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Abstract

The lexical decision task is used as a tool that provides us with an understanding of 

how memory is structured and how words are stored in and retrieved from memory. 

Experiments that have used the lexical decision task produce complicated results. By 

manipulating either the type of words or nonwords that are being presented, we can 

increase the size of an effect or remove the effect all together. The purpose of this 

dissertation is to introduce a new model of lexical decision known as the referent 

model. This model will provide us with a detailed description of the decision process 

that is used when performing this task. It is hoped that by having a good 

understanding of this decision process, we will gain a better understanding of the 

complicated results that are produced. Support for the referent model is provided 

using computer simulations as well as human data.
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1

INTRODUCTION

For hundreds of years philosophers, psychologists, and computer scientists 

have struggled with the problem of understand how humans think and reason. For 

example, psychologists perform experiments on humans and animals to gain 

knowledge of the procedures that occur when information is processed. These 

experiments vary from single cell recordings in monkey visual cortex to gaining 

insight into human group dynamics. The range of experiments that are being 

performed is quite large. So large in fact that it would be impossible for a single 

psychologist to study all of the different areas of psychology. Therefore psychologists 

must specialize. They must study simple processes and try to gain a strong 

understanding of how these processes occur. Then, as a community, we can begin to 

gain a better understanding of how humans process information.

The area of psychology that this dissertation focuses on is human memory. 

What is the structure of memory? How are words stored in and retrieved from 

memory? To gain a better understanding of these processes we need to develop tools 

that permit us to infer the properties of a system that we cannot observe directly. We 

need to be able to systematically manipulate the stimuli that human’s process and 

determine how these stimuli affect performance. Then, based on these findings, we 

will be able to produce theories of how humans process information.

Meyer and Schvaneveldt (1971) provided us with one of these tools when they 

developed the first lexical decision task. The lexical decision task involves presenting 

subjects with strings of letters that they must categorize as being either words or 

nonwords. There are several types of manipulations that can be performed on either
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the words or nonwords. For example, word frequency, concreteness, orthographic 

neighborhood size, semantic neighborhood size, etc., can all be manipulated and each 

of these manipulations can produce changes in both reaction time and accuracy. Also, 

the type of nonword that is presented can be manipulated. For example, as the 

nonword items vary from scrambled nonwords (e.g. FRGKL), to pronounceable 

nonwords (e.g. SFIROG), and to pseudohomophones (e.g. BRANE), they become 

more wordlike. These changes also affect reaction times and accuracy.

The original experiments performed by Meyer and Schvaneveldt (1971) 

involved presenting subjects two items at the same time, one above the other. Each 

trial involved presenting either two words, a word and a nonword, a nonword and a 

word, or two nonwords. The subjects’ task was to respond yes if both items were 

words and no if one or both items were nonwords. The stimuli that were used by 

Meyer and Schvaneveldt consisted of associated word pairs, unassociated word pairs, 

and word/nonword pairs. The purpose of their experiment was to determine if word 

association would affect reaction time and accuracy. They found that subjects could 

make faster and more accurate lexical decisions when the words were related than 

when they were not.

Meyer and Schvaneveldt (1971) accounted for their findings using a localist 

description of memory. They suggested that there is a specific location for words in 

long term memory. Items that are semantically related are located more closely 

together than are items that are not related. If the subject is presented with two word 

items that are related, then a word decision is made to one item at a time. As the first 

item is processed, activation from the location of this item spreads to items that are
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related. Items that are more closely related are located more closely together and 

receive more activation. After the subject makes the first word decision, the second 

item is processed. The level of activation for this item has already risen slightly 

because of the spreading activation. Therefore they are able to make the second word 

decision more quickly. This produces the related word advantage that is found.

Meyer and Schvaneveldt (1971) concluded that subjects are able to make 

lexical decisions without accessing semantics. Decisions are made based on 

information that is just sufficient to determine if the item is a word or not. The 

information that is available at this point in time is not sufficient to include aspects of 

meaning. It is assumed that subjects are able to make decisions based on processing 

that occurs before a complete semantic meaning is retrieved from memory.

An interesting thing to point out here is that Meyer and Schvaneveldt (1971) 

argued that decisions are based on this early processing without actually describing 

the mechanism that is used to make these decisions. However, their assumption may 

actually be correct. Models presented in Chapter 2 will address this issue. According 

to these models, decisions are made based on early processing. However, some 

semantic processing must occur before a lexical decision is made. There is evidence 

for this from experiments that manipulate how semantically related the word items 

are. These manipulations affect both reaction time and accuracy, so some semantic 

processing must occur before a lexical decision is made. Therefore Meyer and 

Schvaneveldt are partially correct; decisions are made before a meaning for the item 

is retrieved but some semantic processing does occur early on as well.
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The lexical decision task is used as a tool for understanding how memory is 

structured. The questions that are addressed in this dissertation are specifically related 

to the lexical decision task. How is it that subjects are able to distinguish between 

words and nonwords? How do they perform a lexical decision? What are the 

mechanisms that are involved when a lexical decision is made? It is obvious that the 

results from a lexical decision task can be quite complicated. There are many factors 

that can affect results and possible interactions between these factors. To be able to 

understand these complicated effects we must first have a complete understanding of 

the task itself. There is an intimate relationship between words and nonwords used in 

a lexical decision experiment. Manipulations to either type of stimuli affect reaction 

times and accuracy of the other. Any theory of how a lexical decision is performed 

must be able to account for this intimate relationship.

The purpose of this dissertation is to show how dynamic and complicated the 

lexical decision task actually is and to present a relatively simple model of lexical 

decision that is able to account for the complicated interactions and the relationship 

between word and nonword decisions. In Chapter 1 an overview of some recent 

lexical decision experiments will be presented. The findings from these experiments 

will provide a background of evidence for assumptions that will be made later on. In 

Chapter 2, two models of lexical decision will be described; a localist model, the 

multiple readout model, and a distributed model, the referent model. Obvious 

differences and similarities will be pointed out and a discussion of how the two 

models can be compared will be given. In Chapter 3 simulations of the referent model 

will be performed. These simulations will give us a more concrete understanding of
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the referent model. They will force us to provide explicit descriptions of the 

mechanisms involved when making a lexical decision. In Chapter 4, data from 

experiments using human subjects will be presented. These experiments will replicate 

the findings from the simulations in Chapter 3 and provide further evidence in favour 

of the referent model. Then, in Chapter 5, we will compre and contrast both the 

multiple read-out model and the referent model. We will then be able to determine 

which of the two models is superior. Finally, at the end of Chapter 5, a summary and 

a brief conclusion will be provided.
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CHAPTER 1

How are we to understand the structure of human memory? The traditional 

approach used by many cognitive psychologists is to identify tasks that require us to 

retrieve information from memory as quickly as possible. Then, by comparing 

response times across different contexts or stimulus classes, researchers determine 

which conditions cause information to be retrieved more efficiently, and this 

information could provide clues about the structure of a system that would show such 

retrieval preferences (e.g. Collins & Qullian, 1969; Coltheart, Davelaar, Jonasson, & 

Besner, 1977; etc.).

The problem with this logic comes in finding a task that accurately reflects the 

time it takes to retrieve information from memory. There are likely at least two 

components to performance on any task, the memory retrieval processes, and some 

response-decision processes that controls the emission of a response after interpreting 

the results of the ongoing retrieval processes (Dawson, 1988). Is there any task one 

could create that minimizes the second of these components such that performance on 

the task truly reflects the time it takes to completely retrieve some item from memory, 

with little to no contribution of a response component? Identifying such a task has 

been more problematic than one might expect.

The lexical-decision task provides a prime example of the problem of finding a 

task that provides a good index of memory retrieval. In its original instantiation (i.e., 

Meyer & Schvaneveldt, 1971) the lexical-decision task involved the presentation of 

two strings of letters. Participants were instructed to decide whether or not both 

strings represented correctly spelled English words. More recently the task has been
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altered slightly in that the letter strings are typically presented one at a time, with 

participants instructed to categorize each stimulus as either a word, or a nonword 

(e.g., Joordens & Becker, 1997). In either form, this would seem to be a reasonable 

task for studying memory. That is, in order to decide whether or not a letter string is 

an English word, the most obvious strategy would be to compare the string to items 

stored in memory. If a match is found, a subject makes a “word” response. If no 

match is found a “nonword” response is produced. Thus, the time it takes to correctly 

categorize an item as a word should provide a good indication of the time it takes to 

retrieve the item from memory that matches the current letter string.

It is important to emphasize the serial processing nature of this original 

explanation of the processes underlying performance on the lexical-decision task. 

Specifically, the assumption once again is that there are two distinct components to 

the task. The first is a memory search stage in which it is assumed the information is 

retrieved from memory and matched to the current letter string. Then, based on the 

results of this first process, a second process outputs a word or nonword response.

The response then, is presumed to wait until the search, and retrieval (in the case of a 

word), is complete. If one further assumes that the second component of performance 

on this task merely adds some constant to the eventual response time, then differences 

in response times across various contexts would reflect the affect those contexts have 

on the efficiency of memory retrieval.

Alternative explanations of performance on the lexical-decision task have been 

proposed (see Balota & Chumbley, 1984) and, in light of a number of studies, it 

appears that the serial view proposed above is simply inaccurate. The studies that best
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illustrate the problems with the serial view are those that have manipulated the 

character of the nonword foils. James (1975) performed the first such study, just four 

years after Meyer and Schvaneveldt introduced the lexical-decision task. The words 

in James’ study consisted of words that were either high imageability (e.g., LAMP) or 

low imageability (e.g., LOVE). This distinction is assumed to be reflected somewhere 

at the semantic level of the words’ representations. James examined the time it took 

participants to correctly categorize these words in two contexts; one where the 

nonwords were so-called illegal nonwords (e.g., FMKLR), and one where they were 

pronounceable nonwords (e.g., FRILK).

Two results emerged from the James (1975) study. First, it took participants 

longer to correctly categorize the words when the nonwords were the pronounceable 

non words than when they were the illegal non words. This result clearly shows that a 

correct word decision is not based on a simple search of memory because, if it was, 

then the character of the nonword foils should have no affect on word decisions. 

Rather, it seems that lexical decisions involve some sort of discrimination process 

whereby the more wordlike the nonwords are, the longer it takes to discriminate 

words from them.

The second of James’ results suggests that during the time participants are trying 

to discriminate the words from the nonwords, they continue to actively process the 

words. Specifically, participants typically make correct word decisions faster to high 

than to low imageability words, and this result was apparent in both contexts that 

James examined. However, the magnitude of the imageability effect was significantly 

larger in the pronounceable nonword condition. Given that imageability is assumed to
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be primarily a semantic-level variable, this suggests that the words were processed 

more “deeply” (see Craik & Lockhart, 1972) prior to a response in the pronounceable 

nonword context.

Thus, on the basis of James’ (1975) study, it appears that the extent to which a 

representation associated with a word is retrieved when participants are performing 

lexical decisions depends critically on the nature of the non word foils. More wordlike 

nonwords force the retrieval of a more complete representation prior to the making of 

a word response.

There are now a large number of studies that support this general view. As 

examples, Stone and Van Orden (1993) showed that the time to make correct word 

decisions, and the magnitude of the frequency effect apparent in those decisions, 

progressively increased as the nonwords were varied from illegal nonwords (e.g., 

FRNHT) to pronounceable nonwords (e.g., FRANE) to pseudohomophones (e.g., 

BRANE)1. Piercey & Joordens (2000) showed the word response times and semantic 

ambiguity effects both increased as nonwords varied from scrambled nonwords (e.g., 

FRNEA) through pronounceable nonwords through pseudohomophones (see also 

Borowsky & Masson, 1996). Finally, Joordens and Becker (1997) showed that

1 Pseudohomophones are considered even more wordlike than pronounceable nonwords because, in 
addition to having a wordlike spelling pattern, they also possess a phonology that matches a word if  
they were pronounced aloud (i.e., BRANE -> BRAESf).
2 Semantic ambiguity refers to the distinction between words that tend to have multiple meanings (e.g., 
BAT) versus those that tend to have one meaning (e.g., BET). The semantic ambiguity effect refers to 
the finding that lexical decisions are typically faster and more accurate to ambiguous than to 
unambiguous words (see Joordens & Besner, 1994).
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semantic-priming effects become larger and last over longer lags as the nonword 

foils are made more wordlike.

Taken together, these findings suggest the following general view of how lexical 

decisions are made: When the stimulus is presented, the participant begins to retrieve 

information from memory that is relevant to that stimulus. That is, the participants 

begin to process the stimulus. Simultaneously, some decision mechanism is 

monitoring the retrieval process and, at some point, arrives at either a word or 

nonword decision. If the nonwords in a study are very similar to the words, then the 

decision mechanism takes longer to arrive at a categorization of the stimulus. During 

this additional time, the processing of the stimulus continues. As a result, more of 

that item’s representation is retrieved from memory. Thus, the stimulus is processed 

to a deeper level because of the difficulty in discriminating words from nonwords.

This new view of the processes underlying lexical decisions is clearly more 

complicated than the serial “retrieve then decide” view. Specifically, it is what has 

been termed a cascade model, information cascading from the memory retrieval 

process to the decision process (e.g. Ratcliff, 1978). The difficulty with this is that it 

opposes the basic assumption that response times on the lexical decision task provide 

a clear index of the time it takes to retrieve a representation from memory. As this is 

the first step in the logic underlying the use of the lexical decision task to understand 

the structure of memory, that whole enterprise is called into question by the dynamic 

nature of the task.

3 Semantic priming refers to the finding that lexical decisions to some target word (e.g., WOLF) can be 
made faster and more accurately when that target follows a related prime (e.g., DOG) as opposed to an 
unrelated prime (e.g., HAT). When we speak o f the semantic priming effect occurring over longer 
lags, lag refers to the number o f unrelated items presented between the prime and target stimuli.
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This leaves the cognitive psychologist interested in the structure of memory with 

two options. The first option is to avoid using the lexical-decision task and, instead, to 

seek out some other task that may provide a better index of memory retrieval. For 

example, Neely, Keefe, and Ross (1989) came to just this conclusion, stating “... we 

agree with others that the lexical decision task is not well suited for the study of 

lexical access”, (p. 1017). The problem with simply discarding the task in this manner 

is that it may be difficult to develop any task that provides a clean index of memory 

retrieval.

As one example, another task assumed to measure lexical access is the naming 

task. Participants performing the naming task simply read words aloud as quickly as 

possible when they are presented. One would think that such a task should provide a 

clean measure of the time it takes to retrieve a phonological representation given 

some word. However, Lupker, Brown, and Columbo (1997) have shown that naming 

performance is affected by the other stimuli that make up the list. The very same 

words are named faster when the other words in the list are “easy” (e.g., mono­

syllabic) words than when they are “difficult” (e.g., tri-syllabic) words. When a task 

as straightforward as the naming task shows these kinds of list effects, it calls into 

question whether any task provides a clear measure of memory access.

If no task provides a clean measure of memory access, how is an investigator 

interested in memory to proceed? The only option left is the try our best to gain a 

good understanding of the exact manner in which the retrieval and decision processes 

interact in some given task context. That is, through a detailed examination of the 

task, we may come to understand the manner in which it reflects memory retrieval.
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This may lead us to identify conditions in which lexical decision does provide a good 

measure of memory retrieval. In addition, as we strive to understand the task, we may 

come to a better understanding of the dynamic way that memory retrieval is linked to 

performance. This understanding will likely have implications that go beyond 

examinations of the structure of human memory. Said another way, the problem of 

how to measure memory may turn out to be an opportunity to better understand the 

complicated ways in which we are able to use memory to guide our performance.

The remainder of this dissertation will focus on the lexical-decision task, and will 

examine one issue relevant to lexical decisions in detail; what is the nature of the 

decision mechanism that underlies lexical decisions, and how might it be linked to the 

more general memory-retrieval process? In Chapter 2 we will examine a current 

model of lexical-decision, Grainger & Jacob’s (1996) multiple read-out model, and 

contrast it with a new referent model of lexical decisions.
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CHAPTER 2

As was mentioned in Chapter 1, there are two general accounts of how memory is 

structured and how remembered items are retrieved. According to the localist 

approach, each memorized item has a specific location in memory and associations 

between items are made with respect to their relative positions. According to the 

distributed view, items are not stored in one specific place. Rather, information about 

each item is distributed across many areas of memory. When you compare retrieval of 

two items that are related, similar areas of memory will be active. According to the 

localist model, items are retrieved from memory when the activation in the location of 

a specific item increases above a threshold. According to the distributed model, 

increases in activation are also used to retrieve items from memory, but this activation 

is spread across different areas of memory. The combined information from all of 

these areas provides us with a concept or a memory.

The purpose of this chapter is to provide descriptions of two models of lexical 

decision that are based on these two theories of how memory is structured. The two 

models will then be compared and an argument in support of the distributed model 

will be made. The first is known as the multiple read-out model. It is based on a 

localist description of memory. Information about a single word is located in a 

specific place in memory. As we retrieve a word from memory, activation in this 

specific location increases. The second is known as the referent model. This is a new 

model of lexical decision that is based on a distributed description of memory. 

Information about a single word is distributed across many different areas of memory.
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Therefore, when a word is retrieved from memory, activation increases in many 

areas.

Theoretical Frameworks

Two theoretical views of lexical decision will be discussed. We will first discuss 

the multiple read-out model (Grainger & Jacobs, 1996), which uses separate indices 

to make word versus nonword decisions. We will then discuss an alternate view of 

lexical decision, termed the referent model. This model is based on the synthesis of an 

attractor model of memory retrieval with a random-walk decision process. The 

random-walk decision mechanism differs from that of the multiple read-out model in 

that word and nonword responses are based on the same decision process.

The Multiple Read-Out Model.

Philosophy. Structure, and Processing

The multiple read-out model (Grainger & Jacobs, 1996) is the most complete and 

explicit of current theories of lexical decision. It embodies a global philosophy that is 

followed in the present manuscript as well. Specifically, a wide variety of tasks are 

used to gain a better understanding of the processes and representations underlying 

word-recognition. These include such tasks as naming, perceptual identification, and, 

the focus of the current manuscript, lexical decision. If any specific pair of these tasks 

is considered, they likely draw on some common processes, as well as on some 

processes or mechanisms that are unique to each task. That is, there is some overlap, 

but the overlap is not total. Thus, the best way to understand word-recognition 

performance in general is to first develop an explicit theoretical description of 

performance on one task, and then to describe how performance on other tasks can be
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mapped onto that framework. With this philosophy in mind, Grainger and Jacobs 

(1996) present the multiple read-out model and describe how it can be related to 

lexical decision and perceptual identification tasks, stressing the processes that are 

common to both tasks, as well as those that are unique.

With respect to lexical decisions, the multiple read-out model begins by assuming 

that information is represented locally in memory. That is, it is assumed that concepts 

are represented by single nodes organized into a semantic network (e.g., Collins & 

Qullian, 1969). When an item (e.g., TRUCK), is presented in the context of a lexical 

decision experiment, activation is assumed to grow where the lexical representation 

for that stimulus is located. Also, activation is assumed to grow where related lexical 

representations are located (e.g., orthographically related, like TRUCE). This growth 

of activation would be faster, and reach a higher level, for words than it would for 

nonwords. Words have an actual node associated with them in memory, whereas 

nonwords would only have associated nodes (i.e. lexical representations that are 

related to the nonwords at the level of orthography or phonology).

Correct word decisions are mapped onto this process via two thresholds, one 

sensitive to local levels of activation, and one sensitive to global levels of activation. 

If either of these thresholds are surpassed prior to a time deadline, a “word” response 

is emitted. Thus, in a general sense, word decisions are based on monitoring the 

levels of activation within lexical representations, and emitting a word decision when 

the activation level is sufficiently high.

In contrast, nonword decisions are based on a separate criterion that involves a 

time deadline. Essentially, if the activation is not high enough to warrant a word
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decision by some time deadline, a “nonword” response is emitted. This time deadline 

is assumed to be noisy (i.e., the exact deadline is assumed to vary from trial to trial), 

and is also assumed to be sensitive to the rate at which activation is growing. If an 

item’s rate of activation growth is high, then this suggests that the item may turn out 

to be a word. In recognition of that possibility, the time deadline is moved further 

back in time (i.e., producing a longer deadline) in order to give the item every chance 

to hit one of the word activation thresholds.

It is important to highlight why the model needs to incorporate these complexities 

rather than simply assuming a constant time deadline. One reason for this is the 

existence of a phenomenon termed the pseudohomophone effect (Besner & Davelaar, 

1983; Coltheart, Davellar, Jonasson & Besner, 1977; McCann, Besner & Davelaar, 

1988; see Dennis, Besner & Davelaar, 1985 for a review). The pseudohomophone 

effect refers to the finding that correct nonword decisions in a lexical decision 

experiment are made faster to pronounceable nonwords (e.g., FALID) than to 

pseudohomophones (e.g., SALID). The more wordlike a nonword is, the slower a 

participant is to call it a nonword. If a constant deadline was used such that nonword 

decisions were emitted if the activation criterion had not been reached after some 

criterion amount of time, then there would be no reason to expect differences in 

nonword response times across different kinds of nonwords. However, it seems 

reasonable to assume that the more wordlike a nonword is, the faster its activation 

would grow. By pushing the deadline back for items with high rates of activation 

growth, the model is able to account for the slower responses to more wordlike 

nonwords.
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The multiple read-out model uses more than one process to be able to make word 

and nonword decisions. The distributed model, known as the referent model, that is 

presented next uses one process to make word and nonword decisions. This 

description of how lexical decisions are made is simpler but is in fact more accurate.

The Referent Model of Lexical Decision

Description

The referent model provides a different way of thinking about lexical decision 

performance. Its basic assumptions are the following: First, concepts are represented 

in memory as distributed patterns of activation. Second, memory retrieval reflects a 

pattern completion process like that embodied in attractor models of memory. Third, 

during the pattern completion process, a measure of the global match of the current 

pattern with patterns in memory (i.e., harmony) is passed to a decision mechanism. 

Fourth, the decision mechanism uses the harmony to drive a random-walk process 

that eventually leads to either a word or nonword decision. Finally, a bias often enters 

into the random-walk process in order to increase efficiency of responding, and it is 

this bias that is responsible for the dynamic mapping of lexical decision responses to 

memory retrieval. The specifics of each assumption are now described in turn. 

Distributed versus Localist Representations

It is important to point out a major difference between localist and distributed 

models. In a localist model, concepts are represented by one network node. However, 

in an attractor network, concepts are represented simultaneously in many nodes. The 

multiple read-out model assumes that individual nodes within a memory network 

represent concepts, what is sometimes termed localist representations. A popular
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alternate view is that concepts are represented as patterns of activation across a large 

set or nodes (Rumelhart, McClelland, and the PDP research group, 1986; Dawson & 

Piercey, 2001). The basic notion here is akin to that of a picture on a television or 

computer screen. If a picture of a tree is displayed on a computer screen, no single 

pixel of that picture contains the information that tells the viewer they are looking at a 

tree. Rather, the “treeness” of the image is depicted by the collection of pixels, and 

the RGB values each pixel is displaying. Thus, the representation of the tree is 

distributed across the screen as a collection of pixels “firing” in a certain manner.

There are a number of advantages associated with distributed versus localist 

representations, including such things as graceful degradation. That is, if the tree is 

again displayed but 25% of the pixels are turned off, you would likely still see a tree. 

A speckled tree perhaps, but a tree nonetheless. However, if a single pixel were used 

to represent a tree, then if that pixel suddenly stopped working, the concept of tree 

would be lost.

There is evidence that our brains also experience graceful degradation. If we are 

presented with stimuli that are somewhat degraded, we are still able to perceive them 

and form a complete representation. Also, if a specific area of the brain is damaged, 

we are still able to function and recognize objects. This leads us to believe that human 

memory represents information in a distributed manner.

However, the characteristic of distributed representations that will be emphasized 

is the fact that when memory is envisioned in this manner, it allows for different ways 

to think of how memory retrieval might operate. In fact, one way to retrieve a 

distributed representation is through a process called pattern completion. In turns out
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this process provides a very interesting way of thinking about memory retrieval, as 

described in the next section.

Retrieval of Distributed Representations

A number of authors have recently described distributed models of memory that 

can be generally characterized as attractor networks (e.g., Becker, Moscovitch, 

Behrmann, & Joordens, 1997; Hinton & Shallice, 1991; Masson, 1991; 1995; Plaut & 

Shallice, 1991; Sharkey & Sharkey, 1992). These models assume that memory 

retrieval involves a pattern completion process whereby, after learning some patterns, 

a model is able to re-instantiate a given learned pattern when given only part of it. 

Thus, at the beginning of retrieval, some of the pattern represented across the nodes 

of the network corresponds to a learned pattern, and the rest of the pattern is set 

randomly. The model is then able to ‘clean-up’ the random part of the pattern, 

changing it to a pattern consistent with the desired learned pattern.

A detailed description of one type of attractor network, known as a Hopfield 

Network, will be provided in Chapter 3. Simply described, such models are termed 

attractor networks because the learned patterns act as attractors during retrieval. 

Specifically, when the patterns are presented during learning, they form a weight 

matrix that encodes the correlation between each pair of nodes across all of the 

learned concepts. Thus, if nodes 1 and 2 tend to be in different states across the 

leaned patterns, the weight between those nodes will be negative with the strength of 

the weight reflecting the proportion of patterns in which the nodes are in different 

states. In contrast, nodes 2 and 3 might have a strong positive weight if they tended to 

be in the same state across the learned concepts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The retrieval process involves visiting each node and deciding whether to change 

its state or to leave it as is. Critically, the decision is based on whether changing the 

state of the node will make the new pattern ‘fit’ better with memory. This fit can be 

explicitly quantified in terms of the learned correlations encoded in the weight matrix. 

For example, suppose that we are deciding whether to change the state of node 2. We 

know that node 2 is negatively correlated with node 1. If node 1 is currently on, then 

node 2 would fit better with the current state of node 1 if it was off. However, when 

considering whether to turn node 2 on or off, the impact of the change is considered 

with respect to the current state of all the nodes in the network, not just node 1. Thus, 

the general rule is that a node state will change if  and only if the change results in a 

better overall fit with the learned weight matrix and the current state of all other 

nodes in the network. As a result, the fit of a pattern with memory is constantly 

increasing as a pattern is being retrieved.

Thus, as a pattern is being retrieved, it keeps changing in a way that increases the 

fit with the weight matrix. Given that the learned patterns are what formed the weight 

matrix originally, it should not be surprising that those patterns fit very well with it. 

This is what makes an attractor network work. As long as some of the nodes are in a 

state associated with a learned concept, the pattern across the nodes will move 

towards that concept because it is consistent with the learned weight matrix and with 

some of the current node states. Thus, the pattern being retrieved tends to move 

towards the learned patterns, as if it were being attracted to them. Hence, the learned 

patterns are described as attractors, and the networks that support them as attractor 

networks.
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Measuring the Fit with Items in Memory

Thus far, the notion of fit has been described very generally. In fact, there is 

an explicit way to measure the fit of any given pattern as the sum, across all pairs of 

nodes, of the product of the two node states and the weight between them. This sum 

is termed harmony (Smolensky, 1986). Mathematically:

n i

Harmony -  2  2  n/t-Wy 

where W\] is the weight between Unit i and Unit j, n\ is the state (i.e., 1 or -1) of Unit 

i, and rij is the state (i.e., 1 or -1) of Unit j. Thus, harmony will increase if either (a)

two nodes are in the same state and the weight between them is positive, or (b) they 

are in different states and the weight between them is negative. Harmony will 

decrease if  either (a) the two nodes are in different states and the weight between 

them is positive, or (b) the two nodes are in the same state and the weight between 

them is negative.

Given all of the above, it is possible to view word recognition as a process of 

memory retrieval that follows the processing dynamics of an attractor network. 

Specifically, it is assumed that words are represented in memory across a number of 

levels including an orthographic level, a phonological level, and a semantic level. 

Concepts are represented within each level as a distributed pattern of activation across 

the nodes at that level. During learning, the model is presented complete patterns 

associated with some concept and encodes the learned information in a weight matrix 

that stores the correlation between node states both within and between the various 

levels of representation. During retrieval, the model is then presented with an intact 

(or forming) orthographic pattern and random patterns across the other levels. Based
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on the orthographic pattern, and the weight matrix, it is then able to complete the 

pattern across the remaining levels of representation.

This pattern completion process is seen as the basic process whereby 

phonological and semantic information is retrieved following the presentation of 

some orthographic stimulus. In the spirit of Grainger and Jacob (1996), it would be 

this basic process that can be seen as common to performance on all word recognition 

tasks. However, as illustrated by Joordens and Besner (1994), and the subsequent 

commentaries and counter-commentaries on that paper (Besner & Joordens, 1995; 

Masson & Borowsky, 1995; Rueckl, 1995), it is highly unlikely that this process 

alone can provide a good account of word recognition performance in general.

Rather, additional assumptions must be overlaid onto the basic attractor-network 

dynamics to provide more precise accounts of performance on specific word- 

recognition tasks (e.g., Masson, 1995).

From Harmony to a Decision

For current purposes then, the important issue is how this basic retrieval process 

can be mapped onto lexical-decision performance. The basic assumption is this: As 

some pattern is being retrieved from memory, the harmony value reflecting the fit of 

the current pattern with patterns in memory is constantly changing. This value is 

continually passed to a decision module. Harmony thus serves as the engine that 

drives a random-walk process, and it is this random-walk process that eventually 

arrives at a word or nonword decision.

Before describing the specifics of this approach, it is important to first point out 

that even when an unlearned orthographic pattern is provided to an attractor network
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(i.e., a nonword), it will still change the semantic and phonological patterns in a 

manner that increases the overall harmony of the network. Thus, as depicted in Figure 

1, harmony increases when either words or nonwords are presented. The difference is 

that words gain harmony at a faster rate and eventually reach a higher level of 

harmony prior to reaching asymptote.

Insert Figure 1 about here

How then is harmony mapped onto a decision? The first assumption of our 

approach is that participants compute a referent function of harmony that reflects the 

average harmony value of experienced stimuli at various points during processing. 

The second assumption is that subjects make their word and nonword decisions on 

discreet trials by comparing the harmony value of the current stimulus at the current 

point in time with the referent function. If the current harmony value is some criterion 

amount above the referent, a word decision is reached. If it is some criterion amount 

below the referent level, a nonword decision is reached. Each of these assumptions 

will now be described in detail.

The referent function is assumed to be a function that represents the increase in 

harmony expected for the "average" stimulus experienced by the participant. There 

are a number of ways this referent could be computed, including such possibilities as 

a simple running average of the harmony functions for all experienced stimuli. If it 

does reflect a running average, it may be a running average of all trials, or perhaps of 

only a certain recent window of trials.
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It is assumed that participants have some referent they can compare the current 

item to, to gauge the extent to which the harmony of the current item is more or less 

than the harmony of the average stimulus at that point in time. This referent function 

would lie somewhere between the word and nonword harmony functions as depicted 

in Figure 1.

Given the existence of a referent function, the word versus nonword decision 

process can now be thought of in terms of a random-walk process similar to that

originally described in Link & Heath's (1975) wave theory (see also Ratcliff, 1978).
1

The basic idea of a random-walk process is that any binary-decision task can be 

thought of as a random walk towards one of two boundaries, each representing one of 

the two possible decisions. The walk is driven by the accumulation of evidence in 

favour of one or the other response such that any evidence in favour of response 1 

moves the walk towards boundary 1, and any evidence in favour of response 2 moves 

the walk towards boundary 2. Thus, this accumulator of evidence slowly drifts 

towards one or the other boundary but does so in a somewhat jagged manner.

Random-walk models provide a very good account of the reaction time and error 

patterns for a number of binary decision tasks (see Ratcliff, Van Zandt, & McKoon, 

1999), and therefore seem like an ideal candidate for the decision process underlying 

lexical decision. One can imagine a word and nonword boundary, and some evidence 

accumulator that moves towards one boundary or another, eventually leading to a 

word or nonword decision.

However, what is often missing in random-walk accounts, and what is provided in 

the referent model, is an explicit description of the evidence accumulator itself. In the
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referent model, processing within the attractor network provides the engine that 

drives the evidence accumulator. The evidence of interest is the discrepancy between 

the level of harmony of the current stimulus and the referent level. For words, this 

discrepancy will become progressively larger in a positive direction as the word is 

processed. For nonwords, the discrepancy will become progressively larger in a 

negative direction as the non word is processed (see Figure 1).

Thus, the lexical-decision process can be depicted in a typical random-walk graph 

as in Figure 2. The ordinate of the graph represents the extent to which the harmony 

of an item deviates from the referent. The abscissa reflects time. Any point on the 

graph reflects the extent to which an item's harmony differs from the referent level at 

some point in time. Given this, the horizontal line that runs through the middle of the 

graph represents the referent level because its deviation from the referent is zero at all 

points in time. The horizontal line at the top of the graph reflects the amount of 

harmony greater than the referent level that is required to support a word decision. 

Thus, it is called the word boundary. A similar nonword boundary lies at the bottom 

of the graph reflecting the amount of harmony less that the harmony level that is 

required to support a nonword decision.

Insert Figure 2 about here

The two lines depicted on this graph are meant to reflect the processing of a word 

and nonword respectively. Note that as a word is processed, its harmony increases at 

a rate greater than the referent, eventually resulting in it hitting the word boundary. 

The opposite occurs for a nonword. The rate at which any item approaches either
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boundary is termed the drift rate. This drift rate is determined by the extent to which 

the stimulus differs from the "average" stimulus reflected by the referent. In the case 

of words, the more wordlike a stimulus is, the faster it would deviate from the 

referent level of harmony, and therefore the greater would be its drift rate. A similar 

though opposite situation would be the case for nonwords. The less wordlike a 

nonword is, the faster it would approach the nonword criterion, and hence the higher 

its drift rate in a negative direction.

Efficiency and Bias

There is one additional concept necessary to complete the description of the 

referent model; a concept termed the efficiency principle. According to the efficiency 

principle, people will attempt to be as fast and accurate as possible to both words and 

nonwords when they are performing a lexical decision. This attempt to be as fast and 

accurate as possible is made using a response bias. The response bias operates on the 

decision processes, not the memory retrieval processes.

It is important to specify the way in which it is assumed to affect performance.

The starting point with respect to this issue is the assumption there is a constant 

distance between the word and nonword boundaries. However, the position of the 

boundaries relative to the referent harmony level can be changed. Specifically, in a 

situation where participants are biased towards word responses, the assumption is that 

the boundaries shift down such that the word boundary is now closer to the starting 

position than is the nonword boundary. Similarly, a bias towards nonwords responses 

would be realized by shifting the boundaries up.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



27

When a participant begins a lexical-decision task, they are typically instructed to 

make their decisions as quickly and accurately as possible. How are these instructions 

applied to the decision process? According to the referent model, the participant 

incorporates these instructions throughout the course of the experiment by moving the 

boundaries up or down in order to find a position that produces the fastest responses 

and lowest error rates.

For example, consider the situation depicted across the panels of Figure 2 where 

the both the words and nonwords are not very wordlike. The words might be low 

frequency words like SLALOM, and the nonwords might be scrambled letter strings 

like EKLTTE. In this situation, the drift rate of the words toward the word boundary 

would be slow, whereas the drift rate of the nonwords towards the nonword boundary 

would be fast. If, as depicted in Panel A, the boundaries were positioned equidistant 

from the referent position, the result would be fast nonword decisions but slow word 

decisions. If, however, the boundaries were shifted down such that the word boundary 

was closer to the referent, as depicted in Panel B, word decisions would speed up 

substantially, whereas the nonword decisions would slow only slightly. Thus, moving 

the word boundary closer to the referent would lead to more efficient overall 

responding.

It is the variation of the boundary setting that we see as responsible for the 

dynamic nature of the lexical-decision process. The boundaries for any given trial 

would be set on the basis of the previous stimuli the participant had experienced. For 

example, if several low frequency words had been experienced, the boundaries would 

shift down, which would cause slower and more error prone responses to
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subsequently presented nonwords. In contrast, if several wordlike nonwords were 

experienced (i.e., nonwords with a slow drift rate towards the nonword boundary), the 

boundaries would shift up, leading to slower and more error prone word decisions. 

The flexibility of this mechanism is critical to most of the referent model's predictions 

and accounts.

For example, let’s consider how the referent model accounts for the two 

components of the James (1975) effect; that (1) word reaction times slow in the 

presence of more wordlike nonwords, and (2) semantic influences increase in 

magnitude in the context of more wordlike nonwords. In terms of the referent model, 

the important difference between less and more wordlike nonwords is the drift rate of 

the random walk on nonword trials. The less wordlike a nonword, the higher its drift 

rate towards the nonword boundary. Thus, using referent model terminology, the 

James Effect can be restated as follows: As the drift rate of the nonwords towards the 

nonword boundary decreases, words are processed longer and to a greater extent 

before the word boundary is reached.

In fact, this makes perfect sense given the efficiency principle. The more wordlike 

a nonword is, the slower its drift rate towards the nonword boundary. To keep 

efficiency high, the decision process should move the boundaries up such that the 

nonword boundary is closer to the referent. However, the result is that the word 

boundary is now further from the referent, meaning the words will be processed 

longer prior to reaching the word criterion, even though the drift rate of the words has 

not been altered. The increased processing of words should be primarily beneficial to 

the formation of a more complete semantic representation given the assumption that
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the semantic level of representation is the last to be completed (see Joordens & 

Becker, 1997, or Masson, 1995 for a defense of this assumption). Hence, semantic 

effects should increase in magnitude. Thus, both components of the James Effect 

follow naturally from the referent model when the efficiency principle is assumed.

The referent model has merits that go beyond it providing a novel account of the 

James Effect, or the dynamic nature of lexical decision in general. These merits are 

evident at a number of levels. On a theoretical level, the model makes a useful 

distinction between the basic psychological process of word recognition, and the 

random-walk decision process that can be overlaid on the word recognition process to 

support lexical-decision performance. The word-recognition process is not assumed 

to vary with respect to how it works from trial to trial, which seems reasonable given 

it should be a highly over-leamed procedure. The component that changes in response 

to contextual factors is the decision process. Thus, strategies show themselves in the 

decision process, not in the basic psychological process (cf., Stone & Van Orden, 

1993).

It also provides a psychological description for factors critical to a random-walk 

decision process. For example, the randomness of the random-walk process is critical 

for allowing random-walk models to account for errors. Sometimes the walk is 

random enough that the evidence accumulator hits the wrong boundary. But what 

causes the randomness? The referent model provides an explicit answer to this. Most 

attractor models of word recognition contain some element of stochasticity. For 

example, in Masson's (1991; 1995) model, nodes are randomly selected for updating. 

This randomness results in the patterns being retrieved in "fits and starts" with some
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of the updates resulting in little to no increase in harmony (e.g., if  the same node is 

sampled twice in a row) and others leading to large increases. Thus, relative to a 

constantly increasing referent level, the harmony discrepancy can increase and 

decrease producing the characteristic "jagged" pattern.

Discriminating Between the Models 

Although the multiple read-out and referent models share much in the way of 

global philosophy, they clearly differ in terms of details concerning both the memory 

processes (and representations) and the decision processes. We will focus on the latter 

of these, and attempt to use the differences in decision processes to generate 

differential predictions in a novel experimental context.

Prior to providing this experimental evidence for the referent model, computer 

simulations of the referent model will be presented in Chapter 3. This will provide us 

with a concrete example of the referent model and will allow us to make specific 

predictions about the performance of the subjects that will be tested in Chapter 4. 

Then, in Chapter 5, we will compare how well the referent model and the multiple 

read-out model can account for the findings of both the simulations and the 

experiments.
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CHAPTER 3

The purpose of this chapter is to provide a concrete description of the referent 

model of lexical decision. In Chapter 2, a general class of models that couples an 

attractor network of word processing with a decision module that utilizes a random- 

walk process was briefly described. In this chapter, the structure of a specific 

network, and the decision mechanism that is built on top of it, is discussed in more 

detail.

Before we can discuss the structure of the model, we need to decide what type of 

network we will use to perform these simulations. The network must be able to 

provide us with the following: First, the network that we choose must use distributed 

representations. The distributed nature of the network allows us to form 

representations over time. We are then able to compare the representation that is 

forming to memory and categorize items based on this comparison. Second, we must 

also be able to obtain some sort of reaction time measurement from the network. We 

need to compare the response latency of the network in a variety of conditions to the 

response latencies of human subjects. Finally, the network must be able to process 

novel items (i.e. nonwords). Lexical decisions are made by categorizing both words 

and nonwords. One type of network that provides us with all of these requirements is 

a Hopfield network.

Structure of a Hopfield Network

A Hopfield network (Hopfield, 1982) consists of a set of interconnected nodes. 

Unlike many other parallel distributed processing (PDP) networks that are arranged in 

layers of processing units (e.g., Dawson, 1998, Chapter 3), a Hopfield network
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consists of only one layer of processors. These processors simultaneously represent 

input to the network, and the network’s (eventual) response to this input. In a standard 

Hopfield network, the processing units are in one of two possible states of activation: 

off (the processor has an activation value o f-1 ) or on (the processor has an activation 

value o f +1).

A Hopfield network is an autoassociative system in which every processor is 

connected to every other processor in the network by a weighted connection. 

Typically, processors in a Hopfield network are not connected to themselves, 

although such referent connections have been used in autoassociative systems that are 

related to Hopfield nets (e.g., Dawson’s (1991) brainstate-in-a-sphere model). Figure 

3 illustrates the typical structure of a Hopfield network.

Insert Figure 3 about here

A Hopfield network is typically used as a model of item recognition or item 

completion, where an item is represented as a pattern of activation across all of the 

network’s processing units. Item recognition by a Hopfield network requires two 

processing stages. In the first stage known as learning, the connection weights are 

modified in order to store memories of different items in the network. In the second 

stage known as retrieval, a stimulus is presented to the network, and information is 

retrieved from its memories. The stimulus might be a novel item, an item that has 

been presented before, or even a distorted version of a previously remembered item. 

The stimulus serves to disturb the “energy” of the Hopfield network. During retrieval, 

the network modifies the activities of its input units in such a way as to minimize this
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energy disturbance. As this is done over time, the network gradually settles into a 

minimum energy state in which all processing units will have stable activations. This 

stable pattern represents the memory retrieved from the Hopfield network by the 

original stimulus.

One example of the type of representations that a Hopfield network can 

process is presented in Figure 4. In this example the network learns patterns that 

represent letters of the alphabet. The alphabet letters are formed by giving certain 

units a positive weight and other units a negative weight.

Insert Figure 4 about here

During learning, the network is presented with each of the patterns one at a time and 

the connection weights between the units are modified. These connections weights 

contain the information that represents each of the items that are presented. Each time 

an item is presented the weights between the units are modified using the following 

simple Hebbian learning algorithm (Hebb, 1949):

AfFij=«i«j

This learning algorithm strengthens the connection between two units that are the 

same and weakens the connection between units that are different. After learning has 

occurred, the network has developed a single matrix of connection weights that 

contain information about each of the patterns that it has learned. Therefore, memory 

for previously learned items is distributed across these connection weights.

The network is now ready to retrieve information from its stored memories.

At the start of retrieval, the network is presented with some stimulus pattern. Then, in
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order to simulate the fact that even parallel, brain-like systems require time to process 

information, one processing unit is chosen randomly for updating. The total input to 

this unit is calculated by summing the input from all other units to this unit. If the sum 

is greater than zero, the chosen unit is turned on (i.e., given a value of 1). If the sum is 

less than zero, the chosen unit is turned off (i.e., given a value of-1). The formula for 

updating the activity of a randomly selected unit during retrieval is as follows:

a \  = Yj WiiU), i ^ j ,

where a\ is the summed input to Unit i, Wij is the weight between Unit i and j, and n\

is the state (i.e., 1 or -1) of Unit j. The retrieval process is then continued by 

randomly choosing and updating another processing unit.

When a unit is updated, its activity will either be changed or will remain the 

same. After a Hopfield network has reached a stable configuration, none of the units 

will change activity when they are updated. In a simulation, one tallies the number of 

updates that have occurred without a change occurring. This tally can be used to stop 

the simulation, by operationalizing a stable network as one in which there have been 

no processing unit changes in the past x number of cycles, where x is suitably large 

(e.g. 500 cycles). When the network units have remained unchanged for this number 

of cycles, the network is said to be stable.

To illustrate the process of retrieval, consider the network in Figure 5 that has 

learned alphabetic patterns. During retrieval the network is presented with a pattern 

that is similar to one of the previously learned alphabet letters. In Figure 5, Panel A 

shows the initial pattern that is presented to the network. This pattern is created by 

taking the pattern that represents the letter “A” and then adding noise to it by
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randomly setting 25% of the units. Panel B shows the pattern that has formed after 30 

cycles have occurred. You can see that the pattern is becoming similar to letter “A”. 

Panel C shows that the pattern that has formed, after the network has settled, 

represents the letter “A”. This particular network stabilized after 86 updates.

Insert Figure 5 about here

The Hopfield network provides us with the general structure that is needed to 

perform lexical decision simulations. Items are represented in these networks across a 

set of units. During retrieval, representations form over time. Decisions can be made 

by determining how similar the representation that is forming is to previously learned 

items. As was mentioned earlier, these characteristics are needed to model lexical 

decision. In the next section we will get a better idea of how the Hopfield network 

can be used to model lexical decision performance.

A Hopfield Network For The Referent Model 

The previous section nicely illustrated the basic structure of a Hopfield 

network. The network structure that is need for lexical decision simulations is very 

similar. Figure 6 illustrates the type of representations that are presented to the 

network during learning. There are a total of 125 nodes for each item that is presented 

to the network. The first 25 nodes represent the orthography of the item. The 

remaining 100 nodes represent phonology and semantics. During learning, each of the 

items are presented to the network one at a time. As in the previous example, a weight 

matrix is calculated that contains a distributed representation of all the items that have 

been learned. The weight matrix is calculated by comparing the similarities and
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differences between each of the patterns that are presented to the network during 

learning. These patterns represent words that are stored in memory. Nonwords are 

simply patterns that were not presented to the network during training.

Insert Figure 6 about here

During retrieval we can present the network with either previously learned 

items, which will be referred to as words from this point forward, or novel items, 

which will be referred to as nonwords. Word presentations are made by setting the 

orthographic nodes in a state that is consistent with a previously learned item, and 

randomly setting the remaining nodes. Nonword presentations are made by presenting 

the network with a pattern that is not consistent with any previously learned item.

This would be similar to presenting a subject with a string of letters on a computer 

screen during a lexical decision experiment.

When word items are presented, the orthographic pattern is clamped and only 

the remaining 100 nodes can be chosen for updating. To say that the pattern is 

clamped is to say that the units representing the orthographic information have 

activity values that cannot be changed. The logic for clamping these units is that the 

orthographic information is presented, unchanging, to the subject as a stimulus, and is 

therefore “clamped” by the environment. This also means that the network can only 

change by updating its other processing units.

Updating continues until the network becomes stable. At this point, the 

current pattern is the same as a previously learned item. When nonwords are 

presented, the orthographic nodes are clamped in a state that is not consistent with a
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previously learned item. The network randomly chooses the remaining 100 nodes for 

updating. Again, updating occurs until the network becomes stable. However, at this 

point the current pattern is not the same as a previously learned item but it is similar 

in some way to all previously learned items. The network takes the random pattern 

that is initially presented, and tries to match it to something in memory. However, 

since the orthographic nodes are clamped, it will never achieve an exact match to any 

item in memory.

Both words and nonwords can be presented to the network for retrieval. As 

retrieval occurs over time, the representation that forms becomes more and more like 

items that are stored in memory. For word items, they will eventually become exactly 

the same as an item that is stored in memory. For nonword items, they will become 

similar to previously learned items but will never be exactly the same as an item 

stored in memory. To be able to differentiate between words and nonwords we need 

to be able to measure how similar the representations that are forming, are to items in 

memory. To do this we need to go beyond the equations that define a standard 

Hopfield network, and include an additional equation for a measure called harmony.

As each of the items is retrieved from memory a harmony value is calculated. 

This value represents the similarity between the current state of the network and 

previously learned items. Harmony can be calculated for both words and non words. 

Although nonwords have not been learned by the network, it will still attempt to 

retrieve them from memory. In the case of nonwords, the network will end up in a 

state that is in some way similar to all previously learned items, but not exactly the 

same as any single previously learned item.
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Think of this in terms of words and nonwords being presented to a human 

during a lexical decision experiment. The nonwords that are presented are similar to 

the word items that are stored in memory; they both consist of letters. Therefore the 

nonword begins to be processed and a representation begins to form. However, the 

representation that forms never reaches the same level of similarity as a previously 

learned word.

The formula for harmony is as follows (Smolensky, 1986):

n i

Harmony =  2 2
; =  1 j =  1 J '

where n\ is the state of Unit i, n\ is the state of Unit j, and wy is the weight between 

Unit i and j which was calculated during the learning phase. As the network begins to 

retrieve an item from memory, the harmony value is calculated after each update. The 

level of harmony will continue to increase until the network has settled and there is 

no further change in the pattern of nodes.

At this point we have a Hopfield network that processes both words and 

nonwords. We also have a way to measure how similar the representation that is 

forming is to previously learned items. It has been made apparent that words will 

achieve a level of harmony that is greater than that of non words. However, what has 

not been made apparent is how the network is able to distinguish between words and 

non words. To perform this task we need to add to the model the referent decision 

mechanism that was referred to in Chapter 2.

The referent is used during recall to allow the network to categorize items as 

being either words or nonwords. The referent is calculated as the average increase in 

harmony for all items that have been presented. To categorize the items, the networks
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current level of harmony is compared to the referent. When the current level of 

harmony is greater than the referent by a critical amount, that item is categorized as 

being a word. When it is lower than the referent by a critical amount, the item is 

categorized as being a nonword. The referent is calculated as the running average of 

harmony for all experienced stimuli. The formula for the referent is as follows:

rt =  1/qZHJitj

where q is the number of items that have been presented to the network during 

retrieval and htj is the level of harmony for all j  items over t time. For example, if

twelve items have been presented to the network for retrieval, Yi would be equal to

the sum, across all 12 items, of the level of harmony that was achieved after three 

updating cycles were preformed. This sum would then be divided by the number of 

items that were presented to the network. In this case that would be 12 items.

The referent decision mechanism allows us to categorize both words and 

nonwords based on the measurement of harmony. The measurement of harmony is 

made possible by the basic structure of the Hopfield network. The Hopfield network 

provides us with a distributed representation of memory. When an items 

representation is retrieved from memory, the process occurs over time. Therefore we 

are able to calculate both reaction time and accuracy as the network performs the 

lexical decision task. Based on the preceding description, the Hopfield network seems 

well suited to perform simulations of the referent model of lexical decision.

The next step is to perform actual network simulations that are based on the 

previous description. For the remainder of this chapter, a series of simulations will be 

presented that utilize the Hopfield network structure. These simulations will allow us
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to make specific predictions about human performance on similar tasks in Chapter 4. 

Then, later on, in Chapter 5, we will be better able to make a comparison between the 

referent model and the multiple read-out model.

Network Structure

Architecture

All simulations were programmed using the C programming language. The 

simulations were performed using a single-layered Hopfield network (Hopfield, 1982; 

Hopfield & Tank, 1986) that was augmented with equations for calculating harmony 

and for calculating the harmony of the referent. The network consists of a total of 125 

units. These units are divided into two different groups of 25 perceptual units and 100 

conceptual units. The perceptual units represent the visual stimuli that are presented 

to a person during a lexical decision task and the conceptual units represent the 

orthography, semantics, etc. of the stimuli. All of the units in the network are set to 

either 1 or -1 and are completely interconnected.

Parameters for Lexical Decision

A number of parameters need to be set prior to beginning the simulation.

These parameters consist of the critical word criterion, critical nonword criterion, 

correct decision bias, and incorrect decision bias. When the current level of harmony 

is greater than the current referent value by an amount equal to or greater than the 

critical word criterion, a word decision was made. When harmony was less than the 

referent by an amount equal to or greater than the critical nonword criterion, a 

nonword decision was made. The word and nonword criterion can be shifted closer to 

or further away from the referent. This criterion shift is controlled by the response
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bias. After each response is made, the criterion values are adjusted according to the 

correct and incorrect decision biases.

The network structure that has been described will be used for all of the 

simulations that are presented in this chapter. The parameters that are set for each 

simulation will be described in each of the methods sections. Predictions will be made 

based on the referent model assumptions that were provided in Chapter 2.

Network Simulations 

Simulation 1: The Relationship Between Nonword Context and Word Responses

In Simulation 1, a simple nonword manipulation was performed. The network 

was presented with scrambled nonwords for the first half of a lexical decision task 

followed by pseudohomophones for the second half. The purpose of Simulation 1 was 

to determine if changes to nonword type would affect reaction times and accuracy for 

word decisions. A major assumption of the referent model is that word and nonword 

decisions are intimately related. Therefore, changes to one item type should have an 

affect on the other. Word and nonword decisions should take longer when the 

nonword type is switched from scrambled to pseudohomophones.

Pseudohomophones are more wordlike; therefore it should become more difficult for 

the network to distinguish them from words than when scrambled nonwords are 

presented. Also, accuracy for both words and nonwords should decrease.

Method

Items that were presented to the network during training will be referred to as 

words. Novel items that are presented to the network during retrieval will be referred 

to as nonwords. During each iteration of the simulation the following occurred; a) a
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learning stage where word items are presented to the network; b) a retrieval stage 

where harmony and the referent are both calculated and a word/nonword decision is 

made.

During the learning stage, the network was presented with each of the items 

once. Words and non words were created by randomly setting all 125 units in the 

network. A total of 3 words and 3 nonwords were used for each cycle of the 

simulation. Each cycle consisted of a learning stage where each of the 3 words was 

learned, and a retrieval stage where each of the 3 words and nonwords were presented 

to the network for retrieval. During the retrieval stage, lexical decisions were made as 

each of the word and nonword items was processed. For each cycle a new set of 

words and nonwords were created. Therefore the number of unique words and 

nonwords that were used is equal to three times the number of cycles. For this 

simulation, 500 cycles were used for a total of 1500 unique words and 1500 unique 

nonwords.

During the retrieval stage, the network retrieved each of the items twice. The 

conceptual units were randomly set between the first and second presentations of each 

item to avoid obvious repetition problems. This made a total of 6 words and 6 

nonwords that were retrieved for each of the 500 cycles, for a total of 3000 words and 

3000 nonwords. During the first 250 cycles scrambled nonwords were presented to 

the network. Scrambled nonwords were created by taking one of the previously 

learned word items and randomly setting 20 of the 25 orthographic units and then 

randomly setting the remaining 100 units. During the second 250 iterations 

pseudohomophones were presented to the network. Pseudohomophones were created
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by taking one of the previously learned word items and randomly setting 10 of the 25 

orthographic units and then randomly setting the remaining 100 units. By varying the 

number of orthographic units that were changed, the wordlikeness of the nonwords 

was manipulated.

During the retrieval stage the harmony level was calculated for each item as it 

was being retrieved. After a single unit was chosen and updated, the current level of 

harmony was calculated and compared to the referent level for that cycle. As soon as 

either the word or nonword criterion was reached, a lexical decision was made.

The referent was calculated using a moving window over the previous 108 

items that were presented. An average was calculated using both words and 

nonwords. Decisions were made based on this running average.

There are a number of parameters that are set before the simulation began.

The critical word and nonword values were both set at 2000. This created a distance 

between the word and nonword boundaries of 4000. This distance was determined by 

running a pilot simulation where the distance between the average harmony for words 

and the average harmony for nonwords was calculated. The correct decision biases 

for both words and nonwords were set to 25, and the incorrect bias for both words 

and nonwords were set to 50. The incorrect and correct decision biases shift the 

boundaries in relation to the referent. The boundary shifts that occur when correct or 

incorrect non word decisions are made are as follows; (a) if a nonword item is 

presented and the network makes an incorrect word decision, the nonword boundary 

moves towards the referent. This in turn shifts the word boundary away from the 

referent because the distance between the two boundaries remains constant, (b) if a
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nonword is presented to the network and a correct nonword decision is made, the 

nonword boundary shifts away from the referent. This in turn shifts the word 

boundary closer to the referent. According to the efficiency bias, subjects are trying to 

be as fast and accurate to both words and non words. When the correct nonword 

decision is made, the nonword boundary moves away from the referent which makes 

it easier to make a word decision. The same type of boundary shifts occur when 

correct or incorrect word decisions are made.

Results and Discussion

Phase 2 and Phase 4 are used for the analysis of this simulation. Phase 2 

consists of the last 1008 items before the transition. Phase 4 consists of the last 1008 

items that are presented to the network. The network is learning to perform the task 

during Phase 1 so it is not included in this analysis. During Phase 3 the type of 

nonwords that are being presented are switched from pseudohomophones to 

scrambled nonwords. This Phase is not included in the analysis so that a clean 

comparison of performance can be made between each condition. The means and 

standard deviations for both reaction time and accuracy are presented in Table 1.

Insert Table 1 about here

Phase 2 vs. Phase 4. Based on the predictions of the referent model, we expected 

two things to occur when the type of nonwords that were being presented were 

switched from scrambled nonwords to pseudohomophones. First, decisions for 

nonwords should have taken longer when pseudohomophones were presented than 

when scrambled nonwords were presented. Second, this manipulation should have
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affected word decision by increasing reaction times when pseudohomophones were 

presented compared to when scrambled nonwords were presented.

As expected, correct word decisions take longer when presented with 

pseudohomophones (M=353) than with scrambled non words (M-173), 

F(l,5)=172.451, p<.0001, MSe = 564.68. Also, word errors are higher when 

presented with pseudohomophones (M=27%) than when presented with scrambled 

nonwords (M=18%), F(l,5)=125.93, pc.OOOl, MSe = 2.15. This is consistent with the 

notion that the lexical decision becomes more difficult as the nonwords become more 

wordlike.

The same pattern of results is found in the nonword error data but not in the 

reaction time data. Errors for pseudohomophones are higher (M=26%) than errors for 

scrambled nonwords (M=16%), F(l,5)=195.562, p<.0001, MSe = 1.483. This is what 

is expected if  pseudohomophones are more similar to words than scrambled 

nonwords. However, correct pseudohomophone decisions are made more quickly 

(M=83) than correct scrambled nonword decisions (M=103), F(1,5)=104.472, p<.001, 

MSe = 10.733. At first glance the non word reaction time results seem to pose a 

problem for the theory. Pseudohomophone decisions are more difficult to make than 

scrambled nonword decisions; therefore they should take longer. However, what is 

happening is that some of the pseudohomophones are very similar to words and are 

incorrectly being called words. These pseudohomophones would eventually recross 

the word boundary and continue to be processed until they eventually crossed the 

nonword boundary. But since they are being incorrectly called words, they are not 

included in the reaction time analysis. If we look at the reaction time for all
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nonwords, both correct and incorrect, we find that decisions to pseudohomophones do 

take longer (M=267) than to scrambled nonwords (M=219), F(l,5)=93.298, p<.001, 

MSe = 72.55.

By manipulating the wordlikeness of the nonwords, we can affect both 

reaction time and accuracy for words. To maximize both reaction time and accuracy 

when the nonwords are manipulated, there must be a shift in the bias. This shift in 

turn affects word reaction time and accuracy. This provides evidence for the intimate 

relationship between word and nonword decisions.

Simulation 2: The Relationship Between Word Frequency and Nonword Responses

In Simulation 1 it was evident that nonword manipulations affect word 

decisions. This is a typical effect that is found in the lexical decision literature (Craik 

& Lockhart, 1972; James, 1975; Borowsky & Masson, 1996; Joordens & Becker, 

1997; Piercey & Joordens, 2000). These studies make it apparent that manipulating 

the type of nonword that is presented affects word decision. However, to show that 

there is an intimate relationship between words and nonwords, we also need to 

manipulate the type of words that are presented and affect decision to nonwords. The 

purpose of Simulation 2 was to determine if we could produce a similar interaction 

between words and nonwords when word frequency was manipulated.

The type of words that were presented was switched from low frequency 

items for the first half of the simulation, to high frequency items for the second half. 

According to the referent model, changing from low to high frequency words should 

affect both word and nonword reaction time and accuracy. Again, the assumption that 

word and nonword responses are intimately related leads to specific predictions.
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When the word frequency is switched from low to high, reaction times to both words 

and nonwords become faster. Also, accuracy for both words and nonwords become 

faster.

Method

This simulation was structured the same as in Simulation 1 except for two 

components. First, all nonwords were created by randomly setting all 125 units. 

Therefore the nonwords were not similar to the words. Second, for the first 250 cycles 

the network was trained with each of the words one time. For the second 250 cycles 

the network was trained with each of the words two times. Therefore, the items that 

are learned once during the first 250 cycles are referred to as low frequency items and 

the items that are learned two times during the second 250 cycles are referred to as 

high frequency items.

Results and Discussion

Phase 2 and Phase 4 were again used during this analysis. A total of 1008 items were 

analyzed for each of these Phases. The means and standard deviations for both 

reaction time and accuracy are presented in Table 2.

Insert Table 2 about here

As expected correct decisions to high frequency words were made faster (M=42) than 

correct decisions to low frequency words (M=167), F (l,l 1)=1789.034, p<.0001, Mse 

= 52.19. Also, the error rate was lower for high frequency words (M=14%) than for 

low frequency words (M=16%), F( 1,11 )= 13.146, p<.004, Mse = 2.485. The same 

pattern of results was found in the reaction time data for nonwords where correct
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nonword decisions during the high frequency phase were faster (M=65) than during 

the low frequency phase (M=107), F (l,l 1)=638.35, pc.OOOl, Mse = 16.71. There 

was no difference found in error rates for nonwords during the high frequency phase 

(M-13%) and during the low frequency phase (M-13), F (l,l 1)=0.673, p=.429, Mse 

= 2.227.

As predicted by the referent model, manipulation the type of words that were 

presented affected decisions to nonwords. Again we have evidence for the intimate 

relationship between words and nonwords. As it became easier to make word 

decisions, the bias shifts which in turn makes nonword decisions easier.

Simulation 3 A and 3B: The Relationship Between Word and Nonword Ratio 

The purpose of Simulation 3 is to further test the referent model by examining a 

novel prediction that can be derived from it. Specifically, as previously highlighted, 

the referent accounts for the dynamic lexical-decision findings via changes in the 

positioning of the word and nonword boundaries. Said another way, the “strategic” 

changes in process are seen as merely reflecting shifts in bias to respond either word 

or nonword, and this bias shifts are the result of the specific task context. This notion 

could be tested directly by examining other variables that have a more obvious 

connection to bias, and then seeing if they produce effects similar to those associated 

with changes in word or nonword context.

The specific variable we will consider here is the word-to-nonword ratio. Given 

that the bias is assumed to reflect a predisposition towards either a word or nonword 

response, the best way to manipulate it would be to make one lexical class more 

prevalent than the other. If words are more prevalent, the network should be biased
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to respond “word”, if nonwords are more prevalent, it should be biased to respond 

“nonword”.

In order to describe the referent model's predictions with respect to word-to- 

nonword ratio, it is necessary to first revisit the efficiency principle. The central tenet 

of that principle is that participants are trying to maximize the efficiency of their 

overall responding when they are in a lexical-decision context. They are assumed to 

do so by shifting the word and nonword boundaries either up or down relevant to the 

referent position. When there is an equal number of words and nonwords in the 

experiment, they are assumed to base the position of the criteria primarily on the drift 

rates associated with the classes of stimuli they encounter.

However, what should happen if there were more words than nonwords, or vice- 

versa? In order to truly maximize their overall efficiency of responding, participants 

should also take this variable into account when setting their word and nonword 

criteria. Specifically, they should shift the criteria such that the criteria associated 

with the more prevalent stimulus class ends up closer to the referent function than it 

otherwise would be. Such a shift would make them more efficient in responding to 

the prevalent stimulus class, with only a slight cost to the non-prevalent.

This leads to the following predictions. Consider the situation where there is an 

even number of words and nonwords to be a baseline condition. If we compared a 

context containing more words than nonwords to this baseline, we would expect the 

starting position to shift slightly towards the word boundary which should lead to; (a) 

faster word responses, (b) slower nonword responses, (c) less word errors, and (d) 

more nonword errors. In contrast, if we compared a situation with less words than
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nonwords, we would expect a shift of the starting position towards the nonword 

boundary which should lead to; (a) slower word responses, (b) faster nonword 

responses, (c) more word errors, and (d) less nonword errors. Simulation 3A 

embodies the first of these contrasts, Simulation 3B embodies the other.

Method

These simulations again had the same basic structure as Simulation 1 except 

all nonwords were created by randomly setting all 125 units. Therefore the nonwords 

were not similar to the words. For simulation 3 A, the network was presented with a 

ratio of 1:1 words to nonwords for the first 250 cycles followed by a ratio of 2:1 

words to nonwords for the second 250 cycles. During the 1:1 ratio phase both the 

words and nonwords were presented for recall one time. This makes a total of 250 

word and nonword presentations during this phase. During the 2:1 phase the words 

were each presented twice and the nonwords were presented once. During this phase 

250 unique words and nonwords are used for a total of 500 word presentations and 

250 nonword presentations.

The opposite was true for Simulation 3B where the network was presented 

with a 1:1 ratio of words to nonwords for the first 250 cycles followed by a 1:2 ratio 

of words to nonwords for the second 250 cycles. During the 1:1 ratio phase both the 

words and nonwords were presented for recall one time. This makes a total of 250 

word and nonword presentations during this phase. During the 1:2 phase the words 

were each presented once and the nonwords were presented twice. During this phase 

250 unique words and nonwords are used for a total of 250 word presentations and 

500 non word presentations.
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For both Simulation 3A and 3B the location of the word and nonword were 

allowed to shift during the 1:1 phase but were held constant when the word to 

nonword ratios were not equal. In Simulation 3 A during the 2:1 phase the word 

critical value was held constant at 100 and the nonword critical value was held 

constant at 3900. In Simulation 3B during the 1:2 phase the word critical value was 

held constant at 3900 and the nonword critical value was held constant at 100. In both 

cases this maintained a distance of 4000 between the two critical values. By holding 

the critical values constant we were able to be sure that the bias towards either the 

word or nonword boundary would be maintained.

Results and Discussion

Phase 2 and Phase 4 were again used for this analysis. During the 1:1 Phase there 

were 204 words and nonwords. During the 2:1 phase, 276 words and 138 nonwords 

were used for the analysis. During the 1:2 phase 138 words and 276 nonwords were 

used during the analysis. The results from Simulation 3A and 3B are depicted in 

Table 3. The statistical analysis will involve planned comparisons examining the 

affect of word:nonword ratio separately for words and nonwords.

Insert Table 3 about here

Simulation 3A. Simulation 3A involves a contrast of word and nonword 

responses across conditions where there were either an equal number of words and 

nonwords presented or twice as many nonwords than words presented. The referent 

model predicts that responses to nonwords will be faster and less error prone, and 

responses to words will be slower and more error prone, in the condition where there

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



52

are more nonwords than words relative to the condition where they are equally 

represented.

Planned comparisons conducted revealed that, as predicted by the referent model, 

nonwords were responded to significantly faster (i.e., 47 cycles faster) in the 

condition where they were the dominant stimulus class, F(l,5) = 232.653, p < .0001, 

MSe = 27.483. However, the model's prediction concerning response times to words 

was not borne out. Also, words were responded to slower in the condition where 

nonwords were dominant (i.e., 102 cycles slower), F(l,5) = 84.089, p < .001, MSe = 

367.55.

The analogous analysis performed on the error rate data revealed a significant 

reduction in errors to nonwords (i.e., 12% more accurate) in the condition where they 

were the dominant stimulus, F(l,5) = 529.0, p < .0001, MSe = .75. Also, there was a 

significant increase in errors to words (i.e., 12% higher) in the condition where 

nonwords were dominant was reliable at conventional levels of significance, F(l,5) = 

94.697, p < .001, MSe = 4.95. Thus, as predicted by the referent model, responses to 

nonwords became less error prone, and responses to words more error prone, in the 

condition where nonwords were the dominant stimulus class. The means and standard 

deviations for these variables are presented in Table 3.

Simulation 3B. Simulation 3B involves a contrast of word and nonword 

responses across conditions where there were either an equal number of words and 

nonwords presented or twice as many words than nonwords were presented. The 

referent model predicts that responses to nonwords will be slower and more error 

prone, and responses to words will be faster and less error prone, in the condition
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where there are more words than nonwords relative to the condition where they are 

equally represented.

Planned comparisons focused on this interaction revealed that the 100 cycle 

slowdown in nonword responding in the condition where the words were dominant 

was statistically significant, F(l,5) = 133.215, p < .0001, MSe = 225.2. Also, the 52 

cycle speed-up of word responses in the condition where they were the dominant 

stimulus class was significant, F(l,5) = 120.266, p < ..001, MSe = 67.883.

The analogous analysis performed on the error rate data revealed that the 53% 

increase in errors to nonwords in the condition where words were the dominant 

stimulus-class was significance, F(l,5) = 600.172, p < .0001, MSe = 12.083. In 

addition, the 13% reduction in errors to words in the condition where they were 

dominant was also significant, F(l,5) = 1743.823, p < .0001, MSe = 0.2833. Thus, as 

predicted by the referent model, responses to nonwords became more error prone, and 

responses to words less error prone, in the condition where words were the dominant 

stimulus-class.

The data from Simulation #3 is again consistent with the notion of an intimate 

relationship between word and nonword decision. By manipulating the ratio of words 

to nonwords, we would expect a bias shift. When this bias shift occurs, we are able to 

make specific predictions about performance of both words and nonwords. Again this 

provides us with evidence of an intimate relationship between words and nonwords. 

Summary

The purpose of this chapter was to provide a concrete description of the 

referent model of lexical decision. The network uses a distributed representation of
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memory. When the network is presented with an item during a lexical decision, it 

forms a representation of that item over time. As this representation forms, it becomes 

more and more like something that is already in memory. Then, a lexical decision is 

made based on the similarity of the representation and memory. It is this decision 

process and the intimate relationship between words and nonwords that will allow us, 

in Chapter 5, to justify our claim that the referent model provides a better description, 

than the multiple read-out model, of how lexical decisions are being performed.

In Chapter 4, further evidence for the referent model will be provided in the 

form of data from human experiments that are consistent with the data from the 

simulations that were just provided. Again we will be able to make specific 

predictions about reaction time and accuracy when we manipulate both word and 

nonword stimuli. Changes in one stimulus type produce predictable changes for both 

the stimulus being manipulated and the stimulus within the context of this 

manipulation.
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CHAPTER 4

In Chapter 3, a working version of the referent model of lexical decision was 

described. When we perform computer simulations of psychological theories, we are 

forced to address some design questions. We need to be explicit about the 

mechanisms that are being used when subjects are performing the specific task that 

the theory addresses. So, by having an actual working model, we are better able to 

theorize about how humans are performing the task. Then, taking this knowledge into 

account, we are able to make specific predictions of how humans will perform when 

doing the same task. If the subjects’ performance is similar to the performance of 

computer simulations, then we can argue that we have a plausible theory about the 

mechanisms that humans are using when performing the task

The purpose of this chapter is to provide evidence from human 

experimentation that tests the referent model and the simulations that were presented 

in the previous chapter. We will systematically go through each of the simulations 

and perform similar experiments on human subjects. The predictions of the referent 

model will be discussed and the data will be analyzed to determine if the results from 

the experiments support the predictions. In this chapter we will not make a 

comparison between the referent model and the multiple read-out model. We are 

simply presenting further data that supports the predictions of the referent model. In 

Chapter 5 we will compare the predictions that each of the models make with the data 

from the simulations and the human experiments.
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Experiments with Human Subjects 

Experiment 1: The Effect of Nonword Context on Word Responses 

This experiment will be similar to Simulation 1 that was presented in Chapter 3. 

For the first half of the experiment, subjects will be presented with scrambled 

nonwords that will be switched to pseudohomophones during the second half. 

According to the predictions of the referent model, the task should become more 

difficult when the pseudohomophone nonwords are presented and reaction times as 

well as error rates will increase. This will in turn cause reaction times and error rates 

for words to increase.

A second manipulation will be performed during this experiment. Word decisions 

to high versus low concreteness words as a function of nonword context will be 

examined. This manipulation will be performed within-subjects which provides two 

benefits relative to studies that manipulate non word context between participants. The 

first is obvious; it allows us to compare the responses of the same participants across 

the experimental conditions, thereby ruling out the possibility that differences in 

performance are due to some confound across the participant groups. The second is 

perhaps more interesting. By allowing participants to get used to one nonword 

context, then switching it, we can more closely watch the transition in responding as 

the participants adapt to the new nonword context. It is predicted that since subjects 

will take longer to perform a lexical decision during the pseudohomophone phase, 

more semantic processing will occur. Therefore we should find larger semantic 

effects during the pseudohomophone condition and the concreteness effect should 

become larger.
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Method

Participants. Twenty-four undergraduates from the University of Toronto at 

Scarborough participated in Experiment 1 in exchange for either half a bonus credit 

towards their Introductory Psychology mark, or $5.00. All participants had normal or 

corrected to normal vision. The data from two participants was not included in the 

statistical analyses. In the first case, the participant's data was not used because they 

did not obtain an overall level of accuracy on the task exceeding 80%. The mean 

overall accuracy level of the remaining subjects was approximately 90% with a 

standard deviation of 3.5%. In the second case, the participant's data was discarded 

because their mean reaction times were in excess of 1700 ms, while the average for 

the remaining participants was 624 ms with a standard deviation of 87. These two 

participants were clearly not performing the task in a manner consistent with the 

majority of the participants. Therefore the total number of subjects included in the 

analysis is twenty-two.

Procedure. The study utilized a running lexical-decision task that appeared to the 

participant as a single stream of 400 trials. Participants began each trial by depressing 

two buttons with their two index fingers. One of the buttons was labelled “word”, the 

second labelled “nonword”. The trial then consisted of (a) a 250 ms blank field, (b) a 

250 ms presentation of a fixation cross “+”, (c) a second 250 ms blank field, (d) either 

a word or nonword which was presented until the subject responded. Participants 

categorized the lexical status of each item by releasing the button corresponding to 

their decision. The hand used for the word response was distributed evenly and 

randomly across the participants. The stimulus disappeared as soon as one of the
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buttons was released. The next trial did not begin until both buttons were again 

depressed. Participants were informed of this and told that if they ever needed a rest, 

all they had to do was to not depress the response key until they were ready to 

continue.

The 400 trials were actually composed of four phases. The first phase consisted of 

80 trials; 40 words and 40 scrambled nonwords. The purpose of this phase was to 

accustom the participants to the task and to the scrambled nonwords that would be 

presented in the first half of the experiment. The second phase consisted of 120 trials; 

60 words and 60 scrambled nonwords. Half of these 60 words were high concreteness 

words, and half were low. This contrast allowed us to estimate the strength of 

semantic influences when participants were accustomed to the scrambled nonwords. 

The third phase was the Transition Phase, and it consisted of 80 trials; 40 words and 

40 pseudohomophones. It is in this phase where we expected lexical-decision 

performance to markedly change as a result of the increased difficulty discriminating 

words from these more wordlike nonwords. Finally, the last phase consisted of 120 

trials; 60 words and 60 pseudohomophones. Once again, half of the words were high 

in concreteness and half were low. This allowed us to assess the strength of semantic 

influences once the participants were accustomed to the pseudohomophone foils.

Stimuli. Experiment 1 required three subsets of stimuli. First, 60 high and 60 low 

concreteness words were needed for Phases 2 and 4. These stimuli were selected 

from the MRC Psycholinguistic Database (Coltheart, 1981) by performing and initial 

search for words five letters in length that have a Kucera and Francis (1967) 

frequency higher than 1 occurrence per million, and lower than 75 occurrences per
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million. The resulting words were then split into two groups based on concreteness 

ratings (Pavio, Yuille & Madigan, 1968). One group had ratings between 200 and 

400, the other had ratings between 500 and 700. Finally, these two groups were 

further trimmed in a manner that equated them in terms of frequency and familiarity.

The result of this process was the two groups of words presented in Appendix A. 

The low concreteness stimuli have a mean frequency rating of 27 occurrences per 

million (SE = 3), a mean familiarity value of 468 (SE = 12), and a mean concreteness 

rating of 319 (SE = 5). The high concreteness stimuli have a mean frequency rating of 

26 occurrences per million (SE = 3), a mean familiarity value of 483 (SE = 7), and a 

mean concreteness rating of 581 (SE = 4). Statistical analyses of the differences 

between the groups revealed no reliable differences on the frequency and familiarity 

dimensions, t(l 18)=0.82 and 1.09 respectively, but a sizable difference on the 

concreteness dimension, t(l 18) = 40.13, p < .0001. Thirty words from each group 

were randomly assigned to Phases 2 and 4 on a participant by participant basis.

The experiment required a further 80 words, 100 pseudohomophones, and 100 

scrambled nonwords. The only constraints used to select the 80 additional words were 

that they be five letters in length and that they be different from the 120 high and low 

concreteness words. The pseudohomophones were an expanded set of the five letter 

pseudohomophones used by Joordens and Becker (1997). None of the 

pseudohomophones used in this study were homophonic with the word stimuli. 

Finally, the scrambled nonwords were created by taking the 100 pseudohomophones 

and re-arranging their letters to form non-pronounceable or, at least, extremely hard 

to pronounce nonwords. These additional stimuli are presented in Appendix A.
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Apparatus. Testing was carried out on an IBM compatible 486 computer equipped 

with a Magnitronic 15 inch SVGA color monitor. Participants used a MEL response 

box to input their responses. The experiment was programmed in MEL (Micro- 

Experimental Laboratory) version 2.0. The screen background color was grey, and the 

stimuli were presented in white. The participants sat approximately 50 cm from the 

screen.

Results and Discussion

The data from this and subsequent experiments were analyzed in a similar fashion 

to the data in Simulations 1 to 3. The analysis focused on a comparison of Phase 2 

and Phase 4. As was stated earlier for the simulation data, during Phase 1, subjects are 

learning the task, and during Phase 3 a transition has just occurred which would 

greatly effect reaction times and error rates. This will cause the data during Phase 3 to 

be very noisy. Therefore, to get the cleanest possible comparison of performance for 

each condition, Phase 2 and 4 are used for the analysis.

Phase 2 vs. Phase 4. Three questions are of relevance in this analysis. First, were 

the reaction times longer and error rates larger for nonword decisions to 

pseudohomophones than to scrambled nonwords? Second, were the correct reaction 

times to words higher when the nonwords were pseudohomophones than when they 

were scrambled nonwords? Finally, is there any evidence of larger semantic 

influences in the pseudohomophone context than in the scrambled nonword context?

As expected, correct nonword decisions were longer to pseudohomophones 

(M=717 ms) than to scrambled nonwords (M=550), F(l, 21)=101.69, p<.0001, MSe 

= 3009.13. In addition, the decisions to pseudohomophones were also more error
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prone (M=18% errors) than were the decisions to scrambled nonwords (M=4% 

errors), F(l, 21)=32.55, p<.0001, MSe = 65.38. These results support the notion that 

pseudohomophones are harder to distinguish from words than are scrambled 

nonwords.

The remaining two issues were addressed using a 2 x 2 within-subjects analysis of 

variance performed on the word decisions with Concreteness (high versus low) and 

Nonword Type (scrambled nonword versus pseudohomophone) as the two factors. 

Separate analyses were conducted on the reaction time to make correct word 

decisions and error rate for those decisions. The means and standard deviations of 

these variables are presented in Table 4.

Insert Table 4 about here

The reaction time analysis revealed a significant main effect of Nonword Type, 

F(l,21) = 45.60, p < .0001, MSe = 4815.26, with words being responded to slower in 

the pseudohomophone phase (M -  635 ms) than in the scrambled nonword phase (M 

= 535 ms). The main effect of concreteness was also significant, F(l,21) = 12.49, p < 

.002, MSe =1417.51, with shorter reaction times to high concreteness words (M =

571 ms) than to low concreteness words (M = 635 ms). Although the interaction 

between Nonword Type and Concreteness was in the expected direction with a larger 

concreteness effect in the pseudohomophone phase (M = 34 ms difference in reaction 

time) than in the scrambled nonword phase (M = 23 ms difference in reaction time), it 

was not statistically reliable, F(l,23) < 1.
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The analogous analysis on error rates produced very similar results. There was a 

significant main effect of Nonword Type, F(l,21) = 16.76, p < .0006, MSe = 53.52, 

with words being responded to less accurately in the pseudohomophone phase (M =

15% errors) than in the scrambled nonword phase (M = 8 % errors). The main effect 

of concreteness was also significant, F(l,21) = 49.65, p < .0001, MSe = 24.77, with a 

lower error rate for high concreteness words (M = 8 % errors) than for low 

concreteness words (M = 15 % errors). Finally, the interaction between Nonword 

Type and Concreteness was significant, F( 1,21) = 25.71, p < .0001, MSe = 13.54, 

such that concreteness effects were larger in the pseudohomophone phase (M = 11 % 

difference in errors) than in the scrambled nonword phase (M = 3 % difference in 

errors).

Thus, the current results are in accord with previous studies that have manipulated 

the wordlikeness of nonwords. As the nonwords were made more wordlike (a) word 

responses became slower and more error prone, and (b) semantic influences on word 

responses, as assessed using a concreteness manipulation, generally increased in 

magnitude. The modulation of the concreteness effect was not as robust as we hoped, 

resulting in a significant interaction only in the error data. Nonetheless, the overall 

pattern of data observed in the current experiment provides additional evidence for 

the dynamic nature of lexical decisions.

These findings are consistent with the general story presented in the introduction. 

That is, in order to effectively respond in conditions where the nonwords are very 

wordlike (i.e., to reduce errors to nonwords), the participant must process both the 

words and nonwords more deeply. This deeper processing is reflected in both word
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reaction times, and in terms of concreteness effects on correct word responses. 

Moreover, however this change in responding occurs, and whatever processes 

underlie it, it appears to occur rapidly, and in response to high error rates.

Experiment 2: The Effect of Word Context on Nonword Responses

Experiment 2 has the same design as Simulation 2. We examined a question that 

runs parallel to that addressed in Experiment 1, but differs in a crucial manner. The 

question is; what happens when the character of the word stimuli are altered part way 

through a lexical-decision experiment? For example, what if the experiment 

originally consists of a discrimination between nonwords and low-frequency words 

then, without notifying the participant, the word stimuli change to high-frequency 

words? Will responses to nonwords be affected by this manipulation? According to 

the referent model, high frequency words will be easier to process. Therefore, 

reaction times and error rates will both decrease. Also, since word and nonword 

decision are intimately related, there will be an effect on nonword decisions where 

both reaction times and error rates will decrease.

Method

Participants. Twenty-four undergraduate students from the University of Toronto 

at Scarborough participated in the experiment either in exchange for course credit, or 

for payment of $5. All participants had normal or corrected to normal vision, and all 

performed the task with an overall accuracy level greater than 80%.

General. The overall procedure and apparatus used in the present experiment was 

identical to those used in Experiments 1. The primary modification was to the stimuli 

presented.
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The low and high frequency words used in Phases 2 and 4 respectively were 

randomly sampled from sets of 102 low-frequency words and 102 high-frequency 

words. All words were five letters in length. The average Kucera and Francis (1967) 

frequency of these sets were 4.1 (SD = 2.42) occurrences per million and 75.9 (SD = 

27.8) occurrences per million for the low and high-frequency sets respectively. As 

an additional control, the mean concreteness (Pavio et. al, 1968) of the low frequency 

words (M = 523.9) was matched to the mean concreteness of the high frequency 

words (M = 522.39), t(202) = 0.17. In addition, 80 filler words were required for 

Phases 1 and 3. These items were five-letter words selected simply to not overlap 

with the high and low frequency items described above.

The nonwords used in the current experiment were the scrambled nonwords and 

pseudohomophones used in Experiment 1. In contrast to Experiment 1, these items 

were mixed together within each block.

Results and Discussion

The mean reaction times and error rates acquired in Phases 2 and 4 of the current 

experiment are presented in Table 5. The reaction times and error rates were 

separately analyzed using 2 X 2  analyses of variance with lexical status (i.e., word 

versus nonword) and word type (high versus low frequency) as factors. These 

analyses were then followed up by planned comparisons that separately examined the 

affect of the word type variable on word and nonword decisions.

Insert Table 5 about here
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The reaction time analysis revealed a significant main effect of lexical status, 

F(l,21) = 4.62, p < .05, MSe = 6453.52, with words being responded to faster overall 

(M = 655 ms) than nonwords (M = 691 ms). The main effect of word type was also 

significant, F(1,21) = 20.66, p < .0002, MSe = 20888.53, such that items in general 

were responded to faster in the high-frequency word condition (M = 606 ms) than in 

the low-frequency word condition (M = 739 ms). This effect of word type interacted 

with lexical status, F(l,23) = 5.24, p < .04, MSe = 3196.27, such that the effect was 

stronger for the words (mean difference of 160 ms), that for the nonwords (mean 

difference of 107 ms). The subsequent planned comparisons showed that this affect 

of word type was significant for both the words, F(1,21) = 22.58, p < .0001, MSe = 

309140.70, and for the nonwords as well, F(l,21) =13.38, p < .002, MSe =

139072.00.

The analogous analysis performed on error rates revealed a significant main effect 

of lexical status such that error rates were lower for words (M = 7%) than for 

nonwords (M = 14%), F(1,21) = 13.32, p < .001, MSe = .0086. There was also a 

main effect of word type such that errors were lower to items in the high-frequency 

word condition (M = 8%) than in the low-frequency word condition (M = 13%), 

F(l,21) = 24.68, p < .0001, MSe = .0020. The two variables did not interact, F < 1. 

Planned comparisons to examine these effects more closely revealed that the effect of 

word type was significant for both the words, F(l,21) = 10.54, p < .004, MSe = .0248, 

and for the nonwords, F(1,21) = 17.22, p < .0004, MSe = .0257. Thus, both words 

and nonwords had higher error rates in the low than in the high-frequency condition.
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The most critical finding of this experiment is that nonword decisions become 

faster when the words are changed from low to high frequency. This result is exactly 

what was predicted on the basis of the decision dynamics of the referent model, and is 

not at all consistent with those of the multiple read-out model. As such, Experiment 2 

provides support for the decision dynamics of the referent model.

Experiments 3 A & 3B: Varying the Word to Nonword Ratio 

Experiment 1 replicated the finding that variations of the nonword context appear 

to affect the depth to which words are processed prior to the emission of a response. 

Experiment 2 provided the novel finding that variations of word characteristics also 

affect responses to nonwords and, more critically, do so in the manner predicted by 

the referent model. In combination then, these experiments demonstrate the need for 

explicit models of the decision dynamics underlying the lexical-decision 

performance, and provide preliminary support for one such explicit model, the 

referent model.

The effects found in both Simulation 1 and 2 were consistent with the idea 

that there is an intimate relationship between word and nonword decision. By 

manipulating one stimulus type, we found predictable effects for the other stimulus 

type. As was stated earlier in Chapter 2, the reason for this intimate relationship is the 

efficiency bias that is used when performing lexical decisions. This bias is set in such 

a way that decisions to both words and nonwords are made as quickly and as 

accurately as possible. The purpose of this simulation was to manipulate this bias in a 

novel fashion and make further predictions about performance.
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Simulation 3 was divided into two separate simulations. In Simulation 3 A the 

network was presented with a ratio of words to nonwords of 1:1 for the first half of 

the simulation followed by a ratio of 1:2. In Simulation 3B the network was presented 

with a ratio of words to non words of 1:1 for the first half followed by a ratio of 2:1. 

The predictions for these simulations are as follows. If we compare a context 

containing more words than nonwords to a baseline of an even number of words and 

nonwords, we would expect the criterion to shift in such a way that the referent would 

become closer to the word boundary which should lead to; (a) faster word responses, 

(b) slower nonwords responses, (c) less word errors, and (d) more nonword errors. In 

contrast, if  we compare a situation with fewer words than nonwords, we would expect 

the criterion to shift so that the referent would become closer to the nonword 

boundary which should lead to; (a) slower word responses, (b) faster nonword 

responses, (c) more word errors, and (d) fewer nonword errors.

Method

Participants. A total of 62 undergraduates from the University of Toronto at 

Scarborough participated in these experiments; 34 in Experiment 3 A and 28 in 

Experiment 3B. All subjects had normal or corrected to normal vision, and all 

performed the lexical decision task with an accuracy level greater than 80%.

Procedure. The procedure involved 3 blocks of a running lexical-decision task. 

The first block consisted of 24 practice trials. The second and third blocks contained 

the experimental trials. One of the blocks was 72 trials, the other was 108 trials. In 

all cases, a trial consisted of the follow sequence of events; (a) a fixation cross
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presented for 250 ms, (b) a 250 ms blank field, (c) a letter string presented until the 

participant categorized it as a word or nonword, (d) another 250 ms blank field.

The practice block consisted of 12 trials on which a word was presented, and 12 

on which a nonword was presented. Similarly, the experimental block containing 72 

trials consisted of half word and half nonword trials. In contrast, the experimental 

block containing 108 trials consisted of 72 trials of one stimulus type, and 36 of the 

other. In Experiment 3A, it was nonwords that dominated, whereas in Experiment 3B 

the words dominated. The two experimental blocks were counterbalanced within 

each experiment such that half of the subjects received the 72 trial experimental block 

first, and the 108 trial experimental block second. The other half of the subjects 

received the reversed ordering.

Stimuli and Apparatus. The apparatus, stimulus-size, and response characteristics 

were identical to those described in Experiment 1. The stimuli consisted of 120 five- 

letter words, and 120 five-letter pronounceable nonwords. Only 84 of the words were 

used in Experiment 3A and 84 of the nonwords in Experiment 3B. In both cases, the 

particular items used were selected randomly on a participant by participant basis 

from the respective 120 item pool.

Results and Discussion

The results from Experiments 3 A and 3B are depicted in Table 6. This section 

will present the statistical analysis separately for each experiment and, within each 

experiment, separately for the reaction times and error rates. In each case, the 

analyses will consist of a 2 X 2 analysis of variance with lexicality (word vs.
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nonword) and wordmonword ratio as the factors, followed by planned comparisons 

examining the effect of word:nonword ratio separately for words and nonwords.

Insert Table 6 about here

Experiment 3A. Experiment 3A involves a contrast of word and nonword 

responses across conditions where there were either an equal number of words and 

nonwords presented or twice as many nonwords than words presented. The referent 

model predicts that responses to nonwords will be faster and less error prone, and 

responses to words will be slower and more error prone, in the condition where there 

are more nonwords than words relative to the condition where they are equally 

represented.

The analysis of reaction times revealed an overall main effect of lexicality,

F(l,33) = 8.71, p < .006, MSe = 5912.64, such that words were responded to faster 

overall (M = 680 ms) than were nonwords (M = 719 ms). There was also a main 

effect of wordmonword ratio, F(l,33) = 7.43, p < .011, MSe = 4133.30, such that 

responses were faster overall in the 1:2 condition (M = 684 ms) than in the 1:1 

condition (M = 714 ms). Finally, the interaction between these factors was also 

significant, F(l,33) = 28.76, p < .001, MSe = 1371.16, suggesting that the word-to- 

nonword ratio manipulation had a different effect on nonwords than it did on words.

Planned comparisons conducted revealed that, as predicted by the referent model, 

nonwords were responded to significantly faster (i.e., 64 ms faster) in the condition 

where they were the dominant stimulus class, F(l,33) = 22.95, p < .001, MSe = 

3043.65. However, the model's prediction concerning response times to words was
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not borne out. Although words were responded to slower in the condition where 

nonwords were dominant (i.e., 4 ms slower), this difference was not near being 

reliable, F(1,33) < 1.

The analogous analysis performed on the error rate data revealed an overall main 

effect of lexicality, F(l,33) = 43.05, p < .003, MSe = 0.2045, indicating higher overall 

errors to words (M = 10.5%) than to nonwords (M = 5.4%). Although the main effect 

of nonword ratio was not significant, F(1,33) < 1, the lexicality effect did interact 

with nonword ratio, F(l,33) = 8.96, p < .006, MSe = 0.1847, once again indicating 

that the word-to-nonword ratio manipulation had differential effects on word and 

nonword responses.

Further examination of this interaction via planned comparisons revealed that the 

1.6% reduction in errors to nonwords in the condition where they were the dominant 

stimulus class approached conventional levels of significance, F(l,33) = 3.82, p < 

.059, MSe = 0.1040. Moreover, the 2.8% increase in errors to words in the condition 

where nonwords were dominant was reliable at conventional levels of significance, 

F(l,33) = 5.21, p < .029, MSe = 0.2708. Thus, as predicted by the referent model, 

responses to nonwords became less error prone, and responses to words more error 

prone, in the condition where nonwords were the dominant stimulus class.

Experiment 3B. Experiment 3B involves a contrast of word and nonword 

responses across conditions where there were either an equal number of words and 

nonwords presented or twice as many words than nonwords were presented. The 

referent model predicts that responses to nonwords will be slower and more error 

prone, and responses to words will be faster and less error prone, in the condition
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where there are more words than nonwords relative to the condition where they are 

equally represented.

The analysis of reaction times revealed an overall main effect of lexicality,

F(l,27) = 67.63, p < .001, MSe = 6713.42, such that words were responded to faster 

overall (M = 679 ms) than were nonwords (M = 806 ms). Although there was no 

main effect of word-to-nonword ratio, F(l,27) <1, the interaction between lexicality 

and word-to-nonword ratio was significant, F(l,27) = 18.23, p < .001, MSe =

1516.16.

Planned comparisons focused on this interaction revealed that the 25 ms 

slowdown in nonword responding in the condition where the words were dominant 

was not statistically significant, F(l,27) = 1.44, p < .240. However, the 38 ms speed­

up of word responses in the condition where they were the dominant stimulus class 

was significant, F(l,27) = 4.11, p < .053, MSe = 4872.57. Once again, the 

predictions of the referent model with respect to the reaction times are borne out for 

the stimulus class that becomes dominant, but not, quantitatively at least, for the one 

that does not.

The analogous analysis performed on the error rate data revealed an overall main 

effect of lexicality, F(l,27) = 10.71, p < .003, MSe = 0.2948, indicating higher overall 

errors to nonwords (M = 9.3%) than to words (M = 5.9%). Although the main effect 

of nonword ratio was not significant, F(l,27) < 1, the lexicality effect did interact 

with the word-to-nonword ratio, F( 1,27) = 5.19, p < .031, MSe = 0.1791, again 

indicating that the word-to-nonword ratio manipulation had differential effects on 

word and non word responses.
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Further examination of this interaction revealed that the 1.8% increase in errors to 

nonwords in the condition where words were the dominant stimulus-class approached 

conventional levels of significance, F(l,27) = 3.82, p < .081, MSe = 0.1361. In 

addition, the 1.8% reduction in errors to words in the condition where they were 

dominant also approached conventional levels of significance, F(l,27) = 2.76, p < 

.108, MSe = 0.1757. Thus, as predicted by the referent model, responses to nonwords 

became more error prone, and responses to words less error prone, in the condition 

where words were the dominant stimulus-class.

Summary

The data from Experiments 3A and 3B can be summarized as follows. Across 

two experiments, the referent model made eight predictions concerning the effect of 

the word-to-nonword ratio manipulation on word and nonword responses. All eight 

predictions went in the direction predicted by the theory, although not always to a 

statistically significant extent. The probability of all 8 effects being in the predicted 

direction if word-to-nonword ratio were having no effect is .0039. Thus, the overall 

pattern strongly supports the contention that manipulations of word-to-nonword have 

a systematic effect on word and nonword decisions.

The data from all three experiments is consistent with the data from the 

simulations that were presented earlier, and more importantly, with the predictions of 

the referent model. So we now have strong evidence from these simulations and 

experiments that supports the referent model. In other words, the referent model is 

able to account for these findings. The question now is, does the referent model 

account for these findings better than the multiple read-out model? This question will
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be addressed in Chapter 5 . We will go over the results from each of the 

simulation/experiment pairs and determine which of the two models is best able to 

account for the findings. It will become apparent that the referent model is the better 

of the two descriptions of how humans are performing a lexical decision. Chapter 5 

will end with some a general discussion and future directions of research using the 

referent model.
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CHAPTER 5

In Chapter 1, some recent findings from experiments that used the lexical 

decision task were discussed. These experiments provided a background that allowed 

us to discuss, in Chapter 2, two competing models of how a lexical decision is 

performed. These two models are the multiple read-out model and the referent model. 

Then, in Chapter 3, computer simulations were presented that provided us with a 

more concrete understanding of the mechanisms involved when performing a lexical 

decision in the context of the referent model. The findings were replicated with 

human experiments in Chapter 4. The purpose of this chapter is to make a comparison 

between the referent model and the multiple read-out model. We will look at the 

predictions that each of the models make for each of the experiments that were 

presented earlier. It will become evident that the referent model predictions provide 

the better fit to the data that has been provided. The chapter will conclude with a 

general discussion and, finally, future research involving the referent model theory 

and simulations will be discussed.

Combining Simulations and Experiments 

Simulation 1 and Experiment 1 

4The purpose of Study 1 was to show that, by manipulating the type of nonwords 

that are presented during a lexical decision task, we are able to make specific 

predictions about performance for word decisions. This type of manipulation is most 

common in the literature. Both the multiple read-out model and the referent model 

predict findings that are produced by this study. As nonwords were switched from
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scrambled to pseudohomophones, reaction times and error rates for nonwords 

increased. This also caused the reaction times and error rates for words to increase. 

Study 1 sets the stage for the theories while also giving us a starting point to highlight 

how Study 2 differs from previous ones, and why this difference is theoretically 

relevant.

Simulation 2 Experiment 2 

The purpose of Study 2 was to determine if manipulating the type of words that 

were being presented would produce a predictable effect on nonword performance. A 

more common manipulation, which was presented in Study 1, involves manipulating 

the type of nonwords that are presented. The question here is, how will switching the 

type of words that are being presented from high frequency to low frequency effect 

word decisions? The answer to this question is very relevant to discriminating 

between the models as highlighted by the contrasting predictions outlined below. 

Multiple Read-Out Model

According to the multiple read-out model, responses to words are a function only 

of the setting of the word thresholds. Nonword responses are emitted when an item's 

gain of activation asymptotes prior to it reaching one of the word thresholds. If such 

a model were attempting to distinguish low-frequency words from nonwords, the 

most efficient setting of the word thresholds would be at a level just above the 

activation value that most nonwords reach. Such a setting would allow for very fast 

word decisions, and very few errors.

4 From this point forward, when a reference to both a particular simulation and its corresponding 
experiment is made, they will be referred to as a Study (i.e. Study 1 referes to both Simulation 1 and 
Experiment 1).
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What should happen when the words are changed to high-frequency words? 

Obviously high-frequency words should hit the word threshold faster and with greater 

accuracy than their low-frequency counterparts. Thus, we would expect to see a 

standard frequency effect emerge across the first and second half of the experiment.

More critical, however, are the predictions concerning the effects of this 

manipulation on nonword responses. The most obvious prediction is, in fact, no 

effect at all. The criterion set up for low frequency words should work well for high 

frequency words as well. Thus, nonwords should continue to be categorized with the 

same speed and accuracy as they were when the words were low frequency.

It may be possible to modify the multiple readout model in the following way. 

Perhaps the word criterion might be raised slightly given that high frequency words 

could easily and accurately reach a higher criterion, and a higher criterion would 

result in fewer errors to nonwords. This raising of the word criterion could indirectly 

affect the reaction time to nonwords if  it were assumed that the nonwords that were 

previously errors (i.e., the ones whose activation level was high) would result in 

slower correct reaction times than average, if the criterion were raised. Specifically 

then, one could predict slower nonword reaction times and lower nonword error rates 

if  the word criterion were raised.

The Referent Model

The predictions of the referent model are straightforward as were observed from 

the simulations in Chapter 3. High frequency words are assumed to have a higher 

drift rate than low frequency words. Thus, when the high frequency words are 

introduced, they should initially result in fast and highly accurate word responses.
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However, as a function of the efficiency principle, the boundaries should migrate 

upwards such that the nonword boundary were moved closer to the referent, and the 

word boundary further away. Such a migration would show through as faster and less 

error prone nonword responses. Thus, in contrast to the prediction(s) of the multiple 

read-out model, the referent model predicts faster nonword responses after the high- 

frequency words are introduced.

Conclusions

As was stated earlier, the most critical finding from Study 2 is that nonword 

decisions become faster when the words are changed from low to high frequency. The 

multiple read-out model predicts no effect while the referent model predicts the effect 

that was found. This result is exactly what was predicted on the basis of the decision 

dynamics of the referent model, and is not at all consistent with those of the multiple 

read-out model. As such, Study 2 provides support for the decision dynamics of the 

referent model.

Simulation 3 and Experiment 3 

The purpose of Study 3 was to determine if, by either doubling the number of 

words or nonwords that were being presented, we could effect performance for the 

opposite stimulus type. For example, when switching from a condition that contained 

an equal number of words and nonwords to a condition of twice as many words as 

non words, we found that word decisions became very fast and accurate while 

nonword decisions became slower and less accurate. The opposite was true when the 

number of nonwords was doubled; nonword decisions became faster and more 

accurate while word decisions became slower and less accurate.
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Theories that assume separate decision-process underlying word versus nonword 

decisions, such as the multiple read-out model, have no reason to predict any effect of 

word-to-nonword ratio. To do so they would need to include a mechanism for bias 

that is not currently part of such models. Such a mechanism is an integral part of the 

referent model, not only in accounting for the current data, but also in accounting for 

the dynamic nature of lexical-decision performance in general. Given this, each case 

of a significant result in the planned comparisons of Study 3 A and 3B, in addition to 

the overall pattern described above, are problematic for models assuming separate 

decision processes for word versus non word decisions.

But, do the data strongly support the outlined predictions of the referent model? 

They do fit the general prediction that a manipulation of word-to-nonword ratio will 

effect both word and nonword decisions. However, there is an aspect to the current 

data that stands out and was not predicted in the introduction of this section. 

Specifically, as we move from a condition where words and nonwords are equally 

presented to one where one stimulus class is dominant, responses to the non-dominant 

stimulus class are not affected to the same extent as responses to the dominant 

stimulus class. For example, when comparing the 1:1 condition to the condition 

where there we twice as many nonwords as words (i.e., Experiment 3A), responses to 

nonwords sped up dramatically, but responses to words slowed only slightly. This 

asymmetry is also present in the Experiment 3B data, although not to the same extent.

In fact, it is not surprising that the predictions of the referent model as they are 

presented do not fit perfectly. The predictions were based on a simplified version of 

the model in which the referent function is assumed to remain static and only the
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decision dynamics (i.e., the word and nonword criteria) were assumed to vary. 

However, if the referent function does reflect some sort of "average stimulus", then it 

would also be affected by the manipulation of word-to-nonword ratio.

Consider the situation in which nonwords are dominant (e.g., the 1:2 condition of 

Experiment 3A). In this situation, the referent function would be lowered by the 

inclusion of a high proportion of nonwords. Thus, it would lie closer to the nonword 

function. This should make it take more time for nonwords to deviate from it, and 

less time for words to deviate from it. However, that is not the response pattern that 

was observed presumably because the shift in the word and nonword criteria that we 

emphasized counteracted it.

Thus, when the referent model is considered in detail, its predictions are actually 

more complex than was outlined in the introduction to these experiments. The 

decision criteria are the main things that are assumed to vary, but they do so in the 

foreground of other changes. Given this, it is not surprising that there are 

complexities to the data that go beyond the general predictions following from 

variations of word and nonword criteria. The fit of the data to the predictions of the 

referent model is actually quite good. The fit is not perfect but the model does 

account for most of the complexities of the data when the predictions of the model are 

considered carefully.

General Discussion 

The goal in writing this dissertation was to introduce a new model of lexical 

decision; the referent model. The referent model combines the processing 

characteristics of an attractor model of word recognition, with the decision dynamics
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of a random-walk process. It is argued that this type of model could account for many 

of the more challenging lexical-decision results, although we also pointed out that an 

existing model, the multiple read-out model, could also account for much of the same 

data.

The experiments we reported were aimed at again demonstrating some of these 

challenging lexical-decision results, and then attempting to determine whether the 

decision dynamics of the referent model or those of the multiple read-out model 

appear to provide the best account of the data. The results of these experiments favor 

the account provided by the referent model.

Re-Uniting Decision Predictions with Attractor Network Predictions

One of the merits of the referent model is that it provides an explicit description 

of two components of lexical decision; an overleamed word-recognition process and 

an overlaid decision process. In so doing, it permits one to discuss how variables 

affecting either of these simultaneously operating processes can impact the observed 

lexical-decision performance.

However, the studies that provide the strongest support for the referent model 

(i.e., Studies 2, 3A, & 3B) focused primarily on the variables assumed to affect the 

decision component. If the referent model is truly correct, then variations of the 

decision process should also affect the "depth" to which a stimulus is processed, and 

this should show through in the lexical-decision performance. For example, consider 

Experiment 3B in which word responses were sped up when words were the 

dominant stimulus. In this situation, those faster responses should be associated with
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less processing in the attractor network, and hence less semantic influences given that 

semantic influences are assumed to come about latest in stimulus processing.

More generally stated, one could predict that as the proportion of words relative to 

nonwords increased, word responses should speed up, and semantic influences should 

decrease. It turns out that this issue has already been examined by Neely, et. al 

(1989). They found that the lower the nonword ratio, the less the semantic priming. 

Thus, it does indeed appear that variations of word-to-nonword ratio do affect the 

depth to which words are processed prior to a response.

In fact, there is a further extent to which the Neely et. al (1989) results support 

the referent model, indirectly at least. Recall that Joordens and Becker (1997) 

showed smaller semantic priming effects when the nonwords are made less wordlike, 

a result that runs parallel to Neely et. al’s finding of less semantic priming when 

words were dominant. Given that the referent model attributes both of these effects to 

the same change in processing, the parallel findings are not surprising at all. Any 

variable the biases participants towards making a word response should result in 

smaller semantic influences.

This point may seem obvious but it is as critical to supporting the referent model 

as a whole, and not just supporting its decision dynamics. Recall the implication that 

the multiple read-out model might be able to account for our Experiment 3 A and 3B 

datasets if some sort of bias mechanism were added to it. However, now the model 

would be accounting for the effects of nonword context via one mechanism (i.e., 

changes in the criteria level for word responses) and it would be accounting for the 

effects of word-to-nonword context via a different mechanism (i.e., changes due to
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the bias mechanism). This sort of view does not naturally predict that the two 

manipulations would produce parallel results with respect to semantic effects, 

whereas the referent model does.

There is an additional result that adds further strength to the validity of the 

referent model. The most critical finding in the Joordens and Becker (1997) paper 

was the first ever demonstration of long-term semantic priming in the lexical-decision 

task. Joordens and Becker argued that one reason nobody had found long-term 

semantic priming prior to this was because people typically set up the lexical-decision 

task in a manner that did not encourage much semantic processing of the items.

When more semantic processing was encouraged, the long-term effect emerged and 

typical short-term priming effects increased in magnitude.

One of the ways that Joordens and Becker (1997) encouraged semantic processing 

(i.e., Experiment 3) was to create conditions which, based on the referent model, 

should lead to the longest word reaction times and, hence, the strongest semantic 

influences. This condition involved three manipulations designed to shift the word 

boundary as far as possible from the referent level. These conditions included (a) 

using a large number of nonwords relative to words, (b) pre-exposing the nonwords to 

make them more familiar (i.e., to decrease their drift rate towards the nonword 

boundary), (c) including filler words that were very high frequency. The inclusion of 

these filler items increases the average drift rate for words, allowing the word criteria 

to move further away from the referent function without increasing the “overall” 

response time to words very much. However, the drift rate for the critical words is 

still low, so they still take a long time to hit the word boundary.
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Once again, these manipulations had the exact result that would be predicted on 

the basis of the referent model. First, word reaction times increased dramatically, up 

to approximately 900 ms. Second, semantic effects were very large. In fact, a 63 ms 

semantic priming effect was observed across a lag of eight items between the prime 

and target. These results would not be predicted on the basis of any other lexical 

decision model.

Thus, the Neely et. al (1989) and Joordens and Becker (1997) results provide 

further evidence that bears directly on the full referent model. Variables that affect 

the decision processes lead to the results expected if the decision module was overlaid 

on a word-recognition process that worked in a manner similar to the referent model 

described here.

Extensions to Other Tasks

Once again, one of the attractive features of the referent model is the coupling of a 

decision process with a more basic word-recognition process. It is not assumed that 

any human has a "lexical decision" process, pre-existent in their minds prior to 

entering the lab. Rather, it is assumed that the brain has a word-recognition process, 

and a basic decision process that can be used to support binary decisions (i.e., yes/no, 

left/right, like/dislike). When presented with the lexical decision task, these two sets 

of processes are coupled in an attempt to perform the task efficiently. This is 

accomplished by taking an ongoing product of the word-recognition process - 

harmony - and feeding it into their binary-decision module. Performing the task in 

this manner would allow one to emit a decision prior to complete processing of the 

stimulus on each trial, while still retaining a reasonable degree of accuracy.
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One obvious question then is what about other tasks? In some cases, the referent 

model as described simply would not apply. For example, consider the naming task 

in which participants are asked to verbally produce the phonology associated with 

various orthographies (typically words). In this task, no binary decisions are being 

made. Instead, a complete phonological code must be generated. In a task like this, 

the attractor model may simply generate the phonological code without the aid of 

other cognitive processes (e.g., Masson, 1995).

What about tasks like recognition memory? In fact, one of the first extensions of 

the random-walk decision process from the realm of psychophysics was to provide an 

explanation of old/new recognition (i.e., Ratcliff, 1978). Is there any room for the 

word-recognition component of the referent model in such an account? In fact, when 

Ratcliff described how the random-walk dynamics could be used to account for 

recognition memory data, he was not explicit about the process that was driving the 

random walk. Perhaps the referent model could offer a possibility in this respect.

At the very least, by being explicit about the linkage between basic word- 

recognition processes, and other processes that may draw on them to support 

performance on some task, the referent model invites investigators to consider their 

tasks of preference in more detail. It is quite possible that the philosophy embodied 

in the referent model, which was obviously borrowed from the multiple read-out 

model, could be used to gain a better understanding of a variety of tasks other than 

lexical decision. Once we have a better understanding of the tasks we are using, we 

are then in a much stronger position to understand the phenomena that present 

themselves via performance on these tasks.
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Future Research

We have a new model of lexical decision and a computer network that can be 

used to perform simulations. How can we take this knowledge and use it as a tool for 

gaining a better understanding of how humans process information or how memory is 

structured? We need to focus on issues that involve the lexical decision task and use 

this model to help resolve these issues.

One issue that has come up in the literature is the fact that, if human memory 

is distributed, why can’t computer simulations that use a distributed representation of 

memory simulate the ambiguity effect? Ambiguous words are words that have more 

than one meaning. For example, the word BAT could mean “a flying mouse”, or “a 

wooden stick that is used to hit a ball”. When subjects are presented with ambiguous 

words during a lexical decision task, they make faster and more accurate decisions to 

ambiguous words than to unambiguous words. This seems like a pretty 

straightforward effect to simulate but distributed networks have struggled with it.

For example, Joordens and Besner (1994) tested whether a distributed model 

of memory (Masson, 1991) could produce the ambiguity advantage that is seen in the 

lexical decision task. They found that the network produced an ambiguity advantage 

for items that settled into a correct state. A problem with the network was that less 

than 50% of the ambiguous items settled into a correct state. This led them to 

conclude that this type of network that used a hopfield learning algorithm (Hopfield, 

1982; Hopfield & Tank, 1986) may not be adequate enough to deal with the 

ambiguity effect. However, in later commentaries (Masson & Borowsky, 1995; 

Rueckl, 1995; Besner & Joordens, 1995) it was concluded that it may be possible for
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lexical decisions to be made prior to the network settling into a state that was 

consistent with a previously learned item. This decision could be made regardless of 

whether or not a blend state would eventually occur.

If it is the case that lexical decisions can be made regardless of a blend state, then 

we need to find evidence that this may be occurring when humans process ambiguous 

items. Piercey and Joordens (2000) compared the ambiguity advantage in lexical 

decision to the ambiguity disadvantage found in reading tasks. They performed an 

experiment in which subjects were presented with items to which they first made a 

lexical decision and then made a relatedness decision. They found an ambiguity 

advantage during the lexical decision component of the experiment and an ambiguity 

disadvantage during the relatedness component. They concluded that a lexical 

decision could be made based on early processing and that a blend state would 

produce an advantage for lexical decision but a disadvantage for the relatedness 

decision. The lexical decision could be made based on a measurement of harmony 

between the current representation and previously learned items whether or not a 

blend state was eventually produced. However, when the relatedness decision was 

made the subject would have to leave the blend state so that further semantic 

processing could occur. Therefore, an ambiguity advantage would be found early on 

followed by an ambiguity disadvantage.

The assumption that decisions are made based on early processing is not new. 

Meyer and Schvaneveldt (1971) concluded that lexical decisions could be made early 

on before semantic information was accessed. This early processing conclusion is 

similar to the conclusion that Piercey and Joordens (2000) make. The difference
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being that Piercey and Joordens believe that some semantic processing does occur 

when a decision is made. We know that this is probably the case from some previous 

studies that were presented earlier (see, Neely et. al, 1989; Joordens & Becker, 1997) 

If these blend states do in fact occur when humans process ambiguous words, 

then the results from these simulations may not be as troublesome as we first thought. 

What we need to do is perform a simulation where a lexical decision is made early 

on, before a blend state occurs. The referent model provides us with a decision 

mechanism that utilizes early processing in order to perform a lexical decision. Using 

this model we may be able to produce the ambiguity effect found during a lexical 

decision. They network makes lexical decisions based on a comparison of the current 

level of harmony to the referent. This decision process would occur regardless of 

whether or not a blend occurred. Therefore, the referent model may provide us with 

an example of a distributed model of memory that is able to produce the ambiguity 

effect.

Final Note

The simulations presented in this dissertation are used as a tool that provides 

us with a better understanding of how a lexical decision is performed. Specifically, 

they allow us to test our assumptions and develop a more concrete description of the 

decision mechanisms that are used during this decision process. The purpose of these 

simulations is not to produce data that provides us with an exact fit to the human data. 

If this were the intent of the simulations, we could more easily fit data using a 

mathematical description or equation.
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These simulations are powerful tools that allow us to gain some insight into 

how humans perform a specific task. In this case the task is the lexical decision. In 

fact, the findings from a simulation are much more interesting when they surprise us. 

When they produce data that we did not expect, it makes us think about the 

assumptions that we are basing our theory on. If the network produces surprising 

results, we may need to modify our theory and test the new theory on human subjects. 

This is turn may lead to a new finding about how humans process information. When 

this occurs we have harnessed the true power of computer simulations.
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Table 1

Means and standard deviations for the reaction times (ms) and error rates (%
across Phases 2 and 4 of Simulation 1

Phase 2 
(Scrambled Nonwords)

Phase 4 
(Pseudohomophones)

M SD M SD

Reaction Time 

Words 

Nonwords 

Error Rates 

Words 

Nonwords

173

103

18

16

10

3.4

1.3

1.5

353

83

27

26

36

3.7

1.4

1.6
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Table 2

Means and standard deviations for the reaction times (ms) and error rates (%
across Phases 2 and 4 of Simulation 2

Phase 2 
(Low Frequency Words)

Phase 4 
(High Frequency Words)

Reaction Time

Error Rates

M SD M SD

Words
Nonwords

167
107

10.3
5.2

42
65

2.7
3.9

Words
Nonwords

16
13

1.7
1.7

14
13

1.2
1.3
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Table 3

Means (with standard deviations in the brackets) for the 
reaction times (ms) and error rates (%) in Experiments 3 A and 3B

Word:Nonword Ratio

2:1 1:1 1:2

Experiment 3 A

Words
Reaction Time 170 (16.4) 272 (17.4)
Error Rates 16 (2.0) 29 (2.3)

Nonwords
Reaction Time 111 (5.4) 64 (2.9)
Error Rates 14 (1.0) 2 (0.4)

Experiment 3B

Words
Reaction Time 111 (9.2) 163 (4.5)
Error Rates 4.0 (1.1) 17 (1.0)

Nonwords
Reaction Time 211 (15.8) 111 (9.0)
Error Rates 63 (4.0) 14 (2.1)
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Table 4

Means and standard deviations for the reaction times (ms) and error rates (%)
across Phases 2 and 4 of Experiment 1

Phase 2 Phase 4
(Scrambled Nonwords) (Pseudohomophones)

M SD M SD

Reaction Time

Nonwords 550 55 717 104

Words
Low Concrete 547 66 653 102
High Concrete 524 60 619 81

Difference 23 50 34 60

Error Rates

Nonwords 3.7 3.3 17.6 11.5

Words
Low Concrete 10.1 5.6 20.5 9.2
High Concrete 6.6 4.7 9.0 7.2

Difference 3.5 6.6 11.5 5.8
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Table 5

Means and standard deviations for the reaction times (ms) and error rates (%
across Phases 2 and 4 of Experiment 2

Phase 2 
(Low Frequency Words)

Phase 4 
(High Frequency Words)

Reaction Time

Error Rates

M SD M SD

Words
Nonwords

736
745

219
187

575
637

91
107

Words
Nonwords

9.2
16.2

6.3
10.5

4.7
11.5

4.1
7.4
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Table 6

Means (with standard deviations in the brackets) for the 
reaction times (ms) and error rates (%) in Experiments 3A and 3B

Word:Nonword Ratio

2:1 1:1 1:2

Experiment 3A

Words
Reaction Time 678 (125) 682 (129)
Error Rates 9.1 (5.2) 11.9 (6.4)

Nonwords
Reaction Time 751 (182) 687 (159)
Error Rates 6.2 (4.9) 4.6 (4.2)

Experiment 3B

Words
Reaction Time 660 (104) 698 (120)
Error Rates 5.0 (4.3) 6.8 (5.6)

Nonwords
Reaction Time 819 (165) 794 (158)
Error Rates 10.2 (6.7) 8.4 (6.9)
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Figure Captions

Figure 1. Functions depicting the increase of harmony as a stimulus is processed.

The referent function is assumed to reflect the "average" stimulus in a lexical 

decision experiment.

Figure 2 . Depiction of the lexical decision process in a typical random-walk graph. 

The difference in starting position across Panels A and B reflects the efficiency 

principle, with Panel B reflecting a more efficient starting position for the random 

walk. SP stands for starting position. DR-W stands for the drift rate for words 

and is represented by the slope of the random walk toward the word boundary. 

DR-NW stands for the drift rate for nonwords and is represented by the slope of 

the random walk towards the nonword boundary.

Figure 3. Typical structure of a Hopfield network. All processing units are in one of 

two possible states and are interconnected. The connection weights between units 

reflect the similarities between the unit activations.

Figure 4 . The cells of the table represent the processing units of the Flopfield network. 

Patterns of positive or negative activation within these cells represent various 

letters of the English alphabet (i.e. “X”, “A”, and “E”).

Figure 5. Panel A through C represent various stages of recall for the Hopfield 

network.

Figure 6. The structure of the Hopfield network that was used during the referent 

Simulations. There were a total of 25 orthographic units and 100 other units that 

represented phonology and semantics.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



H
ar

m
on

y

101

■Word 
■ Referent 
■Non word

Time After Stimulus Onset

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission



102

Panel A
Word RT

Word Boundary

DR-W SLALOM'

SP Referent Level

\  DR-NW

S  "ETKLTE1
Nonword Boundary

Nonword RT

Panel B
Word RT

Word Boundary
DR-W

SP SLALOM

Referent Level

DR-NW

ETKLTE1
Nonword Boundary

Nonword RT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



104

m s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



105

Panel A

^ ^ ■ ■ 1  -1 ■ - WgSHm
-1 i

H n H  - l i
- l - l BBBBBB - i ■ H B h

- l - l 1 - i mmmm
Panel B

1 ■HBBB H H H i i

HHHH| - i i i H H H |
- i HHHBBHHHIH r

H H H H - i i i ',' ' A ' - -

i - i i i wBSKKk
Panel C

■BB ■■HM i l |i i |i
HHHfil i i i mBmgm
HHH|■■■■HHB ■ ■ 1
B B | - i - i - i 1

BBfH - i - i - i i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



106

Orthography

Pattern 1 

Pattern 2 

Pattern 3

Phonology, Semantics

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



107

Appendix A
Words used in Phases 1 and 3 of Experiments 1A and IB

Low Concreteness Stimuli

KF Fam Con Stim KF Fam Con Stim KF Fam Con Stim

3 160 373 adage 72 504 268 allow 57 555 304 apart
11 383 371 array 2 274 351 ashen 4 326 371 audit
34 541 293 blame 3 436 338 bland 8 380 324 borne
73 523 361 brief 14 351 303 debut 4 328 317 dogma

9 460 267 dread 50 570 262 extra 22 541 315 fault
2 234 288 feint 10 414 304 folly 71 474 322 forth
8 447 304 fraud 21 493 304 glory 35 533 338 grade

43 552 356 grown 56 585 247 guess 33 559 299 guilt
12 509 359 harsh 5 494 290 hasty 61 521 253 ideal
7 420 360 idiom 12 458 243 irony 17 504 250 logic

20 460 239 mercy 29 475 308 merit 58 536 353 minor
21 517 306 pause 8 326 350 parry 72 516 360 phase
10 411 288 pious 45 492 360 prime 40 546 328 proof
7 350 365 proxy 68 570 343 quick 19 376 303 realm
7 433 305 reign 4 417 290 scorn 42 549 346 skill

27 562 383 slept 21 602 304 smart 23 552 313 spare
3 302 305 stoic 4 374 331 tally 55 524 336 theme
9 539 366 topic 23 531 371 trace 26 534 399 treat

46 503 328 trend 52 548 300 trust 13 480 365 utter
25 522 272 vague 50 529 279 worse 9 466 304 wrath

High Concreteness Stimuli

KF Fam Con Stim KF Fam Con Stim KF Fam Con Stim

14 490 595 arrow 61 553 612 beach 7 456 564 beast
23 486 630 belly 35 488 614 bench 9 470 573 berry
59 496 585 bible 8 425 552 bosom 45 580 556 brain

3 384 611 brook 44 579 589 brush 7 441 623 canoe
50 513 595 chain 53 543 580 chest 69 507 578 china
11 479 591 cliff 3 511 627 clown 61 541 562 coast
5 425 572 coral 5 428 606 crane 13 474 627 dough

67 588 595 dress 33 473 516 drill 3 478 551 dummy
5 465 616 eagle 3 457 542 feast 11 458 580 ferry
5 401 595 flask 52 483 597 flesh 23 469 515 giant

13 477 535 globe 53 587 599 grass 33 501 535 grave
3 304 542 noose 5 444 618 olive 5 391 631 otter

54 550 624 phone 43 455 596 porch 41 527 537 queen
63 477 606 rifle 5 470 594 satin 8 452 562 scout

3 455 606 shawl 61 531 574 shore 30 418 539 slave
58 594 514 smile 41 596 541 smoke 44 501 621 snake

2 471 572 spike 58 564 614 stone 5 438 570 swamp
7 444 577 sword 3 454 586 thorn 13 463 585 tower
4 479 617 trout 57 557 580 uncle 2 445 550 vault
5 474 522 witch 28 474 561 wound 4 464 606 yacht
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Appendix A (continued)
Words and Nonwords used in Phases 1 and 3 in Experiments 1A and IB

Words

adopt alley annoy anger bangs basic beers bless boots
bound bread bride brown candy cheat child clerk clump
cooks cruel curse decay deals dreami drugs earth ether
locks facet faith fangs flood freak frost funny gauge
grunt heard herbs humid lance lungs manic match model

money mouse packs paint pasta peril pills polar quart
ranch rapid rigor rough relax salad shift signs silky
skunk spice spoon smell snail straw stunt tango teeth
thaws train troll unite venom while widow yeast

Nonwords

Pseudo Scram Pseudo Scram Pseudo Scram Pseudo Scran

appul auplp attak taatk armer mrera asess ssaes
asign inasg attik tkiat batle tbela beger eerbg
beloe oeelb bisun nbuis brail albrl byker ybkre
caben aecbn carot ctoar cauze czeau cheez hzece
cleen niece cloke elkco cloze clzeo cryme ymecr
dager aedgr daizy zdyia danse ndesa defiir reufd
denem eednm devel evlde durty yrtdu eagul auelg
embir emrbi epick peikc emir urerr fabul fualb
fansy ayfsn felun fneul feeld edfle fleks klfes
flert etlrf fraim miafr fraze zreaf frite frtie
fixrst fsutr glyde lgyde golph gploh grave ugrve
guzle zgleu habet etbha hailo liaoh hevin vhien
iglue iuegl judje djeuj kamel eakml kanal aklna
kanon noakn kight gkiht klawk lkakw komic kmioc
labul lbaul laime eialm leson Iseon majik imkja
mimik mkiim musle uelms muzik mziuk neece eecne
nerse neesr nibul nbliu nikle knlei noyse yneos
nurve nvure ordir roidr pedel eplde penee eepne
peper rpepe phlip phpil pikle iepkl pijun unjpi
proze epzro pruve pvuer pudle udple pupit ipupt
rabit tiabr rapht ahrpt relik rliek riple lpier
rivul luivr sirge rsieg skool oklso sleat aelst
sneek nkese staph psaht surve seuvr swerl rwlse
tenis tnsie tikle tliek toste otste trase rtesu
twerl rlwte undir nridu voise sieov wheal elwha
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