generalizing 

the standard cograph decomposition.

D e f in it io n  4 .2 .1  [33] A graph G is Pt-sparse i f  every set o f five vertices in  G  induces at 

most one P 4  ■

Since a set inducing a P4 in  G  w ill also induce a P 4  in  G, th is  class is self-complementary. 

In  the C5, as an example, every set o f  four vertices induces a P4, so the C 5  is a m in im al 

forbidden induced subgraph o f P i-sparse graphs. S im ila rly , i t  is easily seen th a t the  P 5  and 

P 5  are m in im a l forbidden graphs, and so P|-sparse graphs form  a subset o f (P 5 , P 5 , C5 )- 

free graphs. The other forbidden induced subgraphs fo r P4 -sparse graphs are shown in  

Figure 4.1.

In  1997, Fouquet and Giakoumakis introduced a broader class called the semi-Pi-sparse  

graphs. This class generalizes the P4 -sparse graphs th rough  a relaxation o f the forbidden 

induced subgraphs. They continue res tric ting  the P5 and P5, and only a dd itio na lly  restrict 

the kite graph (which is the complement o f the fo rk. See Figure 4.1.) Through a m odular
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decomposition, and using theorem 4.1.1, non triv ia l semi-Pj-sparse graphs are also CVfrce.

The s truc tu ra l theorem is almost as simple as the (P5 , P 5 , bull)-frce  case; however, we 

require the  defin ition  o f another graph form.

D e f in i t io n  4 .2 .2  [19] A  th in  spider is a graph whose vertex set can be decomposed into a 

clique, K ,  and a stable set, S, such tha t \K \ =  |5| o r \K \ =  |5| +  1, and the edges between 

S and K  fo rm  a matching, leaving at most one vertex o f K  unsaturated. I f  there  is an 

unsaturated vertex in  K ,  i t  is called the head o f the th in  spider.

The fo llow ing structura l theorem fo r prime semi-P^-sparse graphs is simple, ye t not 

sufficient fo r recognizing the class of graphs.

T h e o re m  4 .2 .3  [19] Let G  be a semi-Pt -sparse graph. Then one o f the fo llow ing holds:

i)  G has a homogeneous set

i i )  G is bipartite  

H i) G is bipartite  

iv )  G  is a th in  spider 

v) G  is a th in  spider

In  the (P5, P5, bull)-free case, recognition was accomplished by the fact th a t the  for­

bidden graphs were prime, and so the original graph before decomposing would be free o f 

those configurations i f  the graphs obtained from  the m odular decomposition were also free 

o f them. Since the k ite  is not a prim e graph, the semi-Pi-sparse graphs do no t share the 

convenience o f only verifying the p rim a lity  o f the leaves in  the m odular decomposition tree. 

The k ite  has two vertices form ing a homogeneous set which could potentia lly  vanish under 

m odular decomposition i f  the rest o f the graph around them does not d istingu ish  them. 

Fouquet and Giakoumakis show th a t i t  is easy to  detect i f  th is has indeed happened using 

a tr ick  of m arking certain vertices during  the decomposition scheme. During the  decompo­

sition, when a module is removed and replaced by a single vertex, i f  th a t m odule was not a 

stable set then the vertex replacing th a t module w ill be marked. This implies th a t if, in a 

resulting prime graph, there is a P 4  having a m iddle vertex marked, then th a t m idd le  vertex 

must have replaced some edge, and w ith  the rest o f the P4 i t  would create a k ite . Hence the 

ends o f P4 may be marked w ithou t any consequence o f having kites in  the o rig ina l graph.

The authors fu lly  characterize the allowable positions o f marked vertices in  the  resu lting  

b ipa rtite  graph or th in  spider, and show th a t those facts lead to  a recognition a lgo rithm  in  

linear time. W hether a module has an edge can be determ ined in  linear tim e i f  ce rta in  data 

structures are used [56].

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A  4~Pan  (sometimes called the P  graph) is the graph formed by substitu ting  tw o  non- 

adjacent vertices for a m iddle vertex in  a P4 . The 4-pan can be thought o f as a k ite  whose 

tw o vertices form ing a homogeneous set are non-adjacent, ra ther than adjacent. O ne m ight 

investigate (P 5 , P 5 , 4-pan)-free graphs and expect them  to  be recognized s im ila r ly  to the 

sem i-Pi-sparse graphs, only w ith  the difference of m ark ing  vertices when they replace non­

stable m odules, instead o f non-clique modules. However, the structure o f prim e (P 5, P 5, 

4 -pan)-free graphs is not as simple as the structure o f prim e semi-P4-sparse graphs and so 

recognition does not reduce to  sim ply recognizing Ps-free b ipa rtite  graphs or spiders. The re­

su lting p rim e  graphs have not yet been characterized, and recognition would fu rth e r require 

a complete characterization o f the va lid  and invalid markings o f such prime structures. 

There is another characterization fo r the prime (P5 , P 5 , 4-pan)-free graphs:

T h e o r e m  4 .2 .4  The set o f prim e  (P 5 , P 5 , 4~PanJ-free graphs is equal to the set o f  prime  

P 5 -free chordal graphs.

Proof. C learly, a P5 -free chordal graph is (P5 , P 5 , 4-pan)-free. To see th a t p rim e  (P5 , 

P 6, 4-pan)-free graphs are also prime P j-free chordal graphs, recall tha t prim e (P 5 , Psj-free 

graphs have the property o f being C 5 -free, and i f  a prim e graph contained a C 4 , i t  must 

contain e ithe r a P 5  or a 4-pan. □

There is no known characterization o f Ps-free chordal graphs which allows line a r time 

recognition, despite the many d is tinc t characterizations o f chordal graphs and th e ir  associ­

ated recognition algorithms.

4.3 (P5 , Ps)-Sparse Graphs

Recently, Fouquet and Vanherpe [20] began the study o f a class of graphs generaliz ing the 

(P5, P 5)-free graphs in  the same way th a t P4 -sparse graphs generalize cographs.

D e fin it io n  4 .3.1  [20] A graph is called (P^Psj-sparse i f  in  every set o f s ix vertices, the 

number o f induced P5 S and induced P 5s is at most 1.

This study led to  analogues o f some theorems on (P5 , P 5 )-free graphs, such as the 

restriction o f the C 5  in  prime graphs.

T h eo rem  4 .3 .2  [20] Let G be a p rim e  (Pr>, P 5[-sparse graph. Then G is e ither isomorphic 

to a 6 5  or is C 5 -free.

A fte r establishing this property, the  authors fu lly  characterize the prim e (P 5 ,P 5 ,bull)- 

sparse graphs, leading to  a linear-tim e recognition a lgorithm .
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C hapter 5

Four Other Self-Com plem entary  
C lasses of Perfectly Orderable 
Graphs

Since the recogn ition  o f perfectly orderable graphs is NP-complete, subclasses o f perfectly 

orderable graphs for which recognition is polynom ial tim e  are desirable. Some subclasses 

have a lready been mentioned, such as the  b rittle  graphs (see section 3.2.4). B r i t t le  graphs 

have no know n  forbidden induced subgraph characterization, bu t they are know n to  contain 

HHD-free graphs [34] (see section 3.2.4 fo r in form ation on HHD-free graphs.) T h e  intersec­

tion of H H D -free  graphs and co-HHD-free graphs is the set o f (P 5 , P 5 , C5)-free graphs, as 

mentioned earlier, and self-complementarity is an elegant and useful property to  have in a 

graph class.

We can define several natu ra l classes o f self-complementary perfectly orderable graphs:

D e f in it io n  5 .0 .3  Let <  represent a to ta l ordering on the vertices, and >  represent the 

reverse order o f  < . We can define the fo llow ing fo u r  classes.

P O l: perfectly orderable ft co-perfectly orderable

P 0 2 : graphs G which admit a perfect ordering <  such that at least one o f <  o r  >  is  perfect 

in  G

P 0 3 : graphs G which admit a perfect ordering  <  such tha t <  is also perfect in  G

P 0 4 : graphs G which admit an ordering <  such tha t both <  and >  are perfect in  both G  

and G

Note tha t P 0 4  c  P 0 3  C P 0 2  c  P O l .  Since b r it t le  graphs are self-complementary 

and perfectly orderable, we have tha t b r it t le  graphs are P O l .  We can go fu rth e r, noticing 

th a t a b rittle  ordering in  the complement graph is th e  reverse o f a b ritt le  o rdering , and so 

b ritt le  graphs are P 0 2 . I t  is no t clear how b rittle  graphs relate to  the other tw o  classes.
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Vi v2 v3 v4

Figure 5.1: A n  orientation from a P 0 4  vertex ordering

We note th a t  P 0 4  is not a subset of HHD-free graphs or (P5, P 5, C5  )-frce graphs since the 

house is P 0 4 .  A ll these classes are subsets o f weakly chordal perfectly orderable graphs, 

since p e rfec tly  orderable graphs are C k> 5 -free. Later, we show a (P5 , P 5 , C ^ - fre e  graph 

which is n o t P 0 4 , so the (P5, P 5, C5)-free graphs and P 0 4  graphs form  two sets w hich are 

incomparable w ith  respect to  set containment.

When a graph has a to ta l ordering on its vertices, there is an associated o rien ta tion  o f 

its edges w hich orient edge {u , u } from  u to v i f  and only i f  v  comes before u  in  the ver­

tex order. Recall th a t perfectly orderable graphs are characterized as those g raphs which 

adm it an ordering fo r which the associated edge-orientation is obstruction-free, where an 

obstruction is a P4  {v4,V2,v3,v4) such th a t uj <  v2 and v4 <  v3. Let us decompose th is 

orienta tion in to  the possible orderings th a t would b ring  about th is obstruction. I f  a P4 is 

labeled (v4,V2,v3,v 4), then this P4 being obstruction-free is equivalent to  saying th a t the 

ordering on these four vertices cannot be any o f

Vi < V2 < v 4 < V3

Vi < V4 < V2 < v3

Vi < V4 < v3 < V2

v 4 < Vi < V2 < v3

v 4 < V\ < v3 < V2

v 4 < V3 < Vi < v2

The edge-orientation groups these s ix  cases in to  one equivalence class.

Unfortunately, the classes above are not as easily described w ith  the edge-orientation.

As an example, i f  every P4 (u j , v 2 , v3, v 4 ) in  a graph is ordered v 2  <  v4  <  v 4 <  v 3  then 

the graph would belong in  class P 04. However, i t  would no t be correct to  say th a t  every 

P4 can be oriented as in  figure 5.1, since an ordering v2  <  v4  <  v 3  <  v 4 leads to  th e  same 

orientation but is no t a valid P4  o rdering for the class P 0 4 . There is, however, a  simple 

way to  characterize the P 0 4  graphs w ith  a Chvatal-like characterization:

T h eo rem  5 .0 .4  A graph G is in  P 0 4  i f  and only i f  G  admits an ordering such th a t every 

P 4  {v4 ,V2 ,v 3 ,v 4) has its vertices visited in  the o rderv i <  Vj <  V). <  Vi w h e re i+ l — j  +  k =  5.

Proof The theorem statement is s im p ly a compact way o f saying th a t every P 4  (v4, v3, v3 , v4 ) 

must have its vertices visited in  one o f the  four fo llow ing ways:
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Figure 5.2: The net graph

Vi < V 2 < V3 <  Vi  

Vi < V 3 < V 2  <  Vi  

Vi <  v 2 < v 3 <  Wi 

Vi <  V3 < V2 <  Vi

F irs t, we show th a t i f  we have such an orienta tion on G, then G  is in  P 0 4 . Observe that 

in  the complement graph, the two end-vertices sw itch roles w ith  the two m id-vertices, so 

the above property  o f an ordering is independent o f graph complementation, and i t  is also 

independent o f order reversal. The s ix  forbidden orderings which correspond to  an edge- 

oriented obstruction are given above, and so i t  is easily verified th a t an ordering w ith  our 

given property never creates an obstruction. Thus the ordering and its  reverse are perfect 

for G  and G.

To prove th a t a P 0 4  graph must a d m it such an ordering we can exclude fo rb idden  orders 

from  the 4! =  24 possible orders on fo u r vertices. Removing the six orderings corresponding 

to  an obstruction, as well as a ll of th e ir  reverse orderings, leaves 1 2  possible perm utations 

le ft. Under complementation, a P i a, b, c, d  maps to  b, d, a, c (or the reverse, b u t we need not

be concerned w ith  th a t since our properties are reversal-independent). The 12 forbidden

orderings already removed from  consideration w ill map to  1 2  more orderings under th is  mor­

phism, and i t  is a simple task to  iden tify  any new forbidden orderings. These 12 orderings 

contain four more forbidden orderings, so removing those four as well as th e ir  respective 

reverses leaves behind the four orderings given above, completing the proof. □

Since paths Pk are a ll in  the class P 0 4  and long holes are not, we have th a t Ck> 5  and 

C k> 5  are m inimal non-P 04  graphs. M uch  in  the same way th a t no m in im a l non perfectly
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F igu re  5.3: Two m in im al non-P 04  graphs w ith  one-in-one-out orien ta tions

orderable graph has a homogeneous set [50], the p roperty  exists for these g raph classes as 

they are defined in  terms o f perfect orders. The o n ly  other m in im al non P 0 4  graphs on 

six or fewer vertices are D@, D q, the net and its  complement. The net graph is shown in  

Figure 5.2. Before proving th a t the net graph is no t P 0 4 ,  we firs t mention ano ther class o f 

perfectly orderable graphs sometimes referred to  as one-in-one-out graphs:

D e fin it io n  5 .0 .5  [50] A graph is one-in-one-out i f  its  edges can be oriented so th a t every 

P i has one wing oriented inward and the other wing oriented outward.

I t  is cu rren tly  unknown whether one-in-one-out graphs can be recognized in  polynom ia l 

tim e [50]. We note th a t every P 0 4  ordering w ill have an associated o rien ta tion  which is 

one-in-one-out, b u t not every one-in-one-out orienta tion gives a P 0 4  ordering. For instance, 

the P i ( v \ , W2 , « 3 , V i) could be ordered V\ <  <  V4  <  u2  bu t th is is no t a permissible

P 0 4  ordering. The im portant property  o f one-in-one-out graphs we w ill use here is tha t i f  

V\ <  V'2 then we must have 1 /3  <  V4 . The one-in-one-out class was defined as a special case 

o f perfectly orderable graphs along w ith  several o ther classes by creating special conditions 

on the allowable orientations o f P4 S. O f those classes defined, the recognition com plexity 

has been classified as either polytim e o r NP-complete fo r a ll except fo r the one-in-one-out 

graphs.

P r o p o s it io n  5 .0 .6  The net graph is a m in im al non -P 04  graph.

Proof. Consider the net as labeled in  Figure 5.2, and assume there is some P 0 4  ordering 

on it .  Because o f the sym metry o f the graph, we can assume w itho u t any loss o f  generality 

th a t a < b .  By the property mentioned above, we m ust have c <  d and e <  / ,  b u t then we 

have the P i (d ,c ,e , / )  which does not satisfy the conditions for a P 0 4  ordering. □

C o ro llary  5 .0 .7  The net graph is a m in im al forb idden graph fo r  both PO 4  graphs and 

one-in-one-out graphs.
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The c o ro lla ry  follows since the removal o f any one vertex leaves behind o n ly  a single 

P i which cou ld  be oriented in  any way desirable. Since the net graph is sp lit, and  thus 

(P5 , P 5 , (S's)-free and HHD-free, we have th a t the P 0 4  class is not comparable to  these 

three m entioned classes. The P 5  is an example o f a graph which is not sp lit, HHD-free, 

nor (P5 , P 5 , C ^-fre e  while being in  P 0 4 . Graphs on four or fewer vertices are examples o f 

graphs belonging to  a ll o f the HHD-free, (P5 , P 5 , Cs)-free , and P 0 4  graphs.

Two m ore  graphs which are m in im al non-P 04 graphs are shown in F igure 5.3, along 

w ith  edge orienta tions showing tha t these are one-in-one-out graphs, unlike the n e t graph. 

The details showing these are m in im al non P 0 4  graphs are om itted, bu t we ou tline  the 

reasoning w hich  can lead to  proof.

An exhaustive search can show th a t any va lid  P 0 4  orderings o f a P5  is the reverse of, 

or equivalent to , one o f the three shown in  figure 5.4. Here, “reverse” implies a  reading 

o f the P 5 S from  rig h t to  left, and “equivalent”  means equivalent under the m app ing  i  to  

6  — i. For example, the reverse o f case B )  in  F igure 5.4 is 4 ,5 ,2 ,3 ,1  while an equivalent 

ordering w ou ld  be 5 ,3 ,4 ,1 ,2 . Using those three ways to  v is it the vertices o f a P 5 , one can 

add a vertex seeing the m iddle vertex o f the P5  and find three (again, up to  equivalence 

and reversals) valid orderings o f th is graph. A fte r adding the fina l vertex to  make e ither o f 

the two graphs shown, i t  is seen tha t no suitable ordering exists to  accommodate the  final 

vertex.

To the best o f the author’s knowledge, the recognition status o f the four classes P O l - 

P 0 4  is open.

Since LexBFS serves as a natural m ethod to  order vertices in  graphs, and m any types 

o f orderings th a t have been studied such as the perfect e lim ination ordering, semiperfect 

e lim ination ordering, dom ination e lim ination ordering, perfect ordering m entioned in  th is 

thesis so far, there is an associated class o f graphs which adm it such properties under any 

LexBFS ordering. For example, we have the fo llow ing theorems:

T h e o re m  5 .0 .8  [53] Every LexBFS ordering o f G is a perfect e lim ination ordering i f  and 

only i f  G  is a chordal graph.

T h e o re m  5.0.9  [38 ] Every LexBFS ordering o f G  is a semiperfect e lim ination ordering i f  

and only i f  G is HHD-free.

T h e o re m  5 .0 .10  [13] Let G  he a HH-free graph. Then every LexBFS ordering is a domi­

nation elim ination ordering.

Since we have defined the P 0 4  ordering, we are inclined to  state the fo llow ing property :

T h e o re m  5.0.11 Every LexBFS ordering of a graph G  is a P 0 4  ordering i f  and on ly  i f G  

is a cograph.
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A) O---------------- O-----------------O---------------O----------------O

1 2 3 4 5

B )  O---------------- O-------------------O-------------------O-------------------O

1 3 2 5 4

C) o---------------- o----------------o----------------o----------------o
1 4 2 5 3

Figure 5.4: Three d istinct P 0 4  orderings o f a P 5

Proof. I f  G  is P[-free, then clearly i t  is P 0 4  since there are no P4S th a t can v io la te  the 

characterizing property. I f  G  has a P4 a, b, c, d  then there is a LexBFS ordering th a t takes 

b <  c <  a <  d  which is not a valid P 0 4  ordering. □

This BFS ordering on the P 4 is also not a one-in-one-out ordering.

C o ro l la ry  5 .0 .12  Every LexBFS ordering of a graph G is a one-in-one-out ordering i f  and 

only i f  G  is a cograph.
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C hapter 6

Contributions: The Structure of 
Prim e (P5, P5)-free Graphs

The fast recognition algorithms in  Chapter 4 depend on a s tructura l characte riza tion  of the 

prime graphs o f the considered graph class. Hence, the  investigation o f p roperties o f prime 

(P 5 , P s j-free  graphs is worthwhile i f  one would like to  improve the recognition t im e  o f these 

graphs th rough  a modular decomposition.

6.1 Prim e Non-Split (P5 , P 5 , Cs)-free Graphs

Recall th a t a graph is split i f  and on ly i f  i t  is (C 4 , C 5 , 2 J f2 )-free, where a 2 K 2  is the 

complement o f a C4 . Since 2 K 2  and C 4  are subgraphs o f P 5  and P 5 , respectively, s p lit  graphs 

are (P5 , P 5 , C \)-frce  so we are interested in  properties o f graphs th a t are (P5, P 5 , Cs)-free 

bu t not sp lit. A  theorem related to P 4 -structure (a graph concept which is n o t discussed 

here; the interested reader is referred to  [31]) is o f use to  us here:

T h e o re m  6.1.1 [31] Let G  be a prim e graph. Then either every vertex o f G  is  in  a P4  or  

G is split.

When considering prime non-split graphs, we are thus able to  p a rtitio n  th e  vertex set 

in to  the three disjo in t sets based on how a vertex appears in  P4 S.

D e f in it io n  6 .1 .2  Let G =  (V, E ) be a p rim e non-split graph. Define V  =  Ve  U Vm  U Vb  

where

•  v  £ Ve i f  v is an end o f a ll P 4 S i t  is contained in ,

•  v  e Vm i f  v is a m idpoint o f a ll P 4  s i t  is contained in,

•  v  6  Vb i f  v is an end o f some P \ and a m idpoint o f some P 4 ,
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Note th a t  the three defined sets are disjo int and th e ir union contains a ll vertices, so they 

serve as a  proper p a rtition  o f the vertex set.

We can im m ediately begin to  state properties o f some o f these ind iv idua l sets b y  using 

a theorem  o f Hoang and Khouzam. We state i t  here in  terms o f our notation:

T h e o re m  6 .1 .3  [34] Let x  be a vertex in  Ve (respectively, V m ) o f a p rim e graph G . Then 

x  is s im p lic ia l in  G (sim plic ia l in  G .)

I t  is n o t hard to  see th a t the converse is true. For instance, a sim plic ia l vertex can  never 

be a m id p o in t o f a P4  and so sim plicia l vertices m ust belong to  Ve- Using Lem m a 2.4.2 

and C oro lla ry  2.4.3, we have th a t in  a prime non-sp lit graph, V e  forms the set o f s im p lic ia l 

vertices and is a stable set, while Vm is the set o f co-simplicial vertices and is a c lique. A ll 

th a t can be said about Vb at this po in t is th a t i t  contains those vertices w hich  are not 

sim plic ia l n o r co-simplicial. Note th a t under tak ing  the  complement o f a graph, th e  sets Ve 

and Vm sw itch  roles while the vertices in  Vb rem ain in  the same set.

Hoang and Khouzam prove, in the same paper, a theorem regarding the existence o f 

sim plicia l vertices.

T h e o re m  6 .1 .4  [34] Let G be a prim e HHD-free graph. Then G contains two nonadjacent 

sim plic ia l vertices.

Since (P 5 , P 5 , CVJ-free graphs are HHD-free graphs we can apply th is  theorem  to  prime 

(P5 ; P 5 , Cf,)-free graphs. N oting th a t the complement of a (P5 , P 5 , C^j-free g raph  is an 

HHD-free thus allows us to  assert the follow ing:

C o ro l la ry  6 .1 .5  Let G  be a prim e non-sp lit (P5, P 5, C ^-free  graph. Then \V e \ >  2 and

\VM\ > 2.

This follows since we w ill not have a vertex w hich is both sim plic ia l and co-sim plicia l in  

a non-split graph. I f  a vertex was sim plic ia l and co-sim plicial, then its  neighbourhood is a 

clique and its non-neighbourhood is a stable set, w hich would im p ly  the graph is sp lit.

We can establish a s im ilar property on the Vb  set by the use o f m in im a l p rim e extensions. 

Since we are considering non-sp lit graphs, such a g raph must have a t least one o f a C 4 , a 2 K 2  

or a C 5 , so a non-split (P5, P 5, C'sj-free graph m ust have one o f a C 4  or 2 K 2. Theorem  2.3.4 

te lls us tha t i f  a prim e graph contains a C4  then i t  m ust contain a t least one o f an l / 6, P 6  

or P 5  but note th a t (P 5 , P 5 , 6 5  )-free graphs can n o t have a Dq nor a P 5 . Th is  means tha t 

i f  there is a C4  in  such a prim e graph we must also have an He, and i f  there is a 2 K 2  there 

m ust exist an H$.

C o ro lla ry  6.1.6 Let G be a prim e non-sp lit (P5 , P 5 , C 5 ) -free graph. Then G contains He 

or H 6.
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The Hg  and He  each have two vertices which are bo th  endpoints and m idpo in ts  o f a P4

and so these two vertices w ill be in  V b  and thus \V b \ >  2 .

6 .2  Relationships Between Vertex Partition Sets

Here, we accumulate inform ation on how the vertices in  V e , Vm , and V b  re la te  to  each 

other. In  pa rticu la r, the nature o f the Vb  set is o f interest.

We w ill be reasoning about vertices around induced P 4 S often, so the fo llow ing  lemma

w ill be useful to  shorten proofs.

L e m m a  6 .2 .1  Let G be a (P5, P5, C 5 ) -free graph and the vertex subset { a ,b ,c ,d }  induces 

a Pa in  G . I f  some vertex v sees a and misses b then v must also see c and miss d.

Proof. F irs t note tha t v must see a t least one o f the vertices in  the P4 since otherwise 

i t  forms a P5. I f  v  sees d, th is forms a P5 (respectively, a C5) i f  i t  also sees (respectively, 

does no t see) vertex c. Since both  P 5  and C5  are forbidden, v  cannot see d, and so must 

see only c. □

6.2.1 Refinem ent of the V B -  Vertex Set

When a vertex sees every vertex in  a set S, we say th a t vertex is universal on S . I f  the 

vertex sees none o f the vertices in  S, then we say i t  is n u ll on S. I f  a vertex sees some o f 

S and misses some of S, then we say i t  is partia l on S. Say th a t a vertex v  in  V b  belongs 

to  the set B ,j where i , j  6  { 0 , 1, * }  and i  =  0 , 1, or *  i f  v is, respectively, nu ll, universal, or 

pa rtia l on V e ,  and j  is defined s im ila rly  depending on the adjacency w ith  Vm - T hu s , these 

are the possible sets a vertex in  Vb  can belong to , and the associated descrip tion o f each 

set:

B n  =  vertices o f VB universal on VB  and universal on Vm 

B i t  =  vertices o f Vb  universal on V e  and partia l on Vm  

B io  =  vertices o f VB universal on V e  and null on Vm  

B * i =  vertices o f V b  partia l on V e  and universal on Vm  

Bn, =  vertices o f VB partia l on Ve and partia l on Vm 

B t 0  =  vertices o f VB partia l on Ve and null on Vm 

Boi =  vertices o f V b  null on V e  and universal on Vm  

Bo* =  vertices o f VB null on Ve and p a rtia l on Vm  

Bqo =  vertices o f V b  null on V e  and nu ll on Vm
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We c la im  th a t most o f these sets are in  fact em pty and th a t Vb  can be p a rtition ed  in to  

exactly three o f the above types.

To show th is  claim, we w ill only require the knowledge th a t vertices in  Ve  (resp. Vm ) 

are s im plic ia l (resp. co-simplicial) fo r these properties.

P ro p o s it io n  6 .2 . 2  Assume some b £  Vb in  a p rim e non-split (P5, -P5) -free graph sees 

some e £ Ve- Then b is Vm-universal.

Proof. Assume, on the contrary, th a t  b misses some m  £ Vm - Since m  is cosim plicial, i t  

cannot miss the {b, e} edge, so m  m ust see e. B u t since e is simplicial, a ll o f its  neighbours 

must be adjacent, and so b must seem . □

In  terms o f refin ing the set Vb , we have:

C o ro lla ry  6 .2 .3  Each o f the sets B io , B i* ,B * 0 )B **  is empty.

The above property in  the complement graph happens to  be equivalent to  th e  contra-

positive statement, bu t we state i t  as i t  is s till w orth  noting:

C o ro lla ry  6 .2 .4  I f  some b £ V b  misses a vertex in  Vm , then b is V E -n u ll.

Next, we show th a t Boo is empty:

P ro p o s it io n  6 .2 .5  N o  vertex b £ Vb in  a p rim e non-split (P5, P5) -free graph is V e-u u U  

and V M -n u ll.

Proof. Assume the set Poo is nonempty, and le t b 1 be a vertex in  P 0o o f sm allest degree. 

Since i t  is not sim plic ia l i t  must see tw o  nonadjacent vertices, say {u ,v }. Since &i sees 

no vertices in  V e  U V m , th is non-edge must also be from  the Vb  set. Every m  £  Vm  is 

cosimplicial and misses bi, so every m  is universal on N (b \) . The pair { it ,  v )  m ust have 

some vertex distinguishing them since o u r graph is prime, so say vertex b2  misses u  and sees 

v. Since 6 2  misses u, i t  is not from the  Vm  set. Note th a t i f  b2  sees any m  £  Vm  then we 

would have a P5, so b2  can not be a ve rtex  from Ve o r from  B 0* U B 0 1  U B n .  So b2  is also 

from  the Poo set. I f  b\ is adjacent to b2, then there is a P5.

Since b\ was chosen as a vertex from  Poo w ith  smallest degree, b2  must see some vertex 

z tha t b\ does not. I f  z misses v, we have the P4 u ,b \,v ,b 2  w ith  z seeing b2  and missing v, 

so by lemma 6.2.1 z must see bi. So i f  b\ misses some z 6  N {b 2) th is  z m ust see v . Every 

m  is universal on N (b 2) so i f  z misses u  then for any m  in  Vm, { b i ,u ,v ,z ,m }  induces a P5. 

We must then have th a t z sees both u  and v. B u t now { b i,u ,v ,b 2 ,z }  induces a P 5 , and 

so i t  must be the case th a t b\ dominates b2, contradicting the fact th a t bi was chosen w ith  

m inim al degree. □
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The complem entary property elim inates yet another subset o f Vb'-

C o ro l la ry  6 .2 .6  The set B n  is empty.

Thus the  set Vb  is reduced to  on ly  three types o f vertices, corresponding to  the sets 

Bon Bo*, B * i . The set o f vertices in th e  first set remain in  th a t set under graph comple­

m entation, w h ile  the vertices in  the o the r two sets swap w ith  each other.

6.2.2 P4-w ing Orientations

Because our vertices are characterized by how they belong in  P4 s, i t  would be beneficial to  

investigate how the P4s exist around the  vertices. Recall th a t the two edges o f a  P4  are 

called the wings o f the P4. As a way o f  encoding in form ation, fo r each P4  orient th e  wings 

inward (from  an endpoint to  its adjacent m idpoint.) This should not be confused w ith  an 

oriented g raph or a digraph, as there m ay be some edges which are not oriented and  some 

edges th a t m ay be oriented in  both  directions. W ith  respect to  the vertex types in troduced, 

we see th a t any vertex in  Ve  can only have incident edges oriented away from  it ,  a n y  vertex 

in  Vm  can on ly  have incident edges oriented towards i t ,  and any vertex in  Vb  m u s t have 

at least one edge oriented away from i t  and at least one edge oriented towards i t ,  w ith  no 

restriction on both  these orientations possibly coming from  the same edge. For b rev ity , we 

w ill use the nota tion  a —> b to  refer to  the oriented edge from  a to  b, and a  -O- b for a 

doubly-oriented edge. Having an edge a  —> b does no t exclude the possibility th a t th e  same 

edge may also be oriented from  b to  a.

This w ing  orientation w ill help us prove a key p roperty regarding vertices in  V e  and Vm- 

Clearly, in  any prime graph there must be a P4. In  our case o f non-split (P5, P 5, C 5)-free 

prime graphs we can say something stronger.

T h e o re m  6 .2 .7  Let G  be a prim e  (P5 , P 5 , C5 ) -free non-sp lit graph. Then there exists a 

P4  in  G whose endpoints are in  V e and whose midpoints are in  Vm ■

Note th a t th is theorem is sharp in  th a t i t  does no t hold fo r the prime non -sp lit graphs 

6 5 , the P 5  or the P 5  (the C 5  itse lf wou ld  have all vertices in  V b , the P5  has o n ly  one Vm  

vertex, and the P 5  has only one Ve  vertex.)

To prove Theorem 6.2.7, firs t notice th a t i t  would suffice to  prove th a t the set o f  vertices 

induced by V e  U Vm  is always connected. To see w hy th is  is sufficient, le t S =  V e  U Vm, 

and notice th a t S is complement-independent. P roving th a t S is connected also proves tha t 

S is co-connected, so S cannot induce a cograph and thus must contain a P4. To prove  tha t 

S  is connected, recall th a t i t  is a sp lit g raph w ith  Vm  form ing a clique. Hence i t  w ou ld  be 

sufficient to  prove th a t every vertex in V e  sees some vertex in  V m - To prove Theorem  6.2.7 

we can then prove th is  stronger theorem instead:
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T h e o re m  6 .2 .8  In  a prim e non-split (P5, P5, C 5 ) -free graph, every vertex of Ve sees some 

vertex in  V m -

Proof. Le t e E Ve- Assume on the contrary th a t e sees no vertex in  Vm- Since th e  Ve set 

is stable, e must only see vertices in  Vb- Let the neighbourhood o f e, N (e ), be pa rtitioned  

in to  N \ and 7V2  where N i  are the vertices hi E N (e )  for which the edge {e ,b {}  is oriented 

e b i, and the set N 2  is the set of vertices for which the edges jo in ing  e and any vertex in  

N -2 are n o t oriented.

Since e is simplicial, N (e )  is a clique as is N \  in  particu lar. Since N i  C V b , every vertex 

in  N \ m ust have an out-oriented edge. We now require some lemmas to  proceed. In  an H q, 

le t the edge jo in ing  the two vertices o f degree two be called the bottom edge, or s im p ly  the 

bottom, o f the H q.

L e m m a  6 .2 .9  I f  x  ++ y then {x , y }  is the bottom o f some H q.

Proof. Since x  —> y, there must be vertices a and b such th a t (x, y, a, b) (as an ordered 

set) forms a P 4 , and since y  —> x  we also have vertices c and d so th a t (y ,x ,c ,d ) is a P4. 

Notice th a t e ither a, b, c and d  are e ither all d is tin c t or we have b coinciding w ith  d. If, 

indeed, b =  d  then the P4 S (x, y, a, b) and (y, x, c, b) would form a Cq unless c sees a in  which 

case we have a P 5 . Thus i t  must be the case th a t b and d are d is tinct.

Since (x, y, a, b) forms a P4  and vertex c sees x  and not y, lemma 6.2.1 applies so c must 

see a and miss b. Notice th a t i f  d sees a then we have a P 5  and i f  d sees b then we have a 

P 5 . Hence edge {x , y \ is the bottom  o f an H q . □

This lemma is useful to  us here since every vertex in  N i must have an out-edge and now 

we can assert th a t there are no doubly-oriented edges in  N i.  I f  there is an edge {x , y ]  E N] 

which is doubly-oriented, lemma 6.2.9 te lls us i t  is the bottom  o f an H q . Since e and 

everything in  N (e )  see both x  and y, the {ar, y }  edge must form  the bottom  o f an H q w ith  

four vertices outside o f N (e )  U {e }. Since { x ,y }  forms a C4  w ith  two vertices outside o f 

N (e ), and e sees both  x  and y, we have a house, which is not allowed.

We need a second lemma on this o rien ta tion  to  continue:

L e m m a  6 .2 .10  Assume vertex a —» b and b - *  c. I f  there is no {a , c} edge, then a ET b. 

(See Figure 6.1)

Proof. Since b —> c, there must be a P4 (b,c, x , y ), and note th a t both x  and y  must be 

d is tinct from a. Since a sees b and misses c, we app ly 6 .2 . 1  and so a sees x  and misses y. 

Since b must miss both  x  and y, we have the P4 (b, a, x , y) and so b —> a. □
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o -----^ -o
a b c

o  < > o  ^ - o
a b c

Figure 6.1: O rientations corresponding to  Lemma 6.2.10

Since every vertex in  N] has an out-edge, we now know every such out-edge cannot end 

a t a ve rtex outside N (e ), as the above lemma te lls us th a t e is on a doubly-oriented edge 

which is impossible for a vertex in Ve- Hence every oriented edge from  N \  leads to  a vertex 

in  N (e ). We w ill prove something stronger, th a t every oriented edge from  N i  leads to a 

vertex in  N i . The follow ing lemma asserts tha t i f  there was an edge oriented fro m  Ari to a 

vertex v  in  N 2  then i t  must be tha t e —>■ v, but th is  contradicts v € N 2.

L e m m a  6 .2.11  Let a —> b and b -> c. I f  there is an {a , c} edge, then e ither a  -f* b or 

a —>• c.

Proof. Again, we have the vertices x  and y so th a t (b, c, x, y), w ith  x  and y d is t in c t from 

a. We assume th a t {o, 6 } is not doubly oriented and prove th a t a —> c. I f  a misses both x  

and y then we are done, and i f  a sees y  only, we have a P 5  so i t  must be the case that a 

sees x. Now a must also see y  since i f  i t  d id not, the {a , b}  edge would be doubly oriented 

due to  the P4  (b ,a ,x ,y ).

Since a —> b, we need u and v such th a t (a ,b ,u ,v ) forms a P4. Now we have a seeing all 

o f {b, c ,x , y }  so we know th a t u and v  m ust be d is tin c t from  x  and y. To avoid a P 5 , u w ill 

have to  see some o f {c, x ,y } .  Note th a t i f  u  sees e ither x  or y, then i t  must see b o th  x  and 

y or else we have a P 5  or a C5. Since (a, b ,u ,v )  is a P 4  and y sees a, then Lem m a 6.2.1 tells 

us th a t y  sees u and misses u. So u sees both x  and y and now must also see c o r else a P5 

is formed.

I f  we now prove v misses c, then the P4 (a, c, u, v) provides the a —> c p ro p e rty  sought 

for. I f  i t  was the case th a t v sees c, v would have to  also see y o r else we would have the P5 

{a ,c ,u ,v ,y } .  B u t now there is the forced P 5  on the vertices {a ,b ,u ,v ,y } ,  and so v  cannot 

see c and thus a —> c. □

C o ro lla ry  6 .2.12 I f  a —>■ b, b c and c —» a, then there must be either a <-> b o r a <-> c.

When looking at the neighbourhood N i  U N -2  o f a sim plicia l vertex, Lem m a 6.2.11 tells 

us th a t there w ill no t be oriented edges from  N i to  N 2. Combining th is  w ith  the  previous
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lemmas te l ls  us th a t a ll the oriented edges in  N i m ust term inate in  N i and so th e  oriented 

vertices in  N i  must have a directed cycle.

C o ro lla ry  6.2.12 follows from  Lemma 6.2.11 ju s t by adding the extra oriented edge c - f  a 

in  the hypo thesis, and using Lemma 6.2.9 we can see th a t N% can not have any oriented 

triangles. Assume there are oriented cycles in  N i  on more than  three vertices, so a —> b 

and b -> c  w ith o u t c pointing to  a. Recall tha t N i  is a clique, and so there m u s t be an 

{a ,c }  edge. Lemma 6.2.11 tells us th a t either we have a doubly-oriented edge, w h ic h  is not 

allowed, o r  a  —> c. This shows th a t any oriented cycle on n  vertices implies the existence o f 

an oriented cycle on n — 1  vertices, and in  particu lar an oriented triangle which has already 

been shown to  not exist 1.

We have thus shown th a t N i  can no t accommodate the arrows tha t must e x is t in the 

case th a t N (e )  C Vb , and so any e 6  Ve  must see some vertex o f Vm , as required. □

Due to  p r io r  discussion, the p roof o f Theorem 6.2.8 also establishes Theorem 6.2.7, tha t 

a non-sp lit p rim e  (P5 , P 5 , Csj-free graph has a P4  whose endpoints are in  V e  and  whose 

m idpoints are in  Vm -

6.3 Structures W ithin Prime (P5 , P^)-free Graphs

Recall th a t any prime graph must contain a P4 , and we ju s t showed tha t a prim e (P 5 , P 5 )- 

free graph m ust contain a P 4  o f a pa rticu la r type - one whose vertices belong to  the  Vm  and 

Ve  sets. Since we are considering non-sp lit graphs, we know there is some He o r H q in our 

graph as well. We believe th a t prim e (P 5 , Psj-frec graphs contain a special type  o f  He or 

He  as well:

C o n je c tu re  6 .3.1 Let G be a non-sp lit prime  (P5 , P 5 ) -free graph. Then in  G  o r  G  there 

exists an He whose two vertices o f degree one (the top vertices) are end-Pi only and  whose 

neighbouring vertices are m id-P 4  only.

Much o f the investigation in to  the V e , Vm , and Vb  sets was m otivated by th is  conjecture. 

The lack o f knowledge in  characterising the Vb  set is an obstacle in  the way o f proving 

Conjecture 6.3.1. For example, i f  we le t \Ve\ =  |V m | =  2 the conjecture s till resists proof, 

even w ith  the knowledge th a t the four vertices in  V e  U Vm  must induce a P4 . We hope that 

th is d ifficu lty  can add to  the appreciation o f the refinem ent properties o f the V b -

One observation th a t can be made regarding V ^-V M -type  P 4 S extending to  HeS and  H 6s 

is th a t such a P4 is exclusive to  one type. Namely,

1O ne can  show  th a t  th e  P 4-w in g  o r ie n ta t io n  is in  fact acy c lic  in  g en e ra l, b u t  th e  p ro o f  is  lo n g e r  a n d  n o t 
re q u ire d  fo r o u r need s h e re , as w e o n ly  need  t h a t  th e  N , p o r t io n  o f  th e  n e ig h b o u rh o o d  o f a  s im p lic ia l  vertex  
h a s  n o  d o u b ly -o rien ted  edges.
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Figure 6.2: The arms of an H q and the tunnel o f an H 6  (induced by solid vertices)

T h e o re m  6 .3 .2  Let G be a non-split p rim e  (P5, P$)-free graph and E \ , M \ ,M 2 , E 2  induce 

a P4  w ith  E i , E 2 £ Ve and M i , M 2  £  Vm ■ Then there can no t be vertices u ,v ,x ,y  such that 

{ E i , M i ,  M 2 ,E 2 ,u ,v )  and { E i , M i , M 2 ,E 2 ,x ,y }  induce an H q  and 11$ simultaneously.

Just as we showed tha t every vertex in  Ve sees some vertex in  Vm by p roving  a stronger 

theorem, we shall show Theorem 6.3.2 sim ilarly. F irs t, we introduce some term ino logy. 

There are several P 4S in  an H q  and so we want to  give a name to  a specific P 4 to  s im plify 

discussion.

D e f in i t io n  6 .3 .3  The arms of an Hq is the unique P4  in  the Hq whose endpoints are the 

two vertices o f degree one. The tunne l of an H q is the complement o f an arm s. (See 

Figure 6.2)

Now we prove a strengthening o f Theorem 6.3.2.

L e m m a  6 .3 .4  Let G be a prim e non-sp lit (P5, P5, Cq) -free graph, and let {a , b, c, d }  induce 

a P 4 in  G. Then {a ,b ,c ,d } cannot simultaneously be the arms o f an H q  and the tunnel o f 

an H q .

Proof. Assume some u and v exist such tha t they fo rm  an H q  w ith  the four vertices in the 

P 4 w ith  the edges {u , 6 }  and {v , c}. Assume x, y extend the P4  to  an H q ,  w ith  x  adjacent to  

a, b, c and y adjacent to  b, c, d. Note th a t x , y must be d is tinc t from  u, v since u  and v  must 

each miss one o f the m id-P i vertices, while  x and y  do not. Then u ,v ,b ,c ,x  induce  a P5, 

unless x  sees a t least one o f u o r v. I f  x  sees v, then we m ust have th a t y sees v  as w e ll or else 

d ,y ,b ,x ,v  w ill fo rm  a P5. B u t then a ,x ,v ,y ,b  must induce a P 5, and so i t  canno t be the 

case tha t x  sees v. Sim ilarly, y  cannot see u  and so x  sees u  and sim ilarly, y  sees v . B u t  then 

a, x, u, v ,y  is a P5, and th is is unavoidable. Hence i t  is impossible th a t such u, v, x , y  exist. □
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o

F ig u re  6.3: A  prime (P5 , Ps)-free graph w ith  a P4  in  bo th  an H q and an  H 6

This proves the theorem as well, when combined w ith  the observation th a t th e  o n ly  way 

a P4 from  V e  U Vm  can exist in  an H q o r H q is by being the arms o f the H q o r  th e  tunnel 

o f the H q .

Lemma 6.3.4 can not be strengthened by removing the arms or tunnel re s tr ic tio n  on the 

P4. F igure 6.3 shows a prime (P 5 , P 5)-free graph w ith  a P4  extending to  an H q as well as 

an H q .

6.4 Towards the # 6-Conjecture

The Pg-conjecture (Conjecture 6.3.1) was the p rim a ry  focus during  much o f th is  research, 

and from  i t  sprung a host o f properties regarding vertices in  prim e non-split (P 5, P 5, C5)- 

free graphs. This chapter presents the key results.

6.4.1 A djacency Properties

One o f the theorems already proven was th a t every vertex in  Ve  sees some v e rte x  in  Vm  

(Theorem 6.2.8.) The complementary property  gives another adjacency rule. Recall tha t 

the vertices in  Ve  are the sim plicia l vertices and the Vm  vertices are the cosim plicia l vertices.

C o ro lla ry  6.4.1 In  a prim e non-split (P 5 , P 5 , C5 ) -free graph, every vertex in  Vm  misses 

some vertex in  V e-

Also recall th a t every vertex in  Vb fa lls  in to  exactly one o f the sets P * i , D q \ o r Po*- 

Th is translates to : a vertex in  V b  is e ithe r pa rtia l on V e  and universal on Vm  , n u ll on V e  

and universal on V m , or nu ll on V e  and p a rtia l on V m , respectively. Hence we have already 

proven the following property:

C o ro lla ry  6.4.2 In  a prim e non-split (P q, P q, Cq) -free graph, every vertex in  Vb  sees a 

vertex in  Vm and misses a vertex in  V e-
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More vertex-adjacency properties follow:

P r o p o s it io n  6.4.3 In  a prim e non-split (P5 , P 5 , C 5 ) -free graph, every vertex in  Vm sees 

a vertex in  V b -

Proof. Assume some m  in  Vm  is V s-nu ll. This implies B * 1 and B 0i are e m p ty , and so 

any b v e rte x  must be o f type Bo*. Le t b be a vertex in  Vb - Since b is the m id -ve rtex  o f 

some P i i t  m ust be adjacent to  a vertex, v, which is the end o f tha t P4 . Now v  can  not be 

in  Ve  since b is from  Bo*, v can not be from  Vm  since those vertices are never th e  end of a 

P4 , thus v  m ust be another vertex from  Vb - B u t then {&, u } forms an edge th a t m  misses, 

con trad ic ting  the fact th a t i t  is cosimplicial. □

C o ro l la r y  6 .4 .4  In  a prim e non-split (P5 , P 5 , C5 ) -free graph, every vertex in  Ve  misses a 

vertex in  Vb  ■

I t  was observed earlier th a t i f  a P4  from  Ve U Vm was in  an H e , then i t  must be th e  arms 

o f the He- F u rthe r note th a t in  order fo r th is P4  to  extend to  an B 6, i t  would be necessary 

fo r there to  be two adjacent vertices from  B 0*. As a possible step towards p ro v in g  the H 6  

conjecture, a B 0* edge is a good s ta rting  point.

P ro p o s it io n  6 .4.5  In  a prim e non-sp lit (P5 , P 5 , C 5 ) -free graph, every edge { x , y }  in  Bo* 

extends to a C 4  w ith two vertices from  Vm-

Proof. Every vertex in  B 0* sees a vertex and misses a vertex in  Vm- Say x  misses 

m-i E Vm and y misses m 2  E Vm- Since m i is cosim plicial, i t  can not miss the { x ,  y \  edge, 

so m i sees y  and sim ilarly, m 2  sees x. Since Vm form s a clique, m i sees m 2  and th is  forms 

a C4. □

C o ro lla ry  6 .4 .6  In  a prim e non-split (P 5 , P 5 , C5 ) -free graph, every pa ir o f nonadjacent 

vertices in  B *  1 extends to a 2 K 2  w ith two vertices fro m  Ve-

This proposition has not helped resolve the He conjecture, bu t i t  has lead to  a other 

interesting properties.

P ro p o s it io n  6 .4 .7  In  a prim e non-split (P5, P 5, Cr,)-free graph, the set Bo* is  2 K 2 -free.

Proof. Let {x , y }  and {?;, w;} be the tw o edges o f the  2 K 2. Using 6.4.5, we have m \  adja­

cent to  y  and m 2  adjacent to  x, form ing a C 4 . Since the  cosim plicial vertices cannot miss the 

{ v , w }  edge, let m i see v.  Also, m 2  m ust see v o r w,  and i f  m 2  sees v then { x , y , m i , m 2 , v }  

forms a P 5 . So m 2  must miss v and see w.  I f  m i sees w  then { x , y , m i , m 2 , w }  is a P 5, but 

i f  instead m i misses w  then w , v , m \ , y , x  is a P5 . □
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o ----------------CF1------------------------------

F igure  6.4: A  prime (P$, P 5 )-free graph G  w ith  no vertex o f degree one in  G  o r  G

C o r o l la r y  6 .4 .8  In  a prim e non-split (P 5 , P 5 , Cq) -free graph, the set P * i is C 4  -free.

P r o p o s it io n  6 .4 .9  In  a prim e non-split (P5, P 5, Ca)-free graph, every vertex o f P 01 sees 

at least one vertex of every edge in  Po*.

Proof. P roposition 6.4.5 gives us a C 4  on any P 0* edge, and since a b from  P 0i sees both 

Vm vertices o f the C4, we w ill have a P5 unless b sees some o f the Po* edge. □

C o ro l la ry  6 .4 .10  In  a prim e non-split (P5 , P 5, Cq) -free graph, every vertex o f B 0l misses 

at least one vertex o f every non-edge p a ir  in  P * 1 .

P ro p o s it io n  6.4.11 In  a prim e non-sp lit (P5, P5, C ^-free  graph, either Po* is a stable 

set or P * 1 is a clique.

Proof. Suppose neither o f the two holds, so Po* has an edge {« i,u 2}  and P * i  has a 

non-edge {u>i,u/2}- Proposition 6.4.5 te lls  us th a t there are m i and m 2  from  Vm  such tha t 

v i , u2, m 2, m 1 is a C4 , and s im ilarly we have ei and e2  from  V e  form ing a 2 A 2  w ith  edges 

{ w i , e i } , { t r 2 ,e2}. Since w\ and w; 2  see b o th  m i and m 2, there is a P5 (e i,u ;i,m ,-, u;2 ,e 2) ,fo r  

f  =  l , 2  unless m j and m 2  are seen by e i and /o r e2. Now, there can not be any ve rtex  from 

V e  seeing both m i and m 2  or else we have a P 5, so e i and e2  must form  a P4 w ith  m i and 

m 2. Notice then th a t { u i,u 2 ,m i,m 2 ,e i ,e 2}  is an H q w ith  {e i,e 2 ,m i ,m 2}  fo rm ing  its  arms, 

while  th is P4 is also the tunnel o f the H q formed by {im , w;2, e i , e2, m i , m 2  j .  Lem m a 6.3.4 

te lls  us tha t th is is impossible. □

On small (nine or less vertices) p rim e non-split, (P 5 , P 5 , C*5 )-free graphs, every graph 

G  has the property th a t e ither G or G  has a vertex o f degree one. Note th a t a vertex o f 

degree one is always simplicial, and so its  single neighbour must be a vertex from  Vm - A  

vertex of degree one w ill never be in  a Cq or P 5, and the only way i t  can be in  a P 5  is i f  

i t  is an endpoint o f the P 5 . The neighbour o f an endpoint o f a P5  is an end-P i vertex, but
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I?0* B qi

VMj

Figure 6.5: A  prime (P5 , P 5 , Csj-free graph w ith  a vertex o f smallest degree th a t is not 
sim plic ia l

the only neighbour o f the degree one vertex in  our graph is a vertex from  V m , im p ly ing  

th a t the degree one vertex can not be the end o f a P 5 . Hence, degree one vertices (in the 

graph or in  its  complement) can always be removed from  consideration when testing  fo r 

(P5 , P 5 , C'sj-free graphs. I t  would be nice i f  i t  were true  th a t there is always such a vertex, 

b u t th is  fails when looking a t graphs on ten vertices. T h a t is, the smallest p rim e  non-split 

(P5 , P 5 , Cg)-frec graphs G  w ith  no degree one vertex in  G  or G  have ten vertices.

C o u n te re x a m p le  6 .4.12  Figure 6 . 4  is a prim e non-sp lit (P5 , P 5 ) -free graph G  w ithout a 

degree one vertex in  G or G.

In  the counterexample graph, the vertices o f smallest degree are s till s im p lic ia l. One 

m ight wonder i f  the vertices o f m in im um  degree are always sim plicia l. F igures 6.5 and 6 . 6  

depict a fam ily o f graphs on a t least 16 vertices w ith  m in im um  degree three, one such vertex 

being from  the Vb  set. In  Figure 6.5, the  sets A, B , C, D  represent collections o f vertices, A  

and C  being stable sets while B  and D  being cliques. \A\ =  \B\ and must have a t least three 

vertices each. A  perfect matching between two sets o f vertices is a set o f edges form ing a 

one-to-one correspondence between the two sets. The vertices o f A  and B  are jo in ed  by the 

complement o f a perfect m atching, as is shown in  F igure  6 .6 . The adjacency o f a vertex in  

figure 6.5 to one of the sets A , B , C, D  represents a complete adjacency from  th a t vertex to
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A B

Figure 6 .6 : The complement o f a perfect matching jo in ing  sets A  and B  from  F igu re  6.5

h

61

Figure 6.7: Some prime Ps-free b ipa rtite  graphs

every vertex o f the set. When each of the  four sets contain exactly three vertices each, there 

are many vertices o f degree three in the graph, inc lud ing  the Vb  vertex o f type  B o i- To 

have the Poi as the only vertex w ith  smallest degree, we can increase the sizes o f A , B , C, D  

to  four each, g iv ing the resulting graph 20 vertices in  to ta l. This is the smallest known 

example showing th a t a vertex o f m inim um  degree is no t simplicial.

6.4.2 B ipartite Substructures

Recalling the theorems o f Fouquet (Theorem 4.1.2) and Fouquet and G iakoumakis (Theo­

rem 4.2.3,) Ps-free b ipa rtite  graphs play an im portan t role in  recognizing classes o f (P 5, P 5)- 

free graphs. The prim e graphs have a simple description and can be recognized in  linear 

tim e [19]. In each (stable set) pa rtition  o f a prim e Ps-free b ip a rtite  graph, there is  always 

exactly one vertex o f degree i  for all i  from  1 to  |V j/2  [19]. Examples o f p rim e  Ps-free 

b ip a rtite  graphs are given in  Figure 6.7.

We w ill define some nota tion  to make our discussion o f these graphs sim pler. Le t the 

b ipartitions o f a prim e Ps-free b ipa rtite  graph be the  stable sets A  and B ,  and the vertices

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



in  these respective sets w ill be called a, and bj, where the subscripts coincide w ith  th e  degree 

o f the ve rtex . So, for example, vertex 0 3  sees exactly three vertices from  B .  We w i l l  call a 

prim e Ps-free b ipartite  graph w ith  2n  vertices a Pn,„ .  Note th a t P 4  is equal to P 2 / 2  and Ha 

is P3 ,3 -

I t  is in teresting  to see how vertices in  a prime (P 5 , P 5 , CY, )-free graphs fo rm  a round  one 

o f these P n,„  subgraphs.

L em m a  6 .4 .1 3  Let H  be a subgraph o f a prim e  (P 5 , P 5 , C 5 ) -free graph isom orphic to a 

Pn,n fo r  some n  >  3, and let v be a vertex not in  H  tha t sees some a* of H  and misses a ll 

vertices in  B .  Then v sees ai fo r  a ll i  from  k +  1 to n.

Proof. Note th a t a* must see the k  vertices in  B  o f highest degree, so i f  a*, misses any 

vertices in  B  i t  must miss i>i, &2 , . . . ,  hn-fc- Assume v  misses some at for some k  +  1 < t  < n .  

Now v, a*,, bn , at , bi form a P 5 , so v m ust see at . □

I f  tw o vertices have the same neighbourhood, they are called twins. Tw ins m ay  or may 

not be adjacent. The above lemma showed tha t v is the nonadjacent tw in  o f bj fo r  some j  

from  n  — k  +  1  to n.

L em m a  6 .4 .1 4  Let H  be a subgraph o f a prim e  (P 5 , P 5 , C'5 ) -free graph isom orphic to a 

Pn,n fo r  some n  >  3, and let T  be the set of a ll tw ins ofa-y w ith respect to H . Then T  forms 

a stable set.

Proof. Assume T  has an edge. There must be a distinguisher which is p a rtia l on some 

edge o f T ,  and th is  distinguisher can n o t be in  H . L e t d  see t i  and miss t2 where j p , t2} is 

an edge in  T . Since d is not in  T , i t  m ust miss bn. Now t \ , b n , an , bj induces a P 4  fo r  every 

1 >  j  >  n  — 1 , and since d sees ty and misses bn , lem m a 6.2.1 tells us th a t d  m ust see miss 

every bj fo r 1 >  j  >  n  — 1. Also, ty, 6 n , a,, bn- \  forms a P4  fo r 2  >  i  >  n, so the lem m a says 

th a t d sees a ll such a*. Now t 2 lt \ ■> d, bn ,a 2  is a P 5, a contradiction. □

We end th is  chapter w ith  an example showing th a t identify ing maximal P „,n structures 

is not sufficient to  find two Ve  vertices in  an H q.

C o u n terex a m p le  6 .4 .15  I f  H  is a maximal Pn,n in  a prim e non-split (P5, P 5 , Ca)-free 

graph G , then the vertices ay and b] are not necessarily s im plic ia l in  G, as shown in  Fig­

ure 6 .8 .

W hat can be shown, however, is th a t the neighbourhood o f ay w ill not have a non-edge 

containing bn .
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Figure 6 .8 : In  a m axim al P3.3, an a\ th a t is no t simplicial

P ro p o s it io n  6 .4 .16  I f  H  is a m axim al Pn,„ in  a prim e non-split (P5, P5, C 5 ) -free graph 

and v is a vertex not in  H  but sees a i in  H , then i t  must also see bn .

Proof. Assume v misses bn. The p ro o f of the previous lemma used 6 .2 . 1  to show that v 

m ust see all a* and miss a ll bj, so v is a tw in  of bn . Some distinguisher d must be p a rtia l on 

{ v , bn},  bu t then H  U {v,  d ]  induces a Pn+ i,n+ i-  n

In te rp re ting  a P4 as a P-2 , 2  and generalizing th is to  larger Pn rl forms a ll b ip a rtite  graphs 

in  our class. Consider the operation th a t takes any Vm vertex m , creates a nonadjacent 

tw in  o f m , and then adds a new vertex o f degree one distinguishing m  and its  tw in . Given a 

prim e non-split (P5, P5, C \)-hee  graph G, call G m the resultant graph a fter app ly ing  this 

operation on G  and m.

P ro p o s it io n  6 .4 .17  Let G be a prim e non-split (P5, P5, C5) -free graph and m  be a vertex 

in  Vm- Then G rn is prim e  (P5, P5, C 5 ) -free .

Proof. The creation o f a tw in  w ill no t create a P5, a P5 nor a C5 as those are prime 

graphs. Since m  was cosimplicial, its  tw in  w ill also see every edge and be cosim plicial as 

well so i t  can not be the end o f any P4. The add ition o f a vertex w ith  degree one could only 

possibly form  a P5, specifically by being the end o f a P5. B u t since its  only neighbour is 

no t the end o f a P4, we can be sure th a t no P5 is created, so G m is (P5, P 5, C sj-free  . □

When applying th is operation to  P n,n i t  creates Pn+ i,n + i• T h is  operation need not be 

applied to  jus t the non-split graphs; fo r instance, i t  can be applied to  the b u ll and s till 

create a prime (P5, P5, Cs)-free graph, even when picking the vertex o f the b u ll which is 

no t in  a P4 . A  P5 w ill never be created as long as the vertex chosen to  dup lica te  is not the 

end o f a P4. I f  m i is the chosen vertex to  duplicate, m 2  is its  tw in , and d istingu isher d sees
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m 2  and misses m i,  then m i becomes the  end o f a P 4  and so i t  moves to  the Vb set. The 

d istinguisher d  belongs to  the Ve set, and m 2  is in  the Vm set. Any vertices e i from  Ve 

adjacent to  m i  before the duplication w ill see the nonedge { m i , m 2 } so they are n o  longer 

sim plic ia l and are the m idpoint o f the P 4  (m i, e i , m 2 , d). Such vertices, e i, move to  the Vb 

set, specifically in to  the Bo* set. The complementary operation also applies, which would be 

to  copy a vertex in  Ve w ith  an adjacent tw in  and create a distinguisher which is universal 

on the graph bu t misses the new copied vertex.

Clearly, th is  operation can no t generate all prim e (P5, P5, C5 )-free graphs since i t  w ill 

always create a graph w ith  a vertex o f degree one (or degree |F | — 2 , in  the case of the 

complementary operation.) Figure 6.4 shows an example o f a ten vertex graph w ith o u t a 

vertex o f degree one or eight.
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C hapter 7

Conclusions and Future 
Research

The recognition problem fo r perfectly orderable graphs is an NP-complete p rob lem  [47] 

yet th e ir  optim ization problems are simple to  solve when given a perfect o rd e r, as de­

scribed in  Chapter 2. (P5, P 5)-free and (P5 , P 5 , Csj-free graph classes fo rm  im portan t 

subclasses o f perfectly orderable graphs, having key connections to  many other well-studied 

graph classes discussed in  Chapter 3. The techniques used in  Chapter 4 to  recognize the 

(P5 , P 5 , bu ll)-free  and semi-Pj-sparse graphs suggested th a t understanding the structure  of 

prim e (P 5 , P 5 , Csj-free graphs could help in  recognizing them.

P a rtitio n in g  the vertex set of p rim e  non-split (P 5 , P 5 , C5  )-free graphs in to  th e  V u , Ve 

and Vb sets is straightforward and can apply to  any non-sp lit prime graphs. T h e  Vm and 

Ve  sets are easy to  describe, as they fo rm  a clique and stable set, respectively. T h e  Vb  set 

was much harder to  describe until i t  was refined down to  three possible types o f adjacencies 

w ith  the Ve  and Vm  sets. Namely, a vertex in Vb  e ither sees a Ve  and is universal on  Vm  or 

else i t  misses Ve  and can be either p a rtia l or universal on Vm- Some adjacency properties 

w ith in  and between the sets were given, for instance Po* is 2 i f 2-free and every vertex in 

P 0i  sees every edge of Po*.

Future refinements could include the  property o f Ve U V u -type  P j-inc lus ion . For in­

stance, every Ve is the end o f some P 4 , but there are Ve vertices th a t are o n ly  in  P4 S 

containing vertices from Vb • A  fu ll characterization o f the nature o f Vb would be an asset 

in  a descrip tion o f prime (P 5 , P 5 , Cs)-free graphs. We are inclined to  fo rm a lly  sta te  this 

special case o f the H q conjecture as an open problem:

O p e n  p ro b le m  7.0.18 Let G  be a p rim e  non-split (P 5 , P 5 ) -free graph w ith  |V e | =  2 =  

|Vm|- Prove o r disprove that there exists an H q w ith  arms from  Ve  U Vm in  G  o r G .

The P4 -w ing  orientation lemmas provide a fram ework for solving problem s th a t  may 

otherwise n o t fa ll easily to  proofs re ly in g  on adjacency properties. The o rie n ta tio n  has the
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power to  hold and use a lo t o f inform ation on jus t one or two edges, fo r instance, Lem m a 6.2.9 

deduces in form ation  over six vertices from  only one doubly-oriented edge. The orientation 

lemmas m ay be instrum ental in  a characterization o f prime (P5 , P 5 , C5 )-free graphs.

C hapter 5 introduced four self-complementary classes of perfectly orderable graphs and 

gave results only fo r the P 0 4  class. The polynom ia l-tim e status o f the recognition problem 

is open fo r a ll four classes. Some forbidden subgraphs were given for P 0 4 , b u t is not 

exhaustive. A  forbidden induced subgraph characterization fo r any o f those classes would 

gain significant a ttention. The b rittle  graphs are a subset o f P 0 2  bu t its precise position in  

the h ierarchy o f the four nested classes is unclear. I t  would be interesting to  know  this as 

well.

F ina lly , we leave open the problem o f recognizing (P5, Ps)-free and (P5, P 5, Cs)-free 

graphs in  o(n 3 )-tim e. Even assuming the H e conjecture to  be true , there is no clear way o f 

using i t  towards recognizing the graph class. Furthermore, the (P5, P 5, C5)-free graphs are 

perfectly orderable, and the vertex degrees are a ll th a t is needed to  create a Welsh-Powell 

ordering and thus a perfect ordering o f  the vertices. Such an ordering is a strong property 

to  have, bu t aside from  finding max clique, max independent set, m in  clique cover and m in 

colouring, we have found no added benefits from  the  ordering. I t  would be in teresting to  

derive some structura l properties of, or prove some propositions on, (P5, P5, C sj-free  graphs 

from  a perfect order.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

1] A. Aho, J. Hopcroft and J. U llm an, The design and analysis o f computer algorithms, 
Addison-Wesley, Reading, M assachusetts, 1974.

2] A. B randstad t, C. T . Hoang and J .M . Vanherpe, On m in im a l prime extensions of a 
four-vertex graph in  a prime graph, Discrete Mathematics 288 (2004), 9-17.

3] A. B randstad t, V .B. Le and J.P. Spinrad, Graph Classes: A  Survey, S IAM  M onographs 
on D iscrete M ath  and Applications, 1999.

4] M . B u rle t and J. Fonlupt, Polynom ial a lgorithm  to  recognize a Meyniel graph, Progress 
in com binatoria l optim ization (W aterloo, Ont., 1982), 69-99, Academic Press, Toronto, 
Ont., 1984.

5] M . Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, The Strong Perfect Graph 
Theorem, Annals o f Mathematics, to  appear.

6 ] V . C hvata l, Perfectly ordered graphs, in  Topics on Perfect Graphs (C. Berge, V . Chvatal, 
eds.), A nn. Discrete M ath., 21 (1984), 279-280.

71 V. Chvata l, On the P i-s tructu re  o f perfect graphs I I I .  Partner Decompositions, J . Comb. 
Theory (B )  43 1987 349-353.

8 ] V . C hvata l, Linear Programming, W .H.Freeman, New York, 1983.
9] V . Chvata l , C. T . Hoang , N .V .R . Mahadev and D. de W erra, Some classes o f perfectly 

orderable graphs, J. o f Graph Theory, 11 (1987), 481-495.
10] T . Cormen, C.E. Leiserson, R .L. R ivest and C. Stein, In troduction to A lgorithm s, The 

M IT  E lectrica l Engineering and Com puter Science Series. The M IT  Press, 2nd edition, 
2001.

11] D.G. Corneil, Y. Perl and L .K . Stewart, A  linear recognition a lgorithm  fo r cographs, 
SIAM  J. Com put., 14 (1985), 926-934.

12] A . Cournier and M . Habib, A  new linear a lgorithm  fo r m odular decomposition, Lecture 
Notes in  Com put. Sci., 787 (1994) 68-84.

13] E. Dahlhaus, P.L. Hammer, F. M affray and S. O lariu , On dom ination e lim ina tion  
orderings and dom ination graphs, Lecture Notes in  Com put. Sci., 903 (1994), 81-92.

14] E. Eschen, R.B. Hayward, J.P. Spinrad and R. S ritharan, W eakly triangu la ted  compa­
rab ility  graphs, S IAM  J. Comput. 29 (1999), 378-386

15] C.M.H. de Figueiredo and K . Vuskovic, Recognition o f quasi-Meyniel graphs, Discrete 
Appl. M ath ., 113 (2001), 255-260.

16] S. Foldes and P.L. Hammer, S p lit graphs, Congres. Num er., 19 (1977), 311-315.

17] J.L. Fouquet, A  decomposition fo r a class o f (P5, P 5)-free graphs, Discrete M a th ., 121 
(1993), 75-83.

18] J.L. Fouquet, Re: (P5, P5, bull)-free  graphs, private  communication, Jan. 20 (2003)
19] J.L. Fouquet and V . Giakoumakis, On semi-P4 -sparse graphs, Discrete M a th ., 165/166 

(1997), 277-300.

20] J.L. Fouquet and J.M . Vanherpe, On (Ps,Ps)-sparse graphs and other fam ilies , Pro­
ceedings o f CTW 04 Workshop on Graphs and C om binatoria l O ptim iza tion , (2004), 142- 
146.

21] M .U. Gerber and V .V . Lozin, O n the stable set problem in  special Ps-free graphs, 
Rutcor Research Report, 24 (2000).

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[22] V . G iakoum akis, P4 -laden graphs: a new class o f b rittle  graphs, In form . Process. Lett., 
60 (1996), 29-36.

[23] M .C . Golum bic, Algorithm ic Graph Theory and Perfect Graphs, Academic Press, New 
York, 1980.

[24] M .C . G olum bic and A .N . Trenk, Tolerance Graphs, Cambridge Studies in  Advanced 
M athem atics (No. 89), 2004.

[25] M . G rotche l, L. Lovasz and A . Schrijver, Polynom ial algorithm s for perfect graphs. 
Ann. D iscrete M ath ., 21 (1984), 325-356.

[26] U .I. G upta , D .T . Lee, and J .Y .T . Leung, E ffic ient algorithms fo r interval graphs and 
c ircu lar-a rc graphs, Networks, 12 (1982), 459-467.

[27] P.L. Ham m er and B. Simeone, The splittance o f a graph, Com binatorica, 1 (1981), 
275-284.

[28] R .B . Hayward, Weakly triangulated graphs, J. Combin. Theory B , 39 (1985), 200-208.
[29] R .B . Hayward, M urky  graphs, J. Combin. Theory B, 49 (1990), 200-235.
[30] R .B . Hayward, C. T . Hoang , F . Maffray, O p tim iz ing  weakly triangu la ted  graphs, 

Graphs Combin., 5 (1989), 339-349; E rratum , Graphs Combin., 6  (1990), 33-35.
[31] R .B . Hayward, S. Hougardy and B .A . Reed, Polynomial tim e recognition  of P4- 

structure, Proc. 13th SODA (2002) 382-389
[32] R .B . Hayward and W . Lenhart, B ichrom atic P j-com position  schemes fo r p e rfec t order- 

ability , D isc. Applied M ath ., 141 (2003), 161-183.
[33] C .T. Hoang, Perfect Graphs, Ph.D . thesis, School o f Computer Science, M c G ill Uni­

versity, M ontrea l (1985).
[34] C .T . Hoang and N. Khouzam, On b rittle  graphs, J. Graph Theory, 12 (1988), 391-404.
[35] C .T. Hoang and B .A . Reed, Some classes o f perfectly orderable graphs, J. G raph  The­

ory, 13 (1989), 445-463.
[36] C .T. Hoang and R. Sritharan, F ind ing  houses and holes in  graphs, Theoret. Com put. 

Sci., 259 ( 2 0 0 1 ), 233-244.
[37] W .L . Hsu and T .H . Ma, Fast and simple a lgorithm s for recognizing chordal compara­

b ility  graphs and interval graphs, S IA M  Journal on Computing, 28 (1999), 1004-1020.
[38] B. Jamison and S. O lariu, On the semi-perfect e lim ination, A dv. A pp l. M a th ., 9 (1988), 

364-376.
[39] B. Jamison and S. O lariu, P i-reducible graphs - a class o f uniquely tree representable 

graphs, Studies in  A ppl. M ath., 81 (1989), 79-87.
[40] B. Jamison and S. O lariu, On a unique tree representation fo r P4 -extendible graphs, 

Discrete A ppl. M ath ., 34 (1991), 151-164.
[41] B. Jamison and S. O lariu, A  new class o f b r it t le  graphs, Studies in  A p p l. M a th ., 81 

(1989), 89-92.
[42] L . Khachiyan, A  polynom ial a lgorithm  in  linear programming, Soviet M athem atics 

Doklady, 20 (1979), 191-194.

[43] G. Lancia, V . Afha, S. Is tra il, R. L ip pe rt and R . Schwartz, SNPs Problems, Com plexity 
and A lgorithm s, ESA 2002, LNCS 2161, Springer-Verlag B erlin  Heidelberg (2001), 182- 
193.

[44] R .M . McConnell and J.P. Spinrad, L inear-tim e m odular decomposition and efficient 
transitive orienta tion o f com parab ility  graphs, Symposium on Discrete A lg o rithm s, Pro­
ceedings of the fif th  annual A C M -S IA M  symposium on Discrete a lgorithm s, (1994), 536- 
545.

[45] F.R. M cM orris and D.R. Shier, Representing chordal graphs on K i n , Com m ent. M ath. 
U niv. Carolin., 24 (1983), 489-494.

[46] H. Meyniel, The graphs whose odd cycles have a t least two chords, In : Topics on Perfect 
Graphs, C. Berge and V . Chvatal eds., Annal o f D isc. M ath., 2 1  (1984), 115-119

[47] M . M iddendorf and F. Pfeiffer, On the com plexity o f recognizing perfectly  orderable 
graphs, Discrete M ath ., 80 (1990), 327-333.

[48] S. Olariu, Weak bipolarizable graphs, Discrete M ath ., 74 (1989), 159-171.
[49] C. Papadim itriou, Computational Complexity, Addison-Wesley, 1994.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[501 Various, Perfect Graphs, (J. Ram irez-A lfonsin, B . Reed, eds.), J.H. W ile y  a nd  Sons, 
Chichester U .K ., (2001).

[51] T . Raschle, Generalized M odular Decomposition and the Recognition o f Classes o f Per­
fectly Orderable Graphs, Ph.D. thesis, Swiss federal ins titu te  o f Technology, Z u r ic h  (1999).

[52] F . Rousell and I. Rusu, Holes and dominoes in  M eyniel graphs, In te rn a t. J .  Found. 
C om put. Sci. 10 (1999) 127-146.

[53] D . J . Rose, R. E. Tarjan and G . S. Lueker, A lgo rithm ic  aspects o f ve rtex e lim ina tion  
on graph, S IA M  J. Compt., 5 (1976), 266-283.

[54] I. Rusu and J.P. Spinrad, D om ination graphs: examples and counterexamples, Disc. 
A pp lied  M ath ., 110 (2001), 289-300.

[55] D.P. Sumner, Graphs indecomposable w ith  respect to  the X-join , D iscrete M ath., 6  

(1973), 281-298.
[56] J.P. Spinrad, P-i-trees and substitu tion  decomposition, Discrete Appl. M a th ., 39 (1992), 

263-291.
[57] J.P. Spinrad and R. Sritharan, A lgorithm s fo r weakly triangulated graphs, Discrete 

A ppl. M a th ., 59 (1995), 181-191.
[58] R .I. Tyshkevich, Once more on matrogenic graphs, Discrete M ath., 51 (1984), 91-100.
[59] D .J .A . Welsh and M .B . Powell, A n  upper bound on the chromatic num ber o f  a graph 

and its  applications to  tim etabling problems, C om pt. J., 10 (1967), 85-87.

[60] D .B . West, Introduction to Graph Theory, Prentice Hall, 2nd edition, (2001).
[61] I. E. Zverovich and 1.1. Zverovich, The reducing copath method for simple homogeneous 

sets, R u tco r Research Report, 19 (2001)

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


