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Abstract

Singular value decomposition (SVD) of matrices, both real and complex,

has been used as 2 robust numerical analysis tool in linear algebra for many

years. Since approximately 1979, design and analysis tools for process
control systems have been developed which utilize SVD. These analysis
techniques are well conditioned and numerically robust. However, the

outcome of the analysis is dependent on the problem scaling.

There are three main areas where SVD is being used¢ in control system
design:

1. multivariable control system design to determine the optimum
controlled and manipulated variable pairings for multiloop control schemes,
to analyze process interactions, and to determine the number of parameters
to retain in model based predictive control techniques such as dynamic
matrix control (DMC).

2. model parameter identification and model order reduction techniques
which identify a state space model representation of a process from the
impulse response. In addition, the order of the model can be reduced
through the use of internally balanced state space realizations.

3. robustness and performance analysis of control systems. The
condition number and the singular values of the process can give an
indication of the robustness and performance characteristics of the system.
Recently, the structured singular value was introduced as a measure of
robustness in systems with structured uncertainties.

From a survey of the recent literature, recommendations for the use of

iv



these singular value techniques are given. Also, some of the problems with
the techniques are highlighted. The use of singular value decomposition in

robustness analysis is not covered in this thesis.
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Chapter 1 INTRODUCTION

The objective of thi§ thesis was to survey the literature and prepare
a tutorial review and evaluation of various techniques which employ singular
value decomposition in the analysis and design of process control systems.

Singular value decomposition, SVD, of real and complex matrices has
been used as a numerical analysis tool for several years (Browne, 1930,
Eckart, 1639, Forsythe, 1977, Golub, 1970, Klema 1980). SVD provides a
reliable and robust technique for calculating the rank, condition number,
and the inverse (or pseudo-inverse) of a matrix, A diagonal matrix
containing the singular values and two unitary matrices whose columns are
the singular vectors are obtained from the SVD of a matrix. There are very
reliable and efficient algorithms available which will decompose matrices
into their singular value and singular vector matrices.

In recent years, several researchers have been investigating the use of
SVD as a computational tool for analysis and design of process control
systems (Moore, 1979a, 1981, Glover, 1984, Doyle, 1979, Maurath, 1985, Kung,
1978). There are four main categories of process control system design and
analysis research where SVD derived analysis techniques can be employed:
multi-input/multi-output control system design, process parameter
identification, process model order reduction and stability and robustness
analysis. The techniques based on SVD of system matrices are always
numerically well conditioned due to the numerically well conditioned nature
of the decomposition matrices. However, the singular value analysis
techniques are affected by the scaling of the system variables and/or
matrices. Several researchers have proposed methods of system scaling to

ensure that the physical significance of the problem has not been changed by



the scaling procedure (Lau, 1985, Keller, 1987, Bonvin, 1985, 1987, Bryant,
1983, Johnston, 1984, 1985). If the systems are scaled in a reasonable
manner based on the problem being investigated, the singular value analysis
techniques should provide "good" consistent results.

In this thesis, the application of SVD techniques for process model
identification and order reduction and for multiloop and multivariable
control system design was reviewed and evaluated. It has been shown how
singular value decomposition of a system transfer function matrix can be
used to gain a better understanding of process interactions. Throughout
this work, an effort has been made to clarify the application and
understanding of these techniques.

This thesis is organized as follows. Chapter 2 of this thesis
introduces the principles and properties of singular value decomposition. A
discussion of principai component analysis of linear dynamic systems, which
forms the basis for the singular value analysis techniques discussed in the
remainder of this thesis, is presented in Chapter 3. As well, the use of
SVD to analyze the controllability and observability of linear dynamic
systems is discussed in Chapter 3. In Chapter 4, the concept of internally
balanced state space realizations of process models is introduced. These
balanced models are used in several of the model identification and
reduction techniques discussed later in the thesis. Chapter 5 details SVD
process model identification and process model order reduction techniques
which employ SVD. Chapter 6 examines the use of singular value analysis
(SVA) techniques in the design of MIMO control strategies covering "optimal"
input/output  pairings for multiloop control strategies and interaction
analysis. The primary disadvantage of SVD techniques in control system

analysis, the scaling of the input and output variables, is discussed in

™o



Chapter 7. Chapter 8 investigates the agpiication of SVD in predictive
controller design. The conclusions and recommendations of this thesis are
presented in Chapter 9.

Throughout this thesis, examples are used to illustrate the principles
of SVD as they apply to system analysis and design. All the examples were
generated using the software package PC-MATLAB (The MathWorks Inc.) whose
basic data element is a matrix. PC-MATLAB is an interactive software system
written in the C language which provides graphic representations,
programmable macros, IEEE arithmetic, a fast interpreter and many analytical
commands (Moler, 1986). An IBM compatible AT personal computer with a math
co-processor was used for all the computations. SVD is an internal program
within MATLAB which employs the algorithm of Golub and Reinsch (1970).

Although the use of SVD in the analysis of robust performance and
robust stability of multivariable systems has been investigated by several
researchers (Doyle, 1979, 1981, Johnston, 1987, Arkun, 1984, Skogestad,
1987, Morari, 1983, 1985, 1989), this topic was not included as part of this

thesis.



Chapter 2 Singular Value Decomposition

2.0 Introduction

Although mathematicians have been using singular value decomposition
(SYD) as a numerical tool for several years, it is only recently that its
application in the field of process control has been explored. This chapter
discusses some of the numerical properties of singular value decomposition
of matrices as well as applications of SVD in linear algebra. One of the
useful properties which has been exploited for control system analysis is

the use of SVD to analyze linear transformations and solve the corresponding

linear equations.
2.1 Singular Value Decomposition (SVD)

Singular value decomposition of a matrix is an efficient and reliable
method of determining the rank, condition number and (pseudo) inverse of
matrices, Given a real matrix A € R™™ where n and m are arbritrary integer

numbers, there will exist orthonormal matrices Z € R™ and V € R™™ such

that
A=2c V' [2.1.1]
where
c - [s QJ [2.1.2]
- 29

T e R™ and § = diag (0,:0,0..s0 ) (Eckart, 1939, Klema, 1980). A SVD

theorem also exists for complex matrices. If A is a full rank matrix and

m =n,



w0 ) [2.1.3]

¥ = di
L = diag {al,cz, 05 0y

An orthonormal matrix satisfies the following property:

ATA=aA" =] [2.1.4)
The columns of the matrices Z and ¥V are defined as the left and right
singular  vectors, respectively, of the matrix A. The left and right
singular  vectors  are the orthonormal eigenvectors of MT and A_TA.
respectively. The diagonal elements of the matrix I are defined as the
singular values of the matrix A and are the non-negative square roots of the
eigenvalues of ATA or AAT. The singular values are arranged such that

alzazz---adraaHlz---zanz 0 [2.1.5]
Since A_&T and A_TA_ are symmetric matrices, all the singular values of A will
be real and non-negative. Symmetric matrices have the following property:

AT = A [2.1.6]

In dyadic form, the singular value decomposition of a (nxm) matrix can be

written as:

n
A= )Y ozv [2.1.7}

where

ot
zZ = 1h column of Z
1

v = i™ column of ¥
The SVD thereom for the special case of square matrices with real
elements has been proven by Sylvester (1889). Corresponding results for
complex, square matrices were proved by L. Autonne (1902) and by Browne
(1930). In 1939, Eckart and Young proved the theroem for general
rectangular matrices.

Singular values and singular vectors of a matrix can be viewed as

generalized eigenvalues and eigenvectors and can be utilized in a similar



manner. The linear equation
Y= Ax [2.1.8])

represents a linear transformation in which the vector x € R" is transformed

into a new vector y € R" via A € R™. A set of vectors, y, exists for

which the vector x is transformed into a multiple of itself such that;
AX = XX =y [2.1.9a]

(A-2Dx =0 [2.1.9b]

The eigenvalues of A are defined as the set of non-zero values,
{,\i:i=l,2,...,n}, such that the set of n homogeneous equations in m
unknowns, given in equations 2.1.9b has a non-trivial solution (Wilkinson,

1965). Therefore, the set of eigenvalues are the roots of the

characteristic equation

det|A - M| =0 [2.1.10]
since  x#0. The vector solutions {;i: i=1,2,..,n) to the n homogeneous
equations,

Ax = )x [2.1.11]

are defined as the right hand eigenvectors of A. The set of left hand

eigenvectors of A {y_l: i=1,2,...,n) are the set of solutions to the linear

system
x'fA = a\ixiT [2.1.12]
whereby y is transformed into a multiple of itself. The set of eigenvectors
is generally normalized giving a set of vectors of unit norm (MacFarlane,
1970).
The eigenvalues of A are related to the singular values since

o (&)< |,\i(A)| so_(A) l<ign [2.1.13)



If the matrix A € R™" is symmetric with singular values o2 02 .2 02 0
then,

a(A) = |A(A)] [2.1.14]
and the right and left singular vectors are the same and equivalent to the
eigenvectors (Wilkinson, 1965).

Eigenvalues and eigenvectors can be used to transform a given square
matrix into a diagonal matrix which can be useful in the solution of systems
of linear equations (Boyce and DiPrima, 1977 pp. 292-297). A matrix, T, can

nxn
has n

be formed where each column is an eigenvector of A. If A € R
distinct eigenvalues, there will be n unique and linearly independent
eigenvectors. The inverse of T, I_l, will exist and
AT =D [2.1.15]
where D = diag(Al,Az,...,An) (Boyce and DiPrima, 1977). If there are
multiple eigenvalues of A, the set of eigenvectors will contain linearly
dependant vectors and the inverse of T will not exist. Therefore, a unique
solution to equation 2.1.15 will not exist.
Similarly, singular vectors and singular values of the matrix A can be

nxn.

used to transform A into a diagonal matrix. If A € R is a symmetric

matrix, the left and right singular vectors corresponding to a singular
value will be the same such that Z = V. From equation 2.1.1,

z'av=2'az = vav' - ¢ [2.1.16]
where £ is a diagonal matrix with the singular values on the diagonal. If A
is not symmetric, premultiplication by the left singular vector transposed

and postmultiplication by the right singular vector will always generate a

diagonal matrix I. The inverse of Z and V, which is equivalent to the

transpose, will always exist even if A has repeated singular values since Z

and V are always orthonormal by definition. Since the singular vectors are



orthonormal by definition, they will span the subspace for the linear
transformation defined by the matrix A and will form a basis set for that

subspace. On the other hand, eigenvectors of A may not be orthogonal.

Example 2.1 (Boyce, 1977): If

5 -1
A = [3 l] [2.1.17]

the singular value decomposition of A gives,

7 = 0.865 0.502 T = 5.84 0 V = 0.998 -0.062
=71 0502 -0.865 - 0 1.37 = " | -0.062 -0.998
[2.1.18]
The eigenvectors and the corresponding eigenvalues of A are
1
X = [ 1 ] A1—4.0
[2.1.19]
- 0.33 _
X, = [ 1 ] A2-2.0

As illustrated in Figure 2.1, the set of singular vectors form an
orthonormal basis set for the subspace of the linear transformation A.
However, Figure 2.2 shows that even though the set of associated
eigenvectors are linearily independant and span the subspace, they are not

orthogonal. It should be noted that o < [A] < o,

The matrices, (Z,V,I), from the singular value decomposition of A are

numerically very well conditioned. Z and Y are orthonormal matrices which
always have a condition number of 1.0 and T is diagonal. If the matrix A is
real, then the diagonal elements of L will be real and non-negative. Z and
V will be real for all matrices: square and non-square, full rank and rank

deficient, In contrast, eigenvectors and eigenvalues can be real and/or

complex. There is no guarantee that the resulting eigenvectors will be
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orthogonal or independent.  Therefore, the use of SVD as a computational
tool will always provide an environment with "good" numerical properties.
The usefulness of eigenvectors and eigenvalues as analysis tools are

dependant on the matrix describing the linear transformation.

Example 2.2 (Morari, 1989): If

1.578  -0.095

the singular value decomposition of A gives,

- [ 0.871 -1.320 ] [2.1.20]

Z- [0.707 0.707] $ = [2.00 0 J V- [ 0.866 -0.50]

0.707  -0.707 < 0 1.00 -0.50 -0.866
[2.1.21]
The eigenvectors and the corresponding eigenvalues of A are
_{ 0.306 + 0.862i _ .
X = [ 1.00 } 1\1 = 0.388 + 1.369i
2.1.22]
_ ] 0.306 — 0.862i _ .
X = [ 1.00 ] '\z = 0.388 - 1.360i

Although the matrix is real, its eigenvalues and eigenvectors are complex.
On the other hand, the singular values and vectors are real. If the matrix
represents a linear transformation of a real system, it will be easier to
analyze the transformation in the subspace defined by the singular vectors

rather than the subspace defined by the eigenvectors.
2.1.1. Matrix Norms Defined From Singular Values
Matrix norms are used to indicate the "size" of a matrix in the same

manner as a vector norm measures the length of a vector. The maximum

singular value of a matrix defines a unitarily invariant matrix norm, the



spectral norm, which is similar in definition to the Euclidean norm of a
vector (Klema, 1980). A unitarily invariant norm is one in which
multiplication of a matrix by a unitary matrix will not change the value of
the norm of the original matrix.

The spectral norm of a matrix A € R™™ is defined as (Klema, 1980):

max Ax,
A, = b0 T =0 (A) [2.1.23]
=2
If A is invertible,
-1 -1
A 2 ™ l/amm(A) = Umu(A ) [2.1.24]

The spectral norm has several properties which are characteristic of all

matrix norms (Maurath, 1987, Klema, 1980, Forsythe, 1977):

i) if A # Q, then A ;> 0 [2.1.253]
ii) if a is a scalar, then aA g = ¥ Az [2.1.25b]
iii) AI + Az s S Al , * Az 2 [2.1.25¢]
ivy) A, = 2, [2.1.25d]
v) Ax < A . x ,=0/(A). x, [2.1.25¢]
vi) ¢ . (A) < Mo ) [2.1.25f)
min X max
=2

Another unitarily invariant norm, the Frobenius norm, can be defined

from the singular values of a matrix:

n
A 2= trace Aa'a) = LA [2.1.26]
=

1

There exists a relationship between the spectral norm and the Frobenius norm

(Morari, 1989)

A,s A sV A, [2.1.27)

where n is the number of nonzero singular values of A.



2.2 Applications of SVD in Numerical Linear Algebra
2.2.1 Computation of Matrix Rank

It has been generally accepted in the literature that SVD is the most
reliable method of determining the numerical rank of a general matrix
(Klema, 1980). If A = _Z_-g-_\ﬁ'r, the rank of A will be the same as the rank of
L since Z and V are always of full rank. The number of non-zero singular
values of A such that o2 € where ¢ is the machine precision determines the
rank of E. All the singular values of A will be non-zero if and only if the
columns of A are linearly independent. The minimum singular value of a
matrix, an>0, indicates how close a matrix is to singularity and matrices of
lesser rank (Klema, 1980). Therefore, singular values can be wused to
determine linear dependence of rows and columns in a matrix corresponding to
the equations and the variables, respectively, in a set of linear equations.

In a practical application, there is generally noise or data errors
associated with the elements in the matrix of interest.  Using conventional
matrix elimination methods to calculate the rank, these data errors can
result in a matrix which appears to have full numerical rank (n) although

the actual rank jis some number r<n. Using SVD, the actual rank can be

determined if an estimate of the data errors is known. Given a matrix A €

R™" where

A=ZEY" [2.2.1)

with singular values given in equation 2.1.3, a matrix B with rank r can be

defined as
<7l
B=2%V [2.2.2])

where é = diag{al,---,ar,0,0,---,O). If B is used to approximate A, the



approximation error in terms of a spectral norm is given by:
], -2z - 28w
- |z - DY,
A
=lz-gl,-,, [2.2.3]

since Z and V are unitary matrices. Similarly,
n 1/2
2
“A"F - “-B- IIF < [ Z % ] [2.2.4]
i=r+l
where ll-"F is the Frobenius norm (Klema, 1980). If a "zero threshold" or
noise criterion, &, is chosen such that o <8, the matrix A will be

r+l
equivalent to the matrix B within the noise band (Klema, 1980). The

magnitude of § will be determined by the uncertainty in the data. In this
case, A is said to have numerical rank r.

When a perturbation is added to a matrix, it can be shown that the
singular values of the matrix will change by no more than the size of the
perturbation. Given a matrix A € R™™ with singular values {01?'
azz-~-_>_akz---zan_>_0}, if x varies throughout the vector space, le, which is

the subspace spanned by the singular vectors {zl, z, ....gk}, the singular

values can be expressed as the local minimum of the spectral norm such that

(Wilkinson, 1965, MacFarlane, 1979):

. A-x

min max "— -"z ,

%A = )=k xes Tl [2.2.3]
x#0 “H2

If E is a perturbation matrix of A such that A+E has singular values

(rl_>_ rzz...zrnz 0}, then

CARA R uE-", 1<i<n [2.2.6]



Example 2.3: If the noise criterion

linear system with matrix A given by,

with singular values

a matrix B

-—

1 -1
B=1]3 1
2 2
with singular values

5.152
~B

0

For this system,

is chosen as 6<0.0001

obtained from equation 2.2.2, will be given by
2
-1
-3

0 0
=0 2731 0
0 0

"A - B"z = 0.0001 = o,

Therefore, the actual rank of A is 2.

Example 2.4: If the elements in the matrix

2.1.17, are perturbed by 1%, the resulting perturbed matrix will be,

e - [
aee - [0
where -
}—31_-: - 0.320
§A+E - 2.320

-0.013
-0.001

-1.333 |
-0.096 |

0.0001

for the

[2.2.7a]

[2.2.7b]

[2.2.83]

[2.2.8b]

[2.2.9]

in equation

[2.2.10]

[2.2.11a]

(2.2.110]



are the singular value matrices of E and A+E, respectively. Therefore,

o, - 7| =002 = 3] , [2.2.123]

and
lo, - 7,| = 001 < [|E], [2.2.12b]

2.2.2 Condition Number of a Matrix

The condition number of a matrix, 7(A), is defined as:

wa) = o], Jal, = o @e} @2 2.2.13)

where A = _Z_-_Z_)_-Y_T. The condition number indicates potential linear
dependencies of columns in the matrix and the approach to singularity of the
matrix. If 9(A) = 1, A is an orthonormal matrix whose columns are linearly
independent. If 4(A) is infinite, A is rank deficient. In this case, one
or more of the columns of A will be linearly dependant. If 7(A) is large,
there are some columns in A which are nearly linearly dependant and A will
be nearly rank deficient (Klema, 1980).

The condition number of A can be used to analyze the solution set for
the linear equation given in equation 2.1.8,

Yy =AX

The accuracy of the computed solution set, x, is indicated by the condition
number of A since the condition number is a measure of the magnification of
errors in A and/or y in the solution x. In the case where A has a large

1(A), the solution to the linear problem will be very sensitive to ciianges

>4

in the matrix A and errors in the data sets. The calculated solution 9N can
be far from the true solution x. If the perturbed system is given by,

Y+ AL =Y, = (A+ LA, (2.2.14]



where x A is the solution vector for the perturbed system, Moore (1979a) has

shown that

Jax], o,

L2 oA,y —— [2.2.15]

<1, [,

2.2.3 Computation of a Matrix (Pseudo) Inverse

SVD is a reliable and easy method of computing a matrix inverse if the
matrix has full rank or a pseudo-inverse for rank deficient matrices.  The

matrix X will be a pseudo-inverse of the matrix A if (Golub, 1970, Barnett,

1971);
2) AXA = A [2.2.16a]
b) XAX = X [2.2.16b]
¢) (AX)T = AX [2.2.16¢]
d) (xA)T = XA [2.2.16d]
The Moore-Penrose generalized inverse or pseudo-inverse for A € R™" (mgn)
is defined as: (Barnett, 1971)
AT=(@aTa)'a" (2.2.17]
If A has full rank, A will be invertible and A'I= AL oaf
A=2ZBV' [2.2.18]
the Moore-Penrose generalized inverse is given by
At =vgizt [2.2.19a]
where
£ = diag (0] [2.2.19b]
with

1 l/ai if o > 0 for l<i<n [2.2.15¢]
- 0 if o, = 0 for l<i<n



The pseudo-inverse is useful when solving linear least squares problems
with rank deficient matrices to obtain a minimal norm or least squares
solution. Given the linear problem in equation 2.1.8 where v € R” and A €
R™™ a unique solution,

x=A"yeRr" (2.2.20]
can be found only if the matrix A has full rank and m<n. In this case, the
norm of the solution error, y-Ax 2 will be zero. If the matrix A has rank
r which is less than n, there will be an infinite number of solutions x to
equation 2.1.8. An approximate solution

x=a"y=@a"A)"ATy e R" [22.21]

can be found such that the solution error y-Ax 2 is minimal in the least

squares sense (Golub, 1970, Maurath, 1985).
2.2.4 Basis Sets for Subspaces of Linear Transformations

Klema (1980) presents a review of the numerical applications of SVD
with respect to linear transformations. SVD is a very reliable numerical
tool for calculating orthonormal basis vector sets for the four fundamental
subspaces of a linear transformation. For the linear system described by

equation 2.1.8,
Yy = Ax

A € R™ is a matrix which represents the linear transformation 4: X =» Y. XY
and Y are real vector spaces with dim(X) = m and dim(Y) = n such that y € R"
and x € R™. There are four fundamental subspaces which characterize the
linear transformation (Moore, 1979a):

1. Im(A) {2.2.22a)

2. Im(A™Y) = Ker(A)" [2.2.22b]



3. Ker(A) [2.2.22¢c])
4. Ker(A™) = Im(A)” [2.2.22d]
Im(A) or image of the transformation A is the subspace comprised of the set
of all possible vectors y such that equation 2.1.8 has a unique solution.
Ker(A) or kernel of the transformation A4 is the subspace comprised of the
set of all possible solution vectors x to the homogeneous equation
0=Ax [2.2.23]
lm(A)'L and Ker(A)'L are the projections of the subspace of the linear
transformation A orthogonal to the subspaces Im(A) and Ker(A), respectively.

The linear equation 2.1.8 can be written as

Ey=AE x [2.2.24a]
where
n n n
E =[e; & g, [2.2.24b]
m m
E = [:1 g, - 9,';] [2.2.24¢]

The vectors e are the (jx1) standard Euclidean basis vectors where all the

. .th . . .
elements in the vector are zero except the i element which is unity. In

equation 2.2.24a, the vectors x and y are linear combinations of m and n

vectors X = g'i“-xi and Y = g'i'-yi, respectively. Therefore, in equation

A

2.2.24a, x and y are expressed in terms of the standard Euclidean basis

vectors and are related by the matrix A representing the linear
transformation A.  Alternatively, x and y can be decomposed into spatially
orthogonal components expressed in terms of basis sets defined by the right
and left singular vectors of A, respectively, If A = Z_-_);-!T, equation 2.1.8

—?
can be rewritten as

Y= ;-§-MT-.& [2.2.25]



Rearranging equation 2.2.25 gives

L'y

!:

|
It
<
=

[2.2.26a)

X [2.2.26b]

"

_y_‘ will be a linear combination of the columns of Z_T. :_(_. will be a linear
combination of the columns of XT. y: and ;: are related by Z. Since T is a
diagonal matrix, the orthogonal components are ordered with respect to their
magnitudes such that

Y, =0.x [2.2.27]
where o, are the singular values of the linear transformation A.

The singular vector sets V and Z are orthonormal bases which span the

fundamental subspaces Im(_A_‘l) and Im(A), respectively, If

“;g“z = 1.0 (2.2.28]
the fundamental subspace Im(A) is the surface of the ellipsoid representing
the output space (the set of all vectors y for which equation 2.1.8 s
satisfied). The n orthogonal axis of the ellipsoid are aligned with the
columns of Z (gi) and have varying lengths {ai(A):lsisn} with the minor and
major axes of lengths o and o respectively. The spectral norm of the

vector y will equal the largest singular value of A since Z and V are

unitary matrices:

|24} - " xf, [2.2.29a]
. |x],= == IL 1=}, (2.2.29b]
y =10 [2.2.30]

the subspace Im(A'l) is the surface of the ellipsoid representing the input
or solution space (the set of all vectors x for which equation 2.1.8 is

satisfied). ~The m orthogonal axis are aligned with the columns of ¥V (!1)

with axis lengths (ai(A'l):lsism}.

19



The orthonormal bases V = [xl e y_m] and Z = [g1 z, - gn] are
formed by rotating the corresponding standard Euclidean bases, _E_m = [e':l
m m n n n . 2 .
e,™ gm] and gn- [gl e, - gn], respectively. For R®, Figure 2.1 shows

the rotation angles of ¢ and 0 for V and Z, respectively. The change of
basis can be used to graphically interpret the linear transformations
defined in equation 2.2.24 and 2.2.25 in terms of different basis sets for
the subspaces R" and R™. The vector x, where x = 1.0, will lie on the
spherical subspace defined by the standard Euclidean basis vectors.  Through

*
a change of coordinates, VT, the vector x will be rotated giving x whose

elements are linear combinations of the elements in x. x lies on the

ellipsoidal subspace representing the transformation in the V coordinate

system where

5l = "], < "l = vo 2231
x' is scaled by L forming y. 'y lies on the ellipsoid, representing the

transformation in the Z coordinate system. y is rotated through another
change of coordinates, Z, forming y expressed in terms of the standard
Euclidean Dbasis E. Therefore, each point on the spherical subspace
representing the set of vectors X (ug ”2 = 1.0) in standard Euclidean
coordinates corresponds to a point on the ellipsoidal subspace representing

the set of vectors y expressed in standard Euclidean coordinates (Morari,

1989).



Example 2.5: For a linear transformation, AR IRZ, where

Yy = Ax
and
_ [ 1.260 -0.129
A= [0.642 0.860 ] [2.2.32a]
the components of the SVD of A are:
_ [ 0.809 -0.588 ]
Z = | 0.588 0.809 [2.2.320]
_[ 1453 0
=1 "0 0.803 | [2.2.32¢]
_ [ 0.961 -0.276 ]
Y = {027 0.91 | (2.2.32d]
If
x =10 [2.2.33]

the transformation A4 will map the sphere representing the space of vectors x
into an ellipsoid representing the set of vectors Y. Figure 2.3 illustrates

the propagation of

x=¢ =010 [2.2.34)
through the linear transformation. Figure 2.4 illustrates the propagation
of

X=YV [2.2.35]

through the process.

If A has zero (or nearly zero) singular values, the columns of V and Z
will span ellipsoidal subspaces which have at least one degenerate axis. In
this case, the system is overdetermined implying that there is a redundancy
of variables (dependency of columns in A) or redundancy of equations
(dependency of rows in A). If the condition number of A, YA), is large,
the minimum singular value of A will be considerably smaller in magnitude

than the maximum singular value. Since the lengths of the axis of the
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ellipsoidal subspaces spanned by V. and Z are equal to the singular values of

A, these subspaces will be distorted (Forsythe, 1977).

Example 2.6: The linear transformations Al:leale and Az:le=alR2 can be

represented by the matrices Al and _A’ where

20 0 _[2 o
A, =[ 0 10] 4, = [o 1] [2.2.36]

In both cases, the axis directions of the fundamental subspaces Im(A,) and

Im(A;l) are given by

1 0 1 0
z_=[0 l] X—[o l] [2.2.37)
However, the axis lengths are different with
z N diag( 20, 10} [2.2.38a)
-1
and
§A = diag{ 20, 1) [2.2.38Db]
-2

Therefore, the condition numbers of the subspaces for Al and A'z are 2 and
20, respectively. For Al, the subspaces are ellipsoids (spheres) of radius
1. However, Az has a large condition number and is represented by a highly
distorted ellipsoid as shown in Figure 2.5. The solution to the linear
system, in the direction of the degenerate axis, will be highly suspect ¢

to the lack of information.

Example 2.7: For the linear systems described by the matrices,

0.871 -1.320 12071 -7.377
a = [1.578 -0.095] B - [12.424 -6.765] (2.2.39]

the singular vectors are given in equation 2.1.18. The singular values are

2.0 0 (20 o
§A=[ 0 1.0] % - [o o.s] [2.2.40)

24
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The condition number of A is 2.0 and the condition number of B is 40.0. It
can be seen from Figure 2.6 that the ellipsoid representing Im(B) is more
distorted than the ellipsoid representing Im(A). Therefore, the condition

number can be pictorially represented by the distortion of an ellipse.

2.2.5 Angle Between Subspaces

The angle between orthonormal subspaces can be used to analyze process

interactions in MIMO systems (Klema, 1980). Let Im(A) = R and Im(B) = S

s and r+s<n where

define two subspaces of X where d(X) = n, d(R) = r, d(S)
rss. The angles of inclination between the subspaces R and S are a measure
of the separation between the subspaces. The cosines squared of the r
angles of inclination between R and S are given by the r largest eigenvalues

(or singular values) of M = _ATB_ (Klema, 1980). If M = L-E-XT. then

2"ATBV = £ [2.2.41]
and
AD"BY = T [2.2.42]

The matrices representing the subspaces R and S are expressed in terms of
the singular vector basis for M. If oi(M_) = cos(ei) for l<icr, the it
column of AZ and the ith column of BV will represent a pair of vectors in
the subspaces R and S, respectively, with angle ei between them. ei will be
the i inclination angle between the orthogonal basis set of R and S
(Klema, 1980). If at least one inclination angle is nonzero, the two
subspaces R and S will intersect. If all the inclination angles are 90°
the subspaces will be linearly independent or orthogonal.  However, if (at

least) one angle is small, the two subspaces will be "close together".



2.3. SVD Algorithms

2.3.1 Eigenvalue-Eigenvector Routines

Conventional diagonalization algorithms used for solving an
eigenvalue-eigenvector problem can be used to determine the singular value

decomposition of a matrix A. The eigenvalues and eigenvectors of ATA or &\_T

are equivalent to the singular values and left or right singular vectors of
A, respectively. However, the explicit formulation of ATA or AA_T can result

in unnecessary numerical inaccuracy due to the increased resolution required

in the matrix squaring process (Golub, 1970). If

11
A= |80 [2.3.1]
058
Squaring the matrix gives
2
T, _|1+8 1
R

If B8=0.0001, the eigenvalues of AT_A_ are Al = 2.0000 and '\z = 0.0000 implying
the matrix does not have full rank. However, the singular values obtained
directly from the SVD algorithm of Golub (1970) are o = 1.4142 and g, =
0.0001 indicating a full rank matrix. Therefore, if A is noorly
conditioned, the singular values obtained from the square of A will contain
numerical errors which will affect the computation of the singular values

and singular vectors



2.3.2 Golub and Reinsch (1970) SVD Algorithm

Golub (1970) developed a very efficient and reliable algorithm for
calculating the singular value decomposition of a general matrix A € R .
Their algorithm iteratively calculates the triplets (ai,z,l,Ll, i=1,...,n)
simultaneously by a two step procedure. Householder transformations are
used to reduce the matrix A to a bidiagonal form. An iterative procedure
involving QR decomposition is used to reduce the super diagonal elements to
a negligible size (based on ¢ which is the machine precision) leaving the
diagonal matrix & ( _Z_TA_\_/FE). The computed singular vectors are orthonormal
within a tolerance of ¢ even with repeated singular values (Moore, 1981).

The algorithm does not perform matrix multiplication but operates on
the individual rows and columns of the matrices which decreases the
computational load. The majority of the computer load is utilized in the
first step since the rate of convergence of the iterations in the second

step of the computation, the QR decomposition, is relatively fast (Golub,

1970). The algorithm is stable if (Klema, 1980)

A -Z.5V

~ ¢ [2.3.3]

where m and n are the dimensions of A and ¢ is the machine precision.
2.3.3 Adaptive Singular Value Decomposition (ASVD) Algorithm

Vandewaale (1984) developed an adaptive singular value decomposition
(ASVD) algorithm whereby the algorithm iteratively converges on each triplet
(ai, z, -V-.) one after the other recursively. This algorithm invokes

matrix-vector multiplication, orthogonalization (Gram-Schmidt) and

28



normalization. To improve the execution speed of the algorithm, Vanderwaale
suggests performing the orthogonalization procedure every t steps through
the iteration instead of each step since this step can be very time
consuming. If this is done, accuracy may be sacrificed depending on the
choice of t. To decrease the number of iterations required, Vanderwaale
suggests using the convergence of the p-lth triplet as a good estimate of the
pth triplet. If ap“/oP ~ 1.0, the convergence rate of the ASVD algorithm
on the pthtriplet can be slow . For this case, Vanderwaale modified the
algorithm to speed up the convergence by iterating the pth and the p+lth
triplet together. This can be done since only one of the left (resp. right)
singular vectors is unique if ap = apH. Further iteration is not required
since the triplets can then be solved analytically.

The recursive nature of the ASVD algorithm allows the use of the
singular vectors and values from the previous time step as the initial guess
for their respective counterparts at the next time step. This can be
beneficial for on-line real time applications where the matrices vary slowly
with time. The ASVD algorithm would conceptually require less computational
time than algorithms such as Golub’s if only a few triplets need to be
calculated. For example, if there is noise in the system, only the triplets
(ai. z, Vi) for which o is greater than some noise criterion § need to be
calculated. Also, if the matrix of interest is structurcd, there is storage
efficiency associated with the ASVD routine because the matrix can be stored
by the individual components in a vector (ie. h(l),..h(N)). There is a
program asvd.m which was written in MATLAB given in Appendix C which uses
Vanderwaale’s algorithm to compute the SVD of a matrix. This would be

useful in determining the number of terms required in the dynamic matrix for

on-line dynamic matrix control calculations.



2.4 Summary

SVD is a reliable method of calculating the rank and condition number
of matrices. SVD is also a valuable tool for solving linear equations
describing linear transformations since it is effective in dealing with data
errors and roundoff errors and can detect linear dependencies. Singular
vectors and singular values provide a consistent geometric interpretation of
the subspace for the linear transformation since the singular vectors always
form an orthonormal basis set for the transformation.

Although SVD solution methods may require more computational time and
computer storage than other methods, there are algorithms available which
are efficient and numerically sound. For on-line calculations where only a
few triplets need to be calculated, the ASVD algorithm may save CPU time and
storage space. However, in general, Golub's algorithm is the most efficient
method of computing a high precision SVD of a full rank matrix. MATLAB

utilizes the LINPACK routine for SVD which is equivalent to Golub’s routine,



Chapter 3 Principal Component Analysis (PCA) of Linear Dynamic Systems

3.0 Introduction

Principal component analysis (PCA) is a technique for analyzing vector
signals in a dynamic linear system using the computational machinery of SVD.
Moore (1979a, 1981) used principal component analysis of a state space
process model to amalyze the controllability and  observability of
asymptotically stable continuous linear systems. Several researchers (Lau,
1985, Moore, 1981, Maurath, 1985, Callaghan, 1986, Clarke, 1987) have
examined the use of PCA in the analysis and design of predictive controllers
and MIMO control strategies. PCA has also been used to linearize continuous
time non-linear systems using a least squares approximation criteria (Moore,
1979b).

In this chapter, several different forms of process modeis are
described.  In particular, it is shown how the shape of the state space for
a particular process can be changed via a linear transformation. The
application of principal component analysis to the matrix representing the
linear transformation between an input sequence and an output sequence for a
time invariant dynamic system is explored. The results are then extended to

describe the controllabie and observable subspaces of the system.
3.1 Linear Dynamic Systems Models

There are two general types of process models which represent the
dynamic and steady state behaviour of linear systems: parametric and

non-parametric.  Non-parametric models are expressed as transient functions
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or frequency functions of the process response (Isermann, [981). Parametric
models express the relationship between a process input and an output as a
linear equation. Parametric models explicitly contain parameters in the
form of a transfer function, weighting sequence or state space model. Time
series analysis of measured process signals or examination of process
responses provide methods of identifying the structure of the process model.
The parameters can be estimated from process response data either
recursively or non-recursively using least squares techniques. Model based
control applications utilize parametric models because they describe the

process in a manner which is easy to manipulate mathematically.

3.1.1 Discrete Transfer Function Process Models

3.1.1.1 Auto regressive Moving Average (ARMA) Process Models

The most common parametric process representation is an auto regressive

moving average (ARMA) model:

2 “B(37) c(z™h . ;
y(t) = T u(t) + ———- 4(t) = G(3 )u(t) + N(z )40
A(z ) D(2 )
[3.1.1]
process noise
model model

where A(z), Bz, C(z’') and D) are polynomials in the backward
shift operator, z'l, and d is the process delay. The present output, w(t),
depends on past inputs (moving average) and outputs (auto regressive) as
well as past noise components, £(t). For MIMO systems, Q(@-l) is a transfer

function matrix where the i input is related to the jth output via the



transfer function Gji(/;'l) such that
¥t = G )u®) + Nz )€1 [3.1.2]
In this representation, the transfer function relating the ith input to the
jth output is independent of the transfer function relating the noise to the
output. The transfer functions are explicitly defined in terms of the
backward shift operator.
Several variations on the basic model type can be obtained depending on
the choice of the polynomials (A,B,C,D). For example, if the effects of

noise are neglected (C(qfl)=0), a DARMA (deterministic auto regressive

moving average) model is obtained:

2 9Bz

yt) = ———— ult) = Gz )u) [3.13]
Az )

which relates the output response to the past inputs and outputs only. The

transfer functions relating the output to the input and the noise can be

expressed in terms of a common denominator as

248 (37 c'iz™h) " 4
y(t) = ——g— ) + ———— §(t) = G(z )u(t) + N(z )&(t)
A(g7) A(z)
[3.1.4a]
where

A’ = A YD [3.1.4b]
B(3) = Bz )Dz ) [5.1.4c]
c™h = Ag™)CE™ [3.1.4d]

One model of this type is a CARIMA (controlled auto regressive integrated

moving average) model used by Mohtadi (1986) in the implementation of GPC



(generalized predictive control):

7 9B(gY cix™l) €
Yt) = u(t) + —— - — (3.1.5]
A(g ) Az ) A

where A is a differencing operator, and £(t) is an independent, random
signal. Kailath (1980) and Isermann (1981) provide a good overview of the
ARMA model and several variations. |
The ARMA transfer function models require a finite number of
parameters. If the orders of A(z’!) and B(qfl) are 'n’ and 'm’,
respectively, with d representing any time delay, then (m+n+d) or fewer
parameters must be identified for the deterministic process model. The

orders of the polynomials C(/;'l) and D(q,'l) determine the number of

parameters required in the noise model. To identify an ARMA model from

process data, an estimation of the process model orders, m and n, and the
time delay are required apriori. There are identification methods available
for determining the noise parameters such as extended least squares (ELS) or
time series technigues but an estimate of the noise model structure is
required apriori. In the case of the CARIMA or similar models where the
noise and input/output models are expressed in terms of a common
denominator, the identification of the noise and I/O models is not
independent. If the actual order of the process is unknown, iterative
searches using correlation analysis can be used to estimate the order. If
the assumed and actual process orders are different, the resultant ARMA
model may not represent the true behaviour of the process. In practice, a
fow order model, usually first or second order, is used to describe the
process and the control system is designed to deal with the plant-model

mismatch by detuning the controllers.
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3.1.1.2 Impulse Response (Weighting Sequence) and Step Response Process
Models

Another type of process representation is a weighting sequence model
which utilizes the impulse response of the system to explicitly determine
the effects of past inputs on the present output. In the impulse response
model, the present output is expressed as a linear combination of all the
past inputs and noise terms weighted by their respective impulse response

parameters. The process model given in equation 3.1.1 can be written as

0o oo
y(t)= ) hzult) + [1 + fiz‘i]f(t) = H(3 Hu(r) + Fz e
i=1 i=1 (3.1.6]

where {hi:i = 1,2,..,00) are the impulse response parameters and H(qfl) and
F(/;'l) are polynomials of infinite degree in the backward shift operator.
The effects of the inputs on the process outputs can be determined directly
from the impulse response model since the present output does not depend

explicitly on the past outputs, The magnitude of the it

impulse parameter,
hi, reflects how significant the (t-x)t past input, u(t-i), is on the
present output, y(t). In a MIMO system,

=) Q0
w=F bty + [1+] £27 60 = HE D) + B0
i=1 i=1
[3.1.7]

In the deterministic case, the impulse response parameters can be
obtained directly from the impulse response of the process as shown in
Figure 3.1. If the process signal/noise ratio is high, determination of the
parameters directly from the process response to a pulse (or step input) may
be very inaccurate. In this case, other techniques such as

cross-correlation analysis with a PRBS input can be used to obtain a more



accurate process model. Also, impulse response parameters can be obtained
using recursive or batch least squares techniques. However, the vectors (or
matrices) involved in the identification can be quite large depending on the
number of parameters in the weighting sequence.

Similarly, a step response model of the process can be determined from
the process response to a step input as shown in Figure 3.2. In this
representation, the present output is a linear combination of the past

incremental moves of the manipulated variables and the noise.  The process
mode! is given by

(= =] oo
y) = Sz Hau) + FEHEm = § sz Au(t) + [“Z £z |£(t)
i=1 i

i=1l

[3.1.8]
where {si: i=1,2,..,00} are the step response parameters. Since the impulse
response of a process is the derivative of the step response, the impulse
response parameters, hi, are equal to the difference between consecutive

.th . ..
step response parameters. Thus, the i impulse parameter is given by

hi =s-5 = Asi [3.1.9]
In a2 MIMO system, the step response model is given by
[+ <] o0
1 ) y y
w0 = SE7Hau + EEHED = | sz aum + |1+ ] £27[60)
i=1 i=1
[3.1.10]
where the ith impulse response vector is given by
h=5s5-5, 6 =24s [3.1.11]

Theoretically, a weighting sequence model requires an infinite number
of parameters to completely model the process. However, in practical
applications, it is assumed that the infinite sequence can be truncated
after N sampling intervals where 7 (= N*Ts) represents the settling time or

dominant time constant of the process. The resulting (deterministic) finite
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impulse response model {FIR) is given by

N 00
y(t) =Z hz 'u(t) + h.z'u(t)
1 1
i=1 i=N+1
0 [3.1.12]
=H(g Ju(t) + E
where E represents the truncation error. If hiz 0 for i>N, the truncation
error or model error should be insignificant since for any stable plant, hi
2 0 as i » oo. The rate at which the parameters approach zero depends on the
dominant time constant of the process. For a system with a fast response
time (small dominant time constant), the system responds quickly to changes
in the input signal and 1is influenced significantly by the most recent
inputs. For a sluggish system (large dominant time constant), the system
does not respond as quickly to input changes. Therefore, the effects of the
most recent inputs will not be as significant. Fewer impulse response
parameters will be required to adequately model a fast process as compared
to a sluggish system.
Similarly, the finite step response model is given by

N 00
y(t) =Z s.Au( t-i) + ; s, Au(t-i)

i=1 i=N+1

=Sz 1yau(r) + v, (3.1.13]
In this case, the truncation of the infinite series produces a “steady
state” term, Y, Assuming that the process was initially at steady state,

y, can be estimated as

[+ o]
-i
y, = E sz Au(t) = s_u(t-N-1) [3.1.14]
i=N+1
where Suar= SNez T ¢ T S IS the steady state gain of the process and

u(t-N-1) is the cumulative effect of the past incremental control actions
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{Au(t-i); i = N+1,..,00} (Navratril, 1988).

Identification of a weighting sequence process model does not require
an apriori knowledge of the process order. However, a truncation error is
introduced to avoid identification of an infinite number of parameters. The
accuracy of these FIR models can be improved by increasing the length of the
weighting sequence since modeling errors arise from the truncation of the
infinite series. An upper bound on this truncation error can be determined
which can indicate the robustness of the resulting model based control
scheme, In contrast, an apriori knowledge of process order is required for
identification of a transfer function or an ARMA model. The determination
of an upper bound on the unmodeled plant dynamics is not straightforward
with an ARMA model.

For underdamped systems with persistent oscillations, a weighting
sequence model will require a very large number of parameters to accurately
model the process. Any model based control scheme which used these models
would require a comparatively large amount of CPU processing time. Unstable
processes can not be modeled accurately with a weighting sequence model
since an infinite number of parameters is required. On the other hand, an
ARMA model can be used to model unstable or poorly damped processes
reasonably well.

Continuous time transfer function and weighting sequence process models
can be expressed in terms of Laplace transforms and convolution integrals in
a similar manner as the preceding discrete models (eqn's 3.1.1, 3.L.6,

3.1.8):



-7

e 9B(s) C(s)
y(s) = ————— u(s) + &(s) = G(s)u(s) + N(s)é(s)
A(s) D(s)
process noise [3'1'15]
model model
[+ <] [ o]
y® = [ he-junar + [ fr-ivecryar [3.1.16]
0 0

3.1.2 State Space Process Models

A state space model represents the process by a set of differential
equations. An internal state structure describes the process dynamics. For
a linear, time invariant process with p inputs, m outputs ard n internal
states, the state space model is given by

x(t) = Ax(t) + Bu(t) [3.1.17a]
¥ = CTx(®) + Du(t) [3.1.17b]
for continuous time systems where 4 € R*", B € R™F, C € R™" and D € R™",

The solution to the state space equation of a time-invariant continuous

linear system is

t
() = x0e?% [ e4"Bur)ar [3.1.18]
0

The state space system can be expressed in discrete time as

x(k+1) = Ax(k) + Bu(k) [3.1.19a]
(k) = CTx(k) + Du(k) [3.1.19b]
where
A = et [3.1.19¢]
and t
B = I eADp(r)dr [3.1.19d]

0
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For each state space model, an unique transfer function model can be defined

as in equation 3.1.15 and 3.1.1 where

G(s) = C'(sI-4)'B [3.1.20a)
T -
G(%) = C'(31-A)'B [3.1.20b]
for continuous time and discrete time systems, respectively. Similarly, a

weighting sequence model can be determined from a state space model of the
process. If the process has one input and one output, the weighting
sequence model corresponding to the state space model given by equation
3.1.17 is

oo o0

v = T hauw) = T cA™bul) = e(31-8)"buk) [3.1.21]

i=1 i=1
If the input signal to the process is an impulse (or pulse), the impuise
parameters are given by (discrete time)

h(k) = 2 'H(g) = cA*

) k>1 [3.1.22]
where t = kT. where T' is the sampling time and Z! is the inverse
z-transform.  Similarly, in continuous time, the impulse response parameters

can be shown to be given by

h(t) = £'H(s) = ce?b [3.123]

where £7! represents the inverse Laplace transform of H(s). In a
multivariable system,

hk) = CA*'B or Bt = Ce?lp [3.1.24]

where h(k) (or h(t)) is an pxm matrix.

For a given input-output model represented by a transfer function
(matrix) or weighting sequence, there are several equivalent state space
models which will generate the same output response to a given input
sequence.  Although each of the state space models exhibit the same input

and output properties, the internal states are scaled differently. These
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equivalent state space models are related through linear transformations of
the state wvariables. Let (4,8,C) represent a minimal realization of the
continuous system given in equations 3.1.17a and 3.1.17b. If T is a matrix

representing a linear transformation which scales the internal states such

that ‘
x(t) = Tx(t) [3.1.25]

the scaled system becomes
i(t) = Ax(t) + Bu(1) [3.1.26a)
¥(t) = Cx(t) + Du(t) [3.1.26b]
where A=T41 [3.1.26¢]
B=-1'8 [3.1.26d]
C=CT [3.1.26e]

Example 3.1: There are several state space models which will describe
the input-output characteristics of the following SISO system described by

the continuous transfer function model (Moore, 1981)

2
_ S 3+ I5s : 50 (3.1.27]
$ + 55" + 335" + 795 + 50

G(s) =

A continuous state space model, in controller canonical form, which produces

the same input-output behaviour is

3 -79 -50
0
0
1

)
"

-3
0
" C=[01 15 5]
0

OO -

5
0
0
0

I
(]
OO =

[3.1.28]
The state variables in the model given in equation 3.1.28 can be transformed
via a linear transformation to a Jordan canonical form. Let the

transformation matrix be equal to
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0.005+0.007i  0.005-0.007i -0.125 1.0

-0.037+0.016i -0.037-0.016i 0.250 -1.0 3129

-0.040-0.196i -0.400+0.196i -0.500 1.0 (3.1.29]
1.0 1.0 1.0 -1.0

-

where the columns of T are equal to the eigenvectors of 4. The transformed

(continuous) state space model is given by

-1+4.90i 0 0 0 0.361+0.3761 -0.365+0.368i
1 = 0 -1-4.90i 0 0 B = 0.361-0.376i c = -0.365-0.368i
=" 0 0o -2 o0|=" 0.320 = -3.00
0 0 0 -1 0.042 36.0
[3.1.30]

where the diagonal elements of .:1 are the eigenvalues of 4. The state space
model {4,3,C} in equation 3.1.30 is equivalent to the state space model
{4,8,C} given in equation 3.1.28 and will produce the same input/output
behaviour. The corresponding impulse response and step response parameters
can be4obtained from equation 3.1.27 (or equation 3.1.28) or directly from
the impulse response and step response as shown in Figure 3.3.

For the discrete time system described by the function model

0.065z% + 0.025z% - 0.071z + 0.020 (3.131]
2t - 3.3202° + 4.3122% - 2.594z + 0.607

Gy =

A corresponding discrete space model in controller canonical form is

3.320 -4.312 2.594 -9.607 1 0.065
1 0 0 0 _ |0 T _ 0.025
A= 10 o | B=lo| € =| -00m
0 0 1 0 0 0.020
[3.1.32)
The corresponding Jordan canonical state space model is given by
0.80+0.43i 0 0o o0 0.03+0.04i -0.37+0.37i
A = 0 0.80-043i 0 O B = 0.03-0.04i QTs -0.37-0.37i
= 0 0 082 0|~ 0.03 -3.00
0 0 0 091 0.004 36.0

[3.1.33]
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Figure 3.3a: Unit Impulse Response and Unit Step Response for the
Continuous System Given in Equation 3.1.27
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Figure 3.3b: Unit Impulse and Unit Step Response for the
Discrete System Given in Equation 3.1.31
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The state space models given in equations 3.1.32 and 3.1.33 will describe
the same input/output behaviour as the transfer function model in equation

3.1.31 as shown in Figure 3.3b.
3.2 PCA of Linear Time Invariant Dynamic Systems
3.2.1 Continuous Time Systems

PCA has been used in statistics to analyze vector time signals.  The
same analysis techniques can be used to assess the total energy and the
distribution of energy in dynamic processes. The energy in the vector
signals is an indication of persistency of excitation in the dynamic system.
Once a process model has been obtained which represents the process,
principal component analysis (PCA) can be used to define the image space and
the kernel space of the linear transformation (see chapter 2).

Let u(t) € R®, y(t) € R™, and G(t) € R™F represent the linear time

invariant system shown in Figure 3.4, where

T
¥ty = [ G(t-nu(r)dr (3.2.1)
0

such that u(-) is piecewise continuous over the interval [0,T] (Moore,

y(t)——| G (t)|— y(t)

Figure 3.4: Linear Time Invariant System



9p

My 1ea0 ()D jo sepnyiufew jusuodwiod Y JOo wns Ay '3 “or00a uondunj
luduodwod Zurpuodsatiod ayl jo ySua| ayy sjuasasdar dp ‘(D Jo 1uasuodwods
jedrourid ng 9yl jo apnyudewr ayjy ‘(D Jo 101094 uonduny Jjuauoduros l“g
ayl si i‘a pue (1)D jo I10109A jusuodwod g W S 'z adyYMm i‘é”i se pautjap
st (1) jo usuodwos jedrourad g SUL WSS Jog (1)'5‘)';2 = (1)5“3 alaym
(X%3) W32+ + @32+ 7= 0D

(1861 ‘a1001)

Se Siseq [ewlouoyyio siy} Jo swial ur passardxa aq ued (1)H aoedsqns

3y} Ioj siseq [ewlouoyrso ue Surwioy Y ueds M JO $10109A Iem3urs ayf

'z',K JO s10193AUa8I0

pue soneAuadid oyl se oawes oy oIe ;M JO S$10103A pue senjer Iensuis Y

‘XHjew JldwwAs e St ‘z‘/K ‘UBlWWIRID Y} VWIS 7 JO SUWN[OD Ayl aIe yorym

w, oz I
[vzel (Z «Z ')
‘s1010aA sen8urs Jeuo8oyiio Ajjeninw sey Xinew ayjy
- _w o -2 _1
[ez¢€] 02 ,0% P20

‘JeY) Yyons palapIlo SI1aquInu ane3au-uou

‘leas  ai1e ‘o ‘zﬂ JO senjea renBuls oy °{l:o""‘zo‘;o}88gp=zz aIaym
0
lazzel 78,7 = w505 [ = &
A
A A
10
0
(ezze] 12232 = 1w, ()50)5 f =M
X

(1861 ‘B6LGI ‘2I00W) Se paurjop aq

ued ‘(A) UBIWWEID 9yl ‘XiNBW AIIUIJOP-IWSS ‘orowwAs ‘aamisod v ‘(1861



interval [0,T] represents the total energy in the signal set (Moore, 1981)

T T

J' G(t) ; dt= Y af = trace { j G(t)G(1) dt } [3.2.6]
i=1

0 0

where - P is the Frobenius norm. The component vectors, z, and component
1

magnitudes, T define an ellipsoidal region of the subspace R™ which

reflects the spatial distribution of the energy in the system. Assuming

that o 2 0, the subspace containing the set of vectors z € R™ for which

o

T
276 2dt=[ gt %t =1 [3.2.7]
0

is an ellipsoid with semi-axes of length o, and direction z for lgi<sm.

The image of the convolution map given in equation 3.2.1 is the
ellipsoidal subspace of R™ defined by the component magnitudes and component
vectors of G(t) over [0,T] (Moore, 1981). A set of vectors

y= ZEZp [3.2.8]
can be defined where p =1.0. The subspace which contains all vectors g
which satisfy equation 3.2.8 is an ellipsoid with semi-axis of length o and
directinn He If an input signal
u(t) = G(T-tq (3.2.9]
is applied to the system described by equation 3.2.8 where
a=2zp [3.2.9b]

y(t) will pe driven to x at time T (Moore, 1981). If

y=oz [3.2.10]
and u(-) satisfies the norm bound
T 2, T T
[ u) “de = [ u(t}u (t)dt = 1 [3.2.11]
0 0

. . . . .th .
the minimum norm input function will be the i component function vector
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normalized and reflected in time (Moore, 1981)
u®) = G'(T-vzg; = £(T-1/0, [3.2.12]
The principal components can be determined based on sampled data. If

G(t) is sampled at 0, t1‘ ’z""‘tN' a rectangular approximation of the

o

integral can be used to calculate the Grammiaa, W', The interval [0,T] is
divided into N evenly spaced sample points. For a small enough sample time

and a large enough sample size N (Moore, 1981)

N T T-0 N . .
w’ - [ ggwTa = ¥ G)G)" = pD [3.2.13a]
N i=1 !
0
where
) 1/2
D= [ IJ%] [ G(0) G(t) ... Glt,) ] [3.c.13b]

Therefore, the component magnitudes and vectors of G(t) over the interval
[0,T] are approximated by the singular values and vectors of D. The vector

sequence D can be decomposed into spatially orthogonal vect :s, '21’ ordered

with respect to their component magnitudes ai(_l_)_) where LV_z = Q_QT = ;-gz-;T
and £ = dnag{ol,az,..,am}.
Example 3.2: For the system represeated by the matrix
-t -0.1t
G(t) = e 0.005e [3.2.14]
0.5¢ %% e

the Grammian can be evaluated over the interval [0,T] wusing equations
3.2.13a and 3.2.13b to approximate the integral. If the sampling time is

0.5, the value of the Grammian evaluated over the interval [0,5] is

2 [ 2502 1520
¥ - [1.520 3.502] (3:2.15]
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where

0.586 -0.810 ] [3.2.15b]

v . 4602 0
Ly~ Yy = [o.slo 0.586 ]

2

Ew™ [ 0 1402
The component vectors of G(t) are given by the columns of Zw and the
component magnitudes are given by the diagonal elements of §w. At t=0, the

principal components of G(0) will be given by

g](0) = 2,G(0) = [ 0991 0410 ] [3.2.16a]
8 (0} = 2°G(0) = [-0.517 0.582 ] [3.2.16b]
and
G6(0) = ze, + .8,
_[os8t 0.4757 [ 0419 -0471
= | 0803 0.656 -0.303  0.341
1.00  0.005
= [o.so 1.0 } (3.2.17]

g’f(O) and g:(O) are orthogonal components representing each vector signal in
G(t) (each column of G(t).

As the time interval increases, the Grammian changes resulting in a
change in the component magnitudes or singular values. However, the
component vectors of the Grammian do not change. Therefore, the ellipsoid
representing the spatial distribution of energy in the vector signals simply
expands along its principal axes. There is an increase in the energy of the
signal set represented by G(t) as indicated by the increase in the component

magnitudes. For the interval [0,20]

2 [ 5004 3034
L [3.034 7.012] [3.2.18a]

where

0.586 -0.811 2 9.204 0

Zy= Yy - [o.sn 0.586] Zw" [ 0 2.282] [3.2.180]
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For the interval [0,40), the Grammian is

2 _ [7.0%6 4291
¥ - [4.291 9.916] [3.2.19]
where
v _ [0s586 -0811] 2_ [13016 0
Ly~ Yy = 1[o.zm 0.586 } Fw" [ 0 3977 ] [3.2.35%7

Figure 3.5 shows the ellipsuids representing the image space of G A1 tae

distribution of energy at different time intervals.

If G(t) is rank deficient (rank = r<m), there will be columns (and
rows) of G(t) which are linearly dependent over the interval [0,Tl The
linearly dependent columns correspond to zero componen: mmagnitudes of LV_"
which represent degenerate axis of the ellipsoidal region corresponding to
the image space of the system. Principal components can be ustd to
approximate G(t), in the least squares sense, with a system of lower rank
Qr(t) over the interval [0,T]. Over the class of piecewise continuous
functions G(t) with dimension r (I<r<m), the function

r

G0 = Tz [3.2.20]

i=1

can be defined which will minimize the Frobenius norm ard the spectral norm

of the approximation error (Moore, 1981), The i#>roximation error will be

given by
T 2 o 2
l'iF = f G(t) - G (V) P dt= Y o [3.2.21a]
0 F x=|~+1l
T T 2 2
Es = r:a:l { z (G(t) - Qr(t)) 2 dt = aH1 [3.2.21b]

The singular values and the singular vectors of D in equation 3.2.7b,
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Figure 3.5: Subspaces Representing the Distribution of Energy in the System
(the Image of G) for the System in Example 3.2
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can be used to find Qr(t). The component magnitudes or singular values of D
reflect the closeness of the approximations of various dimension r.
However, for the continuous time case, gr(:), given by equation 3.2.20, will
minimize the approximation error only at the sample points (Moore, 19792a).
As discussed in section 2.2.1 for the linear static equation
Y=Ax

a perturbation (or error) in the data vector y will result in a error in the
solution vector Xx. The condition number of A indicates the worst case
magnification of the error in the :Jala vector into the error of the solution
vector. In dynamic systems, the condition number of the Grammian ﬂz
indicates the sensitivity of the system to perturbaticns in y and y (Moore,
1979a). For the system given in equation 3.2.1, Moore (1979a) showed that a

perturbation in u, Au, will be magnified by 4(W)in the output vector y

giving y+Ay

( T 11/2
[ Gau 2dt 2 1z
] amax(w') Au Au
=|— = (W) - [3.2.22)
}‘ G % o M) u u
t)u t
0

If y_y(t) is the minimum norm solution of the system, Moore (1979a) showed
that a perturbation in y, Ay, will be magnified by '7(LV_T) in the minimum norm

olution to the system wh Au(t) = t) - t
soluti y ere Ay(t) gymy() uy()

[, 11/2
! 2 1/2
[ Ay(r) “de o2 (WT) /
0 max Ay T Ay
" = |3 = =4W)  — (3.2.23]
A 2 Tmid® )| ¥ ¥
Jou () “de
0 y
L i

Perturbations in the matrix Git) (AG(t)) will alter the component magnitudes



and vectors of G(t). Let the perturbed system
GA() = G(1) + AG(r) [3.2.24]

be represented by the Grammian ﬂz given by

T
2 T
wi = [ G, G0t [3.2.25]
0
with component magnitudes %A where
2 2 2
OIAZ Tpp 22 O \2 0 [3.2.26]

A perturbation in G(t) will change the component magnitudes by no more than

the component magnitudes of the perturbation such that (Moore, 1979a)

T

2 2 T

o -dl, | s f AG H)AG(H) dt [3.2.27)
0

A similar result was shown for the linear system y = A-x in equation 2.2.5.

3.3 Controllability and Observability Analysis

3.3.1 Continuous Time Systems

PCA can be used to analyze the controllability and observability of the
svstem represented by the state space equations

X(t) = Ax(t) + Bu(t) [3.3.1a]

¥(t) = Cx(1) + D-y(t) [3.3.1b)

where x(t) € R", u(t) € RP, and y(t) € R™  Within the state space structure

there are four internal subspaces: the controllable, uncontrollable,

observable and unobservable subspaces. A system is state controllable at

any time if given an initial state 5(to), there is a piecewise continuous

u(t) which will take 3i1 states from their initial states, 5(to)’ to any

(WX
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final state x(t) in a finite time. Therefore, the controllable subspace is
the smallest subspace which contains the state response to every piecewise
continuous input signal u(t) for the system with initial states x(0) = 0.
The uncontrollable subspace is orthogonal to the controllable subspace. A
system is state observable if a knowledge of the input u(r) and the output
y(r) over a finite time segment O<r<t completely determines  x(t).
Therefore, the wunobservable subspace 1is the largest subspace for which
arbitrary piecewise continuous input signals u(t) can be applied to the
system with no output response. The observable subspace is orthogonal to
the unobservable subspace. These subspaces can be related to the image and
kernel spaces of a controllability and an observability Grammian.
If G(t) represents the impulse response matrix of the system
(1) = G(t)-u(t) (3.3.2]

then
G(t) = ce?'s (3.3.3]

A controllability Grammian is defined as (Moore, 1979a, 1981)

T T
w2 =[BT Tar-z527" [3.3.42]
C 0 - c—Cc ¢
where
2 _ .o 02 2 2 2
§c = dxag{aci}, o2V, 220 2 0 [3.3.4b]

An observability Grammian is defined as (Moore, 1979a, 1981)

T T
W= [ed cTced " dr = vE VT [3.3.52]
- - )

°
0

where

. 2 2 2
§° = diag {aoi}, o 2 0,22 0 2 0 {3.3.5b]
These unique Grammians, ﬂ: and W2, are positive, semi-definite, symmetric
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matrices which satisfy the Lyapunov equations
AW’ + W4T = -BB" [3.3.6a]
AT+ Wi = T [3.3.6b)
\_Vz and Ez are obtained from the solutions of these Lyapunov equations.

For the system shown in Figure 3.6, the controllable subspace can be
defined by monitoring the state responses {%(t)} with initial states of
zero, {x(0)=0). to th¢ sequence of impulse test signals

u(t) = e%5(t)  ls<igp [3.3.7]
where §6(t) is the scalar unit impulse function, e'i’ is the ith column of the
mxm identity matrix and d(t)=0 (Moore, 1981). From equation 3.1.18, the
state response is given by

X = e¥p (3.3.8]
where  X(t)=[x (1) X, (t)..._)gp(t)] € R™P.  Therefore, the image space of X(t)

with the least dimension for all t € [0,T] will define the controliable

d(t)

‘l—/— [dt >®~ C |[—=y)

x(t)

>

o

u(t)

Figure 3.6: State Responses to Test Signals {u(t) and d(t))
(Moore, 1981)
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subspace. Since

2 T Ar_ 7 AT T
W= [ ef"BBTeS T dr = [ X(nX(n)dr [3.3.9]
€ o N 0
the controllable subspace is also the image space of ﬂf. Therefore,

compor2nt  vectors of w_f, Z. corresponding to non-zero component

magnitudes, o, Span the controllable subspace and define an ellipsoidal

region in the state space with axis of lengths oci>0 and directions z,

which can be reached from a zero initial state with input vectors satisfying

T 2

J ou) “de <1 (3.3.10]
0

The uncontrollable subspace is orthogonal to the controllable subspace and

corresponds to the kernel space of Ec. This is the subspace corresponding
to zero component magnitudes of LV_C.

Similarly, the observable subspace corresponds to the image space of _\iz
(Moore, 1981). For the system shown in Figure 3.6, the observable subspace
can be defined by monitoring the output response to a sequence of impulse
test signals

d(1) = e6(t) I<isn [3.3.11]
where e s the i"™ column of the nxn identity matrix and u(t) = O (Moore,
1981). The solution to the state equations is

Y@ = Ceft [3.3.12]
where Y(t) = [1l(t) xz(t) xn(t)] € R™". Therefore, the Kkernel space of

Y(t) with the greatest dimension for all t € [0,T] defines the unobservable

subspace. Since

T
T
W= [ ef cTcet" ar J‘f(t).x(t)dt [3.3.13]

O e

0
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the component vectors of Wo. z. corresponding to zero component
magnitudes, o, Span the unobservable subspace. The component vectors
corresponding to non-zero component magnitudes span the observable subspace
and define an ellipsoidai region within the state space with axis lengths
o in directions z, which defines the set of all initial conditions which

satisfy

T
[ cef'x0) * dt =1 [3.3.14]
0

Scaling of the internal states of the state space system given in
equation 3.1.17a and 3.1.17b by a linear transformation, T, will change the
singular values and vectors describing the controllability and observability
subspaces.  Therefore, the "shape” of these subspaces will be affected. If
the states are improperly scaled, the ellipsoids will be very distorted or
thin indicating that some of the states are nearly uncontrollable and/or
unobservable.

If the states are perturbed by Ax such that an input U is required to

drive the output from y(0) to y(T), then (Moore, 1979a)

r T ~11/2
2
‘!; 'ng-!x dt Ax
< 1Y) [3.3.15]
T \ ¢ x
{ u_ dt

where '7(_\1c) reflects the conditioning of the system (4,B,C) with respect to
point wise state control on the interval [0,T]. Similarly, if the initial
states of the system are perturbed by Ago which produce an output
over the interval [0,T], then (Moore, 1979a)

At
YA=CR= X0



11/2
T /

QNG dt L
< . {3.3.16)

T
[ u(t) %de
1]

where '1(_“_'0) reflects the conditioning of the system (4,5,@) with respect to
zero input state observation. If the controllable and observable subspaces
are very distorted, the condition numbers of the corresponding Grammians
will be very large. In this case, small perturbations in the states can

result in large errors in the predicted process output to a given input

sequence.

Example 3.6: For the system described by the continuous <*~te space

model in e~uation 3.1.28, the controllability Grammian (equation 3.3.4. i

0213 0 0007 0

2 | 0 0007 0.0005
¥o=1-0000 o0 00005 0 [3:3.17a]

| 0 -00005 ©  0.0002

[ 0005 0023 0127 0250 ]

2 | 0003 0135 0740 1476 2

¥.=] 0127 o740 4336 88| '© [3.3.170]

0250 1476 8878 18.581 |

The singular vectors of ﬂ: and _\1:, the colunias of ;c and ;o respectively,

are

0999 0  0.034 0
- 0 0998 0  -0.064

Z.=| 003 0 -09 0 [3.3.182]

0 -0064 0 -0.998 |

0012 -0074 0021  0.997
0.072 -0.368 -0927 -0.009
Z =| 0432 -0824 0361 -0074 [3.3.18b]
0.899 0426 -0.099  0.023
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The singular vectors represent a orthonormal basis set for the ellipsoidal
controllable and observable subspaces in R‘, respectively, for this system,
The singular values are

(o (W’ 0.213, 0,007, 0.0002, 0.0001) [3.3.19a)
and
{ai(_\y_z): 2.296*10%, 783, 0.446, 0.0595) [3.3.19b]

which represent the length of the orthonormal axis of the ellipsoidal
subspaces. In this realization, there are at least two states which are
almost uncontroilable as indicated by the small singular values of ﬂz.
Also, there are at least two states which are relatively unobservable as
indicated by the relative magnitudes of omin(_\y_:) and omu(_\\f). The

o

condition numbers for the controllable subspace and the observable subspace

are
AW) = 1.69°10° [3.3.20a]
"W ) = 3.86*10* [3.3.20b]
respectively. Although  this  realization is more controllable  than

observable, the high condition numbers indicate that there will be states

which are almost uncontrollable and unobservable.

Example 3.7: For the continuous state space system
[ -0.5183 1.4503 0.391l -0.7729 T -0.7729
A = | -1.4503 -2.1954 -4.7533 B =] -0.8047 C = 0.8047
0.3911  4.7533 -0.6297 0.3373 0.3373
[3.3.21]

the controllability and observability Grammians are given by

o

, 0.5763 0 0 ,
W = 0  0.1475 0 = W [3.3.22]
€ 0 0  0.0904



where Z=2Z =] and
(3 0

{ai(ﬂz) = ai(ﬂ:) : 0.5763, 0.1475, 0.0904) [3.3.23]

Therefors

1MW) = 1¥) =638 [3.3.24]
In this case, the system is as controllable as it is observable since the
condition number of the controllability Grammian and the observability
Grammian are equal. Also, this system will be considerably easier to

control and observe than the system in example 3.6.

3.3.2 Discrete Time Systems

The controllability and observability subspaces for discrete time
systems can be defined in a similar manner as the continuous system. If

Gk) = CA*'B [3.3.25]

represents the impulse response matrix of the discrete system given in

equations 3.1.19a and 3.1.19b, the discrete time controllability and

observability Grammians are defined as (Silverman, 1980)

k.
wl =y a's(a") =z 5’27 [3.3.26a]
0
2 k T iATn,i 2,T
W =Y (A)CCA =V YV [3.3.26b)
0
respectively. These unique Grammians, _\!f and ﬂ:, are  positive,

semi-definite, symmetric matrices which satisfy the discrete time Lyapunov

equations

wfﬁ" + w2 = pB” (3.3.27a)

Tw:_g + y: = -C'C [3.3.27b]

23

(1)

>

As the sampling time of a system approaches zero, the iliscrete time

60



controllability and observability Grammians will approach the corresponding

continuous Grammians (Moore, 1979a)

2 limit | 1 .2

('\L’c)cont - ts=> 0 { -t‘('wc)dia} [3.3.28a]
2 _ limit 2

(‘w'o)cont - t'=> 0 { tA(Ec)diu} [3.3.28b]

It can be shown that the discrete time Grammians are related to the
system controllability and observability matrices, P and ©Q respectively,

such that (Silverman, 1980)

W = PP’ [3.3.292]
¥ =00 [3.3.29b]
where
P=[B AB AB-A"'B] [3.3.30a]
0=[Cc ca ca’.cam] [3.3.30b]

The determinant of the system controllability and observability
matrices can be used to assess controllability and observability of the
discrete state space system. The state space model is said to be
uncontrollable if det(P)20 and is unobservable if det(Q)=0. Although the
diterminant of P and Q indicates whether the system is
controllable/observable or uncontrollable/unobservable, it dces not indicate
the "degree" of controllability or observability. On the other hand, the
condition number of P and Q will indicate whether the matrices are close to
rank deficient. If the condition number is large, the determinant of P and
Q will be close to zero indicating that there are some states which may be
almost uncontrollable and unobservable, respectively. However, the number
of uncontrollable and unobservable states will be unknown. On the other

2 2

hand, the singular values of ﬂc and ﬂo indicate

61



uncontrollability/unobservability of the system as wei! as the number of

states which may be unobservable/uncontrollable.

Example 3.8: For the discrete state space system in example 3.1

(equation 3.1.32), the controllability and observability Grammians are given

by
168.50 96.44 41.76 10.56 ]
2 96.44 5705 2560  6.71
Wo=1 4176 2560 1202 3.2 [3.3.31a]

1056 671 332 100 |

0.670 -1324 0952 -0.247
w1324 2661 -1935  0.505 (331
%o T 1 0952 -1935 1416 -0.37I S

-0.247 0505 -0371  0.097

The singular values are
ai(y{f) : {235.6, 2.829, 0.107, 0.01%j [3.3.322]

and
oi(E:) : {4.823, 0.023, 0.0002, 0} [3.3.32b])

Therefore, the condition number of this state space model ith respect to
pointwise state control is 17,G600. The condition number of the system with

. . . 8 . .
respect 0 zero input siate observation is 3.6x10. The controllability and

observability matrices for this svstem are

1 3.2 6.7 10.6 0.07 0.3 -007 0.02
Belo o 0 52| Q| 04 5 ose cous| B3
o 0 0 064 -135 1.02 -0.27
The determinant of P and Q a'e
det(P) = 1.0 [3.3.342]
det(Q) = 5.9x1077 [3.3.34b)

The determinants of P and Q indicate that the system is controllable but

almost unobservable. Examination of the singular values of LV_: and _\MZ



indicates that one state is unobservable and at least one state is almost
uncontrollable. The large condition numbers for the controllability and
observability Grammians indicate that this system would be difficult to

control and to observe.

Es =i+ .95 If the state space system in example 3.7 is discretized
W.u @ Sio. - time of 0.1, including a zero order hold, the resulting
discrste model is

1.284 0474 -0.175 1 0.411 ] 0.411 ]
A= | -0474 1.041 ~-€3.567| 3= 0.282 C_T = | -0.282
| -0.175  0.657 0.155 | 0.06! J ~-0.061 }
[3.3.35]
the controllability and observability Grammians are given bty
’ 1.456 0 0 ] ’
W= 0 0.148 0 = W {3.3.36]
¢ 0 0 0.1l ¢
and the ccntrollability and observability matrices are given by
T [-G:s‘«! 0.673 0913
P=0Q = 0.282  0.133 -0.225 3.3.37)
L -00Er 0078 -0.030
where
{ai(LV_f) - aiﬂz) : 1.456, 0.148, 0.5¢1) [3.3.38]
and
det(P) = det(Q} = 0.048 [3.3.39]
Therefore
AW) = AW ) = 135.2 (3.3.40}
In this case, the system is as controllable as it is observable since the
condition number of the cortrollability Grammian and the observability

Grammian are equal.

These realizations are known as balanced realizations



which will Ue discussed in chapter 4. This system will be easier to control
and to ob.erve than the system in example 3.8 since the condition number of
the Grammians is considerably smaller. Also, all the states should be

reasonably controllable and observable.

3.4 Summary

Principal component aniiysis can be used to describe the shape of the
subspace for the linear transformatior corresponding to the convolution
model between 2n input sequence wad an oui{nput sequence for a dynamic
process. As the sequence leng v ...rea.?. more process information s
captured in the linear transformation causing the ellipsoid rep+:ienting ’:he
system o expand. At some .oint, ail the information will be captured in
‘e sysiem. Any further increase in the s.quence length will not
sigrificantly expand the ellipsoid for the transformation.

The principal component vectors (singular vectors) and the component
magnitudes (singular values) of the controllable and observable subs;.ice
provide a geometric description of the . -ntrollability and observability of
the presess. The principal components of these subspaces indicate
explicitl.  -vhether a system is highly controliable/observable or weakly
controllable/observable. Also, the relative magnitudes of the principal
components describe the conditioning of the system with respect to
controllability and observability and the sensitivity of the system to noise

or modelling errors.



Chapter 4 Internally Balanced State Space Process Models
4.0 Iatroduction

There are several standard {or-.s for state space models which are
related through linear transformations. For each input/output model, there
can be several state space models which will provide the same response to a
given input sequence. Moore (1979a, 1981) introduced internally balanced
state space realizations for continuous systems. In a balanced realization,
the system states are as controllable as they are observable with the state
vector ordered from the most controllable/observable state, xl(t). to the
least  controllable/observable state, xh(t). Laub (1980) and Silverman
(1980) provided some insight into the stab..ity of these models as well as
the discrete time equivalent to Moore's initial theory. Several researchers
have utilized i‘'«rnally buianced state space models in process model
idenufication and model order reduction algorithms since they exhibit good
numerical properties.

The following sections describe the process for obtaining balanced
realizations from a minimal realization of the process. Ir addition, the

properties of balanced realizations are discussed.
4.1 Continuous Time Models

Let (4,8,C) represent a minimal realizaticn of the continuous system
given in equations 3.1.17a and 3.1.17b. If T is a matrix representing a

linear transformation which scales the internal states such ihat

x(t) = Tx(t) [4.1.1]
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the scaled system will be given by equations 3.1.26a,b,c.d. The
controllability and observability Grammians of the “scaled" system are given

by (Moore, 1979a, Laub, 1980):

LA U [4.1.2a)
W= TTWT [4.1.2b]
o (]
where:
- 22T 2 . «1T .
\_c ;cgcz"c _( —cgcJ ( ‘Z‘c:‘c) [4.1.33]
2 _ 2,T _ . T
Wo=2zzz =(23)(zz) [4.1.3b]

are .ne ccatrollability and observability Grammians of the original minimal
realization (g,@,g,g) in equations 3.1.17a and 3.1.17b. Let a matrix, H, be
defined as:

T
T
= s =
H [Z'o:o] [‘Z'c—c] Zhghxh [4.1.4]

and & linear transformation I_k be ceaned as:

-k
L= 22V 2 [4.1.5)

(Laub, 1980). If k=0, it can be shown that

22 -1 2
W =T WT =1 [4.1.6a]
< 0 c—0
2 T 2 2
: = V = ¥
and: Wo-T WT =3 [4.1.6b)

Although all the states in this realization will be controllable, they may
not be strongly observable. This type of realization is referred to as an

input-normalized realization (Moove, 1979a, Laub 1980, Silverman 1980). If
T
there are small components in e’-4 t(_,‘T which are offset by large components of

e-tf_j‘, a transformation to an input normalized realization wili make all
components of e’-“@ of unit magnitude and allow comparison of the components

T
tc

. A
mn eo-

T
If k = 1 in equation 4.1.5, the contollability and observability

Grammians for the resultant realization will be given by:
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P o ro=
\vc -1 ‘\"‘c_'l §h [4'1‘7:!]
and
=2 T \\,2 _
EO =3 \_OI1 =1 [4.1.7b]

This type of realization is referred to as an outpust-normalized realization
where all the states are observable. However, the state may not be strongly

controllable (Moore, 1979a). If the components of e'—“B are small in the
ATy 1
minimal realization relative to e- 'C", they can be compared to each other
T

At

in an output-normalized realization since all the componsats of e~ cT

will
have a magnitude of one.
If k = 1/2, an internally balanced realization is obtained with the

controllability and observability Gramraians given by:

22 -1
¥ o= II/Z\_V'CII/Z— z, [4.1.8a]
and
=TT WT =3 4.1.8b
Lo T =1/27o1/2 Ch (4.1.80]

T
In this cuse, the mu:nitudes of the components of e’ij th and e'ﬂtg will be

equal since the Grammians are equal ard -iagonal. All the states will be as
controllable as thev are observable since the controllable and observable
subspaces are equivalent. The component magnitudes cf the controtlable and
observable subspaces (oi(_li); i=1,2,..,n) indicate the controllability/

observability of the corresponding state.

Alternatively, the linear transformation Ik where:
T= z5'zz 4.1.19]
=k  “o-o —h-h (4.1

can be wused to obtain input-normalized (k=1), output-normalized (k=0) or
internally  balanced (k=1/2) realizations (Laub, 1980). The linear
transformations required to transform a system between these three
realizations are aligned and Aiffer onlv "y scaling factors (Moore, 1979a):

T =1 2.1 g [4.1.10]

~ib “on =-h ~in-h
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Example 4.1: For the system in example 3.1 (equation 3.1.28), the
matrix H in equation 4.1.4 is:
-0.049 0.057 -0.301 -0.485
_ | -0.063 -0.099 0.036 -0.013
H=1 0003 -0052 -0.004 0.001 [4.1.11]
0.112 -0.0002 0.0001 -0.0001
where
,' -1.000 0.008 0.027 -0.006
_ 0.c21 0.777 0.476 -0.411
Z;=| 0008 018 0451 0873 [4.1.12a]
0.017 -0.601 0.755 -0.262
[ 0.087 -0.790 0.606 -0.044
-0.104 -0.583 -0.764 -0.258
Ya=| 0524 0167 0082 -0.832 [4.1.120]
0.841 -0.094 -0.208 0.490 |
[ 0576 0 0 0 ]
B 0 0.148 0 0
Ze | o 0  00% 0 [4.1.12¢]
. 0 0 0 0.019 |
fTI-= ;czcxh, an input normalized realization is obtained where:
-0.518 0.734 0.155 -0.064 -1.018 -0.587
A= -2.867 -2.195 -3.721 0.440 B= -2.095 QT— 0.309
“n 0988 6.072 -0.630 0.552 “in 1122 in 0.104
1917 3.375 -2.594 -i.657 1.820 -3.035
(4.1.13)
The controliability and observability Grammians are:
0.332 0 0 f'1000
wl= 0 0.022 0 w? = 01 00
~oin 0 0 0.008 0 —e¢in 0 01 O
0 0 0.0004 L 00 01
[4.1.14]
Therefore, \_V.z, = 3%} and the realization (4., B, C.} is input
oin ~h -in =in ~in

normalized.
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f T=2Z%LV 2'1, an output normalized realization is obtained where:
¢—c™ h—h
-0.518 2.867 0.988 -1.917 -0.587 -1.018
_ ] -0.734 -2.55 -6.072 3.375 B = -0.309 cT - 2.095
“on 0.155 3.721 -0.630 2.594 “on 0.101 =on 1.122
0.064 0.440 -0.552 -1.657 0.035 -1.820
[4.1.15]
The controllability and observability Grammians are;
0.332 0 0 0 1 000
2 _ 0 0.022 0 0 w2 o= ¢ 1 00
—con 0 0 0.008 0 ~oon 0 0! 0
0 ¢ 0 0.0004 0 0 0 |
[4.1.16]
Therefore, _\!2, = 22 and the realization (4 , B , C } is output
oin -h -on ~-on -on
normalized.
If T = _Z_cEcy_hE;I/z, an internally balanced state space realization is
obtained where:
~0.518 1.6 9.391 -0.350 -0.773 -0.773
A= -1.450 -2.195 ~4,753 1.218 B= -0.805 CT— 0.805
“ib 0.391 4.753 -0.630 1.196 =in 0.337 =in 0.337
0.350 1.218 -1.196 -1.657 l 0.252 -0.252
[4.1.17)
The controllability and observability Grammians are
0.576 0 0 0
2 0 0.142 0 0 _ow?
¥l o o o000 o |~ ¥ [4.1.18)
¥ 0 0 0.019
2 2 . .
Therefsre, ﬂcib = ﬂoib = X(H) and the realizations {4ib, l_i‘ib, Qib} is

internally balanced. The above realizations were calculated using programs
inpnorm.m, outnorm.m and intbal.m written in matlab which are given in

Appendix C.
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Although the matrices H, ﬂf and ﬂi depend on the coordinate system of
the state space, the singular values of H are invariant under linear
transformation. w_:ﬂz is also invariant under the linear transformations Ik
since ﬂj\_”vf = §: for k equal to 0, 0.5 and ! in equation 4.1.5 and 4.1.9.
The singular values of H:

(ci(ﬂ): i=1,2,...,n) [4.1.19]
referred to as second order modes of the system by Moore (1979a), are
characteristic of the input and output properties of the system and nc the
specific state space structure. On the other hand, the singular vectors of

2 -
H, _\_\if gnccl ﬂ; are dependent on the coordinate system.

Example 4.2: For the internally balanced, input normalized and output
normalized realizations given in example 4.1, the corresponding H matrices

are given by:

-0.135 0 -0.271  0.137

| 0019 0003 -0.106 -0.0005
H =1 0002 -0008 0 0001 [4.1.20]
0.0001 -0.008 0.0001 0.0003
0.033 -0.007 0.004 0.0003
| -0.086 0015 0005 0
H.=1 0315 0002 0001 -0.0001 [4.1.21]
2012 0013 -0.004 0.0002
0332 0 0 0
) 0 -0022 0 0
H, = 0 0 -0008 O [4.1.22)
0 0 0 -0.0004
The singular values for these matrices are:
((H. ): 0332, 0.022, 0.008, 0.0004) [4.1.23a]
(o(H_): 0.332, 0.022, 0.008, 0.0004) [4.1.23b)]

{oi(_l-_Iib): 0.332, 0.022, 0.008, 0.0004) [4.1.23¢c]
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Moore (1779 and Pernebo (1982) showed that if the minimal
realization, (4,B,C), of the system is a~ weiotically stable, the internally
balanced, input-normalized and output-normalized state space realizations
will always be asymptotically stable:

edt <1 for all 10 [4.1.24]

and
x() 2= 0 ast — oo [4.1.25)

In addition, if the minimal realization is asymptotically stable, the three
realizations  will be  uniquely defined within an  arbitrary  unitary
transformation. If the second order modes, ai(tl_), are distinct and real,
the basis vectors which define the internally balanced state space model
will be unique within a change of sign (Moore, 1979a).

The <condition number of the conrtrollability and the observability
Grammians can be used to =2sess the cor - “ilability and the observability of
equivalent state space  realiri0wd, If <> condition number of the
Grammians is small, all the srates can be said to be well controllable and
observable, Any small modeling errors or perturbations in the states should
not significantly affect the input-output properties n° the state space
model. If the condition numbers are large, the controllability and
observability ellipsoids are highly distorted indicating an internal scaling
imbalance where some of the states are aimost uncontrollable and/or
unobservable as indicated by the singular wvalues of the Grammians.
Appropriate scaling of the internal system via an appropriate linear
transformation can change the shape of the ellipsoids and improve its
condition number. For an input-normalized realization, the condition number
of the controllability Grammian will be unity whereas the observability

Grammian will depend on the relative magnitudes of the second order modes.



Smilarly, the condition number of the observability Grammian is unity for
the output-normalized realization and the condition number of the
controllability Grammian depends on ai(ﬂ). Moore (1979a) showed that if the
state space model is an ‘internally balanced realization", the condition
numbers with respect to controllability and zero input state observation
will be the same and minimal. Therefore, a balanced realization provides

optimal scaling of the system states with respect to controllability and

observability.

Example 4.3: The condition numbers for the realizations given in
example 3.1 and 4.1 were calculated within MATLA}. Table 4.1 summarizes the
condition numbers with respect to controllability and observability for the
various realizations of this svstem. The icserpaisy  balanced ..odel has a
lower condition number with respect to contewlniiity haw  an input
normalized realization.  The internally balanced model has a lower condition
number with respect to observability than an output normalized realization.

The phase canonical realization is poorly conditioned wit:. respect to both
controllability and observability. Therefore, if the controllability and
the observability of a system is important to analyze, an internally

balanced realization will 2 the best conditioned system.

Shokoohi  (1987) generalizes the concept of internally  balanced
realizations to "block balanced" realization. A state space realization

(4,B,C,D) is said to be balanced in the wide sense if:

W=W=§-= __ll__ [4.1.26]



Table 4.1: Condition Number with Respect to Controllability and
Observability of the Realizations in Example 3.1 and

4.1

Realiza tion '1(_\5’.:') ’Y(ﬂ:)

input normalized 30.0 1.0

output normalized 1.0 30.0

internally balanced 5.48 5.48

phase canoniacal 41 .1 196 .4
where _S_11 e R¥k (Shokoohi, 1987). If 510 = 0, the realizetion is said to
be block balanced. If §12 = 0 and §u and §zo are diagonal, the realization
(4,8,C,D) is internally  balanced. Therefore, an internally balanced
realization is a subset of a block balanced realization. Shokoohi (1987)

shows that all the properties of internally balanced realizations are
preserved in block balanced realizations. In a s<imilar manner, realizations
which are input (output) normal in the wide sense and input (output) ncrmal

in the block partitioned sense are defined, respectively, as:

S IS

11| 12
W=1,W=8=|--7-- r4.1.27)
~c ° S Is

12 | =22

_“:Q
W =LW=5-= s [4.1.28]
[

91522

Computation of block balanced realizations requires recursive solution

of a ncustmmetric, algebraic Ricatti equation.  Although the block balanced
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realizations are more general than the internally balanced realizations and
possess the same properties, they can be more computationally intensive to

obtain from minimal realizations than internally balanced realizations.

4.2 Discrete Time Models

The derivation of an internally balanced state space model from a
minimal realization of a disc: ic time system is analogous to the continucus
time case. Let T be a matrix representing a linear transformation of the

discrete states, given in equations 3.1.19a and 3.1.19b, such that:

x(k) = Tx(k) 14.2.1)

The transformed or scaled realization becomes:
x(k+1) = Ax(k) + Bu(k) [4.2.2a]
¥(k) = Cx(k) + Du(k) [4.2.2b]

where

A=T'AT [4.2.2¢]
B=1'B [4.2.2d]
C=CT [4.2.2¢]

The discrete time controllability and observability Grammians for the
minimal  realization are given by equations 3.3.22a and 3.3.22b,

respectively, and the scaled Grammians are given by:

W= Wi [4.23a]
W = TTWT [4.2.3b]
[+] [+
Input-normalized, output-normalized and internally balanced

realizations are obtained from the matrix H, given in equations 4.1.4, and
the transformation matrix ’_l"_k in equation 4.1.5 (or 4.1.9) with k=0,1/2,1

respectively. The  resulting input-normalized,  output-normalized or



internally balanced realization will be asymptotically stable (A < 1) if
and only if );h has distinct diagonal elements and the minimal realization
was asymptotically stable (Pernebo, 1982). This condition represents a
weaker result than the stability condition for the corresponding continu;us
system. It should be noted that A = 1 only if the realization is stable.

Moore (1979a, 1981) showed that the matrix H for a discretized system,
given in equation 4.1.4, can be obtained from a process respoase by sampling
arbitrarily fast over the time interval [0,00). However, H contains

essentially th: .~me information as the discrete impulse hankel matrix for

the process, T, ....u

o(H) = lim o(T) [4.2.4]
! 6 20 '

where t is the sampling time. A hankel matrix is a matrix which is
constant along the antidiagonals. The impnise hanke! matrix is composed of
the impulse respense parameters sampled at discrete intervals. If there are
an infinite number of impulse response parameters, hi’ the (SISO) hankel

matrix will be infinite and symmetric and given by:

[ ]
1 hz hs’ i
. h3 PR PP
T = ' [4.2.5]
h h

- e

If the impulse response of a SISO process settles after 2N-1 impulse
response parameters such that hi=0 for t>(2N-l)‘t', the cu- vesponding

impulse hankel matrix is given by:
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hx hz hs - th-l
2 3 h4 . 0
r = ' [4.2.6]
th-z th-l
th-x
0 0
An NXN impulse hankel matrix can be defined as:
r b r N-1 -
h1 h2 hs . hN ¢h gA!z2 ....... cAN b
h2 hs " N+l ¢Ab cA‘Db ... cA'h
r = . . . = :
=N,N : :
hN-1 hN th-z 'N_l T N-2
- h Nag * e th-1 | i cA b ... cA b
[ ¢ 1 [4.2.7]
CA
Loy~ | ° .[g Ab .. A""n] -QP= ZTV'
S:_A_N-l

wiich contains all the information of the infinite impulse hankel matrix in
equation 4.2.6.

The impulse hankel matrix can be used to predict the response of the
system to a given past input sequence assuming no further control action is
taken. Given an input sequence:

{...0,0,...u(t-N),...,u(t-2),u(t-1),0,0,...) [4.2.8]

the future process output is given by



y(k) h, h, . hy utk-1)

ykel) | _ | b, hyowoh || u(k-2)
y(k+N-1) S T u(k-N)
v(k) = r u (k)

[4.2.9]

For a multivariable system with m outputs and p inputs, the generalized

impulse hankel matrix for the process will be an infinite block matrix where

h are mxp matrices:
1

[ h h ok h
1 2 -3 i
h h h h
2 3 4 i+1
' = : : : : .
- h h h [4.2.10]
It L Ut R U
h, h _.... h ...
J j+1 i+j-1

The block impulse hankel matrix will be symmetric it and only if all the hi

are symmetric mxp matrices.
An impulse hankel operator, TI(t-7), can be defined for continuous

systems which is analogous to the impulse hankel matrix for discrete time

systems (Wahlberg, 1986, Glover, 1984, Bettayeb, 1980):

0 0o oo
(Cu)(t)= ‘[geé("f)gg(f)d, - J’ge’.‘(”’-)gu(-,\)d,\ = j h(tsMu(-0dr  [4.2.11]
-00 0 0
where:
t
y(t)=J§(t-r)u(r)dr [4.2.12]
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Example 4.4: For the discrete system given in example 3.1 (equation

3.1.32) with a sampling time of 0.l:

1910 -0.944 0.456 -0.189
-1.136 0.185 -0.008 -0.008

H= 105476 0003 -6.003 -0.0008 [4.2.13]
-0.0008 -0.0001 0 0
with singular values:
{ai(ﬂ): 2.448, 0.380, 0.017, 0} [4.2.14]

The resulting input-normalized, output normalized and internally balanced

realizations, obtained from the Matlab programs, are:

1.122  0.136 0.008 0 0.316 0.775}
-0.873  0.901 0.075 0.0003| o 0.690 cT -0.266

A= | 1’105 -1.696 0620 0.006 = | 0601 in= | 0.010
23492 3.137 -3.145 0.677 L 0.224 0
[4.2.15)
1122 0873 1105 3.492 ] 0.775 0.316
no | -0136 ocor 1696 337 | o | 0266 | o1 _ | -069
A= 0008 -0075 0620 3.144 | Zn | 0.010 on | 0.601
0 00003 -0.006 0.677 0 -0.224
[4.2.16]
1122 0344 0092 0013 0.495 0.495
Ao | 0344 0901 0357 0030 | 5| 0431 | T _ | -0430
Az | 0092 -0357 0620 O0.141 | =B | 0.078 iv" | 0078
20013 0030 -0.141 0.677 0.001 -0.001
[4.2.17]

The impulse response for this system is shown in Figure 3.3. It appears
that the settling time of the process to an impulse is approximately 50 time

steps. The impulse hankel matrix for this system would be:

0.065 0.242 0.449 0.638 -
0.242 0.449 0.638 0.770 -
0.449 0.638 0.770 0.825 -
0.638 0.770 0.825 0.779 - [4.2.18)
0.770 0.825 0.779 0.704 -
0.825 0.779 0.704 0.568 -~

|3
]
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The singular values of the 45x45 impulse hankel matrix are:

{ai(I‘): 6.544, 1.577, 0.942, 0.185, 0, 0,...,0} [4.2.19]
which are not exactly equal to the second order modes of the system. As the
sampling time for the system decreases, the singular values of the impulse

hanke! matrix will approach the second order modes of the system,

Example 4.5: For the discrete system described by the transfer

function model

-1 -2
005327} - 00322y 16.2.20]
| - 1.6842"% + 0.705z

y(k) =

the corresponding state space model in controller canonical form (from

Matiab) is:

_ [ 1.684 .0.705 _ [ -
A—[ i 0 ] 5-[0] C=[0053 -0032]
[4.2.21]

The corresponding  input-normalized,  output normalized and  internally

balanced realizations are given by:

_ [ Lo33 0019 [ 0689
A ’[ 0.651] B = [0.725] c = [0078 -0.0009]

~in -1.686
[4.2.22)
_ 1.033  1.686 _ | 0.078 _
Bon = [-0.019 0651 ] B = [0.009] C,, = [oe8 -0725 ]
[4.2.23)
[ 1033 0.130 0232 _
B = [ -0.180  0.651 ] By = [ 0.026 ] Cp = [ 0232 -0.026 ]
[4.2.24)

The matrix H required to convert the controller canonical form to the

equivalent input-normalized, output normalized and internally  balanced

realizations is given by:

=

_ [ o0.107 -0.036
- [-0.003 -o.0004] (4.2.25]
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with singular values
{Ui(ﬂ): 0.113, 0.001} [4.2.26]

Therefore, the second order modes of the system are 0.336 and 0.032. From
the impulse response, shown in Figure 4.;, it appears that the process
settles in t = 60. The singular values of the 60x60 impulse hankel matrix
formed from the impulse response parameters are:
{ai(r‘): 0.553, 0.043, 0.003, 0.002, 0.001, ..., 0) [4.2.27]
Therefore, the system is approximately second order rince 02>03.
Maciejowski (1985) defined k-balanced dnd oo-balanced state space
realizations for multivariable discrete time systems. A corresponding
result for continuous time systems is not presented. A system is said to be

. T T 2 2 _ W2
k-balanced if E_kgk = Qka = 2_3h = w_c = Eo where

_ 2 X .
P = [B AB AB .. A_BJ [4.2.28a]
T 2 k] T
Q, = [Q CA CA" .. QA_] [4.2.28b)
are the controllability and observability matrices, respectively. A system

is said to be oo-balanced if E: satisfied the discrete time Lyapunov

equations:
§: - Agi_T = BB [4.2.29a]
gﬁ - A §:_A_ = c'c [4.2.29b]

Maciejowski  (1985) has differentiated between an internally  balanced
realization obtained from a finite impulse response and one obtained from an
infinite impulse hankel matrix. Since I' = QP, the impulse hankel matrix of
the system given by Q_k and _l?_k will be kxk whereas the realization obtained

from the Lyapunov equations will be infinite if the impulse hankel matrix is

infinite.
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4.3 Summary

From the examples presented in this chapter, it becomes apparent that a
balanced realization provides optimal scaling of the state space with
respect to controllability and observability. The condition number is equal
and minimal for both the controllable subspace and the observable subspace.
Since, the sensitivity of the balanced system to noise and modelling errors
has also been minimized, state space controtlers which are designed using
balanced realizations should be relatively robust. However, if the main
objective of the control scheme is to maximize observability, state space
controllers designed using an input-normalized realization would be optimal.
The condition number of the observable subspace for an input normalized
realization is minimal whereas the condition number of the controllable
subspace can be very large. Conversely, if the main objective of the
control is to nmaximize controllability, state space controllers designed
using an output-normalized realization would be optimal. In an output
normalized realization, the condition number of the controllable subspace. is

minimal but the condition number of the observable subspace can be vgry

large.
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Chapter S5 Model Identification and Model Order Reduction Techniques Using
Singular Value Analysis

5.0 Introduction

Control  strategies which utilize model based controllers such as
dynamic matrix control (DMC), generalized predictive control (GPC) or
adaptive control schemes require an accurate process mode!l to ersure
robustness and stability and to achieve "good" performance. Accurate
process models are also required to analyze and design multivariable control
systems which will be discussed in chapter 6. The most common
identification methods for advanced control implementations are one of the
many variants of the recursive least squares methods (RLS) and time series
analysis techniques. Shah (1987) presents a comprehensive review of
recursive least squares routines. Anderson (1967) reviews time series
analysis techniques. The least square routines require an apriori knowledge
of the structure of the process model. However, in most practical
applications, the actual order of the process is comparatively large and the
structure is generally unknown. Time series analysis techniques can be used
to identify a model structure prior to identifying the model parameters.

Recently, several researchers (Kung, 1978, Shokoohi, 1987a, Wahlberg,
1986, Silverman, 1980, Moore, 1979a, 1981, Gerstle, 1984, Al-Saggaf, 1987,
Maciejowski, 1985 etc.) have utilized singular value analysis techniques to
identify state space models from an impulse or step response of the process,
In these methods, the model order is determined during the identification,
Niederlinski (1984) and Verhaegen (1985) have used SVD to identify process

models wusing a least squares identification routine (Niederlinski, 1984,
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Verhaegen, 1985).
Most parametric identification techniques are implemented in three

steps:

i) choose a system order n

ii)  identify a model from the input-output behaviour

ii1)  verify that the assumed n is reasonable
This type of approach to model identification can result in an iteration
cycle since the system order, n, is generally unknown and the initial
estimate of n may be inappropriate.  Also, if the assumed model order or
model structure is different from the true system order and structure, there
will be a bias in the predicted process output relative to the actual output
due to the modeling errors. Over parameterization increases the order of
the model and increases the flexibility of the identified model to capture
all the dynamic characterisiics of the process. However, the matrices used
in the identification can be large and nearly singular.  Maciejowski (1985)
and Wahlberg (1986) modified this conventional approach to eliminate the
iteration step such that the identification algorithm requires only one pass
through the process data. There are three steps in their approach:

i) choose the largest possible system order, N. The only limitations
on the assumed order are CPU processing time, CPU load and memory
size.

ii) identify a balanced realization of the system from the
input-output behaviour using hankel matrix techniques or least
squares techniques

iti) reduce the order of the balanced realization to a reasonable
value

Although this approach does not require iteration using the input-output



data of the process, the selection of an order for the final balanced
realization may require some iteration.

Mode! order reduction techniques are used to generate low order process
models which will approximate the actual structure and order of the process.
The dominant frequency characteristics of the process should be retained in
the reduced order model. The utilization of these reduced order models in
the control algorithms will simplify any mathematical manipulations and
therefore reduce the load on the computer. However, the model error between
the actual process response and the model response to a given input or
disturbance should be minimized to obtain robust control using the reduced
order models. Several model reduction techniques have been developed which
employ singular value analysis. Moore (19792, 1981) introduced a method of
model reduction using internally balanced state space models. Kung (1978),
Glover (1984) and several other researchers have developed hankel norm model
reduction techniques to obtain approximate and optimal state space
realizations.

Several techniques for model identification and model order reduction
which utilize singular value decomposition are described in this chapter.
Through simulated examples, these methods are evaluated and recommendations

for their use are given.

5.1 Hanke! Matrix Model Identification Techniques

Several researchers have utilized the impulse hankel matrix and it's
shift-invariance property to obtain minimal state space realizations and
balanced realizations of the process. From the realization, a transfer

function model, an impulse response model or a step response model can be
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generated. The general state space model identification procedure involves
finding a linear transformation, T, such that a set of controllable and
observable state space models can bte obtained from input-output behaviours
(or transfer functions) (Maciejowski, 1985). Minimization of an error
function between a full order model and a reduced order model is used to
determine if the reduced model adequately approximates the original system
behaviour. This type of identification algorithm does not require any
apriori structural knowledge of the process. However, noise in the process
can be a problem since the impulse response (or step response) is used for
the identification. In the deterministic case, it is possible to find an
exact minimal realization using the impulse hankel matrix. ¥ However, in the
presence of noise, all the techniques will fail to produce a finite
dimensional realization but an approximation can be obtained by utilizing
SVD of the impulse hankel matrix. Kung (1978) and Damen (1982) present
summaries of various impulse hankel matrix identification methods.

The N order partial realization problem is the determination of a
discrete realization (A,B,C,D} from partial process information in the form
of a finite discretized impulse (or step) response of the process such that

h = CA"'B i=12..N [5.1.1]
where {Q:i:l,Z,...,N} is a finite sequence of impulse response parameters
(Tether, 1970). {A,B,C,D} will be a minimal partial realization of order N
if and only if the size of A is minimal among all possible partial
realizations (Tether, 1970). A partial realization of order N is equivalent
to matching the first N terms of the impulse response (Tether, 1970). An
approximate realization is a realization which approximates a partial
realization.  Algorithms have been developed using the impulse hankel matrix

of the system for time invariant processes (Silverman, 1980, Maciejowski,
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1985, Kung, 1978) and time variant process (Shokoohi, 1983, 1984, 1987a).
The following discussion will concentrate on discrete time systems.
However, continuous time systems can be dealt with in the same manner since
the identification problem is the same.

From Kronecker's theorem, the infinite sequence of impulse parameters

i=1,2,...) defines a finite minimal state space realization of order n

{h:
if and only if the infinite impulse hankel! matrix formed by the sequence has
rank less than or equal to n (Kung, 1978, Kailath, 1980). The hankel matrix
will have a finite rank n if and only if A(f;'l) has n stable poles (analytic
outside the unit circle |z|21) where (Silverman, 1980):
H(z Y = B )/Aam™) (5.1.2)
If the system being identified is noisy, the calculated rank of I may not
represent the actual order of the system as discussed previously in chapter
2. However, if the noise can be estimated, a noise criteria can be used to
determine the approximate order of the process.
An infinite impulse hankel matrix, given in equation 4.1.33, can be
formed from the infinite impulse response sequence {hi: i=1,2,...). If
T= N x T. [5.1.3])
where T is the settling time of the process and T. is the sampling time,
the infinite impulse response can be truncated to {hi: i=1,2,...,N}.
Therefore, the rank of the finite impulse hankel matrix formed from the
truncated sequence will approximate the order of the process. The
truncation of the impulse response sequence at T will introduce a error
into the identification routine, However, if a sufficiently long impulse
response sequence is obtained such that hi is small for i>N, the error

should be insignificant. The resulting impulse hankel matrix will be given
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by
[ b b, b hy
h, hy b, LN .
Ty = ; =28¥ = QpP, (5.1.4a]
bN-l lJN -2N-2
] l-]N }-’N+1 -2N-1 ]
CB CAB cA’B.. cAV !B ]
cAB CA’BCA’B.. CA™B
- aoT
r = : =ZE£V =Q.P [5.1.4b]
~NN N-2 2N-2 QN—N
ca“?p ..caA*N %
C_A,N-I_B _C____ZN-l_B_J

If hi= 0 for i>N, the impulse hankel matrix will be an upper triangular
matrix. In this case, the size of the impulse hankel matrix can be reduced
without losing any process information. If M=N/2, a full impulse hankel

matrix can be formed as (Maciejowski, 1984):

-
h1 h2 h3 . hM
hz hs h4 " hM+1
. . . . T
I‘_M’M = . . . . = ;-_E_-X [5.1.5]
hM_1 hM th-z
i hM hM+1 th-l _

The computation load required for the identification will be reduced by

reducing the size of the impulse hankel matrix.
5.1.1 Ho-Kalman Algorithm and Variations
Ho and Kalman (1966) developed an algorithm to obtain minimal

realizations from the discretized infinite impulse response for a finite

dimensional, deterministic linear system. Since input/output data is used
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in the identification, an apriori knowledge of the system order (the number
of state variables) is not required. If the dimension of the system is
finite, the identification method will give an exact realization with the

right dimension (Ho, 1966). Given the impulse hankel matrix, [NN. in

equation 5.1.4 formed from the impulse response of the system, a matrix E; N

can be defined as

- -
hz ha h4 " hN+1
ha h4 hs " hN+2
/'s - . . . . - . .
gN_N = : : : X = Q-AP [5.1.6]
hN hN+1 th-x
i hN+1 hN+2 eeee th |

which is the original impulse hankel matrix shifted up by one (block) row
with the appropriate impulse parameters entered into the bottom row. The
shifted matrix utilizes one additional impulse response (block) parameter
and retains the hankel structure. Two non-singular matrices, R and §, are

found such that

(L]
(=]

RT  §= | " -UU = [5.1.7]

Z
4
(=]
o
2
E)

U-=r1 29J {5.1.8]
The resulting n'® order minimal realization is given by
= U DRI Sjiut
A= U{IRTY, 11U, [5.1.9a]
T
B = U_n-[l-_&-EN,N-.h:p] [5.1.9b]
T
C=[E TSI U, (5.1.9¢]
where
E =(1,0] erR?" [5.1.9d]
P PP
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mxN
E =[Ll,0] €R [5.1.9]
are block matrices for the system with p inputs and m outputs. g: and Em
selects the first p columns (number of inputs) and the first m rows (number
of outputs) of ENN, respectively. The Ho-Kalman algorithm will identify a

unique, finite realization of dimension n {rom the infinite impulse response

if and only if there exists integers s and s' such that (Ho, 1966, Tether,
1970}

Vi=0,1.2,.
rank(L, ) = rank(l ) Ve [5.1.10]

—8+i,8'+]
where s'< n and s < n. Ho (1966) shows that this realization is minimal and
every minimal realization can be obtained by suitably choosing R and S§.

Tether (1970) showed that the Ho-Kalman algorithm could be used to
approximate an infinite dimensional deterministic system by a finite
dimensional minimal partial realization. A partial realization will always
exist via the Ho-Kalman algorithm since every finite sequence of impulse
response parameters {hi:i=l +24..,N) admits an extension sequence
{hi:i=N+l,N+2....} for which a completely controllable and observable
partial realization exists of order N (Lemma |1, Tether, 1970). A minimal
partial realization will always exist since the set of dimensions less than
N is finite and the minimum can always be attained (Tether, 1970). A unique
minimal partial realization will exist if and only if the extension sequence
is unique (Tether 1970). The dimemsion of the minimal partial realization

is given by (Theorem 1, Tether 1970):

N

rank (Tiners) - i;'a"k (Tini) [5.1.11]

n =

e~z

The resulting realization will only approximate the transient response of

the system.



Zeigler (1974) wused a modified Ho-Kalman algorithm to obtain
approximate realizations of a given dimension for stochastic systems subject
to a constraint on the state space dimension. In the presence of noise, the
calculated rank of the impulse hankel matrix may not reflect the true
dimension of the process. Therefore, to employ the Ho-Kalman identification
algorithm to a noisy system, the impulse hankel matrix in equation 5.1.4
formed from the input/output data must be factored through a space of
dimension r such that the resulting matrix of rank r approximates the
impulse hankel matrix of the system impulse response.  Zeigler (1974) used
SVD of the impulse hankel matrix. In this case, the effect of noise on the
calculation of matrix rank can be "filtered out" by choosing r based on the
magnitude of the singular values of I_‘N'N. The accuracy of the identified
model will depend on the process noise and the choice of r.

If L. is the impulse hankel matrix formed from the finite set of
impulse response parameters {hi:i=l,2,..,N) where n is the rank T NN the
best rth rank approximation, in the least squares sense, to EN N is a

matrix, 2”, fornted from ENN with the smallest (N-r) singular values set

equal to zero:

T
T 0 \'4
_ =r =r | _ onl/20l/2yT _ A
—N,N"[-Z-r —z]' p|=EETEYL =QF
0 y
=2 2
[5.1.12]
T
T 0 y
r =[; z]-’*'- ; =_Z_-§-_\LT=Q-ET
-r,r r " 2 g Q -Y-z T—r" ¢ rTr [5.1.13]
The set of singular values (ai: i = 1,2,...N} indicates the error between

the full matrix, T and the matrix of lower rank, 2”, in terms of the

~NN’
spectral norm (Kung, 1978, Glover, 1984, Silverman, 1980)
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£.N,N N Er,r s r+1(EN N) [5.1.14]
‘™ H H L)
If cz(_[‘_N N) > ”1(_\‘ N) the approximate order of the system is 'r
although the calculated rank of E NN is 'n’. From equation 5.1.6,
p-!
Q _N N-_ [5.1.15]

Applying  Ho-Kalman's algorithm, the best rth order realization of a system

with p inputs and m outputs, in the least squares sense, is given by

_ st st T _ «-1/2,T T
Er =" rrows X I pcols of fr = gr _z_rrNNg [5.1.16a]
C =1"mrows X 1" rcolsof 9 = E I Ve [5.1.16b]
_ 1/2 oy gl
A =35 "Z(F IV E [5.1.16¢]

where Ar is the unique rxr solution to

AP = It
Q-AE EN.N (5.1.17]

If o ) # 0 for i>r+l, Ar will not be an exact solution to equation

5.1.15. The resulting realization will not be optimal because Er . is
generally not a impulse hankel matrix. However, if ar(I‘ ) » a+1(I‘NN)
the realization (Ar,gr,gr) will adequately represent the process. I‘;N is
used in the derivation of Ar instead of EN,N so that the rank condition of
the Ho-Kalman algorithm is nut violated.  The identification procedure will
be very sensitive to noise because EN'N is utilized twice in the algorithm:
to obtain the singular values and singular vector matrices and to calculate
Ar. If r is chosen too large, there may be some small singular values which
can decrease the robustness of the algorithm when they are inverted. Also,
if r is chosen too small, there may not be enough state space dimensions to

accurately approximate A (Zeigler, 1974).

Damen and Hajdasinski (1982) used the same method as Zeigler (1974) but

used T and I‘"‘ to calculate A, B and C_instead of T w 2nd E; N
B =z %2 ET [5.1.18a]
T —-r r=rrp
C=E T yz*? [5.1.18b]

r m -0 —r
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A = 52T yy 5 (5.1.18¢]
r -r r-r,s —r

where Ar is the unique rxr solution to

AP = I

QAR = I [5.1.19]
The calculation of Qr and Q_r by equations 5.1.18a and 5.1.18b will be
equivalent to that calculated from equations S5.1.15a and 5.1.15b because
only the first (block) row and the first (block) column of the impulse

hankel matrix are used to determine B

and Qr. However, Ar derived from
equation 5.1.17c may be diiferent from that obtained from equation 5.1.15a
if the process is noisy or r<n because the shifted truncated matrix is used
instead of the shifted full matrix. This method meets the rank constraints
of the Ho-Kalman algorithm but {‘m and {‘T'r does not retain hankel symmetry
(equal blocks at cross-diagonals).

Kung (1978) alsc developed a similar modified Ho-Kalman algorithm to
identify an approximate realization for stochastic systems similar to
Zeigler's method. In Kung's algorithm, the minimal realization is obtained

by shifting the factored matrices 2_r or ir in equation 5.1.13 instead of the

. . - -? . - =~
EN’N or _I:m_. Shifting of Lr up by one (block) row, _Z_r , and shifting xr to

-

the left by one (block) column, y_(:, is done by adding a row of zeros or a
column of zeros to fill the matrices. Therefore, Kung assumes that h(i) = 0

when i>N. The " order approximate realization can be obtained from

N s
. r =S¢ rTr
- g 27Tz s o (g 2yT) g [5.1.20a]
—_— r r --r - | 4 r—r
B - 52y" [5.1.200]
Q, - Zl.._2_:/2 [5.1.20c]

where _1_3_r is the first r rows and the first (block) column of _\:Lr and Qr is

the first r columns and the first (block) row of _i_r. Both the rank and
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hankel symmetry conditions of the Ho-Kalman algorithm are violated in Kung’s
method (Damen, 1982). Therefore, the longer the impulse sequence used (the
larger the impulse hankel matrix), the more accurate Kung's algorithm will
be since he assumes that hi = 0 if >N,

Hajdasinski and Damen (Damen, 1982) modified their previous method to
meet the hankel rank and symmetry conditions of the Ho-Kalman algorithm by
filtering Er'r. Given Er.r’ which is obtained from the SVD of EN'N, a

impulse hankel matrix Er is found from minimization of the spectral norm

of T -I' by

-rr —nr
- T
r-gr r)(gr r-Er r) ]
: ! ! 2 =0 i=l,2,...,2r-2 [5.1.21]
OM(i+1)

a tr[(l_‘r

for (i = 1.2,..2r-2) where rank(T ) = rank([, ). M) are (pxa) blocks
in fm o f/ approximated impulse response parameters. The minimization
procedure is  effectively averaging along the cross-diagonal  blocks.
Although the resulting impulse hankel matrix i‘m is hankel symmetric, the
rank may not equal r. If this is the case, SVD is applied to I:‘m and the

above procedure is iterated until the rank of gn_is r. The resulting

matrix will hopefully converge to the best least squares approximation of

EN,N'

Eydgahi (1987) obtained partial realizations from the infinite impulse

response using a modified impulse hankel matrix in a Ho-Kalman

identification algorithm. An ® rank impulse hankel matrix, [‘N N is

obtained from the input/output data of the process such that rank ([‘NN) =
rank (§N+1,N+1
which includes an arbitrary parameter ‘a’. Using the original Ho-Kalman

). A polynomial impulse hankel matrix, [‘NN(a) is formed

algorithm, _I:N N(a) is factored such that
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I 0
R(a)-EN.N(a)ﬁ(a) = { Q' 0 J =yty [5.1.22)

where lr is an rxr identity matrix, r is the rank of I‘NN (r<N) and

U=[1 0] [5.1.23]
The resulting rh order minimal realization is given by
A@) = URE@T] (@)S@HT [5.1.24a]
T
B(a) = Ll-_&(a)-I_‘N'N(a)ﬁp (5.1.24b]
Cla) = E_T, ((@}82}U" [5.1.24c]

By choosing an appropriate value of 'a', a stable realization can always be
obtained if the original model is stable. However, this identification
method involves manipulation of polynomial matrices.

Silverman (1980) and Maciejowski (1985) showed that the minimal partial
realizations for a deterministic system obtained from Kung's algorithm and
the other variations on the Ho-Kalman algorithm are approximately internally
balanced. An exact balanced realization would be obtained only if the
approximation to the impulse hankel matrix, Em, used in the identification
algorithm is a impulse hankel matrix. Of the algorithms investigated, only
the modified algorithm of Hajdasinski and Damen (Damen, 1982) exhibits this
property. From Moore's work (1979a, 1981), it is known that the

controllability and observability Grammians of the system can be factored in

three ways:
I. input normalized: _\Mz=ET£_ =1 and LV_§= QQT-):J2
2. output normalized: _w_:=_T£ = 5;2 and _W_:= QQT= I
3. internally balanced: w_:agT_ = £ and ﬂ:- m’r' £

where ):32 is the diagonal matrix of the square of the second order modes of

the system. If the impulse hankel matrix is given by equation 5.1.5, then



00 [y,
Tun = [, Z,] g [=QEB
0 X
=
=22 Vi+ zsVi = Q P+QP [5.1.25]
=TT T2 272 rr 272 e
Assuming I < I, [‘N.N can be approximated by
T
Er,r - ‘Z‘rzry'r - Qr.Br [5.1.26]

However, if 2” is not a hankel matrix, Qr and _El_ will only approximate the
controllability and observability matrices of the system, Q and P. The

controllability and observability Grammians of the identified systems can be

approximated by

w' =pp’ =g/VTyg.gp =% [5.1.27a]
c rr -r rrr-r -r -
2, ~Ta _ w/25,T, ol/2 _ o . %

W =QQ=8"22Z""=Z =L [5.1.270]

In this case, the diagonal elements of _\_V_z and _\!i will only approximate the
second order modes if L. is not a hankel matrix.  Since the singular
values of the controllability and observability Grammians are approximately
equal to the second order modes of the system, the resuiting realizations

are approximately internally balanced. The closer Qr_Er is to a hankel

matrix, the more balanced the realization,

Example 5.1: A model for the discrete system (example 3.1 with a

sampling time of 0.1) with state matrices given by:

3.320 -4.312  2.594 -0.607 1 0.065
1 0 0 0 5ol O T | 0025
A=l 0 i 0 0 2= o =1-0.071
0 0 1 0 0 0.020
[5.1.28]

can be identified from the impulse response using the Ho-kalman algorithms.

The program hokalman.m written in matlab (in Appendix C) was used to
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simulate the process and identify a model from its impulse response. If 20
impulse response parameters are used in the identification, the 4th order

realization obtained wusing Zeigler’s algorithm (equations 5.1.16a, 5.1.16b,

5.1.16¢) is:
0.940 -0.184 0 -0.016 0.739 0.739
0.189 0.719 -0.352 -0.007 B = -0.751 Q'r.__ 0.751
A= 0 0.352 0.850 -0.177 = "] 0.291 ~10.291
0.016 -0.007 0.177 0.811 -0.049 0.049
[5.1.29]

The controllability and observability Grammians for the realization in

equation 5.1.29 are given by

2746 -1.075 -0.162 0.033 2779 1.092 -0.170 -0.034
wio| -1075 0864 -0.197 0016/ 2 |-1.092 0.869 0.194 0015
Y=l -0.162 -0.197 0.177 -0.025| o [-0.170 0.194 0.179 0.025
0.033 0.016 -0.025 0.005 -0.034 0.015 0.025 0.005
[5.1.30a)

with singular values

(oi(\lz) = ai(_\!:): 3.260, 0.549, 0.012, 0}) [5.1.300b])
An equivalent balanced realization for the system given in equation 5.1.28
has singular values of

(ai(_\lz) = ai(_\!:): 2.448, 0.380, 0.017, 0} [5.1.31)
Therefore, a second order model will approximate the system with an error of
<0.012. The identified model is approximately a balanced realization since
the controllability and observability Grammians are equal. However, the
realization is not optimally balanced because the Grammians are not
diagonal. The realization obtained from Kung's algorithm (5.1.20a, 5.1.20b,

and 5.1.20c) is different and is given by:



0919 -0.179 -0.031 -0.007 0.739 0.739
A 0236 0.698 -0.285 -0.027 B <|-0781 T _| 0751
&= .0232 045 0513 -0.078 £ =1 0.291 =| 0.291
1.523 -0.705 2.370  0.169 -0.049 0.049
[5.1.32]

The singular values for the controllability and observability Grammians for
the realization in equation 5.1.32 are:
{ai(ﬂf): 8.505, 1.659, 1.102, 0.014) [5.1.33a]
{ai(ﬂ:): 3.225, 0.562, 0.013, 0.002) [5.1.33b]
This model is not balanced.

Step responses and frequency responses for the identified models and
the original model are shown in Figure 5.1a and Figure 5.1b, respectively.
The 4t order realizations identified from 20 impulse response parameters
using Hajdasinski's algorithms (equations 5.1.18a, S5.1.18b, and 5.1.18c) and
Zeigler's method are equivalent to the model in equation 5.1.28.
Hajdansinski's model and Zeigler's model should be the same since Er'r is
equal to I‘n.n and r=n. However, the realization identified using Kung's
algorithm, equation S5.1.27, is not equivalent to the original model. The
identified model captures information over a very narrow frequency range.
The high frequency behaviour and the very low frequency behaviour of the
process is not modelled accurately. In this case, Kung's algorithm assumes
that the impulse response goes to zero after 20 time steps. However, the
settling time for this system is approximately 50 time steps. Therefore,
process information is neglected resulting in a poor model of the process.
If 50 impulse response parameters are used in the identification of a 4%
order realization, all four algorithms will produce equivalent state space

models. Figure 5.2a and Figure 5.2b show the step responses and the

frequency responses for these models.
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As the number of impulse response parameters used in the identification
algorithm’s decrease, the steady state offset in the realization from Kung’s
algorithm increases. The identified models progressively ignore the high
frequency and low frequency behaviour of the process. However, the models
from the other three algorithm's still accurately describe the process.
Figure S5.3a and Figure 5.3b show the step responses and the frequency
responses for the four models identified using 10 impulse response
parameters.

Lower order models can be identified from the Ho-Kalman algorithms.
Figure S.4a and Figure 5.4b show the step responses and the frequency
responses for 3™ order models identified for the system in equation 5.1.28
using 50 impulse response parameters. All the realizations obtained from
the Ho-Kalman algorithms exhibit a steady state offset from the original
model. The identified models captured information over a wide frequency
range. As the number of impulse response parameters used in the algorithm
increases above 50, the steady state offset between the identified model and
the original model remains constant. There is no new information contained
within the impulse response sequence after 50 time steps. As the number of
impulse respense parameters used in the identification decreases below 50,
the steady state offset increases. The mode! identified from Kung’s
algorithm exhibits significantly more offset than the models identified from
the other three algorithms. The frequency range over which the models are
valid decreases. Neglecting the impulse response parameters corresponds to
neglecting the low frequency modes. Figure 5.5a and Figure 5.5b show the

rd

step response and the frequency responses for the 3'° order models obtained

using 20 impulse response parameters. Figure 5.6a and Figure 5.6b show the

rd

step response and the frequency responses for the 3 order models obtained
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using 10 impulse response parameters.

As the order of the model decreases, the Ho-Kalman algorithms neglect
the high frequency modes of the process. If 50 impulse response parameters
are used to identify a 2™ order model, the resulting realizations all
exhibit steady state offset as shown in Figure 5.7a and Figure 5.7b. Figure
5.8a and Figure 5.8b show the step responses and the frequency responses for
the .‘J."d order models obtained from 20 impulse response parameters. As with
the 3rd order models, as the number of impulse response parameters used in

the identification algorithm decreases, the lower frequency modes of the

system are neglected.

Example 5.2; If noise is added to the system given in example 5.1, the
identified models obtained using the Ho-Kalman algorithms can be different.
If white noise with a variance of 0.1 is added to the system, the 4t order
model obtained from Hajdasinski’s algorithm and Zeigler’s algorithm using 50

impulse response parameters are the same since L‘” equals [nn and are

given by:
0935 -0.164 0.003 -0.003 ' 0.757 0.757
A = 0.164 0.621 0.236 0.048 B = -0.803 QT _| 0.803
=71 -0003 023 -0.817 -0.509 =" 0.103 ~[-0.103
-0.002 -0.043 0.509 -0.856 -0.011 -0.011
[5.1.34]

The 4™ order model identified using Kung's algorithm with noise (variance

0.1) added to the system is given by

0.935 -0.165 0.005 -0.001 0.757 0.757
A -| 0162 0618 0243 0052 g -|-0803| T _| 0.803
A=l 0019 0208 -0.736 -0.473 £ =1 0.103 =1-0.103
-0.001 -0.046 0.502 -0.859 -0.011 -0.011
[5.1.35]

The 4™ order model identified using Hajdasinski’s modified algorithm with
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noise (variance 0.1) added to the system is given by

0.935 -0.164 -0.017 -0.001 0.759 0.759
A o| 0164 0525 0380 0.123 p -|-0-828 cT 0.828
a 0.017 0.380 -0.748 -0.507 = =1 0.001 *1-0.009
0.001 -0.123 0.507 -0.860 -0.028 -0.028
[5.1.36]

Figure 5.92 and Figure 59b show the step responses and the frequency
responses for the four realizations. All the realizations exhibit a steady
state offset. The high frequency modes of the system are not identified.
Figure 5.10a and S5.10b show the step response and the frequency response for

d . . . . . .
' order model identified using 50 impulse response parameters with noise

a 3
of wvariance ¥ 0.1 added to the system. In this case, the steady state
offset decreases. The identified models capture a wider range of frequency
information neglecting only the high frequency information. The modified
algorithm of Hajdasinski produces a better model than the other three
algorithms since it accurately models more of the frequency response.
Figure 5.11a and Figure 5.11b show the step response and frequency response
for a 4k order model identified using 50 impulse parameters with noise of
variance 30.05 added to the system. As the noise in the system decreases,
the steady state offset also decreases. The identified models capture more

of the frequency information with the modified Hajdasinski algorithm

produces the best model.
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5.2 Model Order Reduction Techniques Using SVD

Over the years, there have been several techniques developed for
reducing the order of process models in the form of transfer functions and
state space realizations. Chen (1974) and Tewari (1987) present an overview
of conventional approaches which reduce the order of state space
realizations. Bosley (1972) presents an overview of methods for deriving
SISO transfer function models from high order state variable models.

Numerical methods have been used to fit a simple transfer function
(first or second order) or matrix state equations to time response data or
frequency response data of the process (curve fitting). A model is obtained
which approximates the step response curves or impulse response curves by
minimizing an error function over a finite interval (Anderson, 1967, Bosley
1972, Tewari, 1987). However, these methods retain many pitfalls of the
numerical methods employed such as singularity. If frequency data is used,
the low frequency range usually results in a poor fit. In addition, noise
can affect the identified model and decrease its accuracy since the model is
obtained from experimentally determined data.

Chen (1968) used continued fraction expansion of a high order transfer
function model of the original system to reduce the model order. The high
order model is expanded into a continued fraction and truncated. The
resulting reduced order model will retain the dominant poles of the system.
Although the method is simple, the algorithm may not converge and the
reduced order models may be unstable even though the original model was
stable (Eydgahi, 1987).

Several techniques have been developed to reduce the order of state

space realizations which utilize physical reasoning to assess the relative
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importance of portions of the state space. Areas deemed to be unimportant
are either ignored or approximated. Consequently, these types of model
reduction schemes can be very subjective. Conventional modal reduction
techniques eliminate the effects of stable modes (poles) and retain the
dominant or slow modes (Litz, 1981) by neglecting states which correspond to
large eigenvalues. State variables which strongly correspond to dominant
eigenvalues are chosen to be state vector components of reduced order
models. However, these methods can be wused only if the original set of
eigenvalues can be divided into two classes such that the effects of the
undesired eigenvalues are important only at the beginning of the transient
responses (Eydgahi, 1987). Davison (1966) neglected the eigenvalues which
were farthest from the origin since these modes exhibited a negligible
effect on the total system response.

Similarly, Moore (19792, 1981), Silverman (1980), Glover (1984),
Shokoohi (1987a), Tombs (1987) and several others have wused principal
component analysis to obtain asymptotically stable reduced order models from
internally balanced state space models of asymptotically stable systems by
neglecting a subset of the second order modes of the system. The model
reduction techniques which utilize internally balanced state space models
rely on the fact that the states are ordered from the most
controllable/observable to the least controllable/observable to ensure that
the "error" in the reduced order model is minimal. Weak subsystems (the
least  observable/controllable  states) which  contribute insignificantly to
the input-output behaviour of the process are eliminated. The dominant
subsystems (the most controllable/observable states) of the state space are
retained. The use of internally balanced state space models and SVD results

in a order reduction method which is numerically robust. In addition, the
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method can be applied to time variant systems as well as time invariant
systems.

Retention of dominant characteristics and continued fraction expansion
methods require a high order transfer function inodel or state space
realization which accurately represents the process prior to performing the
model reduction to obtain a "good" reduced order model. In a practical
application, these high order models may not be available. In addition, the
accuracy of models derived from experimental data is dependent on the
signal/noise ratio and the occurrence of any undetermined disturbances
during the identification. To overcome these difficulties, Wahlberg (1986)
identified a high order (Nth degree) ARX model

AG () = B Hu(t) + ) [5:2.1]
from the impulse response of the process using a batch least squares

identification technique based on N observations:
N

y®=Y ha u(=H(@ Hu® [5.2.2]
i=1

As N approaches infinity, the N'® order ARX model will approach the true
model. The N order model was reduced to give a model of a reasonable
order which would characterize the process. Wahlberg (1986) investigated
three different model reduction techniques:
1. weighted L% model reduction which utilized a numerical non-linear
optimization algorithm. The following optimization criteria is
minimized with respect to p (parameters for the reduced order

model) giving the minimum variance of the estimates:
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s
] = Jlgw,oN)-g(q,p)le(wdw [5.2.3]
T

where z=e, oN is the parameter vector for the N order model,
G(n,0) is the set of lower order transfer functions of order »n,
and Q(w) is the ratio of the input spectrum to the noise spectrum
as a function of frequency (w).

2. model reduction via frequency weighted internally  balanced
realizations. The N'' order model is transformed to an internally
balanced realization (Moore, 1979a). An input and/or output
weighting filter, W(%), is added to the transfer function.

3. frequency weighted optimal hankel norm model reduction. In this
method, a frequency weighted hankel norm is minimized to find the
reduced order model.

The weighted L? model reduction technique will give an optimal L? estimate
of the lower order transfer function which will minimize the prediction
error between the actual process response and the predicted process response
over the set of transfer functions of order n. However, the estimate may be
a local optimum and not necessarily a global optimum (Wahlberg, 1986). In
addition, this  technique involves the use of numerical nonlinear
optimization algorithms and an estimate of the noise and input spectrum. On
the other hand, model reduction via frequency weighted internally balanced
realizations or optimal hankel norm techniques provide an explicit solution
and are relatively easy to implement. Although the reduced order models are
not optimal, they will adequately describe the process. The risk of

obtaining a locally optimal estimate is eliminated (Wahlberg, 1986).
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5.2.1 Model Reduction via Truncation of Internally Balanced Realizations

t . . . .
Let 2 n order time invariant internally balanced state space

realization, (4,8,C,D), of a continuous, asymptotically stable system be

given by
x (1) A A x.(t) B
LR I B o 1 R AP Bl TS [5.1.4a]
i2(0 4 '-izz l2(0 52
x,(t) b
y(t) = [(-:1 92] + u(t) [5.2.4b]
0] |2, )

where Ll(t) e & and 52(t) e R The matrix H in equation 4.1.4,
the controllability Grammian and the observability Grammian can be

partitioned in a similar manner such that

5oe||v;
H=2ZZZ - [ Z, -Z-z] 2 || T [5.2.5]
0 v
- =2 —2
2
z 0 Z
2 —cl - el
W=7z 2) :
c [ cl c2] 0 E2 Z.T} [5.2.6]
- —-c2 c2
wl=12 Ef" 2 ;:1 [5.2.7]
~ [ ol _02] 0 E2 ZT
- -—02 02
where % = diag(cr2 az} and I’ = diag{cr2 az} The controllability
=1 1" =2 r+1”""n
and observability Grammians of (A,B,C,D) will be given by
w2 =W =% = diag(Z.T) [5.2.8]
(5 (-] —h -1 -2
since the realization is internally balanced. As discussed in chapter 4,

the controllability and observability subspaces of a realization are spanned

by the singular vectors of the Grammians and the axis lengths are the
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singular values of the Grammians.

The state vector in equation 5.2.4 can be expressed in terms of the
column vectors of 'Z-cx where

FORS AR [5.2.9]

The resulting state space realization (4,B,C,D) corresponding to equation

5.24 will be given by equations 3.1.26 where the linear transformation

matrix T is equal to -Z'c1' Since (4,8,C,D) is internally balanced,

d=4, [5.2.10a]
B = B [5.2.10b]
C= o [5.2.10¢c)
D=0p [5.2.10d]

If §:2=0, the columns of ;cl (=;°1) will span the controllable (observable)
subspace.  The uncontrollable (unobservable) subspace will be spanned by the
vectors corresponding to the columns of Z, (=2,) In this case, (4,8,C,D)
will be expressed in terms of basis vectors of the controllable subspace,
Xc. Since the controllable subspace is A-invariant and ;fzg(t) = 0,

(z_!u,gl,(_,‘l,gl) will have the same transfer function as (4,8,C,D) (Moore,
1979a).

If gfzaeg and ar>or+1, the components of the state vector in the
directions of the columns of -Z-cz’ X, (t), will be relatively small compared
to gl(t). In this case, the columns of Za (_Z_ol), the major axes of the
controllability (observability) ellipsoid, will define the strongly
controllable (observable) subsystem, X.. The columns of ;cz (;oz), the
minor axes of the controllability (observability) ellipsoid, will define the
weakly controllable ( observable) subsystem, Xw, which is perpendicular to
the strong subsystem. If o » o, = Q, the axis corresponding to the

columns of _Z_':z form a degenerate portion of the subspace which does not
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contribute to the input/output behaviour of the process. In this case,
(4,B,C,D) will be expressed in terms of the basis vectors of the strongly
controllable (observable) subspace. However, Xl is not A-invariant and
;le(t) # Q. Therefore, (4,B,C,D) will have a different transfer function
than (4,B,C,D) because a portion of the controllable (observable) subspace

has been neglected (Moore, 1979a). If o > o, the portion of the

R
controllable subspace and the observable subspace corresponding to Lz(t)
will have small magnitudes relative to the portion of the controllable
subspace and the observable subspace corresponding to gl(t) (Moore, 19792,
Pernebo, 1982). Therefore, X, (t) will be much less affected by an input
than gl(t). Similarly, _)gl(t) will be affected by the output considerably

more that gz(t) (Pernebo, 1982, Moore, 1979a). Therefore, if ar> o, the

1'
effect of Lz(t) on the input/output behaviour of the system is not
significant relative to the effect of gl(t), the subsystem (411,{31,@1,91) is
said to be internally dominant (Moore, 1979a, 1981). Moore (1979a) showed

. . . . t
that an internally dominant subsystem of order r will exist for an 0" order

system if and only if

. 1/2 . 1/2
Yot > { ] dm [5.2.1]
i=1 i=r+l

Therefore, if (411,51,91,91) corresponds to an  internally dominant

.. . . th
h order realization  will approximate the n order process

subsystem, the ¢
(4,8,C,D) and retain the dominant input/output properties of the system
(Moore, 1981). Glover (1984) and Wahlberg (1986) showed that the L% bound
on the error between the full process model (G(s)) and the truncated

balanced realization (G(s)) is given by

o< IEO], =166 - 6 ||l 2 T o® [5.2.12]
i=r+l

118



The hankel norm of the error is defined as (Glover, 1984):

law-g i, < A0+ 0 ¥t ) [5.2.13]
Therefore, truncated balanced realizations will produce good reduced order
models. If O 1 tends towards o, the poles of the truncation tend to the
imaginary axis (Glover, 1984). The modes corresponding to these singular
values will become uncontrollable and unobservable resulting in small errors
in the input/output reduced order model. Therefore, it may not be necessary
for A to get a good reduced order model.

In a similar manner, a reduced order model for an input-normalized or
output-normalized realization can be obtained. These reduced order models
will be algebraically equivalent to the internally balanced models of the
same order (Moore, 1979a, 1981).

Asymptotic  stability of all subsystems {(.a_iii,gi,c_,‘i,gi): i=1,2) of a
continuous internally balanced realizations obtained wusing Moore’s algorithm
will be guaranteed only if §h has distinct singular values (Pernebo, 1982).
If }_31 and )_32 have diagonal entries in common, there is no guarantee that the
reduced order models will be asymptotically stable. However, it may be
possible to find an equivalent balanced realization such that every
subsystem is asymptotically stable (Pernebo, 1982) since a balanced
realization will be unique (within a sign transformation) only if the
singular values are unique. Therefore, Moore’s reduction algorithm will
always give a reduced order model which is controllable and observable but
not necessarily asymptotically stable.

Pernebo (1982) extended the results of Moore (19793, 1981) to discrete
time systems. The system matrices for the discrete, asymptotically stable
internally balanced realization can be partitioned as in equation 5.3.1 (for

the continuous time case). Reduced order models (An,gl,gl,gl) which strip
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away the weak structure in the process impulse hankel matrix can be obtained
from the internally balanced realizations using  Moore's  algorithm.
Al-Saggaf (Theorem 1, 1987) showed that the L% bound on the truncation error

for the balanced realizations is given by:

lE |l = llom - g@ |, <2 5o [5.2.14]

i=r+l

where the strict inequality holds if the singular values are unique (cri;&oi+1
for all i=r+l,...,n).

Unlike the continuous time case, a more general result exists
concerning the stability of subsystems of the discrete time systems.
Pernebo (1982) showed that every subsystem of the discrete time system is
asymptotically stable if the original system is asymptotically stable and
either the observability or the controllability Grammian is non-singular and

diagonal. Therefore, if the system is internally balanced, all subsystems

(A

will always be asymptotically stable. If 0> . (A,

B,C.D) will be
controllable and observable., However, the other subsystems are not
necessarily controllable and observable (Pernebo, 1982). Therefore, the
conditions for controllability and observability of the discrete reduced

order models is a weaker result than for the continuous case.

Example 5.3: For the continuous system given in example 3.1, the 4t

order internally balanced realization is given by

-0.518 1.450 0.391 -0.350 -0.773 -0.773
4 o 1450 -2.195 -4753 1128 g -|-0805 | T_| 0.805
2= 0391 4753 -0.630 1.19 £ =] 0337 < 710337
0350 1218 -1.196 -1.657 0.252 -0.252
[5.2.15)

The controllability Grammian is equal to the observability Grammian such
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that

w? = W’ = diag(0.576, 0.148, 0.090, 0.019). [5.2.16]
The diagonal elements of the Grammians are the second order modes of the
system. First, second and third order internally balanced models can be

obtained by deleting the states corresponding to the smallest singular

values. The reduced models will be given by:

r=1
A=[-0518 ] B = [-0.773 ] ¢ =[-0.773 ] [5.2.17]
r=2
-0.518  1.450 -0.773 T_ [-0.773
4 =[ -1.450 -2.195 ] 5= [—o.sos ] ¢= [ o.sos] [5:2.18]
r=3
-0.518  1.450 0.391 -0.773 -0.773
4 | -1450 -2.195 -4.753 g | 0805/ .T_| 0.805] [5.2.19]
S 7] 0391 4753 -0.630 -~ 0337 -7 0337

Figure 5.12a and Figure 5.12b show the step responses and the frequency
responses for the three reduced order models and the original internally
balanced state space model. Although the reduced order models appear to
approximate the high frequency behaviour, the low frequency dynamics are not
modeled as well resuiting in a steady state offset. The steady state offset
increases as the model order is reduced from the true model order. However,
the steady state offset appears to be less than that obtained with the

Ho-kalman methods described in example 5.1.

Example 5.4. A system is described by (Glover, 1984) the internally

balanced realization is:
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9 4 -4 6 T 6
A= 4 2 4 B=|-2 C'=| -2 [5.2.20)
4 -4 -l -1 ) 1

The singular values for the system are (2.0, 1.0, 0.5). Figure 5.13a and
Figure 5.13b show the step responses and frequency responses for the
internally balanced realizations of order I, 2 and 3. As in example 5.3,

there is steady state offset with all the reduced order models. The lower

order models have larger offsets than the higher order models.
5.2.2 Frequency Weighted Truncated Internally Balanced Models

Al-Saggaf (1987) and Wahlberg (1986) used the model reduction method of
Moore to reduce the order of frequency weighted internally balanced, input
normalized and output normalized state space realizations. Frequency
weighting can be used to make the reduction error approximately uniform over
all frequencies or to minimize the reduction errors within a certain
frequencyband. An input and/or output weighting filter, _“_'u(a,') or _w_y(l;), is
added to the process transfer function (matrix) as shown in Figure 5.14.

Let (4w,§w,§w) be the minimal realization of the frequency weighting
matrix, W (%), applied to the input signals where 4 € IR"’“',Qw € lR"xp,gw €
R™", Frequency weighted discrete time Lyapunov equations can be solved to

find the discrete time frequency weighted controllability and observability

Grammians
AW AT-w? + XB B'XT = 0 [5.2.21a]
- c~- (4 -~-W-Ww
AT - Wl e =0 [5.2.21b]
AX - XA + BC =0 [5.2.21¢)
- -w --w

If (4,8,C,D) is asymptotically stable and observable, the controllability
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Figure 5.14: Frequency Weighted System

Grammian, Wz, and the observability Grammian w2, will be greater than zero.

— —

However, for the third equation to have a solution, X, the eigenvalues of A
and /_1w must be distinct (Al-Saggaf, 1987). The frequency weighted minimal
realization can be transformed into an input-normalized, output-normalized

or internally balanced frequency weighted realization via the appropriate

linear transformation, T. Ir the transformed realization (4,3,C,D),

4=1T741, [5.2.22a]
B-1'8 [5.2.22b]
¢=CT [5.2.22¢]
and
X =1'% [5.2.22d]
If the matrices are partitioned such that
'ﬂu 412 ’-413 =1
'321 -22 “28 éz [Ql o _3] [5.2.23a]
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2 T, B, Iy
X, £, 3, I, [5.2.23b)
) Ty By Ty

where .f'_ln e R™ and {122 e R™, Al-Saggaf (1987) developed a frequency

weighted input normalized realization given by

-1
G(y =D +C(l-4) 8 [5.2.24a)
where
D =I[CX, + CXIC, [5.2.24b]
¢ =¢ [5.2.24¢]
4.=4, [5.2.24d)
- I T s |
ér =B+ [412Kz+413-x's]gw [5.2.24€]
This frequency weighted realization will exhibit the following properties

(Theorem 2, Al-Saggaf, 1987):

i) the reduced order model will be asymptotically stable

i) If ar(I‘_N’N) > a”l(EN'N), the reduced order model will be
observable
iii) All the poles of the frequency weighting are canceled by the zeros

of the reduction error, E (%) = G(3)-G (%)
iv) "gn_r(q)w_(q)”w < 2*tr(_2_2) where the strict inequality holds if

o#0 _ where rgigr+k+!
i i+l
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5.2.3 Optimal Hankel Norm Model Reduction Techniques

The optimal model reduction problem is to find a process model of
degree r<n for the process with degree n which will minimize a norm of the
approximation error. Model reduction techniques which minimize the hankel
norm of the error between the full order model (degree n) and a reduced

order model (degree r),

min ||G(s) - G (), [5.2.26]

or
min | - T_|| [5.2.27]

have been developed. The hankel norm is defined as (Glover, 1984):

lewl, = o, @ = [»__w'w?) (5.2.28]

where T is the impulse hankel matrix for the process. The minimum hankel
norm distance between G(3) and a rh order approximation Qr(/;) is bounded

below by the r+l second order mode of the system (Kung, 1981, Glover, 1984):

|lmeen - e @il = o, @ [5.2.29]
If an approximation matrix Qa(/;) meets the hankel norm tolerance defined by
|miee - ng an||< » (5.2.30]

where p € [ar+1,ar] then Qa(/;) must have degree greater than or equal to r
(Kung 1981).

In 1971, Adamjan, Arov and Krein (Silverman, 1980) investigated the
hankel norm approximation problem for discrete scalar systems assuming an
infinite impulse hankel matrix for the process is available. They showed
that there will be more than one optimal rth rank approximation of the
infinite impulse hankel matrix of which at least one will be a hankel
matrix.  There will exist an unique hankel matrix, 2”, of rank r which

will approximate the infinite-dimensional system impulse hankel matrix, T,
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such that the hankel norm IIE - EHIIH is minimized over all bounded hankel

h

matrices of rank r (Silverman, 1980). The optimal r'™ rank hankel matrix

will be given by

r.=L-T¢ ) [5.2.31a)
where
B, (%)
$(3) =0  ——— (5.2.31b]
Vr+1(q)
and 00 .
up = ) 2" [5.2.31c]
i=1
oo i1
vip) = | vlir” [5.2.31d]
i=1

th right and left

where y_l(j) and ;i(j) are the j‘h components of the i
singular  vectors, respectively, of the process impulse hankel matrix
(Silverman, 1980). Adamjan also showed that ur”(q) will have exactly r
zeros inside the unit circle (|q|<l) when 9 is a unique singular value of
L. In the frequency domain, there will exist a unique tran§fer function
Gr(/;) which minimizes the hankel norm of the approximation error where
G =Gl - ¢ [5.2.32]
Furthermore, the error is given by
Iz - £ |- llow e @ |- 2,0 (5.2.33]
The restriction that the approximation matrix must be a hankel matrix does
not affect the achievable error (Glover, 1984).
Silverman (1980) utilized balanced realizations to obtain a finite
structure for the optimal hankel norm approximation developed by Adamjan in

. . . th
the form of a transfer function. Given a balanced realization of the n

order original system,

Gy) = Sg; (5.2.34]
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closed form expressions for ui(q.) and ui(q) in equations 5.2.31¢ and 5.2.31d

are developed. Since

r=2zzy' =QP [5.2.35]

the rational functions in equations 5.2.31c and 5.2.31d can be rewritten as:

u(5) = 0%l - &) - 8 [5.2.36]

vz = 0% - ayly =2 M@, 20 mee
i i i d’(%) g " d(’;-l)
[5.2.37]

since z = QF % and yT = £V’Pe (Silverman, 1980). It should be
noted that u(g)/v(g) is an all-pass function. An all-pass function is a
function whose magnitude is unity at all frequencies. The " order
transfer function which minimizes the hankel norm of the approximation error
in equation 5.2.33 is given by the proper stable part of (Theorem 4.1,

Silverman, 1980):

Gy = 212 [5.2.38a]
m (%)
where . .
d(%)
and ,\=:a”1. G:(a,') will not be an optimal approximation to G(g) in the L®

norm sense unless r = n-1 (Silverman, 1980). If r #n-1, then

IG(@) ) X [5.2.39]

Bettayeb (1980) used a similar approach to Silverman (1980) to develop
an algorithm for obtaining optimal approximations of any specified order for
continuous time, SISO system when the original system is asymptotically
stable and internally balanced.  There will exist a unique hankel operator
of rank r, Er, which minimizes the spectral norm of the error "E - I‘_Jls over

all bounded hankel operators of rank r such that (Bettayeb, 1980):
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|t - ofls = 0., @ [5.2.40]
Furthermore,
P =C-0 I, 06N (5.2.41a)
where -1
z, () c(sl-A)"e |
bepr(® = = — - [5.2.41b]
v () e (-sI-A)"b

and e, is the ith unit vector ( Bettayeb, 1980). If (A.,b.g) is a balanced
realization of G(s), then |¢H1(s)|=l for all s=jw. Therefore, the optimal

th e e
r order approximation is given by

0 c(sI-A) e
G (s)=¢(sI-A) b4 () = [5.2.42]
" e (-sI-A)D

Gr(s) is not necessarily stable and therefore may not be optimal. If r #
n-1, the L® norm of the approximation error may not be minimal. However, if

o < o, then
r+l r

(D). [5.2.43]

"G(S) - Gr(s)“oo # ar+1 -

A discrete version of the approximation algorithm has also been derived
(Silverman, 1980).

Kung (1981) utilized the approximation theory of Adamjan (1971) to
develop a solttion to the minimum degree approximation (MDA) problem for
scalar discrete systems. The minimum degree approximation problem involves
the determination of an approximation impulse hankel matrix, [app, such that
the minimum degree bound given in equation 5.2.30 is achieved with the
preassigned tolerance p € [aHl,ar]. In this case, the rank of Eapp will be
greater than or equal to r (Kung, 1980).

Kung (1981) extended their scalar MDA algorithm approach 1o the
multivariable case for discrete time systems using block impuise hankel

matrices. Kung assumes that I' has a singular value of multiplicity p and
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that the tolerance, p, is exactly that singular value (p=ak+1=ak+2=...=ak+p,
and okzp20k+p+1). With this assumption, there will be p independent pairs
of singular vectors corresponding to the singular value p. A kth order

approximation is obtained from these p pairs of singular vectors. The MDA
(minimal degree approximation) theorem involves three steps:

1. computation of a minimal basis solution of the polynomial matrix

equation

2. solution of an algebraic Ricatti equation

3. partial fraction expansion of the rational matrix
The solution to the MDA problem is quite time consuming. The first step in
the algorithm 1is solved using a Gauss elimination type procedure or a fast
projection method. The second step requires an iterative procedure to
solve. The third step is partial fraction expansion and is the most time
intensive portion of the algorithm. Therefore, Kung and Lin's method will
be difficult to implement and may not be practical.

Glover (1984) developed a continuous time algorithm for obtaining
optimal hankel norm approximations for multivariable causal transfer
functions G(s) of degree n by Qr(s) of degree r. Glover derived a complete
characterization of all approximations Qr(s) which minimize the hankel norm
of the approximation error G(s) - Qr(s) - using balanced realizations and
all-pass transfer functions. It is shown that all solutions are simple
functions of a balanced realization. An all-pass transfer function is one
for which

G(s)G (-5)=I [5.2.44]
and all the singular values of the impulse hankel matrix (second order
modes) are unity. Glover (i984) also derives a bound on the L®™ norm of the

approximation error for one class of optimal hankel-norm approximations.
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Although Glover's algorithm is derived for a continuous system, the

method can be utilized for discrete systems. The bilinear transformation

4= 1= [5.2.45]

can be used to transform the discrete system to a continuous form. Once the
optimal hankel norm approximation is found, the solution is converted back
to the discrete form using the bilinear transformations (Glover, 1984,

Wahlberg, 1986)

g = %% [5.2.46]

The conversion from continuous time to discrete time to continuous time can
be done because the singular values of the system impulse hankel matrix (the
second order modes) are invariant under linear transformation (Wahlberg,
1986).

Glover (1984) derives a class of solutions to the optimal hankel norm
approximation problem. The hankel norm is used as an error criteria to
approximate a causal transfer function matrix, G(s), by an optimal
anticausal transfer function matrix of degree r (all poles are unstable and
in the right half plane). If G(s) is a rational (mxm) transfer function
matrix, then Qr_r(s), of degree <r, will be an optimal hankel norm
approximation to G(s) if and only if there exists an anticausal function
F(s) (degree <n+r-1) such that (Theorem 7.2, Glover 1984):

E@®) = G6) - E6) = G6) - G6) - G6) [5.2.47a]
satisfies

E()E(-5) = of,f 1 [5.2.47b]

1

where E(s) is the error matrix.  Therefore, the error matrix, E(s), will be

all-pass. In this case, the hankel norm of the approximation error will be
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minimal,

lew-g©l, =7,

Let (4,8.C.D) be a balanced realization of G(s) where 4 € R™, B €

R™™ ce R and D € R™™ with second order modes

o zazz...a 20

The controllability and

partitioned as

where

0#0 and

§(-) represents the number of eigenvalues on the imaginary axis.

1

observability Grammians,

1 4

2 2
5E] - 0'1) =0

=0 _=...=0
r+l

L, = diag( 9,

r+2

2

the state matrices can be partitioned such that

A

=11

A

-21

A
-12

4

é_

An optimal Qr(s) is given by the stable part of

Ty or' or+

2
r+k

o

r+k+

“ﬂ

2.2
1

[5.2.48]

[5.2.49]

2
and LV_O, can be

E(s) = G(5) + G (5) = D + Clsl-4)"'B

where é, é’. é, and é are given by (Theorem 6.3, GLover, 1984}

103> I
[}

10 1y

-1
n (ZB+o

-1

(az AT+EA r-o

r+l1-11

-1-11-1

r+l=-

cty)

where U is a unitary matrix which satisfies

T
-g; u

and

5

r+l-1

ctu B

T
)

(5.2.50a)

[5.2.50b]

[5.2.50c¢]

Similarly,

[5.2.52]

[5.2.53]

[5.2.54a]
[5.2.54b]
[5.2.54c]
(5.2.54d]

[5.2.54€]

[5.2.54f)
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Glover (Theorem 6.1, 1984) showed that if one wished to approximate a causal
transfer function, G(s), by an anticausal function, F(s), the smallest L®
error that can be achieved is the hankel norm of G(s):
lsoll, < lgtw) - EGull e [5.2.46]
The class of solutions described above can be generalized to include
non-square systems by relaxing the restriction that U must be unitary
(UTU<D). Also, U = -C,B;' (Corollary 7.3, Glover, 1984).

Glover (1984) further extends the results to find all optimal hankel

norm approximations E(s) = Qr(s)+gu.(s) to G(s) such that

las) - . - ¢, ]

(5.2.49)
leoll,

is an all-pass function. The D matrix is not determined by the optimal
hankel norm approximation method since the hankel norm is independent of D
(Glover, 1984). However, Glover (1984) uses an L® norm error bound to
choose a D. Glover showed that there will exist a constant @ such that
(Corollary 9.3, Glover, 1984):

|GGw)+n], o

N

(al+az+...+an) [5.2.50]

and

IA

“Q(jw)"Loo 20, +0,+..+9.) (5.2.51]

Li (1987) and Jonckheere (1987) looked at hankel rorm reduction
techniques to approximate spectra. They developed a phase approximation
algorithm using a balanced realization of the phase of the spectral factor

E(s) to construct a reduced order spectral factor f-:(s) using the method of

Glover (1984) such that

-
w w

LA “ (5.2.52]

is small in the hankel norm sense where w(-) is a random process spectral
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factor. They also derived L® error bounds on the approximation such that

<4(c + ..+ aN) [5.2.53]

r+l

|E@)-E), = ul - 5 l
w

w

[+~]

and the hankel norm error bound on the approximation is

[ - B <20, ¢ . 49 [5.2.54]
o, are the hankel singular values of the stable projection of E(s).
Other researchers have extended the results for the optimal hankel norm
problem to investigate the H® optimization problem
L — " [RE)KEME7) " | = 1 [5.2.55]
Chang (1987) presents a review of the H® optimization techniques. Chang

recommends Glover's method for solving the hankel norm optimization problem

which will construct an optimal K(s).

5.3 Summary

Several techniques which utilize the impulse hankel matrix to identify
a state space model of the process have been evaluated. Although the
controllability and observability Grammians are equal, they are not diagonal
matrices. Therefore, the realizations are balanced so they will exhibit
good conditioning with respect to controllability and  observability.
However, they are not optimal.

All four identification methods produce an accurate process model of a
deterministic system if enough impulse response parameters are used in the
algorithms and the correct model order is known. As the number of impulse
response parameters used in the identification decreases from N, where N is
the settling time/sampling time, the models identified wusing Kung’s

algorithm exhibit an increasing steady state offset. The frequency range
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over which the models are valid decreases as the high and low frequency
modes are successively neglected. The models identified with the other
three algorithms will identify a full order model.

If N impulse response parameters are used in the identification of a
reduced order model, all four algorithms will give realizations which
exhibit a steady state offset. As the model order decreases, the identified
models neglect the high frequency modes of the system. As the number of
impulse response parameters used in the identification decreases, the low
frequency modes are neglected and the steady state offset increases.

If there is noise in the system, the realizations identified from the
Ho-Kalman algorithms will exhibit a steady state offset and neglect the high
frequency modes of the system. As the noise level decreases, the steady
state offset will decrease. The modified algorithm of Hajdasinski produces
the "best" model.

Several techniques which reduce the order of a balanced realization
were evaluated. Truncation of balanced realizations will produce good
reduced order models if the singular values of the components of the state
space which are eliminated are relatively small. However, if the components
which are neglected contribute significantly to the state space, the reduced
order models will not adequately describe the process.  Frequency weighting
can be used to minimize the model error within certain frequency ranges by
choosing an appropriate input and/or output filter. The method of Glover
produces a model which minimizes the hankel norm of the error.

The identification and order reduction techniques based on SVD are
numerically well conditioned. Even in the presence of noise, the systems

will remain well-conditioned if balanced realization are wused to describe

the process.
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Chapter 6 SVD in the Analysis and Design of Feedback Control Strategies for
Multivariable Systems

6.0 Introduction

The design procedure for feedback control strategies  involves
formulation or specification of the control objectives, selection of the
best control configuration and design of an appropriate  controller.
Practical applications of feedback strategies in chemical processes which
have multiple inputs and outputs are complicated due to the presence of
process interactions. Closed loop interactions result because a single
output can be influenced by more than one input and/or a single input can
affect more than one process output. These interactions can result in
tuning and stability problems for control schemes. In chemical plant
regulatory  control applications, the primary control objective is the
maintenance of the controlled variables (outputs) at their setpoints in the
presence of disturbances. Therefore, a practical, regulatory control scheme
will minimize the effects of disturbances and process interactions in the
system while maintaining a stable and robust closed loop control strategy.
For servo control strategies, the main objective of the control system is to
closely track a changing setpoint with the process output. Therefore,
process interactions should be minimized such that a change in an input
variable will significantly affect only one output variable.

There are several methods described in the literature which have been
used to analyze process interactions in multivariable systems: Rijinsdorp
interaction quotient (Rijinsdorp, 1965), relative gain array (Bristol, 1966,

McAvoy, 1983), dynamic relative gain array (Bristol, 1977, Witcher, 1977),
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relative dynamic gain array (Tung, 1977, 1981), characteristic loci
(MacFarlane, 1977), average dynamic gain array (Gagnepain, 1982), direct
Nyquist array (Jensen, 1981, 1986), inverse Nyquist array (Rosenbrock,
1969), direct gain interaction matrix (Johnston, 1984), and several others.
These analysis techniques do not require knowledge of the controller
structure.  There are other methods available such as the interaction index
(Davison, 1969, 1970) and the IMC interaction measure Economou’s (1986)
which apply to specified controller structures. However, Jensen (1981)
showed that the IMC measure is identical to the normalized direct Nyquist
array. Jensen (1981) presents a good review of most of the currently
available methods. Lieslehto and Koivo (1987) developed an expert system to
analyze process interactions. The expert system selects an appropriate
analysis procedure based on a given process model (transfer function vs
state space) and provides an indication of the degree of interaction in the
system. If the interactions are small, then the expert system will select
the "best” input-output pairings for multiloop control. In this chapter, it
is shown how singular value decomposition of the system gain matrix can be
used to analyze interactions between manipulated variables and controlled
variables. A method of "measuring” these interactions was also developed.
However, it is shown that the measure is similiar to the direct Nyquist
array and the IMC interaction measure.

A common feedback control structure used in industry for multivariable
systems is a multiloop structure. In this design, the loop "pairings” of the
manipulated variables and the controlled variables are chosen such that the
open loop process interactions are minimized. Each input-output pair

defines a distinct control loop. It should be noted that a single control
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loop could involve a single output and a linear combination of several
inputs. For systems with significant interactions, decouplers or
compensators, based on a model of the process, can be used to compensate for
interactions. Once the process has been adequately decoupled, diagonal
controllers, usually PID type, are designed using the "optimum" variable
pairings to minimize the closed loop interactions. Conventional SISO tuning
procedures can be utilized for each "control loop".

McAvoy (1983), Moore (1986), Lau (1985), Bequette (1986), Johnston
(1984) and several others have utilized singular value analysis techniques
to design multiloop control schemes. Using the components from the SVD of
the system transfer function matrices, analysis can be carried out to;

1. determine the "best” input-output pairings to minimize the

open-loop interactions

2. obtain a relative measure of open-loop and closed loop process

interactions

3. obtain a relative measure of the controllability of the system

4. determine the optimum sensor locations and choice of manipulated

variables in large systems to minimize interactions and maximize
the sensitivity of the control loops. The sensitivity of the
control loop refers to the gain between a given input and a
corresponding output.
Control system design and analysis methods which use singular value analysis
possess the "good" numerical properties associated with singular value
decomposition.  In addition, these methods can be used in a straightforward
manner for dynamic analysis of both square and non-square systems. However,

SVD techniques are dependent on the scaling of the process variables.
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Scaling can change the singular values and vectors of the transfer function
matrices and can change the condition number. This is the main weakness of
these methods. In the following sections, these methods are described and
evaluated using simulated examples.

Several investigators have adopted multivariable control strategies
which "decouple” or compensate for the process interactions within the
controller itself.  Control techniques such as Dynamic Matrix Control (DMC)
(Cutler, 1977, 1982), Quadratic DMC (Garcia, 1986), Generalized Predictive
Control (GPC) (Mohtadi, 1986), and Internal Model Control (IMC) (Garcia,
1982, 1985a, 1985b, Rivera, 1986) avoid the explicit input-output pairing
requirements of the multiloop control schemes. These multivariable methods
are long-range predictive control strategies which require "good" process
models to ensure stability and robustness. As the dimensions of the
multivariable  systems increase, the complexity of these multivariable

controllers also increases.

6.1 Multiloop Control System Design

6.1.1 Process Interactions

The design of a stable and robust multiloop control scheme requires an
understanding of the nature of process interactions in the open loop and
closed loop systems. This information can be used to decide on the best
control configurations (input-output pairings), assist in the design  of
suitable decouplers (compensators), and give an indication of the potential

difficulties in terms of controllability of the proposed control scheme.
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Jensen (1981, 1986) analyzed the signal transmissions between the input and
output variables in closed loop multivariable systems in terms of the sum of
direct, parallel, interactive and disturbance transmissions. For a general

(nxn) feedback system, shown in Figure 6.1, these transmittances are defined

as:
1. Direct (ri=> yi)
2. Parallel (rf' Y, via other loops)
3. Interactivc Y
4. Disturbance
. &th . . .th
where r is the i varopess o .at variable, y, I the i controlled

variable, and fk is the k™ disturbance variable as shown in Figure 6.2.
The parallel transmittances occur because a portion of the input signal, r,
can enter the other control loops, travel around these loops and return to
the original control loop via the interaction paths.
For the system in Figure 6.1,
y=(0+GKGH 'GKG+(+GKGH'G € [6.1.1]
The Laplace transform variable, s, has been omitted in equation 6.l.] and

all subsequent equations in this section for simplicity. The ‘effective"

process TFM, Q, is given by:
Q= ng [6.1.2]

where K is a precompensator or decoupler. The return difference matrix for

the system is given by:
E=1+0G, [6.1.3]
Substitution of equations 6.1.2 and 6.1.3 into equation 6.1.1 when H = |

gives:
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Figure 6.1: Closed Loop Process Diagram Where § = Disturbance
Vector (qx1), u= Control Input Vector (nx1), m =
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Figure 6.2: Closed Loop Signal Transmittances



y=E'QG 1+ E'G €=G1+G ¢ [6.1.4]
where
adj(E) {c }
E = %D © @D [6.1.5]
and cij = (-l)i""'Mij are the cofactors of F and Mij are the corresponding

L ]
minors of E. Each element in the closed loop transfer function matrix, G ,

can be expressed as,

} ll j lj [616]
= det(E)

where n is the number of contrcl loops (the number of outputs). A similar

expression can be derived for the elements in the closed loop disturbance

transfer function matrix g; Therefore, the it controlled variable s
determined from (Jensen, 1981):
n P
- - L] .
y|=gu rl + }gij rJ * }gLu k
izt =t
K, < 6 ka. vooc ka Blgc gb
i jlj 1i~1j
St §§utt, §| St
det(F) det(F) g det(E) ' det(E)|
=1 i=l 1=1 i=ljl=1
¥l
direct parallel interactive disturbance

[6.1.7]
where 8" is the unit impulse function corresponding to the ith output in

the lth control loop.
Jensen (1981) showed that the closed loop transmission paths, given in
equation 6.1.7, could be estimated using open loop information. If
B(s) = Q)G (5) [6.1.8]

represents the open loop TFM, then the elements in the closed loop TFM have
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a common denominator and the numerator can be expressed in terms of the sum

of the minors of order 1 to (n-1) of the open loop TFM as

=
a
=S

. 1 i il i
8. = - | P+ P "+
I det(F) ARPEI

1 0~1
~

—

(3]
+

1l =11 = j
AT P LA

n n
il ..l
I N P 12 "y 5, det(P)
11=112_11+1 CI IR B B
[6.1.9]
where PJ 112 l" is the minor of P obtained by deleting all rows except
12"n

those indicated by the superscripts and deleting ail columns except those
indicated by the subscripts (Jensen, 1981). The k™ order transmittances
can be expressed in terms of the kth order minors of P.

As can be seen from equation 6.1.7, the relative magnitudes of the
transmittances can be compared by examining the numerators of the
expressions because all of the terms are divided by a common factor, det(F).
The first order minor representing the direct transmittances between r, and
Y, is given by the diagcnal element of the open loop TFM, kiqii. The first
order interactive t.asmittance between rj and Yo j#i, is given by the off
diagonal element of the open loop TFM, qu,lj. Therefore, the relative
magnitude of the closed loop first order interaction transmittances with
respect to the direct transmittance can be approximated by comparing the off
diagonal elements of the open loop TFM to the corresponding dizgonal
elements (Jensen, 1981).  Generally, the open loop TFM s structured such
that the diagonal elements are larger than the off-diagonal eleinents.

Therefcre, as the number of off-diagonal elements chrough which a given
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input signal passes increases, the transmittances should decrease. Jensen
(1981) concluded that for most practical systems, the magnitude of the
minors of the open loop TFM and the maenitude of the transmittances will
generally decrease as their order increases. Therefore, the first order
interaction transmittance, represented by the first order minor of the open
loop TFM, should provide a reasonable approximation to the total closed locp
interaction.  For the 2x2 system shown in Figure 6.3, the elements of the

closed loop transfer function matrix are given by,

kq. - kqg kq . +kag kg

3;1 __ltu zii121721 17112722 [6.1.10a]
det(E)
. kyua
e, - 2712 [6.1.10b]
det(E)
. kaq
g, - 1721 [6.1.10c]
det(E)
. ka, -ka ka +ka kaq
6, - 2722 172172712 1112 22 [6.1.10d]
det(E)

The actual transmission paths through the closed loop system are given
by the minors of the open loop transfer function matrix divided by the
determinant of F. The division by a polynomial results in an infinite
number of transmission paths. In a feedback system, a portion of the input
signal, r, can enter the j‘h control loop (j=1,..n, j#i), pass N (1 to o0)
times around these loops and return to the ith control loop generating an
infiuite number of parallel transmittance paths. In a similar manner, there

will be an infinite number of interactive and disturbance transmittances

paths due to r, (j=1,.n,j#i) and fk(k=l,.,p), respectively. For the 2x2
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system in Figure 6.3, the physical closed loop transmission paths are given

by the infinite series,

By 7 kjay, k9y,K,0,,¢ k,a, k,a,,K,8,, k0, 6.1.11a]
8, * k,9,,- k2q1zk1qu+ kquzquzxkquz T (6.1.11b]
g,, = kj9,- ka, ka,,+ ka, ka,ka, - [6-1.11e]

g «-nkzqzz- ko kq + kq kag kq kaq -~ {6.1.11d)

2712 iterT Tatizhater 212 1021

The closed loop parallel, irzeractive and disturbance transmissions can be
influenced by more than one off-diagonal element in the closed loop TFM and
therefore, mese than one element in the open loop TFM. By definition, the
dircet transmittan-es will be influenced by the diagonal elements of the
closed loop TFM only and thus, only the diagonal elements of the open loop
TFM. For the 2x2 system in Figure 6.3, the primary transmission paths can
be identified. The primary paths are ones in which a signal traverses any
soction of the path only once (Jensen, 1981). The primary direct
transmittance between r, and Y, is kg (l" order minor). The primary

11

. . . . t .
interactive transmittance betwesn r and yz is qu21 (l' order minor), and

st

the primary interactive transmittance between r_ and Y, is kquz (1" order
minor). The primary parallel transmittance between r and Y, (r2 and yz) is
'quzxkzqu'

In multivariable systems, the design objective; are to maximize the sum
of the direct plus paraliel transmittances but minimize the interactive and
disturbance  transmittances. However, these two objectives dre not
independent because the primary parallel transmission is the nroduct of the

primary interactive transmittances. From equation 6.1.1 and 6.1.7, it can
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be seen that the interactive and disturbance transmittances in the closed
loop system will approach zero as the feedback gains, ki, approach infinity.
The direct and parallel transmittances will approach unity with high

feedback gains.
6.1.2 Singular Value Analysis of Process Interactions

Relative measures of open loop and closed loop interactions, as defined
by Jensen (1981), and the optimum input-output pairings for a multiloop
strategy can be obtained from singular value analysis of the open Ioop
transfer function matrix. The linear time-invariant MIMO system, shown in
Figure 6.2, (neglecting disturbances) is described by,

() = G ($)m(s) = Qls)uls) {6.1.12]
where y(s) € [RP, u(s) € R™, and QP,Q e RP™ Applying singular value
decomposition to the process TFM, Q(s), in equation 6.1.12 gives

P

¥(s) = _Z_(S)_Z_'(S)XT(S)L!.(S) =) oi(S)-z,‘(S)-xT(sm(S) (6.1.13]
i=1
The columns of ¥V = [y_1 v, !m] and 7 = [_z_1 z, - ;p] form orthonormal

bases which span the input and output spaces, respectively.
If the basis vectors, v and z for the input and output spaces,

respectively, are aligned with the standard Euclidean basis vectors, then an
input entering in the direction of g will be scaled by g, and reappear at
the output in the direction of €. This corresponds to a non-interacting
loop where the signal A is completely determined by u, and u, affects only

y. If

i

¥(s) = Z(s) = E = 1 [6.1.14]
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then
¥(s) = Q(s)u(s) = Z(s)u(s) (6.1.15]

Since X(s) is diagonal, the plant is naturally decoupled. If y_i¢ g, and ;f
&, the system will exhibit some degree of interaction depending on the
alignment of z and v with g

Singular value decomposition provides a method of identifying cpen loop
and closed loop signal transmittances. [Each element in the process TFM can

be written as the sum of dyads,

a,(s) =§ AOICRAC) NOM [6.1.17a)
=1

q,(s) =§ a(8)z, (v (5) [6.1.17b]
I=1

The vector products (gf;l) and (!:gl) represent the projection of the th

left singular vector onto the gj standard basis vector, zjl, and the

th

projection of the | right singular vector onto the e standard  basis

vecter, v:l, respectively. The elements of the closed loop TFM in terms of
the singular vectors and values of the process TFM are given by,
. ckoz
) ;% 16.1.18]
Y21 k21 det(E)

For the it control loop, the open loop signal transmittances are given by

; kqe+que fkazve'&z

m
T Z i1 %Y ,1,
# ;
+ m .
= koz v e f-z k alle a8t i Z Vi [6.1.19]
=l 1=1 j=
1#) 17

}
i
i

direct parallel nteractive

A 2x2 cicsed loop system, incorporating the singular value decomposition
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components of the process TFM, is shown in Figure 6.4, The area contained
within the dotted area represents the process O. Primary direct

transmittances between T, (ul) and Y, pass through v, are scaled by a

"gain", o and go through Z Primary parallel transmittances between

r (ul) and y, 80 through v re scaled by "gain %, and then pass through

z, before exiting at Y, Primary interactive transmittances due to u, pass

through v_, are scaled by "gain” g, 80 through 2

2 then exit through Y,

12’

In addition, a portion of the r, ("z) signal travels through A is scaled

by"gain g, passes through z _ and appears at the output Y Similarly, for

11

output vy, the primary direct, parallel and interactive transmittances can

beshown t e koz v koz v neé k(ocz v +01
0 b 2 222 22° 271721 21 a 1(12111 zzzu)

respectively. Therefore, the open loop equation can be written as,

+ + +
y "oz v 4oz v oz vV _+02Z Vv u
1 1711 11 2712 12 1711 21 2712 22 |
= + + .
czZ V 402V oz v 40z u
Y, | 172111 2722 12 1721 21 2722 Va2 2 [6.1.20]
r + +
koz v +koz.v kazv kozv
_ 1171111 12712 12 21711721 272712 22 ¢
+
koz v +ko.z koz +rkoz v e
| 11211 12221" 212121 2 2722 22 2

Jensen's interaction analysis shows that the open loop interactions or
the primary interactive transmittance paths, given in equation 6.1.19,
provide a reasonable indication of first order closed loop interactions.
Therefore, interaction measures based on singular value analysis of the
process TFM which compare the relative magnitude of the open loop direct and

parallel transmittances,

n
koz “e + Zazl e, [6.1.21)
i
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to the magnitude of the open loop interaction transmittance

Z Z %Y ,1, [6.1.22]

3

‘ﬁ»ll

should be "good" measures of open loop and approximate first order closed

loop interaction for loop pairing us v in the i" control loop.
Interaction measures based on SVA will be discussed further in section

6.1.4.5.

6.1.3 Optimum Controlled and Manipulated Variable Pairings for Multiloop
Control Schemes Using SVA

The multiloop control system design problem involves the determination
of the best controlled and manipulated variable pairings for each control
loop. The ‘"optimum" variable pairings for a particular process should
minimize the interactions in the uncompensated plant and produce
satisfactory closed loop performance over the frequency band of
characteristic  disturbances. The manipulated and controlled variable
pairings, us for each control loop should be chosen such that the
primary direct signal transmittance components, vi and z, are larger in
magnitude than the interactive components, v and z, (j#i, 1<k<p) and the

jk

parallel components, \ and z, (k#i, I<k<p) (Jensen, 1981). Therefore,

the element corresponding to the largest absolute value in each column of Z,

z, should be paired with the element corresponding to the largest absolute

=

value in each column of ¥V

Y (Moore, 1986). These variable pairings
should minimize the open loop interactions for the uncompensated plant since

the most sensitive manipulated variable is paired with the most sensitive
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controlled variable associated with the loop gain a.

The first column of Z (gl), corresponding to the largest decoupled
process "gain" (al), indicates the combination of controlled variables which
are most affected by the system. Therefore, z is the easiest direction in
which the system can be changed. Similarly, the first column of V (!1)
indicates the combination of control actions which will have the greatest
effect on the process. The last columns in Z (;n) and V (xm), corresponding
to the smallest decoupled process "gain", indicate the combination of
controlled variables least affected by the system and the combination of
control actions which have the least effect on the system, respectively.

Lau (1985) used a similar method to obtain the "best® input-output

pairings. The open loop equation, 6.1.13, can be written in terms of the

sum of rotational matrices, W, as,

¥(s) =¥ o)z (shy] (shuls)
I=1

=3 o(s}W (s)u(s) [6.1.23]
I=1

Each loop (or node) in the system has a scaling factor al(s) and a
rotational  transformation, \_V_l(s), between the input and the output,
associated with it. The maximum entry in the rotational matrix (max lw:jl)
, the largest

. .. th .
defines 2 u- yj pairing for the 1 loop. Since LV_l- A

element in _“_’l will correspond to the largest elements in zZ and v

Example 6.1: The open loop transfer function matrix for a system of
two interacting tanks, assuming linear valves on all flow lines, is derived

in Appendix A. The control objective in this system is to control the
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liquid levels, h1 and hz' in the tanks by manipulating the inlet flows to
the two tanks, q and a,. If the tank cross-sectional areas and the valve

resistances are:

A = A2 =1lm [6.1.24)
R =R, =1 s/m’ [6.1.25]
the process TFM is,
s+2 |
s2435+1 s2+3s+1
G (s) = [6.1.26]
P 1 s+l
sz+35+l sz+3s+l
The SVD components of the steady state gain matrix, QP(O) are,
7 = 0.851 -0.526 V = 0.851 -0.526
=7 1052 0.851 =71 0.526 0.851
[6.1.27]

T = 2.618 0

=" 0 0.382
The Z and V matrices are equal in this example because the TFM is symmetric.
Matching the largest elements in the columns of Z with the largest elements

in the columns of V gives the loop pairings:

h» q (6.1.28a]
hzs q, [6.1.28b]
with decoupled loop gains of 2.618 and 0.382, respectively. These loop

pairings are intuitively obvious if the physical arrangement of the system

is examined. A sketch of the system is given in appendix A.

Example 6.2: A binary distillation column at the University of Alberta
was modeled using the MOD modeling program (Langman, 1987). The top

composition (xD) and the bottom composition (xB) are to be controlled by
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manipulating the reflux flow rate (R) and the steam flow rate to the
reboiler (S). The distillation column is highly non-linear with varying

time delays in the TFM. Langman (1987) derived an "average" model which

approximated the non-linear behaviour:

1.42¢""  -0.669¢™>*
1 - 7.86s+1 15.0s+1 . R]
Xy 2.29¢ %% _4.54e7" % s |
| 19.9s+1 18.5s+1
where _ [ 1420 -0.669
G0 = [2.290 -4.540] [6.1.30]
SVD of QP(O) yields:
;- [0224 -0.970 Ve [0.490 -0.372]
£= 10970 0.224 += 1-0.872  0.490 |
_[s5.238 0 __
Z= [ 0  0.938 ] [6.1.31]

Matching the absolute value of the largest components of the columns of Z
with the largest components of the columns of ¥V gives the optimum loop
pairings,
Xg @ S [6.1.32)
. R [6.1.33]
with decoupled loop gains of 5.238 and 0.938, respectively. This analysis
implies that the bottom composition from the distillation column will be

more sensitive to the steam flow to the reboiler than the sensitivity of the

top composition to reflux flow rate.

A dynamic analysis of the optimum variable pairings can be performed

over a frequency range using SVA. At each frequency, the process TFM is



evaluated and the SVD of the matrix is computed. The dynamic analysis will
indicate whether the optimum loop pairings are frequency dependent. If the
optimum pairings remain the same over a large low frequency range and only
change at high frequencies, a decoupler designed at a low frequency may be
adequate for stable control. However, if the optimum pairings change over
the frequency range, a dynamic decoupler will be required to ensure good

performance over the entire bandwidth.

Example 6.3:: Tung (1977) considered a 2x2 numerical example where the
static and dynamic optimum loop pairings are different. The process TFM 1a

given by,

(s+6.45)(s+1.55) -5(s+3) ]

2(s+3) (s+3-21)(s+3+2i)

G (s) = (6.1.34]
P (s+4+421)(s+4-2i)(s+3)

At steady state, SVD of G SO) gives,

_ [ 0.411 0.912]

Y= 0012 04l

, . [ 0952 0.307
£=1.0307 0.952

[6.1.35]

0.312 0
- [ 0 0.161 ]
Matching the elements with the largest absolute value in the columns of Z
with the elements corresponding to the largest absolute value in the columns

of V results in loop pairings:

[6.1.36a]
u Sy [6.1.36b]

These loop pairings would be "optimum" at steady state. Substituting s=iw

into equation 6.1.34 gives
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(iw + 6.45)(iw + 1.55) -5(iw+3)
2(iw+3) (iw+3-21) (iw+3+21i)
G (iw) = [6.1.37]
P (iw+d+2i)(iw+d-2i)(iw+3)
At w =10 Hz, the SVD components are,
7 = 0952 0.307 V = 0.411 00912
=71 -0.307 0.952 - -0.912 0411
2= 0.312 0 [6.1.38]
- 0 0.161
In this case, the optimium variable pairings are
u 2y [6.1.39a]
u, 2y, [6.1.39b]

which are different than the steady state pairings. Figure 6.5 shows the
variable pairings obtained by matching the element with the largest absolute
value ia each column of Z(iw) with the element corresponding to the largest
absolute value in each column of ¥V(iw) over a frequency range. At
frequencies less than 6 Hz, the optimum pairings are Uy and u=y, for
the first and second control loops, respectively. However, at frequencies
greater than 7 Hz, the optimum loop pairings are u=y and U y,. At w =
6 Hz, the loop pairings are reversed. Therefore, a compensator designed at
low frequencies will not take into account the directionality of the system

at high frequencies. As a consequence, the control system performance will

deteriorate at high frequencies.

There are other methods available for determining the optimum variable
pairings for multiloop or decoupled control schemes. The most commonly used
tool is the relative gain array (RGA) developed by Bristol (1966) which is

scaling independent. For a linear, time-invariant system with an equal
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number of controlled and manipulated variables, optimum variable pairings
can be determined directly from the RGA. Since the RGA involves ratio
quantities, it is invariant to scaling of the process variables. The SVA
techniques discussed previously are scaling dependent but can be applied to
non-square systems unlike the RGA. The RGA method is a steady state method
which is easy to use since it requires only steady state gains. However, if
there are strong interactions existing during transient  periods  of
overation, the RGA analysiz could give "bad" variable pairings because ihe
high frequency dynamics have been neglected. Witcher (1977), Bristol
(1977), Tung (1977, 1981), and Gagnepain (1982) extended the RGA to include
the effects of process dynamics. However, th¢ dynamic methods are more
complicated to calculate than SVA. Johnston (1984) developed th: direct
gain matrix which determines dynamic optimum vasiable pairings. This method
can be used for square and non-square Ssystems to select the optimum .ariable
pairings. In addition, DGM can be used to reduce the number of manipulatec
variables in ill-conditioned systems and to improve the performance and

sensitivity of systems through the use of internal control ‘'+ops. However,

ithe DGM is scaling dependent.

6.1.4 Process Interaction Measures

When the optimum variable pairings for the uncompensated plant have
been determined, an interaction measure can be used to indicate the relative
magnitudes of interactions and deiermine which loops require decoupling to
obtain satisfactory control performance. There are severa! interaction

measures which have been published in the literature. Jensen (1981)
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pre s a vey good summary of the various interaction measures and their

relationship to closed loop interactions.
6.1.4.1 Relai’-= Gain Array (RGA)

Bristol (1966, 197°. -ioped the relative gain array as a tool to
assist in the design of m. -l .op control strategies. The eiements in the
RGA, pij, are definc" as the ratio of the open loop gain between uj and Y,
when all the other it.ps are clored and under perfect control. If u, =
1.0, :he system is said to be completely Jzcoupled. If pij = 0.5, the
system is said to be highly interacting. If pij:»l, all the zlements in the
relative gain matrix wiii be of comparable magnitude indicating significant
interactions in the system. The manipulated and controlled variables
corresponding to positive RGA elements closest to one are paired to form a
fecdback loop tc minimize interactions. The method is easy to use and
requires only steady state process gains. However, Jensen (1981) showed
that the RGA does not provide a direct measure of c:iosed loop interactions.
The RGA elements are a steady state measure of the limiting values of the
ratio of direct transmittances to the sum of direct and parallel

transmittances for a system with one loop open and the others closed.



6.1.4.2 Direct Nyquis' Array {DNA)

The airect Nyquist array {(DNA) (Jensen, 1981) p.ovides a direst
measure of open loop process interactions and an approximate measure of
first order closed loop process interactions. Each element in the direct
Nyquist array (DNA) is a polar plot representing the magnitude of the
corresponding element in th~ open loop TFM evaluated over a specified
frequency range,. Gershgorin circles, evaivated ar 2ach frequency, can be
superimposed onto the diagona: eizments of the DNA (o give a measure of
interaction. The radii of the Gershgorin circles are #gval ¢ the sum of
the magnitudes of all the off diagonal element® i :ne '™ column of the
process transfer matrix

n
(r() =] la (W)l i) [6.1.40]

j=1
The center of the circles are loc:ied on the gﬁ(iw) locus. A comparison of
the magnitude of the diagonal =izments to the corresponiding radii of the
Gershgorin circles at each frequency is a measure of the effect of a process
input u on the output y, as compared to the efiec: on ‘,j (j#1). The rows
of the process transfer function matrix can also be used to compute

Gershgorin circles. T:  .ateraction measure in this case will be a measure

nf tha rolativa inflnancre that an innnt 1 haec An a narticnlar antnn v ac
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elements in the open-loop transfer function matrix should also be on the
diagonal. The optimum input-output pairings are chosen such that the
larcest DNA displays are on the diagonal of the array and the Gershgorin
circles are as small as possible. The interaction ms2--ure from: the DNA can
be wused directly o design a control scheme i~z Nyquist exact loci
techniques or characteristic  loci  techniques. The performance and
robustness of the control system and the control quality can be analyzed
using related frequency domain techniques. The only disadvantage of this

meihod is that it is scaling dependent.
6.1.4.3 IMC Interaction Measure

Economou (1986) introduced two interzction rreasures .erived from an
internal model control (IMC) design approach. The row IMC measure is
del'ned as:

n n
R (iw) ='Z Igij(nw)l Z |gij(1w)| [6.1.41]
j=1 i=1
J#i
and characterizes the relative importance of an input assigned to the loop
(on an output y). The column IMC measure is defined as:
n n
C (iw) =.Z |, w)| z lg, ()| [6.1.42]
j=1 j=1
j#Fi
and characterizes the interactions imposed by the it loop on the other

loops. This measure is essentially a normalized version of the Gershgorin
circles where the radii and the magpitude of gii(s) has been normalized by

dividing by Zlgij| for R and similarly by Zlgjil for C, (Jensen, 1986).



Therefore, this measure is a normalized DNA method presented in the form of

a Bode r'ot (Jensen, 1981).
6.1.4.4 Characteristic Loci Measure

MacFarlane (1977) used the micalignment of vector spaces 10 define a
measure  of interaction foir use in their characteristic loci (CL) design
method for multivariable systems. In the CL design, the set of frequency
dependent eigenvectors (characteristic vectors) and eigenvalues
(characteri":aic gains) of the open loop TFM, P(s) siven in equation 6.1.8,
are manipulated such that a desired closed loop response is obtained.  The
characteristic loci are defined as the loci traced out by the eigenvalues
(characterist';c gaias) of P(s) in the complex plane 3as S traverses the
standard Nyyuist contour. The controller mafrix, Qc(jw). is chosen such
that the set of characteristic loci satisfies 1€ generalized Nyquist
stability criterion.

P(s) can be expressed in terms of the dyads formed from the

characteristic gains and the characteristic directions as

n
pis) = WOASXTE) = ) AOROL) [6.1.43]
i=1
where Ai is the i*  characteristic gain, W is the " characteristic

1

direction and X forms the dual basis to ii2 characteristic directions such
1

that
x = ®hH [6.1.44]

The closed loop TFM becomes {MacFarlane, 1977):
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-1 - A () T
R(s) = [1_+B(s)] "B(s) = Z e W (s)x. () [6.1.45]
+A (s

i=1
Therefore, a reference input, r(s), entering the closed loop system will be
split into components directed along the characteristic vector set (w(s):
)
. .th . . .
i=1,..,n}. The i  component will be scaled 'y the closed loop gain of

A,05)

;-/\i(S)

[6.1.46)

The components of the output space will be directed along the same se: of
characteristic direction vectors as the components in the input space.

If all the characteristic gains are large over the bandwidth of the
system, ,\i(jw) >> 1, the closed ioop gains will approach unity and

¥(jw) = R(jw)E(jw)
= W)X () 1)
y(ju' = gjw) [6.1.47)

since &:-_!T = 1. The system will exhibit little closed Irnp interaction and
therefore good setpoint tracking. At low frequencies, Qc(j.d) can be chosen
such that the gains of the characteristic loci, Ai(jw), have sufficiently
high gain over the operating bandwidth to provide the required accuracy for
tracking of r(jw) by ¥y(jw) (MacFarlane, 1977). In this case, the
interactions in the closed loop system will be small. At high frequencies,
the Nyquist stability criterion usually requires that the characteristic
gains be small (MacFarlane, 1977). Therefore, as the frequency approaches
infiaity, the characteristic loci of P(jw) will usually approach zero such
that

I +B(jw) » 1 [6.1.48)
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Therefore,
R(jw) » B(jw) [6.1.49]

The interactions in the «closed loop system at high frequencies are
essentially the same as in the open loop system, To eliminate high
frequency interactions, the open loop interactions must be modified
(MacFarlane, 1977).

If the characteristic vectors set of R(s), {x}(s): I<i<p} and therefore
of P(s) is ci.ely aligned with the standard Euclidean basis set, {e:

i

Igicp}, the closed loop system will exhibit minimal interactions since W = X

=] and
¥(s) = R{s)i(s)
= (I + WEASX () W)X (5)x(5)
¥(s) = (L + A()AG)IIs) = Dis)r(s) (6.1.50]
Sinc. .. is a diagonal matrix, an input ri(s) will affect only yi(s,‘:. As

the vectors gl(s) and e become misaligned, the magnitude of the
off-diagonal elements in W(s} increase from zero increasing the effect of
rj(s) (j#i) on yi(s). The magnitude of the diagcnal elements in W(s) will
decrease from one decreasing the effect of ri(s) en yi(s). Therefore, the
open loop interactions and the high frequency closed loop interactions will
increase. The angle (MacFarlane, 1977)

|2, (jw),e )]

$(jw) = cos™ — [6.1.51]
w (jw

between the vectors _“_r_l(s) and g can be used to indicate the misalignment of
these vectors. Therefore, plots of the characteristic gains of P(jw) and

the alignment angles, ¢i(jw), as a function of frequency can be wused to
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analyze process interactions and the performance of the closed loop system
over the operating bandwidth of the¢ system (MacFarlane, 1977). The optimum
loop pairings for the ith loop are cicoen such that _»\Ll(s) is the eigenvector
which makes the smallest angle with the standard basis veclor e The
eigenvalue of P(s) corresponding to xl(s) will be 2 reasonazbic approximation
of the transference of the closed loop signals from ri(jw) to yi(jw) at a
particular frequency (MacFarlane, 1977).

If the eigenvectors are approximately orthogonal (not excessively
skewed). then high characteristic gains, ).i(s), and small alignmeit angles
will ensure good closed loop performance over the system operating
bandwidth. However, if the characteristic vector set is excessively skewed
(not orthogonal), a complete set of eigenvectors which span the output space
does not exist. Therefore, the systo™: gains and directions can not be
completely defined. In addition, the .. . iiloi number of the system will be
large and the analysis will be very sensitive to errors in the process
model. In these systems, the eigenvectors and eigenvalues can not be used
to assess closed loop performance. Alternatively, principal gains (singular
vzlues) and principal (singular) vectors of the open loop TFM can be used to
determine the system gains and directions (MacFarlane, 1977). If the
principal gains of P(s) are sufficiently high, y/ivj will closely track
r(jw) regardless of the directions of the eigenvectors of P(s). If the
singular vectors or principal vectors are closely aligned with the standard

Euclidean basis vectors, the closed loop interactions will be minimal.
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6.1.4.5 SVA Interaction Measures

Lau (1985a) defines a dynamic measure of interaction which represents
the alignment angle between the singular vector dyads and the Euclidean

standard basis dyads of the input and output spaces, This interaction

th

measure indicates the degree of alignment of the 1™ loop rotational matrix

EI., given in equation 6.1.23, with respect ¢ an ideal natural loop
rotational matrix, E. An ideal natural loop is defined as a single loop
which interacts minimally with other loops in the system. The basis vectors
of the input and output spaces for an ideal loop are aligned with the
standard basis vectors. For the I'P loop, with loop pairing us vy, the

rotational matrix ﬂl is given by,

2 : v ] r z v+ z v+ + 1
(n 1i o o2 7T TLomi
Z v Vv .V e 2.V
7 = 2i v = 2i W = 2i 1i 21 2i 2i mi
= = . - . [6.1.52]
. t+ o+ o+
z . A ZV., ZV . ..ZV .
| Pij | i | Ppi 1i pi 2i pi mi|

The corresponding ideal loop rotational matrix, E, with loop pairing us

Yo is the projection of ﬂl onto the standard Euclidean dyad, eﬁ=glg_':‘, and

is given by (Lau, 1985a)

0 [0 (0 0 ... 0
i _ ool
&= | % Y= Vi w1= T [6.1.53]
.2,V
. 11 1
0 | | 0 | (0 0.0...0




N . t - e .
Lau’'s interaction measure for the lh loop, @. is defined as,

v
-1 T T «
cos & = —— = lw..-w.. =le.z)¥e) = |+ | [6.1.54]
n 11 11 11 Y |
w
-1
since W =1.0. Lau also defines a total interaction measure where each

Lo

nodal interaction measure is weighted by its corresponding singular wvalue.
The angle © indicates the deviation of P(jw) from an ideal decoupled system,

o 11/2
y a?(cos ei)z
cos © = |=2 [6.1.55)

Lau's interaction measure compares the relative magnitude of the (i,i)

component of \_V1 with the other elements in _\_V_l However, the elements in _Vil

represent only the signal transmittances which enter the system and are

scal>d by A corresponding to the singular - :ctors z and - These signals

th

represent only the portion of the interactiv:: (raismittances ix the 1™ loop

th

which are scaled by 7, the direct transmittzace in the | loop and the

parallel transmittances for the other loops which pass through the ith loop.

For the 2x2 system shown in Figure 6.3, equation 6.1.23 gives,

=W +0oW)u .1.56
y=(W +oW)u [6.1.56]
where,
20'n Vs Z2%12 %12V )
=1 | z.v zZ.v ﬂ3= Z V. Z.V [6.1.57]
21 11 21 21 22 12 22 22

Figures 6.6a and 6.6b show the signal transmittances which are represented

by the rotational matrices W_ and ﬂz The elements of ﬂl indicate the

relative magnitudes of the portion of the input signai u which is rotated to
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Y., g:, is scaled by o, and then reappears in the output direction Z, ¥
Similarly, \L/z indicates the relative magnitudes of the portion of the input
signal which is rotated by Y, g;, is scaled by 7, and reappears in the
output direction z, x;. Therefore, W and _\!2 do not contain all the
information necessary to fully characterize the transmittances in loop | and
loop 2, respectively.

For a 2x2 system, Lau’s method will always give the same measure of
interaction (or alignment) for both loops. If v and ¢ are the angles of
rotation of the output space and the input space basis vectors,
respectively, from the standard Euclidean vector space, Z and Y can be

written as,

Z - [cosw -siny ] V= [cos¢ -sing ] [6.1.58]

siny cosy sing cos¢
Only one angle is required to specify a rotation (or a vector position) in
R°. The rotational matrices, _\_V_l are given by,

W - [cosdacosqﬁ cosaﬁsinq&] W o= [simbsimﬁ -sim’:cosqS] (6.1.59]

sinycos¢  sinysing -cosysing cosycos¢

th loop, then

If the loop pairings are us . (i=1,2) for the i

cos® = cosd, = |cosycos| (6.1.60]

indicating that the interactions in both loops are equivalent. If the loop
pairings are us yj (i#j) for the i loop, then

cos© = [cosysing| cose, = [-cosysing| {6.1.61]

Since |cosysing] = |-cosysing|, the interaction msasure for both loops is

the same.
For a 3x3 system, Lau's method will always give three interaction

measures or alignment angles. In IRS, three directional angles need to be

. . . 3
specified for a rotation (or vector location). A vector, x R, from the
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origin is defined by distances X Xy and Xy from the e,"8; & -8 and
e-e, planes, respectively. The directional angles are given by,

X Xy Xs
cosa = += cosp = | cosy = —3 [6.1.62]

where d = Ixf + x: + xz which is the length of the vector. Although Lau’s
method gives three alignment angles, the angles do not indicate the
interactions in the three control loops.

Lau’s interaction measure will only g’ve an indication of the overall
directiona! properties ¢f the system and alert the designer to potential
difficulties associated with decoupling. Lau’s measure does mnot indicate
process interactions in the individual control loops and does not indicate
closed loup interactions. To examine process interactions, the alignment of
both the input and the output space with the standard Euclidean space should
be accounted for . a manner similar to the characteristic loci method. The
direct and parclicc  transmittances, given in equation 6.1.21 should be
compared to the interactive transmittances given in . juation 6.1.22.

In the analysis of the propagation of an input signal through the
process given in chapter 2.2.4, it was shown that the input signal entering

¢ is rotated by VT, scaled by I, and rotated by Z before exiting

& From equation 6.1.19, the effect of an input signal on the it

- !’ni" PN

output is given by

y = (i row Z}JZV u = fu [6.1.63]

t 1
Assuming that the optimum loop pairing for the I control loop is u=s v,

the signal transmittances in the open loop are given by
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01_\11 interactive W u1
y, = Z .2 o \.'T di t; llel .
- o M = 1 .
i i1 im i B rectrparatie Y 15.1.64)
T . , '
g Vv L interactive u
| mTm 1L m

The alignment angle ¢i(jw) of £.( jw) with respect to e where

I(f (jw),e,)]

cos¢ (jw) = - —m——— [6.1.65]
£, (jw)

represents the ratio of the direct and parallel transmittances to the total
open loop transmittance exit. ¢ from the i*® control loop (yi) and is a
direct measure of process interacucus. If

z=y=¢ [6.1.66]
the input and the output space will be perfectly aligned with the standard
Euclidean  basis. In this case, interactive signal transmittances and
parallel transmittances will not exist. As z (ll) and g become
misaligned, the interactive signal transmittances in the ith locp will
increase and the direct transmittance will decrease. However, parallel
signal transmittances will exist only if v and g are also misaligned.

In the 2:2 sysiem shown in Figure 6.3, the output can be expressed in

terms of the standard basis vectors and the singular vectors of Q as,
u + ve +0o
g Y 1§1 2¥.8 g -2—292

zZ v + {02 +oz 6.1.67a
11111+21212}u1 {11121 1222[2 [ ]

o +

= o TZ V+ + 0 TZ v
yl 191_1_121 2§'1"2"

O‘ ve +oeTzv+e u + oeT +e +0 zVv u
17171 272727271 1 1727 1"1'2 2§2'2— -2 2

v vV +02.V 6.1.67b
TAST * 0,2 12} Y + {01221 21 2722 22} Yy [ !
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For the output Yy

T T
ovV._ oV oz Vv ;1
£ = [z oy Tra| Zavn Y LMY _ fu
=1 11 12] gv._ oV "oz v +0z V -
212 2 22 11V 2212V 22 le
[6.1.68a]
Simiiarly, for an input Y,
T T
oV oV oz V. + v
f—[z z]_1u 121 2Vt %%V _ f21
-2 21 22| oV ov oz Vv v -
212 222 1721 21 MRLTOTAPYS f22
[6.1.68b]
The angle of alignment of fl with the standard Euclidean vector g is
f
11
cos8, = — [6.1.69]
Vo

1
If ¢ is the angle that z makes with the g axis and ¢ is the angle that the

scaled input oy makes with the g axis,

- [ cos$ -sing ]'[cosvﬁ ]

sing cos¢ siny
¢ = [cgs¢cosw - sin¢s§n¢v] _ [cgs(¢+w)] ot [ cgse]
=1 singcosy + cos¢siny sin(¢+y) =1 smel

[6.1.70]
The relative magnitudes of the direct and parallei transmittance terms and
the interactive terms are given by the cosine and the sine of the sum of the
angles that AN and z make with the e axis, respectively, scaled by the
length of £1' Therefore, the open loop interactions and approximate first
order closed loop interactions are determined by the misalignments with
respect to the standard Euclidean space of both the input space ellipsoid
and the output space ellipsoid expressed in terms of the ¥V and Z bases. If

the input space is aligned with the standard basis space, then the

interactions will be completely determined by the misalignment of the output
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space from the standard space (and vice versa). If both the input and the
output spaces are aligned with the standard basis vectors, then the system
will be naturally decoupled and there will be no significant interactions in

the system.

For higher order systems, the measure of alignment is given by the

directional cosines of f with the g vector. For this case, the angle

*

analysis gets more complicated because there are 'n’ directional cosines
raquired to define a single vector in n-dimensional space. In a 3x3 system,
three directional cosines (or 2 angles in spherical coordinates) are
required to define a principal axis direction of the input and output space
ellipsoids.  Using spherical coordinates, it can be shown that the angle of
misalignment of the output space to the standard Euclidean vector space is
determined by the angles that both the input and the output space make with
the standard Euclidean basis vector.

The interaction measure based on the SVD of the process TFM, given in
equation 6.1.65, is equivalent to the direct Nyquist array measure (Jensen,
1981) and the internal model control (IMC) interaction measure (Economou,
1986)  Although the resulting interaction measures and the gains are plotted
as a function of frequency in a Bode plot format, a geometric interpretation
of the interaction is also available. If the TFM matrix is symmetric, the
SVA and the CL method will produce the same geometric measure of
interaction. Unlike Lau’s measure, this measure will indicate the

interactions in each loop because the misalignment of both the input space

and the output space i5 accounted for. -
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Example 6.4: Interaction measures were calculated for the two
interacting tank system given in the Appendix A for various values of the
valve resistances. The objective of the system is to mainta.n the liquid
level in the tank by manipulating the incoming flow streams. At steady
state, the process transfer function matrix is given by

R1+ R2 R

R, R,

2

G (0) = (6.1.71]

Figures 6.7 to 6.10 show the open-loop step responses to changes in the

inputs for the four cases:

CASE R1 Rz
a 0.1 1.0
b 1.0 1.0
c 2.0 1.0
d 10.0 1.0

As R2 increases with respect to R1’ the interactions exhibited in both
control loops decrease with the interaction in the first loop decreasing
significantly more than the second loop. From SVD of the transfer function
matrix, the optimum input-output pairings are,

y. = u [6.1.72a]

y. 2 u [6.1.72b]
Figures 6.11 to 6.14 shows Lau’s interaction measure, the alignment angles
and the total interaction, for the four cases. In all cases, the alignment
angles are the same for both loops and are equal to the total interaction
measure. As the resistance of the middle valve increases, the alignment

angles decrease indicating that the interactions in both loops are
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decreasing and the system is becoming easier to decouple. However, the open
loop step responses show that although the interaction in the first loop is
decreasing significantly, the interaction in the second loop is significant.
For the case where R1 = 1.0 and Rz =10.0, the alignment angle is <10°
indicating that there are no significant interactions in the system and the
system is aligned very closely to the standard basis vectors. However,
there is still significant interaction in the second loop which is not
indicated by the interaction measure. Therefore, Lau's measure of
interaction is indicating overall directional properties of the system but
not the interactions between each input and output variable.

The DNA for the two interacting tanks, case a and case d, are shown in
Figures 6.15 and 6.16, respectively. The DNA shows considerable interaction
in both of the loops which is consistent with the open loop step responses
shown in Figures 6.7 and 6.10. In addition, the DNA shows the interactions
decreasing significantly in the first control loop as the resistances are
changed. The dynamic RGA for case d is shown in Figure 6.17. The RGA
indicates that there are no significant interactions in  either loop.

Therefore, the RGA provides the same information as the SVA interaction

measure.

‘Example 6.5: The 2x2 system described by the process TFM (Jensen, 1986)

L 0.0
FORN ML [6.1.73]

(2s+1) (s+1)
is approximately triangular. The optimum loop pairings obtained by matching

the elements with the largest absolute values in each of the columns of Z
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and V, are

[6.1.74a)
[6.1.74b)
and are constant over the frequency range. The open loop step responses,
given in Figure 6.18, show that the interactions in the first loop are small
compared to those in the second loop. Figure 6.19 shows Lau's alignment
angles and total interaction measure as a function of frequency for this
process model. Although Lau’s measure does indicate significant interaction
in the system which may present problems in decoupler design, it fails to
indicate the interactions between the inputs and the outputs in each of the
control loops. Lau's interaction measures indicate that the interactions in
both loops are equivalent and significant which is not the case. In a
similar fashion, the (dynamic) RGA, shown in Figure 6.20, indicates that
there is significant interaction in both control loops. The DNA is shown in
Figure 6.21. Examination of the elements in the DNA show that although
there is significant interaction in the second loop, the first loop is
essentially non-interacting. Therefore, u will affect only Y, although u,
will affect both Y, and Y, The open loop step responses justify this

result.

-Example 6.6. A distillation model with sidestreams (Lau, 1985a) was
modeled using a 3x3 TFM. The compositions of the distillate (xD) and the
sidestreams (x1 and xz) are to be controlled by manipulating the reflux flow
rate (R) and the draw off rate from each of the sidestreams (Fl and Fz).

The process TFM, Qp(s), is given by,
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- 1 [ 0.7 17, ]
) (9s+1) 0 0 R
x| =] 22 0.4 o ||F, [6.1.75]
(8s+1) (6s+1)
< 2.3 2.3 2.1 E
| %2 | | QOs+D) @seld [Ts+D) | |2
At steady state, the SVD components of QP(O) are,
0.118 -0.337 0934 ]
Z=| 038 -0.850 -0.356
0914 0.405 0.031 |
( 4,189 0 0 ]
T = 0 1.443 0 [6.1.76]
0 0 0.097 |
[ 0.707 -0.695 0.130 ]
VY =| 0539 0411 -0.736
0.458 0.590 0.665 |

Matching the elements with the largest absolute values in the columns of Z

and V result in loop pairings:

R = X, [6.1.77a]
F2 » X [6.1.770b]
F, » X [6.1.77¢]

However, due to the triangular structure of the system, the loop pairings

are constrained to be

Ra= X5 [6.1.78a)
F1 » X, {6.1.78b])
Fz > X, [6.1.78¢c]
to avoid controllability and observability problems. The open loop step

responses, shown in Figure 6.22, indicate that there is significant
interaction in the second and third loop but the first loop is effectively

decoupled from the system. The singular values, Lau’s alignment angles and
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total interaction measure are shown as a function of frequency in Figure
6.23. The large alignment angles indicate that the system has very poor
directional properties. However, Lau's interaction measure shows that there
is significant interaction in all the loops with the third loop being
slightly less. On the other hand, the DNA in Figure 6.24 indicates that the
first loop has no interactions although there is interaction in the other

two loops. Therefore, the DNA results are consistent with the step response

information.

6.2 SVD in Non-Square System Analysis - Reduction in the Number of
Controlled and/or Manipulated Variables

6.2.1 Optimum Sensor Location

In large systems where there are many possible manipulated variables
and/or controlled variables, SVD of the process TFM can be used to reduce
the system dimensions. The most common method for determining which sensors
(or manipulated variables) to use in a control scheme is ad-hoc.  Through
simulation, the profiles of the measurement from each sensor is plotted
before and after a given input sequence. The most sensitive sensor
locations are determined from these profiles where the largest symmetrical
deviation occurs. The optimum sensor locations (or controlled variables) are
chosen to maximize the sensor (or controlled variable) sensitivity and
minimize the process interactions. Maximizing the sensor (or controlled
variable)  sensitivity requires tightly tuned loops with  high  gains.

Minimizing the process interactions corresponds to lower gains and more
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loosely tuned leading to a tradeoff in sensor location.

lRmxn

If the process transfer function  matrix, Qp(s) € . i
represented as,
G (s) = Z(s)- s}V (s) (6.2.1a]
where
S(s)i 0
E(s) ol [6.2.1b]
0 i 9Q

the sensor sensitivity (controlled variable sensitivity) can be maximized by
choosing the sensors (controlled variables) corresponding to the most
sensitive elements in the columns of Z. If _Qp(s) has rank r, which is less
than m (full rank), (m-r) sensors and (n-r) manipulated variables can be
deleted without changing the controllability or observability of the system
(Lau, 1985a, Moore, 1986). If the condition number of Qp(s) is large, then
the system is nearly singular and the rank of the system should be reduced
to lower the condition number (Downs, 1981).

An example of a non-square system with more sensors than manipulative
variables is a distillation column. In dual composition control of a
distillation  column, the output variables, usually the distillate and
bottoms compositions, can be controlled from measurements of one or a
combination of several tray temperatures (states) within the column by
manipulating the reflux flow rate and the steam flow rate to the reboiler.
Downs (1981), Moore (1986), and Bequette (1986) wused a SVA approach to
determine the optimum temperature sensor locations which balance the sensor
sensitivity and interactions for a material balance control scheme. If the

SVD components of the TFM relating the manipulated variables to the tray



temperatures (states) is given in equation 6.2.1a, the projection of the

temperature profile in the column onto z and z, will result in two weighted

average temperatures, Tl = le and T2 = gzl. The weighted average
temperatures could then be used in a control scheme instead of two tray
temperatures. The average temperatures would include the effects of
interactions and provide ‘"optimal® sensitivity. However, a complete
temperature profile is wusually not available on most commercial distillation
columns.

Usually, a material balance control scheme for a distillation column is
implemented as a square system by choosing the two most sensitive trays as
the measurable states or controlled variables. The relative magnitude of
each element in z with respect to the other elements indicates the
sensitivity of the corresponding sensor with respect to the manipulated
variables (flow rates). The temperature of the trays corresponding to the
largest elements in z and z, are subject to the most change for a given
input and are therefore the most sensitive. The relative impact of a tray
on each loop (interaction) 1is indicated by the difference between the
magnitudes of corresponding elements in z and z, If z, =~ 1, then z,x 0
and the i‘" sensor (ith tray) will be affected by a change in u only
(non-interacting). Plots of lzul and lg,lzl versus the tray number or

|z,1-|z,| versus tray number will indicate both sensitivity and

interaction of the sensors (Downs, 1981, Moore, 1986).
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Example 6.7: The steady state TFM, Qp, for a 50 tray ethanol-water
distillation column (Moore, 1986) operating with a DQ control scheme
(distillate rate and steam rate are the manipulated variables) is given in
Table 6.1. The corresponding Z, I, and V matrices are given in Table 6.2.
A plot of |gu| and |z | versus tray number is shown in Figure 6.25. Tray
34 and 44 correspond to the largest absolute values in z, and z,
respectively. Therefore, these trays would be the most sensitive to an
input.  From the plot of |z | - |z,| shown in Figure 626, the largest
absolute values of the differences occur at trays 34 and 44. In this case,
the most sensitive traysare also the least interactive. However, in most

cases, the choice of the "optimum" sensor locations will involve a tradeoff

between sensor sensitivity and interaction.

Bequette (1986) included the effects of disturbances when choosing the
optimum sensor locations. If a state space model of the process is
available, the sensitivity of the errors in the component compositions due
to load changes under perfect measured variable control can be determined.
The input, output and disturbance variables are expressed in deviation form
such that u <1.0 and d <1.0. The state space model of a linear time

invariant system is given by,

x(t) = A x(t) + B u(t) + E d(1) (6.2.2]
¥(t) = C x(t) (6.2.3]
x,(1) = § x(t) [6.2.4)

where x(t) is the vector of state variables, d(t) are the disturbances,

y(t) is the vector of measured variables, u(t) is the vector of manipulated
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Table 6.1: Steady State TFM for the Ethanol-Water Column in Example 6.7

1 [ 0.191e-03 0.000

2 0.191e-03 0.000

3 0.191e-03 0.000

4 0.191e-03 0.477e-04
5 0.191e-03 0.477e-04
5 0.191e-03 0.477e-04
7 0.334e-03 0.143e-03
8 0.381e-03 0.143e-03
9 0.381e-03 0.191e-03
10 0.429e-03 0.191e-03
11 0.572e-03 0.191e-03
12 0.572e-03 0.191e-03
13 0.763e-03 0.191e-03
14 0.858e-03 0.238e-03
15 0.954e-03 0.334e-03
16 0.114e-02 0.382e-03
17 0.134e-02 0.382e-03
18 0.162e-02 0.429e-03
19 0.191e-02 0.572e-03
20 0.234e-02 0.572e-03
21 0.277e-02 0.763e-03
22 0.334e-02 0.858e-03
23 0.401e-02 0.100e-02
24 0.496e-02 0.124e-02
25 G = 0.610e-02 0.143e-02
26 P 0.758e-02 0.172e-02
27 0.954e-02 0.210e-02
28 0.121e-01 0.267e-02
29 0.157e-01 0.334e-02
30 0.212e-01 0.439¢-02
31 0.299-01 0.615e-02
32 0.452e-01 0.906e-02
33 0.685e-01 0.136e-01
34 0.823e-01 0.157e-01
35 0.222e-01 0.391e-02
36 0.238e-01 0.339e-02
37 0.252e-01 0.281e-02
38 0.261e-01 0.219e-02
39 0.264e-01 0.162e-02
40 0.261e-01 0.114e-02
41 0.254e-01 0.572¢-03
4?2 0.240e-01 0.191e-03
43 0.222¢-01 -0.143e-03
44 0.200e-01 -0.477e-03
45 0.176e-01 -0.572¢-03
46 0.152e-01 -0.763e-03
47 0.128e-01 -0.763e-03
48 0.105e-01 -0.763e-03
49 0.839¢-02 -0.668e-03
50 | 0.324e-02 -0.286e-03 |



Table 6.2: SVD Matrices (Z,£,V) for the Ethanol-Water Column in Example 6.7

DO 00 ~IO\ W LW -

-

-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.

12 5e-02
124e-02
i25e-02
1 3 0e-02
13 0e-02
13 0e-02
23 3e-02
264e-02
269e-02
300e-02
394e-02
394e-02
519e-02
58 6e-02
65 8e-02
78 7e-02
91 2e-02
1 10e-01
13 1e-01
159e-01
1 8 9e-01
227e-01
27 2e-01
337e-01
41 4e-01
51 4e-01
64 5e-01
82 0e-01
I 0 6e+00
14 3e+00
202e+00
30 5e+00
46 2e+00
555e+00
1 49e+00
1 50e+00
16 8e+00
17 3e+00
17 5e+00
17 2e+00
16 7e+00
15 7e+00
14 5e+00
13 1e+00
11 5e+00
9 8 8e-01
8 3 2e-01
67 9e-01
54 3e-01
209e-01

-0.250e-02 ]
-0.250e-02
-0.250e-02
. 15%¢e-02
. 159%e-02
. 159e-02
.789%e-02
.727e~-02
.114e-01
107e-01
.885e-02
.885e-02
.635e-02
.919e-02
.161e-01
.177e-01
.152e-01
.155e-01
.241e-0}
. 184e-01
.292e-01
.298e-01
.333e-01
.413e-01
.426e-01
.478e-01
.548e-01
.701e-01
.798e-01
.985e-01
.135e+00
. 185e+00
.267e+00
.269%e+00
.438e-01
.225e-01
.892e-01
. 154e+00
.208e+00
.245e+(0
.284e+00
.299%e+00
.303e+00
-0.304e+00
-0.280e+00
-0.265e+00
-0.234e+00
-0.203e+00
-0.167e+00
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Figure 6.25:  Plot of |z| and || Versus Tray Number for a 50 Tray
Ethanol-Water Distillation Column in Example 6.7 (Moore,1986)
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Figure 6.26: Plot of | zll - | z,l Versus Tray Number for a 50 Tray Ethanol-
Water Distillation Column in Example 6.7 (Moore, 1986)
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variables and x d(t) is the vector of controlled variables.
For the distillation column, the measured variables are the tray

temperatures and

y
D D T
X = = = F
d [ Xg ] u [ v d [ Xpdpdr ] [6.2.5]
At steady state,
x=Ax+Bu+Ed=0 [6.2.6]
x=-A'Bu-A'Ed (6.2.7]

assuming A is invertible. If the system is under perfect control with no

offset,
y=Cx=-CA'Bu-CA'Ed
=C ng +C QLsg =0 [6.2.8a)
where
Qs = -5'11_3_ = state input gain matrix [6.2.8b]
G, = -A"'E = state load gain matrix [6.2.8¢]

The control action required to compensate for any disturbance, d(t), is

u=-€CG)CG [6.2.9]

The error in the desired output compositions is,

x,= §x=8(Ggu + G d)
- §(G,(C Gy 'C G, @G, oy
=8(-G (€ G) 'C G+ Gyd [6.2.10a]
g =G d [6.2.10b]
where G =S(-G(CG)'C G, +G) [6.2.10¢]
is the inferential error matrix. If G = ZEBY', gz will indicate the

strongest direction of composition deviation due to load changes whereas Y,



will indicate the strongest disturbance direction. The deviation in the
composition for any load disturbance d(t) should be as small as possible to

ensure good regulatory control. Therefore,

X
=d
oM(Q_LE) = [6.2.11]
d
should be small for any d. A load change where d = 1.0 in the worst

direction, v, would cause a steady state deviation in x ” of aM(gLE) under
perfect feedback control. This represents a worst case scenario since d <
1.0.  Therefore, the choice of an optimum tray location should maximize the

tray sensitivity and minimize the magnitude of the inferential error

(maximum singular value of QLE) and the interactions.

6.2.2 Reduction of the Number of Manipulated Variables

For large systems with more possible manipulated variables than
controlled variables, Keller (1987) used SVD in a modal method to reduce the
number of inputs in the control scheme. The resulting system retained
sufficient degrees of freedom to maintain the controllability. Other
methods discussed in the literature are based on qualitative selection
procedures and do not address the possible interactions within the system.
Interactions between weak inputs and outputs (or state) can be poorly
approximated in reduction methods because the strong inputs receive
preferential treatment (Keller, 1987).

If a perfect process model is available, the control performance can be

improved by increasing the number of manipulated variables (Morari, 1983).
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However, in the presence of plant/model mismatch, the large number of
manipulated variables leads to overparameterized controllers which may
exhibit reduced robustness characteristics (Keller, 1987). In processes
with a large number of inputs of various strengths, the controllers will
compensate for weak inputs by increasing the control actions. In the
presence of modeling error, the control actions can be applied in slightly
different directions from that of the weak input and affect the stronger
inputs. In addition, the more inputs incorporated into the control scheme,
the higher the hardware costs and the more interactions which need to be
described.
Let the linear time-invariant system be described by,

x(s) = A x(s) + B u(s) [6.2.12a]

¥(s) = C x(s) [6.2.12b]
which is assumed to be controllable and observable.  The process variables
are scaled such that they represent some physical quantity related to the
process and thus can be compared numerically. Scaling of the process
variables will be discussed in chapter 7. The transfer function associated
with this state space model is,

G(s) = CsL - A)'B [6.2.13]
A modal form of the system is obtained by a linear transformation of the

original state space model such that,

C=CT B-T'B A=T'AT [6.2.142]

and
G(s) = 61 - A)'B [6.1.14b]
The mode excitation, :B, maps the input space R" into the state space R" and
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indicates the magnitude and direction of excitation from various inputs.
The mode dynamics, (sI-A)™), maps R® onto R". The mode composition, C, maps
R" onto the output space. To determine the set of inputs which will be
retained in the control scheme (strongest in terms of  G(s) ), it is
necessary to scale the modal space such that the dynamics and the
compositions are the same for all modes. The mode dynamics are normalized
to exhibit an unit steady state gain. The mode compositions (é) are scaled
so that they are equally well observed from y. Keller (1987) suggested
three methods: minimize the condition number of C, equalize the norms of the
columns in C which will reduce the condition number significantly, or scale
the modes to satisfy some output weighting ecriteria. The scaled mode
excitation is given by a normalized B where each mode contributes the same

maximal contribution to the dynamics of the system. If,

T
2 0 ¥
. 16.2.15]

Q g2 MZ

B-z2V - [z,2]

the columns of _\_’_1 and }’_2 define an orthonormal coordinate system for viewing
the inputs. If °r' inputs are to be retained in the control scheme, Z, V,
and I are partitioned such that _Z_l, ‘gl and Xl correspond to the retained
(strongest) inputs. The inputs which are most strongly associated with gx
such that the largest proportion of the input signal is transmitted through
21 should be retained. The r inputs which are retained should be the most
orthogonal to each other in their effect on the normalized modes. If

E=yly, [6.2.16]

fii is the fraction of the mode excitation originating from u and
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fii is the fraction of the mode excitation originating from L and
transmitted through 21‘ (l-fﬁ) is the fraction of the mode excitation
originating from u, and transmitted through 22. Inputs corresponding to
small diagonal elements, fii. are weak inputs and should be eliminated. The
off-diagonal elements, fij, are a measure of the angle between the direction
of excitation through u, and uj that goes through Ex' If the off-diagonal
elements in a row (or column) of F are zero, the corresponding u will excite
the modes in a manner orthogonal to the other inputs. These inputs should be
retained because no other inputs can replace this excitation. Enough inputs
should be retained to ensure that each «olumn of _\_’2 has at least one
relatively large element corresponding to a retained input.

Johnston (1984, 1985) implemented internal control loops into a
multiloop control schemes to decrease the sensitivity and minimize
interactions in systems where there are more manipulated variables than

measured variables. For a system described by a state space model where the

process TFM is given by
G (s) = Csl - A)'8 [6.2.17]

The manipulated variables which minimize the condition number and maximize
the magnitude of the smallest singular value over a wide frequency range are
retained in the multiloop control scheme. The state input matrix, B, is
modified by the reduction in the number of manipulated variables. The
condition number can be further improved by enhancing the dynamic
relationships between the state variables by modifying the state matrix, 4.
In systems with excess manipulated variables, this can be accomplished

without major design changes. Excess manipulated variables can act as
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additional state variables by dynamically pairing with one or more existing
(measurable) state and/or manipulated variables forming ‘“internal control
loops". The dynamic structure of the system has been modified by extending
the state matrices. Careful selection of the internal control loop
structure can enhance achievable control quality by reducing the condition
number thereby reducing the sensitivity of the system to modeling errors.
In addition, the choice of the optimum internal control loop structure
should minimize both interactions and sensitivity over a wide frequency
range. The optimum choice of measured variables in the internal control
loop are the state variables which when held at their steady state values

significantly improve the total interaction index (Johnston, 1985).
6.3 Measures of Controllability and Sensitivity of Multivariable Systems

SVA can be used to analyze the physical controllability of a system and
sensitivity of a system to modeling errors independent of controller design.
The condition number of a matrix, 7(G) defined in equation 2.2.13,
quantifies the sensitivity of the system with respect to uncertainties in
the data or model (Lau, 1985a). If the condition number of the process TFM,
'7(Qp), is large, Qp(s) is nearly singular (ill-conditioned) and small
changes in the output variables, y, or the model, gp, can result in large
changes in the control actions, u, which is generally undesirable in a real
plant. Morari (1985) states that any multivariable controller provides an
approximate inverse of the plant TFM. Therefore, the closer the

approximation, the better the controller behaviour. If Qp(s) is
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ill-conditioned, it will be difficult to calculate the inverse of the
process TFM and design a reliable decoupler, ideal or simplified, without
numerical difficulties.

The condition number of the process TFM is the ratio of the maximum
open loop decoupled gain to the minimum open-loop decoupled gain of a

multiloop control scheme.

o ax(C;p) max.OL decoupled gain

m

nG ) = = — -
p omin(gp) min.OL decoupled gain

[6.3.1]

In an ili-conditioned system, the relative sensitivity of the system in one
or more multivariable directions is weak. A is considerably larger than o
since the singular values are ordered in decreasing magnitude such that
alzazz...zanzo. The ellipsoids representing the input and output spaces are

very distorted. For a 2x2 system, if g >>0,,

y (0.2 vi +o0z v+)u1+(az vt voz vi)u

1 111 11 212 12 111 21 212 22° 2

+ +
~ (alzuvn)u1 + (alzuvzl)u2 [6.3.2]

and

«w
|

(o0.z vi +0z v+)u +(o. 2 vi +0.z v+)u
2 12111 2722 12771 1721 21 2722 227 2

Ju [6.3.3]

+
~ (02 Vv )u1+(alz 2

+

v
1“21' 11 21 21
The transmittances in the first loop are due to direct and interactive
transmittances. The transmittances in the second loop are due entirely to
interactive and parallel terms. Therefore, the system will be very
difficult to decouple because there is no direct transmittance in the second
loop.

The interpretation of controllability based on the condition number of
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the process TFM depends significantly on the process model (process TFM) and
the scaling of the system variables. Scaling of the system will change the
singular values of the process TFM and the condition number of the system.
If the system is poorly scaled, cyclic responses may result which never
reach a reasonable steady state (Moore, 1986). Scaling of the process
variables will be discussed in chapter 7 of this thesis. M°Avoy (1983), in
an interaction analysis of steady state gain matrices, indicates that a
condition number of 2 indicates a well behaved system with no decoupling
problems. On the other hand, a condition number of 50 indicates a nearly
singular system with decoupling problems. Maurath (1985) indicates that a
condition number of 2000 for the dynamic matrix, formed from the step
response coefficients (used in DMC) of a distillation column, indicates that
the system is moderately ill-conditioned. Therefore, the condition number
should be wused only as a relative measure to choose between different
control strategies with the same type of process model where all the process
variables have been scaled in a similar manner. In systems with a large
condition number, the process TFM is nearly singular indicating that one or
more of the columns (or rows) are (nearly) linearly dependent.  Therefore,
all the control objectives can not be satisfied regardless of controller
pairing or structure (Moore, 1981, Moore, 1986). The condition number of
the system can be decreased by reducing the number of control objectives
(controlled and/or manipulated variables).

In addition to the condition number, the magnitudes of the maximum and
minimum singular values for a given system can be wused to indicate

controllability. Very small singular values correspond to weak decoupled
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process gains. These components are not very sensitive to control actions
and require large controller gains. Therefore, large control actions are
required despite a good condition number. In the presence of process
constraints and noise, there could problems with the feedback scheme. On
the other hand, very large singular values indicate that some components are
very sensitive and require very small controller gains resulting in very
small control actions which may be "lost® in the resolution of the
manipulator.

The minimum singular value, amin(gp), is a measure of the systems
invertibility and  indicates  potential  difficulties when  implementing
feedback control with inverse model based controllers (IMC, DMC, etc) and
linear decouplers. If amin(Qp) is small, large control efforts will be
required somewhere in the feedback scheme. Therefore, amin(Qp) should be
large to obtain the "best" performance. Different control schemes can be
compared based on their condition number and singular values to determine
the best strategy to implement from a controllability viewpoint. Systems

with small condition numbers and large minimum singular values will be the

easiest to control.

Example 6.8: For the system of two interacting tanks given in example
6.4, the condition number of the system changes as the relative magnitude of
the two resistances, R1 and Rz change. Therefore, the controllability of
the system can be assessed based on the relative size of the valve
resistances (or flows). Table 6.3 lists the condition number of QD(O) and

the singular values for various values of the valve resistances, Rl and Rz.
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Table 6.3;

Condition Number and Singular Values for the Steady State Matrix

of the Two Interacting Tank System

R R, 1G) i
0.1 1.0 42.076 2.051
0.049
0.5 1.0 10.404 2.281
0.219
1.0 1.0 6.8 54 2.618
0.382
2.0 1.0 5.828 3.414
0.585
5.0 1.0 7.670 6.193
0.807
10.0 1.0 12.319 | 11.099
0.901
1.0 10.0 42.076 | 20.513
0.488
1.0 5.0 22.155 | 10.525
0.475
1.0 2.0 10.404 4.562
0.438
1.0 0.1 12.319 1.110
0.090
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If R1 = 1.0 and R2 = 1.0, the condition number of the system is 6.85. If
R1 = 0.1 and R2 = 1.0, the condition number of the system is 42.08. Figures
6.27 and 6.28, respectively, show the propagation of an input signal through
the ellipsoidal subspaces for these two cases. In Figure 6.28 where R1>R2,

the ellipsoid of the output space is very distorted. Therefore, a slight
change in u results in a large change in y but only a slight change in
direction. On the other hand, in Figure 6.27 where R1=Rz, a slight change
in u will result in only a slight change in y.

If R1»Rz‘ the flow between the tanks, ql=R1/h1, will be small compared
to the flow out of the second tank, q,- The second tank acts effectively as
a pipe and therefore, only the height in the first tank can be successfully
controlled by d, The condition number of the system under these conditions
is high indicating potential difficulties in satisfying both  control
objectives simultaneously. If R1<<R2, the flow between the tank is
considerably more than the flow out of the tanks. The system will be
difficult to control by manipulating both input flows independently because
the tanks are effectively acting as one tank. Therefore, when RI/RZ is
verylarge or very small, control is difficult (ie. system is "weakly
controllable”) as indicated by the relatively large amounts of manipulative
action required to satisfy the control objectives. In these cases, it would
be better to set one of the inlet flows to a constant rate then control the
heights in the tanks by controlling the other flow. The "best” control
situation is when the two resistances, R1 and Rz are of comparable
magnitude. In this case, the condition number is low, amin(Qp) is maximum,

and the interactions (shown in example 6.1) are minimal.
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6.4 Summary

Singular wvalue decomposition of the system gain matrix provides a
structural  interpretation of process interactions. Signal  transmittances
which generate open loop and closed loop interactions between the signals
entering the process and the resultant signals leaving the process can
be"measured” directly using the singular vectors and their corresponding
singular values. The projection of the singular vectors onto the input and
output Euclidean vector space can always be used to indicate the degree
ofinteraction in the system since the singular vectors are always
orthonormal. The direct Nyquist array interaction measure and the IMC
interaction measure will produce the same results as the SVD measure.
However, interaction measures such as Lau's which try to project the
singular vectors onto a "combined input/output” vector space can lead to a
false assessment of interactions. Although the measure may indicate there
is considerable interaction in the system, it can not differentiate between
the input signals and the output signals,  Therefore, this type of measure
could indicate that there is considerable interactions in both loops of a
2x2 system when there is considerable interaction only between one pair of
input signals and output signals.

In the design of multiloop control systems, singular  value
decomposition of the system gain matrix provides a straightforward method of
determining the optimum variable pairings for each control loop. The system
can be analyzed dynamically to determine if the optimum variable pairings
change over a given frequency range. This will assist the control engineer

in evaluating the types of disturbances the control structure will be able
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to handle effectively with a given variable pairing.

The relative magnitudes of corresponding elements in the right and left
singular vectors of the system gain matrix will indicate the relative
sensitivity of that variable to changes in the process. Therefore, in
systems which have more controllable variables than manipulative variables,
SVD of the gain matrix can be used to design a square multiloop system which
will maximize sensitivity and minimize interactions. As an alternative,
linear combinations of the manipulated variables expressed in terms of the

V or controllable variables expressed in terms of the

orthonormal basis sets
orthonormal basis set Z can be wused in the multiloop strategy. This
structure will inherently compensate for process interactions.

The controllability of the system can be analyzed from the singular
value decomposition of the gain matrix independent of the controller
structure.  As the condition number of the system increases, the sensitivity
of the system to noise and modelling errors increases which will decrease
it's robustness. As the control system approaches singularity, it will
become harder to control. The singular values of the gain matrix indicate
the approximate process gain in the corresponding control loop.  Therefore,
the minimum singular value can be used to indicate the maximum controller
gain required in the system. As the minimum singular value decreases, the
control system will become harder to control because the process gain
decreases.

All SVD analysis techniques are affected by the scaling of the process
variables, Since scaling is the primary weakness of these methods, it is
necessary that the system is scaled in an appropriate manner prior to

applicatiou of the SVD techniques.
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Chapter 7 Scaling of the Process Variables

7.0 Introduction

Scaling of the manipulated and/or controlled (state) variables is an
important consideration in SVD analysis techniques. Scaling of a matrix
involves pre and/or post multiplication of the matrix by diagonal matrices
of scaling factors. Scaling can change the SVD components of a matrix (the
singular values and vectors) and the condition number. Therefore, process
scaling can affect the conclusions drawn from singular value analysis. If
the scaling method utilized 1is inconsistent with physical limitations or
constraints, the decomposition of the system matrices may not reflect the
true characteristics of the system. The main objective of scaling should be
to avoid domination of the results by some subset of the output,
manipulated, or disturbance variables (Johnston, 1987).

The choice of a scaling procedure will depend on the primary use of the
process model (Bonvin, 1985). However, any scaling method used to analyze
the systems behaviour should eliminate the arbitrariness associated with the
choice of physical units of the wvariables but maintain the relative
strengths of the input-output (input-state) interactions. The scaling
procedure should not alter the relative relationships between the inputs,
outputs (states) and the disturbances. There are several scaling methods
which have been recommended in the literature for use in the analysis of
multivariable systems (Lau, 1985, Bonvin, 1985, Johnston, 1987, Keller,

1987). In the following sections, these methods are described and

evaluated.
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7.1 Scaling with Respect to a Reference Value

Scaling with respect to a reference value is a common scaling approach.
The scaled variables are expressed as a percentage of the "full range" of
the actual variable or as a deviation from their steady state (or nominal)
values (Moore, 1981, McAvoy, 1983, Levien, 1985 Bequette, 1986, 1987 and
Skogestad, 1987):
max

or y = — [7.1.1]

i max _min i Yy
i i

i
[

where 9i is the scaled variable. The ratio nature of the scaled variables
eliminates the effects of the physical units making the scaled variables
dimensionless.  Scaling with respect to the maximum value accounts for the
range of the variables. In this case, the controlled, manipulated and
disturbance variables (y,u.d, respectively) are scaled such that Oslﬁilsl,
0<|y |<1 and O<|d|<l . This type of scaling is commonly referred to as
“normalization”.

Scaling with respect to a reference value could lead to resolution
problems in a real system if the physical valves or sensors have been
improperly sized. If the operating range of one of the variables is very
large compared to the other variable, normalization or scaling in this
manner will result in one of the variables having a very small scaled range
whereas the other variable may be operating over the entire range 0 to I
For example, if the operating range of a flow meter represents 10% of the
full range of the meter and the operating range of another flow meter

represents 80% of the full range, the flow meter which operates over the
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majority of the operating range will have more impact on the scaled system

than the other regardless of the actual situation.

Example 7.1: Bonvin (1985, 1987) looked at a system of two continuous
stirred tank heaters (CSTR) in series with first-order exothermic reactions,
jacket or coil-cooling and a by-pass around the second reactor. The system
was modeled from energy and mass conservation equations (see Appendix B).
The process variables are scaled with respect to their steady state values.
The resulting state space matrices (4,8,C,D) and the corresponding steady
state gain matrix , QP(O), are given in Table 7.1. The condition number of
the steady state gain matrix is 3.92x10%, With the variables scaled with
respect to their steady state values, the steady state system is
ill-conditioned and control could be a problem in the presence of modeling
errors and/or noise. Figure 7.1 shows the condition number and the singular

values as functions of frequency.  Although the condition numoer decreases

at higher frequency, it is still relatively large.
7.2 Empirical Scaling Methods

There are several empirical scaling methods which have been used to
scale variables for control system design. The manipulated and controlled
variables can be scaled such that the maximum entry in each row and column
of the process TFM is of the same magnitude. This scaling method is
referred to as equilibration (Lau, 1985, Forsythe, 1977). Another empirical
method is geometric scaling. Each row (column) in the matrix is scaled by

the geometric mean of its iargest and smallest elements. If Qr and _D_c are

213



Matrix for the CSTR System in Example 7.1

-3.26e-05
0
-3.10e-04

1.00e-02

0 1.0e-03 0

Table 7.1:
[ -3.18e-03 0
1.00e-02 -1.22e-02
A=
B 5.45e-02 0
i 0 5.50e-02
6.86e-04
5.70e-04 0 0
B =
~1.41e-02 1.0e-03 0
| -2.00e-03 0 0
(1.0 0 0
0 1000 0
cC =
0 0 1.0
|0 0 0
0.243 -0.012 0.112
250.0 -12.1  47.2
G (0) =
P -2.70 1.15 19.7
| -2.79  1.99 36.6

0
1.25e-04

0

-0.00148
-1.51
0.144

0.248

State Space Realization (4,B8,C,D) and Steady State Gain

0
-2.69e-03
0
-9.83e-03 |
0 0 W
0 -5.7e-03
0 0
5.0e-04 -2.0e-02 |
1.39e-15 l.23e-15-
-0.111 466.0
-1.54e-16  1.54e-16
0.0905 1.03
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the scaling matrices consisting of the row and column scaling factors,
respectively, then

y=D'DG DD [7.2.1]
y=Dy=DGDu=Gu (7.2.2]

Lau (1985) analyzed several different scaling techniques for a system matrix

[A B.J [A-SL
S=lcp] 2% ¢

where the process model is described by a state space model. They found

given by:

[7.2.3]

IO Iw

that empirical methods, such as equilibration and geometric scaling, could
give different results depending on the order of scaling (row then column or

vice versa).

Example 7.2: For the distillation column model given in example 6.2,

the steady state gain matrix is

142 -0.669
G - [2.29 -4.54 ] [7.2:4)

If the matrix is scaled by the geometric mean of the rows followed by the
geometric mean of the columns (geometric scaling), the resulting "scaled"

matrix is

- 1432 -0.698
G, - [0.698 -1.432] [7.2.5]

The scaling matrices used are

diag(0.975,3.224) [7.2.6]

o
1

r

D

[

diag(1.017.0.983) [7.2.7)

If the matrix is scaled by the geometric mean of the columns followed by the
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geometric mean of the rows, the resulting “scaled” matrix is the same as
that given above. However, the scaling matrices are

D

r

D

<

diag{0.550,1.819} [7.2.8]

diag(1.803.1.743) [7.2.9]
The scaled matrices were obtained using the geometric scaling routine
outlined in Gill (1981). In this case, the order of scaling did not affect
the resultant scaled matrix. The condition number of ép is 2.816 which is

5.58). The singular value

less than the condition number for _G_p ('7(§p)

decomposition components of the scaled matrix are

7 o [0707 -0.707 ]
£ 710707 0707 |
o [ 2.131 0

Tl 0734]
v =< [ 0.707 -0.707 ]
= 7 [-0.707 -0.707 |

Example 7.3: For the model of the CSTR in example 7.1 (Bonvin, 1985),
the steady state gain matrix when scaled by the geometric mean of the rows

followed by that of the columns is given by

1.4e+03  -3.3e+02 3.9e+02 -3.3e+02 5.7e-03  4.9e-04
2.5e-04 -6.3e-05 3.0e-05 -6.3e-05 -8.3E+01  3.4e+04

=g |-7.4e+03 1.6e+404 3.4e+04 1.6e+04 -3.1e-04  3.0e-05
-6.0e-04 49e-04 1.1e-03 4.9e-04 3.2e+03  3.5e+03

The scaling matrices used are
_Qt = diag{5.959e-09,32.64, 1.215¢-08,0.686} {7.2.10]
_I_)_c = diag(3.007e+04,5.931e+03,4.845e+04,741.3,
4.092e-05,4.258e-04) [7.2.11]

The condition number of the scaled matrix is 27.8 which is significantly

lower than the gain matrix given in example 7.1, The singular value
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decomposition components are given in table 7.2. If the columns are scaled
first followed by the rows, the resulting scaled steady state gain matrix

will be

1.5e+03 -4.6e+02  S5.4e+02 -4.6e+02 6.2e-03 6.7e-04
2.0e-04 -6.3e-05 3.0e-05 -6.3e-05 -6.6e+01  3.de+04

e |-5.9e+03 1.6e+04 3.4e+04 1.6e+04 -2.5e-04 3.0e-05
-1.7e-04 7.9e-04 1.8e-03 7.9e-04 4.2e+03 5.7e+03

The scaling matrices used are
_Qr = diag(2.499e-05,1.888e+05,7.024e-05,2.446e+03)} [7.2.12)
D = diag(6.532,1.026,8.378,0.128,8.889¢-09,7.362e-08)  [7.2.13]
The condition number of this scaled matrix is 23.9 which is slightly lower
than the previous matrix. The SVD components of this matrix are shown in
table 7.3. In this example, the order of scaling only slightly affected the

resulting "scaled” matrix.

7.3 Normalization and Equilibratioa

Lau (1985b) recommends a scaling procedure involving normaljzation of
the variables followed by formation of the matrix and row equilibration of
the matrix.  Normalization limits the variability in the system variables by
removing the effects of physical dimensions. Row equilibration ensures that
the maximum entry in each row has the same magnitude. Therefore, the effect
of the largest normalized input on any given normalized output is of the

same magnitude.



Table 7.2: SVD Components of the Scaled Steady State Gain Matrix
for the CSTR System in Example 7.3 - Geometric Scaling
(Row then Column)

[ 4.5e-03 -1.6e-08 2.3e-06 -1.0

7 o | -3.2e-09 -9.9e-01 -l.1e-01 -2.2e-07
& -1.0 6.5¢-09 -2.1e-08 -4.5e-03
| -3.2e-08 -1.1e-01 9.9e-01 2.2e-06

( 4.1e+03 0 0 0
T = 0 3.4e+04 0 0
=" 0 0 3.2e+03 0
i 0 0 0 1.5e+03
( 1.8e-01 -9.1e-09 9.5e-07 -9.0e-01 -4.le-01 0

~3.9e-01 3.5¢-09 -1.9e-07 1.8e-01 -5.6e-01 -7.le-01

-82e-01 1.9e-09 3.9e-07 -3.7e-01 4.5e-01 -1.le-06

-3.9e-01 3.5e-09 -1.9e-07 1.8e-01 -5.6e-01 -7.le-01l
5.7e-09 -7.6e-03 1.0 l.1e-06 6.3e-11 4.2e-13

| -6.0e-09  -1.0  -7.6e-03 6.3e-10 5.7e-10 1.3e-14 |

<
"

Table 7.3 SVD Components of the Scaled Steady State Gain Matrix
for the CSTR System in Example 7.3 - Geometric Scaling
(Column then Row)

( 3.3e-03 -2.4e-08 1.8¢-06 -1.0

Z = -1.7e-08 -9.9e-01 -1.7e-01 -2.9e-07
= -1.0 2.6e-08 -4.5e-08 -3.3e-03

| -5.5e-08 -1.7e-01 9.9e-01 1.8e-06

[ 4.1e+03 0 0 0
S e 0 3.4e+04 0 0
- 0 0 4.1e+03 0
i 0 0 0 1.7e+03
( 1.4e-01 -1.0e-08 6.8e-07 -8.6e-01 -4.9¢-01l 0

-3.9¢-01 1.0e-08 -1.9e-07 2.4e-01 -5.4e-01 -7.1e-0!
V = -82e-01 1.5e-08 3.0e-07 -3.8¢-01 4.3e-01 -1.le-06
- -3.9e-01 1.0e-08 -1.9e-07 2.4e-01 -5.4e-01 -7.le-0l

1.0e-09 -1.9e-02 1.0 7.9e-07 7.5e-11 5.3e-13
-2.2e-08 -1.0 -19e-02 -69e-09 5.5e-10 1.3e-14




7.4 Minimization of Measures of Variability (Semi-Empirical Methods)

Lau (1985b) found that scaling methods which minimized a measure of
variability in the entries of the process TFM did provide scaling factors
with physical interpretations. A matrix is "well-scaled" if the variability
of theentries in the matrix is minimal. Palazogiu (1985) used a
multiobjective semi-infinite optimization method to determine the post and
pre diagonal scaling matrices for a process TFM. The scaled process model
was used in a robustness analysis of an IMC control structure. A scaling
procedure was required such that the robustness indices and the upper bounds
on their plant/model mismatch error did not depend on the units of the
inputs and the outputs. Although this method may be optimal, the
computations are very intense and may not be justified in a general
multivariable analysis.

Morari (1985) suggests that the system be scaled such that the
condition number of the steady state gain matrix, _G_p(O), is minimized. In
this case, the inputs and outputs are scaled such that the effect of the
physical units are eliminated and the minimum and maximum singular values
(decoupled loop gains) are of comparable magnitude. This type of scaling

will ensure that the controller loop gains are comparable.
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7.5 Scaling Methods Based on Physical Considerations

7.5.1 Dynamic Scaling Procedure (Bonvin, 1987)

Bonvin (1987) contends that scaling metheds based on physical
considerations are better than those based on empirical (or numerical)
methods. They proposed an "ad-hoc" scaling method in which all the process
equations are expressed on a common basis. The scaled process variables are
all expressed in terms of the same quantity with the same physical units and
therefore can be compared numerically. The relative magnitudes of the
variables are not changed by the scaling procedure. If the magnitude of a
variable is smali before scaling, it will be relatively small after scaling.
The scaling factors obtained are dependent on the steady state values of the
variables. Therefore, the scaled process equations will be valid only in
the vicinity of the operating point. If apriori knowledge of the energy and
mass conservation equations for the process are unknown, this scaling
procedure can not be used to scale the process transfer function matrices
(or state matrices).

Fach state variable, in a dynamic state space model of the process, can
be described by a differential equation representing the conservation of
some physical quantity (energy, mass, etc):

x= f(x,u) x(0)=x (7.5.1]
Y = g(x) [7.5.2]
Let II represent the physical quantity (energy or mass) which contains the

highest level of information for the system:

I = Bxw [7.5.3]
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If all the states and the inputs are expressed in terms of II, they can be
compared numerically since they have the same reference. The accumulation
of each state, X, can be expressed in terms of an accumulation of II by
multiplying the state equation throughout by an equivalence factor, fi,
e

where
I =fx [7.5.4]

1 e 1

A state scaling factor, P, (ith state) is defined such that each state, x,
1

is expressed as an accumulation of IL

II=X=Px (7.5.5]
P= diag{pi) , pi>0 [7.5.6]
Then,
== %= Emw = f(xu) [7.5.7]
¥ = gX [7.5.8]

where I'Iui = i-i = fﬁ(i,y_) corresponds to the sth state and the ith input
and Y, = éj'(i.) corresponds to the s state variable and the jth output.

x, do not depend on the choice of units for the states,

The scaled states,
x, although the scaling factors, P, do. The states are scaled such that a
unit change in a scaled state variable corresponds to a unit change in IL

The inputs are scaled such that each term involving an input represents
a flow of T into and out of the system. Input scaling factors, W which
relate changes in u, to changes in the flow of II into the subsystem
associated with the sth state variable are evaluated for the system at
steady state

W, = -—-.-'- [758]

L
i |(at steady state)

The input scaling factors, w_. are dependent only on the units of u, because
’
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the states have already been normalized. Since each “state" equation may
give a different scaling factor for each input, an ‘"average" scaling factor
for each input is defined. Bonvin chooses to use a scaling factor which is
the maximum of all the individual scaling factors for a given input instead
of an weighted average value, The inpul scaling factor for each input is

W= mex{lwsil} [7.5.10]

and
= Wu [7.5.11]

=

where W = diag{wi), wi>0. Each input is scaled such that a unit change in a

scaled input brings one additional unit of II into the strongest state

variable.

Each output is expressed in terms of II. A scaling factor, defined as
1 ag
— =" [7.5.12]
js  0x

s |(at steady state)

relates changes in yj to changes in i'. An overall scaling factor, V,-’ is

determined for each output

v, = mixx (|vj']} [7.5.13]

such that
[7.5.14]

<.

¥ =
where V = diag{vj}. Although the units of ; affect the choice of Vjs’ )'(i
is independent of the units of Y, The outputs are scaled such that a unit
change in a scaled output contains one unit of II as information concerning
the strongest state variable.  There is no need with this scaling procedure

to rescale the independent variable time. This feature is desirable because

it leaves the eigenvalues of the system model unchanged (Bonvin, 1987).
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Example 7.4: For the system of two continuous stirred tank heaters
(CSTR) in series in example 7.1, energy can be chosen as the reference
quantity, II Bonvin (1987) evaluated the model, given by conservation

equations, using numerical data. A scaled model

A

x(0) = 4x(0) + Bu(0) [7.5.15]
%(0) = Cx(0) [7.5.16]
where (A,é,&) are
-3.18e-03 0 -8.15¢-04 0
Ao | 100e-04  -1.22e-02 0 -6.73e-04
A =1 218-03 0 -3.10e-04 0
0 2.20e-03  1.00e-04 -9.83e-03
1.0 0 1.0 0 0 0
5o | 83103 0 0 0 0 1.0
2=1_82%0 1.0 0 1.0 0 0
-1.17e-03 0 0 0 1.0 -1.4e-01
1 0 0 O
= o 1 0 0
€=l 9 0 1 o
0 0 0 |
354.8 -29.51  112.3 -295.1  1.85e-15 0
G () = | 3:6%9 -3.028  0.471 -3.028  -5.545  81.77
-157.1  1151.4  1789.4 1151.4  2.47e-15 3.39%e-15

-0.903 11.04 8.136 11.036 100.5 4.053

was obtained using the scaling factors,
P = diag( 10%, 10% 4.0x10°, 4.0x10) [7.5.17]
V= diag( 6.86x10*, 4000, 10°, 500, 20, 5.7x10° ) [7.5.18]
V = diag( 10°, 10°, 4.0x10°, 2.22x10" ) [7.2.19]
The condition number of the original steady state gain matrix, _QP(O) is
3.92x104. The condition number of the scaled model, QP(O), is 22.3. Figure

7.2 shows the variation in the condition number and the singular values as

(35 ]
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Matrix Versus Frequency for the Scaled CSTR System (Bonvin, 1985)



functions of frequency for the scaled process models. Bonvin's scaling
method significantly decreased the condition number of the process model at
steady state. At high frequencies, the system has a low condition number
but the singular values have also decreased significantly. Therefore, this

system should be able to handle high frequency disturbances easily.

7.5.2 Physical Scaling Method Based on the Relative Significance of each
Variable

Johnston (1987) and Wolfgang (1986) proposed a scaling procedure based
on physical considerations where the relative importance of changes in the
variables are accounted for. This scaling method incorporates information
relating to the importance of each input and output variable and the size
of disturbances wr=~ich a given control system can handle. Therefore, this
scaling method can be very subjective depending on the extent of knowledge
of the process.

The controlled variables are scaled such that a change of given
magnitude will have equal significance for all the outputs from a
controllability point of view. For example, a 10% change in distillation
column temperature is clearly more critical than a 10% change in the level
of liquid in a reflux accumulator. If a 10% change in the temperature was
as critical as a 0.5m change in the liquid level, then the scaling factor to
apply would be 0.005 to the temperature output (Johnston, 1987).

Manipulated variables are scaled such that a change of given magnitude
in all the variables represents an equivalent amount of control action. If

The manipulated variables represent valve movement, they can be represeated
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by % changes from their steady state values or from their maximum range.
Disturbances should be scaled according to the expected magnitude and
likelihood of each disturbance. If the disturbances were not scaled, the
singular values of the load transfer function would be unrealistically
influenced by the effects of the disturbance with the largest magnitude. If
a change of 1% in one disturbance variable will be as likely to occur as a
change of 1% in another disturbance variable, then the disturbance model
expressed in these units will be properly scaled. However, if the units of
one of the disturbance variables is altered, then a change of magnitude 1 in
the new units will be more or less likely to occur than a 1% change in the
other variable. In this case, the disturbance model will be improperly
scaled. Alternatively, the disturbances can be scaled with respect to their

expected magnitudes (weighted) such that changes of equal magnitude in all

the disturbances can be expected.

Example 7.6: The disturbance variables W W, and W, with expected
ranges (in % of steady state) ¥20%, %20% and ¥%3.4%, respectively, can be
normalized with respect to their steady state values (Johnston, 1987).

Then, the normalized variablzs are adjusted with scaling factors to account

for the variation in the expected magnitudes.

distur bance weighting factor
W, 1.0
w, 1.0
W 0.17 = 3.4/20

If the disturbance model was not scaled, the singular values of Q_L would be
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unrealistically influenced by W Therefore, the effect of the disturbance

on the output would be

¥ (8) = 8, (8)wy(s) [7.5.20]
With scaling,

w, = 0.17 wg {7.5.21)
and

y(s) = 0.17g (s)w(s) [7.5.22]

Therefore, a 3.4% change in Wo is "equivalent” to a 20% change in w, and w,

and w_.
d wy

7.6 Summary

All the analysis methods based on singular value decomposition are
dependent on the scaling of the matrix.  Therefore, it is necessary that the
process variables are scaled in a consistent manner. All the techniques
described in this chapter scale the variables with respect to some reference
value. Scaling with respect to a steady state value or a maximum value can
alter the relative significance of each variable because they may not be
referenced to the same basis point. Empirical scaling methods such as
equilibration or geometric mean scaling reference all the controlled
variables to the same basis point and all the manipulated variables to a
reference point. However, the order of scaling (row then column or vice
versa) may affect the resulting scaled values. Normalization followed by
equilibration of the manipulated variables will reference the wvariables to a
the same basis point and will eliminate the inconsistency in the order of
scaling.

Numerical techniques which minimize a measure of variability may not
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relate directly to the process being described. If an improper criteria is
used, the relative effects of the wvariables can be altered since these
methods serve to minimize the variability of the entries in the matrix. The
scaling method of Bonvin will not change the relative magnitudes of the
variables because the variables are referenced to the same physical
quantity. The scaling method of Johnston is also based on physical
considerations but requires a good knowledge of the dynamics of the process.
Therefore, this method of scaling is very subjective and may introduce

inconsistencies depending on the degree of process knowledge available.
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Chapter 8 Singular Value Decomposition in Predictive Controller Design

8.0 Introduction

Maurath (1985a) and Callaghan (1986) used principal components analysis
1> the design of long range predictive controllers based on dynamic matrix
control theory. In dynamic matrix control (DMC), developed at Shell
Research (Cutler, 1977, 1982), a prediction of future outputs over a
prediction horizon is obtained from a step response convolution model of the
process assuming no further control action is taken. The error between the
predicted output trajectory and a reference trajectory is then minimized by
varying a finite number of control actions (control horizon). SVA is used
to determine the number of principal components of the dynamic matrix,
formed from the step response coefficients, to retain in the approximate
process inverse used in the controller. This procedure will produce a
reduced rank approximation matrix to the original dynamic matrix which will

improve the conditioning of the DMC algorithm.

8.1 Dynamic Matrix Control

The control law used in this set of predictive controllers is derived
from the minimization of an appropriate performance index with respect 1o
the future control actions. The performance index is a function of the
predicted output errors over the prediction horizon and the present and
future control actions. For an unconstrained controller, the performance

index can be expressed as a generalized least squares problem. However,
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rigorous  handling of process constraints on the controlled and/or
manipulated variables within the performance index requires other solution
methods such as linear or quadratic programming. For example, Shell has
implemented a quadratic formulation for a predictive controller (QDMC) which
uses a modified DMC performance index to maintain projections of any
constrained variables within bounds (Garcia, 1986).

The control law wused in unconstrained DMC is derived from the

minimization of the following performance index (Cutler, 1979):

Kow = |y - {XOL - Adu } ]TQTQ [xs i {xOL - Ay }] (8.1.1]

where

Y, = vector of setpoint values for the next R sampling intervals

Yor = vector of predicted outputs for the next R sampling intervals
assuming no future control actions (Au) have been taken

Au =vector of next L input changes (to be calculated)

A =RxL dynamic matrix, a lower triangular matrix of the step

response coefficients, AAu is the effect of the next L input

changes on the output at the next R sampling intervals

Q =diagonal, positive, definite weighting matrix
R  =prediction horizon
L  =coatrol horizon
If
E=y -y, [8.1.2]

represents the predicted deviations (or errors) of the output variable from
its setpoint over the prediction horizon assuming no future control action

is taken (open loop prediction), then the performance index can be written
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as

aw) = [QA-Au - QF 1MQAAu - QF ] [8.1.3]

for which the minimization is a standard least squares problem. From

equation 2.2.20, if G = QA, x = Ay, and b = QE, then the control law
becomes

au = [ATQ"QAT'ATQTOE = (QA)'QE [8.1.4]

This control law can be used for both SISO and MIMO systems. A

multivariable dynamic matrix can be defined as (Garcia, 1986):

A A = A

=11 =12 “an
A= 721 '.-zz '.'Zn [8.1.5]
A A _ -~ A

“ml Tm2 “mn

where A 15 the dynamic matrix of dimension RxL relating the it output to

S— e

ij
.th .. . .
the ) output. Similarly, the corresponding vector of control moves is

given by (Garcia, 1986):
AU = [Agf Agg Ag_:]T (8.1.6]
and the output projection error is given by (Garcia, 1986):
E=[E, E, ~EJ [8.1.7]
Therefore, equation 8.1.4 can be used as a control law for a multivariable
system.
If R and L become large or the size of the multivariable system becomes
large, the vectors and matrices in the control law become large. The
dynamic matrix A can approach singularity and the system can become

ill-conditioned. In this case, the determination of Au becomes very

sensitive to small variations in either the control error vector or the
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process model, A. In noisy systems, the result can be large changes in Ay,
the control input vector, which in most real systems is undesirable. In

addition, the solution of Ay is numerically unreliable and can be corrupted.

8.2 Principal Components Analysis for DMC

Maurath (1985a) discusses two methods which can be used to avoid this
problem when designing the controller. One method, ridge regression,
weights the input changes in the performance index to decrease the required

control actions. The performance index becomes,

J__(Aw) = XAw) + fauTAy (8.2.1]
RR
where f is the ‘“ridge regression parameter" or weighting factor. The
resulting control law is,
au = (ATQ"0a - f'ATQQE [8.:2.2]

This method adds another tuning knob, f, to the control aigorithm.
Alternatively, principal component analysis can be used to determine
the number of principal components of the systems generalized inverse
©a)" = (aTQ"0a1"aTQ" [8.2.3]
to retain in the process inverse used in the controller to avoid an
ill-conditioned system (Maurath, 1985a). In this method, a lower rank
approximation to the original dynamic matrix A is obtained by retaining only
the principal components which will balance robustness and performance
characteristics of the controller. If
QA = Z
w=Y'ay 8.2.5]

e (8.2.4]
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and
g=2"0F (8.2.6)
» performance index given in equation 8.1.3 becomes
w) = Zw - g : (8.2.7
The minimization of J(w) is a least squares problem. The solution to
equation 8.2.7 is
w=5'g=Yay [8.2.8]

In the control appli.cation, the error vector, E, changes at each
sampling interval and is included in the data set. However, the component
selection procedure requires that the error vector E be specified so that
the minimization in equation 8.2.8 can be calculated. In most cases, E will
be specified so that the controller is optimized for setpoint changes.For

example, in the 2x2 case,

E =[11..100. 017 (8.2.9a]

and
Ez =[000..011 ..1] (8.2.9b]

From equation 8.2.8, it can be seen that w is a linear combination of
the columns of V and the control actions Ay. Each component in Ay, Aui, has
been projected onto the orthonormal basis set YV = [x'f x': x:] into
orthogonal components wi,referred to as principal components, with a
magnitude of a. Each component, Wi contributes to improving the solution,
Au, and the resulting control performance by decreasing the residual in the
performance index (Maurath, 1985). If a component is included in the
solution rather than setting its magnitude to =zero, the objective function

in equation 8.2.7 will be improved by g:. Therefore, a convenient measure

of the effect of a component on the control performance is (Maurath, 1985):

234



gz
G, = — {8.2.10]
gs

This measure has been normalized by the largest possible residual which
occurs if all components are included in the solution. If the current and
all previous components are retained in the solution, the remaining residual

can be determined from (Maurath, 1985):
i
2
g
j=1*
(G).=1- [8.2.11]

T
£s

Each component w. contributes to the norm of the solution vector which
increases the size of the control action Au. The first control move, which

is usually the largest move, can be determined from (Maurath, 1985):

i
8.
= ,
[:Aul]i—Evj U7 [8.2.12]
j=1 !
Therefore, equation 8.2.12 will indicate the control energy required. In

addition, each component has an associated magnitude which serves to
increase the condition number of Q-A. As the condition number of the
dynamic matrix increases, the sensitivity of the resulting controller to
modeling errors and noise increases resulting in a decrease in the
robustness of the controller. Therefore, as the number of principal
components included in the controller increases, there is a tradeoff between
control system performance and robustness.

Removal of principal components corresponding to relatively small
component magnitudes will slightly increase the residual but  will

significantly decrease the condition number of the dynamic matrix, A and QA.
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In addition, the required control action will be decreased. If k components

are retained in QA, the control law in equation 8.2.6 becomes,

(Aw, = V:5'Z'OE [8.2.13a]
where E-l l/aiizk
(5], = ) i [8.2.13b]
and
(5'),=9 i#j 18.2.13¢]

Elimination of principal components in the controller design does not
correspond  directly to eliminating the corresponding step  response
coefficients in the process model. As the number of step response
coefficients increases, more of the time domain information will be
incorporated into the control law resulting in changes to the magnitudes of
the components. When the number of step response parameters used in the
dynamic matrix is sufficient to capture all the process information, the
magnitude of the principal components will not change if the sequence length
is increased. As the control horizon, L, is decreased, the condition number
of the system decreases because the number of principal components (p*L
where p is the number of manipulated variables) decreases. Therefore,
decreasing the control horizon is equivalent to decreasing the number of
principal components used in the DMC controller. Also, decreasing the

control horizon will change the magnitude of the components.
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Example 8.1: The transfer function matrix for a methanol-water

distillation column is given by (Wood, 1973):

12.8¢°" -18.9¢73%°
*p 16.7s + 1 s+ 1 || Re

6.68-7' -19.46-3’ [8.2.14]
Xg 10,95 +1 s +T1 | LY

where X5 and x, are the distillate and bottoms compositions, respectively,

and RF and V are the reflux and *ailup rate, respectively. For a sampling

time of 2.5 minutes, the princi uts were determined for the system
with 60 terms in the step responsa - d
- 25
L =10

Equal output weighting was used (Q = I). ‘iable 8.1 and Table 8.2 show the
magnitudes of the principal components and their corresponding contributions
to the residual, the control input vector and the condition number of the
dynamic matrix (equations 8.2.10, 8.2.11 and 8.2.12) for a step change in §
and V, respectively. The 7h through 20 principal components contribute
very little to the control performance as indicated by GF and Gs but
significantly increase the condition number and the control energy required
(Agl). Therefore, a DMC controller designed using 6 principal components

will exhibit relatively good performance with good robustness.
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8.3 Summary

Principal components analysis can be used to increase the robustness of
DMC by decreasing the condition number of the dynamic mutrix and minimizing
the control action. The controller wi’l become less sensitive to modeling
errors and noise in the system. However, the control performance will be
sacrificed. If the principal components which are neglected from the
controller design have relatively small magnitudes, the decrease in control
performance will be very small relative to the increase in robustness.

Elimination of principal components does not correspond directly to
reducing the number of step response coefficients used in the process
models. It removes the portion of the input and output subspaces which
contribute little to the behaviour of the process. Reduction in the size of
the control horizons will also eliminate principal components from the DMC

controller.
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Table 8.1: Principal Component Magnitudes, (GF)i, (GS)i’ Agl, and

Condition Number of the Dynamic Matrix for a Step Change

in R for Example 8.1

i o, G G, (ARF)1 (AV)1 7(QA)
1 305.5 0.374 0.626 0.002 -0.003 1.0
2 51.9 0.429 0.197 0.026 -0.012 5.9
3 47.9 0.047 0.151 0.027 -0.023 6.4
4 14.4 0.022 0.129 0.037 -0.024 21.2
5 9.3 0.066 0.062 0.094 0.001 32.8
6 6.0 0.004 0.058 0.098 -0.021 50.9
7 4.0 0.020 0.038 0.169 -0.012 76 .4
8 3.1 0.000 0.038 0.168 -0.016 98 .5
9 2.5 0.010 0.028 0.237 -0.011 122 .2
20 0.2 0.000 0.001 0.875 0.006 1528 .0

Table 8.2: Principal Component Magnitudes, (GF)i, (Gs)i’ Agl, and

Condition Number of the Dynamic Matrix for a Step Change

in V for Example 8.1

i o, G Gg | (8R)), (av), 1(QA)
1 305.5 0.365 0.635 0.002 -0.003 1.0
2 51.9 0.107 0.528 | -0.010 -0.00! 5.9
3 47.9 0.381 0.147 | -0.012 -0.026 6.4
4 14.4 0.023 0.124 | -0.001 -0.049 21.2
5 9.3 0.035 0.089 | -0.042 -0.067 32.8
6 6.0 0.018 0.070 | -0.034 -0.113 50.9
7 4.0 0.003 0.068 [ -0.060 -0.116 76 .4
8 3.1 0.012 0.056 | -0.080 -0.183 98.5
9 2.5 0.000 0.056 | -0.085 -0.183 122.2
20 0.2 0.001 0.040 | -0.024 -0.390 1528 .0
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Chapter 9 Conclusions and Recommendations for Further Work

9.1 Conclusions

Singular value decomposition is a robust numerical tool which can be
used in the analysis and design of process control systems. The analysis
techniques provide a geometric interpretation of the subspaces associated
with a process. However, the results from any SVD analysis can be modified
by altering the scaling of the process variables.  This thesis is a critical
review of these SVD techniques. All the areas in which SVD techniques can
be applied, with the exception of stability and robust analysis, have been
discussed.

The main conclusions of this thesis are:

1. The model identification = techniques wusing singular  value
decomposition of the impulse hankel matrix, with the exception of Kung's
method (1978), provide a numerically robust method of identifying a process
model from an impulse response. The impulse response can be obtained
directly from th¢ pre~sss step or pulse response or by time series analysis
of a PRBS input. The effects of noise on the system can be filtered out and
an approximate process model can be obtained. An estimate of the
approximation error for these models can be calculated. Therefore, the
potential robustness of a controller designed with these models is known as
well as an indication of performance. Since the identified models are
approximately balanced (except Kung's), they produce good scaling qf the

state space.
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These models will predict the process response several steps into the
future and therefore can be used for one-step ahead or long range predictive
controllers such as GPC or DMC. However, ¥ the model is of a lower order
than the process, the identified models wili exhibit steady state offset.
As the deviation between the model order and the actual process order
increases, the offset also increases. Therefore, any controller utilizing
these models would have to include integral action. These techniques can be

easily extended to multivariable systems and to time variant systems.

2. SVD of the dynamic matrix allows the control engineer to design a
DMC controller which will be numerically robust. The sensitivity of the
control to noise in the data and model errors can be reduced for large
dimensional (or ill-conditioned) systems. Measures which are easy to

calculate  indicate the tradeoff between  controller performance and

robustness.

3. SVYD provides a geometric interpretation of the interactions between
the controlled variables and the manipulated wvariables in a process. A
measure of the open loop irteractions and approximate closed loop
interactions has been developed which 1is equivalent t: the direct Nyquist
array. From the analysis, optimum variable pairings for a square or

non-square multiloop control strategy are obtained.

4.  Singular value methods allow one to analyze the controllability and
obsei~ability of a system. These methods provide a geometric insight into
coatrollability  and observability. Balanced state  space realizations

provide optimal scaling of the controllable and observable subspaces.
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Therefore, state space controllers designed using a balanced state space
realization will be robust with respect to observability and

controllability.

9.2 Recommendations for Further Work

The use of SVD in the analysis of control systems is a relatively new

area of research. Some recomn:endaticns for further research in.fude:

1. apolying the identification and the interaction analysis techniques

to data obtained fiom a rcal plant process.

2. determining an optimal method of scaling process variables because
all the results from singular value methods are dependent on the scaling

method employed.

(5]

(¥ ]
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Appendix A Two Interacting Tank System

Figure A.1: Two Interacting Tanks in Series

Figure A.l shows a system with two interacting tanmks in series.
Assuming linear valves in the system, the mass conservation equations for

each tank are:

a) Tank I
dh1
ql -q = Al —_ [Al]
dt
Assuming linear valves:
h, - h
- 2
a =} [A.2]
1
Therefore,
h1 h2 dh1
ql-—+——=A1— [A.3]
R1 R2 dt

Taking laplace transforms of both sides of equation A.3 and expressing the

variables in deviation form,

Hl(s) Hq(s)
Q) - + ——— =sA R H(s) [A.4]

1 R2

RlQl(s) - Hl(s) + Hz(s) = SAIRIH1 [A.5]



RxQx(s) + H2

SAR +1
11

Hl(s) =

b) Tank 2:
Similiar to tank 1, the material balance is

dh
2
=A, —

a +4q,-4
dt

0

In terms of deviation variables in the laplace domain,

H_ (s) Hz(s) H,(s)
— - + Q) -
R1 R, R

= sAzl-Iz(s)
. 2
Rzﬂl(s) - (R1 + Rz)Hz(s) + R1RzQz(s) = sAleRiﬂz(s)

Substituting for Hl(s) from equation A.5 into equation A.9, obtain,

RIRle(s) + (sA1R1+l)R1R2Qz(s)

Hz(s) =
(sA1R1+l)(sA2R1Rz+R1+R2) - R2

Substitut. -5 for Hz(s) into equation A.5, obtain

R1(5A2R1R2+R1+R2 )Ql( s) + RleQz(s)

H (s) =
(sA1R1+l) (sA2R1R2+R1+Rz) - R2

The transfer function model can be written as,

H (s) 8,8 8,0 Q)

H,(s) 8,,8)  8,,0) Q,(5)
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[A.6]

[A.7]

[A.8]

[A9]

[A.10]

[A.11]

[A.12]

where the elements of the process TFM, gij(s), are given in equations A.ll

and A.l10.
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Appendix B Derivation of a Model for a System of Two CSTR’s in Series
(Bonvin, 1985, 1987)

T ‘
aq
J(l-a)q
T
1
c

Figure B.1: Two CSTR's in Series (Bonvin, 1987)

Figure B.l shows two continuous stirred tank heaters (CSTR) in series
with a first-order exothermic reaction, jacket or coil-cooling and a by-pass
around the second reactor. The conservation equations for this system are:

a) Component balances, mol/s:

dc
v —21=gqC-C) - V.C ke /R (B.1]
1 i 1 1 1o
dt
dc
V—2 = aq(C.-C,) - V.C k e */RT; 15.2)
2 dt 1 2 2 2o

b) Energy balances, J/s:

dT, -E/RT
V pC ——= = @oC (T.-T) + ((-AH)V C k e 1 + (UA)(T -T)
1 P dt p i 1 110 1 cl 1 (B.3]
i @C (T.-T)) + (-AH)V,C k e */*T2 & (UA) (T -T))
prdt—a AL PRE P 272 0 2@ 7 gy



There are four state variables (Cx’ Cz, Tz’ Tl). six input variables (q, Ti,

Ci. Tcl, T a) and two physical quantities (energy, number of moles of key

c2’

component). It is assumed that the four state variables are measurable but

the sensors give different units:

Clm(mol/L) =C ) [B.5]
CZm(mox/mi = 1000xC, [B.6]
T _(°C) =T, (B.7]
sz(°1=) = 1.8xT, [B.8]

Encrgy is chosen as the reference quantity, II. Equations B.l1 and B.2 are

multiplied throughout by the equivalence factor (-AH). Then

fl = (-AH)V C = (-AH)Q(C~C.) - (-AH)V C k ¢ B/FT
1 11 i 1 1 1o
- (o _ - -E/RT
= (-AH)qC-(/V)) - T k ¢/ (B.9)
- . P -E/RT
fl, = (-AH)V,C, = (-AH)aa(C,-C,) - (-AK)V,C k ™™/ "2

_ ) ) -E/RT
= aq(Hl/Vl) aq(Hz/Vz) szoe 2 [B.10]

M =VeCT = qC (T-T) + (-AH)V C k e B/*T
1" p 1 p i 1 1 1o

)] -
s 1+ (U A)1(Tc1 Tl)
-E/RT

= qupTi-q(l'Is/Vl) + I'Ilkoe 1+ (UA)l(Tcl-Hl/\/_’.pCp) [B.11]

[ = | - 5 oo ALY 'E/RT T -
n = Vl,onT1 = aqup(tl Tz) + (-AMY 2Czkoe 2 + (UA)(T -T)
-E/Ri

= aq(Hs/Vl-H‘/Vz) + I'Izkoe 2 + (UA)Z(TCZ-H/VzpCp) [B.12]

where the state variables are "scaled” in terms of II using the scaling

factors
m = pclc1 = vl(-AH)C1 = ’-‘1 [B.13]
m, = pczc:2 = V {-aH)C, = iz [B.14]
m, = pTl'r1 = leCpTl = ia [B.15]
m=p, T, = VzpCpTz = :'(4 [B.16]

1]



. . th .th .
input scaling factors, W for the s state and the 1"‘ input are:

w_ = max {l(-AH)(-C'i-EI)L |(-aH)(C,-C )], |pCp(Ti-Tl)|.!EpCp(Tl-Tz)|}

[B.17]
wTi = aeC_ [B.18]
w, = |(-aH)q| (B.19]
i
wc‘ = (UA)1 [B.20]
w_ = (UA), [B.21]
2
w_ - max {|(-AH)E(EI~EZ)|, |EpCp('_fl-Tz)|} (B.22
The bar over the variables indicates ii's steady s.ute value.
The outpui scaling factors are
v, o= lVI(-AH)| (B2}
Im
Ve = 'v'lpCp [B.24]
Im
Vz(-AH)
Vo = {B.25]
2m 1000
VzpC
v, = 4 [B.26}
2m 1.8

The numerical data which Bonvin used to evaluaie ihe models in equations B.I

to B.4 : given in Table B.l.
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Table B.1: Steady State Values for the CSTR Model

Variable Steady State (or
Nominal ) Values

v 1000 L

\' 10L

2

q 1 L/s

o 0.1

pCp 4000 J/1°¢C

i

( - AH) 10%  J /o
Ei ] mol, /L

El 0.214 m¢ /L
EZ 0.257 mol/L
T 20 °C

T, 34°C

T, 3.3 °C

T, T 10 °C

k 5000 s !

o

E/R 4500 K
(UA), 500 w/°C
(UA), 20 W, °C
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Apendix C PC-Matlab Programs



xR

FUNCTION [r,theta] = ellipse(a,b,phi)

EERIFERR|KRK/ER

This program will generate an ellipse with major axis length, a
minor axis length, b, and rotated from the x-axis by an angle phi.

Variables:
a = length of the major axis
b = length of the minor axis
phi = angle of rotation from the x-axis
r = radius of the ellipse, function of theta
theta = correponding angles from 0 to 2*pi

k = 0:0.1:2%pi+0 |;

[m,n] = size(k);

for i = I'n
r(i) = a*b/sqri{((b~2)*(cos(k(i))*2))+((a*2)*(sin(k(i))*2)));
theta(i) = k(i)+phi;

end

end
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% HOKALMAN.m
%
% MODEL IDENTIFICATION USING VARIOUS HO-KALMAN ALGORITHMNS

[A,B,C,n] = hokalman(a,b,c,d,N,m,p,r) returns a rth order state space
realization for the impulse response sequznce Y and the
rank, n, of the Hankel matrix formed from the impulse
response

[A,B,C,n,H] = hokalman(a,b,c,d,N,m,p,r) also returns the Hankel

martrix H
Variables:
Y = Impulse response sequence for the system
Ts = Sampling time used
N = Number of data points in the impulse rasponse
r = QOrder of the realization
n = Rank of the Hankel matrix, states in the minimal realization
m = Number of outputs
p = Number ot inputs
H = Hankel matrix , qxl matrix
Hs = Shifted hankel matrix
M = Size of the square hankel matrix H
nm = Spectral norm of the reduction error |H - Hr
q = rows of the hanke! matrix, M*m
| = columns of the ha:i: matrix, M*p
ref:

Damen, A.A.H., Hajdasinski, A.K., "Practical Tests with Different
Approximate Realizations Based on the Singular Value
Decomposition of the Hankel Matrix", IFAC Identification and
System Parameter Estimation Conf., Washington, D.C., pp.93-101,
1982

Ho, B.L., Kalman, R.E., "Effective Construction of Linear State
Variable Models from Input/Output Functions", Regelungstech,
14, pp. 545-548, 1966

Kung, S., "A New Identification and Model Reduction Algorithmn
via Singular Value Decompositions”, 1978 Asilomar Conference
on Circuits, Systems and Computers, p. 705-714, 1978

Tether, A.J., "Construction of Minimal Linear State Variable Models
from Finite Input-Cutput Data®, IEEE Trans.Automat.Contr.,
pp. 427-436, 1970

- - - . > - v e Sn > R Y W D R B P = S D P D ST S N e M D e AR R eSS S S S S

Obtain the impulse response for each inpat and ocutput (discrete system)

RERERRPRFPFRRRERRRRRRIRRRRIRERRERRRRRRRRRERRIRNRRRRNRRERR®

Y =[]
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for i = lp
y = dimpulse(a,b,c,d,i,N+1);
Y =[Yy]
end
Y = Y(2:N+1,) % the first impulse response paramete h(0)=0

Obtain the impulse response for each input and output (discrete system) for
the case with noise in the system

Y = [k

for i = lp
y=dimpulse(a,b,c,d,1,N+1);
e=rand(N+1,1);
e=e*0.1;
y=yH,
Y = {¥ y]

end

Y = Y(2:N+l,);

Form the (block) Hankel matrix

N = N/Ts:
SRR
“
(5
Hn b= I:N
for i = L:m;
for j = Lp;

it = (j-1)*me+i
n(i,j) = YQ,ii);
end
end
J=0
h];
end
H = J(I:m*M,);
for i = 2M
temp = [},
temp = J(i*m:m*(M-1+i),));
for ii = i*m
temp = [temp
J(ii,))
end
H = [H temp];
end
fa,)] = size(H);

Obtain a minimal realization from the original Ho-Kalman algorithmn

[Q.R] = qr(H);,
n = rank(H);
ifn<M
U = [eye(n,n) zeros(n,l-n)};
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slse
U = eye(q,l);
end
W = U™U;

Shift the Hankel matrix up by L.} row

temp = [}

Hs = H(m+l:q,);

for i = (M+1)*m:2*M*m
temp = [temp

I(i,)L
end
temp
for i =I:M
temp = [temp J((M+i)*m-1:(M+i)*m,)];
end
Hs = [Hs

temp’];
Ep = [eye(p,p)

zeros(gq-p,p)); % selects first p columns
Em = [eye(m,m) zeros(m,-m)];, % selects first m rows

A = UXW*Q*Hs*R"*J)*U";
B = US(W*Q*H*Ep')
C = (Em*H*R"*W)*U";

Obtain a rth order minimal res'izvtina using Zeigler-McEwan algorithmn

[Z,5,V]=svd(H);

Sr = S{lrlr),;
Zr = Z(lq,lir);
Ve = V(L1 Lr);

Sr = [Sri zeros(r,i-r)
zeros(q-r,1)];
Hr = Zr*Sr*Vr';
nm = norm(H-Hr);
temp=(};
for i = Lir
temp(i) =  1/sqrt(S(i,i));
end
invSr = diag(temp);
invSt = [invSr zeros(r,l-r)
zeros(q-r,1)];
(invSr)*Zr'*Hs*Vr*invSr;
(invSr)*Z: *H*Ep;
Cl = Em*H*Vr*invSr;
Ba = sqrt(Sr)*Vr'*Ep;
Ca = Em*Zr*sqrt(Sr);
Hrl = Zr*Sr1*Vr';

Ala = inv(sqrt(Sr1))*Zr'*Hs*Vr*inv(sqrt(Srl));

Bla = inv(sqrt(Srl))*Zr'*H*Ep;
Cla = Em*H*Vr*inv(sqrt(Srl));

Obtain a rth order realization using Hajdasinski and

Damen algorithmn
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%

h = 0
Shift the reduced order hankel matrix up by (m) rows

temp = [}

Hrs = Hr(m+lq,);

for i = (M+1)*m:2*M*m
temp = [temp

I,
end
Hrs = {Hrs
temp'};
A2 = invSr*Zs'*Hrs*Vr*invSr;

B2 = invSr*Zr"*Hr*Ep;

C2 = Em*Hr*Vr*invSr;

altA2 = invSr*Zr'*Hs*Vr*invSr;
altB2 = invSr*Zr'*H*Ep;

altC2 = Em*H*Vr*invSr;

Obtain a rth order realization using Kung’s algorithmn

sq = sqrt(S);
z = Z%q;
v = sq*V";

Shift the matrices z and v up by m rows and add m rows of zeros to the
shifted matrices

Q = zeros(m,r);

zr = 2(l:q,lir);
zup = zr(m+l:q,:);
zup = [zup

Qj;
v = v(lir,);
vup = vr(:;,m+l:q);
vup = [vup Q};
A3 = zrup;

Ao = vup/vr;
B3 = wvr(;,l:p);
C3 = zr(l:m,);
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% Obtain a rth order realization using Damen and Hajdanski modified algorithmn

%

iter = 0;
num = l;
Hra = H;
[z,5,v] = svd(Hra);
X =7
if iter == 0
if num < 20

zr = z(.,lir);
ve = v(lir);
sr = s(lir,lir);



RXR

RR

sr = [sr zeros(r,l-r)
zeros(q-r.!*};
tirtg = zr*sr¥vr’;
temp = [J;
for w=1p
for k = I'm
for i = I'M
sum = 0;
for j = Li
sum = sum + Hra((i-j)*m+k,(j-1)*p+w);
end
h(i,k) = sum/i;
end
for i = M+1:2*M-1
sum = 0;
for j 1:2*M-i
jii = i-M+j;
sum = sum + Hra((i-jj)*m+k,(jj-1)*p+w);
end
h(i,k) = sum/(2*M-i);
end
end
temp = [temp h];
K = temp;
end
Hra = K(I:m*M,:);
for i = 2M
temp = [}
for ii = i*m:(M+i-1)*m
temp = [temp
K(ii,)k

end
Hra = [Hra temp];
end
[z,s,v] = svd(Hra);
x = rank(Hra);
if x =17
iter = 1
end
end
num = num+l;
end
st = [s(r,r) zeros(r,l-r)
zeros(q-r,l)]
st = s(lr,Lir);
zr = z(,lr);
v = v(,lir);
temp = [}
for i = lir
temp(i) = 1/sqrt(sr(ia1));

end

invsr = diag(temp);
temp = [}

Hras = Hra(m+l:q,);
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end

(ot 1= (+7)*m(2*M-1)*m
SRR e {Tomp

“{i,))

end
temp = [temp

J(2*M*m,.)];
Hras = [Hras

temp’};
A4 = invsr*zr'*Hras*vr*invsr;
B4 = invsr*zr'’*Hra*Ep;
C4 = Em*Hra*vr*invsr';
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FUNCTION {Ar,Br,Cr,k,hratio]=ibmodred(A,B,C,minor,maxor,m,n,dc)
INTERNALLY-BALANCED MODEL REDUCTION:

Model Reduction scheme for a state space system description using
internal balancing of the system (A,B,C). Weak subsystems are
eliminated to produce a reduced order model (Ar,Br,Cr)

[Ar,Br,Cr,k] = ibmodred(A,B,C,minor,maxor,m,n,dc) returns an internally
balanced kth order state space model of the system
(A,B,C)

[Ar,Br,Cr,k,hratio] = ibmodred(A,B,C,minor,maxor,m,n,dc) also returns the
ratio of the (k+1 to n) and the first k second order
modes of the system, hratio

Ref:
1) Moore, B.C., "Principal Component Analysis in Linear Systems:
Controllability, Observability and Model Reduction", IEEE Trans
AC, 26-1, Feb. 198}
2) Moore, B.C., "Singular Value Analysis of Linear Systems",
IEEE Decision and Control Conference, Jan. 1979, pp. 65-73
Variables:
A,B,C = Original state space realization

Aib,Bib,Cib = Internally balanced state space realization

Ar,Br,Cr = Reduced order state space realization
de = Flag indicates type of system:
dc = !, discrete time
dc = 2, continous time
maxor = Maximum order of the realizations
minor = Minimum order of the realizations
k = Order of the realizations
m = Number of inputs
n = Number of outputs
hratio = Ratio of the k+l to n second order modes to the first
k second order modes, an error criteria
W2 = Controllability gramian
Wo2 = Observability gramian
i = sart(-1);

Obtain the internally-balanced model

RPRR RRRRRRLERRRRNRERNRR RN RRERER RN RN BRI R RERRSE

[Aib,Bib,Cib,Wc2,W0o2,H,T] = intbal(A,B,C,dc);
fuc,sc.ve] = svd(We2);
[uo,s0,v0] = svd(Wo2);



R R

KRR

Calculate the second order modes

[uh,sh,vh] = svd(H);
dsh = diag(sh);

Find a representative kth order madel for (Aib,Bib,Cib)

L = length(dsh);
for k = minor,maxor
x]l = sh(l:k);
if k==L
x2 = [}
else
x2 = sh(k+l:L);
end
for i = 1,k
X1(i) = xI(i)*2;
end
it h==
XZ =1
hratio = inf;
vlse
ti=L-k+1;
for i = 1,ii
X2(i) = x2(i)*2
end
hratio = sqrt(sum(X1))/sqrt(sum(X2))
end
Ar
Br

Sk, k),
. Rk, 1:m);
Cr Cib(i:n, L:k);
if d¢ == 1
¢ = ctrb(Ar,2r);
o = obsv(Ar,Cr);
We2 = c*c”;
Wo2 = o'*o;
else
Wc2 = gram(Ar,Br);
Wo2 = gram(Ar',Cr');
end
Ar
pause
Br
pause
Cr
pause
fprintf('Controllability gramian of reduced order system’)
We2 -
pause
fprintf("Observability gramian = reduced order system’)
Wo2
pause
hratio
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pause

end

mo = diag(dsh);

fprintf('Diagonal matrix of the second order modes of system’)
mo

end
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FUNCTION {Ar,Br,Cr,k,hratio]=inmodred(A,B,C,minor,maxor,dc)

%

% INPUT-NORMAL MODEL REDUCTION:

RRR PRRRRRRERRRRRELRERERRERRELEIEEREERERRERERER

RRR

Model Reduction scheme for a state space system description using
input normalization of the system (A,B,C). Weak subsystems are
eliminated to produce a reduced order model (Ar,Br,Cr)

[Ar,Br,Cr,k] = inmodred(A,B,C,minor,maxor,dc) returns a input normalized
kth order state space model of the system (A,B,C)

[Ar,Br,Cr k,hratio] = inmodred(A,B,C,minor,maxor,dc) also returns the

ratio of the (k+l to n) and the first k second order
modes of the system, hratio

Ref:

1) Moore, B.C., "Principal Component Analysis in Linear Systems:
Controllability, Observability and Model Reduction”, IEEE Trans
AC, 26-1, Feb. 1981

2) Moore, B.C., "Singular Value Analysis of Linear Systems”,
IEEE Decision and Control Conference, Jan. 1979, pp. 66-73

Variables:

A,B,C = Original state space realization
Ain,Bin,Cin = Input normalized state space realization

Ar,Br,Cr = Reduced order input normalized state space realization
dc = Flag indicates type of system:
dc = 1, discrete time
dc = 2, continous time
minor = Minimum order of realization
maxor = Maximum order of realization
k = Order of realization
hratio = Ratio of the sum of the (k+1) to n second order modes
and the first k second order modes, an error criteria
Wce2 = Controllability gramian
Wo2 = Observability gramian

j = sart(-1);

Obtain the input-normalized model

[Ain,Bin,Cin,Wc2,W02,H,T] = inpnorm(A,B,C,dc);
[uc,s¢,vcl=svd(Wc2)

Calculate the second order modes

[uh,sh,vh] = svd(H);
dsh = diag(sh);
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Find a representative kth order model for (Ain,Bin,Cin)

n = length(dsh);
for k = minor,maxor
xl1 = sh(l:k);
x2 = sh(k+l:n);
for i = 1L,k
X1(1) = xi(i)*2;
end
it = n - (ke+l)
for i = L,ii
X2(1) = x2(i)*2;
end
hratio = sqrt(sum{(Xl1))/sqrt(sum(X2));
Ar = uc'*Ain*uc;
Br = uc'™Bin;
Cr = Cin*uc;

if d¢ ==
¢ = ctrb(Ar,Br);
o = obsv(Ar,Cr);
We2 = c*¢’;
Wo2 = 0'*0;
else
Wc2 = gram(Ar,Br);
Wo2 = gram(Ar',Cr');
end

mo = diag(dsh)
fprint('Observability gramian of reduced order system’)
Wo2
fprint('Diagonal matrix of the second order modes’)
mo
pause

end



FUNCTION {[Ain,Bin,Cin,Wc2,Wo02,H,T} = inpnorm(A,B,C,dc)

RRERRR RRRRIRRRIREIRRR RN RRRRIRRRREIRRRIRRRRRRREIRRERER

INPUT-NORMAL State-space realizationn with input normalized internal

coordinate system

ie. We2 =1, Wo2 = S4 S2=second order modes

[Ain,Bin,Cin] = inpnorm(A,B,C,dc) returns a input normalized
state-space representation of the system (A,B,C)

[Ain,Bin,Cin,Wc2,W02,H,T] = inpnorm(A,B,C,dc) also returns
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matrices W¢2 and Wo2, the controllability and observability

gramian, respectively, of the normalized realization,
matrix H, the Hankel matrix and matrix T, the simularity
transformation used to convert (A,B,C) to (Ain,Bin,Cin)

Ref:

1) Moore, B.C., Principal Component Analysis in Linear
Systems: Controllabitity, Observability, and Model
Reduction, IEEE Trans.AC, 26-1, Feb. 198!

2) Moore, B.C., Singular Value Analysis of Linear Systems,

IEEE Decision and Control Conference, Jan. 1979, pp.66-73

3) Laub, A.J., "Computation of Balancing Transformations",
Proc. JACC Conf., Vol. 1, paper FA8-E, 1980

see; balreal.m, outnorm.m, intbal.m

Variables:
A,B,C = Original state space realization of process
Ain,Bin,Cin = Input normalized realization
dc = Flag which indicates the type of system:
dc = 1, discrete time
dc = 2, continuous time
We2 = Controllability gramian
Wo2 = Observability gramian
H = Hankel matrix of system
T = Transformation matrix
i = sart(-1);

Calculate the observability and controllability gramians

a) Discrete case:

if dc == 1
¢ = ctrb(A,B);
o = obsv(A,C);
we2 = c*¢’;
wo2 = 0'%0;
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else
wc2 = gram(A,B);
wo2 = gram(A',C');
end

Find the singular value decomposition of the gramians. Note: the right and
left singular vectors of the gramians are equal to the eigenvectors and the
singular values of the gramians are equal to their respective cigenvalues

fuc,sc,ve] = svd(wel);

ssc = sgrt(sc);

[uo,s0,v0] = svd(wo2);

sso = sqrt(so);

Find the Hankel matrix which describes the system and determine the
second order modes (the singular values of H) Also, calculate the
transformation matrix T. Note: the second order modes are invariant under

internal coordinate transformations

H = sso*vo'*vc*ssc;
[uh,sh,vh] = svd(H),
ssh = sqrt(sh);
T = uc*ssc*vh;

The input normalized state space realization
Ain = T*T;
Bin = T;
Cin = C*T;
if nargout > 3
if de ==
¢ = ctrb(Ain,Bin);
o = obsv(Ain,Cin);
We2 = ¢%c';
Wo2 = 0'*0;
else
Wc2 = gram(Ain,Bin);
Wo2 = gram(Ain’,Cin’);
end
end

mc = eye(We2);
mo = diag(diag(sh*2));

if m¢ ~= W¢2
fprintf(Input Normalization Incorrect’)
mc
We2
end
if mo ~= Wo2
fprintf("Input Normalization Incorrect’)
mo
Wo2
end

end



% INTACT.M

RRE RRRRRRRERRRRRIRRRIRRERRRRE

%
%
%

i

This program analyzes interactions in multivariable systems
with transfer function G(s) where s=iw using the direct nyquist
array (DNA) and the interaction measure of Lau (alignment angles)

imaginary number, sqrt(-1)

num

G(S) T e--

den
Variables:

G = transfer function matrix
Z = left singular vectors of G
S = singular values of G
\' = right singular vectors of G
\' = rotational matrix
w = frequency
theta = alignment angles, radians
deg = alignment angles, degrees
re = real part of nyquist plot
im = imaginary part of nyquist plot

S

laplace transform variable, s = iw

i = sqrt(-1);

Input the transfer function matrix

m = input('Number of inputs, m = ')

n = input(Number of outputs, n = ')

fprintf(Input the elements of the transfer function matrix’)
fprintfCrow by row starting with G(1,1) - G(J.m) and ending’)
fprintf(with G(n,1) - G(n,m)’)

num = [};
den = [}
for k = Iin
for j = I'm
temp = input('num = °)
num = [npum
temp];
temp = input(’den = °)
den = [den
temp];
end
end

Input the frequency range of interest

x! = inputCminimum frequency is 10 to the power xl = ")
x2 = input('maximum frequency is 10 to the power x2 =)
w = logspace(x1,x2);
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%
% Calculate the alignment angles

%
s = i*w;
W =}
sigma = [J;
for k = 1:50

Calculate the polynomial TFM at s=i*w

R

i=n
for r = I:n
for ¢ = I'm
G(r,c) = polyval(num(j,:),s(k))/polyval(den(j,:),s(k));
jo= i+h
end
end
[Z,5.V] = svd(G);

% Calculate the radius of the Gershgorin bands at this frequency
%
sum = 0;
for ¢ = I'm
for r = Lin
if v ~=¢
sum = sum+sqrt((real(G(r,c))*2)+(imag(G(r,c))*2));
end
end
radius(k,c) = sum;
end

temp = diag(S);
sigma = [sigma temp];

Calculate the rotational matrices for the n loops (1)

row = [3 2 1};
col = [2 1 3]
for 1 = Lin
tempw = Z(:,D*V(,1);

RRERR

Check for the largest entry in tempw, x(i,j) corresponding to a
u(i) - y(j) pairing

RRRR

x =0
for r = lin
for ¢c = I'm
y = abs(tempw(r,c));
ify>x
X =y,
rowlkdl) = T
colk,) = ¢
end
end
end



Calculate the alignment angle for pairing u(r) - y(c)

RRR

theta(k,l) = acos(sqrt{tempw(row(k,l),col(k,1))
*conj(tempw(row(k,l),col(k,1)))));
theta(k,]) = acos(sqrt(tempw(row(l),col(1))
*conj(temp w (row(1),col(1)))));
deg(k,]) =  360%theta(k,l)/(2*pi);
W = [W tempw];
end

RN R

Calculate the condition number of G(iw)
cond(k) = sigma(l,k)/sigma(nk);

Calculate the total interaction measure at w

RER BRR

suml = sum1+((sigma(j,k)*2)*(cos(theta(k,j))*2));
sum2 = sum2+(sigma(j,k)*2);
end
ttheta(k) =  acos(sqri(suml/sum2));
totdeg(k) = ttheta(k)*360/(2*pi);

end

Calculate the nyquist array elements
for ¢ = I'm

for r = Iin _
[retemp,imtemp] = nyquist(num(r

ERRRRER

clg

subplot(221),loglog(w,sigma),xlabel(’Frequency’),ylabel('Sing. Values’)

loglog(w,cond),xlabel(’Frequency’),ylabel("Condition
axis([x! x2 0 90]);
semilogx(w,deg),xlabel("Frequency’),ylabel('Alignment
semilogx(w,totdeg),xlabel(’Frequency’),ylabel(’Interaction
axis;

end

Number’)

(deg)’)
(deg)")
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FUNCTION [Aib,Bib,Cib,Wc2,W02,H,T] = intbal(A,B,C,dc)
%
% INTERNALLY-BALANCED
State-space realization with internally balanced internal
coordinate system

ie. Wc2 = Wo2 = 82 S2=second order modes

[Aib,Bib,Cib] intbal(A,B,C,dc) returns a internally balanced
state-space representation of the system (A,B,C)

[Aib,Bib,Cib,Wc2,W02,H,T] = intbal(A,B,C,dc) also returns matrices
Wc2 and Wo2, the controllability and observability gramian,
respectively, of the internally balanced realization,
matrix H, the Hankel matrix and matrix T, the simularity
transformation used to convert (A,B,C) to (Aon,Bon,Con)

Ref:
1) Moore, B.C., Principal Component Analysis in Lirear

Systems: Controllability, Observability, and Model
Reduction, IEEE Trans.AC, 26-1, Feb. 1981

2) Moore, B.C., Singular Value Analysis of Linear Systems,
IEEE Decision and Control Conference, Jan. 1979, pp.66-73

3) Laub, A.J., "Computation of Balancing Transformations",
Proc. JACC Conf., Vol. 1, paper FA8-E, 1980

see: balreal.m, inpnorm.m, outnorm.m

Variables:
A,B,C = Original state space realization
Aib,Bib,Cib = Balanced state space realization
de = Flag indicates the type of system:
dc = 1, discrete time
dc = 2, continuous time
We2 = Controllability gramian
Wo2 = Observability gramian
H = Hankel matrix
T = Transformation matrix
i = sart(-1);

Calculate the observability and controllability gramians (continuous time)

a) Discrete case:

BEREERR R R R R R R R R R R R R R R R R R R R R R R R R R R R R RRLRRELRS

if dc == 1
¢ = ctrb(A,B);
o = obsv(A,C);
we2 = c*c’;
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wo2 = 0'%0;

b) continous case:

else
wc2 = gram(A,B);
wo2 = gram{A’,C');

end

Find the singular value decomposition of the gramians. Note: the right and

left singular vectors of the gramians are equal to the eigenvectors and the
singular values of the gramians are equal to their respective eigenvalues

[uc,se,ve] =  svd(wc2);

ssc = sqrt(sc);
[uo,s0,v0] = svd(wo2);
sso = sqrt(so);

Find the Hankel matrix which describes the system and determine the
second order modes (the singular values of H) Also, calculate the
transformation matrix T. Note: the second order modes are invariant under
internal coordinate transformations

H = sso*vo'*vc*ssc;
[uh,sh,vh] = svd(H);
ssh = sqrt(sh);

T = vo*(ssoh)*ssh;

The internally balanced state space realization

Aib = T*T;
Bib = T;
Cib = C*T;
if nargout > 3
if de == 1
¢ = ctrb(Aib,Bib);
o = obsv(Aib,Cib),
We2 = c*c’;
Wo2 = 0'%0;
else

Wc2 = gram(Aib,Bib);
Wo2 = gram(Aib’,Cib’);
end
end
mc¢ = diag(diag(sh));
mo = diag(diag(sh));
if mc ~= Wc2
fprintf(’Internal Balancing Incorrect’)

mc
We2
end
if mo ~= Wo2
fprintf(Internal Balancing Incorrect’)
mo
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Wo2
end
end
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FUNCTION [Ar,Br,Cr,k,hratio]=onmodred(A,B,C,minor,maxor,dc)

%

% OUTPUT-NORMAL MODEL REDUCTION:

RRE RRRERRRNRRNRRRRNRNRRRRRERERNRRRRREIREIREERERERRERRER

RRR

Model Reduction scheme for a state space system description using
output normalization of the system (A,B,C). Weak subsystems are
eliminated to produce a reduced order model (Ar,Br,Cr)

{Ar,Br,Cr,k] = onmodred(A,B,C,minor,maxor,dc) returns a output normalized
kth order state space model of the system (A,B,C)

(Ar,Br,Cr,k,hratio] = onmodred(A,B,C,minor,maxor,dc) also returns the
ratio of the (k+l to n) and the first k second order
modes of the system, hratio

Ref:

1) Moore, B.C., "Principal Component Analysis in Linear Systems:
Controllability, Observability and Model Reduction", IEEE Trans
AC, 26-1, Feb. 1981

2) Moore, B.C., "Singular Value Analysis of Linear Systems®,
IEEE Decision and Control Conference, Jan. 1979, pp. 66-73

Variables:

A,B,C = Original state space realization
Aib,Bib,Cib = Output normalized state space realization
Ar,Br,Cr = Reduced order output normalized state space realization
dc = Flag indicates the type of system
de = 1, discreie time
dc = 2, continuous time
Minimum order of the realizations

minor =

maxor = Maximum order of the realizations

k = Order of the realization

hratio = Ratio of the k+l to n second order modes to the first
k second order modes, an error criteria

we2 = Controllability gramian

Wo2 = Observability gramian

i = sqart(-1);
Obtain the output-normalized model

[Aon,Bon,Con,Wc2,W02,H,T] = outnorm(A,B,C,dc);
[uc,sc,vel=svd(Wc2),

Calculate the second order modes

[uh,sh,vh] = svd(H);
dsh = diag(sh);
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Find a representative kth order model for (Aon,Bon,Comn)

n = length(dsh);
for k = minor,maxor
x]l = sh(l:k);
x2 = sh(k+l:n);
for i = 1,k
XI(i) = xKi)*2;
end
ii = n - (k+l)
for i = 1,ii
X2(i) = x2(i)*2;
end
hratio = sqrt(sum(X1))/sqrt(sum(X2));
Ar = uc'*Aon*uc;
Br = uc'*Bon;
Cr = Con*uc;

if dc ==
¢ = ctrb(Ar,Br);
0 = obsv(Ar,Cr);
We2 = c*c;
Wo2 = o'*o;
else
Wc2 = gram(Ar,Br);
Wo2 = gram(Ar',Cr’);
end

mo = diag(dsh)
fprint('Controllability gramian for reduced order model’)
we2
fprint(’Diagonal matrix of the second order modes squared’)
mo

end
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FUNCTION [Aon,Bon,Con,Wc2,Wo2,H,T| = outnorm(A,B,C,dc)
%
% OUTPUT-NORMAL State-space realization with output normalized internal
coordinate system
ie. Wc2 = S4, Wo2 = I S2=second order modes

[Aon,Bon,Con] = outnorm(A,B,C,dc) returns a output normalized
state-space representation of the system (A,B,C)

[Aon,Bon,Con,Wc2,Wo02,H,T] = outnorm(A,B,C,dc) also returns matrices
Wc2 and Wo2, the controllability and observability gramian,
respectively, of the normalized realization, matrix H, the
Hankel matrix and matrix T, the simularity transformation
used to convert (A,B,C) to (Aon,Bon,Con)

Ref:
1) Moore, B.C., Principal Component Analysis in Linear
Systems: Controllability, Observability, and Model
Reduction, IEEE Trans.AC, 26-1, Feb. 1981

2) Moore, B.C., Singular Value Analysis of Linear Systems,
IEEE Decision and Control Conference, Jan. 1979, pp.66-73

3) Laub, A.J., "Computation of Balancing Transformations",
Proc. JACC Conf., Vol. 1, paper FA8-E, 1980

see: talreal.m, inpnorm.m, intbal.m

Variables:
A,B,C = Original state space realization
Aon,Bon,Con = Output normalized state space realization
dc = Flag indicates the type of system:
dc = 1, discrete time
dc = 2, continous time
Wc2 = Controllability gramian
Wo2 = Observability gramian
H = Hankel matrix
T = Transformation matrix
j = sart(-1);

Calculate the observability and controllability gramians (continuous time)

a) discrete case:

RRRRR RRRRRRERRBRRREILRRRRRRIIRREIRRRRRRRRIRIRNENIEIRERRER

if dc == 1
c ctrb(A,B);
o = obsv(A,C);
wc2 = c*c
wo2 = 0"0;
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b) continous case:

else
wc2 = gram(A,B);
wo2 = gram(A',C');
end

Find the singular value decomposition of the gramians. Note: the right and
left singular vectors of the gramians are equal to the eigenvectors and the
singular values of the gramians are equal to their respective eigenvalues

[uc,sc,ve] = svd(wc2);

ssc = sqrt(sc);

[vuo,s0,v0] = svd(wo2);

sso = sqrt(so);

Find the Hankel matrix which describes the system and determine the
second order modes (the singular values of H) Also, calculate the
transformation matrix T. Note: the second order modes are invariant under

internal coordinate transformations

H = sso*vo'™*vc*ssc;
[uh,sh,vh] = svd(H);
ssh = sqrt(sh);
T = uo*(ssoh);

The output normalized state space realization

Aon = T*T;
Bon = T;
Con = C*T;
if nargout > 3
if d¢ ==
¢ = ctrb(Aon,Bon);
o = obsv(Aon,Con);
We2 = c*¢;
Wo2 = 0'%0;
else
Wc2 = gram(Aon,Bon);
Wo2 = gram(Aon’,Con’);
end
end
mc¢ = diag(diag(sh*2));
mo = eye(Wo2);
if mc ~= W¢2
fprintf("Output Normalization Incorrect’)
mc
Wc2
end
if mo ~= Wo2
fprintf("Output Normalization Incorrect’)
mo
Wo2
end
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end



% RDGA.M

This program calculates Witcher and McAvoy (1977) relative
dynamic gain array, Tung and Edgar (1977) relative dynamic
gain array and Bristol's relative gain array

num
G(s) = ---
den

Variables:
transfer function matrix

G

Go Steady state gain matrix
m = number of inputs
n
s
w

= number of outputs
= Laplace transform variable
= frequency
num = transfer function numerator polynomial

den transfer function denominator polynomial
M = Witcher and McAvoy relative dynamic gain matrix
Mt = Tung and Edgar relative dynamic gain matrix

RGA = Bristol relative gain array
Lambda= M matrix over frequency range arranged row by row
alpha = Mt matrix over frequency range arranged row by row

i = sqrt(-1);

Input the transfer function matrix

FRE RERERRRRRARERERRE|IRLRERIRERER

m = input('Number of inputs, m = "')
n = inputCNumber of outputs, n = ’)
fprintfCInput the elements of the transfer function matrix’)
fprintf(row by row starting with G(l,1) - G(1,m) and ending’)
fprintfCwith G(n,1) - G(n,m)")
num = [}];
dea = [];
for k = L:n
for j = I'm
temp = input’num = °)
num = [num
temp];
temp = input('den = °)
den = [den
temp};
end

end
clear temp

%

% Calculate the steady state gain matrix and the RGA

%
i=1
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for r = Ln
for c¢c = LI'm
Go(r,cc) = polyval(num(j,:),0)/polyval(den(j,:),0);
o=+l
end
end
xo = inv(Go);
RGA = Go.*xo";

% Input the frequency range of interest

x1 = input('minimum frequency is 10 to the power xl =)
x2 = input('maximum frequency is 10 to the power x2 = ')
w = logspace(x1l,x2);
s = i*w;
for k = 1:50
%
% Calculate the polynomial TFM at s=i*w
%
=5
for r = lin
for cc = I'm
G(r,cc) = polyval(num(j,:),s(k))/polyval(den(j,:),s(k)),
i= i+
end
end
%

% Calculate the RDGA's and place the elements of the RDGA’s into
% array’s containing the information for the entire frequency range

%
x = inv(G),
i=5
for r = Lin
for c¢c = I'm
M(rcc) = G(r,cc)*x(cc,r);
Mt(rcc) =  G(r,cc)*xo(cc,r);
lambda(k,j) = M(r,cc);
alpha(k,j) = Mt(r,cc);
i =i+
end
end

end
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% SCALE.M

%
% SCALING - Geometric and Equilibration

This program scales a mxn matrix, G. Geometric scaling involves
scaling the rows and the columns of the matrix by their respective
geometric means. Equilibration of the rows and the columns

involves scaling such that the maximum entry in each row and column
is of comparable magnitude

Variables:

G = Unscaled matrix
Gs = Scaled matrix
m = Number of rows in G
n = Number of columns in G
sfrow = Vector of row scaling factors
sfcol = Vector of column scaling factors
row = Diagonal matrix of row scaling factors
col = Diagonal matrix of column scaling factors

Geometric Scaling (Gill, Murray, Wright, "Process Optimization",
Academic Press, 1981, pp.353)

Compute the greatest ratio of two elements in the same column

ER R R R R R R R R R RRRRRERRLLRESL S

G-=g
diff=0.1;
tol = 0.0;
% while diff >= tol
max = 0.0;
for j = In
for i = I:'m
for k = I:m
if i ~=k
if abs(G(k,j)) ~= 0
ratio =  abs(G(i,j)/G(k.j));
if ratio > max
max = ratio;
end
end
end
end
end
end
%
% Perform row scaling
%
for i = I:m
minr = abs(G(i,l));
maxr = abs(G(i,l));
for j = L:n
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if abs(G(i,j)) < minr
if abs(G(@,j)) ~= 0
minr = abs(G(i,j));
end
elseif abs(G(i,j)) > maxr
maxr = abs(G(i,j));
end
end
sfrow(i) = (minr*maxr)*0.5;
if sfrow(i) ~= 0
Gr(i,i:n) =  G(i,I:n)/sfrow(i);
else
Gr(i,I:)n) = Gf(,ln);
end
end
row = diag(sfrow);
%
% Perform column scaling
%
for j = In
minc abs(Gr(1,j));
maxc abs(Gr(1,j));
for i = I'm
if abs(Gr(i,j)) < minc
if abs(Gr(i,j)) ~= O
minc = abs(Gr(i,j));
end
elseif abs(Gr(i,§)) > maxc
maxc = abs(Gr(i,j));

end
end
sfeol(j) = (minc*maxc)*0.5;
Gs(I:m,j) = Gr(l:m,j)/sfcol(j);
end
col = diag(sfcol);
%

% Compute the greatest ratio of two elements in the same column
%
maxl = 0.0;
for j = Ln
for i = I'm
for k = I'm
if i ~=k
if abs(Gs(i,j)) ~= 0
ratiol =  abs(Gs(i,j)/Gs(k.j))
if ratiol > maxl
max! = ratiol;
end
end
end
end
end
end
%
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% Check for termination

%
diff = abs(maxl-max)
tol = 0.1*abs(max)

% if diff >= tol

% G = Gs;

% flag = 1

% end

% end

%

%

% Perform column scaling followed by row scaling

%

%

% Perform column scaling

%

% G=g

diffa=0.1;
tola = 0.0;

% while diff >= tol

for j = In

minc = abs(G(1,j));
maxc = abs(G(l,j));
for i = I'm
if abs(G(i,j)) < minc
if abs(G(,j)) ~= 0
minc = abs(G(i,j));
end
elseif abs(G(i,j)) > maxc
maxc = abs(G(i,j));
end
end
sfcol(j) = (minc*maxc)*0.5;
Ge(lim,j) = G(l:m,j)/sfcoi(j);
end
cola = diag(sfcol);
%
% Perform row scaling
%
for i = I'm
minr = abs(Gc(i,1));
maxr = abs(Ge(i,l1));
for j = Iin
if abs(Gce(i,j)) < minr
if abs(Ge(i,j)) ~= 0
minr = abs(Ge(i,j));
end
elseif abs(Gce(i,j)) > maxr
maxr = abs(Ge(i,)));
end
end
sfrow(i) = (minr*maxr)*0.5;
if sfrow(i) ~= 0
Gsa(i,I:n) = Gc(i,l:n)/sfrow(i);
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else
Gsa(i,I:n) = Ge(i,l:n);
end
end
rowa = diag(sfrow);

%
: Compute the greatest ratio of two elements in the same co\u.mn
maxa = 0.0;
for j = Ln
for i = I'm
for k = I'm
if i ~=Kk
if abs(Gsa(i,j)) ~= 0
ratiola =  abs(Gsa(i,j)/Gsa(k,j));
if ratiola > maxa
maxa = ratiola;
end
end
end
end
end
end
%
% Check for termination
%
diffa= abs(maxa-max)
tola=  0.1*abs(max)
% if diffa >= tola

% G = Gsa;
% flag = 1
% end

% end



