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Abstract 
 
Lateral torsional buckling is an ultimate limit state that can govern the capacity of 

laterally unsupported flexural members. The bending moment distribution along the 

laterally unsupported length of a beam is known to have a significant effect on the 

stability of laterally unbraced beams. The elastic buckling capacity of laterally unbraced 

beams is obtained from an equation derived for a constant moment distribution over the 

unbraced length and modified for the moment distribution within the unbraced length 

using an equivalent moment factor, 2ω . The two most commonly used expressions for 

this equivalent moment factor are attributed to the work of Salvadori (1955) and Kirby 

and Nethercot (1979). Contrary to the equation proposed by Salvadori, which is 

applicable for linear moment gradients, the equivalent moment factor proposed by Kirby 

and Nethercot is applicable to non-linear moment gradients.  

 

A recent investigation by Serna et al. (2006) indicated that the equation proposed by 

Kirby and Nethercot may not be sufficiently conservative for certain moment 

distributions. A new equation was therefore proposed for the equivalent moment factor. 

A review of the work of Serna et al. by Wong and Driver (2008) lead to the proposition 

of a new equation for the equivalent moment factor, although close examination of the 

equation showed that it is very similar to that of Serna et al. The work of Wong and 

Driver was based on the same database of analysis results that were used by Serna et al.  

 

In order to assess the various models for equivalent moment factor, a finite element 

model was developed to investigate the effect of moment distribution on lateral torsional 

buckling capacity. Of the four equivalent moment factor expressions investigated, the one 

proposed by Serna et al. was found to be in closest agreement with the finite element 

analysis results. The more widely used expression by Kirby and Nethercot tends to be 

non-conservative for the case where the end moment ratio is close to 1.0.   
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1. Introduction 
 
 
Buckling and lateral stability are among the key parameters in the design of steel 
structures. Flexural members subjected to bending about their major axis may develop 
buckling in the compression flange combined with lateral bending, leading to what is 
known as lateral torsional buckling. For doubly symmetric, laterally unbraced, slender 
beams, lateral torsional buckling can be the governing ultimate limit state. 
 
It is customary for beams, girders and joists to have a greater stiffness and strength in the 
plane of loading. These structural members have a tendency to fail by lateral torsional 
buckling if not properly restrained against lateral deflection and twisting, especially at the 
construction stage when the braces are absent or different from the permanent ones.  
 
The lateral torsional buckling capacity depends upon a variety of material and geometric 
properties, support conditions, location of applied load relative to the shear centre and 
bending moment distribution along the length of the member. The critical elastic lateral 
torsional buckling capacity for uniform moment gradient is given by (CSA, 2006): 
 

[1] wyy CI
L
EGJEI

L
Mu

2

⎟
⎠
⎞

⎜
⎝
⎛+=
ππ  

 
Where Mu is the elastic lateral torsional buckling strength, E is modulus of elasticity, G is 
the shear modulus, Iy is moment of inertia about weak axis, J is the St. Venant torsional 
constant, Cw is the warping constant of the section. 
  
Generally, the consideration of non-uniform bending moment diagram is taken into 
account by means of equivalent uniform moment factor ω2. The elastic critical moment 
of simply supported beam with uniform moment is multiplied by this factor to obtain the 
elastic critical moment for any bending moment diagram.  
 
This report presents a comparison between different equations for the equivalent moment 
factor and compares the different equations with finite element analysis results. Of the 
four models investigated, two have been in use for several years and have been adopted 
in various design standards, whereas two other models, similar in form and results, have 
just been recently proposed.  The objective of the work presented in this report is to 
evaluate the equivalent moment factors currently in use and recently proposed 
 
 
1.1 Lateral torsional buckling:  
 
A short beam with a compact cross-section can reach its full plastic moment capacity 
without any lateral instability. However, if the beam is slender and the compression 
flange is not adequately braced in the lateral direction, a different phenomenon occurs. As 
the beam is loaded in bending about its strong axis, it deforms in the direction of loading. 
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At some load stage, out-of-plane bending (bending about the weak axis) and twisting of 
cross-section occur simultaneously, as illustrated in Figure 1. This phenomenon is known 
as lateral torsional buckling and the moment causing it is referred to as critical moment. 
The determination of this critical moment is an eigenvalue problem for geometrically 
perfect beam. The derivation of the critical moment for a beam with a doubly symmetric 
cross-section is based on a laterally unsupported beam segment subjected to a constant 
moment. Under this loading condition, the principal variable affecting the lateral torsional 
buckling capacity of the beam segment is the length of the segment. Other variables that 
affect the  lateral torsional buckling resistance include the type and position of the loads, 
the restraints at the ends and at intermediate locations, the type of cross-section, 
continuity at supports, the presence or absence of devices that restrain warping at critical 
locations the material properties, the magnitude and distribution of residual stresses, pre-
stressing forces, initial geometric imperfections, load variability (orientation and point of 
application), discontinuities in cross-sections, cross-sectional distortion and interaction 
between local and overall buckling (Ojalvo & Chambers, 1977). 
 

 
 
 

Figure 1–  Lateral torsional buckling (section at midspan) 
 

Lateral torsional buckling can generally be avoided by providing sufficient lateral bracing 
or by using torsionally stiff sections as box sections. 
 
The determination of the lateral torsional buckling strength is quite complex and closed 
form solutions exist only for simple load cases. However, the solution for the constant 
moment condition can be modified for more complex moment distribution by using a 
coefficient known as the equivalent uniform moment factor, ω2. 
 
1.2 Elastic and Inelastic lateral torsional buckling: 
 
The lateral torsional buckling behaviour is often illustrated graphically by plotting the 
unbraced length against the critical moment as shown in Figure 2. 
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Figure 2– Lateral torsional buckling curves for beams 
 

The solid curve represents the variation of critical load for a perfectly straight beam while 
the dashed curve characterizes the behaviour of a beam with initial imperfections. The 
behaviour can be classified into three distinct categories: (1) elastic buckling that occurs 
for slender members when the cross section is fully elastic; (2) inelastic lateral torsional 
buckling that occurs in beams of intermediate length where the bending moment at the 
instant before lateral torsional buckling is sufficient to cause portions of the member to 
yield; (3) local buckling , which occurs in stocky members where the beam is able to 
reach its local buckling capacity before failure by lateral torsional buckling. Lateral 
torsional buckling may occur in elastic or inelastic range, depending upon the laterally 
unsupported length of the section, while it does not occur for sections of same moment of 
inertia about the principal axes (box, circular), regardless of the slenderness ratio.  
 
 
1.3 Elastic critical moment 
 
For the case of beams with doubly symmetric sections and simply supported ends and 
subjected to a constant moment over the laterally unbraced length, the elastic lateral 
torsional buckling strength or elastic critical moment is given by equation [1].  
 
This is conservative for most cases as the actual bending moment is not always uniform. 
Furthermore the end connections also often provide restraint conditions that are more 
beneficial than simple support (i.e. free to bend about the weak axis and free to warp, but 
restrained from twisting and translation in the lateral direction). 
 
The modified form, for any other moment distribution over the laterally unsupported 
length is given by: 
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where ω2, as defined earlier, is a modifier introduced to account for the increased moment 
resistance as a result of non-uniform moment gradient. 
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2.  Review of equivalent moment factor 
 
This section presents a review of the equivalent moment factor used in various design 
codes and standards. 
 
2.1 S16-01 
 
The value of ω2 adopted in S16-01was derived for a linear moment distribution between 
the brace points. It is based on the work of Salvadori (1955), and takes the following 
form: 
 
[3] 5.23.005.175.1 2

2 ≤++= κκω  
 
 where κ is the ratio of the smaller factored moment to the larger factored moment at the 
ends points of lateral support. This ratio is positive for double curvature and negative for 
single curvature. 
 
Because S16-01 recognizes that this approach may be non-conservative for non-linear 
moment distributions, a value of ω2 of 1.0 is suggested if the bending moment within the 
unbraced length is greater than the larger of the two end moments or when there is no 
effective lateral support to the compression flange at one end of the unsupported length.  
 
Although the method adopted by S16-01 is simple to implement, the predictions using the 
value ω2 = 1.0 can be highly conservative for some load cases as in simply supported 
beams where the bending moment diagram for different load cases is treated as a constant 
bending moment. Furthermore, for cases in which the moment is constant over most of 
the length the values of ω2 from the above equation may be non-conservative because 
this loading represents a more severe case. Treatment of some cases as triple curvature is 
not specifically addressed. These are well documented in Wong and Driver (2008). 
 
2.2 AISC (2005) 
 
A closed form, empirical, expression proposed by Kirby & Nethercot (1979) for ω2 is 
given by: 
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A slightly modified version of this equation was adopted by AISC LRFD, which is valid 
for any moment distribution and is given by: 
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The upper limit for this expression is specified as 3. 
 
Where maxM  is the maximum moment and MA, MC, and MB are the moments at quarter 
points as shown in Figure 3.  
 
 

 
 

Figure 3 – Moments at quarter and mid points 
 
 
2.3 Serna et al. (2006) 
 
Numerical analysis results were obtained for equivalent uniform moment factor using the 
finite difference and finite element methods for a wide range of loading and end support 
conditions. The results also accounted for lateral rotation and warping restraint at the 
brace points. Both narrow (IPE500) and wide (HEB500) flange sections were used for 
lengths of 8 and 16 m.  
 
The loadings considered were linear moment distributions, concentrated load with two 
equal and opposite end moments and with a single end moment, a uniform load with 
equal end moments and one end moment. 
 
The numerical results were compared to expressions for the equivalent moment factor 
from different design standards and results of numerical analysis from various research 
groups. The design standards that were evaluated were AISC (1994), CSA-S16-01, 
Eurocode 3 (EC3 2005) and BS 5950-1 (2000). Some relevant observations noted were: 
 

• AISC values were conservative for all cases of linear moment distributions. 
• For beams with uniformly distributed loading and two equal end moments with 

simple torsional supports the AISC values were conservative for β (ratio of end 
moment to simple span moment) > 1.1 while it was non-conservative for β < 1.3 
for prevented lateral bending. Same observations were made for uniform loading 
and one end moment. 
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• For midspan concentrated load and two end moments, the AISC values were 
found to be very conservative or non-conservative, depending upon the support 
conditions. 

 
A new equation was proposed by curve fitting the numerical results: 
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where the moments are defined as shown in Figure 4. 
 

 
 

Figure 4 – Quarter and midpoint moments for different moment diagrams 
 
 
2.4 Wong and Driver (2008) 
 
Wong and Driver (2008) reviewed the work of Serna et al. (2006) and added a 
comparison with the Australian design standard and AASHTO (2005), which were not 
included in Serna et al. comparisons.  Additional load cases were also added for their 
comparisons. Bending moment distributions of a set of 12 loading conditions along with 
different end supports were considered for this purpose. No new numerical analysis 
results were added to the database from which the various prediction equations were 
evaluated. 
 
Some of the observations made by Wong and Driver were: 

• As observed by Serna et al., the equation for ω2 in S16-01 was either very 
conservative or non-conservative for most of the cases with non-linear moment 
distribution. This was expected since the S16-01 equation, originally derived by 
Salvadori (1955), was derived for a linear moment distribution between points of 
lateral support. 

• A comparison of the equivalent moment factor equations with numerical analysis 
results for a beam segment with a point load at mid length and end moments 
revealed that the equation proposed by Kirby and Nethercot (1979) and the 
modified version adopted in AISC (2005) were considerably better than the 
Salvadori equation, but gave non-conservative values over a small range of β. The 
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over prediction of the critical moment of these equations for the load case 
mentioned was as large as 35%. 

• The square root format proposed by Serna et al. improved the predictions but over 
predicted some results as compared to numerical results presented by Serna et al., 
especially for the load case of uniform load with two equal end moments.  

 
These observations created the motivation for the derivation of an alternative equation 
that could predict the critical moment more conservatively while capturing the trends 
consistently. 

 
The value for ω2 proposed by Wong and Driver took the following form: 
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Mmax, MA, MB and MC are as defined by AISC.  
 
This is similar in form to the equation proposed by Serna et al. It follows the trends well 
over its full range. An upper limit of 2.5 was recommended in the absence of more data to 
justify the elimination of this limit. 
 
It should be noted that some of the numerical analysis results presented by Serna et al. for 
beams loaded with a uniformly distributed load and end moments were not consistent 
with the expected trend. Indeed, when comparing beams 8 m long to 16 m long beams, a 
significant difference in capacity between the two was noted for a certain range of β 
values. Since  2ω  is not a function of the beam length, (considering that it is determined 
from an elastic analysis), it is surprising that such difference was observed between the 
8 m and the 16 m long beams. This issue was not mentioned by Wong and Driver, 
although this particular load case formed the basis for proposing a new equation for 2ω . 
 
Given the suspicious nature of some of the numerical analysis results from Serna et al. as 
well as the fact that these analysis results were used as the basis for the new proposed 
expression for 2ω  for CSA-S16-09, an investigation of this problem is warranted. A 
finite element investigation of the lateral torsional buckling capacity of beams loaded 
with either a point load at midspan or a uniformly distributed load, coupled with end 
moments, was conducted and the results are presented in the following. 
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3.  Finite Element Analysis 
 
S-Frame, structural analysis software, was used for the analysis. A Eigen value analysis 
was used to get the deflected shape (mode shape or eigenvector) and the associated load 
factor (eigenvalue). 
 
3.1 Model for the analysis 
 
A W460x89 section was chosen for this investigation. This section is equivalent to the 
IPE500 section used by Serna et al. (2006). The beam was modeled as three plates 
representing the two flanges and the web. Four-node quadrilateral shell elements were 
used to model the web and flanges. The flanges are modeled with 8 shell elements over 
the width and 160 elements along the beam length. The web is modeled with 8 shell 
elements over the height. A general diagram and related details are shown in Figure 5. 
The finite element model in S-Frame is shown in 5 (a) while the cross-section dimensions 
are shown in 5 (b). 
 

Plate Number of elements 
Along  x-axis Along y-axis Along z-axis Element aspect ratio 

Flange 160 8 1 2.08 
Web 160 1 8 2.25 

 
 

 
 
 

    Figure 5 – Cross section and principal axes  
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Element details 
The shell elements used for this investigation have six degrees of freedom per node; 
rotation and translation in three orthogonal directions. In order to model the flange to web 
fillets the thickness of the web elements at the flange to web junction was increased to 
provide the same area as the fillet and web in that zone. This is illustrated in Figure 6.  
 
 
 Real       Model simulation 

 
 
 

Figure 6 – Flange to web junction (all dimensions in mm) 
 

 
3.2 Support conditions 
 
In order to model simple supports at both ends of the beam, the central web-node at each 
end is supported in the z-direction and rotation about the axis of the member (the x-axis) 
is restrained at both ends. The rotation about the y- and z- axes are released at both ends 
while an additional x-axis translation is released at the far end. All degrees of freedom are 
released, except y-axis translation for corner nodes of the flanges thus establishing lateral 
and torsional supports at both ends. The orientation of the reference axes is shown in 
Figure 5 (a). 
 
 
 
3.3 Loading 
 
Serna et al. (2006) and Wong and Driver (2008) indicated two load conditions in which 
the equations demonstrated discrepancies in predicting the ω2 value. The first loading 
condition for which the AISC equivalent moment factor was found to lead to non-
conservative strength predictions includes a midspan point-load applied at the shear 
centre (central node between the beam ends and flanges) and concentrated equal 
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moments at the beam ends. The negative end moments are a fraction β of the simple span 
moment as shown in Figure 7a.  

 
 

 
 

(a) Beam segment with point load at mid length 
 

 
(b) Beam segment with a uniformly distributed load 

 
Figure 7 – Loads and parameter β for point load and equal end moments. 

 
 

The second load condition is uniform load with two equal end moments for which the 
equation given by Serna et al. was reported to be non-conservative over a certain range of 
β. The loading condition and parameter β are shown below in Figure 7b. 
 
 
3.4 Validation 
 
In order to validate the finite element model developed for this investigation, a buckling 
analysis was run for the model with concentrated end moments only and the predicted 
buckling moment was compared with the theoretical value of the lateral torsional 
buckling capacity. 
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Figure 8 – Member with end moments only 
 

P–Δ buckling analysis was run in S-Frame for the beam segment subjected to a constant 
moment (β = 1.0). The load factored determined by the analysis was 251. Hence lateral 
torsional buckling capacity predicted from the analysis is 251kN-m. A graphical 
representation of the beam in the deformed and un-deformed configurations is illustrated 
in Figure 9. Since the applied end moments in the finite element model were 1 kN m⋅ , it 
was concluded that the lateral torsional buckling capacity of the analysis specimen is 
251 kN m⋅ . 
 
 

 
Figure 9 – Buckled shape and load factor for equal end moments only. 

 
 

The finite element results for the case of end moments are only plotted and compared 
with the four equations shown below in Figure 10. The finite element result seems to be 
in close agreement with the equation for ω2 presented by Serna et al. 
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Figure 10 – ω2 versus β for the case of end moments only 

 
 

The theoretical moment capacity is calculated using equation [1] as: 
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The analysis result is only 2.04% less than the theoretical value, which indicates that the 
proposed finite element approach and model are valid. 
 
Validity of the same model was also confirmed using the commercial finite element 
software ANSYS. The element used was BEAM 188. It is a quadratic three-dimensional 
beam element and is suitable for analyzing slender to moderately stocky beams. It 
possesses warping degrees of freedom in addition to the conventional six degrees of 
freedom. The cross-section details are provided as part of the input parameters. A section 
is associated with the beam elements by specifying the section ID number. Eigen-
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buckling analysis was run for an Element size of 30mm. The result of the buckling 
analysis is shown in Figure 11, where the buckled shape and the load factor (FREQ), 
expressed in kN mm⋅ , are indicated. The buckling capacity predicted using the beam 
element BEAM 188 from ANSYS is within 0.6% of the theoretical value. 
 

 
 

Figure 11– Buckled shape and load factor for end moments only 
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4. Parametric Study 
 
4.1 Description of parameters 
 
Although the finite element analysis performed using ANSYS indicated better correlation 
with the theoretical value than the shell element model, the latter was used for a 
parametric study.  
 
The analysis was performed for two load cases, namely, for a point load at mid length 
and at the shear centre with two equal end moments as shown in Figure 7a and a uniform 
load with two equal end moments as shown in Figure 7b. The value of load (P for point 
load and w for uniform load) is taken as 1.0 for simplicity in subsequent calculations. The 
value of β is varied so as to make different load cases, each different from the other in 
parameter β. 
 
After multiplying the analysis loads with the appropriate load factors moments and values 
for equivalent uniform moment factor were determined, as shown in appendix A and 
appendix B, for both load cases.  

 
 4.2 Analysis results 
 

The buckled shape and load factor for a typical case are shown in Figure12. 

 
 
 
Figure 12 – Buckled shape and load factor for a point load at midspan with end moments 
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The analysis results and the results of the calculation for point load with two equal end 
moments are presented in Table 1. Figure 13 also presents a comparison between the 
finite element analysis results with the various design equations presented in section 2 for 
the same load case. 
 
Table 2 and Figure 14 present calculation and graphical comparison of the finite element 
results and different code equations for the case of uniform load with two equal end 
moments.  
 
Table 3 presents ratio of the values of ω2 from the finite element analysis to the values 
from different equations given in section 2 for the case of point load and equal end 
moments. 
 
For the load case investigated in this report, Figure 13 clearly indicates that the equation 
used by AISC-2005 is un-conservative for values of β between 0.2 and 1.15 while it is 
too conservative for values of β between 1.15 and 2.0. The equation by Serna et al. 
(2006) seems to be in close agreement with the finite element analysis results with only 
three data points at values of β between 1.85 and 2.5 falling below a FEA to predicted 
value of 1.0. It is generally accurate with a mean FEA to predicted value of 1.03 and a 
coefficient of variation (COV) of 0.044. On the other hand, the equation currently used in 
the AISC design specification yields a mean FEA/predicted value of 1.02 and a COV of 
0.11. The equation proposed by Wong and Driver is the most conservative with a mean 
FEA/predicted value of 1.06 and COV of 0.035. 
 
Although the equation proposed by Wong and Driver on gives better results than AISC-
2005, it is not as accurate as the equation proposed by Serna et al. (2006).  
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Table 1 
Values of β, the corresponding load factor from analysis and equivalent uniform moment 
factor compared to different sources for the case of point load with equal end moments.. 

 

β 

β*
p*

L/
8 

Finite element analysis AISC(2005) 
Wong 
and 

Driver 
Serna 
et. al.Load 

Factor 
Moments M

Mu 

Moments at  
quarter points ω2 

Supp- 
ort 

mid 
span Mmax MA MB MC 

Ω2 ω2 

4 -4 94.1 -376.2 -188.1 1.50 376 282 188 282 1.39 1.49 1.52 

3 -3 147.3 -441.9 -147.3 1.76 442 295 147 295 1.60 1.73 1.80 

2.5 -2.5 202.1 -505.3 -101.1 2.01 505 303 101 303 1.81 1.96 2.08 

2 -2 305.0 -610.0 0.0 2.43 610 305 0 305 2.27 2.31 2.52 

1.85 -1.85 350.2 -647.9 52.5 2.58 648 298 53 298 2.24 2.42 2.67 

1.75 -1.75 383.3 -670.7 95.8 2.67 671 287 96 287 2.22 2.47 2.75 

1.5 -1.5 455.2 -682.8 227.6 2.72 683 228 228 228 2.14 2.45 2.71 

1.25 -1.25 450.4 -563.0 337.8 2.24 563 113 338 113 2.05 2.04 2.16 

1.1 -1.1 408.2 -449.0 367.4 1.79 449 41 367 41 1.98 1.67 1.72 

1.15 -1.15 424.0 -487.6 360.4 1.94 488 64 360 64 2.00 1.80 1.87 

1 -1 374.8 -374.8 374.8 1.49 375 0 375 0 1.92 1.41 1.43 

0.9 -0.9 341.9 -307.7 376.1 1.50 376 34 376 34 1.77 1.41 1.43 

0.8 -0.8 311.6 -249.3 373.9 1.49 374 62 374 62 1.67 1.39 1.41 

0.7 -0.7 284.5 -199.1 369.8 1.47 370 85 370 85 1.59 1.38 1.40 

0.6 -0.6 260.6 -156.4 364.8 1.45 365 104 365 104 1.52 1.36 1.38 

0.5 -0.5 239.7 -119.8 359.5 1.43 360 120 360 120 1.47 1.34 1.36 

0.4 -0.4 221.4 -88.6 354.2 1.41 354 133 354 133 1.43 1.32 1.34 

0.2 -0.2 191.2 -38.2 344.2 1.37 344 153 344 153 1.36 1.29 1.30 

0 0 167.7 0.0 335.5 1.34 335 168 335 168 1.32 1.26 1.28 

-0.2 0.2 149.1 29.8 327.9 1.31 328 179 328 179 1.28 1.24 1.25 

-0.4 0.4 133.9 53.6 321.4 1.28 321 187 321 187 1.25 1.22 1.23 

-0.5 0.5 127.4 63.7 318.6 1.27 319 191 319 191 1.24 1.21 1.22 

-0.6 0.6 121.5 72.9 315.9 1.26 316 194 316 194 1.23 1.20 1.21 

-0.8 0.8 111.1 88.9 311.2 1.24 311 200 311 200 1.21 1.19 1.20 

-1 1 102.3 102.3 306.9 1.22 307 205 307 205 1.19 1.18 1.18 

-1.25 1.25 93.1 116.3 302.4 1.20 302 209 302 209 1.17 1.16 1.17 

-1.5 1.5 85.3 128.0 298.6 1.19 299 213 299 213 1.16 1.15 1.16 

-1.75 1.75 78.7 137.8 295.2 1.18 295 217 295 217 1.15 1.14 1.15 

-2 2 73.1 146.2 292.3 1.16 292 219 292 219 1.14 1.13 1.14 
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Table 2 
Values of β, the corresponding load factor from analysis and equivalent uniform moment 

factor compared for the case of uniform load and two equal end moments. 
 

β βωl^2/12 

Finite element analysis for  
uniform load and two end moments Serna 

et al. 

Wong 
and 

DriverLoad 
Factor 

Moment M/Mo 
End quarter mid 8M 16M 

-2 -10.67 61.87 -659.9 -288.7 -165.0 2.628 2.657 2.535 2.322
-1.9 -10.13 70.34 -712.8 -290.7 -150.1 2.839 2.871 2.728 2.461
-1.8 -9.60 81.10 -778.6 -292.0 -129.8 3.101 3.137 2.967 2.626
-1.7 -9.07 94.95 -860.8 -291.2 -101.3 3.429 3.468 3.266 2.820
-1.6 -8.53 112.70 -961.7 -285.5 -60.1 3.830 3.874 3.635 3.039
-1.5 -8.00 134.58 -1077 -269.2 0.0 4.288 4.342 4.058 3.266
-1.4 -7.47 158.19 -1181 -232.0 84.4 4.704 4.799 4.439 3.450

-1.35 -7.20 168.24 -1211 -201.9 134.6 4.825 4.961 4.541 3.497
-1.3 -6.93 174.75 -1212 -163.1 186.4 4.826 5.012 4.531 3.494
-1.2 -6.40 170.03 -1088 -68.0 272.0 4.334 4.547 4.112 3.301
-1.1 -5.87 146.11 -857.2 19.5 311.7 3.414 3.529 3.347 2.879

-1 -5.33 120.40 -642.1 80.3 321.1 2.558 2.605 2.574 2.359
-0.5 -2.67 53.56 -142.8 178.5 285.6 1.138 1.199 1.207 1.199

0 0.00 35.65 0.0 213.9 285.2 1.136 1.139 1.136 1.131
0.5 2.67 25.35 67.6 219.7 270.4 1.077 — 1.101 — 

1 5.33 20.39 108.7 231.1 271.8 1.083 — 1.080 — 
1.1 5.87 19.55 114.7 232.0 271.0 1.080 — 1.077 — 
1.2 6.40 18.77 120.1 232.8 270.3 1.077 — 1.074 — 
1.3 6.93 18.06 125.2 233.5 269.6 1.074 — 1.071 — 
1.4 7.47 17.39 129.9 234.2 269.0 1.071 — 1.069 — 

1.45 7.73 17.08 132.1 234.5 268.7 1.070 — 1.067 — 
1.48 7.89 16.90 133.4 234.7 268.5 1.069 — 1.067 — 

1.5 8.00 16.78 134.2 234.9 268.4 1.069 — 1.066 — 
1.6 8.53 16.20 138.2 235.4 267.8 1.067 — 1.064 — 
1.7 9.07 15.66 142.0 236.0 267.3 1.065 — 1.062 — 
1.8 9.60 15.16 145.5 236.5 266.8 1.063 — 1.060 — 
1.9 10.13 14.69 148.9 237.0 266.4 1.061 — 1.058 — 

2 10.67 14.25 152.0 237.4 265.9 1.059 — 1.057 — 
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Table 3 
Values of ω2 from the analysis and FEA-to-predicted ratios 

 

β 

ω2 FEA-to-predicted ratio 

FEA AISC 
(2005) 

Wong 
and 

Driver 

Serna 
et al. 

AISC 
(2005) 

Wong 
and 

Driver 

Serna  
et al. 

4 1.498 1.389 1.486 1.521 1.079 1.009 0.985 
3 1.760 1.596 1.732 1.802 1.103 1.016 0.977 
2.5 2.012 1.812 1.961 2.076 1.111 1.026 0.969 
2 2.429 2.273 2.309 2.523 1.069 1.052 0.963 
1.85 2.581 2.240 2.419 2.671 1.152 1.067 0.966 
1.75 2.671 2.215 2.475 2.749 1.206 1.079 0.972 
1.5 2.720 2.143 2.449 2.707 1.269 1.110 1.005 
1.25 2.242 2.049 2.041 2.163 1.094 1.099 1.037 
1.1 1.788 1.978 1.668 1.718 0.904 1.072 1.041 
1.15 1.942 2.003 1.796 1.866 0.969 1.081 1.040 
1 1.493 1.923 1.414 1.435 0.776 1.055 1.040 
0.9 1.498 1.774 1.408 1.429 0.844 1.064 1.049 
0.8 1.489 1.667 1.395 1.414 0.894 1.068 1.053 
0.7 1.473 1.585 1.378 1.396 0.929 1.069 1.055 
0.6 1.453 1.522 1.360 1.377 0.955 1.069 1.056 
0.5 1.432 1.471 1.342 1.357 0.974 1.067 1.055 
0.4 1.411 1.429 1.324 1.339 0.987 1.065 1.054 
0.2 1.371 1.364 1.292 1.305 1.005 1.061 1.051 
0 1.336 1.316 1.265 1.276 1.015 1.056 1.047 

-0.2 1.306 1.279 1.242 1.251 1.021 1.052 1.044 
-0.4 1.280 1.250 1.222 1.230 1.024 1.048 1.040 
-0.5 1.269 1.238 1.213 1.221 1.025 1.046 1.039 
-0.6 1.258 1.226 1.204 1.212 1.026 1.045 1.038 
-0.8 1.239 1.207 1.190 1.197 1.027 1.042 1.036 
-1 1.222 1.190 1.177 1.183 1.027 1.039 1.033 
-1.25 1.204 1.173 1.163 1.169 1.027 1.036 1.031 
-1.5 1.189 1.159 1.151 1.156 1.026 1.033 1.029 
-1.75 1.176 1.147 1.140 1.145 1.025 1.031 1.027 
-2 1.164 1.136 1.131 1.136 1.025 1.029 1.025 

 Mean 1.02 1.05 1.03 
 C.O.V. 0.098 0.022 0.030 
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Figure 13 – Graphical comparison of ω2 for point load and two end moments. 
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Figure 14 – Graphical comparison of ω2 for uniform load and two end moments. 
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Contrary to the findings of Serna et al. (2006), the numerical analysis results presented in 
Figure 14 do not show significantly different values of ω2 for beams 8 m and 16 m long. 
 
Figure 15 presents the ratio of finite element analysis results to the values predicted by 
the equation currently in use in AISC (2005), the equation proposed by Serna et al., and 
the equation proposed by Wong and Driver for the loading condition consisting of a point 
load and two end moments. It is clear that the equation currently used in AISC is not 
doing a good job of predicting the finite element analysis results; it can be either very 
unconservative or very conservative. The equation proposed by Wong and Driver is 
conservative over most of the range of b values investigated, with FEA to predicted ratio 
reaching a value of 1.13. The equation proposed by Serna et al. is not as conservative and 
is slightly unconservative with FEA to predicted ratio reaching a minimum of 0.95. 
 
 

0.70

0.80

0.90

1.00

1.10

1.20

1.30

-3 -2 -1 0 1 2 3 4 5

β

FE
A

/P
re

di
ct

ed

AISC

Wong and Driver (2008)

Serna et al. (2006)

 
Figure 15 – FEA to predicted values for three prediction equations 
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5. Summary, conclusions and recommendation 
 
Comparison of the finite element results with the various methods in section 2 of this 
report reveals the following observations: 

• As evidenced by Figure 13 and as indicated by Serna et al. the AISC (2005) 
equation is not safe to evaluate equivalent uniform moment factor for values of β 
between 1.15 and 2.0, for the case of point load with two equal end moments. 

• Figure 14 shows that the equation proposed by Wong and Driver (2008) tends to 
be over conservative for the case of uniform loading with two equal end moments. 

• Figures 10, 13 and 14 show that the equation proposed by Serna et al. is more 
consistent and in better agreement with the numerical results except for a very 
small range of β in Figure 13 where it is slightly over-predicting the lateral 
torsional buckling capacity. The over prediction reaches a maximum of 3.6 %. 
The close agreement of this equation with test and analysis results was also 
demonstrated in some of the figures presented by Wong and Driver (2008). 

 
On the basis of these observations, the equation proposed by Serna et al. is recommended 
for evaluating the equivalent uniform moment factor for laterally unsupported steel 
beams. 
 
A reliability analysis is recommended to form a basis for acceptance of an equation for 
the determination of the equivalent uniform moment factor. 
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Appendix A 

Sample calculation for moment at quarter points and equivalent uniform moment factors 
to verify the spreadsheet calculations for point load and two equal end moments: 

For P=1 and L = 8m, β*P*L/8 = β. 

 

 

 

 

The load factor obtained from the finite element analysis is 383.27. 
 

723.67027.38375.1 =×=×Mβ  
 

817.95723.670
4
827.383 =−×=MomentMidspan  

( ) 453.287817.95
4
2723.670817.95. =−×+=MomentptQuarter  

 
Theoretical value of critical moment (Mu) = 251.0797 
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Analysis: 
 

671.2
0797.251
723.670

==uMM  

 
 
 
AISC: 
 

( ) 215.2
453.2873817.954453.2873723.6705.2

723.6705.12
2 =

×+×+×+×
×

=ω  

 
 
Wong and Driver: 
 

474.2
453.2874817.957453.2874723.670

723.6704
22222 =

×+×+×+

×
=ω  

 
 
Serna et al.: 
 

748.2
453.2879817.9516453.2879723.670

723.67035
2222

2

2 =
×+×+×+

×
=ω  
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Appendix B 

These calculations are for 
uniform load and two equal end 
moments. 

The model has 161 longitudinal 
nodes. Each node is loaded in 
negative Z direction by 0.05 kN 
to come up with approximately 
uniform load of 1 kN/m. 
 
Calculations shown are for 
value of β = 1.5 
 

8
12
815.1

12

22

=××=
Lβω  

 
Load factor obtained from the analysis is: 
L.F = 134.58 
 
The end moment = 8*134.58 = -1076.64 kN-m 
 
Moment equation along the length of the beam is given by: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= 2

2

62
xLLxM x βω  

From the moment equation the quarter point and mid point moments -269.16 kN-m and 
zero respectively. 
 

Then  288.4
0797.251

64.1076
==

uM
M  

 
 
The value obtained by equation given by Serna et al. is: 
 

059.4
16.269901616.269964.1076

64.107635
222

2

2 =
×+×+×+

×
=ω  

 
This shows that FEA value is greater than the value obtained by the equation proposed by 
Serna et al. 


