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A bstract

While much of the research done in heuristic search has concentrated on deterministic do­

mains, not much work has been done to  investigate search techniques in stochastic domains 

other than  statistical sampling methods. When full search is required, Expectimax is often 

the algorithm of choice. However, Expectimax is a full-width search algorithm. A class of 

algorithms called *-Minimax were developed by Bruce Ballard to  improve on Expectimax’s 

runtime. They allow for cutoffs in trees with chance nodes similar to how Alpha-Beta allows 

for cutoffs in Minimax trees. This thesis presents new performance results for Expectimax, 

as well as S ta rl and Star2 (the two main *-Minimax algorithms), in real-world domains. 

Ballard’s work is verified and new insights into move ordering and probe successor selection 

are presented.
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“A fter evaluating millions of pieces of data in the blink of an eye, 
the Gamble-Tron 2000 says the [Superbowl] winner is... 

Cincinnati by 200 points!? Why, you worthless hunk of junk!” 
-Professor John Prink, The Simpsons (Epsiode 8F12)
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Chapter 1

Introduction

1.1 Search in Real Life

The topic of search is not just one of the main areas of study in artificial intelligence 

(AI) today, but also one of the most im portant areas in computing science. Research to 

make computers search better and faster has led to  improvements in various other areas of 

AI (better planning systems), telecommunications (more efficient network routing), indus­

trial applications (more efficient scheduling systems) and even e-commerce (creating travel 

itineraries). Pathfinding is a research area th a t has a great deal of academic and industry 

interest (especially in games, robotics and military research). Search has also been used to 

improve constraint satisfaction systems.

Search is concerned with finding the best solution to  a problem, commonly called an op­

timal solution. Finding optimal solutions to  most problems is generally not trivial, because 

most “interesting” problems are at least NP-hard. W ith regards to  the previous examples, 

we would like to  find the smallest plan, the shortest path  between two nodes, the cheapest 

schedule, a trip  with the fewest number of connecting flights, or a solution to  a  constraint 

satisfaction problem in a “reasonable” amount of time. We want to  find an answer, the best 

answer if possible, and we want to  find it quickly.

Many real-life problems are also stochastic, meaning some steps are based on an element 

of uncertainty. For example, a person driving a car needs to  not only pay attention to 

keeping the car on the road, but on various other factors around them  like other cars, 

pedestrians and signal lights. Choices are often based on making assumptions about these 

factors. For example, we may not want to  speed down a street if we notice children playing 

on the sidewalk up ahead, because we won’t  be able to  stop quickly enough if they run on 

the road. At the same time, we won’t  just stop the car and wait for them  to go inside 

before continuing on, because we might end up waiting for hours. While there is a chance 

the children will run onto the road, the chance is not likely, if they’ve been warned by their 

parents. So we’ll probably drive down the road at a reasonable speed, while keeping one eye

1
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on them. In other words, we need to  balance the risks and rewards for doing actions based 

on possible future worlds.

A popular model for these types of stochastic domains is called a Markov Decision 

Process [22], or MDP. MDPs are graphs with states th a t are linked together by actions whose 

outcomes are deterministic. Being in a given state may give us a penalty or reward, which 

can also be based on the last action we took. The transition probabilities to another state 

are based only on the state we are currently in, forgetting everything else th a t happened in 

the past. This constraint is called the Markov property.

MDPs are often used in single-agent problems, where one wants to  find the best policy for 

every given state. MDPs can be used for businesses to maximize sales, or in risk management 

in order to  find optimal expenditures. For example, a retailer may classify their clients into 

two groups, people who spend a lot of money, and people who spend little money. Based on 

the classifications, the retailer can then consider whether or not they should incur the cost 

of sending th a t person a catalogue of their products, since the catalogue may encourage 

the client to  spend more money. The retailer can then decide what the best catalogue- 

sending policy to use is, based on the risks (cost of printing and shipping) and rewards 

(extra client spending). MDPs can also be adapted for multi-player games, where states 

can define different rewards for different players, and players take turns choosing actions to  

make transitions between states.

1.2 Games in Research

Games are often used as a testbed for new search algorithms. Programs designed to  play 

games usually make their decisions using searches in the problem state space, which is the 

set of all possible states, or possible configurations, of a game. Since games have been used 

as a testbed for search algorithms for almost as long as computing science has been around, 

most games used are generally well-understood domains. These days, it is rare to  find a 

search problem th a t has not been explored in the context of a game, or a game which has

not been investigated using search. Of course, a fringe benefit1 of working with games as a

research domain is th a t games are fun.

1.3 Games of Skill, Games of Chance

Games are usually classified as games of skill, or chance. There are many games which 

involve both skill and chance, but often simple games of chance do not involve much strategy. 

For example, chess is clearly a game of skill, but luck only factors into the equation when 

we hope that our opponent makes a mistake. On the other hand, games of chance like

1Some might say the prim ary benefit!

2
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roulette offer very little opportunity to use skill, besides, perhaps, knowing when to  quit 

losing. Games tha t involve chance usually involve dice or cards. Competitive card games 

combine skill and chance by requiring players to  use strategic thinking, while they manage 

the uncertainly involved; since card decks are shuffled, the game’s outcome is not certain. 

Since a player’s cards tend to be hidden in card games, each player will have imperfect 

information about the game state. There are not many perfect information games which 

blend skill and chance -  games where nothing is hidden, yet nothing is certain. Happily, 

there does exist a game th a t fits this description, a game th a t is both well-known and 

relatively popular: backgammon.

1.4 C o n trib u tio n s  of th is  Thesis

Whenever chance is introduced in a domain, Expectimax is the usual algorithm of choice. 

While Expectim ax is sound, it builds large trees in complex domains, and searching these 

trees deeply may require too much time. Instead of doing brute-force search in these do­

mains, we can use techniques in order to prune away parts of the tree which are irrelevant. 

In 1983, Bruce Ballard developed a class of algorithms, called *-Minimax, which can be 

used to search state  spaces in games with chance, but require less time per search than  Ex­

pectimax. Ballard investigated the algorithms in an artificial domain at relatively shallow 

depths.

The main contributions of this thesis are as follows:

1. Re-implementation of Expectimax as well as the two main *-Minimax algorithms, 

S ta rl and Star2, and their application to two real-world domains: a game called Dice 

(developed for this thesis), and the ancient game of backgammon,

2. Verification of B allard’s work,

3. Investigation of the relative performance of Expectimax, S ta rl and Star2 when applied 

to Dice (at varying branching factors) and Dice and backgammon (at varying search 

depths),

4. Investigation of the relative performance of Star2 at various depth settings in Dice 

and backgammon tournaments,

5. Presentation of new insights into the performance of S tar2 with various move ordering 

schemes as well as probe successor selection schemes.

Most importantly, this thesis will provide results a t depths much deeper than  Ballard 

was able to attem pt, and in more complex domains than  Ballard used, thanks to the im­

provements made in computing resources since the early 1980s.

3
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1.5 Organization of Thesis

C hapter 2 presents an overview of games research, provides an introduction to  the two most 

common algorithms used in two-player search (Minimax and Alpha-Beta), and summarizes 

some of the most common search enhancements. C hapter 3 focuses on stochastic domains 

and the adaptation of Alpha-Beta to  work when chance is introduced into the search space, 

including an explanation to the two *-Minimax algorithms, S ta rl and Star2. C hapter 4 

focuses on applying *-Minimax to  a  game domain called Dice (invented for this thesis), to 

investigate how branching factor and search depth effect performance. C hapter 5 explores 

the game of backgammon and its implementation using the GNU Backgammon codebase. 

C hapter 6 summarizes observations and makes conclusions about the experimental data 

collected, as well as suggests some new avenues for further research.

4
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Chapter 2

Background

2.1 Gam es as a Research Domain

When research is done with search algorithms, games are used often as the domain for 

testing new algorithms or improvements to  old algorithms. Games are used because they 

are often well-understood domains and relatively “real-world” . Games also have a good 

built-in performance measure: a win.1

There has been a rich history of games research in computing science over the last fifty 

years. While some games have been solved outright, other games are still proving to  be 

difficult challenges for computers. This chapter will explore various games and at what level 

of skill computer programs of today have, and provide an overview of two im portant search 

algorithms and popular enhancements for them.

2.1.1 Solved

Some games have been solved, meaning th a t computers play perfectly. Since they do not 

make mistakes, solved games are usually no longer of much interest to  researchers. They 

are still useful for developing new approaches to  AI, because a perfect opponent is available 

as a performance metric.

Awari

Awari, also known as Mancala, is an ancient game from Africa involving pits and stones. It 

is a popular game (especially among children) because its rules are simple. While Awari’s 

state space is not as large as most other games used in research, it has been enough of a 

factor in past years to  prevent outright solving, so most Awari programs used search to 

find the best move. However, John Romein and Henri Hal, researchers in the Netherlands, 

were able to finally prove Awari as a draw with perfect play [21]. They used an impressive 

array of hardware to perform brute-force search, and were able to  solve and store the game, 

1We could also build programs tha t lose, bu t th a t would be much less fun.

5
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starting from possible end positions, all the way back to  the initial start.

C on n ect-4  and G om oku

Both Connect-4 and Gomoku have similar rules: players take turns placing their stones on 

a grid (or in Connect-4’s case, dropping them  into a grid), and the first player to connect 

enough pieces (four for Connect-4 or five for Gomoku) wins the match. Both games have 

a fairly low degree of decision complexity, meaning most moves are irrelevant because of 

the structure of the game, or there aren’t  many move choices during play. For these two 

games, countering opponent threats is generally the most im portant part of the game. In 

1988, Victor Allis solved Connect-4[l], using strategic rules to  guarantee a win for the first 

player, and to  guarantee at least a  draw for the second player (if the first player does not 

s ta rt in the middle column). Allis solved Gomoku in 1993[17] using a threat-based search 

technique.

2.1.2 Super-human P lay

Programs th a t play at a super-human level may not play a perfect game, but usually the 

game is complex enough th a t humans cannot hope to  challenge programs in this domain 

any more.

Checkers

Checkers2 is a popular game played by people of all ages around the world, using a 8 x 8 

board. The first success in computer checkers was obtained by A rthur Samuel in 1959[23], 

using a simple learning algorithm to  evaluate board positions. Currently, the Chinook 

program created by Jonathan Schaeffer and his team  at the University of A lberta is the top 

program in the world. Chinook won the world checkers championship by beating the best 

hum an in 1994[25]. One of Chinook’s weapons is its large end-game database (approximately 

18 trillion positions and counting), which allows it to  play a perfect game, once enough 

checkers are removed from the board. Checkers may soon move into the solved category.[26]

O thello

Othello is a popular territory capture game. The first computer Othello program was de­

veloped at Caltech in the late 1970s and the first computer tournam ent took place in 1979. 

Program  skill has developed continuously since then, and in 1997 a program written by 

Michael Buro, Logistello, took on and routed the world champion at the time, Takeshi 

Murakami [9]. Logistello used machine learning techniques to create and tune an extremely 

complex and powerful evaluation function for Othello positions, and used a new, sophisti­

cated search enhancement called ProbCut[8] to  ignore irrelevant lines of play.

2Or draughts, if you are British.

6
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Scrabble

Scrabble is a word game, where players use tiles with letters on them to score points. It 

requires not only a good vocabulary, but also a keen tactical sense. Computers can easily 

digest dictionaries, but strategic play is the hard part. Because of the randomness in which 

players draw new tiles, the brute-force approaches tha t are successful for chess, checkers and 

Othello cannot be used. One of the most successful computer Scrabble programs is Maven, 

written by Brian Sheppard[27], which beat a Scrabble grandmaster in a match in 1998. 

Maven has extensive dictionaries, and uses a “simulator” technique to  perform searches by 

randomly “dealing” out tiles to  each player and then playing through a few turns.

2.1.3 W orld Cham pionship Level

Some programs play games at a world championship level, meaning only the best can hope 

to  compete, but they are not without their flaws. Some games like chess are still complex 

enough for computers th a t human masters still have a  reasonable chance. Other games like 

backgammon involve an element of luck th a t computers can model, but not control.

C hess

If there is one game th a t has captured the attention of AI researchers since the early days of 

computing, it is chess. Chess has been referred to  as the Drosophila3 of AI, the most popular 

game domain used in research. The most famous achievement in computer chess was the 

1997 man-machine match between then-world champion Garry Kasparov, and Deep Blue, a 

massive custom-made chess computer designed by a  team  from IBM[20]. Kasparov won the 

first game but ultimately lost the m atch to  Deep Blue, which was then prom ptly dismantled. 

As chess programs continue to get stronger and hardware gets faster and cheaper, beating 

them  has become out of reach for all but the best players.

B ackgam m on

Backgammon is considered to  be one of the oldest board games still played, perhaps the 

oldest of recorded history[29]. It is also a non-deterministic game because there is a dice 

roll a t the beginning of each turn  to  determine what legal moves a player has. As such, 

search algorithms tha t have been successful for deterministic games (like chess) cannot be 

directly applied. By the late 1980s, computer backgammon was mired at an am ateur level. 

In 1990, Gerald Tesauro applied a new machine learning technique, reinforcement learning, 

to  create a backgammon program th a t could learn the game solely by self-play [33]. The 

resulting program, TD-Gammon, has become one of the top backgammon programs in the 

world, and is considered to  be as strong as any human grandmaster. In recent years, several

3 Drosophila, or the common fruit fly, is used in biology to study the effects of inheritance.
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new projects have sprung up based on Tesauro’s work, including GNU Backgammon[2], 

Jellyfish[3], and Snowie[4], all of which are considered to  be near the same performance 

level as TD-Gammon.

2.1.4 Strong P lay

Often, there are programs th a t reach a strong level of play, but not expert, because the 

game may have complex rules, simple rules but a  high degree of decision complexity, require 

long-term abstract planning, hide information about the game state from the players, or 

involve outright deception.

Poker

Poker is a game played by two or more people. It has a multitude of variants, but most 

feature the same basic play, where one or more rounds are played which consist of cards 

being dealt followed by a round of betting. In most variants, betting is the most im portant 

part of the game, because you do not necessarily need a strong hand to win -  you just need 

to be the last person standing. Poker research has concentrated on two different schools of 

thought. The first has adopted a m athematical approach, using game theory to discover 

optimal strategies for play for simplified poker variants[7]. The second school of thought has 

been to  tackle a complicated variant of poker head-on, and develop a program with all the 

necessary skills at once -  skills like opponent modeling and developing betting strategies. 

One of the most successful programs th a t has adopted this approach is the Poki program [7], 

developed at the University of Alberta by a number of researchers.

B ridge

Bridge is a popular four-player card game, played by two teams of two players. It has two 

phases: the bidding phase, in which each team wagers how many rounds ( “tricks”) they can 

win, and the playing phase, which has thirteen rounds of play. Both phases are a challenge 

for computers. The bidding phase is difficult because players can only communicate via 

their bids. The playing phase is difficult because cards are randomly distributed and not 

known until they are played. Bidding strategies can be subtle, and playing strategies based 

on precise timing, which makes the game difficult for computers to  play. One of the current 

top bridge computer programs is M att Ginsberg’s GIB[11].

2.1.5 Weak P lay

Computer programs have a long way to  go in some game domains. Games th a t involve 

social interaction between players, explosive search spaces, or require long-term planning 

remain difficult domains.
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G o

Go is an ancient game, and the focus of much research over the last th irty  years. It is a 

game of creating territories played on N  x N  boards, where players place stones on alternate 

turns. The m ajor problem with Go is the difficulty in designing strong evaluation functions. 

Selecting a good move is therefore not a  trivial task. While humans are able to  adapt 

strategies and plan in the long-term, this is still a difficult task for computers. Although 

some m ajor strides have been made in the last few years as some computer Go programs 

(such as H andtalk and KCC Igo) are beginning to  approach competent levels of play, they 

can still be beat by humans of moderate skill[19].

Settlers o f  C atan

A German board game tha t has become a world-wide hit, Settlers of C atan is a 2-4 player 

game of colonization of a hexagon-shaped island. W hat makes the game so interesting is 

tha t players are free to (and encouraged to) trade resources they gather among themselves. 

Although only one person can win the game, trading is a vital aspect because it is a win- 

win situation for both players involved in the trade. It is nearly impossible to  win without 

interacting. And while computers may find it “easy” to play a game like chess, much less 

progress has been made in developing computer agents capable of negotiation and opponent 

modeling, abilities tha t humans seem to have naturally or learn easily. The Columbus 

project lead by Robert Thomas and Kristian Hammond at Northwestern University[34] has 

developed a free game server for Settlers, as well as their own Settlers agent, playable by 

humans. The agent usually fares poorly in games with human players because of its limited 

ability to  communicate.

2.1.6 The Future

Even with all the progress th a t has been made in AI games research, many computer 

programs can still be beaten. For example, research still has not been able to  create the 

“perfect” chess program, simply because the state space for chess -  the number of different 

possible positions in chess -  is too large. A wide variety of different algorithms and algorithm 

extensions have been used in computer game programs, proving tha t games can be excellent 

domains for new ideas in search, knowledge, and machine learning. While some games have 

been solved, many interesting games continue to  be huge challenges, because the size of 

state spaces or high degree of decision complexity in most games remains intractable to 

brute-force search. Games with high degrees of complexity (like Go) or even modest degrees 

of player interaction (like Settlers of Catan) will remain open problems for years to come.
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2.2 H euristic Search

2.2.1 G am e Trees

When a computer program wants to decide on which move to play in a deterministic game, 

it will typically build a game tree (see Figure 2.1). A game tree is a directed graph where 

the root node represents the current game state, and its successors represent all possible 

game states after playing a move, which are represented by edges between states. States 

are terminal when they represent a  game state th a t is a win, a loss or a  draw. States at 

the bottom  of the tree are called leaf nodes. All other states are internal to  the tree. In a 

single-player game (like a puzzle), a game tree is usually built in order to  find an optimal 

solution; in other words, to  find the minimal sequence of moves th a t leads the player to  the 

best term inal state. In multi-player games, game trees usually consist of alternating levels 

of nodes, where each level of nodes is associated with the player whose tu rn  it is to  move. 

In such games the computer must not only consider its possible options, but also consider 

what options its opponent(s) have as well.

2.2.2 T he Search Problem

Most interesting problems have state  spaces which are exponentially large in the branching 

factor. Using exhaustive search techniques on these domains -  going through the space 

in some sequential order and checking each state in tu rn  -  is not a reasonable method to 

find a solution, because it would take too long to  find any solution, even sub-optimal ones. 

While the intractability of such large state spaces may preclude a brute-force algorithm 

from finding a solution quickly, we can still speed up the process considerably. Instead of 

iterating through the entire state space, we need only search the part of the state space 

relevant to  finding the answer. The current state  can be considered the root of a tree, 

and we can generate successors for the root by going through each possible action tha t 

modifies the state. For example, a node located two steps from the root would represent a 

state separated from the root by two actions. Any state representing a solution would be a 

terminal node. The general method, then, is to  continue adding to  our tree starting  from 

the root until we find a path  tha t leads to  the best solution. We will use an indicator called 

a heuristic to  help guide the search process.

O ne-Player D om ain s

The most common heuristic search algorithm, which has spawned many variations, is the 

A* algorithm[13]. A* requires the ability to  put the entire state space it may explore in 

memory, and guarantees to  perform asymptotically less than or equal to the number of 

node expansions of any other algorithm, when finding the optimal solution to  a problem. 

This quality makes it extremely appealing, but its memory requirements still outstrip even
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Figure 2.1: A game tree for tic-tac-toe
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the latest computers on “difficult” problems. In response to this problem comes the IDA* 

algorithm[16], which still guarantees an optimal answer, bu t uses iterative deepening search 

in order to  minimize memory requirements.

One of the most popular application domains used in heuristic search research are sliding- 

tile puzzles. These puzzles have a number of square tiles mixed up in a square area, with 

one tile missing (the “blank” square). They are solved when each tile is placed in numerical 

order, w ith the blank at the end. Actions can be performed by sliding a tile adjacent to  the 

blank into the blank space, thus shuffling tiles around. A* uses a heuristic to score every 

non-terminal state. The greater the score, the greater the estim ated cost to  reach a goal 

state from th a t node. A* is a best-first search algorithm, because it always searches nodes 

in order of most- to  least-likely to succeed.

T w o-P layer D om ains

We cannot apply A* to  two-player games. While actions can be controlled in single-agent 

games, in two-player games we can only control one of the sides of play. The opponent 

will generally be out to  win just as we are out to win, and will not make moves th a t raise 

our chances of success, or lower their chances of winning. This adversarial setup requires a 

different approach; instead of finding a sequence of moves to  lead us from a starting position 

to  a solution, our job is to  decide what move we should make on our turn . If we cannot 

find a move to  lead us to  a  winning state, we want a move leading us to  the “best” state 

possible. We will use a heuristic to help us make our decision.

In two-player domains as in single-player domains, heuristics come in the form of eval­

uation functions, which are functions th a t take a state (usually a leaf node) and map it to 

a value. Most evaluation functions will m ap a terminal node to  an extreme value: a large 

positive number for a winning position, and a large negative number for a losing position. 

Non-terminal states are usually given a value based on their utility or benefit for the player 

to  move, such th a t an even game may be mapped to  a 0, or a state th a t is nearly a win is 

mapped to  a large positive number. The exact numbers are always implementation-specific. 

For example, a backgammon program may simply m ap a state to  a real value between -1 

and +1, to  represent the position’s equity to  the player to  move; an Othello program might 

simply map the state to  the material difference in discs between the two players. In practice, 

good evaluation functions will map states to  a “reasonable” range of values. If the range 

is too small, then a program may end up choosing bad moves over average moves simply 

because it is not able to  tell the difference. Program performance is directly related to  the 

quality of the evaluation function, which is often the component of a computer game th a t 

takes the most work to get gradual improvement.

While we are concerned with the depth in the tree a t which we find a solution in single-
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player games (the less deep we have to  search, the quicker we find the answer), in multi-player 

games the search depth is just as im portant, because of the adversarial nature of games. 

Searching to  depth—1 only considers the immediate states which follow from the root; in 

other words, the player to move is only looking ahead one step (one ply) to  see what would 

happen immediately after playing a move. Search a step deeper, and now the opponent’s 

replies are considered. If we continue this process of considering replies to  replies to  replies, 

we “look into the future” . We can avoid traps set up by our opponent, and lead our opponent 

into traps. We can find lines of play th a t lead us to  wins. Deep search in games allows us to 

be more informed in our decision making, and hopefully increases our chances of winning.

2.3 M inim ax

Searching depths greater than one ply requires th a t we take the opponent’s choices into 

consideration. W hen we search, we will make the assumption th a t the opponent will always 

make the best move possible on their tu rn  (based on the same evaluation function as we 

use for our turns), one tha t lowers our score as much as possible (and improves their score 

as much as possible). In game tree terms, we will have an alternating sequence of levels 

where it is our tu rn  a t even depths (with the root at depth 0), and the opponent’s tu rn  at 

odd depths. Since we are trying to  maximize our score, and our opponent can be seen as 

trying to  minimize our score, these levels are often called Max and Min levels, respectively. 

At every Max node, the move will be made to  a successor with greatest value, and at Min 

nodes a successor with smallest value will be chosen. Once all the successors of a node have 

been evaluated, we can evaluate th a t node (and back up the value to  its parent). This is 

called the Minimax algorithm.

The Minimax algorithm is summarized in Figure 2.2, which makes use of (1) a te rm in a l 

function th a t returns true if a given state is terminal, (2) an e v a lu a te  function th a t returns 

the heuristic evaluation of a state, (3) a num Successors function th a t returns the number of 

successors a state  has, and (4) a su cc e sso r function th a t returns a new state after a  move 

has been applied. is_max_node is a flag tha t is toggled between recursive calls to  indicate if 

the node is Max or Min.

Consider the example in Figure 2.3 to  see how Minimax works, with a 3-ply search. We 

start a t the root. The root is not a term inal node (in fact, it is a Max node), so we will 

need to  consider each of the root’s successors (each of which is a Min node). We look at 

the first successor, A. It is not a terminal node, so we recurse and look at its successors. 

Since they are not terminal, we go another step deeper. The recursion stops at this point 

in this example, since we are only interested in looking ahead three steps. Both of these 

leftmost leaves (J and K) are scored using the evaluation function, and the parent, D (a 

Max node) returns a value of 5, which is the largest of the two leaf values. The next Max
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int Minimax(Board board, int depth, int is_max_node) {
/* Leaf node check */
if(terminal(board) II depth == 0) return (evaluate(board));

N = numSuccessors(board) ; 
if(is_max_node) {

/* Maximize */
score = -INFINITY;
for(i =1 ;  i <= N; i++) {

v = Minimax(successor(board,i), depth-1, !is_max_node); 
if(v > score) score = v;

>
> else {

/* Minimize */
score = INFINITY;
for(i = 1 ;  i <= N; i++) {

v = Minimax(successor(board,i), depth-1, !is_max_node); 
if(v < score) score = v;

>
>

/* Back up value */ 
return (score);

>

Figure 2.2: The Minimax algorithm

5
Max

Min

Min
5 4 6 2 1 4 6 8 3 1 7 9

Figure 2.3: A Minimax tree
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node to its left (E) is scored in the same way, and returns a value of 6. Now the value of A 

can be determined, by choosing the smallest value of its two successors. Since 5 is less than 

6, this Min node returns a value of 5 to the root. Each of the roo t’s successors is scored 

the same way. When all of the roo t’s successors have been expanded, we can score the root. 

Since the root is a Max node, we choose the successor who leads to  the greatest value. The 

move corresponding to  reaching th a t successor is thus the move chosen. In our example, we 

choose the move th a t leads to  the first of the root’s successors, since the first successor has 

a higher value (5) than the other two successors (3 and 4).

2.4 A lpha-Beta

Minimax is the brute-force equivalent to  exhaustive search in two-player domains, because 

Minimax will search every single possible node. But searching every node in the state space 

is not always necessary. Consider the previous example in Figure 2.3. By the time we start 

searching A ’s second successor E, we can use some assumptions to  save us searching E in 

its entirety. Once we know the value of the first of A’s successors, we obtain an upper bound 

on the score this Min node will have. In this case, we know A will have a value no greater 

than  5. We obtain this bound from the previous assumption th a t our opponent will always 

try  and lead us toward the worst possible outcome. When we search L, and get a value of 

6 for th a t leaf, we know tha t its parent E (a Max node) can have a value no less than  6. 

But since the opponent can already keep us to  a score of 5, we know they will not give us 

an opportunity to get 6 or more. So we need not bother searching the second leaf (M) since 

the value for E can only get better. We can then “cutoff” search a t E, since further search 

below the Max node is guaranteed not to  change the outcome of the search.

This opportunity to  obtain m athematically proven bounds on Max nodes and Min nodes 

allows us to  have cutoffs, and therefore to  search less nodes to  get the same answer, leads 

us to  the Alpha-Beta algorithm[15], summarized in Figure 2.4. At each step in Alpha-Beta 

we include lower and upper bound values (called alpha and beta, respectively) when we 

expand a node. This information is updated when a node’s successors return  values that 

allow us to change those bounds and adjust the window of search. In the case of a Max 

node, we can increase the alpha value as we search children with better scores. Min nodes 

will similarly adjust the beta value of the window when children with worse scores are seen. 

Whenever the two bounds of the window meet, we can stop search knowing th a t the node 

is not better than another node in the tree at the same level th a t we have already seen (it 

could be equally good, but in th a t case we can just safely go with the other node and stop 

searching this node). We saw before how the leaf with value 2 does not need to  be searched. 

Figure 2.5 shows the result of A lpha-Beta applied to  the tree from Figure 2.3. 5 of the 

12 nodes are proved irrelevant to  the search, which means we only searched about half the

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



int AlphaBeta(Board board, int alpha, int beta, 
int depth, int is_max_node) {

if(terminal(board) II depth == 0) return (evaluate(board));

N = numSuccessors(board);
if(is_max_node) { 

score = -INFINITY; 
for(i = 1 ;  i <= N; i++) {

v = AlphaBeta(successor(board,i), alpha, beta, 
depth-1, !is_max_node); 

if(v > score) score = v; 
if(score > alpha) alpha = score; 
if(alpha >= beta) return (score);

>
} else •{

score = INFINITY; 
f o r d  = 1; i <= N; i++) {

v = AlphaBeta(successor(board,i), alpha, beta, 
depth-1, !is_max_node); 

if(v < score) score = v; 
if(score < beta) beta = score; 
if(beta <= alpha) return (score);

>
>

return (score);

Figure 2.4: The Alpha-Beta algorithm
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Figure 2.5: An Alpha-Beta tree

nodes as Minimax would have, but we got the same result.

The best case node expansions (a count of the number of nodes seen) for Alpha-Beta 

is , where B  is the branching factor and D  the search depth. A lpha-Beta’s worst case 

time requirement is B D, which is the same as Minimax’s requirement. Not all nodes in the 

tree are capable of cutoffs, however. An alternative way to  view a  Minimax tree is to  view 

nodes as All nodes or Cut nodes. An All node requires th a t all of its children be searched, 

but a Cut node can generate cutoffs, sometimes as quick as after searching its first child. 

If every Cut node of a  game tree generates a cutoff after searching its first successor, then 

the tree is reduced to  a  size of B% , which is how the best case is derived. This reduction 

(the square root of the size of the original tree) is a  substantial improvement over the worst 

case, which means we can search twice as deep as Minimax with the same number of node 

expansions. Counting node expansions is the most common metric for evaluating search 

algorithms, since node expansions is directly correlated to  search time.

2.5 Search Enhancem ents

Alpha-Beta’s success is not just related to its ability to  generate cutoffs, but also comes 

from the many enhancements built onto it over the years. Speeding up search is usually 

done by reducing the number of nodes searched. We can accomplish this by being smarter 

about what order we search successors in, and we can also save ourselves time by storing 

information about completed searches in case we need to  search the same node twice. Three 

im portant search enhancements are move ordering, memory-assisted search and iterative 

deepening.
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2.5.1 M ove Ordering

We can try  to  reduce the number of nodes we search by making a better evaluation function, 

but we can also reduce nodes by lowering the effective branching factor of the tree, since 

Alpha-Beta is dependent on searching the best move of a node first. One way to  do th a t is to 

order the successors of a node by most- to least-favourable; by doing so we hope to  raise our 

chances of getting a cutoff by getting higher values for a node sooner rather than  later. This 

technique is often referred to  as move ordering. [24] Move ordering is often done for every 

node th a t generates moves. Moves can be ordered using the usual evaluation function, but 

sometimes a different heuristic may be used for speed reasons.

Move ordering helps us get closer to  the best case node expansions for Alpha-Beta, since 

we are trying to  always search the best child of a node first. Even if move ordering does not 

generate immediate cutoffs at cut nodes, we will usually see a significant reduction in node 

expansions.

2.5.2 M em ory-A ssisted Search

Alpha-Beta can spend much of its time re-expanding nodes th a t it has already seen. As it is 

often the case with search trees, they are not trees a t all, but directed acyclic graphs (DAGs), 

because of transpositions of states within a single search (this happens when different se­

quences of moves result in the same state). We would like our heuristic search algorithms 

to  “remember” as much as possible about previous searches, to  make future searches faster, 

by eliminating the need to  search where one has searched before. This technique is referred 

to as Memory-Assisted Search.

One of the most common kinds of Memory-Assisted Search is the use of a transposition 

table (TT).[12] A T T  is normally implemented as a hash table, because we want operations 

on it to  be as fast as possible to  minimize the overhead associated with reading and writing 

to the table. T T  entries typically store an encoded state along with its last known heuristic 

value and the depth of search at which th a t value was obtained. TT  entries also often 

contain the alpha and beta cutoff values (when used in an Alpha-Beta setting), as a method 

of “tightening” search windows and allowing for quicker cutoffs, and thus less search. The 

information stored in a T T  is usually compressed to  be as small as possible, to  maximize 

memory usage. The T T  is used before a state is expanded (TT lookup) to  check to  see if 

information about the state exists. If a  state exists in the TT and its T T  entry was searched 

to the same or greater depth than the current depth, we can use the T T  value to  either 

eliminate further search at this state, or a t least narrow the search window for the state. 

Whenever we are about to  return a value in a search, we store the state  and its value in 

the TT. Sometimes two states will map to  the same location in the hash table (a collision), 

a t which point we need to  decide whether or not to  overwrite a value in the TT . There are
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several techniques for dealing with this, but usually we only overwrite if the new entry is 

for a deeper search.

Transposition tables can store more than just searched values. We can also store the 

best move searched for a state in its T T  entry. Then if we meet this state again, we can 

score it the highest of all successors when we perform move ordering. In this way we hope 

th a t the best move from a shallower search is the best move for a deeper search, and get a 

quick cutoff.

2.5.3 Iterative D eepening

Iterative search performs successive searches, starting each time from the same root, incre­

menting a depth param eter each time it starts over. Each repetition is called an iteration. 

Iterative deepening is a form of iterative search, where the nominal search depth starts at 

some small value and then is incremented after each search terminates. Iterative deepening 

is usually a component added to increase the effectiveness of memory-assisted search, as 

well as to  improve move ordering.

Move ordering is especially effective when done a t all nodes in conjunction with iterative 

deepening; before an iteration, the roo t’s children can be re-ordered to  reflect the scoring 

from the previous iteration. Since the order of children between searches is usually highly 

correlated, large portions of the tree can be potentially cut off quickly from the root.

2.6 Im portance of Deep Search

In the multi-player setting, the deeper a program can search, the more likely it is to  beat 

a program th a t searches shallower. In fact, a difference of only a  single ply between two 

programs can have a substantial difference in performance [35].

Deep search also helps programs deal with the so-called Horizon Effect[28], where a 

program foresees a bad situation (good for the opponent), but makes (bad) moves in order 

to  forestall the inevitable; in other words, the bad situation is “pushed over the horizon” , 

where it cannot be seen anymore. The problem is th a t all searches will suffer from this 

effect unless they are able to  reach a  term inal state, or extend searches over the horizon to 

a “stable” state (which is done in quiescence search). The deeper a program can search, the 

better its chances to  avoid the negative effects of the horizon.

Another reason why deep search is so im portant is th a t it can often overcome limita­

tions in inherent human knowledge th a t is used by the program. While programming such 

knowledge to direct search (or choosing moves altogether) may be beneficial, it is in fact 

a dangerous thing to  use. The explanation is tha t any knowledge one can put in a pro­

gram about a game will ultimately be incomplete, since no one can really know everything 

about an “interesting” game. Added knowledge may also slow down a program because of
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increased calculations. Deeper search may also dampen the effect of errors in a heuristic 

evaluation function.
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Chapter 3

Search in Stochastic Domains

3.1 G am es with Chance

So far, the discussion of search has centred around deterministic games, where an action 

is guaranteed to  result in a specific state. Most games th a t have been extensively studied 

-  such as checkers, chess, tic-tac-toe -  fall into this category. However, games as simple 

as snakes and ladders1 do not fall into this category, because they include an element of 

chance. The element of chance is often based on the roll of a die (or dice). Chance events 

are also present in card games like Poker, where one cannot be certain what card one will 

draw. Poker is also an imperfect information game, since opponents will hide their cards, 

and therefore hide information from the player. This thesis will only concern itself with 

perfect information  games, where the entire state is known to both players, although the 

states th a t follow may not be deterministic.

W ith the addition of chance events, we need to  add a new kind of node to our game 

tree: a chance node. A chance node will have successor states like Min or Max nodes, but 

each successor is associated with a probability of th a t s tate  being reached. For example, 

a chance node in a game involving a  single die would have six successor nodes below it, 

each representing the state of the game after one of the possible rolls of the die, and each 

reachable with the same probability of

The element of chance completely changes the landscape th a t search algorithms work 

on. In games of chance, we cannot say for certain what set of legal moves the opponent will 

have available on their turn , so we cannot be certain to  avoid certain outcomes. One method 

used to  simulate stochasticity, but remove it from the game tree so it can be searched using 

standard methods, is called statistical sampling, also referred to  as rollouts. The method 

involves repeated trials where the outcome of the chance events are randomly decided before 

search begins, and then search is run normally on the resulting tree. Since each chance event 

only has one successor, they just become intermediary nodes in the tree. For games th a t

1Or chutes and ladders, if you are British.
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involve dice, the chance events (the rolls, hence the term  rollout) can be determined in 

advance or on-demand when a chance node is met in the tree. In order to get a good 

statistical sample, the number of trials must be high enough (for backgammon, this is often 

in the tens or hundreds of thousands of trials) in order to  approximate the true distribution. 

While rollouts will remain a popular method used in search with games with chance, this 

thesis will concentrate on full search methods.

Previously, we saw how Minimax search worked in deterministic domains, and how 

Alpha-Beta improved on Minimax. The introduction of chance nodes means tha t we can 

no longer directly apply either algorithm to games of chance, since we cannot use Alpha­

Beta windows with chance nodes as we would with Max or Min nodes, because Alpha-Beta 

cutoffs are based on the assumption th a t the game is deterministic. Chance nodes act as 

intermediaries, by specifying the state the game will take before a choice of actions becomes 

available. Before we can search trees with chance nodes, we have to  figure out how to  handle 

them.

3.2 Expectim ax

The baseline algorithm for trees with chance nodes analogous to  Minimax is the Expecti­

max algorithm [18]. Just like Minimax, Expectimax is a full-width, brute-force algorithm. 

Expectimax behaves exactly like Minimax except it adds an extra component for dealing 

with chance nodes (in addition to Min or Max nodes). At chance nodes, the heuristic value 

of the node (or Expectimax value) is equal to  the weighted sum of the heuristic values of 

its successors. For a state s, its Expectimax value is calculated with the function

expectim ax(s) =  '^ P ( c h i ld i )  x U(childi)
i

where childi represents the ith  child of s, P (c) is the probability th a t state c will be reached, 

and U(c) is the utility of reaching state c. Evaluating a chance node in this way is directly 

analogous to finding the utility of a state in a  Markov Decision Process.

Figure 3.1 summarizes the Expectimax algorithm, which makes use of three new func­

tions: (1) a numChanceEvents function to  specify how many different values the chance 

event can take, (2) an applyChanceEvent function to  apply the chance event to  the state, 

(3) an eventP rob function to  determine the probability of the chance event taking th a t 

value, and (4) a sea rch  function tha t calls the appropriate function depending on the type 

of node tha t follows the chance node. Since most regular games have the same chance events 

a t every chance node, numChanceEvents can be hard-coded as an integer, and eventProb 

can be replaced by a static lookup table. For games where chance nodes alternate with 

player turns, we can use the same Minimax algorithm from Figure 2.2, with the modifica­

tion tha t Minimax’s recursive call uses Expectim ax instead of itself. We also use floating

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



float Expectimax(Board board, int depth, int is_max_node) { 
if(terminal(board) If depth == 0) return (evaluate(board));

N = numChanceEvents(board); 
sum = 0;
for(i = 1 ;  i  <= N; i++) {

succ = applyChanceEvent(board,i); 
sum += eventProb(board,i) *

search(succ, depth-1, is_max_node);
>

return (sum);
>

Figure 3.1: The Expectimax algorithm

Max

Chance

3  0  0  0  0  1  0 ®  0 0 j R ] [ s j [ f ] 0  Chance

-3.5

-5 5 -10 -9 0 5 1 3 -10 -1 2 5 4 3

Figure 3.2: An Expectimax tree
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point num bers instead of integers now for return values, since probabilities are real numbers 

and the sum  may have a fractional component.

While th e  worst-case time complexity for Minimax is 0 ( B D), the worst-case for Ex­

pectimax (for trees with alternating levels of chance nodes) is 0 ( B ^ ), where N  is the 

branching factor at chance nodes (in backgammon’s case, N  — 21 since there are twenty- 

one distinct rolls). As an example of the explosive effect of chance nodes even on shallow 

searches, there would be approximately 3.5 million nodes in a 3-ply search of an arbitrary 

backgammon position. If an evaluation function took 0.05 ms to  complete (about the speed 

of Gnubg’s neural network on a modern computer), then a 3-ply search would take about 

3 minutes to  complete, a 4-ply search would take about 21 hours, and a  5-ply search would 

be roughly a  year.

3.3 *-M inim ax

As we have seen, Minimax is a sound algorithm, but its worst-case run tim e is far too slow 

for any interesting problem. We would like to  obtain cutoffs in trees with chance nodes just 

like Alpha-Beta enables cutoffs in Minimax trees. We will need a new technique for finding 

valid cutoffs a t chance nodes. At Min and Max nodes, we can use the same methods for 

cutoffs as Alpha-Beta uses, since we have not changed the definition of Min or Max nodes, 

we have just added chance nodes.

Bruce Ballard was the first to develop a technique, called *-Minimax, for enabling chance 

node cutoffs[5]. He proposed two versions of his algorithm, called S ta rl and Star2. He 

also further refined the second to  handle more general cases and have param eters to  control 

functionality, and called the new version Star2.5. All the experiments th a t Ballard performed 

were in a rather abstract domain. He did not use a real domain, such as backgammon, to 

validate his results. In fact, Ballard’s work seems to  have been almost forgotten in the AI 

community in the last twenty years, which is truly unfortunate.

3.4 Obtaining Cutoffs

The basic idea of Expectimax is sound, but slow. Just as we can derive a  strategy for 

obtaining cutoffs in Minimax to  obtain Alpha-Beta, so too can we derive a  strategy for 

obtaining cutoffs in Expectimax. Since there are three different types of nodes in a game 

tree for games with chance, there are three cases we need to consider for cutoffs. Since Max 

and Min nodes work the same way in trees with chance nodes as they do in trees without 

chance nodes, we get the cutoff strategies for those nodes for “free” . All we need to concern 

ourselves with are chance nodes. If we pass alpha and beta values to  chance nodes as we 

do Min and Max nodes, and we pass alpha and beta values from chance nodes to  Min and
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Max nodes, all that is left to  consider is exactly what values we can pass, and how they will 

be used.

In the first case, chance nodes can have a search window just like Min and Max nodes, 

using alpha and beta values to  determine if further search below the node is relevant. 

However, these alpha and be ta  values cannot be used just like they are used in Min or Max 

nodes, because the child of a chance node cannot be chosen deterministically (unless there 

is only one child, but th a t is an atypical case). We can obtain a cutoff, however, if the 

Expectimax value of a chance node falls outside the alpha-beta window. The problem is 

th a t we cannot know the exact Expectimax value of a chance node before we search all of 

its children.

However, if we know the lower and upper bounds of the range of values leaf nodes can 

take (called L  and U respectively), we can determine bounds on the value of a chance node 

based on the worst-case conditions for both the alpha and beta values.

If we have reached the ith  successor of a  chance node, after having searched the first 

i — 1 successors knowing the true values for those children (which we will call V \ . ..  F - 1 ), 

then we can determine a bound for the value of the chance node. In the worst case, all 

the unsearched children will have a value of L, and in the best case, all the unsearched 

children will have a  value of U. Therefore, the lower bound of a chance node’s value, where 

Vi represents the true value of successor i and there are N  different chance events each with 

the same probability, is equal to

^ ( ( F  +  . . .  +  V i-i)  + Vi + L x ( N - i ))

and the upper bound is equal to

■ ^((F  + . . .  + V i-i)  + Vi + U x ( N - i ))

So now we can figure out in what range the Expectimax value for a chance node must 

lie. We can use this range to  help us generate cutoffs. Recall th a t the chance node itself 

was passed alpha and beta  values. We can cut off our search if the lower bound of the 

Expectimax range for the chance node ever exceeds or equals beta,

- ^ ( ( F  +  ••• +  F - i )  + V i + L x ( N - i ) ) >  beta 

or the upper bound is ever less than  or equal to alpha,

-^ ((F x +  . . .  +  F - i )  + Vi + U x  (N  -  i)) < alpha

where (Vi +  . . .  +  F-i) are the accurate values for the first i — 1 children of a node, F is 

the value for current node being searched, and (U x (N  — i)) and (L x  (N  — i )) represent
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Figure 3.3: Fragment of a *-Minimax tree

the worst-case assumptions for the values of the remaining nodes. In either equation, we 

can solve for Vi, and use the value as either an alpha or a  beta value for the next child.

Take the following example shown in Figure 3.3, where heuristic values range from 

L  =  —10 to U =  10, inclusive. The top-most chance node, A, is entered with a window 

of alpha=3 and beta= 4  (we will write this as [3, 4]). Because we have not searched any 

of its children yet, we know its value lies in the range [-10, 10], and the alpha and beta 

values for the first child are equal to |( 3  x L) =  L  and |( 3  x U) =  U, which is also [-10, 

10]. Assume th a t the first child (B) is searched and a value of 2 is returned. We now know 

the Expectimax range for the chance node is between |( 2  +  2 x L) — A (—18) =  —6 and 

|( 2  +  2 x U) — |(2 2 ) =  7 | .  Since —6 is not greater than  4 and 7 |  is not less than 3, this 

child did not create a cutoff. Before we search the next child, we need to  recalculate the 

alpha and beta values we want to  pass down to it:

i ( 2  + Vi + (1) x L ) >  beta => V  > 20 
o

\{ 2  + Vi + (1) x U ) <  alpha =* V  < - 3  
o

We will call the Vi value associated with alpha Ai, and the Vi value associated with beta 

B i, a t chance nodes, and so we will pass a window of [Ai,Bj\ to  successor i when we search 

it.

Since the upper bound on a leaf node is 10, we will pass a window of [-3, 10] to the 

next child, C. Assume the next node searched at the bottom , E, has a value of -8. This will 

trigger a cutoff a t C, because -8 lies outside the lower bound of the window (which is -3). 

The cutoff at C will also trigger a cutoff at the topmost chance node A. In fact, this could 

also trigger further cutoffs along this branch all the way up to  the root; the possibility for 

two or more cutoffs to  occur without intervening leaf searches is unique to  trees with chance 

nodes, and not found in typical Minimax trees[5].
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3.5 S ta r l

When we transla te  the ability to obtain chance node cutoffs into a procedural representation, 

we end up with S tarl, Ballard’s first version of the *-Minimax algorithm. Recall if L  

represents th e  lowest value a state can be given, and U the largest value a state can have, 

then we end up with a cutoff if

(v l + . . .  + v i^  + v i + y x { N - , ) £  a ivM  ( iu )

or

W  +  -  +  r , - , H V ,  +  £ X - ( ^ , - )  ^  (3 2)

Rearranging these equations, we determine the alpha value for the ith  successor, Ai with

Ai = N  x alpha -  (Vi +  . . .  +  Vj_i) - U x ( N - i )  (3.3)

and the b e ta  value for the ith  successor, B t with

Bi = N x  beta -  (Vi +  . . .  +  VJ_i) - L x ( N - i )  (3.4)

where alpha and beta are the respective values passed to  the chance node. These equations

can be rew ritten to  be more efficient by initializing the two values as

A \ = N  x  {alpha - U )  + U 

B i — N  x (beta — L) + L

and updating them  with

x4j.fi — Ai + U — Vi

Bi+i — Bi +  L  — Vi

where i = 2 . . .  N .

When a chance node only has one successor (N  — 1), the initial A  and B  values for the 

chance node take on the alpha and beta values initially passed to  the node.

Figure 3.4 shows the resulting S ta rl algorithm. The algorithm makes use of (1) a 

te rm in a l function th a t returns true if a given state is term inal, (2) an e v a lu a te  function 

tha t returns the heuristic evaluation of a state (the evaluation function), (3) a  num Successors 

function that returns the number of successors a state has, (4) a su c c e sso r  function tha t 

returns a new state, and (5) a sea rch  function which calls the appropriate function, either
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float Starl(Board board, float alpha, float beta, int depth) { 
if (terminal (board) II depth == 0) return (evaluate (board)) ; 
N = numSuccessors(board);
A = N*(alpha-U) + U;
B = N*(beta-L) + L; 
vsum = 0;
for(i = 1; i <= N; i++) {

AX = max(A, L);
BX = min(B, U);
v = search(successor(board,i), AX, BX, depth-1); 
if(v <= A) return (alpha); 
if(v >= B) return (beta); 
vsum += v;
A += U - v;
B += L - v;

>
return (vsum/N);

>

Figure 3.4: The S ta rl algorithm, adapted from [5]

Chance

Chance

Min

Max

-5 5 -10 -9 0 5 1 3 -10 -1 2 5 4 3
V V V V V V V V V x x x x x

Figure 3.5: A S ta rl tree
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S ta rl for a  chance node or Alpha-Beta for a Min or Max node. This implementation assumes 

all values for the chance event have equal probability.

An example of S tarl cutoffs is shown in Figure 3.5. The uppermost chance node is 

initially passed bounds of [-2, 2]. The initial value for A  is equal to  N  x (alpha — U) + U = 

6 x ( - 2  — 10) +  10 =  -7 2  +  10 =  —62 and B  is equal to  N  x (beta — L) + L  ~  6 x (2 +  

10) -  10 =  72 -  10 =  62. After searching the roo t’s first successor, the A  and B  values are 

adjusted for the second successor (C), where A  becomes —62 +  10 +  5 =  —47 and B  becomes 

62 — 1 0 +  5 =  57. As we continue to search the children of the root sequentially, we can 

see th a t the  root node’s (A, B )  window is equal to  [-8, 36] by the time it reaches its fifth 

child F, who gets an Alpha-Beta window of [-8, 10]. After searching P, which has a value 

of -10, F gets an immediate cutoff and returns this value to its parent A, the uppermost 

chance node, which triggers another cutoff because -10 falls outside its lower bound of -8. 

The other children of F, as well as the sixth successor G, do not need to  be searched, as we 

can prove th a t the Expectimax value of A must be less than  -2 (it is in fact —3 |,  which we 

can read from Figure 3.2).

3.6 Star 2

While S ta rl results in an algorithm which returns the same result as Expectimax, and uses 

fewer node expansions to  obtain the same result, its results are generally not very impressive. 

One reason is th a t S ta rl is agnostic about its successors; it has no idea what kind of node 

(Min, Max or Chance) will follow it, but even if it did, it would not be able to  take advantage 

of th a t knowledge. However, game domains are fairly regular; for example, in a standard 

Minimax tree, Min nodes and Max nodes are on levels th a t strictly alternate. Min always 

follows Max, and Max always follows Min. In games like backgammon, where each player 

rolls the dice, then moves, we end up with a tree like a Minimax tree, except we insert a 

chance node immediately after any non-terminal Min or Max node. In other words, we add 

a layer of chance nodes between each layer of nodes in a standard Minimax tree. Ballard 

refers to  trees with this structure as regular *-Minimax trees, an example of which is shown 

in Figure 3.6, where + , - and * refer to  Max, Min and Chance nodes, respectively.

Another drawback to S ta rl is due to  its pessimistic nature. We may potentially search 

nearly all the children of a chance node before a cutoff is obtained, because we assume 

th a t all unseen children have a worst-case evaluation. However, children of a successor of 

a chance node will tend to have values which are highly correlated. Instead of searching 

each child of a chance node fully and sequentially, and give a value of L  to  any children we 

haven’t  seen yet, we can get a more accurate picture just by searching a single successor 

of each child. This value we get for the child then becomes a bound on the true value for 

the child (a lower bound if the child is a M ax node, and an upper bound if the child is a
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Figure 3.6: A regular *-Minimax tree

Min node). It is likely th a t the bound will be much better than L, especially if we chose 

the child well. We will therefore introduce this phase of speculative search (which we will 

call the probing phase) before sequentially searching each child, in order to  obtain a quicker 

cutoff.

We need to  modify the equations used to  generate A and B in S ta rl to  reflect the new 

use of a probing phase in S tar2. For S tar2’s probing phase, we derive the bounds for A  and 

B  just like we do in S ta r t’s search phase, except we do not have alpha cutoffs at chance 

nodes followed by Min nodes (since we can only get an upper bound on those children), and 

we do not have beta cutoffs at chance nodes followed by Max nodes (since we can only get 

a lower bound on those children). Cutoffs generated at the probing phase are called probe 

cutoffs, and tell us how successful Star2 is a t probing, or how good its probing efficiency is.

We obtain a cutoff in S tar2’s search phase if

+  +  +  < alpha (3.5)

or

± ,(Wx± x ^ :,.±,gOv) >  (3 6)
N  ~

where (W i,..., Wjy) are the probed values for the N  children of a node, obtained during the

probing phase.

The alpha value for the ith  successor, Ai is now obtained with

Ai = N x  alpha -  (Vi +  . . .  +  V5_i) -  (W i+1 + . . .  +  WN ) (3.7)

and the beta value for the ith  successor, Bi with
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Bi = N x  beta -  (V) +  . . .  +  Vi_i) -  (Wi+1 +  . . .  +  W N) (3.8)

Like with S ta rl, these equations can be rewritten:

A \ = N  x  alpha — (W i +  . . .  +  W n )

B i = N  x  beta — (W 2 +  ■.. +  Wjv)

and updated by

Ai+i =  Ai + Wi+i —  Vi 

Bi+i = Bi + Wi+i —  Vi

where i — 2 .. . N .

Figure 3.7 shows the resulting Star2 algorithm for chance nodes followed by Min nodes 

(we will need a similar procedure for chance nodes followed by Max nodes). To get values 

for the probing phase, we need a procedure similar to  Alpha-Beta since successors are Min 

or Max nodes. Figure 3.8 shows the Probe algorithm. Figure 3.9 shows the PickSuccessor 

algorithm used by Probe, which is explained in more detail below.

Consider the tree in Figure 3.10, to  see S tar2’s strength. I t is the same tree used in the 

previous example with S ta rl. For the probing phase, the alpha value changes just like with 

S ta rl, but the beta value does not. In this case, we only need to  search five leaves: H, J, L, 

N and P, because by the time we reach child F, we give it a window of [-8, 10]. Since P has 

a value of -10, this causes a cutoff a t F. It also causes a cutoff a t A since F returns a value 

of -10, which is less than  or equal to A. In this example our Probe function did a good job 

and we always chose the best child for probing (fortuitously), so we obtained a cutoff after 

searching about half the nodes S ta rl searches.

As the branching factor increases, probing becomes even more effective, because sequen­

tial searching of children becomes more and more time-consuming. But even with small 

branching factors, probing can still be effective.

In his paper, Ballard did not specify how Probe should choose a successor besides to 

say it could be done “a t random or by appeal to  a static evaluation function” [5]. Since the 

domain he used was limited to  a depth=3 tree, all the probes done in his experiments were 

on leaf nodes. His domains also only had chance nodes at d ep th = l (the nodes at depth=3 

are technically chance nodes, but since they are leaves, they are just statically evaluated), 

so probing was always relatively inexpensive.

For Star2 to be successful, P robe must search a “good” child. We can abstract the selec­

tion process away from Probe and create another function, which we will call P ickS uccesso r.
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float Star2_Min(Board board, float alpha, float beta, int depth) { 
if (terminal(board) I| depth == 0) return (evaluate(board));
N = numSuccessors(board);
/* Range initialization */
A = N*(alpha-U);
B = N*(beta-L);
BX = min(B, U) ;
/* Probing phase */ 
for(i = 1; i <= N ; i++) {

A += U;
AX = max(A, L);
w[i] = Probe_Min(successor(board,i), AX, BX, depth-1); 
if(w[i] <= A) return (alpha);
A -= w[i];

>
/* Search phase */ 
vsum = 0;
f o r d  = 1; i <= N; i++) {

A += w[i] ;
B += L;
AX = max(A, L);
BX = min(B, U ) ;
v = search(successor(board,i), AX, BX, depth-1); 
if(v <= A) return (alpha); 
if(v >= B) return (beta); 
vsum += v;
A -= v;
B -= v;

>
return (vsum/N);

Figure 3.7: The Star2 algorithm, adapted from [5]

float Probe_Min(Board board, float alpha, float beta, int depth) { 
if(terminal(board) II depth == 0) return (evaluate(board)); 
choice = PickSuccessor(board);
return (Star2_Max(successor(board,choice), alpha, beta, depth-1));

Figure 3.8: The Probe algorithm
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int PickSuccessor(Board board) { 
choice = 1;
N = numSuccessors(board); 
if(N < 2) return (1) 
else {

for(i = 1; i <= N; i++) {
if(hasBestQuality(successor(board,i))) return (i); 
else if(hasGoodQuality(successor(board,i))) choice = i;

}
>

return (choice);

Figure 3.9: The PickSuccessor algorithm, with quick two-quality check

s -5

[.
[ 27, 72] 

[-8, 72] Chance

ChanceED m  t o [k J ID m [o] [pj [q] [r] m m u .
-5 5 -10 -9 0 5 1 3 -10 -1 2 5 4 3
V X V X V X V x V x x X X X

Figure 3.10: A Star2 tree, with good probing
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Figure 3.11: A Star2 tree, with bad probing

P ickS uccesso r, shown in Figure 3.9, will take a set of nodes and return the node it thinks is 

the “best” . We want this selection process to  be relatively fast and not use much overhead, 

so P ickS uccesso r may not want to use the evaluation function used for leaf evaluations, 

but instead use domain-specific knowledge to  heuristically select a child. For example, in 

backgammon we may first select moves th a t result in hitting the opponent’s blots, moves 

th a t form primes, or moves th a t form points. As soon as we see a successor th a t meets the 

best quality, we can simply exit with th a t successor as the choice. Failing that, we can keep 

track of a successor th a t has the next best quality. If no successors have either quality, then 

the first can just be chosen.

Even if we do not obtain a quick cutoff during the probing phase, we will have a tighter 

window for the search phase, which in itself will lead to  quicker cutoffs, because we have 

better estimates of the values of the children. Reconsider once more the tree we have been 

using, but this time we will see what happens if Probe does a bad job. Figure 3.11 represents 

this situation. Now the probing phase will finish before we have obtained a cutoff, and so 

we will end up searching almost half of the leaves already. However, before the searching 

phase begins, notice tha t the window has been almost halved, because we have better upper 

bounds for the childrens’ values; instead of starting with a window of [-62, 62] as S ta rl 

would, we start searching sequentially with a window of [-8, 62]. Now, by the time we start 

to search the third successor D, we have passed it a window of (3,10). If we assume th a t the 

leaf node L is searched first, then we get a cutoff a t D (because 0 is less than  3) as well as 

at A. We end up searching six leaves in the probing phase, and an additional three leaves in 

the search phase, for a to tal of nine leaves. In this particular situation, even the worst-case 

probing resulted in the same number of leaves expanded as S ta rl.
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Chapter 4

D ice

This chapter will explore the game of Dice, a game invented to  test the *-Minimax al­

gorithms. Implementation issues of various search enhancements are discussed, and the 

performance of the algorithms in terms of node expansions and execution time is anal­

ysed with various branching factors and search depths. Tournaments of matches between 

programs with various depth settings are also run and evaluated.

4.1 T he Game of Dice

Before testing the *-Minimax algorithms on backgammon, a smaller and simpler game 

domain was sought in order to  obtain some preliminary results. Since many simple games 

th a t involve a small chance element don’t  involve strategy (such as snakes and ladders, or 

the card game War), a new game called Dice was developed. Dice is an AT-in-a-row game 

played on a grid of squares (like tic-tac-toe, Connect-4 or Gomoku), except before players 

can move they must first roll an IV-sided die. The value of the die will determine either 

which row (if X) or which column (if 0 )  the player can move into. The first player to  link 

N  squares in a row wins the match.

4.2 Im plem entation Issues

The game definition itself is rather simple and thus mostly trivial to  implement in code. 

An array of integers can represent the game state, pseudo random numbers can be easily 

generated to provide dice rolls, and moves are simply comprised of the row and column 

chosen by a player. Designing a Dice computer opponent is a little more tricky.

4.2.1 Evaluation Function

The first step is to  design a decent evaluation function. In this case, the evaluation function 

consisted of simply counting pairs of squares. A pair is two squares filled for the same 

player, next to  each other in the same row, column, or diagonal. Two squares separated
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by a single em pty square on a row, column or diagonal were also considered to be a pair. 

The evaluation function counted pairs for both opponents and took the difference. This is 

relatively fast and gives a decent strategic guess (since pairs of squares can quickly tu rn  into 

triplets). If  the game is more than 3-in-a-row, some tactical moves may be lost, since the 

evaluation function may favour obtaining a new pair instead of extending an existing pair 

to  form a triplet. The evaluation function is also changed to reflect the player-to-move at 

th a t state, ra ther than scoring based on whether or not the player at the state is the same 

as the player a t the root. The result is the score of the state, so th a t states th a t create new 

opportunities to  join together squares, or block squares for the opponent, are favoured.

4.2.2 Transposition Table

A transposition table (TT) was used to  speed up the search. The T T  for Dice was a simple 

hash table of 128 MB (more or less space could be used, depending on the amount of main 

memory available). Each entry was 16 bytes large, containing the value for the stored state, 

a flag to  indicate if the entry was in use, an indicator for the depth searched, two flags to 

determine what kind of value for the state is stored (a lower bound, upper bound, or an 

exact value), the best move chosen at th a t state, and the hash key for tha t state. A Zobrist 

hashing scheme[37] was used.

4.2.3 H istory Heuristic

In addition to  the TT, another form of memory-assisted search was used: a history heuristic 

(HH). The HH is simply an array which keeps track of how often a move was selected as the 

“best” move at a node. This information can then be used during move sorting to  favour 

moves chosen by previous searches, thereby likely improving cutoff performance.

4.2.4 M ove Ordering and Probe

The move ordering and probe selection are almost nearly identical. As mentioned before near 

the end of Section 3.6, Probe didn’t  necessarily have to  use the same evaluation function 

used for leaf nodes. In the case of Dice, the evaluation function was reasonably heavy, 

meaning it consumed most of the execution time during a search. The move ordering 

scheme worked as follows. Each move was applied to the game state and evaluated. If it 

was a winning position, then it was placed a t the head of the moves list, and the function 

returned immediately. Otherwise, the number of pairs for each player were counted and 

the difference taken. Moves were then sorted based on this scoring scheme. Probe uses the 

same idea for choosing a successor.
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4.3 Experim ental Design

4.3.1 Hardware and Software

For obtaining quality results, all experiments were run on relatively new hardware. Two 

undergraduate labs (one of 22 machines and one of 34 machines) were made available for 

distributed processing. All machines were identical, each with an Athlon 1.8 GHz processor 

and 512 MB of RAM, as well as 27 GB of local disk space (to bypass using NFS). Each 

machine used Slackware Linux kernel version 2.4.23 and had gcc version 3.2.2. The Dice 

game was coded in C.

4.3.2 Environm ental Conditions

While all experiments were performed when the labs were largely idle, all experiments were 

nevertheless subjected to possible skewing if students logged into a host to  use it. However, 

less than  a  dozen students logged into any one of the machines during the entire experimental 

phase, so fluctuations in results due to  lost CPU cycles are negligible. Since each machine 

only had a  modest amount of free RAM, the transposition table was kept to  a  relatively 

small size of 128 MB. All executables were compiled under gcc with -03 optimization.

4.4 Performance

Judging performance of a search algorithm usually means pitting it against other algorithms 

in the same class, and seeing how it compares in terms of to tal node expansions and exe­

cution time (counting all overhead). In order to  obtain data, Dice positions were randomly 

generated and then searched by Expectimax, S ta rl and Star2, each having all the same 

search enhancements. Each position was non-trivial: the player-to-move would have to  have 

at least two moves to  choose from, and none of the moves could lead to  immediate wins. 

Results were obtained for search depths much greater than  were possible for Ballard.

Boards of size 5 x 5, 7 x 7, 9 x 9, 11 x 11, 13 x 13, 15 x 15 and 17 x 17 were used for 

testing. 500 randomly generated positions were used for all board sizes. All boards were 

searched to  at least depth=7 by Expectimax, S ta rl and Star2.

There is a strong correlation between node expansions and time used in all experiments, 

mainly because most of the nodes in the tree will be leaves and they are all statically 

evaluated. In term s of CPU usage, the evaluation function for Dice consumed more than 

90% of total cycles, with the rest of the time taken up by terminal position checks, T T  calls 

and the search functions themselves. Move generation was nearly instantaneous because of 

the relative simplicity of the game.

When the branching factor is low, as is the case with 5x5  boards, there is only a reduction 

of about half in terms of average node expansions from Expectimax to  Star2. Figure 4.1
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Nodes Expanded vs. Position: depth 7, size 5x5
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Figure 4.1: Node expansions at d = 7  for board size of 5x5, for 25 positions

shows to tal node expansions at depth=7 for 25 positions, sorted by the Expectimax search 

tree size, on a logarithmic scale. Average node expansions and CPU time are shown in 

Figures 4.2 and 4.3, also on a logarithmic scale. One reason the reduction is so modest is 

because the branching factor is quite low. Not only is the board size relatively small, but as 

moves are made into empty squares, the branching factor gets closer and closer to  1. As the 

branching factor shrinks, so do the number of leaves in the tree, and therefore opportunities 

for chance node and move node cutoffs decrease. Since most of the nodes in the tree are 

leaves, and many of them  are not pruned, the resulting reduction in node expansions is 

small. It is especially marginal for S ta rl, since most cutoffs in S ta rl will occur at the last 

successors to a chance node. Star2 is not spectacular because with such a small branching 

factor, probing children becomes less effective; the Expectimax range of a chance node will 

not shrink fast enough for quick cutoffs to  occur.

At a board size of 11 x 11, the difference in node expansions becomes significantly greater, 

as shown in Figure 4.4, where 25 different positions are looked at individually. Star2 is doing 

about 15% of the work of Expectimax a t depth=7, compared to  50% before at depth=5. 

The difference in average tim e over all positions between the three algorithms for 11 x 11 

is shown in Figure 4.6. The gap has certainly widened compared to  5 x 5 as the bracking 

factor has increased, so probing becomes more fruitful.

4.4.1 Probe Efficiency

Ultimately, Star2’s performance is directly related to  probing success. Probing offers us a 

chance to  get quicker cutoffs without needing to search all of the children of the successors 

to chance nodes. Getting a lower bound for the value of a successor by only looking at one 

of its children may be good enough to  produce a cutoff a t the chance node. The better the
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Average Nodes Expanded vs. Search Depth: size 5x5
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Figure 4.2: Average and standard deviation of node expansions for board size of 5x5, over 
500 positions

child we select for each successor, the higher the lower bound we get for the successor, and 

the more likely we are to  produce a quick cutoff.

Figure 4.7 and Table B.2 show the average and standard deviation of probe efficiency in 

Dice at various depths. In Dice, as the depth of the search increases, so does the effectiveness 

of probing. There is an odd dip in the average graph at depth=5, followed by a jump back 

up at the next depth, and then a plateau. At the same time, the standard deviation looks 

the opposite. For depth=3 trees, there is only one layer of chance nodes (the leaves at 

the bottom are chance nodes, but they just get statically evaluated). S tar2’s probing does 

not have a chance to  recursively call itself, so its probing should be relatively good, since 

Probe will be returning an accurate value for children. At depth=5, probing will recursively 

call itself right before the horizon. At th a t point, probing will fail often if the Alpha-Beta 

window is not narrow enough. As long as the TT  caches these leaf node evaluations, there
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Average CPU Time (s) vs. Search Depth: size 5x5
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Figure 4.3: Average and standard deviation of time (s) for board size of 5x5, over 500 
positions

won’t be an impact of overall performance as Star2 switches from the probe phase to  the 

search phase, but it will im pact the probe performance. As the depth increases to 7, probe 

efficiency goes back up a bit, since there are two probes now th a t happen before the horizon. 

However, since most Probe calls happen just before the horizon, overall performance is not 

as good as at depth=3. The performance then mostly levels off bu t continues to decrease 

as relatively more and more probing calls happen ju st before the horizon.

Boards with higher branching factors result in better probing performance, as cutoffs at 

chance nodes become more likely, because there is sufficient chance to  narrow the Expecti­

max range during the probing phase.

In Ballard’s original paper, his Star2 probing effectiveness was somewhere between 33% 

at a branching factor of N  =  4 and 45% at a branching factor of N  =  40, compared to a 

range of 66% at IV =  5 to  96% at N  =  17 in Dice. This difference is mainly from picking
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Figure 4.4: Node expansions at d—7 for board size of 11x11, for 25 positions

the right successor to  probe.

4.4.2 M ove Ordering

Ballard used random Move ordering in his original experiments. As he put it, “...all N \ 

permutations of successor arcs were assumed to  be equally likely.” [5]. One of his reasons 

for doing so was to  give a conservative picture of what to  expect in practice[5]. However, 

this assumption is not necessarily true. Move ordering is an im portant part of any search 

algorithm, and as such, even the simplest of routines can perform better th an  random in 

practice.

Ballard randomized successor orders for both chance nodes and Min or Max nodes. 

The implementation of Dice only included move ordering for Min and Max nodes. Chance 

successors (the die rolls) were pre-ordered in code to  go from smallest to  largest.

For ordering move nodes, four different schemes were implemented: no move ordering; 

random move ordering; static evaluation function move ordering; and “quick” move ordering.

Figure 4.8 shows the average node expansions for searches performed with various move 

ordering schemes a t varying search depths on a 11 x 11 board using Star2. 500 positions 

in to tal were used for each scheme. D ata is presented in Table B.17. No move ordering is 

usually beaten by the other schemes, although the differences are fractional. Random move 

ordering is sometimes better than no move ordering, and sometimes worse. These results 

would seem to indicate th a t random move ordering may not, in fact, be a conservative 

estimate of performance, since it requires some overhead, and may be worse than  no move 

ordering at all. As such, the random scheme should probably not be used at all. Move 

ordering using the static evaluation function or the “quick” heuristic is quite good, bu t not 

overall stellar compared to  no move ordering.
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Figure 4.5: Average and standard deviation of node expansions at d= 7  for board size of 
11x11, over 500 positions

While a reduction in node expansions usually is directly correlated with a reduction in 

execution time, Figure 4.9 and Table B.18 show th a t this is not always the case. Three of 

the four schemes take about the same amount of execution time -  only quick ordering is 

better! The reason, of course, goes directly back to  why we do not want to  use a heavy 

static evaluation function for probe successor selection. W ith static move ordering, all the 

time we save in reduced node expansions is eaten up by the fact th a t we are still applying 

the evaluation function to  every node we generate. Since most nodes will be leaves, this 

means we really don’t  end up with many savings a t all.

Finally, Figure 4.10 and Table B.19 show the scheme’s effect on probe efficiency. The 

most informed scheme, using the static evaluation function, is best, but the quick scheme is 

not far behind. Obviously, our evaluation function does a good job at pre-ordering successors 

for the “quick” successor selection scheme, where the first move th a t meets the “best” quality
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Figure 4.6: Average and standard deviation of time (s) for board size of 11x11, over 500 
positions

will be taken. Failing that, the first move th a t meets the “good” quality is taken. Both 

random  and no move ordering still maintain a probe efficiency greater than  50%, because 

the “quick” successor selection scheme works fairly well without any help.

4.5 Tournaments

Another way to  measure an algorithm ’s performance is to  pit it against itself in a tourna­

ment, where each player is searching to a different depth. The question to answer, then, is 

if deeper search increases real performance in the game. Tournaments were therefore run 

between combinations of players searching to  depths of 1, 3, 5, 7 and 9. Each tournam ent 

used a file containing a sequence of seed values, such tha t they all would then have the same 

sequence of dice rolls across each tournam ent. The starting roll for each game was pre-set 

by a testing script, and went through the values from 1..N  sequentially, in order to  reduce
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Figure 4.7: Average and standard deviation of probe efficiency for Dice

variance. Furthermore, for each opening roll and sequence of dice rolls, both  players were 

given an opportunity to be the starting player. A file containing 9000 seeds was used, and 

therefore a to ta l of 18,000 games per tournam ent were played.

The results of the tournam ent are shown in Figure 4.11 and Table B .l. On each graph, 

lines represent different players searching from d ep th = l to depth=9. The line is then com­

pared against an opponent on the x-axis, and the winning percentage for the player rep­

resented by tha t line is shown on the y-axis. A player searching to  the same depth as its 

opponent has the same performance and so crosses the 50% winning percentage line where 

the two players’ settings are identical.

There are some im portant points to  make from the figure. The player at d ep th = l 

never fares better than 50%. Deeper search results in a greater winning percentage. W hat 

is interesting is how the performance of the depth=3 player closely follows the d ep th = l 

player, followed by a jump of around 10% for the next three players. While searching to  at
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Figure 4.8: Average and standard deviation of node expansions for different move orderings 
for board size of 11x11, over 500 positions

least depth=5 results in decent tournam ent performance compared to  shallower searches, 

the benefits level off very quickly. This jum p probably comes from the nature of using 

a 4-in-a-row win. The die rolls inject enough randomness into the game to weaken the 

benefit of deep search. For example, being able to  set up a future move by seeing 3-ply deep 

will be just as good as seeing 5 plies into the future, because the die roll will wash away 

tactical plays. The game also favours offensive play, because setting up groups of squares is 

better than  trying to surround the opponent; if a player is nearing a win, then deep search 

beyond a certain level doesn’t  help. Consider a situation where the player to  move has a 

50% chance of winning on the next roll, and if they don’t win, their opponent has a 50% 

chance of winning on their roll. The odds th a t the game will end in the next two moves is 

relatively high, and so in this case, deep search doesn’t  really help, because the stochastic 

nature of the game eliminates deep planning. On the other hand, seeing a single ply ahead,
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Figure 4.9: Average and standard deviation of time (s) for different move orderings for 
board size of 11x11, over 500 positions

compared to three or more moves ahead, makes a  significant impact. Again, the nature 

of this game suggests th a t a player should endeavour to  be aggressive and set up as many 

winning positions as possible. Seeing a t least two of “our” moves ahead means the player 

is able to set up more winning positions. Defensive play doesn’t  seem to m atter very much; 

you can block an opponent in one spot, but it is often impossible to  block them  everywhere. 

Furthermore, if they get a good roll on the next move, the game could be over.

Star2 allows for faster search in tournam ents, which means players can search deeper in 

a given amount of time, which means players will have better overall performance.

4.6 Conclusions

For single searches on Dice positions, Star2 outperforms Expectim ax in all cases. As the 

branching factor for the game increases, the performance gap between the two widens. For

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Average Probe Efficiency (%) vs. Search Depth
100

95

90

£  85
>.o
® 80 'a
£  75m
XI
2  70CL

65

60

55

o

none
1 ----- 1

static
quick ..

-

r "
-

-

I 1

Search Depth 

Std. Dev. of Probe Efficiency (%) vs. Search Depth
25

none

20

5

0
95 73

Search Depth

Figure 4.10: Average and standard deviation of probe efficiency for different move orderings 
for board size of 11x11, over 500 positions

games with large branching factors, doing exploratory probes results in greatly reduced node 

expansions and CPU time.

Good probing efficiency is critical to  S tar2’s performance. Trees with small branching 

factors do not allow many probing cutoffs because there may not be sufficient opportunity to 

narrow the Expectimax window before all successors are probed. Trees with large branching 

factors allow for more cutoffs because there is usually time to narrow the window before all 

successors are searched.

Move ordering schemes can have a small but im portant impact on performance. Ran­

domly ordering successors may not be the best baseline policy to  use; sometimes no ordering 

does better. Move ordering using the static evaluation function results in reduced node ex­

pansions, due to  a more informed ordering, bu t nearly the same time, because all nodes th a t 

are generated get evaluated. A move ordering scheme based on heuristic, domain-specific
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Figure 4.11: Tournament results for 4-in-a-row on 7x7 board, 18000 games per matchup

knowledge can reduce both node expansions and time, and need not be complicated to 

implement.

Good tournam ent performance in 7 x 7, 4-in-a-row Dice is dependent on seeing at least 

three plies deep, when using an evaluation function th a t just counts pairs of tokens. Deeper 

search results in only incremental improvement due to  the stochastic nature of the game 

offsetting deep tactical play with quick, unavoidable wins.

4.7 Future Work

The Dice game can and should be extended to  a  bigger board, with a longer winning 

combination length. The evaluation function could also be improved a great deal instead 

of just counting pairs. A version of Gomoku or Connect-4 could be developed with dice 

rolls to determine legal moves. The advantage to  using those games is th a t there are known 

good strategies for the deterministic versions of both games, meaning a powerful evaluation 

function should be easier to build. Another change would be to  how chance events affect 

the game; instead of having a die roll specify a row or column, perhaps the player could 

choose a  square from a random selection of empty squares. This change would increase the 

strategic aspect of the game.
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Chapter 5

Backgam m on

This chapter will introduce the game of backgammon, describe some of the history of com­

puter backgammon programs, and describe one program (GNU Backgammon) in detail. 

Im plementation issues of *-Minimax with the game of backgammon are discussed, including 

search enhancements. Experimental results are also presented.

5.1 The Game of Backgammon

Backgammon is an ancient game, considered to  be maybe the oldest game still being played 

today. There are dozens of variants played in countries around the world, but the name 

backgammon is reserved for the most common type. Backgammon is a  race game played on 

a board with 24 columns or points on which checkers (also called pieces, stones, or blots) are 

placed (see Figure 5.1). The goal of the game is to be the first to  remove all your checkers 

from the board. It is normally played by two players who each have fifteen checkers. A point 

with no checkers on it is called empty. A single checker on a point is usually called a blot. 

Two or more checkers on a column are also referred to  as a point. Each player moves their 

pieces in a  direction opposite to the other on alternating turns. A pair of dice is thrown at 

the beginning of the tu rn  to  determine legal moves, and checkers can be moved anywhere 

except where the opponent has claimed a point. A roll of 3-1 means th a t a player can move 

one checker 3 points and another checker 1 point, or a  single checker 4 points (as long as the 

opponent hasn’t  blocked the intermediate columns). W hen a checker is moved to a column 

containing a single opponent blot, this is called a hit. The opponent’s single checker is then 

moved to  the bar and the player’s checker takes its place. Whenever a player has a checker 

on the bar at the beginning of their turn , they are required to move the checker off the bar 

back into the opponent’s home board (the opponent’s last 6 points) before they can move 

any other checker (the bar can be considered to be the 25th point on the board). Points 

formed in the opponent’s home board are called anchors, because they lock in a column 

tha t can be used for safely moving off the bar. All the standard rules for moving checkers
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Figure 5.1: The initial starting position for backgammon. W hite moves counterclockwise 
toward 1, while black moves clockwise toward 24.

on the board apply to  moving checkers off the bar.

If a player has at least one checker on the bar on their turn, bu t neither of the dice can 

be used to  move the checker back on the board (because the opponent has blocked those 

columns with points), this is called dancing on the bar. Figure 5.2 shows an example, where 

white cannot move back onto the board from the bar because black has blocked both the 

24 and 20 points. If the opponent is lucky enough to  have all six inner points blocked (also 

called a  prime), then the player cannot possibly move on his or her turn.

A player rolling a double, when both  dice have the same value, are allowed four moves 

equal to  tha t value on their turn. Since double rolls only account for |  of all possible rolls, 

they are relatively infrequent, but they often cause significant swings in the outlook of a 

game.

If ever possible, a  player must use both  of the dice rolls available to them, or in the case 

of doubles, all four moves. For example, Figure 5.3 shows white being forced to  move off 

the bar onto the 22 point, and then needing to  move another checker with the 4 roll.

If all moves cannot be used (perhaps due to  an opponent blocking movement), then as 

many as possible must be used. In the case th a t a player can use one die roll or the other 

die roll, but not both die rolls, then the die roll with the greater value must be used, such 

as in the position in Figure 5.4, where w hite’s final checker will be forced to  move to the 21 

point.

As stated before, the goal of backgammon is to  be the first to  remove or bear off all of
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1 2 3 4 S 6 7 8 9 10 11 12

24 23 22 21 20 19 18 17 16 IS 14 13

Figure 5.2: W hite to play 5-1: dancing on the bar

1 2 3 4 5 6 7 8 9 10 11 12

24 23 22 21 20 19 18 17 16 15 14 13

Figure 5.3: W hite to  play 4-3: a forced move off the bar
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Figure 5.4: W hite to  play 3-1: only one roll can be used

one’s pieces from the board. This is accomplished by first moving all of one’s checkers into 

one’s home board, and then removing checkers one by one based on the dice rolls. A checker 

can be removed if it is on a point equal to  one of the dice rolls. However, if there are no 

checkers on a point matching a dice roll, but there are also no checkers behind tha t point, 

then the roll can be used to  move off the checker farthest behind. In Figure 5.5 white rolls 

5-4, and is able to  remove the checker on the 5 point; since there are no checkers on or after 

the 4 point, white can use the second half of the roll to  bear off the blot on the 3 point. 

W ithout this rule, endgames would be ra ther tedious, and very heavily based on luck.

Usually people play matches consisting of multiple games, where each game is worth a 

single point. In this case, a doubling cube is also used to  speed up the game, as well as add 

an element of gambling to  backgammon. The doubling cube (sometimes also ju st referred 

to  as the cube) was introduced in the 1940s. Initially, the cube is placed in the middle of the 

table (it is not owned by anyone) and its value is considered to  be equal to  1. During the 

game, if a player particularly likes his chances of winning, they may offer a double to  their 

opponent, which is an offer to  double the stakes of the game. If the opponent declines the 

offer, this is a resignation of the game for a single point. If the opponent accepts the double, 

the cube is turned to  show twice its current score, and the opponent now owns the cube, 

and the game is played at twice the stakes. From th a t point on, the opponent will have the 

sole option of being able to  offer the next double. If accepted, the cube would be turned 

again, and ownership passed to the other player. Backgammon players often ta lk  about the
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24 23 22 21 20 19 18 17 16 IS 14 13

Figure 5.5: W hite to  play 5-4: bearing off

complexity of cube handling in match play: weighing the odds one can win at higher stakes 

versus the increased price of failure. Even at the world championship level, matches are 

routinely won and lost by poor doubling decisions. Even so, the doubling cube remains the 

most popular addition to  the game, and is now considered standard in a backgammon set.

There axe two special types of wins th a t result in more points for the winner: the gammon 

and the backgammon. A gammon win happens when the opponent has not removed any 

of their checkers off the board, and makes the game worth double (further multiplying 

the cube value). A backgammon win happens when the conditions for a gammon win are 

met, plus the opponent has at least one checker on the bar or in the player’s home board. 

Backgammons make games worth three times the am ount of the cube, but are generally 

very rare, since most players can at least escape their opponent’s home before the game 

ends.

Besides typical “m atch” play, there is also another type of play in backgammon called 

a money game. All the rules are the same, except for the addition of the Jacoby rule which 

states th a t gammons and backgammons do not count unless the cube has been turned at 

least once. The purpose behind this rule is to  speed up the game, so people are less likely 

to  play for gammons with a centred cube.
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5.2 Backgam m on Programs: Past and Present

W ith such a  gigantic state space (estimated to be bigger than 1020 states[32]) and such 

an imposing branching factor (there are 21 unique dice rolls, and about 20 moves per roll, 

on average), i t ’s not surprising th a t most of the early computer backgammon programs 

were knowledge-based. Knowledge-based systems do not rely much on search (or at all), 

but ra ther attem pt to choose moves based on expert knowledge about the domain, usually 

programmed into the system by a human expert. These are usually called ad hoc methods.

The first real success in computer backgammon was BKG, developed by Hans Berliner. 

In 1979, BKG played the world champion at the time, Luigi Villa, and managed to  defeat 

the human 7-1 in a five point m atch.[6] While many people were shocked, even Berliner 

himself would concede weeks after the match that BKG had been lucky with rolls and made 

several technical blunders. However, Villa had not been able to  capitalize on those mistakes

-  such is the life with dice.

The second milestone in computer backgammon was Neurogammon[31], the work of 

IBM researcher Gerald Tesauro. Neurogammon used a neural network (a computer model 

loosely based on a biological brain) for evaluating backgammon positions. Neurogammon 

was trained with supervised learning; it was fed examples labeled by a human expert, 

and told w hat the answer should be. The program quickly became the best in computer 

backgammon, bu t still only played at the level of a strong human am ateur player.

Tesauro went back to  the drawing board, with a desire to improve his creation even more. 

One of the first things he changed was the data  the program was training on. Instead of 

using hand-labeled positions, he decided he would rely solely on self-play to  generate training 

data -  the program would simply play against itself. This has advantages over the previous 

method since a  human expert may label positions incorrectly, or tire quickly (Neurogammon 

only used selected positions from about 3000 games[31] to  train  checker play, culled from 

games where Tesauro had played both sides), but self-play also may lead a program into a 

local area of play. For example, a program can learn how to play well against itself, but not 

against another opponent. This local minima problem in backgammon is partially overcome 

due to  the fact th a t the environment is stochastic -  dice insert a certain level of randomness

-  so a program is forced to  explore different areas of the state space.

The other thing Tesauro changed was the training method itself. Instead of using a 

supervised learning approach that adjusted the network after each move (which he could do 

before because each training example was labeled), Tesauro decided on adapting temporal- 

difference learning for use with his neural network[30][32]. TD learning is based on the idea 

tha t an evaluation for a state should depend on the state  tha t follows it. In a  game sense, 

the computer keeps track of each position from sta rt to  finish, and then  works backward. 

It trains itself on the last position, with the target score being the outcome of the game.
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Then it tra in s itself on the second last position, trying to  more accurately predict the score 

it got for th e  last position (not the final score). The last position is the only position which 

is given a  reward signal, or absolute value; all other positions are only trained to  better 

predict the position th a t followed it. In games, the reward signal is related to  the outcome 

of the game. If the program had lost, the reward signal would be low (to act sort of like 

a punishm ent). If the program won, the reward signal would be high. Since backgammon 

cannot end in  a draw, the reward signal could never be zero.

In this manner, Tesauro delayed the final reward signal for the neural network until the 

game was won or lost, a t which point the network would begin adjusting itself. This new 

program was called TD-Gammon in honour of its training method. Tesauro trained the first 

version of TD-Gammon against itself for 300,000 games, a t which point the program was able 

to play as well as Neurogammon -  quite surprising, considering the program had essentially 

“discovered” good play on its own, with no human intervention, and zero explicit knowledge. 

Later versions of TD-Gammon increased the size of the hidden units in the network, added 

hand-crafted features to  the input representation, trained for longer amounts of time, and 

included a selective search algorithm to extend the search process deeper th an  a single ply. 

TD-Gammon is considered to  safely be in the top-3 players of the world. One human expert 

even ventured to  say it was probably better than any human, since it does not suffer from 

mental exhaustion or emotional play.

TD-Gammon’s use of temporal difference learning and a  neural network evaluation func­

tion has lead to  several copy-cat ventures, including the commercial programs Jellyfish[3] 

and Snowie[4], as well as the open-source GNU Backgammon[2] (also known as Gnubg). 

Several versions of GNU Backgammon have sprung up on the Internet, and it has quickly 

become one of the most popular codebases for developers.

5.3 Some Failings of Backgammon Programs

While so much time and effort has been put into creating backgammon programs with 

increasingly stronger evaluation functions, almost no thought has been pu t into improving 

the search used in the programs. Both TD-Gammon and Gnubg use a  forward-pruning based 

approach to search, where some possible moves are eliminated before they are searched in 

order to  reduce the branching factor of the game. Depending on the approach, using forward 

pruning can be a bit of a gamble, since the program is risking never seeing a good line of 

play, and therefore never having the chance to  take it.

There are two im portant reasons why improvements in search have not been developed in 

backgammon. The first is th a t the current crop of neural network-based evaluation functions 

are pretty  accurate, but take far too long in processing terms. For example, a  complete 3-ply 

search of an arbitrary position in backgammon can take several minutes to  complete. This
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is clearly undesirable from a performance perspective. The second reason has to  do with the 

game itself. Since there are 21 distinct rolls in backgammon (with varying probability), and 

often up to  20 moves per roll, the effective branching factor becomes so large that, especially 

for a slow heuristic, searching anything deeper than a ply or two becomes impractical. It is 

pretty  clear due to  these reasons why efforts have concentrated on developing an evaluation 

function th a t  is as perfect as possible (as close to  an oracle as one can get), instead of trying 

to  grapple w ith the explosive branching factor inherent in the game.

But search is still im portant. Deeper search allows for the inaccuracies of a heuristic to  be 

reduced, and as mentioned before, the deeper a program can search, the better tha t program 

can play. Backgammon is no exception, even with a trained neural network acting as a near­

oracle. Still, it is interesting to  note th a t improving search in backgammon programs has 

not been a priority, to  the point where some of the GNU backgammon team  are unfamiliar 

with the concept of Alpha-Beta search. Tesauro thinks th a t improvements in search will 

come as a result of faster processors and Moore’s Law[33], and has not yet considered using 

a new algorithm.

Backgammon can be considered the Drosophila of perfect-information chance games. It 

has been explored heavily in the past few decades, but nearly all the research has centred on 

producing good evaluation functions for estimating the utility of a state  (or board position). 

It will be the primary test domain used in this thesis.

5.4 Overview of G NU Backgammon

GNU Backgammon is an open-source backgammon program developed through the GNU 

Project. Development began in 1997 by Gary Wong, and has continued up to  this time with 

contributions from dozens of people. The other five primary members today are Joseph 

Heled, 0ystein  Johansen, David Montgomery, Jim  Segrave and Jprn Thyssen. The current 

version of Gnubg, 0.14, boasts an impressive list of features, including TD-trained neural 

network evaluation functions, detailed analysis of matches (including rollouts), a tu tor mode, 

bearoff (endgame) databases, variable computer skill levels and a graphical user interface. 

Gnubg is also free, and since its exposure to  the backgammon community was heightened, 

it is one of the most popular and strongest backgammon programs available.

5.4.1 The Evaluation Function

Gnubg has three different neural networks it uses for evaluating a backgammon position, 

depending on the classification of th a t position: either contact (at least one checker of a 

player is behind a checker of the other player), crashed (same as contact but with the added 

restriction that the player has 6 or less checkers left on the board, not including any checkers 

on the opponent’s 1 or 2 points) or race (the opposite of a  contact position). Since each of
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the three types of positions are quite different from the others, using three different neural 

networks improves the quality of the evaluation.

Each neural network is first trained using temporal difference learning, using self-play, 

similar to  TD-Gammon. The input and output representations of the neural networks 

are also sim ilar to  TD-Gammon. The input neurons are comprised of both a raw board 

representation (with 4 neurons per point per player) as well as several hand-crafted features, 

such as the position of back anchors, mobility, as well as probabilities for hitting blots.

After self-play, the networks are trained against a position database (one each for the 

contact, crashed and race networks). The databases contain “interesting” positions, so- 

named because a network would return different moves depending on if they searched to  

either d ep th=  1 or depth=5; and whenever a  depth=5 search retains a better result than  

d ep th = l, two entries are made in the database for th a t position: the position after the 

d ep th = l move, and the position after the depth=5 move. The positions are a mixture of 

randomly-generated positions as well as drawn from a large collection of human versus bot 

or bot self-play games, with the idea th a t the networks should gain more exposure to  “real- 

life” playing situations than random situations. In total, over 110,000 positions form the 

position database collection used by the Gnubg team.

There is an entry for each position’s cubeless evaluation in the database, along with five 

legal moves and their evaluations. An evaluation consists of the probabilities of normal win, 

gammon win, backgammon win, gammon loss and backgammon loss for the player to  move 

(a normal loss is not explicitly evaluated, as it is just equal to  1 — Pnormaiwin)• The moves 

in the database are chosen by first completing a d ep th = l search using Gnubg, taking the 

top 20 moves from th a t search, and then searching those to  depth=5; the best five moves 

from the depth=5 search are then kept. These moves are then “rolled out” , meaning th a t 

the resulting position after the move is then played by Gnubg (doing the moves for both 

sides) until the game is over. Typically the number of rollouts is equal to  a multiple of 

36 (say, 1296) by using “quasi-random dice” in order to  reduce the variance in the result, 

where each of the 36 possible rolls after the move is explored, with random dice thereafter. 

When a race condition is met in the game, the remaining rolls are played using a One-Sided 

Race (OSR) evaluator. The OSR is basically a table which gives the expected number of 

rolls needed to bear off all checkers, for a given position. It does not include any strategic 

elements. By using the OSR, the contact and crashed networks are judged on their own 

merits, and not based on the luck of the dice in the endgame. This is because race games 

are generally devoid of strategic play, because there is no interaction between the players 

anymore, not counting cube actions. Each rollout is performed in a 7-point money game 

setting, without cubeful evaluations.

A new network is trained against this database so its d ep th = l evaluations more closely

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



resemble a  depth=5 search, and after the new network is fully trained, it then provides new 

entries for each position in the database. Gnubg was able to  obtain a rating of about 1930 at 

a d ep th = l setting on the First Internet Backgammon Server (FIBS), which put it roughly 

at an expert level on the server.

5.4.2 T h e Search A lgorithm

Gnubg’s search is based on heavy use of forward pruning to either completely eliminate or 

greatly reduce the branching factor at move nodes, and lower the branching factor at the 

root, in order to keep the search fast. Pruning is based on move filters th a t define how many 

moves are kept at the root node (and, depending on the depth of the search, a t other move 

nodes lower in the tree). A move filter guarantees a  fixed number of candidates th a t will be 

kept at a move node (if there are enough moves), plus the addition of n  candidates which 

are added if they are within e equity of the best move. Search is performed using iterative 

deepening, and root move pruning is done after each iteration. At all other move nodes, the 

move filter will either limit the number of moves or only keep one move. Candidate moves 

are chosen by doing a static evaluation of all children of the move node and choosing the 

n  moves with the best scores; in other words, a small d ep th = l search is done at all move 

nodes.

The branching factor at chance nodes can also be optionally reduced by limiting the 

number of rolls to  a smaller set than  21. All roll sets are hard-coded, so no attem pt is made 

to order rolls nor bias roll selection when a  reduced set is desired.

Unfortunately, Gnubg has an unusual definition of ply. In Gnubg, a d ep th = l search is 

called “0-ply” , a depth=3 search is considered “1-ply” , and so on. While most users quickly 

adapt to  this quirk, it makes working with the code potentially tricky, since one must always 

remember this to  avoid bugs.

For d ep th = l searches, Gnubg simply performs a static evaluation of all root move can­

didates (a candidate being a move th a t has not been pruned by the move filter), and the 

move with the highest score is chosen. At chance nodes in the search tree, all rolls in the 

roll set (the set is usually all 21 rolls but it can be reduced for speed) are investigated, and 

the best move for each roll (chosen by simple static evaluation) is applied and expanded, 

until the depth cutoff is reached. As we saw before with Expectimax, the size of the tree is 

0 ( B % N % ) ,  where B  is the branching factor at move nodes, N  is the branching factor at 

chance nodes, and D  is the search depth. By only doing a  static evaluation of children at 

move nodes and then choosing only one for further expansion, the size of a Gnubg search 

tree is 0 ( P % N % +B% x B )  (where P  is the pruned branching factor at move nodes), and in 

the best case is generally asymptotically similar to  B % , since the variable branching factor 

a t move nodes is usually about the same as the fixed branching factor (21) at chance nodes.
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In other words, this pruning technique allows the search tree to  be exponentially smaller 

than  the full tree in depth (with savings about 0 ( ( ^ ) D), but error is also introduced.

5.4.3 B est in the World?

On September 5th, 2003, Michael Howard posted the results of a duel between Gnubg and 

Jellyfish to  the r e c . games. backgammon group on UseNet.[14] Howard had the two programs 

play 5,000 money games, each using their “optimal” settings. Gnubg came out the winner by 

an average of 0.12 points per game. One of the Gnubg developers, Jprn Thyssen, commented 

th a t the results were within his estimated 95% confidence interval of + / -  0.1 points per game 

to  show th a t Gnubg was clearly a stronger program. [36] While not completely shocking, it 

is a strong statem ent on the strength of the Gnubg program to be able to outm atch an 

expensive, “professional” backgammon program like Jellyfish.

5.5 Im plem entation Issues

Unlike Dice, backgammon is not a trivial game to  implement. While the board itself can be 

fairly easily represented by a two-dimensional array of integers, generating moves is rather 

complicated to  not only do correctly, but also efficiently.

5.5.1 M ove G eneration

There are three different stages of the game th a t change what moves are legaf: (1) when a 

player is on the bar, (2) when the player has no checkers on the bar but has checkers outside 

their home board, and (3) when a player has no checkers on the bar and all checkers inside 

their home board. The third stage also has different rules about when checkers can be borne 

off, if the player doesn’t  have a checker on a point equal to  one of the rolls. There is also the 

situation where a player can use one but not both of their rolls, in which case the higher roll 

can be used. This can be handled by always making the largest roll the first one examined, 

and then slicing off part of the array of moves after all moves are generated. Avoiding 

duplicating moves is also an im portant consideration because of the explosive branching 

factor for some situations (like a doubles roll for a  player with checkers on several different 

points). Move generation is done recursively, where a single “partial move” is done at a 

time (moving a single blot), and continuing until all such partial moves are completed, and 

then the move is stored.

While checking for duplicate moves after they are generated is rather inefficient, a simpler 

way to  avoid most duplicate rolls is to  ju st limit the next recursive call to  applying partial 

moves on or after the point from which the last partial move was made. While some double 

roll moves may still be duplicated, the transposition table can take care of the m ajority of 

those.
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5.5.2 E valuation  Function

Instead of going out and designing a new evaluation function, there was already one available 

for use: the  Gnubg codebase, which is a very strong set of trained neural networks.

While th e  Dice code used an evaluation function tha t just returned a difference of pairs 

(in other words, an integer), the Gnubg evaluation function returns a floating point number 

(the value representing the equity of the player who just moved). Whenever search programs 

use floating point numbers, there is always the risk of floating point operations having 

rounding errors; even comparing two (seemingly) identical values may not result in the 

expected tru th  value.

To work around the uncertainty presented by floats and the continuous values they may 

have, we can discretize the values by putting them  onto a grid. This involves taking the 

floating point number and multiplying it by a large number, and then rounding the value 

to  the nearest integer number. T hat integer can then be divided by the same large number 

used for the multiplication. The granularity of the grid can be adjusted to meet the desired 

level of precision. For backgammon, a resolution of 262144 (218) was used to  discretize the 

floating point numbers, to ensure a fine enough granularity without being too fine for the 

floating point mantissa.

Using floating point numbers instead of integers also meant a performance hit, because 

floating point operations can be much more costly than  integer operations.

5.5.3 Transposition Table

The same code used for the Dice T T  was used with backgammon, with one minor changes 

to  the T T  entries: they stored double-precision floating point numbers instead of integers 

for values.

5.5.4 H istory H euristic

Since the HH is usually represented by an array of moves (each entry representing the 

number of times a move was chosen as best), in backgammon this representation is near­

impossible -  a rough bound on the number of different moves is (25 x 6)4. The number of 

possible moves in backgammon is so large than  even if the HH could fit into memory (by 

encoding one partial move in a byte, and using a four byte primitive), it surely would not fit 

into cache. Since the HH is supposed to  be a  small portion of memory to  modestly help with 

search, using a half a gigabyte of memory is not reasonable, and we’d end up playing havoc 

with the CPU’s cache. For this reason, the HH was not implemented for backgammon.
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5.5.5 M ove Ordering and Probe

Similar to  w hat was done with Dice, move ordering and probe successor selection are both 

done with a  different heuristic than  the evaluation function. This is especially a concern 

with a heavy evaluation function such as Gnubg’s. Probe successor selection in backgammon 

was similar to  Dice: moves tha t hit opponent blots were taken first (best quality), moves 

tha t formed a  point were taken second (good quality), and if no moves met either condition, 

the first move was chosen. Move ordering worked a little differently. While Dice move 

ordering was done by finding “quick twos” and using the same two-quality check as Probe, 

backgammon move sorting was done by scoring a move based on a  number of criteria: the 

number of opponent checkers moved to  the bar, the number of free blots it left open to hit, 

and the num ber of safe points (2 or more checkers) made. These criteria remained the same 

for all moves during the game.

5.5.6 N on-uniform  Chance Event Probabilities

While only a  single die was used in Dice and so each chance event had a  uniform probability 

of occurrence ( | ) ,  two dice are used in backgammon, and all combinations do not have the 

same likelihood: the 1-1, 2-2, 3-3, 4-4, 5-5 and 6-6 double rolls all have the same probability 

(” ), bu t all other combinations have a probability of For this reason, the formulas 

used to  derive the equations for A  and B  need to be modified. Ballard talks about the 

modification process in [5] but does not go into much detail. Note th a t this process doesn’t 

affect Expectimax, just S ta rl and Star2.

Recall the inequality for obtaining Af.

N  -

The entire left hand side of the inequality is divided by N  because each of the N  values 

has an equal chance of occurring. For non-uniform chance probabilities, this inequality 

changes to

(Pi x V\ +  . . .  +  P j_i x V i-1 ) +  Pi x Vi + U x (1 — Pi — . . .  — Pi) < alpha (5.1)

or

A _  alpha - [ /  x (1 -  P i -  . . .  -  P^) -  (Pi x Vi 4 - . . .  +  P j_ i x V*_i) /K ^
M  — " 1 1 " ~p “  ________ _

where Pi is the probability th a t the ith  chance occurs, for A. B  can be found similarly with

beta — L x (1 — Pi — . . .  — P,) — (Pi x V) +  . . .  +  P j- i  x V)_i) . .
Bi  --------------------------------------- p ----------------------------------------  (5-3)
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We will make the substitution Y  =  (1 — Pi —. . .  — P j), which can be computed incrementally, 

where F0 =  1 and updates are made with Y* =  Y i- \  — P%■ We will make another substitution 

X  =  (Pi x Vi + . . .  +  Pi- 1  x which can also be computed incrementally where X i = 0

and updates are made with X ^ i  = X i + Pi x Vi. We can then calculate A, and Bi with

(alpha -  U x Y i - X i )
Ai = -------------py-------- — ' (5-4)

and

B i =  (5 5)
*  i

Note th a t when there is only one successor, A = alpha and B  =  beta, as desired.

We can use these equations to  determine A  and B  for S ta rl as well as S tar2:s probing 

phase. W hen calculating A  and B  values in Star2’s search phase, we can still use Equation 

5.4 to get A, bu t for B  we will need to  modify Equation 3.8, and get

B , =  (5.6)
* i

where W% =  +  . . .  +  W/v), the sum of the probed values for nodes not yet searched.

5.6 Experim ental Design

The same laboratory conditions used for Dice were used for backgammon experiments. The 

only change is the usage of the Gnubg codebase for the evaluation function. Only the needed 

object files were included, and they all were compiled with -03 optimization.

5.7 Performance

While we investigated randomly-seeded positions in Dice, th a t approach does not make sense 

for backgammon, since it is difficult to  generate random positions which look “reasonable” 

in backgammon terms. Instead of randomly generating positions, a position database was 

used. The database came from the Gnubg team, used for training the neural network. 

It is comprised of several thousands of positions classified into different categories. The 

contact position database was made available for experiments. The results of searching 

these positions are therefore more applicable to  real-world performance compared to random 

positions.

500 randomly selected contact positions were used for testing. Each was searched to 

depths of 1, 3 and 5 by Expectimax, S ta rl and S tar2.

Just like with Dice, there is a direct relation between time and node expansions, as the 

Gnubg evaluation function is very heavy in terms of CPU usage (over 90%, much like Dice).
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CPU Time (s) vs. Position: depth 5, contact positions
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Figure 5.6: Time used (s) a t d=5 for 25 contact positions

Nodes Expanded vs. Position: depth 5, contact positions
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Figure 5.7: Node expansions at d=5 for 25 contact positions

In Figures 5.6 (CPU time) and 5.7 (node expansions) graphed on a logarithmic scale, 

we can see some variation in the amount of effort Star2 requires to  complete a search at 

depth=5, which reflects the variety of backgammon positions during a match. Each of 

the 25 positions shown were selected at random from the Gnubg contact position database, 

searched by all three algorithms, and then sorted in order of Expectim ax time. The variation 

in savings for Star2 for the 25 positions goes from about 75% to  about 95%. Expectimax 

and S ta rl closely follow each other, where S ta rl has only a  slight decrease in overall costs.

Table 5.1 summarizes the time usage over 500 positions. Star2 is clearly the most 

efficient of the algorithms by over a factor of 10, but even at 21 seconds per search, this 

would probably still be too slow for tournam ent play. Figure 5.8 shows average and standard 

deviation of node expansions over 500 positions, graphed on a logarithmic scale.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Average Nodes Expanded vs. Search Depth: contact positions
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Figure 5.8: Average and standard deviation of node expansions over 500 contact positions 

5.7.1 Probe Efficiency

Table 5.2 shows the resulting probe efficiency for using Star2 in backgammon. The results 

are modest compared to  some of the values seen for Dice, but backgammon has a much 

larger branching factor, so deep searches are not possible. The “quick” successor selection 

scheme for backgammon is also relatively weaker th an  Dice’s, because backgammon is a 

much more complicated game. Not only it is harder to  quickly find good qualities, but i t ’s 

also harder to define good qualities for backgammon positions. Still, these results are better 

than  Ballard’s, whose probing was never successful more than  about 45% of the time. The 

improvement here is probably due to better move ordering.
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Table 5.1: Average time (s) over 500 contact positions
Expectimax S ta rl Star2

a a % a %
d=3 1.1 0.7 1.1 0.6 100 1.0 0.1 91
d=5 315.0 566.8 258.6 472.6 82 21.0 36.9 7

Table 5.2: Probe efficiency for Backgammon
d=3 d=5

a a
contact 68.9% 29.5% 64.2% 22.6%

5.7.2 O dd-Even Effect

Many 2-player game-playing computer programs suffer from what is called the odd-even 

effect, where alternating levels of move nodes will give scores th a t are either optimistic (for 

odd-ply searches) or pessimistic (for even plies). For example, a depth=1 search in any game 

will tend to  be optimistic, since we are only investigating the moves currently available to 

us. The odd-even effect comes from the way in which an evaluation function is created, 

which generally tries to  score the position for the player-to-move.

Tables 5.3 and 5.4 show the results of two different trials of 3200 backgammon positions. 

The positions were generated as a continuous sequence of cubeless money games, with the 

computer playing for both sides. This generated a decent set of “real-world” moves for 

backgammon. The table shows the average difference, absolute average difference, and 

absolute standard  deviation in the root node value when comparing searches of the same 

positions to  different depths.

Table 5.3: Root value c ifferences, over 3200 moves (A)
Average Abs. Average Abs. Std. Dev.

d = l  vs. d=3 
d = l  vs. d=5

0.0280
0.0018

0.0336
0.0134

0.0397
0.0184

Numbers on both tables are very similar. The results show th a t the evaluation of the 

root node for a d ep th = l search is very close to  the evaluation for a depth=5 search, on 

average. When absolute differences are used instead, d ep th = l is not as good as a predictor 

for a depth=5 search, but the difference is reasonably small (only about 0.01 points).

The differences between d ep th = l and depth=3 are much more striking. Both the average 

and the absolute average difference between them  is nearly the same. In fact, the average 

difference is positive, which means th a t the depth—3 search value is usually significantly less 

than  the value from a d ep th = l search.

These results show a tangible odd-even effect with the Gnubg evaluation function. Even 

if searches to different depths produce different values for the root, the move chosen at
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Table 5.4: Root value differences, over 3200 moves (B)
Average Abs. Average Abs. Std. Dev.

d = l  vs. d=3 0.0267 0.0328 0.0389
d = l  vs. d=5 0.0014 0.0126 0.0172
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Figure 5.9: Tournament results for Gnubg with no noise versus Gnubg with no noise, 18000 
games per matchup

the root usually is the same across searches of different depths. This means the evaluation 

function itself is very consistent between depths. These results also show th a t a d ep th = l 

search value is a reasonable predictor for a depth=5 search value for the same position.

Winning Percentage vs. Player
T

5.8 Tournaments

Tournaments were set up just like with Dice to  investigate how deep search impacts game 

performance. Tournaments were set up between the Gnubg search function and itself, and 

Star2 against itself. Since Gnubg also has a facility for adding deterministic noise to  an 

evaluation, different noise settings were also investigated.

While we saw th a t deep search was beneficial for tournam ent performance in Dice, this 

was not evident in backgammon. Figure 5.9 shows the results of Gnubg playing against 

itself a t different depth settings. These graphs are the same type from the previous chapter. 

On each graph, lines represent depth settings from d ep th = l to  depth=5. The line is then 

compared against an opponent on the x-axis, and the winning percentage for the player 

represented by th a t line is shown on the y-axis. A player searching to  the same depth as its 

opponent has the same performance and so crosses the 50% winning percentage line where 

the two players’ settings are identical.

We can see from the graph th a t a depth=5 barely shows any significant improvement 

over shallower searches. In fact, the three depth settings are nearly identical. This suggests
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Winning Percentage vs. Player
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Figure 5.10: Tournament results for S tar2 with no noise versus Star2 with no noise, 4000 
games per matchup

th a t deeper searches are only finding better moves a small fraction of time, which suggests 

th a t the three searches are choosing the same move just about every time. T hat means the 

Gnubg evaluation function must be extremely consistent between depth levels.

Figure 5.10 shows Star2 performance when playing against itself, in the same manner as 

Figure 5.9. Deep search is still p retty  much irrelevant using the Gnubg evaluation function 

as-is.

Since the evaluation function is so consistent, results were also desired for a  less consistent 

setting. Instead of developing a new evaluation function, noise can just be added to  the 

evaluation function. Gnubg has a built-in noise generator already, which can add either 

deterministic or non-deterministic noise to each evaluation. Since it is highly desirable 

th a t the evaluation for a state be always deterministic, especially when transpositions are 

possible, another tournam ent using deterministic noise was added. Only a  modest amount 

of noise was added, consistent with an “Interm ediate” level of play for Gnubg. Figure 5.11 

shows tournament results in an identical manner to  the previous two graphs. Now, deeper 

search is paying off to  a significant degree; a d ep th = l search now loses to a depth=5 search 

65% of the time. D ep th = l fares slightly better against depth=3 at about 42% winning 

percentage. Depth=5 wins slightly less than 55% of the time against depth=3, but it is still 

a tangible amount.

Deep search helps to m itigate bad evaluation functions by adding more foresight to the 

move decision process. Adding deterministic noise to the Gnubg evaluation function shows 

th a t deep search becomes im portant again in backgammon.
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Figure 5.11: Tournament results for Star2 with n=0.0300 versus Star2 with n=0.0300, 1000 
games per matchup

5.9 Conclusions

As with Dice, Star2 and S ta rl both outperform Expectimax on single position searches. 

Star2 has a  significant savings in costs even at depth=5, mostly due to  the explosive branch­

ing factor inherent in backgammon. Gnubg’s evaluation function is as heavy as the one used 

in Dice, which means th a t performance is strongly linked to  eliminating as many leaves as 

possible.

Unlike Dice, strong cubeless money game tournam ent performance is not linked with 

deep search. The Gnubg evaluation function is sufficiently well-trained and consistent tha t 

searches to  increasing depths almost always choose the same move a t the root. When the 

searches do not agree on the best move it is usually because they are searching a tactical 

position. But even the occurrence of tactical positions is relatively infrequent, and the 

benefits of deep search in these situations is usually washed away by the randomness of the 

dice rolls.

Gnubg’s forward-pruning search method works very well for its evaluation function, 

since the best move candidate at the root is unlikely to  change much from one iteration to 

the next. Deeper search catches some tactical errors in some situations, but since tactical 

situations can be thrown completely askew by a single lucky roll, deep search doesn’t  pay 

huge dividends.

5.10 Future Work

W ith an excellent evaluation function such as Gnubg’s set of neural networks, checker play 

is virtually perfect, even with shallow search. However, since backgammon matches are
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generally played with a doubling cube, and cube decisions are usually the most important 

part of the game, this work should be extended to  cubeful games and cube decisions. Being 

able to see even a couple of ply deeper in these situations can make or break a player’s 

chances of winning.

New evaluation functions should also be considered. The Gnubg evaluation function 

is much heavier (about 21,000 evals per second on an Athlon 1800) relative to evaluation 

functions for many other games. Faster methods may prove useful combined with deep 

search, like, for example, using a GLEM-based evaluation approach[10]. If the amount of 

evaluations per second could be increased into the range of a million, full 3-ply (depth=7) 

searches should be possible.

Since Star2 is so reliant on successful probing, a more powerful Probe function would 

also increase performance. Right now P ickS uccesso r uses some ad-hoc rules about good 

backgammon play for quickly choosing a child, but there are perhaps better techniques for 

making this decision.
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Chapter 6

Conclusions

This thesis involved the application of the *-Minimax algorithm, which allows for backward 

pruning in game trees with chance nodes, to two games: Dice and backgammon. Both 

S tarl and Star2 were applied versus Expectimax, the baseline algorithm for game trees 

with chance nodes. Single searches of positions as well as tournam ents were run, in order 

to  investigate the effectiveness of the algorithms in reducing search costs in either domain, 

as well as to  see if deep search makes a positive impact on performance.

6.1 D ice

Overall, we saw th a t S ta rl does outperform Expectimax, but generally by not more than 

a modest linear factor. Star2 outperforms both Expectimax and S ta rl, usually by a large 

factor. In Dice, we saw th a t a small branching factor resulted in relatively weak performance 

from Star2, but as the branching factor increased, so did the effectiveness of Star2, from 

a 50% reduction on a  5 x 5 board up to  more than  90% reduction in costs on a 17 x 17 

board. We also saw a strong correlation between node expansions and time used, stemming 

mainly from the fact th a t when an evaluation function is sufficiently heavy, nearly all CPU 

time will be spent evaluating nodes. Tournament performance in 7 x 7, 4-in-a-row Dice was 

strongly reliant on seeing a t least 3 plies deep (depth=5), bu t deeper search did not really 

m atter. We saw th a t Star2 is reliant on proper probe selection to  ensure high efficency, and 

tha t move ordering is an im portant consideration for reducing node expansions and time, 

and raising probe efficiency.

6.2 B ackgam m on

In backgammon, we used a strong, open-source codebase in GNU Backgammon to develop 

a backgammon program capable of playing cubeless money games. We saw how even at a 

small depth, the large branching factor of backgammon created gigantic search trees for Ex­

pectimax. We also saw tha t Star2 reduced the search costs by about 90% at depth=5, which
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resulted in significant savings. Curiously, we also saw th a t, using GNU Backgammon’s eval­

uation functions as-is, there was no great improvement in tournam ent performance when 

doing a d e p th = l search versus a depth=5 search, whether using Star2 or GNU Backgam­

m on’s own forward pruning-based search routine. However, with the introduction of even a 

small am ount of deterministic noise into the evaluation, deep search had a positive impact 

on performance once again.

6.3 Future Work

Extending the  Dice game to different board sizes and winning combination lengths should be 

investigated, as well as creating a better evaluation function. A game based on Gomoku or 

Connect-4 would provide an interesting counterpoint to  those two games, which are already 

solved.

Checker play in backgammon seems relatively trivial, since heavy analysis of even the 

most tactical positions often becomes meaningless thanks to lucky dice rolls for either side. 

Still, cubeful play remains an im portant area to  be investigated, because of the great impact 

good cube handling has on overall performance in m atch play. Combined with appropriate 

use of forward-pruning in backgammon, *-Minimax may also provide some incremental 

improvements in play from deeper search.

There are other perfect-information stochastic games which could benefit greatly from 

the use of *-Minimax search. One excellent domain would be the German tile-laying game 

Carcassonne. While there is only one real computer version of the game, produced by KOCH 

Media (h ttp :/ /w w w .c a rc a s s o n n e -o n lin e .d e /), newer programs could definitely provide 

some competition and renewed interest. One good reason why *-Minimax may work well 

in this domain is because of the endgame play in Carcassonne. Often games are very close 

leading up to the final few tiles to be played, and games often slow down significantly when 

players do not see immediate “good” moves to  play. In this case, being able to  see a line of 

play from even five or six tiles out could result in expert play. Because computers can also 

keep track of which tiles have been played better th an  humans, a computer player could 

also avoid many of the pitfalls which plague humans. However, since the branching factor 

a t chance nodes after the root starts at 40 (when using the most common expansion tileset, 

Inns & Cathedrals), some form of statistical sampling may be required to  jum pstart the 

computer player. O ther games like Paris-Paris (where the branching factor at move nodes 

is at most 3 for a 2-player game, but the branching factor at chance nodes can be as high as 

35 choose 3) would use *-Minimax in the same way: primarily for mid- to end-game play, 

after the board begins to  take form.

The *-Minimax algorithms seem to also be applicable to MDPs, especially in the area 

of multi-agent MDPs. While solving MDPs usually involves an Expectimax-type evaluation
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of states one step away during value iteration, perhaps th a t component could be changed 

to a depth-iV  search of states, where the action at any given state would be determined by 

the current policy at that iteration. This may produce quicker convergence, or in the case 

of m ulti-agent MDPs, a better method for choosing actions that lead to  higher rewards.

A general approach to  solving games th a t combine elements of skill and chance will 

remain an open research problem for a while to  come, but they provide some of the most 

interesting domains as they often have elements at which computers excel but humans don’t 

(optim ization, uncertainty calculation), and vice-versa (long-term planning, opponent mod­

eling). Games tha t combine skill, chance, imperfect information and opponent interaction 

are the m ost difficult domains for computers, so cross-disciplinary approaches involving 

combining elements of heuristic search, machine learning, agent theory, game theory and 

even psychology may prove the most fruitful in the years to  come.
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A ppendix A

N egam ax Formulation o f Search 
Functions

A .l N egam ax Formulation of A lpha-Beta

Most game programs do not use the regular form of Alpha-Beta (described back in Figure 

2.4), because enforcing the evaluation function to  always report a value in terms of the 

root player is non-intuitive. There really isn’t  any difference between the code for Min 

nodes and the code for Max nodes, except they are doing things oppositely, because the 

evaluation function gives scores relative to  the root player. However, if we change our 

evaluation function to  always score a node based on the player-to-move, then every node in 

the search becomes a  Max node; either the first player is maximizing, or the second player 

is maximizing. If the layers of Max and Min nodes strictly alternate, then a backed up 

value simply needs to  be negated by the parent node, since what is good for the opponent 

is bad for th a t player, and vice-versa. The last thing we need to  do is think about the 

alpha and beta values for the window. Since the original implementation adjusts only the 

alpha values for Max nodes, and since the next level down is for the opposite player, we will 

therefore swap and negate the values of alpha and b eta  when we pass them  down to the 

child. By negating every returned value, eliminating the is_max_node branch, and swapping 

the alpha and beta window bounds, we end up with the Negamax formulation of Alpha-Beta 

as described in [15] in Figure A.I.

A .2 Negam ax Formulation of E xpectim ax, S tarl and
Star 2

Now th a t we have adjusted the formulation for Alpha-Beta, we need to  adjust the algorithms 

used at chance nodes. First, we notice tha t since the children of a chance node in a regular 

*-Minimax tree will be for the same player (the chance node may ju st represent the player 

throwing dice, but they still haven’t moved), so we don’t need to  adjust the return values
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float nAlphaBeta(Board board, float alpha, float beta, int depth) -[ 
if (terminal (board) II depth == 0) return (evaluate (board)) ;

N = numSuccessors(board); 
score = -INFINITY; 
for(i = 1; i <= N; i++) {

v = -nAlphaBeta(successor(board,i), -beta, -alpha, depth-1); 
if(v > score) score = v; 
if (score > alpha) alpha = score; 
if (alpha >= beta) return (score);

}

return (score);
>

Figure A .l: Negamax formulation of the Alpha-Beta algorithm

from the Min or Max nodes at all. We also don’t  want to  change the order of the alpha or 

beta values since, again, the player hasn’t  changed yet. For Expectimax, nothing needs to 

change; we can use the same code. For S ta rl, nothing needs to  change either, since S tarl 

is already “agnostic” about what types of nodes proceed it. However, Star2 needs to be 

changed. Since we are always trying to maximize at each step, we simply need a  single 

version of Star2 for chance nodes followed by Max nodes, the implementation of which is 

shown in Figure A.2. This implementation assumes search in regular *-Minimax trees, so 

the call to  se a rc h  can be replaced with a call to  nAlphaBeta_MM, a negamax version of 

Alpha-Beta which will call n S ta r2  instead of itself. A new version of Probe is also needed, 

nProbe, which will ju st be ProbeJMax, except it will call nAlphaBeta_MM. Most of this code 

should already be present in the form of the version of Star2 for chance nodes followed by 

Max nodes, Star2_Max.
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float nStar2(Board boaxd, float alpha, float beta, int depth) { 
if (terminal (board) II depth == 0) return (evaluate (board)) ;
N = numSuccessors(board);
/* Initialization */
A = N*(alpha-U);
B = N*(beta-L);
AX = max(A, L);
/* Probing phase */ 
for(i = 1 ;  i <= N; i++) {

B += L ;
BX = min(B, U) ;
w[i] = nProbe(successor(board,i), AX, BX, depth-1); 
if(w[i] => B) return (beta);
B -= w[i] ;

>
/* Search phase */ 
vsum = 0;
for(i = 1; i <= N; i++) {

A += U;
B += w[i] ;
AX = max(A, L);
BX = min(B, U ) ;
v = nAlphaBeta_MM(successor(board,i), AX, BX, depth-1); 
if(v <= A) return (alpha); 
if(v >= B) return (beta); 
vsum += v;
A -= v;
B -= v;

>
return (vsum/N);

Figure A.2: Negamax formulation of the Star2 algorithm
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A ppendix B

D ice

Table B .l: Tournament results for 4-in-a-row on a 7x7 board, 18,000 games per matchup
d = l d=3 d=5 d=7 d=9

1 * 51.83% 63.52% 64.32% 65.40%
3 48.17% * 61.82% 62.63% 63.78%
5 36.48% 38.18% * 50.54% 52.12%
7 35.68% 37.37% 49.46% * 51.83%
9 34.60% 36.22% 47.88% 48.17% *

Table B.2: Probe efficiency for Dice
d=3 d=5 d=7 d=9

A4 a A4 a A4 a A4 a
5x5
7x7
9x9

11x11
13x13
15x15
17x17

66.8%
75.0%
79.3%
82.0%
83.1%
85.1%
85.4%

17.3%
13.3%
11.9%
10.2%
10.1%

8.1%
9.0%

48.4%
53.9%
57.5%
59.8%
62.2%
63.2%
64.8%

7.7%
8.4%
9.2%

10.2%
11.3%
11.3%
12.3%

48.4%
59.4%
66.5%
71.1%
73.9%
77.4%
79.8%

5.8%
5.5%
5.4%
6.2%
7.7%
8.1%
7.7%

47.4%
58.1%
64.9%
69.1%

3.3%
3.5%
3.7%
4.3%

d = l l d=13 d=15
A4 a A4 a a

5x5
7x7
9x9

11x11
13x13
15x15
17x17

46.8%
57.1%

3.1%
3.1%

47.8% 2.6% 46.1% 2.8%
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Table B.3: Average time (s) for board size of 5x5, over 500 positions
Expectimax S ta rl Star2

a fl | <T % a %
d = l l
d=13
d=15

5.5
38.1

365.6

2.7
24.4

335.4

4.5
34.3

333.7

2.2
22.2

298.7

82
90
91

3.2
25.4

194.9

1.5
17.0

170.8

58
67
53

Table B.4: Average node expansions for board size of 5x5, over 500 positions
Expectimax S ta rl Star2

<7 a % V <T %
d—1 4 1 4 1 100 4 1 100
d=3 118 24 109 22 92 85 17 72
d=5 2397 634 2024 528 84 1239 317 52
d=7 42073 13910 32154 10706 76 14445 4626 34
d=9 412521 165125 327932 134161 79 169668 62070 41

d = l l 3485102 1692682 2796416 1372936 80 1498603 694405 43
d=13 23860669 15444789 21437750 13979997 90 12175740 7850960 51
d=15 230937374 213184303 210644039 190750225 91 95343501 81808390 41

Table B.5: Average time (s) for board size of 7x7, over 500 positions
Expectimax S ta rl Star2

I1 a fJ- a % M a %
d=7
d=9

d = l l

1.1
20.9

483.0

0.3
6.2

195.9

1.0
15.8

356.9

0.1
5.3

157.3

91
76
74

1.0
5.8

97.6

0.0
2.5

45.9

91
28
20

Table B.6: Average node expansions for board size of 7x7, over 500 positions
Expectimax S ta rl Star2

V a V a % V a %
d = l 6 1 6 1 100 6 1 100
d=3 299 54 276 49 92 161 38 54
d=5 12114 2648 10196 2327 84 3871 965 32
d=7 448736 117863 339354 98614 76 85446 31527 19
d=9 9109391 2904555 6940886 2464782 76 1878648 770055 21

d = l l 208791749 91060266 155518292 72987326 74 31680234 14846272 15

Table B.7: Average time (s) for board size of 9x9, over 500 positions
Expectimax S ta rl Star2

V a V a % (J- a %
d=7
d=9

8.6
314.7

1.8
80.5

6.4
230.9

1.7
74.0

74
73

1.5
45.4

1.1
26.5

17
14

Table B.8: Average node expansions for board size of 9x9, over 500 positions
Expectimax S ta rl Star2

a a % a %
d = l 8 1 8 1 100 8 1 100
d=3 605 93 563 86 93 260 62 43
d=5 40632 7488 34223 6856 84 9103 2004 22
d=7 2556033 560494 1908067 511270 75 307370 138409 12
d=9 91955795 25388492 68103347 23112399 74 10166029 5389658 11
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Table B.9: Average time (s) for board size of 11x11, over 500 positions
Expectimax S tarl Star2

a jU a % V a %
d=7 45.7 7.6 34.3 7.2 75 5.2 2.8 11
d=9 2964.8 661.3 2088.3 597.7 70 240.5 160.5 8

Table B.10: Average node expansions for board size of 11x11, over 500 positions
Expectimax S ta rl Star2

M a a % a %
d = l 9 1 9 1 100 9 1 100
d=3 1073 154 1008 142 94 386 90 36
d=5 108631 18168 92663 17124 85 18791 4076 17
d=7 10440509 2008884 7901976 1879951 76 931700 505976 9
d=9 674004977 172284142 478594692 152279828 71 43650330 28791026 6

Table B .ll:  Average time (s) for board size of 13x13, over 500 positions
Expectimax S tarl Star2

V a a % a %
d=5
d=7

1.4
190.3

0.5
27.2

1.2
143.8

0.4
27.0

86
76

1.0
15.4

0.0
8.7

71
8

Table B.12: Average node expansions for board size of 13x13, over 500 positions
Expectimax S ta rl Star2

a a % M a %
d = l
d=3
d=5
d=7

11
1742

247808
33770133

1
224

36386
5639624

11
1643

212209
25635916

1
211

34752
5446810

100
94
86
76

11
555

35024
2251628

1
162

8590
1329830

100
32
14

7

Table B.13: Average time (s) for board size of 15x15, over 500 positions
Expectimax S ta rl Star2

a I1 <7 % a %
d=5
d=7

3.6
663.5

0.6
88.0

3.1
499.0

0.6
91.8

86
75

1.0
39.7

0.0
26.9

28
6

Table B.14: Average node expansions for board size of 15x15, over 500 positions
Expectimax S ta rl Star 2

a a % I1 (7 %
d = l
d=3
d=5
d=7

13
2662

•504294
92105475

1
301

65459
13688189

13
2525

432390
69644237

1
287

65444
14109164

100
95
86
76

13
722

58704
4685333

1
174

13254
3303548

100
27
12
5

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table B.15: Average time (s) for board size of 17x17, over 500 positions
Expectimax S ta rl Star2

P a V a % P a %
d=5 8.9 1.2 7.6 1.1 85 1.1 0.5 12
d=7 2114.7 275.8 1598.4 282.5 76 102.0 75.1 5

Table B.16: Average node expansions for board size of 17x17, over 500 positions
Expectimax S ta rl Star 2

a M a % a %
d = l
d=3
d=5
d=7

14
3795

925415
218749807

2
429

115862
30405596

14
3617

797480
166155134

2
411

114984
31485764

100
95
86
76

14
942

94260
9113269

2
259

23966
6810862

100
25
10
4

Table B.17: Average node expansions for different move orderings for board size of 11x11, 
over 500 p o s itio n s  ______________ _________________________________________

d=3 ta
­ ll O
l II"O d=9

a a a A* a

none
random

static
quick

469
443
367
386

153
134
82
90

25184
23224
16324
16602

9322
7703
3863
3886

1889848
1794483
1443771
1437847

898560
765833
525432
520116

136621337
140430139
111554612
109955050

60848820
58851717
42970424
42504397

Table B.18: Average time (s) for different move orderings for board size of 11x11, over 500 
positions _________ ___________ ______________

d=7 d=9
a M a

none
random

static
quick

8.1
7.8
8.4
6.5

3.9
3.4 
4.6
2.5

595.8
616.3 
582.1
495.3

262.4
254.9
263.7
193.8

Table B.19: Probe efficiency for different move orderings for board size of 11x11, over 500 
positions ________________ _______________

d=3 d=5 d= 7

CT>11

cr P a IX a a
none

random
static
quick

63.6%
69.8%
85.4%
82.0%

24.2%
18.9%
8.1%

10.2%

60.7%
67.6%
95.7%
93.3%

12.9%
9.3%
2.7%
3.3%

61.0%
68.1%
96.0%
93.5%

10.9%
7.0%
1.7%
2.5%

59.7%
67.4%
95.5%
91.5%

9.9%
6.2%
1.8%
2.8%
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A ppendix C

B ackgammon

Table C .l: Average node expansions over 500 contact positions
Expectimax S ta rl Star2

a a % <7 %
d = l
d=3
d=5

33
12287

6478981

51
17020

11122146

33
11372

5297752

51
15602

9261568

100
93
82

33
3544

526042

51
4668

860694

100
29

8

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table C.2: Tournament results for Gnubg with no noise versus Gnubg with no noise, 18000 
games per m atchup

1 3 5
1 * 50.92% 51.79%
3 49.08% * 51.63%
5 48.21% 48.37% *

Table C.3: Tournament results for Star2 with no noise versus Star2 with no noise, 2000 
games per m atchup ________ ________ _________

1 3 5
1 * 50.60% 51.60%
3 49.40% * 52.52%
5 48.40% 47.48% *

Table C.4: Tournament results for Star2 with n=0.0150 versus Star2 with n=0.0150, 1000 
games per matchup _ _ _ ________ _________________

1 3 5
1 * 55.53% 54.67%
3 44.47% * 51.57%
5 45.33% 48.43% *
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Table C.5: Tournament results for Star2 with n=0.0300 versus Star2 with n=Q.0300, 
games per matchup _______________________________

1 3 5
1 * 59.00% 64.20%
3 41.00% * 53.40%
5 35.80% 46.60% *
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