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ABSTRACT

A new method of analyzing the surface electromyogram (SEMG) has been
developed, in which each SEMG is characterized by a single "representative surface motor
unit action potential” (RSMUAP). This method is based upon modelling the SEMG as the
output of a linear time-invariant system that has an impulse response equal to the
RSMUAP. The RSMUAP can then be recovered from the SEMG using a technique
called bicepstral deconvolution. Bicepstral deconvolution is a homomorphic method of
separating signals that is based upon the bispectrum. Using the bispectrum, rather than the
power spectrum is required for a non-minimum phase estimation of the RSMUAP. The
bispectrum has the added benefit of being zero for Gaussian signals, making it well suited
for analyzing noisy data. Simulations indicate that this new method of SEMG analysis
should be effective for detecting the progression of myopathy.
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Chapter 1
Introduction

The Motor Unit Action Potential (1]

Nerve cells transmit information via the propagation of action potentials along the
axon of the cell. A "sodium pump" inside nerve and muscle cell membranes pumps
sodium ions out of the cell, leaving the inside of the cell ata resting potential of about
-70mV, relative to intercellular space. When the cell is stimulated, raising the membrane
potential above a threshold of roughly -60mV, an irreversible process known as an action
potential begins. Sodium channels in the cell membrane open and allow an influx of Nat
ions which raises the membrane potential rapidly to about +25mV -- a process known as
depolarization. This rise in potential is then thwarted by opening potassium channels
which allow an efflux of K* ions, and repolarization begins. Closing of the sodium
channels then speeds repolarization, which is followed by a small hyperpolarization (i.e.,
membrane potential falling below the resting potential) due to the potassium channels
remaining open for a short time. Action potentials are self-propagating, and, in the case of
efference, travel from the brain, along nerve axons, to muscle cells.

Skeletal muscle fibres (muscle cells are usually called fibres due to their long, thin
shape) extend in parallel between the tendons, which attach the muscle to the skeleton.
Each muscle fibre is innervated by one efferent motor neuron, while each motor neuron
innervates many muscle fibres. The efferent nerve axons (motor neurons) that innervate
the muscle divide into many terminal buttons, each of which forms a neuromuscular
junction with a muscle fibre at a location referred to as the end-plate. One motor neuron
and all the muscle fibres that it innervates comprise a motor unit (MU) -- the smallest
voluntarily contractile unit of muscle. When a motor neuron is stimulated, an action
potential travels to all the muscle fibres of its motor unit. Each of these muscle fibres is
then stimulated, and generates its own single fibre action potential (SFAP) and contractile
force. Due to the varying distances from the motor neuron to each muscle fibre, the
SFAPs of a single MU are not precisely simultaneous, but they are synchronized, as they
are all generated from the same efferent signal. The result of the synchronous firing of all
the SFAPs of a given MU is a summated signal called a motor unit action potential



(MUAP). Each MU produces a unique and consistent (i.e., always having the same
morphology for a given measuring technique) MUAP.

The morphology of the MUAP is dependent upon the physical structure of the
muscle from which it is generated and the manner in which it is measured. Under
pathological conditions some of the physical properties of muscle become altered and
consequently affect the MUAP. Muscle diseases are numerous, but two broad categories
of disorders can be identified: myopathies and neuropathies. Myopathic disorders directly
disable muscle fibres, while neuropathies damage motor neuror.< and the debilitating effect
on the muscle fibres is secondary.

In 1954, Buchthal et al. 2] characterized the electrical response of muscle by the
mean values of duration, amplitude, and shape of MUAPs. The quantification of shape
was by the number of deflections across the base line; MUAP shape thus being described
as monophasic, biphasic, triphasic, tetraphasic, or polyphasic. Other characterizations of
the MUAP, such as area, amplitude:area ratio, and number of turns (similar to phases, but
including all turns, not just those that cross the baseline) have also been used [3]. Various
combinations of Buchthal's and others' parameters have proven to be effective for
pathological classification, as well as being easy to measure and quantify.

In a study to separate myopathic from neuropathic cases of muscle wasting and
weakness, Buchthal showed strong correlation between increased mean duration and/or
increased polyphasic activity and several types of muscular dystrophy [4]. Continuing
work from these results, Kopec [s] used the Buchthal parameters to characterize
myopathy, neuropathy, and motor neuron disease. For each case the analysis was done on
four groups of muscles: biceps, quadriceps, interosseus, and tibialis. In the myopathic
cases the mean duration and mean amplitude decreased, while the polyphasic activity
increased. Patients with motor neuron disease showed increases in mean duration,
amplitude and the number of polyphasic MUAPs. Finally, an increase in both mean
duration and polyphasic activity was shown to be significant in cases of peripheral
neuropathy. Most recently, Stewart et al. [¢] have studicd the effectiveness of all the
above MUAP characteristics, with reference to automatic analysis of neuropathy and
myopathy. The findings showed the turns count and area:amplitude ratio to be useful, and
concluded that quantitative MUAP analysis may be particularly useful in studying the
progression of nerve and muscle diseases.



Electromyography

Electromyography is the study of the electrical signals of skeletal muscle, and in a
clinical setting the signal is referred to as the electromyogram (EMG). EMG studies are
done in several ways, for several purposes. In nerve conduction studies, EMG involves
stimulation of a nervz with an electrical impulse, and measurement of the corresponding
MUAP at the muscle. Most EMG studies though are done using voluntary contraction,
instead of electrical stimulation. Of these studies, two general measurement methods are
used: needle electrode and surface electrode.

Needle electrodes are used to measure from a single or a small number of motor
units. The needles can be either monopolar or bipolar (concentric), and are often coated
with Teflon, except at the tip, to provide a highly localized measurement. It has been
generally accepted, and well noted that the measurement of individual MUAPs via needle
electrode is the necessary procedure for the diagnosis of or following the progression of
neuromuscular disorders [7,8,3].

The assessment of needle electrode signals is often purely qualitative. The signal is
displayed on an oscilloscope and simultaneously transmitted through a loudspeaker |7].
An electromyographer is trained to identify various characteristic wave forms by the
sounds they generate; however, interpreting these sounds and forming a diagnosis requires
a great deal of experience. Therefore, this qualitative assessment is not easily standardized
or transferable.

Procedures have been developed for quantifying the needle EMG; however, the
primary problem with quantification systems is the overlap of the activity from different
MUAPs. Some quantification techniques avoid this problem entirely, by performing what
shall be defined as "gross" data processing. That is, no attempt is made to isolate the
MUAPs. Instead, the features of the raw signal or of the power spectrum, are calculated
and quantified. Willison's method, based on turns count and amplitude recording, was
developed in 1964 [s]. Since then, zero-crossing, mean and median frequency, and the
integrated signal have been correlated to various neuromuscular disorders [3]. Some



success has been found with gross methods, but the advantage of using the needle is lost
because the individual MUAPs are not examined.

As opposed to gross data processing, "decomposition” methods attempt to extract
and analyze individual MUAPs. As mentioned earlier, the MUAP is the most fundamental
piece of EMG data, and, therefore, has the best potential as a diagnostic tool. Because the
needle EMG yields motor unit action potential trains (MUAPTS) decomposition is usually
done by detecting and isolating single MUAPs. The simplest s, tems produce hard-copies
of the raw wave form, and MUAPs are identified visually. This type of manual
identification of MUAPs is very slow, and is not highly effective because it can be difficult
to identify individual MUAPs from raw data. More efficient MUAP identification can be
done with computerized systems.

One such system was described and validated in 1985, by K.C.McGill [10].
ADEMG (Automatic Decomposition EMG), as it was named, is a computer program that
can isolate up to 15 simultaneously active MUAPs, through the use of either a first or
second order difference equation. This accentuates the MUAPs and allows two close
spikes to be distinguished. McGill's system also includes an algorithm to characterize and
classify MUAPs, and, as noted, there is a great deal of information available relating
MUAPs to neuromuscular disorders [s,10,11]. ADEMG, however, makes no attempt to
separate superimposed MUAPs and, therefore, is effective only for contractions up to
about 30% maximum voluntay contraction (MVC), when the degree of interference
between difterent MUAPs becomes significant. This illuminates a serious limitation to the
decomposition of needle EMG. The number of MUs recruited at a given point in time is
dependent upon the level of contraction. It is not until about 75% MVC that nearly all the
MU are firing [12] at which point degree of interference is very high. Therefore,
performing EMG tests at low levels of contraction will limit interference, but will also
limit the scope of the data (i.e. reflecting information from fewer MUs).

Aside from the limited recruitment problem, needle EMG also reflects a limited
number of SFAPs at a given time. A needle electrode will only pick up action potentials
from muscle fibres lying within about 1mm of the needie tip [13]): This will likely only
include 4 or 5 muscles fibres from a given MU. Therefore, if a MUAP is measured using
an indwelling electrode, its shape is highly dependent upon the position of the electrode
with respect to the muscle fibres, as the fibres nearer to the electrode will have a much



greater effect on the measured signal than the more distant fibres. Slight variations in the
electrode placement result in great variation in the MUAP shape. The effective measuring
radius of a concentric tip needle electrode is less than 1mm, while the cross sectional
radius of the region of muscle containing all the fibres of a particular MU is 5-10mm [14].
Therefore, the MUAP measured from a needle electrode reflects less than 125t 1o
1/100th of a given MU's muscle fibres. As a consequence, a thorough needle EMG
examination may involve as many as twenty needle insertions.

This high degree of invasiveness means that a specialist is required to conduct the
test (as proper needle insertion is critical both for the validity of the test and the safety of
the patient), and needle EMG is painful for the patient and traumatic to the muscle. This
is an especially significant drawback when the EMG tests are to be repeated regularly to
help track the progression of a disease. A non-invasive EMG procedure, which can be
performed by a non-specialist with computerized data processing, will allow for an
efficient and standardized EMG, and less discomfort for patients.

The Surface EMG

Electromyographic data can be measured non-invasively from the surface of the
skin. The resulting signal is the surface elecromyogram, herein referred to a the SEMG.
SEMG data aquisition is appealing for the obvious reason that it is non-invasive although
it possesses several other positive attributes as well. Its non-invasive, painless nature
makes it ideal for following the progression of a disease with repeated examinations.
Patients are much more willing to undergo these comfortable examinations regularly, and
multiple tests can be performed inexpensively because much less expertise is required for
their administration. Another appealing quality of the SEMG is that it measures from a
large volume of muscle, as opposed to the needle EMG, which only measures from a small
collection of muscle fibres on each insertion. The SEMG also provides a more equal
representation of all the muscle fibres of a MU, and, consequently, greatly reduces the
variability of the measurement. From the skin surface. all the muscle fibres of a MU are
relatively distant, and thereby contribute relaiively equally to the surface signal. Small
variations in the placement of the surface electrode will not significantly change the



relative distances of the muscle fibres to the electrode, thus not significantly changing the
surface motor unit action potential (SMUAP).

If it is fair to say that automatic EMG analysis by means of quantifying MUAP
charateristics is a useful procedure, then it is fair to hypothesize that quantifying
(SMUAPs) may also be useful for automatic analysis. However, the SMUAP is not a
particularly accessible measure. The SEMG measured by a point size monopolar
electrode is composed of the superposition of many SMUAPs (of the order of 150 for
human brachial biceps -- see chapter 3), thus making it virtually impossible to decompose
exactly. A more sophisticated electrode configuration such as a bipolar or spatial filtering
multi-electrode, narrows and accentuates the nearer, stronger SMUAPs, thus reducing the
amount of interference between SMUAPs [1s]. This method has proven useful in
extracting SMUAPs directly from the SEMG, but limits the number of SMUAPs
contributing to the results. The previously mentioned EMG decomposition system,
ADEMG, used with spatial filtering on brachial biceps extracted only five SMUAPs, and
was only effective in isolating and extracting them up to 40% maximum voluntary
contraction (MVC) [16]. ADEMG makes no attempt to extract information from
superimposed SMUAPs, thus reducing the physiologic scope of its results. With the
exception of spatial filtering and its limited use then, SEMG analysis is firmly grounded in
gross data processing methods, as true decomposition is simply not possible, and the best
approaches to SEMG currently lie in power spectral analysis.

A method proposed by Blinowska [17], and further examined by Coatrieux
analyzes the power spectrum and relates its features to previoucly used characteristics of
the MUAP[1s]. It is shown that from the low frequency spectrum, the mean MU firing
rate can be determined, and from the high frequency spectrum the presence of polyphasic
SMUAPs can be detected. In a similar study by Paiss and Inbar [19}, the SEMG was
modelled with autroregressive (AR) parameters. The AR parameters were found to be
useful for monitoring muscle fatigue, while the resulting spectrum reflected qualities of the
constituent SMUAPs. As above, the low frequency of the spectrum was found to be
related to the firing frequency of the MUs, while the high frequency portion was affected
by the morphology of the MUAPs. Recently, Priez et al. [20] extended analysis to the
power spectrum to include 25 spectral features, including total power, mean and median



frequency, and spectral skewness and kurtosis. These features were then used in a
multivariate analysis to identify and index Duchenne muscular dystrophy.

The many power spectrum approaches to SEMG analysis have resulted in various
degrees of success and provide various types of information, but they all lack one element:
none attempt to characterize the muscle with an action potential, as is done in needle
EMG. Ideally, SEMG analysis would combine the broad range of information not easily
accessible to needle EMG or the spatially filtered SEMG, while expressing the information
in terms of the most fundemental piece of EMG data, tne MUAP.

A novel approach to SEMG analysis was taken by Yana [21], in which he
suggested that the SEMG could be modelled as a filtered impulse process. He proposed
that if the SEMG is considered to be the sum of many identical elementary wave forms,
then such a wave form could be reconstructed from the SEMG using the bispectrum. He
considered the SEMG to look like

y0)=nY hr-9,), (1.1)

where h(t) represents the elementary wave form with amplitude p and the arrival times of
the firing impulses are ,s. He then asserted that these times, the 8;s, form a Poisson
process with constant intensity A . From this model, the SEMG's power spectrum,

P(e*), and bispectrum, B(e™ ™), are:
P(e™) = 1|H (e )l2 (1.2)
B(e™ &™) = AH(e™ )H(e™ )H'(e’(”“”’)), (1.3)

where H(e”)=d {h(r)}. An inverse solution yielding the magnitude and phase of the

elementary wave form was then proposed as:
A= Pz(e’”)P(e'2‘°)/|B(e’°' e’ )r
LG ENCEITA

arg{H‘(e""’)} = i-zl;arg{B(e”H",e”H“)}. (1.4)

k=l



In effect, this suggests that the SEMG can be described as a system with a
characteristic impulse response. Yana verified his bispectral analysis; however, he did so
with a simple and not nearly representative simulation, leaving much work to explore the
potential of this method. His model of the SEMG used a crude representation of the
SMUAP, but more importantly, did not account for the great number of MUs that
contribute to a given signal. This in turn leads to the problem that the many different
contributing MUs will not necessarily produce identical SMUAPs. Finally, the bispectral
algorithm Yana used was far from optimal and would not have been particularly successful
if his simulated SMUAP ("elementary wave form") had not been minimum phase. As will
be discussed in chapter 2, a minimum phase impulse response can be resolved from the
power spectrum, while recovery of a non-minimum phase response requires a higher order
statistical approach. Yana's simulation, therefore, showed little about the effectiveness of
the bispectrum; however, his idea of extracting action potential-like information became
the primary motivation behind this thesis.

The mathematical groundwork for being able to extract action potential-like
information is developed in chapter 2. This groundwork involves the development of a
deconvolution procedure that has the ability to estimate a non-minimum phase system
impulse response. The end resultis a procedure called bicepstral deconvolution. With the
understanding of this signal processing tool, a model of the SEMG is developed in chapter
3. This model is developed for two purposes: to synthesized SEMGs and to analyze them
using bicepstral deconvolution. The key point of the modelling for analysis is that the
SEMG can be characterized by a single action potential referred to as the "representative
surface motor unit action potential” (RSMUAP). Chapter 4 contains the methods and
their results of five experiments designed to investigate the suitability of the RSMUAP for
characterizing the SEMG. The discussion of the results of these experiments, an
assessment of the RSMUAP as a tool for SEMG analysis, and a look to future research
possibilities are included in the final chapter.



Chapter 2
Non-Minimum Phase Deconvolution

Introduction

System or impulse response identification is a well known process applicable to the
models of many biological systems. As explained in the forthcoming chapter 3, it is
reasonable to describe the SEMG as the output of a single input - single output, linear and
time-invariant (LTT) system. As a block diagram, the simplified problem looks like:

u(n)——| h(n) | — y(n)

Figure 2.1  The system block diagram. The output, y(n). is equal o the

linear convolution of the input, u(n). and the impulse response, h(n).

or, algebraically as y(n) = h(n)‘ u(n), where * is the linear convolution operator. In the z
or Fourier domain this input-output relationship simplifies into a multiplication,

Y(z)=U(z) H(z). 2.1
The system, defined above by an impulse response, is then described by a transfer
function,

H(z)=Z{h(n)}= ih(n) z™" (2.2)

or, similarly in the Fourier domain as,

H(e"") = F{h(n)} = ih(n)-exp(—jmn). (2.3)

The goal in this thesis is to determine the transfer function H (z) and/or impulse response
h(n), given y(n) and no specific knowledge of h(n). This process is called
deconvolution.

Some restrictions, however, must be made on both u(n) and h(n). It is assumed
that h(n) is deterministic while u(n) results from a stochastic process. That is, the value

of h(n) at every index n is fixed, while the value of u(n) at every value of n represents a



random variable, each of which obeys some probability density function (p.d.f.). Knowing
that the input to the above system is a random signal, despite that h(n) is deterministic, the
output y(n) must also be a random signal. The signal processing of random signals is an
extremely involved topic that many entire books attempt to explain, but, in this thesis, only
a brief grounding is necessary to understand the methods used to deconvolve h(n) from

¥(n).

The most complete description of a stochastic process is given by the p.d.f. of all
of its random variables [22]. In this thesis no assumptions are made about the
mathematical form of the p.d.f.s govering either u(n) or y(n), only that both generate
stationary, non-Gaussian signals and that u(n) is white. Assuming that a random signal is
stationary implies that the p.d.f.s of all its random variables are identical, and therefore,
one p.d.f. can be used to describe the entire signal. Following from that, the first objective
of analyzing the random signal y(n) is to gain information about the p.d.f. by which it is

governed.

Probability density functions are often described by expected values of the random
variable(s) they govern. For example, the mean value of a random variable is the value
that one most expects the random variable to be. E{e} is the expectation operator and is
defined for a discrete random variable z by

E{z}=Zz-p(z), (2.4)

where p(z) is the p.d.f. for z. Without knowing or assuming the mathematical form of
the p.d.f., as is the case in this thesis, this definition of expected value cannot be employed
directly, and must be replaced by non-parametric estimation methods. The issue of these
estimation methodologies is, for the most part, not discussed in this thesis. In many cases,
estimates of moments or cumulants are used to describe the p.d.f..

Moments and Cumulants

Random signals are commonly described in terms of moments which can be
defined in terms of a moment generating function. Given a random signal, x(n), its
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moment generating function is defined as [22].
M, () = E{exp[6x]}. (2.9
The rth moment of x(n) is then defined as the rth derivative of the moment generating

function with respect to 0, evaluated at 8 equals zero; therefore the rth moment is

, M. (8) o
m' = ae'( |."0 = aer E{explel(n)]}l.—o (26)

Moving the differentiation process inside the expectation operator yields the univanate
moments of x{n),

m. = E{-é%’-’-cxp[e-x(n)]}l,,,o = E{x'(n)-exp[e-x(n)]H,,_" QN
~.m, =E{x"(n)} (2.8)

Extending this definition to multivariate moments results in

m,. . =E{x}-x2..xt}, (2.9)
where r =r, +r,+...+r,. The ensemble of k stochastic processes may represent a single
time series with k index spaces, in which case it is common to define the number of index
spaces equal to the order of the moment sequence to be calculated. In such a case, an rth

order, r variate moment sequence of the time series x(n) is defined as

m(n,n,,-,n)= E{x(n,)-x(n,)-...-x(n,)}. (2.10)
where the superscript indicating the moment order is dropped because the order is also
defined by the order of the index space of m,(n,,---,n,). For sequences stationary up 10

order r, the moment sequence can be written in terms of lags ins¢.ad of absolute sequence
indexes, and if the first index is arbitrarily set to zero, an rth order moment sequence is
described in 7-1 space by

m (Lol ) =m0 d ) = E{x(n)-x(n=4 }..ox(n=1)}. @10
Closely related to moments and moment sequences are cumulants, which, strictly
speaking, are used to define most spectra, including the power spectrum and bispectrum

as well [23]). Taking the logarithm of the moment generating function defined in (2.5),
yields

11



C.(8) m log[M, (8)] = log[ E{exp[6x]}] (2.12)
which is the cumulant generating function (24}, Analogously to the moments, the rth
cumulant of x{n) is defined as the rth order derivative of the cumulant generating function
evaluated at 8 equals zero. From this point, cumulants are most easily determined in terms

of moments. Given (2.12),

M, (8) = exp[C,(0)] (2.13)
Then differentiating to calculate the moments yields,
m! =9ﬂ;(_°l|._o =§i"—m|,_o =M, (8) Cl|gu0- (2.14)
a0 a0
Clearly,
M, (8)]m0 = 1. (2.15)
and hence,
ct=m,. (2.16)

Continuing this process, the relationship between cumulants and moments can be
determined for all orders. For orders up to four, the relationships are:

ct=m? _(m|)1

=m’-3m’m' + 2(ml )2 (2.17)

ct=m'-am’m' - 3(mz)2 +12m*(m' )z -6(m' )‘.
Despite that calculaung cumulants appears to be an arduous task, for zero mean sequences
(m' = 0) the cumulant sequences of order less than four simply reduce to being equal to
the moment sequence of the same order. Therefore, unless otherwise specified, all
moments in this thesis are defined as being about the mean, which is achieved by
subtracting the mean from the segment of data used to estimate the moments, or more
simply, considering all the data to be zero mean. So, although cumulant sequences are
alien to many, they can often be replaced with moment sequences, which are relatively
common in signal processing. In fact, a second order moment sequence is exactly equal to
the well known autocovariance sequence,

12



e, (1) = E{x(k)- a(k + D}, (2.18)

upon which most spectral methods of stochastic signal processing are based.

The power spectrum of .t(n). can be defined as

s(e™) = X(e™)- x‘(e"")=|x(e"")|' (2.19)

where,

N
X(e"")= Zx(n)-e"“". (2.20)

LD

One method of estimating the power spectrum of a stochastic process is to Fourier
wransform its second order cumulant sequence, which as mentioned above, is simply the
autocovariance sequence.

The problem with the autocovariance sequence and corresponding power spectrum
is that some of the information of the original signal is lost in their estimation. More
particularly, only the magnitude, not the phase of the frequency domain of the signal is
retained during a power spectrum estimation. The loss of phase information means that,
in general, the estimation of the power spectrum is not an invertible process. Every
unique power spectrum does not produce a unique time domain sequence, so estimating a
time-domain sequznce from a power spectrum requires applying constraints (o the
characteristics of the time-domain signal.

In order to demonstrate that the power spectrum is generally non-invertible, the
relationship between the magnitude and phase of a frequency response must be
investigated. This can be done rigorously using the derivation of the Hilbert transform,
but a simpler, intuitive exploration is more suitable here.

A power spectrum can be represented as a rational function of poles and zeros,

|(e™) = Hle®)- H'(e™) = H(e”)-Hle™) 2.21)

. MI(-cem)i-cle™)
Ry ) (=ry PN 22

13



For real valued polynomial coefficients in H (e’“’), poles and zeros exist in complex
conjugate pairs, and therefore it is unnecessary to apply the conjugation to the pole and
zero locations d, and c,. These poles and zeros can be plotted in the complex plane if the

substitution z = ¢’ is made:

M (1-cz2)1 ~cz)
|H(2) = H(2)- H(z ™) == (2.23)

H(l - d,z)(l - d‘z'l) '

k

From the above relation, it is clear that for every pole at d, there is a pole at d;', and
likewise the zeros exist at ¢; and ¢;" . In terms of the z plane, this means that for every
pole or zero inside the unit circle, there is a corresponding pole or zero outside the circle.
If H(z) is assumed to represent a stable system, then all its poles lie inside the unit circle.
Therefore, the poles outside the unit circie can be inferred to belong to H (z‘1 ), and hence,

the poles of H (2) can be determined exactly from the power spectrum.

The zeros of a stable sequence, howeser, are not bound by the restriction of lying

within the unit circle. So, every pair of zeros, c; and ¢, , increases the possible

interpretations of the zeros of |H (z)|2 by a power of two. It is clear then, that a sequence

c-nnot be reconstructed from its power spectrum unless restrictions are placed upon its
zeros. The most common restriction is to limit the zeros to lie within the unit circle: a
sequence having zeros only within the unit circle is referred to as being minimum-phase

[2s].

Therefore, a deconvolution filter that first estimates the autocovariance sequences
from the random signal y(n) is limited to estimating a phase restricted, most commonly a
minimum phase, system impulse response, h(n). If this limitation is to be avoided, the
random signal y(n) must be processed using a method that preserves phase information.

Phase information can be retained if, instead of computing the second-order cumulant
sequence (i.e., the autocovariance sequence), a higher order cumulant sequence is
computed. Transforms of cumulant sequences of order higher than two are sometimes
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referred to as higher order spectra [23]. These higher order spectra possess qualities
advantageous to solving the deconvolution problem encountered in this thesis.

The Bispectrum

Higher order spectra are, simply put, the Fourier transforms of higher order
cumulant sequences. While the power spectrum results from the Fourier transform of a
second order cumulant sequence,

s(e™) = 20.(1)-5""". (2.24)

I=—ce

the Fourier transform of a third order cumulant sequence is called the bispectrum [23],

fom  tos

Ble™.e™)= 3, Yelhh)-e™ e, (2.25)
e

and is the first higher order spectrum. Fourier transforms of still higher order cumulant
sequences produce correspondingly higher order spectra, but only the bispectrum is used
in this thesis, and therefore discussion of the properties of higher order spectra is made
herein with respect to the bispectrum. The most natural explanation of the bispectrum is
done in the context of, and as an extension of the power spectrum. For this reason, a brief
analytical development of the power spectrum follows, and serves as a basis for exploring
the bispectrum.

In order to develop a basis for the investigation of the bispectrum, the relationship
between the autocovariance sequence and the power spectrum is explored. For the sake
of proving (2.24), consider three sequences, X, (n), x,(n) and x,(n) with Fourier

transforms X, (¢**), X,(e**) and X,(e). 1

x,(1) = 2x,(k)~x2(k+l), (2.26)

k=—es

then

(2.27)

-

x,(e®) = i ix,(k)- x, (k + l)}e""“

kx—ee
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and by changing the order of summation, one gets

X,(e"")= ixl(k)ixz(k+l)~e"""'. (2.28)

km—a {mone

Making the substitution, m = k+1,(2.28) becomes

3 5,(0) 3 x,(m)-e
k= mE—= (2.29)

= ix,(k)°e"’('°°" ixz(m)-e"“'" ’

= Mz—on

X,(e"")

which is simply two Fourier transforms, or

X,(e77)- X,(e”)
Xl.(ejm)' Xz(ejw) '

Therefore, if x,(n) and x,(n) are both simply x(n), then x,(n) is the autocovariance of

Xs(eim)

(2.30)

x(n), and its Fourier transform, X,(e"), is the power spectrum of x(n).

By analogy, the meaning of the Fourier transform of a third order cumulant
sequence can be determined. Consider again, three sequences X, (n), x,(n) and x,(n)

with Fourier transforms X, (¢”*), X,(e*) and X,(e"). This time, define a fourth

sequence x,(/,,1,) such that

xall)= 3 2 (k)5 (k+8) xy(k+1). 2.31)

k=—ee

Taking the iwo dimensional Fourier transform of this equation yields

X, (e™,e™)= 2 i[ix,(k).x,(ku,)-x,(k+1,)]-e'f'°“.e'f°°='=, (2.32)

lx I I‘a—- k=

which can be re-written as

X o) = 3 x(0) S mlkrh)-e Falern)-e ™. @233)

kzz~—en = L=

Making the substitutions, p=k+} and g=k+ L,, (2.33) becomes
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X,(e*,e) = 211(/6)5: xz(p)-e"‘““"“ix,(q)-e"“"‘"“

kz—ee pa-ee qm—oe

2 xl(k)-e_j(—m' I .e—l("ﬂh)l 2 xz(p)_e-;m.p 2x3(q),e-/«m .(2.34)

k=-- p=—- qx—n
= Z xl(k)'e—j(-m'-mm Z xz(P)'e_MP sz(q)‘e—'m"
k=—ee p—ee g~

which is simply three Fourier transforms, or

A

» o|,ejm,) = xl(e"i(ﬂ)\ﬂm)).xz(ej‘”l)_X}(el‘“:)

. . (2.35)
= x;(e o). x,(e)- X, ().
Therefore, using
c,(l,,lz)=1—1J-2x(n)-x(n+l,)-x(n+lz) (2.36)
as an estimate of the third order cumulants, where
s, =max|OON—-I, ,N-1
‘ [ wN-h] (2.37)

s, =min[N,N=1,N-1,]
and setting x,(n), x,(n) and x,(n) equal to x(n), x,(1,,1,) becomes an estimate of the
third order cumulant sequence of x(n), and its Fourier transform, by definition, is the

bispectrum:

B(e®,e) = x() x(e™) -x(e). (2.38)

Decomposition of both B (e™,e™) and X (e”) into magnitude and phase
components yields
B,(e,e)=|B (e e )|-exp[j‘!“(e"°°' e’ )]
(o) =}tle=) el ole™)]

(2.39)
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Then from (2.38) and (2.39) comes,

B (e e )l =|x(e1«nl )Hx(el"ﬂz )|,|X(e;(m,w,))‘

W, (e, e ) = (™ )+d>(e’“’= ) _¢(e1‘(wl+«a)).

(2.40)

Therefore, it can be seen that the phase ¥/, at any point (e’“" e ) is directly related to

the phase @ at three points (e*), () and (o),

An additional property of higher order spectra, which is of relevance to the
processing of noisy signals, is that third order cumulant sequences, and therefore the
bispectrum as well, are identically zero for stationary Gaussian signals [23]. This can be
seen by first examining the moment generating function of a Gaussian sequence. From
(2.4) and (2.5), and given that the p.d.f. of the Gaussian distributed random variable, z,

which has a mean of zero and a standard deviation of G, is

plz) = exp[;j;%%) ] :

(2.41)

it follows that

M, (8)= 2 cxp[ezG]- exp[;j-z_(i%) ] . (2.42)

Some algebraic manipulation results in

1
olam 2 exp[—;é—,—-(za2 "202920)]

o Jy,; Zexp[-;tr-((za -a%)’ -c** )] (2.43)
_ ¢%0? | 1 (25 ~0%0)°
- T Sorm exl{ o) |

The summation factor constitutes the integration of a normal p.d.f. over its entire domain,
and therefore, is equal to one. Hence (2.43) reduces to

M, (8) =
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M, (6)= exp[gzi]. (2.44)

which can be expanded into a power series to get

(00)'  (c8)" , (08)° ,

M, (8)=1+
¢ 2 4.2!  8.3!

(2.45)

Recall here (eq. (2.14)) that moments can be derived from the derivatives of the
moment generating function. Clearly from (2.45), M, (8) has no odd powers of 6, and

consequently, all odd order derivatives of M, (©) are equal to zero when 6 =0.

Therefore, from (2.17), the third order cumulant sequence, and in turn from (2.25), the
bispectrum of the Gaussian distributed random variable z is zero. In fact, further

investigation will reveal that while only odd order moments are zero for Gaussian signals,
all cumulants of order greater than two are zero for such signals [23]. This is one of the
main reasons for defining higher order spectra in terms of cumulants instead of moments.
Another important reason for using cumulants instead of moments is that the cumulant
generating function is distributive, while the moment generating function is not. This
property is self evident from (2.5) and (2.12). In terms of signal processing, this means
that if a signal is considered to be the sum of two independent signals, which is the case in
the very common additive noise model, then the cumulants of the sum are equal to the
sum of the cumulants. If then, one of the two signals is Gaussian, which is a common
assumption of noise, then it contributes nothing to the higher order cumulants of the
output signal. This makes the bispectrum attractive for studying non-Gaussian signals
corrupted with additive Gaussian noise.

A plethora of signal processing methodologies have been extended to take
advantage of higher order spectra and their desirable qualities. Homomorphic signal
processing has been used with some success to solve the deconvolution problem presented
at the beginning of this chapter. Recently, however, the homomorphic approach to
deconvolution has been extended to the bispectral domain [2¢), and it is this deconvolution
method that is used is this thesis for SEMG analysis.
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The Homomorphic method (25,27

Higher order specira and random signal processing aside, the deconvolution
process itself must be examined. Given the output signal from a system in general, or at
least, a signal derived from the output signal, and knowing that it is comprised in some
manner of two independent signals, the general goal may be to divide the output signal
into its constituent parts. When two or more signals are summed by simple addition, as is
the case with additive noise, the principle of superposition makes it possible to separate
the non-overlapping signals by filtering with a linear system. With the linear system T
below, it is clear that additive signals in the time domain are also additive signals in the
transformed domain.

T{ax,(n) +Bxy (")} = aT{x,(")} + BT{xN(")} . (2.46)
Signals that are combined through more complicated mechanisms, though, such as
convolution, cannot generally be separated with a simple linear filter, if the property of
superposition does not hold. However, there exists nonlinear systems that may be defined
in terms of algebraically linear transformations between signal domains. Consider ¢ to
represent a rule for combining input signals (e.g., multiplication, convolution, addition,
...), and ® represent a rule for combining output signals. Input signals are combined with
scalars using ®, while © denotes combination of output signals with scalars. Then a
system D, that obeys the relation

D{x,(n)0xy(n)} = ?{X.(nZ}°D{x~(n)} 247
= £,(n)ex,(n)
and
D{a® x(n)} = o D{x(n)} (2.48)

is called a homomorphic system. In order to deconvolve signals then, a homomorphic
system for convolution must be determined.

It is well known that both the Fourier transform and the z-transform convert a
convolution operation into a multiplication; thus, they may be considered homomorphic
with convolution as the input operation and multiplication as the output operation. By the
same logic, the logarithm operation is homomorphic with multiplication and addition being
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the input and output operations respectively. Hence, cascading these two operations will
produce a homomorphic system having convolution as the input operation and addition as
the output operation. It is often desirable to have the output signal represented as a
sequence in n rather than a z-transform, so the inverse z-transform can be appended to this
system, since it obeys the conventional rules of superposition. The complete system then
becomes

S R I e I S B e B A R

Figure 2.2 A homomorphic system for deconvolution. The output is
referred to as the complex cepstrum.

where the output, ¢, (n) = %(n), is defined as the complex cepstrum.

It appears then that homomorphic techniques are applicable to deconvolution
problems in general. Relating these methods to the system modelled at the beginning of
this chapter in figure 2.1, the complex cepstrum y(n) is

¢,(m)=z"{og[Z{y(mH]}. (2.49)

and as shown below separates the h(n) and u(n) components of the signal,

c,(n)=2" {10g[Y(2)]}
= 2" {log[H(2)U(2)]}
=Z" {log{H(z)]+ log{U (z)]}.
6, (1) =¢,(n)+¢,(n)
Then, if a linear filter function can be found to separate ¢, (n) and ¢,(n), both h(n) and

(2.50)

u(n) can be reconstructed in the discrete time domain:

h(n)=2" {exp[Z{g,,(n)}]}, (2.51)

and likewise for u(n).

21



Random signal u(n) Impulse response h(n)
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Figure 23  Example signals for homomorphic deconvolution. Itis
desircable 1o be able to deconvolve: the input signal, u(n). and/or the sysiem

impulse response, h(n).

Note that there are no phase restrictions on the solution h(n) (i.e., it is a non-

minimum phase reconstruction of the system impulse response); however, the
consequence of u(n) being a random signal, once again prevents a simple solution. The

existence of a linear filter to separate ¢, (n) and 6, (n) requires that these two signals do
not overlap in the cepstral domain. Shown in figures 2.3 and 2.4 are two time sequences,
h(n) and uf), and their complex cepstra, G, (n) and ¢,(n). The signal h(n) represents a
typical system impuise response, existing in the low time domain, while u(n) is a zero-
mean, exponentially distributed, random white sequence. Clearly both cepstra, ¢,(r) and
¢, (n), occupy the same domain, and if added together, would be impossible to separate.
In the case of seismic signal deconvolution, where the complex cepstrum has been used to
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reconstruct non-minimum phase solutions, the input signal u(n) is a train of well spaced

impulses. In the cepstral domain, such an input also produces a train of well spaced
impulses; thus, little interference between the cepstra occurs.

Complex cepstrum of u(n) Complex cepstrum of h(n)
5 v~ T 1.5 r -r
4 .......................................
3 ....................................... l .......................................

amplitude

_2 ...........
3 .............
7 IS S S
_5 1 L 'l 1 l
0 100 200 300 0 100 200 300
time{ms) time(ms)

Figure 24  The complex cepstra (real part only shown, imaginery part
zero) of example signals. Because both cepstra are significant over the same

domain, it is difficult or impossible to extract them scperately from g,(n).

For the case where u(n) is a random sequence, cepstral domain interference can be
avoided if the complex cepstrum is replaced with the real cepstrum. The difference
between these two transforms is that the complex cepstrum uses the complex z-domain

signal, while the real cepstrum is defined in terms of the magnitude of the z-domain. That
is,

¢;(my= 2" {1og][Z{y(m}]}. (2.52)
The input signal, being uncorrelated, produces a full-band, smooth magnitude spectrum,
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and therefore, results in a single impulse at zero in the cepstral domain. Having only one
spike interfering with the cepstrum of the impulse response means that separation is not a
problem. However, as discussed previously, deconvolution based on the
power/magnitude spectrum produces only a minimum phase (or only a maximurn phase)

solution.

It is shown in the next section (egs. (2.53) and (2.70)) that a system can be
decomposed into its minimum phase and maximum phase components. In order to
emphasize the importance of being able to estirnate both the minimum and maximum
phase components of a system, figure 2.5 shows an impulse response and its minimum and
maximum phase components. From the accompanying pole-zero plots it can be seen that
the minimum phase component contains zeros and poles inside the unit circle, while the
maximum phase component contains zeros outside the unit circle. (It could also contain
poles outside the unit circle if the restriction of a stable system is removed.) It seems clear
that the mixed phase (or non-minimum phase) impulsc response is not well represented in
the time domain by either its the minimum of maximum phase components, thereby
indicating that if the most informative impulse response is 1) be estimated, it must be non-
minimum phase. A power spectrum based deconvolution procedure can be used to
estim~te hmn(n) or hmx(n) of figure 2.5, but not both, and consequently, not the non-
minimum phase response, h(n). The solution to this problem is, of course, to employ
cepstrum based on the bispectrum, which preserves magnitude and phase information, thus
allowing for estimation of the non-minimum phase impulse reponse.
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Impulse response h(n)
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Figure 2.5  Decomposition of s mixed phase impulse reponse intw its
minimum phase and maximum phase components. There is another zero of
the maximum phase response at z ~= -20 which is not shown. Shown as s
point of reference on each pole-zero plot is the unit circle.

The Bicepstral method [26)

The idea of applying higher order spectra in conventional signal processing

procedures, as mentioned earlier, allows one to benefit from the properties of higher order

spectra, while taking advantage of previously developed methodologies. In following

25



from homomorphic signal processing, which has proven to be effective for some
deconvolution problems, a methad of deconvolution stemming from the complex
logarithm of the bispectrum (heretofore referred to as the bicepstrum) has been developed
by Pan and Nikias |2¢], and is outlined here.

The transfer function H (z) as described previously, being non-minimum phase in
general, can be written in terms of minimum and maximum phase components:
H(z2)=A-z"-1(z)-O(z) (2.53)

where

I(z") = oo (2.54)

T0-c")

is the minimum phase component with poles and zeros inside the unit circle, and

o(z)= fl(l-b,.z) (2.55)

in]
is the maximum phase component with zeros outside the unit circle. Recall that the output
signal y(n) is equal to the convolution of the input signal u(n) with the impulse response
h(n). So, the bispectrum of y(n) is equal to the bispectrum of u(n) multiplied by the
bispectrum of h(n). The latter is, by (2.38), and in the z-domain,
B,(2,.2,) = H(z))H(z,)H(z'2;"). (2.56)
The system input, being a white, non-Gaussian random sequence has a z-transform equal
to a constant magnitude and its bispectrum is
B,(z,2,)=p. 2.57)

In terms of a a third-order cumulant sequence (2.57) translates to an impulse at the origin.
As an aside, it can be shown that B is proportional to the coefficient of skewness of the

signal, which is defined in equation (3.18). It follows from (2.57) then, that the
bispectrum of output signal y(n) is
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B (z.2,) =P H(z ) H(z,)H(z'2)")

. (2.58)
B’(z“h):B.A.[(z"‘)l(zz")I(z‘zz)-()(z‘)()(z:)O(z"‘Zz'l).
Then the bicepstrum of y(n) is defined as
G,(m.n) = Z"{log[B,(z,.zz)]}
log|B- A|
- +l0g[l(z{')]+108[’(Z§l)]
+log[O(z, )]+ log[O(z, )]
+log[1(z,2,)] + tog[0(z"23")]|
(2.59)

Using an expansion of the lograrithm to determine the inverse z-transform, the bicepstrum
is shown to contain the poles and zeros of the minimum and maximum phase transfer

functions:
loglp-A| m=0.n=0
-+A"” m=0,n>0
-+A™ n=0m>0
-}lB""’ n=0,m<0
G (mn)=3 "
iB™ m=0,n<0
‘L‘B‘.’ m=n > 0
-};A‘_” m=n <0
| (0 otherwise
(2.60)
where
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A = ia.’ -—ic"
‘Z’ =1 (2.61)
8" =Y b
%

It has also been shown that the third moment sequence is related to the bicepstrum via

+us +on

¥ ¥ ks, (k.d)e,(m—k,n=1) =—mc,(m,n) (2.62)

ool

This equation is important because it allows the above relationship between the bicepstrum
and the transfer function to be reduced to a relationship between the third moment
sequence and the transfer function, thus permitting the complete estimation of the
bispectrum to be bypassed. Substituting (2.60) into (2.62), the third order moment
sequence of y(n) becomes related to the pole-zero characteristics of the system impulse

response h(n), via the so-called cepstral equation:

i{A(i)[c’(m—k,n)—Cy(m+k,n+k)]+Bm[cy(m_k’n—k)_cy(m+k’n)]} (2.63)

= —mc,(m,n)

Before this equation can be solved, the infinite summation must be truncated at a
manageable point. The bicepstral coefficients A and B'*) have been shown to decay
exponentially, which means there exists a finite summation that is a very good
approximation to the above infinite sum. Following directly from (2.61), along with
(2.54) and (2.55), it can be shown that A" and B" decay to a magnitude of C in p and
q terms, respectively, where

such that

max[|a| ][] <a <1

2.65
max[|b,|] <b <1 269
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This means that p and g depend, respectively, on the proximity of the minimum and

maximur: phase poles ard z:10s to the unit circle. The closer the nearest pole or zero to
the unit c.rele, the larger p or ¢ will be, and therefore, the more bicepstral coefficients

will be required to adequately approximate the infinite sum in the cepstral equation.
Determining suitable values for p and ¢ can be done using (2.64) and (2.65) and a priori

knowledge of the poles and zeros of the system. However, from (2.60), and given that the
cepstral components decay exponentially, p and ¢ can be estimated directly from the third

order cumulant sequence of y(n). The lag of the furthest significant term from the origin

represents the largest value of k in the cepstral equation.

Following the truncation of the infinite sum, (2.63) can be solved using one of two
methods. In most cases the most practical solution method forms the cepstral equation
into an over determined system of equations, allowing A"™ and B* 10 be solved in a
least-squares manner. This method is the most computationally efficient until the
truncation points p and g become very large (~80 and above). In these cases more

efficient computation of A’ and B™ can be achieved using a FFT based solution which
follows directly from the convolution (2.62), which relates the bicepstrum to the third
order cumulants.

Finally, it has also been shown that A% and B™ are found in the minimum and
maximum phase components of the differential cepstrum of the impulse response , (n).

The differential cepstrum, h,(n), is defined as

h(n)=2" {71%;52%(;—)} (2.66)

and is the sum of the differential cepstra of the minimum and maximum phase components
of the impulse response:

h,(n)=i,(n)+0,(n). (2.67)
These components are then related to bicepstral coefficients by
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. AT 2
‘4(") = {

0 <1
S (2.68)
0 nx1

which, in turn, are related to the minimum and maximum phase components of the system
impulse response by the recursive relations

10+l
i(n)=—lZid(k)-i(n—k +1), forn=1
n

k=2

o(n)=— 20,(k)-o(n—k+1), forn<~1. (2.69)

The system impulse response, the original objective, is then simply the convolution of its
minimum and maximum phase components:

h(n) = i(n)*o(n), (2.70)
which is evident from the system transfer function having been identified as the
multiplication of its minimum and maximum phase components,

H(z)=A-z7"-1(z")-0(2). Q.71)
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Chapter 3
Modelling

Introduction

In this chapter, two SEMG models are developed. The first model is developed
for the purpose of simulating SEMG, and is consequently referred to as the synthesis
model. Following from the synthesis model, and in light of the bicepstral method of
deconvolution presented in chapter 3, the analysis model is developed.

The Synthesis Model

The synthesis model serves as the basis for simulating the SEMG that will be
used to evaluate the method of bicepstral deconvolution. The benefit of using simulated
data instead of clinically accumulated data is threefold: ® an unlimited amount of data is
available, @ particular neuro-muscular properties can be varied while others are held as
controls, and @ clinical data acquisition variations (electrode type, sampling rate) can be
modelled, while practical complications (skin impedance, EM interference, electronic
design) can be simplified or ignored. Before a synthesis model is developed to simulate
the SEMG, the objectives of the model must be clarified. It is important to remember at
this point that the purpose of this work is not to identify or discriminate particular
pathological conditions using SEMG, but rather to investigate, from an engi-~- -ing
perspective, a particular method of analysing the SEMG. Meaningful resui.  .quire a
good, but general representation of the SEMG, which in turn requires a quality model of
the SMUAP.

The simulations used in this thesis involve three distinct models. As a basis for
the simulation of the SEMG, the SMUAP is modelled and simulated. A model
previously outlined by McGill [2s] is used, with some parameter changes, to simulate
healthy SMUAPs. Then, a model describing the effect of disease on the above model is
used to simulate the SMUAPs of diseased muscle. Depending on the level of
sophistication employed, the effects of many particular neuro-muscular diseases could be
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modelled. In this thesis, a model simulating the effects of myopathic disorders in general
is employed to evaluate the ability of bicepstral deconvolution to detect the existence of
pathology. And, because it is desirable to use SEMG for repeated examinations to follow
the progression of disease, this myopathy model is quantized into several stages. Finally,
simulated SMUAPs are incorporated into a larger scale model of muscle in order to
simulate SEMGs from the superposition of SMVUAPs.

For this work, due to availability of data in the literature, all simulated data is
based upon the brachial biceps. That choice, and the choice of many of the model's
parameters are made somewhat arbitrasily for the sake of expedience, given that the
signal processing is the focus of this work. However, the effects of varying some of the
modelling parameters are investigated in chapters 4 and 5, with the goal of indicating that
the experimental results based on simulated SEMG are not strictly dependent upon this
particular sythesis model.

Modelling Healthy SMUAPs

A potential measured on the skin surface due to a SFAP can be described as
resulting from two tripoles moving in opposite directions away from the endplate of the
fibre [2s].

electrode (x'.0,2)) skin surface (y=0)
A~
= ¥ j
muscle fibre
’ é.v—- -1'>
o LA i

e

endplate (X.XA,)  moving tripole

Figure3.1  The double tripole model of the surface-measured SFAP (Not
10 scale). At any point in time, the tripoles are symmetric about the endplate.

With y =0 representing the skin surface and the muscle fibre, centered at 2= 0, oriented
parallel to the z axis, the point of measurement is (x',0,2'), and the location of the end-
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plate of fibre k is (x,,y,,A,). The strength of the ith pole is @, and the separation
between the leading and the ith poles of a tripole is /;, as shown in figure 3.2. The values
used by McGill to define the tripoles are shown in the table 3.1.

3

Va
f"'1—i

‘!
Figure 3.2  Tripole unit. Each pole Q; is a point current source, and is

spatially offset from first pole O, ., by /, .

)
i=1 i=2 i=3 i=4 =95 i=6
a, (A/m?) 24.6 -35.5 10.8 24.6 -35.5 10.8
I, (mm) 0.0 2.1 69 0.0 2.1 6.9
E; +1 +1 +1 -1 -1 { -1

Table 3.1 Tripole characteristics.

The action potential begins at time n =0, when the poles begin moving two at a
time in opposite directions from the endplate to the tendons. Each pole moves with
conduction velocity v,, which is unique for a given fibre, and the location of the ith pole

of the kth fibre is then

A, ifv,n<l,
z,,(n)={\, +e(v,n—-1) ifl, SvnsSL+l-gA,, (3.1)
gL ifv,n2L+l,-¢h,

where 2L is the length from tendon to tendon of the muscle fibre, and g;, being +1 or -1,
indicates the direction of propagation of the ith pole. The SFAP of the kth fibre, ¢, (n),
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is then the time domain sum of the potentials resulting from each of the six poles:

5 S—
¢ (n)= - ’ (32)
* 4no i J(x' ~x, ) + 3.+ (2" - z,,(n))

where O is the ondrctivity of the tissuc, and a, is the kth fibre's diameter.

Given this model of the surface-measured SFAP, the SMUAP is then described as
the sum of all the SFAPs of a given motor unit,

N
D(n) =Y 0,(n) (3.3)

k=1
where N equals the number of fibres in the motor unit. In calculating ®(»n), the number
and distribution of fibres and end-plates in a given MU, the tissue conductivity, and the
muscle fibres' tength, diameter, and conduction velocity must be considered.

The structure of the motor unit is dictated by the size, number, and arrangement
of muscle fibres. The length of fibres for human brachial biceps obviously varies from
person to person, and in this study is set to a reasonable value of 140mm as was done by
McGill in his modelling. Previous needle EMG models have used 55um as the mean
fibre diameter with a standard deviation of 6)Lm [29,30], while other work has indicated
larger mean values of 70pum (64pum for type I fibres and 73um for type II fibres --
comprising roughly 37% and 63% of the total respectively [31]). The estimates for the
number of fibres per motor unit also ranges widely from roughly 150 to 225 [31]. As will
be discussed later, the number and size of muscle fibres in a motor unit are used to
estimate the distribution of motor units through a cross section of muscle. Asa
compromise then for assuming that 100% of the muscle cross section is occupied by
muscle fibres, the larger of the estimates for muscle fibre size and number of fibres per
motor unit are used in the following simulations. That is, a mean fibre diameter of 70um
with standard deviation of 6um, and 225 fibres per MU are used.

The arrangement of fibres and end-plates are less disputed quantities. It has been
shown that the muscle fibres of a MU are distributed uniformly throughout a roughly
circular cross section [32], which, in the case of the brachial biceps, is about Smm in
diameter [14]. Thus, there is a great deal of overlap between MUs. In the following
simulations the coordinates of a fibre are given relative to the center of the distribution of
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the fibres for a given MU. These coordinates x, and y, are chosen randomly from a

uniform distribution ranging between -2.5mm to +2.5mm, thus resulting in a square
distribution of fibres rather than the proposed circular distribution. The placement, in the
x-y plane, of the center of the MU must also be determined. This is discussed more in
the SEMG Modelling section, but simply put now, if the conductivity of the tissue is
considered isotropic, then only the net distance, not direction, from the source to the
point of measurement is important. This means that all muscle fibres can be considered
to be directly beneath the electrode, in the y-z plane. Therefore, SMUAPs can be
categorized by either depth or distance interchangeably, the symbol D is used here for
both. The values x, and y, then become

x,=x,+D 4

w=y.+D G4
This also means that the conductivity is assumed to be a constant; the value 0.21mho/m
is used in the following simulations [33].

Having the x and y coordinates of a muscle fibre, the location of the end-plate
along the z axis remains to be determined. In general, the end-plate is situated in the
middle of the muscle fibre, thus ensuring the fastest activation of all the fibre's contractile
material. In most muscles, the fibres are roughly equal in length and parallel, so the end-
plates are distributed across a small region about the middle of the muscle known as the
end-plate zone. In human brachial biceps the size of the end-plate zone is 5-10mm wide
[31). Thus, for the following simulations the location of the endplate along the 2 axis for
each fibre of a motor unit, A, is randomly chosen from a uniform distribution between

-Smm and +5mm, where z =0 is the middle of the fibre.

The conduction velocity of the ith fibre, v,, represents the mosi significant
alteration to McGill's modelling. Muscles contain a combination of fast and slow
conducting fibres, but the mean is usually between 3 and 5m/s; 4.7m/s is one value
reported for biceps [34]. Conduction velocity is primarily dependent upon fibre diameter,
and in healthy muscle the variation of fibre size is relatively small. Therefore, as was
done by McGill, the conduction velocity of healthy muscle may be considered a constant.
In this thesis, however, it is desireable to model the effects of myopathy on the SEMG,
and the most significant contribution to MUAP change due to discase in general is the
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muscle fibre conduction velocity [35). For the simulations in this thesis, the relationship
v, =0.711a, +1.3549 (3.5)

is used, the reasoning for which is described in the Modelling Diseased SMUAP:s section.
With this relation, the conduction velocity is varied with respect to the square root of the
fibre diameter (70um) and the mean conduction velocity for healthy muscle is roughly
4.6ms, similar to the previously cited estimate of 4.7m/s.

Modelling Diseased SMUAPs

As well as from healthy muscle, SMUAPs from diseased muscle must also be
simulated. Considering neuro-muscular diseases from one broad category, myopathies,
as mentioned in chapter 1, their effects on the SMUAP model must be considered. A
combination of both fibre atrophy and hypertrophy increases the variability of fibre
diameter, resulting in the wide but smooth histogram of sizes frequently seen in
myopathy [3¢]. When individual muscle fibres become diseased, they begin to atrophy
and consequently loose strength. In response to this loss of strength, still healthy muscle
fibres may hypertrophy [3¢]. As the disorder progresses, more and more muscle fibres
become diseased and atrophied, producing a general decrease in fibre size. Muscle fibre
atrophy continues until a point when the fibre becomes ineffective. In studies by
Stalberg, functioning brachial biceps muscle fibres were found to have a lower bound of
roughly 25um diameter [37].

In modelling the progression of a myopathy, fibre size is very important in
determining the SMUAP because both the conduction velocity and the SFAP amplitude
are functions of the fibre diameter. In equation (3.2), the amplitude is proportional to a,
similar to the value of a"’ reported by De Luca [3s], while equation (3.5), as supported
by Plonsey [33), models conduciion velocity is roughly proportional to Jr. Inrecent
needle EMG simulation studies by Nandedkar et al. [29], the conduction velocity of
muscle cells was modelled as being proportional to fibre diameter, but it was also noted
that this model may have been exaggerating the effect of fibre size on conduction
velocity. The square root relationship between fibre radius and conduction velocity was
also found to be superior to the linear model in another recent study by Kossev et al. [12].
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The basis of the relationship (3.5) between fibre diameter and conduction velocity
used here is in the previously mentioned needle EMG simulations by Nandedkar et al..
In these simulations the conduction velocities of 2.2nvs and 5.2m/s are used at fibre
diameters of 25um and 85um, respectively. Keeping in mind the general purpose of this
study, it is assumed that the order of the relationship between fibre diameter and
conduction velocity is more important than the particular values of either. Therefore, as
a matter of convenience, the relationship between diameter and conduction velocity used
in this model was based on the two values above without further justification. Unlike
Nandedkar et al., however, a square-root as opposed to a linear relationship is used.

Modelling myopathic progression is based on the effects of the disease on the
individual muscle fibres. Randomly, muscle fibres become diseased and begin to
atrophy, while at the same time, still healthy muscle fibres hypertrophy slightly. As the
disease progresses, more and more fibres become diseased. Exactly simulating this
simple description of disease progression would involve the specific tracking of all the
muscle fibres of a MU -- a computationally demanding, and likely unnecessary task. A
more practical method of simulating myopathic progression is to steadily decrease the
mean fibre diameter while increasing the standard deviation of diameters. Fibre
diameters less than the specified lower bound of 25um are set to zero, thus simulating the
effect of fibre loss. In order to test the ability to track the advance of myopathy,
simulations need to be done at several steps of the progression. Decreasing the mean
diameter in steps of 3um from 70 to 46um, while increasing the standard deviation of
diameters from 6um to 30um in steps of 3um, results in nine stages of myopathic
progression being simulated.

Results of SMUAP simulations

In order to verify model implementation, the results demonstrated by McGill {29}
are reproduced in figure 3.3 using the model parameters described above. He simulated
SMUAPs from two depths and three electrode locations. Each of these six plots was
repr ..ced well despite the changes made in several of the model parameters including
fibre diameter, number of fibres per MU, tissue conductivity, and conduction velocity.
The effect of these parameter variations is studied in more detail later. The most

37



noticeable difference between the present results and those by McGill is the order of
magnitude difference in peak-to-peak amplitude of the action potentials, which is simply
explained by the doubling of fibre diameter and the more than doubling of the number of
fibres per MU. Amplitude, though, as will be discussed later, will not be used to
characterize the SMUAPs. From the six simulations (fig. 3.3) it is clear that while the
signal becomes weaker as the electrode is moved away from the endplate toward the
tendon, measurement from between the endplate and the tendon provides a broader
(temporally), and triphasic SMUAP. It may be then that the SMUAPs measured from
the mid-point between the tendon and endplate provide more information about the state
of the MU than do potentials measured from directly above the endplate. So it is with
micl-point electrode placement that the SMUAPs are simulated.

SMUAPs for D = 3mm

T )
- :
PAMNY -l -“"....,.-.é
X ’ v Db
\ K : e,
................................ DT A A SO U P PP
NS : z''=70mm
z' = 35mm
........................................ .\,..._
i 1
10 15 20
time (ms)

SMUAPs for D = 10mm

?ownml (uv)

time (ms)

Figure 33  Simulated SMUAPs. D is the transverse distance from the
clectrode to the center of the MU, and z' is the axial distance from the
electrode to the center of the end plate zone.

38



SEMG Modelling

On the skin surface more than a single SMUAP is present: the SEMG is a spatial
and temporal superposition of SMUAPs. Each MU contributing action potentials to the
SEMG can be modelled as a black box with impulse response @, (n), which is excited
by a train of unit impulse functions A, (n) (sec fig. 3.4). This impulse train represents
the firing signal from the motor neuron, and the impulse response represents the motor
unit action potential.

An(n)—| @,(n) | —>v.(n)

Figure 3.4  Simulated SEMG block diagram. This is the SEMG duc to a
single motor unit.

The SEMG, y(n), is comprised of the superposition of v, (n), and can then be described

by the summation of the convolutions of each MU's impulse response and impulse train

[12]:

M
yn)=Y Y, (n) (3.6)

V(=Y M)A, (n-T), 3.7

=0
where M is the number of active MUs.

Determining the recruitment of motor units is important for determining the
number of SMUAPs and consequently the amount of interference (between single MU
signals) present in the SEMG. That is, the more SMUAPs there are overlapping in the
SEMG, the more interference the SEMG is said to possess. The number of MUs
recruited at a given point in time is dependent upon the level of contraction. It is not
until about 75% of maximum voluntary contraction (MVC) that nearly all the MUs are
firing [12]). Therefore, reducing the level of contraction will reduce interference, but will
also reduce the scope of the data (i.c. reflecting information from fewer MUs). A major
objective of analyzing the SEMG interference pattern is to take advantage of as broad a
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physiologic scope of information as is possible Therefore, for these simulations, full
recruitment is assumed.

The type of clectrode and the electrode configuration used in measuring the
SEMG also plays a very important role in the degree of interference present in the
measured signal. The above SMUAP model, where the measurement is made at a point,
corresponds to a measurement made with a very small monopolar electrode. Increasing
the size of the electrode will result in spatial integration of SMUAPs, which is
undesirable because it does not increase interference per se, but does increase blurring.
Therefore, all signals in the following simulations are assumed to be from point electrode
measurements. While this assumption is ideal and not truly practical, very small pin-like
surface electrodes that penetrate only the top few layers of skin have been used
successfully [15,16]. Such electrodes minimize the effect of electrode spatial integration,
and remove the deleterious effects of the high resistance outer layer of skin.

Manipulating the degree of interference present in the SEMG signal can be done
by varying the electrode configuration. A monopolar or a wide bipolar (‘'wide' referring
to inter-electrode spacing distances of ~20mm) configuration results in high levels of
interference. Differentiating electrode configurations will narrow and accentuate the
nearer, stronger SMUAPs while suppressing the others, yielding much less interference.
Presumably, all SEMG decomposition techniques will become more effective as the level
of interference is reduced, while greater amounts of interference should possess
information from a greater number of MUs. In an attempt to examine bicepstral
deconvolution as a robust tool for analyzing SEMGs, monopolar electrode configurations
are simulated.

In order to model the interference of SMUAPs, the spatial distribution of MUs
must be determined. Using knowledge of the muscle fibre diameter, the number of fibres
per motor unit, and various geometric measures of the muscle being considered, the
interference signal is simulated. If MUs are identified by their center point, and
assuming that the muscle fibres account for 100% the cross sectional area of the muscle,
then the density of MU centers is

(3.8)




In the case of the brachial biceps, using N =225 and g = 70um, one finds a density of
0.907 MUs per square mm. Obviously, 100% of the muscle cross section is not fibres,
but this assumption greatly simplifies the modelling of muscle and is balanced by slightly
biased estimates of fibre size and number of fibres per MU, as previously mentioned.
Then, if full MU recruitment is assumed, an estimate for the number of motor units at
varying depths is calculated.

The most accurate model distributes the MU centers continuously with respect to
radial distance and angle from the electrode. But, because each SMUAP to be used in
the simulated SEMG is computed numerically, it is more efficient to pre-calculate a data
bank of SMUAPs at discrete locations. Drawing simulated SMUAPs from this data
bank, SEMGs can be simulated quickly. With reference to the geometric description of
the muscle cross section seen below (fig. 3.5), the distribution of MU centers is
compiled. Consider there to be a depth, S, of tissue separating the muscle fibres from the
surface electrode, and that no MU centers exist less than a distance R from the top of the
region of muscle fibres. R then is the radius of distribution of muscles fibres in a given
MU, which, for the brachial biceps, is 2.5mm. If a step size of 1mm is used, and S, the
connective tissue thickness, is set to 2mm, then SMUAPs must be simulated for MU
center distances from Smm to the point where tt  are insignificant. There is a factor of
10 difference in amplitude between signals finm . .1 n and 13mm; thus indicating that 9
discrete radial steps of 1mm should be used.

In order to minimize the number of unique locations for which SMUAP
simulations must be compiled, the tissue is considered isotropic with respect to
bioelectric signal propagation, and the angular axis is ignored. Then, all the SMUAP
simulations for a given absolute MU center to electrode distance are done by placing the
MU center directly below the electrode (in the x-y plane}. The assumption that muscle is
isotropic is not valid in general, but it is reasonable for this model. Schmidt and
Pilkington found that, for skeletal muscle, modelling conductivity anisotropy can be done
quite accurately by means of boundary extension [3]. This means that if the conductivity
of muscle tissue is different in radial and transverse directions, then this difference can be
accounted for in a model by changing the ratio of the fiber depth to fiber length. Further
changing of the fiber depth can be used to account for the difference in conductivity
between muscle, fat and skin. However, this brings about the fact that fibre depth and
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length may change tremendously form one patient to the next. In fact, within a given
patient, the change in fibre length due to contraction has a significant effect on the fibre's
conduction velocity and, therefore, its SFAP as well [35). Once again then, the issue of
arbitrary modelling simplifications comes up, and once again, the objectives of this
modelling dictates that no purpose is served by including such complications as tissue
anisotropy and fibre length variation in this model at this point. The conductivity of soft
tissue is thus considered to be isotropic and roughly constant throughout the body,
ignoring the high resistance outer layer of skin.

Electrode

- conective tissue

N muscle

Figure 3.5 A cross section of muscle. Shows region containing MU
centers and the radial divisions used to quantize subregions.

A region of muscle bound by r; and r,,,, as indicated in figure 3.5, is defined by

the mean distance from electrode to MU center, D, which quite clearly is defined by

D= 51—;‘-*—‘- The area of such a region can be determined through simple geometry.

First, the area of the segment of the circle bounded by the arc of radial distance r and the
cord defining the closest possible MU center is equal to [0]

2
A, (r)= %—[Do,/r’ -D? +r*sin™ (—D—°)], (3.9)

r
where D, =S+R.

Then the incremental area of MU centers at a mean distance D is this segment area for
r =r,,, minus the segment area for r =r,.

An (D)= A, (r,)-A,(r) (3.10)

Then, with 0.907 motor units per mm2, the number of MUs for mean distances from 5 to
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13 mm is tabulated below. For S =2mm and R = 2.5mm, table 3.2 shows the
distribution of MU center for 5mm < D < 13mm.

range mean distance Incremental Areca (mmz) Number of MUs
1 -rp (mm) D (mm) (rounded)
45-55 b 4.30 4
55-6.5 6 8.65 8
6.5-17.5 7 12.21 11
75-8.5 8 15.57 14
8.5-9.5 9 18.85 17
9.5-10.5 10 22.08 20
10.5 - 11.5 11 25.28 23
11.5-12.5 12 28.48 26
12.5 - 13.5 13 31.65 29
Totals - -- 152
Table 3.2 The distribution of MU centers. Using equations (3.9) and

(3.10) the arca of isoradial region is calculated and shown in the third

column. Then using p from equation (3.8), the number of motor unit centers
is determined and tabulated in the fourth column.

Therefore, each SEMG simulation is comprised of 4 SMUAPs generated from a distance

of Smm, 8 from a depth of 6mm, 11 from 7mm, and so on.

43



Distance = Smm Distance = 7mm

100 50
0 0
Ky %
2 .100 2 %0
| |
i -200 i -100
-300 -150
. 200
4000 10 2 30 0 10 20 30
time (ms) time (ms)
Distance = 10mm Distance = 13mm
20 10y
0 oy
> >
2.20 2 .10
3 3
i i
60 30
80 10 20 30 4 10 20 30
time (ms) time (ms)

Figure 3.6  Stage 1 simulated SMUAPs -- 20 per graph.

The data bank must provide an adequate number of SMUAP simulations to
choose from for every given electrode-MU center distance and pathophysiologic state to
account for random variability of muscle fibre distribution within a given MU. Ascan
be seen (fig. 3.6), almost no variance exists in simulated SMUAPs at stage 1, even from
very shallow depths. At stage S (fig. 3.7), variance between simulations becomes
slightly more obvious, particularly at Smm distance, then by stage 9 (fig. 3.8), the
variance between simulations is quite significant at both the 5 and 7mm distances. In
order to ensure that SEMG simuations are truly random, the size of each data bank is set
to 100 simulations per distance, resulting in 900 SMUAPs to choose from for every

disease stage.
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Figure 3.7  Stage 5 simulated SMUAPs -- 20 per graph.

Finally, in order to properly combine the SMUAPs from the data bank to simulate
a SEMG, the temporal distribution (i.e., firing rates) of SMUAPs needs to be considered.
Fi<r 7 vates vary through a range of roughly 5Hz to 25Hz, and are dependent upon the
-, of contraction and the particular MU in question. As the level of contraction
i+ eases, the firing rate of previously recruited MUs may increase as new MUs are
recruited. At any one time there will be a relatively wide range of firing rates present,
and because these varying rates apply to uniquely shaped MUAPs, the SEMG is
modelled with a distribution of firing rates, not just the mean rate. At full recruitment,
all MUs are firing at their maximal rate; these rates range primarily between 10 and 25Hz
[12], and are distributed roughly normally [«1]. A reasonable distribution for the firing
rates should then be Gaussian with a mean of 17Hz and a standard deviation of 3Hz.
Ideally, each of the 152 contributing MUs would be assigned a mean firing rate from a
wide normal distribution, and each firing rate would vary within a small normal
distribution. However, due to the high levels of superposition in the SEMG, and the
similarity in shape of all SMUAPs, the inter-pulse interval for every MU is drawn from
the same distribution. This simplification would cause problems only if particular
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SMUAPs were being extracted from the SEMG, because they would not possess unique
firing rates. Further investigation to the importance of firing sequences of SMUAPs
occurs in chapters 4 and S.
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Figure 3.8  Stage 9 simulated SMUAPs -- 20 per graph.

Implementing the combination of SMUAFs for SEMG simulation is done by first
randomly extracting, from the data bank, the appropriate number of SMUAPs for each
radial distance. For each SMUAP a sequence of interpulse intervals is selected randomly
from a normal distribution with a mean of 60ms and a standard deviation ¢¢ 8ms. Each
sequence is then cumulatively summed to form a sequence of placement times for a
given SMUAP. In order to avoid synchronization, each sequence is then offset by a
random value chosen from a uniform distribution between 0 and 60ms. Mathematically,
the simulation can be summarized as

y(n)= 02 224)“(,)(;:—1:,.). (3.11)

J=Dp m=1 i

This represents a sum over electrode-MU center distances j = D, through j= D, of



all the SMUAPs ¢(n). At each distance j there are M, contributing MLs, k(m)is a
random variable uniformly distributed between 1 and 100, denoting a random choice of
the mth SMUAP from the data bank, and 7, is the cumulative sum of the Gaussian
distributed impulse intervals of motor neuron unit impulse train A_(n) after i impulses.

A pictorial representation of the synthesis model is shown in figure 3.9. While this
model is effective for simulating SEMGs it represents, mathematically, a non-invertible
equation. That is, there is no way to determine @, (n) forall m given only y(n).

Therefore, the following section develops a model of the SEMG for the purpose of

analysis.
Delay t | D7)
=) !
¢i Nl)(n) . :
. . z
m=l 0
Data Bank . 1| Delay1 | (1) .
j (Depth) =D, : €
m=M,
. z
: ’ : P> y(n)

Data Bank . .

j (Depth) =D . : z
Figure 3.9 A pictorial description of the synthesis model. The three
levels of summing correspond, from left to right, to: the convolution of the
SMUAP with the motor neuron impulse train, summing all contributions
from a given isoradial region, and summing the net contribution from all
isoradial regions.

The Analysis Model

This section develops the analysis model of the SEMG, which is used to justify
and modify the bicepstral deconvolution algorithm as a method of analyzing the SEMG.
Deconvolution, in the context of the discussion of chapter 2, is a procedure applied to the
output of a LTI system with the objective of determining either the system's input and/or
the system’s impulse response. Therefore, the first step in creating an analysis model is
to fit the synthesis model to a single-input, single-output, LTI system. The SEMG
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clearly has only one output, but according to the synthesis model, it has many inputs, and
many impulse responses. Each contributing MU has an independent sequence of motor
neuron impulses triggering it (ignoring the phenomenon of motor neuron firing
synchronization due to fatigue), and each resulting MUAP is determined only by the
geometry and pathophysiologic states of its particular MU's muscle fibers.

Equation (3.11) from the synthesis model can be rewritten, not to represent how
the SEMG simulation is implemented, but rather to represent the process taking place in
the simulation. Instead of considering the SEMG as a triple summation of SMUAPs, it
may be described as the sum of all the signals generated by every contributing MU.
Each of these signals results from the convolution of the train of unit impulse functions
from the motor neuron, with that SMUAP:

y(n)= id’_(n)*A,,(n), (3.12)

m=l

where both the impulse train and the SMUAP are unique for every MU. Describing the
SEMG in terms of convolution, as done above, is the first step towards creating a model
that can be inverted using bicepstral deconvolution. However, (3.12) still contains M
inputs and M systemn impulse responses.

The next step in remodelling the SEMG is to reduce it to having a single input. It
has already been justified, as part of the synthesis modelling, that each motor neuron unit
impulse train can be assumed to have identical characteristics, so it is reasonable to
define a single input to the system, v(n), as the sum of all the unit impulse trains.

v(n)= iA,(n) 3.13)

Following this, the logical step is to define a single system impulse response, which is
representative of the SMUAPs from the entire volume of muscle contributing to a
SEMG. This system impulse response is heretofore referred to as a representative
surface-measured motor unit action potential (RSMUAP).

The difficulty in the RSMUAP definition arises from the fact that each SMUAP
is considered unique by the synthesis model. For a given elcctrode-MU center distance
this uniqueness can be simplified by assuming that all the SMUAPs are identical, and
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equal to the time domain average of all the contributing SMUAPs from that given
distance. From this point, recalling that the tissue is modelled as purely resistive, it is
reasonable to say that the primary difference between SMUAPs of different distances is
their amplitudes. So then, it is also reasonable to say that a single system impulse
response of unit amplitude may be able to represent all the normalized SMUAPs
contributing to a given SEMG.

As shown in figure 3.10, the assumption that all normalized SMUAPs are
identical is not true. The shallow MUs contribute much less signal from the distal
portions of their muscle fibers, while the distance from the electrode to one point on a
deep fiber or another is not much different, thus, the contribution by lengthwise regions
of the muscle fibers is more equal. This has a noticeable effect on the SMUAP shape,
which is highlighted by the late potential resulting from poles remaining stationary at the
tendons. This phenomena is discussed in more detail by Stegman et al. [2]. However,
the result of a time domain average of all the contributing SMUAPs is quite consistent
for a given disease stage, where the contributing SMUAPs are chuosen randomly from
the data bank in exactly the same manner that they are choosen for SEMG simulation.
Figure 3.11 shows fifty such averages overlaid for stages 1, 5, and 9, and for each stage
there is virtually no variance between trials. Thus, the RSMUAP of a given SEMG is the
time-domain average of all contributing SMUAPs.

Normalized SMUAPs

0 5 10 15 20
time (ms)

Figure 3.10 A comparison of normalized SMUAPs. Shown are
simulations from Smm, 9mm, and 13mm.
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RSMUAP: for suages 1,5, & 9

potential (uv)

Figure 3.11  Simulated RSMUAPs. Stage 1 being the largest (peak to peak)
RSMUAP and stage 9 being the smallest.

If this definition of the RSMUAP is to be used as the sole response of a LTI
system, it follows that it must have a fixed amplitude. This definition, however, creates a
conflict with the convolution equation (3.12) above, which dictates that the system input is
comprised only of unit amplitude impulses. As well, in reality, the motor neuron impulses,
trigger the all-or-none muscle fiber action potential, which has an amplitude that is entirely
independent of the triggering impulse. However, this can be rationalized by modifying the
definition of the system input, v(n), to allow it to modulate the RSMUAP amplitude
according to MU depth. Therefore, by normalizing the RSMUAPs instead of the input
impulses, each impulse possesses the amplitude of the SMUAP it is intended to generate.
This amplitude modulating system input is referred to in this thesis as the firing sequence.
The SEMG, y(n), is thus modelled for analysis as the convolution of the firing sequence
with the unit amplitude RSMUAP. That is, '

¥(n)=v(n){(n), (3.14)

where
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M ~
wn)=Y @, A.(n). (3.15)

m=l

and
G(n) =5%'-'l; (3.16)
given that
E(n)= 3 ®.(n), 317

m=|

and ®, and é are, respectively, the peak to peak ampliitudes of ®_ and § .

Signal Requirements

With a model schematically matching the system depicted in figure 2.1, the
characteristics of the system's input and impulse response should be examined before the
bicepstrum is applied for deconvolution of the SEMG. A requirement for the validity of
equation (2.61), which is an essential basis in the derivation of the bicepstral
deconvolution algorithm, is that the input to the LTI system is a non-Gaussian, white,
stationary random sequence. Most certainly, the most important of these restrictions is
that the input sequence be non-Gaussian, because, as pointed out in chapter 2, the 3rd
order cumulant sequence of a Gaussian sequence is strictly zero. If the firing sequence is
indeed non-Gaussian and white, the bispectrum of the SEMG, with the exception of a
constant magnitude factor, is simply the bispectrum of the RSMUAP (see eq. (2.58)).
Make note that, by the same logic, the system impulse response must be non-Gaussian,
but that is evident from the RSMUAP plots in figure 3.10.

The synthesis model can be modified to generate firing sequences corresponding
to the SEMGs it simulates. A train of impulses is generated by inserting an impulse at
each point in time that a SMUAP is inserted from the data bank into the SEMG. Making
the amplitude of each of these impulses equal to the peak-to-peak amplitude of the
SMUAP which it is intended to be triggering, produces a simulated firing sequence.
With 152 impulse trains contributing to the firing sequence, a mean interpulse interval of
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60ms, ard a sampling period of 1ms, there is an extensive overlap of impulses. This
overlap makes the firing sequence look like a random sequence, rather than a train of
impulses. This random sequence should have a probability density function (p.d.f.)
skewed toward the smaller values due to there being more MUs at greater distances than
at nearer distances. That is, there are more relatively low amplitude SMUAPs
contributing to the SEMG than there are high amplitude ones. This means that it is
expected that the p.d.f. of the firing sequence should have a finite and significant 3rd
order moment, which, by definition, means that it is non-Gaussian. A segment of a
simulated firing sequence, its spectrum and p.d.f. are shown in figure 3.12 along with the
p.d.f. of a similar Gaussian sequence for comparison. The Gaussian sequence is equal in
mean and variance to the firing sequence, but the firing sequence has a slightly non-zero
coefficient of skewness, while the Gaussian sequence has a near negligible skew. The
coefficient of skewness, or more simply, the skew is defined as

skew =C:-L—’-)7‘-, (3.18)
2

where 1, and W, are respectively the second and third order moments of v(n):

1y = E[v'(n)]

by =E[v'(n)]
Recall from chapter 2 that the third order cumulant sequence of a Gaussian process is
zero, and therefore, so is its bispectrum. Figure 3.13 shows the magnitudes of the
bispectra of the firing sequence and the Gaussian sequence, and demonstrates the
necessity of the firing sequence having a non-zero skew.

(3.19)
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Figure 3.12 The characteristics of the simulated firing signal compared
with a Gaussian sequence.
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Figure 3.13 The magnitude bispectrs of skewed and non-skewed signals.
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Chapter 4
Methods and Results

Parameter Determination

RSMUAPs are deconvolved from SEMGs using bicepstral deconvolution as
described in chapter 2, where the SEMG is considered the output of a LTI system, and the
RSMUARP is the system's impulse response. The quality of the RSMUAP estimated from
bicepstral deconvolution depends upon the selection of the following algorithm
parameters: O sampling frequency of the data, @ the number of cepstral coefficients from
which the RSMUAP is reconstructed, and @ the amount of data. For now, the amount of
data is considered unlimited, although the objective is to use a little as possible.

The sampling frequency of the SEMG. as one expects, is dependent upon its
spectrum, which is shown for myopathic progression stages 1, 5 and 9 in figure 4.1.
Clearly, all three spectra become effectively zero around 500 to 600 Hz, and therefore,
with the 4000Hz sampling rate used in the simulation, the SEMG is well oversampled.
The first and most important problem with deconvolving an oversampled signal is that
cepstra are not defined for band-limited systems. By definition, a cepstrum involves the
logarithm of spectrum, which is not defined if the spectrum is zero at any frequency. For
the case of complex cepstra the power spectrum must be entirely non-zero. In the case of
calculating the bicepstrum, the logarithm operation is applied to the magnitude of the
bispectrum. If the magnitude of the bispectrum contains zeros, the logarithm operation
becomes unstable and, consequently, the resulting impulse response estimates are
unreliable. From the relation (2.40) between the bispectrum and the power spectrum, it is
clear that the magnitude of the bispectrum is non-zero for ali irequencies if and only if the
same is true about the power spectrum. For that reason, only the power spectrum need be
shown to be full band for the bicepstrum to be defined.
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Because the power spectra of the simulated SEMGs show the signal to be band-
limited only on the high freque .cy side (fig. 4.1), creating a full band signal can be
achieved by resampling the SEMG with a sampling rate of 1000Hz. In order to avoid
aliasing the SEMQG is first filtered by an eighth order Chebyshev filter with a cut-off
frequency equal to 5S00Hz (the Nyquist frequency of the resampling). The SEMG is
filtered in both directions producing a sixteenth order magnitude roll-off, and zero phase
distortion. Quite clearly, phase distortion at this stage of filtering would defeat the
purpose of using higher order spectra to preserve the phase of the RSMUAP.

Simulated SEMG power spectra - stages 1,5, 9

norrnalized amplitude

Figure 4.1  Power spectra of simulated SEMG. Shown for myopathy stages
1,5and9.

Another important reason for down-sampling the SEMG before deconvolution is
to minimize computation time. The bicepstal deconvolution procedure is computationally
demanding and must be repeated for every RSMUAP estimation. As the number of
desired cepstral coefficients increases so does the size of the third order cumulant
sequence, and therefore, so does every signal segment and in turn the overall length of the
simulated SEMG. If, as is the case in this study, many simulations are desired for
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statistical analysis, the total computation time becomes greatly increased by requiring
more cepstral coefficients to be calculated. So, from a time perspective, the fewer samples
the better.

With a sampling rate fixed, the minimum number of cepstral components can be
determined. As discussed in chapter 2, estimating the number of significant cepstral
components, p and g, can be done directly from the third order cum! . juences of
the SEMG. Equation (2.60) shows that A’ and B") of the cepstra’ - on are found
directly in the 3rd order cumulant sequence. Therefore, inspecting the cumulant sequence
should indicate the number of significant A’ and B'*' terms.

3rd cumulant sequence -- stage | 3rd cumulani seq. with origin = 0

<10 e

iag -10 -10 1ag lag -10 -10 g

Side view -- AzZimuth 0 degrees

Figure 4.2  Stage 1 third order cumulants of a simulated SEMG -- shown
unaltered in the first frame, and following that with its origin set w0 0.

Figure 4.2 shows that the dominant element of the 3rd order cumulant sequence of
a stage 1 SEMG is at the origin. However, equation (2.60) shows that the origin of the
3rd order cumulant sequence does not contribute to the solution of the deconvolution.
Therefore, to improve resolution of the meaningful clements, the origins of 3rd order
cumulant sequences are set to zero. Following this, it is clear that there are no more than
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Figure 43  Stages 5 and 9 third order cumulants of simulated SEMGs --
shown from the side, with origins set to 0.

four significant elements in the SEMG's cumulant sequence in any direction from the
origin. Third order cumulant sequences of SEMGs from stages 5 and 9 (fig. 4.3) are
noticeably different in shape, but again have no more than four significant elements in any
direction. Thus, for all SEMG analysis, the cepstral equation may be truncated for both
A" and B* atk =p=q=4.

Determining the amount of data required empirically, it is found that ten seconds
of simulated SEMG data is suitable for all the experiments in this thesis. Data length is
discussed more in chapter 5.

The Algorithm

Bicepstral deconvolution is performed using the MATLAB™ routine biceps, which
is part of the Hi-Spec™ software package from United Signals & Systems, Inc.. The
algorithm follows directly from its development in chapter 2, except the ten second
SEMG, consisting of 10000 samples, is segmented into records of 256 samples each.
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Overlapping these records by 50% results in a total of 77 records, and for each of these
records, an estimate of the third order cumulant sequcnce is made using (2.36). It should
be noted that (2.36) is a biased estimator of third order cumulants, which is used because
Pan and Nikias found no improvement in bicepstral deconvolution by using an unbiased
estimator [2¢). The results of these cumulant sequence estimates are then averaged to
produce an estimate of the third order cumulant sequence of the SEMG. The cepstal
equation (2.63) is then solved using least squares, and the RSMUAP is estimated using
(2.68), (2.69), and (2.70).

Experiments

Through the following section, the experiments are numbered with sy.nbols @
through @, which are used to reference these experiments in the following chapter. For
each of the nine stages of myopathic progression, 50 SEMGs are simulated, and from each
of these SEMGs, a RSMUAP is estimated via bicepstral deconvolution @. Then, random,
zero-mean, white Gaussian noise is added to these 50 SEMGs, and RSMUAPs are
estimated from each ®. Defining the noise as w{n), the noisy SEMG is

y(n)= y(n)+w(n). 4.1
Characterizing the p.d.f. of the noise by its variance, o, the signal to noise ratio (SNR) is
defined as

Y ¥(n)
SNR =10-log .Noz , (4.2)

w

where N is the total number of samples in y(n). For each of the simulations, the variance
of the noise p.d.f. is set such that the SNR equals 10dB, which corresponds to an average
power ratio of 10:1.

The RSMUAPs resultant from experiments @ and @ are processed in two ways.
First, the estimated RSMUAPs are compared with their ideal counterparts, the ideal
RSMUAP being those simulated directly from SMUAPs as in figure 3.11, while the
estimated RSMUAP:s result from bicepstral deconvolution of the SEMG. In order to
compare the shapes of the estimated and ideal RSMUAPs, thei~ peak to peak amplitudes
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are normalized :0 equal 1, their means are removed, and they are temporally aligned such
th=t the large negative peak of each occurs at the same point in time.

Also, estimated RSMUAPs of differents stages of myopathic progression are
compared with each other. Considering each time-domain sample of the RSMUAPs to be
a different variable, each RSMUAP becomes a point in a hyperspace, and the collection of
points from a given discase stage define a group. The dimension of this hyperspace is
reduced using principal component analysis [43], then discriminant analysis is used to
classify each estimated RSMUAP. First, the RSMUAPs are split into two sets, an
observation set and a training set, each containing 25 estimated RSMUAPs per disease
stage. 'The observation is defined by matrix X, where each column contains the samples of
a single RSMUAP. Then, each member of the observation set is classified into a disease
stage group using the maximum likelihood discriminant function [43}

L {x}=(x~-p,) Z'(x—p,)+loglZ,]. (4.3)
where W, and X, are, respectively, estimates of the mean vector and covariance matrix of
the training set members of disease stage i. Following this classification, the training and
observation sets are switched, and the classification procedure is repeated.

In order to more {ally examine the effects of noise, RSMUAP estimates are made
from noisy SEMGs with SNRs ranging from 20dB to OdB. Furthermore, the restriction
that the noise be white is removed by lowpass filtering all the noise signals, w{n), at
300Hz with a 3rd order FIR filter. This not only changes w{n) into coloured noise, but
may introduce more skew into noise that ideally has none. From chapter 3 figures 3.6,
3.7, and 3.8, it is clear that the greatest amount of variance between SMUAP simulations
occurs for stage 9 of the myopathic progression, and therefore, it is reasonable to presume
that stage 9 RSMUAPs will have the greatest variance between estimations. For this
reason, stage 9 SEMGs are used to test the noise. Twenty simulations of stage 9 SEMGs
are generated, and from each, four noisy simulations are created with SNRs equal to
20dB, 10dB, 5dB, and 0dB. Then 20 RSUAPs are estimated for each of the four SNR
levels ©.

The final two experiments are designed to investigate thé effect of the model on
bicepstral deconvolution. First, the physical description of the muscle is modified by using
163 fibres per MU and a mean fibre diameter of SSum, which are the values used by



Nandedkar et al. in their previously mentioned models. With these modifications, the
SEMG model is referred to as model B and the previous as model A. Using model B, a
mini data bank is built, containing 20 simulations per depth and for disease stages 1, 5, and
9. Given the relation (3.8), the number of MU centers per mm? becomes 2.03 for model
B, which is roughly twice the number used in model A. For simplicity sake then, model B
is implimented by using the same SEMG simulation twice while drawing the SMUAPs
from the model B data bank. For stages 1, 5, and 9, 10 noise-free SEMGs are simulated,
and from each an RSMUAP is estimated ©.

The second experiment involving the modelling is done by modifying the firing
signal. One of the assumptions of the modelling in chapter 2 is that the input signal (i.e.
the firing signal) to the system in figure (2.1) is stationary. However, studies indicate that
the firing patterns of motor neurons are not stationary, but rather that there is a decrease
in firing frequency over time during muscular contraction due to fatigue [12,19,44).
Simulating a decrease in firing frequency is done by linearly increasing the mean interp:
interval of each MU from 60ms to 84ms over a ten second period. The firing signal i:
simulated 10 times for stage 9, then for each of the disease stages 1, 5, and 9, 20 SEMGs
are simulated with this firing frequency gradient and RSMUAPs are estimated from each
@.

Results

In the first experiment, @, RSMUAPs are estimated from noise-free SEMG
simulations for all nine stages of myopathic progression. Ten of these estimated
RSMUAPs from stage 1 data are shown in figure 4.4 along with an ideal RSMUAP
generated from stage 1 SMUAPs. Figures 4.5 and 4.6 show similar results for disease
stages 5 and 9, respectively.
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Estimated and Ideal RSMUAP: - stage |

0-4 o

Figure 44  Stage 1 RSMUAPs. Ten estimated RSMUAPs and one ideal
RSMU AP from noise-free, stage 1 SEMGs.
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Estimated and Ideal RSMUAPs -- nage §

Figure 4.5  Stage 5 RSMUAPs. Ten estimated RSMUAPs and onc ideal
RSMUAP from noise-free, stage 5 SEMGs.
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The results of the discriminant analysis of the estimated RSMUAPs from
experiment @ are shown in table 4.1, also known as a classification matrix. The results of
this discriminant analysis are further tabulated (table 4.2) showing, by disease stage, the
percentage of RSMUAPs correctly classified within one group of their correct
classification.

Estimated and 1deal RSMUAPs - sage 9

04— - v ~ - .

Figure 4.6  Stage 9 RSMUAPs. Ten estimated RSMUAPs and one ideal
RSMUAP from noise-free, stage 9 SEMGs.



Stage # 1 2 3 4 S 6 7 8 9
1 50 0 0 0 0 0 0 0 0
2 0 49 1 0 0 0 0 0 0
3 0 3 41 6 0 0 0 0 0
4 0 0 2 4 1 7 0 0 0
5 0 0 0 8 20 15 4 2 1
6 0 0 0 3 12 18 6 7 4
7 0 0 0 0 3 9 20 12 6
8 0 0 0 1 1 h] 13 19 11
9 0 0 0 0 0 8 8 9 25

Table 4.1  Classification matrix for noise-free RSMUAPs. Rows indicate
true origin of RSMUAPs. Columns indicate into which group they are
classified
Group_ 1 2 3 4 5 6 7 8 9 mean

Percent
correcly 100 100 100 86 86 72 82 86 68 86.7
classified

Tabled4.2  Classification accuracy for noise-free RSMUAPs. Percentage
classified within one group of their correct classification

With the addition of Gaussian noise to the SEMGs used in experiment @,
experiment ® generates similar results: figures 4.7, 4.8, and 4.9 show the comparisons
between ideal and estimated RSMUAPs, and tables 4.3 and 4.4 are the results of the
discriminant analysis.
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Figure 4.7  Stage 1 Noisy RSMUAPs. Ten estimated RSMUAPs and one
ideal RSMUAP from noisy, stage 1 SEMGs.



Estimated and Ideal RSMUAPs from SNR = 10dB -- stage $
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time (ms)

Figure 48  Stage 5 Noisy RSMUAPs. Ten cstimated RSMUAPs and one
idea} RSMUAP from noisy, stage 5 SEMGs.
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Estimated and Ideal RSMUAPy from SNR = 1048 -- suage 9
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Figure 4.9  Stage 9 Noisy RSMUAPs. Ten estimaied RSMUAPs and one
ideal RSMUAP from noisy, stage 9 SEMGs.
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Stage # i 2 3 4 S 6 7 | 1 9
] 50 0 0 0 0 () 0 0 0
2 0 48 2 0 0 0 _ 9 0 0
3 0 2 43 S 0 0 0 0 0
4 0 0 5 24 12 5 3l 1 (U]
S 0 U 0 S 23 16 4 1 1
6 0 0 0 1 16 19 6 6 2
7 0 0 0 0 4 6 15 17 8
8 0 0 0 2 2 1 9 16 14
9 0 0 0 1 0 6 7 15 21

Table43  Classification matrix for noisy RSMUAPs. Rows indicale true

origin of RSMUAPs. Columns indicate into which group they are classified
Group 1 2 3 4 S 6 1 8 9 mean
Percent

correculy 100 100 100 82 88 82 76 78 72 86.4
classified

Table4.d4  Classificaion sccuracy for noisy RSMUAPs. Percentage
classified within one group of their correct classification
The results of experiment @ are shown below in figure 4. 10. Each of the four
plots contains 20 normalized RSMUAPs estimated from stage 9 SEMGs contaminated by
a different amount of coloured Gaussian noise. On each p:ot, the mean variance between
estimated RSMUAPs is shown. These plots reflect the effect of decreasing SNR on the
bicepstral deconvolutior algorithm.
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Figure 410 Noisy RSMUAPs. 20 Estimacd RSMUAPs per plot, from 20

noisy SEMGs with varying SNRs.

Figures 4.11,4.12, and 4.13 show the results of experiment @. Much like figures
4.4, 4.5, and 4.6, these plots each contain 10 estimated RSMUAP:s and one ideal

RSMUAP from stage 1, 5 and 9 SEMGs, respectively. However, these RSMUAPs are
estimated from model B SEMGs. The appearance of these RSMUAPs, both estimated

and ideal, do not differ significantly from the RSMUAPs derived from model A

simuiations.
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Figure4.11 Stage 1 Mndel B RSMUAPs. Ten cstimated RSMUAPs and
one ideal RSMUAP from model B stage 1 SEMGs.
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Figure 4.12 Stage 5 Model B RSMUAPs. Ten estimated RSMUAPs and
one ideal RSMUAP from model B stage 5 SEMGs.



The effects of a decreasing firing frequency (experiment ®) on the SEMG and
subsequent RSMUAP estimations are shown in figures 4.14 and 4.15. The first figure
(4.14) contains the magnitudes of the bispectra of both the stationary and non-stationary
simulated firing signals. There is little or no discemable difference between the two
bispectra, indicating that the non-stationary firing sequence may not interfere with the
bicepstral decovolution process.

Estimated and ideal RSMUAPs -- Model B -- stage 9

v ng

6 10 12 14 16 18 20
time (ms)

Figure 4.13 Stage 9 Model B RSMUAPs. Ten estimated RSMUAPs and
one ideal RSMUARP from model B stage 9 SEMGs.
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r¢4.14 The magnitude bispectra of stationary and non-stationary firing
éli a8

The six plots in figure 4.15 each show 1C normalized RSMUAPs. The left column
contains plots of RSMUAPs estimaied from normall simulated SEMGs, while the right
column contains RSMUAP:s estimated from the same SEMGs after ap;lying a linear
gradient to their firing signals. As expected from figure 4.14, tae aon-stationary firing
sequence has caused no noticeable change in the ability to estimate the RSMUAP.
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Chapter §
Discussion

Introduction

The objective of this thesis is to assess the merit of bicepstral deconvolution as a
tool for analyzing the SEMG. This assessment hinges on the procedure’s ability to
estimate RSMUAPs, the quality of these estimates, and, most importantly, the meaning of
these estimates. Discussing these criteria is done by examining the following questions.
Do estimated RSMUAPs provide a valuable representation of the SMUAPs and of the
pathophysiologic state of the muscle? What ad antages ‘re found by assessing muscle
using estimated RSMUAPs as opposed to needle measured MUAPs, or other SEMG
analysis techniques? Is bicepstral deconvolution an effective method of estimating
RSMUAPs? And, how are results found in this thesis dependent upon the SEMG
modelling developed herein? Finally, ideas for future SEMG research that have become
apparent in the creation of this thesis ar~ discussed.

RSMUAPs’ Reflection of Myopathy

Without thoroughly examining the inverse problem of bioeiectric phenomenon, it is
difficult to say exactly what inform=tion the estimated RSMUAP contains; however,
through the experiments in chapter 4, it is clear that it does, quite consistently, reflect
myopathic progression. Comparing figures 4.4 through 4.6, distinctly different shapes
appear in the ideal RSMUAPs for myopathy stages 1, 5, and 9, and, although not shown,
the same is true for all nine stages of myopathic progression. Clearly then, the ideal
RSMUAP contains valuable information about the state of a muscle afflicted with a
myopathy. From the same figures, it is seen that the estimated RSMUAPs change due to
myopathic progression in the same manner as their ideal counter parts. A more
quantitative measure of the estimated RSMUAP's ability to reflect myopathic progression
lies in the results of the discriminant analysis.
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Tables 4.1 and 4.2 indicate that it is possible to classify, with reasonable accuracy,
the state of a muscle afflicted with a myopathy given an estimated RSMUAP, and a
training set of data. Although table 4.1 shows that RSMUAPs from stages 3 through 9
are classified correctly no better than 50% of the time, one must remember that the
division of myopathic progression into 9 stages is purely arbitrary. If an RSMUAP
classification is considered correct if the observation is placed plus or minus one group
from the group it belongs, then the above discriminant analysis locks much better. Using
this loosened constraint of correct classification, the percentage of RSMUAPs correctly
classified for observations from each of the nine groups is listed in table 4.2. For example,
86% of the SEMGs from stage 5 are classified as being a stage 4, 5, or 6. Averaging
across the entire data set then shows that 86.67% of RSMUAPs are correctly Ciussified.

RSMUAPs versus MUAPs

The most obvious motivation for assessing muscle using RSMUAPs instead of
MUAPs is that the former are obtained non-invasively. Invasive measures, as discussed in
chapter 1, are more than simply unpleasant for the patient, but fundamentally problematic
in that they disturb the state of the system that is being measured. In addition, however,
there are diagnostic advantages in using the SEMu instead of needle EMG.

In the case of the needle EMG tests that are used to measure MUAPs, there is a
huge amount of variability between measures because the exact MUAP shape is highly
dependent upon the relative position of the needle to the contributing muscle fibres. For
each needle insertion a given MUAP is unique, and possibly quite different. For this
reason, several needle insertdons are normally required to identify enough MUAPs to make
an assessment of the muscle, especially if a quantitative or automated assessment is
desired. For example, it is not the existence but rather the increase in polyphasic activity
that Kopec uses for automatic assessment of needle EMG [s]. That is, a certain
percentage of MUAPs are expected to be polyphasic in any muscle due to the inherent
variability of the MUAP. As evidenced in the previous section, however, the RSMUAPs
reflect changes due to myopathic progression in a consistent and predictable manner.
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A possibly more important scrutinization of the RSMUAP comes with respect to
other SEMG analysis methods. The goal, recall from chapter 1, of pursuing the RSMUAP
was to extract action potential like information from a SEMG. Most other SEMG
analysis methods are based on somewhat abstract signal characteristics such as the mean
or median frequency. In a recent publication by Priez et. al. {20}, 25 characteristics of the
power spectrum, including total power, mean and median frequency, and spectral
skewness and kurtosis are used in a discriminant analysis to identify and index Duchenne
muscular dystrophy. This thesis asserts that, using RSMUAPs, the same identification and
indexing could be performed, and the data being used would contain intuitive, ( -~ -Tete
information: the RSMUAP is more directly representative of the MUAPs than any number
of abstract power spectral chzracteristics.

In the case of the SEMG, there is clearly no way to determine information sbout a
small number of muscle fibres, ¢ to examine the functioning of a single MU. However, a
broad evaluation of the muscle is generally desired, for which the SEMG is naturally
suited. And now, given tie ability to estimate RSMUAPs, the SEMG may be more
desirable than the needle EMG in almost all situations.

Bicepstral Deconvolution f.i L timating RSMUAPs

The first, and mes: itaportant quality of the bicepstral deconvolution algorithm is
that it is based on higher order spectra, which allows for non-minimum phase estimation of
a system impulse response. Without this allowance, estimating an RSMUAP would not be
possible, and the m:nimum phase impulse response would be just another abstract statistic
of the power spe:truta. However, while a higher order technique was required to estimate
the REMUAP, it ¢’ ne with a sccondary, and quite significant, benefit. Not only does the
bispectrum provide a reliable and flexible method for phase estimation, but it also has the
enormous benefit of suppressing Gaussian signals, making it ideal for analyzing non-
Gaussian signals corrupted with Gaussian noise.

Two characteristics of the noise are of concera in determiniag its effect on
RSMUAP estimation: the colour and the skew. The skew of the noise dictates the
magnitude of the bispectrum. A purely Gaussian noise signal has zero skew, and
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therefore, zero bispectrum. The amount of colour in the noise, on the other hand, dictates
the flatness of its bispectrum. A white noise signal has a perfectly flat bispectrum. which
only presents a scaling factor to the SEMG bispectrum. These two properties mean that
noise can deviate significantly from being Gaussian if it is very close to being white,
although this quality is not restricted to higher order spectra, as the power spectrum of a
white random sequence is flat as well. More importantly, with the bispectrum, the noise
signal can deviate significantly from being white, if it is close to being Gaussian.

Assuming that the noise is coloured and additive to the SEMG, the magnitude of
its bispectrum is proportional to its skew, as demonstrated by equation (2.59). The
contributic. . of the noise to the bispectrum of the SEMG is then only significant if the
magnitude of the skew of the noise is significant with respect to the magnitude of the skew
of the noise-free SEMG. If, on the other hand, the noise is not additive to the output but
to the firing sequence, then its effects become significant only if its skew is significant with
respect to the skew of the firing sequence. Remembering that the RSMUAPs have a zero
mean, while the SEMG amplitude is incorporated into the firing sequence, it is fair to say
that the vast majority of the magnitude of the SEMG's bispectrum is due to the firing
sequence. This means that the preceding statements can be simplified to say that the effect
of coloured noise is only significant, regardless of whether it is additive to the output or
the firing sequence, if its skew is siguificant with respect to the skew of the firing
sequence. Figure 3.12 from chapter 3 compares the magnitude bispectrum of a firing
sequence and a Gaussian sequence. For the sake of comparison, the Gaussian signal is
equal to the firing sequence in mean and variance; however, while the firing sequence has
a skew of 0.9, the skew of the Gaussian is only 0.005. This results in a factor of nearly
200 difference between the two magnitude bispectra, which leaves plenty of room for
increased skew in the noise.

The experiments discussed in the first section of this chapter were repeated with
10dB's of white Gaussian noise added to the SEMGs. Figures 4.7 through 4.9, much like
their noise-free counter parts in figures 4.4 through 4.6, show the estimated RSMUAPs
from noisy SEMGs to reflect changes due to myopathic progression in a consistent and
predictable manner. Repeating the discriminant analysis for RSMUAPs estimated from
noisy SEMG again supports the claim the bicepstral deconvolution operates relatively
transparently to white Gaussian noise. A 'though not as many estimates are classified
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exactly, as seen in table 4.3, table 4.4 shows that in the noisy case 86.4% of estimated
RSMUAPs are correctly classified as compared to 86.7% in the noise-free case.

Further investigation into the effects of noise shows RSMUAPs estimated from
SEMGs containing 20, 10, 5, and 0dB of coloured Gaussian noise in figure 4.10. As the
SNR drops, the effects of deviation from Gaussianity combined with a large deviation
from whiteness become amplified and eventually begin to degrade the RSMUAP
estimations. It is not, however, until the SNR is somewhere between 5dB and OdB that a
significant increase in variance occurs. In terms of average power, 5dB and 0dB
corresspond to signal to noise ratios of 3.16 and 1.00 respectively, and it is unlikely that
such low SNRs would be encountered clivically.

It seems quite reasonable then to conclude that the use of higher order spectra as a
conduit for estimating RSMUAPs is not only necessary to provide phase information, but
also extremely beneficial in dealing with noise. Several algorithms based on higher order
spectra exist that can be used to estimate RSMUAPs, but the bicepstral method is chosen
here because it is non-parametric, and does not require estimation of the bispectrum. No
further investigation into other methods is made. Also, no real effort is made to optimize
the bicepstral algorithm except through empirical means.

Modelling Variations

The assessment of bicepstral deconvolution in this thesis is done using simulated
data generated on the basis of the synthesis model developed in chapter 3. In order for the
results of this study to be of some general value, the influence of this model on the results
must be unveiled. The modelling in chapter 3 attempts to represent a SEMG as accurately
as possible, while still maintaining enough simplicity to allow straightforward numerical
SEMG simulation. Still, assumptions are made regarding the physical structure of muscle
that limit the type of muscle the model can represent, and simplifications are made about
the motor neuron signals that may effect the deconvolution algorithm.

The development of the SEMG synthesis model is full of rather arbitrary choices
for physical characteristics of muscle. For instance, the entire model s based upon the
brachial biceps muscle, but it is desirable to know if bicepstral deconvolution is equally as
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effective in extracting meaningful RSMUAPs from other muscle's SEMG. Furthermore,
the values chosen for mean fiber diameter, and number of fibers per motor unit are
disputable quantities. One could do a lengthy study on the effect of every model
parameter on the resulting ideal and estimated RSMUAPs, but here the goal is simply to
ensure that the ability to estimate RSMUAPs from SEMG:s is strictly dependent upon the
particular model used herein. This is done by creating a second model, model B, as
described in chapter 4, and repeating the RSMUAP estimation experiments.

RSMUAPs estimated from model B generated SEMGs are compared to their ideal
counter parts in figures 4.13 through 4.15, as done in figures 4.4 through 4.6 for model A
data. For stage 1 very little difference exists between the model A and model B results.
In stages 5 and 9, however, there is a noticeable difference in the shape of both the ideal
and estimated RSMUAPs between models A and B. For both stages, although more
obvious in stage 9, the first phase of the RSMUAP is wider and the last phase is lower for
model B. Although it is not of particular concern here why exactly that happens, it is
important to note that RSMUAP shapes are dependent, to some degree, on the physical
characteristic of the muscle in question. This means that building a data base of
RSMUAPs would require reasonably good knowledge, not just of the pathophysiologic
state of the muscle, but also the physical structure of the muscle, for each RSMUAP.

Of greater interest with regards to model B SEMGs is whether or not the effect of
myopathic progression is reflect=d in the estimated RSMUAPs. Essendally, the
RSMUAPs estimated from model B SEMGs follow a consistent and predictable pattern in
all three stages and clearly show change between stages. There is, however, a noticeable
increase in variance between estimations for inodel B. This is likely due to there being
fewer muscle fibers being averaged into every SMUAP, which results from model B
starting (i.e., stage 1) with roughly 25% fewer fibres per MU and because its smaller
diameter fibres become inactive more quickly. If these are the reasons for increased
variance, then increased data length should work to reduce that varian-e, makiny it a
relatively trivial protlem. So, while the RSMUAPs generated by mode! A are not
necessarily prototypical, there is no reason to assume that the ability to estimate them is
anique.

The other significant simplification made in model A is that SEM.Gs during a
maximal voluntary contraction are stationary over all time. With reference to the linear
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sy stem mode! created in chapter 3 the assumption of SEMG stationarity requires that the
sysiem's impulse response be time invariant and its input signal be stationary, where the
impulse response is the RSMUAP and the input signal is firing sequence. Without a
doubt, the assumption that motor neuron firing patterns are time invariant is not valid
[12.19], although most EMG studies indicating this have been done using submaximal
contraction. A study by Pinelli et. al., however, tracked MU firing patterns during
maximal voluntary contraction over a period of sixty seconds [4s]. The results show that
maximum discharge frequency of single MUs drop rapidly during the first 2 to 10 seconds
from around 50 per second to roughly 25 per second. Folluwing that, the maximum
discharge frequency slowly drops to about 15 per second over the next 50 seconds. The
question to answer is then, how motor neuron firing pattern variations with time effect
bicepstral deconvolution.

Ideally, bicepstral deconvolution should not be affected by the non-stationarity of
the motor neuron firing patterns. Regardless of the rate of firing, the input signal, u(n), to
the linear system model of the SEMG is still a non-Gaussian random process. Paiss and
Inbar determined that the SEMG is stationary of periods of 0.64 seconds [19], which is
much longer than the 256 ms long segments from which the third order cumulant
sequences are computed. Therefore, over each segment, the SEMG signal is stationary,
and the entire contribution of the firing pattern manifests as an impulse of magnitude A B
at the origin. Verifying that ncn-stationary firing sequences do not appreciably effect
bicepstral deconvolution is dune by modifying the SEMG simulations. In these
simulations a gradient is applied to the mean firing frequency of all MUs. The mean
interpulse intervals are linearly increased from 60ms to 84ms over a ten second period,
which is an increase of three standard deviations from the mean, represeating a much
steeper gradient than can be in*rred from Pinelli's work.

The magnitude bispectra of stationary and non-stationary firing sequences are
shown in figure 4.14 to be almost identical. Not surprisingly then, the plots in figure 4.15
show no disceraible difference between estimated RSMUAPs from SEMG with stationary
and non-stationary firing sequences. Therefore, one may conclude that fting frequency
decline due to fatigue has no effect on the ability to estimate RSMUAPs from SEMG.
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Of more concern with regards to fatigue and SEMG stationarity is the time-
‘nvariance, or lack there of, of the RSMUAPs. If fatigue causes RSMUAPs to change
shape over the duration of the SEMG data length, then the resulting RSMUAP estimate
will be an average of the RSMUAPs from each 256ms dma segment. This may cause
problems in the interpretation of RSMUAPs because changes due to fatigue must not be
confused with changes due to pathology. Muscle fatigue b . been shown to recult in a
shift to lower frequencies of the power spectrum, as well as w.creased firing frequency
[12]. The shift of the power spectrum, which also occurs due to myopathies, is likely due
to decreased conduction velocity in the muscle fibers caused by metabolite build up [19].
Avoiding confusion can be done simply be acquiring the total length of SEMG data in
several short time segments, allowing the muscle to rest between. However, fatiguing
effects on muscle can also be used diagnostically, as muscles affected by different
pathologies have been shown to fatigue differently. [n any case the effects of fatigue on
the RSMUAP requires more investigation, but does not appear to be a serious problem.

Conclusion

This thesis introduces and investigates a new approach to SEMG signal
processing. In an attempt to extract MUAP like data from the SEMG. the RSMUAP is
defined as the action potential that is representative of all the SMUAPs in a given SEMG.
It is then shown that RSMUAPs can be consistently estimated from SEMG using
bicepstral deconvolution, which is a homomorphic method based on the bispectrum. The
bispectrum is required because it preserves phase information, thereby allowing for non-
minimum phase reconstructions of RSMUAPs. Experimentation is done entirely through
simulation, in which the SEMG is modelled as a sum of SMUAP trains. Each train of
SMAUPs results from the convolution of a SMUAP with a train of impulses representing
a motor neuron signal. The SMUAP, in tumn, is computed as the sum of SFAPs as seen on
the surface of the skin.

The results of the experiments indicate that RSMUAPs provide an effective
method of detecting change in muscle due to 1« progression of ‘myopathy. For each of
nine stages of myopathic progression, estimated RSMUAPs are shown to be unique
enough to be classified correctly, plus or minus one stage, 86.7% of the time, with a
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relatively small training set. Furthermore, estimation of RSMUAPs is shown to be
relatively unaffected by noise, due primarily to the use of the bispectrum, which suppresses
Gaussian signals, in the estimation process. Finally, altering the modelling parameters
without causing serious effects to the RSMUAP estimation indicates that the success of
this method is not particular to the model used herein, and therefore, indicates that it may
be useful for SEMG in general.

From a clinical perspective, very little is discussed in this thesis. Without a doubt,
the next step in the investigation of the vtility of RSMUAPs is to apply bicepstral
deconvolution to clinically acquired data. It is difficult to say what diagnostic possibilities
the RSMUAP holds, but for starters, this thesis indicates that it is well suited for following
the progression of a myopathy. The inexpensive, painless nature of SEMG makes this
procedure ideal for following the progression of disease with frequent examinations.
Further down the road, it may also be possible to build up enough data to perform
discriminant analysis on RSMUAPs estimated from SEMGs of unknown origin (i.e., the
muscle being afflicted with an unknown disorder). It will also be useful to investigate the
bioelectric phenomenon involved in RSMUAP formation. That is, if the full potential of
the RSMUAP is to be reached, then it must not be treated as an abstract statistic, but
rather as an action potential. Understanding the manifestations in the RSMUAP of
various pathological changes will help reach that potential.
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