
U n iv e r s ity o f A lb e r ta

S e a r c h in T r e e s w it h C h a n c e N o d e s

by

T h o m as G o rd o n H a u k

A thesis subm itted to the Faculty of Graduate Studies and Research in partial fulfillment
of the requirements for the degree of M a s te r o f Science.

Department of Computing Science

Edmonton, A lberta
Spring 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395 Wellington Street
Ottawa ON K1A 0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-96482-5
Our file Notre reference
ISBN: 0-612-96482-5

The author has granted a non­
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque et Archives Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A bstract

While much of the research done in heuristic search has concentrated on deterministic do­

mains, not much work has been done to investigate search techniques in stochastic domains

other than statistical sampling methods. When full search is required, Expectimax is often

the algorithm of choice. However, Expectimax is a full-width search algorithm. A class of

algorithms called *-Minimax were developed by Bruce Ballard to improve on Expectimax’s

runtime. They allow for cutoffs in trees with chance nodes similar to how Alpha-Beta allows

for cutoffs in Minimax trees. This thesis presents new performance results for Expectimax,

as well as S ta rl and Star2 (the two main *-Minimax algorithms), in real-world domains.

Ballard’s work is verified and new insights into move ordering and probe successor selection

are presented.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“A fter evaluating millions of pieces of data in the blink of an eye,
the Gamble-Tron 2000 says the [Superbowl] winner is...

Cincinnati by 200 points!? Why, you worthless hunk of junk!”
-Professor John Prink, The Simpsons (Epsiode 8F12)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgem ents

I would like to thank many people, including:
My two supervisors, Jonathan Schaeffer and Michael Buro, for support and encourage­

ment over the last eight months, for providing many insights into the search problem and
posing enough interesting questions to keep me going for another year.

The GAMES research group a t the U of A for providing much-needed nights of fun
playing Settlers of Catan or Carcassonne, and for being a group of people I could talk to in
the AI lab when I needed a break.

Dominique Parker for all the help troubleshooting my code and providing the answers
to programming questions when I had them.

The GNU Backgammon team, especially Jprn Thyssen, Jim Segrave, Ian Shaw, and
Gary Wong, for their help with understanding their code, getting a position database for
testing, and giving insight into Gnubg’s history.

The Instructional Support Group (better known as Labadmin) for hardware and software
support, without whom my experimental results would not have been possible.

Joerg Richter, who made the backgammon font I used for describing the game.
And finally, last but not least, my mother Dr. Marie Hauk. Thanks for putting a roof

over my head and food in my stomach while I worked all those months!

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 In troduction 1
1.1 Search in Real L i f e .. 1
1.2 Games in R esea rch .. 2
1.3 Games of Skill, Games of C h a n c e ... 2
1.4 Contributions of this T h e s is ... 3
1.5 Organization of T h e s is ... 4

2 Background 5
2.1 Games as a Research D o m a in .. 5

2.1.1 S o lv e d .. 5
2.1.2 Super-human P l a y .. 6
2.1.3 World Championship L e v e l .. 7
2.1.4 Strong P l a y ... 8
2.1.5 Weak Play .. 8
2.1.6 The F u t u r e ... 9

2.2 Heuristic Search ... 10
2.2.1 Game T re e s .. 10
2.2.2 The Search P ro b le m ... 10

2.3 M inim ax... 13
2.4 A lp h a -B e ta ... 15
2.5 Search Enhancements ... 17

2.5.1 Move O rd e r in g ... 18
2.5.2 Memory-Assisted S ea rch .. 18
2.5.3 Iterative Deepening ... 19

2.6 Importance of Deep S e a r c h ... 19

3 Search in S toch astic D om ain s 21
3.1 Games with C h a n c e .. 21
3.2 E x p ec tim ax ... 22
3.3 *-M inim ax.. 24
3.4 Obtaining Cutoffs .. 24
3.5 S t a r l .. 27
3.6 S ta r2 .. 29

4 D ice 35
4.1 The Game of D i c e ... 35
4.2 Implementation I s s u e s ...35

4.2.1 Evaluation F u n c t io n ... 35
4.2.2 Transposition T a b l e ... 36
4.2.3 History H e u r is tic ... 36
4.2.4 Move Ordering and P r o b e ... 36

4.3 Experimental D e s ig n .. 37
4.3.1 Hardware and S o f tw a re .. 37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.2 Environmental C onditions...37
4.4 Perform ance..37

4.4.1 Probe E ff ic ie n c y ...38
4.4.2 Move O rd e r in g .. 41

4.5 T o u rn a m e n ts ...43
4.6 C o n c lu sio n s .. 46
4.7 Future Work ...48

5 B ackgam m on 49
5.1 The Game of B ack g a m m o n .. 49
5.2 Backgammon Programs: Past and P re se n t.. 54
5.3 Some Failings of Backgammon P rogram s... 55
5.4 Overview of GNU Backgam m on.. 56

5.4.1 The Evaluation Function ...56
5.4.2 The Search A lg o rith m ... 58
5.4.3 Best in the W o rld ? ..59

5.5 Im plementation I s s u e s .. 59
5.5.1 Move G en era tio n ...59
5.5.2 Evaluation F u n c t io n .. 60
5.5.3 Transposition T a b l e .. 60
5.5.4 History H e u ris tic ...60
5.5.5 Move Ordering and P ro b e .. 61
5.5.6 Non-uniform Chance Event P robabilities.. 61

5.6 Experimental D e s ig n ..62
5.7 Perform ance.. 62

5.7.1 Probe E ff ic ie n c y ...64
5.7.2 Odd-Even E f f e c t ...65

5.8 T o u rn a m e n ts ...66
5.9 C o nclusions.. 68
5.10 Future Work ...68

6 C onclusions 70
6.1 D i c e ... 70
6.2 B ack g am m o n ...70
6.3 Future Work ...71

B ibliography 73

A ppendices 76

A N egam ax F orm ulation o f Search Functions 76
A .l Negamax Formulation of A lp h a-B e ta ..76
A.2 Negamax Formulation of Expectimax, S ta rl and S ta r 2 ...76

B D ice 79

C B ackgam m on 83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

5.1 Average time (s) over 500 contact p o s i t io n s ... 65
5.2 P robe efficiency for B ackgam m on... 65
5.3 Root value differences, over 3200 moves (A) ... 65
5.4 Root value differences, over 3200 moves (B) ... 66

B .l Tournament results for 4-in-a-row on a 7x7 board, 18,000 games per matchup 79
B.2 Probe efficiency for D ic e ..79
B.3 Average time (s) for board size of 5x5, over 500 positions 80
B.4 Average node expansions for board size of 5x5, over 500 p o s itio n s80
B.5 Average time (s) for board size of 7x7, over 500 positions80
B.6 Average node expansions for board size of 7x7, over 500 p o s itio n s80
B.7 Average time (s) for board size of 9x9, over 500 positions 80
B.8 Average node expansions for board size of 9x9, over 500 p o sitio n s80
B.9 Average time (s) for board size of 11x11, over 500 p o s i t io n s81
B.10 Average node expansions for board size of 11x11, over 500 positions81
B .l l Average time (s) for board size of 13x13, over 500 p o s i t io n s81
B.12 Average node expansions for board size of 13x13, over 500 p o s i t io n s 81
B.13 Average time (s) for board size of 15x15, over 500 p o s i t io n s81
B.14 Average node expansions for board size of 15x15, over 500 p o s i t io n s 81
B.15 Average time (s) for board size of 17x17, over 500 p o s i t io n s82
B.16 Average node expansions for board size of 17x17, over 500 p o s i t io n s 82
B .l7 Average node expansions for different move orderings for board size of 11x11,

over 500 positions... 82
B.18 Average time (s) for different move orderings for board size of 11x11, over

500 p o s i t io n s ..82
B.19 Probe efficiency for different move orderings for board size of 11x11, over 500

p ositions..82

C .l Average node expansions over 500 contact positions ...83
C.2 Tournament results for Gnubg with no noise versus Gnubg with no noise,

18000 games per m a tc h u p ...84
C.3 Tournament results for Star2 with no noise versus Star2 with no noise, 2000

games per m a tch u p ..84
C-4 Tournament results for Star2 with n=0.0150 versus Star2 with n=0.0150,

1000 games per m a tch u p .. 84
C.5 Tournament results for Stax2 with n=0.Q300 versus Star2 with n=0.0300, 200

games per m a tch u p .. 85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 A game tree for tic-tac -toe ... 11
2.2 T he Minimax a lg o r i th m ... 14
2.3 A Minimax t r e e ... 14
2.4 T he Alpha-Beta a lg o rith m ... 16
2.5 An Alpha-Beta tree ... 17

3.1 T he Expectimax algorithm .. 23
3.2 An Expectimax t r e e ... 23
3.3 Fragm ent of a *-Minimax t r e e ...26
3.4 The S ta rl algorithm, adapted from [5] .. 28
3.5 A S ta r l t r e e ..28
3.6 A regular *-Minimax t r e e ... 30
3.7 The Star2 algorithm, adapted from [5] .. 32
3.8 The Probe a lg o rith m ... 32
3.9 The PickSuccessor algorithm, with quick two-quality check33
3.10 A Star2 tree, with good probing .. 33
3.11 A Star2 tree, with bad p r o b in g ..34

4.1 Node expansions at d=7 for board size of 5x5, for 25 positions 38
4.2 Average and standard deviation of node expansions for board size of 5x5,

over 500 positions... 39
4.3 Average and standard deviation of tim e (s) for board size of 5x5, over 500

p o sitio n s ..40
4.4 Node expansions a t d=7 for board size of 11x11, for 25 p o s i t io n s41
4.5 Average and standard deviation of node expansions at d=7 for board size of

11x11, over 500 positions ...42
4.6 Average and standard deviation of time (s) for board size of 11x11, over 500

p o sitio n s..43
4.7 Average and standard deviation of probe efficiency for D i c e44
4.8 Average and standard deviation of node expansions for different move order­

ings for board size of 11x11, over 500 p o s i t io n s ...45
4.9 Average and standard deviation of time (s) for different move orderings for

board size of 11x11, over 500 p o s it io n s ..46
4.10 Average and standard deviation of probe efficiency for different move order­

ings for board size of 11x11, over 500 p o s i t io n s ...47
4.11 Tournament results for 4-in-a-row on 7x7 board, 18000 games per matchup . 48

5.1 The initial starting position for backgammon. W hite moves counterclockwise
toward 1, while black moves clockwise toward 24... 50

5.2 White to play 5-1: dancing on the b a r .. 51
5.3 White to play 4-3: a forced move off the b a r ... 51
5.4 White to play 3-1: only one roll can be u s e d .. 52
5.5 White to play 5-4: bearing o f f ... 53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6 T im e used (s) at d=5 for 25 contact p o s itio n s ... 63
5.7 Node expansions at d=5 for 25 contact p o s i t io n s ..63
5.8 Average and standard deviation of node expansions over 500 contact positions 64
5.9 Tournam ent results for Gnubg with no noise versus Gnubg with no noise,

18000 games per m a tc h u p .. 66
5.10 Tournament results for Star2 with no noise versus Star2 with no noise, 4000

games per m atch u p ... 67
5.11 Tournament results for Star2 with n=0.0300 versus Star2 with n=0.0300,

1000 games per m a tch u p ..68

A .l Negamax formulation of the Alpha-Beta a lg o r i th m ... 77
A.2 Negamax formulation of the Star2 algorithm ... 78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 Search in Real Life

The topic of search is not just one of the main areas of study in artificial intelligence

(AI) today, but also one of the most im portant areas in computing science. Research to

make computers search better and faster has led to improvements in various other areas of

AI (better planning systems), telecommunications (more efficient network routing), indus­

trial applications (more efficient scheduling systems) and even e-commerce (creating travel

itineraries). Pathfinding is a research area th a t has a great deal of academic and industry

interest (especially in games, robotics and military research). Search has also been used to

improve constraint satisfaction systems.

Search is concerned with finding the best solution to a problem, commonly called an op­

timal solution. Finding optimal solutions to most problems is generally not trivial, because

most “interesting” problems are at least NP-hard. W ith regards to the previous examples,

we would like to find the smallest plan, the shortest path between two nodes, the cheapest

schedule, a trip with the fewest number of connecting flights, or a solution to a constraint

satisfaction problem in a “reasonable” amount of time. We want to find an answer, the best

answer if possible, and we want to find it quickly.

Many real-life problems are also stochastic, meaning some steps are based on an element

of uncertainty. For example, a person driving a car needs to not only pay attention to

keeping the car on the road, but on various other factors around them like other cars,

pedestrians and signal lights. Choices are often based on making assumptions about these

factors. For example, we may not want to speed down a street if we notice children playing

on the sidewalk up ahead, because we won’t be able to stop quickly enough if they run on

the road. At the same time, we won’t just stop the car and wait for them to go inside

before continuing on, because we might end up waiting for hours. While there is a chance

the children will run onto the road, the chance is not likely, if they’ve been warned by their

parents. So we’ll probably drive down the road at a reasonable speed, while keeping one eye

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

on them. In other words, we need to balance the risks and rewards for doing actions based

on possible future worlds.

A popular model for these types of stochastic domains is called a Markov Decision

Process [22], or MDP. MDPs are graphs with states th a t are linked together by actions whose

outcomes are deterministic. Being in a given state may give us a penalty or reward, which

can also be based on the last action we took. The transition probabilities to another state

are based only on the state we are currently in, forgetting everything else th a t happened in

the past. This constraint is called the Markov property.

MDPs are often used in single-agent problems, where one wants to find the best policy for

every given state. MDPs can be used for businesses to maximize sales, or in risk management

in order to find optimal expenditures. For example, a retailer may classify their clients into

two groups, people who spend a lot of money, and people who spend little money. Based on

the classifications, the retailer can then consider whether or not they should incur the cost

of sending th a t person a catalogue of their products, since the catalogue may encourage

the client to spend more money. The retailer can then decide what the best catalogue-

sending policy to use is, based on the risks (cost of printing and shipping) and rewards

(extra client spending). MDPs can also be adapted for multi-player games, where states

can define different rewards for different players, and players take turns choosing actions to

make transitions between states.

1.2 Games in Research

Games are often used as a testbed for new search algorithms. Programs designed to play

games usually make their decisions using searches in the problem state space, which is the

set of all possible states, or possible configurations, of a game. Since games have been used

as a testbed for search algorithms for almost as long as computing science has been around,

most games used are generally well-understood domains. These days, it is rare to find a

search problem th a t has not been explored in the context of a game, or a game which has

not been investigated using search. Of course, a fringe benefit1 of working with games as a

research domain is th a t games are fun.

1.3 Games of Skill, Games of Chance

Games are usually classified as games of skill, or chance. There are many games which

involve both skill and chance, but often simple games of chance do not involve much strategy.

For example, chess is clearly a game of skill, but luck only factors into the equation when

we hope that our opponent makes a mistake. On the other hand, games of chance like

1Some might say the prim ary benefit!

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

roulette offer very little opportunity to use skill, besides, perhaps, knowing when to quit

losing. Games tha t involve chance usually involve dice or cards. Competitive card games

combine skill and chance by requiring players to use strategic thinking, while they manage

the uncertainly involved; since card decks are shuffled, the game’s outcome is not certain.

Since a player’s cards tend to be hidden in card games, each player will have imperfect

information about the game state. There are not many perfect information games which

blend skill and chance - games where nothing is hidden, yet nothing is certain. Happily,

there does exist a game th a t fits this description, a game th a t is both well-known and

relatively popular: backgammon.

1.4 C o n trib u tio n s of th is Thesis

Whenever chance is introduced in a domain, Expectimax is the usual algorithm of choice.

While Expectim ax is sound, it builds large trees in complex domains, and searching these

trees deeply may require too much time. Instead of doing brute-force search in these do­

mains, we can use techniques in order to prune away parts of the tree which are irrelevant.

In 1983, Bruce Ballard developed a class of algorithms, called *-Minimax, which can be

used to search state spaces in games with chance, but require less time per search than Ex­

pectimax. Ballard investigated the algorithms in an artificial domain at relatively shallow

depths.

The main contributions of this thesis are as follows:

1. Re-implementation of Expectimax as well as the two main *-Minimax algorithms,

S ta rl and Star2, and their application to two real-world domains: a game called Dice

(developed for this thesis), and the ancient game of backgammon,

2. Verification of B allard’s work,

3. Investigation of the relative performance of Expectimax, S ta rl and Star2 when applied

to Dice (at varying branching factors) and Dice and backgammon (at varying search

depths),

4. Investigation of the relative performance of Star2 at various depth settings in Dice

and backgammon tournaments,

5. Presentation of new insights into the performance of S tar2 with various move ordering

schemes as well as probe successor selection schemes.

Most importantly, this thesis will provide results a t depths much deeper than Ballard

was able to attem pt, and in more complex domains than Ballard used, thanks to the im­

provements made in computing resources since the early 1980s.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.5 Organization of Thesis

C hapter 2 presents an overview of games research, provides an introduction to the two most

common algorithms used in two-player search (Minimax and Alpha-Beta), and summarizes

some of the most common search enhancements. C hapter 3 focuses on stochastic domains

and the adaptation of Alpha-Beta to work when chance is introduced into the search space,

including an explanation to the two *-Minimax algorithms, S ta rl and Star2. C hapter 4

focuses on applying *-Minimax to a game domain called Dice (invented for this thesis), to

investigate how branching factor and search depth effect performance. C hapter 5 explores

the game of backgammon and its implementation using the GNU Backgammon codebase.

C hapter 6 summarizes observations and makes conclusions about the experimental data

collected, as well as suggests some new avenues for further research.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background

2.1 Gam es as a Research Domain

When research is done with search algorithms, games are used often as the domain for

testing new algorithms or improvements to old algorithms. Games are used because they

are often well-understood domains and relatively “real-world” . Games also have a good

built-in performance measure: a win.1

There has been a rich history of games research in computing science over the last fifty

years. While some games have been solved outright, other games are still proving to be

difficult challenges for computers. This chapter will explore various games and at what level

of skill computer programs of today have, and provide an overview of two im portant search

algorithms and popular enhancements for them.

2.1.1 Solved

Some games have been solved, meaning th a t computers play perfectly. Since they do not

make mistakes, solved games are usually no longer of much interest to researchers. They

are still useful for developing new approaches to AI, because a perfect opponent is available

as a performance metric.

Awari

Awari, also known as Mancala, is an ancient game from Africa involving pits and stones. It

is a popular game (especially among children) because its rules are simple. While Awari’s

state space is not as large as most other games used in research, it has been enough of a

factor in past years to prevent outright solving, so most Awari programs used search to

find the best move. However, John Romein and Henri Hal, researchers in the Netherlands,

were able to finally prove Awari as a draw with perfect play [21]. They used an impressive

array of hardware to perform brute-force search, and were able to solve and store the game,

1We could also build programs tha t lose, bu t th a t would be much less fun.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

starting from possible end positions, all the way back to the initial start.

C on n ect-4 and G om oku

Both Connect-4 and Gomoku have similar rules: players take turns placing their stones on

a grid (or in Connect-4’s case, dropping them into a grid), and the first player to connect

enough pieces (four for Connect-4 or five for Gomoku) wins the match. Both games have

a fairly low degree of decision complexity, meaning most moves are irrelevant because of

the structure of the game, or there aren’t many move choices during play. For these two

games, countering opponent threats is generally the most im portant part of the game. In

1988, Victor Allis solved Connect-4[l], using strategic rules to guarantee a win for the first

player, and to guarantee at least a draw for the second player (if the first player does not

s ta rt in the middle column). Allis solved Gomoku in 1993[17] using a threat-based search

technique.

2.1.2 Super-human P lay

Programs th a t play at a super-human level may not play a perfect game, but usually the

game is complex enough th a t humans cannot hope to challenge programs in this domain

any more.

Checkers

Checkers2 is a popular game played by people of all ages around the world, using a 8 x 8

board. The first success in computer checkers was obtained by A rthur Samuel in 1959[23],

using a simple learning algorithm to evaluate board positions. Currently, the Chinook

program created by Jonathan Schaeffer and his team at the University of A lberta is the top

program in the world. Chinook won the world checkers championship by beating the best

hum an in 1994[25]. One of Chinook’s weapons is its large end-game database (approximately

18 trillion positions and counting), which allows it to play a perfect game, once enough

checkers are removed from the board. Checkers may soon move into the solved category.[26]

O thello

Othello is a popular territory capture game. The first computer Othello program was de­

veloped at Caltech in the late 1970s and the first computer tournam ent took place in 1979.

Program skill has developed continuously since then, and in 1997 a program written by

Michael Buro, Logistello, took on and routed the world champion at the time, Takeshi

Murakami [9]. Logistello used machine learning techniques to create and tune an extremely

complex and powerful evaluation function for Othello positions, and used a new, sophisti­

cated search enhancement called ProbCut[8] to ignore irrelevant lines of play.

2Or draughts, if you are British.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Scrabble

Scrabble is a word game, where players use tiles with letters on them to score points. It

requires not only a good vocabulary, but also a keen tactical sense. Computers can easily

digest dictionaries, but strategic play is the hard part. Because of the randomness in which

players draw new tiles, the brute-force approaches tha t are successful for chess, checkers and

Othello cannot be used. One of the most successful computer Scrabble programs is Maven,

written by Brian Sheppard[27], which beat a Scrabble grandmaster in a match in 1998.

Maven has extensive dictionaries, and uses a “simulator” technique to perform searches by

randomly “dealing” out tiles to each player and then playing through a few turns.

2.1.3 W orld Cham pionship Level

Some programs play games at a world championship level, meaning only the best can hope

to compete, but they are not without their flaws. Some games like chess are still complex

enough for computers th a t human masters still have a reasonable chance. Other games like

backgammon involve an element of luck th a t computers can model, but not control.

C hess

If there is one game th a t has captured the attention of AI researchers since the early days of

computing, it is chess. Chess has been referred to as the Drosophila3 of AI, the most popular

game domain used in research. The most famous achievement in computer chess was the

1997 man-machine match between then-world champion Garry Kasparov, and Deep Blue, a

massive custom-made chess computer designed by a team from IBM[20]. Kasparov won the

first game but ultimately lost the m atch to Deep Blue, which was then prom ptly dismantled.

As chess programs continue to get stronger and hardware gets faster and cheaper, beating

them has become out of reach for all but the best players.

B ackgam m on

Backgammon is considered to be one of the oldest board games still played, perhaps the

oldest of recorded history[29]. It is also a non-deterministic game because there is a dice

roll a t the beginning of each turn to determine what legal moves a player has. As such,

search algorithms tha t have been successful for deterministic games (like chess) cannot be

directly applied. By the late 1980s, computer backgammon was mired at an am ateur level.

In 1990, Gerald Tesauro applied a new machine learning technique, reinforcement learning,

to create a backgammon program th a t could learn the game solely by self-play [33]. The

resulting program, TD-Gammon, has become one of the top backgammon programs in the

world, and is considered to be as strong as any human grandmaster. In recent years, several

3 Drosophila, or the common fruit fly, is used in biology to study the effects of inheritance.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

new projects have sprung up based on Tesauro’s work, including GNU Backgammon[2],

Jellyfish[3], and Snowie[4], all of which are considered to be near the same performance

level as TD-Gammon.

2.1.4 Strong P lay

Often, there are programs th a t reach a strong level of play, but not expert, because the

game may have complex rules, simple rules but a high degree of decision complexity, require

long-term abstract planning, hide information about the game state from the players, or

involve outright deception.

Poker

Poker is a game played by two or more people. It has a multitude of variants, but most

feature the same basic play, where one or more rounds are played which consist of cards

being dealt followed by a round of betting. In most variants, betting is the most im portant

part of the game, because you do not necessarily need a strong hand to win - you just need

to be the last person standing. Poker research has concentrated on two different schools of

thought. The first has adopted a m athematical approach, using game theory to discover

optimal strategies for play for simplified poker variants[7]. The second school of thought has

been to tackle a complicated variant of poker head-on, and develop a program with all the

necessary skills at once - skills like opponent modeling and developing betting strategies.

One of the most successful programs th a t has adopted this approach is the Poki program [7],

developed at the University of Alberta by a number of researchers.

B ridge

Bridge is a popular four-player card game, played by two teams of two players. It has two

phases: the bidding phase, in which each team wagers how many rounds (“tricks”) they can

win, and the playing phase, which has thirteen rounds of play. Both phases are a challenge

for computers. The bidding phase is difficult because players can only communicate via

their bids. The playing phase is difficult because cards are randomly distributed and not

known until they are played. Bidding strategies can be subtle, and playing strategies based

on precise timing, which makes the game difficult for computers to play. One of the current

top bridge computer programs is M att Ginsberg’s GIB[11].

2.1.5 Weak P lay

Computer programs have a long way to go in some game domains. Games th a t involve

social interaction between players, explosive search spaces, or require long-term planning

remain difficult domains.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

G o

Go is an ancient game, and the focus of much research over the last th irty years. It is a

game of creating territories played on N x N boards, where players place stones on alternate

turns. The m ajor problem with Go is the difficulty in designing strong evaluation functions.

Selecting a good move is therefore not a trivial task. While humans are able to adapt

strategies and plan in the long-term, this is still a difficult task for computers. Although

some m ajor strides have been made in the last few years as some computer Go programs

(such as H andtalk and KCC Igo) are beginning to approach competent levels of play, they

can still be beat by humans of moderate skill[19].

Settlers o f C atan

A German board game tha t has become a world-wide hit, Settlers of C atan is a 2-4 player

game of colonization of a hexagon-shaped island. W hat makes the game so interesting is

tha t players are free to (and encouraged to) trade resources they gather among themselves.

Although only one person can win the game, trading is a vital aspect because it is a win-

win situation for both players involved in the trade. It is nearly impossible to win without

interacting. And while computers may find it “easy” to play a game like chess, much less

progress has been made in developing computer agents capable of negotiation and opponent

modeling, abilities tha t humans seem to have naturally or learn easily. The Columbus

project lead by Robert Thomas and Kristian Hammond at Northwestern University[34] has

developed a free game server for Settlers, as well as their own Settlers agent, playable by

humans. The agent usually fares poorly in games with human players because of its limited

ability to communicate.

2.1.6 The Future

Even with all the progress th a t has been made in AI games research, many computer

programs can still be beaten. For example, research still has not been able to create the

“perfect” chess program, simply because the state space for chess - the number of different

possible positions in chess - is too large. A wide variety of different algorithms and algorithm

extensions have been used in computer game programs, proving tha t games can be excellent

domains for new ideas in search, knowledge, and machine learning. While some games have

been solved, many interesting games continue to be huge challenges, because the size of

state spaces or high degree of decision complexity in most games remains intractable to

brute-force search. Games with high degrees of complexity (like Go) or even modest degrees

of player interaction (like Settlers of Catan) will remain open problems for years to come.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 H euristic Search

2.2.1 G am e Trees

When a computer program wants to decide on which move to play in a deterministic game,

it will typically build a game tree (see Figure 2.1). A game tree is a directed graph where

the root node represents the current game state, and its successors represent all possible

game states after playing a move, which are represented by edges between states. States

are terminal when they represent a game state th a t is a win, a loss or a draw. States at

the bottom of the tree are called leaf nodes. All other states are internal to the tree. In a

single-player game (like a puzzle), a game tree is usually built in order to find an optimal

solution; in other words, to find the minimal sequence of moves th a t leads the player to the

best term inal state. In multi-player games, game trees usually consist of alternating levels

of nodes, where each level of nodes is associated with the player whose tu rn it is to move.

In such games the computer must not only consider its possible options, but also consider

what options its opponent(s) have as well.

2.2.2 T he Search Problem

Most interesting problems have state spaces which are exponentially large in the branching

factor. Using exhaustive search techniques on these domains - going through the space

in some sequential order and checking each state in tu rn - is not a reasonable method to

find a solution, because it would take too long to find any solution, even sub-optimal ones.

While the intractability of such large state spaces may preclude a brute-force algorithm

from finding a solution quickly, we can still speed up the process considerably. Instead of

iterating through the entire state space, we need only search the part of the state space

relevant to finding the answer. The current state can be considered the root of a tree,

and we can generate successors for the root by going through each possible action tha t

modifies the state. For example, a node located two steps from the root would represent a

state separated from the root by two actions. Any state representing a solution would be a

terminal node. The general method, then, is to continue adding to our tree starting from

the root until we find a path tha t leads to the best solution. We will use an indicator called

a heuristic to help guide the search process.

O ne-Player D om ain s

The most common heuristic search algorithm, which has spawned many variations, is the

A* algorithm[13]. A* requires the ability to put the entire state space it may explore in

memory, and guarantees to perform asymptotically less than or equal to the number of

node expansions of any other algorithm, when finding the optimal solution to a problem.

This quality makes it extremely appealing, but its memory requirements still outstrip even

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Root

Moves

O O

0 0

0 X X

X

/ \

/ t \ / \ / t \

0 0 0

0 X X

X

Terminal
State

Figure 2.1: A game tree for tic-tac-toe

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the latest computers on “difficult” problems. In response to this problem comes the IDA*

algorithm[16], which still guarantees an optimal answer, bu t uses iterative deepening search

in order to minimize memory requirements.

One of the most popular application domains used in heuristic search research are sliding-

tile puzzles. These puzzles have a number of square tiles mixed up in a square area, with

one tile missing (the “blank” square). They are solved when each tile is placed in numerical

order, w ith the blank at the end. Actions can be performed by sliding a tile adjacent to the

blank into the blank space, thus shuffling tiles around. A* uses a heuristic to score every

non-terminal state. The greater the score, the greater the estim ated cost to reach a goal

state from th a t node. A* is a best-first search algorithm, because it always searches nodes

in order of most- to least-likely to succeed.

T w o-P layer D om ains

We cannot apply A* to two-player games. While actions can be controlled in single-agent

games, in two-player games we can only control one of the sides of play. The opponent

will generally be out to win just as we are out to win, and will not make moves th a t raise

our chances of success, or lower their chances of winning. This adversarial setup requires a

different approach; instead of finding a sequence of moves to lead us from a starting position

to a solution, our job is to decide what move we should make on our turn . If we cannot

find a move to lead us to a winning state, we want a move leading us to the “best” state

possible. We will use a heuristic to help us make our decision.

In two-player domains as in single-player domains, heuristics come in the form of eval­

uation functions, which are functions th a t take a state (usually a leaf node) and map it to

a value. Most evaluation functions will m ap a terminal node to an extreme value: a large

positive number for a winning position, and a large negative number for a losing position.

Non-terminal states are usually given a value based on their utility or benefit for the player

to move, such th a t an even game may be mapped to a 0, or a state th a t is nearly a win is

mapped to a large positive number. The exact numbers are always implementation-specific.

For example, a backgammon program may simply m ap a state to a real value between -1

and +1, to represent the position’s equity to the player to move; an Othello program might

simply map the state to the material difference in discs between the two players. In practice,

good evaluation functions will map states to a “reasonable” range of values. If the range

is too small, then a program may end up choosing bad moves over average moves simply

because it is not able to tell the difference. Program performance is directly related to the

quality of the evaluation function, which is often the component of a computer game th a t

takes the most work to get gradual improvement.

While we are concerned with the depth in the tree a t which we find a solution in single-

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

player games (the less deep we have to search, the quicker we find the answer), in multi-player

games the search depth is just as im portant, because of the adversarial nature of games.

Searching to depth—1 only considers the immediate states which follow from the root; in

other words, the player to move is only looking ahead one step (one ply) to see what would

happen immediately after playing a move. Search a step deeper, and now the opponent’s

replies are considered. If we continue this process of considering replies to replies to replies,

we “look into the future” . We can avoid traps set up by our opponent, and lead our opponent

into traps. We can find lines of play th a t lead us to wins. Deep search in games allows us to

be more informed in our decision making, and hopefully increases our chances of winning.

2.3 M inim ax

Searching depths greater than one ply requires th a t we take the opponent’s choices into

consideration. W hen we search, we will make the assumption th a t the opponent will always

make the best move possible on their tu rn (based on the same evaluation function as we

use for our turns), one tha t lowers our score as much as possible (and improves their score

as much as possible). In game tree terms, we will have an alternating sequence of levels

where it is our tu rn a t even depths (with the root at depth 0), and the opponent’s tu rn at

odd depths. Since we are trying to maximize our score, and our opponent can be seen as

trying to minimize our score, these levels are often called Max and Min levels, respectively.

At every Max node, the move will be made to a successor with greatest value, and at Min

nodes a successor with smallest value will be chosen. Once all the successors of a node have

been evaluated, we can evaluate th a t node (and back up the value to its parent). This is

called the Minimax algorithm.

The Minimax algorithm is summarized in Figure 2.2, which makes use of (1) a te rm in a l

function th a t returns true if a given state is terminal, (2) an e v a lu a te function th a t returns

the heuristic evaluation of a state, (3) a num Successors function th a t returns the number of

successors a state has, and (4) a su cc e sso r function th a t returns a new state after a move

has been applied. is_max_node is a flag tha t is toggled between recursive calls to indicate if

the node is Max or Min.

Consider the example in Figure 2.3 to see how Minimax works, with a 3-ply search. We

start a t the root. The root is not a term inal node (in fact, it is a Max node), so we will

need to consider each of the root’s successors (each of which is a Min node). We look at

the first successor, A. It is not a terminal node, so we recurse and look at its successors.

Since they are not terminal, we go another step deeper. The recursion stops at this point

in this example, since we are only interested in looking ahead three steps. Both of these

leftmost leaves (J and K) are scored using the evaluation function, and the parent, D (a

Max node) returns a value of 5, which is the largest of the two leaf values. The next Max

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int Minimax(Board board, int depth, int is_max_node) {
/* Leaf node check */
if(terminal(board) II depth == 0) return (evaluate(board));

N = numSuccessors(board) ;
if(is_max_node) {

/* Maximize */
score = -INFINITY;
for(i =1 ; i <= N; i++) {

v = Minimax(successor(board,i), depth-1, !is_max_node);
if(v > score) score = v;

>
> else {

/* Minimize */
score = INFINITY;
for(i = 1 ; i <= N; i++) {

v = Minimax(successor(board,i), depth-1, !is_max_node);
if(v < score) score = v;

>
>

/* Back up value */
return (score);

>

Figure 2.2: The Minimax algorithm

5
Max

Min

Min
5 4 6 2 1 4 6 8 3 1 7 9

Figure 2.3: A Minimax tree

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

node to its left (E) is scored in the same way, and returns a value of 6. Now the value of A

can be determined, by choosing the smallest value of its two successors. Since 5 is less than

6, this Min node returns a value of 5 to the root. Each of the roo t’s successors is scored

the same way. When all of the roo t’s successors have been expanded, we can score the root.

Since the root is a Max node, we choose the successor who leads to the greatest value. The

move corresponding to reaching th a t successor is thus the move chosen. In our example, we

choose the move th a t leads to the first of the root’s successors, since the first successor has

a higher value (5) than the other two successors (3 and 4).

2.4 A lpha-Beta

Minimax is the brute-force equivalent to exhaustive search in two-player domains, because

Minimax will search every single possible node. But searching every node in the state space

is not always necessary. Consider the previous example in Figure 2.3. By the time we start

searching A ’s second successor E, we can use some assumptions to save us searching E in

its entirety. Once we know the value of the first of A’s successors, we obtain an upper bound

on the score this Min node will have. In this case, we know A will have a value no greater

than 5. We obtain this bound from the previous assumption th a t our opponent will always

try and lead us toward the worst possible outcome. When we search L, and get a value of

6 for th a t leaf, we know tha t its parent E (a Max node) can have a value no less than 6.

But since the opponent can already keep us to a score of 5, we know they will not give us

an opportunity to get 6 or more. So we need not bother searching the second leaf (M) since

the value for E can only get better. We can then “cutoff” search a t E, since further search

below the Max node is guaranteed not to change the outcome of the search.

This opportunity to obtain m athematically proven bounds on Max nodes and Min nodes

allows us to have cutoffs, and therefore to search less nodes to get the same answer, leads

us to the Alpha-Beta algorithm[15], summarized in Figure 2.4. At each step in Alpha-Beta

we include lower and upper bound values (called alpha and beta, respectively) when we

expand a node. This information is updated when a node’s successors return values that

allow us to change those bounds and adjust the window of search. In the case of a Max

node, we can increase the alpha value as we search children with better scores. Min nodes

will similarly adjust the beta value of the window when children with worse scores are seen.

Whenever the two bounds of the window meet, we can stop search knowing th a t the node

is not better than another node in the tree at the same level th a t we have already seen (it

could be equally good, but in th a t case we can just safely go with the other node and stop

searching this node). We saw before how the leaf with value 2 does not need to be searched.

Figure 2.5 shows the result of A lpha-Beta applied to the tree from Figure 2.3. 5 of the

12 nodes are proved irrelevant to the search, which means we only searched about half the

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int AlphaBeta(Board board, int alpha, int beta,
int depth, int is_max_node) {

if(terminal(board) II depth == 0) return (evaluate(board));

N = numSuccessors(board);
if(is_max_node) {

score = -INFINITY;
for(i = 1 ; i <= N; i++) {

v = AlphaBeta(successor(board,i), alpha, beta,
depth-1, !is_max_node);

if(v > score) score = v;
if(score > alpha) alpha = score;
if(alpha >= beta) return (score);

>
} else •{

score = INFINITY;
f o r d = 1; i <= N; i++) {

v = AlphaBeta(successor(board,i), alpha, beta,
depth-1, !is_max_node);

if(v < score) score = v;
if(score < beta) beta = score;
if(beta <= alpha) return (score);

>
>

return (score);

Figure 2.4: The Alpha-Beta algorithm

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Max

5 4 6 2 1 4 6 8 3 1 5 9
V V V x V V x x V V x x

Min

Max

Min

Figure 2.5: An Alpha-Beta tree

nodes as Minimax would have, but we got the same result.

The best case node expansions (a count of the number of nodes seen) for Alpha-Beta

is , where B is the branching factor and D the search depth. A lpha-Beta’s worst case

time requirement is B D, which is the same as Minimax’s requirement. Not all nodes in the

tree are capable of cutoffs, however. An alternative way to view a Minimax tree is to view

nodes as All nodes or Cut nodes. An All node requires th a t all of its children be searched,

but a Cut node can generate cutoffs, sometimes as quick as after searching its first child.

If every Cut node of a game tree generates a cutoff after searching its first successor, then

the tree is reduced to a size of B% , which is how the best case is derived. This reduction

(the square root of the size of the original tree) is a substantial improvement over the worst

case, which means we can search twice as deep as Minimax with the same number of node

expansions. Counting node expansions is the most common metric for evaluating search

algorithms, since node expansions is directly correlated to search time.

2.5 Search Enhancem ents

Alpha-Beta’s success is not just related to its ability to generate cutoffs, but also comes

from the many enhancements built onto it over the years. Speeding up search is usually

done by reducing the number of nodes searched. We can accomplish this by being smarter

about what order we search successors in, and we can also save ourselves time by storing

information about completed searches in case we need to search the same node twice. Three

im portant search enhancements are move ordering, memory-assisted search and iterative

deepening.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5.1 M ove Ordering

We can try to reduce the number of nodes we search by making a better evaluation function,

but we can also reduce nodes by lowering the effective branching factor of the tree, since

Alpha-Beta is dependent on searching the best move of a node first. One way to do th a t is to

order the successors of a node by most- to least-favourable; by doing so we hope to raise our

chances of getting a cutoff by getting higher values for a node sooner rather than later. This

technique is often referred to as move ordering. [24] Move ordering is often done for every

node th a t generates moves. Moves can be ordered using the usual evaluation function, but

sometimes a different heuristic may be used for speed reasons.

Move ordering helps us get closer to the best case node expansions for Alpha-Beta, since

we are trying to always search the best child of a node first. Even if move ordering does not

generate immediate cutoffs at cut nodes, we will usually see a significant reduction in node

expansions.

2.5.2 M em ory-A ssisted Search

Alpha-Beta can spend much of its time re-expanding nodes th a t it has already seen. As it is

often the case with search trees, they are not trees a t all, but directed acyclic graphs (DAGs),

because of transpositions of states within a single search (this happens when different se­

quences of moves result in the same state). We would like our heuristic search algorithms

to “remember” as much as possible about previous searches, to make future searches faster,

by eliminating the need to search where one has searched before. This technique is referred

to as Memory-Assisted Search.

One of the most common kinds of Memory-Assisted Search is the use of a transposition

table (TT).[12] A T T is normally implemented as a hash table, because we want operations

on it to be as fast as possible to minimize the overhead associated with reading and writing

to the table. T T entries typically store an encoded state along with its last known heuristic

value and the depth of search at which th a t value was obtained. TT entries also often

contain the alpha and beta cutoff values (when used in an Alpha-Beta setting), as a method

of “tightening” search windows and allowing for quicker cutoffs, and thus less search. The

information stored in a T T is usually compressed to be as small as possible, to maximize

memory usage. The T T is used before a state is expanded (TT lookup) to check to see if

information about the state exists. If a state exists in the TT and its T T entry was searched

to the same or greater depth than the current depth, we can use the T T value to either

eliminate further search at this state, or a t least narrow the search window for the state.

Whenever we are about to return a value in a search, we store the state and its value in

the TT. Sometimes two states will map to the same location in the hash table (a collision),

a t which point we need to decide whether or not to overwrite a value in the TT . There are

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

several techniques for dealing with this, but usually we only overwrite if the new entry is

for a deeper search.

Transposition tables can store more than just searched values. We can also store the

best move searched for a state in its T T entry. Then if we meet this state again, we can

score it the highest of all successors when we perform move ordering. In this way we hope

th a t the best move from a shallower search is the best move for a deeper search, and get a

quick cutoff.

2.5.3 Iterative D eepening

Iterative search performs successive searches, starting each time from the same root, incre­

menting a depth param eter each time it starts over. Each repetition is called an iteration.

Iterative deepening is a form of iterative search, where the nominal search depth starts at

some small value and then is incremented after each search terminates. Iterative deepening

is usually a component added to increase the effectiveness of memory-assisted search, as

well as to improve move ordering.

Move ordering is especially effective when done a t all nodes in conjunction with iterative

deepening; before an iteration, the roo t’s children can be re-ordered to reflect the scoring

from the previous iteration. Since the order of children between searches is usually highly

correlated, large portions of the tree can be potentially cut off quickly from the root.

2.6 Im portance of Deep Search

In the multi-player setting, the deeper a program can search, the more likely it is to beat

a program th a t searches shallower. In fact, a difference of only a single ply between two

programs can have a substantial difference in performance [35].

Deep search also helps programs deal with the so-called Horizon Effect[28], where a

program foresees a bad situation (good for the opponent), but makes (bad) moves in order

to forestall the inevitable; in other words, the bad situation is “pushed over the horizon” ,

where it cannot be seen anymore. The problem is th a t all searches will suffer from this

effect unless they are able to reach a term inal state, or extend searches over the horizon to

a “stable” state (which is done in quiescence search). The deeper a program can search, the

better its chances to avoid the negative effects of the horizon.

Another reason why deep search is so im portant is th a t it can often overcome limita­

tions in inherent human knowledge th a t is used by the program. While programming such

knowledge to direct search (or choosing moves altogether) may be beneficial, it is in fact

a dangerous thing to use. The explanation is tha t any knowledge one can put in a pro­

gram about a game will ultimately be incomplete, since no one can really know everything

about an “interesting” game. Added knowledge may also slow down a program because of

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

increased calculations. Deeper search may also dampen the effect of errors in a heuristic

evaluation function.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Search in Stochastic Domains

3.1 G am es with Chance

So far, the discussion of search has centred around deterministic games, where an action

is guaranteed to result in a specific state. Most games th a t have been extensively studied

- such as checkers, chess, tic-tac-toe - fall into this category. However, games as simple

as snakes and ladders1 do not fall into this category, because they include an element of

chance. The element of chance is often based on the roll of a die (or dice). Chance events

are also present in card games like Poker, where one cannot be certain what card one will

draw. Poker is also an imperfect information game, since opponents will hide their cards,

and therefore hide information from the player. This thesis will only concern itself with

perfect information games, where the entire state is known to both players, although the

states th a t follow may not be deterministic.

W ith the addition of chance events, we need to add a new kind of node to our game

tree: a chance node. A chance node will have successor states like Min or Max nodes, but

each successor is associated with a probability of th a t s tate being reached. For example,

a chance node in a game involving a single die would have six successor nodes below it,

each representing the state of the game after one of the possible rolls of the die, and each

reachable with the same probability of

The element of chance completely changes the landscape th a t search algorithms work

on. In games of chance, we cannot say for certain what set of legal moves the opponent will

have available on their turn , so we cannot be certain to avoid certain outcomes. One method

used to simulate stochasticity, but remove it from the game tree so it can be searched using

standard methods, is called statistical sampling, also referred to as rollouts. The method

involves repeated trials where the outcome of the chance events are randomly decided before

search begins, and then search is run normally on the resulting tree. Since each chance event

only has one successor, they just become intermediary nodes in the tree. For games th a t

1Or chutes and ladders, if you are British.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

involve dice, the chance events (the rolls, hence the term rollout) can be determined in

advance or on-demand when a chance node is met in the tree. In order to get a good

statistical sample, the number of trials must be high enough (for backgammon, this is often

in the tens or hundreds of thousands of trials) in order to approximate the true distribution.

While rollouts will remain a popular method used in search with games with chance, this

thesis will concentrate on full search methods.

Previously, we saw how Minimax search worked in deterministic domains, and how

Alpha-Beta improved on Minimax. The introduction of chance nodes means tha t we can

no longer directly apply either algorithm to games of chance, since we cannot use Alpha­

Beta windows with chance nodes as we would with Max or Min nodes, because Alpha-Beta

cutoffs are based on the assumption th a t the game is deterministic. Chance nodes act as

intermediaries, by specifying the state the game will take before a choice of actions becomes

available. Before we can search trees with chance nodes, we have to figure out how to handle

them.

3.2 Expectim ax

The baseline algorithm for trees with chance nodes analogous to Minimax is the Expecti­

max algorithm [18]. Just like Minimax, Expectimax is a full-width, brute-force algorithm.

Expectimax behaves exactly like Minimax except it adds an extra component for dealing

with chance nodes (in addition to Min or Max nodes). At chance nodes, the heuristic value

of the node (or Expectimax value) is equal to the weighted sum of the heuristic values of

its successors. For a state s, its Expectimax value is calculated with the function

expectim ax(s) = '^ P (c h i ld i) x U(childi)
i

where childi represents the ith child of s, P (c) is the probability th a t state c will be reached,

and U(c) is the utility of reaching state c. Evaluating a chance node in this way is directly

analogous to finding the utility of a state in a Markov Decision Process.

Figure 3.1 summarizes the Expectimax algorithm, which makes use of three new func­

tions: (1) a numChanceEvents function to specify how many different values the chance

event can take, (2) an applyChanceEvent function to apply the chance event to the state,

(3) an eventP rob function to determine the probability of the chance event taking th a t

value, and (4) a sea rch function tha t calls the appropriate function depending on the type

of node tha t follows the chance node. Since most regular games have the same chance events

a t every chance node, numChanceEvents can be hard-coded as an integer, and eventProb

can be replaced by a static lookup table. For games where chance nodes alternate with

player turns, we can use the same Minimax algorithm from Figure 2.2, with the modifica­

tion tha t Minimax’s recursive call uses Expectim ax instead of itself. We also use floating

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

float Expectimax(Board board, int depth, int is_max_node) {
if(terminal(board) If depth == 0) return (evaluate(board));

N = numChanceEvents(board);
sum = 0;
for(i = 1 ; i <= N; i++) {

succ = applyChanceEvent(board,i);
sum += eventProb(board,i) *

search(succ, depth-1, is_max_node);
>

return (sum);
>

Figure 3.1: The Expectimax algorithm

Max

Chance

3 0 0 0 0 1 0 ® 0 0 j R] [s j [f] 0 Chance

-3.5

-5 5 -10 -9 0 5 1 3 -10 -1 2 5 4 3

Figure 3.2: An Expectimax tree

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

point num bers instead of integers now for return values, since probabilities are real numbers

and the sum may have a fractional component.

While th e worst-case time complexity for Minimax is 0 (B D), the worst-case for Ex­

pectimax (for trees with alternating levels of chance nodes) is 0 (B ^), where N is the

branching factor at chance nodes (in backgammon’s case, N — 21 since there are twenty-

one distinct rolls). As an example of the explosive effect of chance nodes even on shallow

searches, there would be approximately 3.5 million nodes in a 3-ply search of an arbitrary

backgammon position. If an evaluation function took 0.05 ms to complete (about the speed

of Gnubg’s neural network on a modern computer), then a 3-ply search would take about

3 minutes to complete, a 4-ply search would take about 21 hours, and a 5-ply search would

be roughly a year.

3.3 *-M inim ax

As we have seen, Minimax is a sound algorithm, but its worst-case run tim e is far too slow

for any interesting problem. We would like to obtain cutoffs in trees with chance nodes just

like Alpha-Beta enables cutoffs in Minimax trees. We will need a new technique for finding

valid cutoffs a t chance nodes. At Min and Max nodes, we can use the same methods for

cutoffs as Alpha-Beta uses, since we have not changed the definition of Min or Max nodes,

we have just added chance nodes.

Bruce Ballard was the first to develop a technique, called *-Minimax, for enabling chance

node cutoffs[5]. He proposed two versions of his algorithm, called S ta rl and Star2. He

also further refined the second to handle more general cases and have param eters to control

functionality, and called the new version Star2.5. All the experiments th a t Ballard performed

were in a rather abstract domain. He did not use a real domain, such as backgammon, to

validate his results. In fact, Ballard’s work seems to have been almost forgotten in the AI

community in the last twenty years, which is truly unfortunate.

3.4 Obtaining Cutoffs

The basic idea of Expectimax is sound, but slow. Just as we can derive a strategy for

obtaining cutoffs in Minimax to obtain Alpha-Beta, so too can we derive a strategy for

obtaining cutoffs in Expectimax. Since there are three different types of nodes in a game

tree for games with chance, there are three cases we need to consider for cutoffs. Since Max

and Min nodes work the same way in trees with chance nodes as they do in trees without

chance nodes, we get the cutoff strategies for those nodes for “free” . All we need to concern

ourselves with are chance nodes. If we pass alpha and beta values to chance nodes as we

do Min and Max nodes, and we pass alpha and beta values from chance nodes to Min and

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Max nodes, all that is left to consider is exactly what values we can pass, and how they will

be used.

In the first case, chance nodes can have a search window just like Min and Max nodes,

using alpha and beta values to determine if further search below the node is relevant.

However, these alpha and be ta values cannot be used just like they are used in Min or Max

nodes, because the child of a chance node cannot be chosen deterministically (unless there

is only one child, but th a t is an atypical case). We can obtain a cutoff, however, if the

Expectimax value of a chance node falls outside the alpha-beta window. The problem is

th a t we cannot know the exact Expectimax value of a chance node before we search all of

its children.

However, if we know the lower and upper bounds of the range of values leaf nodes can

take (called L and U respectively), we can determine bounds on the value of a chance node

based on the worst-case conditions for both the alpha and beta values.

If we have reached the ith successor of a chance node, after having searched the first

i — 1 successors knowing the true values for those children (which we will call V \ . .. F - 1),

then we can determine a bound for the value of the chance node. In the worst case, all

the unsearched children will have a value of L, and in the best case, all the unsearched

children will have a value of U. Therefore, the lower bound of a chance node’s value, where

Vi represents the true value of successor i and there are N different chance events each with

the same probability, is equal to

^ ((F + . . . + V i-i) + Vi + L x (N - i))

and the upper bound is equal to

■ ^((F + . . . + V i-i) + Vi + U x (N - i))

So now we can figure out in what range the Expectimax value for a chance node must

lie. We can use this range to help us generate cutoffs. Recall th a t the chance node itself

was passed alpha and beta values. We can cut off our search if the lower bound of the

Expectimax range for the chance node ever exceeds or equals beta,

- ^ ((F + ••• + F - i) + V i + L x (N - i)) > beta

or the upper bound is ever less than or equal to alpha,

-^ ((F x + . . . + F - i) + Vi + U x (N - i)) < alpha

where (Vi + . . . + F-i) are the accurate values for the first i — 1 children of a node, F is

the value for current node being searched, and (U x (N — i)) and (L x (N — i)) represent

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Max

Chance

Min

Chance

Figure 3.3: Fragment of a *-Minimax tree

the worst-case assumptions for the values of the remaining nodes. In either equation, we

can solve for Vi, and use the value as either an alpha or a beta value for the next child.

Take the following example shown in Figure 3.3, where heuristic values range from

L = —10 to U = 10, inclusive. The top-most chance node, A, is entered with a window

of alpha=3 and beta= 4 (we will write this as [3, 4]). Because we have not searched any

of its children yet, we know its value lies in the range [-10, 10], and the alpha and beta

values for the first child are equal to |(3 x L) = L and |(3 x U) = U, which is also [-10,

10]. Assume th a t the first child (B) is searched and a value of 2 is returned. We now know

the Expectimax range for the chance node is between |(2 + 2 x L) — A (—18) = —6 and

|(2 + 2 x U) — |(2 2) = 7 | . Since —6 is not greater than 4 and 7 | is not less than 3, this

child did not create a cutoff. Before we search the next child, we need to recalculate the

alpha and beta values we want to pass down to it:

i (2 + Vi + (1) x L) > beta => V > 20
o

\{ 2 + Vi + (1) x U) < alpha =* V < - 3
o

We will call the Vi value associated with alpha Ai, and the Vi value associated with beta

B i, a t chance nodes, and so we will pass a window of [Ai,Bj\ to successor i when we search

it.

Since the upper bound on a leaf node is 10, we will pass a window of [-3, 10] to the

next child, C. Assume the next node searched at the bottom , E, has a value of -8. This will

trigger a cutoff a t C, because -8 lies outside the lower bound of the window (which is -3).

The cutoff at C will also trigger a cutoff at the topmost chance node A. In fact, this could

also trigger further cutoffs along this branch all the way up to the root; the possibility for

two or more cutoffs to occur without intervening leaf searches is unique to trees with chance

nodes, and not found in typical Minimax trees[5].

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5 S ta r l

When we transla te the ability to obtain chance node cutoffs into a procedural representation,

we end up with S tarl, Ballard’s first version of the *-Minimax algorithm. Recall if L

represents th e lowest value a state can be given, and U the largest value a state can have,

then we end up with a cutoff if

(v l + . . . + v i^ + v i + y x { N - ,) £ a ivM (iu)

or

W + - + r , - , H V , + £ X - (^ , -) ^ (3 2)

Rearranging these equations, we determine the alpha value for the ith successor, Ai with

Ai = N x alpha - (Vi + . . . + Vj_i) - U x (N - i) (3.3)

and the b e ta value for the ith successor, B t with

Bi = N x beta - (Vi + . . . + VJ_i) - L x (N - i) (3.4)

where alpha and beta are the respective values passed to the chance node. These equations

can be rew ritten to be more efficient by initializing the two values as

A \ = N x {alpha - U) + U

B i — N x (beta — L) + L

and updating them with

x4j.fi — Ai + U — Vi

Bi+i — Bi + L — Vi

where i = 2 . . . N .

When a chance node only has one successor (N — 1), the initial A and B values for the

chance node take on the alpha and beta values initially passed to the node.

Figure 3.4 shows the resulting S ta rl algorithm. The algorithm makes use of (1) a

te rm in a l function th a t returns true if a given state is term inal, (2) an e v a lu a te function

tha t returns the heuristic evaluation of a state (the evaluation function), (3) a num Successors

function that returns the number of successors a state has, (4) a su c c e sso r function tha t

returns a new state, and (5) a sea rch function which calls the appropriate function, either

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

float Starl(Board board, float alpha, float beta, int depth) {
if (terminal (board) II depth == 0) return (evaluate (board)) ;
N = numSuccessors(board);
A = N*(alpha-U) + U;
B = N*(beta-L) + L;
vsum = 0;
for(i = 1; i <= N; i++) {

AX = max(A, L);
BX = min(B, U);
v = search(successor(board,i), AX, BX, depth-1);
if(v <= A) return (alpha);
if(v >= B) return (beta);
vsum += v;
A += U - v;
B += L - v;

>
return (vsum/N);

>

Figure 3.4: The S ta rl algorithm, adapted from [5]

Chance

Chance

Min

Max

-5 5 -10 -9 0 5 1 3 -10 -1 2 5 4 3
V V V V V V V V V x x x x x

Figure 3.5: A S ta rl tree

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S ta rl for a chance node or Alpha-Beta for a Min or Max node. This implementation assumes

all values for the chance event have equal probability.

An example of S tarl cutoffs is shown in Figure 3.5. The uppermost chance node is

initially passed bounds of [-2, 2]. The initial value for A is equal to N x (alpha — U) + U =

6 x (- 2 — 10) + 10 = -7 2 + 10 = —62 and B is equal to N x (beta — L) + L ~ 6 x (2 +

10) - 10 = 72 - 10 = 62. After searching the roo t’s first successor, the A and B values are

adjusted for the second successor (C), where A becomes —62 + 10 + 5 = —47 and B becomes

62 — 1 0 + 5 = 57. As we continue to search the children of the root sequentially, we can

see th a t the root node’s (A, B) window is equal to [-8, 36] by the time it reaches its fifth

child F, who gets an Alpha-Beta window of [-8, 10]. After searching P, which has a value

of -10, F gets an immediate cutoff and returns this value to its parent A, the uppermost

chance node, which triggers another cutoff because -10 falls outside its lower bound of -8.

The other children of F, as well as the sixth successor G, do not need to be searched, as we

can prove th a t the Expectimax value of A must be less than -2 (it is in fact —3 |, which we

can read from Figure 3.2).

3.6 Star 2

While S ta rl results in an algorithm which returns the same result as Expectimax, and uses

fewer node expansions to obtain the same result, its results are generally not very impressive.

One reason is th a t S ta rl is agnostic about its successors; it has no idea what kind of node

(Min, Max or Chance) will follow it, but even if it did, it would not be able to take advantage

of th a t knowledge. However, game domains are fairly regular; for example, in a standard

Minimax tree, Min nodes and Max nodes are on levels th a t strictly alternate. Min always

follows Max, and Max always follows Min. In games like backgammon, where each player

rolls the dice, then moves, we end up with a tree like a Minimax tree, except we insert a

chance node immediately after any non-terminal Min or Max node. In other words, we add

a layer of chance nodes between each layer of nodes in a standard Minimax tree. Ballard

refers to trees with this structure as regular *-Minimax trees, an example of which is shown

in Figure 3.6, where + , - and * refer to Max, Min and Chance nodes, respectively.

Another drawback to S ta rl is due to its pessimistic nature. We may potentially search

nearly all the children of a chance node before a cutoff is obtained, because we assume

th a t all unseen children have a worst-case evaluation. However, children of a successor of

a chance node will tend to have values which are highly correlated. Instead of searching

each child of a chance node fully and sequentially, and give a value of L to any children we

haven’t seen yet, we can get a more accurate picture just by searching a single successor

of each child. This value we get for the child then becomes a bound on the true value for

the child (a lower bound if the child is a M ax node, and an upper bound if the child is a

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.6: A regular *-Minimax tree

Min node). It is likely th a t the bound will be much better than L, especially if we chose

the child well. We will therefore introduce this phase of speculative search (which we will

call the probing phase) before sequentially searching each child, in order to obtain a quicker

cutoff.

We need to modify the equations used to generate A and B in S ta rl to reflect the new

use of a probing phase in S tar2. For S tar2’s probing phase, we derive the bounds for A and

B just like we do in S ta r t’s search phase, except we do not have alpha cutoffs at chance

nodes followed by Min nodes (since we can only get an upper bound on those children), and

we do not have beta cutoffs at chance nodes followed by Max nodes (since we can only get

a lower bound on those children). Cutoffs generated at the probing phase are called probe

cutoffs, and tell us how successful Star2 is a t probing, or how good its probing efficiency is.

We obtain a cutoff in S tar2’s search phase if

+ + + < alpha (3.5)

or

± ,(Wx± x ^ :,.±,gOv) > (3 6)
N ~

where (W i,..., Wjy) are the probed values for the N children of a node, obtained during the

probing phase.

The alpha value for the ith successor, Ai is now obtained with

Ai = N x alpha - (Vi + . . . + V5_i) - (W i+1 + . . . + WN) (3.7)

and the beta value for the ith successor, Bi with

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bi = N x beta - (V) + . . . + Vi_i) - (Wi+1 + . . . + W N) (3.8)

Like with S ta rl, these equations can be rewritten:

A \ = N x alpha — (W i + . . . + W n)

B i = N x beta — (W 2 + ■.. + Wjv)

and updated by

Ai+i = Ai + Wi+i — Vi

Bi+i = Bi + Wi+i — Vi

where i — 2 .. . N .

Figure 3.7 shows the resulting Star2 algorithm for chance nodes followed by Min nodes

(we will need a similar procedure for chance nodes followed by Max nodes). To get values

for the probing phase, we need a procedure similar to Alpha-Beta since successors are Min

or Max nodes. Figure 3.8 shows the Probe algorithm. Figure 3.9 shows the PickSuccessor

algorithm used by Probe, which is explained in more detail below.

Consider the tree in Figure 3.10, to see S tar2’s strength. I t is the same tree used in the

previous example with S ta rl. For the probing phase, the alpha value changes just like with

S ta rl, but the beta value does not. In this case, we only need to search five leaves: H, J, L,

N and P, because by the time we reach child F, we give it a window of [-8, 10]. Since P has

a value of -10, this causes a cutoff a t F. It also causes a cutoff a t A since F returns a value

of -10, which is less than or equal to A. In this example our Probe function did a good job

and we always chose the best child for probing (fortuitously), so we obtained a cutoff after

searching about half the nodes S ta rl searches.

As the branching factor increases, probing becomes even more effective, because sequen­

tial searching of children becomes more and more time-consuming. But even with small

branching factors, probing can still be effective.

In his paper, Ballard did not specify how Probe should choose a successor besides to

say it could be done “a t random or by appeal to a static evaluation function” [5]. Since the

domain he used was limited to a depth=3 tree, all the probes done in his experiments were

on leaf nodes. His domains also only had chance nodes at d ep th = l (the nodes at depth=3

are technically chance nodes, but since they are leaves, they are just statically evaluated),

so probing was always relatively inexpensive.

For Star2 to be successful, P robe must search a “good” child. We can abstract the selec­

tion process away from Probe and create another function, which we will call P ickS uccesso r.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

float Star2_Min(Board board, float alpha, float beta, int depth) {
if (terminal(board) I| depth == 0) return (evaluate(board));
N = numSuccessors(board);
/* Range initialization */
A = N*(alpha-U);
B = N*(beta-L);
BX = min(B, U) ;
/* Probing phase */
for(i = 1; i <= N ; i++) {

A += U;
AX = max(A, L);
w[i] = Probe_Min(successor(board,i), AX, BX, depth-1);
if(w[i] <= A) return (alpha);
A -= w[i];

>
/* Search phase */
vsum = 0;
f o r d = 1; i <= N; i++) {

A += w[i] ;
B += L;
AX = max(A, L);
BX = min(B, U) ;
v = search(successor(board,i), AX, BX, depth-1);
if(v <= A) return (alpha);
if(v >= B) return (beta);
vsum += v;
A -= v;
B -= v;

>
return (vsum/N);

Figure 3.7: The Star2 algorithm, adapted from [5]

float Probe_Min(Board board, float alpha, float beta, int depth) {
if(terminal(board) II depth == 0) return (evaluate(board));
choice = PickSuccessor(board);
return (Star2_Max(successor(board,choice), alpha, beta, depth-1));

Figure 3.8: The Probe algorithm

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int PickSuccessor(Board board) {
choice = 1;
N = numSuccessors(board);
if(N < 2) return (1)
else {

for(i = 1; i <= N; i++) {
if(hasBestQuality(successor(board,i))) return (i);
else if(hasGoodQuality(successor(board,i))) choice = i;

}
>

return (choice);

Figure 3.9: The PickSuccessor algorithm, with quick two-quality check

s -5

[.
[27, 72]

[-8, 72] Chance

ChanceED m t o [k J ID m [o] [pj [q] [r] m m u .
-5 5 -10 -9 0 5 1 3 -10 -1 2 5 4 3
V X V X V X V x V x x X X X

Figure 3.10: A Star2 tree, with good probing

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[-6 £ r 7S] f-8r§2]
t^fr-yg] j-42r§7]
[38,-72] [3,57]
[33r75-]

[18-rTSj
[-13, 72] Chance

<5 Min

ChanceED LD jjj ED ID iO m [PJ m r] m m u
-5 5 -10 -9 0 5 1 3 -10 -1 2 5 4 3

V V V V V V X V X X V V X X

Figure 3.11: A Star2 tree, with bad probing

P ickS uccesso r, shown in Figure 3.9, will take a set of nodes and return the node it thinks is

the “best” . We want this selection process to be relatively fast and not use much overhead,

so P ickS uccesso r may not want to use the evaluation function used for leaf evaluations,

but instead use domain-specific knowledge to heuristically select a child. For example, in

backgammon we may first select moves th a t result in hitting the opponent’s blots, moves

th a t form primes, or moves th a t form points. As soon as we see a successor th a t meets the

best quality, we can simply exit with th a t successor as the choice. Failing that, we can keep

track of a successor th a t has the next best quality. If no successors have either quality, then

the first can just be chosen.

Even if we do not obtain a quick cutoff during the probing phase, we will have a tighter

window for the search phase, which in itself will lead to quicker cutoffs, because we have

better estimates of the values of the children. Reconsider once more the tree we have been

using, but this time we will see what happens if Probe does a bad job. Figure 3.11 represents

this situation. Now the probing phase will finish before we have obtained a cutoff, and so

we will end up searching almost half of the leaves already. However, before the searching

phase begins, notice tha t the window has been almost halved, because we have better upper

bounds for the childrens’ values; instead of starting with a window of [-62, 62] as S ta rl

would, we start searching sequentially with a window of [-8, 62]. Now, by the time we start

to search the third successor D, we have passed it a window of (3,10). If we assume th a t the

leaf node L is searched first, then we get a cutoff a t D (because 0 is less than 3) as well as

at A. We end up searching six leaves in the probing phase, and an additional three leaves in

the search phase, for a to tal of nine leaves. In this particular situation, even the worst-case

probing resulted in the same number of leaves expanded as S ta rl.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

D ice

This chapter will explore the game of Dice, a game invented to test the *-Minimax al­

gorithms. Implementation issues of various search enhancements are discussed, and the

performance of the algorithms in terms of node expansions and execution time is anal­

ysed with various branching factors and search depths. Tournaments of matches between

programs with various depth settings are also run and evaluated.

4.1 T he Game of Dice

Before testing the *-Minimax algorithms on backgammon, a smaller and simpler game

domain was sought in order to obtain some preliminary results. Since many simple games

th a t involve a small chance element don’t involve strategy (such as snakes and ladders, or

the card game War), a new game called Dice was developed. Dice is an AT-in-a-row game

played on a grid of squares (like tic-tac-toe, Connect-4 or Gomoku), except before players

can move they must first roll an IV-sided die. The value of the die will determine either

which row (if X) or which column (if 0) the player can move into. The first player to link

N squares in a row wins the match.

4.2 Im plem entation Issues

The game definition itself is rather simple and thus mostly trivial to implement in code.

An array of integers can represent the game state, pseudo random numbers can be easily

generated to provide dice rolls, and moves are simply comprised of the row and column

chosen by a player. Designing a Dice computer opponent is a little more tricky.

4.2.1 Evaluation Function

The first step is to design a decent evaluation function. In this case, the evaluation function

consisted of simply counting pairs of squares. A pair is two squares filled for the same

player, next to each other in the same row, column, or diagonal. Two squares separated

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

by a single em pty square on a row, column or diagonal were also considered to be a pair.

The evaluation function counted pairs for both opponents and took the difference. This is

relatively fast and gives a decent strategic guess (since pairs of squares can quickly tu rn into

triplets). If the game is more than 3-in-a-row, some tactical moves may be lost, since the

evaluation function may favour obtaining a new pair instead of extending an existing pair

to form a triplet. The evaluation function is also changed to reflect the player-to-move at

th a t state, ra ther than scoring based on whether or not the player at the state is the same

as the player a t the root. The result is the score of the state, so th a t states th a t create new

opportunities to join together squares, or block squares for the opponent, are favoured.

4.2.2 Transposition Table

A transposition table (TT) was used to speed up the search. The T T for Dice was a simple

hash table of 128 MB (more or less space could be used, depending on the amount of main

memory available). Each entry was 16 bytes large, containing the value for the stored state,

a flag to indicate if the entry was in use, an indicator for the depth searched, two flags to

determine what kind of value for the state is stored (a lower bound, upper bound, or an

exact value), the best move chosen at th a t state, and the hash key for tha t state. A Zobrist

hashing scheme[37] was used.

4.2.3 H istory Heuristic

In addition to the TT, another form of memory-assisted search was used: a history heuristic

(HH). The HH is simply an array which keeps track of how often a move was selected as the

“best” move at a node. This information can then be used during move sorting to favour

moves chosen by previous searches, thereby likely improving cutoff performance.

4.2.4 M ove Ordering and Probe

The move ordering and probe selection are almost nearly identical. As mentioned before near

the end of Section 3.6, Probe didn’t necessarily have to use the same evaluation function

used for leaf nodes. In the case of Dice, the evaluation function was reasonably heavy,

meaning it consumed most of the execution time during a search. The move ordering

scheme worked as follows. Each move was applied to the game state and evaluated. If it

was a winning position, then it was placed a t the head of the moves list, and the function

returned immediately. Otherwise, the number of pairs for each player were counted and

the difference taken. Moves were then sorted based on this scoring scheme. Probe uses the

same idea for choosing a successor.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 Experim ental Design

4.3.1 Hardware and Software

For obtaining quality results, all experiments were run on relatively new hardware. Two

undergraduate labs (one of 22 machines and one of 34 machines) were made available for

distributed processing. All machines were identical, each with an Athlon 1.8 GHz processor

and 512 MB of RAM, as well as 27 GB of local disk space (to bypass using NFS). Each

machine used Slackware Linux kernel version 2.4.23 and had gcc version 3.2.2. The Dice

game was coded in C.

4.3.2 Environm ental Conditions

While all experiments were performed when the labs were largely idle, all experiments were

nevertheless subjected to possible skewing if students logged into a host to use it. However,

less than a dozen students logged into any one of the machines during the entire experimental

phase, so fluctuations in results due to lost CPU cycles are negligible. Since each machine

only had a modest amount of free RAM, the transposition table was kept to a relatively

small size of 128 MB. All executables were compiled under gcc with -03 optimization.

4.4 Performance

Judging performance of a search algorithm usually means pitting it against other algorithms

in the same class, and seeing how it compares in terms of to tal node expansions and exe­

cution time (counting all overhead). In order to obtain data, Dice positions were randomly

generated and then searched by Expectimax, S ta rl and Star2, each having all the same

search enhancements. Each position was non-trivial: the player-to-move would have to have

at least two moves to choose from, and none of the moves could lead to immediate wins.

Results were obtained for search depths much greater than were possible for Ballard.

Boards of size 5 x 5, 7 x 7, 9 x 9, 11 x 11, 13 x 13, 15 x 15 and 17 x 17 were used for

testing. 500 randomly generated positions were used for all board sizes. All boards were

searched to at least depth=7 by Expectimax, S ta rl and Star2.

There is a strong correlation between node expansions and time used in all experiments,

mainly because most of the nodes in the tree will be leaves and they are all statically

evaluated. In term s of CPU usage, the evaluation function for Dice consumed more than

90% of total cycles, with the rest of the time taken up by terminal position checks, T T calls

and the search functions themselves. Move generation was nearly instantaneous because of

the relative simplicity of the game.

When the branching factor is low, as is the case with 5x5 boards, there is only a reduction

of about half in terms of average node expansions from Expectimax to Star2. Figure 4.1

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Nodes Expanded vs. Position: depth 7, size 5x5
100000

expectimax
starl
star2

- - X ' '
x -

1000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Position

Figure 4.1: Node expansions at d = 7 for board size of 5x5, for 25 positions

shows to tal node expansions at depth=7 for 25 positions, sorted by the Expectimax search

tree size, on a logarithmic scale. Average node expansions and CPU time are shown in

Figures 4.2 and 4.3, also on a logarithmic scale. One reason the reduction is so modest is

because the branching factor is quite low. Not only is the board size relatively small, but as

moves are made into empty squares, the branching factor gets closer and closer to 1. As the

branching factor shrinks, so do the number of leaves in the tree, and therefore opportunities

for chance node and move node cutoffs decrease. Since most of the nodes in the tree are

leaves, and many of them are not pruned, the resulting reduction in node expansions is

small. It is especially marginal for S ta rl, since most cutoffs in S ta rl will occur at the last

successors to a chance node. Star2 is not spectacular because with such a small branching

factor, probing children becomes less effective; the Expectimax range of a chance node will

not shrink fast enough for quick cutoffs to occur.

At a board size of 11 x 11, the difference in node expansions becomes significantly greater,

as shown in Figure 4.4, where 25 different positions are looked at individually. Star2 is doing

about 15% of the work of Expectimax a t depth=7, compared to 50% before at depth=5.

The difference in average tim e over all positions between the three algorithms for 11 x 11

is shown in Figure 4.6. The gap has certainly widened compared to 5 x 5 as the bracking

factor has increased, so probing becomes more fruitful.

4.4.1 Probe Efficiency

Ultimately, Star2’s performance is directly related to probing success. Probing offers us a

chance to get quicker cutoffs without needing to search all of the children of the successors

to chance nodes. Getting a lower bound for the value of a successor by only looking at one

of its children may be good enough to produce a cutoff a t the chance node. The better the

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Average Nodes Expanded vs. Search Depth: size 5x5
1e+09

expectimax
starl1e+08 star2

1e+07

1e+06■aIBn
§. 100000
x
LU

10000cn<u
T3
o
z: 1000

100

3 5 9 11 13 1571

Search Depth

Std. Dev. of Nodes Expanded vs. Search Depth: size 5x5
1e+09

expectimax
starl — x—
star21e+08

1e+07

1e+06■o
IB

| 100000
X

UJ
1000010

IB■o
oz 1000

100

3 11 135 7 9 151
Search Depth

Figure 4.2: Average and standard deviation of node expansions for board size of 5x5, over
500 positions

child we select for each successor, the higher the lower bound we get for the successor, and

the more likely we are to produce a quick cutoff.

Figure 4.7 and Table B.2 show the average and standard deviation of probe efficiency in

Dice at various depths. In Dice, as the depth of the search increases, so does the effectiveness

of probing. There is an odd dip in the average graph at depth=5, followed by a jump back

up at the next depth, and then a plateau. At the same time, the standard deviation looks

the opposite. For depth=3 trees, there is only one layer of chance nodes (the leaves at

the bottom are chance nodes, but they just get statically evaluated). S tar2’s probing does

not have a chance to recursively call itself, so its probing should be relatively good, since

Probe will be returning an accurate value for children. At depth=5, probing will recursively

call itself right before the horizon. At th a t point, probing will fail often if the Alpha-Beta

window is not narrow enough. As long as the TT caches these leaf node evaluations, there

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Average CPU Time (s) vs. Search Depth: size 5x5
1000

expectimax
start — x—
star2

100
<o
CD
EI—
3
CLO

10

13 1511
Search Depth

Std. Dev. of CPU Time (s) vs. Search Depth: size 5x5
1000

expectimax — i—
start — x—
star2

100
to

CD
E
i-
3
CLo

13 1511
Search Depth

Figure 4.3: Average and standard deviation of time (s) for board size of 5x5, over 500
positions

won’t be an impact of overall performance as Star2 switches from the probe phase to the

search phase, but it will im pact the probe performance. As the depth increases to 7, probe

efficiency goes back up a bit, since there are two probes now th a t happen before the horizon.

However, since most Probe calls happen just before the horizon, overall performance is not

as good as at depth=3. The performance then mostly levels off bu t continues to decrease

as relatively more and more probing calls happen ju st before the horizon.

Boards with higher branching factors result in better probing performance, as cutoffs at

chance nodes become more likely, because there is sufficient chance to narrow the Expecti­

max range during the probing phase.

In Ballard’s original paper, his Star2 probing effectiveness was somewhere between 33%

at a branching factor of N = 4 and 45% at a branching factor of N = 40, compared to a

range of 66% at IV = 5 to 96% at N = 17 in Dice. This difference is mainly from picking

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1e+08

■p 1e+07<D T>C
CT3
CL X

U J cn o>X5
§ 1e+06

1000(X)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Position

Figure 4.4: Node expansions at d—7 for board size of 11x11, for 25 positions

the right successor to probe.

4.4.2 M ove Ordering

Ballard used random Move ordering in his original experiments. As he put it, “...all N \

permutations of successor arcs were assumed to be equally likely.” [5]. One of his reasons

for doing so was to give a conservative picture of what to expect in practice[5]. However,

this assumption is not necessarily true. Move ordering is an im portant part of any search

algorithm, and as such, even the simplest of routines can perform better th an random in

practice.

Ballard randomized successor orders for both chance nodes and Min or Max nodes.

The implementation of Dice only included move ordering for Min and Max nodes. Chance

successors (the die rolls) were pre-ordered in code to go from smallest to largest.

For ordering move nodes, four different schemes were implemented: no move ordering;

random move ordering; static evaluation function move ordering; and “quick” move ordering.

Figure 4.8 shows the average node expansions for searches performed with various move

ordering schemes a t varying search depths on a 11 x 11 board using Star2. 500 positions

in to tal were used for each scheme. D ata is presented in Table B.17. No move ordering is

usually beaten by the other schemes, although the differences are fractional. Random move

ordering is sometimes better than no move ordering, and sometimes worse. These results

would seem to indicate th a t random move ordering may not, in fact, be a conservative

estimate of performance, since it requires some overhead, and may be worse than no move

ordering at all. As such, the random scheme should probably not be used at all. Move

ordering using the static evaluation function or the “quick” heuristic is quite good, bu t not

overall stellar compared to no move ordering.

41

Nodes Expanded vs. Position: depth 7, size 11 xl 1

start — x—
star2

/ X ■' \ / \ ■■■ \ / \
\ / \ / \ ; *■' * — * — *

■ *---* y * * *

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Average Nodes Expanded vs. Search Depth: size 11 x11
1e+09

expectimax
start1e+08 star2 —

1e+07

1e+06■a
■o| 100000 x
LU
g 10000
-a
Z 1000

100

3 5 7 91
Search Depth

Std. Dev. of Nodes Expanded vs. Search Depth: size 11 x11
1e+09

expectimax
start — x—
star21e+08

1e+06x><D-o§_ 100000
X

LU
m 10000
TJ
Z 1000

100

3 5 7 91
Search Depth

Figure 4.5: Average and standard deviation of node expansions at d= 7 for board size of
11x11, over 500 positions

While a reduction in node expansions usually is directly correlated with a reduction in

execution time, Figure 4.9 and Table B.18 show th a t this is not always the case. Three of

the four schemes take about the same amount of execution time - only quick ordering is

better! The reason, of course, goes directly back to why we do not want to use a heavy

static evaluation function for probe successor selection. W ith static move ordering, all the

time we save in reduced node expansions is eaten up by the fact th a t we are still applying

the evaluation function to every node we generate. Since most nodes will be leaves, this

means we really don’t end up with many savings a t all.

Finally, Figure 4.10 and Table B.19 show the scheme’s effect on probe efficiency. The

most informed scheme, using the static evaluation function, is best, but the quick scheme is

not far behind. Obviously, our evaluation function does a good job at pre-ordering successors

for the “quick” successor selection scheme, where the first move th a t meets the “best” quality

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Average CPU Time (s) vs. Search Depth: size 11x11
10000

expectimax
starl — x—
star2

1000

in
CD
E
i-
D
a .o

100

97
Search Depth

Std. Dev. of CPU Time (s) vs. Search Depth: size 11x11
1000

expectimax
starl — x—
star2 —

100
CD.
CD
E
i-
z>
O.O

97
Search Depth

Figure 4.6: Average and standard deviation of time (s) for board size of 11x11, over 500
positions

will be taken. Failing that, the first move th a t meets the “good” quality is taken. Both

random and no move ordering still maintain a probe efficiency greater than 50%, because

the “quick” successor selection scheme works fairly well without any help.

4.5 Tournaments

Another way to measure an algorithm ’s performance is to pit it against itself in a tourna­

ment, where each player is searching to a different depth. The question to answer, then, is

if deeper search increases real performance in the game. Tournaments were therefore run

between combinations of players searching to depths of 1, 3, 5, 7 and 9. Each tournam ent

used a file containing a sequence of seed values, such tha t they all would then have the same

sequence of dice rolls across each tournam ent. The starting roll for each game was pre-set

by a testing script, and went through the values from 1..N sequentially, in order to reduce

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Average Probe Efficiency (%) vs. Search Depth
90

£ 75>1o
| 70 o
E 65<u
O 60

CL

45
9 11 13 155 73

Search Depth

Std. Dev. of Probe Efficiency (%) vs. Search Depth
18

5x5 — i—
7x7 ---x—
9x916

_ 13*13 —14

12

10

8

6

4

2
9 11 135 7 153

Search Depth

Figure 4.7: Average and standard deviation of probe efficiency for Dice

variance. Furthermore, for each opening roll and sequence of dice rolls, both players were

given an opportunity to be the starting player. A file containing 9000 seeds was used, and

therefore a to ta l of 18,000 games per tournam ent were played.

The results of the tournam ent are shown in Figure 4.11 and Table B .l. On each graph,

lines represent different players searching from d ep th = l to depth=9. The line is then com­

pared against an opponent on the x-axis, and the winning percentage for the player rep­

resented by tha t line is shown on the y-axis. A player searching to the same depth as its

opponent has the same performance and so crosses the 50% winning percentage line where

the two players’ settings are identical.

There are some im portant points to make from the figure. The player at d ep th = l

never fares better than 50%. Deeper search results in a greater winning percentage. W hat

is interesting is how the performance of the depth=3 player closely follows the d ep th = l

player, followed by a jump of around 10% for the next three players. While searching to at

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Average Nodes Expanded vs. Search Depth
1e+09

none — i—
random — x—

static
quick s ...

1e+08

1e+07

1e+06■o 0)"O
« 100000
l±i
» 10000 (D•o o
z 1000

100

3 5 7 9
Search Depth

Std. Dev. of Nodes Expanded vs. Search Depth
1e+08

none — *-
random — jr-

static ---■*•
quick a-

1e+06

I 100000c
Q .
f t 10000
tfl
73o
z

100

3 5 7 9
Search Depth

Figure 4.8: Average and standard deviation of node expansions for different move orderings
for board size of 11x11, over 500 positions

least depth=5 results in decent tournam ent performance compared to shallower searches,

the benefits level off very quickly. This jum p probably comes from the nature of using

a 4-in-a-row win. The die rolls inject enough randomness into the game to weaken the

benefit of deep search. For example, being able to set up a future move by seeing 3-ply deep

will be just as good as seeing 5 plies into the future, because the die roll will wash away

tactical plays. The game also favours offensive play, because setting up groups of squares is

better than trying to surround the opponent; if a player is nearing a win, then deep search

beyond a certain level doesn’t help. Consider a situation where the player to move has a

50% chance of winning on the next roll, and if they don’t win, their opponent has a 50%

chance of winning on their roll. The odds th a t the game will end in the next two moves is

relatively high, and so in this case, deep search doesn’t really help, because the stochastic

nature of the game eliminates deep planning. On the other hand, seeing a single ply ahead,

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Average CPU Time (s) vs. Search Depth
1000

none — >—
random — x -

static -
quick e~

100

10

1
97

Search Depth

Std. Dev. of CPU Time (s) vs. Search Depth
1000

none —-t—
random — x—

static —
quick a ...

100
a>
£
i-
3
CLo

97
Search Depth

Figure 4.9: Average and standard deviation of time (s) for different move orderings for
board size of 11x11, over 500 positions

compared to three or more moves ahead, makes a significant impact. Again, the nature

of this game suggests th a t a player should endeavour to be aggressive and set up as many

winning positions as possible. Seeing a t least two of “our” moves ahead means the player

is able to set up more winning positions. Defensive play doesn’t seem to m atter very much;

you can block an opponent in one spot, but it is often impossible to block them everywhere.

Furthermore, if they get a good roll on the next move, the game could be over.

Star2 allows for faster search in tournam ents, which means players can search deeper in

a given amount of time, which means players will have better overall performance.

4.6 Conclusions

For single searches on Dice positions, Star2 outperforms Expectim ax in all cases. As the

branching factor for the game increases, the performance gap between the two widens. For

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Average Probe Efficiency (%) vs. Search Depth
100

95

90

£ 85
>.o
® 80 'a
£ 75m
XI
2 70CL

65

60

55

o

none
1 ----- 1

static
quick ..

-

r "
-

-

I 1

Search Depth

Std. Dev. of Probe Efficiency (%) vs. Search Depth
25

none

20

5

0
95 73

Search Depth

Figure 4.10: Average and standard deviation of probe efficiency for different move orderings
for board size of 11x11, over 500 positions

games with large branching factors, doing exploratory probes results in greatly reduced node

expansions and CPU time.

Good probing efficiency is critical to S tar2’s performance. Trees with small branching

factors do not allow many probing cutoffs because there may not be sufficient opportunity to

narrow the Expectimax window before all successors are probed. Trees with large branching

factors allow for more cutoffs because there is usually time to narrow the window before all

successors are searched.

Move ordering schemes can have a small but im portant impact on performance. Ran­

domly ordering successors may not be the best baseline policy to use; sometimes no ordering

does better. Move ordering using the static evaluation function results in reduced node ex­

pansions, due to a more informed ordering, bu t nearly the same time, because all nodes th a t

are generated get evaluated. A move ordering scheme based on heuristic, domain-specific

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Winning Percentage vs. Player
70

1 3 5 7 9
Player

Figure 4.11: Tournament results for 4-in-a-row on 7x7 board, 18000 games per matchup

knowledge can reduce both node expansions and time, and need not be complicated to

implement.

Good tournam ent performance in 7 x 7, 4-in-a-row Dice is dependent on seeing at least

three plies deep, when using an evaluation function th a t just counts pairs of tokens. Deeper

search results in only incremental improvement due to the stochastic nature of the game

offsetting deep tactical play with quick, unavoidable wins.

4.7 Future Work

The Dice game can and should be extended to a bigger board, with a longer winning

combination length. The evaluation function could also be improved a great deal instead

of just counting pairs. A version of Gomoku or Connect-4 could be developed with dice

rolls to determine legal moves. The advantage to using those games is th a t there are known

good strategies for the deterministic versions of both games, meaning a powerful evaluation

function should be easier to build. Another change would be to how chance events affect

the game; instead of having a die roll specify a row or column, perhaps the player could

choose a square from a random selection of empty squares. This change would increase the

strategic aspect of the game.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Backgam m on

This chapter will introduce the game of backgammon, describe some of the history of com­

puter backgammon programs, and describe one program (GNU Backgammon) in detail.

Im plementation issues of *-Minimax with the game of backgammon are discussed, including

search enhancements. Experimental results are also presented.

5.1 The Game of Backgammon

Backgammon is an ancient game, considered to be maybe the oldest game still being played

today. There are dozens of variants played in countries around the world, but the name

backgammon is reserved for the most common type. Backgammon is a race game played on

a board with 24 columns or points on which checkers (also called pieces, stones, or blots) are

placed (see Figure 5.1). The goal of the game is to be the first to remove all your checkers

from the board. It is normally played by two players who each have fifteen checkers. A point

with no checkers on it is called empty. A single checker on a point is usually called a blot.

Two or more checkers on a column are also referred to as a point. Each player moves their

pieces in a direction opposite to the other on alternating turns. A pair of dice is thrown at

the beginning of the tu rn to determine legal moves, and checkers can be moved anywhere

except where the opponent has claimed a point. A roll of 3-1 means th a t a player can move

one checker 3 points and another checker 1 point, or a single checker 4 points (as long as the

opponent hasn’t blocked the intermediate columns). W hen a checker is moved to a column

containing a single opponent blot, this is called a hit. The opponent’s single checker is then

moved to the bar and the player’s checker takes its place. Whenever a player has a checker

on the bar at the beginning of their turn , they are required to move the checker off the bar

back into the opponent’s home board (the opponent’s last 6 points) before they can move

any other checker (the bar can be considered to be the 25th point on the board). Points

formed in the opponent’s home board are called anchors, because they lock in a column

tha t can be used for safely moving off the bar. All the standard rules for moving checkers

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 2 3 4 S 6 7 8 9 10 .1.1 12

24 23 22 21 20 19 18 17 16 15 14 13

Figure 5.1: The initial starting position for backgammon. W hite moves counterclockwise
toward 1, while black moves clockwise toward 24.

on the board apply to moving checkers off the bar.

If a player has at least one checker on the bar on their turn, bu t neither of the dice can

be used to move the checker back on the board (because the opponent has blocked those

columns with points), this is called dancing on the bar. Figure 5.2 shows an example, where

white cannot move back onto the board from the bar because black has blocked both the

24 and 20 points. If the opponent is lucky enough to have all six inner points blocked (also

called a prime), then the player cannot possibly move on his or her turn.

A player rolling a double, when both dice have the same value, are allowed four moves

equal to tha t value on their turn. Since double rolls only account for | of all possible rolls,

they are relatively infrequent, but they often cause significant swings in the outlook of a

game.

If ever possible, a player must use both of the dice rolls available to them, or in the case

of doubles, all four moves. For example, Figure 5.3 shows white being forced to move off

the bar onto the 22 point, and then needing to move another checker with the 4 roll.

If all moves cannot be used (perhaps due to an opponent blocking movement), then as

many as possible must be used. In the case th a t a player can use one die roll or the other

die roll, but not both die rolls, then the die roll with the greater value must be used, such

as in the position in Figure 5.4, where w hite’s final checker will be forced to move to the 21

point.

As stated before, the goal of backgammon is to be the first to remove or bear off all of

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 2 3 4 S 6 7 8 9 10 11 12

24 23 22 21 20 19 18 17 16 IS 14 13

Figure 5.2: W hite to play 5-1: dancing on the bar

1 2 3 4 5 6 7 8 9 10 11 12

24 23 22 21 20 19 18 17 16 15 14 13

Figure 5.3: W hite to play 4-3: a forced move off the bar

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.4: W hite to play 3-1: only one roll can be used

one’s pieces from the board. This is accomplished by first moving all of one’s checkers into

one’s home board, and then removing checkers one by one based on the dice rolls. A checker

can be removed if it is on a point equal to one of the dice rolls. However, if there are no

checkers on a point matching a dice roll, but there are also no checkers behind tha t point,

then the roll can be used to move off the checker farthest behind. In Figure 5.5 white rolls

5-4, and is able to remove the checker on the 5 point; since there are no checkers on or after

the 4 point, white can use the second half of the roll to bear off the blot on the 3 point.

W ithout this rule, endgames would be ra ther tedious, and very heavily based on luck.

Usually people play matches consisting of multiple games, where each game is worth a

single point. In this case, a doubling cube is also used to speed up the game, as well as add

an element of gambling to backgammon. The doubling cube (sometimes also ju st referred

to as the cube) was introduced in the 1940s. Initially, the cube is placed in the middle of the

table (it is not owned by anyone) and its value is considered to be equal to 1. During the

game, if a player particularly likes his chances of winning, they may offer a double to their

opponent, which is an offer to double the stakes of the game. If the opponent declines the

offer, this is a resignation of the game for a single point. If the opponent accepts the double,

the cube is turned to show twice its current score, and the opponent now owns the cube,

and the game is played at twice the stakes. From th a t point on, the opponent will have the

sole option of being able to offer the next double. If accepted, the cube would be turned

again, and ownership passed to the other player. Backgammon players often ta lk about the

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24 23 22 21 20 19 18 17 16 IS 14 13

Figure 5.5: W hite to play 5-4: bearing off

complexity of cube handling in match play: weighing the odds one can win at higher stakes

versus the increased price of failure. Even at the world championship level, matches are

routinely won and lost by poor doubling decisions. Even so, the doubling cube remains the

most popular addition to the game, and is now considered standard in a backgammon set.

There axe two special types of wins th a t result in more points for the winner: the gammon

and the backgammon. A gammon win happens when the opponent has not removed any

of their checkers off the board, and makes the game worth double (further multiplying

the cube value). A backgammon win happens when the conditions for a gammon win are

met, plus the opponent has at least one checker on the bar or in the player’s home board.

Backgammons make games worth three times the am ount of the cube, but are generally

very rare, since most players can at least escape their opponent’s home before the game

ends.

Besides typical “m atch” play, there is also another type of play in backgammon called

a money game. All the rules are the same, except for the addition of the Jacoby rule which

states th a t gammons and backgammons do not count unless the cube has been turned at

least once. The purpose behind this rule is to speed up the game, so people are less likely

to play for gammons with a centred cube.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Backgam m on Programs: Past and Present

W ith such a gigantic state space (estimated to be bigger than 1020 states[32]) and such

an imposing branching factor (there are 21 unique dice rolls, and about 20 moves per roll,

on average), i t ’s not surprising th a t most of the early computer backgammon programs

were knowledge-based. Knowledge-based systems do not rely much on search (or at all),

but ra ther attem pt to choose moves based on expert knowledge about the domain, usually

programmed into the system by a human expert. These are usually called ad hoc methods.

The first real success in computer backgammon was BKG, developed by Hans Berliner.

In 1979, BKG played the world champion at the time, Luigi Villa, and managed to defeat

the human 7-1 in a five point m atch.[6] While many people were shocked, even Berliner

himself would concede weeks after the match that BKG had been lucky with rolls and made

several technical blunders. However, Villa had not been able to capitalize on those mistakes

- such is the life with dice.

The second milestone in computer backgammon was Neurogammon[31], the work of

IBM researcher Gerald Tesauro. Neurogammon used a neural network (a computer model

loosely based on a biological brain) for evaluating backgammon positions. Neurogammon

was trained with supervised learning; it was fed examples labeled by a human expert,

and told w hat the answer should be. The program quickly became the best in computer

backgammon, bu t still only played at the level of a strong human am ateur player.

Tesauro went back to the drawing board, with a desire to improve his creation even more.

One of the first things he changed was the data the program was training on. Instead of

using hand-labeled positions, he decided he would rely solely on self-play to generate training

data - the program would simply play against itself. This has advantages over the previous

method since a human expert may label positions incorrectly, or tire quickly (Neurogammon

only used selected positions from about 3000 games[31] to train checker play, culled from

games where Tesauro had played both sides), but self-play also may lead a program into a

local area of play. For example, a program can learn how to play well against itself, but not

against another opponent. This local minima problem in backgammon is partially overcome

due to the fact th a t the environment is stochastic - dice insert a certain level of randomness

- so a program is forced to explore different areas of the state space.

The other thing Tesauro changed was the training method itself. Instead of using a

supervised learning approach that adjusted the network after each move (which he could do

before because each training example was labeled), Tesauro decided on adapting temporal-

difference learning for use with his neural network[30][32]. TD learning is based on the idea

tha t an evaluation for a state should depend on the state tha t follows it. In a game sense,

the computer keeps track of each position from sta rt to finish, and then works backward.

It trains itself on the last position, with the target score being the outcome of the game.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Then it tra in s itself on the second last position, trying to more accurately predict the score

it got for th e last position (not the final score). The last position is the only position which

is given a reward signal, or absolute value; all other positions are only trained to better

predict the position th a t followed it. In games, the reward signal is related to the outcome

of the game. If the program had lost, the reward signal would be low (to act sort of like

a punishm ent). If the program won, the reward signal would be high. Since backgammon

cannot end in a draw, the reward signal could never be zero.

In this manner, Tesauro delayed the final reward signal for the neural network until the

game was won or lost, a t which point the network would begin adjusting itself. This new

program was called TD-Gammon in honour of its training method. Tesauro trained the first

version of TD-Gammon against itself for 300,000 games, a t which point the program was able

to play as well as Neurogammon - quite surprising, considering the program had essentially

“discovered” good play on its own, with no human intervention, and zero explicit knowledge.

Later versions of TD-Gammon increased the size of the hidden units in the network, added

hand-crafted features to the input representation, trained for longer amounts of time, and

included a selective search algorithm to extend the search process deeper th an a single ply.

TD-Gammon is considered to safely be in the top-3 players of the world. One human expert

even ventured to say it was probably better than any human, since it does not suffer from

mental exhaustion or emotional play.

TD-Gammon’s use of temporal difference learning and a neural network evaluation func­

tion has lead to several copy-cat ventures, including the commercial programs Jellyfish[3]

and Snowie[4], as well as the open-source GNU Backgammon[2] (also known as Gnubg).

Several versions of GNU Backgammon have sprung up on the Internet, and it has quickly

become one of the most popular codebases for developers.

5.3 Some Failings of Backgammon Programs

While so much time and effort has been put into creating backgammon programs with

increasingly stronger evaluation functions, almost no thought has been pu t into improving

the search used in the programs. Both TD-Gammon and Gnubg use a forward-pruning based

approach to search, where some possible moves are eliminated before they are searched in

order to reduce the branching factor of the game. Depending on the approach, using forward

pruning can be a bit of a gamble, since the program is risking never seeing a good line of

play, and therefore never having the chance to take it.

There are two im portant reasons why improvements in search have not been developed in

backgammon. The first is th a t the current crop of neural network-based evaluation functions

are pretty accurate, but take far too long in processing terms. For example, a complete 3-ply

search of an arbitrary position in backgammon can take several minutes to complete. This

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is clearly undesirable from a performance perspective. The second reason has to do with the

game itself. Since there are 21 distinct rolls in backgammon (with varying probability), and

often up to 20 moves per roll, the effective branching factor becomes so large that, especially

for a slow heuristic, searching anything deeper than a ply or two becomes impractical. It is

pretty clear due to these reasons why efforts have concentrated on developing an evaluation

function th a t is as perfect as possible (as close to an oracle as one can get), instead of trying

to grapple w ith the explosive branching factor inherent in the game.

But search is still im portant. Deeper search allows for the inaccuracies of a heuristic to be

reduced, and as mentioned before, the deeper a program can search, the better tha t program

can play. Backgammon is no exception, even with a trained neural network acting as a near­

oracle. Still, it is interesting to note th a t improving search in backgammon programs has

not been a priority, to the point where some of the GNU backgammon team are unfamiliar

with the concept of Alpha-Beta search. Tesauro thinks th a t improvements in search will

come as a result of faster processors and Moore’s Law[33], and has not yet considered using

a new algorithm.

Backgammon can be considered the Drosophila of perfect-information chance games. It

has been explored heavily in the past few decades, but nearly all the research has centred on

producing good evaluation functions for estimating the utility of a state (or board position).

It will be the primary test domain used in this thesis.

5.4 Overview of G NU Backgammon

GNU Backgammon is an open-source backgammon program developed through the GNU

Project. Development began in 1997 by Gary Wong, and has continued up to this time with

contributions from dozens of people. The other five primary members today are Joseph

Heled, 0ystein Johansen, David Montgomery, Jim Segrave and Jprn Thyssen. The current

version of Gnubg, 0.14, boasts an impressive list of features, including TD-trained neural

network evaluation functions, detailed analysis of matches (including rollouts), a tu tor mode,

bearoff (endgame) databases, variable computer skill levels and a graphical user interface.

Gnubg is also free, and since its exposure to the backgammon community was heightened,

it is one of the most popular and strongest backgammon programs available.

5.4.1 The Evaluation Function

Gnubg has three different neural networks it uses for evaluating a backgammon position,

depending on the classification of th a t position: either contact (at least one checker of a

player is behind a checker of the other player), crashed (same as contact but with the added

restriction that the player has 6 or less checkers left on the board, not including any checkers

on the opponent’s 1 or 2 points) or race (the opposite of a contact position). Since each of

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the three types of positions are quite different from the others, using three different neural

networks improves the quality of the evaluation.

Each neural network is first trained using temporal difference learning, using self-play,

similar to TD-Gammon. The input and output representations of the neural networks

are also sim ilar to TD-Gammon. The input neurons are comprised of both a raw board

representation (with 4 neurons per point per player) as well as several hand-crafted features,

such as the position of back anchors, mobility, as well as probabilities for hitting blots.

After self-play, the networks are trained against a position database (one each for the

contact, crashed and race networks). The databases contain “interesting” positions, so-

named because a network would return different moves depending on if they searched to

either d ep th= 1 or depth=5; and whenever a depth=5 search retains a better result than

d ep th = l, two entries are made in the database for th a t position: the position after the

d ep th = l move, and the position after the depth=5 move. The positions are a mixture of

randomly-generated positions as well as drawn from a large collection of human versus bot

or bot self-play games, with the idea th a t the networks should gain more exposure to “real-

life” playing situations than random situations. In total, over 110,000 positions form the

position database collection used by the Gnubg team.

There is an entry for each position’s cubeless evaluation in the database, along with five

legal moves and their evaluations. An evaluation consists of the probabilities of normal win,

gammon win, backgammon win, gammon loss and backgammon loss for the player to move

(a normal loss is not explicitly evaluated, as it is just equal to 1 — Pnormaiwin)• The moves

in the database are chosen by first completing a d ep th = l search using Gnubg, taking the

top 20 moves from th a t search, and then searching those to depth=5; the best five moves

from the depth=5 search are then kept. These moves are then “rolled out” , meaning th a t

the resulting position after the move is then played by Gnubg (doing the moves for both

sides) until the game is over. Typically the number of rollouts is equal to a multiple of

36 (say, 1296) by using “quasi-random dice” in order to reduce the variance in the result,

where each of the 36 possible rolls after the move is explored, with random dice thereafter.

When a race condition is met in the game, the remaining rolls are played using a One-Sided

Race (OSR) evaluator. The OSR is basically a table which gives the expected number of

rolls needed to bear off all checkers, for a given position. It does not include any strategic

elements. By using the OSR, the contact and crashed networks are judged on their own

merits, and not based on the luck of the dice in the endgame. This is because race games

are generally devoid of strategic play, because there is no interaction between the players

anymore, not counting cube actions. Each rollout is performed in a 7-point money game

setting, without cubeful evaluations.

A new network is trained against this database so its d ep th = l evaluations more closely

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

resemble a depth=5 search, and after the new network is fully trained, it then provides new

entries for each position in the database. Gnubg was able to obtain a rating of about 1930 at

a d ep th = l setting on the First Internet Backgammon Server (FIBS), which put it roughly

at an expert level on the server.

5.4.2 T h e Search A lgorithm

Gnubg’s search is based on heavy use of forward pruning to either completely eliminate or

greatly reduce the branching factor at move nodes, and lower the branching factor at the

root, in order to keep the search fast. Pruning is based on move filters th a t define how many

moves are kept at the root node (and, depending on the depth of the search, a t other move

nodes lower in the tree). A move filter guarantees a fixed number of candidates th a t will be

kept at a move node (if there are enough moves), plus the addition of n candidates which

are added if they are within e equity of the best move. Search is performed using iterative

deepening, and root move pruning is done after each iteration. At all other move nodes, the

move filter will either limit the number of moves or only keep one move. Candidate moves

are chosen by doing a static evaluation of all children of the move node and choosing the

n moves with the best scores; in other words, a small d ep th = l search is done at all move

nodes.

The branching factor at chance nodes can also be optionally reduced by limiting the

number of rolls to a smaller set than 21. All roll sets are hard-coded, so no attem pt is made

to order rolls nor bias roll selection when a reduced set is desired.

Unfortunately, Gnubg has an unusual definition of ply. In Gnubg, a d ep th = l search is

called “0-ply” , a depth=3 search is considered “1-ply” , and so on. While most users quickly

adapt to this quirk, it makes working with the code potentially tricky, since one must always

remember this to avoid bugs.

For d ep th = l searches, Gnubg simply performs a static evaluation of all root move can­

didates (a candidate being a move th a t has not been pruned by the move filter), and the

move with the highest score is chosen. At chance nodes in the search tree, all rolls in the

roll set (the set is usually all 21 rolls but it can be reduced for speed) are investigated, and

the best move for each roll (chosen by simple static evaluation) is applied and expanded,

until the depth cutoff is reached. As we saw before with Expectimax, the size of the tree is

0 (B % N %) , where B is the branching factor at move nodes, N is the branching factor at

chance nodes, and D is the search depth. By only doing a static evaluation of children at

move nodes and then choosing only one for further expansion, the size of a Gnubg search

tree is 0 (P % N % +B% x B) (where P is the pruned branching factor at move nodes), and in

the best case is generally asymptotically similar to B % , since the variable branching factor

a t move nodes is usually about the same as the fixed branching factor (21) at chance nodes.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In other words, this pruning technique allows the search tree to be exponentially smaller

than the full tree in depth (with savings about 0 ((^) D), but error is also introduced.

5.4.3 B est in the World?

On September 5th, 2003, Michael Howard posted the results of a duel between Gnubg and

Jellyfish to the r e c . games. backgammon group on UseNet.[14] Howard had the two programs

play 5,000 money games, each using their “optimal” settings. Gnubg came out the winner by

an average of 0.12 points per game. One of the Gnubg developers, Jprn Thyssen, commented

th a t the results were within his estimated 95% confidence interval of + / - 0.1 points per game

to show th a t Gnubg was clearly a stronger program. [36] While not completely shocking, it

is a strong statem ent on the strength of the Gnubg program to be able to outm atch an

expensive, “professional” backgammon program like Jellyfish.

5.5 Im plem entation Issues

Unlike Dice, backgammon is not a trivial game to implement. While the board itself can be

fairly easily represented by a two-dimensional array of integers, generating moves is rather

complicated to not only do correctly, but also efficiently.

5.5.1 M ove G eneration

There are three different stages of the game th a t change what moves are legaf: (1) when a

player is on the bar, (2) when the player has no checkers on the bar but has checkers outside

their home board, and (3) when a player has no checkers on the bar and all checkers inside

their home board. The third stage also has different rules about when checkers can be borne

off, if the player doesn’t have a checker on a point equal to one of the rolls. There is also the

situation where a player can use one but not both of their rolls, in which case the higher roll

can be used. This can be handled by always making the largest roll the first one examined,

and then slicing off part of the array of moves after all moves are generated. Avoiding

duplicating moves is also an im portant consideration because of the explosive branching

factor for some situations (like a doubles roll for a player with checkers on several different

points). Move generation is done recursively, where a single “partial move” is done at a

time (moving a single blot), and continuing until all such partial moves are completed, and

then the move is stored.

While checking for duplicate moves after they are generated is rather inefficient, a simpler

way to avoid most duplicate rolls is to ju st limit the next recursive call to applying partial

moves on or after the point from which the last partial move was made. While some double

roll moves may still be duplicated, the transposition table can take care of the m ajority of

those.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5.2 E valuation Function

Instead of going out and designing a new evaluation function, there was already one available

for use: the Gnubg codebase, which is a very strong set of trained neural networks.

While th e Dice code used an evaluation function tha t just returned a difference of pairs

(in other words, an integer), the Gnubg evaluation function returns a floating point number

(the value representing the equity of the player who just moved). Whenever search programs

use floating point numbers, there is always the risk of floating point operations having

rounding errors; even comparing two (seemingly) identical values may not result in the

expected tru th value.

To work around the uncertainty presented by floats and the continuous values they may

have, we can discretize the values by putting them onto a grid. This involves taking the

floating point number and multiplying it by a large number, and then rounding the value

to the nearest integer number. T hat integer can then be divided by the same large number

used for the multiplication. The granularity of the grid can be adjusted to meet the desired

level of precision. For backgammon, a resolution of 262144 (218) was used to discretize the

floating point numbers, to ensure a fine enough granularity without being too fine for the

floating point mantissa.

Using floating point numbers instead of integers also meant a performance hit, because

floating point operations can be much more costly than integer operations.

5.5.3 Transposition Table

The same code used for the Dice T T was used with backgammon, with one minor changes

to the T T entries: they stored double-precision floating point numbers instead of integers

for values.

5.5.4 H istory H euristic

Since the HH is usually represented by an array of moves (each entry representing the

number of times a move was chosen as best), in backgammon this representation is near­

impossible - a rough bound on the number of different moves is (25 x 6)4. The number of

possible moves in backgammon is so large than even if the HH could fit into memory (by

encoding one partial move in a byte, and using a four byte primitive), it surely would not fit

into cache. Since the HH is supposed to be a small portion of memory to modestly help with

search, using a half a gigabyte of memory is not reasonable, and we’d end up playing havoc

with the CPU’s cache. For this reason, the HH was not implemented for backgammon.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5.5 M ove Ordering and Probe

Similar to w hat was done with Dice, move ordering and probe successor selection are both

done with a different heuristic than the evaluation function. This is especially a concern

with a heavy evaluation function such as Gnubg’s. Probe successor selection in backgammon

was similar to Dice: moves tha t hit opponent blots were taken first (best quality), moves

tha t formed a point were taken second (good quality), and if no moves met either condition,

the first move was chosen. Move ordering worked a little differently. While Dice move

ordering was done by finding “quick twos” and using the same two-quality check as Probe,

backgammon move sorting was done by scoring a move based on a number of criteria: the

number of opponent checkers moved to the bar, the number of free blots it left open to hit,

and the num ber of safe points (2 or more checkers) made. These criteria remained the same

for all moves during the game.

5.5.6 N on-uniform Chance Event Probabilities

While only a single die was used in Dice and so each chance event had a uniform probability

of occurrence (|) , two dice are used in backgammon, and all combinations do not have the

same likelihood: the 1-1, 2-2, 3-3, 4-4, 5-5 and 6-6 double rolls all have the same probability

(”), bu t all other combinations have a probability of For this reason, the formulas

used to derive the equations for A and B need to be modified. Ballard talks about the

modification process in [5] but does not go into much detail. Note th a t this process doesn’t

affect Expectimax, just S ta rl and Star2.

Recall the inequality for obtaining Af.

N -

The entire left hand side of the inequality is divided by N because each of the N values

has an equal chance of occurring. For non-uniform chance probabilities, this inequality

changes to

(Pi x V\ + . . . + P j_i x V i-1) + Pi x Vi + U x (1 — Pi — . . . — Pi) < alpha (5.1)

or

A _ alpha - [/ x (1 - P i - . . . - P^) - (Pi x Vi 4 - . . . + P j_ i x V*_i) /K ^
M — " 1 1 " ~p “ ________ _

where Pi is the probability th a t the ith chance occurs, for A. B can be found similarly with

beta — L x (1 — Pi — . . . — P,) — (Pi x V) + . . . + P j- i x V)_i) . .
Bi --------------------------------------- p -- (5-3)

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We will make the substitution Y = (1 — Pi —. . . — P j), which can be computed incrementally,

where F0 = 1 and updates are made with Y* = Y i- \ — P%■ We will make another substitution

X = (Pi x Vi + . . . + Pi- 1 x which can also be computed incrementally where X i = 0

and updates are made with X ^ i = X i + Pi x Vi. We can then calculate A, and Bi with

(alpha - U x Y i - X i)
Ai = -------------py-------- — ' (5-4)

and

B i = (5 5)
* i

Note th a t when there is only one successor, A = alpha and B = beta, as desired.

We can use these equations to determine A and B for S ta rl as well as S tar2:s probing

phase. W hen calculating A and B values in Star2’s search phase, we can still use Equation

5.4 to get A, bu t for B we will need to modify Equation 3.8, and get

B , = (5.6)
* i

where W% = + . . . + W/v), the sum of the probed values for nodes not yet searched.

5.6 Experim ental Design

The same laboratory conditions used for Dice were used for backgammon experiments. The

only change is the usage of the Gnubg codebase for the evaluation function. Only the needed

object files were included, and they all were compiled with -03 optimization.

5.7 Performance

While we investigated randomly-seeded positions in Dice, th a t approach does not make sense

for backgammon, since it is difficult to generate random positions which look “reasonable”

in backgammon terms. Instead of randomly generating positions, a position database was

used. The database came from the Gnubg team, used for training the neural network.

It is comprised of several thousands of positions classified into different categories. The

contact position database was made available for experiments. The results of searching

these positions are therefore more applicable to real-world performance compared to random

positions.

500 randomly selected contact positions were used for testing. Each was searched to

depths of 1, 3 and 5 by Expectimax, S ta rl and S tar2.

Just like with Dice, there is a direct relation between time and node expansions, as the

Gnubg evaluation function is very heavy in terms of CPU usage (over 90%, much like Dice).

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CPU Time (s) vs. Position: depth 5, contact positions
1000

expectimax
start
star2

100
£0

ZD
CLO

10
krl-x'"'

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Position

Figure 5.6: Time used (s) a t d=5 for 25 contact positions

Nodes Expanded vs. Position: depth 5, contact positions
1e+08

expectimax
starl — x—
star2 —

1e+07

1e+06

— x

100000

10000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Position

Figure 5.7: Node expansions at d=5 for 25 contact positions

In Figures 5.6 (CPU time) and 5.7 (node expansions) graphed on a logarithmic scale,

we can see some variation in the amount of effort Star2 requires to complete a search at

depth=5, which reflects the variety of backgammon positions during a match. Each of

the 25 positions shown were selected at random from the Gnubg contact position database,

searched by all three algorithms, and then sorted in order of Expectim ax time. The variation

in savings for Star2 for the 25 positions goes from about 75% to about 95%. Expectimax

and S ta rl closely follow each other, where S ta rl has only a slight decrease in overall costs.

Table 5.1 summarizes the time usage over 500 positions. Star2 is clearly the most

efficient of the algorithms by over a factor of 10, but even at 21 seconds per search, this

would probably still be too slow for tournam ent play. Figure 5.8 shows average and standard

deviation of node expansions over 500 positions, graphed on a logarithmic scale.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Average Nodes Expanded vs. Search Depth: contact positions
1e+07

expectimax —
starl —
star2 —1e+06

•o 100000
~acro
& 10000
to
toTJ

Z 1000

100

3 51
Search Depth

Std. Dev. of Nodes Expanded vs. Search Depth: contact positions
1e+07

expectimax

1e+06

■o 100000
■ocea

10000
co<1>
T3

Z 1000

100

10
531

Search Depth

Figure 5.8: Average and standard deviation of node expansions over 500 contact positions

5.7.1 Probe Efficiency

Table 5.2 shows the resulting probe efficiency for using Star2 in backgammon. The results

are modest compared to some of the values seen for Dice, but backgammon has a much

larger branching factor, so deep searches are not possible. The “quick” successor selection

scheme for backgammon is also relatively weaker th an Dice’s, because backgammon is a

much more complicated game. Not only it is harder to quickly find good qualities, but i t ’s

also harder to define good qualities for backgammon positions. Still, these results are better

than Ballard’s, whose probing was never successful more than about 45% of the time. The

improvement here is probably due to better move ordering.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.1: Average time (s) over 500 contact positions
Expectimax S ta rl Star2

a a % a %
d=3 1.1 0.7 1.1 0.6 100 1.0 0.1 91
d=5 315.0 566.8 258.6 472.6 82 21.0 36.9 7

Table 5.2: Probe efficiency for Backgammon
d=3 d=5

a a
contact 68.9% 29.5% 64.2% 22.6%

5.7.2 O dd-Even Effect

Many 2-player game-playing computer programs suffer from what is called the odd-even

effect, where alternating levels of move nodes will give scores th a t are either optimistic (for

odd-ply searches) or pessimistic (for even plies). For example, a depth=1 search in any game

will tend to be optimistic, since we are only investigating the moves currently available to

us. The odd-even effect comes from the way in which an evaluation function is created,

which generally tries to score the position for the player-to-move.

Tables 5.3 and 5.4 show the results of two different trials of 3200 backgammon positions.

The positions were generated as a continuous sequence of cubeless money games, with the

computer playing for both sides. This generated a decent set of “real-world” moves for

backgammon. The table shows the average difference, absolute average difference, and

absolute standard deviation in the root node value when comparing searches of the same

positions to different depths.

Table 5.3: Root value c ifferences, over 3200 moves (A)
Average Abs. Average Abs. Std. Dev.

d = l vs. d=3
d = l vs. d=5

0.0280
0.0018

0.0336
0.0134

0.0397
0.0184

Numbers on both tables are very similar. The results show th a t the evaluation of the

root node for a d ep th = l search is very close to the evaluation for a depth=5 search, on

average. When absolute differences are used instead, d ep th = l is not as good as a predictor

for a depth=5 search, but the difference is reasonably small (only about 0.01 points).

The differences between d ep th = l and depth=3 are much more striking. Both the average

and the absolute average difference between them is nearly the same. In fact, the average

difference is positive, which means th a t the depth—3 search value is usually significantly less

than the value from a d ep th = l search.

These results show a tangible odd-even effect with the Gnubg evaluation function. Even

if searches to different depths produce different values for the root, the move chosen at

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.4: Root value differences, over 3200 moves (B)
Average Abs. Average Abs. Std. Dev.

d = l vs. d=3 0.0267 0.0328 0.0389
d = l vs. d=5 0.0014 0.0126 0.0172

52

51.5

51
<Da>
f 50.5<D
S . 50
D>
| 49.5

49

48.5

48
1 3 5

Player

Figure 5.9: Tournament results for Gnubg with no noise versus Gnubg with no noise, 18000
games per matchup

the root usually is the same across searches of different depths. This means the evaluation

function itself is very consistent between depths. These results also show th a t a d ep th = l

search value is a reasonable predictor for a depth=5 search value for the same position.

Winning Percentage vs. Player
T

5.8 Tournaments

Tournaments were set up just like with Dice to investigate how deep search impacts game

performance. Tournaments were set up between the Gnubg search function and itself, and

Star2 against itself. Since Gnubg also has a facility for adding deterministic noise to an

evaluation, different noise settings were also investigated.

While we saw th a t deep search was beneficial for tournam ent performance in Dice, this

was not evident in backgammon. Figure 5.9 shows the results of Gnubg playing against

itself a t different depth settings. These graphs are the same type from the previous chapter.

On each graph, lines represent depth settings from d ep th = l to depth=5. The line is then

compared against an opponent on the x-axis, and the winning percentage for the player

represented by th a t line is shown on the y-axis. A player searching to the same depth as its

opponent has the same performance and so crosses the 50% winning percentage line where

the two players’ settings are identical.

We can see from the graph th a t a depth=5 barely shows any significant improvement

over shallower searches. In fact, the three depth settings are nearly identical. This suggests

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Winning Percentage vs. Player
53

52

I 50-
03

I * ’
48

47
1 3 5

Player

Figure 5.10: Tournament results for S tar2 with no noise versus Star2 with no noise, 4000
games per matchup

th a t deeper searches are only finding better moves a small fraction of time, which suggests

th a t the three searches are choosing the same move just about every time. T hat means the

Gnubg evaluation function must be extremely consistent between depth levels.

Figure 5.10 shows Star2 performance when playing against itself, in the same manner as

Figure 5.9. Deep search is still p retty much irrelevant using the Gnubg evaluation function

as-is.

Since the evaluation function is so consistent, results were also desired for a less consistent

setting. Instead of developing a new evaluation function, noise can just be added to the

evaluation function. Gnubg has a built-in noise generator already, which can add either

deterministic or non-deterministic noise to each evaluation. Since it is highly desirable

th a t the evaluation for a state be always deterministic, especially when transpositions are

possible, another tournam ent using deterministic noise was added. Only a modest amount

of noise was added, consistent with an “Interm ediate” level of play for Gnubg. Figure 5.11

shows tournament results in an identical manner to the previous two graphs. Now, deeper

search is paying off to a significant degree; a d ep th = l search now loses to a depth=5 search

65% of the time. D ep th = l fares slightly better against depth=3 at about 42% winning

percentage. Depth=5 wins slightly less than 55% of the time against depth=3, but it is still

a tangible amount.

Deep search helps to m itigate bad evaluation functions by adding more foresight to the

move decision process. Adding deterministic noise to the Gnubg evaluation function shows

th a t deep search becomes im portant again in backgammon.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Winning Percentage vs. Player

1 3 5
Player

Figure 5.11: Tournament results for Star2 with n=0.0300 versus Star2 with n=0.0300, 1000
games per matchup

5.9 Conclusions

As with Dice, Star2 and S ta rl both outperform Expectimax on single position searches.

Star2 has a significant savings in costs even at depth=5, mostly due to the explosive branch­

ing factor inherent in backgammon. Gnubg’s evaluation function is as heavy as the one used

in Dice, which means th a t performance is strongly linked to eliminating as many leaves as

possible.

Unlike Dice, strong cubeless money game tournam ent performance is not linked with

deep search. The Gnubg evaluation function is sufficiently well-trained and consistent tha t

searches to increasing depths almost always choose the same move a t the root. When the

searches do not agree on the best move it is usually because they are searching a tactical

position. But even the occurrence of tactical positions is relatively infrequent, and the

benefits of deep search in these situations is usually washed away by the randomness of the

dice rolls.

Gnubg’s forward-pruning search method works very well for its evaluation function,

since the best move candidate at the root is unlikely to change much from one iteration to

the next. Deeper search catches some tactical errors in some situations, but since tactical

situations can be thrown completely askew by a single lucky roll, deep search doesn’t pay

huge dividends.

5.10 Future Work

W ith an excellent evaluation function such as Gnubg’s set of neural networks, checker play

is virtually perfect, even with shallow search. However, since backgammon matches are

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

generally played with a doubling cube, and cube decisions are usually the most important

part of the game, this work should be extended to cubeful games and cube decisions. Being

able to see even a couple of ply deeper in these situations can make or break a player’s

chances of winning.

New evaluation functions should also be considered. The Gnubg evaluation function

is much heavier (about 21,000 evals per second on an Athlon 1800) relative to evaluation

functions for many other games. Faster methods may prove useful combined with deep

search, like, for example, using a GLEM-based evaluation approach[10]. If the amount of

evaluations per second could be increased into the range of a million, full 3-ply (depth=7)

searches should be possible.

Since Star2 is so reliant on successful probing, a more powerful Probe function would

also increase performance. Right now P ickS uccesso r uses some ad-hoc rules about good

backgammon play for quickly choosing a child, but there are perhaps better techniques for

making this decision.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusions

This thesis involved the application of the *-Minimax algorithm, which allows for backward

pruning in game trees with chance nodes, to two games: Dice and backgammon. Both

S tarl and Star2 were applied versus Expectimax, the baseline algorithm for game trees

with chance nodes. Single searches of positions as well as tournam ents were run, in order

to investigate the effectiveness of the algorithms in reducing search costs in either domain,

as well as to see if deep search makes a positive impact on performance.

6.1 D ice

Overall, we saw th a t S ta rl does outperform Expectimax, but generally by not more than

a modest linear factor. Star2 outperforms both Expectimax and S ta rl, usually by a large

factor. In Dice, we saw th a t a small branching factor resulted in relatively weak performance

from Star2, but as the branching factor increased, so did the effectiveness of Star2, from

a 50% reduction on a 5 x 5 board up to more than 90% reduction in costs on a 17 x 17

board. We also saw a strong correlation between node expansions and time used, stemming

mainly from the fact th a t when an evaluation function is sufficiently heavy, nearly all CPU

time will be spent evaluating nodes. Tournament performance in 7 x 7, 4-in-a-row Dice was

strongly reliant on seeing a t least 3 plies deep (depth=5), bu t deeper search did not really

m atter. We saw th a t Star2 is reliant on proper probe selection to ensure high efficency, and

tha t move ordering is an im portant consideration for reducing node expansions and time,

and raising probe efficiency.

6.2 B ackgam m on

In backgammon, we used a strong, open-source codebase in GNU Backgammon to develop

a backgammon program capable of playing cubeless money games. We saw how even at a

small depth, the large branching factor of backgammon created gigantic search trees for Ex­

pectimax. We also saw tha t Star2 reduced the search costs by about 90% at depth=5, which

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

resulted in significant savings. Curiously, we also saw th a t, using GNU Backgammon’s eval­

uation functions as-is, there was no great improvement in tournam ent performance when

doing a d e p th = l search versus a depth=5 search, whether using Star2 or GNU Backgam­

m on’s own forward pruning-based search routine. However, with the introduction of even a

small am ount of deterministic noise into the evaluation, deep search had a positive impact

on performance once again.

6.3 Future Work

Extending the Dice game to different board sizes and winning combination lengths should be

investigated, as well as creating a better evaluation function. A game based on Gomoku or

Connect-4 would provide an interesting counterpoint to those two games, which are already

solved.

Checker play in backgammon seems relatively trivial, since heavy analysis of even the

most tactical positions often becomes meaningless thanks to lucky dice rolls for either side.

Still, cubeful play remains an im portant area to be investigated, because of the great impact

good cube handling has on overall performance in m atch play. Combined with appropriate

use of forward-pruning in backgammon, *-Minimax may also provide some incremental

improvements in play from deeper search.

There are other perfect-information stochastic games which could benefit greatly from

the use of *-Minimax search. One excellent domain would be the German tile-laying game

Carcassonne. While there is only one real computer version of the game, produced by KOCH

Media (h ttp :/ /w w w .c a rc a s s o n n e -o n lin e .d e /), newer programs could definitely provide

some competition and renewed interest. One good reason why *-Minimax may work well

in this domain is because of the endgame play in Carcassonne. Often games are very close

leading up to the final few tiles to be played, and games often slow down significantly when

players do not see immediate “good” moves to play. In this case, being able to see a line of

play from even five or six tiles out could result in expert play. Because computers can also

keep track of which tiles have been played better th an humans, a computer player could

also avoid many of the pitfalls which plague humans. However, since the branching factor

a t chance nodes after the root starts at 40 (when using the most common expansion tileset,

Inns & Cathedrals), some form of statistical sampling may be required to jum pstart the

computer player. O ther games like Paris-Paris (where the branching factor at move nodes

is at most 3 for a 2-player game, but the branching factor at chance nodes can be as high as

35 choose 3) would use *-Minimax in the same way: primarily for mid- to end-game play,

after the board begins to take form.

The *-Minimax algorithms seem to also be applicable to MDPs, especially in the area

of multi-agent MDPs. While solving MDPs usually involves an Expectimax-type evaluation

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.carcassonne-online.de/

of states one step away during value iteration, perhaps th a t component could be changed

to a depth-iV search of states, where the action at any given state would be determined by

the current policy at that iteration. This may produce quicker convergence, or in the case

of m ulti-agent MDPs, a better method for choosing actions that lead to higher rewards.

A general approach to solving games th a t combine elements of skill and chance will

remain an open research problem for a while to come, but they provide some of the most

interesting domains as they often have elements at which computers excel but humans don’t

(optim ization, uncertainty calculation), and vice-versa (long-term planning, opponent mod­

eling). Games tha t combine skill, chance, imperfect information and opponent interaction

are the m ost difficult domains for computers, so cross-disciplinary approaches involving

combining elements of heuristic search, machine learning, agent theory, game theory and

even psychology may prove the most fruitful in the years to come.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] Victor Allis. A Knowledge-based Approach of Connect-Four. M aster’s thesis, Vrije

Universiteit, October 1988.

[2] GNU Backgammon (backgammon software), http://w w w .gnubg.org/.

[3] Jellyfish (backgammon software), http://jelly .effect.no/.

[4] Snowie (backgammon software), http://w ww .bgsnowie.com /.

[5] Bruce W. Ballard. The *-Minimax Search Procedure for Trees Containing Chance

Nodes. Artificial Intelligence, 21(3):327-350, 1983.

[6] H. Berliner. Backgammon Computer Program Beats World Champion. Artificial In ­

telligence, 14:205-220, 1980.

[7] Darse Billings, Aaron Davidson, Jonathan Schaeffer, and Duane Szafron. The Challenge

of Poker. Artificial Intelligence Journal, 134(l-2):201-240, 2002.

[8] Michael Buro. ProbCut: An Effective Selective Extension of the Alpha-Beta Algorithm.

ICCA Journal, 18(2):71-76, 1995.

[9] Michael Buro. The Othello M atch of the Year: Takeshi Murakami vs. Logistello. ICCA

Journal, 20(3):189-193, 1997.

[10] Michael Buro. From Simple Features to Sophisticated Evaluation Functions. In H. J.

van den Herik and H. lida, editors, Proceedings of the First International Conference on

Computers and Games (CG-98), volume 1558, pages 126-145, Tsukuba, Japan, 1998.

Springer-Verlag.

[11] M atthew L. Ginsberg. GIB: Imperfect Information in a Computationally Challenging

Game. Journal of Artificial Intelligence Research, 14:303-358, 2001.

[12] R.D. Greenblatt, D.E. Eastlake, and S.D. Crocker. The Greenblatt Chess Program. In

Fall Joint Computer Conference 31, pages 801-810, 1967.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.gnubg.org/
http://jelly.effect.no/
http://www.bgsnowie.com/

[13] P. E. Hart, N. J. Nillson, and B. Raphael. A Formal Basis for the Heuristic Determina­

tion of Minimum Cost Paths. IE E E Transactions on Systems Science and Cybernetics,

4(2):100-107, 1968.

[14] Michael Howard. The Duel, August 5, 2003. [Online] rec.games.backgammon.

[15] D. Knuth and R. Moore. An Analysis of Alpha-Beta Pruning. Artificial Intelligence,

6(4):293-326, 1975.

[16] R. E. Korf. Iterative-deepening A*: An optimal admissible tree search. In Proceedings

of the Ninth International Joint Conference on Artificial Intelligence, pages 1034-1036,

1985.

[17] Allis L.V., van den Herik H .J., and Huntjens M.P.H. Go-Moku Solved by New Search

Techniques. In Proceedings of the 1993 A A A I Fall Symposium on Games: Planning

and Learning, pages 1-9, 1993.

[18] D. Michie. Game-playing and game-learning autom ata. In L. Fox, editor, Advances in

Programming and Non-Numerical Computation, pages 183-200. Pergamon, New York,

1966.

[19] M artin Mueller. Computer Go. Artificial Intelligence, 134(1-2):145-179, 2002.

[20] M. Newborn. Kasparov versus Deep Blue: Computer Chess Comes of Age. Springer-

Verlag, 1997.

[21] John W. Romein and Henri E. Bal. Solving the Game of Awari using Parallel Retro­

grade Analysis. IEEE Computer, 36(10) :26-33, October 2003.

[22] S tuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice

Hall, 1995.

[23] Arthur L. Samuel. Some studies in machine learning using the game of checkers. IB M

Journal of Research and Development, 3(3):210-219, July 1959.

[24] Jonathan Schaeffer. The History Heuristic and the Performance of Alpha-Beta

Enhancements. IE EE Transactions on Pattern Analysis and Machine Intelligence,

11(11):1203—1212, 1989.

[25] Jonathan Schaeffer. One Jump Ahead: Challenging Human Supremacy in Checkers.

Springer-Verlag, 1997.

[26] Jonathan Schaeffer, Yngvi Bjornsson, Neil Burch, Rob Lake, Paul Lu, and Steve Sut-

phen. Building the Checkers 10-Piece Endgame Databases. 10th Advances in Computer

Games (ACG), November 2003. To appear.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[27] Brian Sheppard. Towards Perfect Play of Scrabble. PhD thesis, Universiteit Maastricht,

July 2002.

[28] D. Slate and L. Atkin. Chess 4.5: The Northwestern University Chess Program. In

P. Rey, editor, Chess Skill in Man and Machine, pages 82-118. Springer Verlag, New

York, 1977.

[29] Michael Strato. The history of backgammon, http://www.gam m onvillage.com /.

[30] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: A n Introduction.

MIT Press, Cambridge, MA, 1998.

[31] Gerald Tesauro. Neurogammon: A neural-network backgammon learning program. In

Heuristic Programming in Artificial Intelligence, pages 78-80, 1989.

[32] Gerald Tesauro. Temporal Difference Learning and TD-Gammon. Communications of

the ACM, 38(3), March 1995.

[33] Gerald Tesauro. Programming Backgammon Using Self-Teaching Neural Nets. Artificial

Intelligence, 134(1-2):181-199, 2002.

[34] R. Thomas and K Hammond. Java Settlers: A Research Environment for Studying

Multi-Agent Negotiation. In Proceedings of Intelligent User Interfaces, pages 240-240,

2002 .

[35] Ken Thompson. Advances in Computer Chess 3, chapter Computer Chess Strength,

pages 55-56. Pergamon Press, 1982. edit. M.R.B. Clarke.

[36] Jprn Thyssen, 2003. Personal Communication.

[37] A. L. Zobrist. A new hashing method with applications for game playing. Technical

report, Departm ent of Computer Science, University of Wisconsin, Madison, 1970.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.gammonvillage.com/

A ppendix A

N egam ax Formulation o f Search
Functions

A .l N egam ax Formulation of A lpha-Beta

Most game programs do not use the regular form of Alpha-Beta (described back in Figure

2.4), because enforcing the evaluation function to always report a value in terms of the

root player is non-intuitive. There really isn’t any difference between the code for Min

nodes and the code for Max nodes, except they are doing things oppositely, because the

evaluation function gives scores relative to the root player. However, if we change our

evaluation function to always score a node based on the player-to-move, then every node in

the search becomes a Max node; either the first player is maximizing, or the second player

is maximizing. If the layers of Max and Min nodes strictly alternate, then a backed up

value simply needs to be negated by the parent node, since what is good for the opponent

is bad for th a t player, and vice-versa. The last thing we need to do is think about the

alpha and beta values for the window. Since the original implementation adjusts only the

alpha values for Max nodes, and since the next level down is for the opposite player, we will

therefore swap and negate the values of alpha and b eta when we pass them down to the

child. By negating every returned value, eliminating the is_max_node branch, and swapping

the alpha and beta window bounds, we end up with the Negamax formulation of Alpha-Beta

as described in [15] in Figure A.I.

A .2 Negam ax Formulation of E xpectim ax, S tarl and
Star 2

Now th a t we have adjusted the formulation for Alpha-Beta, we need to adjust the algorithms

used at chance nodes. First, we notice tha t since the children of a chance node in a regular

*-Minimax tree will be for the same player (the chance node may ju st represent the player

throwing dice, but they still haven’t moved), so we don’t need to adjust the return values

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

float nAlphaBeta(Board board, float alpha, float beta, int depth) -[
if (terminal (board) II depth == 0) return (evaluate (board)) ;

N = numSuccessors(board);
score = -INFINITY;
for(i = 1; i <= N; i++) {

v = -nAlphaBeta(successor(board,i), -beta, -alpha, depth-1);
if(v > score) score = v;
if (score > alpha) alpha = score;
if (alpha >= beta) return (score);

}

return (score);
>

Figure A .l: Negamax formulation of the Alpha-Beta algorithm

from the Min or Max nodes at all. We also don’t want to change the order of the alpha or

beta values since, again, the player hasn’t changed yet. For Expectimax, nothing needs to

change; we can use the same code. For S ta rl, nothing needs to change either, since S tarl

is already “agnostic” about what types of nodes proceed it. However, Star2 needs to be

changed. Since we are always trying to maximize at each step, we simply need a single

version of Star2 for chance nodes followed by Max nodes, the implementation of which is

shown in Figure A.2. This implementation assumes search in regular *-Minimax trees, so

the call to se a rc h can be replaced with a call to nAlphaBeta_MM, a negamax version of

Alpha-Beta which will call n S ta r2 instead of itself. A new version of Probe is also needed,

nProbe, which will ju st be ProbeJMax, except it will call nAlphaBeta_MM. Most of this code

should already be present in the form of the version of Star2 for chance nodes followed by

Max nodes, Star2_Max.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

float nStar2(Board boaxd, float alpha, float beta, int depth) {
if (terminal (board) II depth == 0) return (evaluate (board)) ;
N = numSuccessors(board);
/* Initialization */
A = N*(alpha-U);
B = N*(beta-L);
AX = max(A, L);
/* Probing phase */
for(i = 1 ; i <= N; i++) {

B += L ;
BX = min(B, U) ;
w[i] = nProbe(successor(board,i), AX, BX, depth-1);
if(w[i] => B) return (beta);
B -= w[i] ;

>
/* Search phase */
vsum = 0;
for(i = 1; i <= N; i++) {

A += U;
B += w[i] ;
AX = max(A, L);
BX = min(B, U) ;
v = nAlphaBeta_MM(successor(board,i), AX, BX, depth-1);
if(v <= A) return (alpha);
if(v >= B) return (beta);
vsum += v;
A -= v;
B -= v;

>
return (vsum/N);

Figure A.2: Negamax formulation of the Star2 algorithm

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix B

D ice

Table B .l: Tournament results for 4-in-a-row on a 7x7 board, 18,000 games per matchup
d = l d=3 d=5 d=7 d=9

1 * 51.83% 63.52% 64.32% 65.40%
3 48.17% * 61.82% 62.63% 63.78%
5 36.48% 38.18% * 50.54% 52.12%
7 35.68% 37.37% 49.46% * 51.83%
9 34.60% 36.22% 47.88% 48.17% *

Table B.2: Probe efficiency for Dice
d=3 d=5 d=7 d=9

A4 a A4 a A4 a A4 a
5x5
7x7
9x9

11x11
13x13
15x15
17x17

66.8%
75.0%
79.3%
82.0%
83.1%
85.1%
85.4%

17.3%
13.3%
11.9%
10.2%
10.1%

8.1%
9.0%

48.4%
53.9%
57.5%
59.8%
62.2%
63.2%
64.8%

7.7%
8.4%
9.2%

10.2%
11.3%
11.3%
12.3%

48.4%
59.4%
66.5%
71.1%
73.9%
77.4%
79.8%

5.8%
5.5%
5.4%
6.2%
7.7%
8.1%
7.7%

47.4%
58.1%
64.9%
69.1%

3.3%
3.5%
3.7%
4.3%

d = l l d=13 d=15
A4 a A4 a a

5x5
7x7
9x9

11x11
13x13
15x15
17x17

46.8%
57.1%

3.1%
3.1%

47.8% 2.6% 46.1% 2.8%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.3: Average time (s) for board size of 5x5, over 500 positions
Expectimax S ta rl Star2

a fl | <T % a %
d = l l
d=13
d=15

5.5
38.1

365.6

2.7
24.4

335.4

4.5
34.3

333.7

2.2
22.2

298.7

82
90
91

3.2
25.4

194.9

1.5
17.0

170.8

58
67
53

Table B.4: Average node expansions for board size of 5x5, over 500 positions
Expectimax S ta rl Star2

<7 a % V <T %
d—1 4 1 4 1 100 4 1 100
d=3 118 24 109 22 92 85 17 72
d=5 2397 634 2024 528 84 1239 317 52
d=7 42073 13910 32154 10706 76 14445 4626 34
d=9 412521 165125 327932 134161 79 169668 62070 41

d = l l 3485102 1692682 2796416 1372936 80 1498603 694405 43
d=13 23860669 15444789 21437750 13979997 90 12175740 7850960 51
d=15 230937374 213184303 210644039 190750225 91 95343501 81808390 41

Table B.5: Average time (s) for board size of 7x7, over 500 positions
Expectimax S ta rl Star2

I1 a fJ- a % M a %
d=7
d=9

d = l l

1.1
20.9

483.0

0.3
6.2

195.9

1.0
15.8

356.9

0.1
5.3

157.3

91
76
74

1.0
5.8

97.6

0.0
2.5

45.9

91
28
20

Table B.6: Average node expansions for board size of 7x7, over 500 positions
Expectimax S ta rl Star2

V a V a % V a %
d = l 6 1 6 1 100 6 1 100
d=3 299 54 276 49 92 161 38 54
d=5 12114 2648 10196 2327 84 3871 965 32
d=7 448736 117863 339354 98614 76 85446 31527 19
d=9 9109391 2904555 6940886 2464782 76 1878648 770055 21

d = l l 208791749 91060266 155518292 72987326 74 31680234 14846272 15

Table B.7: Average time (s) for board size of 9x9, over 500 positions
Expectimax S ta rl Star2

V a V a % (J- a %
d=7
d=9

8.6
314.7

1.8
80.5

6.4
230.9

1.7
74.0

74
73

1.5
45.4

1.1
26.5

17
14

Table B.8: Average node expansions for board size of 9x9, over 500 positions
Expectimax S ta rl Star2

a a % a %
d = l 8 1 8 1 100 8 1 100
d=3 605 93 563 86 93 260 62 43
d=5 40632 7488 34223 6856 84 9103 2004 22
d=7 2556033 560494 1908067 511270 75 307370 138409 12
d=9 91955795 25388492 68103347 23112399 74 10166029 5389658 11

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.9: Average time (s) for board size of 11x11, over 500 positions
Expectimax S tarl Star2

a jU a % V a %
d=7 45.7 7.6 34.3 7.2 75 5.2 2.8 11
d=9 2964.8 661.3 2088.3 597.7 70 240.5 160.5 8

Table B.10: Average node expansions for board size of 11x11, over 500 positions
Expectimax S ta rl Star2

M a a % a %
d = l 9 1 9 1 100 9 1 100
d=3 1073 154 1008 142 94 386 90 36
d=5 108631 18168 92663 17124 85 18791 4076 17
d=7 10440509 2008884 7901976 1879951 76 931700 505976 9
d=9 674004977 172284142 478594692 152279828 71 43650330 28791026 6

Table B .ll: Average time (s) for board size of 13x13, over 500 positions
Expectimax S tarl Star2

V a a % a %
d=5
d=7

1.4
190.3

0.5
27.2

1.2
143.8

0.4
27.0

86
76

1.0
15.4

0.0
8.7

71
8

Table B.12: Average node expansions for board size of 13x13, over 500 positions
Expectimax S ta rl Star2

a a % M a %
d = l
d=3
d=5
d=7

11
1742

247808
33770133

1
224

36386
5639624

11
1643

212209
25635916

1
211

34752
5446810

100
94
86
76

11
555

35024
2251628

1
162

8590
1329830

100
32
14

7

Table B.13: Average time (s) for board size of 15x15, over 500 positions
Expectimax S ta rl Star2

a I1 <7 % a %
d=5
d=7

3.6
663.5

0.6
88.0

3.1
499.0

0.6
91.8

86
75

1.0
39.7

0.0
26.9

28
6

Table B.14: Average node expansions for board size of 15x15, over 500 positions
Expectimax S ta rl Star 2

a a % I1 (7 %
d = l
d=3
d=5
d=7

13
2662

•504294
92105475

1
301

65459
13688189

13
2525

432390
69644237

1
287

65444
14109164

100
95
86
76

13
722

58704
4685333

1
174

13254
3303548

100
27
12
5

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.15: Average time (s) for board size of 17x17, over 500 positions
Expectimax S ta rl Star2

P a V a % P a %
d=5 8.9 1.2 7.6 1.1 85 1.1 0.5 12
d=7 2114.7 275.8 1598.4 282.5 76 102.0 75.1 5

Table B.16: Average node expansions for board size of 17x17, over 500 positions
Expectimax S ta rl Star 2

a M a % a %
d = l
d=3
d=5
d=7

14
3795

925415
218749807

2
429

115862
30405596

14
3617

797480
166155134

2
411

114984
31485764

100
95
86
76

14
942

94260
9113269

2
259

23966
6810862

100
25
10
4

Table B.17: Average node expansions for different move orderings for board size of 11x11,
over 500 p o s itio n s ______________ ___

d=3 ta
­ ll O
l II"O d=9

a a a A* a

none
random

static
quick

469
443
367
386

153
134
82
90

25184
23224
16324
16602

9322
7703
3863
3886

1889848
1794483
1443771
1437847

898560
765833
525432
520116

136621337
140430139
111554612
109955050

60848820
58851717
42970424
42504397

Table B.18: Average time (s) for different move orderings for board size of 11x11, over 500
positions _________ ___________ ______________

d=7 d=9
a M a

none
random

static
quick

8.1
7.8
8.4
6.5

3.9
3.4
4.6
2.5

595.8
616.3
582.1
495.3

262.4
254.9
263.7
193.8

Table B.19: Probe efficiency for different move orderings for board size of 11x11, over 500
positions ________________ _______________

d=3 d=5 d= 7

CT>11

cr P a IX a a
none

random
static
quick

63.6%
69.8%
85.4%
82.0%

24.2%
18.9%
8.1%

10.2%

60.7%
67.6%
95.7%
93.3%

12.9%
9.3%
2.7%
3.3%

61.0%
68.1%
96.0%
93.5%

10.9%
7.0%
1.7%
2.5%

59.7%
67.4%
95.5%
91.5%

9.9%
6.2%
1.8%
2.8%

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix C

B ackgammon

Table C .l: Average node expansions over 500 contact positions
Expectimax S ta rl Star2

a a % <7 %
d = l
d=3
d=5

33
12287

6478981

51
17020

11122146

33
11372

5297752

51
15602

9261568

100
93
82

33
3544

526042

51
4668

860694

100
29

8

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table C.2: Tournament results for Gnubg with no noise versus Gnubg with no noise, 18000
games per m atchup

1 3 5
1 * 50.92% 51.79%
3 49.08% * 51.63%
5 48.21% 48.37% *

Table C.3: Tournament results for Star2 with no noise versus Star2 with no noise, 2000
games per m atchup ________ ________ _________

1 3 5
1 * 50.60% 51.60%
3 49.40% * 52.52%
5 48.40% 47.48% *

Table C.4: Tournament results for Star2 with n=0.0150 versus Star2 with n=0.0150, 1000
games per matchup _ _ _ ________ _________________

1 3 5
1 * 55.53% 54.67%
3 44.47% * 51.57%
5 45.33% 48.43% *

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table C.5: Tournament results for Star2 with n=0.0300 versus Star2 with n=Q.0300,
games per matchup _______________________________

1 3 5
1 * 59.00% 64.20%
3 41.00% * 53.40%
5 35.80% 46.60% *

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

