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Abstract

A new algorithm is given for interpolating data at N + 1 distinct points by a rational
function. The algorithm is fast, requiring O(N?) operations, except for certain pathological
cases. A floating-point error analysis is provided and is used to show that the algorithm is
weakly stable. The algorithm is reliable in that it gives accurate results when the problem
is well-conditioned and does not contain unattainable points and it identifies a posterior:
all unattainable points in the data and alerts the user when the problem is ill-conditioned
due to factors such as clustering of close points.

The performance of the algorithm is controlled by a user-specified stability tolerance 7.
Experimental results are provided which support the given error analysis and which demon-

strate that practically the point-wise error is bounded by O(7u), where u is the unit error.
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Chapter 1

Introduction

Let D denote the field of real numbers. For non-negative integers L and M, define P, to
be the set of polynomials of degree at most L with coefficients in D and R(L, M) to be the
set of rational functions 7, (z) that can be written in the form

reae(z) = %; (L.1)

with

L M
Uz) =) Uiz € P, V(2) = Viz' € Py, (1.2)
=0 =0

where the denominator may not be the constant zero polynomial. By removing common
factors from U(z) and V(2) in (1.1), we obtain the reduced form denoted by r, ,(z) =
U"(z)/V"(z), where U"(z) and V" (z) are relatively prime. It is understood that the values
of rational functions are always computed using the reduced form.

The rational interpolation problem is defined as follows.

Problem 1.1 (Nonlinear rational interpolation) Let L and M be non-negative inte-
gers, and let N = L+M . Given {(z;, fj,gj)} € D3 forj =0, ..., N, with max{|f;|.|gj|} = 1
for all j and z; # z; for all i # j, the problem of nonlinear rational interpolation is to de-
termine an r, (z) € R(L, M) such that for all j
U'(z) |
—’,—— + PN
V"(z)  g;
Note that the normalization max{|f;|,|g;|} = 1 in Problem 1.1 precludes the data (f;,g;) =

=0. (1.3)

(0.0), and it prescribes that the large interpolation values f;/g; be represented by corre-
spondingly small values of g;. Later, we introduce a similar normalization of (U"(z), V"(z)).

The problem of rational interpolation is an old one; it has its origin with Cauchy [19]
when in 1821 he extended the Lagrangian formulation of polynomial interpolation at dis-
tinct points to rational functions. For this historical reason, the problem defined by Defi-

nition 1.1 is called the Cauchy Interpolation problem.
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Rational functions are superior to polynomials for interpolating data because they can
achieve more accurate approximations with the same amount of computation [46]. In
addition, rational interpolants have a natural way of interpolating poles whereas polynomial
interpolants do not.

Applications of rational interpolation range from simple root-finding of nonlinear equa-
tions (40, 44, 48] to the field of engineering where linear control systems are encountered
(1, 13]. Rational interpolation also has a very rich theory. It is in close relation with a whole
body of mathematical theory including the theory of orthogonal polynomials [24, 26], Padé
approximants [5], continued fractions [33, 29, 60, 63], determinants [39], and the calculus of
finite differences [33]. Tt also gives rise to many specialized matrices such as the Hankel and
Toeplitz matrices [32, 39], the divided-difference matrix [34], Léwner matrix [11, 49. 39],
and the generalized Vandermonde matrix [11].

The multiplication of (1.3) by the denominators g; and V"(z;) leads to a different

formulation of the problem.

Problem 1.2 (Linear rational interpolation) Let L and M be non-negative integers,
and let N = L+ M. Given {(2j, fj,9;)} € D3 for j =0,...,N, with max{|f;|,|g;|} =1 for
all j and z, # z; for alli # j, the problem of linear rational interpolation ts to determine

U(z) € P, and V(z) € Py (V(2) #0) such that for all 5
ng(Zj) + ij(Zj) =0. (1.4)
A solution (U(z),V(2)) satisfying (1.4) is said to be a linear rational interpolant of
type (L, M]. The reduced form U"(z)/V"(z) obtained from (U(z),V(z)) is unique up to a
scalar and is called the rational interpolant of type [L, M].
The value of g; = 0 in (1.4) is permissible. In this case, U”(z)/V"(z) would need to

satisfy V"(z;) = 0, U"(2;) # 0. That is U”(z)/V"(z) has a pole at z = z;.
With (1.2), (1.4) becomes

Uy
0 ... L 0 . M
902 9025 fozg - fozp
; . ) . . . U, -
: : =0, (1.3)
0 ’ L ] AL Vo
gv2y - gnzy fwzy oo fezy :
Vi

where the coefficient matrix is called the generalized Vandermonde matrix. Equation (1.5)
is an under-determined linear homogeneous system of N+1 equations with N +-2 unknowns.

Thus, a nontrivial linear rational interpolant always exists.

2
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It is quite clear that every solution of (1.3) is also a solution of (1.4). But the converse
is not true. A solution of the linear rational interpolation problem may not be a solution
of the nonlinear rational interpolation problem. If (U(2),V(2)) in (1.4) both have a factor
of (z — z,), where z, is one of the interpolation points, then upon forming the nonlinear
rational function, such a factor cancels out and the reduced rational form may no longer
interpolate at 2,. This point is referred to as an unattainable point. In chapter 2, we
illustrate that if one solution of Problem 1.2 has this property, then all solutions do. Thus,
no (nonlinear) rational function can be found which interpolates at such point z,; the best
we can do is to identify it.

The straightforward way to solve the linear rational interpolation problem is to directly
solve the system of equations in (1.5). This system of equations can be solved numerically
by the Gaussian elimination method which is known to be stable. Gaussian elimination
requires O(N3) operations over D.

Due to the special structure of (1.5), it is not surprising that faster O(/N?) algorithms
have been discovered. These fast algorithms [41, 42, 43, 53, 63] rely on constructing a
solution recursively from its lower-degree type solutions until the final rational interpolant
is attained. These lower-degree type solutions when arranged in order of degree form a
table of solutions called the rational interpolation table. Each [L, M] entry in the table
corresponds to the rational interpolant of type [L,M]. This table is unique when the
rational interpolant is normalized, traditionally by setting the leading coefficient of the
denominator to 1.

These algorithms [41, 42, 43, 53, 63] construct the solution of type [L, M] from its
neighboring rational interpolants, which are in turn constructed from their neighboring
rational interpolants. However, due to unattainable points mentioned above, some of these
entries in the rational interpolation table can be identical. These identical entries appear
in blocks which are called singular blocks, corresponding to the rank deficiency of the
matrix in (1.5). When constructing the intermediate solutions involving identical rational
interpolants, these algorithms breakdown.

To rectify the problem, relationships have been observed among entries at the border
of singular blocks [9, 33], called singular rules. These singular rules methods require exact
arithmetic because one needs to detect the exact size of the singular blocks. Detailed
treatments of the singular blocks in rational interpolation (in an exact arithmetic setting)
are given in Gutknecht [36, 34], van Barel and Bultheel [54, 55], Antoulas and Anderson
(3], and Beckermann [6]. These recent studies {3, 6, 34, 36, 54, 55| are aimed at obtaining

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



a theoretical algorithm to handle singular blocks.

When D is not the field of real numbers but rather some integral domain (e.g., rational
numbers, integers) where exact arithmetic is possible, the injudicious use of these fast algo-
rithms gives exponential growth of the size of intermediate results (see however Beckermann
and Labahn {10]). In such cases the cost of these algorithm in terms of Boolean operations
is exponential rather than O(N?). Consequently, the practicality of these algorithms is
limited to domains D where operands do not grow and the cost of each operation is fixed
(for example, finite fields).

On the other hand, with floating point numbers, the size of operations and therefore
the cost of each operation are fixed. In this domain, counting the number of operations
as the complexity of the algorithm is therefore appropriate. However, since floating point
numbers are not exact, all of the above-mentioned algorithms suffer the consequences of
roundoff errors. When there are singular blocks (numerically, ill-conditioned blocks) along
the path of the computation, the algorithm becomes unstable [34]. Ill-conditioned blocks
arise when the coefficient matrix in (1.5) becomes ill-conditioned.

Werner {60, 61] and Graves-Morris {31, 29, 30] addressed the problem of near-singular
blocks by proposing a certain reordering of the data. But reordering is not counsidered to
be inductive because one cannot add further data and proceed to higher degrees since the
interpolation points may be reordered by the algorithm [33]. More importantly, there is
no proof that such a reordering scheme leads to numerical stability. Indeed, Grave-Morris
shows that even with the proposed reordering, the error bound still grows exponentially
(30].

Although fast algorithms have been developed algebraically, their numerical counter-
parts have not yet been developed. Currently, there are no fast algorithms which are
known to be numerically stable [36]. Cabay et al. [16], however, showed some prelimi-
nary experimental results that suggest the possibility of a fast numerically stable algorithm
with the look-ahead approach. This look-ahead approach gave the early directions to this
research and eventually led to a numerically stable algorithm.

In this thesis, we present the first numerically weakly stable algorithm for nonlinear
rational interpolation. We show that the algorithm yields a good solution when the prob-
lem is well-conditioned (the stability of the problem will be made precise in Chapter 3).
Whenever the problem is ill-conditioned—due to an ill-conditioned linear system (1.5) or the
existence of nearly duplicate data—any solution is sensitive to small perturbations in the

data. The algorithm recognizes these situations, as well as any unattainability in the data,
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by providing appropriate quantitative parameters. Hence the new algorithm is reliable.
The outline of this thesis is as follows: The characterization of the solutions of rational
interpolation is given in Chapter 2. Conditions for the unique solution are given in this
chapter. We also describe the nature of the multiple solutions where the solution is not
unique. A set of insightful examples is designed to convey some of the important concepts of
rational interpolation. In Chapter 3, we introduce the Linear Rational Interpolation System
(LRIS), which is an important construct that enables us to apply the divide-and-conquer
strategy. As a result, it leads to an O(N?) algorithm. This O(N?2) algorithm is described in
Chapter 4, first in algebraic and then in numerical form. Chapter 5 gives precise definitions
of problem and algorithm stability. Chapter 6 gives a detailed error analysis of the numerical
algorithm. We give the necessary error bounds of the crucial expressions that enable us
in Chapters 7 and 8 to show that a continued-fraction representation of the solution of
Problem 1.1, which is immediately obtainable from the output of the algorithm, gives small
errors at the interpolation points whenever the interpolation problem is well-conditioned
and does not contain unattainable points. We further show that the algorithm is weakly
stable: that is whenever the problem is well-conditioned, the algorithm computes a solution
that is close to the true solution. To provide evidence to support the error analysis, we
report a variety of numerical experiments in Chapter 9. These experiments show that given
a user-specified stability tolerance 7, in practice, the point-wise error is bounded by O(ru),
where u is the unit error, as opposed to O(72u) obtained theoretically. Finally, we make

some concluding remarks in Chapter 10.

[31]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2

Characterization of Solutions

As we already observed in Chapter 1, a nontrivial solution of Problem 1.2 always exists. In
this chapter, we give conditions for its uniqueness (up to a scalar)!. In addition, when the
solution is not unique, we describe the nature of the multiple solutions.

The solution of the nonlinear problem (Problem 1.1) is strongly connected to the linear

one according to the following theorem (see [64] for a detailed proof).

Theorem 2.1 There ezists a rational function rp € R(L, M) satisfying (1.3) if and only
if the reduced form of the [L, M| linear rational solution U"(z)/V"(z) satisfies (1.4)-

The theorem says that the solution of the nonlinear rational problem, if it exists, is
the reduced pair (U”(z),V"(z)) which is obtained from the linear rational interpolant
(U(2),V(2)). In this chapter, this equivalence is made more explicit.

The results in this chapter are not new; except for certain notions of singularity and
their relationship to linear solutions, all the concepts presented here can be found in [33. 64].
The main contributions of this chapter are a series of insightful examples illustrating these

concepts. The examples involve the interpolation of all or part of the data in Table 2.1

below.
J 0 1 2131415167
zi | =3} -21-110}1]2}3]|4
fil-3{-2{-3j0j1|2]1]2
gj 1 1 11111 f1]1
Table 2.1: Data used to illustrate rational interpolation concepts.
Let 0 et 0 Mt
902g st go3g Jozg -+ Jozg
My = : : : : : : (2.1)
gN—IZgr_x t gN-1ZRy fN—lzg-x o Iz

'Henceforth, by unique solution we mean unique up to a scalar.

6
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be the generalized Vandermonde matrix of type [L, M] for the data {(zj, fj,9j)}j=o0,...N=1-

Theorem 2.2 A solution to the linear rational interpolation problem of type [L,M] is

unique if My, is nonsinguler.

Proof: Since M, , is assumed to be nonsingular, a non-trivial solution (P{!)(z), Q{1)(z)) of

type [L — 1, M] satisfying

1
(R
A
(1 Sfozg
M PL—I - _ (1) - 2 9
L.AM (1) Qu : 1 (2.2)
? Srva1zil,
\qi2, /

exists uniquely (up to a scalar), with Qs,ll) # 0. Similarly, a non-trivial solution (P(?(z),
Q¥ (2)) of type [L, M — 1] satisfying

(2)
(P
sz) fozg
Miw| 55 | =-P® : : (2.3)
(,) fu-rzm_,
\of2,
exists. with P{?) 0. The addition of an extra point, z,. to (2.2) and (2.3) gives
( P
goz8 - gozg”'  fo2d oo fozlt P(:1) 0
. . : . L—-1 — .
) 1] .L ’ 0 : gl) B 0
.. -1 ... #
gnZy - gnZyn In2y Iz . gn P (zy) + fvQW (zx)
\ Q7
(2.4)
and
2)
(A7)
9028 - gozb  fozd -+ foz' Pé2) 0
Do P : @ | = '
o .. 0 ... M- Qo 0
gnzy gnzy  fazy vzt : I P (z4) + fvOP (zx)
\Q{2,
(2.5)
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We now show that (P(!)(z),Q(!)(z)) and (P®)(z), Q(®(z)) cannot both interpolate at the

point z,. Otherwise,

9;PY(z) + £;QW(z;) =0, j=0,...,N (2.6)
9;P®(z) + [;Q®(2) =0, j=0,...,N, (2.7)
which gives
9;(Q® (2;) PN (z;) — PP (2;)QM (2j)) =0, j=0,...,N (2.8)
Q3 (z;)PMN(z;) — PB(z;)QM(z;)) =0, j=0,...,N. (2.9)

Because | f;|{+lgj| # 0, this means Q@ (z) PN (z) — P2} (2)QtY) (2), a polynomial of degree at
most N, has N +1 zeroes. So, Q) (z) P11 (z) = P®)(2)Q(1)(z). Since deg(Q? (2) PV (2)) <
L + M - 2, this can happen only if P,f?’ = Qﬁ) = 0, which is a contradiction.

Assume then that (P(!)(z),Q(!)(2)) does not interpolate at the point z, (otherwise,
(P?(z),Q®)(z)) does not and we proceed in a similar fashion); i.e., assume gy P(!)(zy) +
fvQW(zy) # 0. Then the matrix on the left-hand-side of (2.4) must be nonsingular

otherwise the solution (P(1(z), Q1) (z)) would not be unique. Consequently,

Uo
goz§ - gozg~'  fozd - fozf U: Jozk
: : : : : : {,0“ =-U,| : |. (2.10)
gNng gszr-! sz?; N‘z::'{ - fNZA{:'
VL!

has a unique solution (U(2),V(z)). O
We now illustrate Theorem 2.2 with an example.

Example 2.1 Consider the problem of finding the linear rational interpolant of type [1,1]
which interpolates the first three potnts of the data given in Table 2.1. The associated

generalized Vandermonde matriz is

ma=(1 T3). (2.11)

Since this matriz is nonsingular, Theorem 2.2 tells us that the solution is unique. To verify

this, all the solutions of (1.5), which in this case is

1 -3 -3 9\ (/
1 -2 -2 4 ''| =0, (2.12)
1 -1 -3 3/ |V
Vi
8
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are given by the one parameter family (Uy, U1, Vo,Vi) = (66,38,28,8). The solution,
therefore, is unique (up to the scalar 8). In polynomial form, the solution is (U(z),V(z)) =

(38z + 68, Bz + 28) = (38(z +2). B(z +2)).

Note that (2 + 2) is a common factor in the linear solution and that the reduced form of
the linear solutions is always U”(z)/V"”(z) = 3. By Theorem 2.1, this is the only candidate
that can solve the nonlinear interpolation problem (1.1). Observe that this reduced form
does not interpolate at z = —2. So, we can conclude that no nonlinear rational function
of type [1, 1] exists which interpolates at z = —2. Such a point is appropriately called an

unattainable point.

Definition 2.1 A point z, is an unattainable point with respect to [L, M] if the reduced
rational interpolant obtained from any possible solution of type [L, M| to the linear Prob-

lem 1.2 does not interpolate at z,.

Theorem 2.3 If M, , ts nonsingular, then z,, with 0 < o < N, is an unattainable point

with respect to [L, M) if and only if \U(2,)| + |V (2+)| = 0.

Proof: First, suppose that [U(z;)|+{V (2s)| = 0. It follows that both U'(z) and V(z) contain
a factor of (2 — 2,) and so we can write (U(z),V (2)) = (z — 2, )(U*(2), V*(2)). But then
U*(2,)/V*(25) cannot interpolate at z,. Otherwise ((az+B)U*(z), (az+B)V*(z)) is also a
solution of the Problem 1.2 which contradicts the uniqueness of the result of Theorem 2.2.

Conversely, if [U(zs)| + |V (2)| # 0, then at least one of U(z) or V (2) does not contain
a factor of (z — 2,). So assume V(z,) # 0 (if not, we can proceed with U(z,)). It follows
from g,U(25) + foV(z5) = 0 that

Ulzs) ia_' —
V(z5) M 9o 0.

The next example illustrates the elusiveness of unattainability.

Example 2.2 The problem is to obtain the linear rational interpolant of type [2,1] which
interpolates the first four points of the data in Table 2.1. The associated generalized Van-

1 -3 -3
My, = (1 -2 —2) (2.13)
1 -1 -3

dermonde matriz ts
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which is once again nonsingular. This tells us that (1.5), which for this problem is

1 -3 9 -3 9 g°
1 -2 4 -2 4 !

0
1 0 0 0 O Vi

has a one-parameter family of solution. This family ts (Ug, Uy, U,, Vo, V1) = (0, =8, -8, 8. 8),
which gives (U(z2),V (2)) = (=B2z% — Bz,Bz + B) = (=B(z + 1)z,8(z + 1)).

In the example above, the linear solutions have the common factor (z + 1). The reduced
form is U"(z)/V"(z) = —z, which does not interpolate at z = —~1. This point is therefore
an unattainable point. Note that the unattainable point z = —2 of Example 2.1 disappears
in Example 2.2 even though the data is the same except for the inclusion of an extra
interpolation point. More importantly, the point z = —1 which is attainable in Example 2.1
has become unattainable in Example 2.2. These two examples illustrate the transient
nature of unattainable points; that is, they may come and go with changes in the type of
the rational interpolant of the same data. Furthermore, they are inherent to the problem.
When computing a nonlinear rational interpolant, the best we can do is identify such points.

This can be done only a posteriori.

Example 2.3 The problem is to find the linear solution of type [3,2] which interpolates the

first siz points of the data in Table 2.1. The associated generalized Vandermonde matriz

1 -3 9 -3 9
1 -2 4 -2 4
My,=|1 -1 1 -3 3 (2.15)
1 0 0 0 O
1 1 1 1 1

is singular, and so the family of solutions will have at least two degrees of freedom. Solving

1 -3 9 27 -3 9 —27 /g°\

1 -2 4 -8 -2 4 -8 Ul

1 -1 1 -1 -3 3 -3 2

1 0 0 0 0 0 O (‘f‘ =0 (2.16)
1 1 1 1 1 1 1 V°

1 2 4 8 2 4 8 \VU

yields the general solution (Up,U,,Us, U3, Vp, V1, V2) = (0, =B, —(a + B), —a, B, (a + B), a),
where a, § are arbitrary parameters, not both zero. In polynomial form, the linear solution
is (U(2),V(2)) = (—az’ — (a+B)2% - Bz,az? + (a+ B)z+ B) = (—(az + B)(z + 1)z, (az +
B)(z +1)).

10
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In Example 2.3, there are two common factors ¢(z) = (2 + 1) and d(z) = (az + B) in
the general solution which play very different roles. The polynomial d(z) prescribes all
the parameters in the family of linear rational interpolants satisfying (2.16). It is not
essential to the solution; its removal (i.e., assign d(z)=1) still gives a polynomial pair
(U'(2),V'(2)) = (—2¢c(2),¢(z)) = (—2(z + 1), (z + 1)) which solves the linear interpolation
Problem 1.2 (i.e., (2.16)). On the other hand, the polynomial ¢(z) is essential to the solution;
its removal from (U'(z), V'(z)) yields (U"(z),V"(z)) = (U'(2)/c(2),V'(2)/c(z)) = (—=z,1)
which no longer solves the linear interpolation Problem 1.2. In addition, the reduced
rational function U”(z)/V"(z) does not solve the nonlinear Problem 1.1 because it does
not interpolate precisely at the zero of c¢(z). The zero of ¢(z) is an unattainable point.
The above observations hold in general and are summarized in the following theorem

(see [33, 64, 43)).

Theorem 2.4 The general solution (U(z),V(z)) € P.xPy of Problem 1.2 can be expressed

as

(U(2), V(2)) = (U"(2)c(2)d(2), V" (2)c(z)d(2)) (2.17)

where U"(z) and V"(z) are relatively prime polynomials, c(z) is some unique polynomial

that divides I'I;-V:O(z — z;) and d(z) is an arbitrary polynomial.

Proof: Let (U(N)(z),V(1)(z)) and (U®)(z), V(2)(2)) be solutions of Problem 1.2. Then, for

3=0,....N,
;UM (z5) + £;v D (z) =0, (2.18)
9;UP(z) + [;v@(z) = 0. (2.19)

Consequently,
UMD (z;)V P (z;) = vV (2, )UP(z;) =0, j=0,...,N. (2.20)

because | f;|+|g;j] # 0. There are N + 1 zeroes, but the degree of this combined polynomial
is at most L + M = N. Therefore, U!)(2)V?)(2) — V() (2)UR)(z) = 0. Now, assume
V(1:2)(2) # 0 (if not, we can proceed with U(1:2)(z)). Thus, there exists a pair (U"(z), V"(z))

such that
U'(z)  UW(z)  UP(2)
Viz) T vl(z) T V(z)

Therefore, every solution has the same reduced form U”(z)/V"(z). If this reduced pair

(2.21)

(U"(2), V"(z)) does not interpolate all the given points, there must be a polynomial ¢(z)

11
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of minimal degree for which (U”(z)c(z), V"(z)c(z)) satisfies the interpolation conditions
() (g5U" (z5) + [;V"(2;)) =0, j=0,...,N. (2.22)

So. every solution pair must contain the minimal (unique) pair (U’'(z), V'(z)) = (U"(z)c(z),
V"(z)c(z)) which solves Problem 1.2. Hence, the general solution to the linear rational
interpolation problem will have the form of (U"(2)c(z)d(z),V"(2)c(z)d(z)). where d(z) is
an arbitrary polynomial with deg(d(z)) < min{L — deg(U’(z)), M — deg(V'(2))}?. O

Remark 2.1 A solution (U(z),V(z)) of type [L, M] for Problem 1.2 may satisfy |U(z,)| +
[V(2g)] = 0, for some o, 0 < o < N, and yet z, can be an attainable point. This will
happen if z — z, divides d(z) in Theorem 2.4. So the requirement that M, ,, be nonsingular

in Theorem £.3 is necessary.

Definition 2.2 The minimal solution of type [L,M] of Problem 1.2 is the linear pair
(U'(2),V'(2)) = (U"(2)c(2), V"(2)e(2)) defined in Theorem 2.4.

The minimal solution is the lowest degree pair which solves the linear interpolation problem.
This solution is special in the family of solutions of Problem 1.2 in that it provides the basis
for all members in that family. It consists of the reduced part (U"(z), V"(z)) combined with
the polynomial c(z) whose zeroes are the unattainable points.

Recall in Problem 1.2 that the reduced rational function r, ,, = U"(z)/V"(2) of type
[L, M| obtained from its linear solution is called the rational interpolant of type [L, M]. The
elements r, ,, for different values of L and M can be arranged in a table called the rational
tnterpolation table. (Note that U"(z)/V"(z) exists uniquely, but when deg(c(z)) > 0 it
does not solve Problem 1.1 and (U”(z), V" (z)) does not solve Problem 1.2). The rational
interpolation table is unique3.

Continuing with Example 2.3, we see that the nonunique linear solution is the same as
the solution of Example 2.2 except that it has one extra free parameter a. The reduced
form is identical in both examples. In fact, all the rational interpolants neighboring the one
of type [3,2] (see Table 2.2) have the same reduced form —z. In the rational interpolation
table, these identical entries appear in a square block as illustrated in Fig 2.1. This structure

is referred to as a block [22, 34].

2The degree of c(z)d(z) is called the defect @ by Gutknecht [33); 8 = min{L — deg(U"(z)),M —
deg(V"(z))}. Gutknecht then used the term degenerate to describe a rational interpolant U” (z)/V"(z)
that has a positive defect (i.e., deg(c(z)d(z)) > 0). But this terminology does not have universal acceptance.
For example, Claessens (22] uses the term degenerate to refer to a rational interpolant U”(z)/V(z) that
has unattainable points (i.e., deg(c(z)) > 0).

3Recall that by uniqueness, we mean uniqueness up to a scalar.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Entry U(z) V(z)

2,1) —Blz+1)z Bz + 1)

(2,2) —-B(z+ 1)z B(02%2 + z + 1)

(2,3) -B(z+ 1)z B(0z3 +022 + z + 1)
3,1) -B(0z2 + 2z + 1)z B(z + 1)

(3,2) —(az+ B)(z+ 1)z (az +B8)(z + 1)
(3,3) —B(z-3)(z+ 1)z 0z +B)(z-3)(z+1)
(4,1) | -B(02z2 +0z2+z+ 1)z B(z +1)

(4,2) | —(0z+B)(z —3)(z+ 1)z Bz-3)(z+1) |
(4,3) | -B(z=3)(z—4)(z+ 1)z | Bz =3)(z —4)(z+1)

Table 2.2: Solutions of entries in a block.

0 2

Figure 2.1: An illustration of a singular block.

Note that the solutions for type (3,3], [4,2] and [4,3] are unique (up to a scalar).

However. their corresponding generalized Vandermonde matrices are singular. For example,

1 -3 9 -3 9 -27
1 -2 4 -2 4 -8
1 -1 1 -3 3 -3
Mis=11 0 0 0 0 o (2.23)
1 1 1 1 1 1
1 2 4 2 4 8

which is singular. Thus, Theorem 2.2 goes only one way (i.e., the matrix M ,, may be
singular and yet the solution will be unique). Now, if we were to highlight these singular
M, i within a block structure (in Fig. 2.2), we would notice that they are located together
in the lower right hand corner. The commonality of the location of a singular M, ,, in the
rational interpolation table is that for each entry [t, j] its three immediate neighbors to the
left, top and also the upper left (i.e., [i,j—1], [ —1, j] and [i—1, j — 1], respectively) are also
within the same block. With this observation, a block structure then contains at least one
singular M,  (i.e., the block structure of a 2 x 2 square block). For a detailed description

of the structure of singular blocks in the rational interpolation table, see Claessens [22] and

13
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Figure 2.2: An illustration of singular M, ,, within a block structure.

Gutknecht {33, 34] (see also Theorem 9.1 in Chapter 9). Since a block contains at least one

singular M, ,,, the use of the modifier “singular” is appropriate®.

Remark 2.2 Note that the reduced form of type [1,0] is also —z, but it does not belong to
the singular block in Fig. 2.1 (or Fig. 2.2). This ts unlike the case of Padé table, where all

tdentical entries are always arranged tn square blocks [28].

In the final example below, we will show that a block can be formed by two square

blocks overlapping one another (i.e., a union of square blocks).

Example 2.4 (Union of blocks) The block structure of the data in Table 2.3 is illus-
trated in Fig. 2.8. Note that the only difference in the data tn Table 2.1 and Table 2.3

J 0 1
z; | =3} —-2] -1
fi|—-3]-2}]-3
gj 1 1 1

— OO
pod | gt | s § fa
[aad LM M B30
[ Bad K7V 1 K =2
[l E LR

Table 2.3: Data used to illustrate a union of two square blocks.

1s that f7z = 2 and f7 = 4, respectively. The solutions in a block structure are tabulated in
Table 2.4. Because of this change in the data, the solution of type [4,3] is no longer unique
and has the general form (—(az + B)(z — 3)(z + 1)z, (az + B)(z — 3)(z + 1)). The block
structure in this ezample is a union of two blocks as depicted in Fig. 2.3. In the figure, the
union of two blocks is highlighted in the right. All of the elements in the block structure have
a rational interpolant of —z. The entries with singular M, ,, are shaded as opposed to the

nonsingular ones which are highlighted in black. Notice that we do not know the function

‘Prior to the definition of M. A in this study, the relationship between the block structure and its
corresponding singularity of the matrices was not clear. For example, Gutknecht [34] refers to blocks as
“so-called singular blocks™ without clarification.

14
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0 2 a4 M 0
b
2—‘—&—'0—7‘——'— 2
) 1 1
4-_% D —— 4
L
i
L L

Figure 2.3: A rational table with a union of two squares.

Entry U(z) V{(z)

(2,1) —B(z + 1)z Bz +1)

(2,2) -B(z + 1)z B(0z2 + z + 1)

(2,3) —B(z+ 1)z B(0z3 + 022 + z + 1)
3.1) -B(022 +z+ 1)z B(z+1)

(3,2) —(az+ B)(z+ 1)z (az + B)(z + 1)

(3,3) —-B(z=3)(z+ 1)z 0z +B8)(z—-3)(=+1)
(3,4) -B(z =3)(z+ 1)z (022 + 0z + B)(z - 3)(z + 1)
4.1) —-B(023 +022 +z + 1)z B(z+1)

(4,2) —(0z+B)(z - 3)(z + 1)z Bz =3)(z+1)

4,3) ~(az+B)(z - 3)(z+ 1)z (az+B)(z =3)(z+1)
(4,4) —B(z - z3)(z ~3)(z+ 1)z 0z+B)(z—2z8)(z—3)(z+ 1)
(5,2) —(022 +0z + B)(z ~ 3)(z + 1)z Bz —-3)(z+1)

(5,3) | —(0z+B)(z—2z)(z-3)(z+1)z B(z—28)(z—3)(z+1)
(5.4) | —B(z — z9)(2z — z8) (2 — 3)(z + 1)z | B(z — 29)(z — 28)(2 — 3)(z + 1)

values of the last two points (zg and zg9). So, the solutions given in Table 2.4 for entries
(4.4], [5.3] and [5,4] are possible linear solutions. But these solutions interpolate the data
regardless of function values. Since all possible linear solutions must have the same reduced

form (Theorem 2.4), such possible solutions are sufficient to obtain their reduced forms.

For a more general treatment of the block structure of the rational interpolation table,

Table 2.4: Solutions of entries in a block structure.

see Claessens [22] and Gutknecht [33, 34].

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




Chapter 3

The Linear Rational Interpolation
System

A linear rational interpolant can be obtained by solving the system of linear equations (1.5)
directly. For example, one can use the Gaussian elimination method which requires O(N?)
operations in D. Furthermore, when the interpolation problem is treated as a least squares
problem, a class of least sqares methods can be used (see for example [14, 55, 56, 57]).

Because of the special structure of the matrix in (1.5), however, a number of recursive
algorithms have been developed, which by taking advantage of this structure require only
O(N?) operations. These recursive algorithms follow a path in the rational interpolation
table connected with a sequence of data points, possibly reordered. They can be classified
according to how they respond to singular blocks along the path.

The first class of algorithms gives no consideration to singular blocks [41, 43, 42, 47,
52, 63]. A good summary of these can be found in [31] and (5, Chap. 7]. The development
of these algorithms implicitly assumes a normal rational interpolation table (i.e., a rational
interpolation table in which all entries are distinct) in order to proceed from one entry on
the path to the next. Thus, when a singular block is encountered, they break down.

The second class of algorithms accommodates singular blocks in one of two ways. They
either reorder the interpolation points so as to remove singular blocks (except possibly at
the end of the path) [29, 30, 31, 60], or they provide a mechanism (called singular rules
[34]) for detecting singular blocks and a procedure for skipping over them [9, 16, 33, 34, 36].

The more recent third class of algorithms proceeds directly through singular blocks (2,
54, 55]. This class differs from the other two in that these algorithms iterate by successively
increasing not the degree of the interpolants but the number of interpolation points and
for each such increase by recursively constructing a basis for all interpolants (along a path)

independent of degrees. The interpolant of the appropriate minimal degrees satisfying
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L + M < N is easily determined from this basis.

The main strength of the algorithms in the third class is that they not only recognize
singular blocks but also give the entire family of solutions for an entry within singular
blocks. Their greatest weakness is the sensitivity of this basis within singular blocks on
small perturbations of the interpolation data. That is, the algorithms in this third class
are numerically unstable.

This lack of numerical stability prevails with the algorithms in the other two classes as
well. There are experimental results [8. 16, 61] which lead to the discussion of numerical
stability. But these studies use the term stability loosely and do not deal with it formally.
Until this thesis, no algorithms have been shown to be numerically stable [36].

Our algorithm is from the second class; a mechanism is provided for skipping over
singular blocks. We do this by collecting two adjacent linear rational interpolants in a
matrix called a Linear Rational Interpolation System (LRIS). A simple rule applied to a
LRIS detects singular entries.

A precise definition of the LRIS, together with some of its properties, are given in §3.1.
The relationship that we use in Chapter 4 to build a fast algorithm is described in terms
of two LRIS’s. This description is given in §3.2, where we show that a particular LRIS
can be constructed from two smaller ones. The idea here is to deploy the power of the
divide-and-conquer strategy. Lastly, in §3.3, we show that the successive application of the
divide-and-conquer strategy results in a fast iterative algorithm. The algorithm proceeds
along a staircase in the rational interpolation table bypassing singular blocks in its path. If
there should be no singular blocks encountered, this method reduces to Werner’s Algorithin
(60].

3.1 Linear Rational Interpolation System (LRIS)

Assume without loss of generality that L > M. If L < M, we interpolate instead the points
{(Zj, g]’ fj)}j=01---yN'
Definition 3.1 Given N + 1 points {(zj, fj,g;)}j=o0,...n 6nd two nonnegative integers L

and M such that L+ M = N, the Linear Rational Interpolation System (LRIS) of degree
type [L, M] is

_ (V) P)
5@ =(v(s @) 3.1
with
P*(2)\ _ ((z=2y)P(2)
() = (E25ed): (32)
17
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if it satisfies the following conditions:
e Degree Condition: U(z) € P., V(z) € Py and either
a} P(Z} (S PL-I’ Q(Z) [ ’p_y{, or
b) P(z) € P, Q(2) € Par—rs
o Nonsingularity Condition: det(S(z)) # 0;
e Interpolation Condition: (g; f;)S(z;)=(0 0), j5=0,...,N.

Remark 3.1 In Definition 3.1, (U (2),V(z)) is the linear rational interpolant for the points
25, 7 =0,...,N, whereas (P(z),Q(z)) ts the linear rational interpolants for the points z;,
J=0,....1 N —1.

]
tij(z) = [[(z = z0)- (3-3)

=t

The determinant of the LRIS S(z), which is extremely important in the subsequent devel-

opment, can be expressed in terms of (3.3).

Lemma 3.1
det(S(z)) =T ¢, n(2), (3.4)

where
AY
ton(2) = H(z - z)
{=0
and I is a constant.

Proof: We give a proof for degree condition (a); the proof for degree condition (b) is

similar. From (3.1)
det(5((2)) = (z — 2, )(U(2)Q(2) — V(2)P(2)), (3.5)

where the degrees of (U(z),V(z)) are at most L and M, respectively, and the degrees of
(P(z),Q(z)) are at most L — 1 and M, respectively. So, deg(det(S(z))) < N + 1.

But, from the interpolation condition,

9iU(zj} + fiV(2;) =0, j=0,...,N, (3.6)
(zj — 24 )(9; P(2;) + f;Q(2;)) =0, j=0,....N. (3.7)
Therefore,
det(5(25)) = (z — 24 )(U(25)Q(z5) — V(2)P(z)) =0, j=0,....N, (3-8)
18
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because | f;| + |g;j| # 0. Since deg(det(S(z))) < N + 1, then
det(S(2)) =T't,, 4 (2), (3.9)

where T is the leading coefficient of U(2)Q(z) — V(z)P(z). O

Theorem 3.1 A LRIS of type [L, M| ezists if and only if M, » is nonsingular.

Proof: First suppose that M, , is singular. It then follows that there exists a solution
(X (2),Y(2)) of type [L — 1, M — 1] interpolating not just N — 1 but the first N points. So
(X(2).Y(2)) is a linear rational interpolant of types [L — 1, M] and [L, M — 1] as well. But
(z —z,)(X(2),Y(2)) of type [L, M] interpolates the first N + 1 points. From Theorem 2.4.
all solutions of Problem 1.2 of type [L —1,M — 1}, [L,M -1}, [L -1, M] and [L, M] must
therefore have the same reduced form. Consequently, no LRIS S(z) of type [L, M] (with
det(S(z)) # 0) can be formed.

Conversely, if M, xs is nonsingular, from the proof of Theorem 2.2, we know that there
exist solutions (P()(z), QM (2)) with Q{!) # 0 of type [L—1, M] and (P (z), Q®(z)) with
P #£ 0 of type [L, M —1] with Q@ (2) P()(2) # P (z)Q()(z). In addition, from Theorem
2.2 that there exists a unique solution (U(z), V (2)) of type [L, M] with deg(U(z)) = L, or
deg(V(z)) = M, or both. Assume without loss of generality that deg(U(z)) = L. Then for

_(U@) (2 —2z,)PY(2)
s6= (v Goimene) (3-10)

the leading coefficient of det(S5(z)) = (z — 2z, )(U(2)Q(V(2) — V(2)P()(2)) is U, Q{}) # 0.
So, the Nonsingularity Condition for LRIS is satisfied. It is obvious that S(z) also satisfies

the Degree and Interpolation Conditions. O

Definition 3.2 An entry [L, M| in the rational interpolation table is ¢ nonsingular entry

if the corresponding M, , is nonsingular, otherwise it is a singular entry.

Remark 3.2 When M, ,, tis nonsingular, Theorem 3.1 tells us that at least one LRIS
S(z) of type [L, M| satisfying one of the degree conditions in Definition 3.1 exists, but not
necessarily both. When a LRIS S(z) ezists, from Theorem 2.2 and its proof, it is unique

(up to a scalar multiple of its columns).

The existence of a LRIS for a given data set does not imply that a rational interpolant
satisfying (1.3) exists, since there could be unattainable points in the system. We illustrate

this with an example.
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Example 3.1 The LRIS of type [1, 1] from the data points {(0,—1,1),(1,-2,1), (2. —1,1)}

is

_(U@) (z—22)P(z)\ _(2—-1 (2—-2)(z+1) .
s@=(vd) ¢mom) =G F725Y) @10
because
(gj fj)S(Zj):U, j=0,,..,2. (312)

and det(S(z)) = —z(z — 1)(z — 2) # 0. But from Theorem 2.3 and Theorem 3.1, z =1 is
unattainable for (U(z),V(z)) since |[U(1)] + |V (1)] = 0.

It is also true that (P(z),Q(z)) can have unattainable points. But, (U(z),V (z)) and
(P(z),Q(z)) cannot both have the same unattainable point z,, since det(S(z)) would have
a factor (z — z4)2, contradicting Lemma 3.1.

To obtain the rational interpolant U(2)/V (z) of the type [L, M], only the first column
of §(z) is required. Thus, solving an additional system to obtain (P(z),Q(z)) is extra
computation and does not seem to countribute to the overall solution. However, as we will
see in the next section, this structure of a LRIS allows us to deploy the divide-and-conquer

strategy, which then leads to an efficient algorithm for its computation.

3.2 Divide-and-Conquer

Now that a LRIS is defined, we would like to show that it can be written as a product
S(z) = s(z)3(z) of LRIS’s of lower degree types. This is the essence of the basic step in a
divide-and-conquer strategy. Once we have established this basic step, we can then further
split these into yet smaller LRIS’s, and so on.

Let us study this basic step in detail. Given [L, M}, choose one of two diagonal staircases
through [L, M] along which computation will proceed as illustrated in Fig. 3.1. Note that
because M < L so [L, M] is in the lower triangular region. Once a path is chosen, say Path
A, then the linear rational interpolant (u(z),v(z)) of type [l, m] for the subproblem must
lie on Path A.

It should be noted that using a staircase to arrive at a solution is not novel. Indeed,
there are numerous algorithms [9, 31, 43, 61, 64] that use a staircase or a diagonal path
[16, 33] to arrive at a solution.

Let {{,m] with { < L and m < M be a nonsingular entry along one of the two staircases

that pass through {L, M]. Let

0= ( 73)
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(L.M—n (L.M)

Figure 3.1: A rational table of a given set of data.

be the LRIS of type [I, ], which interpolates not all the N + 1 points but rather only the

first n + 1 points, i.e.,

(95 fi)s(z;)=(0 0), 57=0,...,n,

where n = [ + m. Associated with s(z), define the residual to be the pair (wj

j=n+1,...,N, where
(w; ri)=1(9; fi)s(z), j=n+1,...,N.
Similar to Lemma 3.1, we have

det(s(z)) = 7tg,(2)

v [z - =),
=0

where « is the leading coefficient of u(z)q(z) — v(2)p(z)-

I

(3.14)

ri),

(3.15)

(3.16)

Remark 3.3 Note that the residual (w; rj), j = n+1,...,N, resembles the original

data in that |lwj| +|rj| # 0, for j = n+1,... N. This fact s obvious when we multiply

both sides of (3.15) by s°Y (z25), resulting in

(w; 13)8*¥(25)=(g; [i)Vtom(z)y F=n+1,...,

(3.17)

Since |g;| + |fj| # 0 and t,,.(2;) # 0, for j = n + 1,...,N, then |wj| + |rj| # 0 for

j=n+1,...,N.
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Let

sy — [8(2) 13'(2))
@ = (50 #0 (3.18)
be the LRIS of type [f, ], which interpolates the residual (w; 7j),j=n+1,....N, ie.,
(wj 715)3(z;)=(0 0), j=n+1,...,N, (3.19)

where N — n — 1 = [ + 71 because of the degree condition.

Similarly, we have

det(5(z)) = ¢, ,.n(2)

-
= 3 I G- (3.20)

[=n+1
where ¥ is the leading coefficient of i(z)§(z) — 4(2)p(2).
To express S(z) in terms of s(z) and §(z), four cases need to be considered. These cases

are governed by the orientations of S(z) and s(z) as in Figure 3.2. Let
b=L -1 (3.21)

In Fig. 3.2, these are the three possibilities, viz., M—m = b~1, M—m = band M—m = b+1.

Theorem 3.2 Let s(z) of type I, m] be a LRIS for the data points {(z;, f;,9;)}j=o0,...1+m=n
with residuals {(zj,7j,wj)}j=n+1,...~- If 5(z) is a LRIS of type [l m] for the residuals
{(z5,7j, wj) }j=n+1,...N, then §(z) = s(z)3(z) is a LRIS of type [L, M] for the data points

{(zjs .fjv gj)}j:O,....N: where

) b-1,b-1] if M—=m=b-1,
[,m]={ [bb—1] if M—m=b, (3.22)
[b, 8] if M—m=b+1,

and lies along the statrcase on and immediately below the diagonal.

Proof: We will prove the case M — m = b — 1 only; the proofs of the other two cases are
similar.
We are given that 5(z) is a LRIS of type [b — 1,b — 1] interpolating the residuals

{(zj,7j,w;j)}j=n+1....N~. Then component-wise we have

deg6N < (371 42 1) (3.23)
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Figure 3.2: Orientations of s(z) and S(z)

since (p(z),§(z)) interpolates one fewer residual and must be of type [b — 1,5 — 2] (lies on
the staircase below the diagonal). Furthermore, with M —m = b~ 1 in Fig. 3.2, the degree

condition for s(z) is

I I+1
degs(z)) < (' H1). (3.24)
Because =L ~-band m = M — b+ 1, it then follows from (3.23) and (3.24) that
. L L
deg(s(2)3(=)) < (7 pre1 ) (3.25)

and so S(z) = s(2)3(z) satisfies the degree conditions in Definition 3.1.
For the interpolation condition, it is given that s(z) interpolates z;, for j = 0,...,n,

i.e.,

(95 fi)s(z;))=(0 0), j=0,...,n. (3-26)
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and $(z) interpolates the residuals of s(z) for j =n +1,..., N, i.e,
(wj 75)38(z;)=(0 0), j=n+1,...,N. (3.27)
Combining (3.26) and (3.27) gives
(95 f;3)s(z)3(25) =(9; fi)S(z)=(0 0), j=0,...,N, (3-28)

Thus, S(z) = s(2)5(z) satisfies the interpolation condition in Definition 3.1. Finally, since

det(S(z)) = det(s(z))det(3(z)) (3.29)
= Y. (2) - Yt opr.n (2) (3.30)
= Tt, ,(2), (3.31)

where I = v 4, then the nonsingularity condition in Definition 3.1 is also satisfied. O

We now examine how unattainable points of S(z) are related to those of s(z) and 5(z).

From Theorem 3.2, observe that

(v) === (56))- (3.32)

Nothing can be said for points z,, 0 < ¢ < n; 2z, may be an unattainable point for
(U(z).V(z)) but not for (i(z),9(z)). For points z,, n + 1 < o < N, however, we have the

following results.

Theorem 3.3 Given LRIS’s s(z) and 3(z), then forn+1 <o < N, [U(2,)| +1V(25)| =0
if and only if |u(zs)| + |9(25)| = 0.

Proof: From (3.32), it follows that if |i(z,)| + |9(2)] = O then [U(z,)| + |V (z,)| = 0.

Conversely, observe that s(z;) is not singular for n + 1 < o < N, since
det(s(z)) = v¢,,.(2) (3.33)

where

ty.n(2) = H(z ~ z).

=0
Therefore, from (3.32), it follows that
et (4 =t (8

Since det(s(z,)) # 0 for n+1 < o < N, it follows that |4(z,)| + [6(25)] = 0 if [U(2,)] +
V(z,)| =0. O
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Theorem 3.3 tells us that in the range of n +1 < o < N, the unattainable point of
z, for (U(z),V(2)) is independent of s(z); it can be determined from $(z) alone. Thus,
Theorem 3.3 gives us an efficient way to test whether z, is an unattainable point in the
rangen + 1 < o < N; we need to test only 5(z) rather than S(z) which has larger degree

polynomials.

3.3 The Recursive Case

Theorem 3.2 says that we can divide a large LRIS system S(z) into two smaller LRIS
systems s(z) and 5(2) as S(z) = s(z)5(z). But a more constructive way of interpreting
Theorem 3.2 is that given a small LRIS s(z) with its residuals, a larger LRIS S(z) can be
constructed if we can construct a LRIS §(z) that interpolates the residuals of s(z). Thus,
we can apply this idea to accommodate more and more points by recursively applying this
theorem. It is this idea that leads to a recursive O(N?) algorithm and which is described
in the next section.

Let {(li,m;)}i=0.. k+1 be a sequence of nonsingular entries along one of the two stair-
cases through [L, M]. We have l;4+1 > l; and m;4, > m;, with a strict inequality for one of

these, and & is such that [L, M] = (lg41, Mr+1). Define
ni=li+my 1=0,...,k+1, (3.35)

and
ti=niy—n, 1=0,...,k (3.36)
Let S()(z) be the LRIS of type (i, m;) for {(f;,9j)}j=0,...n; and define
(wj )P =(g5 f;)8D(z), j=m+l,... m+t (3.37)

If s(¥(z) is a LRIS of the appropriate type interpolating the residual (w; r; )(i), Jj =
n;+1,...,n 4+ t;, from Theorem 3.2,

§E+(2) = §Wsl0)(2), (3.38)

is a LRIS of type {li+1,mi4+1]. We will show in Chapter 4 that if ¢; is chosen such that it
is the smallest step size for advancing from one nonsingular entry to the next, an O(N?)
operations algorithm is devised.

Thus, the recursive theorems allow us to advance from one nonsingular entry to another

along a staircase path. Here, withz = 0,...,k, we have S("““)(z) in kK 4+ 1 steps as
Sk+1)(2) = s(0(2)s(V(2)--. sH)(2), (3.39)
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where S*+1)(z) interpolates z;j, j =0,...,ng + ty = N.

Similar to Lemma 3.1, we have the following lemma for det(s®*)(z)).

Lemma 3.2

det(s(i) (z)) = 7(i) t"i*“*"i""i (z), (3.40)
where
ni+t;
tn,-+1 e (2) = H (z = z1)
{=ni+1

and ¥ is the leading coefficient of u(9(z)p()(z) — v(V(2)g® (2).

Proof: Since s()(z) interpolates the residuals {(w; 7;)}j=n;+1,...ni+¢, the proof is similar

to that of Lemma 3.1. O

The concept of unattainability in the two-step case carries over to the multi-step case,

and it is summarized in the following corollary.

Corollary 3.1 Given LRIS’s s(o)(z)--»s(")(z), the point z,, ni +1 < o < n; + ¢; ts
unattainable with respect to [L, M] for the interpolant (U(z),V(z)) if and only if

: (k)
(W5 }...gk=1) u (Za')) _ (0)
$(z0) -+ 87 () (U(k)(za) = o (3.41)
Proof: In Theorem 3.3, set s(z) = s(9(2)---s(=1)(z) which interpolates z;, j = 0,...,n;,
and “
W(2)\ _ (). .. sk (4 (z))
(ﬁ(z)) =s"(z)- s @) | k) (2) (3.42)

which interpolates z;, j =n; +1,...,N. O

The above Corollary gives us an efficient way to test whether a point z, is an unattain-

able point.
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Chapter 4

Interpolation Algorithm

In this chapter, we present a fast algorithm that produces a sequence of LRIS s(*)(z),
. =0,...,k, described in §3.3. We first present this algorithm in algebraic form and then,
through appropriate modifications, in numerical form. A stability analysis of the numerical

algorithm is given in Chapter 6.

4.1 Algebraic Form

When computing s{!)(z), we take advantage of a certain observation that reduces cost.
More importantly, an extension of this observation is crucial to the development of a stable

evaluation formula described in Chapters 7 and 8. Given S®)(z) and the associated residuals

(w; )P =(g; f;)89(). j=ni+l....m+t,
let
) ={z; ;0w =0,j =n; +1,...,n; + t;} (4.1)
and
09(z)= [[ z-=). (4.2)
zieCc®

Theorem 4.1 The it® LRIS can be represented as

S(i)(z) = ((1) g(i)O(z)) s/(i)(z), (4.3)
where @
Wy (W) ()"

0= (0l o) (@4

s an LRIS of appropriate type that interpolates at the points z;, j =ni+1,...,n; +¢;, but
ezcluding the points z; € C1).
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Proof: Let z; € C{); that is, consider thase z; for which wg.i) = 0. Because |r§i)1 + lwgi)l # 0,
then r§i) # 0 and it follows from
) 3 . - (¥)
@ 0y (wz) p (Zj)) — -
W 0 () ) =0 0 (45)
that vl (z;) = q‘m(zj) = 0. Thus, 8% (2) is a factor of both v(¥(z) and ¢*’(z) and the
result follows. O
Note that with Theorem 4.1, the interpolation condition (w; ; )(i) s(i)(zj) =(0 0),

J=mn;+1....,n; +¢;, can now be written as

(wj r8(z)) s () =(0 0), j=ni+1,....,ni+t (4.6)
Pseudo-code for the algebraic case is given in Algorithm 4.1 below.

Algorithm 4.1 (Algebraic Interpolation Algorithm)

Input: Nr L7 {(zjv st gj)}j:o,...,N-
Output: k, s'O(z),---,s'®)(z) and C®,... c®),
Initialization:

M«N-L i«<0, n+ —1,
t;i «— max{L — M — 1,0} + 1, s’CV(2) « I, 0(-1)(2) « 1, Done « FALSE.

do { Compute (wj,rj)(i) fori=n;+1,..., n; + t; from (3.37)

i 1 0 (= 0 i—
(w5 )= 1) (g prongsy) ¥ @) (5 puny) <)

Determine C%, 00 (2) according to (4.1) and (4.2).
Determine s')(z) such that (see (4.6))

(w; r0(2))D () =(0 0), j=ni+1,...,ni+t;,z gCY

If n; +¢t; = N then
Done < TRUE; k « i+ 1.
elseif s'()(z) is nonsingular then
My — N+t 11+ 1; & 1.
else
t; — ¢t + 1.
end{if}
}Until (Done=TRUE)

Output: k, s"9(2),---,s'*®)(2) and CO®),... ck),
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Algorithm 4.1 computes a general linear rational interpolant of type [L, M], for M < L.
However, it is the basic type [31] for which L = M or L = M + 1 that is of primary interest
(i.e., this type lies along the staircase on or immediately below the diagonal of the rational
interpolation table). Each s()(z) in the algorithm, except possibly for the first LRIS s(®)(z),
is a LRIS of basic type. Thus, the degree of s(*)(z), for i > 0 is

i )- @.7)

; 3] L
deg(sP(a) < (154, "2
155 3]
Because the first step serves only to provide a general degree type, we shall focus our
attention on the bastc type in the following discussion.
We now examine some aspects of Algorithm 4.1. In particular, we give some insights

about the size of ¢; and the properties of s'(!)(z).

Lemma 4.1 IfC®) contains |(t: + 1)/2| or more members from {(2;)}j=n;+1,..ni+t;, then

a linear rational interpolant of type [|ti/2], [ (ti — 1)/2]] for the residuals is

ni+t;
(uz), v@)W =] ] (z—=2), 0 (4.8)
l=n;+1
ngct
Proof: Since t; = |(t; + 1)/2] + |ti/2], then in (4.8) deg(u(z)) < t; — (¢ +1)/2] = [t:i/2].

In addition, with (u(z),v(z))(i) given by (4.8)
wu®(z) + rv(z) =0, j=ni+1,....n +1, (4.9)

because either w_g.i) =0ifz; € CW or w() (zj) =0if z; & c. o
A consequence of Lemma 4.1 is that the do-loop in Algorithm 4.1 centinues to cycle

(increasing t; by one for each cycle) as long as at least half of the w§-i), J=ni+l,.....ni+t;

are zero. This is so because in these cases according to Lemma 4.1 and Theorem 2.4, the

only choice of s/(!)(z) satisfying (4.6) must have 0 components in the second row (i.e., 5'()(z)

must be singular). Thus, the first opportunity for the termination of the do-loop occurs
®

when there is exactly one more w;’ which is nonzero rather than zero. Note that when

this happens ¢; will be odd and wff‘_)ﬂ‘, # 0. Theorem 4.2 below describes this occurrence;

s'¥)(z) satisfying (4.6) in this case is nonsingular and so the do-loop does indeed terminate.
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Theorem 4.2 Given the residuals {(z2;, ry),w§i))}j=n;+1,....n,.+t‘. with wfj‘.’ﬂ #0 and ¢; odd,
suppose C®) contains (t;—1)/2 members. Then the LRIS s (z) of type [(t:—1)/2, (ti —1)/2]

is given by

. (®) (i)
(i) _[u . (Z) (Z = Zn;+t; )p (Z)
S (Z) - (v(z) (Z) 0 ) (4.10)

where et
vid(2) = H (2 —z) (4.11)

{=n;+1

necty

) ni+t—1
PP = I (z-=2) (4.12)
{=n;+1
zlgc(i)
and ulY)(z) € P, ~1)/2 is a polynomial interpolating the (t; + 1)/2 points
i |
u(z;) = —%U(Zj), F=ni+1,..ni+t, z; €CY. (4.13)
w:
j
Proof: The pair (u(¥(z),v(9)(2)) is a linear rational interpolant of type [(t; —1)/2, (¢, — 1)/2]
because the degree conditions are clearly satisfied and because (4.13) holds with z; ¢ C(¥

and
wﬁ-i)u(") (z5) + r§i)v(i) (z7) = 0-uli(z;) + r§-ﬂ -0=0, zecY. (4.14)

On the other hand, from Lemma 4.1, (p((2),0) is a linear rational interpolant of type!
[(t: = 1)/2,(t: — 3)/2) for the residual {(z;,rS),w(")}jzn;t1,..nitti—1- Finally, s0)(z) is

nonsingular because det(s()(2)) = 7(i)tni+1,,,i+¢i(z) =~ H?;:‘t;l (z—=z). O

In summary, the i*? iteration consists of two parts. The first part requires the successive
computations of (r§i) w§i) ): 3 =ni+1,..., until (¢ + 1)/2 nonzero and (¢; — 1)/2 zero
wgi)’s are computed (with ¢; odd). This requires O(n;t;) operations in D. The second
part requires the computation of the polynomial u¥)(z) of (t; — 1)/2 which interpolates
the points specified by (4.13), as well as the expansion of p’)(z) specified by (4.12) (v(¥)(2)
corresponds to 6()(z) and therefore requires no expansion). This requires an additional
O(t?) operations in D. (Here, we assume an O(t?) polynomial interpolation algorithm is
used such as the one given in [37, Chap. 5].) Thus, the total cost of the algorithm is

k

3 [0tnits) + 01)] = O(N?) (4.13)
1=0

since 3% ot; = N+ 1.

'By convention, a polynomial of negative degree is the zero polynomial.
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4.2 Numerical Form

Before we consider the numerical version of Algorithm 4.1, the notions of norm and condi-
tion number of an n x n matrix A are needed for the discussion. Throughout this study.

the 1-norm is used, e.g.,

i(g; f3)ll =max{|g;l,|1f;l}, (4.16)
and
n
Al = ‘?Jaﬁx",:l | A; ;|- (4.17)

For a polynomial P(z) € Py, we use the norm,

1P =3 (pil, (4.18)

i=0

and for a 2 x 2 polynomial matrix s(z), where

_ (u(z) p°(2)
1= (35 @) (4.19)
we use the norm
Is(2)ll = max{{ju(2)l| + llv(2)]l, lp* ()1} + lig*(2)Ii}- (4.20)

The condition number of A is defined as
w(A) = [l |47 (4.21)

More detailed descriptions of norm and condition number of a matrix are presented in

Chapter 3.
Let
S,(i)(z,-) = sW(z;)---sV(z;), 0<l<i, (4.22)

and S (z;) = I. Note that S{(z;) = S®(z;).
The numerical version of Algorithm 4.1 has two major modifications. First, the defini-

tion of C() is replaced by

ct) = {z; : |a§-i)w§-i)[ <Tp, j=ni+1,...,n + i}, (4.23)
where
@ 1
a;’ = . 4.24
= Tw® AT (424
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T is a stability parameter tolerance specified by the user, and u is the unit error on the
machine on which the algorithm is implemented. Note that || (w§.i) r}i) )| # O (see Re-
mark 3.3). Second, we replace the nonsingularity test of s'(!}(z) by the stability criterion

T(i) (Zn,'.H +1) S T, (4.25)
where
: (i+1) - :
0 (z) = Jg?g’_‘,-"(slll (2)) - 157" (z)])- (4.26)

We call (1) (z;) the stability parameter at 2;. In (4.26), by convention we set -r(")(zn‘.“_*_;) to
oc if any one of s()(2), 1 = 0,... 1, is singular. The relationship between the nonsingularity
test of s’({/(z) in Algorithm 4.1 and the stability criterion (4.25) is given by Remark 4.1

below.

Remark 4.1 The LRIS s')(z) is nonsingular if and only if 70)(2,.41) < 7 for some

finite T.

Proof: Suppose s'®)(z) is nonsingular. By assumption at the i** step of the do-loop in

Algorithm 4.1, s"(!)(2) is also nonsingular for 0 <! <i—1. So

det(SH1V(2) = det(s"(2))- - det(s)(2))

= AU+ 7(i)tn,+1+1,n.‘+1 (2). (4.27)

- n" .
Since tn,,,+ 1,001 (Znig+1) = Ha;n“*_l,,_l(zn‘.“.,.l —24) #0for 0 <l < ¢, then

. : -1
™ (anp) = max s(SET (znene) - 1597 (240
i1 : adj adi
B ST (zne s DU USSR (2 s O 1O (2 ) 128
= 02 (i+1) 0 < o0 (4.28)
-= ' det(S[+1 (Z‘ni+1+l))| l det(s (zﬂi+1+1))|

Conversely, if s’)(z) is singular, then 7() (2n;41+1) = 00 by convention. O

The specification of the tolerance parameter T provides control over the conditioning of
all the LRIS’s S®(z) and s()(z), 0 < I < i, evaluated at the point z,,,,+1- Whereas, only
minimal well-conditioning (finite ) of s(?) (2n;41+1) is sufficient to ensure the nonsingular of
s'®(z) (i.e., to satisfy the nonsingularity test in Algorithm 4.1), the well-conditioning of all
the LRIS’s is vital to the numerical stability of the algorithm. For example, in Chapter 6
we show that if T(i)(zni+l+1) < 7, then the residual error is bounded by O(urt).

The objective of the stability criterion 7()(zq,,,4+1) < 7 in (4.25) is to ensure that the

i** LRIS s(¥(z) does not result in a solution S6+)(z) = §()(2)st)(z) which corresponds
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to an ill-conditioned problem as we shall see in Theorem 5.2 of Chapter 5. In particular, it

follows from (4.26) that the condition number of S(+1)(z) at the point zn, +1+1 satisfies
K(S(i+l) (zn.'+1+1)) S T(i) (z‘ni+1+l)"s(0) (zﬂ(+1+1)”' (4‘29)

If the stability criterion (4.25) is satisfied, we know at least x(SC*+1) (2., +1)) is bounded
by 7 ||s(®)(z,,,,+1)|l- However, nothing can be said about the other points in the same step.
Note that for a general rational interpolant where L — M > 1, the first LRIS 50 (z)

involves a polynomial interpolation of degree ny, = L — M — 1, and has the form of

s(o)(z) - (u(oi(z) toan(l)(z) ) , (4.30)

where u(®)(z) is a polynomial interpolating the first n; + 1 points with deg(u{%(z)) = n,.
We refer to the analysis of the polynomial interpolation in [37]. For this case, the stability

parameter is

7O (zp 1) = 1597 (zn, )Ml
5@ (2, 41)]l
I’T(o)to,nl (2111 +1)l

_ s (i)l (431)
[Y® [Tato(za — 2,41l

Since the magnitude of 1/[¢,,,, (2a,+1)| depends proportionally on the sizeof ny = L-M -1,

in general, for small L — M, 7(% (z,,41) is small and therefore (4.25) is satisfied. Hence, the
first LRIS s%)(z) is generally of the form (4.30). However, as L — M increases, 7(%(z;, ,)
increases proportionally, in which case, a general s(9)(z) on the staircase may be required
so that the stability criterion is satisfied (i.e., 7(9(2,,4+1) < 7). Although the design of the
algorithm is to compute a general rational interpolant of type [L, M|, we implicitly exclude
the cases where M < L, since these cases (including the case where M = 0, which reduces
to a polynomial interpolation problem) are not the focus of this study.

As we shall see in Chapter 6, the residual error bound that we shall obtain is a pointwise
error bound. But since for every step, only one point is used to determine the stability of
the solution obtained, the other points in the same step may not be bounded by 7. At the

beginning of the it step, we only know that
T(i”l)(zﬂi+1) <, (4.32)

but we may or may not have the same bound at the points {2;}j=n;+2, .n;+t- Thus, we

introduce the parameter

T(i_l)(Zj) ;
¢j=m, J=ni+1,...,n + ¢, (4.33)
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which is computed by Algorithm 4.2 below. It then follows from (4.25) that
T(i—l)(Zj) ST’¢ja j=71i+17---’71i + ti, (4'34)

an inequality which is used in the stability proofs of Chapter 6. Notice that the magnitude
of ¥j, j =ni +2,...,n; + t;, in (4.33) can be arbitrarily large. However, as we shall see
in §9.4, should ¥; corresponding to z; be large in the range n; +2 < j < n; + ¢;, say at
the point 2°, this could only mean that z* is close to one of the points z;, j = 0....,n;.
Indeed, if z* is one of point z;, j = 0,...,n, then 9; = oo since 7(=1)(z;) = oo in (4.26).
This follows because if in particular z* € {Zj,j =mn;+1,...,n41}, 0 <1 < 17, then
det(sV(z*)) = 7(l)tn‘+l,n‘+t, (2*) = 0in (4.26). Thus, a large 1; serves to indicate problems

in the data set.

Algorithm 4.2 (Numerical Interpolation Algorithm)
Input: N, L, 7, {(25, fj,9;) }j=0,...N-
Output: k, s'O(z),---,8®)(z), cO, ... .c®) and {¥;};-0...N-
Initialization:
M«N-L i«0, nj « —1,
t; « max{L -~ M —1,0} + 1, s(-V(z) « I, (-1 (2) = 1, Done « FALSE.
do{

Compute (wj,r;)®) for j =n; +1,...,n; +¢; from (3.37)
i 1 0 - 1 0 i—
(w; )9 =(95 f5) (0 g(-x)(z))S'( Vzg) - (0 g(i—l)(z))sl( Y(z;).

Determine C) according to (4.23).
Normalize 89)(z) so that ||00)(2)| = 1.

Using Gaussian elimination with complete pivoting, determine s'")(z) such that
o (w; )P (z;) =(0 0), j=mi+1,...,ni+t;,z &CO,
where of? = 1/]| (w® rP)) |-

Normalize s')(z) so that each column of ( ) 8"V (z) has norm equal to 1.

1 0
0 00)(2)
If n; +t; = N then

Compute {;}j=n.+1...ni+t;; K — 1+ 1; Done « TRUE.

elseif 7(zn,,,41) < 7 then

Compute {1/’1 }j=ﬂi+1,---.ni +tis

Nip1 & ni+t;; te—1+1; ¢ « 1.
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else
L — i+ 1.
end{if}
} Until (Done=TRUE)

Output: &, s"0(z),---,sK)(2), CO ... CckK) O ... &) and {;}=0,..N-

The output (9, ... k&) s the condition numbers of the subproblems of (4.6), the signifi-
cance of which will be made clear in Chapters 5 and 6.

We use Gaussian elimination with complete pivoting to solve the system of equations
in (4.6). The system of equations is solved first by reducing the corresponding matrix to
an upper triangular form with complete pivoting, next by assigning the last variable to one
(or should a zero pivot be encountered, by assigning one to the variable corresponding to
the zero pivot at row [ and one to the subsequent variables in the solution vector from [ + 1
to ¢t; + 1), and finally, by back substituting for the remaining variables. This procedure
guarantees a solution for the i*" iteration even for a singular system.

Note that Algorithm 4.2 terminates when n; + ¢; = N regardless of the size of the
stability criterion. So, the last s(¥)(z) in the solution may cause the final solution to be
ill-conditioned, in which case x(¥} is used to alert the user.

We now discuss the complexity of Algorithm 4.2. There are k iterations of the do-loop
in the algorithm. Each iteration consists of computing ¢; residuals which requires O(n;t;)
operations, solving a system of ¢; equations with Gaussian elimination which requires O(¢3)
operations, and computing 7(!)(z,_,, +1) which requires O(n;t;) operations. However, since
t; is not known beforehand, the algorithm accepts a ¢; only if the system solved using
Gaussian elimination satisfies the stability criterion. Thus, the computation of the ¢t*
system requires the solution of ¢; systems each requiring at most O(t?) operations and
the computation of ¢; stability parameters T(")(z.,,,. +1+1) each requiring at most O(n;t;)
operations. Since Zf=0 ti = N + 1, the complexity of the algorithm is

k
3 [O(n,vt,-) +0(t3)t; + O(n.-t,-)t,-] = O(N?) + O(£3N) + O(¢tN?), (4.35)

i=0
where ¢ = maxo<i<k{ti}-

For small ¢, the cost of Gaussian elimination is small and hence, like the algebraic
algorithm, the complexity of Algorithm 4.2 is O(N?). Thus, Algorithm 4.2 is most efficient
when ¢ is minimal (or when the number of steps is maximal). Ideally ¢ = ¢; = 1, in which
case our algorithm returns the same linear rational interpolant as does Werner’s [60, 61].

A discussion of Werner’s algorithm is given in Chapter 9.
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For the extreme case, however, it is conceivable that for a given set of data, the singular-
ity test is never satisfied, and therefore, Gaussian elimination is ultimately used to compute
the linear rational interpolant. In such a case, N systems of equations are solved by Gaus-
sian elimination each requiring as much as O(N?3) operations, hence giving a complexity of
O(N?). But such a case is rarely encountered in practice.

Note that in Algorithm 4.2, with the exception of the initial step, each subsequent step
size ¢; is initialized to one. This step size ¢; in the it# jteration is indeed one if the stability
criterion in (4.25) is immediately satisfied; otherwise it is incremented by one recursively
until (4.23) is satisfied or until the condition n; + ¢ = N is reached, in which case the
program terminates. This strategy, while not optimal in efficiency, guarantees a minimal
step size t; and hence the lowest degree type s(¥'(z) at each iteration. This is the best we
can do numerically since unlike the algebraic case (c.f. Theorem 4.2) there is no simple way

a priori to determine the minimal step size that gives a well-conditioned S+ (z).
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Chapter 5

Problem Conditioning and
Algorithm Stability

Since the goal of this research is to develop an efficient algorithm that is stable, the no-
tion of stability must be clearly defined. The notions of stability and condition number
are introduced by mathematicians to describe the sensitivity of solutions to mathematical
problems when there are small perturbations in the input. Similar notions are given for de-
scribing numerical algorithms which compute solutions to these problems. In this chapter,

the precise definitions of these concepts are given.

5.1 Problem Conditioning

The linear rational interpolation problem is equivalent to solving the set of N x N linear
equations (1.5) (see also (3, 11, 16, 24, 26, 32, 39]); so we look at the stability issues based
on such a system, namely,

Az =b. (5.1)

(Note that one can arrive at (5.1) from (1.5) by moving one column of the coefficient matrix
to the right hand side.) The variable vector z is the unknown being sought, and A and b are
the data on which the solution depends. We say that the problem (5.1} is well-conditioned
if the solution z depends in a continuous way on A and b; a small change in A and b would
lead to a correspondingly small change in z. If a problem is ill-conditioned, it is usually
difficult to solve without first attempting to understand more about the problem itself,
usually by returning to the context in which the mathematical problem is formulated. To
measure the degree of conditioning of the problem, the condition number is introduced.
The condition number of a problem attempts to measure the worst possible effect on

the solution of z of (5.1) when the inputs A and b are perturbed by a small amount. Let
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dA and db be perturbations of A and b, and = + dz be the solution (if it exists) of the

perturbed equation
(A+d8A)(z +dz) =b+db.

The condition number of (5.1) is defined to be

_ sup —lozl/l=]
sass NSAT/IAT + 18617161

This condition number x, is a measure of the sensitivity of the solution x to small changes

in the data A and b. If &, is large, then small relative changes in A and b can lead to large

relative changes in r and the problem is said to be ill-conditioned. But if x, is small, then

small relative changes in A and b always lead to correspondingly small relative changes in .

Since numerical calculations almost always involve a variety of small computational errors,

problems with large condition numbers are difficult to solve accurately. Such problems are

called ill-conditioned.

Let x(A) = ||A}l|]JA~!||. We have the following relationship (see Golub and van Loan

[27]):

Theorem 5.1 If Az = b, where A is nonsingular, and if
lsAl _ _1
Al ~ w(A)’

then (A + 6A) is nonsingular. And if we define dx by (5.2) then

ozl r(A) {IIJAII + IIJbII}
I :

el = T o lBAL VAT I
AT

(5.4)

In practice, we say that A is well-conditioned if x(A) is small. If this is the case, then

we know that if we obtain a solution £ to Az = b where ||b — AZ|| is small, the ||T — z|| is

small as well. On the other hand, if <(A) is large, then no conclusion can be drawn about

the size of {|T — z|| from the size of ||[b — AZ||. In the case where x(A) is large, we say that

A is ill-conditioned.

In linear rational interpolation problems, the matrix A is the generalized Vandermonde

system with one column removed. While x(A) can be small for problems with small N,

in general, x(A) is large where N is large. Hence, even for well-conditioned problems, the

formulation of the linear rational interpolation problem in (1.5) is limited to problems with

small N.

On the other hand, the formulation of the linear rational interpolation problem in §3.3

is different from (1.5), namely,

(9 fi)sOz)...s%)(z;) =(0 0), j=o,...,N.
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The unknowns here are a sequence of LRIS’s s()(z), i =0, ..., k, as compared to (in (5.1)
or (U(z),V(z)) in (1.5)). This formulation of the problem leads to a different conditioning
of the problem.

Note that there are many sequences on the solution path that satisfy (5.6). But once a
particular sequence s()(z), 1 = 0,...,k, is selected, we can examine the conditioning of the
problem. Without loss of generality, we assume a fixed sequence of s(z),i=0,....k, in
the following discussion.

Given the input {(z;, fj,95)}j=0,...~, the solution of the interpolation satisfying (5.6) is
S*+1)(z) = 50(2)---sk)(z). Let the perturbed input be {(z;, fj + 6fj. 9; + 6g;) }j=0,...x
and the corresponding solution (if it exists) be SE+1)(2)+4SKk+1)(2) = (59 (2)+45(0) (2)) - --
(s (z) + 35¥)(2)), i.e.,

(g5 +3d9; [3+6f5)(s@(2;) +85D(2;)) --- (s®)(25) +8s*) (z5)) = (0 0), j=0,...,N.

(5.7)
For the original problem the residual satisfies
(wj )9 =(g; f;)89(z), j=ni+1l...,ni+t (5.8)
and for the perturbed problem the residual satisfies
(wj+6w; r;+06r;) = (g; +8g; fi+8f;) (8D (z;) +85F(z))), (5.9)

The conditioning of the problem is presented in two steps for 4, i = 0,..., k. We first
give the sensitivity of the residuals (w; 7; )(i), 7 =mni+1,...,n;+¢; to its perturbed input
in Lemma 5.1 below. We then give the sensitivity of the solution s(*)(2) to the perturbed
residuals in Lemma 5.2. Finally, we combine the two lemmas in Theorem 5.2 to give the

conditioning of the model problem (5.6).

Lemma 5.1 For j=n;+1,...,n; + ¢t;, (dw; Or; )(i) tn (5.9) satisfies

I (dg; &fi) 1l | 1859zl

(g Sl SO ()
Il (dg; 5&)"“““’(&')”) -
(g fi)ll US® (=)l - (519)

| (§w; &r;)P |

I (w; ;)@

< K(89(z)) (

Proof: With (5.8), (5.9) becomes
(dw; o)D) = (dg; 6f;)SD(z)+ (95 fi)+ (89 6f;))88%(z;) (5.11)
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so that

i (ow; or))P N <1 (dg; SF) NSO DI+ (g5 fi)IH+ 11395 65) IDNSSD ()1

(5.12)
From (5.8),
(wj r;)P8O7 () =(g; f;) (5.13)
so that
I(ws r)DWUSDT @I > (g fi) - (5.14)

From (5.12) and (5.14), the result follows. O

Before we give the relationship between the residual and s()(z) in Lemma 5.2. we
introduce a new notation below.
Given the residual of the original problem (wj )(i), j=mni+1l,...,n; + ¢, from

(5.8), we have
w§-i)u(‘) (z5) + r](-i)v(i)(z,-) =0, j=n;+1,...,n+ ¢, (5.13)

and

wg-i)p(i)(zj) + ry)q(i)(zj-) =0, j=n;+1,...,n; +¢ — 1L (5.16)

In matrix form, (5.15) becomes

MOz =g (5.17)
where
wr(:i)+123.-+1 wfzi.-)+1251.-+1 "r(:.-)+1zg.-+1 "r(zi,-)ﬂzr'?.ﬂ
M@ = : : : : : : (5-18)
wr(ti.-)+t,-z?1.-+t.- wr(:.-)+t.-z:1.-+t,~ "r(zi.-)+t,-zgi+:.- rr(li.-)-f-t,-zr':--{—ti
£ = (u((,i),... ,u§i),v((,i),...,v,(,’;))‘, and except possibly for the first step, { = |%] and
m =451
Ifl =m =0 (i.e, ; = 1), then M) = ('w_s-i) r§i)). In this case, we let A®) =
nlax{|w§i)|,|r§-i)|}. Note that on a staircase path, with the exception of | = m = 0,

(W (z2),q9(2)) is of degree type [l — 1,m] if I > m or [Il,m — 1] if | = m. Without
loss of generality, we assume that ! > m (if not, we proceed with the m* column). We

remove the (I + 1)** column from M® to formn

@ o [C) IR S & Lo (@)
_ Wni+1Zni+1 "0 WniniZn41 Tog41%mg+1 77 Tog+12ni+l
AW = : : : : : : (5.19)
(1) 0 () 1—1 (1) ] (1)
WnittiZni+t;  °° WniktiZngst; Tng+tiPnitt; 00 Tnitt; Zn+
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The ({+ 1)** column of M) is denoted by M,(i). Hence with |2;] < 1,5 =n;+1,....n;+ ¢,

we have the relationship
AP 2 ) (wl w) I G=nit L+t (5-20)

Let ()’ be the vector formed by removing the { + 1 element :rfi) from (9.

With this notation, (5.17) becomes

AW L0 = —z{) M,("’ (5.21)
and (5.16) becomes
0
Aty = (1) (5.22)
@)

where y() = (p(()i), .. ,p}i)l,q(()i), .. ,q,(,‘;))‘, and ¢ # 0.
Similarly, given the residual of the perturbed problem (w; + &w; r; +dr; )@, j =
ny+1,...,n + ¢, from (5.9), we have for j =n; +1,...,n; + ¢;
@ + 6wl ) WD (25) + 5uD (2))) + (r + 6r{)) (v (27) + 60 (25)) =0, (5.23)
and for j=n;+1,...,ny +¢t; — 1
() + 6wV (z5) + 699 (2)) + (7 + 6r7) (@D (z) + 8¢ (=) =0 (3:24)

In matrix form, (5.23) becomes

(M® + M) (z® + 620y =0 (5.25)
where
5‘”1(:.-)4—122.-“ tee 6wr(xi,-)+1 Zn,41 Jrr(zi.')+12?1,-+l T ‘5’}(1?1»1217.-4-1
oMW = : : : : (5.26)
51”51?-{»;; ety - . Jwr(:‘-)+t.; Zn;+t; 57'7(:;)“; Zet 5"5:3-;-:; 2+t

and 6z() = (6ug), .. ,é'ufi),dvg), cens ng;))‘.

Corresponding to the relationship between the matrices M and A®, we let A be
the square matrix by removing the (I + 1)** column from éM®, and the (I + 1)** column
of SM® is denoted by sM"). Let also 5z’ be the vector formed by removing the (I + 1)
element da:l(i) from 8z,

With this notation, (5.25) becomes
(AD +54@) (" 4 620"y = —(2() + 62y MD + sMD), (5.27)

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and (5.24) becomes

(A9 + 64O +5yD) = | | (5.28)
&1
where 8y = (6p(,...,p{,,dq5", ..., 6¢5)%, and &) #0.

To solve z(*) and ¥y, we let zfi) = :i'fi) and ci) = &),

Lemma 5.2 If A® is nonsingular and if

[8A9Y _ 1 (5.29)
14D < w(a®)’ >
then @
§zG Sy A® SMW
T el S T T Ao 530
1- K(A("))”——Gru
LA™
Proof: Since ;z:fi) = ifi), we have J:z:l(i) = 0. From (5.21) and (5.27), we have
. . Y1 : 2V 3 { -
(AD) + 640 52D" 4 540" = D5 (5.31)
(AD 4+ 540550 = 5400 _ L0500
= —dME L6 (5.32)
So,
sz = —(AD 4+ 5A40) 15O ), (5.33)
From the nonsingularity of A%, and (5.29), (5.33) and foi) = 0, it follows that
1620 = 1320 « —UAS L jsppo 00
xr = |iéx < — - 'Yl 5.34
(Note that the proof of the inequality
. ) A
149 + a0y < — AT (5.35)

1 — [JAOT | |6 A®)|

can be found in [4, Chapter 7].) By multiplying both sides of (5.34) by 1/|z¥| and the
right hand side by ||A®|[/[|A®|, the result follows for {|8c(3||/||z®]}.
Similarly, since ¢ = &%, from (5.22) and (5.28), we have

(AD + 5405y 4+ 540D =0 (5-36)
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(AW + 5406y = 540D (5.37)

So,
Sy = —(AD 4 540)=1540) (5.38)

From the nonsingularity of A®, and (5.29) and (5.38), it follows that

HAD™|

SAO [ly@ . 5.39
A [ 6 AQ] il iy ) (5-39)

ley @) <

By multiplying both sides of (5.34) by 1/|ly?| and the right hand side by ||A@|[/[|A@]],
the result follows for ||6y®[|/||ly(V ||, because [[§AD|| < [[6MD|. O

We now give the relationship between the input and output in the theorem below.

Theorem 5.2 If

IsA®] 1 -
TAG] < =(A®)’ (540
then
165 (2)]] ti (ti + 1) s(AWD) @) 1 (dg; &)1l .
150 (2)]] < SAD || n+1S58ni+t; {K(S (zj))( ll(gj' fjJ)” N

1 — n(a@) 104
A%

IIJS(_i’(Zj)llJrII(Jyj 5fj)||.l!55("’(21)ll)} (5.41)
ISOEHM -~ (g I 1SOEH1 ) f

Proof: Let J; be the index of the largest perturbed residual which is defined by

I (dwl)  orD) g = | (dw; ér;) || (5.42)

max
ni+1<j<ni+t;

For the normalization |z;| < 1, j =n; + 1,...,n; + t;, we have

) ni+t; ) ni+t; (.
1
ISMO| = max{ Y jew?l, 3 jerl))
j=n;+1 J=n;+1
£ @) 1o ()
3
< Y max{jéw;”|, (6] |}
J=ni+1
ni+t; . )
= 3 l(af &)
Jj=ni+1
< ti-ff(wl) o). (5.43)

From (5.43) and (5.20), it follows that

16ADY _  [[(w, &r, )]
A7 =5 (w, w0

(5.44)
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Thus, 3J;, ni + 1 < J; < n; + ¢; such that (5.44) is true. Therefore,

lea®y _ L (dw; or; )
14O = P nniZnctt || (w; 1)@

With (5.45), it follows from Lemmas 5.1 and 5.2 that

16z 15y b r(AD) o (1(5g; 855) 1
e R ] RN 710 i35 OGN (73
14D

168D () . 1l (8 6fj>n_nas(*"(z,->n>} ]
IS0 Y e LN 1seeEn ) [ @49

Note that ) ) )
6z Y _ 16u® (2) || + 160D (2) ]
=1 @ @) + IO ()]

(5.47)

and
16y _ 6@ ()1l + 6D ()|l )
ly®1 @ () + llg(z) || (5.48)

However, when we form ds()(z) and s()(z), the second column is multiplied by (z — z,,+¢,)-

Thus, we need to obtain a bound for

189" @Il + 168" @1l _ Iz = 204D + Uz = 2i2e)86O @540
T EIFITT@N NG = 2utedpO @+ 1 = 20re)a@ G

With |z;/ < 1, we can see that the expression in the numerator is bounded by

160" N + 158" (@) < Wz = znese )l (16D (2)]] + 11669 (2)1])
< 211689 ()1l + 16g® (2) ). (5.50)

To obtain a lower bound for the denominator, we first show that
la(2)ll < (B8 +1) lla® (2], (5.51)

where £ is a non-negative integer, a*(z) = (z ~— zn,4¢)a(z) and a(z) € Ps. To see how
(5.51) is true, we first note that

8
a(z) = Z 8a2® =ag +a1z2+--- +agzP. (5.52)

a=0

Now let the reciprocal of a(z) be

1 1 1
> — B — B
a(z) = - = - ... —_—
(2)==2 a(z) z (ao-+-t11z +agzﬂ)
= aozﬁ+alz‘g'1+~-+05. (5.53)
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Clearly, ||la(z)[| = lla(z)||- With the reciprocal form, then

(z = zn;4t)a(z) = a’(2) (5.54)
(1 = zp,4¢,2)a(2z) = a°(2). (5.33)
Thus,
8(2) = (1= 2n44,2) 18" (2)(mod 25+)
= (14 zZno4t,2 + 20, 40,22 + - + 25, 2P)a"(2)(mod 27*1). (5.56)

Hence with |z;] < 1, it follows from (5.56) that
lagz)ll < (8 + D)lja"(2)]] (5.57)
and (5.51) follows.
From (5.51) we can now write
1P (D) + g2l < (deg@™(2)) + Dllp™™ (2)1| + (deg(¢?(2)) + Dllg"" (2)]]
< (deg(@@(2)) + Dllp*” () + lg~” (2)1I) (5.

(4]
oo
-

Hence with (5.50) and (5.58), we have

16" ()1l + lI6g*" (2)]]
o= () + llg= (@ T

ép9 (2)I| + 169 (=)
p® ()l + llg® (2]

2(deg(p¥)(2)) + 1) ]

o, 16y ()1l . -
= (tt + 1) “y(')(Z)” 3 (D.Dg)
where deg(p(¥(z)) = |(¢; — 1)/2]. Because
6™ ()l + Hoq"“ () _ 60" ) + 16" 2
st (2)]] max {[lu® (2){| + [lv@ (2)]l, lIlp"* ()1l + llg*" ()11}
I5p=" (2)I| + ll5g*" (2) )
: : , .60
I () + 1 G (560
with (5.46) and (5.59), the result follows. O
From Theorem 5.2, we now define the condition number of (5.6) to be
_ ti (t: + 1) s(AW) G (.. -
" e ] = r(AG) 1849 et 1, BT (@) - (5-61)
14A*

Note that the condition of the problem is expressed in terms of the solution S{)(z), i =
0,...,k, to the problem. This is similar to expressing the condition number of the problem

(5.1) of solving Az = b in terms of solution A~! since x(A4) = ||A[| ]4~}|.
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One can observe that if tg = N +1, (i.e., we take only one step to arrive at the solution),

we have $(0(z) = I and therefore, 65 (2;) =0, j =0,..., N. Thus. we have

IO _ to(to+ KA®) (]l(Jg; 8f;) i
BRI = _ oy 1447 Siomaink (362)
1A

Hence, the conditioning of the problem reduces to the one similar to that of (1.5). In this
case, k{A(®) would be large for problems with large N. In general, we would like to solve
small systems so that all n(A(i)), 1 =0,...,k are small. (Note that for ¢; = 1, r:(A(i)) =1.)
In this case, if all (S (25)),t=0,...,k, 7 =0,...,N are also small, then the problem is
well-conditioned.

With this condition number (5.61) of the problem, we define a well-conditioned problem

below.
Definition 5.1 The interpolation problem (5.6) is well-conditioned if kg is not too large.

(Note that how large the condition number may be before we counsider a problem to be ill-
conditioned depends on the accuracy of the data and the accuracy desired in the solution.

See Bunch [15] for a detailed discussion.)

5.2 Algorithm Stability

We now discuss the precise definitions of numerical stability using first the model problem
(5.1) and then the model problem (5.6). The following is a well-accepted definition of

stability for numerical algorithms introduced by Bunch [15].

Definition 5.2 An algorithm for solving linear equations is strongly stable for a class of
matrices M if for each A in M and for each b the computed solution T to Az = b satisfies

AZ =b, where A is also in M, for some A that is close to A and b is close to b.

Definition 5.2 simply states that the computed solution is the exact solution of a slightly
perturbed problem which is in the same class as the original problem. However, in many
situations, we are only interested in whether or not solutions are close to the true solution;
we do not need to know whether their solutions are the true solutions of nearby problems
as it is given in Definition 5.2. In this case, a weaker type of stability such as the one also

introduced by Bunch [15] suffices.
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Definition 5.3 An algorithm for solving linear equations is weakly stable for a class of
matrices M if for each well-conditioned A in M and for each b, the computed solution T

to Ax = b is such that ||z — Z||/||z]| ts small.

From (5.5), it follows that a (strongly) stable algorithm is also weakly stable but not the
converse is not true.

Let r = b — AZ. Then Z satisfies the perturbed system A% = & — r. If we know that A
is well-conditioned, then it follows that to prove weak stability it is sufficient to show that
the residual® r is relatively small in comparison to b.

Corresponding to the notion of weak stability of an algorithm for solving Ar = b, we

present a similar definition of weak stability of Algorithm 4.2 below.

Definition 5.4 Algorithm 4.2 for solving Problem 1.1 is weakly stable if for all well-
conditioned problems, the computed solution 5%)(z), i = 0,...,k is such that ||s%)(z) —

SO/ @), i =0,k is small.

With the notation of 5()(z) (also §()(z)) representing the computed solution, we let
{(g; fi)}j=o..,~ be the input (if it exists) such that the computed solution interpolates

it exactly, i.e.,

(3 f3)59z)...5¥(z;)=(0 0), j=0,...,N. (5.63)
Thus, with the condition number in (5.61) and Theorem 5.2, we have, for i = 0,... &k,
196 —s9@1 {N (9-5 fi=F)l , 159(=z) - 89 (z,-)u}
ls@ () ni+1<5<ni4 (g f5)1l IS@ (2;)]
+0(6%), (5.64)

where O(42) is of order

(g =i fi=Ji) 1S9 (z;) - §U ()l
(g5 fi)ll IS© ()l '

From (5.64), it follows that in order to prove Algorithm 4.2 is weakly stable, it is sufficient

to show that

(g =g Ji—Ji)l ||s<‘>(zj)—§<f>(.ﬂ} o o
{ H(g; i)l * 15D ;)] v J=0,...,N, (5.65)

is small for all well-conditioned problems.

'This residual r should not be confused with the residual r; used elsewhere in the thesis.
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Chapter 6

Error Analysis of the Algorithm

The objective of an error analysis is to show the existence of an a priort bound for some
appropriate measure of the effects of round off errors on an algorithm [37]. Obtaining a
bound for the errors is the most important task. Ideally, the bound is small for all choices
of problem data. If not, it should at least reveal features of the algorithm that characterize
any potential instabilities, and thereby suggest how the instability can be cured or avoided.

In this chapter, we give error bounds for computing the residuals (w; r; )(i) (25), 7 =
ni+1,...,n; +¢ and for solving the associated generalized Vandermonde system to obtain
s{(z). These errors subsequently allow us to prove that Algorithm 4.2 is weakly stable
later in Chapter 8.

We first give the preliminaries that are needed for the error analysis.

6.1 Preliminaries

In this study, the conventional u is used to denote the unit-roundoff of the floating point
computations, and fI(-) is used to denote the floating point operation of an expression.

The over-score bar () is also used to denote floating point expressions, e.g., fl(z) = Z.

Theorem 6.1 If z is a real number within the range of floating-point numbers, then

fli(z) =z(1 +48), where |§|<u (6.1)
or
fl(z) = (1—_‘15, where 8] < p. (6.2)

Proof: See either Forsythe and Moler [25] or Higham [37]. O

We assume the following basic arithmetic rounding operations: for any two floating-

point numbers  and y, the exact real number z op y, where op = +, —, #, /, is obtained
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and then rounded. Thus,

fli(z op y) = (z op y)(1 +4), where |§] < u, (6.3)
or
fi{z opy) = %(_)f—;;), where 4] < u. (6.4)

The term (1 + §)*! appears every time a floating point operation is performed. So it is
important to keep track of its effect after a series of floating point operations. The following

lemma allows us to do just that.

Lemma 6.1 If|6;l <pandk; =%l fori=1,...,nand nu < 1, then

ﬁ(l +8:)% =1+ ¢, (6.5)

i=1

where

nu
< = .

Proof: See [37] for a detailed proof. O

A convenient notation [51] for keeping track of the powers of (1 + 4;) is the following:

<n> = ﬁ(l +6i)k". (6.6)

=1

With this notation, one can readily see that

<a><B> = <a+8>, (6.7
<a>

= < >, 6.8

<8> at+s (6.8)

We now examine the effect of rounding errors for Horner’s rule of evaluating a polyno-

mial. For evaluating

P(z) =Y piz', (6.9)

1=0
a backward error analysis [37] shows that Horner’s rule gives, not P(z), but rather the
exact evaluation at z of some perturbed polynomial (see Lemma 6.2 below)

n

P(z) =3_piz'. (6.10)
=0
We write
fUP(z;)) = P(2;), (6.11)
49
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where it is understood that P(z) is different for different z;. Corresponding to P(z), we

also define

P(z) = 3 Ipil="

=0

(6.12)

Lemma 6.2 Homner’s method for evaluating P(z) € P, at z; yields F_’(zj) = flI(P(z5)),

where

P(z;) = P(z;) — &,

and |®| < P(|2]) Aon-

Proof: Higham [37, pp. 104-105] has shown that using Horner’s method,

P(z;) =po<i>+p1zj<3>+--- +pp-12] ' <2m~-1> + ppzf<2n>

=Po+P1zj + - + P12y + Paz},

where
Do _
= = 1>
Po <1l 0
31 _
1T = =p1<3>
p <3> P
Dn _
= = <2n>
Pn <2n > Pn "
So,

P(zj)) =po+pizj+-- +pa_12] "+ pn2}

=po<i >+ 512;<3> +--- + ﬁn_lz;-"1<2n-1 > +;3nzj’-‘< m >

=po(l + ¢1) +P1z;(1 + ¢3) + -+ + Pn2j (1 + ¢2n)
= P(Zj) + d,

where & < Ag,,f’(lzjl), and the result follows. O

(6.13)

(6.14)
(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

Corollary 6.1 If Horner’s method for evaluation of P(z) € P, at z; yields P(z;), then

P(Zj)<a> = P(Zj) -9,

where |®'| < 15(|zJ|) Aonta-
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Proof: From the proof of Lemma 6.2, we get

P(Zj)<a> = P(Zj)<a>—¢<a>
= P(z)+ ¥ (6.21)

where

L [P(2j)Aa + @(1 + Aa)|

[P(z5)|Aa + |P](1 + Aa)

|P(2j)|Aa + P(I2])(A2n + A2nAa)

P(l2;))(1 + A2n)Aa + P(I2j))(A2n + A2nAa)
P(|zi])(A2n + Aa + 2 A2nAa)

13(|zjnA2n+a- (6.22)

A A IA

IN

In the above, we have used Lemma 6.1 to show

2nu(l — ap) + au(l — 2np) + 4nau?
(1 =2nu)(1 - au)

Aop + Aa +2 XA =

_ (2n + o)u
1 —(2n + a)u + 2nau?
< o e (6.23)
o
Let P(z) = ©OP'(z), where
B(z) = f[l(z - z) (6.24)

and P'(z) € P,.

Corollary 6.2 If Horner’s method ts used to evaluate P'(z) € Py at zj, and 6(z) € P, at

2; 15 evaluated from its roots product, then

P(z;) = P(z;) — 9", (6.25)
where |®"| < |6(25)] P'(|zj|) A2n and n = a +b.
Proof:

P(z;) = [fUO(z)fI(P'(z))<1>
= 0(z) fI(P'(2))<2 >, (6.26)
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since fl(6(z;)) = 0(zj)<2a-1>. Applying Corollary 6.1,
P(Zj) = 0(Zj)P(Zj) -9, (6.27)

where |®”| < [8(2j)| P'(|zj]) A2b+24. and the result follows. O

6.2 Error Analysis of the Algorithm

We can now turn to the error analysis of Algorithm 4.2. We examine the i** iteration

in detail. At the start of the i** iteration, Algorithm 4.2 has available s(®)(z)-..s(=1(z)
which approximately interpolates z;, 7 = 0,...,n;. Algorithm 4.2 next finds s(0(z) so that
s9(z)---sW(z) interpolates at z;, j = ni + 1,...,n; +¢;. In this section we analyze the

errors made in the computation of s(9)(z).

There are two sources of computational errors, viz.,
1. errors in calculating the residuals (w; r; )(i) (zj)for j=n;+1,...,n; + ¢; and

2. errors in solving the associated generalized Vandermonde system to obtain s(¥)(z).

In the following, we present bounds for these two errors. Note that the error analysis is
carried out for the basic degree type [L, L] or [L +1, L], the general case [L, M] (L > M +1)
is the same except for the first step where we interpolate by a polynomial of degree L—M ~1,

in which case we refer to the error analysis for the polynomial interpolation [37].

6.2.1 Computation of the Residuals

In this section, a relative error bound for computing the residuals is given. The equation

used to compute the residual (w; r; )(i) is
(w; rj )(i) =(g; fi) S(i)(zj), Jj=ni+1,...,n; + ¢, (6.28)
where
S(i)(z) = ((1) 9(0?(2)) 3'(0)(3) ((1) 9(1())(2) ) 3,(1)(3) Tt ((1) g(i—(l))(z)> s’(i_l)(z)- (6.29)
The computed (w; F; )(i), does not satisfy (6.28) exactly. Rather, it satisfies
(@5 7)) =11((g5 £5)59), G=m+l. . nit, (6.30)
where §() (z5) is computed iteratively according to
SO (z5) = fU(SEV(2;) f1(sV(2;))) (6.31)
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with $O(z;) = §©@(z;) = I. Let
859(z) = §9(g) - 5Uz), j=mi+l,.m+ts (6.32)
(6w; or;)H = (@; 7)) —(w; )P, j=n;i+1,...,ni+t.  (6.33)
In the following, we find bounds for §S®)(z;) and then for (dw; Or; )@,

Lemma 6.3 The evaluation error JS(i)(zj) in (6.32) satisfies
i-1
85D (z;) = 3 §0(2j)8st" (2)50+ V) (25) - - - 561 (25) + O(u?), (6.34)
{=0

where Hésfm(zj)” < Ay+3-

Proof: The proof is by induction on i. The result (6.34) is true for the initial step : = 0
because S(9(z) = S(9(z) = I and consequently §S(© (2;) =0for z;,5 =no+1,...,ng+to.
Assuming that the result is true for ¢; we show that it must then be true for i 4 1. From

(6.31),
S0+ (z;) = fUSD(2)f1(sP(2)))
= 8§U(z)50(z;)<2>, (6.35)

where <2> accounts for the error made when multiplying matrices of order 2. Using

Lemma 6.2 and Corollary 6.2,

§9(z5) = fU(s¥ (27)) = s (z7) + 651 ()), (6.36)

1 0
0 169(z)]

ponents in s((z) is [Hzilj Because ||

where |d5(V)(2;)] < ( ) 5" (|zj])A¢;+1, since the maximum degree of the com-

10 @ ()| = 1, i
0 O(i)(z)) s (2)|| = 1, it follows from Corollary

6.2 that ||6s() (zi)ll € Ay+1- Next, applying Corollary 6.1 to 5()(z2), it follows that
59 (zj)<2> = sW(z;) + 651 (2)), (6.37)

where

ll8st (23}l < Ag;s- (6.38)

Thus, from (6.35) and (6.37), we have

§E+(z) = (SD(z) +659(27))(s (27) + 851 (27)
= S5W(z;)sM(z;) + 68+ (2;), (6.39)
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where
§SE D (z;) = §W(2;)85"(2;) + 68D (2;)sD) (2) + 65F(2;)d51" (7).  (6.40)
Using (6.32) and (6.36), (6.40) becomes
58+ (z;) = §W(z)s1" (2;) + 65W (2;)89 (2;) — 68D (27)85D (25)
= §0)(2;)ds1 (z;) + 68 (2;)50) (z;) + O(u?). (6.41)
(Note that in (6.41) we have replaced terms JS(i)(zj)Js(i) (z;) with O(u?) for simplicity.
This replacement is valid since at the start of the induction on [ + 1, we have assumed

that the result is true for §S¥(z;), and 85t (z;) is bounded according to (6.38)). Now,

expanding recursively, (6.41) becomes
58W+ (z;) = §9(z)851 () +
§6-1(2;)8st " (2)5 (25) +

§5G-2) (zj)(;sf("z)(Zj)g(i—l)(zj)g(i) (z) +

50 (2;)8s" (2;)8 (27) - -- 30 (25) +
5O (2)85' (2;)51) (25) - - - 59 (2;) + O(us?)

= Z S0 (2;)8s™" (2;)50+V (25) - - - 59 (25) + O(u?). (6.42)
=0

With the expression of an error of evaluating S (zj) given in Lemma 6.3, we now give
its relative error bound and a relative error bound for the residual error in Theorems 6.2
and 6.3 below. In these theorems, we use the numerical counterpart of T("I)(zj) from

(4.26)

Fi=1(z;) = 0<llllgi{_lﬂ(5'z(21 () - 15O7 M F=ni+ L. ni 4t (6.43)

as part of the running error bound. This expression of the computed T(i—l)(Zj) differs from
the actual 7”'(‘_1)(2]-) by several floating point operations and is used here for simplicity.
As pointed out by Higham [37] there are always rounding errors in the computation of the
running error bound, but their effects are negligible for Nu < 1; therefore we do not need
many correct significant digits in an error bound. Similarly, we use
=(i—1
hj = -7-(:-1'1)(1.(::21)’ J=ni+1,...,n + 8, (6.44)

as the computed ;.
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Theorem 6.2 The evaluation of S¢) (25) for g =ny+1,...,n;+¢; in (6.31) ytelds §(i)(zj)

such that

S50 (z;) = SW(2;) +889(2;), j=ni+1,...,n + 8, (6.45)
where

155 (z))l -

IO S 7o M O, (6:46)

Proof: From (4.22), we can write
SP(2) = 5 (z5) - - - 547V (25) + O(us) (6.47)

so that for [ < a,
51 (2) = 30(z;) -+ 54~D(27)80 (z5) + O(n), (6.48)

where O(u) accounts for at most ¢ multiplications of matrices of order 2. Then

i—1
3 ISOE I (z5) -+ 50 )|

{(=0
i-1 ) s .
= ST 18U (2))[5V(2,) 8%, (27)] - 5V (2;)88, (z) ) 1159+ (25) - - - 4=V ()]
{=0
-1 ) et -1 .
< ST 18O (z;) + OIS, ) MSP™ () ISE), () + OW)Il,
{=0

t—1 A _ (4 _
< SISV GNIREEL ENIFD™ ()1l + OwIREE (ZIIFP™ (2511,
=0

<i- 70 E)ISD ()l + Ow) i 7071 (25), (6.49)
where we have used 7 - ’l-'(i—l)(Zj) = maxosz<.~n(§,(2l(zj)) IIE“)_I(ZJ-)II in (6.43) as an upper

bound for f;é n(S',(j_)l (zj))lls(l)—1 (25)|l- From Lemma 6.3, we have

t—1
168@ (z;)ll < ST USSP ()1 I54+D (25) - - - 3V (25)1| 15t (25)1) + Ou?), (6.50)
=0

where [|ds'" (2j)|| < Ay +3. It follows from (6.49) and (6.50) that

1659 (z;)ll . (i-1) 2 .
e S AL R . . =n: 3 5 5
SO S 1.7 (25) Osrxllsatx__lz\gﬁs +0p*®), j=ni+1,...,n;+t;. (6.51)
Since

FO-(z. ) < T, (6.52)

then the bound (6.51) at 2,,4+1 becomes

(D (z:
1859 : :
B0 = 1T o, turs F O (6.33)
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For the remaining points 2,42, ..., Zn,+¢,, from (6.44) and (6.52), (6.51) becomes

1859 (25|

— < {7 ;- 2 s ) ) -
“S(I)(ZJ)“ -—1 T "/)] max /\t(+3+0("‘ )? ] n’1+1""!nl+t‘l’ (6’04)

0<i<i—1

Theorem 6.3 The residual error (w; f; ) in (6.33) satisfies

I (arl sw®) |l
(77 @)

Proof: From (6.30)

. - 2 . _ =
St.T.wj.DS[?éta{II\tl-*-s-*-O(p) J=ni+1,....n + ¢ (6'30)

(; 7)Y = fi{(g [)89=)), F=mi+l...ni+t,

= (g; [i)S§W(zj)<2> J=ni+1,...,ni+¢, (6.56)

where <2 > accounts for the error made when multiplying (g; f;) by S (z5) of order 2.
Similar to the proof of Lemma 6.3, with (6.7), we apply Corollary 6.1 to S() (z;) which in

turn applies to each 5(')(zj) in the summation of the proof in Lemma 6.3, i.e.,
5V (z5)<2><2> = 50 (z5)<a> = sO(z;) + 654V (), (6.57)

where [|65" (2j)Il < Ay+5. So that

D (zj)<2> = §9(z;) + 657 (z) (6.58)

where 1
557 (2j) = 3 8D (2;)85*" (27)5* 1 (25) - -- 5071 (25) + O(w?). (6-59)

(=0

With (6.58), (6.56) becomes

(@; )9 = (g5 fi)(SD(z)+ 65" (2)), j=ni+1,...,ni+t,

= (w; )Y +(0w; 6r))P j=ni+1,...,n+t, (6.60)
where

L il _ . )
(w; 6rj)("=2(gj £i) 80(2j)8s* (2j)50+V(2;) - -- 56"V (2;) + O(u?).  (6.61)
{=0

So that

_ 1—1 _ . )

1wy or) N < NCg5 £7) 8V 185 () 154D (25) - - - 35D (25) || + O(s?).
{=0

(6.62)
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From (4.22), we can write

S (z5) = 5°(zj) - - -3¢V (25) + O(u) (6.63)
so that for [ < a,
50(2)) = 39(z) --- 5471 (2;)80 (z;) + O(w), (6.64)

where O(u) account for at most ¢ multiplications of matrices of order 2. Then (6.62)

becomes

. i—1 _ ] . o
(ow; ri)D < STN(g5 £7)SOENNEH (z) - 3D (z5)] 1652 (2l + Ou?)

=0
i—1 . i
= So0(g i) 89ENBEO ()50 (2] 50 ()88 (20171 -
{=0
N5 (25) - - - 55V ) 195 () )] + O(w?)
-1 ; -1 e
< S 75)D + oI is ENISE @) -
{=0
(8D, @) + O 165t (z) 1| + O(u?)
t—1 . (i _ o
< S )P 0165 @RS N 157 (201 + Ow?).
=0
(6.65)
With 70=1)(z;) = maxocici 5(8%), (27)) 1507 (2;)|l, we have
i (1) .
” (51?] ‘frj ()i) ” <i- 1‘—(2—1)(2].) “631(”(21.)” + 0(#2). (6.66)
I (@; 75 )
Since
D (zp 1) < 7, (6.67)
then the bound (6.66) at z,,4+ becomes
. (D)
6wy or) o i-7- max Ay4s+O(u?). (6.68)

I(m; /)~ esisi

For the remaining points z,;42, ..., 2n,4¢, from (6.44) and (6.67), (6.66) becomes

| (6w; &r;)® . - .
||(mJ- f-;<)f>||llS"T'¢f‘o<‘?e‘,§1*tx+5+0(#2), J=ni+1,...,ni+t;.  (6.69)
J 2 Sis
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6.2.2 Interpolation of the Residuals

In this section, we present the computation of s((z) = ((1) O(i?(z) ) s'®)(z) which inter-

polates the residual ( o) Fg-i) ) for j =n;+1,...,n; +¢;. We first normalize the residual
by

~ (i) 1
av’ = 6.70
DTGP AT (670

so that lla(’) (w ’(') '(i) Ji=1 (If || (w '(’) '(i)) || =0, we set c‘xg-i) = 1). We then proceed

by considering two cases: z; € C) where Ia(‘)w(-i)l < Tuandz; ¢ C where I&‘s-i)wg-i” > TU.
For the first case where la(‘)wg-')] < Tu, we include z; in C®, and hence the 6()(z)
function is constructed.

For the second case where z; & C%) we use Gaussian elimination to solve the two linear

systems of equations
09D (/)i (27) + B D (2j) =0, j=mi+1,...,n+ b, 2; € CD, (6.71)
and
0D (2))FI gD () + 8D (2;) =0, j=ni+1,...,ni+t;i -1,z &CH,  (6.72)

to obtain s/*)(z), where

(i _ u'(t) (2) (z- Zniq )P’(i) (2)
S0 = <U'(i)(2) (z - Zn;+1)ll'(i)(z)) ’

Note that in (6.72), if t; = 1, p'®)(2) = 1 and ¢ (z) = 0.

Theorem 6.4 If the computed s'?)(z) is obtained by solving (6.71) and (6.72) using Gaus-

stan elimination wtth complete pivoting, then

& (m; 09 (z;)F )P 5D (2;)

50 (2] =(Bw;, Er), j=ni+l,... mi+tz gCY, (6.73)

where || (Eyw; Er; )il < 2(t} + 3t)piu, and p; is a constant of order unity in practice.

Proof: Since (p'®¥(z),¢'()(z)) interpolates one point fewer than (u'(9)(z),v'()(z)) so that
the corresponding system of equations is a subset of that for solving (u'()(z),v'()(2)), we
only show the analysis of (u/()(z),v"®(z)).

There are two possibilities of degree conditions: deg(u'®) = deg(p”?(z))+1, deg(v'V(z))
= deg(q’(i) (2)) or deg(u'(i)(z)) = deg(p'(‘) (2)), deg(v'(i) (2)) = deg(q’(i) (z))+1. We only show

the first one; the other one is similar.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The interpolant (u/(9)(z), v'(¥)(z)) interpolates the point zj, forj=n; +1,...,n; + t;.
2 € c®, and they are obtained by solving the system:

MO .6 — ¢ (6.74)
) = dino(s) (D) = (1)
where M) = diag(@y,,, (1, 04251 Onjge,)"
W41+ Dngg12h 1<U> O(Znge1)Fn41<2a> -+ O(zn,41)Tnis120, 41 <2ati-1> \ P
Wn,+t; =" ﬁni+‘i2£l;+t,'< 1> 0(zn; 46, )Fni+6,<20> -+ O(zn, 44 )Tnire; zﬁzr-IH.- <2+-1> )
(6.75

) = (uz,(i) .. .u;(i) v{)(i) .- v;(_')l )‘. i =1%]. a is the degree of 6()(z) and the <.> accounts
for the error made in constructing M),

The system (6.74) is solved first by reducing M()) to an upper triangular form with
complete pivoting, next by assigning the last variable to one (or should a zero pivot be
encountered, by assigning one to the variable corresponding to the zero pivot and one to
the rest of the variables in the solution vector that are below the index of the pivot),
and finally, by back substituting for the remaining variables to obtain z® . This procedure
guarantees a solution for the ¢** iteration even for a singular system. It yields (¥ satisfying

exactly
(M® 4+ M) =g, (6.76)

where

IEM DN < 1.01(E} + 3¢) pessl MO

and p; is the growth factor? associated with LU-decomposition of M) [25]. From the above

equation, we have

M@0 = _spm@) . 20 (6.77)
where
6M©D - 2O < 208 + 3e2)u |MD | ("D (2)]] + (1D (2)]])-
Since z; € [~1,1], ma:r{[c‘xg-i)f](-i)l,I&S-i)wy)l} =1 and ||8(2)®|| = 1, it is easy to see that

IM@|] < t; max(|0(z;)]) max{l&ﬁ-i)r";i)l, |a§“w§"|} < t;. (We have implicitly assumed that
{z;<->| <1 for this result. It is not true for z = £1, but we can restrict (i.e., by scaling)

z such that this assumption is always true.) So,

I6M® - 20| < 2u(tf +3¢3) ("D (2)]| + WO (2)]]) (6.78)

' The result in [25] uses the co-norm, but the same result also applies to 1-norm.
*In practice, the magnitude of p; is of unity.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



or,

15M© . 20 e
: - 2 ; 3t7). 6.79
O + O < #E +34) (6.79)

Thus, we can write the individual equation to be
& (09 ()P v (z7) + @\w' B (25))
(@ @I+ 7O @) u

(6.80)

where EYy; is the error introduced by using Gaussian elimination that is bounded by {Ey,;| <

2(t} + 3t3)u. And the result follows. O

Note that we do not obtain the matrix 4() from the matrix M) when solving the
system of equations {6.71) as described in Chapter 5. Because we use Gaussian elimination
with complete pivoting to solve the system of equations, in practice, using the matrix M)
gives a more accurate solution than using the matrix A®).

The condition number for the system (6.71), which we output as () in place of x(A®)
is still M@ with one column removed; the removed column corresponds to the last column
of the matrix after complete pivoting. This column is selected because it corresponds to

the column we move to the right hand side when solving for (u/()(z),v"()(2)).
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Chapter 7

Continued-Fraction Representation

The use of a continued-fraction to represent a rational number has its root in the Thiele
fraction [38, Chap. 9]. Many authors [33, 31, 60, 9, 63, 20] have used similar continued-
fractions to represent rational functions. In this chapter, we introduce another continued-
fraction representation. One reason for representing a rational interpolant in the continued-
fraction form rather than the classical form (two polynomials, one over another, as in (1.3))
is that it gives a smaller condition number as we shall see in §9.6. Also, as we shall see
in Chapter 8, by using this new representation, we can prove that Algorithm 4.2 is weakly
stable.

In this chapter, as in Chapter 3, we first present the two-step divide-and-conquer repre-
sentation of a continued-fraction form and discuss the condition under which unattainability
occurs, and then we extend those results recursively.

Recall from Theorems 3.2 and 4.1 that the linear rational interpolant of type [L, M] is

(38) B (G(Z;szz) 0(5;;('€zz)> (é(g;gzz))’ (7.1)

Lemma 7.1 For the linear rational interpolant of type [L, M) in (7.1), a continued fraction

given by

form ts given by

-7 t‘('),n (2)
i'(z)

é(z)ﬁ'(z)

U(z) 1

Vi) - 820 () ’ (7.2)

u'(z) +

" (2) +v(2)
where tg ,(2) = to,n(2)/0(2).

Proof: From (7.1), we have

Uz) _ _ u(2)i(2) +p"(2)0(2)¥(2)
V(z) 0(2)(v'(2)@'(2) + ¢* (2)0(2) ' (2))
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W (2 (2) e E 4 oY (2)u(z)

6(z)¥'(2)

6(z)u(2) (v (2) 9(")(.,2 ;

q* (2)u'(2) + v (2 (2) 57—

+ ¢ (2))

e )‘."jz 57 (@Y () — 07 (0 2)

= , @(2)
O @5
#(2)

W(2)(g% (2) + ¥/ (2) ) = Yt o (2)
_ 6(2)7 () | 3)

O () ()55 + ()

since p*' (2)v'(2) — q¢* (z2)u'(2) = —vton(2)/0(z) = —7tp,n(2). The result now follows. O

+ ¢*'(2))

Note that the degree of (7.2) may exceed the given type [L, M]; in other words, ex-
panding the continued-fraction by cross multiplying the denominators and numerators, one
would find that (7.2) becomes

Uz) _ V(@@ (2#(2) +p7(2)0(2)¥(2))  _ v'(2)U(2)

V() ~ v(@)0E)W @# () + 02 (287 (@)  TEV(E) (74)

However, upon cancellation of the common factor v/(z), the degree type is indeed [L, M].
In the continued-fraction form (7.2), we can see the importance of the #(z) function, as

illustrated in the example below.

Example 7.1 The linear rational interpolant of type (2,1] for the data {(1, fy,0), (2,1,1),

(3,2.1), (4,-3,1)} s
G- (25 W

Hence, the continued-fraction form is

U) _ 1 | (z—=3)(z -2
o S G | et 1 , (7.6)
8
where 0(z) = (z — 1). However, without the use of 6(z), we would have
U(z) 1 B (z-3)(z—=-2)(z-1)
Ve - =D 3z+5+ 0+(z_1)% ; (7.7)

which at z = 1 gives an undetermined 0/0 result.
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The order of evaluation in (7.2) is from bottom right to top left (i.e., in (7.2), we start
with the evaluation of ﬁ(zj)/é(zj)f)(zj)). Problems arise in evaluating 0/0. In the following,
we show this happens only if we encounter unattainable points.

Unattainability is defined through the linear solution (i.e., a point 2, is an unattainable
point if and only if [U(2s)| + |V (2,)| = 0). But it is the rational form that we are inter-
ested in. So we will develop the equivalence between the linear condition and the rational
condition. Forn +1 < o0 < N, |{U(2,)| + |V (2,)| = 0 if and only if [4(2,)| + |#(2s)] = 0 as
given by Theorem 3.3. The following theorem relates unattainable points in the range of

0<oc<n.

Theorem 7.1 Let

A(z) = ¢ "z)—22) 7.8
(2) =q"(2) +v (z)o(z)ﬁ,(z) (7.8)
For 0 =0,...,n, z, is an unattainable point with respect to [L, M] if and only if
[v'(25)] + |0(z5)V'(25)] = 0, when 4'(z,) = 0,
(Iv'(2z0)| + [0(25)v"(20)]) |A(25)] = 0, when ¥'(2,) #0 & 2, € C, (7.9)
[/ (25)A(24) — 7to n(25)| =0, when ©'(2,) # 0 & z, € C.

Proof: If ¥'(2,) = 0, 0 < ¢ < n, then from (7.1),

(Vi) = %o (gmgaiesy ) + 02 z0) (0(’;)(? )

= o u'(z)
= ¥C) (gaen)) (7:10
Thus, [U(z5)| + |V (25)| = 0 if and only if |u(2,)| + |8(25)v'(25)| = O since 4/(2,) # 0 when

' (24) = 0.

Now if ©/(z,) # 0, from (7.1),
[U(2)| +|V(2)| = W' (2)@' (2) +p* (2)0(2)5" (2)| + [0(2) (v (2)@' (2) +¢" (2)8(2)#' (2))]. (7.11)

Similar to the proof of Lemma 7.1, we first multiply the two terms by v/(2)/6(z)%'(z) and
then add and subtract ¢* (z)u’(2) in the first term only to get

.M. — ’ o’ ’ _ﬁ,(i)_ Y
é(z)ﬁ,(z)'(IU(z)|+IV(z)I) = WEE @) +VEFED) oty (2] +
’ ! 12’(2) o
00 () () g s + 0" () (7.12)
ar .
U@+ V) = [ (AR = pa(2)] + 181 @A [Z5ZE (7.13)
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Note that %’(z) # 0; in particular, for the minimal step size case, ¥/(z) = 1 (see Theorems 4.1

and 4.2). Now, for z, € C, t{ ,(2,) =0, so z; is an unattainable point if and only if

U(ze)l +V(z)l = [u'(20)A(20)] +10(25)v"(25)A(20)] = O,
= ([v'(20)| + |0(25)v'(25) )| A(25)| = 0. (7.14)

This follows because 6(z,)#(z,) # 0. (Note that v/(z,) # 0 for 0 < o < n because of 8(z),

see Theorem 4.1.) For z, € C, 8(z5) = 0, so z, is an unattainable point if and only if

0 = [U(20)] + [V (20)| = |t(25) A(2za) — Yo n(20)l- (7.15)

By applying Lemma 7.1 recursively, the full continued-fraction form of (3.39) is given

by
U(z) _ 1 1(0)
V(z) — 60)(2)v©)(z) [" () +
— ~(0) g (2)
T lng+1,m
7.16
/(0) v'(0)(2) ( )

(z) + m[u,(l)(z) +

{vl(k—l)(z)ul(k)(z) }
0F) (2)v/*)(2)

The generalization to this full continued-fraction form of the unattainability test (The-
orem 7.1) is given in Corollary 7.1 below. The results of this corollary which relate to the
continued fraction form are equivalent to that of Corollary 3.1 which relate to the linear

form.

Corollary 7.1 Let

Tip1+1,142
o (141)

q z) +

v'(9)(z)
0(i+1)(z)vl(i+l)(z)

./(i)

AD)=¢"" (2) + [u'“*”(z) +

{v'(k-l)(z)u'(k)(z) }
g(k)(z)v'(k) ()

(7.17)
Foro=mn;+1,...,n; + ¢;, for i <k, z, is an unattainable point with respect to [L, M] if
and only if
W) (25)] + 109 (2,)0/P (2,)] = 0, when |A®) (z,)] = oo,
(10D (20)] + 00 (25)0"0) (2,)]) [AD (25)| = O, when | AW (z,)| < 00, & 2, € CWD,
Iul(‘)(zv)A(z)(zd) - 7t£li+1.ni+t.‘ (z2)] =0, when iA(‘) (zo)l <0 & 2z, € cW.

(7.18)
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Proof: First, we let s(z) = s{!)(z) interpolating zj,j=ni+1,...,n;+¢t;, and

C8(2) Y G,y k=) W) )
(61at2)) =@+ ((gei(ayodle (7.19)
interpolating z; 7 = n; + 1,..., N. Then the result is a consequence of Theorem 7.1. O

The above Corollary gives us an efficient way to test whether a point z, is an unattainable
point in its continued-fraction form. In the following chapters, the expression A()(z) in

Corollary 7.1 is called the tail of the i iteration.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 8

Error Analysis of the Evaluation

In this chapter, we introduce a point-wise measure of error for rational interpolation. This
measure accommodates a wide range of values including infinity. In the second section, we
perform an error analysis on the evaluation with respect to this point-wise error bound.

We then prove that Algorithm 4.2 is weakly stable.

8.1 Point-wise Error Measure

Once the linear rational interpolant pair (U(z),V(z)) is computed for the interpolation

points {(2;, fj,9;)}j=o,...~, one might wart to prove that the rational residual error

U(z0)/V(20) + fo/90
U(z1)/V(21) + fi/n

Uzn)/V(2n) + fu/n
fo/g0 (8.1)
fl/gl

[x/gn

is small. This is a good measure of the size of residual errors if all the function values f;/g;
are of the same order of magnitude, since any norm [} - | used would tend to place more
importance on the large values than the smaller values. However, if there is a wide range
of function values in a given data set, this measure of the size of the residual error is not
insightful in the sense that it places little significance on the small values.

This is not to say that the above measure using the vector norm is not useful. In fact,
if all the function values are of a certain order and only a few are extremely small, in
practice, one would require a higher accuracy with the large numbers and lower accuracy

with the small ones. This is because relative importance is usually placed on the larger
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numbers. On the other hand, if all the function values are of a certain order and only a
few are extremely large, then this would not be a desirable situation, since the majority of
the function values would be ignored. But this could happen in a data set. In fact, one of
the reasons we prefer rational interpolation over polynomial interpolation is that rational
interpolation can interpolate poles (or, at least very large values). Hence, there is a need
to develop a more meaningful way to measure how well we interpolate a given set of data.

In rational interpolation, if U(z;)/V (z;) is the computed rational function that approx-
imates — f;/g; at the point zj, then

U(z .
‘_LV () (8.2)

is the absolute point-wise error and

(8.3)

is the point-wise relative error. This relative error is undefined at f;/g; = 0 and f;/g; = oc
(where g; = 0). One of our objectives is to define a new point-wise error measure which

overcomes problems with f;/g; =0 and f;/g; = oc

Definition 8.1 Given the computed rational interpolant U(z;)/V (z;) that approzimates
~fi/g;, the point-wise pseudo-error is defined to be

Ulzy)
E(f;295.U(2;), V(z,)) = ]ﬁ——l gl (8.4)

U(zj)
V(z])

1+

Let us examine this measure E closely. First, we note that if | f;| < |g;|, then, because
of the normalization |g;| = 1, (8.4) becomes
U(z;)
V(ZJ)

U (z,)
V(ZJ)

E(f;,95,U(z;),V(z;)) (8.3)

1+

For relatively large |U(2;)/V (25)|, this measure of error is close to the relative error. On
the other hand, for small |U(z;)/V (2;)| < 1, this measure of error is close to the absolute

error. For most applications, this is desirable; if we think of U(z;)/V (2;), 7 =0,...,N, as
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a vector then any norm for this vector, like E, downplays the significance of small values of
U(z;)/V(z;). The idea of adding one to the relative base in the denominator is not new;
in fact, many numerical subroutines use this idea.

Second, if 1 = |fj| > [g;|, observe that (8.4) can be rewritten as

V(ZJ)

E(f;.95.U(25),V(2;)) = h%(f;_
J

V(z;)

1 /3l (8.6)
1+

or, simply as
lV(zj) L9
U(z;)  fj

U (z5)
V(z;)

E(f,95,U(z2;),V(25)) = (8.7)

In other words, for large values of U(z;)/V(z;) > 1, E is a measure of the reciprocal error.
Again this is desirable; for large U(z;)/V (z2;), we are willing to accept a large absolute error
U(z;)/V (z5) + f;j/g; to the same proportion that we are willing to accept a small absolute
error of the reciprocals V' (z;) /U(z;) + gj/ f;-
Note that (8.4) can also be written as

U(z;)
V(ZJ)
U( J)
V(z,)
lg;U(z) + fiV(2;)l

[U(2)] + [V (2;)]

E(fjvgjv U(Zj),V(ZJ‘)) = | J| (88)

1+

(8.9)

So, E(f;.95,U(z;), V(2j)) corresponds to the residual error |g;U(2;) + f;V (z;)| normalized
by [U(z;)|+|V(z;)| and || (f; g;) || (by our normalization | ( f; g;)| = 1). Thus, we see
that a small residual error at z; does not imply a small pseudo-error. To achieve a small

pseudo-error, |U(2;)| + [V (z;)| must be large, i.e., z; must not be nearly-unattainable.

8.2 Error Analysis of the Evaluation

In this section, we translate the residual error bounds from the linear solution to bounds of

the pseudo-error of the rational continued-fraction form. In other words, with the solution
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of Algorithm 4.2 U*+1)(2)/V(+1)(z) we want to obtain a bound for the pseudo-error

U+ () | fi
U(k+1)(zj)
V("+1)(zj)

E(fj,g9;, UK (z;), vE+U(z;)) = | lgil, 7=0,...,N, (8.10)

where g; # 0. For g; = O the reciprocal form is needed for the analysis, but since the
reciprocal forms of (8.6) and (8.10) are equivalent, we only use the form of (8.10) for the
analysis (i.e., we assume without loss of generality that g; # 0).

In the following analysis, we take advantage of a certain observation simplifies our
presentation.

Given the continued-fraction form of the solution from Algorithm 4.2,

U(k+1)(z)

TR = (8.11)
1 . — det(SW(z))
: U .
Vi) o Q" (z) + Vi (z) - u'®(z) + — Yttt (2)
2D (z) AG)(z)

where as in Corollary 7.1 A(®)(z) represents the tail of the it* iteration. (Note that due to
lack of space, we use v(!)(z) = () (z)v()(z) here and in the following continued-fraction
forms).

For Zj ¢C(t), .7 =n;+1,...,041,

UK+ (z;) 1 : — det(S®(z;))
= F@) (. J
V) (z;) T V) (2;) U (z;) + o+ VO )u'(ﬂ(zj) (8.12)
Z5 Zj v(®) (Zj)
because t;‘_,,l,,,m (25) =0,3=mn;+1,...,ni41. In other words,
Uk (5 g+ (,. .
(ZJ) = (ZJ) j=m+1s---1ni+lszj éc(')- (8'13)

v (k+1) (Zj) T Y+ (Zj) ?

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



For z; € CH j=mn;+1,...,ni4;, we proceed as follow. We first write (8.11) as

U(k+1)(z)

1 .
(i-1)
() = VOIG (U1(2) + (8.14)
— det(SG-V(2)) )
i~1 — ~i-1)
Q‘('-”(z) 4 V(_ 1)(2) (ul(i—l)(z) + : T tit.'—1+l,n.'(z) ' )
v(i=1)(z) (i=1) =1 (z) i) —‘7(')&.“ figr (Z)
* (2) + ———(u"Y(2) + it )
vl (z) Al (z)
(8.13)
where we have expanded also the (i — 1)%* iteration. Equivalently,
Uk+1}(z) 1 :
— (1—1)
TG~ TG (U (z) + (8.16)
— det(SE-1)(2)) )
i (i-1) . — 9 (=g (2)A® ’
QM (2) + ———Z(i_l)((j)) (WD (z) + S "",211{3}(';) & )
; o G=1) ; v z i -
0(’)(2)(} (Z)A(') (Z) + W(u'(')(z)A(‘)(z)-i-
Yt (2)
Therefore,
Utk+1)(z;) 1 . — det(SG-1(z;))
= (i-1)(,. i
VE+D(z) — VE=D(z;) UM (z;) + o o W0y | (8.17)
¢ EHVITE TG
because 9(‘)(zj) =0 for z; € C. In other words,
Uk+D) () (4. ‘ A
(ZJ) = (ZJ) 7 =ni+1,.--,‘n-i+1,2j ec(l)‘ (8'18)

V(k'*'l)(Zj) R7E5) (Zj) ’

From (8.13) and (8.18), we can conclude that the pseudo-error E(fj,gj,U(k+1)(Zj),
V¥+D(25)), 5 = 0,..., N, of (8.10) is equivalent to the pseudo-error E(f;,g;, U1 (z;),
v+ (z;)) for z; & C®) and the pseudo-error E(fj,g;, U%(z;), V¥ (z;)) for z; € C),
J=n;i+1,...,ni+1t;, 0 < i< k. In the following, we first present an error analysis for
the case where z; ¢ C® and followed by a discussion on unattainability. Then, we give the
results for the case where z; € C(¥).

Let @)

5 .
(i) — T]- 4 . ul(i) (z])
R CIPRYCTEn

€ (8.19)
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denote the absolute residual error at iteration :. Then the local pseudo-error is

o , | ] :
E(T;-t) =w§‘t)v u'(')(zj), g(t)(zj)vl(t)(zj)) = uf(i)(Zj) ; |'w§})l

b+ 80 (z;)v') (25)
1] 199 (2)v' O (z5)w| (8.20)
T 109 (2) @D (z5)] + [wO (z;)] '

Lemma 8.1 For zj, j=ni+1,...,ni41,2; € C(‘), the pseudo-error locally is bounded by

21 T'l/—)j maxg<i<i At¢+5 + 2(t;§ + 3t?)p
[w/(@) (25)] + 100 (2;)v" () (2;)]

+0(1?).
(8.21)

& By wf? w®(z),00(2)v" (z)) <

Proof: With the normalization |Ju'®)(2)|| + 10 (z)v'@(2)}] = 1. it follows from (6.33)
together with the first column of (6.73) in Theorem 6.4 that
& (W'D (zj) + 199 (20" (25)) = Eu, - & (6wl u'@ (27) + 600 (2))0"0) (25)),
(8.22)

for j =n;+1,...,n; + t;, where |[Ey | < 2(¢t} + 3t3)u, and

5w w/® (2;)] + 16r4700) (2))v' D) (z,)]

|a§')(6w§.’)u'(i)(2j)+JrJ(-’)o(i)(Zj)v'(i)(Zj))l < RS
j6w| + (o7
S @ AN
< 200 sw?) |
= T A
< 2i7"l[;0mé?<xi/\¢‘+5+0(p2), (8-23)

where we use Theorem 6.3 for the bound of the residual. Therefore, the bound for the local
absolute error is
r;_i) . ') (Zj)
W 000 ;)
2i7l/;j maxg<i<i Ay+s + 2(8f + 3t?)p
&7 1w} 00 (23)0" (29)

B

+O(u?). (8.24)

Substituting (8.24) into (8.20) get

214 7; maxo<ici Ay 45 + 2(8f + 3t )u
&) (1w (z7)] + 169 (2;)vD (25)))

(1]

O(u*).
(8.25)

E(r® wl? o'® (2;),00 (200 (2;)) <

and the result follows. O
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Remark 8.1 For the first step (i.e. 1 =0), the ervor is

2(t8 + 3t3)u
WO (2;)] + [60)(2;)v"® (z;)]

which is error due to Gaussian elimination alone. If the initial step size happens to be

E(fj, 95, 4" (z;),00 (z;)v"® (z;)) =

to = N + 1, then the method of solution corresponds to solving the entire system using
Gaussian elimination. As can be seen from this, at nearly unattainable points z, (where
[0 (2,)] + 160 (2;)v/®) (2,)| is small), the bound for the pseudo-error using the Gaussian
Elimination method can get arbitrarily large, as ezpected.

Lemma 8.2 Consider the points zj, j = n; + 1,...,n; + &, z; & cO. rf [eg-i)l <1 and

fe (I)w(‘)l ts so small that
314e(SO NI (1f51 + a7 2 1P| (UO )1 + VO (),
then the global pseudo-error satisfies

E(f;.95, U (2;), VE+(2))) < 167956 E(rd, wl?), u'@ (2), 0 (20" (27)) + O(u?).
(8.26)

Proof: At the i*® iteration we have available S()(z) = s(9(z)---s(=1)(z). So the exact

rational interpolant satisfies

; ; — det(SW(2;
L V('f—_)1 ~ | U9 z) + =L NO (8.27)
91 (z) Q" (zj) + V(z;)—
I (t)
which implies
(t) ’
1 det(S)(z; G
(x) VO (2. . (f ( J).) - (=) |- (8.28)
(z5) v (z;)= + U™ (z4)
9;
For computed counterpart, we have
(i+1) ( (¥
UG+ (25) 1 - — det(S'(z;))
- i = TN U(l) (Z') + 2 =
VD (z) vV (z) T QO ) 4 V) (2) = )
\ ? 7700 (2;)0v"0) (25)
(
1 ' — det (S (z;))
m U(t)(Zj) + ( ) (8-29)
Q" (z) + V<*>(z,)(—-2— +e)
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Now, using (8.28) and the equation U (z;) + V) (2;)f;/g; = w" /g; in (8.29), we obtain

UG+ (z;) _ —des(S9(z;)) f;/g; + € UD (z;) w /g,

- _ . 4 8.30
VGE+D(z;) det (S (2;)) + €' V) (2;) w} /g; o
Thus,
U ()  fi] _ & (wy"/9;)’
VE 0| = [wmmomy s Ovomy e O
3] det(SW)(z5)) + ;" VE(z5) wi” /g5
and

E(f5.95, Ut (2;), VE+D(z)))
(x)l @)?

< - S - :
| — det (SO (z;)) f; + e;.‘)U(') (ZJ)w(‘)l + lg;j det(S@ (z;)) + eg})V(t) (25) w}!)l
l (ﬂlw(i)z

= [0SO G f1] ~ 1900 (37) w“’l + g5 det(SW) (2;))] — [V (z7) w?|
P

. 8.32
|det(s<*> (IS5 + lgs1) = 1€7wP (U6 (27) + [V (2;)] (8-32)

If 3] det(SO ()] (5] + Ig;1) 2 [€PwP [ (UD (z5)] + [V (2)]), then

i i)?
¢ gy
= | det(S®(z;))(1f5] + 1g51)
2|e§-i) |'lU§-i)2
| det (S (z;))|’

E(f;, 95, U (25), VD (2;))

(8.33)

because max{|fj|,lg;|} = 1. Substituting

u'® (z5)
60 (2;)0') (z5)
1109020 (25)] + w0 (z))
w{| 00 (2;)v"C) (2;)|

€ = E(r§-",w§",u'<f’(zj),o“’(z,-)v’("’(z,-))!%,-l(l
we
7

= EF@D,wl?, o' (z;),00(z; )v'“’(z,))‘ (8.34)

into (8.33) to obtain

E(f, ;. U(i+1)(z.) V(i+1)(z-))
< 26 BE(r{), wl), W' (25), 09 (2)v'D (2,)) [w? |(169) (27)v'D (2)] + [P (2)])
= -g.') 10) (2;)v'®) (2;)| | det (S@ (2;))]

. (8.35)

Thus, with Icg-i)l <1 it follows that

WO ()] + 189 20O )| _ Iri 1 + |
[00) (2;)v"D) ()] - lwi?|

(8.36)
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(see Remark 8.2 at the end of this chapter). With (8.36) and &g-i) = l/max{lv"_g-i)[, |u’1§i)l}-,

{8.35) becomes

E(f]v 9i, U(i+1) (zj)v V(i+1) (Z]))
4P EED wf), v (27), 00 (2)0" (27) max {lag”, 1757 [} (| + 1r7)

< [det (S0 (27))] (8:37)
But,
w) = (U ()) + [;V(27)) (8:38)
r = (g;P"" (z) + 1;@Q"" (2)) (8-39)
which implies
lw?| < max{lg;1, [/;1}(UD (z7)| + VO (7))
= [U9 (z;)] + (VO ()| (8.40)
r$P| < max{lg;l, I£;1}(IP* (z7)| +1Q*" (z)1)
=[P (z;)| + 1Q"" (z;)I- (8.41)
Thus,
max{[@{", |77} < 2159 (z)ll, (8.42)
because max{|z{"],|7"|} < 2 max{}w"),|r{"|}. Also, from (8.40) and (8.41)
W+ 110 <UD () + VO ()] + [P ()] + 1Q7" (27)]
< 259 (z;))]. (8.43)
Substitution of (8.42) and (8.43) into (8.37) gives
E(f,9;, U (27), VI*(2))
1650 E(r, wl), uw'® (2;),00) (2;)0/D (2;)) 15D ()] 189°Y (2)]]
- | det(S() (z5)l
= 168" E(r, wi? w@(2)), 00 (2;)0' (27)) (5D (2;))
= 168 B, w’, uD(2;), 00 (z)vD () (s(5D(z)) + Ow)). (844

With Lemma 8.1 and n(s'(i)(zj)) < 'rz/_;j, the result follows. O
We now discuss the effect of unattainability. The above results rely on the fact that
tl

ng

timigg(25) =0for j =ni+1,...,ni+ &, z; & C® jn (8.11). If we were to include
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the term —-*y“’t{niH i ( zj)/A(‘) (z5), which is first added to u’(i)(z,-) (see (8.11)), in our

®

analysis, then instead of ¢;’, we would have eg-i) + e;-m, where

RO s T 7)) (8.45)

G T 0(z) 0D (z;) AD (z5)

as the local absolute error. Note that we can have difficulty only when the denominator
of this expression precisely equals to zero, i.e., A()(z;) = 0, in which case, we have the
calculation of 0/0. This A®) (zj) corresponds to the expression in Corollary 3.1 for checking
unattainable points. We would not be able to compute this expression exactly. However,
its magnitude reflects whether or not a point is nearly unattainable. Let us first convert
this local absolute error into the local point-wise error:
‘(l' - . > . .
o 167185 w709 (2))v @ (z))]
= O]+ 109 (z)v O ()
Dt 1meg, (2016 0]
AG)(zj)(|w'® (z5)] + [00) (2)v" () (z5)])
= [0 (291 (8.46)

&P B (rf?, wi W (27),v9(23)

where,
l a(i) (i) ’

A(')(zg)(lu’(‘)(zj)l + |0(" ()0 O (z;)])

If Q; is large, then we treat z; as a numerical unattainable point. Thus, near z;, we should

Q; = (8.47)

expect a large error. However, z; is still accurately interpolated linearly. Notice that this
expression of 2; is given at the local level. One can apply Lemma 8.2 to convert these
expressions to the global level. A discussion on the relative size of §2; is given in §9.3.

We now obtain a bound for E(fj,g;,U®(z;), V() (z;)) for the case z; € C1).

Lemma 8.3 For j =n; +1,...,ni41,2; € CY), the pseudo-error locally is bounded by

~ (1) (i=1) | G=1)  r(i=1)(, .\ ,(=1) (.. 2iT1z;jmaxo<1<i/\t,+5 + Ty 2
&; E(r; " " w;" u (z), 097 () < (Iu’(“l)(zj)l 06D (z,)o (2] +O0(u")-

(8.48)
Proof: From (6.33), we have
a0 = 6959 1 &P (3.49)
so that
O , = =
(& w1 < 375 max A5 + 71+ O(?), (8.50)
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since the first [x?)ﬁ?;-i) is bounded by 74 and, with Theorem 6.3, the second term is bounded
by

|6w§i)l
N aP) |l
I (sw® ) |
= &7 F)

& 6wl =

< ity max Ag+5 + O(p?). (8.51)
Now, wg-i) = w?-l)u("‘l)(zi) + rg-i—l)O(i‘”(zj)v(""l)(zj) so that
(i—-1) .
R L M
] ng—l) 96— (2;)v(—D(z;)

&§|)w§;-1)0(i_1)(zj)v(i—l)(Zj)
i‘r1/7 max i Ay +s + TH
~ (1) Zi-l) 9<11<' thl’-D'—l +O(#2).
@57 w; ™ 7001 (2;)v(i=1) (25)]|

(8.52)

Substituting (8.52) into (8.20) get

E(i—l)(r‘gi_l), ll];-i—l), ul(i—l) (zj)’ g(i—l)(Zj)Ul(i—l) (Z])) <

1 i T9; maxo<i<i Ay +5 + TH
D (z;)] + (661 (z3)oD )]

) +O0(u?), (8.33)

a!
and the result follows. O
With Lemma 8.3, we have the following corollary of Lemma 8.2.
Corollary 8.1 Consider the points z;, j =n;+1,...,n;+t;, z; € c@. [”6;:‘—1)' <1 and

(j—-l)

;| is so small that

Ie_(;_l)w
1 i i i . .
51det(SED )| (151 + 1g51) 2 lef ™ Vwl ™1 (UG (25)] + IVE=1(z5))),

then the global pseudo-error satisfies

E(f5,95UD(2;), V{2;)) < 167,80 E(rl™D, wl™V, w6 (2;), 067 (2;)) + O(u?).
(8.54)

Proof: The proof is similar to the proof of Lemma 8.2. O

Thus, a similar point-wise error bound is attained for the case z; € (9.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Regarding unattainability, similar to the treatment of the case where z; ¢ W, we

. i—1 (-1
obtain a local absolute error ™! + € :

> , where

- ARG RAL I C Y L C)
- . . (3= G-1 < 1 ‘ : .
v=1)(2;)(00)(2;)q* ™" (25) + ElTr""“_(:i,-‘f_)(“'(‘)(’«’J')A(‘)(Zj) =Y 1 (25)))
(8.55)

(2—1)
€;

Notice that we might encounter difficulty when the denominator of this expression precisely

equals to zero, i.e., (W®(z;)A® (z;) - 7(i)t;:.-+1,n.-+; (27)) = 0, in which case, we have the

calculation of 0/0. This (u’(i)(zj)A(‘) (z5) - ’Y(i)tln.»+1,n,~+\ (25)) corresponds to the expres-

sion in Corollary 3.1 for checking unattainable points. We would not be able to compute

this expression exactly. However, its magnitude reflects whether or not a point is near

unattainable. Let us first convert this local absolute error into the local point-wise error:

M A A O Ll G
WG (z7)] + 166-D (2;)0/&D) (z;)]

_ 109 (23 YDt 10, (o) [0 w0

" WO AD (25) — 10t 1 () (WED (2)] + 00D ()0 (25

=109z Ve, 410, (21 9 (8.36)
where
=(i), (i-1)
a;w;
—_ I J_ 2 I (8.57)

Q; = . - - - - - .

T (WO (2) A (25) — ¥O 4 pep, G (WETD(25)] + 106D (25)0/ -1 (25)])
If ©; is large, then we treat z; as a numerical unattainable point. Notice that this expression
of Q; is given at the local level. One can apply Corollary 8.1 to convert these expressions

to the global level. A discussion on the relative size of §2; is given in §9.3.

We now summarize the principal result of this thesis in Theorems 8.1 and 8.2 below.

Theorem 8.1 If the conditions of Lemma 8.2 and Corollary 8.1 are satisfied, then the
pseudo-error of zj, for each 1 <k, j =n; +1,...,n; +t;, ts bounded by

< 32iT21/;§ maxo<i<i Ay +5 + 321‘1/-).]‘ (t;1 + 3t?)p
- '@ (27)] + 10@) (7)) (25)]

+O0(u?),
(8.58)

E(fj,9;, UK+ (z5), v+ (2;))

if z; €CW | and

322'1'2’(21.]2- maxo<i<i Agy+5 + 16T2'¢;j[1

E(f;, ',U(k'H) . ’V(k‘H) 1) < - - - O(u? 8.59
(f5:95 (25) (25)) < (WG ()] + |6G-D (z;)v -1 (2;)] +O0(p®), (8.39)

if 2; € c@,
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Proof: With (8.13) and (8.18), the result follows directly from Lemmas 8.1, 8.2, 8.3 and
Corollary 8.1. O

Note that in Theorem 8.1, the pseudo-error E(f;, gj, U¥+1 (2;), V(¥+1)(2;)) can be large
if ¢; is large. However, in these situation, the point z; is either a near-duplicate point or
&) is large (i.e., the problem is ill-conditioned). Numerical experiments that illustrate

these situations are given in Chapter 9.

Theorem 8.2 If the conditions of Lemma 8.2 and Corollary 8.1 are satisfied, then Algo-
rithm 4.2 ts weakly stable for Problem 1.].

Proof:
From (8.9) and (8.58), it follows that there exists d; such that

g U (z;) + [V () _ o
[UE+D (z5)] + [VE+D (25— 7

J=0,...,N, (8.60)

where

32ir%¢? max A+ + 3279; (¢} +3)u on? it (.)
: . . + if z; €C\Y,

1651 < 10 (25)] + 169 (z)0") (z5)) vy e (8.61)

il = 32ir ¥; &‘é‘;‘é At+5 + 167°Y;u

[/ 08 (25)] + 1657V (2;)0' 6D (25)]

+ 0Ou?) if z; €Cc®.
Thus,

g URH (z5) + f;VEFD ;) = 6;(UEHY (25)] + [VEFI(Z))), j=0,...,N. (8.62)

Let
fi = f;—8;sign(VETD(z)) (8.63)

and
gi = gj—d&;sign(U%* 1 (z))). (8.64)

Then
giU**(z;) + V&) (z;) =0, j=0,....N, (8.65)

and

(o =8 fi=Jfi)ll _ [(9;sign(U+N(z;)) §;sign(VE+(z)))) ||
(g i)l Il (g; fi)ll
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where |d;] is bound according to (8.61). That is, (U*+1)(z), V&+1)(2)) is the exact solution
of the problem (8.65) with perturbed input {( g;, fJ ) }j=o.,...~ where the perturbation is by
{;] in (8.66) and is bounded by (8.61). Similarly, from Theorem 6.2, we know that, for
i=0,....k, j=ni+1,...,n; +t;,
154 (z;) — 59 (2;)|
NS ()l
From, (5.64), it follows that Algorithm 4.2 is weakly stable. O

<i-T-1;- 2y .
St-7-Y; osl?ggf_l)\tws'*'o(#) (8.-67)

In the proof of Thm 8.2, we need to show that both || (g; —g; fi—f;)I/ I(g9; fi)ll
and ||S@(z;) — S(i)(27)l/|1S® (z;)|| are small for all well-conditioned problems. Since the
first term || (g5 — 37 fi — fi)ll/ I (gj fi )1l is bounded using the result of the bound for
the pseudo-error, which in turn requires that the bound of ||S®(z;) — §@(z;)||/(IS® (z;)]
be small in proving it, it follows then that if the pseudo-error is small, Algorithm 4.2 is
weakly stable. Furthermore, since a small bound for || (g; —d; fi—fi)l/ I(gi fi)ll
implies the computed solution is the exact solution of a nearby problem, another way of
stating our result is that Algorithm 4.2 computes a solution which is the exact solution of
a nearby problem whenever the problem is well-conditioned.

We conclude this chapter by addressing the conditions of Lemma 8.2 and Corollary 8.1

which are required for Theorem 8.1 and Theorem 8.2 to be valid.

Remark 8.2 Note that the conditions of Lemma 8.2 (stmilarly for the conditions of Corol-
lary 8.1), are always satisfied in that e?) ts always small since the local interpolation is done

by Gaussian elimination and thus the assumption
1 : o i )
31 det(SD I (151 + lgs1) 2 e w1 (UD ()] + VO (25)])
is reasonable. Furthermore, if Ieg-i){ < 1, it follows that
®yq,,0) )
Ifj “'wj | < ‘wj |

< Pl )

ul(i)(zj) N r;_i) - Irgi)l+’w§i)l
00(z;)v () " @ | T T )]
w9(z;) ry i1+ f?
. - +l-14+-1- < L —2_ 8.68
IO(‘) (zj)v’(‘) (ZJ) w;t) lwgt) l ( )
From (8.68), we get
w'®) (z;) ) Ir] + [wd)|
: 1]~ |14 =2 4
‘ [60) (250G (2;) 2l B
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/0 (2;) + 09 (2;)v' (z;)|

160 (z5)v'()(25)
and
W) ) 1+—r§'1)
|0G) (z;)v'0) (25) w§i)

(W@ (z5) — 89 (z;)v"P)(2})]|

10¢) (2;)v"() (25)]
It follows from (8.69) and (8.70) that

!u[(g)(z])‘ + !0(1) (z] )‘U’(i) (ZJ)‘

3] + )|

wd

(8.69)

21+l
T
I+ [w)

(i)l

(8.70)
le

I+ el

100 (z;)v" () (25)| -

80

. (8.71)
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Chapter 9

Numerical Results

In this chapter, we present and discuss experimental results to augment the pseudo-error
analysis of Algorithm 4.2 in Chapter 8. The reported experiments are all typical cases for
the particular classes of experiments. Unless stated otherwise, all the rational interpolants
reported in this chapter are of type %, % — 1}, where N is an even number of interpolation
points. In other words, all solution paths are the staircase paths on and immediately below
the diagonal in the rational interpolant table.

Algorithm 4.2 was implemented in the MATLAB programming language with double
precision arithmetic. MATLAB is an interactive, matrix-based system for scientific calcula-
tions; it is an outgrowth of the LINPACK and EISPACK projects. Due to the formulation of
Algorithm 4.2, MATLAB, with its built-in functions of matrix computations, is particularly

suitable for the implementation.

9.1 Scaling and Pseudo-Error

In this section, we discuss the scaling of the data and we illustrate the strength of the
pseudo-error measure (8.4) introduced in Chapter 8.

Given the original data {(z}, f}, g}) };=0....~ in some domain [a,b] and range [c, d], we
first linearly map this data to the interpolation domain [—1,1]. For the range, we linearly
map the majority of interpolation values, which are in the range [¢, d'], to the range [-1,1].

In other words, we obtain the interpolation data {(z;, fj,g;)}j=o,. ,~ such that

/o
zj=_1+3(_‘5’%a‘ﬂ, 1<z <1 (9.1)
and , o
. 2Af /d. —
9i @' —d
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Since the range [/, d'] of the majority of the interpolation values is used, the range of f;/g;
is yet to be determined. The meaning of majority is left to the user’s discretion since this
scaling procedure depends heavily on the data. A general guideline is that the majority
of the data points is the subset of the data which requires a higher degree of accuracy
compared to the rest of the data.

In the following, we present an interpolation problem of the function TAN(z).

The table below depicts the differences between the relative error (8.3) (denoted as
R.E.) and the pseudo-error (8.4) (denoted as P.E.) for the interpolation of the TAN(z)
function. The eight interpolation points z; generated were in the range —m/2 < 2; < wf2.
To illustrate the problem with the conventional relative error measure where the range of
data is large, we have chosen the fifth point to be close to 7/2 so that TAN(z}) is relatively
large compared to the other points in the set (see Table 9.1). (Note that the heading
U(zjw/2)/V(zj7/2) denotes the continued-fraction form; we use this heading for spacing
reasons only). In this experiment, we need not scale the range because the magnitude of

the majority of the function values is around one. It can be seen that the relative error

2j TAN(z;mw/2) U(z;m/2)/V(z;7/2) R.E. P.E.
0.6772794093 1.800721810e+00 -1.800721810e+00 {| 0.0e+00 | 0.0e+00
-0.0967719415 || -1.531907447e~-01 1.531907447e-01 || 3.1e-15 | 4.1e-16
0.9132027635 7.289059341e+00 -7.289059341e+00 || 3.0e-15 | 3.7e-16
-0.7056935271 || -2.006778747e+00 2.006778747e+00 || 6.6e-16 | 2.2e-16
1.0000000000 4.491214388e+13 -4.529196873e+13 || 8.5e-03 | 1.9e-16
0.5388728003 || 1.130236830e+00 -1.130236830e+00 || 0.0e+00 | 0.0e+00
-0.1116767686 || -1.772432828e-01 1.772432828e-01 || 3.6e-15 | 5.4e-16
0.2412402420 3.981833116e-01 -3.981833116e-01 || 2.8e-16 | 7.9e-17

Table 9.1: Experiment 9.1: Eight Points of TAN(2)

at the fifth point is of size O(10~3), which is significantly larger than the relative error at
the other points. Furthermore, if the vector norm (8.1) were to be used to measure its
error size, the fifth point would dominate and thus a relative error of size O(10~3) would
result. However, such an error measure, which only places importance on large interpolation
values, completely overshadows how well the other points in the set have been interpolated.
In contrast, the pseudo-error measure automatically adjusts the relative importance of the

data according to its magnitude.
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9.2 Ill-posed Points

Ill-posed points, as defined in this section, are the points associated with the singular blocks.
Here we demonstrate the ability of Algorithm 4.2 to handle ill-posed points. We begin by
describing a procedure for generating test data appropriate for this demonstration.

The theorem below describes the intrinsic relationship between unattainable points and

singular blocks (hence singular LRIS’s).

Theorem 9.1 Let r(z) € R(L,M) be the rational interpolant obtatned from its linear
rational interpolant (U(z),V(z)) of type (L, M| interpolating the points {(z;, fj.g;)}j=o.~,
where N = L + M. Suppose that (U(z)},V(2))} accidentally interpolates the next k points
{(zj. fj:95)}j=N+1,...N+k, but not the subsequent k* points {(z;, fj, 9j) }i=N+k+1,...N+k+k*:
where 1 < k* < k. Then these k*, not interpolated by (U(z),V(z)), are unattainable in
the set {(zi, fj,95)}i=o,... N+k+k* for all rational interpolants r* € R(L + I, M + m), where
k+Kk*=1+m.

Proof: Suppose there is an r*(z) € R(L + {,M + m), obtained from its linear inter-
polant (U*(z), V*(z)) interpolating the points {(z;, fj, 9;)}j=o.... N+k+k-- Then U*(2)V(z)-
V*(z)U(z) has N + k + 1 zeros. This follows because both (U(z),V(z)) and (U*(z),V*(z))
interpolate the first N + k + 1 points. But U*(2)V(2) — V*(2)U(z) € Pn+k because
deg(U*(2)V(z) = V*(2)U(2)) <max{(L+ )+ M, (M +m)+ L} < L+M+k* <N +k.
Hence, UU*(2)V (2) = V*(2)U(z) which implies r*(z) = r(z). But r(z) does not interpolate

{(25, f5:95)}j=N+k+1,. .N+k+k* as given. O

Theorem 9.1 describes the entries containing unattainable points in the lower triangular
region B of a square singular block in Fig. 9.1. In this region, an entry contains at least
one unattainable point with respect to the [L, M] entry, and up to k unattainable points
in the entry (L + k, M + k].

The entries [L + I, M + m] where 0 < { + m < k, are inscribed in the upper triangular
region A. Note that Region A contains no unattainable points with respect to the entry
[L, M] since it is constructed by the extra k points that is accidentally interpolated by the
entry {L, M]. We name these k points the singular points; they are so called because these
points create the singular block. Numerically, we refer to them as the ill-posed points. Thus,
by using Theorem 9.1, we can generate data sets with singular blocks and unattainable
points. By perturbing the data, ill-posed points are generated.

Note that, as pointed out in Remark 2.2 of Chapter 2, unattainable points need not

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5 (LM) =m (L:M+k)

g ] (L+1.M+k)

i , P A ,,f ., f

i Vo o

o e

y s

LT (L+kM) (L+k,M-+k)
(L+k,M+1)

Figure 9.1: A square singular block.

be associated with singular blocks. Thus, the entry described in Theorem 9.1 may have
unattainable points z,, 0 < o < N, of its own.

In the following, we present three experiments to illustrate how Algorithm 4.2 handles
ill-posed points on a solution path. The ill-posed points are located at 23 and zg on the
solution path in all three experiments. The three experiments counsist of 16 points with two
numerically simulated singular blocks generated by applying Theorem 9.1 of 2 x 2 located
at (1.1) and (4, 3) in the rational interpolation table along the staircase path.

The data sets are generated as follows. We first obtain a [1, 1] type interpolant, call
it (u1(2),v1(2)), from the randomly generated points, zg, 21, 2. Then, the next point is
generated as f3/g3 = uy(z3)/v1(z3) + {1, where (. is a small random perturbation. The
next 4 points, 24,25, 26, 27, are randomly generated. With these eight points, a rational
interpolant of type [4,3], call it (u2(z),v2(2)), is obtained. Lastly, for the second ill-posed
point, we use (u2(z),vs2(z)) to generate the function value of the next point, zg, i.e., fg/gs =
1u2(z8)/v2(28) + {2, and the remaining seven points are generated randomly. With these 16
points, the task is to construct a rational interpolation of type (8, 7].

In Experiment 9.2, O(¢;) = 10~? and O((2) = 1079, this is to examine the effect of the
same magnitude ill-posed points. The results are tabulated in Table 9.2. The pseudo-errors
P.E. are calculated using the final solution type [8, 7].

Notice in Table 9.2 that without skipping (T = oo) over ill-posed points, after encoun-
tering and accepting the first ill-posed point 23, the residual error increased dramatically
and remained large for the remaining points. The stability parameter T(i)(Zj) behaved sim-
ilarly; this is so because accepting an ill-posed point causes the resulting solution S (z;)

to be ill-conditioned at the points that follow. The second ill-posed point zg makes little or
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L T =10>

J zj fil9i i | 7W(z41) | PE. i [®(z4)] PE.

0 | 0.90025857 | 2.58554998 || 0 | 7.0e+00 | 0.0e+00 || O | 7-0e+00 | 0.0e+00
1 | -0.53772297 | 0.41353851 || 1 | 5.2e+01 | 2.7e-16 || 1 | 5.2e+01 | 2.7e-16
2 | 0.21368517 | 1.36179193 || 2 | 2.5e+02 | 1.3e-16 (| 2 | 2.5e+02 | 1.3e-16
3 | -0.02803506 | 1.02153372 || - | 4.7e+11 | 5.6e-17 || 3 | 4.7e+11 | 5.6e-17
4 | 0.78259793 | -0.29426374 || - | 5.9e+11 | 6.7e-14 || 4 | 1.3e+12 | 1.3e-05
5 | 0.52419367 | 0.62633299 || 3 | 5.9e+03 | 1.6e-15 | 5 | 4.1e+12 | 4.3e-07
6 | -0.08706467 | -0.98027740 || 4 | 8.6e+01 | 1.1e-14 | 6 | 1.8e+19 | 3.5e-05
7 | -0.96299271 | -0.72221824 || 5 | 2.5e+04 | 9.0e-16 || 7 | 4.0e+18 | 9.7e-08
8 | 0.64281433 | -0.06224507 || - | 6.6e+10 | 3.4e-15 || 8 | 8.4e+21 | 1.6e-06
9 | -0.11059327 | -2.90269834 || - | 4.le+12 | 2.1e-14 || 9 | 1.7e+21 | 2.6e-05
10 | 0.23086470 | 0.75638402 || 6 | 3.1e+04 | 9.4e-15 || 10 | 3.le+18 | 4.4e-06
11| 0.58387407 | -1.96415805 || 7 | 7.8e+04 | 1.8e-14 || 11| 1.0e+19 | 1.7e-06
12 | 0.84362594 | -0.12714617 || 8 | 2.3e+04 | 4.4e-14 || 12| 5.4e+18 | 6.5e-05
13| 0.47641449 | 0.41801396 || 9 | 5.1e+03 | 1.2e-15 || 13 | 1.7e+20 | 7.5e-07
14 | -0.64746771 | 13.76489290 || 10 | 4.6e+03 | 1.7e-14 || 14 | 1.2e+21 | 1.2e-05
15 | -0.18858757 | -1.72741382 || 11 — 7.5e-15 || 15 — 3.0e-06

Table 9.2: Experiment 9.2: Two Ill-posed Points: O(¢;) = 10~ and O((,) = 10~°.

no difference to the points that follow.

On the other hand, by setting the stability tolerance to 7 = 105, the ill-posed points

were skipped over. Notice that for a “singular” block of 2 x 2, a step size ¢; = 3 is needed

to skip over it on a staircase path so as to avoid accepting an ill-conditioned LRIS. In

Table 9.2, we can see that the two ill-posed points are skipped over by a step size of three.

In Experiment 9.3, O(¢;) = 1073 and O(¢2) = 108, we examine the effect of a mild

ill-posed point following a more ill-posed point. In Table 9.3, the first ill-posed point at z3

is a mild one compared to the severity of instability at the second ill-posed point at zg. We

see that there is a distinct drop in accuracy corresponding to the intensity of the instability

at these points.

When the position of the two ill-posed points is switched, in Experiment 9.4 we see that

the loss of accuracy caused by the first ill-posed point remains for the rest of the points.

The now second milder ill-posed point has no effect on the accuracy at all. Thus, it appears

that the effect of ill-posed points on residual errors are additive (not compounded) if there

should be more than one ill-posed point along the solution path.

From these experiments, it is seen that once an ill-posed point is accepted, its detrimen-

tal effect lingers for the remaining points in the set. On the other hand, when the stability

parameter tolerance 7 is set appropriately, 10° in these experiments, the two ill-posed points

are skipped over. Since no ill-posed point is accepted, no detrimental effect is present.
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T = 10°

T =00

j z; filg; i [U) | PE. [ i [79(m) | PE.
0 -0.81560759 | -3.88530037 0 6.9e+01 0.0e+00 o 6.9e+01 0.0e+00
1 ~-0.70569353 | -5.76386112 1 2.4e+03 2.4e-17 1 2.4e+03 | 2.4e-17
2 | -0.66769184 | -7.54717730 2 6.5e+01 4.9e-17 2 6.5e+01 | 4.9e-17
3 | -0.24884668 | -0.32684179 - 1.3e+06 5.4e-16 3 1.3e+06 | 5.4e-16
4 | -0.15022172 | -0.01871128 - 1.7e+06 6.1e-16 4 2.6e+06 3.2e-13
5 | -0.11167677 | -0.18145134 3 €6.2e+04 | 7.5e-16 5 1.7e+06 | 2.0e-13
6 -0.09677194 | -0.07294883 4 7.9e+02 9.4e-16 6 2.2e+06 | 7.4e-14
7 0.22022715 0.22188710 S 7.3e+02 4.1e-16 7 2.2e+06 1.4e-12
8 0.24124024 0.24033784 - 2.3e+09 2.1e-15 8 4.3e+11 1.6e-12
9 0.40298520 | -1.71353984 - 3.1e+09 2.8e-16 9 4.6e+11 | 9.8e~-09
10 0.53887280 | -2.68517483 6 3.7e+02 | 2.0e-16 || 10 4.8e+11 | 3.0e-09
11| 0.62423564 | -2.90802720 || 7 | 1.4e+03 | 8.3e-17 || 11 | 2.4e+16 | 3.2e-09
12 | 0.66630292 | -0.17187021 || 8 | 4.7e+04 | 6.6e-15 || 12 | 2.1e+16 | 9.7e-09
13| 0.67727941 | 0.09363880 || 9 | 2.6e+03 | 2.1le-14 || 13 | 1.3e+16 | 5.9e-09
14 | 0.73986586 | 1.61148582 || 10 | 2.5e+02 | 2.1e-16 || 14 | 8.8e+15 | 2.3e-09
15 | 0.91320276 | 2.17468763 [ 11 — 1.2e-15 | 15 - 3.1le-10

Table 9.3: Experiment 9.3: Two Ill-posed Points: O(¢;) = 1073 and O(({2) = 1078.

T =10’ T = 00

g zj fi/9; i | 7%W(z;41) | PE. i | T"(z;41) ] PE.
0 -0.96848036 0.45627641 0 1.7e+03 0.0e+00 0 1.7e+03 | 0.0e+00
1 -0.96729013 0.45956152 1 5.6e+02 3.8e-17 1 5.6e+02 | 3.8e-17
2 | -0.88483782 0.69269728 2 6.1e+03 6.6e-17 2 6.1e+03 | 6.6e~-17
3 | -0.83184188 0.84856901 - 2.4e+09 | 6.0e-17 3 2.49e+09 | 6.0e-17
4 | -0.69278727 | -0.09849212 - 1.6e+09 | 7.3e-15 4 1.9e+10 | 3.3e-08
S5 | -0.61985082 0.43176590 3 1.5e+03 4.7e-15 S5 4.1e+08 | 8.0e-09
6 | -0.29349909 0.78568322 4 1.4e+03 3.7e-16 6 2.5e+14 | 1.6e-09
7 | -0.26486392 | -0.45379506 G 5.0e+02 1.7e-15 7 4.8e+13 | 2.2e-09
8 -0.11634341 3.14075781 - 2.6e+06 2.5e-16 8 4.3e+13 1.9e-11
9 | -0.09128970 | -1.36597790 - 4.7e+05 8.3e-16 9 2.3e+13 1.4e-09
10 0.17383694 0.74650729 6 1.5e+03 1.7e-15 || 10 2.2e+13 1.0e-09
11 0.21708072 1.02845648 7 6.4e+02 1.7e-15 || 11 2.0e+13 | 2.0e-10
12 0.26290233 1.06790443 8 5.4e+02 | 2.1e-15 || 12 1.8e+13 | 1.3e-10
13 0.35128930 | -0.45554608 9 5.4e+02 1.1e-15 |} 13 1.8e+13 | 4.4e-09
14 0.38533879 | -1.05449175 || 10 2.3e+02 1.0e-15 || 14 1.7e+13 1.4e-09
15 0.43526884 | -0.66601293 || 11 _ 1.2e-15 || 15 — 6.7e-10

Table 9.4: Experiment 9.4: Two Ill-posed Points: O(¢;) = 10~ and O((2) = 1073.
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j Zj j;,-/gj U(zj)/V(zj) P.E. Qj

o} -3 -3 3 0.0e+00 | 0.0e+00
2| -2 -2 NaN NaN oo

1] -1 -3 3 0.0e+00 1

Table 9.5: Experiment 9.5: Example 2.1 of Chapter 2.

il zi]file; | U(z)/V(z)| PE. Q;

ol -3 -3 3 0.0e+00 | 1.3e+00
2| -2 -2 2 2.4e-17 | 1.5e-16
1] -1 -3 3 0.0e+00 | 3.1e+15
1] o 0 0 0.0e+00 | 1.0e+00

Table 9.6: Experiment 9.6: Example 2.2 of Chapter 2.

9.3 Unattainable Points

In this section, we examine the relationship between unattainable points and §2; introduced
in (8.47) and (8.57). We begin by using the first two examples in Chapter 2. Note that
the interpolation domain of these examples is outside [—1, 1]. For ease of illustration, we
present these examples in their original domain.

As discussed in detail, the unattainable points in Examples 2.1 and 2.2 of Chapter 2
are z; = —2 and z9 = —1, respectively. The results of these two examples are tabulated
in Tables 9.5 and 9.6. Notice that in Table 9.5, ; = oo; this indicates that z; is an
unattainable point. Indeed, since Example 2.1 is a small problem (only three points), the
numerical solution happens to be the exact solution; thus, 2; = oc. Because the factor
(2 — z1) is present in both the numerator and denominator of the solution, U(z;)/V(z1) =
NaN (Not a Number). Typically, however, the numerical solution is not the exact solution.
So. at an unattainable point, such as z; in Example 2.2, ; takes on some large value (see
Table 9.6).

An algebraic unattainable point is clearly defined in Definition 2.1. While we can
use this definition numerically if the numerical solution happens to be the exact solution
(e.g. Example 2.1 in Table 9.5), this is not true in general. The reason being, any small
perturbations introduced in the original system make the algebraic unattainable points
attainable in the algebraic sense (e.g. Example 2.2 in Table 9.6). Upon examining the P.E.
column in Table 9.6 alone, it can be concluded that all points in this example are attainable
to within machine epsilon. Thus, the algebraic notion of unattainable points does not carry
over to the numerical setting.

On the other hand, the original data set could display no unattainable points with
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respect to Definition 2.1. But with perturbations introduced by rounding errors, the nu-
merical solution may now display unattainable points with respect to Definition 2.1. Thus,
to deem such points as numerical unattainable is meaningful only if these points reveal
something important about the rational interpolant, exact and numerical, at or near these
points. We study this aspect using Experiment 9.6 (Example 2.2).

To show an unattainable point pictorially, we plotted the rational interpolant of Exper-

iment 9.6 in Figure 9.2. To plot the rational interpolant, we sampled 100 evenly spaced

0 T T T T T
U(2)/V(2) ﬁ
Dat.
-
0

Figure 9.2: 100 points of U(z)/V(z)

points in [—3,0]. Notice that the point (—1, —3) is seemingly not interpolated by the ra-
tional interpolant. This would indeed be the case for the exact solution, but according to
Table 9.6, we know the numerical solution does interpolate at zp = —1. It is only when
we plotted the 100 near points (50 before 2; and 50 after), we see the rational interpolant
interpolates at z; (see Figure 9.3). These 100 near points are {z; £i-10719, ¢ =1,...,50}.
The implication of Figure 9.3 is that there is a zero and a pole very close to 23, but not at

Z2.

Conjecture 9.1 The magnitude of §2; indicates the closeness of a zero and a pole together
at zj. The larger the magnitude of 2;, the closer they are, with the two collapsing into the

same point at z; when }; = oo.
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Figure 9.3: 100 points near —1.

With this idea, if the original data set contains a zero and a pole near an interpolation
zs. then we report 2z, as a numerical unattainable point.
We now show an example that has a smaller ; magnitude than that in Table 9.6. Once
again, we used Theorem 9.1 to create unattainable points. Table 9.7 shows the results of
this experiment. From Table 9.7 and Figure 9.4, we see that {); of points 23 and 29 are at
least O(107) larger than the other points. However, Qg = 5.1 x 107 and Qg = 1.7 x 107 are
not as large as the previous example. Now, plotting the near points of zg = —0.2 as done

in the last example, shows a relative gradual change as opposed to that of Figure 9.3 (See

j z; fi/g; U(z;)/V(2;) P.E. Q

0 | ~0.901906344 | -2.470780208e-01 || 2.470780208e-01 | 0.0e+00 | 1.9e+00
1 | -0.655600609 | 4.743535599e-02 || -4.743535599e-02 | 1.3e-17 | 6.0e-01
2 | -0.543922194 | 2.234554592e-01 || -2.234554592e-01 | 4.5e-17 | 2.3e-01
3| -0.288567791 | 7.619392475e-01 || -7.619392475e-01 | 1.3e-16 | 6.8e-01
4 | -0.100715791 | 1.274809722e+00 || -1.274809722e+00 | 0.0e+00 | 6.4e-02
5| 0.044121831 | 1.661143578e+00 T -1.661143578e+00 | 6.9e~17 | 2.1e-07
6 | 0.426708887 | 1.589973018e+00 || -1.589973018e+00 | 0.0e+00 | 1.4e+01
7| 0.510677144 | 1.323842058e+00 || -1.323842058e+00 | 3.8e-16 | 2.4e+01
8| 0.600000000| 2.092716407e-01 || -2.092716420e-01 | 1.1e-09 | 5.1e+07
9 | -0.200000000 | 4.550916908e-01 || -4.550918273e-01 | 9.4e-08 | 1.7e+07

Table 9.7: Experiment 9.7: Two numerical unattainable points
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Figure 9.4: U(z)/V (z) of Experiment 9.7

Figure 9.53). Indeed, we can also see that on the left of zg, the interpolant curves upward to
infinity, indicating a pole. Note that the 100 near points are of the same closeness as that

of Figure 9.3 (i.e., we use the points {29 £1-10710 ¢ =1,...,50}).

9.4 Close Points

In this section, we investigate the aspect of rational interpolation where interpolation points
are close together. We begin by discussing the concepts of close points analytically with two
examples to illustrate the relationship between the condition number () of a submatrix
and the parameters y; and ;. Numerical examples are then presented to augment our
discussion.

For simplicity, in the following discussion, we use only two points z, and zg for the
discussion. We demonstrate an intrinsic relationship between close interpolation points
and unattainable points.

Algebraically, a point z, is distinct from zg if z5 — zo # 0. Numerically, however, the
distinctiveness between two points is not as sharp and clear. Two floating point numbers

2o and zg are distinct if for zo # 0 [37]
U
|zal% < l25 = zal. (9.3)
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Figure 9.5: 100 points near —0.2.

Should the size of |z5 — z4| be smaller than [z4|4, then zg is stored as z,.

Since we need to deal with close interpolation points, hence identical points, it is best
to first examine what this means algebraically. The following theorem describes the effect
on the linear rational interpolation when two points e. between z, and zg are separated by

an arbitrarily small distance €; (i.e., |25 — zo| = €;).

Theorem 9.2 Let F = {(2j, fj,9j)}j=o.n. N > 1 and let (U(z),V (2)) be the linear rational
interpolant, interpolating F be of type (L, M| where L = M if N is even, L= M + 1 if
N is odd. Assume that M, ,, is nonsingular. If at two points z, and 25 = 2, + €. in F,
fa95 — f89a = €5, then the linear solution (U(z),V (z)) satisfies

U(za)l + |V (za)l < 4:%:—Ilmax{L,M}. (9.4)

f

Proof: With N > 1 and the degree type specified, we have deg(U(z)) > 0 and deg(V(z)) >
0. With this condition, we eliminate the case where the solution is a polynomial or an

inverse of a polynomial. Now, (U(z),V(z)) must satisfy the conditions:

faV(za) +9aU(2za) = O, (9-5)
f8V(za +€:) +9gU(za +€:) = 0. (9.6)
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Using Taylor’s expansion on (9.6), it becomes
4. . d. . .
f8(V(za) + €: -V (2)) + 95(U(2a) + € 7-U(23)) =0, (9.7)

where z, < 23,2, < z3. From (9.5) and (9.7), we get

(a5 = f59a)U(za) + faceUsaeV (25) + 952U (23)) = 0. 98)
So
€10zl = |(fags ~ J58a)U(za)
= aesUs 2V I(E) + 95U,
< lfale (Ifﬁl +|gﬁl) max{L7 M} (9-9)
Similarly,
d
(590 = ag3)V (2a) + Gace [V (25) + 95U () =0, (9.10)
and
Vel = (s = Joga)Ven)
= |9a¢: (fad V(z)) + 95 U(zu))l
< el (11 +log) mas( L, 1), (011)

With |fs] + |gs| < 2, the addition of (9.9) and (9.11) yields (9.4). O

Remark 9.1 Note that for N = 1 in Theorem 9.2, there are only two points in the data
set. So the rational interpolant of type [1,0] that interpolates the two close potints is

@), V() = (z - 2o _;, Saies 912)
Thus
Vo)l + Vi) = 12825 fadotsy

= 1=gsl - (Ifal +lgal)
f

€
< 2{=ggl. (9.13)
€f

The two variables ¢: and ¢; in Theorem 9.2 can be of any value in the ranges of |e.| < 2
and |¢s| < co. However, it is the small values near zero that we are interested in. For the

case where €. = 0 and €5 # 0, we have |U(zq)| + [V (24)| = 0, making z, an unattainable
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point (Theorem 2.3). In other words, the solution (U(z), V(z)) can be written in the form
((z — 2za)U*(2),(z — z4)V*(2)). Physically, when two interpolation points having different
function values collapse into one single point, say at z,, then the point z, is unattainable.
In other words, a rational interpolant cannot model a discontinuity.

Thus, Theorem 9.2 together with Theorem 2.3 indicate that discontinuity at a point
implies unattainability at that point. We capture this phenomenon in the parameter (.
Numerical examples will be given later in this section.

But what if ¢, = €. = 07 Then the point 2, is attainable; since in such a case, we
simply have a duplicate data point in the system, not a discontinuity. A duplicate data
point results in a duplicate equation in the system (1.5). A minimal solution from such a
system can still be obtained simply by solving the system with the duplicate point removed.

However, numerically, unless the two points are indeed identical, we cannot remove any
point since two points can be close together but not be exact duplicates. Thus, unless we
assign a threshold to detect “numerically” equal points, we should treat all interpolation
points, including identical points, the same way. Gaussian elimination with complete piv-
oting in the algorithm gives a solution (U(z), V(z)) which guarantees small residual errors.
This solution, however, is undesirable because a small change in the function value at a
nearly equal point will cause a large change in U(z)/V (z). Thus, it is important and appro-
priate to warn the user that an ill-conditioned system is encountered. We do so by reporting
the condition number x(*) of each matrix of the subsystem for solving (u((z), v(9(2)).

We now illustrate the problem of close points by two examples below. These examples
show an algebraic case of an interpolation problem with duplicate points. Although in
practice we may not have exact duplicate points, these examples serve to illustrate the
limiting case of an interpolation problem containing close points. We use these two examples
to demonstrate how the algorithm handles close points and its consequences. Note that we

use integers in these examples so that they can be followed easily.

Example 9.1 Applying Algorithm 4.2, the first LRIS of type (1,0] of the data in Table 9.8

on the staircase path is

@)= (772 o)) (9.14)

interpolating the first two points. This LRIS is acceptable since x(s(9(z;)) = 4.

Remark 9.2 If we perturb fi =1 to fi1 = 1 — ¢, where € is O(u), the rational interpolant
(u®(z), v (2)) of type [1,0] from Algorithm 4.2 would be (z—1,0). Indeed, (z—1,0) is the

only solution for any nonzero perturbation € which makes the point zy = z; = 1 unattainable
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jlof1]2]3] 4
sz 1{1]2]3] 4
f £ 11]1]2]0] -1
fg; J1j1]1f1} 1

Table 9.8: Data used to illustrate rational interpolation concepts.

(see Remark 9.1). Thus, a small change in the input data can cause a large change in the
output. More importantly, a small change in the input data can cause an attainable point

to become unattainable.

In fact, since the second point is a duplicate of the first, all possible solutions of the

first LRIS of type {1,0] in Example 9.1 are

0 = (4P Em o) (9.15)
Qr
sO(z2) = ("(26' b ‘(iz_‘li)) (9.16)

interpolating the first two points, where a and b are arbitrary constants. Because of Re-
mark 9.2, it is important to warn the user if the data set contains duplicate (or close)
points. We do so by providing the condition number ) of the matrix of solving subsys-
tem (uY(z),v)(z)). In the Example 9.1, k&©©) = 0o, which indicates a duplicate point is
encountered.

Note that a large () may result from accepting a solution that is inside a singular
block. But in such an instance, 7(#) would not be within 7, and Algorithm 4.2 would reject
such a solution unless i is the last iteration. Thus, a large (¥ (except for i = k) can only
mean duplicate (or close) points in the system.

We now examine a situation where it might cause Algorithm 4.2 to be O(N%): If

Algorithm 4.2 selects the solution where a = 0 in (9.15) then

9@ = (7 e (9.17)

Such a LRIS would not be accepted since det(s(% (z)) = 0 and hence x(s(®)(22)) = 0o. So
Algorithm 4.2 would increase the step size by one. Algebraically, the next possible LRIS is

(0 9190
sO(z) = (:(O)((g (z (22)_”2)(2)) (9.18)

interpolating the first three points, where (u(®(z),v®(z)) = (cz +2,z2—¢—3) or (z +
2d,dz — 3d — 1) and p{¥(2) = e(z — 1) — 1. The variables c, d and e are arbitrary constants.
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One can see that it is possible to construct an s((z) such that det(s(®(2)) = 0. In this
case, choosing (u(®(2),v® (2)) = (2 + 2d,dz — 3d — 1) and setting d = 0 and e = —1 in

(9.18), we get

sO(z) = (_21 ‘(zz(z_ ‘2)2)) , (9.19)

and hence det(s(%(z)) = 0. It is now easy to see that it is possible for our algorithm to be
O(N%) if every new s(0)(z) is selected so that det(s(®)(z)) = 0. However, such a scenario
is unlikely when we choose to set the arbitrary parameters in Gaussian elimination with
complete pivoting to one to solve for (u(%(z),v(9(z)) and (p(¥ (2), 9@ (2)).

When the close points (or duplicate points) appear together in a cluster, as in Ex-
ample 9.1, the condition number of the matrix of the subsystem identifies the problem.
However, if the close points do not appear together, then we need the parameter ¥ to

identify this problem. We now illustrate this in Example 9.2 below.

Example 9.2 For the data in Table (9.9), the LRIS of type [0,0] ts

jJoJ1[2]3] 4
Z;11]2]1]3] 4
filif2]1]0] -1
g |1|1]1]1] 1

Table 9.9: Data used to illustrate rational interpolation concepts.

@) = (7 Eo) (9.20)
and the second LRIS of type [1,1}] is
sW(z) = (5& - i)l (z - 2)0(z "3)) . (9.21)

Note that s©°(2) is acceptable because k(s'¥(21)) = 2, and that s{1)(z) is acceptable because

k(59 (z4)s(V (24)) = 5.5.

Example 9.2 contains the same data as Example 9.1 except for a change in position of
the points z; and z,. With this change, the solution no longer contains arbitrary con-
stants. Furthermore, the condition numbers of the matrices for solving (u(®(z), v (z))
and (u(!)(z),v(!)(2)) are 1 and 3, respectively. These condition numbers do not indicate
any problems with the data. However,

_ 8(9(2)) _

= RO) ~ @2
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results, which indicates that z; is one of the previous points interpolated. Thus, from
Examples 9.1 and 9.2, we can see that the condition number of the matrix of the subsystem
and the parameter ¢ serve to identify close points in the data set.

We now present a numerical experiment with several variations to illustrate the concepts
of close points as we had just described. This experiment is constructed from a known
rational interpolant of type [5,4]. We first generate 10 interpolation points with points
23, z4 only 1079 apart from each other. Table 9.10 clearly shows the large &) for these two

close points.

j 7 f]/gl z T(t) (Zj+1) P.E. Qj '(/)j K(')

0 | -0.80000000| -0.8661676 || O | 9.7e+00 | 0.0e+00 | 3.6e-02 | 1.0e+00 | 1.0e+00
1] -0.60000000 | -0.9011914 | 1 | 3.1e+02 | 0.0e+00 | 5.4e+00 | 1.0e+00 | 1.0e+00
21 -0.40000000 | -1.0393922 || 2 | 5-8e+02 | 2.3e-16 | 1.3e-01 | 1.0e+00 | 1.0e+00
3 | =0.20000000 | -1.3435272 || 3 | 2.4e+08 | 1.3e-16 | 3.8e+00 | 1.0e+00 | 3.1e+07
4] -0.19999990 | -1.3435274 || 3 | 8.1e+03 | 3.2e-16 | 3.8e+00 | 1.0e+00 | 3.1e+07
5 0.20000000 | -4.0972028 || 4 | 3.8e+03 | 4.5e-17 | 4.4e-01 | 1.0e+00 | 1.0e+00
6 0.40000000 | 40.8827586 || S| 2.2e+03 | 8.6e-16 | 4.1e-01 | 1.0e+00 | 1.0e+00
7 0.60000000 3.4850267 || 6 1.4e+03 2.4e-15 | 1.7e-01 | 1.0e+00 | 1.0e+00
8 0.80000000 1.9732991 || 7 1.0e+03 | 1.6e-15 | 4.4e-01 | 1.0e+00 | 1.0e+00
9 1.00000000 ] 1.5000000 )| 8| 0.0e+00 | 6.7e~-17 | 1.0e+00 | 1.0e+00 | 1.0e+00

Table 9.10: Experiment 9.10: Cluster of two close points.

We illustrate Theorem 9.2 by using the same data as Table 9.10, except for altering
f4/94 to take on the value 0.5 and thereby introducing a numerical discontinuity (a rapid
change in function values). Table 9.11, shows that Q3 and Q4 increased by a factor of
10!%. Note that after the interpolation at the discontinuity, the accuracy of the remaining

interpolation deteriorates dramatically.

7 24 fj/gl- % 7 (Zj+1) P.E. QJ' ‘l/lj K1)

0| -0.80000000 | -0.8661676 || O { 9.7e+00 | 0.0e+00 | 7.1e-02 | 1.0e+00 | 1.0e+00
1 | -0.60000000} -0.9011914 || 1 | 3.1e+02 | 0.0e+00 | 4.5e+00 | 1.0e+00 | 1.0e+00
2 | -0.40000000 | -1.0393922 || 2 | 5.8e+02 | 2.3e-16 | 1.1e-01 | 1.0e+00 | 1.0e+00
3 | -0.20000000 | -1.3435272 || 3 | 2.4e+08 | 7.5e-11 | 4.7e+14 | 1.0e+00 | 5.9e+00
4 | ~0.19999990 | 0.5000000 || 3 | 2.0e+02 | 4.0e-11 | 1.5e+15 | 1.0e+00 | 5.9e+00
5 0.20000000 | -4.0972028 [ 4 | 1.2e+02 | 4.0e-09 | 1.5e-09 | 1.0e+00 | 1.0e+00
6 0.40000000 | 40.8827586 || 5 | 2.9e+02 | 8.7e-09 | 2.7e-01 | 1.0e+00 | 1.0e+00
7 0.60000000 | 3.4850267 || 6 1.2e+03 | 2.6e-08 | 2.0e+00 | 1.0e+00 | 1.0e+00
8 0.80000000 | 1.9732991 ] 7 | 2.0e+03 | 2.2e-08 | 1.2e-01 | 1.0e+00 [ 1.0e+00
9 1.00000000 [ 1.5000000 | 8 | 0.0e+00 | 3.3e-08 | 1.0e+00 | 1.0e+00 | 1.0e+00

Table 9.11: Experiment 9.11: An illustration of Theorem 9.2.

We now illustrate the effect of the parameter 1; when the close points are located in

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




different places. Here, in Table 9.12, we use the identical data as Table 9.10 except we now
distribute the two close points in points z3,2zs. Notice that none of the x(*) indicates any

abnormality. However, 4’3 increased dramatically.

J zj filgi i ™@(z4) | PE. Q; ¥ st

0 | -0.80000000 | -0.8661676 || 0 | 9.7e+00 | 0.0e+00 | 3.6e-02 | 1.0e+00 | 1.0e+00
1 | -0.60000000 | -0.9011914 || 1 | 3.1e+02 | 0.0e+00 | 5.4e+00 | 1.0e+00 | 1.0e+00
2 | -0.40000000 | -1.0393922 f| 2| 5.8e+02 | 2.3e-16 | 1.3e-01 | 1.0e+00 | 1.0e+00
3 | -0.20000000 | -1.3435272 || 3| 1.1e+02 | 1.3e-16 | 5.0e-02 | 1.0e+00 | 1.0e+00
4| 0.20000000 | -4.0972028 |f 4 | 5.3e+02 | 4.5e-17 | 6.0e-01 | 1.0e+00 | 1.0e+00
5| 0.40000000 | 40.8827586 || 5 | 3.6e+02 | 2.3e~16 | 1.8e-01 | 1.0e+00 | 1.0e+00
6| 0.60000000| 3.4850267 || 6 | 3.0e+02 | 2.4e-15 | 5.5e-01 | 1.0e+00 | 1.0e+00
7| 0.80000000| 1.9732991 || 7| 1.5e+10 | 1.6e-15 | 1.4e+00 | 1.0e+00 | 4.3e+00
8 | -0.19999990 | -1.3435274 || 7| 1.6e+03 | 3.2e-16 | 9.1e-01 | 4.8e+07 | 4.3e+00
9| 1.00000000| 1.5000000 || 8 | 0.0e+00 | 6.7e-17 | 1.0e+00 | 1.0e+00 | 1.0e+00

Table 9.12: Experiment 9.12: An illustration of factor ;.

Table 9.13 shows that with discontinuity appearing in separate locations 23 and zg, Al-

gorithm 4.2 recognizes it as close points. In Table 9.13, Qg shows no abnormality. However,

13 has the same large value as in Table 9.12.

J zj fi/g; i | ™(zj41) | PE. Q; Y; st

0 | -0.80000000 | -0.8661676 || O | 9.7e+00 | 0.0e+00 | 7.1e-02 | 1.0e+00 | 1.0e+00
1| -0.60000000 | -0.9011914 || 1 | 3.1e+02 | 0.0e+00 | 4.5e+00 | 1.0e+00 | 1.0e+00
2 | -0.40000000 | -1.0393922 || 2 | 5.8e+02 | 2.3e-16 | 1.1e-01 | 1.0e+00 | 1.0e+00
3 | -0.20000000 | -1.3435272 l 3| 1.1e+02 | 1.3e-16 | 7.1e+05 | 1.0e+00 | 1.0e+00
a| 0.20000000 | -4.0972028 || 4 | 5.36+02 | 4.5e-17 | 4.5e-01 | 1.00+00 | 1.0e+00
5 0.40000000 | 40.8827586 || 5 3.6e+02 | 2.3e-16 | 1.7e-01 | 1.0e+00 | 1.0e+00
6 | 0.60000000 | 3.4850267 || 6 | 3.0e+02 | 2.4e-15 | 6.0e-01 | 1.0e+00 | 1.0e+00
7| 0.80000000 | 1.9732991 {f 7| 1.S5e+10 | 1.6e-15 | 1.3e+01 | 1.0e+00 | 5.5e+00
8 | -0.19999990 | 0.5000000 [ 7 | 2.8e+02 | 1.1e-07 | 3.8e+00 | 4.8e+07 | 5.5e+00
9 | 1.00000000 | 1.5000000 [| 8 | 0.0e+00 | 6.7e-17 | 1.0e+00 | 1.0e+00 | 1.0e+00

To suminarize, we have illustrated in the above experiments that

Table 9.13: Experiment 9.13: A numerical discontinuity at points z3 and zg.

1. the parameter x(*) captures close points when they appear together,

2. the parameter 1; captures close points when they appear in separate locations, and

3. the parameter ; (as also shown in §9.3) captures unattainable points in the data.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




9.5 Comparison of Werner’s Algorithm

In this section, we compare the performance of Algorithm 4.2 with Werner’s algorithm [60].
We begin by highlighting Werner’s work expressed in our notation.
Werner’s algorithm gives the linear rational interpolant
U+ (z) ) _(490) tagrim (2)) (u“'”(z) R (z)) (u<'°’ (z))
vE+t(z) )~ 1 0 1 0 1 !
(9.23)
where u()(z) € P, and [ is specified by the user. With (9.23), the continued-fraction is

t
U(z) = 4@ (2) + no+1,1;(2) ) (9.24)
utt(z) +
u(g)(z) + tna+1,n3(2)
u®(z) + )
tﬂk_1+1,nk (Z)
u(")(z)
The relationship between Werner’s representation and ours is
v@(z) = 1, (9.25)
p(2) = tatim(2), (9:26)
¢z = o (9.27)

The consequences of Werner’s choice of representation is that a polynomial u(® (z) is used
to interpolate the residual of step ¢, compared to u(*(z) /v (z) in our case.

If | = 0, then Werner’s algorithm produces a rational interpolant that is the same as
Algorithin 4.2 for the case where each step size is one (i.e., ¢; = 1), except for a normalization
factor. The step size of Werner’s algorithm is not limited to one; it can vary with different
[. However, the different selections of [ for changing its step size are for representation
purposes only. They serve no significant purposes relating to stability. As discussed in
Chapter 4, for efficiency, [ is best to be set at 0. So, in the following, only the case [ = 0 is
considered.

The original algorithm of Werner [60] is similar to Algorithm 4.2 without skipping over
ill-posed points on the solution path, except occasionally it moves interpolation points
forward: if the partial solution s(9(z)---s(¥(z) of the i* step accidentally interpolates
at a point zg, where n; + 1 < 8 < N (i.e., the partial solution |s(%) (28) - - st (z8)| has
accidentally interpolated the point at zg), then zg is brought forth in the #*# step and

tni+1,ni4,(2) is multiplied by the factor (z — 2z5) to form (z — z8)tn,+1,n.,,(2), Which is
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similar to the #(z) function we introduced. Henceforth, this algorithm is referred to as
Werner's algorithm without reordering.

Later, Werner adopted a reordering scheme suggested by Graves-Morris [30] to his
original algorithm [61]. The reordering scheme is not an a postertori reordering of the
interpolation points; rather, it is a reordering of the interpolation points based on Graves-
Morris’ error analysis of Werner’s Algorithm. There is no proof that this particular choice
of reordering is the best choice out of all the possible combinations [30]). Nonetheless,
experimental results do show a marked improvement over the original algorithm in many
cases. Henceforth, Werner’s algorithm with Graves-Morris’ reordering scheme is referred
to as Werner’s algorithm with reordering.

We use the “relative accuracy” EPS = 107!° in Werner’s algorithm [61] in double
precision. In the implementation of the algorithm, EPS is used in two instances [61]:
to test if the residuals have been accidentally interpolated, and to test if the point is
unattainable where a modification of the algebraic definition of unattainable points is used.

For comparison, the data from Experiment 9.2 is used. The results are tabulated in
Table 9.14. Without reordering, the results resemble those in Experiment 9.2 with 7 = oo,
where there was no skipping over the ill-posed points. The differences in the pseudo-error is
due to different normalizations of s(*)(z). In particular, it is due to a different representation

fi)-

of the interpolation value: Werner uses f;/g; as opposed to ( g;

Werner’s Algorithm, P.E.
J z; fi/a; W /O Reordering | Reordering
o 0.90025857 2.58554998 0.0e+00 0.0e+00
1 | -0.53772297 0.41353851 5.6e-17 0.0e+00
2 0.21368517 1.36179193 0.0e+00 0.0e+00
3 | -0.02803506 1.02153372 2.2e-16 4.4e-16
4 0.78259793 | -0.29426374 6.5e-06 0.0e+00
S 0.52419367 0.62633299 1.0e-06 1.1e-16
6 | -0.08706467 | -0.98027740 1l.1e-05 2.2e-16
7 | -0.96299271 | -0.72221824 3.0e-07 3.3e-16
8 0.64281433 | -0.06224507 2.9e-06 0.0e+00
9 -0.11069327 | -2.90269834 1.2e-04 0.0e+00
10 0.23086470 0.75638402 4.3e-06 1.1e-16
11 0.58387407 | ~1.96415805 4.2e-06 0.0e+00
12 0.84362594 | -0.12714617 2.1e-06 0.0e+00
13 0.47641449 0.41801396 4.0e-07 0.0e+00
14 | -0.64746771 | 13.76489290 6.1e-04 1.8e-15
15 | -0.18858757 | -1.72741382 4.8e-05 2.2e-16

Table 9.14: Experiment 9.14: Two Ill-posed Points: O(¢;) = 10~2 and O({2) = 10~9.
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With reordering, the pseudo-error is reduced significantly. If this reordering was used
in Algorithm 4.2, the low pseudo-error is also apparent for both cases: with and without
skipping over ill-posed points. The results are tabulated in Table 9.15. Indeed, since both
with and without skipping over ill-posed points give identical results, one can conclude that

no ill-posed points were present.

T =10° T =00

j 25 fi/gj 1 T(i)(z_'t(.l) P.E. 1 T(')(Zj+1) P.E.

0 0.64281433 | -0.06224507 0 2.8e+01 | 0.0e+00 || O 2.8e+01 | 0.0e+00
1 0.58387407 | -1.96415805 1 5.0e+01 7.4e~17 1 5.0e+01 7.4e-17
2 0.84362594 | -0.12714617 2 4.6e+01 2.5e-17 || 2 4.6e+01 2.5e-17
3 0.90028857 2.58554998 3 1.5e+02 | 8.0e-17 3 1.5e+02 | 8.0e-17
4 0.47641449 0.41801396 4 2.5e+00 2.3e-16 || 4 2.5e+00 | 2.3e-16
5 | ~0.64746771 | 13.76489290 5 2.4e+01 1.3e~17 || S 2.4e+01 1.3e~17
6 | -0.53772297 | 0.41353851 6 1.6e+01 1.2¢e-16 || 6 1.6e+01 | 1.2e-16
7 0.21368517 1.36179193 || 7 4.1e+02 | 2.6e-16 || 7 4.1e+02 | 2.6e-16
8 0.23086470 0.75638402 8 7.0e+02 1.9e-16 8 7 .0e+02 1.9e-16
9 0.78259793 | -0.29426374 l 9 3.7e+02 | 4.3e-17 9 3.7e+02 | 4.3e-17
10 0.52419367 | 0.62633299 || 10 | 2.0e+01 | 0.0e+00 || 10 2.0e+01 | 0.0e+00
11 | -0.02803506 1.02153372 |} 11 | 5.0e+01 1.7e-16 || 11 5.0e+01 1.7e-16
12 | -0.08706467 | ~0.98027740 || 12 | 5.6e+02 | 4.5e-16 || 12 | 5.6e+02 | 4.5e-16
13 | -0.11059327 | -2.90269834 || 13 7.6e+01 4.5e-16 || 13 7 .6e+01 4.5e-16
14 | -0.18858757 | -1.72741382 || 14 2.9e+01 7.0e-17 || 14 2.9e+01 7.0e-17
15 | -0.96299271 | -0.72221824 || 15 — 3.9e~16 || 15 — 3.9e-16

Table 9.15: Experiment 9.15: Data from Experiment 9.14 after reordering.

Werner’s reordering algorithm performed much better than the one without reordering.
However, the reordering approach is considered to be not an inductive approach by others
[33], as one cannot add more data and proceed to higher degrees since the interpolation
points need to be reordered. As such, if more points are added, one must start over.
Nonetheless, using the reordering scheme, Werner's algorithm produces accuracy similar to
the case where 7 = 10°. While it helped in the above experiment, there is no proof that
such a reordering scheme would remove ill-posed points completely.

To illustrate this, consider the experiment given in Table 9.16, where the reordering
did not result in smaller pseudo-errors compared to the original order. Thus, the reordered
sequence of data may not give smaller residual errors in general.

With reordered sequence, Algorithm 4.2 skipped over the ill-posed point. (See Ta-
ble 9.17).

Werner’s algorithm has major problems when dealing with accidentally interpolated

points and in identifying unattainable points: The numerical algorithm uses the same
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Werner’s Alg., P.E. [ Algorithm 4.2 (7 = 10°)
j Z5 fj/g,- W/ RBOtdg. W/O 1 T(’)(Zj.{.l) P.E.
3 0.9 | 9.0000000000e-01 1.1e-16 0.0e+00 | O 3.5e+00 5.8e-17
1| -0.2| 1.0000000000e+06 1.2e-10 0.0e+00 | 1 4.9e+00 0.0e+00
0] -0.9 | 3.0000000000e-01 0.0e+00 5.6e-17 || 2 1.1e+01 0.0e+00
2 0.5 | 3.0000000010e-01 1.0e-10 5.6e-17 || 3 - 2.1e-16

Table 9.16: Experiment 9.16: Werner’s Reordering Scheme.
(r = 10°) (T = 00)

j z; fi/gi i | 70(zj41) P.E. i | 79(z541) P.E.
0| -0.9 | 3.0000000000e-01 || O 1.7e+00 | 0.0e+00 || O 1.7e+00 | 0.0e+00
2 0.5 | 3.0000000010e-01 || 1 8.2e+10 0.0e+00 || 1 8.2e+10 4.3e-17
1} -0.2] 1.0000000000e+06 || 1 9.1e+10 3.1e-17 |} 2 9.5e+10 1.2e-06
3 0.9 | 9.0000000000e-01 | 1 - 5.8e-17 || 3 - 1.5e-06

Table 9.17: Experiment 9.17: Werner’s Reordering Scheme.

concept as the algebraic algorithm by simple relationships with “equals to 0” in the alge-
braic case replaced by “less than EPS”. The algorithm breaks down completely in the
bordering cases where points are around the threshold of accidentally interpolated by the
partial solution. For example, the data points {(—0.9,0.3), (-0.3, 0.3), (0.5, 0.30000000017),
(0.9,0.30000000017)} has a solution U(z)/V (z) = (0.3+0.30000000017) /2 that interpolates
the four points within the specified tolerance. But Werner’s algorithm reports ‘problem not
solvable’ even with the reordering scheme. It should also be noted that Werner’s algorithm

produced a solution without any warning in the four experiments of the previous section

on close points. Thus, Werner’s algorithm is not reliable.

Furthermore, Werner’s numerical algorithm [61] does not detect unattainable points
accurately. In his original paper [60], Werner does not offer any suggestions as to how to
treat unattainable points numerically. Instead, he leaves the interpretation of the algebraic
definition of unattainable points to the users. In his implementation of the algorithm [61],

Werner uses the algebraic definition of an unattainable point with a minor modification

using EPS. As described in §9.3, this strategy does not work well numerically.

9.6 Comparison with Gaussian Elimination

In this section, we compare Algorithm 4.2 with the well-known Gaussian elimination method.

Aside from the fact that Gaussian elimination is an O(N?3) algorithm, we illustrate that it

may not be a good choice for rational interpolation for a large data set.

As mentioned in Chapter 1, the straightforward way to solve the linear rational in-
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terpolation problem to obtain (U(z), V (2)) is to directly solve the system of equations in
(1.3) by using the Gaussian elimination method. Since Gaussian elimination is known to
be stable, it always gives small residuals (i.e., [U(z;)g; + V(2;)f;l,7 = 0,..., N is small) for
the linear rational interpolation problem. However, the goal is to obtain a small residual
in the rational form (i.e., we want small |U(2;)/V (z;) + fj/gjl,5 =0,...,N). Hence, using
Gaussian elimination to solve the linear rational (1.5), the representation of the rational
form is inevitably U(z)/V (z), where U(z) and V(z) are polynomials in the forms of (1.2).

For small N, say N < 20, Gaussian elimination does indeed provide (U(z), V(z)) such
that U(z)/V(z) gives good results for the rational interpolation. It does not give good
results only when the problem is ill-conditioned or when the problem contains unattainable
points.

For large data sets, the representation of one polynomial over another does not seem to
be a good candidate for the rational interpolant. This is because the condition number of
the problem x(A) in (5.1) is large. The following two experiments are designed to illustrate
that the representation of rational function plays an important role in rational interpolation
when the number of input data N is large.

The first experiment is constructed using 30 randomly generated points over z € [—1, 1].
We ask the algorithms to generate a rational function of the degree type [15, 14]. We see in
Table 9.18 that the P.E. using Gaussian elimination is considerably larger compared to that
obtained using Algorithm 4.2. For this experiment, the condition number was 6.5 x 108.
Note that the large unattainability measures for Gaussian elimination (1/(|U(z;){+|V (z;)))
correspond to the large pseudo-errors (see Remark 8.1).

In contrast, we note that the P.E. using Algorithm 4.2 was smaller. Here, the represen-
tation of the rational function is a continued-fraction. In this form, it separates points into
sections, where each section is interpolated by a low degree interpolant. But as pointed
out earlier, low degree U(z)/V (z) gives good rational interpolation. In this experiment the
condition of this problem was at most T = 10° because x(S((z;)) < 7 for all i =0,--- &,
Jj=ni+1,---,ny+t,and s =1,:=0,---,k.

To further support that the representation plays an important role in rational interpo-
lation for large N, in the next experiment, we use a larger N to amplify this effect. In this
experiment we use NV = 233 so that the rational interpolant is of type {116, 116]. These 233
data points are the closing indices of the Dow Jones Industrial Average Index (DJII) taken
during the 233 business days in 1998. We first map these data into the range [~1, 1] using
(9-2) and each data point is evenly distributed in [-1, 1].
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The results presented in Table 9.19 illustrate the differences between the two formulation
of the problem. With Gaussian elimination, the lowest P.E. was O(10~!%) and the highest
P.E. was O(1), with the majority (over 80%) being O(10~2). For this experiment the
condition number was 3.1 x 10%°. In comparison, Algorithm 4.2 with 7 = 107, the highest
P.E. was O(10~11) and lowest was O(10~'7). The condition number for this problem was
at most 7 = 107 because, again, K(S(i)(z,-)) <tforalli=0,---,k,j=n;+1,--- ,n; + ¢,
and k(0 = 1, i = 0,---,k. Clearly. this experiment showed that Algorithm 4.2 with
a continued-fraction representation performed better than Gaussian elimination method
with the rational interpolant represented in a quotient of two polynomials.

Note that the unattainability measures (1/(|U(2;)| +|V(z;)|)) for Gaussian elimination
are O(10'%) for the majority of the points. Although we cannot generalize this observa-
tion for all problems with large N, when we examined the coefficients of (U(z),V(z)) in
Experiment 9.19, it was found that the coefficients of low degrees (0—20) are very small
(e-g., the coefficients of the degrees 0-3 are O(107'6)). On the other hand, for the coeffi-
cients of higher degrees (21-116), the coefficients are O(10~3). Hence, with z; € [-1,1],
(1/(JU(25)| + |V (25)])) is large for most z;. Since the majority of the coefficients are rela-
tively large, we conclude that there must be cancellation error when computing U(z;) and

V(z;)-

9.7 Stability Parameter Tolerance 7

In this section, we discuss the significance of the size of the stability parameter 7.

We first note that the pseudo-error bound in Lemma 8.2 (and Corollary 8.1) is bounded
proportional to (T4;)2. It is observed that the quadratic component in (71;) gives a
gross overestimate of the error: The reason is that the final expression in Lemma 8.2 (and
Corollary 8.1) is the result of an application of the inequality n(S'(i))(zj) < 'rd;j (one in
Lemma 8.2 (or Corollary 8.1)). However, the size of n(.S_‘(‘))(zj) can be substantially smaller
than 1[71-. Our numerical results indicate that operational bound (TJJJ-) is more appropriate.

This does not mean that the bounds lack merit. As pointed out by Wilkinson [62], a
priori bounds are not, in general, quantities that should be used in practice. The reason
being, these bounds are much weaker than what they might have been because of the
necessity of restricting the mass of detail to a reasonable level and because of the limitations
imposed by expressing the errors in terms of norms. Thus, practical error bounds should
usually be determined by some form of a posteriori error analysis, since this takes full

advantage of the statistical distribution of rounding errors and of any special features.
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G. E. Algorithm 4.2
J zj fj/gj P.E. ** 1 T(” E,‘-H) P.E. Qj
0 0.83418 -1.237374 |} 9.7e~13 | 3.6e+05 0o 3.7e+00 | 0.0e+00 | 3.0e+02
1 | -0.75344 -0.930254 || 1.2e~-12 | 1.9e+04 1 2.0e+02 | 5.8e-17 | 4.4e+01
2 | -0.97310 0.862671 || 3.5e-14 | 1.0e+03 || 2 1.3e+02 | 7.7e-16 | 3.7e-01
3 | -0.26061 -0.276569 || 1.1e-12 | 8.3e+04 3 2.5e+02 | 8.7e-17 | 2.5e-01
4 0.39728 0.730844 || 7.2e-10 | 2.3e+08 || 4 1.8e+04 | 1.2e-15 | 1.3e+00
5 0.77869 1.121567 || 8.1e-13 | 1.7e+0S 5 1.2e+03 1.7e-13 | 7.3e~02
6 0.18754 -0.284016 || 1.3e-10 | 8.2e+06 6 1.1e+03 | 3.5e-16 | 4.2e+00
7 | -0.68661 -0.776042 || 1.0e-12 | 3.4e+04 || 7 4.4e+02 | 5.6e-16 | 7.5e+01
8 | -0.36662 0.652790 || 2.5e-12 | 6.1e+05 8 6.8e+02 | 1.0e-15 | 3.7e-01
9 [ -0.53320 0.502309 || 1.3e-11 | 6.8e+05 9 8.0e+03 | 2.0e-15 | 2.9e+00
10 | -0.98315 0.645265 || 3.1e~14 | 6.3e+02 || 10 | 9.0e+02 | 2.7e-16 | 1.7e+01
11 | -0.20619 -0.403711 |} 2.9e-12 | 7.0e+04 || 11 | 3.5e+03 | 2.8e-16 | 1.5e+01
12 0.29973 0.346760 || 7.5e-10 | 1.3e+09 || 12 | 1.7e+03 1.0e-14 | 1.4e+02
13 | -0.82999 0.476665 || 1.9e~13 | 8.0e+03 || 13 | 6.3e+03 1.9e-14 | 4.0e-01
14 0.53761 4.102545 || 1.5e-10 | 1.1e+07 || 14 [ 8.6e+03 1.2e-14 | 1.2e+01
15 0.93940 8.110617 || 1.6e-12 | 1.5e+05 || 15| 1.6e+04 1.0e-14 | 6.8e+01
16 0.42959 -3.406006 || 6.8e-09 | 4.6e+08 || 16 (| 6.1e+03 | 7.0e-15 | 2.9e+01
17 0.56392 1.697704 || 1.2e-10 | 7.2e+06 || 17 | 4.1e+03 | 6.6e-15 | 1.3e+00
18 | -0.52487 1.610918 || 2.1e-11 | 1.4e+06 || 18 | 1.4e+03 | 8.2e-15 | 2.6e+01
19 | -0.60853 1.321497 || 1.3e-12 | 1.6e+05 [} 19 | 9.0e+02 1.2e-14 | 2.3e+00
20 | -0.47357 -0.231178 || 1.1e-11 | 2.6e+05 | 20 | 1.7e+04 1.4e~-15 | 1.1e+00
21 0.42757 | -10.472610 || 1.1e-08 | §.7e+08 || 21 | 7.4e+03 | 2.8e-15 | 1.0e+01
22 0.95519 -0.121938 || 7.7e-13 | 3.8e+04 || 22 | 2.6e+03 1.2e-14 | 1.6e-01
23 0.27424 | -12.802512 || 4.3e-09 | 1.5e+08 || 23 | 6.3e+02 1.4e~14 | 6.7e+00
24 0.09184 1.839470 || 2.5e-11 | 1.5e+06 || 24 | 8.3e+03 1.1e~14 | 1.6e-01
25 0.69611 1.355777 || 5-0e-12 | 4.3e+05 || 25 | 6.2e+03 | 2.3e~-14 | 7.3e+01
26 0.60419 0.011102 || 6.0e-11 | 1.4e+07 || 26 | 6.3e+03 1.8e-14 | 9.8e-02
27 0.33661 1.583598 || 2.1e-08 | 2.4e+09 || 27 | 3.7e+04 | 8.8e-16 | 1.4e+02
28 0.34196 ~2.144574 || 2.5e-07 | 7.9e+09 (| 28 | 1.4e+04 | 3.4e-16 | 4.5e-01
29 0.64128 3.705727 || 2.7e-11 | 2.6e+06 || 29 — 2.2e-14 | 1.0e+00

Table 9.18: Experiment 9.18: G.E.
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| G.E. Algorithm 4.2
Zj fil9; P.E. s | i [T Z41) P.E. Q;

-0.99141 0.78984 || 1.7e-1C | 5.8e+07 2.3e+02 | 6.2e-17 | 1.1e+402
-0.98283 0.89142 || 3.2e-09 | 3.1e+08 2.7e+04 | 8.2e-16 | 1.3e+01
-0.97424 0.94192 || 6.0e-08 | 3.7e+09 1.5e+04 | 4.0e-16 | 1.8e+02
-0.96566 0.83923 || 1.7e-07 | 1.8e+10 8.2e+04 | 2.2e-15 | 8.0e+00
-0.95708 0.82968 || 5.6e~-07 | 4.0e+10 2.3e+04 | 6.7e-16 | 4.4e+00
-0.94849 0.81229 || 3.9e-06 | 3.6e+11 2.8e+04 | 1.8e-16 | 3.8e+02

QbW O,
N b WN = O|n

100 | -0.13304 0.09820 || 6.8e-01 | 9.8e+16 ” 100 | 1.6e+04 | 1.0e-15] 1.2e+02
101 | -0.12446 0.03339 || 1.5e+00 | 1.2e+17 || 101 | 9.0e+03 | 2.5e-15 | 9.6e+01
102 | -0.11588 0.35971 || 1.7e+02 | 1.5e+17 || 102 | 5.7e+03 | 2.5e~15 | 8.4e+00
103 | -0.10729 0.46493 || 1.2e+00 | 8.3e+16 || 103 | 6.6e+03 | 2.5e-15| 1.1e-01
104 | -0.09871 0.49944 || 6.2e-01 | 5.5e+16 || 104 | 4.2e+04 | 1.2e-15 | 2.5e-01
105 | -0.09012 0.52104 || 4.4e-01 | 4.1e+16 || 105 | 1.4e+06 | 7.3e-17 | 9.8e+01
106 | -0.08154 0.53788 || 3.7e-01 | 3.3e+16 || 106 | 4.9e+06 | 2.3e-15 | 3.8e+00
107 | -0.07296 0.52385 || 3.6e-01 | 2.8e+16 || 107 | 1.1e+06 | 3.0e-15 | 3.4e+00
108 | -0.06437 0.73260 || 2.0e-01 | 2.6e+16 || 108 | 3.9e+05 | 2.6e-15 | 4.4e+01
109 | -0.05579 0.73260 || 2.1e-01 | 2.5e+16 || 109 | 1.8e+05 | 3.8e-15 | 7.3e-01
110 | -0.04721 0.79939 {| 1.9e-01 | 2.5e+16 || 110 | 9.6e+04 | 4.3e-16 | 1.2e+04
111 | -0.03862 0.91442 || 1.4e-01 | 2.6e+16 || 111 | 5.7e+04 | 2.4e-15 | 4.9e+01
112 | -0.03004 0.96044 || 1.6e-01 | 3.0e+16 || 112 | 3.6e+04 | 4.5e-16 | 2.7e+00
113 | -0.02145 0.94978 || 2.3e-01 | 3.8e+16 || 113 | 2.4e+04 | 1.0e-14 | 3.4e+01
114 | -0.01287 0.84764 || 4.7e-01 | 5.4e+16 || 114 | 2.3e+04 | 3.9e-15 | 1.6e+01
115 | -0.00429 0.85971 || 1.5e+00 | 1.1e+17 || 115 | 1.2e+04 | 8.4e-16 | 1.8e+01
116 0.00429 0.69697 || 8-4e-01 | 1.9e+17 || 116 | 1.7e+04 | 5.2e-16 | 8.4e+00
117 0.01287 0.70735 || 2.3e-01 | 9.3e+16 (| 117 | 7.0e+03 | 1.2e-15 | 4.6e+00
118 0.02145 0.68996 || 8.9e-02 | 5.0e+16 || 118 | 2.1e+04 | 5.9e-16 | 8.6e+00
119 0.03004 0.78280 || 9.0e-02 | 3.5e+16 || 119 | 4.0e+04 | 6.9e-16 | 1.8e+01
120 0.03862 0.68479 || 2.0e-02 | 2.9e+16 || 120 | 1.4e+04 | 1.8e-15 | 6.2e-03

- - - - - - -

228 0.96566 | -0.71280 || 4.0e-07 | 3.1e+10 || 228 | 7.3e+04 | 4.3e-15 | 7.0e+00
229 0.97424 | -0.60415 || 3.8e-08 | 5.4e+09 j| 229 | 2.1e+04 | 9.2e-15 | 2.0e+00
230 0.98283 | -0.59979 || 2.6e-08 | 1.9e+09 || 230 | 9.6e+03 | 9.9e-15 | 1.7e+02
231 0.99141 | -0.52056 || 5-0e-09 | 3.4e+08 || 231 | 1.5e+05 | 3.0e-15 | 7.1e+00
232 1.00000 | -0.53582 || 1.0e-10 | 2.0e+07 || 232 — 8.5e-15 | 1.0e+00

Table 9.19: Experiment 9.19: G.E. vs. Algorithm 4.2 (#x = m)
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Notice that if 7 is set to be too small, then 7 (z,.,1) < 7 is never achieved, which can
lead to an O(N1?) algorithm. On the other hand, if 7 is set to be too large, the degree of
accuracy of the interpolation is compromised. Thus, a balance between the too extremes
is required.

The optimal size for T varies from experiments to experiments. The following are some
guidelines for choosing a suitable size for 7. In a double precision setting, first use a
moderately small 7 (e.g. 7 = 10°) for several runs of the particular type of problem of
interest. If the resulting output contains large step sizes, increase T gradually and repeat

until the step sizes are small or the maximum allowable size of 7 is reached.

9.8 Summary

The above experiments show that Algorithm 4.2 handles ill-posed points without any diffi-
culties. And, for stable problems, Algorithm 4.2 gives small pseudo-errors for the Cauchy
problem. However for ill-conditioned problems, it gives relatively large pseudo-errors. But
for these cases, Algorithm 4.2 indicates the points that cause instability by using the pa-
rameters () and 1; for close (and/or duplicate) points. Also, the parameter Q; alerts the

user for data containing unattainable points.
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Chapter 10

Summary and Conclusions

In this thesis, we have developed and analyzed an algorithm—Algorithm 4.2—for numer-
ically computing rational interpolants for the Cauchy interpolation problem. For interpo-

lating {(2;, f5,95)}, for j =0,..., N, Algorithm 4.2 gives two polynomials

(k)
e

Our goal is to solve not the linear problem but rather the rational (nonlinear) problem.
In rational form, we express U(z)/V (z) as a continued-fraction. This continued-fraction
form is obtained directly from (10.1); we do not need to expand (U(z) V(z))".

There are advantages in expressing U(z)/V (z) as a continued-fraction. Fewer opera-
tions are required for evaluation. More importantly, when the solution is expressed as a
continued-fraction, the nonlinear problem has certain desirable stability properties.

To evaluate the accuracy of interpolation by a continued-fraction, we introduced a
nonlinear point-wise measure. This measure places greatest emphasis on function values
of size O(1); it accommodates large and small values by assigning diminishing weights to
them. For small values, it measures the absolute error of U(z;)/V (2;) — fj/g; and for large
values it measure its inverse (i.e., V(z;)/U(z;) — g;/f;)-

In terms of this point-wise measure, we showed that the continued-fraction representa-
tion gives a small error (we call this the pseudo-error) in all cases, except when the problem
is ill-conditioned. By definition, we say that a problem is well-conditioned if the condition
number defined in (5.61) is not too large. With this definition, the error bounds are used
to show that Algorithm 4.2 is weakly stable for solving the nonlinear problem. That is,
Algorithm 4.2 gives a good solution whenever the problem is well-conditioned.

In the stability proofs, we showed that at z; the pseudo-error is bounded by
O((9;)%u/(|lu@(24)] + [v®)(2;)])). Experimentally, however, we illustrated in Chapter 9
that the pseudo-error is bounded instead by O((T4;)u/(Ju? (2;)| + [v®)(2;)[)). Problems
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which contain nearly duplicate points are identified a posteriori by large value of ¥; at such
points'. Problems which contain nearly unattainable points are identified by large values
of Q; at such points, where ©2; includes the term ([u()(z;)| + |v(¥)(2;)|) in its expression.
That is, small values of (ju®(z;)| + Ju(® (2;)1), or correspondingly large values of ;, imply
that 2; is nearly unattainable. So, if the problem does not contain unattainable points,
for all well-conditioned problems where there are no nearly duplicate points and all the
sub-problems are well-conditioned, the pseudo-error is bounded by O(7u) in practice.

We compared Algorithm 4.2 experimentally with two well known algorithms, namely,
Werner’s algorithm and the Gaussian elimination method.

We showed that Werner’s algorithm without reordering of interpolation points does
not interpolate accurately in the presence of ill-posed points. With a certain reordering of
data, the accuracy of interpolation improves substantially even in the presence of ill-posed
points in the data (Experiment 9.14). Nevertheless, Werner’s algorithm (with reordering)
in comparison with Algorithm 4.2 has a number of disadvantages, namely:

e The requirement of reordering of interpolation points is a drawback because the algo-
rithm then becomes non-inductive [33] in the sense that one cannot add further data
and proceed to higher degrees. It is not a restriction, of course, if all the data is given
a priori.

e Even with reordering and the resulting improvement of accuracy, Werner’s algorithm
in all our experiments always gave larger pseudo errors than did Algorithm 4.2 (e.g.,
Experiment 9.16).

e A proof of the stability of Werner’s algorithm is not yet available. In this direction, it
has been shown that by reordering of the interpolation points {64, 29], algebraically
one can remove all singular blocks (except possibly the last one) on a solution path.
A numerical equivalent has not yet been found.

o As demonstrated in §9.5, Werner’s algorithm is not reliable because it does not always
alert the user when a problem is ill-conditioned, nor does it always give a solution
when one is available within the specified tolerance.

Algorithm 4.2 matches the accuracy of Gaussian elimination for interpolation problems
where N is small. We showed in §9.6 for interpolation problems where N is large, Algorithin
4.2 interpolates more accurately than Gaussian elimination. Since it is well known that
Gaussian elimination gives small linear residual errors, the lower interpolation accuracy is
due to the representation of the rational function, i.e., a large condition number of the

problem, in this case where one polynomial over another was used. On the other hand,

'For cases where the nearly duplicate points appear in a sequence, &) is used instead as illustrated in
§9.4.
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using the formulation of (5.6), the condition number of the problem remains small even for
interpolation problems with large N.

We now address other general open questions in rational interpolation.

The definition of an unattainable point in a numerical setting still needs further thought.
As given in Definition 2.1, an unattainable point is described with respect to its exact inter-
polant of a certain type. Numerically, lacking the exact solution, we defined unattainability
with respect to the computed solution. Although this may be a natural extension from
the original definition, questions about the relationship between algebraic and numerical
unattainability need to be addressed.

In this thesis, we focussed on Cauchy interpolation, where the interpolation points are
distinct. More general formulations are discussed in the literature. Interpolation points
at which the function values as well as one or more derivatives are specified are called
the confluent points. Problems that require finding a rational function which interpolates
data containing confluent points are called the rational Hermite interpolation problems
(8, 21, 23, 32]. Other names such as the osculatory rational problem [20, 50|, the multipoint-
Padé problem [5] or the Newton-Padé interpolation problem [9, 36] are also used. There
are a number of algebraic algorithms [9, 16, 33, 55] which compute rational interpolants
allowing confluent points in the data. However, the performance of these algorithms in a
numerical setting has not yet been studied. Indeed, without appropriate modifications, it
is clear that these algorithms are not numerically stable. As such, one of the challenges is
to develop a numerically stable algorithm for the rational Hermite interpolation problem.

Another related problem is the Padé interpolation (approximation) problem where all
the interpolation points are the same, with a function value and derivatives specified at
that point. Note that this interpolation is a special case of the Hermite interpolation
and it is different from the Cauchy problem. Numerically fast stable algorithms [18, 17,
7, 58, 35] have been developed for the Padé interpolation problem. It turns out that by
first interpolating the data by a polynomial of sufficient degree, the problem of rational
interpolation becomes one of Padé approximation (see [32, 12], for example).

So, as long as there are fast algorithms for stable polynomial interpolation, it appears
that they can be used together with fast Padé algorithms to develop fast stable algorithms
for rational interpolation. Unfortunately, polynomial interpolation breaks down when there
are poles or large function values in the data. Nevertheless, there may be situations where
this approach may be fruitful (e.g., when the interpolation data is already represented as a

polynomial). We leave this as a topic for future research.
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There are other fast algorithms designed for (linear) discrete least squares rational ap-
proximation [14, 55, 56, 57]. It is an interesting topic to study the behavior of unattainability
when the interpolation problem is solved as a least squares problem (i.e., L+ M <« N). As
a special case, when the degree of the rational form is sufficiently high (i.e., L + M = N),
one can use these algorithms to solve the linear rational interpolation problem. Further
studies are required to assess the performance of these algorithms in the nonlinear case.

There are also superfast algorithms [2, 32] requiring O(N log? N) operations for com-
puting rational interpolants for the Cauchy problem. However, numerically stable superfast
algorithms have not been studied. Thus, the development of a stable superfast algorithm

for the rational interpolation is another challenging research problem.
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