
Reconfigurable Image Signal Processors
for Nonlinear CMOS Image Sensors

by

Maikon Ribeiro do Nascimento

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Integrated Circuits and Systems

Department of Electrical and Computer Engineering

University of Alberta

c© Maikon Ribeiro do Nascimento, 2020

Abstract

Moore’s Law is dying, but this is breathing new life into system-on-chip (SoC)

architectures. Industry leaders like Intel and Xilinx are investing in heteroge-

neous computing devices like the reconfigurable SoC, which integrates a field-

programmable gate array (FPGA), a multi-core microprocessor (μP), and a

variety of peripheral interfaces on the same silicon chip. Market drivers in-

clude autonomous vision systems, which benefit from the hard real-time ca-

pabilities of the FPGA, the operating system capabilities of the μP, and the

sensor/networking capabilities of the interfaces. To these ends, this thesis

offers a case study on the image signal processor (ISPr) of a nonlinear com-

plementary metal-oxide semiconductor (CMOS) imaging system. Unlike a

linear CMOS image sensor (CIS), a nonlinear CIS is able to image high/wide

dynamic range scenes in single exposures at video rates, ideal features for out-

door applications involving motion. The thesis leverages previously-published

image signal processing (ISPg) algorithms, identified clearly as background

work, to develop novel digital circuit methods for fixed pattern noise cor-

rection, salt-and-pepper noise filtering, and histogram-based tone mapping.

Beyond digital circuits for a specific CIS, the proposed digital circuit methods

generate circuits for an arbitrary monotonic CIS, such as linear, log, or linlog,

based on supplied parameters. Generated circuits are validated for a variety of

parameters, including megapixel scenarios at standard video rates. They are

shown to be very efficient, in terms of circuit complexity, maximum frequency,

and power consumption, and have significant advantages over literature ap-

ii

proaches, including ones that use application-specific integrated circuits and

graphics processing units. As a stepping stone to exploiting the ISPr, for a

nonlinear CIS in an autonomous vision system, the thesis also proposes a novel

design flow, for a reconfigurable SoC, to make the FPGA the master of the

imaging system, via interrupt service routines, running on the μP, and direct

memory access circuits, embedded in the FPGA. Two approaches are investi-

gated to do this: one favours open source tools, and the other performance.

The work demonstrates local processing of high definition video in hard real

time with results communicated over a web page on demand.

iii

Preface

Chapter 2 of this thesis has been published as Maikon Nascimento, Jing Li,

and Dileepan Joseph, “Digital Circuit Methods to Correct and Filter Noise of

Nonlinear CMOS Image Sensors,” Journal of Imaging Science and Technology,

62(6), 60404 (2018). Nascimento was responsible for the generic design flow as

well as the design, implementation, validation, and evaluation of all circuits.

He contributed to the literature review and the explanation of novelty and

significance. He wrote the initial version of the paper, which he defended at

his Ph.D. candidacy exam, and edited the final version. Li was responsible

for the background algorithms and contributed to the circuit designs. Joseph

supervised the work and wrote the final paper, included as Chapter 2.

Chapter 3 of this thesis is intended for publication with the same authors,

listed above, in the same order. Nascimento was responsible for the generic

design flow as well as the design, implementation, validation, and evaluation

of all circuits. He was also responsible for the literature review and the expla-

nation of novelty and significance. He wrote the initial version of the work,

which he defended at his internal Ph.D. final exam, and edited the final ver-

sion, included here. Li was responsible for the initial background algorithms

and contributed to the circuit designs. Nascimento developed the final back-

ground algorithms with Joseph. Joseph supervised the work and edited the

final version, which included a rewriting of the two middle sections.

Chapter 4 of this thesis has been published as Maikon Nascimento and

Dileepan Joseph, “System-on-Chip Design Flow for the Image Signal Processor

of a Nonlinear CMOS Imaging System,” Proceedings of the IS&T International

Symposium on Electronic Imaging, 9, 363 (2019). Nascimento was responsible

for the integrated design flow as well as the design, implementation, validation,

iv

and evaluation of the entire system, which comprised software, firmware, and

hardware. He was also responsible for the literature review and the explanation

of novelty and significance. Nascimento developed the interfacing method and

wrote the final version of the work included here. Joseph supervised the work

and contributed edits mainly after it was accepted for publication.

The introduction and conclusion chapters were written by Nascimento and

edited by Joseph. Parts of the introduction were taken from Nascimento’s

Ph.D. candidacy report, also written by Nascimento and edited by Joseph.

Nascimento wrote the initial version of the abstract, which Joseph rewrote.

The preface was written by Joseph and edited by Nascimento.

As a journal article and conference proceeding, respectively, Chapters 2

and 4 were both peer reviewed. Moreover, the journal article of Chapter 2

won the 2019 Itek Award. According to the Society for Imaging Science and

Technology, “This award recognizes an outstanding original student publica-

tion in the field of imaging science or engineering published in a Society journal

(JIST or JEI) during the preceding calendar year. The paper must comprise

a significant contribution in the field of imaging and must conform to high

standards of technical and scientific writing.”

v

Acknowledgements

Following a chronological order, my first thank you is to my supervisor, Dr.

Dileepan Joseph. Since the moment zero, when he replied to my wondering

emails, then following up with me when I was coming to Canada to start the

Ph.D. program, and then finally working together, Dil has been a supervisor,

a presentation coach, a friend, and someone who has helped me to elevate my

engineering standards. The quality of my work has been pushed further and,

at the same time, he was also flexible to respond to my interests.

Second, my studies were possible largely due to the financial support of

CAPES, a Brazilian federal government agency under the Ministry of Educa-

tion, and their program Science Without Borders. A special thanks, therefore,

to Dilma Rousseff, former president of Brazil, as well as to those, in Brazil and

Canada, who helped to administer the doctoral scholarship program.

At the end of the first year of my Ph.D., I started dating my current

partner, Cole P. Moffat, who has helped me so much since then with all his

support, stability, company, and love. He kept me grounded, adding a family

to my life in Canada. With Cole and I, there are two dogs, Kuroka, who is my

favourite, then Poncho, and a “mistake” cat, Luna.

In this direction, I must also thank my dear friends in Edmonton for so

many nice adventures exploring the beauty of Alberta. Thank you especially

to Dr. Jonas Valloton, my super close friend in Edmonton, and also to Dr.

Fernando Saccon, whom I met more recently.

I want to thank the Faculty of Graduate Studies and Research (FGSR)

and the Graduate Students’ Association (GSA), at the University of Alberta,

for their financial support of my trip to San Francisco to present some of my

work. I also want to thank the GSA for an Emergency Bursary, i.e., for extra

vi

financial support, at the end of my program.

Finally, thank you to my family and friends back in Brazil. Warm memories

of you were helpful during the cold Canadian winters!

vii

Table of Contents

1 Introduction 1
1.1 Objectives and Background 1

1.1.1 Nonlinear CMOS Image Sensors 2
1.1.2 Image Signal Processing 4
1.1.3 Image Signal Processors 8

1.2 Scope and Methodology . 12
1.2.1 Reconfigurable System-on-Chip 12
1.2.2 FPN Correction and SPN Filtering 15
1.2.3 Histogram-Based Tone Mapping 17

2 FPN Correction and SPN Filtering 19
2.1 Introduction . 19
2.2 Background and Methods . 21

2.2.1 Generic Design Flow 22
2.2.2 FPN Correction . 24
2.2.3 SPN Filtering . 31

2.3 Results and Discussion . 36
2.3.1 Test Benches . 36
2.3.2 FPN Correction . 37
2.3.3 SPN Filtering . 41
2.3.4 Significance . 46

2.4 Conclusion . 50

3 Histogram-Based Tone Mapping 53
3.1 Introduction . 54
3.2 Background and Methods . 56

3.2.1 Design Overview . 57
3.2.2 Base Histograms . 58
3.2.3 Tone Mapping . 65

3.3 Results and Discussion . 72
3.3.1 Validation . 72
3.3.2 Evaluation . 78
3.3.3 Significance . 81

3.4 Conclusion . 82

4 Reconfigurable System-on-Chip 84
4.1 Introduction . 84
4.2 Apparatus and Application . 86

4.2.1 System-on-Chip Platform 86
4.2.2 Image Signal Processor 88

4.3 Interfacing Method . 90
4.4 Results and Discussion . 93

4.4.1 System Validation . 93

viii

4.4.2 System Evaluation . 96
4.5 Conclusion . 98

5 Conclusion 100
5.1 Summary and Contributions 100

5.1.1 FPN Correction and SPN Filtering 101
5.1.2 Histogram-Based Tone Mapping 102
5.1.3 Reconfigurable System-on-Chip 103

5.2 Future Work . 104
5.2.1 Nonlinear CMOS Imaging System 105
5.2.2 Computer Vision Application 106

References 108

ix

List of Tables

2.1 Combinational logic performed by the router. 35
2.2 Video formats used to evaluate proposed methods. 37
2.3 Specifications of the designed circuits. 47

3.1 Important signals and their corresponding symbols. 58
3.2 Video formats used to evaluate the proposed circuits. 74
3.3 Circuit specifications for the FHD video format. 82

x

List of Figures

1.1 Evolution of photography. 3
1.2 Comparison between (a) a linear and (b) a nonlinear sensor. . 4
1.3 Examples of ISPg developed in industry and academia. 5
1.4 Example of FPN correction with a nonlinear CIS. 6
1.5 Examples of tone mapping applied to an HDR image. 7
1.6 Comparison between FPGAs, GPUs, and DSPrs. 9
1.7 Crossover point between ASIC and FPGA solutions. 11
1.8 Proposed imaging system with a CIS and an ISPr. 12
1.9 Reconfigurable SoCs from leading suppliers. 14
1.10 Background fixed-point algorithm for FPN correction. 16
1.11 Signal flow of the background TMO algorithm. 18

2.1 Generic FPGA design flow adopted here. 23
2.2 FPN correction need not invert nonlinear responses. 25
2.3 FPN correction using a recursive pipeline circuit. 28
2.4 FPN correction and SPN filtering are complementary. 32
2.5 SPN filtering employs windows that vary with pixel. 33
2.6 SPN filtering using a three-stage pipeline circuit. 34
2.7 Initial validation of a generated FPN correction circuit. 38
2.8 Complexity of FPN correction vs. polynomial degree. 39
2.9 Max frequency of FPN correction vs. polynomial degree. . . . 41
2.10 Power consumption of FPN correction vs. parameters. 42
2.11 Initial validation of a generated SPN filtering circuit. 43
2.12 Complexity of SPN filtering vs. number of pixels. 44
2.13 Max frequency of SPN filtering vs. number of pixels. 45
2.14 Power consumption of SPN filtering vs. video format. 46

3.1 Top-level circuit design of histogram-based tone mapping. . . . 57
3.2 Circuit schematics of the base histograms module. 61
3.3 Circuit schematics of the tone mapping module. 68
3.4 Response of a simulated log sensor. 73
3.5 Internal states of the proposed TMO circuit. 76
3.6 Video output of four TMOs for the HD video format. 77
3.7 Complexity of the complete TMO circuit. 79
3.8 Max frequency of the complete TMO circuit. 80
3.9 Power consumption of the complete TMO circuit. 81

4.1 Zturn development kit with Zynq-7000 SoC. 87
4.2 Interconnection of primary SoC components. 88
4.3 Illustration of the ISPr functions. 89
4.4 Zynq-7000 SoC main blocks and interfaces. 90
4.5 Potential master-slave configurations of the system. 91
4.6 Potential design flows for the SoC system. 92
4.7 Browser screenshot of a web page served by the SoC system. . 94

xi

4.8 IRQ voltage of the FPGA and usage of the μP. 95
4.9 Zoomed-out floorplan image of the ISPr design. 96
4.10 Utilization of FPGA resources, at HD resolution, by the ISPr. 97

xii

List of Acronyms

4KUHD 4K ultra HD . 37

ADC analog-to-digital converter . 27

AI artificial intelligence . 103

AMBA Advanced Microcontroller Bus Architecture . 91

API application program interface. .107

ASIC application-specific integrated circuit . 55

AXI Advanced eXtensible Interface . 90

BER bit error rate . 83

bpp bits per pixel . 26

BRAM block RAM. .96

CCD charge-coupled device. .2

CDF cumulative distribution function . 65

CDS correlated double sampling . 20

CIS CMOS image sensor . 100

CMOS complementary metal-oxide-semiconductor 105

CPU central processing unit . 103

dB decibel . 74

DDR double data rate .87

DMA direct memory access . 104

DR dynamic range . 101

DSPg digital signal processing . 96

DSPr digital signal processor . 8

DTB device tree binary . 91

FF flip-flop . 96

FHD full HD . 101

FIFO first-in first-out. .102

FPGA field-programmable gate array . 100

FPN fixed pattern noise . 100

fps frames per second . 85

GP general purpose . 90

GPU graphics processing unit . 103

xiii

GUI graphical user interface . 87

HD high definition. .101

HDF hardware description file. .91

HDL hardware description language .101

HDR high dynamic range . 106

HLS high-level synthesis . 87

HP high performance . 90

HQVGA half quarter VGA . 74

HTML hypertext markup language. .94

IDE integrated development environment . 87

IO input-output . 8

IP intellectual property . 107

IPR inverse polynomial regression . 25

IRQ interrupt request . 91

ISPg image signal processing . 105

ISPr image signal processor . 100

ISR interrupt service routine . 84

JTAG Joint Test Action Group. .86

LDR low dynamic range . 85

LE logic element . 96

linlog linear-logarithmic . 105

log logarithmic . 105

LPF low-pass filter . 60

LSB least significant bit . 62

LUT look-up table . 86

MSB most significant bit . 30

NRE non-recurring engineering . 11

OGB offset, gain, and bias. .24

OS operating system . 106

PL programmable logic . 86

PMF probability mass function . 59

PS processing system . 86

PSNDR peak SNDR . 48

PSNR peak SNR . 74

RAM random-access memory . 106

RHS right hand side . 26

ROM read-only memory . 71

SD Secure Digital . 105

SDK software development kit . 87

xiv

SDRAM synchronous dynamic RAM. .87

SNDR signal-to-noise-and-distortion ratio . 48

SNR signal-to-noise ratio . 15

SoC system-on-chip . 100

SPN salt-and-pepper noise . 100

SRAM static RAM. .8

STA static timing analysis . 79

TMO tone mapping operator . 100

TTVGA tenth tenth VGA . 74

UART universal asynchronous receiver-transmitter . 86

μP microprocessor . 100

USB Universal Serial Bus . 86

VDMA video DMA. .99

VGA video graphics array . 74

VHDL VHSIC hardware description language . 21

VHSIC very-high-speed integrated circuit .21

WDR wide DR . 106

xv

Chapter 1

Introduction

This thesis advances the state-of-the-art in nonlinear complementary metal-

oxide-semiconductor (CMOS) imaging systems by researching digital circuits

and interfaces, including design flows thereof, which help to turn a nonlinear

CMOS image sensor (CIS) into a complete imaging system that can operate

efficiently in hard real time. For these purposes, the thesis investigates the use

of low-cost reconfigurable system-on-chip (SoC) devices, focusing in particu-

lar on the field-programmable gate array (FPGA) part of these devices, but

considering also its relationship to the microprocessor (μP) part.

This chapter begins with a statement of the thesis objectives, which deter-

mines the background of interest. The background concerns nonlinear CISs

and the important distinction between image signal processing (ISPg) and

image signal processors (ISPrs). It summarizes other research, in the industry

and academia, relevant to this work. Thereafter, the chapter defines the scope

of the thesis, elaborating on the methodology used, such as the chosen design

tools and background algorithms, within the boundary of interest. Further

details are given in the subsequent chapters.

1.1 Objectives and Background

This thesis explores digital circuit design and digital system integration to

realize an ISPr for a nonlinear CIS. The platform of choice is an FPGA within

a reconfigurable SoC, which is a heterogeneous computing architecture having

also a μP on the same silicon chip. All circuits and systems investigated

1

and developed, through this research, are conceptualized to be generic and

applicable for a wide variety of nonlinear CISs. Selected ISPg operations, for

the ISPr, comprise several functions that are essential to produce a useful high

dynamic range (HDR) imaging system.

In terms of relevant background, a motivation for nonlinear CISs is first

presented. This emphasizes their advantages for HDR imaging applications,

as well as their disadvantages. The disadvantages may be mitigated by ISPg, a

subject that is reviewed next, with an emphasis on fixed pattern noise (FPN)

correction and tone mapping. Finally, this section reviews different architec-

tures that may be used to realize an ISPr, emphasizing the FPGA architecture

and, especially, the FPGA as part of a reconfigurable SoC.

1.1.1 Nonlinear CMOS Image Sensors

Cameras are a fundamental component in mobile devices and embedded sys-

tems, aggregating value to the product and adding the possibility of computer

vision. At the beginning of the digital camera era with CMOS or charge-

coupled device (CCD) sensors, improvements were made primarily by increas-

ing the spatial resolution. Today’s improvements are made in the image quality

domain instead, as mentioned by Fontaine [18]. The dynamic range (DR) is a

key feature that increases the information that an image or video can register.

The history of photography starts with analog cameras, which depended

on film to register scenes. Fig. 1.1 presents the evolution of photography and

market penetration, when there was a competition between CCD and CMOS

at the beginning of the digital camera era. Largely due to the popularity of

mobile phones, the CIS has surpassed the CCD image sensor in the industry

today, having key advantages for embedded devices such as power consump-

tion, integration, and architecture, as mentioned by Suzuki [51].

Increasing the DR is a direction that image sensors and imaging systems

are taking to advance camera technology, from better manufacturing methods

to the integration of extra circuitry. Besides capturing real scenes more accu-

rately, HDR imaging targets better performance at lower light levels. More-

over, the approach can be applied to other ranges of the electromagnetic spec-

2

January 2015 • 4

Image Sensors : Triple Disruption History

1865 1945 1985 2005 2015 2020

First color

pictures from

emulsion

plates in

1860’s
Tube

technology

Never took

over Film

Technology x Market Penetration

CCD

technology

Took over

Film in the

2000’s

CMOS

technology

Took over

CCD in 2010

Acceleration : The speed in technology changes doubles every technology shift

Era of Digital

Photography
Era of Film

Photography

Era of Mobile

Photography

5 years10 years20 years40 years80 years

Figure 1.1: Evolution of photography. Continuing improvements to CIS tech-
nology is expected to lead to continued growth of CIS market share and ap-
plications. Taken from Cambou and Jaffard [10].

trum, allowing even more sensory information to be collected.

Ways to capture HDR images include: combining pictures from a standard

linear CIS taken with multiple and different exposures; the use of a special

linear CIS with interleaved sensors set to either overexpose or underexpose

pixels; or another special CIS that has a nonlinear response covering a wide

range of luminances simultaneously without saturation. Kim reviewed these

different approaches recently [28]. Under nonlinear CISs, also called wide DR

(WDR) sensors, he focused on the linear-logarithmic (linlog) sensor, a variation

of the classic logarithmic (log) sensor, and described it as his preferred solution

for HDR image capture, the technical challenges notwithstanding.

A nonlinear CIS captures a wide DR, as shown in Fig. 1.2. Similar to the

human eye, it can register bright, dim, and in-between regions at the same

time without saturation or motion-related artefacts. However, drawbacks of

such WDR technologies include an increased need for ISPg solutions to handle

complex nonlinear responses that vary from pixel to pixel. Compact low-cost

and low-power solutions, which can operate in hard real time and scale to high

3

Figure 1.2: Comparison between (a) a linear and (b) a nonlinear sensor. The
nonlinear response has a wider DR. In addition, for the linlog sensor shown,
the unsaturated region has a complex response. Taken from Kim [28].

definition (HD) video formats, would help in this regard.

1.1.2 Image Signal Processing

There are two similar acronyms employed in this thesis: ISPg to describe

the signal and image processing required by an imaging system; and ISPr

to describe the integrated circuits and systems used to implement the ISPg.

Figure 1.3(a) presents a block diagram, from a general-purpose ISPr manufac-

tured by Texas Instruments, that identifies several ISPg operations. Choosing

which ISPg operations to use may vary according to the complexity of the CIS

and the end application. For example, in Fig. 1.3(b), a special-purpose ISPr

implements ISPg operations specific to a log sensor.

4

Getting the Most Out of Your Image-Processing Pipeline October 2007

3Texas Instruments

The image-processing pipeline integrated in TI’s DaVinci™ digital media processors has 10

distinct stages. By understanding the function of each of these stages and how each stage

can affect the final image, developers can maximize quality.

Black-Level Adjustment

This stage in the pipeline adjusts for dark current from the sensor and for lens flare, which

can lead to the whitening of an image’s darker regions. In other words, sensor black is not

the same as image black. The most common method for calculating this adjustment is to

take a picture of a completely black field (typically accomplished by leaving the lens cap

on), resulting in three base offsets to be subtracted from the raw sensor data. Failure to

adjust the black level will result in an undesirable loss of contrast.

R’i,j = Ri,j – OR
i,j

G’i,j = Gi,j – OG
i,j

B’i,j = Bi,j – OB
i,j

Noise Reduction

There are numerous sources of noise that can distort image data – optical, electrical, digi-

tal and power – which must be removed before they are amplified in later pipeline stages.

The actual noise level present in an image, however, plays a critical role in determining

how strong the noise filter must be since the use of a strong filter on a clean image will

actually distort and blur the image rather than clear it up.

Noise reduction is achieved by averaging similar neighboring pixels. Through the use of

an Optical Electrical Conversion Function (OECF) chart (Figure 2 on the following page) and

a uniform lighting source, the noise level can be characterized for different intensities.

Fine Tuning
the Image

Pipeline

White
Balance

CFA
Interpolation

RGB
Blending

Noise
Reduction

Gamma
Correction

Edge
Enhance

Black Level
Adjustment

Contrast
Enhance

False Chroma
Suppression

RGB to YCC
Conversion

Figure 1. DaVinci imaging-processing pipeline. (a) 5 HDR Video Cameras 87

HDRC
Sensor

768×496

A
D

12

Control Control

HDRC Control I/O Board

Mode Display

Serial LVDS
Link

Video Coder

Power Supply
8...36 V5...10 V

8 (10) Video Out

RS232

Trigger

Mode
Control

RS232
Trigger, isolated

HDRC Sensor Board
GLHEAD

HDRC Control

Power Supply
1.8, 2.5, 3.3 V

Display
Characteristics

Multi-Point
Fixed-Pattern
Correction
Std.Dev.<1%

Edge Detection

3

Fig. 5.19. Block diagram of the intelligent HDRC GEVILUX CCTV camera

Controller Board – HDRC Control

– Multipoint fix-pattern correction, standard deviation <1%
– Configurable through FPGA SDRAM flash
– Image data processing and analysis
– Edge detection in real-time (dual 5× 7 convolution)1

– Switch mode and linear regulated power supply

Interface Board – I/O Board

– NTSC/PAL video signal 75Ω BNC connector
– RS232 control
– Isolated trigger input
– Bidirectional LVDS port (three-pair for special Frame Grabber)
– Seven-segment display
– Two mode-control switches
– Power (8–36V) and control connector

The integrated image-processing and analysis modes are listed in Table 5.3
giving an overview of the versatility of the camera.

Figure 5.20 depicts the conversion function of different LUTs and Fig. 5.21
shows the visual results of some processing modes including edge detection.

An important feature of the logarithmic response HDRC sensor for image
processing like in machine vision is that the contrast sensitivity function (CSF;
see Fig. 2.3b in Chap. 2) is constant over a wide range of illumination levels
above the low light sensitivity (called 3 dB point in Chap. 2) of the sensor.
The advantage of the constant CSF can be demonstrated by means of the
edge detection processing mode B of the camera which is visually introduced
in Fig. 5.21d. This mode calculates the edges (as magnitude of the gradient
vector) of the captured image by a canny filter (dual 5× 7 convolution).

1 For the color camera not all edge detection modes are supported.

(b)

Figure 1.3: Examples of ISPg developed in industry and academia. (a) Il-
lustration, taken from Texas Instruments, of several ISPg operations present
in a commercial ISPr. (b) Illustration, taken from Hoefflinger [20], of ISPg
operations present in an ISPr for a nonlinear CIS.

To elaborate on the figure, Fig. 1.3(a) shows the multi-stage ISPg that

Texas Instruments developed for colour linear CISs. This example illustrates

what kinds of operations can be embedded in a conventional commercial ISPr.

Each stage influences the final image quality. In this fashion, the image pro-

cessing pipeline extracts the most data from the CIS. Figure 1.3(b) shows

that, for a log sensor, the ISPg includes multi-point FPN correction. This im-

age processing pipeline also includes edge detection, a higher-level operation

associated with computer vision end applications.

For a simple linear CIS, FPN correction is accomplished using correlated

double sampling (CDS), which is an analog circuit method. High-end cameras,

including linear ones, may require more complex circuit methods, including

5

(a) (b)

Figure 1.4: Example of FPN correction with a nonlinear CIS. These images,
taken from Skorka et al. [49], are from a log sensor: (a) before FPN correction;
and (b) after FPN correction using Li et al.’s [34] algorithm.

digital circuit methods, to correct the pixel responses. Related to FPN correc-

tion, ISPg operations may include median filtering to handle dead pixels. In

general, HDR imaging systems require tone mapping as a necessary operation

since displays cannot typically reproduce all brightness levels.

When we look at an image sensor as a matrix of pixel sensors, there is a

particular intrinsic response for every pixel sensor. The variation of the sensor

response creates a similar effect to noise but in a fixed pattern. Figure 1.4

presents an image before and after FPN correction. The name FPN is used

because it depends on the spatial positions of the pixels and does not change

over time. Thus, FPN may also be called spatial noise, in contrast to temporal

noise, which is also present. The FPN is worse for nonlinear CISs and its

correction is more complicated in comparison to linear CISs [28].

The algorithm used to correct FPN, in the example of Fig. 1.4, was pub-

lished recently by Li et al. [34]. It is introduced in Section 1.2.2. Another and

more common solution, developed by Joseph and Collins [23], is to characterize

the curve of the sensor response, which for log sensors is given by:

y ≈ a+ b ln(c+ x), (1.1)

where y is the digital response of a pixel sensor to light stimulus x, a is the off-

set, b is the gain, and c is the bias. Joseph and Collins [23] explained that FPN

correction may be performed after calibration of the parameters, by inverting

(1.1). Hoefflinger’s [20] ISPg, in Fig. 1.3(b), implements an approximation

to this. In addition to its overly approximate nature, Hoefflinger’s approach

6

Figure 1.5: Examples of tone mapping applied to an HDR image. (a) An HDR
image displayed with a naive TMO, resulting in loss of detail and contrast.
(b) The same image displayed with a TMO that preserves more contrast and
detail. Example taken from Matlab’s Image Processing Toolbox.

cannot be applied to other nonlinear sensors, such as linlog ones.

Tone mapping, performed with a tone mapping operator (TMO), is an

essential operation in an HDR imaging system. Once the richer image has

been registered, or video has been recorded, we need to display it on a low

dynamic range (LDR) device, such as a computer or cellphone screen. The

properties of the tone mapping are fundamental for avoiding artefacts, halos,

or distortions. In addition, the richer details and higher contrast of the HDR

image has to be preserved, as explained by Larson [31].

Figure 1.5 demonstrates the general concept of tone mapping. On the left

is an HDR image that is naively displayed. The right side shows the image

after using a TMO, where the room features can be seen even with the sunlit

window. With tone mapping, the contrast is better, the picture registers both

the interior and exterior of the room without saturation, and the observed

reflection on the glass is even. Besides the static aspects, treated as shown

in the figure, there are also temporal considerations for videos, which should

play smoothly without visual artefacts caused by the TMO itself.

Typically, TMOs are classified into two mutually-exclusive categories: local

and global. A global TMO consists of the same operation applied to each pixel

in the image, a function that does not vary with pixel location although the

function itself may depend on all pixel values. A local TMO uses a function

that depends on the pixel position. Typically, the function depends on pixel

7

values in the local neighbourhood, although all pixel values may contribute.

Some authors have claimed that local TMOs perform better. However, in a

review paper, Eilerstsen et al. [14] compared different TMOs and concluded

that human observers preferred global ones.

1.1.3 Image Signal Processors

In general, ISPrs may be implemented using central processing units (CPUs)

(also called μPs), graphics processing units (GPUs), FPGAs, or application-

specific integrated circuits (ASICs). Unless a researcher is developing a new

CPU or GPU architecture, these approaches tend to be algorithm-focused,

although knowledge of the underlying hardware helps for optimization pur-

poses. In contrast, FPGA and especially ASIC approaches are circuit-focused,

although integrated development environments (IDEs) are employed, as in

software development, with hardware description languages (HDLs).

An FPGA is a matrix of configurable digital electronic components that

uses schematic capture or an HDL to specify a digital circuit or system. It is a

reconfigurable highly-parallel architecture that is optimized for digital circuits

built from a set of fundamental operations. The underlying technology of an

FPGA is the static RAM (SRAM), which is volatile and meant to be stable and

dense [52]. From the design specification, a digital circuit is created with the

help of FPGA design tools. The circuit may use simple logic gates and routing

to implement digital functions, as well as memory, arithmetic, digital signal

processing (DSPg), input-output (IO), and other embedded components, de-

pending on the family of the FPGA and project requirements.

Figure 1.6 compares the computation per unit power of FPGAs, GPUs,

and digital signal processors (DSPrs), where the latter are specialized μPs.

Because these results are from a leading FPGA vendor, we consider other

sources below. Nevertheless, it is noteworthy that a leading FPGA vendor

promotes its technology on the basis of its power efficiency.

In the literature, researchers have compared the performance of multiple

platforms for addressing the same or similar tasks. Asano et al. [4] compared

FPGA, GPU, and CPU solutions for three ISPg problems. Their experimental

8

Figure 1.6: Comparison between FPGAs, GPUs, and DSPrs. This chart, taken
from Xilinx [58], shows that FPGAs have a better performance per Watt for
single-precision floating-point operations, for which GPUs are optimized.

results showed that, in terms of the frame rate, the FPGA solution surpassed

the performance of the GPU and CPU ones for two of the three problems.

For computer graphics, the advantages of the GPU are well known. A

GPU is a highly parallel architecture, with its own low-level programming

language, to divide single-precision floating-point tasks, especially 3D vector

operations, across many cores. However, a GPU can suffer in performance

when the bottleneck between the cores and cache memory is not properly

handled. Another drawback of GPUs is power consumption, which makes it

difficult to apply them for embedded systems dependent on limited battery

power.

In a review article, Benkrid et al. [7] compares FPGAs and GPUs, amongst

other platforms, for the Smith-Waterman pairwise-sequence-alignment prob-

lem. The researchers compared speed, development time, overall cost, and

energy consumption, and reported that FPGAs were more cost effective and

energy efficient for that problem.

9

Berten [8] compares FPGAs to GPUs and concludes that FPGAs are bet-

ter in terms of computation per Watt, latency, interfaces, and size (easier to

cool). However, GPUs are better for floating-point operations, backward com-

patibility, flexibility, development, and processing per unit cost. Considering

development, GPUs are superior because it is easier to find developers. The

GPU field is adopting tools and personnel from the C/C++ community, which

is larger than the HDL community. Moreover, there are open-source solutions

for GPU development, making it more transparent.

Returning to CPUs, especially ones with operating systems (OSs), they are

truly the only general-purpose platforms available and have the advantage of

simplified programming. Thanks to widespread use, they enjoy programmer-

friendly environments for prototyping and debugging. A drawback of the

FPGA approach is a more complex design flow and difficult debugging.

Nonetheless, CPUs are often paired with hardware accelerators, such as

GPUs and FPGAs. Texas Instruments developed ISPrs, like the one of Fig. 1.3(a),

composed of a combination of CPUs and GPUs on the same circuit board.

These ISPrs rely on parallel computing with the GPUs, to achieve high data

processing rates, in order to handle ISPg of HD video efficiently.

For real world systems, a standard FPGA lacks out-of-the-box features such

as Internet connectivity (WiFi), display drivers, memory card access, etc. A

CPU running an OS would have support for all these peripherals, which are

essential to develop a fully functional imaging system. To address this issue

one could use an FPGA to execute the ISPg operations in real time, and a

CPU with an OS for connectivity. If this is done on the same silicon device, it

is called a reconfigurable SoC, where the FPGA implements a digital circuit

part of a system, and the CPU implements an OS-based software algorithm

part of the system.

Instead of an FPGA, an ASIC may be used as an accelerator. A comparison

can be made between these two options. Projects involving FPGAs are more

expensive in comparison to ASICs for high-volume production. However, from

low to medium volume production, it makes more sense to employ FPGAs.

Figure 1.7 presents the crossover point between these two platforms.

10

2) Age of Expansion 1992–1999;
3) Age of Accumulation 2000–2007.

II . PREAMBLE: WHAT WAS THE
BIG DEAL ABOUT FPGAs?

A. FPGA Versus ASIC
In the 1980s, Application-Specific Integrated Circuit

(ASIC) companies brought an amazing product to the

electronics market: the built-to-order custom integrated

circuit. By the mid-1980s, dozens of companies were sell-

ing ASICs, and in the fierce competition, the winning at-

tributes were low cost, high capacity and high speed. When

FPGAs appeared, they compared poorly on all of these

measures, yet they thrived. Why?
The ASIC functionality was determined by custom mask

tooling. ASIC customers paid for those masks with an up-

front non-recurring engineering (NRE) charge. Because

they had no custom tooling, FPGAs reduced the up-front

cost and risk of building custom digital logic. By making

one custom silicon device that could be used by hundreds or

thousands of customers, the FPGA vendor effectively

amortized the NRE costs over all customers, resulting in
no NRE charge for any one customer, while increasing the

per-unit chip cost for all.

The up-front NRE cost ensured that FPGAs were more

cost effective than ASICs at some volume [38]. FPGA

vendors touted this in their ‘‘crossover point,’’ the number

of units that justified the higher NRE expense of an ASIC.

In Fig. 2, the graphed lines show the total cost for a number

units purchased. An ASIC has an initial cost for the NRE,
and each subsequent unit adds its unit cost to the total. An

FPGA has no NRE charge, but each unit costs more than the

functionally equivalent ASIC, hence the steeper line. The

two lines meet at the crossover point. If fewer than that

number of units is required, the FPGA solution is cheaper;

more than that number of units indicates the ASIC has

lower overall cost.

The disadvantage of the FPGA per-unit cost premium
over ASIC diminished over time as NRE costs became a

larger fraction of the total cost of ownership of ASIC. The

dashed lines in Fig. 2 indicate the total cost at some process

node. The solid lines depict the situation at the next process

node, with increased NRE cost, but lower cost per chip. Both

FPGA and ASIC took advantage of lower cost manufacturing,

while ASIC NRE charges continued to climb, pushing the

crossover point higher. Eventually, the crossover point grew
so high that for the majority of customers, the number of

units no longer justified an ASIC. Custom silicon was war-

ranted only for very high performance or very high volume;

all others could use a programmable solution.

This insight, that Moore’s Law [33] would eventually

propel FPGA capability to cover ASIC requirements, was a

fundamental early insight in the programmable logic busi-

ness. Today, device cost is less of a driver in the FPGA
versus ASIC decision than performance, time-to-market,

power consumption, I/O capacity and other capabilities.

Many ASIC customers use older process technology,

lowering their NRE cost, but reducing the per-chip cost

advantage.

Not only did FPGAs eliminate the up-front masking

charges and reduce inventory costs, but they also reduced

design costs by eliminating whole classes of design prob-
lems. These design problems included transistor-level de-

sign, testing, signal integrity, crosstalk, I/O design and

clock distribution.

As important as low up-front cost and simpler design

were, the major FPGA advantages were instantly availabi-

lity and reduced visibility of a failure. Despite extensive

simulation, ASICs rarely seemed to be correct the first

time. With wafer-fabrication turnaround times in the
weeks or months, silicon re-spins impacted schedules sig-

nificantly, and as masking costs rose, silicon re-spins were

noticeable to ever-rising levels in the company. The high

cost of error demanded extensive chip verification. Since

an FPGA can be reworked in minutes, FPGA designs in-

curred no weeks-long delay for an error. As a result, veri-

fication need not be as thorough. ‘‘Self-emulation,’’ known

colloquially as ‘‘download-it-and-try-it,’’ could replace ex-
tensive simulation.

Finally, there was the ASIC production risk: an ASIC

company made money only when their customer’s design

went into production. In the 1980s, because of changing

requirements during the development process, product

failures or outright design errors, only about one-third of

all designs actually went to production. Two-thirds of de-

signs lost money. The losses were incurred not only by the
ASIC customers, but also by the ASIC suppliers, whose

NRE charges rarely covered their actual costs and never

covered the cost of lost opportunity in their rapidly depre-

ciating manufacturing facilities. On the other hand,

programmable-logic companies and customers could still

make money on small volume, and a small error could be

corrected quickly, without costly mask-making.

Fig. 2. FPGA versus ASIC Crossover Point. Graph shows total cost

versus number of units. FPGA lines are darker and start at the lower

left corner. With the adoption of the next process node (arrows

from the earlier node in dashed lines to later node in solid lines),

the crossover point, indicated by the vertical dotted line, grew larger.

Trimberger: Three Ages of FPGAs

Vol. 103, No. 3, March 2015 | Proceedings of the IEEE 319

Figure 1.7: Crossover point between ASIC and FPGA solutions. The total
cost of projects with FPGAs increases more with volume than it does with
ASICs, but FPGA projects do not have the initial NRE cost. Taken from
Trimberger [53].

While ASICs have a higher initial cost due to non-recurring engineering

(NRE), FPGAs are more expensive when the number of units grows beyond

the crossover point. However, technology trends are shifting the crossover

point, making it more economical to use FPGAs for larger volumes than in

the past. As a result, it is becoming harder and harder to justify an ASIC

approach for an early stage design. Nevertheless, because of similar tools and

techniques for digital circuit design, FPGAs remain suitable as a stepping

stone toward an eventual ASIC solution. Many problems that would have to

be solved for an ASIC design would be solved in the course of realizing an

FPGA design. They may also be solved faster and at lower cost.

Improvements in manufacturing processes are adding components to low-

cost FPGA devices, such as memory, transceivers, clock management, first-in

first-outs (FIFOs), and encryption. Following recent trends for CMOS devices

in general, FPGAs increasingly employ 3D integration, having their internal

blocks stacked and using vertical connections to speed up data transfer, de-

livering more power efficiency and signal integrity. Furthermore, instead of

emulating a CPU within the FPGA, modern SoC architectures, like the Zynq

family from Xilinx, favour a dedicated multi-core μP integrated on the same

silicon, along with a variety of interfaces for peripheral devices.

11

sof

reset

lpf_en

clock

pix pix_mapped

TMO

Parameters

MAX_BIN CEIL
NUM_PIX SR
WIDTH_IN
WIDTH_OUT

tHDR
tLDR

FPGA

RAM

CIS

addr

pix

clk1

clk2

μP

coef

sof
reset

lpf_en TMO
Controllerclock

mode_top

bin_counter

mode_bot

mapping_top

counting

sof
reset

lpf_en

pix
pix_mappedScene

Histogram

Mapping-
Updating
Histogram

Perceived
Histogram

Modified
Histogram

TMO Controller

mode_bot

pix

scene_
histogram

Scene
Histogram

Addr_r

wen

mode

Clk Histogram

Scene
Histogram

Addr_r

wen

mode

Clk Histogram

bin

mode_top

counting

z−1z−1

z−1

X

sof

clock

6 5 1 2 73 5 2 16 3 4 6 5 770 2pix

Parameters

CEIL 165
SR 16
 3
 2
tHDR
tLDR

0 2 0 1 5

mode_top

mode_bot

counting

mapping

7 6 5 4 3 2 1 0 7 6 5 4 3bin_counter

histogram-counting & pixels mapped

histogram-outputting & map updated

histogram-bins

TMO latency

2 32 3 21 2histogram 1 3 1 4

7 6 5 4 3 2 1 0 7 6 5 4 3bin_counter

X 1 X

mode_top

mode_bot

counting

histogram-counting

histogram-outputting

histogram-frame 1

2 3 3 2
5 6 0 1
3 3 0
5 5 1 6

5 1 3 2
7 0 2 5
6 2 1 3
4 6 7 5

7 0 2 2
1 5 2 6
0 4 4 4
4 6 6 3

Frame 0

Frame 1 Frame 2

clock

state 0 1 2 3

s_axis_sof

reset

s_axis_valid

clock

s_axis_data m_axis_data

s_axis_eol

s_axis_ready
m_axis_sof

m_axis_valid

TMO

m_axis_eol

m_axis_ready

Soc
MPSoC

RFSoC NoC
CG EG EV

23~275
1.8~17.6
60~900
ARM Dual
Core
X

28nm

LUTs(K):
MEM(Mb):
DSPs:
uP:

MP:

Fab.:

23~275
1.8~17.6
60~900
ARM Dual
Core A/R
GPU +
Codec
16nm

23~275
1.8~17.6
60~900
ARM Dual
Core A/R

DAC/ADC
16nm

23~275
1.8~17.6
60~900
ARM Dual
Core A/R

DAC/ADC
16nm

mode_bot

pix

Scene
Histogram

Addr_r

wen

mode

Clk Histogram

Scene
Histogram

Addr_r

wen

mode

Clk Histogram

bin

mode_top

counting

z−1z−1

z−1

X

2 32 3 21 2histogram 1 3 1 4

7 6 5 4 3 2 1 0 7 6 5 4 3bin_counter

X 1 X

alpha

beta

counting histogram-frame 1

clock

lpf_en

236

20

3 11 2 14 1perceived_histogram

7 6 5 4 3 2 1 0 7 6 5 4 3bin_counter

X 3 X

counting

clock

mode_top

mode_bot

4 51 9 10modified_histogram 0 012 13 16

t_pixel 16

3 11 2 14 1perceived_histogram X 3 X

7 6 5 4 3 2 1 0 7 6 5 4 3bin_counter

counting

clock

4 51 9 10modified_histogram 0 012 13 16

t_pixel 16

5 7 0 0 12 6 0 4 4 4 4 6 365 2pix 1 3 2 7 0

mapping

3 3 12 3 3 32 1 2 0 2 231 0pix_mapped 2 2 0 1 3

5

mode Scene
Histogram

Addr_r

Addr_w

Histogram

bin

mode_top

z−1

z−1

X

0

1 2

+

scene_
histogram

Data

=

Perceived
Histogram

Addr_r

Addr_w

Clk

α’

bin

z−1

1 2

h
is to

g
ram

Data

Enable

X +

X

BS

β’

en

Dual-Port RAM

perceived_
histogram

scene_
histogram

Bin

Histogram

Clk

Reset
Modified
Histogram

tpixel

0

0

1

z−5bin

perceived_
histogram

mode_bot

mode_top

counting

z−5

z−5

z−5 Modified
Histogram
Wrapper

CEILING
REGISTER

bin

perceived_
histogram

reset

Min
Max

+

z−1

0

Max

modified_
histogram

tpixel

modified_
histogram

tpixel

mapping_top

pix

Mapping
Updating
Histogram

Addr_W

wen

Clk Histogram

Addr_W

wen

Clk Histogram

bin

mode_top

counting

z−1

z−5
z−6

pix_mapped

Mapping
Updating
Histogram

Data

Data

Div

 Round

Mul

modified_
histogram

tpixel
0

0
z−5

z−1

256

Mapping
Updating
Histogram

mapping_top

pix

Mapping
Updating
Histogram

Addr_W

wen

Clk Histogram

Addr_W

wen

Clk Histogram

bin

counting

z−5
z−6

pix_mapped

Mapping
Updating
Histogram

Data

Data

A

modified_
histogram

0

0
z−5

z−1

256*2

256/2

LUT

tpixel

X

X >>c

X

>>c

>>w
ratio

wmax

video_in
Tone
Mapping

control_in

Base
Histogram

video_out

TMO
Controller

A

LUT

tPixel

X

X

ratio

wmax

X

mapping_top

pix

Mapping
Updating
Histogram

Addr_W

wen

Clk Histogram

Addr_W

wen

Clk Histogram

bin

counting

z−5
z−6

pix_mapped

Mapping
Updating
Histogram

Data

Data

0

0
z−5

z−1

Normalization
Module

tpixel

modified_
histogram

Div

Mul
histValM

tPixel

 Round

Scene Optics CIS

Scene

ISP Application

FPN SPN TMO

mode_bot

pix

Scene
Histogram

Addr_r

wen

mode

Clk Histogram

Scene
Histogram

Addr_r

wen

mode

Clk Histogram

bin

mode_top

counting

z−1z−1

z−1

X

scene_
histogram

Perceived
Histogram

Addr_r

Addr_w

Clk

bin

z−1

Data

Enable

en

Dual-Port RAM

perceived_
histogram

X +

X

β’

BS

Low-Pass
Filter

FPGA

FPGA μP

mapping_top

videoIn

Mapping
Updating
Histogram

addrW

wen

dataR

addrW

wen

histBin

counting

z−5
z−6

videoOut

Mapping
Updating
Histogram

dataW

dataW

z−5

z−1

CEILING
REGISTER

histValP
reset

Min
Max

+

z−1

Max

histValM

tpixel

mode_bot

Scene
Histogram

Scene
Histogram

bin

mode_top

counting

z−1z−1

z−1

X

scene_
histogram

Perceived
Histogram

Addr_r

Addr_w

bin

z−1

Data

Enable

en

Dual-Port RAM

perceived_
histogramLow-Pass

Filter

α’

videoIn

videoIn

(a)

(b)

(c)

(b) OR (c)

(a)

histBin

counting
z−1

X
histValS

addrR

addrW

histBin

z−3

dataW

en

en

Perceived
Histogram

histValP

videoIn

(a)

(b)

(b)

+

>>

Scene
Histogram

addrR

addrW

dataRz−1

z−1

0

2
+

dataW

X

X

beta

alpha

(b)
(c)

1

(c)

+ >>

dataR

=

(b)
(c)

histBin

256 256*2
256/2

>>

>>c

>>c

>>w

0

0

0

dataR

histValM

Scene Optics CIS ISP Application

FPN SPN TMO

FPGA μP

Scene Optics CIS ISP

FPN SPN TMO

FPGA CPU

ISP App

U
S

E
R

Figure 1.8: Proposed imaging system with a CIS and an ISPr. This the-
sis investigates digital circuits for FPN correction, SPN filtering, and tone
mapping, essential ISPg operations for a nonlinear imaging system. It also in-
vestigates interfacing issues, when the circuits are realized in a reconfigurable
SoC, where part of the system is implemented in an FPGA and another part
is implemented in a CPU on the same silicon chip.

1.2 Scope and Methodology

Figure 1.8 illustrates the scope of this thesis, which is explained further in the

figure’s caption. The methodology of this work centers on the design of robust

and scalable digital circuits, not to present one specific solution but a generic

solution capable of solving a wide variety of problems. The platform chosen is

the FPGA, when it is integrated within a reconfigurable SoC, which means a

multi-core μP and peripheral interfaces are also available.

We provide a high-level overview of the chosen platform below, including

its value as a case study for heterogeneous computing. Of particular interest

is the interfacing, illustrated in Fig. 1.8, between the FPGA and multi-core

μP, also called the CPU. Thereafter, we discuss the selected ISPg operations,

namely FPN correction, salt-and-pepper noise (SPN) filtering, and tone map-

ping. Generic digital circuits will be investigated for each of these.

1.2.1 Reconfigurable System-on-Chip

An ISPr could be implemented using a CPU, a GPU, an ASIC, or an FPGA,

each with its own advantages and disadvantages. We chose an FPGA ap-

proach partly because we are more interested in novel integrated circuits and

systems aspects, than in established signal and image processing aspects, of

12

the chosen ISPg. Considering the high NRE costs of an ASIC approach, an

FPGA approach is preferred for low volume production, which is the case for

this research.

We also chose the FPGA approach because we hypothesize it would lead

to an efficient solution, i.e., a solution where the ISPg of interest could be

implemented in a low-cost device, with low power consumption, yet still scale

to HD video formats. This hypothesis will be tested through design, validation,

and evaluation. We assume that, as in Hoefflinger’s work [20] on a nonlinear

imaging system, an FPGA would be required anyway to control a nonlinear

CIS. Thus, it makes sense to use the resources available in the FPGA, to

implement the required ISPr, if our hypothesis proves true.

There are two main suppliers of FPGAs: Intel, who bought Altera in 2015,

and Xilinx. Each has their own set of tools, which generate the binary file that

configures a particular FPGA. Both sets of tools may be used to estimate the

number of resources used, which is a good indication of the complexity of a

design. To enhance the generality of our work, we use both sets of tools in all

our work, except for interfacing issues between the FPGA and μP sides of a

reconfigurable SoC, in which case we only use the Xilinx tools.

In particular, we synthesized our designs using Quartus 13.0, from In-

tel/Altera, and ISE 14.7, from Xilinx. To validate our novel digital circuits,

we tested them against the output of the background algorithms implemented

in Matlab. The validation aims for bit true design, i.e., zero bit error

rate (BER), using functional simulation. We also run static timing analy-

sis (STA) for timing closure. It is required to estimate max frequency of

operation and power consumption. A sequence of small images were used first

for manual validation. Afterward, HD images were tested automatically.

Both Intel/Altera and Xilinx offer reconfigurable SoCs for heterogeneous

computing, as shown in Fig. 1.9. The technology is similar, which means that

even though we use Xilinx tools alone, for part of our work, our conclusions

may generalize. Overall, Intel is a larger company than Xilinx, but the FPGA

division, formerly Altera, inside Intel is smaller than Xilinx, a company that

has been focused on FPGAs for a longer time than Intel.

13

Figure 1.9: Reconfigurable SoCs from leading suppliers. Intel (top) and Xilinx
(bottom) both offer heterogeneous platforms having an FPGA and a μP.

14

At the onset of this thesis, there were more reconfigurable SoC kits available

from Xilinx, which was the major reason we focused on their Zynq family of

devices. In recent years, both Xilinx and Intel have launched more advanced

reconfigurable SoCs. The Zynq family remains a low-cost solution. Normally,

a decision between the two vendors may consider the availability of custom

components for a project. Specific circuits, already embedded in the silicon,

will leave more generic resources available for other custom circuits, and will

have better performance due to ASIC-level optimizations.

We envision a portable, fully functional, nonlinear imaging system for HDR

computer vision applications, even though we focus on the ISPr required to get

there. Challenges arise in ensuring hard real-time performance when a general

purpose OS is running on the μP side of the SoC. Chapter 4, therefore, inves-

tigates design flows for heterogenous computing, mainly to make the FPGA

the master of the system. Unlike other parts of our work, where simulation

results from FPGA design tools suffice, we actually deployed our design in

a real Zynq device to investigate these challenges experimentally, especially

when scaled to HD resolutions at standard video rates.

1.2.2 FPN Correction and SPN Filtering

In terms of the chosen ISPg operations, FPN correction ensures that all pix-

els in an imaging system have the same response. Not only does it result in a

uniform image for a uniform scene but also it increases the signal-to-noise-and-

distortion ratio (SNDR), which depends on the signal-to-noise ratio (SNR) and

residual FPN, of non-uniform images for non-uniform scenes [48]. By lever-

aging a background algorithm that uses low-degree polynomials, this thesis

presents a generic digital circuit method for a nonlinear CIS.

The background algorithm was developed by Li et al. [34], where the av-

erage response of all pixels is considered to be the ideal response of each one.

Actual responses are mapped toward ideal responses using a set of low-degree

polynomials calibrated in the inverse direction. As with other FPN correction

methods in the literature, a one-time calibration is required. The polynomial

degree varies according to the complexity of the mapping, which is not the

15

bit shift
+

0
ˆ

jb

−y0

+

bit shift

+

+ quantize

look up
jL̂jŶ

quantize
0

ˆ
jB

1
ˆ

jb1
ˆ

jB

bit shift

quantize
jqb̂

jqB̂
x

x

yj

Figure 1.10: Background fixed-point algorithm for FPN correction. Here,
yj represents the actual pixel response, where j indexes pixels in sequence.

Parameters B̂jk represent FPN correction coefficients. We replace the “look
up” operation with SPN filtering and tone mapping. Taken from Li et at. [34].

same as the complexity of the nonlinear response.

Figure 1.10 summarizes Li et al.’s [34] algorithm. Assuming there are n

pixels, and that the polynomial degree is q, the number of operations, per

frame, required to implement FPN correction are as follows, provided q ≥ 2:

n(q + 2) additions; nq multiplications; and n(q + 1) bit shifts.

A related problem to FPN correction is SPN filtering. The latter is required

to deal with outliers, such as dead pixels, that cannot be properly handled

using FPN correction alone. Once again, we leverage a background algorithm

described very briefly in the same paper by Li et al. [34].

Chapter 2 presents our novel digital circuit methods to realize FPN cor-

rection and SPN filtering. In addition to proposing, validating, and evaluat-

ing digital circuits for these purposes, we also compare our results to analog,

mixed-signal, and digital circuit methods from the literature.

16

1.2.3 Histogram-Based Tone Mapping

Tone mapping is an essential ISPg operation for an HDR imaging system, such

as an imaging system based on log or linlog sensors, when humans are the end

users. The problem is that conventional displays are LDR, offering only about

two decades of DR. A TMO transforms an HDR image into one suitable for an

LDR display [14], while retaining the information richness of the former, such

as visible detail at all light levels between dark and bright limits. Another

requirement of a TMO, especially desired in HDR video applications, is to

avoid flickering and other temporal artefacts.

Ward Larson et al. [31] developed an algorithm to map scene luminance

to display brightness and called it tone mapping. They employed histogram

equalization with ceilings on the bin values, based on a model of human vision,

to avoid exaggerating the contrast. Our TMO is based on Li et al.’s [35] work,

which in turn is based on Ward Larson et al.’s work but with ceilings computed

to limit the visibility of temporal noise and residual FPN, of a nonlinear CIS,

after FPN correction. The required parameters, for Li et al.’s TMO, are

already determined during the FPN calibration process.

Figure 1.11 illustrates, at a high level, the background algorithm of the

tone mapping. It divides into two parts: one executes a mapping function;

and the other updates the mapping function from the histogram of a frame.

During real-time operation, the histogram of each frame is collected, and the

single-frame scene histogram is computed. A first-order low-pass filter (LPF)

is applied to the scene histogram, which defines a single-frame TMO, to get

the perceived histogram, which defines a multi-frame TMO.

If each frame in a video is treated independently, image noise and abrupt

scene changes may result in visual artefacts. Considering the temporal adap-

tation process of the human eye, Li et al. included the LPF to attenuate the

impact of noise and abrupt changes in the histograms. After FPN calibra-

tion, noise-and-distortion ceilings for an image sensor are determined. These

ceilings are applied to perceived histograms, creating what are called modi-

fied histograms. Thereafter, a mapping function for the video is built using

17

Low-pass filter
(LPF)

Enforcement
of ceilings

New histogram
of frame

Measured
brightness

Mapping function

Histogram
of frame

Display
intensity

Figure 1.11: Signal flow of the background TMO algorithm. Noise-and-
distortion ceilings are computed beforehand for a specific image sensor. Ide-
alized responses are mapped to display intensities, and the mapping function
is also updated, each frame. Taken from Li et al. [35].

a cumulative distribution function (CDF) computed from the modified his-

togram. Finally, idealized responses, i.e., sensor responses after FPN correc-

tion, are mapped to display intensities via the mapping function.

Li et al.’s work was developed and validated using a software algorithm,

running on a CPU in soft real time. Chapter 3 presents the design, validation,

and evaluation of efficient pipelined circuits that realize the TMO in hard

real time. A circuit implementation poses new challenges. For example, we

modify the background algorithm because otherwise it would not scale to HD

resolutions at standard video rates, within the constraint of low-cost FPGA

devices. The chapter also compares our results to relevant hardware solutions

that have been described in the literature.

18

Chapter 2

FPN Correction and SPN
Filtering

Nonlinear CMOS image sensors (CISs), such as logarithmic (log) and linear-

logarithmic (linlog) sensors, achieve high/wide dynamic ranges (DRs) in single

exposures at video frame rates. As with linear CISs, fixed pattern noise (FPN)

correction and salt-and-pepper noise (SPN) filtering are required to achieve

high image quality. This chapter presents a method to generate digital in-

tegrated circuits, suitable for any monotonic nonlinear CIS, to correct FPN

in hard real time. It also presents a method to generate digital integrated

circuits, suitable for any monochromatic nonlinear CIS, to filter SPN in hard

real time. The methods are validated by implementing and testing generated

circuits using field-programmable gate array (FPGA) tools from both Xilinx

and Altera. Generated circuits are shown to be efficient, in terms of logic

elements (LEs), memory bits, and power consumption. The scalability of the

methods to full high definition (HD) video processing is also demonstrated.

In particular, FPN correction and SPN filtering of over 140 megapixels per

second is feasible, in hard real time, irrespective of the degree of nonlinearity.

2.1 Introduction

In a review paper, Kim [28] of Samsung has explained the importance of

high dynamic range (HDR) imaging and examined several wide DR (WDR)

technologies, based on CISs, to achieve it. While “dual-exposed or multiframe-

19

capturing WDR sensors... will fill the role of real WDR sensors for a while,” he

concludes that “the ultimate goal of WDR sensor technology is to physically

extend the dynamic range of a sensor, based on pixel technology,” mainly to

avoid “motion artifacts such as the ghost effect.”

As for WDR “pixel technology,” Kim prefers the linlog sensor, a nonlinear

CIS with a response that transitions from linear, in dim lighting, to log, in

bright lighting. Whereas FPN does degrade the raw image quality of linear

sensors [15], the degradation is worse with log and linlog sensors due to their

nonlinearity [11], [22]. Moreover, because of “the variation of a knee point”

(Kim’s words), the degree of nonlinearity is greater in linlog sensors, compared

to log sensors.

An image sensor is a matrix of pixel sensors, so ‘sensor’ has two context-

sensitive meanings in this chapter. Because perfect uniformity is impossi-

ble in complementary metal-oxide-semiconductor (CMOS) fabrication, FPN

is caused by time-independent sensor variations from pixel to pixel [34]. The

response of a linear sensor is given by an offset and a gain. Offset varia-

tion is usually corrected by analog circuits, implementing correlated double

sampling (CDS), integrated on the same chip [15], i.e., the linear CIS. Gain

variation is usually corrected by digital circuits, using stored data obtained

via calibration, integrated with other functions on a second chip [43], i.e., an

image signal processor (ISPr).

As for circuit-based nonlinear FPN correction, the literature has addressed:

analog circuits to correct offset variation only for both log and linlog sensors

[26], [39]; mixed-signal circuits to correct both offset and gain variation of linlog

sensors [50]; and digital circuits to correct offset, gain, and bias variation of

log sensors [20]. Some authors are motivated to avoid calibration or use self-

calibration [26], [39], [50]. Other authors, like us, are motivated to achieve the

highest image quality possible and so, as with linear sensors, adopt calibration

[20].

This work contributes, validates, and evaluates a method to generate digi-

tal circuits, suitable for ISPr integration, to correct all FPN variation, in hard

real time, of ‘arbitrary’ sensors. Hard real time means that processing occurs

20

strictly in sync with a clock signal, in this case the same clock that drives

CIS readout. An ‘arbitrary’ sensor is one where the response is defined by a

monotonic (non)linear function, which need not be specified, having param-

eters that can vary from pixel to pixel. This includes linear, log, and linlog

sensors.

This work also contributes, validates, and evaluates a method to generate

digital circuits, suitable for ISPr integration, to filter SPN of any monochro-

matic CIS. It is well known that stuck pixels, such as dead (always dark) or

hot (always bright) pixels, require correction by the ISPr with linear sensors

[43]. In contrast, the literature on integrated circuits for log and linlog sen-

sors, including the above citations [20], [26], [39], [50], does not address SPN

filtering, which like FPN correction is affected by nonlinear responses.

The proposed digital circuit methods exploit recent software algorithms

that our group previously published [34]. In Section 2.2, we summarize the

background algorithms and present the novel methods under distinct sub-

headings.

As described in Section 2.3, the proposed methods are validated and evalu-

ated by generating and simulating very-high-speed integrated circuits (VHSICs),

using FPGA tools, from Xilinx and Altera, and VHSIC hardware description

language (VHDL) designs. Section 2.3 also elaborates on the novelty and

significance of this work, both of which have been introduced above.

Section 2.4 concludes the chapter by summarizing its motivation, back-

ground, methods, results, and discussion.

2.2 Background and Methods

In this section, we summarize relevant background, i.e., software algorithms

and underlying concepts, that we have previously published. We also propose

novel methods, i.e., digital circuit designs and a generic design flow, to imple-

ment FPN correction and SPN filtering, for one or more copies of an ‘arbitrary’

image sensor, in hard real time.

21

2.2.1 Generic Design Flow

Our digital circuits are coded in VHDL, which is a popular hardware de-

scription language (HDL) that allows designs to be implemented in a wide

variety of technologies, such as low-cost FPGAs from Xilinx and Altera, or

high-performance CMOS application-specific integrated circuits (ASICs) from

TSMC, IBM, etc. However, we explain our circuits and methods using figures,

tables, equations, and words.

We target FPGA implementations, due to the preliminary nature of our

work, but occasionally we make design choices considering ASIC implemen-

tations, anticipating future work. Moreover, we go beyond proposing novel

digital circuits for a specific image sensor by proposing methods that generate

novel digital circuits for an ‘arbitrary’ image sensor.

These digital circuit methods are implemented using the generic FPGA

design flow shown in Fig. 2.1. Unlike the standard design flow, in which

Design Specification and Design Entry are both manual, we introduce three

aspects that make the Design Entry automatic. The new aspects also add

a scripting environment, in this case Matlab, to the standard design flow,

which otherwise needs only FPGA design tools, such as ISE from Xilinx or

Quartus from Altera.

Normally, digital circuits are realized in FPGAs as follows. First, a high-

level description, called the Design Specification, is produced, e.g., using fig-

ures, tables, equations, and words. Design Entry means the high-level de-

scription is coded in a low-level HDL, which enables Functional Simulation.

Using FPGA design tools, a Gate Level Model is obtained via Synthesis. This

model, which enables Gate Level Simulation, has more importance with ASIC

implementations.

To achieve a binary file, called firmware, suitable for FPGA Download, the

design flow has aspects that target a specific FPGA device family, such as the

Xilinx Spartan-6 or the Altera Cyclone III. Under Translation & Mapping,

the design is flattened into a single ‘netlist’, removing modular aspects, and

functional resources, i.e., logic and memory units, of the FPGA family are

22

Design
Specification

Design
Entry

Synthesis

Gate Level
Model

Translation
& Mapping

Place &
Route

FPGA
Download

Functional
Simulation

Gate Level
Simulation

Timing
Simulation

Test
Bench

Generator

Design
Template

Design
Parameters

Manual
Automatic
Not done

Legend

Figure 2.1: Generic FPGA design flow adopted here. The dashed box shows
aspects added to a standard design flow. Functional Simulation suffices to
demonstrate validity and estimate complexity. Timing Simulation suffices to
evaluate max frequency, of valid operation, and power consumption.

allocated. Finally, Place & Route, which enables Timing Simulation, selects

and configures resources physically available on a chosen FPGA device.

As shown in Fig. 2.1, instead of manual Design Entry, we generate VHDL

code automatically from a Design Template, i.e., VHDL pseudo-code that is

image sensor independent, and Design Parameters, i.e., data that is image

sensor dependent. Using a Matlab program, these files are processed to gen-

erate the VHDL code of a digital circuit for a specific image sensor. Although

VHDL has some capability, i.e., generics, to support templating, we required

the sophistication of Matlab to realize a recursive digital circuit method.

Because digital circuits are predictable and FPGA testing tools are so-

phisticated, reliable results are possible without performing FPGA Download.

We use Functional Simulation to validate operation, debugging included. Al-

though we may use it also to estimate complexity, i.e., logic and memory

23

needed, we evaluate complexity after Place & Route for 100% accuracy. We

do not use Gate Level Simulation but we do use Timing Simulation, including

static timing analysis (STA), to evaluate max frequency and power consump-

tion.

2.2.2 FPN Correction

In this chapter, as in relevant literature, the word ‘sensor’ may mean either an

image sensor or one pixel sensor thereof. Sometimes, the meaning is specified.

Sometimes, the meaning is evident. Sometimes, either meaning works.

Background

To create an effective and efficient algorithm, which Li et al. previously pub-

lished [34], for the FPN correction of an ‘arbitrary’ image sensor, a key concept

is that FPN correction need not invert monotonic (non)linear responses of the

pixel sensors. Using experimental data from an available log sensor, which we

previously documented [37], Fig. 2.2 has been newly prepared to illustrate this

concept.

Calling scene luminance x and pixel response y, in Fig. 2.2, we see first

that offset correction does not require computing x. Second, the result of

offset correction is still highly nonlinear over the WDR. Although offset and

gain correction are not shown, these two observations remain true. Because

the ‘knee point’, called the bias [22], varies in this example, even offset and

gain correction cannot result in overlapping responses over the WDR, the ideal

result of FPN correction.

To improve FPN correction of log sensors, the offset, gain, and bias (OGB)

approach uses a specific model [22]:

yj = aj + bj ln(cj + xj) + εj, (2.1)

where aj, bj, and cj are called the offset, gain, and bias of pixel j, with 1 ≤
j ≤ n, respectively. Temporal and quantization noise, plus residual FPN, are

represented by εj above. After calibration, using uniform luminance of varying

24

10-2 100 102 104 106

Scene Luminance (cd/m2)

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

P
ix

el
 R

es
po

ns
e

(L
S

B
)

104

Before Correction (1)
Offset Correction (1)
Before Correction (2)
Offset Correction (2)
Ideal Correction

Figure 2.2: FPN correction need not invert nonlinear responses. Two pixels
are shown from a log CIS having 48 × 64 pixels. Offset correction, which is
inadequate, simply adds a pixel-dependent number to each response. Ideal
correction is well approximated, in this case, using cubic polynomials.

intensity, FPN correction is achieved as follows:

x̂j = exp((yj − âj)/b̂j)− ĉj, (2.2)

where âj, b̂j, and ĉj are parameters estimated by the one-time calibration, and

x̂j is the OGB correction.

The above approach is unsuitable for FPN correction of an ‘arbitrary’ sen-

sor. As it requires inversion of the nonlinear response, it may not even be the

best approach for FPN correction of a log sensor. Thirdly, modeling a linlog

sensor in a similar way to (2.1) proves complicated [11].

An alternative, i.e., our inverse polynomial regression (IPR) approach [34],

uses the following generic model:

yj = fj(xj) + εj, (2.3)

where fj is a monotonic (non)linear function with parameters that vary with

pixel j. We showed that FPN correction is possible, using low-degree polyno-

25

mials, as follows:

ŷj = yj + b̂j0 + yj(b̂j1 + yj(b̂j2 · · ·+ yj(b̂jq))), (2.4)

where b̂jk are the coefficients of degree q polynomials, with 0 ≤ k ≤ q, and ŷj

is the IPR(q) correction.

Irrespective of q, IPR(q) correction requires arithmetic only. Moreover,

IPR(0) correction is simply offset correction, IPR(1) correction equates to

offset and gain correction, and IPR(3) correction is ideal for the log sensor

example of Fig. 2.2, over all 3, 072 pixels [34]. The ideal response, which

remains highly nonlinear over the WDR, is shown in Fig. 2.2.

We also developed a fixed-point version of FPN correction [34]. Denoting

binary-point positions and word lengths as sk and tk, respectively, double-

precision coefficients b̂jk convert to signed-integer coefficients Bjk as follows:

Bjk = round(2−sk b̂jk), (2.5)

|Bjk| < 2tk−1. (2.6)

We showed how to calculate optimal sk and tk values, given a total word length

t, in bits per pixel (bpp):

t = t0 + t1 + t2 · · ·+ tq. (2.7)

The binary-point shifting of (2.5), to scale coefficients before rounding,

means that the FPN correction of (2.4) must be amended, to undo the binary-

point shifting, as follows:

Yj = yj + 2s0(Bj0 + 2s1−s0yj(Bj1 + 2s2−s1yj(Bj2

· · ·+ 2sq−sq−1yj(Bjq)))),
(2.8)

where Yj denotes the result of fixed-point IPR(q) correction. When t is suffi-

ciently large, the results of floating-point and fixed-point correction are indis-

tinguishable [34].

To complete the explanation, two additional details are needed. First,

instead of yj in the right hand side (RHS) of (2.8), except the leftmost yj, we

use the following:

y′j = yj − y0, (2.9)

26

where y0 is an unsigned-integer constant. Because yj, the response of pixel

j after an analog-to-digital converter (ADC), is an unsigned integer, we use

(2.9) to produce signed integers where the worst-case magnitude is significantly

lower. This change allows us to significantly lower the total word length t

required by the fixed-point correction [34].

The final detail concerns binary-point, or bit, shifts in the RHS of (2.8).

Because s0 is expected to be non-negative in an optimal configuration, it entails

a left shift. The left shift of an integer stays an integer. On the other hand,

sk − sk−1 for 1 ≤ k ≤ q may be negative, entailing potential right shifts.

The right shift of an integer may have a fractional part. To avoid fractional

parts and reduce word lengths of intermediate values, a round operation is

performed after each shift in (2.8), except the leftmost one. This turns the

fixed-point correction into a more efficient integer correction [34].

Method

Because FPN calibration is a one-time process with no real-time constraints,

there is no need to design a circuit to implement it. The software algorithm

we detailed previously [34], implemented in Matlab, suffices for this purpose.

However, we require a digital circuit to implement FPN correction efficiently

in hard real time. Moreover, because we want a solution not just for one

nonlinear image sensor but for a wide variety of them, we use our generic

design flow, shown in Fig. 2.1, to realize a digital circuit method.

Parameters of the FPN correction include: the polynomial degree, q; the

binary-point positions, sk, and word lengths, tk, where 0 ≤ k ≤ q; the number

of pixels, n; the polynomial coefficients, Bjk, where 0 ≤ j ≤ n− 1 assuming 0-

based indexing, what VHDL uses, instead of 1-based indexing, i.e., 1 ≤ j ≤ n,

what Matlab uses; and the word length, tADC, of pixel responses, yj. Because

FPN correction is agnostic to the division of n pixels into n1 rows and n2

columns, where n equals n1n2, the latter are not parameters.

For each pixel j, we pack the coefficients Bjk, where word lengths tk may

vary, into t-bit words denoted Bj, where t in (2.7) is constant. As this is done

once, it is done in Matlab after calibration. The resulting tn-bit data is not

27

Bj

Bj0

Bj1
z˗1

z˗1

Bj2

Bj3 z˗1

z˗1 z˗1

>>

z˗1

z˗1

z˗1

z˗1

z˗1

z˗1 z˗1

>>

z˗1

>>

<<

z˗1 z˗1

z˗1 z˗1 z˗1 z˗1 z˗1 z˗1 z˗1

z˗1 z˗1

-y0

yj

Yj

D
em

u
x

Figure 2.3: FPN correction using a recursive pipeline circuit. This schematic
shows: offset correction in black; offset and gain, i.e., linear, correction in blue
and black; quadratic correction in green, blue, and black; and cubic correction
in red, green, blue, and black. Bus operations � and � represent bit shifts.

a part of the proposed FPN correction circuit but is external data, e.g., stored

in flash memory, that is repeatedly read into the circuit synchronously with

yj, the response of pixel j.

Given an image sensor design, Bj may be the only set of parameters that

needs to vary with each instance, or fabricated copy, of the design. The re-

maining parameters may be fixed, which therefore fixes the FPN correction

circuit. Whereas FPGA implementations allow circuit reconfiguration, ASIC

implementations do not. In his FPN correction work, Hoefflinger [20] also

externalized some of the coefficients.

Fig. 2.3 presents a schematic, or rather multiple schematics, of the proposed

FPN correction circuit. An important feature of the circuit is its recursive

nature. The IPR(3) circuit has the IPR(2) circuit as a sub-circuit. In turn,

the IPR(2) circuit has the IPR(1) circuit as a sub-circuit. For q > 3, the

IPR(q) circuit follows from the pattern. Even though the IPR(1) circuit has

the IPR(0) circuit as a sub-circuit, they are both special cases as neither follows

the higher-degree pattern.

Digital circuit elements may be classified as sequential logic, operating

synchronously with a clock signal, or combinational logic, operating asyn-

28

chronously. Unlike software algorithm steps running on central processing

units (CPUs), where parallel processing is absent or limited to a few CPU

cores, digital circuit elements always operate in parallel, including state changes

of memory bits in sequential logic. However, the state changes happen either

on rising or falling edges, depending on design, of a clock signal.

In Fig. 2.3, addition (+), subtraction (−), multiplication (×), and delay

(z−1) elements are synchronous, each with a latency of one clock cycle. Other

elements are asynchronous. Digital circuits require synchronous elements, for

reliable operation at very high speed, because of race conditions that arise

in a purely asynchronous design. A sequence of synchronous elements with

intervening asynchronous elements, as shown in the figure, results in a pipeline

circuit, which exploits parallel processing in the fashion of an assembly line.

Elements are arranged, in Fig. 2.3, to illustrate the pipeline processing.

Each column of synchronous elements performs one arithmetic operation while

equally delaying other signals required for a subsequent arithmetic operation,

final one aside. Although a pixel is corrected at each clock cycle, IPR(q)

correction has a latency of 2(q + 1) clock cycles, for q > 0. Because offset

correction does not require (2.9), i.e., a subtraction, IPR(0) correction takes

exactly one clock cycle.

For high-speed operation, i.e., to increase the max frequency of the clock

signal, elements are kept as simple as possible. The combinational logic, in

Fig. 2.3, consists primarily of bus operations, where a bus is a group of wires,

each carrying one bit of a digital signal. The Demux element, for ‘demulti-

plexer’, partitions a t-bit bus, carrying Bj, into multiple tk-bit buses, carrying

Bjk, where 0 ≤ k ≤ q. The left-shift (�) element, before the final addition,

simply pads the incoming bus with s0 zero-valued least significant bits (LSBs).

The right-shift (�) elements, in Fig. 2.3, require elaboration. First, the

value ∆sk of each shift, from left to right, is sk − sk−1, where k goes from

q to 1, respectively. Except for positive ∆sk, in which cases a left shift is

implemented as described above, the |∆sk| LSBs of each incoming bus are

ideally discarded. However, this implements a right shift with rounding down,

29

which may be expressed as follows:

Y � |∆s| = b2∆sY c, (2.10)

where Y is the digital signal on the incoming bus.

Although convenient for a circuit implementation, using (2.10) leads to bit

errors because the background algorithm uses right shifts with rounding off.

Because the difference between rounding off and rounding down is either 0 or

1, a right shift with rounding off may be implemented as follows:

Y � |∆s| = b2∆sY c+ cout, (2.11)

where cout, for carry out, is a one-bit correction. This exploits a bus operation

but ensures a bit-true implementation.

For a u-bit signed-integer signal Y , the carry out, cout, of Y � v may be

calculated as follows, assuming a standard two’s complement representation

for negative values:

cout = Yv−1 ∧ (Ȳu−1 ∨ drem), (2.12)

drem = Yv−2 ∨ Yv−3 · · · ∨ Y0, (2.13)

where Yu−1 is the most significant bit (MSB) of Y (its sign bit), Yv−1 is the

MSB of the v discarded bits, and Yv−2 to Y0 are the remaining discarded bits.

Symbols ∧, ∨, and ¯ are logical AND, OR, and NOT operators, respectively.

Addition of the carry out in (2.11), to correct each right shift, may actually

be integrated into a following adder. In Fig. 2.3, every right shift element is

followed by an adder element. Standard two-input adders always have a third

one-bit input, called the carry in, that is added to the sum of the two inputs.

Therefore, the carry out of the right shift may be directed to the carry in of the

adder. This efficiency may be readily exploited with an ASIC implementation.

With an FPGA implementation, even though adder elements support carry

in, the exact mapping of operations to circuitry is, however, fully automatic.

To complete the digital circuit, all bus sizes in Fig. 2.3 must be specified.

Input signal yj and constant signal −y0, the two’s complement of y0, are both

tADC bits wide. Input signal Bj is t bits wide. After de-multiplexing, signals

30

Bjk are tk bits wide, where 0 ≤ k ≤ q. Delays do not change the bus sizes. The

output bus size of each adder is max(u, v), for inputs with bus sizes u and v.

While, in theory, such adders could overflow by one bit, it is unlikely because

each addition represents a perturbation to correct, in stages, deviation from

an ideal response that is never close to the saturation limits. In the unlikely

event of overflow, the outlier would be removed by the SPN filter of the next

section. Finally, the output bus size of each multiplier is u+v, for inputs with

bus sizes u and v.

2.2.3 SPN Filtering

Whereas Li et al. have previously disclosed the SPN filtering approach [34],

which was implemented as a software algorithm, it was only briefly justified.

Before introducing a novel digital circuit method, we briefly review the back-

ground approach, while offering additional justification for it.

Background

Stuck pixels are one source of SPN, also called impulse noise. Because stuck

pixels may be identified during calibration, instead of filtering they may be

corrected using a static procedure, similar to FPN correction.

However, with nonlinear pixels, such as the log pixels shown in Fig. 2.2,

pixels may appear stuck at some luminances, behaving as outliers after FPN

correction, but may contribute useful information at other luminances. In

addition, there may be a few nonlinear pixels that are truly stuck. An SPN

filtering approach can deal with both cases dynamically.

Using experimental data from the previously-documented log sensor [37],

Fig. 2.4 has been newly prepared to illustrate how FPN correction and SPN

filtering are complementary. Images are shown of six uniform scenes at three

stages of signal processing. Whereas FPN is mostly corrected by the FPN

correction, it yields SPN especially at lower light levels. The SPN, which

includes bright and dark pixels that vary with luminance, is filtered by the

SPN filtering.

Median filtering is a well-known approach to dynamically remove SPN. A

31

4.3e+0 2.6e+1 1.9e+2 1.5e+3 9.8e+3 7.8e+4

Scene luminance (cd/m2)

yj

Yj

Y'j

Im
ag

e
si

gn
al

Figure 2.4: FPN correction and SPN filtering are complementary. To deal
with noise in raw images (top row), from a log sensor over a WDR (left to
right), both correction (middle row) and filtering (bottom row) are needed.

median filter replaces each pixel’s response with the median response from a

local window. For simplicity, we consider only monochromatic image sensors,

avoiding the complexities of colour filter arrays for now.

Fig. 2.5 illustrates the different windows used by our SPN filter. Image

dimensions are preserved because a median is computed at every pixel. Small

symmetric windows are chosen to minimize distortion. For interior pixels,

the pixel and four neighbours are used. For boundary pixels, at the borders

and corners, the pixel and two neighbours are used. When we developed our

software algorithm [34], we were thinking ahead to a circuit method. With

odd-size windows, only sorting is needed to compute medians; averaging is not

needed.

Method

Figure 2.6 presents a schematic of our SPN filter. We use our generic design

flow, of Fig. 2.1, to realize a digital circuit method, suitable for a variety of

monochromatic image sensors, as opposed to a digital circuit, suitable for just

one set of parameters. The parameters in question are: n1 and n2, which are

the number of rows and columns, respectively, in the n-pixel image, where n

equals n1n2; and tFPN, which is the word size of the input signal, Yj. Additional

parameters, namely trow and tcol, are explained below.

Because FPN correction precedes SPN filtering, we exploit pipeline pro-

cessing in the latter also. Whereas it does not matter for FPN correction

32

c b d c b d c

a a

e e e

c d c b c

a a a

e e

c b d c b d c

Figure 2.5: SPN filtering employs windows that vary with pixel. In each
window, pixels are coloured red except for the center pixel, which is coloured
yellow. The center pixel is replaced with the median value of its window.

whether pixels are processed in row-major or column-major order, we assume

they are processed in row-major order, for clarity, in explaining the SPN fil-

tering. The first row of n2 pixels is processed, one-by-one from left to right,

followed by the second row, and so on.

The first stage of the SPN filter is a first-in first-out (FIFO) buffer. Its five

outputs, denoted a to e in Fig. 2.6, are delayed versions of the input signal, Yj.

The delays are 0, n2 − 1, n2, n2 + 1, and 2n2 clock cycles, respectively. They

are chosen so that, when c corresponds to an interior pixel, a to e correspond

to its five-pixel cross-shaped window, as shown in Fig. 2.5. Bus sizes of the

input and output signals equal tFPN.

Bypassing the second stage momentarily, the third stage of the SPN filter

is a simplified pipeline sorter of five digital signals, e.g., FIFO outputs a to e.

A five-input pipeline sorter may be realized using multiple two-input pipeline

sorters. Although all five signals may be fully sorted with a latency of five

clock cycles, the circuit may be simplified because only the third output, i.e.,

the median signal, is required. Each two-input sorter outputs the same two

signals in min-max order with a latency of one clock cycle. Only one of the

two outputs is required in some cases. All bus sizes equal tFPN.

On their own, a combination of the above FIFO and sorter stages would

33

j-n₂

z˗(n₂-1)

z˗1

z˗1

z˗(n₂-1)

z˗1

min

maxb

c

d

e

a a'

b'

c'

d'

e'

FIFO Sorter

Yj

Router

Encoder

min

max

min

max

min

max

z˗1

min

max

z˗1

z˗1

min

max

min

max

row

col

Y'j

Figure 2.6: SPN filtering using a three-stage pipeline circuit. The FIFO buffers
two rows of pixel values. The sorter computes the median of five pixel values.
The ‘no-delay’ router is needed to compute medians for three-pixel windows
at the image corners and borders. Table 2.1 elaborates on the router logic.

compute invalid outputs at boundary pixels, where a five-pixel cross-shaped

window cannot be formed. One solution is to add a one-bit output signal, of

the SPN filter, to indicate validity of the main output signal, Y ′j . This solution

would require some combinational logic to distinguish interior from boundary

pixels. At a cost of some more combinational logic, valid outputs may be

computed at the boundary pixels and the additional one-bit signal may be

avoided.

The second stage of the SPN filter, between the FIFO and the sorter in

Fig. 2.6, is a router. The router enables median filtering of three-pixel windows

at the boundary, as shown in Fig. 2.5, using the same FIFO and sorter. Math-

ematically, the median of three numbers equals the median of five numbers

where two of the original three numbers are copied.

Table 2.1 elaborates on the router. The position of the center pixel, denoted

c in Figs. 2.5 and 2.6, is given by its address j. An encoder converts the

address, which is trow + tcol bits wide, into a four-bit code. This code controls

multiplexers that, at boundary pixels, replace two of the five inputs a to e with

two selected copies. The five outputs a′ to e′ of the router, where c′ always

equals c, become inputs of the sorter.

For the above reasons, SPN filtering requires a pixel-address input signal,

unlike FPN correction. With pipeline processing, careful attention must be

given to synchronization when there are multiple input signals. Because a

34

Table 2.1: Combinational logic performed by the router. The encoder outputs
a four-bit code, which controls the multiplexers, based on the center pixel
address. See Figs. 2.5 and 2.6 also.

Pixel address (j) Encoder a′ b′ c′ d′ e′

Corner, top-left 1010 a b c a b
Border, top 1000 b b c d d
Corner, top-right 1001 a a c d d

Border, left 0010 a a c e e
Interior 0000 a b c d e
Border, right 0001 a a c e e

Corner, bottom-left 0110 b b c e e
Border, bottom 0100 b b c d d
Corner, bottom-right 0101 d e c d e

equals Yj in Fig. 2.6, the address of pixel c does not equal j. One solution

is to use an address signal j delayed by n2 clock cycles, the delay between c

and a. Because delay elements map to memory resources, this would increase

memory use by about 50%.

The image sensor, whose output signal, yj, becomes the input signal in

Fig. 2.3, itself requires an address signal, j. Addresses would be supplied in

sequence by a controller circuit, typically using counters, wholly separate from

the FPN correction and SPN filtering. We assume that, with minor changes,

e.g., extra counters, the same controller circuit could also provide a ‘delayed’

address signal, denoted j−n2 in Fig. 2.6, suitable for SPN filtering. The exact

‘delay’, implemented using counters not delay elements, must also account for

the latency of FPN correction, which is 2(q + 1) clock cycles, for q > 0, or 1

clock cycle, for q = 0.

Assuming the address signal may be demultiplexed into row and column

parts that are trow and tcol bits wide, respectively, the logic of the encoder, in

Fig. 2.6 and Table 2.1, is simple. The first two bits of the code are computed

from the row address, and the last two bits from the column address. The first

bit is one at the first row only, the second bit is one at the last row only, the

third bit is one at the first column only, and the fourth bit is one at the last

column only.

Because memory is relatively scarce in a low-cost FPGA, our SPN filtering

35

circuit avoids buffering a whole image frame, i.e., all n pixels, before comput-

ing medians. Only two rows, i.e., 2n2 pixels, are buffered, the fewest values

needed to form cross-shaped windows for interior pixels. Not only does this

reduce memory requirements from O(n) to O(
√
n) bits, because n2 is usually

proportional to
√
n, but also it reduces latency by the same order of magni-

tude.

2.3 Results and Discussion

Section 2.2 presented methods to generate digital circuits to correct FPN and

filter SPN in hard real time. These methods are validated and evaluated by

generating and simulating specific circuits using FPGA tools from Xilinx and

Altera. Results are compared to the state of the art.

2.3.1 Test Benches

Using the design flow shown in Fig. 2.1, digital circuits are generated for

specific FPGA devices, namely the Xilinx XC6SLX4 and the Altera EP3C5.

Both Xilinx and Altera, now part of Intel, have multiple device families. The

lowest-cost families still in production, at the time of this work, are the Xilinx

Spartan-6 [57] and the Altera Cyclone III [3]. The chosen devices, i.e., the

XC6SLX4 and the EP3C5, are the simplest ones in these lowest-cost families.

We use ISE 14.7, from Xilinx, and Quartus 13.0, from Altera, for synthe-

sis, translation-and-mapping, place-and-route, etc. Validation involves manual

signal analysis and automatic comparison against background software algo-

rithms. Evaluation assesses circuit complexity, max frequency, and power

consumption versus parameters of interest.

For FPN correction, the main parameter is the polynomial degree. As a

degree of 3 suffices for a log sensor [34], we considered degrees from 0 to 5. For

SPN filtering, the main parameter is the number of pixels, or rather columns.

We considered five video formats, which specify the number of pixels, division

into rows and columns, and frame rate. Power consumption depends on clock

frequency, which equals the number of pixels times the frame rate, in frames

36

Table 2.2: Video formats used to evaluate proposed methods. Frames are
composed of n1 scan lines and n2 pixels per line. The clock frequency is the
number of pixels times the frame rate.

Format Pixels (n1 × n2) Rate Clock

TTVGA 3, 072 (48× 64) 30 fps 92.16 kHz
HQVGA 38, 400 (160× 240) 30 fps 1.152 MHz
VGA 307, 200 (480× 640) 30 fps 9.216 MHz
FHD 2, 073, 600 (1080× 1920) 30 fps 62.21 MHz
4KUHD 8, 294, 400 (2160× 3840) 30 fps 248.8 MHz

per second (fps).

Table 2.2 lists three popular video formats, two of which are HD formats,

where the pixel numbers are roughly equidistant on a log scale. They are the

video graphics array (VGA), full HD (FHD), and 4K ultra HD (4KUHD) for-

mats. While tenth tenth VGA (TTVGA) is a non-standard format, it matches

our log sensor prototype [37]. The half quarter VGA (HQVGA) format, a rare

standard format, fills a gap between the TTVGA and VGA formats on a log

scale.

Recalling Fig. 2.1, Functional Simulation after Design Entry suffices for

validation but Place & Route is needed to evaluate complexity accurately.

Timing Simulation is used to evaluate max frequency and power consumption.

The max frequency is the highest clock frequency at which the circuit operates

correctly. It is determined via STA, which identifies critical circuit paths. A

video format is supported if its clock frequency, in Table 2.2, is below the max

frequency. Power consumption is evaluated only for supported video formats.

2.3.2 FPN Correction

Given that the simplest FPGA devices were chosen, in the lowest-cost device

families from two leading vendors, the following results show that the generated

FPN correction circuit is not only effective but also efficient.

Validation

Illustrated in Fig. 2.7, the initial validation of the generated FPN correction

circuit was done manually for a 4 × 4 pixel subset of the TTVGA format,

37

-74

-
49

-16 -19 -11

-7 16 19 20

6 26 21 17

-2 17 71 7

-17

19771 19763 19770 19781

19741 19750 19716
19731

197
35

197
10

197
24 19712

197
72

197
28

196
26 19727

……

……

……

Clock

52 -24 44 -106 38

-31 -20 -25 -16-33

…… -19 -11 -17 -7-16

UU U 19771 19763 19770

…… 19259 19907 19378 20589 19373

Quadratic FPN
6 clock delay

19259 19907 19378 20589

19373 19750 20004 19779

18927 20982 20188 19536

20860 19656 18626 20159

-
74-
49

-33 -31 -20 -25
-
16

32 37 42

12 35 41 35

-3 35 198 14
-
74-
49

52 -24 44 -106

38 13 -21 13

104 -152 -41 37

-137 24 257 47

…… ……

Yj

Bj2

Bj0

Bj1

yj

Bj2

Bj1

Bj0

…… 25625y0

yj

Yj Parameters

q

s0

s1

tADC

2

3

-9

-21

12

s2

t0

t1 11

t2 9

16

Figure 2.7: Initial validation of a generated FPN correction circuit. Input, out-
put, and intermediate signals are shown for a small-format test case (Fig. 2.3
elaborates on the signals). Larger-format test cases were validated by auto-
matic comparison of circuit and software outputs, given the same inputs.

using experimental data from a log sensor [37]. The figure shows, at left, the

input image, yj, the output image, Yj, and the FPN correction coefficients,

Bjk. Circuit parameters are given, at right.

Validation was done for the chosen Xilinx and Altera devices. FPGA

tools are used to analyze input, intermediate, and output signals, depicted

in Fig. 2.7, in simulated hard real time, i.e., against a clock signal with fixed

period. For a small-format test case, the expected intermediate and output

signals, including latencies, may be calculated. For example, the first output,

Y1, may be manually calculated as follows:

y′1 = 19259− 25625 = −6366 (2.14)

Y1 = 19259 + 23(52 + [2−9−3(−6366)(−33

· · ·+ [2−21+9(−6366)(−16)])])

= 19771,

(2.15)

where square brackets indicate rounding.

As shown in Fig. 2.7, the correct output appears with a latency of 6, i.e.,

38

0 1 2 3 4 5
Polynomial Degree

0

100

200

300

400

500

600

700

800

Lo
gi

c
E

le
m

en
ts

0

20

40

60

80

100

120

140

160

180

200

M
em

or
y

B
its

Xilinx Logic
Altera Logic
Xilinx Memory
Altera Memory

Figure 2.8: Complexity of FPN correction vs. polynomial degree. Required
LEs and bits depend linearly on degree, Altera memory for offset correction
aside. Even so, these requirements use a tiny fraction of available resources.

2(q + 1), clock cycles, as expected. Unknown signal values, based on initial

conditions of memory elements, are indicated with a ‘U’, as with the FPGA

tools.

Manual validation on small-format test cases was key to debugging all

issues. For large-format test cases, the same input data was processed by the

generated circuit and a Matlab implementation of the background algorithm.

The two output data sets were compared bit-for-bit in Matlab to ensure a

bit-true design, i.e., zero bit error.

Complexity

Given functional correctness, we then analyzed the complexity of generated

circuits, illustrated in Fig. 2.8, versus polynomial degree, q. The word lengths

of the pixel response, tADC, and of the packed correction coefficients, t, were

kept constant, at 16 and 32 bits, respectively. Parameters sk and tk were

automatically determined [34].

In Fig. 2.8, actual data is shown using symbols, for each FPGA device,

39

and trends are shown using best-fit lines. Complexity is measured in LEs

and memory bits, on the left and right y-axes, respectively. The LEs required

grows roughly linearly with degree (R2, the coefficient of determination, equals

80% and 86% with Xilinx and Altera, respectively). Outliers aside, i.e., degree

zero with Altera, the bits required also grows linearly with degree (R2 equals

92% and 93% with Xilinx and Altera, respectively).

More significant than linearity perhaps, the generated FPN correction cir-

cuits are of very low complexity relative to the available resources, leaving

plenty of LEs and bits for other ISPr operations on the same FPGA. The

available resources in the chosen devices, i.e., the simplest ones in the lowest-

cost families, are 8, 648 LEs and 297, 984 bits with Xilinx, and 10, 318 LEs and

423, 936 bits with Altera.

Frequency

Next, we determined the maximum clock frequency at which functional cor-

rectness is maintained. These results are shown in Fig. 2.9 versus polynomial

degree, as before. Other parameters were unchanged.

Notwithstanding the lowest degrees, at which the generated circuit can

run faster, the max frequency is approximately constant in both FPGAs. Re-

flecting on Fig. 2.3, each increase in degree introduces a synchronous stage

in the recursive pipeline circuit. However, each stage is composed of parallel

circuit paths where the worst-case circuit path is of constant complexity. This

explains the trends in Fig. 2.9.

What is also significant is that the max frequency is high enough, in both

FPGAs, to support FPN correction of FHD video in hard real time. Horizontal

dashed lines, shown in Fig. 2.9, indicate the frequencies, listed in Table 2.2,

required to support the FHD and 4KUHD formats.

Power

Our final results, shown in Fig. 2.10, concern power consumption. Because

this depends on clock frequency, we use the corresponding frequencies, listed

in Table 2.2, for the supported video formats. We also vary the polynomial

40

0 1 2 3 4 5
Polynomial Degree

107

108

109

M
ax

 F
re

qu
en

cy
 (

H
z)

 4KUHD

FHD

Xilinx
Altera

Figure 2.9: Max frequency of FPN correction vs. polynomial degree. Except at
the lowest degrees, max frequencies are essentially independent of polynomial
degrees. FHD and simpler video formats are readily supported.

degree, as before. Other parameters were unchanged.

In Fig. 2.10, total power is decomposed, using a stacked bar graph, into

static and dynamic components, and this is done for each device. The FPGA

tools enable this decomposition, where the static consumption represents the

background power consumed by the device, an approximate constant that is

independent of the circuit and its operation.

Not only is the total power on the order of 50 mW, in Fig. 2.10, but also

the dynamic power is, in general, low relative to the static power. Except for

the FHD video format, where the power increases a little and depends a little

on degree, the dynamic power is otherwise nearly constant.

2.3.3 SPN Filtering

Evaluation of the generated SPN filtering circuit proceeds similarly to the

preceding evaluation of the generated FPN correction circuit. Therefore, we

will be brief.

41

0

20

5

40

4

P
ow

er
 (

m
W

)

60

FHD3

Degree

80

VGA

Format

2

100

HQVGA1
0 TTVGA

Xilinx Static
Xilinx Dynamic

0

20

5

40

4

P
ow

er
 (

m
W

)

60

FHD3

Degree

80

VGA

Format

2

100

HQVGA1
0 TTVGA

Altera Static
Altera Dynamic

Figure 2.10: Power consumption of FPN correction vs. parameters. Except
for the FHD video format, where it increases a little, dynamic power is nearly
constant. Compared to static power, dynamic power is generally low.

42

19735 19728 19727

19771

19741

19763

19771

19763

0col

……

……

……

……

clock

row 3 3 3 3 0 0 1 1

1 2 3 2 3 0 1

19763 19770 19781 19741 19750 19716 19731 19735 19710

19763 19770 19781 19716 19731 19735 1971019750

…… U 0 19771U 19781 19741 19750 1971619770

……

U U 0U 19770 19781 19741 1975019763

U U U 0U 19763 19770 19781 1974119771

U U U UU 197710 19763

a

b

c

d

e

……

……

……

U U UU

U U UU

U U UU

U U UU

U U UU

b'

c'

d'

e'

a'

U U U U U U U U U 19770

Sorter
5 clock delay

19724

1

2

19724

FIFO

Router

U U

19731

19716

19750

19770

Filling up FIFO

Yj

Y'j Sorter

Yj

19763 19770

19741 19731

19712

19741 19728 19712 19727

19771 19763 19770 19781

19741 19750 19716 19731

19735 19710 19724 19712

19772 19728 19626 19727

Corner

Border

Interior

Legend

Y'j

……

Parameters

tFPN

n1

n2

trow

tcol

16

4

4

2

2

19770

19771

19770

0 0

0 1

19741

19763

19771

19770

19763

19771

19781

19770

19763

19731

19781

19770

19735

19741

19771

19710

19716

19750

19741

19763

……

……

……

……

……

19741

19763

19770 19781

19771 19763 19770

19731 19735

19771

1973119741

19750

19770

19724

19731

19716

Figure 2.11: Initial validation of a generated SPN filtering circuit. Input, out-
put, and intermediate signals are shown for a small-format test case (Fig. 2.6
elaborates on the signals). Larger-format test cases were validated by auto-
matic comparison of circuit and software outputs, given the same inputs.

Validation

Illustrated in Fig. 2.11, initial validation was done manually using small-format

test cases. Input (Yj) and output (Y ′j) images are shown at left, as are circuit

parameters. Example corner, border, and interior pixels are indicated (see leg-

end). Waveforms are shown, at right, and they are grouped as per Fig. 2.6. It

is straightforward to show that all waveforms in Fig. 2.11 are correct, including

the latencies.

Manual validation on small-format test cases was followed by automatic

validation on large-format test cases. In the latter situation, output from the

generated circuit was compared bit-for-bit to output from a Matlab program,

implemented using high-level matrix-vector operations to perform median fil-

tering, as per Fig. 2.5. There were zero bit errors.

Complexity

Given functional correctness, we then analyzed the complexity of the generated

circuit, illustrated in Fig. 2.12, versus the number of pixels, n. Each number,

43

103 104 105 106 107 108

Number of Pixels

0

100

200

300

400

500

600

700

800

Lo
gi

c
E

le
m

en
ts

103

104

105

106

M
em

or
y

B
its

Xilinx Logic
Altera Logic
Xilinx Memory
Altera Memory

Figure 2.12: Complexity of SPN filtering vs. number of pixels. Required LEs
are approximately constant and use a fraction of available resources. Required
bits grow with the number of pixels but remain well below capacities.

n, and its breakdown into rows, n1, and columns, n2, is taken from Table 2.2.

The word size of the input signal, tFPN, was kept constant at 16 bits. Address

bus sizes, trow and tcol, were set to the minimum values, i.e., dlog2 n1e and

dlog2 n2e, respectively.

The LEs required are roughly independent of image size, as shown in

Fig. 2.12. However, there is a linear relationship, on a log-log scale, between

the bits required and the number of pixels (R2 equals 99% and 100% with

Xilinx and Altera, respectively), excluding one outlier. The memory capacity

required with Altera exactly equals the minimum bits, i.e., 2n2tFPN, needed to

implement the FIFO stage shown in Fig. 2.6.

What is more significant is that, relative to the available resources in the

Xilinx and Altera devices, the LEs required are very low, e.g., 7.17% and

6.88%, respectively, for the FHD video format. The bits required are also low,

e.g., 24.7% and 14.5%, respectively, for the same video format.

44

103 104 105 106 107 108

Number of Pixels

107

108

109

M
ax

 F
re

qu
en

cy
 (

H
z)

 4KUHD

FHD

Xilinx
Altera

Figure 2.13: Max frequency of SPN filtering vs. number of pixels. The max
frequency is essentially independent of the number of pixels. FHD and simpler
video formats, listed in Table 2.2, are readily supported.

Frequency

Next, we determined the maximum clock frequency at which functional cor-

rectness is maintained. These results are shown in Fig. 2.13 versus number of

pixels, as before. Other parameters are the same as with Fig. 2.12.

In Fig. 2.13, the max frequency is nearly constant in both FPGAs. The

fact that the LEs required are roughly constant, in Fig. 2.12, largely explains

this result. Max frequency is expected to depend on circuit paths, i.e., logic

not memory. Changes in video format, such as the number of pixels, primarily

affect the memory used by the FIFO stage in Fig. 2.6.

What is also significant is that the max frequency is high enough, in both

FPGAs, to support SPN filtering of FHD video in hard real time. Dashed

lines, in Fig. 2.13, indicate the numbers of pixels and clock frequencies, listed

in Table 2.2, required to support the FHD and 4KUHD formats.

45

TTVGA HQVGA VGA FHD
Video Format

0

10

20

30

40

50

60

70

80

90

100

P
ow

er
 (

m
W

)

Xilinx Static
Xilinx Dynamic
Altera Static
Altera Dynamic

Figure 2.14: Power consumption of SPN filtering vs. video format. Static
power is a constant and significant part of total power. Except for a jump at
the FHD video format, dynamic power is approximately constant.

Power

Our final results, shown in Fig. 2.14, concern the power consumption for the

supported video formats. We use the numbers of pixels and clock frequencies

listed in Table 2.2. Other parameters are the same as with Fig. 2.12.

Except for the FHD case, as shown in Fig. 2.14, dynamic power is essen-

tially independent of video format, with both FPGA devices, and is lower than

static power. For the FHD video format, averaging over both FPGA devices,

dynamic power increases to a level comparable to static power, but the total

power remains on the order of 50 mW.

2.3.4 Significance

After summarizing selected results, we compare our digital circuit for FPN

correction to an analog competitor, a mixed-signal competitor, which uses

both analog and digital circuitry, and a digital competitor. We also compare

our digital circuit for SPN filtering to a digital competitor.

46

Table 2.3: Specifications of the designed circuits. FPN correction and SPN fil-
tering, using cubic polynomials and for the FHD video format, were evaluated
as separate and combined circuits. LEs and bits are given, in parentheses, as
a fraction of available resources. The chosen Xilinx and Altera devices were
the simplest ones in the Spartan-6 and Cyclone III families, respectively.

Circuit Technology Logic (LEs) Memory (bits) Max Freq. Static P. Dynam. P.

FPN Xilinx XC6SLX4 178 (2.06%) 21 (0.01%) 222.2 MHz 13.9 mW 17.1 mW
Correction Altera EP3C5 261 (2.53%) 88 (0.02%) 178.6 MHz 46.1 mW 27.9 mW
SPN Xilinx XC6SLX4 620 (7.17%) 73, 737 (24.7%) 158.7 MHz 14.1 mW 44.8 mW
Filtering Altera EP3C5 710 (6.88%) 61, 440 (14.5%) 105.5 MHz 46.2 mW 31.8 mW
Complete Xilinx XC6SLX4 817 (9.45%) 73, 767 (24.8%) 140.8 MHz 14.2 mW 48.4 mW
ISPr Altera EP3C5 972 (9.42%) 61, 528 (14.5%) 108.7 MHz 46.2 mW 42.6 mW

Specifications

Table 2.3 summarizes the specifications of the designed FPN correction and

SPN filtering circuits for a specific scenario, namely cubic polynomials and

the FHD video format. Other parameters are as described in Sections 2.3.2

and 2.3.3. These circuits were also combined into one ISPr circuit, i.e., FPN

correction followed by SPN filtering. Specifications of the combined circuit,

obtained in the same way using FPGA tools, are also reported.

Percentages shown are with respect to available resources of the chosen

devices. Even for the combined circuit, LEs required are very low relative

to available logic. This leaves plenty of room for logic needed by other ISPr

operations, e.g., tone mapping. Even for the combined circuit, bits required are

low relative to available memory. This leaves some room for memory needed

by other ISPr operations. If additional memory or logic is needed, a different

device may be selected from the same family, or from a different family.

When comparing the combined circuit to the separate circuits, LEs and

bits required do not exactly sum due to optimizations. The same may be

said for dynamic power. Also, max frequency is not exactly the worst max

frequency. Due to the FIFO stage in Fig. 2.6, SPN filtering requires more

memory and power than FPN correction. Finally, as static power is significant

in the separate circuits, the combined circuit achieves notable savings in total

power.

47

Analog Competitor

De Moraes Cruz et al. [39] proposed an analog circuit to correct offset variation

only in linlog sensors. While the circuit is simple, the signal-to-noise-and-

distortion ratio (SNDR) in the log region, which depends on temporal noise

and residual FPN, was limited to 29 dB. In our previous work [34], [37], we

demonstrated a peak SNDR (PSNDR) of 45 dB, the highest ever reported

for either a log sensor, what we used, or a linlog sensor in the log region.

Higher-order FPN correction was critical to our result.

Whereas De Moraes Cruz et al.’s self-calibration method is intended for

hard real time, they do not report any clock frequencies of their 8 × 8 pixel

prototype. They write “the proposed calibration can be executed at least at

the same rate of a regular CDS operation,” but add that “the frame rate of the

array will not be evaluated in this work.” As shown in Table 2.3, our digital

circuit for higher-order FPN correction can process up to 222 megapixels per

second, or 7.4 megapixels at 30 fps, with the simplest Spartan-6 FPGA.

De Moraes Cruz et al. also do not report any measures of power consump-

tion. With the simplest Spartan-6 FPGA, our digital circuit consumes 31 mW

of power at the 62 megapixels per second required for FHD video.

Mixed-Signal Competitor

To correct offset and gain variation in linlog sensors, Storm et al. [50] proposed

a mixed-signal circuit. The analog circuitry is simple and well documented,

comprising several extra transistors per pixel and per column. Digital parts,

some at chip level, adjacent to the sensor array, and some in an external FPGA,

are documented so briefly that it is impossible to assess their complexity.

The digital circuitry provides control signals for a self-calibration process and

participates also in FPN correction.

Despite the appeal of a self-calibration process, we have shown [34], [37]

that image quality is limited with log sensors unless higher-order FPN cor-

rection is employed. We calculate the PSNDR [48] of Storm et al.’s imaging

system, using data that they provided, to be 26 dB in the log region, which is

48

significantly lower than the 45 dB we achieved.

Storm et al.’s prototype, comprising a 288× 352 CIS and an FPGA, oper-

ates in hard real time at 26 fps. This corresponds to 2.6 megapixels per second.

Because of timing issues with the self-calibration process, it is unclear how the

work scales. The authors note “a maximum frame rate of 26 fps for an array

of 288 rows.” From data Storm et al. provide, it is impossible to separate

out power consumption of the FPN correction. Their imaging system used

5.3 mW of digital power, “not incl. FPGA,” and 61–84 mW of analog power.

Our all-digital circuit is competitive on frame rate and seems competitive

on power too, while performing higher-order FPN correction on a much larger

number of pixels.

Digital Competitors

Hoefflinger [20] proposed a digital circuit to correct OGB variation in log sen-

sors. After FPN calibration, by approximate curve fitting of the model given

in (2.1), FPN correction is implemented, using an FPGA, by transforming the

fitted model approximately into a set of piecewise linear functions. While it is

briefly explained and its complexity not reported, the digital circuit is likely

of similar complexity to our FPN correction circuit.

Hoefflinger’s imaging systems, which consumed up to 5 W of power, oper-

ated in hard real time. One system supported the VGA format, i.e., 480×640

pixels at 30 fps, or 9.2 megapixels per second. Another supported 496 × 768

pixels at 38 fps, or 14 megapixels per second. It is likely that Hoefflinger’s

FPN correction, on its own, would scale to larger formats. While a breakdown

was not given, it is likely that power consumption of his FPN correction alone,

in an equivalent FPGA, would be comparable to our reported figures.

An important difference between our digital circuit method and Hoef-

flinger’s digital circuit is that our method leverages a recently published algo-

rithm [34], which we also developed, that is not specific either to log sensors or

(2.1). Hence, our method may be applied to realize a digital circuit for FPN

correction of any monotonic nonlinear sensor, including linlog sensors. While

Choubey and Collins [11] have developed a model, similar to but more complex

49

than (2.1), for linlog sensors, no corresponding circuit has been proposed.

Stuck pixels exist in log and linlog sensors, as in linear sensors. However,

neither De Moraes Cruz et al., nor Storm et al., nor Hoefflinger address them.

In his Stanford lecture on the “Camera Processing Pipeline,” Pulli [43] ad-

dresses “stuck pixels” alongside “pixel non-uniformity,” i.e., FPN, advising to

“replace with filtered values.” We show, in Fig. 2.4, that they are complemen-

tary, address both, and evaluate joint complexity, max frequency, and power

consumption.

Latha and Sasikumar [32] implemented a two-stage median filter to process

256× 256 pixels, i.e., 66 kilopixels, with 8 bpp. They showed that their circuit

filtered salt-and-pepper, speckle, and Gaussian noise effectively. Although not

reported in LEs, their circuit uses a similar amount of logic to what we report

in Table 2.3 for 1080 × 1920 pixels, i.e., 2.0 megapixels, with 16 bpp. While

briefly explained, their circuit needs more memory than ours, at least 100%

the capacity, about 129 Kb, of their Xilinx Spartan-II device. It is unclear,

from their paper, if their circuit also needed external memory.

While Latha and Sasikumar’s median filter operates in hard real time, it

is unclear if they determined the max frequency of their circuit itself. The

200 MHz figure they report is simply the rated max frequency of the Spartan-

II device. Although it is unclear at what frame rate, they report a power

consumption of 202 mW. In contrast, we use STA to reliably determine a

max frequency of 159 MHz, with our Xilinx Spartan-6 device, for processing

31 times as many pixels in pipeline fashion. Our circuit consumes 59 mW of

power to process these pixels at 30 fps, i.e., what is required for FHD video.

2.4 Conclusion

Kim [28] writes, in a review paper, “WDR imaging is currently a hot issue

in the mobile CIS market. Many commercial sensor providers are proposing

various types of WDR sensors, such as the [linlog] type,” an approach that he

champions. Kim also recognizes that FPN, especially in the log region, is a

serious problem with nonlinear sensors.

50

Li et al. [34], i.e., our group’s recent work, propose an algorithm for FPN

correction of monotonic (non)linear sensors, which include linear, log, and

linlog sensors, using low-degree polynomials. This background work is taken in

a significant new direction in the current chapter. Both works use experimental

data from a log sensor [37] for validation.

The new direction includes the development, validation, and evaluation of a

digital circuit method to automatically implement the background algorithm,

for a wide variety of parameters, effectively and efficiently in hard real time.

We also elaborate here on SPN filtering, mentioned briefly in our group’s pre-

vious work. A digital circuit method for SPN filtering is similarly developed,

validated, and evaluated.

To support a wide variety of parameters, such as polynomial degree and

number of pixels, a design template in VHDL and a data file of parameters

are processed by a Matlab script to generate a specific VHDL design. The

design includes a recursive pipeline circuit for FPN correction that could not

be implemented via VHDL generics. Using an FPGA design flow, the design

is turned into digital circuits.

For readability, design templates are explained here using figures, tables,

equations, and words. They include circuit schematics comprising synchronous

and asynchronous elements, i.e., sequential and combinational logic, where all

elements operate 100% in parallel. Image signals are processed in pipeline

fashion strictly in sync with a clock signal. This is what guarantees hard real

time performance.

We validated and evaluated our novel methods by generating specific dig-

ital circuits, using the proposed design flow, for a variety of parameters. We

target the simplest devices in the Xilinx Spartan-6 and Altera Cyclone III

families, the lowest-cost families in the market at the time of this work. Eval-

uation assessed the complexity, max frequency, and power consumption versus

parameters of interest.

Resulting circuits were shown to be effective, with either FPGA device,

in processing FHD video, using cubic polynomials for FPN correction, at a

rate of 62 megapixels per second. Moreover, with the Xilinx device, the FPN

51

correction circuit functioned correctly up to 222 megapixels per second, and

the SPN filtering circuit up to 159 megapixels per second.

The circuits were also efficient, especially the FPN correction. With the

Xilinx device, the combined circuit to process FHD video used 9.45% of the

available logic, 24.8% of the available memory, and 63 mW of power. SPN

filtering aside, the FPN correction used 2.06% of the available logic, 0.01% of

the available memory, and 31 mW of power.

In conclusion, this chapter developed, validated, and evaluated novel digital

circuit methods to correct and filter noise of nonlinear CMOS image sensors.

Presented results provide excellent benchmarks against which future analog,

mixed-signal, and digital circuits may be measured.

52

Chapter 3

Histogram-Based Tone Mapping

Tone mapping is extensively researched to address the issue of displaying high

dynamic range (HDR) scenes on low dynamic range (LDR) displays. Even

though several tone mapping operators (TMOs) exist, not all are designed for

hard real time. The operator has to be capable of scaling up the spatial reso-

lution without compromising the frame rate. The implementation of a TMO

should also be simple enough to embed in low-cost platforms for imaging sys-

tems. A computationally efficient, and well accepted, class of TMOs are global

ones based on histograms. This work presents a method to implement TMOs

that use histograms. Our method is suitable for low-cost field-programmable

gate arrays (FPGAs), using simple components such as adders, multipliers,

and random-access memorys (RAMs), and is particularly suited for a non-

linear CMOS image sensor (CIS) operating continuously in hard real time.

We develop a fixed-point design, validated in bit true fashion using Xilinx

and Altera tools with a background algorithm implemented using Matlab.

Our generic design uses pipelined circuits and operates with low latency. The

use of a hardware description language (HDL) to model our circuits guaran-

tees portability and modularity. Moreover, the complete TMO is generated

from design parameters and a design template. The architecture is robust and

scales well from kilopixel to megapixel formats. We achieve 30 frames per

second (fps) at high definition (HD) resolutions, while occupying only a small

fraction of the available logic elements (LEs) in low-cost FPGA devices.

53

3.1 Introduction

Advanced CISs, particularly nonlinear CISs, are able to capture images with

high/wide dynamic ranges (DRs). High/wide DR displays have emerged in

the market, but they will not reach the same range of the real world, and will

not displace standard displays due to their price and power consumption. Kim

[28] also declares the relevance of high/wide DR to continue the development

and improvement of embedded cameras. All of these sensors need a TMO to

adapt the high/wide DR image to a low DR display.

Though TMOs have been extensively researched, they are often not de-

signed for video applications in real time. This chapter, on the other hand,

is concerned primarily with hard real time operation. Because of the lack of

high/wide DR video sources, research into TMOs is often validated only with

still images, which may not be valid for videos due to temporal artefacts, as

pointed out by Eilertsen et al. [14].

Our focus is a real-time TMO for videos to be embedded in a mobile device.

There are two main platforms for this: graphics processing units (GPUs) [1],

[2], [6]; and FPGAs [19], [41]. Urena et al. [54] deployed their TMO in both

platforms and concluded that their FPGA implementation achieves higher

frame rate and lower power consumption, while their GPU implementation is

more precise. Lo et al. [36] also deployed their algorithm on both platforms,

achieving lower power consumption with the FPGA solution. Because we are

proposing a methodology of digital circuits, coded using a HDL, FPGAs are

a better platform also to implement and validate our method.

There are two kinds of TMOs, which are mutually exclusive: local and

global. Reinhard et al. [44] defined global TMOs as the same operation for all

pixels, treating each pixel independently of its location. Local TMOs consider

the pixel location, and the operator may vary from pixel to pixel. One reason

that we use global is because it is considered more computationally efficient.

Ofili et al. [41] employed a TMO based on Glozman et al.’s operator, which

is based on an inverse exponential function. The operator was modified by

introducing an adaptation factor that reshapes the curve according to the

54

image mean and the max luminance value. The final operator was translated to

a hardware-friendly FPGA design, and deployed on Stratix II and Cyclone III

devices from Altera. This digital design, using 68046 bits of memory, achieves

a high frame rate (up to 126 fps) and a spatial resolution of 1024× 768 pixels,

but no video tests were realized and halo artefacts were reported.

Urena et al. [54] presented a real-time TMO with GPU and FPGA imple-

mentations. It is a local operator, according to the mutually-exclusive defini-

tions provided here. However, a global enhancement is realized via histogram

equalization over V from the HSV colour space, derived from the original RGB

colour space. The implementation of histogram equalization is based on the

work of Reza [45] and has some similarities with the work presented here, also

based on histograms. Reza delivers a real-time design, to be implemented in

FPGAs or an application-specific integrated circuit (ASIC), for adaptive his-

togram equalization of images. Our platform includes temporal adaptation,

is validated for multiple FPGAs devices, and offers a more generic approach

to histogram-based tone mapping. Urena et al. also do not address temporal

adaptation, nor how their design handles videos. The results also had only 64

bins for the histogram.

Even if global is a better choice for embedded systems, many researchers

choose local TMOs claiming it delivers better results [1], [19], [41], [54]. Eil-

ertsen et al. compared TMOs for high/wide DR videos and their survey found

that global TMOs are the most preferred. Local TMOs present more temporal

artefacts than global, making them less favoured when compared side-by-side.

Popovic et al. [42] developed a hardware version of the Drago operator [17],

which uses a logarithmic (log) mapping function with a variable base. They

benchmarked the chosen operator to find a design bottleneck at the log func-

tion that used external memory, which led them to implement a “hardware-

only system” and approximation of the log calculation. Their architecture is

pipelined and uses Taylor and Chebyshev polynomials directly implemented

in a high-end FPGA. The design is capable of processing full HD (FHD) at

60 fps, but they do not address the suitability of their approach for high/wide

DR video, which means it is at risk of temporal adaptation artefacts.

55

Amongst the possible global TMOs, there are the ones based on histograms.

In fact, these are the operators that showed better results in Eilertsen et al.’s

research. Of the top three operators, two are based on histograms. Indeed,

there are multiple tone mapping algorithms based on histograms [13], [21],

[31], which could leverage the results of this research.

This work contributes, validates, and evaluates digital circuits to imple-

ment a global TMO based on histograms, suitable for image signal proces-

sor (ISPr) integration in hard real time. We propose a hard real-time pipelined

architecture to be implemented in low-cost FPGAs and capable of processing

HD videos from a nonlinear CIS. Our novel circuits are based on Li et al.’s [35]

background algorithm. For efficient continuous operation in hard real time,

we employ components with low complexity, such as adders, multipliers, bit

shifts, and registers. We also employ block RAMs (BRAMs).

The FPGA design flow for our proposed digital circuits is based on our

previously published work [40], which introduced a methodology of circuit

generation from design parameters and a design template.

The efficient pipelined circuits we are proposing here can be applied to any

tone mapping algorithm that requires histogram computation [1], [24], [27],

[31], [35], [55], especially ones based on histogram equalization. The proposed

circuits facilitate operation in hard real time. We have chosen low-cost FPGAs

as the target platform but the circuits could be readily implemented in an

ASIC.

3.2 Background and Methods

The proposed circuits leverage an algorithm, by Li et al. [35], for histogram-

based tone mapping of nonlinear complementary metal-oxide-semiconductor

(CMOS) image sensors. Though we made changes to the background algo-

rithm, while developing the circuit methods, we distinguish the former from

the latter, in this section, to emphasize the novelty of this work.

56

sof

reset

lpf_en

clock

pix pix_mapped

TMO

Parameters

MAX_BIN CEIL
NUM_PIX SR
WIDTH_IN
WIDTH_OUT

tHDR
tLDR

FPGA

RAM

CIS

addr

pix

clk1

clk2

μP

coef

sof
reset

lpf_en TMO
Controllerclock

mode_top

bin_counter

mode_bot

mapping_top

counting

sof
reset

lpf_en

pix
pix_mappedScene

Histogram

Mapping-
Updating
Histogram

Perceived
Histogram

Modified
Histogram

TMO Controller

mode_bot

pix

scene_
histogram

Scene
Histogram

Addr_r

wen

mode

Clk Histogram

Scene
Histogram

Addr_r

wen

mode

Clk Histogram

bin

mode_top

counting

z−1z−1

z−1

X

sof

clock

6 5 1 2 73 5 2 16 3 4 6 5 770 2pix

Parameters

CEIL 165
SR 16
 3
 2
tHDR
tLDR

0 2 0 1 5

mode_top

mode_bot

counting

mapping

7 6 5 4 3 2 1 0 7 6 5 4 3bin_counter

histogram-counting & pixels mapped

histogram-outputting & map updated

histogram-bins

TMO latency

2 32 3 21 2histogram 1 3 1 4

7 6 5 4 3 2 1 0 7 6 5 4 3bin_counter

X 1 X

mode_top

mode_bot

counting

histogram-counting

histogram-outputting

histogram-frame 1

2 3 3 2
5 6 0 1
3 3 0
5 5 1 6

5 1 3 2
7 0 2 5
6 2 1 3
4 6 7 5

7 0 2 2
1 5 2 6
0 4 4 4
4 6 6 3

Frame 0

Frame 1 Frame 2

clock

state 0 1 2 3

s_axis_sof

reset

s_axis_valid

clock

s_axis_data m_axis_data

s_axis_eol

s_axis_ready
m_axis_sof

m_axis_valid

TMO

m_axis_eol

m_axis_ready

Soc
MPSoC

RFSoC NoC
CG EG EV

23~275
1.8~17.6
60~900
ARM Dual
Core
X

28nm

LUTs(K):
MEM(Mb):
DSPs:
uP:

MP:

Fab.:

23~275
1.8~17.6
60~900
ARM Dual
Core A/R
GPU +
Codec
16nm

23~275
1.8~17.6
60~900
ARM Dual
Core A/R

DAC/ADC
16nm

23~275
1.8~17.6
60~900
ARM Dual
Core A/R

DAC/ADC
16nm

mode_bot

pix

Scene
Histogram

Addr_r

wen

mode

Clk Histogram

Scene
Histogram

Addr_r

wen

mode

Clk Histogram

bin

mode_top

counting

z−1z−1

z−1

X

2 32 3 21 2histogram 1 3 1 4

7 6 5 4 3 2 1 0 7 6 5 4 3bin_counter

X 1 X

alpha

beta

counting histogram-frame 1

clock

lpf_en

236

20

3 11 2 14 1perceived_histogram

7 6 5 4 3 2 1 0 7 6 5 4 3bin_counter

X 3 X

counting

clock

mode_top

mode_bot

4 51 9 10modified_histogram 0 012 13 16

t_pixel 16

3 11 2 14 1perceived_histogram X 3 X

7 6 5 4 3 2 1 0 7 6 5 4 3bin_counter

counting

clock

4 51 9 10modified_histogram 0 012 13 16

t_pixel 16

5 7 0 0 12 6 0 4 4 4 4 6 365 2pix 1 3 2 7 0

mapping

3 3 12 3 3 32 1 2 0 2 231 0pix_mapped 2 2 0 1 3

5

mode Scene
Histogram

Addr_r

Addr_w

Histogram

bin

mode_top

z−1

z−1

X

0

1 2

+

scene_
histogram

Data

=

Perceived
Histogram

Addr_r

Addr_w

Clk

α’

bin

z−1

1 2

h
is to

g
ram

Data

Enable

X +

X

BS

β’

en

Dual-Port RAM

perceived_
histogram

scene_
histogram

Bin

Histogram

Clk

Reset
Modified
Histogram

tpixel

0

0

1

z−5bin

perceived_
histogram

mode_bot

mode_top

counting

z−5

z−5

z−5 Modified
Histogram
Wrapper

CEILING
REGISTER

bin

perceived_
histogram

reset

Min
Max

+

z−1

0

Max

modified_
histogram

tpixel

modified_
histogram

tpixel

mapping_top

pix

Mapping
Updating
Histogram

Addr_W

wen

Clk Histogram

Addr_W

wen

Clk Histogram

bin

mode_top

counting

z−1

z−5
z−6

pix_mapped

Mapping
Updating
Histogram

Data

Data

Div

 Round

Mul

modified_
histogram

tpixel
0

0
z−5

z−1

256

Mapping
Updating
Histogram

mapping_top

pix

Mapping
Updating
Histogram

Addr_W

wen

Clk Histogram

Addr_W

wen

Clk Histogram

bin

counting

z−5
z−6

pix_mapped

Mapping
Updating
Histogram

Data

Data

A

modified_
histogram

0

0
z−5

z−1

256*2

256/2

LUT

tpixel

X

X >>c

X

>>c

>>w
ratio

wmax

videoIn
Tone
Mapping

controlIn

Base
Histograms

videoOut

Controller

A

LUT

tPixel

X

X

ratio

wmax

X

mapping_top

pix

Mapping
Updating
Histogram

Addr_W

wen

Clk Histogram

Addr_W

wen

Clk Histogram

bin

counting

z−5
z−6

pix_mapped

Mapping
Updating
Histogram

Data

Data

0

0
z−5

z−1

Normalization
Module

tpixel

modified_
histogram

Div

Mul
histValM

tPixel

 Round

Scene Optics CIS ISP Application

FPN SPN TMO

mode_bot

pix

Scene
Histogram

Addr_r

wen

mode

Clk Histogram

Scene
Histogram

Addr_r

wen

mode

Clk Histogram

bin

mode_top

counting

z−1z−1

z−1

X

scene_
histogram

Perceived
Histogram

Addr_r

Addr_w

Clk

bin

z−1

Data

Enable

en

Dual-Port RAM

perceived_
histogram

X +

X

β’

BS

Low-Pass
Filter

FPGA

FPGA μP

mapping_top

videoIn

Mapping
Updating
Histogram

addrW

wen

dataR

addrW

wen

histBin

counting

z−5
z−6

videoOut

Mapping
Updating
Histogram

dataW

dataW

z−5

z−1

CEILING
REGISTER

histValP
reset

Min
Max

+

z−1

Max

histValM

tpixel

mode_bot

Scene
Histogram

Scene
Histogram

bin

mode_top

counting

z−1z−1

z−1

X

scene_
histogram

Perceived
Histogram

Addr_r

Addr_w

bin

z−1

Data

Enable

en

Dual-Port RAM

perceived_
histogramLow-Pass

Filter

α’

videoIn

videoIn

(a)

(b)

(c)

(b) OR (c)

(a)

histBin

mode
z−1

Z
histValS

addrR

addrW

histBin

z−3

dataW

wen

enLPF

RAM

histValP

videoIn

(a)

(b)

(b)

+

≫

RAM

addrR

addrW

dataRz−1

z−1

0

2
+

dataW

X

X

beta

alpha

(b)
(c)

1

(c)

+

dataR

=

(b)
(c)

histBin

256 256*2
256/2

>>c

>>c

>>w

0

0

0

dataR

histValM

Scene Optics CIS ISP Application

FPN SPN TMO

FPGA μP

Scene Optics CIS ISP

FPN SPN TMO

FPGA CPU

ISP App

U
S

E
R

X

mode

videoBin

RAM

addr

wen

dataR

addr

wen

resetSum

z−1

videoOut

RAM

dataW

dataW

histValP

histMax

(c)

(a)

(b) (d)

histBin

videoRef/2

0

0

dataR

Min
Max

+

z−1

0

min

histValM

videoRef −1

0

+

-1

X

dataW
dataR wen
REG

z−1z−1

z−1

cumSum

z−2

z−2

z−2(b)

z−4

z−4

(d) gainvideoMax
ratio

dataR
ROMaddrR

videoRef*2

≤
videoRef/2

videoRef*2

gainMax

gainMin

wen

(c)

≫

≫

≫
≥

z−1 z−2 z−1 z−1

Figure 3.1: Top-level circuit design of histogram-based tone mapping. The
design is composed of two modules and a controller. Data and control buses
are shown in purple and green, respectively. Thick lines and bold fonts identify
multi-bit buses. There are two parallel data paths. One updates the base
histograms while the other uses them to map tones.

3.2.1 Design Overview

To achieve our goals, we used a hierarchical and modular circuit design ap-

proach. The topmost level is illustrated in Fig. 3.1. Encapsulated details of

the main modules are summarized in the ensuing sections.

Table 3.1 lists the dual names of key signals, such as the video input and

output shown in Fig. 3.1. Video signals are streamed because we adopted a

pipeline approach, following our previous work on FPN correction and salt-

and-pepper noise (SPN) filtering. Pixel values flow one by one, into and out

of the top-level circuit, left to right and top to bottom with respect to corre-

sponding images.

Although it is simple, relative to other circuits in Fig. 3.1, the controller

serves a critical purpose. Synchronization is important in a pipelined design,

especially one with multiple paths operating in parallel. The controller receives

two control signals, via the bus called controlIn. They are a reset signal,

which pulses for one clock cycle when the FPGA is ready to process data,

and a startOfFrame signal, which pulses for one clock cycle in sync with the

first pixel of each frame. The controller generates additional control signals

required by the other modules.

57

Table 3.1: Important signals and their corresponding symbols. Whereas the
background algorithm is summarized using symbols and equations, the circuit
methods are proposed using signals and schematics.

Signal Symbol Signal Symbol

alpha α′ histValP h′p
beta β′ histValS hs

cumSum cY ratio R
gain A toneMap T
gainMax Amax videoIn yj
gainMin Amin videoBin y′j
histBin y′ videoMax wmax

histMax hmax videoOut wj
histValM hm videoRef wref

Pipelined circuits operate synchronously according to one or more clock

signals. Because the proposed TMO may be implemented, for a wide variety

of image sensors, using one clock signal only, the clock is not treated as a

control signal here, nor is it illustrated in the circuit schematics. Anyway, in

an FPGA, clocks are ideally routed differently from control signals.

Finally, following our previous work [40], we use a generic design flow so

that our proposed circuits may be applied to a wide variety of image sensors.

This means that we use a general-purpose scripting language, i.e., Matlab,

to generate the VHDL code of a specific circuit design from a set of design

parameters, i.e., a text file, and a generic design template, i.e., VHDL code.

Thereafter, we perform synthesis, translation-and-mapping, and place-and-

route to create firmware suitable for FPGA download.

3.2.2 Base Histograms

As shown in Fig. 3.1, the proposed design has a module to compute base

histograms. We first review the background algorithm of these histograms.

Next, we introduce the method by which we realized it as a circuit.

Background

The histogram-based algorithm developed by Li et al. [35] is a foundation of

this work. It computes a sequence of scene and perceived histograms, which

58

we call the base histograms, from a sequence of images, i.e., the video input.

We review these base histograms below, including some changes to how they

are computed.

Instead of treating each input image as a set of n pixel stimuli, i.e., xj with

x in real world units (like cd/m2) and 1 ≤ j ≤ n, we treat each image as a set

of n pixel responses, i.e., yj where y is an unsigned integer, from a monotonic

image sensor. In another paper, Li et al. [34] justified the following model for

such a sensor, after FPN correction via a polynomial-based algorithm:

yj = F (xj) + εj, (3.1)

where F is a monotonic function and εj represents temporal noise and residual

FPN. Depending on F , (3.1) may represent a linear, log, or linlog sensor.

In a recent publication [40], we proposed circuit methods to implement

Li et al.’s [34] polynomial-based algorithm for FPN correction. Generated

circuits, including a median filter to handle outliers after FPN correction,

proved effective and efficient even for FHD video. We treat the video output

of that work, called Y ′j there, as the video input of this work, called yj here.

Returning to Li et al.’s [35] histogram-based algorithm for tone mapping,

we model each pixel response, y, as the observation of a discrete random

variable, Y , governed by a probability mass function (PMF), pY . In other

words, pY (y) is the probability that Y equals y.

Unlike Li et al., we assume discreteness because our circuit methods, for

FPN correction and SPN filtering, always output unsigned integers. We can

estimate the PMF as follows:

pY (y) ≈ hs(y)

n
, (3.2)

where hs(y) is the number of pixels equal to y. If we use bins of uniform width

∆y, where hs(y) is the number of pixels in the bin that contains y, then we

get instead:

pY (y) ≈ hs(y)

n∆y
. (3.3)

59

As with Li et al., we call hs the scene histogram even though, technically,

it is an image histogram. Also, Li et al. actually define hs as the histogram of

lnx, called the brightness ; x is called the luminance. We note that, with a log

or linlog sensor, the response, y, is proportional to the brightness, lnx, over a

high/wide DR.

To avoid flickering artefacts in tone-mapped videos, Li et al. compute a

sequence of perceived histograms, hp, from a sequence of scene histograms, hs.

We perform the same computation, substituting y for ln x:

hp(y)[k] = αhp(y)[k − 1] + β hs(y)[k], (3.4)

α = e
−T
τ , (3.5)

β = 1− α, (3.6)

where k represents the frame number.

Equation (3.4) represents a simple low-pass filter (LPF) operating on all

bins of the histogram. With reference to the works of other authors, Li et

al. offer some justification for this model, including the ‘perceived’ adjective.

They also recommend a value, 0.4 s, for the time constant, τ . As for T , it

simply equals the frame period.

Finally, Li et al. observe that whereas the scene histogram is always a set of

integers, the perceived histogram is not, according to (3.4)–(3.6). We therefore

adopt the integer version of their computation, as follows:

h′p(y)[k] = b2−s(α′h′p(y)[k − 1] + β′hs(y)[k])c, (3.7)

α′ = round(2sα), (3.8)

β′ = round(2sβ), (3.9)

where s, a positive integer, gives the magnitude of a right bit shift, in (3.7),

and left bit shifts, in (3.8) and (3.9). According to Li et al., a suitable value

for s is eight.

Unlike Li et al., who use a rounding operation in (3.7), we use a floor

operation to ensure the perceived histogram goes to zero, for a bin, if the

scene histogram goes to zero. This change was validated after careful testing.

60

sof

reset

lpf_en

clock

pix pix_mapped

TMO

Parameters

MAX_BIN CEIL
NUM_PIX SR
WIDTH_IN
WIDTH_OUT

tHDR
tLDR

FPGA

RAM

CIS

addr

pix

clk1

clk2

μP

coef

sof
reset

lpf_en TMO
Controllerclock

mode_top

bin_counter

mode_bot

mapping_top

counting

sof
reset

lpf_en

pix
pix_mappedScene

Histogram

Mapping-
Updating
Histogram

Perceived
Histogram

Modified
Histogram

TMO Controller

mode_bot

pix

scene_
histogram

Scene
Histogram

Addr_r

wen

mode

Clk Histogram

Scene
Histogram

Addr_r

wen

mode

Clk Histogram

bin

mode_top

counting

z−1z−1

z−1

X

sof

clock

6 5 1 2 73 5 2 16 3 4 6 5 770 2pix

Parameters

CEIL 165
SR 16
 3
 2
tHDR
tLDR

0 2 0 1 5

mode_top

mode_bot

counting

mapping

7 6 5 4 3 2 1 0 7 6 5 4 3bin_counter

histogram-counting & pixels mapped

histogram-outputting & map updated

histogram-bins

TMO latency

2 32 3 21 2histogram 1 3 1 4

7 6 5 4 3 2 1 0 7 6 5 4 3bin_counter

X 1 X

mode_top

mode_bot

counting

histogram-counting

histogram-outputting

histogram-frame 1

2 3 3 2
5 6 0 1
3 3 0
5 5 1 6

5 1 3 2
7 0 2 5
6 2 1 3
4 6 7 5

7 0 2 2
1 5 2 6
0 4 4 4
4 6 6 3

Frame 0

Frame 1 Frame 2

clock

state 0 1 2 3

s_axis_sof

reset

s_axis_valid

clock

s_axis_data m_axis_data

s_axis_eol

s_axis_ready
m_axis_sof

m_axis_valid

TMO

m_axis_eol

m_axis_ready

Soc
MPSoC

RFSoC NoC
CG EG EV

23~275
1.8~17.6
60~900
ARM Dual
Core
X

28nm

LUTs(K):
MEM(Mb):
DSPs:
uP:

MP:

Fab.:

23~275
1.8~17.6
60~900
ARM Dual
Core A/R
GPU +
Codec
16nm

23~275
1.8~17.6
60~900
ARM Dual
Core A/R

DAC/ADC
16nm

23~275
1.8~17.6
60~900
ARM Dual
Core A/R

DAC/ADC
16nm

mode_bot

pix

Scene
Histogram

Addr_r

wen

mode

Clk Histogram

Scene
Histogram

Addr_r

wen

mode

Clk Histogram

bin

mode_top

counting

z−1z−1

z−1

X

2 32 3 21 2histogram 1 3 1 4

7 6 5 4 3 2 1 0 7 6 5 4 3bin_counter

X 1 X

alpha

beta

counting histogram-frame 1

clock

lpf_en

236

20

3 11 2 14 1perceived_histogram

7 6 5 4 3 2 1 0 7 6 5 4 3bin_counter

X 3 X

counting

clock

mode_top

mode_bot

4 51 9 10modified_histogram 0 012 13 16

t_pixel 16

3 11 2 14 1perceived_histogram X 3 X

7 6 5 4 3 2 1 0 7 6 5 4 3bin_counter

counting

clock

4 51 9 10modified_histogram 0 012 13 16

t_pixel 16

5 7 0 0 12 6 0 4 4 4 4 6 365 2pix 1 3 2 7 0

mapping

3 3 12 3 3 32 1 2 0 2 231 0pix_mapped 2 2 0 1 3

5

mode Scene
Histogram

Addr_r

Addr_w

Histogram

bin

mode_top

z−1

z−1

X

0

1 2

+

scene_
histogram

Data

=

Perceived
Histogram

Addr_r

Addr_w

Clk

α’

bin

z−1

1 2

h
is to

g
ram

Data

Enable

X +

X

BS

β’

en

Dual-Port RAM

perceived_
histogram

scene_
histogram

Bin

Histogram

Clk

Reset
Modified
Histogram

tpixel

0

0

1

z−5bin

perceived_
histogram

mode_bot

mode_top

counting

z−5

z−5

z−5 Modified
Histogram
Wrapper

CEILING
REGISTER

bin

perceived_
histogram

reset

Min
Max

+

z−1

0

Max

modified_
histogram

tpixel

modified_
histogram

tpixel

mapping_top

pix

Mapping
Updating
Histogram

Addr_W

wen

Clk Histogram

Addr_W

wen

Clk Histogram

bin

mode_top

counting

z−1

z−5
z−6

pix_mapped

Mapping
Updating
Histogram

Data

Data

Div

 Round

Mul

modified_
histogram

tpixel
0

0
z−5

z−1

256

Mapping
Updating
Histogram

mapping_top

pix

Mapping
Updating
Histogram

Addr_W

wen

Clk Histogram

Addr_W

wen

Clk Histogram

bin

counting

z−5
z−6

pix_mapped

Mapping
Updating
Histogram

Data

Data

A

modified_
histogram

0

0
z−5

z−1

256*2

256/2

LUT

tpixel

X

X >>c

X

>>c

>>w
ratio

wmax

videoIn
Tone
Mapping

controlIn

Base
Histograms

videoOut

Controller

A

LUT

tPixel

X

X

ratio

wmax

X

mapping_top

pix

Mapping
Updating
Histogram

Addr_W

wen

Clk Histogram

Addr_W

wen

Clk Histogram

bin

counting

z−5
z−6

pix_mapped

Mapping
Updating
Histogram

Data

Data

0

0
z−5

z−1

Normalization
Module

tpixel

modified_
histogram

Div

Mul
histValM

tPixel

 Round

Scene Optics CIS ISP Application

FPN SPN TMO

mode_bot

pix

Scene
Histogram

Addr_r

wen

mode

Clk Histogram

Scene
Histogram

Addr_r

wen

mode

Clk Histogram

bin

mode_top

counting

z−1z−1

z−1

X

scene_
histogram

Perceived
Histogram

Addr_r

Addr_w

Clk

bin

z−1

Data

Enable

en

Dual-Port RAM

perceived_
histogram

X +

X

β’

BS

Low-Pass
Filter

FPGA

FPGA μP

mapping_top

videoIn

Mapping
Updating
Histogram

addrW

wen

dataR

addrW

wen

histBin

counting

z−5
z−6

videoOut

Mapping
Updating
Histogram

dataW

dataW

z−5

z−1

CEILING
REGISTER

histValP
reset

Min
Max

+

z−1

Max

histValM

tpixel

mode_bot

Scene
Histogram

Scene
Histogram

bin

mode_top

counting

z−1z−1

z−1

X

scene_
histogram

Perceived
Histogram

Addr_r

Addr_w

bin

z−1

Data

Enable

en

Dual-Port RAM

perceived_
histogramLow-Pass

Filter

α’

videoIn

videoIn

(a)

(b)

(c)

(b) OR (c)

(a)

histBin

mode
z−1

Z

histValS

addrR

addrW

histBin

z−3

dataW

wen

enLPF

RAM

histValP

videoIn

(a)

(b)

(b)

+

≫

RAM

addrR

addrW

dataRz−1

z−1

0

2
+

dataW

X

X

beta

alpha

(b)
(c)

1

(c)

+

dataR

=

(b)
(c)

histBin

256 256*2
256/2

>>c

>>c

>>w

0

0

0

dataR

histValM

Scene Optics CIS ISP Application

FPN SPN TMO

FPGA μP

Scene Optics CIS ISP

FPN SPN TMO

FPGA CPU

ISP App

U
S

E
R

X

mode

videoBin

RAM

addr

wen

dataR

addr

wen

resetSum

z−1

videoOut

RAM

dataW

dataW

histValP

histMax

(c)

(a)

(b) (d)

histBin

videoRef/2

0

0

dataR

Min
Max

+

z−1

0

min

histValM

videoRef −1

0

+

-1

X

dataW
dataR wen
REG

z−1z−1

z−1

cumSum

z−2

z−2

z−2(b)

z−4

z−4

(d) gainvideoMax
ratio

dataR
ROMaddrR

videoRef*2

≤
videoRef/2

videoRef*2

gainMax

gainMin

wen

(c)

≫

≫

≫
≥

z−1 z−2 z−1 z−1

X

mode

videoBin

RAM

addr

wen

dataR

addr

wen

resetSum

z−1

videoOut

RAM

dataW

dataW

histValP

histMax

(c)

(a)

(b) (d)

histBin

videoRef/2

0

0
dataR

Min
Max

+

z−1

0

min

histValM

videoRef −1

0

+

-1

X

dataW
dataR wen
REG

z−1z−1

z−1

cumSum

z−2

z−2

z−2(b)

z−4

z−4

(d) gainvideoMax
ratio

dataR
ROMaddrR

videoRef*2

≤
videoRef/2

videoRef*2

gainMax

gainMin

wen

(c)

≫

≫
≥

z−4 z−2 z−1 z−1 z−1

toneMap

z−2

Figure 3.2: Circuit schematics of the base histograms module. Three RAMs
are used, two to store the scene histogram and one the perceived histogram.
One RAM outputs the scene histogram of the previous frame, which is used to
compute the perceived histogram, while the other RAM is used to compute the
scene histogram of the current frame. In a pipelined design, like this, careful
attention must be paid to synchronization.

Method

Figure 3.2 illustrates our proposed circuit to compute the base histograms

efficiently in pipelined fashion. Whereas some design choices may be rational-

ized, others represent mini-hypotheses that one accepts only after validation

and evaluation. We elaborate on the design method below.

In a pipelined circuit design, one choice we may have for an array of data,

which changes over time, is whether or not to store it in a RAM. An al-

ternative may be to compute what is needed just when it is needed, for the

next computation, in an assembly line fashion. When the design is mapped to

resources available in an FPGA device, this choice will primarily impact the

circuit complexity and will secondarily impact maximum frequency and power

consumption.

Sometimes we have no choice but to use a RAM. We require a RAM

to store the perceived histogram, h′p, because it is used in a feedback loop.

Recalling (3.7), we need the bin values of frame k − 1 to compute those of

61

frame k. We also require a RAM to store the scene histogram, hs, because we

need to process an entire frame of the video input, yj[k], where j indexes the

n pixels in sequence, before we have the correct histogram values.

We choose to use an additional RAM to implement the scene histogram.

We implement a ping-pong buffer, where one RAM is used for writing and the

other for reading the ‘same’ array, during one frame, with the roles reversed

each frame. As such, we distribute the perceived histogram computation over

the frame period, instead of squeezing it into a short interval between frames.

A consequence of the ping-pong buffering is that, at the end of a frame,

the perceived histogram is computed from the scene histogram of the previous

frame, not the current one. Therefore, compared to the background algorithm,

we have introduced a one frame latency. However, for a video rate of 30 fps

and a LPF time constant of 0.4 s, in (3.5), the impact of this small latency is

negligible.

The memory required by our proposed design is at least the memory re-

quired by the three RAMs. Although linear in the number of data bits, the

size of each RAM is exponential in the number of address bits. When we use a

RAM to compute the scene histogram of a tin-bit sequence of integers, yj, bin-

ning is therefore desirable. A simple way to achieve binning is to discard sbin

least significant bits (LSBs), which is a zero-cost circuit operation, to produce

a t′in-bit sequence of integers, y′j, where:

y′j = b2−sbinyjc, (3.10)

t′in = tin − sbin. (3.11)

In Fig. 3.2(a), binning is represented as a right-shift operation (�) on the

videoIn signal. The memory, B, required by the three RAMs, in bits, is as

follows:

B = 3 · 2t′inth, (3.12)

th = dlog2 ne, (3.13)

where the number of data bits, th, represents the worst case where all n pixels

fall into a single histogram bin. The number of data bits is also called the

62

wordlength of the RAM.

The binned videoIn signal addresses one RAM, based on mode signals

generated by the controller, for scene histogram counting. The controller also

generates a histBin signal, which addresses another RAM, for scene histogram

readout. This signal, with symbol y′, starts at the lowest (or highest) possible

address and increments (or decrements), with each clock cycle, until it reaches

the highest (or lowest) possible address. Routing of the two possible address

signals to the two possible RAMs is done by two dual-input multiplexers,

shown in Fig. 3.2(a).

For simplicity, our single-clock design requires that it is possible to read

out the entire scene histogram within one frame period. Assuming the video

input streams continuously from a nearby CIS, within a hard real-time imaging

system, it means we have n clock cycles to address 2t
′
in words. Fortunately, we

have control over the size of the latter, via the parameter sbin in (3.11). We

must also allow for latencies, within our circuits, of a few clock cycles to make

it all work without glitches.

The mode signal, shown in Fig. 3.2(a), is a three-bit control bus. One

bit configures one scene histogram RAM into the counting or readout mode.

Another bit configures the other scene histogram RAM likewise. For cor-

rect synchronization, these signals are not exactly complements of each other,

which is why two are needed. The third control bit indicates completion of

readout. Counting and readout occur in parallel. However, readout may take

fewer than n clock cycles, unlike counting.

Implementing the counting or readout of a scene histogram in firmware,

i.e., with digital circuits, is not as straightforward as doing so in software.

Figure 3.2(b) illustrates the additional details. In the counting mode, the

addrR signal, of the RAM, is the binned videoIn signal, y′j. The dataR signal

is incremented to compute the new histogram bin value. The result feeds back,

with a one clock cycle latency, to the dataW port, overwriting the original

value. In the readout mode, the addrR signal is the external histBin signal,

y′. The dataR signal is the external histValS signal. The dataW signal is zero

to initialize the RAM for subsequent counting.

63

Regardless of mode, each scene histogram RAM performs both a read and

write operation each clock cycle. Because the addresses are different, a dual-

port RAM is used. To avoid errors, the “read during write” specification of

the RAM is configured as “old data”. This introduces a latency of one clock

cycle between when data is written to an address and when it can be read

back. In the event that consecutive addrW values are the same, which can

only happen during counting, a +2 incrementation is required, as shown in

Fig. 3.2(b), for correctness. Which increment to use is decided simply by

comparing the current and previous addrW values for equality.

Every frame period, one scene histogram RAM is read out. Its output

signal, histValS, is shown in Fig. 3.2(a). To select the correct dataR signal,

from the two possible RAMs, we use a multiplexer controlled by the mode

signal, which is delayed by one clock cycle to account for the latency of the

read operation. The reason the multiplexer has a third input, labelled Z for

high-impedance, is to signify the end of read out, during the frame period, as

determined from the third bit of the mode signal. A high-impedance state,

for a signal, is supported by the FPGA development tools. Using it helps to

debug and avoid errors.

The right half of Fig. 3.2(a) shows the circuitry used to compute the per-

ceived histogram, also stored in a dual-port RAM. This circuitry includes a

LPF subcircuit, shown in Fig. 3.2(c). The LPF uses two constants, two multi-

pliers, one adder, and one right shift to implement (3.7) with a latency of two

clock cycles. Each multiplier and the adder uses a register, causing the small

latency. In a pipelined design, it is desirable to use registers periodically as it

enables high-speed operation.

The read-port address of the dual-port RAM matches the address of the

scene histogram output. This ensures the same bin of the current scene his-

togram and previous perceived histogram arrive at the LPF simultaneously.

The address signal of the read port is delayed by three cycles for the write

port because data presentation and LPF computation take three cycles. This

ensures the updated value of the perceived histogram is stored in the right bin.

After all bins are computed, the perceived histogram has been updated.

64

To enable bit true validation of the module, a multiplexer is added to switch

between the computed LPF output, histValP, and the scene histogram itself,

histValS. To avoid the impact on a feedback circuit of unknown initial states,

the first two frames have the perceived histogram RAM follow the bin values

exactly from the scene histogram RAMs. Only after the third frame does the

perceived histogram RAM depend on the LPF.

3.2.3 Tone Mapping

According to Fig. 3.1, the tone mapping module computes the video output

from the input using the base histograms. After reviewing the background

algorithm, we introduce the circuit method developed for this purpose.

Background

Li et al.’s [35] tone mapping, like Ward Larson et al.’s [31] classic algorithm, is a

modification of histogram equalization. As a result, we summarize equalization

while reviewing Li et al.’s algorithm below. We include minor changes to the

algorithm, for simplicity, in this section.

Histogram equalization may be used to map tones from a tin-bit video

input, denoted yj, to a tout-bit video output, denoted wj, where tin > tout, as

follows:

wj = T (yj), (3.14)

T (y) = dwrefPY (y)e − 1, (3.15)

wref = 2tout , (3.16)

where PY , a cumulative distribution function (CDF), is computed from the

PMF, pY . Equalization is considered a global operator, T , because the tone

of each pixel, indexed by j, is mapped using the same function.

For a discrete random variable, Y , the CDF approximately equals the

cumulative sum, cY , of the histogram, h, with normalization. Usually, it

65

represents the probability that Y ≤ y:

PY (y) =
cY (y)

cmax

, (3.17)

cY (y) =

y∑
k=0

h(k), (3.18)

cmax = cY (2tin − 1), (3.19)

where y is a tin-bit unsigned integer. If we use the scene histogram, hs, to

compute the CDF, then cmax equals the number of pixels, n. However, if

instead we use the perceived histogram, h′p, it may be different from n.

Recalling (3.1), the monotonic function F , which defines the sensor re-

sponse, need not be increasing. For example, the log sensor considered by

our previous work [40] has a response that decreases as the stimulus increases.

Before any images are displayed, this decreasing response must be inverted. If

we define the CDF as the probability that Y ≥ y then the required inversion

is baked into the tone mapping. Instead of (3.18) and (3.19), we employ:

cY (y) =
2tin−1∑
k=y

h(k), (3.20)

cmax = cY (0). (3.21)

After equalization, the histogram of the video output will be uniform,

notwithstanding the constraints imposed by the discreteness of the video in-

put. Although T (y) is −1, in (3.15), when PY (y) is exactly zero, wj is never

less than zero, in (3.14), because Y never takes on values y where the proba-

bility of doing so is zero. The form of (3.15), which is a little different from

Li et al.’s corresponding equation, ensures that if the video input is perfectly

equalized then the video output will be likewise equalized.

Li et al. modify the histogram equalization to constrain the visibility, in

the video output, of the sensor noise, εj, given in (3.1). Following the same

66

approach:

wj = T (F (xj) + εj), (3.22)

≈ T (F (xj)) + T ′(yj) εj, (3.23)

T ′(y) ≈ wref pY (y), (3.24)

≈ wref h
′
p(y)

n∆y
, (3.25)

where the derivative of the CDF, PY , is the PMF, pY . The latter is computed,

according to (3.3), using the perceived histogram, h′p, instead of the scene

histogram, hs. The sum of the perceived histogram approximates n, the exact

sum of the scene histogram, and so we continue to use it, in the denominator

of pY , for simplicity.

From (3.23) and (3.25), the standard deviation of the sensor noise in the

video output, σw, is as follows:

σw(y) ≈ wref h
′
p(y)

n∆y
σε, (3.26)

where σε is the standard devation of the sensor noise, ε, in the video input. We

assume the latter is independent of stimulus, x, and response, y. Considering

Li et al.’s [34] work on polynomial-based FPN correction, this is a reasonable

assumption for a nonlinear sensor.

Returning to Li et al.’s [35] work on histogram-based tone mapping, we

hide the sensor noise in the quantization error of the video output, wj. For

an integer output signal, the quantization error is uniformly distributed over

a ±0.5 LSB interval, yielding a standard deviation of 1/
√

12 LSBs. To keep

σw, in (3.26), less than or equal to this threshold, we require:

h′p(y) ≤ hmax, (3.27)

hmax =

⌈
n∆y

wref

√
12σε

⌉
, (3.28)

where rounding up is chosen to ensure that hmax, a uniform ceiling on his-

togram bins, is never zero.

As with Ward Larson et al.’s [31] classic algorithm, Li et al.’s algorithm

enforces a ceiling, computed differently, before equalization. To produce the

67

sof

reset

lpf_en

clock

pix pix_mapped

TMO

Parameters

MAX_BIN CEIL
NUM_PIX SR
WIDTH_IN
WIDTH_OUT

tHDR
tLDR

FPGA

RAM

CIS

addr

pix

clk1

clk2

μP

coef

sof
reset

lpf_en TMO
Controllerclock

mode_top

bin_counter

mode_bot

mapping_top

counting

sof
reset

lpf_en

pix
pix_mappedScene

Histogram

Mapping-
Updating
Histogram

Perceived
Histogram

Modified
Histogram

TMO Controller

mode_bot

pix

scene_
histogram

Scene
Histogram

Addr_r

wen

mode

Clk Histogram

Scene
Histogram

Addr_r

wen

mode

Clk Histogram

bin

mode_top

counting

z−1z−1

z−1

X

sof

clock

6 5 1 2 73 5 2 16 3 4 6 5 770 2pix

Parameters

CEIL 165
SR 16
 3
 2
tHDR
tLDR

0 2 0 1 5

mode_top

mode_bot

counting

mapping

7 6 5 4 3 2 1 0 7 6 5 4 3bin_counter

histogram-counting & pixels mapped

histogram-outputting & map updated

histogram-bins

TMO latency

2 32 3 21 2histogram 1 3 1 4

7 6 5 4 3 2 1 0 7 6 5 4 3bin_counter

X 1 X

mode_top

mode_bot

counting

histogram-counting

histogram-outputting

histogram-frame 1

2 3 3 2
5 6 0 1
3 3 0
5 5 1 6

5 1 3 2
7 0 2 5
6 2 1 3
4 6 7 5

7 0 2 2
1 5 2 6
0 4 4 4
4 6 6 3

Frame 0

Frame 1 Frame 2

clock

state 0 1 2 3

s_axis_sof

reset

s_axis_valid

clock

s_axis_data m_axis_data

s_axis_eol

s_axis_ready
m_axis_sof

m_axis_valid

TMO

m_axis_eol

m_axis_ready

Soc
MPSoC

RFSoC NoC
CG EG EV

23~275
1.8~17.6
60~900
ARM Dual
Core
X

28nm

LUTs(K):
MEM(Mb):
DSPs:
uP:

MP:

Fab.:

23~275
1.8~17.6
60~900
ARM Dual
Core A/R
GPU +
Codec
16nm

23~275
1.8~17.6
60~900
ARM Dual
Core A/R

DAC/ADC
16nm

23~275
1.8~17.6
60~900
ARM Dual
Core A/R

DAC/ADC
16nm

mode_bot

pix

Scene
Histogram

Addr_r

wen

mode

Clk Histogram

Scene
Histogram

Addr_r

wen

mode

Clk Histogram

bin

mode_top

counting

z−1z−1

z−1

X

2 32 3 21 2histogram 1 3 1 4

7 6 5 4 3 2 1 0 7 6 5 4 3bin_counter

X 1 X

alpha

beta

counting histogram-frame 1

clock

lpf_en

236

20

3 11 2 14 1perceived_histogram

7 6 5 4 3 2 1 0 7 6 5 4 3bin_counter

X 3 X

counting

clock

mode_top

mode_bot

4 51 9 10modified_histogram 0 012 13 16

t_pixel 16

3 11 2 14 1perceived_histogram X 3 X

7 6 5 4 3 2 1 0 7 6 5 4 3bin_counter

counting

clock

4 51 9 10modified_histogram 0 012 13 16

t_pixel 16

5 7 0 0 12 6 0 4 4 4 4 6 365 2pix 1 3 2 7 0

mapping

3 3 12 3 3 32 1 2 0 2 231 0pix_mapped 2 2 0 1 3

5

mode Scene
Histogram

Addr_r

Addr_w

Histogram

bin

mode_top

z−1

z−1

X

0

1 2

+

scene_
histogram

Data

=

Perceived
Histogram

Addr_r

Addr_w

Clk

α’

bin

z−1

1 2

h
is to

g
ram

Data

Enable

X +

X

BS

β’

en

Dual-Port RAM

perceived_
histogram

scene_
histogram

Bin

Histogram

Clk

Reset
Modified
Histogram

tpixel

0

0

1

z−5bin

perceived_
histogram

mode_bot

mode_top

counting

z−5

z−5

z−5 Modified
Histogram
Wrapper

CEILING
REGISTER

bin

perceived_
histogram

reset

Min
Max

+

z−1

0

Max

modified_
histogram

tpixel

modified_
histogram

tpixel

mapping_top

pix

Mapping
Updating
Histogram

Addr_W

wen

Clk Histogram

Addr_W

wen

Clk Histogram

bin

mode_top

counting

z−1

z−5
z−6

pix_mapped

Mapping
Updating
Histogram

Data

Data

Div

 Round

Mul

modified_
histogram

tpixel
0

0
z−5

z−1

256

Mapping
Updating
Histogram

mapping_top

pix

Mapping
Updating
Histogram

Addr_W

wen

Clk Histogram

Addr_W

wen

Clk Histogram

bin

counting

z−5
z−6

pix_mapped

Mapping
Updating
Histogram

Data

Data

A

modified_
histogram

0

0
z−5

z−1

256*2

256/2

LUT

tpixel

X

X >>c

X

>>c

>>w
ratio

wmax

videoIn
Tone
Mapping

controlIn

Base
Histograms

videoOut

Controller

A

LUT

tPixel

X

X

ratio

wmax

X

mapping_top

pix

Mapping
Updating
Histogram

Addr_W

wen

Clk Histogram

Addr_W

wen

Clk Histogram

bin

counting

z−5
z−6

pix_mapped

Mapping
Updating
Histogram

Data

Data

0

0
z−5

z−1

Normalization
Module

tpixel

modified_
histogram

Div

Mul
histValM

tPixel

 Round

Scene Optics CIS ISP Application

FPN SPN TMO

mode_bot

pix

Scene
Histogram

Addr_r

wen

mode

Clk Histogram

Scene
Histogram

Addr_r

wen

mode

Clk Histogram

bin

mode_top

counting

z−1z−1

z−1

X

scene_
histogram

Perceived
Histogram

Addr_r

Addr_w

Clk

bin

z−1

Data

Enable

en

Dual-Port RAM

perceived_
histogram

X +

X

β’

BS

Low-Pass
Filter

FPGA

FPGA μP

mapping_top

videoIn

Mapping
Updating
Histogram

addrW

wen

dataR

addrW

wen

histBin

counting

z−5
z−6

videoOut

Mapping
Updating
Histogram

dataW

dataW

z−5

z−1

CEILING
REGISTER

histValP
reset

Min
Max

+

z−1

Max

histValM

tpixel

mode_bot

Scene
Histogram

Scene
Histogram

bin

mode_top

counting

z−1z−1

z−1

X

scene_
histogram

Perceived
Histogram

Addr_r

Addr_w

bin

z−1

Data

Enable

en

Dual-Port RAM

perceived_
histogramLow-Pass

Filter

α’

videoIn

videoIn

(a)

(b)

(c)

(b) OR (c)

(a)

histBin

mode
z−1

Z
histValS

addrR

addrW

histBin

z−3

dataW

wen

enLPF

RAM

histValP

videoIn

(a)

(b)

(b)

+

≫

RAM

addrR

addrW

dataRz−1

z−1

0

2
+

dataW

X

X

beta

alpha

(b)
(c)

1

(c)

+

dataR

=

(b)
(c)

histBin

256 256*2
256/2

>>c

>>c

>>w

0

0

0

dataR

histValM

Scene Optics CIS ISP Application

FPN SPN TMO

FPGA μP

Scene Optics CIS ISP

FPN SPN TMO

FPGA CPU

ISP App

U
S

E
R

X

mode

videoBin

RAM

addr

wen

dataR

addr

wen

resetSum

z−1

videoOut

RAM

dataW

dataW

histValP

histMax

(c)

(a)

(b) (d)

histBin

videoRef/2

0

0

dataR

Min
Max

+

z−1

0

min

histValM

videoRef −1

0

+

-1

X

dataW
dataR wen
REG

z−1z−1

z−1

cumSum

z−2

z−2

z−2(b)

z−4

z−4

(d) gainvideoMax
ratio

dataR
ROMaddrR

videoRef*2

≤
videoRef/2

videoRef*2

gainMax

gainMin

wen

(c)

≫

≫

≫
≥

z−1 z−2 z−1 z−1

X

mode

videoBin

RAM

addr

wen

dataR

addr

wen

resetSum

z−1

videoOut

RAM

dataW

dataW

histValP

histMax

(c)

(a)

(b) (d)

histBin

videoRef/2

0

0
dataR

Min
Max

+

z−1

0

min

histValM

videoRef −1

0

+

-1

X

dataW
dataR wen
REG

z−1z−1

z−1

cumSum

z−2

z−2

z−2(b)

z−4

z−4

(d) gainvideoMax
ratio

dataR
ROMaddrR

videoRef*2

≤
videoRef/2

videoRef*2

gainMax

gainMin

wen

(c)

≫

≫
≥

z−4 z−2 z−1 z−1 z−1

toneMap

Figure 3.3: Circuit schematics of the tone mapping module. Two RAMs
are used, one to map the video input to the output, based on the previous
perceived histogram, and the other to compute a new map, based on the
current perceived histogram. To avoid division, which is relatively difficult to
implement, a combination of feedback, multiplication, and bit shifting is used,
with the help of registers and a ROM.

operator T , in (3.15), we use the following for h, in (3.18) or (3.20):

hm(y) = min(h′p(y), hmax), (3.29)

where the perceived histogram, h′p, is replaced with a modified histogram, hm,

and the normalization value, in the denominator of (3.17), is replaced by the

sum of the modified histogram, denoted cmax as before, which in general may

be much less than n.

Method

Figure 3.3 presents our proposed circuit to compute the tone map efficiently

in pipelined fashion. We elaborate on the design method below. While other

choices are possible in places, the ones that we make are ultimately validated

and evaluated in the next section.

68

Fundamentally, we need subcircuits to employ and compute the mapping

function, T , in (3.14) and (3.15), respectively. We design these to operate

in parallel. Because the video input must be tone mapped continuously in

hard real time, circuit requirements are relaxed if we distribute the tone map

computation over the frame period. In turn, this enables higher operating

frequencies.

Additionally, we represent the mapping function, T , as a look-up table

(LUT) using a RAM. To implement the parallel processing described above, in

ping-pong fashion, two single-port RAMs are needed, as shown in Fig. 3.3(a).

Based on a multi-bit control signal, mode, one RAM operates, in read mode

only, on the binned video input, y′j, and the other operates, in write mode only,

on the histogram bins, y′. Both are t′in-bit signals, which means the memory

required depends on the design parameter, sbin, in (3.11). The RAMs switch

roles each frame.

No additional RAM is required for the modified histogram, hm, of the

background algorithm. Instead, we compute and employ it on the fly, in

pipeline fashion, as shown in Fig. 3.3(b). This is because the base histograms

module, in Fig. 3.2, outputs the bin values of the perceived histogram, h′p,

in sequence. We enforce a ceiling, as per (3.29), in one clock cycle and then

compute a cumulative sum with a simple accumulator. A small extra part

resets the accumulator to zero at the start of each frame, requiring a one-bit

control signal.

The cumulative sum is computed according to (3.18) or (3.20), depending

on whether F , in (3.1), is monotonically increasing or decreasing, respectively.

We configure the controller to output the histogram bins, y′, from low to high

or high to low, respectively. Either way, in the last clock cycle of the process,

the sum of the modified histogram, cmax, is computed. This value is required

to compute the CDF, PY , in (3.17), which is the main part of the tone map,

T , in (3.15).

There is one minor issue and one major problem computing the CDF, PY , in

(3.17). The minor issue is that we require cmax before it is computed. Because

the modified histogram is a function of the perceived histogram, which changes

69

slowly, we expect the sum of the modified histogram, cmax, to change slowly.

Therefore, with a simple register, we could store and employ the previous cmax

to compute the current PY approximately.

The major problem is that division is relatively difficult to implement in

an FPGA. A simple implementation we initially adopted prevented our circuit

from operating at high frequencies. As a result, we developed an alternative,

composed primarily of the subcircuits shown in Figs. 3.3(c) and (d). Usage of

these subcircuits, as well as an additional register, is shown in Fig. 3.3(a).

A first step in the no-division method is to combine (3.15) and (3.17) and

replace the ratio wref/cmax with an integer multiplication and right shift, as

follows:

T (y′) = d2−toutAcY (y′)e − 1, (3.30)

where tout is the wordlength of the video output. These operations are shown

in Fig. 3.3(a). Our previous work [40] elaborates on how to implement a right

shift followed by a round down or round off operation. A similar approach is

used to implement a right shift followed by a round up operation.

The gain, A, in (3.30) should be as follows:

A = round(2toutwref/cmax). (3.31)

When it is the correct value, we get the following:

wmax = d2−toutAcmaxe, (3.32)

≈ wref , (3.33)

where wmax is an intermediate value of the tone map computation, in (3.30), at

the end of the process, i.e., when cY (y′) equals cmax. As shown in Fig. 3.3(a), we

store wmax in a feedback register. The register is updated once each frame, at

the appropriate clock cycle, using a control signal generated by the controller.

At the beginning of each frame period, we compare the previous intermedi-

ate value, wmax, to the expected value, wref , a constant. If it is too low or high

then we know that our gain, A, is too low or high, in which case we adjust

the latter by an appropriate amount. In particular, if it is too low or high by

70

a factor of two or more, we simply double or halve A. Because the modified

histogram changes slowly, A will very quickly be within a factor of two of the

correct value.

We know that A is near to its correct value when wmax is greater than

wref/2 and less than 2wref . In this situation, we obtain the adjustment ratio

using a constant LUT, which is a relatively small read-only memory (ROM).

The LUT implements the following function:

R(wmax) = round(2toutwref/wmax). (3.34)

Thus, we precompute the integer values in (3.34), which include divisions, for

a small range of possible wmax and store them in a ROM. The number of

words is proportional to wref and the wordlength to tout. Usually, the latter is

8 bits, in which case the former is 256.

Figures 3.3(c) and (d) present the subcircuits used to compute the adjust-

ment ratio and the gain, respectively. Because of the left shift in (3.34), a

corresponding right shift and round off is implemented in Fig. 3.3(d). This

realizes the following equation:

A[k] = round(2−toutR[k]A[k − 1]), (3.35)

where k is the frame number. For consistency, the cases where A must be

halved or doubled are also treated by computing a left-shifted adjustment ratio,

as shown in Fig. 3.3(c). Note that wref equals 2tout , as per (3.16). Because the

ROM takes one clock cycle for read out, the parallel comparisons are equally

clocked.

The minimum, Amin, and maximum, Amax, of the gain may be calculated,

using (3.31), from the maximum and minimum of the modified histogram sum,

cmax, respectively. The maximum of the latter is either the total number of

pixels, n, or the histogram ceiling, hmax, times the total number of bins, 2t
′
in ,

whichever is smaller. The minimum is simply hmax, which corresponds to the

case where all pixels fall in one bin.

The limits on A, which are precomputed constants, are enforced by the

limiter in Fig. 3.3(d). It includes a register to store the limited value of A.

71

Updating of the register occurs once per frame period, at the appropriate clock

cycle based on a control signal generated by the controller. The initial value

of A is set to Amin and, to ensure validity, the control signal is only provided

from the third frame on, i.e., after the base histograms LPF is enabled. The

upper limit, Amax, determines the wordlength of the register, as well as the

sizes of related buses.

Finally, as shown in Fig. 3.3, delays are introduced in various places, which

is essential for a pipelined design to function correctly. These delays are based

on the latencies of parallel circuit paths that must remain synchronous. As

with the base histograms module, operations inside circles are not clocked, i.e.,

they use combinational logic. Operations inside rectangles are clocked.

3.3 Results and Discussion

The previous section proposed a pipelined circuit method to realize histogram-

based tone mapping of a monotonic nonlinear CIS in hard real time. The pro-

posed method is validated by comparing its internal signals and video outputs,

for a variety of video inputs, to the same data computed by a high-level im-

plementation of the background algorithm in Matlab. In addition, realized

circuits are evaluated using FPGA tools, such as ISE from Xilinx and Quartus

from Altera, now owned by Intel.

3.3.1 Validation

Digital circuits were designed and synthesized for the Xilinx XC6SLX45T and

Altera EP3C40 devices. These two FPGAs were chosen because they were the

simplest ones, from the Xilinx Spartan-6 and Altera Cyclone III families, that

fit our design. Moreover, these device families were the lowest cost ones in

production, from the two leading suppliers, at the time this research began.

Video Input

For test purposes, we create a variety of video inputs as follows. To begin with,

we downloaded several high/wide DR image sequences provided by Kronander

72

10-2 100 102 104 106

Scene Luminance (cd/m2)

1.6

1.8

2

2.2

2.4

2.6

2.8

3

P
ix

el
 R

es
po

ns
e

(L
S

B
)

104

Figure 3.4: Response of a simulated log sensor. Experimental data from a
TTVGA pixel array, reported in the literature, was monotonically interpolated
to simulate images of high/wide DR scenes for a wide variety of video formats.

et al. [29]. These binary files contain pixel responses that have been calibrated

and converted to scene luminances. The data readily supports the HD video

format at 30 fps. Using standard downsampling and upsampling techniques,

applied offline to each image separately, we could also test smaller and larger

video formats.

We convert the floating-point scene luminances to fixed-point pixel re-

sponses from a monotonic nonlinear CIS as follows. Using experimental data,

collected by Li et al. [34], from a small-format log sensor, we constructed a

cubic Hermite spline to represent the monotonic function, F , in (3.1). This

is shown in Fig. 3.4. We then apply the function to each scene luminance,

add zero-mean Gaussian noise of the appropriate magnitude, and round off to

the nearest integer. In this manner, we create a 16-bit video input, i.e., the

videoIn signal.

As explained in Section 3.2, we shift out a few bits of the videoIn signal

before further processing. An advantage of this is that it reduces the size of

the RAMs required by the proposed design. However, shifting out too many

bits may alter the tone map significantly. Considering the log sensor noise

73

Table 3.2: Video formats used to evaluate the proposed circuits. Frames are
composed of n1 scan lines and n2 pixels per line. The clock frequency is the
number of pixels times a frame rate of 30 Hz.

Format n1 × n2 Pixels Clock

TTVGA 48× 64 3.07 k 92.2 kHz
HQVGA 160× 240 38.4 k 1.15 MHz
VGA 480× 640 0.31 M 9.22 MHz
HD 720× 1280 0.92 M 27.6 MHz
FHD 1080× 1920 2.07 M 62.2 MHz

levels after FPN correction, as measured by Li et al., we shifted out two bits,

resulting in a 14-bit binned video input, i.e., the videoBin signal.

Table 3.2 defines the video formats used in our analysis. The well known

video graphics array (VGA) format provides a basis for the standard half quar-

ter VGA (HQVGA) format and the non-standard tenth tenth VGA (TTVGA)

format. Small formats, such as the latter, may be used by academics who wish

to experiment with alternative CIS architectures. Furthermore, by careful test-

ing with smaller format videos, it was easier to debug errors in the proposed

circuit method before scaling up to the HD and FHD formats of primary in-

terest.

Internal Signals

As with our previous award-winning work [40], on circuit methods for FPN

correction and SPN filtering, we aim for a bit true design in this work. This

means that we require a perfect match, bit-for-bit, between the proposed cir-

cuit’s output and the background algorithm’s output. An alternative approach

would be to aim for a high peak SNR (PSNR), where the PSNR represents the

error, in decibel (dB), between the two outputs. A bit-true design corresponds

to a PSNR of infinite dB.

One advantage of a bit true design is that it decouples the algorithm design,

in which all approximations must be incorporated, from the circuit design,

which has its own set of challenges that require attention and a different skill

set. Another advantage is that, in the process of developing a bit true design,

a thorough circuit validation is required, which increases the robustness of the

74

end design.

Unlike our previous published work, it was essential in this work to tap

internal signals of the proposed circuit, due to its relative complexity. In the

course of developing a bit-true design for the video output, we had to develop

a bit true design for critical circuit states, as deduced from internal signals

that could be tapped. Using the FPGA design tools, we saved these internal

signals to files that were then analyzed.

The proposed circuit has five RAMs, which define a large number of circuit

states. Circuit outputs are a function of inputs and states, where the states

themselves are functions of inputs. Because two pairs of RAMs are configured

as ping-pong buffers, we could take them in groups. By tapping the histValS

and histValP signals, shown in Fig. 3.2, we validated the scene and perceived

histogram states, which use three RAMs. Similarly, we tap the toneMap signal,

shown in Fig. 3.3, to validate the tone map states, which use two RAMs.

Figure 3.5 illustrates the validation described above. The x-axis gives

nonzero values of the videoBin signal. The left y-axis gives frequency counts

of the validated scene and perceived histograms, computed at the 6 s mark for

a video input based on the “students” data from Kronander et al. [29]. The

right y-axis gives the validated “Li (w/o div)” tone map, as well as additional

tone maps not computed by the circuit but provided simply for reference.

As shown in the figure, the perceived histogram is close to the scene his-

togram. Differences arise because of low-pass filtering. When these internal

signals are observed over time, the perceived histogram changes smoothly,

which reduces video artefacts after tone mapping, as previously demonstrated

by Li et al. [35]. The circuit computes a modified histogram on the fly by

limiting the perceived histogram to a precomputed ceiling. Without this step,

the tone map would implement a histogram equalization. As shown, the equal-

ization map can exhibit higher contrast in places, which has the disadvantage

of amplifying sensor noise.

The proposed tone map is computed by accumulation and normalization of

the modified histogram. Accumulation is done from high to low bin values, i.e.,

from right to left in Fig. 3.5, because the log sensor has an inverting response,

75

5200 5400 5600 5800 6000 6200 6400 6600 6800 7000 7200
Video Bin

0

200

400

600

800

1000

1200

1400

1600

1800

F
re

qu
en

cy

0

50

100

150

200

250

T
on

e
M

ap

S. Histogram
P. Histogram
Noise Ceiling
Equalization
Li (with div)
Li (w/o div)

Figure 3.5: Internal states of the proposed TMO circuit. An example is shown
for the HD video format at the end of one frame period. The scene (S) and per-
ceived (P) histograms are computed by the base histograms module. The tone
map, which applies a ceiling to the perceived histogram before accumulation,
is computed by the tone mapping module, which implements Li et al.’s algo-
rithm without division. Also shown are tone maps for histogram equalization
and for Li et al.’s algorithm with division.

as shown in Fig. 3.4. Therefore, the resulting tone map is also inverting, which

corrects the original inversion. Although normalization requires division, it is

realized without division, as explained in Section 3.2. Nevertheless, circuit

results without division are practically identical to algorithm results with di-

vision, as shown in Fig. 3.5.

Video Output

Whereas validation of the internal signals was critical for debugging the pro-

posed circuit methods, the primary validation of interest concerns the video

output, videoOut, an 8-bit unsigned integer signal that may be viewed on a

LDR display. Display values range from 0 to 255, thanks to tone mapping of

the high/wide DR video input, videoIn, a 16-bit unsigned integer signal.

76

0 2 4 6 8
Time (s)

(a)

(b)

(c)

(d)

M
et

ho
d

Figure 3.6: Video output of four TMOs for the HD video format. Three
TMOs were implemented only in software: (a) a simple photometric algorithm;
(b) histogram equalization; and (c) Li et al.’s algorithm with division. The
fourth one, (d) Li et al.’s algorithm without division, was implemented also
in firmware using the proposed circuit methods. First 0.1 s aside, (c) and (d)
were practically identical. Video input is based on high/wide DR data from
the literature.

Figure 3.6 illustrates this final validation, using the “students” video input

previously described. In this example, which is just over 8 s long, a group of

students are walking down a dark hallway in the foreground, while daylight

enters through windows in the background. As before, a bit true validation was

performed, meaning the circuit was debugged until there were no bit errors.

A need for superior tone mapping is evident in Fig. 3.6(a), which depicts

the results of a simple photometric algorithm [35]. This algorithm implements

white-point saturation, gamma correction, and scaling, according to the sRGB

specification. Although histogram equalization, shown in Fig. 3.6(b), avoids

the saturation issues, it can exaggerate contrast and thereby amplify sensor

noise. Moreover, when implemented independently from frame to frame, at

30 fps, flickering artefacts may arise due to dramatic changes in the scene

histogram occuring too quickly and/or frequently.

Advantages of Li et al.’s [35] algorithm, shown in Fig. 3.6(c), have been pre-

viously demonstrated. What this work proposes, however, is a novel pipelined

77

circuit to realize those advantages, in hard real time, using an FPGA. To

eliminate a problematic division operation, a significant change was also made

to the background algorithm. The results of the proposed approach are shown

in Fig. 3.6(d). It takes a few frames for a feedback circuit, used to replace di-

vision by multiplication, to settle. Thereafter, results are practially identical

with or without division.

One issue that remains, evident in Figs. 3.6(c) and (d), is that the students

look too dark. This is partly due to the relatively high dark limit of the log

sensor, indicated by the knee point in Fig. 3.4. Below the dark limit, noise

dominates over the signal. Because Li et al.’s method limits the visibility of

sensor noise after tone mapping, contrast is reduced at low scene luminances.

The best way to address this issue may be to use a linlog sensor instead, which

enjoys a lower dark limit.

3.3.2 Evaluation

After the proposed circuits were validated, for all video formats in Table 3.2,

we proceeded to evaluate the following: the circuit complexity, in terms of

logic and memory required; the max frequency of valid operation; and the

power consumption, broken down into static and dynamic parts.

Complexity

Because of differences in the underlying FPGA architectures, Xilinx and Al-

tera design tools report logic and memory in different ways. Quartus from

Altera simply reports the number of LEs and memory bits required. To com-

pute the LEs with Xilinx, we sum the different types of “slices” reported by

ISE, including digital signal processing (DSPg) ones. Similarly, we perform a

weighted sum to compute the number of bits from the numbers and types of

BRAMs reported. In both cases, some logic resources may be used to imple-

ment memory.

Figure 3.7 gives the logic and memory, versus number of pixels, required

by the complete circuit for both devices. The number of pixels vary with video

format, as per Table 3.2. Other parameters were kept constant.

78

103 104 105 106 107

Number of Pixels

0

500

1000

1500

Lo
gi

c
(L

E
s)

0

5

10

15

M
em

or
y

(b
its

)

105

Xilinx Logic
Altera Logic
Xilinx Memory
Altera Memory

Figure 3.7: Complexity of the complete TMO circuit. With the Altera device,
the required logic is roughly constant and the required memory is propor-
tional to the log of the number of pixels. The Xilinx device behaves similarly,
especially for the larger video formats.

Relative to the available resources in the chosen low-cost devices, the re-

quired logic is low. However, the required memory is significant because of the

five RAMs involved. Nevertheless, the required memory capacity grows slowly,

i.e., linearly with the log of the number of pixels. With the Altera device, the

required memory is almost exactly the value computed by summing the size

of the five RAMs.

Frequency

Figure 3.8 presents the max frequency, versus the number of pixels, of the

complete circuit for both devices. We determine this frequency, independent

of video input, using static timing analysis (STA). We reduce the clock pe-

riod systematically until the FPGA design tool reports timing violations, e.g.,

failure to meet setup or hold constraints somewhere in the circuit.

A video format is supported if the max frequency, determined by STA,

exceeds the required frequency, given in Table 3.2. As shown in Fig. 3.8, all

video formats are supported even though the max frequency decreases as the

79

103 104 105 106 107

Number of Pixels

0

20

40

60

80

100

120

M
ax

 F
re

qu
en

cy
 (

M
H

z)

 HD

 FHD

Xilinx
Altera

Figure 3.8: Max frequency of the complete TMO circuit. With both devices,
the max frequency decreases roughly linearly with the log of the number of
pixels. All video formats that were considered are supported, although the
margin is small with one device for the FHD case.

number of pixels increases. Considering a similar though opposite trend for

required memory, as shown in Fig. 3.7, RAM operations may be the limiting

factor. Larger RAMs require more time due to propagation delays.

Power

Figure 3.9 presents the power consumption, versus video format, of the com-

plete circuit for both devices. The FPGA tools report total power and static

power, from which dynamic power is easily computed. Also, power consump-

tion depends on the clock frequency. The chosen frequencies are the ones

reported in Table 3.2, not the max frequencies.

The static power is the power consumed by the device irrespective of func-

tionality. As shown in Fig. 3.9, this power dominates for the smaller formats.

For the larger formats, the dynamic power increases but remains a small mul-

tiple of the static power. Because the RAM sizes are strongly correlated with

the number of pixels, they are likely responsible for the observed trend.

80

TTVGA HQVGA VGA HD FHD
Video Format

0

50

100

150

200

250

P
ow

er
 (

m
W

)

Xilinx Static
Xilinx Dynamic
Altera Static
Altera Dynamic

Figure 3.9: Power consumption of the complete TMO circuit. With both
devices, the dynamic power grows with the video format. Nevertheless, it
remains on the order of the static power.

3.3.3 Significance

Table 3.3 summarizes the specifications of the designed circuits, including

a breakdown by the main modules, for the largest video format that was

supported. For reference, there are 81, 922 LEs and 2, 138, 112 bits available

in the chosen Xilinx device. There are 56, 168 LEs and 2, 396, 160 bits available

in the chosen Altera device.

We revisit our main competitors, namely other TMOs implemented using

FPGAs, to compare our results against their designs. In comparison to Ofili

et al. [41], our design does not present visual artefacts, although we consume

more memory, and we are able to process FHD videos. Their design processes

HD videos.

Against Popovic et al. [42], our work also achieves FHD but with a lower

frame rate. They choose 60 fps and our design runs at 30 fps. Our design can

use a low-cost FPGA in comparison to the high end component used by them.

Their design uses more DSPg slices, i.e., 30, whereas our Xilinx design uses

13. But Popovic et al.’s design does not consume any memory, which is a good

advantage depending on the nature of the project. However, Popovic’s TMO

81

Table 3.3: Circuit specifications for the FHD video format. In addition to the
complete TMO circuit, which includes the controller, the base histograms and
tone mapping modules were evaluated as separate circuits. Required LEs and
bits are given, in parentheses, as a fraction of available resources. The chosen
Xilinx (XC6SLX45T) and Altera (EP3C40) devices were the simplest ones in
the Spartan-6 and Cyclone III families, respectively, that fit the design.

Circuit Technology Logic (LEs) Memory (bits) Max Freq. Static P. Dynam. P.

Base XC6SLX45T 421 (0.51%) 1, 161, 216 (54.3%) 83.3 MHz 37.3 mW 80.9 mW
Histograms EP3C40 652 (1.16%) 1, 031, 282 (43.0%) 90.9 MHz 94.2 mW 133.5 mW
Tone XC6SLX45T 477 (0.58%) 294, 912 (13.8%) 62.5 MHz 38.2 mW 138.6 mW
Mapping EP3C40 737 (1.31%) 262, 318 (10.9%) 111.1 MHz 94.1 mW 49.0 mW
Complete XC6SLX45T 847 (1.03%) 1, 456, 128 (68.1%) 62.5 MHz 38.8 mW 168.7 mW
TMO EP3C40 1, 002 (1.78%) 1, 294, 540 (54.0%) 83.3 MHz 94.3 mW 150.6 mW

does not consider temporal adaptation and was not tested against videos, only

still images. Our design has temporal adaptation, which can handle rapidly

changing scenes without visual artefacts. Whereas their design approach is

based on achieving a high PSNR, we used a bit true approach. As a result,

our design was subject to a thorough debugging.

Urena et al. [54] also use a low cost FPGA to deploy their TMO. They

reported a VGA format only, at 60 fps. Though we set 30 fps for the VGA

format, we would be able to achieve 260 fps using the max frequency achieved

for this configuration with Xilinx. Their design uses 30,086 LUTs and 36

BRAMs. For Xilinx and the VGA format, our design uses 471 LUTs and 70

BRAMs. Urena et al.’s design had 64 levels in the histogram, which limited

the performance. Our design has 16,384 levels. Both designs use fixed-point

computation.

3.4 Conclusion

Eilertsen et al. [14] presents a survey of TMOs for high/wide DR video di-

vided in categories where the top two performers are TMO designs based on

histograms, and both global operators. Most of the FPGA implementations of

TMOs are simple with fixed global operators using LUTs, e.g., Mann et al.’s

[38] work, or are implemented in high-end FPGAs [42].

Li et al. [35] proposed a tone-mapping algorithm for nonlinear CISs based

on histograms. It is a global operator that is updated every frame, considering

82

the noise model of the CIS to improve the histogram quality, and has no

temporal effects due to the use of a LPF. We developed a circuit method for

this algorithm, a hard real-time design for a truly parallel architecture.

We applied the same generic framework of our previous work [40]. Vali-

dation is done using a background algorithm as reference, and zero bit error

rate (BER) was achieved. Our novel circuit designs for low-cost FPGAs ex-

hibit low latency and operate continuously in hard real time. The circuits

can scale up to FHD video and still fit in low-cost FPGAs. The evaluation

was made for the two major FPGA suppliers: Xilinx and Intel, who now own

Altera.

Although implented using a HDL, the proposed circuits are explained using

schematics, equations, and words. Not only was the output signal validated,

but internal signals were tapped to validate internal states in bit-true fashion.

All circuits are pipelined and synchronous. No glitches were observed during

testing. Besides the zero BER, we visualize the correct operation with the use

of sample HD high/wide DR video, as modified using experimental data from

a nonlinear CIS.

In conclusion, this work developed, validated, and evaluated a global TMO

that can fit in a low-cost FPGA. It does not present visual artefacts, and can

be used as a stepping stone to implement other histogram-based TMOs in an

FPGA.

83

Chapter 4

Reconfigurable System-on-Chip

A system-on-chip (SoC) platform having a dual-core microprocessor (μP) and

a field-programmable gate array (FPGA), as well as interfaces for sensors and

networking, is a promising architecture for edge computing applications in

computer vision. In this chapter, we consider a case study involving the low-

cost Zynq-7000 SoC, which is used to implement a three-stage image signal

processor (ISPr), for a nonlinear CMOS image sensor (CIS), and to interface

the imaging system to a network. Although the high definition (HD) imaging

system operates efficiently in hard real time, by exploiting an FPGA implemen-

tation, it sends information over the network on demand only, by exploiting a

Linux-based μP implementation. In the case study, the Zynq-7000 SoC is con-

figured in a novel way. In particular, to guarantee hard real-time performance,

the FPGA is always the master, communicating with the μP through interrupt

service routines (ISRs) and direct memory access (DMA) channels. Results

include a validation of the overall system, using a simulated CIS, and an anal-

ysis of the system complexity. On this low-cost SoC, resources are available for

significant additional complexity, to integrate a computer vision application, in

future, with the nonlinear complementary metal-oxide-semiconductor (CMOS)

imaging system.

4.1 Introduction

Nowadays, autonomous devices require high processing data capabilities and

portability, to be able to connect to any operating system (OS), but have

84

restrictions in power, weight, and cost. Low latency, between inputs and

outputs, is also crucial for high speed applications, which means the use of

cloud computing is not ideal. These are technical challenges of edge computing

systems, as described by Lee et al. [33], which feature large scales, distributed

networks, cyber-physical interfaces, dynamic and adaptive environments, and

heterogeneous platforms.

A case study of a multi-stage ISPr, implemented with a SoC platform,

demonstrates a capacity to process a large amount of data in hard real-time

while providing web content. A FPGA embeds the image signal process-

ing (ISPg) algorithms, while realizing true parallel processing. A μP han-

dles hardware interfaces for storage and networking, including the high-level

protocols to serve web pages.

Our system corresponds well to key aspects of edge computing, where the

device is capable of processing a large amount of data, namely HD high dy-

namic range (HDR) video, reporting processed information in a high-level

format, not overloading the network, and pushing the processing to the edge.

Our method also addresses issues faced by current cloud solutions, reviewed

by Shi and Dustdar in “The Promise of Edge Computing” [46], by having low

latency and private data (all processing is done locally), while processing a

large amount of data.

This work uses the FPGA as the main platform to embed all circuits that

compose a three-stage pipelined ISPr required for a nonlinear CIS. The re-

search delivers a design flow for hard real-time to be achieved with an SoC.

Underlying software algorithms were previously published by our group. They

include fixed pattern noise (FPN) correction and salt-and-pepper noise (SPN)

filtering [34], as well as digital circuit designs thereof [40], and a tone mapping

operator (TMO) [35].

Lapray et al. [30] developed an HDR video camera using a Virtex 6 FPGA

from Xilinx. They achieved 60 frames per second (fps) with a spatial reso-

lution of 1280×1024 pixels in a homogeneous implementation, using only an

FPGA. A lot of FPGA resources were spent in generating the HDR image

by combining low dynamic range (LDR) images with different exposure times.

85

However, the Virtex 6 is a high-end FPGA and their TMO might not be able

to handle abrupt changes in illumination.

Another full HDR video camera applied for welding was developed by Mann

et al. [38]. The system is real-time and low cost, deployed using a Spartan-6

LX45 FPGA from Xilinx. Their design employs look-up tables (LUTs), which

guarantees real-time, but a lot of pre-processing has to be made to generate

the LUTs. It is a good implementation for homogeneous computing, using

only an FPGA that lacks connectivity. As well, the use of LUTs may be too

simple to handle fast changes in luminance.

The novelty of this research is the use of a heterogeneous SoC to realize an

embedded real-time ISPr for an HDR imaging system that will incorporate a

nonlinear CIS. Acting as the master of the system, the FPGA post-processes

and interfaces the nonlinear CIS to the μP. The μP enables the system con-

nectivity and extra processing could be realized in the μP as well.

4.2 Apparatus and Application

After describing the platform of our ISPr, this section explains its functionality.

As the explanation is high level, using input-output images, please consult the

references for more details about the background algorithms and circuits.

4.2.1 System-on-Chip Platform

Figure 4.1 shows the SoC development kit we used. The SoC itself is a

XC7Z020 from the Zynq-7000 family of the Xilinx All Programmable SoC ar-

chitecture. It is composed of a dual-core ARM Cortex-A9, called the processing

system (PS), and a 7-series FPGA from Xilinx, called the programmable

logic (PL). In this chapter, we simply write μP for the PS and FPGA for

the PL to favour generic terminology.

From the available peripherals, we use: the Joint Test Action Group

(JTAG) for debugging; the Universal Serial Bus (USB) universal asynchronous

receiver-transmitter (UART) for serial communication; the Ethernet controller

for networking; and the memory controller to access 1 GB of random-access

86

HDMI

Zynq:
ARM +
FPGA

DDR

JTAG

UART

SD
Card

Figure 4.1: Zturn development kit with Zynq-7000 SoC. This board is the
platform chosen to deploy the proposed ISPr, and thereby to realize a case
study on edge computing. The image is adapted from the literature [56].

memory (RAM), specifically double data rate (DDR) synchronous dynamic

RAM (SDRAM). Our ISPr requires memory to store the FPN coefficients,

which fit easily into the DDR memory after loading from the Secure Digi-

tal (SD) card. The OS is booted from the SD card as well.

Documentation and examples are provided by the vendor, such as C code to

embed in Linux and access the board’s peripherals, kernel files to configure and

recompile the Linux kernel, and device tree source files, to add new hardware

components.

Xilinx has a suite of tools, called Vivado, for system design with the Zynq-

7000. Vivado can work with hardware description language (HDL) coding and

drag-and-drop graphical user interfaces (GUIs). For bare-metal development,

i.e., to program the μP with no OS, a software development kit (SDK) is

included for C and C++. The Vivado high-level synthesis (HLS) is a third

integrated development environment (IDE) that allows designers to develop

their FPGA projects using C, C++, and/or System C only, without the need

87

CIS

FPGA

FPN SPN TMO

SoC

μP

CONTROLLER

Vision
App Network

coef Disk

Figure 4.2: Interconnection of primary SoC components. Some are in the
FPGA, while others are in the μP. A key part of this work is the interfacing.

for HDL coding.

For standard components, such as DMA and video drivers, we use intellectual

property (IP) cores from Xilinx. We also designed custom circuits to make our

ISPr. Drivers needed by the SoC are available, according to the FPGA design.

For this project, we do not use Vivado HLS.

4.2.2 Image Signal Processor

The SoC allows the design of a heterogeneous system, where work is divided

between an FPGA and μP, as shown in Fig. 4.2. The proposed system takes

advantage of the highly parallel architecture provided by the FPGA and the

rich set of peripheral devices and software libraries available on the μP.

On the FPGA side, a custom digital architecture can execute pixel-level

algorithms and multi-channel tasks efficiently, taking advantage of the high

throughput and low power of FPGAs, especially for fixed-point computation.

The FPGA can also extend the peripherals of the μP, e.g., to accommodate a

nonlinear CIS that requires a custom and sophisticated ISPr to be functional.

The μP is composed of: a dual-core ARM processor; standard peripherals

for connectivity; and GB-scale memory access with memory controllers. It

is capable of running Linux, a multi-threaded OS, and performing additional

computation.

As it is “low-power yet high-performance,” to quote Kalb et al. [25], this

heterogeneous system is ideal for realizing the ISPr of a nonlinear CMOS

88

0 2 4 6 8
Time (s)

A
ll

IS
P

N
o

T
M

O
N

o
SP

N
N

o
FP

N

Figure 4.3: Illustration of the ISPr functions. From bottom to top, the image
quality improves by adding circuits for FPN correction, SPN filtering, and
tone mapping.

imaging system. However, the design flow is challenging due to multiple de-

velopment environments and the complexities of interfacing the FPGA and

μP. Kalb et al. worked on a more unified tool chain, a customized real-time

kernel for parallel computing, and a hardware system.

A nonlinear CIS, such as the logarithmic one by Mahmoodi et al. [37],

is ideal for HDR imaging at video rates because it does not need to create

the HDR image from multiple LDR images [30] [38]. While nonlinear CISs

have been investigated before, the literature generally focuses on small-format

cases.

In contrast, using HD HDR videos from Kronander et al. [29], this work

simulates a large-format nonlinear CIS. Videos were pre-processed to simulate

the responses of Mahmoodi et al.’s image sensor [37], except with the larger

HD format. This resulted in compressed logarithmic responses, having 16 bits

of pixel depth, with FPN and SPN incorporated.

Figure 4.3 demonstrates the importance of the three main circuits in the

proposed ISPr. The “All ISP” row shows the result with all circuits. The “No

89

FPGA
(LUT, FF, DSP, BRAM)

UART GPIO

General-Purpose
AXI Ports

DRAM
Controller

High-Performance
AXI Ports

AMBA Interconnect - AXI4

Dual Core
ARM Cortex

μP

Figure 4.4: Zynq-7000 SoC main blocks and interfaces. The AMBA intercon-
nect protocol is utilized to bridge the FPGA and μP sides of the system.

TMO” row shows the result with a simple TMO in place of Li et al.’s one [34].

The “No SPN” row shows what happens when SPN is not filtered. Finally,

the “No FPN” row shows what happens when FPN is not corrected.

To make the ISPr operational, a controller circuit is added to the design to

provide all control and status signals. The controller implements the external

communication protocol, called Advanced eXtensible Interface (AXI), between

the ISPr and the DMA, an AXI4-Stream. At the ISPr input, the controller

extracts CIS pixel values and FPN correction coefficients from data packages

received via DMA. Pixel addresses are generated by the controller and pro-

vided to the SPN filter. Finally, frame synchronization signals are generated

for the TMO.

4.3 Interfacing Method

As shown in Fig. 4.4, the interfaces between the FPGA and μP include: high

performance (HP) ports, for high speed data transfer; and general purpose

(GP) ports, for configuration and control. We also set up interrupts to make

the FPGA the master of the system and to avoid wasteful polling by the μP.

Our approach differs from the hardware acceleration methodology, shown

in Fig. 4.5(1), of the literature. Because we currently simulate the nonlinear

CIS, our approach is as shown in Fig. 4.5(2). Ideally, the architecture would

90

FPGA

(1)

(2)

(3)

Legend

Master
FPGA

Slave

FPGA μP

μP

μPCIS

Figure 4.5: Potential master-slave configurations of the system. Squares indi-
cate the master, and ovals the slave(s). We currently use approach (2).

be as shown in Fig. 4.5(3), where an actual nonlinear CIS is controlled by the

FPGA.

The protocol we adopted is AXI from Advanced Microcontroller Bus Ar-

chitectures (AMBAs). It has three variations: AXI4-Full, for multiple devices

on HP buses; AXI4-Little, for control; and AXI4-Stream, for point-to-point

communication. We use AXI4-Stream, which is the simplest and more efficient

version. This protocol, which has a finite state machine with four states, is

implemented in the controller circuit.

The design flow for the SoC can be classified either as horizontal or vertical.

In the horizontal case, as in Fig. 4.6(1), the FPGA design in Vivado yields the

bit file that configures the FPGA. For the μP, repositories and makefiles,

configured for cross compilation, generate the boot file, kernel, device tree

binary (DTB), and root file system. In the vertical case, as in Fig. 4.6(2),

Vivado exports a hardware description file (HDF), which is a container with

the FPGA bit file and other design configuration files. PetaLinux [16] then

uses the HDF to generate the configuration files for the μP. Modules, packages,

and applications can be added in PetaLinux before building the whole project.

We use DMA to transfer data efficiently between the FPGA and μP. The

DMA is realized by a standard IP block, which we add to the FPGA design,

that is configured and controlled by software running on the μP. To make the

FPGA the master, we trigger the μP to run the software, implemented as a

Linux ISR, in response to interrupt requests (IRQs) generated by the FPGA

and detected by the μP.

The ISR may be in the kernel space or user space of the OS. We imple-

91

HDF

RTL
Design

FPGA

HDL
Code Constraints

Modules

Apps

Packages

μP Device
TreePetalinux

Template

Rootfs
Config

Kernel
Config

Build

Boot FPGA Kernel Filesystem DTB

(2)

RTL
Design

FPGA
HDL
Code Constraints

μP

Bootloader

Vivado

Cross
Compile

Boot

Kernel

Cross
Compile

Kernel DTB

Filesystem

Zip
mkimage

ramdiskFPGA

(1)

Vivado

Figure 4.6: Potential design flows for the SoC system. (1) The horizontal one
has a more independent methodology, where compilation of the FPGA and
μP projects are done separately. (2) The vertical one emphasizes integration,
making it easier to load extra packages and configurations.

92

mented it in the user space, which does not require a custom device driver.

We make use of control and status registers, which are memory mapped, of

the DMA circuit [5].

A kernel space implementation is more robust, but requires more time

and expertise. To design a custom device driver, there are three components:

memory allocation, DMA device control, and cache control. Also, the kernel

has to reserve a contiguous area of memory in which the driver operates. As

in our user space implementation, we favour the simple operation mode of the

DMA, as opposed to the scatter-gather mode, because it simplifies both the

ISR and AXI4-Stream implementations.

4.4 Results and Discussion

Having presented the apparatus, application, and method, we now turn our

attention to system validation and evaluation.

4.4.1 System Validation

On the FPGA side, after HDL code entry and synthesis, the design is tested

with functional validation, where most bugs are caught. An initial validation

is realized manually with a few small images. Thereafter, for many large

images, automatic validation is performed against the same data processed in

Matlab. Binary files are used to load input data and save output data. After

debugging, zero bit error is consistently achieved.

On the μP side, an initial test is to verify that the Linux kernel detects

the new device, i.e., the interrupt-based DMA transfer. This can be done

by entering “dmesg” at a command prompt. Other useful commands are

“cat /proc/interrupts,” to verify the interrupt number and name, and “cat

/proc/iomem,” to verify the DMA address. When using a PetaLinux driver,

self tests of the DMA can be loaded, in the kernel configuration phase, and

basic DMA operation can be verified during boot.

To validate the system, a web server was implemented on the μP. It serves

a simple web page, accessible from any browser on the same network, that

93

Figure 4.7: Browser screenshot of a web page served by the SoC system. The
μP is running a web server to serve the FPGA output over a network.

contains a bitmap image. The ISR we wrote for Linux, coded in C, converts

binary data, received from the FPGA via DMA, to a bitmap image file, which

is embedded in a static hypertext markup language (HTML) script. Figure 4.7

shows a screenshot of the web page, using a cellphone browser.

Using an oscilloscope, we verified that IRQs were generated at exactly 30

Hz. A trace is shown in Fig. 4.8. For this experiment, we made the μP busy

from time to time, also shown in Fig. 4.8, while verifying that the FPGA

still generated the IRQs at a constant 30 Hz, which enables hard real-time

performance.

94

0 0.02 0.04 0.06 0.08 0.1
Time (s)

-0.5

0

0.5

1

1.5

2

2.5

V
ol
ta
ge

5 10 15 20 25 30
Time (s)

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 U

sa
ge

Mem
CPU

Figure 4.8: IRQ voltage of the FPGA and usage of the μP. The IRQ rate,
measured by an oscilloscope, is never disturbed by the μP load, measured by
a shell script. Usage is varied by interleaving calculations and sleeping.

95

Figure 4.9: Zoomed-out floorplan image of the ISPr design. Using the Vivado
IDE, designers can explore the complexity of their FPGA circuits. For this
case study, plenty of resources are available for additional complexity.

4.4.2 System Evaluation

To evaluate the complexity of an FPGA design, we have previously reported

aggregate numbers of logic elements (LEs) and memory bits [40]. In this work,

because we focus on a Xilinx device only and use the Vivado IDE, we report

four parameters: logic and memory in LUTs; additional memory in block

RAMs (BRAMs); additional memory in flip-flops (FFs); and additional logic

in digital signal processing (DSPg) slices.

An overview of the occupancy is given in Fig. 4.9. This floorplan shows the

96

Logic and
Memory in Luts

Addional Memory
in BRAMS

Number of FFs Number of DSPs

Figure 4.10: Utilization of FPGA resources, at HD resolution, by the ISPr.
Relative to the DMA and TMO, few resources are used by the FPN, SPN, and
controller circuits. Even considering BRAM memory, mainly used by buffers
in the TMO, plenty of unused resources are available for additional processing.

layout of the ISPr for HD resolution. Vertical narrow rectangles, for example,

represent BRAMs instantiated for the TMO circuit. Placement of compo-

nents may be affected by introducing additional constraints on the design. A

breakdown of resource usage, as reported by Vivado, is given in Fig. 4.10.

In terms of the circuits being evaluated, we refer to all the auxiliary cir-

cuitry needed to support the DMA as “DMA aux,” which includes: the smart

connectors to bridge HP AXI channels, between the FPGA and the μP; the

inter-connectors for bridging GP AXI channels; and the reset circuits to reset

and synchronize data transfer, between the FPGA and the μP. These circuits

were all inserted automatically by Vivado.

The controller circuit refers to all circuitry responsible for integrating the

FPN correction, SPN filtering, and TMO circuits, as well as for interfacing the

DMA using AXI4-Stream.

In Fig. 4.10, the number of LUTs primarily represents logic used, but some

of it could represent memory. The total usage, primarily for the DMA and

DMA aux circuits, is less than a quarter of the amount available. Especially

considering the HD resolution of the ISPr, all of the remaining circuits are

highly efficient in terms of logic used. There are a total of 53,200 LUTs

available.

The BRAMs represent most of the memory in the design. Xilinx embeds

in their FPGAs configurable 36 Kb blocks of true dual-port RAM. Figure 4.10

shows that our TMO consumes a significant number of BRAMs, but it is not

97

much more than a quarter of the total available. The TMO relies on BRAMs

to store histograms and mapping functions in ping-pong buffers. There are

140 BRAM totalling 4.9 Mb available.

As with the LUTs, Fig. 4.10 shows that the DMA and DMA aux circuits

are the ones that use the most FFs. Notwithstanding a router inside the SPN

circuit, which is purely combinational logic, the FPN, SPN, and TMO circuits

use pipelined sequential logic, which requires FFs. However, as a fraction of

the 106,400 FFs available, the amount used by these circuits is negligible.

The last resource depicted, in Fig. 4.10, is the number of DSPg slices. We

can see here the influence of the FPN circuit, which is basically composed of

adders and multipliers. The TMO also has arithmetic to calculate a mapping

function. Only a small fraction of the 220 DSPg slices that are available is

used.

In addition to unused resources on the FPGA side, there are unused re-

sources on the μP side. Whereas IRQs are always generated at 30 Hz, if the

ISR takes too long to execute, e.g., when saving an image unnecessarily to a

disk, then some IRQs will not be served. However, given that the μP has two

high-performance cores, there is plenty of scope for computation on its end.

4.5 Conclusion

This work achieved a SoC design flow for hard real-time ISPg of a nonlinear

HDR imaging system. Although algorithms and some digital circuits in the

ISPr are from previous work, this work integrates all of them into a single

real-time platform. The design flow to implement such a system is presented

and the system design is validated and evaluated.

Our ISPr used 31.4% of BRAMs, 14.5% of LUTs, 9.0% of FFs, and some

DSPg slices, available in a Xilinx Zynq-7000 SoC, to process HD video. Be-

cause the FPGA in the SoC is a low-cost device, the realized ISPr design is

therefore very efficient.

To interface the FPGA and the μP, IRQs and DMA were used. With a

horizontal design flow, having the ISR software in user space, we achieved

98

25 fps at HD resolution. With a vertical design flow, using PetaLinux, we

compiled and inserted a new driver in kernel space, updated missing packages,

and implemented a DMA self test. We leave completion of the PetaLinux

approach, which would support higher bandwidths, to future work.

One novelty of our design flow is that the FPGA is the master of the SoC

platform, which includes a μP running Linux and will, in future, include a

nonlinear CIS. Using this approach, our design can achieve hard real-time

operation. At present, we simulated the nonlinear CIS using binary data

loaded from a file, which consumed some of the bandwidth between the FPGA

and μP. By freeing up this bandwidth, in future, we would be able to achieve

the full 30 fps required for HD video.

We implemented a new circuit to integrate the ISPr to the μP via DMA.

The main interface uses an AXI4-Stream bus and not video DMA (VDMA),

because our goal was not a video processing pipeline with the end point being

a display. Instead, our goal was to send the data to the μP for communication

over a network, i.e., an edge computing case study.

Even taking simple modes of operation for the DMA, and AXI4-Stream for

the protocol, a heterogeneous system requires mastery of multiple disciplines

of knowledge. Working with embedded Linux provided the advantages of its

networking, open source tools, and standard OS functions. However, any new

interface between the FPGA and μP has to be recognized by the Linux kernel.

This means editing the Linux device tree, configuring the Linux kernel to

recompile, and possibly, for better performance, creating a device driver in the

kernel space. All of these tasks were investigated here in order to fully support

HD video.

The proposed design flow is especially suited for future edge computing

applications involving HDR imaging and computer vision. In addition to sub-

stantial unused logic and memory available on the FPGA, the μP was used

here, beyond the ISR software, only to connect to a network and serve sim-

ple web content. Its dual-core ARM processor may be used for additional

processing, by leveraging open-source frameworks for Linux.

99

Chapter 5

Conclusion

In this chapter, we summarize the novelties and achievements of this research

and envision future work. All contributions are grouped into each of the major

thesis parts: on fixed pattern noise (FPN) correction and salt-and-pepper noise

(SPN) filtering; on a histogram-based tone mapping operator (TMO); and on

reconfigurable system-on-chip (SoC) interfacing. We foresee our future work

involving research with an actual nonlinear CMOS image sensor (CIS). This

includes leveraging the capabilities of our reconfigurable SoC to explore the

suitability of the nonlinear imaging system for computer vision applications.

5.1 Summary and Contributions

This research has proposed generic circuit methods for FPN correction, SPN

filtering, and tone mapping, as well as an image signal processor (ISPr) for a

nonlinear CIS. Our FPN correction gives the option of generating different cir-

cuits based on the polynomial degree. Our TMO is a modular framework that

can be customized for other histogram-based approaches. Providing reconfig-

urable circuits maximizes the use of field-programmable gate arrays (FPGAs),

allowing the ISPr to be easily targeted to specific applications. These digi-

tal circuits were characterized in terms of the utilization of FPGA resources,

power consumption, and maximum frequency. However, we go further than

FPGAs alone and present methods of working with reconfigurable SoCs where

an FPGA and microprocessor (μP) are integrated on the same silicon, expand-

ing the computing power via a heterogeneous platform.

100

A novelty of this work is the creation of efficient generic circuits, which

were based on previously designed algorithms. Ours were efficient solutions

because we were able to deploy them in low-cost FPGAs without sacrificing

performance. We were able to process high definition (HD) video formats.

Other researchers in this field have also taken the approach of investigating

novel digital circuits for FPGAs based on previously published algorithms.

5.1.1 FPN Correction and SPN Filtering

Using a nonlinear CIS to expand the dynamic range (DR) comes with a more

complicated response curve to correct. This work has presented a new class

of digital circuits capable of correcting the FPN. The recursive digital circuit

based on polynomials is flexible and robust, but it does not compromise the

performance since it used only 2.06% of the available logic and 0.01% of the

available memory, in a low-cost FPGA, for full HD (FHD) video.

The use of a hardware description language (HDL) allowed the insertion

of an extra level of abstraction, in the normal standard design flow of FPGAs,

where a high-level scripting language, capable of processing text files, generates

the circuit based on a previously coded design template and user parameters.

This new methodology was extended for an automatic bit true validation pro-

cess, where the generated circuit is compared to the algorithm implemented

in software and every single pixel of both outputs matches 100%.

As the focus of this research has always been to develop a generic solution,

a comparison between the two major FPGA manufacturers was made by re-

porting the results for both FPGA platforms. It also demonstrates that the

solution is portable since it is independent of the architectural details of one

particular FPGA. Only a generic digital circuit can be applied to a variety of

problems, thus making it a class of circuits and not a single solution.

After the FPN is corrected, some pixels are stuck at a low or high logic

level, in a manner that varies dynamically with light level, producing char-

acteristic SPN that can be filtered with a median filter. An SPN filter is

required, therefore, and this research presented a pipelined circuit to buffer

the minimal amount of pixels to implement the median filter. The circuit

101

has three stages where circuit diagrams and accompanying text explain how

to implement them. The proposed design can also be deployed in a low-cost

FPGA.

The three stages of the SPN filter are: a first-in first-out (FIFO) memory

to buffer only two lines of the image and still be able to assemble a complete

filter kernel; a router to modify the FIFO output and not waste any pixels by

changing the shape of the kernel at the corners and borders; and a median

filter that always processes five pixels.

Our SPN filter consumes 7.17% of the available logic and 24.7% of the

available memory, in a low-cost FPGA, for FHD video. It was also efficient

compared to an FPGA implementation of a median filter described in the

literature.

5.1.2 Histogram-Based Tone Mapping

In a review paper, Eilertsen et al. [14] reported that test subjects, i.e., human

participants in a study, preferred global TMOs with no visual artefacts. Of the

top three most-preferred TMOs, two of them are based on histograms. With

this motivation, this work has presented a digital circuit framework of how to

implement histogram-based TMOs in hard real time.

Because the scope of this thesis is not software solutions, but digital cir-

cuits, a background algorithm developed by Li et al. [35] was leveraged. Com-

putations performed by the algorithm were restructured to support hard real-

time operation, where the novel circuits operate synchronous to a clock and

in parallel fashion. While one circuit module maps the incoming pixels with

the TMO stored in memory, another circuit module updates the TMO. The

operator is global, but adapts itself according to the received video frames.

The generality of our design is illustrated by how it was factored into two

major parts, i.e., a module for the base histograms and a module for the tone

mapping. Such an approach facilitates the replacement of the tone mapping

module to realize a different histogram-based approach. The base histograms

module encapsulates the computation of the histogram with low-pass filtering,

which is desirable to avoid flickering artefacts. Sub-parts of the tone mapping

102

module may also be reused in another solution. One sub-part computes the

mapping function and another applies the map to the video.

In order to achieve video rates at HD resolutions, the algorithm was mod-

ified to avoid division and to use multiplication and bit shifts instead. This

strategy saved logic resources and increased overall performance, still allowing

this complex circuit to be implemented in a low-cost FPGA.

Even though TMOs are a well-researched topic, not all of the examples

found in the literature are designed for hard real time, or are able to achieve

video rates at FHD resolution. Also, previous TMOs designed for real-time

scenarios have presented visual artefacts, when using a local operator, or lim-

ited contrast, when using a global operator, due to the approach taken. Either

that or they require a high-end FPGA, due to high circuit complexity.

By presenting results for circuits scaled from thousands to millions of pix-

els, we show how robust and generic the proposed method is, with the right

adaptation of internal buses and memory sizes to accommodate such scaling.

5.1.3 Reconfigurable System-on-Chip

Moore’s law is dying but digital system requirements continue to scale. They

are growing with the growth in artificial intelligence (AI), machine learning,

and video processing applications.

Doug Burger, a Distinguished Engineer from Microsoft, said in a confer-

ence: “... to support live AI services with very low response times at large

scale, with great efficiency – better than central processing units (CPUs), we’ve

made a major investment in FPGAs” [9]. CPUs have reached the clock speed

limit due to heat dissipation issues, and they cannot provide much more par-

allelism. Julien Simon, Principal Evangelist at Amazon AWS, also justified

the use of FPGAs as a better alternative to graphics processing units (GPUs)

regarding power consumption and efficiency [47].

Acknowledging that they stand to benefit from what they say and do, it

is nonetheless worthwhile to consider the words and actions of leading FPGA

vendors. For example, Xilinx President and CEO Victor Peng said, at the

XDF 2018 Keynote, because of “... the explosion of data, ... the emergence of

103

AI across all platforms, and the disruption of the end of Moore’s Law, people

have to deliver products to market faster than ever and to scale at world level

you need systems that are adaptable.” He was saying this to promote FPGAs

and their reconfigurability. Also noteworthy is Intel’s acquisition of Altera,

which was aimed at agility and customization.

New approaches to increase computing performance have included a shift

toward heterogeneous computing, where an SoC with an FPGA and a μP

on the same silicon is one of the architectures available, an architecture that

is explored in this work. A case study of a hard real-time ISPr based on a

novel methodology encompassing the entire cycle of SoC design is presented.

The design and interfacing of the ISPr, intended for a nonlinear CIS, was

investigated, including FPN correction, SPN filtering, and a TMO.

In contrast to typical hardware acceleration, our approach to the use of

the reconfigurable SoC is innovative. By making the FPGA the master of the

system, we describe how to achieve high processing speeds in hard real time via

interrupts, from the FPGA to the μP, and direct memory access (DMA). An

experiment where the dual-core μP was made periodically busy was conducted

to show the system working with no latency caused by the busy μP.

Due to the complexity of heterogeneous systems, this work investigated

two design flows to work with a reconfigurable SoC. The advantages and

disadvantages were presented to support other researchers who want to use

the same technology. For example, one of the difficulties of working with the

reconfigurable SoC is the interface between the μP and FPGA. This work

explains how to handle such a technical difficulty and how to debug possible

issues. As a result, this work will help the community to understand the

design challenges and opportunities when exploiting heterogeneous computing

architectures.

5.2 Future Work

Here, we address some ways in which this research may be continued. First,

we focus on the hardware, i.e., how to integrate a nonlinear CIS with the ISPr

104

to investigate imaging capabilities of the resulting system. The second section

is dedicated to an application that could take advantage of such a nonlinear

complementary metal-oxide-semiconductor (CMOS) imaging system. It dis-

cusses an end application envisioned for this design, how to commercialize

components of the design, and finally how the design can be improved.

5.2.1 Nonlinear CMOS Imaging System

For this thesis research, we did not use an actual nonlinear CIS. Instead,

we used experimental data, from a small format logarithmic (log) sensor, to

simulate a nonlinear CIS from small to large formats. Because our focus was on

the ISPr, it was a convenient yet appropriate strategy to validate the proposed

circuits and interfaces, while demonstrating scalability.

With an actual CIS, additional investigations would be possible. For ex-

ample, in a publication entitled “Toward a digital camera to rival the human

eye,” an SPIE Top Download for two months, Skorka and Joseph [48] demon-

strated the difficulty of doing exactly that. One avenue they considered was

the nonlinear CIS and they made a case, using different words, that low-power

image signal processing (ISPg) in hard real time was a limiting factor.

To rival human vision, or even to significantly surpass it, one avenue may

be to investigate a nonlinear CMOS imaging system comprised of a nonlinear

CIS, such as a log or linear-logarithmic (linlog) sensor, and a corresponding

ISPr. Outcomes of this thesis, therefore, facilitate such future work.

When the system is updated with the actual CIS additional variables may

be investigated, including ones, such as temperature, that drift according to

environmental conditions. The polynomial-based FPN correction would have

to be extended to take into account such difficulties.

Some development work will be needed to facilitate such research work. For

example, the FPGA-based system controller, discussed in Chapter 4, would

have to set the row and column addresses of the CIS, and provide other control

signals, to read pixel values sequentially. In addition, the initial configuration

of the actual CIS would also have to be done by the controller.

Currently, when transferring data from a Secure Digital (SD) card to the

105

FPGA, a process controlled by the FPGA, the simulated pixel values and the

FPN correction coefficients were packed together, resulting in 64-bit words,

i.e., 16 bits for each pixel value and 48 bits for the corresponding coefficients.

When the pixel values come from an actual CIS, the FPGA will require only

the coefficients from a file stored on the SD card. Although this change requires

less bandwidth for the data transfer from the SD card to the μP, data that

would actually be cached in random-access memory (RAM) by the operating

system (OS), a surmountable challenge will be to stream a 48-bit signal over

a 64-bit DMA channel.

The multiple clock signals that may be required to solve the above challenge

would require synchronization circuits to handle data crossing from one clock

domain to another. One solution may be to use a FIFO with different clock

signals for read and write, as explained by Cummings [12]. In addition, the

FPGA-based controller will have to synchronize the pixel values, coming from

the CIS, with the FPN correction coefficients, coming via a DMA channel from

cached data on the μP side of the SoC.

Ultimately the reconfigurable SoC may be upgraded as well. A more recent

component, with better technology, would increase the overall performance of

the system, and leave additional resources to implement other ISPg operations

using digital circuit methods. Such upgrading could significantly increase the

maximum frame rate, or allow higher image resolutions to be processed at the

same frame rate.

5.2.2 Computer Vision Application

A currently growing market that requires better quality cameras is the au-

tomotive industry. With the advent of self-driving cars, digital cameras in-

creasingly require wide DR (WDR) capabilities to deal with the high dynamic

range (HDR) luminances, from dark tunnels to bright sunshine, present in

the real world. They must also do so with low latency, for rapid responses to

rapidly changing stimuli. All these challenging requirements make it worth-

while to investigate the use of a nonlinear CMOS imaging system, built with

a reconfigurable SoC, in such a computer vision application.

106

One of the advantages of working with the reconfigurable SoC platform,

especially with Linux running on the μP side, is the possibility of incorporating

open-source computer vision frameworks, such as OpenCV or Caffe. Use of

these application program interfaces (APIs) would make it easy to add back-

end sophistication to the imaging system. For example, Caffe is a deep learning

framework. Although we did not test any of these APIs, using Petalinux with

the horizontal methodology, as described in Chapter 4, seems to be the better

design flow option for system management and control.

The proposed application would take advantage of the FPGA for low-level

low-latency pixel-level ISPg, leaving the dual-core μP, running Linux with pre-

configured open-source software, to continue the high-level processing. For

example, the FPGA would perform the correction, filtering, and mapping op-

erations addressed in this thesis, while the μP would perform object detection

and classification. Whereas the FPGA would implement fixed-point calcula-

tions efficiently with pipelined circuits, the μP would implement floating-point

calculations with software developed efficiently.

Future work could include the development of intellectual property (IP)

cores to help commercialize, and further disseminate, thesis innovations. Com-

ponents may be delivered via the Amazon AWS platform, which is already set

up to share such IP. One aspect of this work is the use of generic methods.

Circuits that were designed for FPN correction, SPN filtering, and histogram-

based tone mapping may be adapted for other uses, which our IP cores could

facilitate. For example, with the right parameters, the FPN correction and

SPN filtering may be readily applied to a linlog sensor. Also, if we share the

TMO as two IP cores, a third party could integrate, for example, our base

histograms module with their own tone mapping module.

107

References

[1] M. Akil, T. Grandpierre, and L. Perroton, “Real-time dynamic tone-
mapping operator on gpu,” Journal of Real-Time Image Processing,
vol. 7, no. 3, pp. 165–172, Sep. 2012, issn: 1861-8219. doi: 10.1007/
s11554-011-0196-7. [Online]. Available: https://doi.org/10.1007/
s11554-011-0196-7.

[2] A. O. Akyüz, “High dynamic range imaging pipeline on the gpu,” Jour-
nal of Real-Time Image Processing, vol. 10, no. 2, pp. 273–287, Jun.
2015, issn: 1861-8219. doi: 10.1007/s11554-012-0270-9. [Online].
Available: https://doi.org/10.1007/s11554-012-0270-9.

[3] Altera, Intel FPGAs, https://www.altera.com/products/fpga/

overview.html, Oct. 2017. [Online]. Available: https://www.altera.
com/products/fpga/overview.html.

[4] S. Asano, T. Maruyama, and Y. Yamaguchi, “Performance comparison of
fpga, gpu and cpu in image processing,” in 2009 International Conference
on Field Programmable Logic and Applications, Aug. 2009, pp. 126–131.
doi: 10.1109/FPL.2009.5272532.

[5] Axi dma v7.1, PG021, Vivado Design Suite, Xilinx, Apr. 2018.

[6] F. Banterle, A. Artusi, E. Sikudova, P. Ledda, T. Bashford-Rogers, A.
Chalmers, and M. Bloj, “Mixing tone mapping operators on the gpu by
differential zone mapping based on psychophysical experiments,” Signal
Processing: Image Communication, vol. 48, pp. 50–62, 2016, issn: 0923-
5965. doi: https://doi.org/10.1016/j.image.2016.09.004. [On-
line]. Available: http://www.sciencedirect.com/science/article/
pii/S0923596516301308.

[7] K. Benkrid, A. Akoglu, C. Ling, Y. Song, Y. Liu, and X. Tian, “High
performance biological pairwise sequence alignment: Fpga versus gpu
versus cell be versus gpp,” Int. J. Reconfig. Comput., vol. 2012, 7:7–
7:7, Jan. 2012, issn: 1687-7195. doi: 10.1155/2012/752910. [Online].
Available: http://dx.doi.org/10.1155/2012/752910.

[8] Berten, “GPU vs FPGA Performance Comparison,” White Paper, vol. BWP001,
no. v1.0, 2016.

108

https://doi.org/10.1007/s11554-011-0196-7
https://doi.org/10.1007/s11554-011-0196-7
https://doi.org/10.1007/s11554-011-0196-7
https://doi.org/10.1007/s11554-011-0196-7
https://doi.org/10.1007/s11554-012-0270-9
https://doi.org/10.1007/s11554-012-0270-9
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://doi.org/10.1109/FPL.2009.5272532
https://doi.org/https://doi.org/10.1016/j.image.2016.09.004
http://www.sciencedirect.com/science/article/pii/S0923596516301308
http://www.sciencedirect.com/science/article/pii/S0923596516301308
https://doi.org/10.1155/2012/752910
http://dx.doi.org/10.1155/2012/752910

[9] D. Burger, Transitioning from the Era of Multicore to the Era of Special-
ization, https://youtu.be/vo1qHEqLK4c, Oct. 2014. [Online]. Avail-
able: https://youtu.be/vo1qHEqLK4c.

[10] P. Cambou and J.-L. Jaffard, “Status of the CMOS Image Sensors In-
dustry,” YOLE Developpment, Tech. Rep., 2015.

[11] B. Choubey and S. Collins, “Models for Pixels With Wide-Dynamic-
Range Combined Linear and Logarithmic Response,” IEEE Sensors Jour-
nal, vol. 7, no. 7, pp. 1066–72, Jul. 2007. [Online]. Available: https:
//doi.org/10.1109/JSEN.2007.895959.

[12] C. Cummings, “Synthesis and Scripting Techniques for Designing Multi-
Asynchronous Clock Designs,” SNUG, vol. 1.1, no. 3, Mar. 2001.

[13] J. Duan, M. Bressan, C. Dance, and G. Qiu, “Tone-mapping High Dy-
namic Range Images by Novel Histogram Adjustment,” Pattern Recogn.,
vol. 43, no. 5, pp. 1847–1862, May 2010, issn: 0031-3203. doi: 10.1016/
j.patcog.2009.12.006. [Online]. Available: http://dx.doi.org/10.
1016/j.patcog.2009.12.006.

[14] G. Eilertsen, R. Wanat, R. K. Mantiuk, and J. Unger, “Evaluation of
Tone Mapping Operators for HDR-Video.,” Comput. Graph. Forum,
vol. 32, no. 7, pp. 275–284, 2013. [Online]. Available: http://dblp.uni-
trier.de/db/journals/cgf/cgf32.html#EilertsenWMU13.

[15] A. El Gamal and H. Eltoukhy, “CMOS image sensors,” IEEE Circuits
and Devices Magazine, vol. 21, no. 3, pp. 6–20, May 2005, issn: 8755-
3996. [Online]. Available: http://dx.doi.org/10.1109/MCD.2005.
1438751.

[16] Embedded Design Hub - PetaLinux Tools, https://www.xilinx.com/
support/documentation-navigation/design-hubs/dh0016-petalinux-

tools-hub.html, Accessed: 2019-02-28.

[17] D. F., M. K., A. T., and C. N., “Adaptive logarithmic mapping for
displaying high contrast scenes,” Computer Graphics Forum, vol. 22,
no. 3, pp. 419–426, doi: 10.1111/1467-8659.00689. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00689.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.
1111/1467-8659.00689.

[18] R. Fontaine, “The State-of-the-Art of Mainstream CMOS Image Sen-
sors,” in Proceedings of the International Image Sensors Workshop, Jun.
2015, pp. 1–4.

[19] F. Hassan and J. Carletta, “An FPGA-based architecture for a local
tone-mapping operator,” Real-Time Image Processing, vol. 2, no. 2, pp. 293–
308, 2007.

109

https://youtu.be/vo1qHEqLK4c
https://youtu.be/vo1qHEqLK4c
https://doi.org/10.1109/JSEN.2007.895959
https://doi.org/10.1109/JSEN.2007.895959
https://doi.org/10.1016/j.patcog.2009.12.006
https://doi.org/10.1016/j.patcog.2009.12.006
http://dx.doi.org/10.1016/j.patcog.2009.12.006
http://dx.doi.org/10.1016/j.patcog.2009.12.006
http://dblp.uni-trier.de/db/journals/cgf/cgf32.html#EilertsenWMU13
http://dblp.uni-trier.de/db/journals/cgf/cgf32.html#EilertsenWMU13
http://dx.doi.org/10.1109/MCD.2005.1438751
http://dx.doi.org/10.1109/MCD.2005.1438751
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0016-petalinux-tools-hub.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0016-petalinux-tools-hub.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0016-petalinux-tools-hub.html
https://doi.org/10.1111/1467-8659.00689
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00689
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00689
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.00689
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.00689

[20] B. Hoefflinger, High-Dynamic-Range (HDR) Vision, ser. Advanced Mi-
croelectronics. Springer, 2007, vol. 26, isbn: 978-3-540-44433-6. [Online].
Available: https://link.springer.com/book/10.1007/978-3-540-
44433-6.

[21] P. Irawan, J. A. Ferwerda, and S. R. Marschner, “Perceptually based tone
mapping of high dynamic range image streams,” in Proceedings of the
Sixteenth Eurographics Conference on Rendering Techniques, ser. EGSR
’05, Konstanz, Germany: Eurographics Association, 2005, pp. 231–242,
isbn: 3-905673-23-1. doi: 10.2312/EGWR/EGSR05/231-242. [Online].
Available: http://dx.doi.org/10.2312/EGWR/EGSR05/231-242.

[22] D. Joseph and S. Collins, “Modeling, calibration, and correction of non-
linear illumination-dependent fixed pattern noise in logarithmic CMOS
image sensors,” IEEE Transactions on Instrumentation and Measure-
ment, vol. 51, no. 5, pp. 996–1001, Oct. 2002, issn: 0018-9456. [Online].
Available: http://dx.doi.org/10.1109/TIM.2002.807803.

[23] D. Joseph and S. Collins, “Modeling, Calibration, and Correction of
Nonlinear Illumination-Dependent Fixed Pattern Noise In Logarithmic
CMOS Image Sensors,” IEEE Transactions on Instrumentation and Mea-
surement, vol. 51, no. 5, pp. 996–1001, 2002.

[24] C. Jung and T. Sun, “Optimized perceptual tone mapping for contrast
enhancement of images,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 27, no. 6, pp. 1161–1170, Jun. 2017, issn:
1051-8215. doi: 10.1109/TCSVT.2016.2527339.

[25] T. Kalb, L. Kalms, D. Göhringer, C. Pons, F. Marty, A. Muddukrishna,
M. Jahre, P. G. Kjeldsberg, B. Ruf, T. Schuchert, I. Tchouchenkov,
C. Ehrenstrahle, F. Christensen, A. Paolillo, C. Lemer, G. Bernard, F.
Duhem, and P. Millet, “Tulipp: Towards ubiquitous low-power image
processing platforms,” in 2016 International Conference on Embedded
Computer Systems: Architectures, Modeling and Simulation (SAMOS),
Jul. 2016, pp. 306–311. doi: 10.1109/SAMOS.2016.7818363.

[26] S. Kavadias, B. Dierickx, D. Scheffer, A. Alaerts, D. Uwaerts, and J. Bo-
gaerts, “A logarithmic response CMOS image sensor with on-chip cali-
bration,” IEEE Journal of Solid-State Circuits, vol. 35, no. 8, pp. 1146–
52, Aug. 2000, issn: 0018-9200. [Online]. Available: http://dx.doi.
org/10.1109/4.859503.

[27] I. R. Khan, S. Rahardja, M. M. Khan, M. M. Movania, and F. Abed, “A
tone-mapping technique based on histogram using a sensitivity model of
the human visual system,” IEEE Transactions on Industrial Electronics,
vol. 65, no. 4, pp. 3469–3479, Apr. 2018, issn: 0278-0046. doi: 10.1109/
TIE.2017.2760247.

110

https://link.springer.com/book/10.1007/978-3-540-44433-6
https://link.springer.com/book/10.1007/978-3-540-44433-6
https://doi.org/10.2312/EGWR/EGSR05/231-242
http://dx.doi.org/10.2312/EGWR/EGSR05/231-242
http://dx.doi.org/10.1109/TIM.2002.807803
https://doi.org/10.1109/TCSVT.2016.2527339
https://doi.org/10.1109/SAMOS.2016.7818363
http://dx.doi.org/10.1109/4.859503
http://dx.doi.org/10.1109/4.859503
https://doi.org/10.1109/TIE.2017.2760247
https://doi.org/10.1109/TIE.2017.2760247

[28] T.-C. Kim, “Wide Dynamic Range Technologies: For mobile imaging
sensor systems,” IEEE Consumer Electronics Magazine, vol. 3, no. 2,
pp. 30–35, Apr. 2014, issn: 2162-2248. [Online]. Available: http://dx.
doi.org/10.1109/MCE.2014.2298072.

[29] J. Kronander, S. Gustavson, G. Bonnet, and J. Unger, “Unified hdr
reconstruction from raw cfa data,” in IEEE International Conference on
Computational Photography (ICCP), Apr. 2013, pp. 1–9. doi: 10.1109/
ICCPhot.2013.6528315.

[30] P. J. Lapray, B. Heyrman, M. RossÃ c©, and D. Ginhac, “A 1.3 megapixel
fpga-based smart camera for high dynamic range real time video,” in
Distributed Smart Cameras (ICDSC), 2013 Seventh International Con-
ference on, Oct. 2013, pp. 1–6. doi: 10.1109/ICDSC.2013.6778230.

[31] G. W. Larson, H. Rushmeier, and C. Piatko, “A Visibility Matching
Tone Reproduction Operator for High Dynamic Range Scenes,” IEEE
Transactions on Visualization and Computer Graphics, vol. 3, no. 4,
pp. 291–306, Oct. 1997.

[32] T. Latha and M. Sasikumar, “A Novel Non-linear Transform Based Im-
age Restoration for Removing Three Kinds of Noises in Images,” Journal
of the Institution of Engineers (India): Series B, vol. 96, no. 1, pp. 17–
26, Mar. 2015, issn: 2250-2106. [Online]. Available: http://dx.doi.
org/10.1007/s40031-014-0123-y.

[33] E. A. Lee, B. Hartmann, J. Kubiatowicz, T. S. Rosing, J. Wawrzynek, D.
Wessel, J. Rabaey, K. Pister, A. Sangiovanni-Vincentelli, S. A. Seshia, D.
Blaauw, P. Dutta, K. Fu, C. Guestrin, B. Taskar, R. Jafari, D. Jones, V.
Kumar, R. Mangharam, G. J. Pappas, R. M. Murray, and A. Rowe, “The
swarm at the edge of the cloud,” IEEE Design Test, vol. 31, no. 3, pp. 8–
20, Jun. 2014, issn: 2168-2356. doi: 10.1109/MDAT.2014.2314600.

[34] J. Li, A. Mahmoodi, and D. Joseph, “Using Polynomials to Simplify
Fixed Pattern Noise and Photometric Correction of Logarithmic CMOS
Image Sensors,” Sensors, vol. 15, no. 10, pp. 26 331–52, Oct. 2015, issn:
1424-8220. [Online]. Available: http://dx.doi.org/10.3390/s151026331.

[35] J. Li, O. Skorka, K. Ranaweera, and D. Joseph, “Novel Real-Time Tone
Mapping Operator for Noisy Logarithmic CMOS Image Sensors,” Jour-
nal of Imaging Science and Technology, vol. 60, no. 2, pp. 020404-1–13,
Mar. 2016.

[36] R. C. H. Lo, S. Mann, J. Huang, V. Rampersad, and T. Ai, “High dy-
namic range (hdr) video image processing for digital glass,” in Proceed-
ings of the 20th ACM International Conference on Multimedia, ser. MM
’12, Nara, Japan: ACM, 2012, pp. 1477–1480, isbn: 978-1-4503-1089-5.
doi: 10.1145/2393347.2396525. [Online]. Available: http://doi.acm.
org/10.1145/2393347.2396525.

111

http://dx.doi.org/10.1109/MCE.2014.2298072
http://dx.doi.org/10.1109/MCE.2014.2298072
https://doi.org/10.1109/ICCPhot.2013.6528315
https://doi.org/10.1109/ICCPhot.2013.6528315
https://doi.org/10.1109/ICDSC.2013.6778230
http://dx.doi.org/10.1007/s40031-014-0123-y
http://dx.doi.org/10.1007/s40031-014-0123-y
https://doi.org/10.1109/MDAT.2014.2314600
http://dx.doi.org/10.3390/s151026331
https://doi.org/10.1145/2393347.2396525
http://doi.acm.org/10.1145/2393347.2396525
http://doi.acm.org/10.1145/2393347.2396525

[37] A. Mahmoodi, J. Li, and D. Joseph, “Digital Pixel Sensor Array with
Logarithmic Delta-Sigma Architecture,” Sensors, vol. 13, no. 8, pp. 10 765–
82, Aug. 2013, issn: 1424-8220. [Online]. Available: http://dx.doi.
org/10.3390/s130810765.

[38] S. Mann, R. C. H. Lo, K. Ovtcharov, S. Gu, D. Dai, C. Ngan, and T.
Ai, “Realtime hdr (high dynamic range) video for eyetap wearable com-
puters, fpga-based seeing aids, and glasseyes (eyetaps),” in 2012 25th
IEEE Canadian Conference on Electrical and Computer Engineering
(CCECE), Apr. 2012, pp. 1–6. doi: 10.1109/CCECE.2012.6335012.

[39] C. A. de Moraes Cruz, D. W. de Lima Monteiro, E. A. Cotta, V. Ferreira
de Lucena, and A. K. Pinto Souza, “FPN Attenuation by Reset-Drain
Actuation in the Linear-Logarithmic Active Pixel Sensor,” IEEE Trans-
actions on Circuits and Systems I, vol. 61, no. 10, pp. 2825–33, Oct.
2014, issn: 1549-8328. [Online]. Available: http://dx.doi.org/10.
1109/TCSI.2014.2327284.

[40] M. Nascimento, J. Li, and D. Joseph, “Digital Circuit Methods to Cor-
rect and Filter Noise of Nonlinear CMOS Image Sensors,” Journal of
Imaging Science and Technology, vol. 62, no. 6, 2018, issn: 1062-3701.
doi: doi:10.2352/J.ImagingSci.Technol.2018.62.6.060404. [On-
line]. Available: https://www.ingentaconnect.com/content/ist/
jist/2018/00000062/00000006/art00005.

[41] C. Ofili, S. Glozman, and O. Yadid-Pecht, “Hardware implementation
of an automatic rendering tone mapping algorithm for a wide dynamic
range display,” Journal of Low Power Electronics and Applications, vol. 3,
no. 4, pp. 337–367, 2013, issn: 2079-9268. doi: 10.3390/jlpea3040337.
[Online]. Available: http://www.mdpi.com/2079-9268/3/4/337.

[42] V. Popovic, E. Pignat, and Y. Leblebici, “Performance optimization and
fpga implementation of real-time tone mapping,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 61, no. 10, pp. 803–807,
Oct. 2014, issn: 1549-7747. doi: 10.1109/TCSII.2014.2345306.

[43] K. Pulli, Camera Processing Pipeline, https://web.stanford.edu/
class/cs231m/lectures/lecture-11-camera-isp.pdf, May 2015.
[Online]. Available: https : / / web . stanford . edu / class / cs231m /

lectures/lecture-11-camera-isp.pdf.

[44] E. Reinhard, G. Ward, S. Pattanaik, and P. Debevec, High Dynamic
Range Imaging: Acquisition, Display, and Image-Based Lighting (The
Morgan Kaufmann Series in Computer Graphics). San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2005, isbn: 0125852630.

[45] A. M. Reza, “Realization of the contrast limited adaptive histogram
equalization (clahe) for real-time image enhancement,” J. VLSI Signal
Process. Syst., vol. 38, no. 1, pp. 35–44, Aug. 2004, issn: 0922-5773.

112

http://dx.doi.org/10.3390/s130810765
http://dx.doi.org/10.3390/s130810765
https://doi.org/10.1109/CCECE.2012.6335012
http://dx.doi.org/10.1109/TCSI.2014.2327284
http://dx.doi.org/10.1109/TCSI.2014.2327284
https://doi.org/doi:10.2352/J.ImagingSci.Technol.2018.62.6.060404
https://www.ingentaconnect.com/content/ist/jist/2018/00000062/00000006/art00005
https://www.ingentaconnect.com/content/ist/jist/2018/00000062/00000006/art00005
https://doi.org/10.3390/jlpea3040337
http://www.mdpi.com/2079-9268/3/4/337
https://doi.org/10.1109/TCSII.2014.2345306
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf

doi: 10.1023/B:VLSI.0000028532.53893.82. [Online]. Available:
http://dx.doi.org/10.1023/B:VLSI.0000028532.53893.82.

[46] W. Shi and S. Dustdar, “The promise of edge computing,” Computer,
vol. 49, no. 5, pp. 78–81, May 2016, issn: 0018-9162. doi: 10.1109/MC.
2016.145.

[47] J. Simon, FPGAs in the cloud ? https://youtu.be/SFyW2HVimiU,
Nov. 2017. [Online]. Available: https://youtu.be/SFyW2HVimiU.

[48] O. Skorka and D. Joseph, “Toward a digital camera to rival the human
eye,” Journal of Electronic Imaging, vol. 20, no. 3, pp. 033009 1–18, Aug.
2011. [Online]. Available: https://doi.org/10.1117/1.3611015.

[49] O. Skorka, J. Li, and D. Joseph, “Nonlinear Digital Pixels: Idea to In-
novation (Phase I),” University of Alberta, Tech. Rep., 2013.

[50] G. Storm, R. Henderson, J. E. D. Hurwitz, D. Renshaw, K. Findlater,
and M. Purcell, “Extended Dynamic Range From a Combined Linear-
Logarithmic CMOS Image Sensor,” IEEE Journal of Solid-State Cir-
cuits, vol. 41, no. 9, pp. 2095–106, Sep. 2006, issn: 0018-9200. [Online].
Available: http://dx.doi.org/10.1109/JSSC.2006.880613.

[51] T. Suzuki, “Challenges of Image-Sensor DEvelopment,” IEEE Interna-
tional Solid-State Circuits Conference, vol. ISSCC 2010, no. Session 1,
pp. 27–30, 2010.

[52] S. Trimberger, “A Reprogrammable Gate Array and Applications,” Pro-
ceedings of the IEEE, vol. 81, no. 0018-9219, 2013.

[53] S. Trimberger, “Three Ages of FPGAs: A Retrospective on the First
Thirty Years of FPGA Technology,” Proceedings of the IEE, vol. 103,
no. 3, Mar. 2015.

[54] R. Ureña, P. Mart́ınez-Cañada, J. M. Gómez-López, C. Morillas, and
F. Pelayo, “Real-time tone mapping on gpu and fpga,” EURASIP Jour-
nal on Image and Video Processing, vol. 2012, no. 1, p. 1, Feb. 2012,
issn: 1687-5281. doi: 10.1186/1687-5281-2012-1. [Online]. Available:
https://doi.org/10.1186/1687-5281-2012-1.

[55] X. Wu, “A linear programming approach for optimal contrast-tone map-
ping,” Trans. Img. Proc., vol. 20, no. 5, pp. 1262–1272, May 2011, issn:
1057-7149. doi: 10.1109/TIP.2010.2092438. [Online]. Available: http:
//dx.doi.org/10.1109/TIP.2010.2092438.

[56] www.myirtech.com, http://www.myirtech.com/list.asp?id=502,
Accessed: 2019-02-04.

[57] Xilinx, All Programmable FPGAs and 3D ICs, https://www.xilinx.
com / products / silicon - devices / fpga . html, Oct. 2017. [Online].
Available: https://www.xilinx.com/products/silicon-devices/
fpga.html.

113

https://doi.org/10.1023/B:VLSI.0000028532.53893.82
http://dx.doi.org/10.1023/B:VLSI.0000028532.53893.82
https://doi.org/10.1109/MC.2016.145
https://doi.org/10.1109/MC.2016.145
https://youtu.be/SFyW2HVimiU
https://youtu.be/SFyW2HVimiU
https://doi.org/10.1117/1.3611015
http://dx.doi.org/10.1109/JSSC.2006.880613
https://doi.org/10.1186/1687-5281-2012-1
https://doi.org/10.1186/1687-5281-2012-1
https://doi.org/10.1109/TIP.2010.2092438
http://dx.doi.org/10.1109/TIP.2010.2092438
http://dx.doi.org/10.1109/TIP.2010.2092438
http://www.myirtech.com/list.asp?id=502
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html

[58] ——, High Performance Computing and Data Storage, https://www.
xilinx.com/content/xilinx/en/applications/high-performance-

computing.html, [Online; accessed 27-May-2017], 2017.

114

https://www.xilinx.com/content/xilinx/en/applications/high-performance-computing.html
https://www.xilinx.com/content/xilinx/en/applications/high-performance-computing.html
https://www.xilinx.com/content/xilinx/en/applications/high-performance-computing.html

	Introduction
	Objectives and Background
	Nonlinear CMOS Image Sensors
	Image Signal Processing
	Image Signal Processors

	Scope and Methodology
	Reconfigurable System-on-Chip
	FPN Correction and SPN Filtering
	Histogram-Based Tone Mapping

	FPN Correction and SPN Filtering
	Introduction
	Background and Methods
	Generic Design Flow
	FPN Correction
	SPN Filtering

	Results and Discussion
	Test Benches
	FPN Correction
	SPN Filtering
	Significance

	Conclusion

	Histogram-Based Tone Mapping
	Introduction
	Background and Methods
	Design Overview
	Base Histograms
	Tone Mapping

	Results and Discussion
	Validation
	Evaluation
	Significance

	Conclusion

	Reconfigurable System-on-Chip
	Introduction
	Apparatus and Application
	System-on-Chip Platform
	Image Signal Processor

	Interfacing Method
	Results and Discussion
	System Validation
	System Evaluation

	Conclusion

	Conclusion
	Summary and Contributions
	FPN Correction and SPN Filtering
	Histogram-Based Tone Mapping
	Reconfigurable System-on-Chip

	Future Work
	Nonlinear CMOS Imaging System
	Computer Vision Application

	References

