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ABSTRACT

The Crowchild Trail Bridge in Calgary, Alberta is a three-span, two-lane, one-way
traffic overpass. In 1997, its superstructure was replaced by a steel-free concrete deck
supported by five steel plate girders. In order to assess the performance of the bridge, the
University of Alberta developed an extensive instrumentation and monitoring program at
the time of construction. Initial load tests were carried out in August 1997, before the
bridge was open to traffic, to establish the baseline structural characteristics of the bridge.
The bridge was tested again in August 1998, one year after opening to traffic. The testing
programs include ambient vibration test, static and dynamic load tests using trucks with
known axle loads and running at various speeds. In addition to the strain gauges,
thermistors, and fibre optic strain gauges installed in the first year, cable transducers and

accelerometers were added in the second year tests.

Natural frequencies and mode shapes of the bridge were determined by the
ambient vibration tests performed in 1997 and 1998. The investigated frequencies and
mode shapes show good correlation with theoretical closed form solutions. However, all
the investigated frequencies have shown a reduction of approximately 0.20 Hz after the
bridge has been in service for one year. The static and dynamic tests show that the
composite action in the positive moment region has not changed during the first year of
operation, but there is a shift of 98 mm in the neutral axis in the negative moment region
due to the cracking of the concrete deck. Since the mass of the structure has not changed,
this may indicate that the stiffness of the bridge has been reduced. Good load sharing

between the girders was observed in both positive and negative moment regions. The



damping ratio and dynamic amplification factor was obtained from both the strain gauge
and deflection data. The local strain gauge data yielded higher dynamic amplification
factors than the ones from the overall deflection results. Both transverse and longitudinal
cracks were observed on the bottom surface of the bridge deck. As of August 1998,

cracks visible on the deck show no serviceability concern.
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1. INTRODUCTION

1.1 Background and Statement of the Problems

Bridges have been built as early as the second century BC. Roman engineers
developed and utilized the concept of arching action for centuries (Barker ez al., 1997). In
fact, some of the oldest stone arch bridges from the ninth century BC still survive and
remain functional even today. The basic concept of arching action is shown in Figure 1.1
below. Arch structures have proven themselves to be beautiful, durable and adaptable to
ever changing environmental load. Despite its excellent track record, the arch structural
form was eventually replaced with lighter weight and cheaper to build structures; such as

steel and steel reinforced concrete structures.

Rx |©° e—" T~ | _Rx
| e

Ry Ry

Figure 1.1: Basic Concept of Arching Action

Steel bridges became popular in the mid-eighteenth century, during the Industrial
Revolution. By the early nineteenth century, steel reinforced concrete bridges appeared
and grew at an exponential rate (Barker ef al., 1997). Numerous factors contribute to the
popularity of reinforced concrete structures. The cost is competitive and its weight often
reduces or eliminates dynamic problems. Nonetheless, reinforced concrete bridges have
merely been introduced a few decades ago, yet a great number of them already need to be

replaced due to corrosion of steel reinforcement or deterioration of concrete. Costs to



retrofit or replace such structures are both a nuisance to the public and expensive.
Because reinforced concrete structures have numerous durability problems in northern

climates, an alternative method of construction is needed in such regions.

One of the durability problems encountered with reinforced concrete structures is
related to the corrosion of the steel reinforcement inside the concrete deck. Particularly in
cold regions where deicing salt is used, the problems are most apparent. Poor quality
concrete and inadequate concrete cover for the reinforcing steel account for the majority
of the durability problems. Since the steel reinforcement is embedded, it is either difficult
or impossible to access without damage to the structure as a whole. Thereby,
maintenance, evaluation, and repairs of bridge superstructures are very expensive and
sometimes impossible. Therefore, it is necessary to find novel approaches to the use of

steel reinforcement and to assess their durability.

1.2 Innovative Structures

A new and innovative approach to bridge deck design is to totally exclude internal
reinforcement from the deck, utilizing the steel reinforcement in the form of external
tension straps. Figure 1.2 shows the arching action concept with external steel
reinforcement. Photo 1.1 shows such innovative concept used in the construction of
Crowchild Trail Bridge in Calgary, Alberta. This concept is the same as the traditional
reinforced concrete deck except that the steel in tension is now taken out of the deck. The

advantages of this system are as follow:

1. It results in a better use of concrete’s high compressive strength and steel’s high
tensile strength;

2. It requires less concrete and therefore material cost is reduced;

3. It reduces the dead weight on the structure;

4. Tt saves labor cost, since no placement of internal steel reinforcement is needed;



5. Tt allows for better maintenance of the steel reinforcement since it is exposed and the

application of protective coating to the steel straps is no longer an impossible task;

P

7T ”L[ i - interngl "\i\\ﬁ ﬁ ﬁ s

External steel strap

L PR | o

Figure 1.2: Arching Concepts with External Steel Reinforcement
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Photo 1.1: Crowchild Trail Bridge’s Superstructure at North Abutment.



1.3 Scope and Objectives

The Crowchild Trail Bridge is located at the intersection of Crowchild Trial and
University Drive in Calgary, Alberta. It consists of three continuous spans, two-lane,
one-way traffic overpass. The total length of the bridge is 92.878 meters with two
interior supports. This bridge was built in June 1997 using the innovative steel-free deck
approach described in section 1.2, and it is the first of its kind in the world that utilizes
this innovative approach of steel-free deck with external reinforcement over the positive
and negative moment regions. Photo 1.2 shows the steel-free deck concept used over the
negative moment region at Pier No. 1. Although steel-free deck design is believed to
solve the internal steel corrosion problem and accessibility of the steel for maintenance
and repair issues, it is essential to assess and understand its performance and long-term
durability. The objective of this research is to evaluate and assess the performance of

Crowchild Trail Bridge by using the field instrumentation and testing on the bridge.

Field assessment of Crowchild Trail Bridge focuses on three main issues: the
performance under serviceability conditions, change of major characteristics of the bridge
with time, and its long-term durability. In order to assess its performance under
serviceability condition, static and dynamic tests were carried out using trucks with
known axle loads. Ambient vibration tests were performed to determine the fundamental
dynamic characteristics of the bridge. The fundamental structural characteristics obtain
from truck tests and ambient vibration tests are evaluated annually and compared to those
obtained before the bridge was open to traffic. To study long term durability, the bridge
was inspected visually, and the crack patterns were mapped periodically. The scope of
this thesis is confined to the field assessment of Crowchild Trail Bridge over its first two

years of operation.



1.4 Thesis Layout

Chapter 2 presents a review of the literature on steel-free decks. Scale model and
full-scale model test results on steel-free decks at positive and negative moment region
are outlined and summarized. Construction and instrumentation of the Crowchild Trail
Bridge are described in detail in Chapter 3. Mechanical properties of materials used,

layout of structural elements and final as-built details are documented.

Chapter 4 presents a summary of experimental field test results and experimental
analysis obtained from the Crowchild Trail Bridge. Before the bridge was opened to
traffic, Phase I test was conducted to establish a reference structural characteristic of the
bridge. In Phase II of the tests, static and dynamic tests were performed. Details of Phase
1I testing are also discussed in terms of fundamental structural characteristics and its
changes over time. Crack patterns are also documented and presented in this chapter.

The experimental results are used to compare to the theoretical solutions discussed in



Chapter 5. Finally, Chapter 6 presents a summary of the findings for the field assessment

of the Crowchild Trail Bridge. Conclusions are drawn and suggestions are made for

future research in this field.



2. LITERATURE REVIEW

2.1 Steel-Free Deck in the Positive Moment Region

The concept of steel-free deck started with the work of Kinnunen and Nylander
(1960) who proposed a model to predict the punching resistance of simply supported
concrete slabs subjected to a concentrated load. Hewitt and Batchelor (1975) later
incorporated restraint boundary conditions and the concept of compressive membrane
stresses (known as internal arching action) with the model proposed by Kinnunen and
Nylander. Hewitt and Batchelor’s model, however, was developed for reinforced
concrete slabs with internal reinforcement. The proposed restraint factors were empirical

and can only be determined through experimentation.

The Technical University of Nova Scotia (TUNS), in collaboration with the
Ministry of Transportation of Ontario, initiated a research program on steel-free bridge
deck design (Mufti ef al., 1993). Five half-scale models of steel-free deck with in-plane
restraint provided by external steel straps were constructed and tested. The results of
these tests lead Mufii et al. (1996) to a gradual refinement of the steel-free deck concept.
The majority of their work on this concept has been empirical. Finite element models
developed by Wegner and Mufti (1994b) have provided useful guidance to help reduce the

amount of experimental work.

Wegner and Mufti (1994b) proposed a method to incorporate internal arching
action concept for unreinforced slabs with in-plane restraint provided by external
reinforcement. Several of Wegner and Mufti’s basic assumptions used in the development
of the model were adopted from Kinnunen and Nylander. The finite element results
however did not match experimental results with required accuracy and the concept was

found to be very complex and sensitive to modeling parameters (Newhook ef al., 1995).



After eight years of laboratory studies in the design and testing of steel-free
concrete deck concept, the Salmon River Bridge in Halifax, Nova Scotia was built
(Newhook et al., 1996). The Salmon River Bridge consisted of two spans, each31.2min
length, with a simply supported superstructure. To verify the design, a full-scale model of
the superstructure was constructed at the Heavy Structures Laboratory of TUNS. The

model was tested for various loading conditions to assess the ultimate strength behaviour.

2.1.1 Half-Scale Model

To optimize the internal arching action in steel-free deck design, Mufli ez al.
(1993) constructed various half-scale models based on the steel-free deck concept as
shown in Figure 2.1. The first three of the five half-scale models were constructed as cast-
in-place with 100 mm thick concrete deck. The girders were 2.31 m apart and 3.66 m
long. A concentrated load was applied to a 127 mm x 254 mm steel plate pad with rubber
bearing. The load represented wheel load, and it was applied at half way between the two

girders.

In the first half-scale model, three internal diaphragms were used but none at the
supports. This specimen failed at 173 kN. The failure mode was a hybrid of flexure and
punching shear. Diaphragms were added at the two end supports in the second half-scale
model and the failure load increased to 222 kN. The failure mechanism for the second
model was similar to the first model; a hybrid of flexure and punching shear. In the third
half-scale model, the diaphragm size was increased (Mufti ef al., 1993) and eight steel
straps were added at 457 mm on centers by welding to the underside of the top flanges of
the girders. The third model was tested three times, and the variable was the location of
the load along the span. In the first test, the model was loaded at the midspan, this model
failed in punching shear at a load of 418 kN. In the second and third tests on this third
model, the load was applied at different locations along the span. As the load point
approached the edge of the slab, the failure modes again became a hybrid of flexural and

punching shear.



Subsequently, a fourth half-scale model was built to investigate the behaviour of a
multi-girder system whereby the concrete on top of the interior span may crack under
tension due to loads straddling the girder. The test results showed simultaneous punching
shear failure under the two loads straddling the interior girder. The failure load was
418 kN for each loading location. Since the failure loads was the same for a single load
and dual load straddling the girder, the fourth specimen demonstrated that the proposed

design does support multi-girder systems.

Newhook et al. (1995) later constructed a fifth half-scale model similar to the
fourth model described above. This model was designed to evaluate the following
parameters: location of load, edge beams, strap spacing and stiffness, diaphragm
contribution, and reduced deck thickness. In the previous four specimens, loads were
always applied directly above or adjacent to straps, such that the straps were in the most
advantageous position to provide restraint. In the fifth specimen, however, the loads were
applied at the midpoint between straps, such that the straps would not be in the optimal
position to provide restraint. The fifth specimen was used for serveral ultimate static load
tests; all failure modes were punching shear. The authors concluded that the travelling
nature of wheel loads does not present a problem in terms of the ability of the straps to
provide the required lateral restraint, provided that the strap spacing is not excessive.
Newhook ef al. (1995) removed a portion of the diaphragm, but no significant effect was
found in the punching failure mode. The results further reinforced that straps provide

more effective lateral restraint than diaphragms. No dynamic testing was performed.

2.1.2 Full-Scale Model

Based on the fifth half-scale model, Mufli ez al. (1995) proceeded with a full-scale
model of the Salmon River Bridge. Two 12 m long girders were simply supported and
spaced at 2700 mm on center. Lateral tie was constructed at each end of the girders with
C380 x 50 mm channels bolted to top flange of the girders, which were made composite

with the deck using shear studs. At the ends, the deck was thickened to 300 mm. Angles



L100 x 100 x 10 mm were used for the remainder of the K-Type diaphragms at the ends.

At the mid-span, angles L100 x 100 x 10 mm were used for the X-Type bracing system
with a bottom chord. Concrete strengths for this full-scale model and the Salmon River
Bridge are listed in Table 2.1 below.

Table 2.1: Concrete Strength

Component with Fibres Experimental Model Salmon River Bridge
Compressive Strength 41.8 MPa 39.0 MPa
Modulus of Rupture 5.2 MPa 5.9 MPa

Figure 2.1 shows typical interior cross section and Figure 2.2 shows typical plan

view of the deck. The model consisted of a 200 mm thick slab with 100 mm haunches.

The slab was supported by two W610 x 241 steel beams tied together at the top flange

with 100 mm x 12.5 mm steel straps spaced at 1200 mm along the entire length of the test

specimen. The load patch was 250 mm x 500 mm, centered between the girders.

3—-N. STUDS ON
STEEL STRAPS @ 1200 O.C.
TYPICAL @ INTERIOR GIRDERS
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[

T

Y eio x 241___////////////!7

]

2700

Figure 2.1: Typical Cross Section of the Superstructure.
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Figure 2.2: Plan View: Location of Load Tests (Newhook et al., 1996)

To determine the contribution of the cross bracing to the lateral stiffness of the
system, a series of lateral point loads were applied to the sysiem, as shown in Figure 2.2
above. Before the concrete deck was cast, a series of horizontal loads was applied to the
fully braced system, in Test Series 1. Fully braced diaphragms, consisting of K-Type
braced plus the top and bottom flanges of the girders were tied together. In the Test
Series 2, the bottom chord of the diaphragm was removed leaving K-Type bracing. For
Test Series 3, the diaphrgam was completely removed. Results from these tests show that
the braced diaphragm provide less than 12 percent of the total lateral restraints stiffness at

the diaphragm location and quickly diminishes as the load moves away.

After the concrete deck was cast, Newhook ef al. (1996) conducted the following
three destructive tests. Test #1 was conducted to determine the load capacity of the
system. Test #2 was conducted to simulate a very severe tandem axle ioading. Test #2
was stopped at a load of 1373 kN for safety reasons. Test #3 was conducted to simulate
the failure of the strap. The test was terminated at a load of 863 kNN without failure. At
this point, the deck was severely damaged and longitudinal cracks ran full length along the
underside of the deck. The strap directly beneath the load point was removed to simulate

strap failure; the deck was loaded to a maximum of 1118 kN and failed at 951 kN.
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Newhook ef al. (1996) made recommendations for the calculation of the lateral
restraint stiffness of steel-free deck system by only considering the contribution from steel
straps alone. The steel-free deck on the Salmon River Bridge was designed based on this
recommendation. The design approach proposed by Newhook et al. (1996) leads to very
conservative results since it does not include the lateral stiffness contribution from girders,
cross bracings, outside restraint from straps, and load sharing of the system as a whole.
The lateral restraint contribution from straps compared to the total lateral restraint of the
model was only 40 percent of the total lateral stiffness of the system. Newhook et al.

(1996) recommendations are therefore conservative.

Stress-strain curves plotted by Newhook ef al. (1996) show that the steel-free
deck system seems to suggest plastic deformation after 470 kN. In terms of serviceability,
this can be a problem. Authors stated that the significant change in behaviour of the
system corresponded to the load at the point where the first crack was observed at the
underside of the deck beneath the loading point. It is also important to consider the
fatigue of concrete, as the maximum service load range is approximately one fifth of the

concrete cracking load.

2.1.3 Salmon River Bridge Project

The first steel-free deck bridge was built on the Trans-Canada Highway in Nova
Scotia. It was open to traffic on December 5, 1995. The bridge consists of two 31.2 m
simply supported spans. The cross section consists of steel plate girders spaced at 2.7 m
with diaphragms spaced at 7200 mm supporting a 200 mm deck with haunches of 130 mm
and no overhangs. The diaphragms are built-up of C380 x 50 with the strong axis in the
plane of the deck as opposed to conventional practice, which would have the strong axis
in the vertical plane. With this new concept, Newhook et al. (1996) believed that
adequate in-plane restraint would be developed to achieve punching failure capacity of the
deck. The concrete is reinforced with chopped polypropylene fibre. Lateral confinement

is provided by 100 x 14 mm uncoated weathering steel straps welded to the top of the
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girders at 1200 mm on center. Although it is believed that the steel straps need to only be
100 x 12 mm, an extra 2 mm is added to allow for the weathering process.

The predicted ultimate capacity for this configuration was 550 kN; this load
capacity was limited by the yielding of the strap adjacent to the maximum wheel load.
Testing of a full-scale model of this structure, which accounts for lateral stiffness of the
girder, deck haunches and post yield capacity in the straps indicated that the actual
capacity was in excess of 1200 kN (Newhook et al., 1996). The weld detail used to
attach the steel straps to the top flange of the beam was designed based on the following
two design considerations (Newhook et al., 1996):

1. Yielding of the steel straps at the factored load level.
2. Under cyclic service loads the stress range in the weld was limited to 48 MPa as per
CSA-S6 requirement for Class W connection detail with over 2 million cycles of load

reversal.

Salmon River Bridge was instrumented and monitored by TUNS and the Ministry
of Transportation of Ontario (Newhook ef al., 1996). Strain sensors were mounted on the
steel straps and girders to measure their field performance. Sensors consist of electronic
resistance foil gauges and Bragg Grating type fibre optic sensors. In addition, three fibre
optic sensors were embedded in the NEw Fiber composite MAterial for reinforcing
Concrete (NEFMAC) grids. No field data on Salmon River Bridge were presented
(Doncaster et al., 1996). Consequently, this fact further reinforced the need to field

evaluate such innovative structure.

2.1.4 Kent County Road

Another steel-free deck was built in Chatham, Ontario, in 1996. The bridge
consists of four spans of 13 m, 20 m, 20 m, and 13 m length. The two 13 m long spans
were built using the steel-free deck concept. The two interior spans used a conventional

steel reinforced concrete deck. The deck consists of a 175 mm slab supported by five
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girders spaced at 2.1 meters. The deck slab overhangs 0.9 m beyond the outer girder and
the overhangs were reinforced with Glass Fibre Reinforced Polymers (GFRP) bars. The
barriers are reinforced with double-headed tension bars made of stainless steel for
connection between barrier and deck slab. In the negative moment region of the deck,
GFRP bars were used as the reinforcement. The bridge barrier wall used was Ontario
Bridge Barrier (OBB) is also free of corrodible steel reinforcement. The bridge was also
instrumented with strain gauges but no known field data were reported. Again, this
innovative approach to steel-free bridge deck design had been put into used on two
different superstructures, yet no field data had been reported in regards to its performance

in service.

2.2 Steel-Free Deck in the Negative Moment Region

Dorey et al. (1996) investigated the suitability of continuous steel-free deck for
multi-span structures. A study was conducted to determine whether the steel-free deck
concept would have sufficient uncracked moment capacity over the negative moment
region to meet the OHBDC. A full-scale model was constructed and tested at TUNS.
Dorey et al. showed that the uncracked portion of the superstructure had adequate
strength for the specified loads, but not for the factored loads. The test by Dorey et al.
also showed that the uncracked specified serviceability stresses in the concrete did not
meet OHBDC-91 limit of 0.4f. for crack control. This is a potential concern in the
development of continuous steel-free deck over negative moment regions. However,
researchers at TUNS believe that steel-free deck concept over negative moment region
has sufficient reserve tensile capacity to carry the specified tensile loads (Dorey ef al.,
1996).
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2.2.1 Full-Scale Model

Dorey et al. (1996) constructed a full-scale test specimen of the negative moment
region. The length of the test specimen was taken as approximately 0.2 times the span
length of the continuous span. A 12.5 m long test specimen was used to model the
negative momen region of a two span 31.2 m bridge. The specimens were tested as
simply supported beams with the loads applied to create tension in the top fibers. The first
crack appeared near the location of the applied load at 314 kN. This was well below the
predicted 715 kN capacity based on measured flexural strength of the concrete. With
additional load, additional cracks developed in the transverse direction. The cracks that
formed during the test ranged in width between 0.50 mm to 2.20 mm at termination of the
test. The load at first cracking of the deck corresponds to a stress of 2.9 MPa, which is
close to the lower measured splitting strength of concrete, 3.2 MPa. Dorey ef al. (1996)
suggested that size effect is a factor for lower value in the model than in the material

tested.

The load versus deflection curve obtained from the tests conducted by Dorey ef al.
(1996) shows linear relationship before cracking, indicating a constant stiffness and elastic
behaviour. After cracking, the slope of the load versus deflection curve decreased,
indicating a loss of composite action. The slope of the load versus deflection curve
continued to decrease until it reached a lower bound (slope again became constant).
Dorey et al. have successfully correlated the predicted model to the experimental model in
regards to composite action before crack and after crack relationship. The test results
raised two important concerns: low cracking load capacity and large crack widths in

negative moment regions.
The experimental full-scale model had shown that both strength and serviceability

cracking limit states were exceeded in the negative moment region. Dorey et al. (1996)

suggested that the strength limit states could be easily addressed by
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e Proportioning the section such that the neutral axis is higher within the section.

e Increasing the concrete strength.

The writer, however, believes that by cambering the support in the negative
moment region before placement of the concrete and lowering the support to its desired
location after placement of the concrete, beneficial prestressing forces would be developed
in the concrete deck to help counteract the negative moment stresses. Of course, creep

must be considered in the design.

2.3 Serviceability Issues

Serviceability must also receive due consideration in addition to the strength
issues. Many freeze thaw cycles can deteriorate the concrete around the cracks and the
deterioration can be severe enough to cause overall deck failure. In addition, excessive
cracking in the negative moment region gives the chloride laden water on the top of the
deck easy access to the steel girders, leading to their premature deterioration. Finally,

aesthetics of structure needs to be considered.

As suggested in the name ‘innovative design’ of steel-free deck, it is essential to
field evaluate the durability of such design and its’ performance. Steel-free deck is an
innovative design proposed by Mufti and his associates, and it has been put into use on
both the Salmon River Bridge and the Kent County Road. Although these bridges have
been instrumented, no field data have been reported on its performance or durability.
TUNS had done extensive laboratory research works on the concept of steel-free deck in
collaboration with Ministry of Transportation of Ontario. However, all laboratory work
on scale model and full-scale model have been focused on the ultimate strength behaviour
and little on the serviceability. In addition, no dynamic testing was investigated for a

bridge deck that only performed under dynamic loading.
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Use of steel-free deck concept has been extended into the negative moment region
of the Crowchild Trail Bridge in Calgary, Alberta near the University of Calgary.
Crowchild Trail Bridge’s construction and instrumentation are described in detail in
Chapter 3. The University of Alberta has extensively developed field instrumentation and
monitoring program on this bridge. The purpose of this program was to field assess the
bridge’s static and dynamic behaviour in service. This program, in turn, established a base
structural characteristic of the bridge, thereby allowing a future long term monitoring

program on the bridge to be developed and evaluated.
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3. CONSTRUCTION AND INSTRUMENTATION
OF THE CROWCHILD TRAIL BRIDGE

3.1 Background

The Crowchild Trail Bridge is a two-lane, one-way traffic overpass located on the
intersection of Crowchild Trail and University Drive near the University of Calgary. The
original superstructure was a three-span prestressed concrete box-girder bridge designed
for HS20 truck loading. Each span is simply supported, and pretensioned longitudinally.
Due to a large increase in traffic loads and rapid deterioration of the superstructure, it was
necessary to replace the superstructure of the bridge. Photo 3.1 shows the old Crowchild

Trail Bridge concrete box girder system during demolition.

Photo 3.1: Old Crowchild Trail Bridge Superstructure under Demolition

The old Crowchild Trail Bridge was evaluated using Clause 11 of the Ontario
Highway Bridge Design Code (OHBDC-1991) and Clause 12 of CSA/CAN-S6-MS8 for
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a CS-615 design truck. Evaluation showed that the prestressed concrete box girders had
insufficient bending capacity.  Furthermore, the development and quantity of
reinforcement in the draped connection and T-Beam corbel were inadequate. Therefore,
the bridge was upgraded in July 1997. Two options for the upgrade were considered.
The first option was to replace the concrete box girders with new concrete girders. With
this option, it would have been necessary to also strengthen the existing foundations. The
second option was to replace the superstructure with lighter structure, thereby eliminating

the need to modify the supporting foundation.

After 20 years of operation, the original Crowchild Trail Bridge superstructure
was already in need of replacement. It was therefore necessary to find a better method of
construction, which would make better use of the concrete strength and would improve
durability in northern regions. For economic and durability reasons, it was decided to
replace the old Crowchild Trail bridge superstructure by a steel-free deck on steel girders.
With this option, the bridge could carry the CS-750 truck load, and the existing piers were
reused without any need of modification. The design for the typical overload trucks is
based on the Ultimate Limit State load rating, using Clause 12 of CAN/CSA-S6-M88.

Photo 3.2: Crowchild Trail Bridge’s Superstructure (Demolition Process)
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Photos 3.1 and 3.2 show the demolition process of the previous concrete box
girder superstructure. Furthermore, it shows how care was taken to protect the existing
piers so that they could be reused in the new construction without any modification.
Nonetheless, the steel-free deck concept is relatively new, and it is therefore necessary to
field evaluate its performance in the field from the points of view of strength and

serviceability.

3.2 Description of Crowchild Trail Bridge

3.2.1 General

Crowchild Trail Bridge has three continuous spans, 29830 mm, 32818 mm, and
30230 mm long from the North abutment. The superstructure is a composite structure
with a cast-in-place fiber reinforced concrete deck continuous over positive and negative
moment regions. The deck is supported on five built-up steel plate girders. This is the
first continuous steel-free deck in the world. Figure 3.1 shows the West elevation of the

new Crowchild Trail Bridge. Photo 3.3 shows the new Crowchild Trial Bridge after

construction.
650 —
’— 29830 32818 : 30230
250 !

| TRAFFIC GOING THIS WAY | TRETAINING

|j ! & BEARING —‘——";; V\‘('/ALL
: =" s I
. 7 Vi

See Figure 3.2 kl
For X-Sec View.

1
| !
7 < BEARING i ! L
! | i v TO EXISTING
b
i
!

S
IS A
NORTH ABUTMENT PIER No. 1 ®IER No. 2 SOUTH ABUTMENT

Figure 3.1: Crowchild Trail Bridge: West Elevation
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Photo 3.3: New Crowchild Trail Bridge (Looking North-East)

The major problem with the conventional reinforced concrete deck is the
corrosion of the internal steel reinforcement in severe winter climates. The new
Crowchild Trail Bridge has a deck width of 9030 mm and it has no internal steel
reinforcement. Figure 3.2 shows the overall cross-sectional view of the Crowchild Trail
Bridge superstructure. Refer to drawing Figure Al in Appendix A for more detailed

information.

Within each span, there are four cross frames equally spaced. These cross frames
serve as diaphragms and provide for lateral stability of the girders and load sharing
between the girders. The deck behaves much like a conventional reinforced concrete
deck, except that there is no internal tension steel reinforcement, which was replaced by
external steel straps. Photo 3.4 shows the completed deck view from under the bridge. In
this case, the exposed steel reinforcement consists of tension straps as shown in the

photo.
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3.2.2 Concrete Bridge Deck

With the configuration shown in Figure 3.2, the main part of the concrete deck is
only 175 mm thick with a 90 mm haunch spanning between the girders parallel to the
tension straps. The main purpose of the tension straps is to provide the necessary lateral
constraints to develop the internal arching action in the concrete deck. The tension-straps
are 50 x 25 mm bars spaced at 1.2 m on center. Loss of section due to the weathering
process has been considered in the design of the straps. A plan view of the strap layout is
presented in drawing Figure A3 of Appendix A. The drawing also presents the plan view
of the girder layout and cross sections of the girders along the length of the bridge.

The primary concem in the use of steel-free deck over negative moment regions is
the potential excessive flexural cracks width in the concrete deck, which may affect the
internal arching action required for the steel-free deck to function. Tests at TUNS have
tried to address this negative moment region issue. Tests confirmed that cracks in the
transverse direction do not significantly affect the internal arching capacity of the slab
(Dorey et al., 1996). Although transverse cracks consist mainly of shrinkage cracks and
do not cause structural concerns, in the negative moment region these cracks could
increase beyond the limits set out by the OHBDC (1991). To take care of the concern in
regards to transverse crack, Glass Fiber Reinforced Polymer (GFRP) bars are utilized
over the piers. Photo 3.5 shows the GFRP bars over the intersection of the bridge Girders

and Pier No. 1 diaphragm.

GFRP reinforcement is also used on both sides of the cantilevers of the deck, as
shown in Figure 3.2 and in Photo 3.6. Prefabricated glass fiber reinforcing grids,
NEFMACG, are used for the reinforcement of bridge barriers and double headed stainless

steel bars are used to anchor the barriers to deck.

The specified 28-day concrete compressive strength is 35 MPa. The concrete was

mixed with 0.45 percent by volume of chopped polypropylene fibers. Concrete mixes



used are in conformance with CAN3-A23.1-M90. Table 3.2 shows the concrete mix

characteristics for the Crowchild Trail Bridge.

Photo 3.6: Reinforcement at Cantilever Ends
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3.2.3 Steel Plate Girders

Built-up steel plate girders were used to replace the old prestressed concrete box
girders. The flange, web thickness, and depth of the girders varied between the positive
and the negative moment region. Figure 3.3 shows the top flange of the steel girders
along the bridge and identifies the location of four different section types described in

more detail in Table 3.1.

Table 3.1: Girder Type and Section Dimensions

BRIDGE GIRDER & PIER DIAPHRAGM SCHEDULE

SECTION TYPE TOP FLANGE WEB (d —-2t) BOTTOM FLANGE
1 18 x 350 mm 10 x 900 mm 30 x 550 mm
2 32 x 600 mm 12 x 900 mm 38 x 600 mm
3 18 x 350 mm 10 x 900 mm 25 x 500 mm
4 (PIER) 40 x 650 mm 28 x 860 mm 40 x 650 mm

Girder section type 1 is used in the positive moment regions of the first and last
spans of the bridge. Girder section type 2 is used in the negative moment regions, over
the piers. Girder section type 3 is used in the positive moment region of the middle span.

The steel grade used for the steel plate girders is CSA-G40.21M 300W.

Steel straps and girders are made composite with the concrete slab by cold-
finished carbon steel shear studs, grade 1020. The steel straps were attached to the
concrete deck using three shear studs above each girder as depicted in Photo 3.7. Before
the placement of the concrete deck, the steel straps were temporarily tied to the top of the

girders with light gauge wire.
The five steel girders are braced with cross frames; four equally spaced within

each span. Stiffened transverse girders over the two piers form transverse diaphragms

between all five girders. Bridging between the superstructure and the foundation supports
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are five load bearing plates at each abutment and two load bearing plates at each interior
pier. Photos 3.8 and 3.9 show the bearing plates at the abutment and the pier,

respectively.
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Figure 3.3 Plan View of Girders and Tension Straps

Table 3.2: Crowchild Trail Bridge Concrete Mix Properties/Specifications

CONCRETE MIXES (for 1 m’)

Specified Strength, f.’;s =35 MPa | Fine Aggregates = 680 kg

Water =155kg Air Entrainment =50 ml/ 100 kg

Cement =430kg Superplastizer =290 ml/ 100 kg

Coarse Aggregates = 1080 kg Polypropylene Fibers = 4.5 kg (0.45% by volume)
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Photo 3.7: Steel Studs on Plate Girders and Steel Straps

Photo 3.8: Supports at North Abutment
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Photo 3.9: Supports at Pier No. 1 (Looking South)
3.3 Instrumentation

To better understand the behavior of the new superstructure of the bridge, a field
instrumentation and monitoring program was developed at the University of Alberta in
collaboration with ISIS Canada, City of Calgary, and SPECO Consultant. Of particular
importance are the studies of static and dynamic behavior under service loading

conditions.
3.3.1 Location of Gauges

In the last two weeks of July 1997, the University of Alberta has extensively
instrumented the Crowchild Trail Bridge. The instrumentation installed on the Crowchild
Trail Bridge consisted of 108 strain gauges and five thermistors. Among the 108 strain
gauges, 86 of the strain gauges are 5 mm foil strain gauges, two are glued-on fiber optic

strain gauges, three are embedded fiber optic strain sensors in GFRP bars (called smart
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bars), and 17 are electrical resistance embedded concrete strain gauges (120 x 10 mm
gauge length). Four of the five thermistors were embedded inside the concrete deck and
one was used to measure the ambient air temperature near the bridge. Photo 3.10 shows a

typical embedded concrete strain gauge, a thermistor and an electrical resistance strain

gauge.

Thermistor Strain Gauge
Embedded
ConcreteStrain
Gauge

Photo 3.10: Gauging Instruments Used on Crowchild Bridge.

The 86 electrical resistance foil strain gauges were installed on the following
structural members: 64 electrical resistance strain gauges on structural steel members,
two on the NEFMAC grid, 17 on the GFRP bars, and three on smart bars. Smart bar is a
10 mm GFRP bar, with exterior sand coating, that comes with an embedded fiber optic
sensor. TUNS manufactured the bars under an ISIS research project. The smart bars
were used in conjunction with the three foil strain gauges for comparison with the fiber
optic sensors. The two glued-on fiber optic strain gauges were installed opposite to the
two foil strain gauges for comparison of their performance. The 17 electrical resistance
concrete strain gauges were embedded inside five precast concrete blocks. Four of the
five thermistors were also embedded inside two precast concrete blocks. All precast
concrete blocks had higher sand and water content than the concrete mix for the deck,

thereby giving the precast concrete blocks lower modulus of elasticity than the deck.
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A summary of all the instrumentation used in Crowchild Trail Bridge is presented
in Table 3.3. Included in this table are descriptions of the instrumentation, structural

members on which the instruments were mounted, notations, descriptions, and quantities.

Table 3.3: Instrumentation

Notation | Structural Members Monitored Quantities

[1] Electrical resistance foil strain gauges (120£2 5 mm in length, F=2.12)

G Built-Up Plate Girders 34
T Steel Straps 18
S Shear Studs 6
C Cross Frame 4
N NEFMAC grid and Stainless Steel Rods in the barriers 4
R GFRP bars (On deck reinforcement) 15
RC GFRP bars (Same location as glue-on fiber optic gauges) 2
RS Smart bar (Same location as embedded fiber optic gauges) 3

[1I] Electrical resistance embedded strain gauges (120£2 1 20mm in length, F=2.0)

E Embedded in precast concrete blocks 17
[III] Fiber Optic Sensors
FC GFRP @ RC gauge (Ser. No. N1001-441, -395) 2
FS Smart bars @ RS gauge (Ser. No. N1001-163, -356, -186) 3
[TV] Thermistors
TH Four in precast concrete blocks and one in open air 5

All the instrumentation was mounted in the North span of the bridge. The overall
Jayout of all the instrumentation used in the Crowchild Trail Bridge is shown in
Figure 3.4. The strain gauges placed on the girders are designated as the “G” series. The
«T” series strain gauges shown in Figure 3.4 were mounted on the tension straps at mid-
length. The “S” series strain gauges were mounted on the shear studs and the “C” series

were mounted on the cross frame. The “N”, “R”, “F”, and “TH” series were mounted on



NEFMAC, the reinforcing bars, the fiber optic sensors, and the thermistors, respectively.
The gauge notation summearized in Table 3.3 is used in all of the figures that follow.

Detail region “B” in Figure 3.4 shows 14 strain gauges and the fiber optic sensors
on the glass fiber reinforcement. The goal of region “B” instrumentation was to monitor
the behavior of the deck in the negative moment region and to evaluate the use of fiber
optic sensors. Two Fabry-Perot type of fiber optic sensors, manufactures by Rock Test
Inc., were installed on the glass fibre reinforcement at the same location as conventional
electrical resistance strain gauges to evaluate the performance of the fiber optic sensors.
The fibre optic sensors were non-compensated for temperature, and were installed using
the same epoxy as any other gauges (AE10 epoxy). More detail for drawing in region
“B” can be found in Appendix A, drawing number T200006.

Details for region “A” drawing in Figure 3.4 shows the six strain gauges on the
glass fiber reinforcements. The purpose of region “A” instrumentation was to monitor
the behavior in the cantilevers. All the gauges on the glass fiber reinforcement were

mounted in the laboratory before shipping out for field installation.

The numbers from 1 to 5 running vertically at the North Abutment shown in
Figure 3.4 identify the girders. The numbers from 1 to 25 running across the bottom from
North Abutment to Pier No. 1 identify the tension straps. Figure 3.4 depicts a rectangular
box between girders 1 and 2 on strap number 16, used as the central box where all the
wiring from all of the strain gauges converged. At the intersection of Pier No. 1 and
girder number 2, there is another central box for all the fiber optic gauges. Figure 3.4 also
shows the location of the six diaphragms between North Abutment and Pier No. 1. Two
of the diaphragms, on top of Pier No. 1 and the North Abutment, are stiffened steel plate
girders. The other four diaphragms are cross frames. The cross frames are made up of
back-to-back angles. The cross frame next to strap number 11 was instrumented as
shown in Figure 3.5. The instrumented cross frame is the third diaphragm from the North

as shown in Figure 3.4.
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Figure 3.4: Instrumentation Used in the Crowchild Bridge
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Figure 3.4: Instrumentation Used in the Crowchild Bridge (Cont’d)

Figure 3.5 shows the North elevation of the cross frame. All the strain gauges on
the cross frame were located at one quarter of the distance between the two girders in
order to stay away from the region of disturbance at mid-span. Photo 3.8 shows the

completed cross frames on Crowchild Bridge.

Detail “A” in Figure 3.5 shows the location of the gauges on the top horizontal
member of the cross frame. Detail “B” in Figure 3.5 shows the location of the gauges on
the bottom horizontal member of the cross frame. Strain gauges C1 and C3 were used to
evaluate the load sharing between the girders. Strain gauges C2 and C4 were placed as
shown in Figure 3.5 to monitor the out of plane movement of the cross frame under heavy
loading. The cross frame members consist of two L90 x 65 x 10 mm back-to-back. The
typical space between the two back-to-back angles is 20 mm, as shown in Detail “B”. A
100 x 100 x 20 mm gusset plate is bolted between these two angles at the mid-span
between the girders.

To control the alignment and position of the concrete strain gauges and the
thermistors in the cast-in-place concrete deck, the thermistors and the concrete strain

gauges were embedded in precast concrete blocks. The concrete blocks were sand blasted
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to improve bond with the deck concrete. Photos 3.11 and 3.12 show the formwork used

for the blocks of embedded concrete strain gauges and thermistors, respectively.
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Figure 3.5: Instrumentation on Cross Frame

Photos 3.13 through 3.15 show the completed precast blocks, field placement of
these precast blocks and the casting of concrete deck. Figure 3.6 shows the location of
the gauges and the precast concrete blocks for the embedded concrete strain gauges. To
monitor the arching action in the concrete deck, seventeen embedded concrete strain
gauges were installed in five precast concrete blocks. Blocks 1 and 4 each had four strain

gauges and blocks 2, 3, and 5 each had three strain gauges as shown in Figure 3.6.
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Photo 3.14: Precast Blocks for Embedded Thermistors (Field Placement)
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Locating on top of girder #1, as shown in Figure 3.6, Block 1 had gauges E2 to ES
and Block 4 had gauges E7 to E10. Blocks 2, 3 and 5 had guages E11 to E13, E14 to
E16, and E17 to E19 respectively. Blocks 1, 2, and 3 shown in Figure 3.6 were placed in
the positive moment region. Blocks 1 and 2 were placed on the eighth strap, 8770 mm
from the centreline of the North Abutment diaphragm as shown in the layout drawing
Detail “B” in Figure 3.4. Block 3 was placed 600 mm South of the eighth strap between
girders 1 and 2 as shown in Detail “B” of Figure 3.4. Photo 3.6 shows the field

placement of blocks 1, 2 and 3.

Blocks 4 and 5 were placed in the negative moment region on top of strap number
23 at 3400 mm North of centerline of Pier No. 1 (see Detail “C” shown in Figure 3.4 and
layout drawing number T200004A in Appendix A). These gauges have an overall length
of 120 mm, a nominal gauge factor of 2.0, a resistance of 120 €, and are temperature
compensated for concrete. The thermal output of these gauges is +1.8 ne/°C between

0 °C and 60 °C.

Four thermistors monitored the temperature profile in the deck and a fifth
thermistor measured air temperature. The location of the embedded thermistors is shown
in Figure 3.7. Three of the four embedded thermistors namely TH1, TH2 and TH4 were
placed inside the concrete deck as shown and TH3 thermistor was placed on the boundary
of the concrete deck and steel girder. A plan view of the blocks in Figure 3.7 shows the
coil of the thermistors wrapped at least two revolutions inside the concrete block before
extending out of the concrete. This precaution is taken to minimize effect of the
temperature conductivity through the lead wires of the thermistors. Photos 3.12 and 3.13
show the formwork and completed precast blocks for the themisters and Photo 3.14

shows the field placement of the blocks.
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Figure 3.7: Embedded Thermistors

Eighteen strain gauges were used to monitor the performance of the steel straps.
Twelve of the gauges, placed between girders 1 and 2, were used to examine the response
of the straps along the length of the bridge. Straps close to the supports and cross frames
are expected to carry less load than straps that are further away. The other six gauges
were used to monitor strain distribution along one steel strap. Three strain gauges were
placed on strap # 8 and the other three gauges on strap # 23 in the positive and negative
moment region, respectively. Figure 3.8 shows a typical cross sectional view of the straps

that were instrumented.

,-/ ‘7,
10+ k30 =10 ’ 4 k25
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Figure 3.8: Gauges on Steel Straps
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Six strain gauges were used to monitor strains in the end shear studs at 8430 mm
from centerline of the North end bearing. Figure 3.9 shows the location of these strain

gauges.
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Figure 3.9: Gauges on Shear Studs

Thirty-four strain gauges were used to monitor strains in the steel girders. As
shown in Figure 3.10, the webs of all five girders were instrumented with three gauges at
both the positive and the negative moment regions to monitor load sharing among the
girders and moment distributions along the girders. Furthermore, four gauges were also
installed on the flanges of girder 1 to measure any warping of the girders and to better
examine the strain distribution at a cross section. Figure 3.10 shows the location of the

gauges on the girders.
At the side barriers, two strain gauges were installed on NEFMAC and two on a2

stainless steel bar. Figure 3.11 and Photo 3.6 show in detail the installed gauges on the
NEFMAC and a stainless steel bar.
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The distance from the center line of the diaphragm at the North abutment is
9170 mm to the instrumented stainless steel bar or 400 mm South of strap number 8.

3.4 Field Testing

3.4.1 Tests Performed on Crowchild Trail Bridge

Since the superstructure of the Crowchild Bridge was replaced in 1997, five sets
of tests have been conducted. All five different sets of tests done on the bridge up to
August 1998 are summarized in Table 3.4. Tests in October 1997 and June 1998 were
conducted with unknow axles load, speed, and location of load. Some investigation of
the October 1997 data on the load sharing due to overall deflection is shown in Appendix
B. Tests in October 1997 and June 1998 and the temperature investigation in September
1997 were detailed in the Field Instrumentation and Monitoring of Crowchild Trail
Bridge report (Cheng and Afhami, 1999) and will not be covered here. Since tests in
August 1997 and August 1998 were conducted with know axles load, these two tests are
investigated in details as outlined in Chapter 4. Some comparison analysis of August

1997, October 1997 and August 1998 are shown in Chapter 5.



Table 3.4: Tests Performed on Crowchild Bridge

Test Measurements Comments
1. August ‘97
Ambient Vibration | Acceleration UBC performed the test before the
Bridge was open to traffic
Field Survey Deflections Truck load was known accurately
Static Test Strains Truck load was known accurately
Mapping Cracks Mapping Cracks Mapping of crack patterns
II. September ‘97
Temperature Test Strains, and Test performed under known
Temperatures temperature changes
II. October ‘97
Dynamic Test Strains Tests performed under unknown
traffic loading
V. June ‘98
Dynamic Test Strains Tests performed under unknown
traffic loading
V. August ‘98
Ambient Vibration | Acceleration U of A tested the bridge after it was
in operation for one full year.
Dynamic Test Strain, Deflection, Truck load was known accurately
and Acceleration
Static Test Strain and Deflection | Truck load was known accurately
Mapping Cracks Mapping Cracks Mapping of crack patterns
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4. EXPERIMENTAL RESULTS

4.1 Results of the August 1997 Test

In August 97, just prior to the first opening of the bridge to traffic, a research team
from the University of British Columbia (UBC) performed an ambient vibration test on
Crowchild Trail Bridge (Ventura er al., 1997). Ambient vibration tests do not involve
direct force excitation, but rather just forces from wind, surrounding traffic, human
activities etc. Measurements from ambient vibration tests are typically taken over a
longer period than for dynamic tests to ensure that all modes of interest have been
excited. The peaks in the Averaged Normalized Power Spectral Density of ambient
vibration measurements from different locations on the structures are then determined and
used to estimate the natural frequencies of the structure. It is worth noting that dynamic
properties of structures at low level of excitation may be slightly different from high level

of excitation.

Prior to the ambient vibration tests, University of Alberta, the City of Calgary and
Speco Consultants performed static tests. Two heavily loaded tractor-trailer trucks were
used in the static test. Vertical deflection points were measured by surveying, and strain
measurements were recorded using strain indicators. Finally, an initial crack pattern was

mapped.

4.1.1 Ambient Vibration Results from UBC

Data acquisition systems used in the ambient vibration test on the Crowchild Trail

Bridge by UBC are as follows (Ventura et al., 1997):

o Forced-balanced accelerometers, kinematics model FBA-11 capable of measuring up

to £0.5 g with a resolution of 0.2 pg.
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e Signal Conditioners, which used to remove undesired frequency contents and amplify
the signals. All filter cards (Kinemetrics AM3) were set to a cut-off frequency of
50 Hz.

e Analog to digital converter used was Keithly Model 575 AMM2 board.

Measurements were obtained when there was no traffic on the bridge, thus the
only forces acting on the bridge during the ambient vibration tests were wind, human
activity, traffic below and beside the overpass. Due to limited number of accelerometers
available, 14 different setups were required. In 11 of the 14 setups two accelerometers
were used as references and in the remaining three setups three accelerometers were used
as references. In phase analysis, reference accelerometer is required to establish the
relationships between the different setups. Eight accelerometers were used to monitor the
acceleration at 46 locations. The acceleration was monitored at 44 different locations in
the bridge deck, one near the base of Pier No.1 and one near the base of Pier No. 2.
Locations of the accelerometers are listed in UBC report EQ97-005 (Ventura et al.,
1997). The temperature at the bridge site during the test was approximately 8°C with
moderate to heavy rain for the majority of the test. The maximum recorded level of

vibration was approximately 1.7 milli-g’s.

In identifying natural frequencies, Ventura ef al. (1997) used an average of 64
records in the vertical direction, 40 records in the transverse direction, and 7 records in
the longitudinal direction. The most significant peaks between 0 and 20 Hz were
identified. Ventura et al. (1997) suggested that the results were preliminary and needed
to be complemented with results of finite element analyses. Furthermore, the resolution
of higher vibration modes was not as good due to the limited number of measuring points.
It was suggested that some modes are highly coupled and current techniques for ambient

vibration data analysis have difficulty handling these situations.

The ambient vibration tests were performed by UBC on the Crowchild Trail
Bridge on August 15, 1997, between 9:00 AM to 11:00 PM. The tests identified 13
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natural frequencies between 0 and 20 Hz. A list of these natural frequencies is given in
Table 4.1.

Table 4.1: Natural Frequencies Between 0 - 20 Hz.

Peak Frequency (Hz) Mode Shape
1 2.78 1% Fundamental Vertical
2 3.13 1* Fundamental Torsional
3 3.76 2" Vertical Mode
4 4.05 2" Torsional Mode
5 4.64 3" Vertical Mode
6 5.18 3" Torsional Mode
7 7.13 4™ Torsional Mode
8 9.13 4" Vertical Mode
9 10.94 6™ Torsional
10 12.99 6" Fundamental Transverse
11 15.63 6" Couple Torsional
12 17.87 5™ Vertical
13 19.24 7™ Torsional

4.1.2 Static Test Results

For the static tests, two trucks, each weighing approximately 357 kN, as shown in
Figure 4.1, were used for nine different load cases, P1 to P9. The two trucks used in the
tests; they had approximately the same axles load and spacing of the axles as illustrated in
Figure 4.1. Figure 4.2 shows the locations of the truck on the North span of the bridge for
the nine different load cases used in the static tests, P1 to P9. The trucks were facing
north for all tests. The nine load points are shown by the ‘X° marks running between
girder 1 and girder 2. These ‘X’ marks are in reference to the front axial of the truck’s left
wheel. In all the tests, the trucks were moving from South to North. For six of the nine
load cases, the two trucks were parked side by side at points P1 to P6 along the bridge as
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shown in Figure 4.2. For load points P1 to P6, the layout positions of the two trucks in
the transverse direction of the bridge are as follows: facing north, the truck on the West
side; its’ left wheel of the front axle is at midpoint between girder 1 and girder 2. Since
the two trucks were parked side by side, the truck on the East side, its’ right wheel of the
front axle is at an approximate midpoint between girder 4 and girder 5. The bridge was
therefore loaded symmetrically. For the last three load cases, P7 to P9, only one truck
was used for the tests. The layout positions of the truck for load cases P7 to P9 in the
transverse direction of the bridge are facing north; the truck’s left wheel is at an

approximate midpoint between girder 1 and girder 2.

{TRANSVERSE WHEEL SPACING 6" 0.Cj
[14636kg] [15160kyg]

HSOCJ 1'_.1 ﬂ

Figure 4.1: Trucks Use in August 97 Test

For all nine load cases, strain readings were recorded at the same time as the
surveying measurements. For each loading condition, 25 deflection points were
surveyed, namely, five points along each girder in the North span. The survey points are
identified as A1-AS, B1-B5, C1-C5, D1-DS, and E1-E5 in Figure 42. The field survey
results and their corresponding load points are shown in Table 4.2. All the corresponding

strain gauge readings are presented in Appendix B.
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4.1.2.1 Survey Results

The maximum deflection in the North span was 17 mm downward at survey point
C2, when the front axles of the two trucks were placed at load point P5. Figure 4.3 shows
the deflections for the five girders at survey points C1 to C5 for this load case. In turns,
these deflection measurements can be used to assess the level of load sharing between the

girders.

Deflection [mm])

Girder Number

Figure 4.3: Deflection at C1 to C5 for Load Case P35

Figure 4.4 shows the deflection for all five girders at the measurement points Cl
to C5 for load case P1. For this load case P1, the two trucks were on the middle span, the
maximum deflection in the North span was 7 mm upward at C5 as shown in Figure 4.4.
Although the bridge was loaded symmetrically, girder 1 shows the highest deflection of
all five girders. Girder 4 in Figure 4.4 shows the least among of deflection among the
five girders. Deflection results from August 1997 were done by surveying, thus its may

scatter significantly.
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Figure 4.4: Deflection at C1 to C5 for Load Case P1

To impose an eccentric loading on the superstructure, the front axle of a truck is
placed at load point P9. The resulting deflection measured in the girders is shown in
Figure 4.5 below. The maximum deflection under the truck load is 13.5 mm at C1 for
girder 1. At this time, the cross frame between the girders perform very well in
redistributing its load among it neighboring girders. Note the slight non-linearity in load
sharing among the girders for girder 2. This is expected because under tributary area, it is

carrying twice the load as its neighboring girders under this loading condition.
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Figure 4.5: Deflection at C1 to C5 for Load Case P9

4.1.2.2 Results from Strain Measurements

A manual switch box was used to record the strains during the static test in
August 1997. On August 11™ 1997, the first set of readings was taken at 6:30 a.m., just
prior to placing asphalt. The air temperature at the time was 14°C. At 11:20 a.m. on the
same day, a second reading was taken after the asphalt was placed and had cooled; the air
temperature was 21°C. The strain gauge readings for before asphalt and after asphalt is
placed are documented in Appendix B. In addition, strain gauge readings obtained for all
the nine load cases are also presented in Appendix B. The strain gauge readings were
used to find strain distribution in the cross section, the location of the neutral axis, assess
the load sharing between girders, and compare the analysis results with the field test
results. Furthermore, it provided the base structural characteristics of the bridge for
future studies.

The strain distribution in girder 1 obtained from the measured strains is shown in

Figure 4.6. With such loading configuration, the maximum measured strain is 103 pe on
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strain gauge G3. Although strain gauges G33 and G34 show smaller strain than G3,
nonetheless, strain distribution in the cross section is still linear otherwise. Field
investigation showed that strain gauges G33 and G34 had poor connections, hence they
are unreliable. The small strains indicate that the bridge response was well within the

elastic range. Note the neutral axis is at 54.1 mm below the bottom of the top flange.

JL’_ 350 i

—ate— 165 0

10 I 165 ‘ 16 —-“—-1
- T ;
G31 |18 \ I'[ G32

1o M
G1 |

I
|

9030 mm FROM
CENTER LINE OF
BEARINGS AT

NORTH ABUTMENT |,

-
1
| 1
so«‘ 225 2 t-so
550

Figure 4.6: Positive Moment Region Strain Distribution in Girder #1

For the same load case P9, the strain distribution in the negative moment region is
shown in Figure 4.7. Despite the slight non-linearity, the strain distribution is essentially
linear. From extrapolation, the high compressive strain in the bottom flange is 30.7 pe.
The neutral axis is at 93 mm below the bottom side of the top flange. The change in the
location of the neutral axis in the negative moment region reflects the change in

composite action of the member.
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Figure 4.7: Negative Moment Region--Strain Distribution in Girder #1

Load sharing between girders is best examined by using the measured strains in
the girders. On all web of the girders in positive and negative moment regions, there are
longitudinal strain gauges at 150 mm from the topside of the bottom flanges. When one
truck is loaded at load point P9, load sharing among the girders were based on strain
gauge measurements as shown in Figure 4.8. The maximum strain under this loading
condition is 103 pe on girder 1 in the positive moment region. In the negative moment
region, the maximum compressive strain is 22 pe in girder 1 and girder 2. Note the
strains on girders in the negative moment region; almost all have the same magnitude.
This would indicate that the load distribution by the diaphragm over the pier is very
effective in distributing the load.
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Figure 4.8: Strains in Positive and Negative Moment Regions for August 1997

4.1.3 Crack Pattern for August 1997

Crack patterns on the bottom side were mapped in August 1997 for the first time.
The reader should recall that Crowchild Trail Bridge consists of three continuous spans.
The South span was reinforced with both GFRP and steel reinforcement. The crack
pattern detected in the south span as of August 1997 is shown in Figure 4.9. All cracks
formed were transverse cracks. Most cracks at that stage were less than 0.5 mm in width.

No longitudinal cracks were detected.

Figure 4.10 shows the crack pattern observed in the middle span, which is
partially reinforced with GFRP bars and has no steel reinforcement. This appears to have
more transverse cracks than the North or South span. The North span, reinforced only in
the cantilever edge, has the least cracks as shown in Figure 4.11. All cracks width was
approximately 0.5 mm. As of August 1997, there were no longitudinal cracks in any of

the spans.
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4.2 Results of the August 1998 Test

By August 1998, Crowchild Trail Bridge had been in operation for one full year.
Initial tests were carried out in August 1997, before the bridge was open to traffic, to
establish base structural characteristics of the bridge. A second test was conducted in
August 1998. The second test included static and dynamic load tests using truck with
known axle loads and ran at various speeds. In addition to the electrical strain gauges
installed in the first year, cable transducers and accelerometers were added in the second
year test. Natural frequencies and mode shapes of the bridge were also determined by the

ambient vibration test.

Results from the second test, such as load sharing between girders, dynamic load
factor, bridge stiffness, natural frequencies and damping factor of the bridge, are
presented. Where applicable, these results are compared to the base test results. In
addition, the crack pattern of the concrete deck is mapped and compared to the pattern
observed before the bridge was open to traffic. The changes in the bridge structural
characteristics are used as an indication of the amount of deterioration of the Crowchild

Trail Bridge during the first year of operation.

4.2.1 Ambient Vibration Tests

Field assessment of a full-scale real life structure in service was never an easy
task. On August 1998, a second ambient vibration test was performed on the Crowchild
Trail Bridge. The tests took less than two hours to perform with only one lane closed to
traffic and the other closed only intermittently. The results from this second Ambient
Vibration Tests are essential for comparison to the base structural characteristics of the

bridge.
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4.2.1.1 Objective and Problems

The objective is to use ambient vibration tests to determine the dynamic behavior
[frequencies, mode shapes, stiffness, and torsional rigidity of the deck] of the Crowchild
Trail Bridge. The selection of the proper tools and procedure was an important part of
this investigation. During ambient vibration tests, the bridge is considered to be excited
by various random low-level forces. Such random forces can be from wind, passing
vehicle underneath the bridge and other human activities. Such random forces cannot be
controlled, and the level of excitation is very low. Reliable results are possible, provided

that:

1. Strains are small, and the system behaves linear elastically.

2. The level of excitation is such that the structure’s mode shapes of interest are
significantly excited. Thereby, it is identifiable in the power spectrum.

3. The system is lightly damped.

Thereby, the period of measurements in ambient vibration test is typically longer

than in dynamic tests in order to capture all the mode shapes of interest.

4.2.1.2 Field Testing

Due to various limitations for field testing of such bridge in service, testing
programs must be very carefully designed to take the least amount of time and create
minimal interference to traffic flow. Ideally, 200 accelerometers or more are needed on a
bridge this size, thus only one set of reading is needed. Accelerometer instrument is
however very expensive, and therefore only four accelerometers were made available.
Due to this limitation, the ambient vibration test was broken up into a series of ten sets of
tests. Despite limited number of accelerometers available, ambient vibration tests
performed in August 1998 took less than two hours. Only one of the two lanes was
closed to traffic for the full two hours, where as the other lane was only closed
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intermittently for each of the test. All four accelerometers were used in each of the ten
sets of reading were taken. For each set of reading, the intermittent closing of the second
lane was 3 minutes and 20 seconds. Eight of the ten sets of readings were taken for the
vertical modes and two for the transverse modes behaviour of the bridge. In each set of
test, the data was acquired for 200 seconds with a scan rate of 200 scans per second. This
enabled the capture of frequencies up to 50 Hz with the corresponding mode shapes for a
complete phase analysis. However, only frequencies below 10 Hz are of interest in this

work and discussed in details.

For ambient vibration tests, all the accelerometers were placed as shown in Figure
4.12. In the transverse direction, the accelerometers were placed directly on top of either
girder #1 or girder #2. For each set of reading, one of the four accelerometers was placed
at the reference point (see Figure 4.12). This reference accelerometer was later used to
normalize the other accelerometers with respect to the magnitude and direction of the
vibration. By normalize all other accelerometers’ magnitude with respect to the reference
accelerometer for each set of test, it had the effect of canceling out the different levels of
excitation forces in various sets of tests. In addition, reference accelerometer also serves
a vital role in correlating all the different sets of tests for phase analysis to identify the
mode shapes. Table 4.3 shows the test #, filename, accelerometer # and its’ location on

the bridge for each test performed (see Figure 4.12).
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Table 4.3: Filenames and Accelerometer Locations

Test #

Filename

Accelerometer #

On Top of Girder #

9T

10T

A0825P0952.raw

A0825P1001.raw

A0825P1008.raw

A0825P1019.raw

A0825P1049.raw

A0825P1057.raw

A0825P112]1.raw

A0825P1131.raw

A0825P1041.raw

A0825P1029.raw

10(Ref)
11

12
13

10(Ref)
11

12
13

10(Ref)
11

12
13
10(Ref)
11(Ref)
12(Ref)
13(Ref)
10(Ref)
11

12
13

10(Ref)
11

12
13

10(Ref)
11

12
13

10(Ref)
11

12
13

10(Ref.)
11

12
13
10(Ref))
11(Ref)
12(Ref)
13(Ref)
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The eight elliptical-circles shown in Figure 4.12 were referred to the eight sets of
tests performed to determine the vertical characteristics of the bridge. These eight
elliptical-circles shown from North to South respectively were directly corresponding to
Test #1 to #8 as shown in Table 4.3. For example for Test #1, the three dots shown in the
elliptical-circle on the North span were the locations of the accelerometers. The last
column in Table 4.3 indicates the location in which the accelerometers were placed.
Tests #1 to #8 are for vertical mode shapes. Note the Accelerometer # 10 was always
placed between the 33" and the 34" steel strap from the North, and it was not moved for
any of the eight tests. Only three of the four accelerometers were moved for each of the
test performed. For the transverse mode shapes, only two readings were taken, Test # 9T
and #10T. For Test #9T, the location of the accelerometers #10, #11, #12, and #13 were
near the 17%, 30%, 33, and 43™ steel strap from the North abutment, respectively. For
Test #10T, all accelerometers were place between the 33" and the 34" steel strap from the
North. All accelerometers were monitored using LabVIEW in combination with a high-

speed data acquisition system to obtain data shown in Table 4.3.
4.2.1.3 Data Reduction

Plot of raw data for accelerometer #10 in file A0825P0952.raw is shown in
Figure 4.13. It shows the responded of the accelerometer in mV as a function of time in
second. The analog signal from the accelerometer was converted to digital signal and
sampled at 200 scans per second for 200 seconds. Nyquist frequency rule dictates that the
maximum frequency can be determined from any response is half of the sampling rates
(McConnell, 1995). Consequently, for a sampling rate of 200 scans per second, the
maximum frequency that can be determined is 100 Hz. Hence, the scan rate used was

more than sufficient for the interested frequencies of 10 Hz and less.
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Figure 4.13 Accelerometer #10-- Raw Data

Before the tests begin, several sampling rates were trailed and tested for variation
in frequencies response. At 200 scans per second, there was no variation in frequency
response for this bridge. Hence, the Aljasing problem had been considered in collecting
these data. An example of Aliasing error in data collecting is shown in Appendix B.
Despite all precaution had been taken to eliminate all known errors, the background noise
from the DC power source render such raw data are of little use. Fortunately, these noises
were deterministic and periodic (typically they occurred at a multiple frequency of 20
Hz). Butterworth filter type was chosen to filter out such unwanted frequencies. This
filter was chosen for its smooth response at all frequencies and a monotonic decrease
from the specified cutoff frequency characteristics. Butterworth filter was applied to all
raw data to obtain the final filtered data.

Figure 4.14 shows power spectrum plot of the raw file A0825P0952.raw. The
power spectrum of the raw data was computed by applying Fourier Transforms to find the
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frequencies of the function. The horizontal axis represents the frequency axis and the
vertical axis is the square of the amplitude of the accelerometer response. Commercially
available software such as LabVIEW was used to digitally apply Fast Fourier Transforms,
FFT and Discrete Fourier Transforms, DFT and plot the power spectrum (National
Instruments Corporation, 1996). Since only frequencies between 2 to 10 Hz are of
interest, Figure 4.14 below only shows frequency between this range.

0.1
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Figure 4.14 Power Spectrum for Accelerometer #10

The actual vibration modes of a structure may be highly coupled. Depending
upon the location of the accelerometer placed on the structure, it may see higher
magnitude of excitation for some frequencies and little or none of the others frequencies.
For example, if an accelerometer is placed at mid-span on a simply supported beam, it
may see maximum magnitude of vibration in the first mode and little or none in the
second mode. Figure 4.15 is a plot of the accelerometer #11 from the same file as
Figure 4.14, which is a plot of accelerometer #10. Note that the frequency of 2.60 Hz is
very predominant in Figure 4.14, but very little is showing in Figure 4.15 despite the fact
that all the accelerometers were calibrated to have the same output when subjected to the

same level of excitation. The significantly lower magnitude of excitation for the 2.60 Hz
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frequency shown in Figure 4.15 compared to Figure 4.14 is due to the location of the
accelerometer and not the accelerometer itself. To determine the exact mode shape of
each frequency, the following parameters are require: the level of excitation as a function
of location on the bridge and the direction of excitation at an instant frame of time. Since
the vertical axis of the power spectrum plot is amplitude squared, the directions are not

known at that particular time frame.
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Figure 4.15: Power Spectrum for Accelerometer # 11

In order to determine the mode shape for a particular frequency the magnitude and
direction of excitation at different points along the bridge must be known. The
magnitude of excitation for each frequency can be found from the power spectrum
analysis. The direction of excitation can be determined by comparing the phase of
excitation to the reference accelerometer excitation. In raw data, the frequencies are
highly coupled. In phase analysis, only one frequency can be examined at a time. Thus, a
band-pass filter is used to isolate the frequency of interest. Each file is then filtered for all
frequencies of interest in turn. Finally, the phase of each frequency can be compared to

the reference accelerometer with the same frequency. Figure 4.16 shows the phase
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analysis plots for 2.60 Hz frequency. Clearly for 2.60 Hz, accelerometers #11 to #13 are

all moving in the opposite direction compared to the reference accelerometer #10.
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Figure 4.16: Phase Analysis for 2.60 Hz

In order to distinguish between the torsional and vertical mode shapes, the
magnitude of excitation of girder #1 is compared to that of girder #2. If both
accelerometers on girder #1 and girder #2 located at the same distance along the bridge
show a very close magnitude of excitation, the mode of vibration is a vertical mode.
Figure 4.17 shows such magnitude comparison. Likewise, if the difference between the
magnitudes of excitation is always proportional to the distance between the
accelerometers across the width of the bridge at a cross section, the mode of vibration is a
torsional mode as shown in Figure 4.17. This method is based on the assumption that the
bridge deck is rigid. An improvement in future testing would be to place an
accelerometer on every girder, since the bridge deck may not be rigid. Another benefit of
this modification is that it allows a closer examination of the stiffness of the individual

girders, and the stiffness of the deck.
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Figure 4.17: Distinguish between Vertical [4.43 Hz] / Torsional [5.00 Hz] Mode Shapes

4.2.1.4 Frequencies and Mode shapes

Due to the nature of mode shapes and the small number of accelerometers used on
this bridge, some accelerometers may or may not capture some particular frequencies.
For example, the power spectrum for Accelerometer #11 shown in Figure 4.15 practically
did not captures the 2.90 Hz frequency, where as Accelerometer #10 shown in
Figure 4.14 does. Again, this is due to the location of the accelerometer on the bridge,
which determine the frequencies and magnitude of the frequencies captured. It is worth
noting that eight different vertical vibration tests were performed, and each test was
conducted with the accelerometers at different locations on the bridge. Consequently, if
one accelerometer did not capture some particular frequencies, than chances are other
accelerometers at other locations on the bridge will captures these missing frequencies.
Therefore by summing all four accelerometers in each of the test, from eight different
tests, it is possible to capture the majority of the lower modes of vibration without
missing any modes. Likewise, if there were enough data gather from infinite number of

points from the bridge, then there is no limits to the number of mode shapes in which it
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can captures. The power spectrum of all eight files in the vertical mode are summed and

plotted in Figure 4.18.
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Figure 4.18: Power Spectrum for the Sum of All Accelerometers from Eight Files

The power spectrum shown in Figure 4.18 identifies eight predominant
frequencies below 10 Hz as outlined in Table 4.4. The resolution of these frequencies is
+0.01 Hz. Table 4.4 shows the ambient vibration tests done by U of A and UBC yields
very close results. In addition, the mode shapes found by both Universities were all
matched. In general, the frequencies found in August 1998 were approximately 0.20 Hz
lower than the frequencies found in September 1997. Since the mass of the bridge had
not changed over the last one year of operation, thus the bridge stiffness could have been

reduced.
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Table 4.4: Vertical and Torsional Modes

U of A (Aug °98) | UBC Report (Sept *97) Description

2.60 Hz 2.78 Hz 1* Fundamental Vertical Mode
2.90 Hz 3.13Hz 1** Fundamental Torsional Mode
3.63 Hz 3.76 Hz 2" Vertical Mode
3.85Hz 4.05 Hz 2" Torsional Mode

443 Hz 4.64 Hz 3" Vertical Mode

5.00 Hz 5.18 Hz 3" Torsional Mode

6.85 Hz 7.13 Hz 4™ Torsional Mode

8.60 Hz 9.13 Hz 4" Vertical Mode

The frequencies in Table 4.4 above and its corresponding mode shapes are shown
in Figure 4.19. Both three-dimensional prospective view and the West elevation view of
the each mode shape are shown in the figure. For each figure, it consisted of one vertical
and one torsional mode shapes. For all figures shown in Figure 4.19, the horizontal axis
is the distance along the bridge, and the vertical axis is the average normalized magnitude
of excitation for each mode shape. For each frequency list in Table 4.4 above, the

corresponding mode shapes are shown in Figure 4.19 as follows:

1. Figure 4.19 (a) 1¥ fundamental vertical and torsional mode shapes.

o

Figure 4.19 (b) 2™ fundamental vertical and torsional mode shapes.

(93]

. Figure 4.19 (¢) 3" fundamental vertical and torsional mode shapes.

>

Figure 4.19 (d) 4™ fundamental vertical and torsional mode shapes.
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4.2.2 Static Test Results

To establish the static behaviour of the bridge under service load, a truck with
known axles load was used in the tests. The static test results in August 1998 were used
to monitor the change in the bridge structural characteristics by comparing it to the static
test results obtained in August 1997. Subsequently, the results were also used to compare
to the dynamic test results in August 1998. The truck had a total gross weight of 395 kN
with 42 kN on the front axle, and 154 kN and 199 kN on the second and third tandem
axles as shown in Figure 4.20. For all the tests performed in August 1998, the truck was
moving from North to South as shown in Figure 4.21. Figure 4.21 shows the position of
the right wheel of the front axle along the bridge for each of the static tests. All load

points were located at midpoint between girders #1 and #2 as indicated in Figure 4.21.

{TRANSVERSE WHEEL SPACING 6" 0.C.}
[20280kg] [15650kg]

1219 [47] 1372 [4'-8"]
5359 [17'-7"] 1902 [16'=1"]

Figure 4.20: Truck Used for August 1998 Static Tests

Initial zero readings were obtained before the test truck moved onto the bridge.
Strain gauges and cable transducers were recorded for each load position indicated in
Figure 4.21. It tokes approximately 1-2 minutes to complete each set of reading for one
load point. After every four to five readings, the truck was moved off the bridge to re-
establish zero readings for all the instrumentation to account for possible temperature

effects.

The high-speed data acquisition system available was limited to read 50 channels at
a time. Due to this limitation, all static and dynamic tests were repeated three times for

each load point of interest. Over 100 strain gauges, 10 cable transducers, and four
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accelerometers were used for the August 1998 tests. Due to high number of strain gauge
channels needed for each load point, these strain gauge channels were divided into three

separate sets as follows:

Strain Gauges Set 1  Strain gauges G1 to G34 and T4

Strain Gauges Set 2 Strain gauges T1 to T18, R1 to R15, RC1 and RC2

Strain Gauges Set 3 Strain gauges E2 to E19, N1 to N4, T4, S1 to S6, C1 to C4,
and RS1 to RS3

Consequently, each test had to be repeated three times in order to record the three
sets of strain gauges. For each test run, the high-speed data acquisition channels were set

up to log the following readings:

1. Channels 0 to 34 are for 35 strain gauges (either Set 1, Set 2, or Set 3 was connected
for Static and Dynamic tests).

2. Channels 35 is for the one standard strain gauge (Connected at all times for Static and
Dynamic tests).

3. Channels 36 to 45 are for the 10 cable transducers (Connected at all times for Static
and Dynamic tests).

4. Channels 46 to 49 are for the four accelerometers (These channels were connected for

Dynamic test only).

Since all test runs were repeated three times for each load point, data for the ten
cable transducers, one standard strain gauge, one 74 strain gauge and four accelerometers
were logged redundantly three times each. Hence, these triplicate sets of data were used
to check the consistency of test results. Due to high volume of strain gauge channels
needed for each load point, Strain Gauges Set #1, Set #2, and Set #3, were logged only
once for each test run. Unfortunately, for Set #3 in the static test, the truck was not

positioned on every load point due to time limitation.
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4.2.2.1 Data Obtained from the Cable Transducers

Cable transducers # 1 to #5 measured the vertical displacement at strap #13 for
girders #1 to #5, respectively (see Figure 4.22). Strap numbering system is shown in
Figure 4.22 below. Cable transducers #6 to #3 were mounted on girders #1 to #4,
respectively at strap # 21. Cable transducer #10 was used to measure the vertical

displacement of girder #5 at strap #33, in the middle span.
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¢ BIARING CF DIAPHRAGM TRAFFIC GOING THIS WAY X
381 29830 '
330 —+4
900 =, 23 SPACES @ 1200 (50x25 THICK STRAPS RUN ACROSS THE TOP OF ALL GIRDERS) 900
5 —_— =3 d — ol e oad od - - h)

i
¥
4219} [¢] I——--1372 4'-3") \~ 2000

M) !

— —— a - -

g L CdiLimicinnmmeai:
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1 ¢ = l E = 5 = = I — } )

T 1 t T t b -

12 3 4 5 6 7 89 10‘11121314‘»5‘517‘:819202122232425l

6200
S CROSS FRAMES EQUALLY SPACE !
GIRDER SECTION TYPE 1 GIRDER SECTION TYPE 2—
NORTH ABUTMENT PIER No. 1

Figure 4.22: North Span Loading Configuration and Strap Numbering.

LOAD SHARING AMONG GIRDERS Load sharing

0 1 2 3 4 5 6 _
0.0 : l ' : : , between the girders can be
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4.0 / i transducer data collected

at Strap #13. As shown in

-8.0 / . Figure 423 the maximum

-10.0 v : deflection under this ome

Deflection [mi]
&
o

Girder Number

) irder #1.
Figure 4.23: Cable Transducers at Strap #13 for girder #1
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The bridge influence line can be shown from the cable transducer results at
strap #13, as shown in Figure 4.24. The locations of the cable transducers at strap #13 is
shown in Figure 4.24 by a single vertical line labeled Cable T. The vertical axis shows the
deflection in millimeters for girders G1 to G5 for different positions of the front axle of the
test truck from the North end of the bridge, plotted along the horizontal axis. The
horizontal axis is the distance in meters along the bridge from North to South. In
addition, the two vertical lines labeled Pier No.! and Pier No.2 indicate the location of the
two interior piers with respect to the overall length of the bridge. For the North span, the
maximum deflection recorded was 10.3 mm when the truck front axle was 15.90 m from
the North abutment (at Strap #14). Assuming the bridge to be a continuous beam, the
maximum deflection is expected at strap #14. However, the middle span had a maximum
deflection of 4.46 mm when the truck front axel reaches 9v.85 meter South of Pier No.l.
This was not expected based on Maxwell's reciprocal theorem. Because for a continuous
3 equal spans bridge, assuming the bridge has the same stiffness all along its length, the
maximum deflection is expected to be at the midspan. A maximum deflection at 9.85
meter South of Pier No.1 is merely one-third the length of the middle span. This may
suggested that the stiffness at this point is lower than its neighboring part. Whereby the
same loads at this point had a larger influence effects on the overall structure than its

counter part.
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Figure 4.24: Influence Lines from Cable Transducers at Strap #13

4.2.2,2 Results from Strain Measurements

On the bottom side of the strap #8, there were two strain gauges mounted at
midpoint between girder #1 and #2, side by side on the strap. This was used to monitor
the deviation in the strain gauges readings and arching action in the deck. Results show
the maximum difference in the two strain gauges readings on strap #8 was 2 pe. This
indicated that the variation in the any of the strain gauge readings were quite small.
Secondly, when the centerline of the second axel was offset to the South of strap #8 by
1.027 mm, the steel strap #8 gives a maximum strain reading of 85 pe and it cycles
between -15 to 85 pe as the truck move across the entire length of the bridge. With such

low strain cycle on the steel straps, fatigue is not a concern.
The cross sectional views of the girders #ype / and fype 2 that was indicated in

Figure 4.22 are shown in Figure 4.25. The strain gauges location on all steel girders and

its distances from the North Abutment were also detailed as shown below.
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Figure 4.25: The Three Girder Type Used and Strain Gauges Layout

Strain gauges G1 to G3 were mounted on the web of girder 1 and gauges G31 to
G34 were mounted on the flange of girder 1 as shown in Figure 4.25. The strain gauges
were mounted at 9.03 m from North abutment. When the front axle of the truck reaches
15.05 m from North abutment, the cross sectional strain from top to bottom of the cross
section are -10, 18.6, 65.1, 97.1, and 104 e respectively for August 1998. These
recorded strain distribution in girder 1 is shown in Figure 4.26. The location of the neutral
axis is 52 mm below the bottom face of the top flange. With such loading configuration,
the maximum measured strain is 104 pe on strain gauges G33 and G34. A close
examination of the strain gauges indicated strain gauges G33 and G34 had a poor
connection, hence their readings were unreliable. Despite the slight non-linearity observed
in the strain distribution due to strain gauges G33 and G34, the cross section is linear

otherwise. The small strains indicate that the bridge response was well within the elastic

range.
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Comparison of the cross sectional strain distribution for girder #1 between
August 1997 and August 1998 shows practically no change in the location of neutral axis
for the positive moment region. The difference between the neutral axes was 2 mm closer
to the top flange for August 1998. These results suggested that there is no change in
composite action for the positive moment region. Furthermore a shift of 2 mm up closer
to the concrete deck may be from the gain in concrete strength over the last one year of

curing process or simply instrumentation errors.
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Figure 4.26: Strain Distribution for Aug. ‘97 and Aug. ‘98 in Positive Moment Region
For the same load case, the strain distribution in the negative moment region is

shown in Figure 4.27. The instrumented section in the negative moment region is 2.8 m

North of Pier No.1. As expected, the strain distribution in the cross-section is almost
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linear. From extrapolation, the maximum compressive strain in the bottom flange is
14.8 pe. The neutral axis is at 191 mm below the bottom face of the top flange. The
change in location of the neutral can be interpreted as a measure of the change in
composite action of the member. Figure 4.27 clearly shows that the neutral axis had
moved from 93 mm to 191 mm between August 1997 and August 1998 respectively. This
98 mm shift in neutral axis suggests that there was a partial loss of composite action in the
negative moment region. It should be recalled that the tests performed in August 1997
were done before the bridge was open to traffic. Comparison of the crack patterns
between August 1997 and August 1998 (see Figure 4.48) shows a lot of new transverse

and longitudinal cracks in the bridge deck in the negative moment region.
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Figure 4.27: Strain Distribution for Aug. ‘97 and Aug. *98
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Load sharing between the girders is best examined through strain gauges. On all
the girders’ web in positive and negative moment region, there is a longitudinal gauge at
150 mm from the topside of the bottom flange. With the truck front axle loaded at
15.05 meter from the North Abutment, load sharing among the girders from strain gauges
is shown in Figure 4.28. The maximum strain under this loading condition is 97.1 pe for
gauge G3 on girder #1 in the positive moment region. In the negative moment region, the
maximum compressive strain is 25.3 e for gauge G21 on girder #2. Note that the strains
in the negative moment region have almost the same magnitude. This would indicate that
the load sharing and the load redistribution by the diaphragm over the pier were very

effective in redistributing the load.

~"POSITVE MOMENT REGION > NEGATIVE MOMENT REGION
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GIRDER NUMBER

Figure 4.28: Strain Distribution for Positive and Negative Regions in August 1998

4.2.2.3 Influence Line

The bridge influence line under static load test in August 1998 is shown in
Figure 4.29. The vertical axis is the strain measurement, and the horizontal axis is the
distance in meters along the bridge from North to South. This figure shows the locations

of the North and South abutment, Pier Nol and Pier No.2, and the location of the Strain
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gauge G3. Clearly, the maximum strain is 97.1 e, when the truck front axle is at 15.05
meters. Although the influence line is slightly jagged in shape, but this is quite acceptable

for a static test.
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Figure 4.29: Influence Line for Strain Gauge G3
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Figure 4.30: 3D Influence Surface for the Bridge from Cable Transducer at Strap #13

Figure 4.30 shows a 3D-influence surface for the entire length and width of the
bridge. The vertical axis is the deflection of the girders in millimeters, the horizontal axis
is the distance along the length of the bridge in meter, and the third axis is the width of
the bridge. The ‘Girder I to 5° axis is representing girder #1 to girder #5 in the transverse
direction. The ‘Distance from North Abutment’ axis represents the location of the front

axle of the truck. The legend on the left indicates different ranges of deflection.

4.2.3 Dynamic Tests

It is very important to determine the similarities and differences in the behaviour
of the bridge under static and dynamic loading. If there are enough similarities can be
established between static and dynamic results; the static test can be eliminated all
together. Static test takes almost a full day to perform where as dynamic test takes less
than a half-hour. The same truck is use in dynamic test as in static test. Loading
conditions are identical, thereby; the results can be monitored and compared between all

the tests. Four different speeds were investigated: 15, 30, 40, and 55 km/hr. The longest
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test lasted no more than 25 seconds. Hence, the temperature effects can be neglected.
Before the truck came onto the bridge, two seconds or more of zero readings were taken.
Second zero readings were taken, where scan continued for approximately three or more

seconds after the truck had completely move off the bridge.

Dynamic field-testing was done in three stages. Ten cable transducers, four
accelerometers, strain gauge T4, and the standard strain gauge are presented in all three
stages of the tests. Stages 1 — 3 contain strain gauge sets 1 — 3 as outlined in Section
42.2. Table 4.5 shows the three stages, its corresponding filename, speed of the truck,

and the size of the file in seconds.

Table 4.5: Filenames, Test Speed and Stage Number

[All files are scanned at 500 scans per second]

Stage Filename Speed of Truck [km/hr] | File Size [sec.]
1 C10825P0027.raw 15 30
C10825P0003.raw 30 20
C10825P0010.raw 40 20
C10825P0020.raw 55 20
2 C20825P0207.raw 15 30
C20825P0210.raw 30 20
C20825P0216.raw 40 20
C20825P0223.raw 55 20
3 C30825P0312.raw 15 30
C30825P0316.raw 30 20
C30825P0324.raw 40 20
C30825P0344.raw 55 20
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4.2.3.1 Data Reduction

All measurements were recorded by a high-speed data acquisition system.
Dynamic data were all scanned at 500 readings per second. Depending upon the location
of the strain gauge, the length of the lead wires and the power sources, the environmental
noises on raw data can be as high as 400 pe in magnitude. The major sources of noises
were power supply and long lead wires. Long lead wire acted as antennas in the system
and generated the noises. Figure 4.31 shows the raw data for strain gauges G3. The
response is buried in these noises due to small input/output voltage. Fortunately, most of
these noises were deterministic and periodic; thereby filtration for the actual response is
possible. Figure 4.32 is a plot of the filtered data with a low pass Butterworth filter of 10
Hz. Since frequencies above 10 Hz have very little effect upon the influence line

response of the bridge, a low pass filtered limit of 10 Hz was used.
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Figure 4.31: Raw Data for Strain Gauges G3 in 55 km/hr test on August 1998

For each test run, raw data were scanned at 500 Hz for 30 second long; render
each file size in the magnitude of five megabytes. Although a scan rate of 500 Hz may
capture frequency and mode shape as high as 125 Hz, only frequencies up to 10 Hz are of
interest. With this frequency range of interest and a file that was scanned at 500 Hz, the
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original file size can be reduces by 13 times and still capture up to a 10 Hz frequency.
This row averaging of the raw data will not only reduce the file size by 13 times, but also
improve the resolution of the amplitude of the 10 Hz frequency over the 125 Hz frequency

by a factor of 13 times.

Due to various system limitations, the response drifted over time as shown in
Figure 4.32. This drift was a random phenomenon; however, it manifested itself in a very
low cycle drift characteristic. Theoretically, a band stop on the low cycle drift is possible
thereby leaving the final responses of the gauges. In practice, a digitally filtration on one
of the two frequencies that are so very close to each other shall have an effect on the
magnitude of the response of the other frequency. Consequently, this phenomenon is best
corrected with second order polynomial as shown in Figure 4.32. With this specific truck
ran at 55 km/hr, Figure 4.33 shows the final dynamic response for all frequencies under 10

Hz in strain gauge G3.
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Figure 4.32: Low Pass Filtered Data of 10 Hz for Gauge G3 [Before correcting for drifi]
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Figure 4.33: Final Filtered Response for Strain Gauge G3 [After corrected for drift]

Similar filtering processes and drift correction were applied to the standard strain
gauge. The standard strain gauge, ST is mounted on the small 10 x 10 x 100 mm steel
bar. This bar was subjected to similar environmental noises as the gauges on the
superstructure.  The data from standard strain gauge was log simultaneously in
correspondence with all the other strain gauges. The only difference is that the small steel
bar was not subjected to any load as opposed to other strain gauges on the structure.
After applying the same filtering process as the strain gauge G3, the strain gauge ST final

response is shown in Figure 4.34.
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Figure 4.34 Final Filtered Response for Strain Gauge ST

Clearly, the filtering processes do not add any response to the final results. As
expected, the standard strain gauge shows practically zero strain. Hence, the response in
Figure 4.33 is the actual response due to the truck load only, and not noises or effect of

the filter.

Figure 4.33 shows the dynamic response of the bridge for strain gauges G3
between 0 and 10 Hz. In order to compare this dynamic response to the static response,
the dynamic response needs to be decoupled into static component and dynamic
component. Commercial software such as LabVIEW can be use to digitally filter out the
dynamic component thereby leaving the static component. However, before this
decoupling process can begin, frequency limit needs to be established between the static
and dynamic components. The lowest frequency limit is use to set a low pass filter in the
LabVIEW program, therefore, any frequencies that passes under this filter will be the
static response. Likewise, any frequency that is above this limit is the dynamic response.
To establish the lowest frequency limit for the static component, speed of the vehicle that

is moving over the bridge, length of the bridge, and number of spans must be known. The
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Crowchild Trail Bridge has approximately three equal spans, and the overall length is
92.878 meters. A sum of the first two spans is 62.648 meters. According to influence line
behaviour, the first two spans will form one full cycle in the response of the bridge. By
knowing the speed of the truck, the time it takes for the truck to pass the first two spans is

the approximate period of one cycle for the passing truck.

] Distance 62.648m
Period, T= Sooed = —
peed  15.2778 /Sec‘

=4.101sec.

r__ 1
T 4.101sec.

=L _00665Hz [for 15 kmvhr]

]
T~ 15.036sec.

=0244Hz  [for 55 km/hr]

Frequency L f=

Frequency s f=

For the 15 knv/hr and the 55 km/hr, the influence line’s frequency of the passing
truck over the Crowchild Trail Bridge was 0.0665 Hz and 0.244 Hz respectively. Thus,
the highest frequency of the passing truck over the Crowchild Bridge is 0.244 Hz for all
the test-speed investigated. Consequently, a low-pass filter of 0.8 Hz will not affect the
influence line even at 150 km/hr [0.665 Hz] on this bridge. Since all the speed ranges
investigated have a maximum frequency of 0.244 Hz, a band-pass filter between 0 to
0.8 Hz will not affect the static influence line of the truck being investigated here. For the
55 km/hr test speed, the response of strain gauge G3 shown in Figure 4.35 yields identical

influence line as in static test (Figure 4.29).
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Figure 4.35: Filtered Data with Low Pass of 0.8 Hz and Band Pass of [0.8-10] Hz

Since the truck passes over the bridge at a much lower cycle than 0.8 Hz, a low-
pass filtered below this frequency gives the influence line of the structure as shown. The
influence line is plotted for strain versus time. This is the static response of the bridge.
Final dynamic response of strain gauge G3 from 55 km/hr test is also shown in Figure
4.35. The maximum strain due to the dynamic component is 14.9 pe. Clearly, dynamic
test results can be filtered and reduced to obtain the static test results. In less than one
minute, influence line, strains, length of each span, dynamic amplification factor,
static/dynamic behaviour of the bridge can be determined with one truck and one strain

gauge.

Cable transducer results from the same dynamic test had much less noises than
strain gauge results. This is a result of the input/output voltage ratio that is much smaller
in cable transducer than in strain gauge. Figure 4.36 shows the filtered and unfiltered data
for the cable transducer. Note the Butterworth filter cause a slight shift in the filtered data
of 0.696 second. As shown in Figure 4.37, the filtered data can easily be corrected for the

shift of 0.696 second. Clearly, the result in Figure 4.37 shows that Butterworth filtered
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has neither effect the shape nor the magnitude of the responses. The raw data shows the

jagged curve, and the filtered data shows the smooth curve.
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Figure 4.36: Cable Transducer Raw/Filtered Data [Before C orrected for Shift]

(Cable Transducer: After shift due to filter effect of 0.696 Sec.)
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Figure 4.37: Cable Transducer Raw/Filtered Data [After Corrected for Shift]
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Since the low-speed dynamic results can always be filtered for static results, future
static tests can be eliminated altogether for the Crowchild Trail Bridge. Furthermore,
results in Figure 4.35 seem to support that dynamic amplification factor can be found
without the use of static test. The advantage of this implication translates into a
tremendous saving in future field testing, little or no obstruction to traffic flow, hence

more structures can be assess and evaluate in a very short time.

4.2.3.2 Damping Coefficient

Damping ratio of the bridge can be found by the decay of the free vibration
motion. From the influence line, it is possible to determine the time when the truck comes
onto the bridge and the time when the truck has completely left the bridge. Since
accelerometer data were taken at the same time as the cable transducer, the free vibration
period can easily be determined. Figure 4.38 shows the accelerometer data superimposed
on cable transducer data. When the cable transducer data shows approximately zero
reading, this would indicated that the truck had completely left the bridge. Thus, free
vibration period can be determined. In turn, damping ratio of the structure can be
determined. As of August 98, Crowchild Trail Bridge shows a damping ratio of 1.20
percent for the governing vibrating frequency was 3.40 Hz. The closest vertical mode
found in ambient vibration test was 3.63 Hz. Figure 4.39 shows a close-up of the free
vibration portion of Figure 4.38 and the damping curves for the structure. Damping
curves plot in this figure was for accelerometer #48, and it was confirmed with all other

accelerometers at the same speed.
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4.2.3.3 Dynamic Amplification Factor

Two approaches can be used to find the dynamic amplification factor. The first
approach is to run static and dynamic tests on the structure and measured its responses.
To find the dynamic amplification factor, takes the ratio of the maximum dynamic
response to maximum static response for the structure. In which case, there must be
enough dynamic test runs to ensure that the maximum dynamic effect is in phase with the
maximum static response. If they are out of phase, then the maximum dynamic response
could be less than the maximum static response. Thus, a true dynamic amplification factor
cannot be calculated. However, to ensure that the maximum dynamic effect is in phase
with the maximum static response is very time consuming and could be difficult to achieve
in actual field-testing. An alternative method to find the dynamic amplification factor is to
decouple the dynamic and the static responses. Thereby leaving the dynamic response
completely independent of the location along the bridge. Hence, the maximum magnitude
in the dynamic response portion is the dynamic amplification factor. With the latter
method, only one test run is needed, and it has proved to provide a very reliable result.

This method is used throughout all the analysis.

Dynamic amplification factor can be determined from either strain gauge or cable
transducer test results. For the dynamic test of 15, 30, 40, and 55 km/hr, both results
were used to calculate the dynamic amplification factor and compare it with each other,
for all the various speeds tested. Results from the Crowchild Trail Bridge have clearly
demonstrated that the dynamic amplification factor can be broken down into two
components: the overall vertical deflection component and the local strain component in

the bridge members.

4.2.3.3.1 Dynamic Amplification Factor: Local Strain Component

For running speed of 55 km/hr, Figure 4.40(a) shows the maximum strain due to

static and dynamic affect are 96.4 pe and 14.9 e respectively. Thereby giving a dynamic
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amplification factor of 1.15. For the 40, 30, and 15 kmv/hr, the decoupled static/dynamic

responses are shown in Figure 4.40(b), (c), and (d) respectively.
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Figure 4.40(a): Decouple Response in Strain Gauges G3 for 55 km/hr Test
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Figure 4.40(b): Decouple Response in Strain Gauges G3 for 40 km/hr Test
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110

90

70

/ \ —'Static' Influence Line — Dynamic Effect

L
o

(V)
(e

—
[}

W

-10

' uv‘- \"rku v (“ -(l b i '-‘-/‘ JAdasppery vvlvhv‘!M
.
1 1

-50

-70

Time [Sec]
Figure 4.40(d) Decouple Response in Strain Gauges G3 for 15 km/hr Test

99



These figures suggest that the dynamic amplification factors vary nonlinearly with
respect to speed. Table 4.6 shows a summary of the static response, dynamic response,
and its’ corresponding dynamic amplification factors for the strain gauge G3, G6, G33,

and G34.

Dynamic Amplification Factor, DAF, due to local strain effects can be shown to
vary with respect to speed in Figure 4.41. For 15 km/hr, the DAF is 5.5% with a variation
of less than 0.07% for all the strain gauges investigated. Largest scatters were for 30 and
40 km/hr test speed with a 2.5% and 1.6% variation respectively. Finally, for the 55
km/hr, the maximum spreads for all the strain gauges were 0.7 % as shown in Figure 4.41

below.

18%

16% 1 * 15 °® 30 & 40 X 557 Poly.(Trendline) %

14% /
12% /

10% /
° a
8% /g{

Dynamic Amplification Factor [%]

4%
2%
0% x
0 10 20 30 40 50 60 7
Speed [km/hr]

Figure 4.41: Dynamic Amplification Factor — Local Effect
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Table 4.6: Dynamic Amplification Factor: Local Strain Effects for [Set 1]

Static Maximum Strain for Gauge G3 = 97.1 pe
G3
Static Dynamic DAF wrt DAF wrt
Speed| Response [pe] Response [p€] Static Filtered Response
15 97.83 54 6.3% 5.5%
30 96.23 6.5 5.8% 6.8%
40 94.44 6.7 4.1% 7.1%
55 96.51 14.9 14.7% 15.4%
Static Maximum Strain for Gauge G33 = 100.5 pe
G33
Static Dynamic DAF wrt DAF wrt
Speed| Response [e] Response [1L€] Static Filtered Response
15 98.8 53 3.5% 5.4%
30 106.8 53 11.5% 5.0%
40 96.9 7.5 3.8% 7.7%
55 101.5 16.9 17.8% 16.7%
Static Maximum Strain for Gauge G34 = 108.7 pe
G34
Static Dynamic DAF wrt DAF wrt
Speed| Response [pe] Response [j.€] Static Filtered Response
15 104.8 5.8 1.8% 5.5%
30 117.8 5.5 13.5% 4.7%
40 104.3 6.1 1.6% 5.8%
55 109.2 17.7 16.8% 16.2%
Static Maximum Strain for Gauge G6 = 644 ue
G6
Static Dynamic DAF wrt DAF wrt
Speed| Response €] Response [p.€] Static Filtered Response
15
30 61.5 5.4 3.9% 8.8%
40 63.07 5.7 6.8% 9.0%
55 64.85 10.2 16.5% 15.7%
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4.2.3.3.2 Dynamic Amplification Factor: Overall Deflection Component

Second method of examining the dynamic amplification factor is through the
overall deflection of the structural components. The bridge was tested three times for
each of the four speeds investigated. In set #1, for the 55 km/hr test, readings from cable
transducer at the same location as the strain gauge G3 is plotted in Figure 4.42. The
Deflections due to static and dynamic response were 11.5 mm and 0.94 mm respectively.
Subsequently, the dynamic amplification factor is 1.08. The factor found from cable
transducer is slightly lower than that of the suggested by strain gauge results. [However,
the maximum response in the filtered data for the cable transducer was a little higher than
from the static test. This relationship between the dynamic test and the static test will not
be further investigated. Since cars were still allowed to pass in the other lane during the
dynamic test, therefore the loads were slightly different in dynamic test as oppose to

static.]
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Figure 4.42: Cable Transducer #1 for 55 km/hr Test
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Cable transducer plots of all different speeds for all three sets are in Appendix B.
Table 4.7 below shows the decoupled responses of the cable transducers tested. It details

the static and dynamic responses, and its’ corresponding DAF for all the tests.

Table 4.7: Dynamic Amplificaiton Factor: Overall Deflection

Static Maximum Deflection = 10.28 mm
Set 1
Static Dynamic DAF wrt DAF wrt
Speed  Response [mm] Response [mm] Static Filtered Response
15 10.02 0.48 2.2% 4.8%
30 10.23 0.61 5.5% 6.0%
40 10.36 0.77 8.3% 7.4%
55 11.49 0.94 21.0% 8.2%
Set 2
Static Dynamic DAF wrt DAF wrt
Speed  Response [mm] Response [mm] Static Filtered Response
15 10.61 057 8.8% 5.4%
30 10.77 0.57 10.3% 5.3%
40 10.10 0.79 6.0% 7.8%
35 11.30 0.86 18.3% 7.6%
Set3
Static Dynamic DAF wrt DAF wrt
Speed  Response fmm] Response [mm] Static Filtered Responsc
15 10.26 051 4.8% 5.0%
30 12.09 093 26.7% 7.7%
40 11.56 0.84 20.7% 7.3%
55 12.04 1.34 30.2% 11.2%

From the above table, the dynamic amplification factor due to overall deflection
effects can be shown to vary with respect to speed, as shown in Figure 4.43 below. The
overall trend for the DAF as a function of speed seems to be linear. For 15 km/hr test
speed, the DAF from the deflection is 5.1%, comparing to the strain gauge of 5.5%. The
DAF results from cable transducer and strain gauge give very close results for a low speed
of 15 knvhr. In the 30 kmv/hr and 40 km/hr, the DAF are 6.3% and 7.5% respectively.
For the 55 kiv/hr, the DAF is 9.0%. The overall trend of the DAF obtains from the cable
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transducer and strain gauge gives quite vastly different behaviour. The trend from the
cable transducers gives a linear relationship with respect to the speed; however, the strain
gauge gives a nonlinear relationship that increases exponentially for all the speeds tested.
This suggests that the local strain effects are much more severe under dynamic load than
that of the overall deflection effects. This implies a ‘lag effect’ in load distribution under
dynamic loading. The differences between the DAF from the overall deflection and the
strain gauge clearly show a large portion of DAF that the designer may never have

considered in the design.
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Figure 4.43: Dynamic Amplification Factor — Overall Deflection Effect

4.2.3.4 Load Sharing

Load sharing among girders can be examined through the strain gauges or by cable
transducers that were mounted on the superstructure. Comparison of the cable transducer
results between static and dynamic tests are shown in Figure 4.44 below. It is important

to note that the difference of the sum at a cross section for the deflection measurements in
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static and dynamic tests was only 0.7 percent. Hence, the bridge does not overall
deflected more in dynamic test than static test; rather 1t absorbed the energy in a torsional

mode as opposed to the vertical mode.

—*— Static Test [Aug '98] ~#= Dynamic 55 km/hr [Aug '98]

. ; : , ) 0
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Girder Number

Figure 4.44: Overall Deflection Among Girders

The torsional excitation characteristics manifest itself again in the three-
dimensional influence surface plots in Figure 4.45. Figure 45(a) and Figure 45(b) are plots
for the static test and the 55 km/hr dynamic test, respectively. The purpose of these plots
is for visual aid in the behaviour of the bridge under vertical loads in the transverse as well

- as longitudinal directions along the bridge. Comparison between the static and the
dynamic results shows that they are almost identical. The static curve is more jagged in
shape, and it has slightly smaller maximum deflection than that of the dynamic test.
Likewise, it has bigger minimum deflection than that of the dynamic test. These facts have

further reinforced the torsional excitation in the 55 km/hr test speed.
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4.2.4 Crack Pattern for August 1998

The first crack patterns were mapped in August 1997. Crowchild Trail Bridge
consisted of three continuous spans. The South span was reinforced with both GFRP and
steel reinforcement. Crack pattern for the South span to the North span as of August
1997 is shown in Figures 4.9 to 4.11. All cracks were in the transverse direction. Most
cracks were approximately 0.5 mm in width. As of August 1997, there was no

longitudinal crack.

After one full year of operation, a second crack pattern was mapped in August
1998. Crack pattern for the South span, Middle span and North span are shown in
Figures 4.46 to 4.48 respectively. The cracks that were there already from August 1997
seem to have grown twice wider by August 1998. As of August 1998, there were quite a
few new cracks had formed on the underside of the bridge. In addition to many new
transverse cracks formed, there were quite a few longitudinal beginning to appear. Most
longitudinal cracks were formed right at the transition point between the flat part of the
deck and the taper part. However, a few longitudinal cracks formed at midway between

the two supporting girders in the South span.

Overall, there are quite a few new cracks pattern formed over the last one year of
operation. Most of the cracks formed were 0.5 mm and less in width. Cracks that were
there already since August 1997 are now a little wider and there existed water stain marks.
There appeared to be more transverse cracks in the Middle and the South spans. North
span, which was reinforced only in the cantilever edge, now had longitudinal cracks in the

sophist and at midway in between the two girders as shown in Figure 4.48.
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5. ANALYSIS AND COMPARISON
5.1 Dynamic Behaviour of Crowchild Trail Bridge
5.1.1 Theoretical Background
Structural dynamic problems are often difficult to visualize, design for, and
anticipate. Exact modeling of structural dynamic problems is either impossible or

impractical. Thus, dynamics problems are idealize and visualize in three pure

components. Figure 5.1 below shows the idealized components of a dynamic problem.

SRR
| =

u,u,i u u u

Figure 5.1: Idealized Components

For the force P(?) acting on the idealized system above, the governing equation of
motion become
S+ o+ fs=P0)
mii +cui + ku = P(t) for Elastic Systems 5.1

mii +cii+ f,(u,u)=P(t)  for Inelastic Systems

where u Displacement 1 Inertia Force
u Velocity m Mass
i Acceleration k Stiffness
fs Stiffness Force c Damping Coefficient
/o Damping Force P(1)  Force as a function of time, 1

Equation (5.1) can be solved by four methods: closed form solution, Duhamel’s
Integral, Transform methods, and Numerical Integration. However, the closed form

solution can be very complex and sometimes no solution to the differential equation can
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be found. Duhamel's Integral and Transform method are designed to solve for linear
differential equations. Only the numerical time-stepping integration method is a practical

approach in solving the equation of motion in inelastic systems.

For a damped, free vibration system, and forcing function P() = 0, the governing

second order, linear, homogeneous differential equation of motion with constant

coefficients is:

mii+cu+ku=0 (5.2)

Let v =Ge™, where G and r are constants that depend on initial conditions. Equation
(5.2) becomes

Ge" (mr* +cr+k)=0

Therefore mr*+cr+k=0 (5.3)

(a) For Undamped System
The solution of equation (5.3) for undamped systems, ¢ =0, is

22k

re= (5.4
m
Letting 7 = J-1 and w, = \[Z , equation (5.4) becomes
m
r==%iw, (5.5)
where w, is the natural frequency of the undamped systems.

Therefore,  u=Ge™ +G,e™ (5.6)
= Asin(w, f) + Bcos(w 1) by Euler’s Identity (5.7
=% sin(w, 1) +u, cos(w,f) after initial conditions, #(0) =,

and #(0) =1, are applied (5.8)
where A, B constants U, Initial Acceleration

u, Initial Velocity t time
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(b) For Damped System
The solution of equation (5.3) for damped system is

—_c+ch —4/m

2m~ 2m
_C, (_c_j _ [ﬁj
2m 2m m
(i) For critically damped systems,
) -()
2m m

Thus, c, =2mw,

where c,, Iis the critical damping coefficient.

(ii) For Heavily damped systems,
) -
— > —
2m m
(iii) Lightly damped systems,
=) <)
PR < —
2m m
c._°< , equation (5.9) becomes

c n
r=-w gy 0n,gf -w,’
=—w Exiw \1-&

where & is the damping ratio.

Letting &£ =

cr

Letting w, =w,4/1-£* , equation (5.13) can be simplified as

r=-wltiw,
where w, is the natural frequency of the damped systems.

Therefore u =G, 4+ G, i )

- e— nét (Gleiwur +G2e—ith)

=e™*(4sinwpyt+Bcosw,t) by Euler’s Identity
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(5.12)
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(5.14)
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Applying Initial Conditions, #(0) =u, and #(0) =4,

u(t) = e {u(O) cosw,t + [MJ sin th} .17

Wp

Finally, u(f) = pcos(w,t — )™ (5.18)

where p=\/(u +uw§j ]
Yp

0 = ran™ [ (a, +uowné)}

Wt

o

(c) Damping Coefficient
Equation (5.17) shows that the ratio of the amplitude between each successive peak is

defined as follow (Chopra, 1995):

25

) 0F (5.19)
u(t+T1,)
Similarly, the ratio for the acceleration between each successive peak is,
. 27&
_)  _ F (5.20)

u@+7,)

Solving for the damping ratio, &£

1n[ ii(f) jz 27E
it +T,) [1-&2

ln( _i(n) J
it +1p) (5.21)

J[m(,, i) ﬂ;%z
iit+T,)

However, it is more accurate to select multiple peaks, such that the amplitude has

£ =t

decreased at least 50%. Similarly, for multiple successive peaks, we can derive the

relationship as follow:
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27mE

_u(t) (5.22)
u(t+mT,)

ln(————u(t) j
£ s u(t+mT,) (5.23)

J l:ln(—————————-u(t) ﬂ- +47°m’
u(t+mlTy)

(d) Simply Supported Beams
A simply supported beam is shown in Figure 5.2. The frist three frequncies and mode
shapes of this free simply supported beam are shown in Table 5.1. Obviously, Table 5.1

is valid only for free vibration with zero initial velocity and an initial displacement

(Chopra, 1995).

Figure 5.2: Simply Supported Beam

Table 5.1: Frequency of Single Span and Simply Supported

Mode | Mode Shape | Angular Velocity,w | Period, T | Frequency
P W, = ﬂz ,El, 22‘— _a_)L.
1 L S——— P \/ m o, 27
— o, =42 \[5.7 2z o,
2 % : ? m a)z 27
o E 2z @
3 T Am w, 2z
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(e) Continuous Beams

Unlike a simply supported beam shown above, the dynamic analysis of continuous beams
is more cumbersome. Due to the complexity of its’ mode shapes, derivation of a
mathematical equivalent is not an easy task. Take the case of three continuous span,
simply supported as shown in Figure 5.3. Assuming three identical spans, the first three

vertical-fundamental mode shapes of the beam are shown in Table 5.2 (Biggs, 1964).

|1 H|

g! my 14 14 ZQ_ m2 12 12 ,g, my Iy 1y A
N o - b iare

Figure 5.3: Three Continuous Span

Table 5.2: Frequency of Three Continuous Span and Simply Supported

Mode Mode Shape Angular Velocity,w | Period, T | Frequency
£ T o2 = EE 2z o
1 £ =—F 2 Yol @, 2z
ol = EI(3.55)° 2z @,
2 &\_./4"/\ \,u/—\a 2T ml 4 (02 2
., EI(4.30)° 2z @
3 oo —A @5 = ml? @, 2r

5.1.2 Natural Frequencies and Mode Shapes of the Crowchild Trail Bridge

To analyze the Crowchild Trail Bridge, the following assumptions are made:
1. All five girders have the same stiffness;
2. Barrier rail and asphalt have no contribution to the stiffness;

Each girder has the same stiffness along the length and is

(V3]

continuous in all three spans;
All three spans are equal, with span length = 30 230 mm;
Small deformation and elastic behaviour are assumed;

Shear deformation is ignored,

N o »obe

Rotational inertia of masses is considered to be negligible;
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8. Damping is negligible;

9. Full composite action is assumed;

10. Steel Strength, F, =350MPa is used,;

Table 5.3: Crowchild Trail Bridge Concrete Mix Properties

CONCRETE MIXES (for I m’)

Specified Strength, fc’2s =35 MPa
Water = 155kg
Cement =430kg

Coarse Aggregates = 1080 kg

Fine Aggregates = 680 kg
Air Entrainment = 50 ml/ 100 kg
Superplastizer = 290 ml/ 100 kg

Polypropylene Fibers = 4.5 kg (0.45% by volume)

From Table 5.3 above, the concrete density is determined to be y, = 2350k% ;-

Based on the secand modulus, the elastic modulus of concrete can be determined by

Ec

E. 27290 _

H=—-=

=0.1318
E, 207000

135
(3300477 + 6900)(5%] = 27290MPa
D

Figure 5.4 shows a simplified model of the Crowchild Trail Bridge. The diagram

shown on the left in Figure 5.4 shows the section before conversion to steel equivalent,

and the diagram shown on the right is the steel equivalent after conversion. The distance

from the bottom side of the bottom flange to the neutral axis is at 916 mm. Moment of

inertia is I, =24489.3x10°mm*. Assuming the density of concrete, steel, and asphalt

are 2350, 7850, and 2293 kg/m’ respectively. Thus, the simplified model to the left has a

mass of 1864 kg/m.
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Figure 5.4: Simplified Model of Bridge Deck

Natural frequencies of the above simplify model is calculated with the following

variables substituted into the equations in Table 5.2:

E, =207000MPa, I, =244893x10°mm®,

1=30.23m, m=1864"¢//

Therefore,
o, =17.84794/ and  f, =2.83Hz
o, =22.74794/, and  f,=3.62Hz
o, =33377%4/ and  f,=531Hz

Comparing the results of the ambient vibration tests done by the University of

Alberta in 1998 and University of British Colombia in 1997 with the theoretical solutions

shows very good agreement, as indicated in Table 5.4.
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Table 5.4: Comparison of Natural Frequencies Results

Uof A UBC Report Analysis Description
[August ‘98] | [September ‘97] | [Section Properties]

2.60 Hz 2.78 Hz 2.83 Hz 1% Vertical Mode

3.63 Hz 3.76 Hz 3.62 Hz 2™ Vertical Mode

4.43 Hz 4.64 Hz 531 Hz 3™ Vertical Mode

5.1.3 Damping of the Crowchild Trail Bridge

The damping curve shown in Figure 5.5, along with the test curves, is derived
from equation (5.22). It can be seen that the two curves agree with the free vibration
portion of the test curve very well. [The conversion factors for the accelerometer, A48,

and the cable transducer, L1 are 1 V=10 mg and 1 V = 1.57 mm, respectively.]

2
| | l
1.5 - —— A48 =] | ==@=Damping —
[
_5 1 !
25 s U -
82 °°
82 ..
<'?;-OD ‘
S |
-1 .
-1.5
2

9.5 10.5 115 12.5 135 14.5 15.5 16.5 17.5 185
Time [Sec]

Figure 5.5: Damping Curve

Damping in real structures is from internal friction as solids deformed, friction at
connection, open and close of micro-cracks in concrete, etc. It is impossible to identify
and describe mathematically every individual energy dissipation mechanisms. Even for

system that is vibrating within linear elastic range the damping coefficient ‘c’ can still
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vary with respect to amplitude of deformation. The effects of damping will reduce the
natural frequency of an undamped system, w, to a damped system, w,. Likewise, period
of an undamped system, 7, is increased to period of a damped system, 7,. However, the

effects are negligible for a damping ratio of & <20%, a range that includes most of

structures. A plot the relationship

%:—=% O; - of wD.=w" 1—&2. in equation
) (5.16) is shown in Figure 35.6.

0.6 Clearly, for low damping ratio,

0.4 neglecting damping effects are quite

0.2 \ acceptable, such as a structure with

. £ < 20% produces only a 2% error

PO W o & in frequencies if the damping is

. . lected. To determine th
Figure 5.6: Effect of Damping fegiecte © determine  the
damping ratio analytically is either
impossible or impractical. On the other hand, a simple force vibration test can not only
easily determine the damping ratio, but also the stiffness, and the natural frequency of the

structures.
5.2 Static Behaviour of Crowchild Trail Bridge

Four issues of static behaviour of Crowchild Trail Bridge are being discussed in
this section: 1) shear transfer inside the concrete deck in the transverse direction, 2)
rigidity of the deck and load sharing among the girders, 3) composite action between the
concrete deck and the steel girders in the longitudinal direction, and 4) change in the

stiffness of the bridge.
5.2.1 Shear Transfer in the Transverse Direction

In a one way flexural member, shear is the gradient of bending moment along the
length of the member, and consists of two components: beam action and arching action.

Shear resulting from a gradient in tensile force acting on a constant moment arm is

120



referred to as beam action. Beam action is a characteristic of slender flexural members.
Shear resulting from a constant tensile force acting on a varying moment arm is called
arching action. It requires only remote anchorage of the reinforcement and, unlike beam
action, the transfer of shear flow will not be prevented by the inclined cracks. Shear
transfer by means of arching action is usually associated with deep beams and regions
adjacent to discontinuities or disturbances in either the loading or the geometry of the

member.

The concrete deck of the Crowchild Bridge is designed so that, at ultimate load,
shear is mainly transferred by the arching action. As illustrated in Figure 5.7, near the
ultimate load, the concrete cracks at the mid-span. Hence, the applied load is transferred
to the supporting girders by means of compressive struts. The horizontal component of
the compressive arch is resisted partly by the tension ties (i.e. steel straps) and partly by
the restraints provided by the lateral stiffness of the girders. At service loads, however,
shear is transferred by a combination of beam action and arching action. Beam action is
the governing mechanism before cracking of the concrete deck, as it is the stiffer

mechanism of the two.

Strut

Possible Crack

] *
Figure 5.7: Shear Transfer in the Concrete Deck
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In 1997 tests and measurements, the largest measured strain for the straps was
40 pe. Recalled the steel straps had a rectangular cross section of 25 mm x 50 mm;
therefore the steel strap carried an axial load of 10 kN. Recalled from chapter 3, the
heaviest tandem axel was 160 kN; each wheel set weighted 80 kN per side. Assuming
only one strap was carrying the applied load by arching action alone, the strap must
carried 144 kN. Since the strap only carried 10 kN as measured under the applied load,
arching action was obviously not the sole load carrying mechanism in the system. In
addition, no longitudinal crack was visible on the bottom surface of the deck. It is then
concluded that as of late October 97, the shear transfer inside the concrete deck in the

transverse direction was mainly by the beam action.

Strains in the straps, however, had increased to about 80 ue in 1998. The
increased strain, together with the existence of the longitudinal cracks, suggests that the

contribution of tensile concrete in transferring shear has reduced in the second year.

5.2.2 Rigidity of the Deck and Load Sharing between Girders

The stiffness of the bridge deck in the transverse direction (or the rigidity of the
deck) is the most important factor controlling the load sharing between the girders. Load
sharing between the girders is of great importance since it illustrates the contribution of
the girders that are not directly loaded. It is impractical to quantify any of these two

terms. Consequently, any discussion in this regard is subject to engineering judgment.

The deflection measurements in the 1997 static tests with two trucks sides by side
was used to evaluate the rigidity of the bridge deck. Neglecting the small transverse
slope of the bridge, the centerline of the middle girder becomes an axis of symmetry. In
the extreme case of a rigid deck, any symmetric load about this axis results in equal
deflections for all the girders. This is not necessarily the case with poor stiffness of the
deck in the transverse direction. As shown in Figure 4.3, the deflection of the girders in
cases with two side by side trucks is almost uniform, suggesting a good stiffness in the

transverse direction. Note that in Figure 4.3 the deflection of girder 5 was slightly higher
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than the deflection of girder 1. This may be a result of the misalignment of the two

trucks.

The case of asymmetric loading, such as a single truck in one lane, can be
replaced by a concentric load and a torque. Often, torque caused by the eccentricity of
the load results in additional downward movements in girders on one side and uplift on
the other side. With a rigid deck, the deflected shape remains very close to a straight line.
In a deck with poor stiffness, however, the deflection of the girders that are not directly

loaded is close to zero.

Any significant change in the stiffness of the superstructure with time, therefore,
can be detected by plotting the load sharing between girders for similar truck positions.
Figure 5.8 shows the load sharing between girders based on the deflection measurements
for 1997 and 1998. Similarity, the two figures suggest that the load sharing between the
girders has not changed. Note that the truck specifications as well as its eccentricity from

centerline of torsion (Girder #3) were slightly different in each year.

Aug. 1997 Aug. 1998
- /)L J)
West Girder— | )
750l | 225 | T 1000mm
I pa “r
2t 03 2t "
510 I .Em L
59 63 59 52
g 14 § (13
8 4t 33 8 4t 37
| ﬂ | ﬂ 18
o} g 0 L

Figure 5.8: Load Sharing between Girders Based on the Deflection Measurements
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5.2.3 Composite Action in the Longitudinal Direction

Composite action between the concrete deck and the steel girders in the
longitudinal direction is being studied for two regions in the North span, namely the
positive moment region where the concrete is mostly in compression and the negative
moment region where the concrete is mostly in tension. The contribution of the concrete
to the stiffness and load carrying can be evaluated based on the measured location of the

neutral axis in each region.

Figure 5.9 illustrates the location of the neutral axis for Girder #1 in the positive
moment region. To investigate any changes in the location of the neutral axis with time,
four load cases were considered: August 1997, October 1997, June 1998, and August
1998. Note that the specification of the trucks was different from one load case to
another, with the August 98 truck being the heaviest. As a result, the maximum strain in
each load case is different. However, the location of the neutral axis is approximately
50 mm from the bottom face of the top flange. For all four tests conducted up to the end
of August 1998, the composite action between the concrete deck and the steel girders in

the longitudinal direction has not deteriorated significantly in the positive moment region.

— 350 —

10 10
s TS
G31 18°| G32
G119
G2¥
~=10
G317
G33 . 30 G34
50 ! T Lsp -10 10 30 50 70 90 110
550 —_—
Girder #1 Strain Distribution

Figure 5.9 Location of the Neutral Axis in the Positive Moment Region
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Figure 5.10 illustrates the location of the neutral axis for girder 1 in the negative
moment region for the four load cases. Note that the accuracy in determining the location
of the neutral axis is lower compared to the positive moment region, due to the magnitude
of the strain were much smaller. In addition, there were no strain measurements on the
flanges. The neutral axis has moved from 93 mm in 1997 to 191 mm in 1998 with
reference to the bottom face of the top flange. The 98 mm shift in the location of neutral
axis indicates a loss in the composite action between the concrete deck and the steel

girders in the negative moment region.

|

G17

/
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—

G118k

- 600 |

Figure 5.10 Location of the Neutral Axis in the Negative Moment Region

5.2.4 Change in the Stiffness of the Bridge

Any losses in the composite action of the concrete deck and the steel girders in

the negative moment region associates with a reduced moment of inertia in that region.
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Consequently, the stiffness of the bridge in the longitudinal direction is affected. To
evaluate the change in the stiffness with time, the bridge has been modeled as a
continuous beam. A primary concern with any analytical model is to model the
contribution of the concrete, especially at the negative moment region where the
transverse cracks propagate with time. To overcome this problem, the cross sectional
properties were determined based on the measured location of the neutral axis for each
year. The thickness of the concrete deck was assumed 200 mm. The equivalent
contributing width of concrete for segment types 1 and 2 were determined so that the
calculated location of the neutral axis matches those based on the strain measurements.
The width of the concrete for segment type 3 is assumed equal to that for type 1. Cross

sectional properties obtained are presented in Table 5.5.

Segment type 1 is used at the positive moment regions of the exterior spans.
Segment type 2 is used at the negative moment regions of both piers, and extends 6.4m
and 6.9m from the centerline of the piers into the exterior and middle spans, respectively.

Segment type 3 is used at the positive moment regions of the middle span.

Three cases are studied using a simple two-dimensional beam analysis: 1) beam
and truck of 1997, 2) beam and truck of 1998, and 3) beam of 1997 but truck of 1998.
Deflections in the first two cases can be compared directly to the test results. As the
model is only a two-dimensional analysis, the average of the deflection of all the girders
is used (6.5mm and 6.56mm for the years 1997 and 1998, respectively as shown in Figure
5.8). Comparison of the last two cases, however, demonstrates the change in the stiffness

of the bridge with time.
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Table 5.5: Section Properties of the Girders

Segment Component b h Neutral A I
(mm) | (mm) | Axis (mm) (mm? x 10%)| (mm*x 10%)
Concrete & GFRP 521 200
Type 1 | Top flange 350 18 50 136 17700
Aug. 97 | Web 10 900
& 98 Bottom flange 550 30
Concrete & GFRP | 380 200
Type2 | Top flange 600 32 120 129 21900
Aug. 97 | Web 12 900
Bottom flange 600 38
Concrete & GFRP 140 200
Type2 | Top flange 600 32 270 80.8 16870
Aug. 98 | Web 12 900
Bottom flange 600 38
Concrete & GFRP 521 200
Type3 | Top flange 350 18 235 132 14560
Aug. 97 | Web 10 900
& 98 Bottom flange 500 25

The calculated deflections (at the locations where measurements were conducted

for each year) were 6.69, 6.91, and 6.67 mm respectively for the 3 cases. The calculated

deflections in the first two cases are in good agreement with their corresponding

measured deflections. Comparison of the last two cases suggests that the stiffness of the

bridge has reduced approximately 3.5% from 1997 to 1998.

127



6. SUMMARY AND CONCLUSIONS

6.1 Summary

The Crowchild Trail Bridge is an experimental bridge located at the intersection of
Crowchild Trail and University Drive in Calgary, Alberta. It is a three-span, two-lane,
one-way traffic overpass. It is spanning 92.878 meters with two interior supports. This
bridge was built using the innovative steel free — fibre reinforced concrete deck design.
This is the first of its kind in the world to utilize this innovative approach over the positive
and negative moment regions. Field assessment of the Crowchild Trail Bridge focused on
two main issues: performance under serviceability conditions and long-term durability.
University of Alberta had extensively developed field instrumentation and monitoring
program on this bridge. To assess its performance, static and dynamic tests were carried
out using trucks with known axle loads. Based on the results of tests, the bridge
fundamental structural characteristics, both static and dynamic, were determined under
such service load conditions. For long-term durability study, the bridge is then monitored
at various time intervals. The bridge fundamental structural characteristics are then re-
evaluated and compared to the time before it was put into service. The scope of this
thesis is the field assessment of the Crowchild Trail Bridge over the first years of its

operation.

Since the superstructure of the Crowchild Trail Bridge was replaced in August
1997, two major phases of testing were completed by the end of August 1998. Tests
consisted of ambient vibration, field survey, static load test, dynamic load test, and
mapping of crack patterns. Strains, deflections and acceleration behaviour were
measured. In August 1998, static and dynamic tests were performed using a truck with
known axle loads and ran at various speeds. Natural frequencies and mode shapes of the
bridge were determined by ambient vibration tests. Load sharing between girders, the
dynamic load factor, stiffness, natural frequencies and damping factor of the bridge, were

analyzed.
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Comparison of the neutral axis in the positive moment region between
August 1997 and August 1998 shows no change in the neutral axis. This result suggested
no changes in composite action for the positive moment region. In the negative moment
region, there was a 98 mm shift in the neutral axis, which suggested a partial loss in the

composite action.

In August 1997, field survey indicated a maximum deflection of 17 mm in the
North span, when two 357 kN trucks was loaded symmetrically in the North span. For
asymmetric loading, one 357 kN truck was used, the maximum deflection was 13.5 mm.
The steel strap had a maximum strain reading of 85 e and it varied between -15 to 85 pe
as the truck moved along the entire length of the bridge. With a maximum strain of 104
ue in the girder and 85 pe in the straps, the bridge clearly was behaving well within linear

elastic range.

University of British Colombia performed an ambient vibration test on Crowchild
Trail Bridge in September 1997. After it had been in operation for one full year, the
University of Alberta did a second ambient vibration test at the end of August 1998. In
the ambient vibration tests, eight predominant frequencies below 10 Hz were found.
Comparison of the field-testing done by the University of Alberta and the University of
British Colombia with the theoretical closed form solution shows very good agreement.
Result comparison between UBC and U of A results shows that all the natural frequencies
found have been reduce by approximately 0.20 Hz. The resolution of the measured

frequency is £0.01 Hz.

Both static and dynamic tests were conducted on the Crowchild Trail Bridge in
August 1998. The same truck was used in both tests. Four different speeds, 15, 30, 40,
and 55 km/hr, of truck were investigated in the dynamic tests. Results show that the
dynamic test results can be filtered and reduced to obtain the identical static test results.

The advantages of this implication translate into tremendous saving in future field testing
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since little or no obstruction to traffic flow due to the dynamic testing; hence more

structures can be assess and evaluate in a very short time.

Damping ratio of the bridge can be found by the decay of the free vibration
motion. Since accelerometer data are taken at the same time as the cable transducer, the
free vibration period can easily be determined. As of August 98, the Crowchild Trail

Bridge had a damping ratio of approximately 1.20 percent.

Dynamic amplification factor can be determined from either strain gauges or cable
transducers test results. The results from Crowchild Trail bridge have clearly
demonstrated that there are two distinct dynamic amplification factors: the overall vertical
deflection component and the local strain component in the bridge members. For the 55
km/hr test, the maximum strain components due to static and dynamic are 96.5 pe and
14.9 pe respectively. Thereby giving the dynamic amplification factor of 1.16 with a
scatter of 0.7% for all the strain gauges investigated. Dynamic amplification factor due to
the local strain effects varies non-linearly with respect to speed. For the overall deflection
component in the 55 km/hr test, the deflections due to static and dynamic response are
11.5 mm and 0.94 mm, respectively. This gives a dynamic amplification factor of 1.08.
The factor found from cable transducer is lower than that suggested by the strain gauge
results. The overall trend of the DAF obtains from cable transducer and the strain gauge
give quite vastly different behaviour. The dynamic amplification factors from the cable
transducers give a linear relationship with respect to the speed; however, the strain gauges
give a nonlinear relationship that increases exponentially for the speed tested. This
suggested that the local strain effects are much more severe under dynamic load than that

of the overall deflection component.
Good load sharing among girders was found from both deflection and strain gauge

results. The deflected shapes of the girders were close to a straight line. No deterioration

with time has been observed for the load sharing among the girders.
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The first crack patterns were mapped at the end of August 1997 after removal of
concrete formwork. All cracks were running in transverse direction, and were
approximately 0.5 mm in width. No longitudinal crack in any of the three spans was
found. After one full year of operation, a second crack patterns were mapped in August
1998. Those cracks existed from August 1997 seem to become twice wider by August
1998. As of August 1998, there were quite a few new cracks formed on the underside of
the bridge. In addition to many new transverse cracks formed, there were quite a few
longitudinal cracks developed. Most longitudinal cracks are formed right at the transition
point between the flat part of the deck and the taper part. However, a couple longitudinal

cracks were formed at midway between the two supporting girders in the South span.

6.2 Conclusions

The following conclusions and major observations are found based on ambient
vibration, static, and dynamic tests carried out on Crowchild Trail Bridge in August 1997,
before the bridge was open to traffic, and August 1998, after the bridge has been in

operation for one full year,

1. Composite Action in the positive moment region has not changed during this period,
while in the negative moment region there is a shift of 98 mm in the neutral axis due
to the cracking of the concrete deck. According to a simple beam analysis, this loss
of composite action in the negative moment region associates with almost 3.5%

decrease in the overall stiffness of the bridge.

2. As of August 1998, wheel loads are transferred inside the concrete deck to the steel
girders mainly by means of beam action. The share of arching action in the transfer of
shear, however, has almost doubled in 1998 compared to that in 1997. Under 80,000
Ibs triple axle truck load, the tension strap has a strain cycled between 85 and -15 ue.

At this low strain cycle, fatigue would not be a concern.
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All the natural frequencies and mode shapes investigated show good correlation
between both fields testing results and theoretical closed form solutions. The field
ambient vibration tests show that all the natural frequencies investigated have been
reduced by approximately 0.20 Hz after the bridge has been in service for one year.
Since the mass of the structure has not changed, this may indicate stiffness of the

bridge has reduced.

Based on the dynamic test results, the damping ratio and dynamic amplification factor
can be obtained from both strain gauges and deflection data. The local strain gauge
data yielded higher dynamic amplification factors than the ones based on the overall
deflection results. Furthermore, dynamic test results can be filtered for static results,

thus future static tests can be eliminated for the Crowchild Trail Bridge.

At a transverse section, the deflected shape of the girders has been very close to a
straight line. This suggests a relatively stiff deck in the transverse direction, and
hence, a good load sharing among the girders. No deterioration with time has been

observed for the load sharing among the girders.

Overall, there are quite a few new cracks pattern formed over the one year of
operation. Most cracks formed are 0.5 mm and less in width. Only few transverse
cracks were observed in August 1997 while some longitudinal cracks with more
transverse cracks were detected in August 1998. As of August 1998, cracks visible

on the bottom surface of the bridge deck show no serviceability concern.

6.3 Recommendations for Future Research

It is recommended to conduct a yearly inspection and testing of the Crowchild

Trail Bridge. The tests should include both ambient vibration test and dynamic load test.

This ongoing periodic monitoring of the superstructure will eventually lead to a better
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understanding of the performance of the bridge over time, which in turn lead to more

effective maintenance and repair techniques.

A continuous monitoring of the performance of the bridge will enable engineers to
a better understanding of the effects of truck load, temperature variations, and crack
propagation on the long term performance of the bridge on a daily basis. Therefore, it is
recommended to install a wireless remote monitoring system on the bridge to monitor a

few selected key sensors in the bridge.

Recommendation for future ambient vibration testing is to place the
accelerometers on every girder, since the bridge deck may not be rigid. Figure 6.1 shows
the propose location of accelerometer for future testing. With such testing configuration,
it minimizes the work and time of testing and maximizes the results. The results from the
ambient vibration tests allow for closer examination of the changes in stiffness of
individual girders, rigidity of the deck, and capture most of the important frequencies and
mode shapes. These changes of the characteristics of the bridge will provide the health

status of the bridge over time.
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Table B2: Strain Gauge Reading for Static Test, August ’97—Before and After Asphalt

No Asphalt No Truck No Truck Thermal effect  Date Aug. 11, 97 Aug. 13 Aug. 14, 97
Avg Temp. 1475 21.75 24.75
Date Aug. 11, 97 Aug. 13, 97 Aug. 14,97
At the Beginning :
Time 6:30am 11:20am 2:25pm
Standard 42 3 -18
Temperature 145 21 245
TH1 19.7 23.6
TH2 17.9 21.8 Asphalt & Temp. Asphalt
TH3 17.8 215 With respect to only
TH4 17.9 234 Aug. 13,97 Aug. 14,97
THS 21.3 25 AT = AT = AT =
3 7 10
G1 -84 -126 -113 13 -32 -191 G1 -62
G2 37 -443 -415 28 .72 44| G2 -137
G3 -601 -655 -682 =27 54 81| G3 9
G4 -312 313 -287 26 -1 25| G4 -62
G5 -425 -424 -415 9 1 10| G§ -20
G6 -220 -203 -172 31 17 48| G6 -55
G7 -930 -932 -893 39 2 37| &7 -93
G8 -636 -608 28| G8
G9 -435 -423 -388 35 12 47 G9 -70
G10 -118 -147 -110 37 -29 8| G10 -115
G11 325 314 340 26 -11 15| G11 -72
G12 538 561 565 4 23 27| G12 14
G13 247 228 270 42 -19 23| G13 -117
G14 745 732 719 -13 -13 -26| G14 17
G15S 471 443 496 53 -28 25| G15 -152
G16 -1127 -1141 -1123 18 -14 4 G16 -56
G17 -432 -484 -452 32 -52 -20] G17 -127
G18 -188 -244 =215 29 -56 -27] G18 -124
G19 -662 -666 616 50 -4 46| G19 -121
G20 -369 -400 -365 35 -31 4] G20 -113
G21 140 106 145 39 -34 5| G21 -125
G22 370 373 422 49 3 52| G22 -111
G23 -442 -453 432 21 -1 10| G23 -60
G24 -450 -538 -496 42 -88 -46| G24 -186
G285 281 272
G26 532 507 547
G27 285 264 284
G28 306 296 344
G29 482 420 479
G30 206 127 196
G31 -41 -25 187
G32 160
G33 254 G33
G34 -1027 -1014 -948 66 13 79| G34 -141
T4 -468 -532 -514 18 -64 -46| T4 -106
0
T1 214 274 302 28 60 88(T1 -5
T2 -392 -305 -268 37 87 124|T2 1
T3 -1115 -1036 -1056 -20 79 59(T3 126
T4 -551 -562 -527 35 -1 24|T4 -83
TS 133 217 264 47 84 131|TS -26
T6 155 243 269 26 88 114|T6 27
T7 -1333 -1230 -1192 38 103 141|T7 14
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T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
R12
R13
R14
R15
R1
R2
R3
R4
RS
R6 not reliable
R7
R8
R9
R10
R11
RC1
RC2

E2
E3
E4
ES
E7
E8
E9
E10
E11
E12
E13
E14
E15
E16
E17
E18
E19
N1
N2
N3
N4
T4
s1
)
s3
S4
S5

-849
-1644
-1306

-1044
-352
1580
-174
3700
-620
-43
1483
1446
-305
669
19
-305
198
268
-410

1857
855

1222
660
164

-468

51
-1411
-2714

-668
-1875
-2215
-2144

673
-1166
-1538

-857
-1498
-2342
-2801
-1032
-2738
-2199

6362

568
911

3117

-441

-519

-462
138
-679

-1556
-1254
-907
-850
-298
1650
-103
3847
-658
30
1489
1477
-281
700
82
-292
205
302
-384
3389
1900
886
-398
1336
691
264
514

81
-1388
-2657

-652
-1802
-2206
-2135

681
-1060
-1519

-858
-1411
-2286
-2794

-922
-2675
-2187

6588
757
914
3133
-426
-529

-478
134
-678

Table B2 Cont’d

~738
-1526
-1225
-875
-955
=271
1882
-91
3903
-536
41
1468
1460
-283
718
42
-273
180
316
-370
3250
1915
899
-376
1333
680
218
517

113
-1335
-2656

-611
-1780

-2096
717
-1027
-1482
-792
-1380
-2219
-2757
-876
-2651
-2128
6782
895
953
3166
-386
514
-28
-476
156
-664

34
30
29
32
-5
27

-58

12
56
22
11

-21
-17

32
53

41
22

39
36
33
37
66
31
67
37

46

24
S8

150

15
38

22
14

88
52
70
94
54
70
71
147
62
73

31
24
31
63
13

34
26

114

31
100
-46

30
23
57
17
73

106
19
-1
87
S6

110
63
12

-10
-8
-16
-4

11
118
81
102
89
81
12
83
203
84
84

14
22
49
23
32
-19

40

111
20
54

-49

62
76
S8
58
85

139
56
65

118

156

T8

T9

T10
T
T12
T13
T4
T15
T16
T17
T18
R12
R13
R14
R15
R1

R3
R4
RS

R10
R11
RC1
RC2

E2
E3
E4
ES

E8

ES

E10
E11
E12
E13
E14
E15
E16
E17
E18

[E19

S1
S2
Ss3
S4
S5

18
-16
-5
106
-9
205

16
11
47
45
71
29
-1
156
=31

-101



Table B2 Cont’d

S6 -648 -651 -619 32 -3 29|s6 -78
C1 -657 -641 -595 46 16 62|C1 -91
c2 -173 -171 -152 19 2 21|C2 42
c3 -1114 -1118 -1094 24 -4 20/|C3 -60
C4 -911 837 -913 24 -26 -2|C4 -82
RS1 3450 3520 3569 49 70 118|R$1 -44
RS2 3062 3143 3183 40 81 121|RS2 -12
RS3 2517 2511 2486 -25 -6 -31|RS3 52
Attheend: 23.63918

Time 7:30am {12:10pm{2:50 pm

Standard 1 -22 22

Temperature 15 25 25

TH1 211 241

TH2 18.6 22

TH3 18.5 216

TH4 19.1 237

THS 22.9 252
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Location of Front Axle [m]

Figure B1: Static Load Test, August "98 for Cable Transducer at Strap #21
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6 \\\\ / /[ Pier No. 2 S. Abut.
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Location of Front Axle [m]

Figure B2: Static Load Test, August "98 for Cable Transducer at Strap #13
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Figure B3: Static Load Test, August *98 for Two Cable Transducers for Girder 5 in
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Figure B7: Static Load Test, August ’98 for Girder 1 in Positive Moment Region
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Figure B8: Static Load Test, August 98 for Girder 2 in Positive Moment Region
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Figure B9: Static Load Test, August *98 for Girder 3 in Positive Moment Region
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Figure B10: Static Load Test, August *98 for Girder 5 in Positive Moment Region

158



35

Measured Strain [pe]

-15
Location of Front Axle [m]

Figure B11: Static Load Test, August 98 for Girder 4 in Positive Moment Region
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Figure B12: Static Load Test, August "98 for all Bottom Gauges in Positive Moment
Region
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Figure B13: Static Load Test, August *98 for Girder 1 in Negative Moment Region

\\// ~G19

—*=G20
Q21

-50

Location of Front Axle [m]

Figure B14: Static Load Test, August 98 for Girder 2 in Negative Moment Region
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Figure B18: Static Load Test, August *98 for All Cable Transducers at Strap #21
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Figure B20: Static Load Test, August 98 for Cable Transducers on Girder 5
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Figure B21: Static Load Test, August "98 for Strap #8 in Positive Moment Region
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Figure B23: Static Load Test, August *98 for Straps in Positive Moment Region
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Figure B24: Static Load Test, August 98 for Straps in Positive Moment Region
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Figure B25: Static Load Test, August "98 for Strap #8 in Positive Moment Region
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Figure B26: Static Load Test, August 98 for Strap #23 in Positive Moment Region
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Figure B28: Static Load Test, August 98 for C-Bar at Cantilever
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Figure B30: Static Load Test, August 98 for C-Bar at Pier No.1
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Figure B32: Static Load Test, August 98 for Cable Transducers at Strap #21
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Figure B33: Static Load Test, August *98 for Cable Transducers at Strap #13
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Figure B34: Static Load Test, August 98 for Cable Transducers on Girder 5
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Figure B37: Static Load Test, August *98 for Gauges on Cross Frame
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Figure B38: Static Load Test, August *98 for Embedded Concrete Gauges
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Figure B39: Static Load Test, August "98 for Embedded Concrete Strain Gauges
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Figure B40: Static Load Test, August 98 for Embedded Concrete Strain Gauges
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Figure B41: Static Load Test, August 98 for Embedded Concrete Strain Gauges
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Figure B42: Static Load Test, August *98 for Embedded Concrete Strain Gauges
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Figure B44: Static Load Test, August *98 for Cable Transducers at Strap #21
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Figure B46: Static Load Test, August 98 for Two Cable Transducers on Girder 5
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Figure B51: 55 km/hr Test, August *98 for Gauge G33 & G34
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Figure B52: 55 knv/hr Test, August "98 for Gauge G3 Filtered Data
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Figure B54: 55 km/hr Test, August *98 for Gauge G34 Filtered Data
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Figure B56: 40 km/hr Test, August *98 for Gauge G3 Filtered Data
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Figure B57: 40 km/hr Test, August *98 for Gauge G33 & G34 Filtered Data
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Figure B58: 40 km/hr Test, August *98 for Gauge G3 Filtered Data
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Figure B59: 40 km/hr Test, August 98 for Gauge G33 Filtered Data
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Figure B60: 40 km/hr Test, August *98 for Gauge G34 Filtered Data
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Figure B61: 30 km/hr Test, August *98 for Gauge G3 Filtered Data
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Figure B62: 30 km/hr Test, August 98 for Gauge G3 Filtered Data
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Figure B64: 30 km/hr Test, August *98 for Gauge G33 & G34 Filtered Data
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Figure B66: 15 km/hr Test, August *98 for Gauge G3 Filtered Data
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Figure B67: 15 knv/hr Test, August "98 for Gauge G33 Filtered Data
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Figure B68: 15 kmv/hr Test, August *98 for Gauge G34 Filtered Data
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Figure B70: All Four Test Speeds, August 98 for Gauge G3 Filtered Data
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Figure B72: Dynamic Amplification Factor versus Speeds from Cable Transducers
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Figure B73: Dynamic Amplification Factor versus Speeds from Strain Gauges
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Figure B74: 55 km/hr Test, August *98 for Gauge #6 Before Corrected for Drifts
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Figure B76: 40 km/hr Test, August *98 for Gauge #6 Before Corrected for Drifts
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Figure B78: 30 km/hr Test, August *98 for Gauge #6 Before Corrected for Drifts
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Figure B79: 30 km/hr Test, August *98 for Gauge #6 After Corrected for Drifts
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Figure B80: 55 km/hr Test, August *98 for Cable Transducer #1 Filtered Data Set 1
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Figure B81: 40 km/hr Test, August 98 for Cable Transducer #1 Filtered Data Set 1
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Figure B82: 30 km/hr Test, August 98 for Cable Transducer #1 Filiered Data Set 1
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Figure B83: 15 kmv/hr Test, August 98 for Cable Transducer #1 Filtered Data Set 1
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Figure B84: 55 km/hr Test, August *98 for Cable Transducer #1 Filtered Data Set 2
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Figure B85: 40 km/hr Test, August *98 for Cable Transducer #1 Filtered Data Set 2

7 N\

AN

Py
L A Ba g g

M-

Cable Transducer [mm]
L 1
e

—L1 Dynamic "*=L1-Filter

2 4 6 8 10 12
Time [Sec]

14

16

18

20

Figure B86: 30 kmv/hr Test, August *98 for Cable Transducer #1 Filtered Data Set 2
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Figure B87: 15 km/hr Test, August *98 for Cable Transducer #1 Filtered Data Set 2
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Figure B88: 55 knmv/hr Test, August *98 for Cable Transducer #1 Fiitered Data Set 3
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Figure B89: 40 km/hr Test, August *98 for Cable Transducer #1 Filtered Data Set 3
(Cable Transducer #1 on Girder 1 at Strap #13)
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Figure B90: 30 km/hr Test, August *98 for Cable Transducer #1 Filtered Data Set 3
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Figure B91: 15 km/hr Test, August *98 for Cable Transducer #1 Filtered Data Set 3
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Figure B92: 55 km/hr Test, August 98 for Strain on One Steel Straps, Set 2
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Figure B93: 55 km/hr Test, August 98 for Cable Transducer #1 and Accelerometer #8
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Figure B94: Damping Cure for Free Vibration Phase in Test Set 3
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Figure B95: Potential Aliasing Error
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