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ABSTRACT

¢
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A Finite Element Analysis of a 286 MW steam turbine was
\ . [

. ‘ \ . '
condycted in order to.determine the design parameters for

amically scaled model.

for its -various

This model turbine was’then test?

vibration characteristics. This vibration data was the

basis for a numerlcal (Finite Element) balancing program
». The numerlcal program prov1ded gooé correlation for
the mode shapesx natural frequenc1es,»and forced response.
More refinemerit is reguired before the program can produce
satisfactof} reéults for balahcing purpoSés,on multi-span

i
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systems.,
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1. INTRODUCTION

o

. o ‘\\ , Y
1.1 Balancing Methods : Current Vs Proposed

Balancing any rotating machinery is both a com—
'plicated and time consuming prOcedure; With the onset
of large, high speed machines the need for a practical
balancing method has become apparent. Mdst large
rotating machines are classified as flexible systems
in which the.shapeiof the centroidal axis changes with
speed. This system requires a more sophisticated
‘vibration analysis than that of a rigio body motion
such—sas a car Qheel. " The shape‘of a rigid rotor's
centroidal axis does not change with 'speed, and there—
fore balancing can be done with a very simple vectorial
analysis.ﬁ ‘ , ' : - J

To date, most flexible balancing has been ponducted ”

using twovmajor tecnniques described.in detail by Kim(7).

\

TheseAarer
1. Infldence Coefficients
2. Modal Balancing

The influence coefficient method requires exten51ve
vibration measurements which render ‘the machiﬁe inopera-
iQ*tive for long periods of time. The test runs are conduc-

,ted 1n order to generate a complex influence coeffic1ent
% . :

b



matrix. This matrix is inverted.and fhen mul-
A :

tiplied by the initial response vector which yaelds the

bglance vector (1.1) .
(a1 Yy = - (F)

[A]

Influence Coefficient Matrix

{u} Initial Response Vector Lo
-{F} 5> Balance Vector -

LN

(1.1)

cSeveral disadvantages are inhereh%rin this-methodf

1. Errors are introduced in the anersionhof the.
measured matrix A whicb are further increased
by multiplying this by the initial response: -

N

vector. , ) " 4

2. Several test runs at the highest balance speed
may be required.

3. Has low sEnsitivity at higher modes.

v,

_The modal balancing method also requires’several

the fundamental. ' At each stage th;/xﬁsaianse due to
that mode is determined %;perimenta ly and balanced
with sultable correction masses. ¢ | |

Before any balancing can be done the mode shapes

of the rotor-bearing system must be known and this - -

-~

runs. Each mode’ is balanced in turn, beginning with

requires a fairly extensive éxperimental or numerical

™™



analysis. The(major disadvantage in this method is
~ that only onevmode‘can oe balanced at a time. In
addition, to balance/subsequent modes the masses must
"be placed in such a way as to leave all the lower modes
undisturbed. This requires a great>deal of. operator
insight.
Theimethod presented in this Thesis deals with the
numerical generation of the dynamic stiffness matrix [A]

using finite elements. Three major advantages are

consequently obtained:

l. The errors, in first measuring the [A] matrix,

— -
- ~

and then inverting it, are eliminated.. h
2. Operator insight will not be as large a factor
'in‘the success of*the balance.
Bf Shutdown time for the machine is substantially
| ;edUCed since only the initial response vector '
is measured |
These advantages present the reason for studying the ﬂ
* method which will ‘be termed "Dynamic Matrix Balanc1ng
Technique". Equation l.l,_as in the influence coefficient
method is the basic balancing equation. \ ) A'
In order to study the feasibility of such a technique
a testing facility is required The obvious choice is

-a machine which is already in operation. f This was

considered inappropriate for two reasons

LA



i v
1. A new method could be disastrous to a gachine

by placing the balance weights ih the wrong
placg; ' This wouldinot neéessarily imply that
the method doe; nét work since thefe are several
féctors‘;nfluencing the size and loca%ion of the

balance weiglits:

i) retained degrees of freedom
ii) measurement devices
iii) accuracy of stiffness, damping, and mass

matrices from finite elemehts.
2. 9? a machihe in operation vibration data can
o?ly bel;eadily obtained at the bearings. _ For:L
an initial study, measurements at mid-span will
"also be }équired.
For these reasons an in-house rig was de#ig;ed'and
'constrﬁéted and will be described in detail in Chapter 2.
Any rotating system consists basically of the rotor,

-the bearings, and finally the foundation.

—1 | | N ] ROTOR

L &3

| s 12 T BRGS.

< i e

: Voo | |Founp.

STTTT7T777777777 777777777 77777777777

%

Fig, 1.1 Rotor Beéring Systemﬁwith’Foundétiqnj

v . B .

oy,
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Most vibrational problems begin Qith a rotational
imbalance 'in the rotor. This force is transmitted
through the bearings into the foundation. A full
mathematical model to generate the [A] matrix would
require a system simflar to the one shown in Flg 1.1.
For this analysis, the foundation is excluded The-
purpose of this Thesis is to study the rotor-bearing
response due to an 1mbalance in the rotor. This can
be aofomplished by taking relative measuremehts
between the rotor and foundation This is done by
mounting the vihration probes on the foundation. The .

3

8ystem is qubseéuently reduced to that of Fig. 1.2.

' &
ROTOR
. v ]
‘ N . BRGS.
L . . A B
HITTI77/ 777777777777 7777777777777777777
Fig. 1.2 Rotor Bearing Syetem . I &

l.2t' Scope of Thesis

. The overall purpose of this thesis involvedtfirst
anaiYsing the vibretional'charaCterietics of a iarge Steam
‘turbine.yv'Using a“finiteﬁelemehtvtechhique the_hode' i
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shapes and natural frequencies were generated. From
this'info;mation a testing facility called the "in-house
rig"” was designed and constructed. Tne same finite
element analysis‘was used for the in—house rig. -

* The second goal was to use a finite element analfsis
to examine. the vibrational characteristics of the rig
‘with the ultimate purpose of developiné'a numerical bal-
ancing program.’ \Qany such attempts‘have been made in the

past but w1th llmlted success for complex rotating systems.

The procedure attempks to include most of the para-

meters which affect the rotating\sys%em:“ These 1nclude:%f

a

bearing stiffness, bearing damping, proportional damping,

gyroscopic terms, disc inertia (etc.). Gash(ls)'presents

A

& good overview of the complexity of the numerical

t

approach to rotor dynamits.

)

' The rotatlng shaft_ (rlg and turﬁ;ne) rides on Journal

bearings which yleld a non“symmetrlc numerical system. -
two plane analysis was t?erefore, necessary +This two ‘.«;‘
Plane system is descrlbed 1n much detail by Adams and sa\_ i

* Padovi (16) M f the roblems with a symmetric nonfi ;LfYB'o‘
Padovin . many .of the p ‘ t y , R e

posdtive definite systems‘are deSCQibed—and'thisﬁchesis R
presents one'methodtof dealing with chem., | |

~»The numerical technique whlch w1ll belpresented
produced reasonable results for exgenvalues, and response

due to a rotatlng load but as far as-a balancing program

Y
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t¥e method is not adequate. This subject is a complex
one which requires a great deal more study than this

thesis can possibly hope to present.

[
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2. DESIGN OF THE IN-HOUSE RIG

Abgtract
A finite element analysis of a 286 MW steam turbine-

will be presented. The turbine.is unit #4. lpcated at

the Trans-Alta Power Station on Lake Wabamun;\T\A

I8
similar analysis is conducted to aid in the Beé&gn of a

physical model which simulates the Vvibrati 1 ¢harac-
teristics-of the‘large turbine.,‘ Thlsﬁmo el/Llll be

celled the "in-house rig" and its deta){ed design para-

-

meters will also be outlined. ,Vibration characteristics

of both the rig and turbine will then be compared .

numerirally.

/

2.1 Finite Element'Model_of a 286 MW Turbine Rotor

The¢turbine in question has a history of vibrational
Iproblems'origipating within the léw pressure steges,
Displecement probes are Iocated on each of the/turboset's
nine bearings. . These probes measure the displacement
| in two planes which can be useq/teJdeterque/the phase.i
angle-ahd orbit,plots:' The vipration problemsiand the
availablé)measurement system ﬁake-this an ideal ' ’
~turbine fer.an in depth Simulationﬁztudy
The turboset consists of five rotor sections-

v gh pressure (HP),, intermediate pressure (IP). low

prelsure #1 (LPl), low pressuAe #2 (LPZ), and the



generator (GEN) rotor. The five sections are joined
together with flange couplings. The entire rotor
rides on nine oil fed journal bearﬁggs. A thrust bearing
is Iocated between the high and intermediate pressure
stages. For'this part of the‘project, the shaft and
bearings werermodelled in order to‘find the natural fre-
quencies and mode shapes which were the basis for the
design of- the in~house rigqg. l

Drawings of the turbine'were provided by Trans-
Alta. ?ertinent drawings included rotor details, k
bearings, blading arrangement and foundation. From .
these drawings simplified, two dimensional finite element
models were developed. - For the purpose of .creating
- a dynamic model of the tu;bine,‘only the vertical plane
was considered, i.e., in the direction of the load on
_ the beafings.. Of course, for balancing purposes hoth

the vertical and horizontal planes must be analyzed

simultaneously. .

2.1.1 Rotor and Bladesm/ - L s

Y

» To analyze the rotor and blade arrangement three
finite element models were considered consisting of 8

29, and 111 elements. d The models are'shown 1nvF1g 2.2;”

am

The smaller element models (8 & 29) were used in the
v

‘dynamic analysis to reduce the degrees of freedom of

.the system._\ Thealll element model was. used in the
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static analysis to determine the bearing loads and the \
weight distribution of the shaft. The derivation of these
models will be discussed in the following paragraphs

- The first step was to model the rotor. The basic
Timoshenko beam element (Fig. 3.1) was ‘used in the finite
element program, and therefore the model had to be divided‘
into elements of constant diameter. These elements were -
'then'USﬁﬁ to find,the mass and stiffness matrices for the
sys.terrn‘.. ‘

The detailed drawings of the rotor reveal a large

- number of tapered sections and steps in thevshaft,
and it mould have been almost impossible tg:account

t

for all of them, even.with the 111 element model. An
equivalent diametervthat incorporates several steps in

the rotor is a compromise between the stiffness and mass -
of the element; “The mass of the element is proportional
to the square of the diameter, while the stiffness is’
proportional to the diameter to the fourth power.

Both the stiffness and mass matrix are of equal import-'

ance, SO an average equivalent diameter was used to

"determine the lll element model dimensions, i.e,

p 4 Li } : 2.04,.4] -
Di = segment of element diameter e
Li = segment of element length ':_"“-‘ tir:““' T
L = element length i;.‘,( o : vvf “"} ) :“ ‘ig-f : . ii

The elements were chosen to minimize the magnitude FaNuC



of the steps in the shaft. ° = " .
L L v \ -
fo Shae . co N
QF—.LT.O . a 4

a

'Fig. 2.1 Equivalent Diameter for Element

L

R
¢

' . s
The next stage: in modelling the rotor, was to reduce
"“the size of the §§stem for a dynamic analysis. The lll“
. p .
element system has 224 degrees of freedom which is

" very g\z?e for .an eigen—system analysis and therefore' ;

©a 29 elemth model was used (Fig. 2.2). T}e use of

Aequation 2.1 is only valid where the steps in the shaft

are not too excessive. Frem Fig. 2.2 it is seen that
'the diameter of the blade rings is twice. that of the‘

shaft . In the 29 element model these blade rrng
;“r R
regions were incorporated into one element.‘irggg

o
idiameter of these elements were taken to be tﬁat of the

average rotor»diameter between the blade rings. ‘To
"accougt for the subsequent reduction in mass, large
discs were placed on either side of the blade ring

selemepts. For the low pressure stages the reduction

11.
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in weight was 25%. The teduction in stiffness was
calculated to be only 1% and was' therefore considered
negligible. Thelmass of the rotor was determined by
the 111 element model. Each of the power stages was
ana}yzed s;parately and the size of the discs was
determined simply by subtracting the weight of §ée
29 element model from ﬁhe 111 element model.

The addition of the discs }nto the system did not

add any additional stiffness since they were only

added to the mass, matrix as point masses. The rotatory

inertia is aléé added atAfhe same point in the mass
matr}x (see Chapter 3). |

?he‘blades_on the shaft also needed to be taken
into account. The elements wﬁich contained the blade
rings were increased in diameter by approximately 10%.
This was a rough approximation since the blade figgs
are not solid but hollow to allow the passage of steam.
The mass added to the element waé aSoutAIO% and the
increase in ;tiffhess was negligible. Each_blade ring
is diffefent, but in order to reduce the compiexity of

the system a 10% increase in diameter was used for

each.

2.1.2 Bearings ,
‘For "the purpoﬁé of computer modelling, the shaft's

support system must be added into the stiffness matrix.

13
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In this Qay the shaft is "grounded" which means that it
is physically attached to the ground and not free in
‘ space. This was done by adding an eduiyalent bearing
film skiffness to the.apprOpriate node in the stiffness
metrix. | ' |
The turbine and gensrator ride on olil-fed journal
bearings. The bearings ar¢ mounted on spherical seats
which allows rotation of the bea;iné and for this reaeon
the bearings have no rotational stiffhees.e The ground-
ing is tﬁerefore only in the direction of 1load. The
bearings also have stiffness perpendicular to the load
but again, only‘vibra;ion in onerplane‘was considered.

: £ \
Adding equivalent film stiffness in this manner

Yields a shaft mounted on springs, i.e.

[

’

Fig. 2.3 Grounding_tﬁe Rotor

‘The "springs" supporting the rotor are oniy the film
:stiffness of the bearings : As discussed in Chapter 1 the
Lyg;)

stiffness of the foundatlon is not included in the ana

.

For oil Journal bearings the - stiffness is non-linear.

r
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The film‘stiffness of the bearings is defined as

Kprym = (g’f L2,
Kprpm = Film Stiffness
W = Load .,.
f = Co&!tant "’
C = Radial Clearance )
where the constant "F" was found from Kim and Lowe (19)

constant F is plottea egainst the bearin characteristic
or -Sommerfeld number (see Fig. 4.3).

The load an the bearing needed to be flound
accurately to find the film.stiffness. Th ilﬁ
stiffness has a large effeqt on the dynamlcs of the
system since they determine the flexibility -of the system
(Fig. 2.7). Most bearings, ¥Yor large turbinhes, are
mounted on a catenary. - This is done to aid in coupling
the shaft sections together. The catenary ensures that
'the static (non-rotating) bendlng moment and shear
force at the couplings are small. If this was- not the
case then when the sections are uncoupled there quld be

Y

relative motion between the flanges, i.e. .

]

Fig. 2.4 Relative Movement of Flanged Sections

AN

15
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To find the loads on the bearings then became a
matter of analyzing each of the stages between the

{flenges separately, i.e.

c

LJ
&

»

Fig. 2.5 Rotor Stages on Simple Supports
bThe 111 element model was used and .th sectio;g!were
Ataken as simply supported beams’with/the load being
fhe weight of the shaft.

The radial clearance, length, and diameter of

the bearings was Aetermined f;om the drawings. ’ ?he
0il viscosity was found from steady state temperature

data from the plant. ~“Table 2.1 summarizes the bear-

"ing data.

‘2.1 3'Resu1ts

7

In order to .find t?e film stiffness the Sommerfeldrf
_number is also required. The speed chosen for this -

‘was halfway between the firss/eﬁd sixth critical, i.e.,
. . ‘ ._.b [ v : ) s

{ o

O
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an average value in the speed:range of interest.
Once the system stiffness and mass matrices were
defined the natural frequencies'and mode shapes were

generated. | The equations of motion are:

(MIx + [Klx = O

(M] Mass Matrix

[K] Stiffness Matrix (2.3)
which can be rewritten:
[D]o = a2¢
o] = my~txy
. | . .
A = eigenvalues
® = eigenvector (2.4)

It should be noted here "that for the'%urposes of
designing the in-house rig the damping in the system was ‘l
not considered. The eigenvalues and eigenvectors corr-
espond to the natqral frequencles and mode shapes
,respectively. ':The turbine operates. above the sixth
critical speed which_makes starting ﬁp-the unit a
difficult process. | | |

Table 2.2 shows the eigenvalues generated by the
program both with and without the generator rotor.
It can be seen by comparison that the first and._ 51xth
‘hatural frequencies are the generator s effect on the

It is interesting to note that the addition




. Table 2.1 Bearing Film Stiffness

RAD CL

" CHAR.

BEARING - L/D LOAD STIFF.
' o (IN) (LB) NO. (LB/INx1076)
1 0.56 o.oojm- 5,400  0.84 1.40
2 ' 0.59 0.00875 5,800 0.85 1.61
3 0.59 0.00875 12,000 -o.ea 1.55
4 ~0.75  0.01175 31,700 0.41 5.50
5 0.82-  0.013- 41,300 0.35 5.90
6 0.59 0.013 25,100 0258 4.60
7 ~.0.62 0.01125 49,700 0.37 12.0
8 0.62 0.01125 48,900  0.38 1.16
9. 0.67 0.007 - - 1.00
-

- of the generator adds natural frequencies to the"

system w1thout affecting most of the natural frequen—

cies of Ehe turbine by itself

corresponding mode shapes.'

Fig. 2.7 shows a

"Aturbine;j

h_Pig. 2.6 shows the

critical speed map" for the

The pOSltlon of the present system is shown.

. From the graph it can be seen that the turbine exhibits

‘a combination of rigid body and flexural motion.: For o

rigid/pody motion the. support stiffness is much less

than the shaft stiffness.

this situation are fairly low.

The natural frequencies for

t

Flexural,motion

18
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LPI-LP2 OUT OF PHASE
1905 RPM A

MODE 3

LPI-LP2 IN PHASE

2027 RPM

MODE 4

HP-IP OUT
25350 RPM

MODE 5.

‘HP=IP IN
2590 RPM

MODE. 6

2ND GEN

N

2974 RPM



Table 2.2 Eigenvalues

MQDEL 1l MODEL 2 AATA FROM
o TRANS-ALTA*
1860 RPM 1115 . _ 1000 (GEN)
2024 1905 1800 (LP-1-LP2)
2549 2027
2590 2550 2800-3200
- 2590 2800-3200 -
- 2974 3200-3300
—%

MODEL 1: 24 Elements - Turbine only
. MODEL 2: 29 Elements - Turkine and Generator

*Data taken from measurement system installed thUnit #4

at Wabamun Power Station.

greatly affects the dynamics'qf the system as can be
seen by the large differences in frequencies for
different'support stiffness. | .
Q~"’/r}n order to design\& dynamic in;house‘model the
relative stiffnesg 6f the shaft énd beariﬁgs.had tg_,j
be kept. constant for both fhe real turbine and the in-
house,model." Coa | | . ‘
'Thé.n%turai frequeqcies and‘mode‘shapeg described
‘//"in this chaptef were‘ihe Basis fox ﬁhe,design of the

| in-house model. ‘Dimensionless ratios were formulated .

irom the data arid the in-house rig was designed to



ROTOR SPEED.

match these ratios in order to have a rig that behaved

the same way from a dynamical point of view.

FLEXURAL MOTION
J

RIGID BODY MOTION

-

286 MW TURBINE

“

ROTOR SUPPORT STIFFNESS-

@

' Fig. 2.7 Critical Speed M.ap

2.2 In-House Rig _
: The in—house rig is ‘a dynamically scaled repllca
of the 286 Mw steam turbine rather than a static one.
A statlc replica would physically resemble the real turblne

21
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and the real turbine's overall dimensions and mass

-distribution would simply be scaled down to produce a

miniature replica. If the rig were then rotated the

.
natural frequencies Wwould be completelyrdifferent: The
vibration characteristics would then have to be modified
in order to be compared with the real turbine A —
dynamic model, on the other hand, - may not resemble the

real turbine but when)it is rotated there is some correl-

SYation between the mode shapes, natural frequeﬁcies, and

response to an imbalance.

The in-house rig is basically a shaft and disc
systemv(Fig; 2.8). The shaft represents the rotor while
the discs ‘simulate the blades. ‘The'shaft rides on four
oil fed journal bearings. The rig consists of three
"po&er" stages: high pressure, low pressure #1, and
low pressure #2. The'highrpressure;section representai%
the real turbine's high and intermediate pressure spane
combined To keep the rig as simple as possible the
generator of the real turbine is not physically represented
but its effect on the syste; is taken into account.

As. shown in Fig. 2. 8 the rig is driven by a variable
speed D.C. motor. . The coupling between the driving

shaft and rig 'is a rubber type which’dampe;out vibration

noise from the motor. The coupling also allows for

misalicnment which occurs when the shaft ‘is whirling.

~ The four bearings are-mounted tofa steel frame which
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acts as the foundat;gn.for the rotor. This "pillar"
type of support is not unlike-the foundations for
large ste&m turbines where the condenser$ are located
between the pillars. = Most large turbines'are'"low»
tuned”. 'This>meahs that the fundamental structural
natural frequencx is below the'runhing speed of the
machine. This produces less transmitted force to the
ground (see Fig. 2.9). The in-house rig is also 15%

tuned which will simulate the real case more accurately

_&l

LOW TUNED

Xol

HIGH TUNED
-

. ‘&

1.0’

Lof e

~-Fig. 2.9 Low Vs”High Tuning a Machine
. L : .

The effect:ofvthé low. tuning on the Yibratidnal»chérécéa_

-~

———® RUNNING SPEED"

24
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~teristics is not included in the analysis.

£i2.2.1 Scaling Parameters

Four non-dimenSional scaling factors were the basis

for the design:

1% Thé ratio of the first three natural frequenc1es (i.e.

S
o

1/02, w /w ) of the rig are conSistent w1th those of
‘the real turbine.
2. The bearing'Sommerfeld numbers are the ‘same to within

a reasonable accuracy.

"3.'The stiffness ratio is defined as the bearing film

stiffness divided by the equivalent shaft span stiff-

“gness.. The span stiffness is a simply supported beam
ioaded at its center. ‘This ratio has been calculated
to be the same for the real turbine and the in-house
rotors. , . ‘

45‘The first three mode. shapes of the rig have the same \"3ﬁ;
shape as those of the real turbine . 4 N
Table‘ﬁug‘summarizes the above scaling‘factors which
‘wilivnow‘he described in more detail. - | e @bﬁ-

]

.* 2.2.2 Natural Frequencies

L

‘The Operatinq speed of the<real turbine is‘3600'RPM,
which is above the sixth critical speed (Fig. 2.6). . If
the ge%irator is uncoupled from the turbine then 3600 RPM

is above the fourth critical speed. If the H. P.Q%nd I.P.

—



stages were both incorporated, into one span then it would
be reasonable tp say that the turbine operateslabove
the third critical speed. ' The three critical speeds
of the real turbine that-are to be matched (as ratios)
by the rig are: (LP1l/LP2), (Lél/(HP—IP)AVE).
The second ratio LPl/(HP-IP)AVE is foﬁnd by aver-
- aging (HP-IP) in phase and (HP-IP) out of phase {(see
Fig. 2.6). This is reasonable for two reasons. .(1)
the major vibration problems occur in the low pressure
end of turbine, and (2) to have four spans in the rig

"would make it too complicated.

-Table 2.3 Scaling Parameters

Natural Freg. Ratios

286 MW Turb. In-House Rig
wi/u, | .90 !
wy/uy ‘ T8 ‘ 2{ .73
Sommerfeld Numbers ) '
BRG .} 286 MW Turb. * In-House Rié
1 :79. ' .75
2 .43 | .49 .
3. ;39 . ‘. : .47 |
4 .48 .57

Stiffness Ratios .
‘ 286 MW Turb. In-House Rig

BRG 1/SPAN 1 S 1.000 .97
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Table 2.3 Scaling Parameters (Cont.)

Stiffness Ratios

286 MW Turb. In-gouse Rig
Ca BRG 2/SPAN 1 2.12 , 1.88
'BRG 2/SPAN 2 1.65 1.65
BRG 3/SPAN .2 | 1.98 1.70
BRG 3/SPAN 3 1.81 10

BRG 4/SPAN 3 0.9 1.30

2.2.3 sommerfeld Numbers
The rig has four bearings while the real turbine
has nine. The bearings eliminated iﬁ the construc-
tion of the rig are the three supporting the generator
(7’ '8 and 9) and the two between the HP and IP stages
(2 and 3).  The bearings retained are shown in Fig. 2.10.

The Sommerfeld number (Sn) defined by Shigley(g) is

Sn = (E)Zn‘N/P r = journal radius  (IN)
‘ ¢ = radial clearance (IN)
: n = absolute viscosity (REYNS)' ,
o N = speed (RPS) |
5 P = unit load (LB/SQ.IN.)  (2.5)

The speed region that is of interest, as in the
case of the real turbine, is between the first and third
" critical speeds. To compare the Sommerfeld numbers

' the speed used for the real turblpe 1s 2500 RPM and the

)

-
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speed fcr the rig was determined by an iterative pro-
cedure.

Unlike the real turbine, the rig's shaft center
line is not built on a catenary. | To'calculate the
loads on the bearing is, therefore, a more compiicated
procedure. The loads on the bearings are speed |
dependent. Since each span is not simply supported
and the bearing.film stiffness does not‘chanqe linearly
with speed the loads on each bearing will change slightly
with speed. This is not. the case for the real turbine
becausé/:ostxof the spans are simply supported: : .
The determination of the bearing ioads fordthe rig
‘Was an iteratiye procedure since to find the film stiff-
ness the load and Sommerfeld numbers are required, and
conversely,. the load on the bearings is determined by

the stiffnesses.: The natural frequency ratios were

LY
already determin d by the real turbine analysis An
yapproximate spepd for comparison was therefore determined

"Once this sp ed was .determined, the loads were found as

fOllOWS' ' ~\

% Y
\

1. ‘Assume a stiffness for all the bearings
2, Calculate, using a.finite element analysis,~
. the bearing_roads for the statically indetermin-

\

ate problem. !

—
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e.g.
. l l l l l l " shaft weight
Wby L]
1 . T T ' ;T BRG\lqads
3. Calculate the Sommerfeld numbers from these
loads.
4. . Use the NRC charts 1) to fin: the stiffness of
the' 0il film.
5. Compare this stif<necs with the assumed stiffress.

©

2.2.4 Stiffness Ratios
The stiffness ratio is defined as the shaft span

stiffness (KSPAN

Ai.e.' K » ‘F\~_———-’
- “BRG1g K . %;BRG2 -
, 9 SPAN .
. . " '7, R

~ BEach span had, therefore, two .ratios

) ?ﬂbided by the bearihglfilm stiffness

K span/, K‘Spal’{/K

: BRG1 : BRG2
Theimethod used to determine'the’bearing.film.Stiffnésses
has ‘already been described. |

The spans,'both for thefréal turbine and thefrig,
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per nqdeﬁ‘ the vertical displacement (W) and the nodal \sxj(ﬁd
were taken to be simply supported beams. To determine

the equivalent stiffnesé of each spaﬁ a load was placed

at the center and the corresponding deflection was cal-

culated. The shaft, for this caiculatioh, was assumed to

have no maés. THe span stiffness Qas then calculated by

dividing the load by the deflection at the center span.

*

5.2.5 Mode Shapes

The real turbine, as stated before, has six modes '
below 3600 RPM, while the rig has only three. " The
real turbine modes that were chosen fochompariSOn are
l,-2;54(see Fig. 2.8). ‘Mode #4 was chosen since  the
HP and IP are in-phase and with the rig-this also had

to be the case. Fig. 2.10 compares the mode shdpes.

2.2.6 Modelliqgfprocédure

It shoé?d be néted“here that these scaling para- »
meters are merelj a methodlof design. . To completely H
describe the vibra#ional characteris;ics of ‘any rétor
is a two plane problém. " Thus far both the real turbine
and. the rié'have'been deséribea as one plane systems.‘
‘Théwsingle plane cemﬁafison is considered sufficient
for dé#ign'purposes..
| " Obviously aii four parameter54are' inte:rélated
énd,ftherefqre, the prdcédu:e used was‘ |

<



HP - IP

IN HOUSE RIG
286 M. W. TURBINE

LP1 AP2

nQ

Fig. 2 10 Mode Shapes of Rig Compared to

286 MW Turbine #5
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©

MODE 1.
LP1-LP2 OUT OF PHASE

. 2295 RPM

REAL TURBINE
BEARINGS

MODEL BEARINGS

MODE 2
LP1-LP2 IN PHASE
2532 RPM g

MODE 3
HP—IP IN PHASE
3146 RPM
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an iterative one. Fig. 2.11 shows a flow chart for
'the convergence. |

There afe several independent variables: shaft
lengfh, shaft diameter, disc size, disc position,
bearing stiffness, etc. Changing any one of these
?as some effectron the overall dynamic system. Fié.
2.12 sﬁows all of the independenf variables and their
subsequent effect'on'the,scaling parameters; The flow
chart gives‘the reader én ideé of the complexity and
interrelationship of the scaling parameters.

A three span system Qas chosen in order to match
the three mode shapes 1, 2, 4 of the real tﬁrbine.
From Fig.'?.il the mode shapes and natural frequencies
were the first pafameters to be matched with the real
‘turbiné. The mode shapes and natural'frequencies Qere.
changed by varying the spaﬁrlengths and Size/position‘
of the discs. |

Once the moae shabes'andfggiufal frequencies ‘showed
good'cpmparison with thé'real turbine the stiffness u
ratios and Sommerfeld numbers were analyzed; The
stiffness ratiowqu changed by varyihg the span lengths
and film_siiffnesses,;while the Sommerfeld numbers
vafied by L/D ratio;iradial éléarénce, and'dilAviscosity.

Tﬁis pf0cédure was repeated unt11 a1l'f6ur scaling

factors were within + 10%.
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Parameter - Changes made
(Dépendent Variable) (Independent Variable)
reb- Mode Shapes |y 1. Disc size and position

2. Span length

: 3. Bearing film stiffness
Natural

Frequencies

A

Y

e

Stiffness "~ 1. Span length
K + - . - ':.
Ratios . 2. Bearing film stiffness
Sommerfeld - : - 1. i/D ratio
Numbers | ' 2. PRadidl clearance

. 3. -0il viscosity

Fig. 2.11 Scaling Parameters Flow Chart
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—3. NON-ROTATING ANALYSIS

/

Abstract

This chapter will discuss the non—rotating vibrational
characteristics for the in-house model. = Numerical
results are compared with experlmental in order to test
-the accuracy of the symmetric stiffness aé? mass matrices.

Also, a measure of the system's structural damping is

discussed.

3.1 Beam Theory

»

All of the numerical work presented in this thesis
(1)

utilizes the Timoshen 0 beam ejement glven by Thomas
The two-dimensional analysis of the real turbine and thex
design of the rig Qere based on. this element. For a
single plane or two dimensional analy31s the system 1is
assumed to be symmetric for any plane passing through
the‘shaft axis. For non-rotational*testlng the,system
isnsymmetric, and a single plane numerical analysis was
adequate. / For rotating systems Wlth oil film bearlngs' )
"and gyroscopic effects, however, the system is not
symmetric and a three dimeﬁgggnal or two plane anaﬁy51s‘
'is required '

\ : . .
The-Timoshenko element has two degrees of freedom

.35



36

rotation (9). - (See Fig. 3.1).
» W1 ,F1 . wz'F2
My ID (oM,
- L —3»
—3 x

'Fig. 3.1 Timoshenko Beam Element |,

The sign convention ‘adopted is positive displacement upwards
and positive rotation counter clockwise, Thé nodal rotation
6 is the slope due to the bending moment M.  The slope

sW/ ., is due to the moment M and the shear force F.  These

3X
parameters are related by

2

Fig. 3.2 Defifition of Nodal Rotation (8)



/“’

For long and slen@eﬁ elements the simple euler beam
given by Archer(l J 1SM:%fﬁ;cient to describe the dynemlcs
of the system.  In this efement the deflection w(x,t) is
. assumed to be due only to the bending moment . Thls
means that the shear deformation and éhe rotatary inertia
are neglected in the analysis. -For the present analysis
however, the elements are not long and slender and the
Timoshenko element is used. . .

The equation of motion for an Euler-beam is

4 2 \
9 W 3 W kN -
EI + m— = 0 ) - (3.2)
: N 2 \ \ Y
IX at v
1Y ) .\'l
w : ' ‘ \
here’ ‘ | , N\
m - mass/unit length N »
, ‘ : ‘ &
.é? - E - modules of elasticity \ ‘ \
I - 2nd moment of area B \ A\

Two additional terms are added due to the shear X&i

fotatary inertia: _ ' \
¢ W -3V 3-9 oM ' W v Y
M= J—=(— -v; & =t \3e3)
at? - X at? % ax KAG
whidh yields the equation for the Timoshenko element:
4 g C B ‘
EIa W, wil¥ g, EIMW M BN, (3.4
ax* At kKAG 3t?3x? = kAG at* . -
—_~ R

Lo N



where:

N
B
k - shape factor (based on geometry Oﬁﬁx—sec)
A = cross sectional area |
G - shear modulus
J ~ rotatary inertia/unit length
In matrix form thelstiffness and mass terms are
‘as follows:
12
- EI 2
K = I 6 1 '(4+0) sym
Y 2 (1+¢) ' . :
/ . -62 12
! ) ’ 2 2
. 12ET  69.» L (2-8) =62 1 (4+9)
where: ¢ = { p =
GKA¢
¥
LAL M, Mg sym
M= v _
e 2 - ‘
, (1+6) M2 M4v My
. Mg Mg My M5
g
. : M, M, . sym
. QA"Qv(E)Z- ' 8 9'~- :
2 - L - E X ) S N\
(1+e) * M M M ]
| ; Mg Myp Mg My~
lwhere: o Lo PRRT ’
My = 3725 4 P00 + %
m, = (Mhro + 120 + ¥ /2400

v
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5 | ,
= 10 + 3%10 + * J20)
2
M, o= ~(23/420 + 3%/40 + ® /24)2
~ T2 . .
. 1 ¢ ¢ 2 -
M= (17105 + %/60 + ® /12000 ¢ —
l s . ¢ ¢2 : P
M -(7/140 + "/60 + /120) ¢ . .

6 ' : <
M7 = " /5 : ‘ \

M. = (/10 - %/2) . B
v oM, = (%715 + %76 + ¢ /30"

/ | o
("lr30 - %6+ * se)e® (3.6)

X
i}

The inertia of the discs is added at a node in the
mass matrix. .The location of the discs determined
the length of the elements since the mass of the disc

‘had. to be added between two elements, ilé., at a node in
- | - » 2 {
.© the system. - The mass of the disc is M = ¢#7r and the TJA,,

AN <

. 4“2
rotatary inertia I = }Mr .

o

; | SR | 8
40/ W
) l'ul I - ‘A“

‘.v“rig, 3.3 Disc Dimensions andIInertia e

-

~
W

The‘giscézﬁavefa hole at their centre-and‘the'mass and "’

 inertia-of each was adjusted accordingly. - | y

° . L. B . : - ‘
“qﬁ-The;s;ng}e degree of freedom system shown in Fig. 3.4

;
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iwt

has equation of motion K X + C X + M i = Fe " (3.7)
5
1 K -
-1 VAVA Felwt
A <L M - >
-1 e .
’ ¢ \j

Fig. 3.4 Single Degree of Freedom System

+Assuming a harmonic foreing function, the solution is
of the form:

X(t) = inmt - ‘ (3.8) /

and therefore, the general solution is:

([K-Mu'] + iCu}X = F . (3.9)

This solution is the basis for the non-rotating
analysis. To expand the selution to a system of more-
than one 'degree of freedom a normél mode approach is used.
‘&he dampiné term C in equation 3.7 is’termed "viscousﬁ<
_ dampiné and the ferce it exerts en the mass 1is perortion-
al to;the velocity. | For the problem_of'a beam vibrating
in reverse bending this term is non-existent. The type
*ef damping’present is referred to es'"structural" damping.
. (6) ;

From Thompson the energy dissipated per‘cycle is

independ nt of the frequency over a wide frequency range,

'

‘and. proportional to the square of the vibration amplitude. S

7



The structural damping factor, from Kennedy and
Pancu(z)can be introduced into equation 3.7 as a complex -

stiffness, i.e., -

MX + K(l+ig)X = Fel . (3.10)

. From this the steady state amplitude becomes

X = , . (3.11)

(K-Mw’) + igK

s

The damping factor g will be referred to as the proporf'

tional damping éoefficien;.

Fo; a.multi—degfee of freedom system this propdr4
tional d;ﬁping coefficient may have different values
corresponding to different modes. An averagé value
will be determined from the experimental data -and this
will be used in the numeriéal calculat;oné for thé rot-
ating system (Chap. 4). For the rotating tests, both
structural and bearing damping are present and there-
_fore the determination of the structural coefficient,
from nonFrotating tests was a necessity.

The damping natural frequency fo a‘single degree

of freedom system with structural dam(ing is

wg = - (1-(g/2)")} (3.12)

-

‘and~therefore, for small (>0.1) values of g the natural

|
1
frequencies and -mede shapes of the mulll-degree of free—.

-
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dom system shown in Fig. 3.7 can be determined numer-
iCally from an eigen value analysis (equation 2.3)
utilizing the stiffness and mass matrices (equation

3.5 and 3.6).

‘ 3{5 Natural Freduencies;and Mode Shapes

7
\\ 1

The numerical values for the naturai frequencies
and que shapes have . been verified through the use of
non-rotating tests. ' The shaft was supported on rigid .
foundations at each end’and”was therefore analysed!as a

simply'supported‘beam,v' (Fig. 3.5).

2 - EXCITATION = 1 3
?ig, 3?5iIn'H¢9$e Rotor-on;Rigid Foundations

. The numerical results were compared Wlth experiment via

-_the three excitatlon 1ecations shown in- Fig. 3 5 The shaft

v

- was- excited with a: shaker table with frequency sweeps from

0~ 500 HZ. ‘ An accelerometer was placed at various 1ocarions“

'*along the shaft and a spectrum analyser was used to measure

"the mode shapes at each of the natural frequencies.
. S A o : .

P o



Fig. 3.6 shows a typical frequency vs amplitude plot.

\ o ° 2 \

Table 3.1 : Natural Frequencies

NUMERICAL EXPERIMENTAL
 MODEL 1 MODEL 2 EXCITATION LOCATION )
18 EL 24 EL 1. 2 3
6.0HZ + 7.0 " 10.0HZ 8.0 9.0
22.7 29.5 32.0 29.7 31.5
52,2 57.2 56.0 55.5 55.5
- 107.0 114.4 146.0 112.2 107.0

" 267.6 133.3 171.0 170.0 225.0

Two numerical models,.which consisted of 18 and 24
elements, were compared with experimental data. The only
difference in the modele‘waslthe method used to‘incofporate
the large discs*into the system. The major effect oflthe
discs on the system is the addition of mass. In the, in-
house rig the discs were shrunk-omto the shaft and therefore -
will also add some stlffness to the system The 18 element
model has only tﬁ/ mass effect while the 24 element model
1ncorporates both mass and stlffness 4{see Fig. 3. 7) -

From Table 3 1 the 24 element model matches the

experimental data more accurately than does the 18 | C

' element model.
il k&ﬂm_IheMZAeelememt.model adds the stiffness of the

_ discs by introducing them into the system as a small

element. The lengtp.pfvthe element is thelSamefQESEEefx\*“‘;““‘

—~ R o
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minimized. = -,

t
T

thickress of the disc while the diameter was chosen

to be (2.25 in which is 0.5 in larger than the shaft \

_diameter. The diameter of the element was chosen to

add sufficient stiffness to the system without causing

numerical errors due to small T/a factors. The value
‘of 2.25 in yielded the best correlation with experimental .

data.
| ’The 24 elehent model compares best with éxcitation
location No. 2 (Fig. 3.5). The natural frequencies, for
the éecopd and third modes, are'0.0Z% low and 0.1% high
respectively. The‘first mode, however, is 12% low.

From Table 3.1 it is seen that the location of the
excitétion_force has a marked effect on the valués of

the natural frequencies, especially on the fundamental
mode. The displécements were of the ordef-éf 3—4»in,

at the centre span, due to fhe‘large shaft mass; This

caused the excitation to be non-linear at this low

frequency. - Excitationnat position No. 2 was chosen for

. the anaiysié due to the relafively low mass of the shaft

. at this location. ¢ The non-linear effect was therefore

“

Fig. 3.9 compares the measured mode shapes with the
numerically prediéted:ones. The mode shapes are almost

identical for modes 1 and 2. The computed amplitudes

for the third mode are lower than the measured values in
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'Fig. 3.7 Finite Element Model For In-House Rig
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the LP1 and L
however, comp
experiment in
puter model.
are analyzed
matrices are
| Once the
static tests
strdééural da
the démping f
proportional
of phase with

with structur

L

From Craggs(3

from the half
power points.

The quantity

. w
where ' .

wi

» ponding to the % power points -

C 47

P2 end of the shaft. The overall shape,
ares reasonably well. “fhe divergence from
the high modes 1is indicafive of any com-
Fo; this paper only t?e first three modes
andvthefeforé, the stiffness and mass
considered accurate enough.
stiffness and mass matrices were establishz%
were analyzed to estimate the internal~or
mping in the.5ystem. From Kennedy &'Pancu(Z)

actor g~is different for each mode and is

to the stiffness of the system but 90° out

it. For one mode the dguation of motion

al damping is

MX+K[1+ig]X = Fe (3.13)

O
) this damping ffctor can be determined

power points. Fig. 3.8 sho&s the half

-

g is then defined as

e

g= —_— (3.14)

is the ﬁatural frequency

, w2 are the natural frequencies corres-

%
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Fig. 3.8 Definition of 4 Power Points

From Fig. 3.6 it i§-obviou$ that for each modé
there Will\ge a different value of the structural
damping factor g. Fof the'generéliéation of the
single degree of_freedom;syﬁtem described above into theu
continuous nature of the 24 element model the values from
the first three modes were avéragédt

?

a
[
T

‘0..11
g, = 0.09
gy = 0.02 (See Fig. 3.6)

to'yield an average value of & 7%. This value will be

48



M\
\

[§Y
©——@MEASURED ~~~~ CALCULATED

2]
RN
IV

— e

Fig. 3.9@0de Shapes for Non-Rotating Tg"st’

+

r . ' . - - <

-



Py
.termed the pfoportidnal damping factor and will be used
vﬂbf the rotating rotor.analysiﬁ which will be described
()in Chap. 4. The bulk of the étudy is concerned with

freguencies below 70 HZ and thérefore,damping factors

above the third mode were not considered.

50
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‘4. ROTATING ANALYSIS

Abstract

Two major factors are added to a rotatlng System
as opposed to the non- rotating system of chapter 3.
The whirling of the rotor adds a gyroscopic effect
and the fluid film‘bearings add both stiffness and
. damping to the system. As‘well, the maénitude of
the bearing terms are frequency'dependent. These
effects will be added to the system and the natural
frequencies and mode shapes compared for experimental

data with numerical results.

~

4.1 Gyroscopic Effects

As described~in Chapter 3‘the mass (and rotatory
inertia) and stiffness of the discs have been taken .
into account for- a. 51ngle plane vibrating system. The
gyroscopis effect, i.e., the moments of -the 1nertia |
__forces due to angular movements of the axis of the
Yotating masses, must also be accounted for (Timo—

(11)) The shaft whirling speed is. con51dered

shenko
to be equal to the rotating Speed , This is termed

‘synchronous whirling. ] This component dominates the ;;
shaft vibratidn near critical speeds and is’ therefore,

[

~the one used to balance rotors._; The higher order

VCONPQQeDtS:N$u¢h as half frequency whirl, is a Stablllty 



characteristic of journal bearings, and are not con-

sidered here.
. Fig. 4.1 shows a single disc on a shaft whigb is

a probiem presented'by Timoshenko(ll). Once the
equations of motion for this simple system have been
developed the generalization~to the finite element
model can be made. | ‘»

~ The position of the disc is completely'described
by the position of the center of gravity 0 amd the

angles B8 and .

- N

Fig. 4.1var63copi¢ Tefms’for a Disc_"a

[

Thus four variables are required to fully describe '

-each node in the ‘shaft disc. System of- Chapter 3 rhef

l

52

simple Tlmoshenko beam element with w and 6 as the nodal_m-~d-‘
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degrees of freedom must be expanded to two planes,

respectively.

-wy, ey, which correspond to y,8, 2z, v

Thelstatic deflection of thé shaft due to its own
weight and the weight of the discs is not included in
the analysisrsinqe.fof any vibrations problem,vthe
reférence positién is at static equilibrium. The
solution is baseé on tﬁg principle of angular momentun,
i.e.; thé-rate of ing;;as of the total moment of mom-
entum of any moving syster about any fixed éxisAis
equal to the totai momentooé the externaliforces about
this axis. 'Letting I = moment of inertia of the disc
about axis 00 and'Il = 1/2 = miikh of inertia of the
disc about’a'diameter. h . B

From the principal of angular momentum:

g TesT AT =My

-d/dy[Iwy + Ii18] = Mz . , (4;1)

~Summing the mpmeﬁts.about the disc center of gravity gives:

-
1 1

My =-mz+n vy ‘ &

. 1 1 - . o ‘
' | MZ.=my - n 8 ‘ : ’ , (4.2) -
' . : . 1‘6 1 ' ' '
, m , n = constants

Similéfly@ summingvthe forces:

w §.+ my4+‘nB =0
g ' , 3

¢ -



z +mz +ny =0 (4.3)

W = disc méss
g
. M

4 , n = constants

‘ &
Equating 4.1 to 4.2 in conjunction with 4.3 yields four

L 4

Qg

equations which are solved simultaneously to obtain the four
variables y, z, 8, Y-. The assumed solutions are

Yy = A sin T @

z = B cos mT;

B = C sin wT

r\\\\\\;\ ’ | Yy = D cos wT o (4.4)
, N , :

ns correspond to-Eg. 3.8

>

s the gyroscopic ter iincorporated into

the system eagily.

.. THe general differential equation from Meirovitch(4)
. for a damped gyroscopic sygtem is
[M]X + {[G]+[C]}X + [K]X = F (4.5)

o
where M, C, K; G.are'real métricgg. The stiffnéss
and’démping‘matrices are syﬁmetric only for symmetric
bearings. Jouinal,bearings,.howeverq are ﬁotasymmetric.
‘The gyroscopic matfix-ié skew.symmettic;ané is incor-
porated into‘the damping matrix since the force it

* produces is proportional to the‘velocity'of the shaft.

According to Homés(a), assuming 3§i§ﬁgﬁronous

i ]

=

54
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circular whirl, the gyroscopic terms, combined with the
equations of motion for a Timoshenko beam element, can
be incorporated into the mass matrix with a single
factor H. This factof is the whirl ratio which is’
defined as the shaft speed divided by the whirl speed.
" This paper-is concerned only with synchronous whirLing
apd therefore, H has the value +1.0. = The gyroscopic |
terms are placed in the mass matrix at the location {'
of the discs. The discs, being much.lérger in diamefer
than the shaft will dominate the gyrbscobic effect on
the sYstem.

At the location of the discs the rotary inertia '

, 2 ' . .
term is mr° where m = disc mass and r = disc radius.
4 . .

To ‘incorporate the gyroscopic force the term becomeé'  \\
%mrz(r-ZH).- This procedure simplifles the general
equation of motion (4 5) gy placing the gyroscoplc

terms in the mass matrix. When the shaft experlencés‘
forward whirl (H=+1) the shaft spin velocity  and the
whirl velocity are equal gnd:in the same direct%onﬂ.
l‘This‘tends to stiffen the shaft and to raise the natural
fféquenciés. For backwards (H=-l;0) whirl the effect

is to lower the natural frequencies.

.The mass matrix for a disc will be:



A S5
f- ) ‘ =N 7w
1.0 Wx
. 2
- N -4 v )
pllr 2 1 B : 4 b

_ L 1 W

7
(l 2H)r 8

(4.6)

These terms are added at the disc nodes.

4.2-Effect’of‘Bearings :
Journal bearings add stiffness and damping terms
to the system. Four terms are- added to- the stiffness

matrix at the bearing nodes, i.e.

Kew  Fav Xy
S R R ) (X)L Al
The & K. oan *x; \ , ‘ o
. e-terms KHV and VH\\e not equal mendering the ~
L matrix non-symmetric , The’ sign convention adoPted is

;afrom Smith(lZ) nd lS given ‘in Chapter 5.

[

The equations of motion for a Journal bearing from '

: . 'fko ko1 {u] :[cuzc.c] ] AF
R HETRV. [ f 5 2 f "RE CHV L ) P ) TH
o _ S 1 -~ o Vol ]
fKVHEKVV'_f Il 7S Cwi {V By ‘

" where F andvF§5are:the forces on the shaft.  Kim &

(10)

'Lowe preSentta”literatufe'sgrvey_for these

£
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eight terms. Both experimental~and‘analytical results-

are presented in a graphical manner with Sommerfeld

number on the horizontal axis and W and Ww on the
- C c

vertical for stiffness and damping coeffjcients respect-

ively W is the load on the bearing and C \is the bear-

ing radial clearance.
For bearings with no cross coupling te

HH VV the motion of tHe centery

of the shaft due to a rotating load would be a circle

(KHV#O, K O) and K

(Fig. 4.2a). The maximum vertical displacement Qould
egqual the naximum horizontal'displacement. This is
t&pical of any rolling elenent.bearing Since the
motion is symmetric with respect to either the hori-
zontal or vertical axis a single plane analy51s is
adequate.

FigbigﬂZb shows a bearing with no cross-coupling

bA0
AT

terms‘but KHH

an orbit with axis'on the principle axis. Here the

andiKvV are different. The result is

horizontal and vertical motions are independenﬁ»ang
can therefore be analyzed separately. This system is

typical of a rolling element bearing which is mounted

on a foundation which is stiffer in one direction than'}

the other. - '\‘ o o

The general case of a journal bearing with both
cross coupling stiffness and ‘damping terms is shown

in Fig.,4.Zdu ~The resulting orbit is still an ellipse

1

.
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Fig. 4.2 Effect of Bearing Coefficie

- Orbit of a Rigid Rotor

*t on the
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but the axis is at some angie 4.

This angle can take

on any value and will aepend on all eight of the values

for damping and stiffness.

the ellipse is

- o . ‘ ‘
‘It 1is stTqu from this equation that four variables

P

z(t) = Hcos(wt+¢H)I+Vcos(wt+¢v)3

The general equation for

(4.9)

are required to describe the motion at each node and,

e

therefore, a two plane finite element model is required.

Fig. 4.3 shows a typical bearing stiffness curve.

The stiffness is speed dependent and is based on a small

rotating load.. The predominant load on the bearing

- must still be in the direction of load (Fig. 4.4).

large rotating loads the curves for stiffness and damping

Lp=1.0 - C
C=RADIAL CLEARANCE

W=LOAD

0.25 ~ 0.5 " 0.75 1.0
. . sn h’ N
. ) 1

‘Fig. 4.3 Bearing Stiffness Terms ' R

For

59
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are due mainly to the squeeze film as in crank shaft
bearings. This increased stiffness due to the squeeze
film is not included in the determination of the bear-

ing parameters

STATIC LOAD

ROTATING LOAD

Figr 4.4 Static Vs Rotating Loads

Since the bearing parameters are speed dependent
the mathematical uodel to solve fcr the eigenvalues
would require an iterative procedure. To eiiqinate
this problem an average vaiu4¥for the Sommerfeld
number is used The Somme&{eid number usedlfcr each
bearipg‘is based on an average speed‘between the first
anddthirducritical speeds: Thislis the‘most useéful
.speed range and ‘the coefficients have\a wide scatter

(Flg. '5.1) and thus the average is Justified. ' Table\4ﬁ1'

gives the bearing data ‘for the in-house rig.

(10)

The NRC Report makes'several assumptions re-

B G : ‘ »
- garding the bearing coefficients which should be noted
) i 4 * ‘ Q - o Lo , g .
 here: \ S

\
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1. The oil flow is purely

ReynoldsAequationS‘can-

~motion.

2. _Inertia effects of the\

neglected.

4.3 General Dynamic Model

The mathematical ~model

thus far is a Durely linear one.

laminar and therefpre the i

which has been described

The stiffness and

Table 4.1 Bearing .,Coefficients
BRG LOAD Sn STIFFNESS X10 % DAMPING X10 °
LBS kvwwv Xvn *mv ¥mg Sam Swv Syn Cyv
1 28.4 .75 2.0 6.0 - 5.0 3.5 1.2 .24 .2;‘ .87
2 106.2 .49 2.0 16.0 =-10.0 3.0. 2.5 .80 .77 2.1
3 116.8 .47 2.5 16.0 =-10.0 3.5 2.8 .90 .44 2.0
4 62.5 .57 3.6 8.5 - 6.4 3.2 1.6 .41 .36 1.1

1
¢

be used to describe the fluid

;s
\

oil around the bearing are

damping terms are assumed not to vary with radial shaft

amplitude or. velocity

Tﬁ; magnitude of the bearing

terms change,with shaft rotationai'speed but, as

‘statedubefdfe,'tﬁe’terms have been taken at an average

rotor speed between the first and third critical speed

The motion of the model is further assumed to be

at - steady state, i. e., the complimentary solution to.

B



4 'k; ' é 2

Eq. 4.5 has dampened out. This physically requires

the speed of the rotor to be increased or decreased

at a slow rate in order to dampen the acceleration

terms which also will have an effect of the: ehaft

motion. . - ‘ 7 Ty

p——

The system of equations, although linear, are

i

complex. ‘The eomplete equations of motion are written
. ,

in the following form:  .

M + M 1X + [C + ]x + [K + KgpelX=E(t)"

SHAFT GYRO BrG T CproP SHAFT

where [M] = shaft mass matrixg(Eq. 3.6) (4.10)

4 disc fpertia (Eq. 4.6)

+ aisc gyroscopic effect (Eq. 4.6)

[C] = bearing damping (qu 4.8)

“+ proportional damping (Eq. 3.}4)
@VIK] =—shaft stiffness matrix (Egq. 3.5)

+ bearing stiffness (EY. 4.8)
X, g,.g erébthe radial displacement velocity and
* aceeieration respectivel;‘ |
" F(t) - fotcinq funetion '>~ o S

The mass-matrix is symmetric and contains the mass -

!
!

of the shaft (Eq. -3, 6), thefdisc inertia,‘and’finallyn
the gyroscoplc effect of the discs. -The damping matrix
is not symmetric due ‘to the non symm try of the bearing ‘13-

Cross coupling terms. - The complete damp§;3wmatrdx

‘:'\\

-
- N
~
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‘consists of the bearing‘damping as well as‘proportional
damping (see chapter 5). The stiffness matrix is not

symmetric which is also due to the bearing terms. The

_:shaft stiffness (Eq.l3 5) plus the bearlncs terms con-

_stitute the complete stiffness matrix.

The natural frequencies and mode shapes of this

mathematical modelzare arrived at by considering the

complementary solution:

[MIX. + [CIX + [K]X = O (4.11)
with . .
x = xelvt (4.12)
: giQihg “ :
w = eigenvalue
‘X = eigenvector (:i:;
[-M + 1uC + K} = 0 | (4.13)
>_For the purposes of calculatlng the eig alues\fhe

. Proportional damping terms in Lci\apé dropped. The

bearing damping terms are arrived at from the equa%aoni

C~= g; f (f = value from Kim & Lowe' 10)hk" The l? this

equation and in Eq 4.13 will cancel leav1ng a relaﬂ%vely

simple eigenvalue problem. : /// : \
K+1iClo - Mws=0 . - (4.;%

. - ' ) 2 . : : : .. )
M7 R] +dilciie= w g ~ (4.14p)
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3

This was the equation used to determine the natural fre-

quencies and mode shapes™for Sec. 4.4.
* \‘
R f
4.4 Natural Frequencies and Mode Shapes

The natural frequepncies and mode shapes of a multi
degree of freedom system are not always easy to determine.
from experimental data. The method used in this paper

(2)

was suggested by Kennedy and Pancu It is assumed

: i
that the response of any multi degree of freedom system

is the vector sum of its fesponse in its characteristic
modes of vibration at that location. 'This type of

analysis is termed ."normal modes"‘ _ ‘
¢
Pancu are as follows:
l.  Each normal mode resggnds to an applied forcevas a
51ngle degree. g;)freedom system, i e., there is no

COupling between normal modes.

8

2. In a normal ?ode, each point‘of‘thedsysteﬁ.oscil ates
about its eqhilibfiﬁm pos{fioa along a‘certain line .
in space, fixed ;elative to the equilibfiumgposltioa
and straightJﬂEEn the oscillations‘are‘s@all enouéh
so that all anéles‘aredeqhal to their sines. :

3. ' All points are exactly in o£ out of phase with.each

other. That is, all poin;s reach maximum dep-
artures from their equilibrium position at the |

‘same instant

The properties of normal modes from Kennedy and ’ /

64
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’

4. The shape of each normal mode is fixed for a given

system and is, .independent of the macnitude fre-
quency, or location and direction in space of the
;pplied external forces or of the deflections in
other normal modes present That is, in any
given normal mode, the ratios of ‘the deflections
at-all the points of a structure to the deflection
at an arbitrarv reference point are constant.

"Thé properties of normal modes hold rigorously only
for proportional damping. The rotating system in
question has low structural damping and high damping
only at the bearings and therefore the method presented
'by Kennedy and Pancu will be utilized The method
requires plotting polar frequency responses as in Fig' 4.8.

The ﬁrocedure provides a method of extracting the
characteristic Or normal modes from polar frequency
ssweeps measured at different locations along the shaft y
Fig. 4.5 gives a typical polar STot for a Single degree d
of freedom system.‘

The phase ‘angle changes through 1800 and the

amplitude at resonance is determined by’ the amount of

“damping)present and the size of the reference load
‘For,,‘ ‘Jdamping thecresponse is infinite at resonance
. but all real systems have some damping. Frovaig. 4.5

»_the damping in the system is defined by . :ﬂ'v;o'

. : ®
/_"_, . . . "



66

A IMAG INERY

o //f~—;‘n
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-
s
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)
REAL
Fig. 4.5 Polar Response For a Single .
Degree of Freedom System
14
£, - £, e .
g =—+—2 LA (4.13)
. fn 4

whereuf1 and fz are the frequencies at ¢ﬁs-%,r%ﬂ

~

respectively. - = ' &

L

AUZIN

*. For a multi'degree of freedom.sys%em”with naturai

more compIicated T e response at any location is a
vectorial addition of the response of ‘each mode. During
a frequency sweep the ﬁ%sponse due to one mode has not }‘
fsubsided before the response due to the next mode has

',begun. Fig. 4.6 ShOWS/thiS vector addition 1n both

“I

.polar and Bode plots.

1

In order to plot the mode shape of ‘the shaft one

: must examine the polar plots cof&esponding to each of

s
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"
o

‘the locations on the shaft, individually. Two items ,

@

of information are essential in plotfting the mode shapes:
\
1 - relative magnitude of each mode
RN ' S N
+2 - relative phase of each mdﬁe. -

{5 This information can be extracted from the polar

plots at each location alOng the shaft and therefore,

~ the modes are described completely

To extract the. relative magnitudes a Cerle lS

drawn following the contour of each mode as in Fig. 4.60

&

‘and 4 6c. The relative diameters of.the modes corres-

poﬂd to the rFIative’magnitudes As long as the same
scale-is used(for each‘of the plots the magnitudes can
be taken directly from ‘the diameters. )

The relati e phase angles are slightly more

complicated to éxtract. ‘ Unless the hatura& frequenc1es .

13

are extremely close together ;l ? %6 a,IOOp is always
. . h /-/"/2 ":lﬁ .

present'when the modés 4dre iﬁ(phéée. ‘ﬂIf the.loop is not.

¢ / ~ . A

present the modes arelout’of phase.‘; ThlS relative phaSe;

'v(in or opt) is determined’in both the’ vertlcal and horizon-

+

. tal directions- at each point. Now orte; has a magnitude and .

'a relative sign (+ or/-) in both directions and thus “the.

\ CEN
The natural freqnencies are also determined from
\

t three dim%nsional mode shapes are described cOmpletely. .

”

X the polar plots. Fig 4.5 indicates the natural

. /
frequency of a single degrge—ef/freedom system at the

N

. ) « S s ’ 0 ’ - ¢
\ LT A . : ;
LS R N B .

. . o - . ’ *
CoL 1 A . -
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maximum amplitude which corresponds to a phase angle

of 90°. For a-multi degree of freedom system, such as
the one in question, the maximum amplitude is not always
indicafive~of a natural frequency. “Also, the phase
angle does not.always sweep through 180° for each mode.

The natural frequencies are indicated by the maximum

rate of change of the phase angles. Kennedy and Pancu(%)

Suégest plottiné 3¢/3s (s = speed) vs speed to predict

the values of critical speeds mofe accurately. (Fig.4.7)
1 ‘

i : - : | — 1

\ 4000
: SPEED-S f

Fig. 4.7 Rate of Change of PhaséiAngle Vs Speed
Ce ’ e o

'Fig. 4.7 shows the three»natural frequehcies to

-

‘be 2900, 3400, 39Q0 RPM. Fig. 4.8 corresponds to Fig.

~
Y

¥

N
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4,7,'which is a polar plot showing the three natural
freqoencies, From Fig. 4.8 one can clearly see mode 1
and 3 but mode 2 can only be seen from 4.7; The rig
‘was accelerated from 2600 RPM to 4100 RPM in steps of

_ 100 RPM. At each data point the rig was held at the
speed for 30 seconds in order to let any acceleration
‘terms dampen out. The bearings, as indicated before,
are not symmetric, and therefore for a two plane model
the horizontal and vertical natural frequencies will not
be exactly the same .fo6r the same mode. ‘Rather, due to
“the- slight dlfference in the cross coupling terms the :
natural frequencies will occur in pairs. A,Each pair, ofu

course, corresponds to two mode shapes but these mode

' shapes are very similar in shape (Fig. 4.10) and when

A

measurements were made to verify the computer model only

one natural frequency for each mode was detected

For clarity, for the rest of the paper, there will
be three mode shapes and,not six as., ;nd&qated by the
computer model (Table 4.2). The six natural frequencies
will be referred to‘as three pairs. Indeed, if the -
bearingsﬂwere symmetrichthe'pairs_og shapes ‘would be
_identical. L A

Equation 3.14a is a- complex equation which indicates
'that the elgenvalues and eigenvectors ‘'will also be .

complex. .

! b’l»-’

70
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Consider first a simple two degree of freedom

system with a diagonal mass matrix and no damping.

+lmo X = 0

k k X 1

1] 12 1

(4.16)
k.. k X

21 22 2

orm X2 : 0

From Table 4.1 it is obvicdus that the off diagonal
terms in the stiffness matrix are larger in magnitude
than the diagonal terms. ; The determinant of the
stiffness matrix»is greater than zero whlch is a
necessary condition for afpositive definite'matrix.

For the matrix [k] to beApositive definite the;e must

~

exist some matrix (V] such that “ , " .

U

(vi1T k) (v

Any stiffness matrix involvihg journal bearings wjl%ﬁ

not‘satisfy this condition and is therefore not positive :

. definite. a o ,). e
‘ -, Solving eqﬁai:ibn 4.16 for the eigenvalues yields
e L co ' . T . o :
A '_2 . k/ . ‘ o .
L ) w o E y 3 M[A i/§] : (4.18a)""

TH@ assumed solution is

71

{[‘VJVT[K] wf '('4.17} |
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X = Re (4.18b)

I

using polar coordinates and 'the euler identity .

w. = /aZ+B exp[iTAN_}/E/QA]

1 Y2

= at iB , . (4.18c)
Substituting into 3.18a yields:

_ alt -gt
Wy —CleA e

aiteBt

J  wy = Cpe (4.184)

4 . | ' ’ N f‘

It is obvious from these two.relations (4.184d) that @ w;.iyﬂ

resembles the soluticn far en,elementary_unoerdamped
single degree of freedon system with viscous damping.

wsy is an unstable system due to the positive £t term . |

»

"~ which- will dlverge as time increases .

The eigensolutlons are of the form in equatlon 4,18a
and the natural frequencies are found from /A2+B. .

Iftthe‘B term is negative then the system is ‘unstable.

‘- Equation 3.1l4a also has e non-symmetrfg-daﬁping météixk
which changed the complex con]ugate solution (4. 18c)

. to the results shown in Table 4.2. The terms in the .

- . N -
-eigenvalues are atl-positive which indicates.a.stab;euﬁ
'system. - ' ’]1 JZ‘

The corresponding eigenvectors are also domplex.'

> .4 °
For each node in the system the eigenvectors are of’

:" P
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~~ the form:

VvV =

a+ib

c+id

©

(4.19)

The complex terms b and d come from the beafing damping.

Complex eigenvectors are not present in syséfms which

, have ohly propottional damping and symmetric mass

and stiffness matrices.

These

terms indlcate that

the %odes are not "normal .modes".. This means that

t

each point on the rotor does not reach its maximum i

position at the same time as an adjacent point. The

measurements on the shaft wiil be the maximum values &

\

i;e. .
VMAX = {a2+b2
- /33 S
HMAX =e c“+d ; R (4,20a)1
vt » ' .
The phasq angles (in time) for each hbde:are ' ““,
e ’ . . . : 4 o l W
.. "9, = TAN 1(P/aq)
k vty = man"t(/q) (4.20b)

LS

. l'

These time based phase angles can. be determined

from eXperimental data by subtrac%ing the phase angle. :

t

(measured from key phasor) at ‘the critical speed from

4

o a
oIS
¢ :
.

the phase angle at the next point on the rotorn

et

73
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For practical comparison of numerical to experimental
4 ¢ -
equations 4.20a were usedfto plot the mode shapes.’
The time based phase angles will have a large effect

on balanc1ng rotors and they are accounted for by

the two plane complex analysis described above.

t

Polar frequency plots for the same load distri:
-bution, were conducted at several points along the
shaft (Fig. 4.9) in order to plot the mode shapes in
Fig. 4.10 - 4.12.-A7The‘experimehtal mode shapes are
compared“yith those predicted by the finite element 7
model. The.first and third modes are-clearly defined
on the polar plots (Fig. 4 9) but mode 2 is somewhat
obscrued since the first and third modes appear to’

, domlnate the response. . ' L
~ ‘Table 4.2 Natural Fregpencies

od

Mode‘: . Measured _ | - Calculated.
S 2900 RPM -V 2850 RPM
: H. 3100 RPM A ,
2 > ¢ . 3400,RPM . vaso e
: R o H 3600 %
, Sl o | S :
3 - 3900°RPM - . V- 3800 . :
; S SRR H 4700

14



a“al

2900

> <

Z(t)

3400RPM

Fig. 4.8 Polar ﬁesponse For Natural Frequencies

(3
#

From Fig 3. 10 - 4 12 it is evident that the ‘;%b
;first mode is best verified by‘@xperiment e The math—
ematical and experimental plots areqalmost iaentlcal
The phase angles at each po;nt along the. shaft are
vf either in or out of‘phase with each other The change

in phase across each of the bearings is almost exactly

i180° . This is also true for the thir@ mdﬂe._ The

ksecond mode however, displays relative phase angles- ‘bﬁ'

.'to range anywhere from 0° to 180° : Also,fthe phase

75



change across each bearing is not 180°. This'charac;
teristic made the second mode extremely difficult to
extract from Fig.r4.9.'

It is interesting to note that the first mode
has the highest response in the first span, the
second mode in.the second span, and‘finally,the third
mode in the third span. As \the shaft speeds up the
response resembles a wave propagating from the heavy h
end ‘to the lightest . "Each of the three critical
speeds is the fundamentallmbde for each span; The
next criticai Speed would be the second‘mode £or span. 1
and so'on.~ This is. characterié%ic of all flexible
-rotors duch as- the turbine of chapter 1 which runs
above the second generator mode. 4

In all computer modelling, the correlation with
.experinent\diverges at higher'modes.  For this nodei

~° J -
the first and second modes are fairly close to experi—

¢
£

ment but mode 3 shows a 180o discrepancy in the second
span, i.e., the experimental mode is almost 18Q//out'
of phase with the'numerical. “The predominant response
is. in the third span however,'and the predidtion of

the forced response (chapter 5) is not greatly affected

.

by this discrepancy. . . ss;i"

&

" The divergence from experiment for the natural

frequencieS“are,as follows:

. [
e ) . . 4 . S

v "~ Mode 1, 6% Low .

o e - e
' ‘Mode 2 - 7% Low : SR
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S

Mode 3 8% Low’

a

7

The damping in each mode was extracted through

the use of Eq. 3.14 and Fig. 4.9.

T

) ’\3060 2790 )
< Mode 1+ g ﬁ ~3%00 - 0.093
T ' l_ = )
, ' 4120+3710 = 0.10
. Mode 3 g = ~73900 ¥

These damping ratios could be used in Eq. 3.11 to

\reduce the system to a simple4three“degree of free-

dom systenm.. Each épén would be represented by a

point mass, a spring and a viscous damper.
4 ' . ’ .
The abqve damping ratios represent the total

C . .
"damping in each modeé, i.e., bearing‘dqmpingfand pro-

portional damping combined.

¥4
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S. RESPONSE DUE TO A ROTATING LOAD

=
M

Abstract ;o

\

\

 The final test for the numerical analysis is to
" spredict the s§;temwresponse for various load distri-
lbutiQng.’ Comparison to eXperimental data for the n
. same load distribufions,will be shown. Discuésioh
of the pre&iction of the load from measured data,‘i.e.
Ealanéing the shaft,>wf11 also be giveﬁ. As well/
the §YStem's-linear range is also explored.
/. _
5.1 Linearity Tests
'Chapter‘3.indicated that allinear'mathemat;qal

. model was;ﬁséd-for the nonLrogating mode shape .
prgdiétidns. - The same model ‘was used in the forced
' response and ther;fé;e tésts Were conducted td.méasure
the linear réhge'of the rig. . oL

-'Thé7f;rst linearity testé were'conducted(at
the same phase angle. Figs. 5.1 and 5.2 are plots
‘ofvspeed,ﬁs‘response at tw;-locétions on the shaft.
fLoads:of 10, 15 and 25g -were used for a‘spéed range
from 2500 to 4000 RPM. |

| Examining Fig. 5.1 one ‘can see that the three

load curves have identical shapes ‘and only differ by

82



) , ﬂ
.. ﬁ . , ' .
magnitgég of response. This is indicative of a linear
[ .
model The location of load and measurement is on

'the first span and, therefore, the first critical speed
(2900 RPM) is clearly indicated. It is interesting

to note the similarity between Fig. 5.1 and the

response to a single degree of freedom‘system (Fig.4.5

This is explained by examining th? mgde shapes (Fig.4.10

- 4. 12) Span 1 has a large responge in the first

mode but very little response from tﬁawsecond or third

:‘. || " ‘sl‘
mof}s. 4 . | : - \N
: Figure 5.2 is also a load vs resﬁ@ﬁ@e curve. As in

Fig 5.1 the three load curves h&ve tﬁ£ same basic o

shape and the response increases linearly'with Ioad

Again, the first Crltlcal Speed is indicated Table 4{2

shows the first critical speed is actually split into
two criticals (in the horizontal and vertical directions)
This graph conﬁirms the computed results of 2850 and
3100 RPM for the vertical and horizontal ‘directtons,
respectively. . T .

Figure 5.3 is a graph’of load vs response at the

critical speed for both cases discussed above. Note‘the“

straight line indicating a 1inear system.

Figufes 5.4 and 5.5 are correspondiné polar plots

- taken from the same shaft position as thelfirst'tyo lin-
earity tests. The purpose ofvthese'plots isbto‘cnange
the phase angle of the load and to hQ?d the size constant.

The shape of the plots should be identical but displaced
/D N /.,‘ A . ’
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¢
3

by a phase angle equal to thgt of the load change.
Both Figs. 5.4 and 5.5 indicate this fo be the case.

The in-house fié can ndéw be considered lineaf (/)
and, therefore, a linear computer model (chapter 3)

is used through this chapter.
. ~ . N . P
o .
o - . ) r
5.2 Forced Resp
Before a comparison of thé measured ¥s computed
forced response can be made a consistent coordinéte'

system must be established. The adopted coordinated

' system (Fig. 5.7) is a right hand one given by

Smith(lz).

The corresponding bearing stiffness and daméiné

n

terms are:

s

o ‘ K K C -C

HH  HV 'HHE  CHV
’KVH va “Cyr  Swv
| Stiffness _Damping o (5.1)

\“DThe force and displacement vectors. must also be

‘consistent with Smith's system:

"Fy = Flcos(wt+d) + i sin(wt+e)]
Force Fy = Flsin(utee) - 1 cos(ut+$)]  (5.2)
Displ.  Yn = Y [°°S(wt+¢ ) + 1 sin(ut+éy)]
Uy = Uy [Cos(wt+¢ )+ i sin(wt+¢ )] - (5.3) ¢
Where”  F = magnitude of force

-
]

angle of force relatlve to key phasor

84
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- TEST1
2900 RPM
75k
5,0} -
D ;ﬁﬁrz
2.5} S r ,
1 1 | L ~ 1
5 10 15 20 25
~ LOAD-gms
Fig. 5.3 Load Vs Displacement'For
Linearity Tests #1 & 2~ -
. 2000 180°
900 B 0.0
' 270°
"$2900
0 ) % /_INCREMENTS
O- 2900 OF 100 rpm . -
> TEST 1 = 259 LOAD

Fig. 5.4 Linearity Test #3 . .




o.
o2 -
TEST 2 - 25; LOAD
]
FIG 3.16
Fig. 5.5 Linearity Test #4

»

V- VERTICAL

3=— H - HORIZONTAL .

Fig. 5.6 Definition ofFCoordinate System’

T
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U, = magnitude of displacement in horizontal direction

H
Uv = magnitude of Blsplacement in vertical dlrectlon
¢H = angle of displacement in horlzontal direction

= angle of displacement in vertical airection
) 'T) .
N ' : ' B
Fig. 5.7 shows all the parameters listed above.
Data for three different load distributlons‘
! s
were compared with computed results. Table 5.1

‘gives the load distributions which correspond to

' the finite element model used in this chapter (Fig.3,7):

Table 5.1 Load Distributions for Forced Resbonse‘

- Trial . Load Vector S

me , Angle* Node
.  [Lb-sec ] [DEG] -[Fig. 3.7]
1 0.0020  0° 16
2 0.000177 ©0° . 18
0.000183 180° 16
3 0.000172 0° . 5

*Angle measured from‘key‘phasor notch
in the opposite to shaft rotation

5.3.1 Orbits
Trialb#z was chosen to compare measured orbits
with those predicted by the computer model. An'orbit
is defined as the synchronous motion of the: center of
' the shaft at ‘a point. - The balancing of.any shaft is

¥ .
based on the synchronous vibration since at resonance
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‘

this component dominates the motion. Fig.'5.8
compafes’the complete vibration signal with the
‘'synchronous signal, This entire chapter is concerned
with omly the synchronous vibration.

The orbit Qill‘naturally change size and shape as
the'shaft.sbeed is varied;4 Fige.'5;9a' “to 5?9c
are the measured and computed orbits at_nooe‘lj_for

Trial 3. To plot-an orbit from experimentalidata one

“ needs five items of ‘information:

———
—

T

DIRECT SIGNAL . - 'SYNCHRONOUS  SIGNAL
' Fig. 5.8 Direct Vs Synchronous Signal..’--. :

e

/ 1.: H - magnitddety' ‘ .
/ 2. H ;.ﬁhaseiwf-f ;17" el
NSRRI
4.‘ V'-"ph‘ésg-'iA .‘ .
‘5;7 eo -espeed;of sﬁafgr e

The H and \'4 phase angles refer to the angle between f'
_the high Spot ‘on the shaft and the key phasor nqtch

in the_shaft;,"The equation of the orbit is

[P




Z = Hug cos(wt+ey) 1 + Vo o cos (wt+e,) ) (5.4)

knowing the Vv and H components of‘ﬁaghitude and phase,

-‘aé well as~the shaft"Speed, ehables ogé to plot the

orbit. As meqtioned this is gie syhohronous vibration
and, therefore, the"vaiues‘of Vmag, Vph’ Hhag’ th
must be fiitered to.the shaft speed. In other words
all the higher (Zx;v3§..,) and lower (ix, l/3x;..)

.

harmonics must.be-filtered out. .

Since ‘the key g:asor ‘notch in the shaft is at
‘sohe arbitrary angle the ¢V and- ¢H angles are not
measured from 0° on the graph paper but from the point
A where t = 0 on the orbit (Fig.5.9a).. The v and H
magnitudeS‘are'aLso shown in Fig. 5.7. ° Knowing
_Only5the vV &nd H_maénitudes‘one knows éiealimits of
vibration but the exact orbit cannot be plotted
withoht the phase ahglesl |

' From elementary vibration theory 1t is known
ythat in a: single degree of freedom system the phase
vangle changes by 180 i.e., the. response changes
.from in phase to out of phase with respect to the
.forcing function., This phenomenon is shown in orbit,

plots as a sudden shift in the orientation of the'

'fﬁaxis of the ellipse.‘: This is much the same as a

B

'Agilarge phase angle change on. orbit plots. Figs 5. 9a ;r“”

. Y .
e e W ‘o
. . . ‘ . PRI H
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. degrees of freedom: span 1, span 2, span 3 (Fig. 4.9).

to 5.9c show the first critical speed to be between

2900 RPM and 3000 RPM. The orbits also show the -

~

critical speed to be closer .to 2900 RPM than 3&00 RPM
: N~
due to the larger amplitudes at 2900 RPM.

The most important parameter to model at res-

onance is damping since stiffness no donger constrains
: A .

the systeﬁ. Unfortunately bearing damping is also

the most‘difficult to oredict. ~ These two factors
cause'the;predicted orbits to differ from experiment
more atucriticQ} speeds. Fig. 5.9b and 5.9c are |
more,accuratel§ predicted'than 5.9a which is near

the'first critical speed of 2900 RPM..

[

5.2.2 Polar Plots

The in-houyse rig, in its$ simplest form, has three

" In view of this, experimental data was plotted as

three polar plots taken at the center of each span.in

both the vertical and horlzontql directions (Figs.

. 5.10 to.«5.12),

[ The computed results are plotted on the same

b

grephs for"comparison. The most- obvious point to

be" noted 1s the very accurate predictioen of phase

9

and.magnitude below' the flrst critical speed. This~

‘is égueaforlali three load distributio S. ‘ year

’tHePCritical speeds (noted by, thé predicted

95
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results differ in both phase and magnitude. As
stated~before; near critical speeds the dampiné
matrix is the most important one to model accurately.
For each of the load distributions the basic
shape 'of the polar plots are matched fairly welln
For balancing purposes, speeds below the first crit-
ical would yield the best results. One could also
balance between two critical speeds where the pfedicted
response is more accurate. Indeea, most machines
cannot be balanced at a critical speed due to excess-
ive vibration amplitudes.which are harmful to the
journal bearings.
Fig. 5.10 is the response for a sincle point load
located in span 2. The in-house rig is a continuous

3

shaft with no couplings between the bearinos. Most_.

turbo machinery bearings are mounted on a catenary
in order to ensure zero bending moment and shear
force at the couplings. ‘This has the effect of
" lowering the response at one stage due to a load

y
in another. This is not the case with the rig and

therefore, large responses at the two end spans are
produced by a single load at theé center (Fig. 5.10).
This type of,response is much more difficult to predict/’
than in the case of couplings between bearings. The "

in-house rig cannot ‘be balanced in stages (one span

at a time) as sometimes can be done w1th large machines.'

'
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It is obvious that balancing one span at a time, with
this method,lﬁould be far easier than balancing the
entiré shaft as one system.
. \ : o
5.3 Comparison of Experimental Results with Theoretical
The mode shapes (Figs. 4.10 —'5.12) and polar
plots (Figs. 5.10 - 5.12) were'first measured on the
in-house rig. From this data the damping.ratios
present in the three modes were calculated.  Accurate
mathematical prediction of these modes and responses
required adjustment of the bearing stiffness and
damping coefficients as well as the proportional
damping factor. |

These adjustments were a trial and error procedure.

The NRC bearing coefficient charts presented a wide

100

range of coefficients depending on the source (Fig. 5.13).

The mode shapes and natural frequencies are not
~affected by the proportional damping factor.- Using
the measured mode shapes presented a methad to adjust
the bearing coeffic1ents independent of the proportional
damping. The.polar plots are affectéﬁ’by'bothland
therefOre; once the'nearing coefficients had been
 determined the.proportional.damping was.determined“
from ‘the measured polar plots. B

Adjustment o{ both theseifactors gave rise to a
ﬁuch improved mathematical model This adgustment

would be required for any rotating shaft system intend-

%
o
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ea té'bé balanced with this method. . ‘

The 32 bearing coefficients were first‘deter—
mined from the measured mode shapes. . For eabh bearn
ing thé Sommefféld number is required fqr thé»coeffic-
ients. The speed chosen to calculate_thngﬁumbeg was
3400 RRM which was,half way between the fii’s’;'and
third critical speeds.. "There is some erré£ in the
load prediction at each bearing, radial cléérancé,

' .

and oil viscosity.. These errors also widen the range

oﬁibearing.coefficiéht values for each bearing. Fig.
: -" E] '

S.IE]Shows an example of this range for K

‘ . VH
#2. o | = '
~
100
I {CKyy
w

[
0.25

Sn

. % SEE NRC-10 »,
Fig. 5.13 Scatter In Béaring Coefficients

3 LN
b

on bearing

101
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Fig 5.14 Effect of Proport10nal
Damping Factor

, »®
All of the bearing coefficient ranges were determined
and then each was adjusted 1n order to predlct the,'

‘mode shapes shown in F;gs. 4,10 - 4.12.

- The damglng factor was adjusted from 0 to 0.lx[K1.

”The value of 0. OSX[D] produced the closest response

at critical speeds on the polar plots. aslc

'Shape of the polar plots remained uo/?énged regardleSS‘:

’ ol o

102
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of which damping factor was used. Thg‘magnitudq of the '

response near critical speeds, however, changed dras-

-

tically. Fig. 5.14 gives an example of this.

5.4 Prediction of Load
Load distribution #2 was chosen for the prediction
of the load vector. Chaptef'4‘indicated that speeds

below the first critical show the best correlation -
L M AY

" .
between the experimental and theoretical forced

responses and therefore a speed of 2700 RPM was B

chosen for the prediction. Prediction bf .the load& .
vector from displacement measuremen is essentially
balancing the machine. .

Predicting the load from the measured response

reéuires simply hhltiplying the dynamic matrix. (D]

&

by the response vectok fU} - ’ T

i.e. {F}-= [D]{U}. ’ | a«»f{(s.S)
Yoer _ e e .

The predlcted force, at any node, will be given as : . -

: W
a complex'pair.' To be consistent with the coordxnéte ny
h(12)

,'n FEI
system of Smit given in Fig. 5.15 thé.predicted.& o

, - s
force vector must be given as follows: : RS



104

Flcos(wt+¢) + i sin(wt+¢)]

]

Ay

F

H F{sin(wt+¢) - i cos(wt+¢)] . (5.6)

The force vector whiéh was caléulated from the
finite element progra@ldifferea sliéhtly from Eq. 5.6
and was subséquently averaged. The slight errors ra
in first measuring {U} added to the.qumérical errors
(i;e. Guyan Reduction) resulted in thg ioad vector not
being exactly of form im 5.6.

S The fuldl éystem, i.é.,rV, H, 0y, and ¢, was used
to predict all of the mode shépes,‘natural frequehcies,
_polér plots, and orbits presented thus far. For load
prediction and balancinghoweggf, the fﬁll system
canﬁot‘be used for.two-reasbns. First, the nodal
rotations (8) are very imprLctiéal to measure and
second in éll machines there are relétively few locations
in which measurements can be'tgken. Usually measure-
ments are taken bﬁly at the beafings; For the in-
house rig bearing disﬁlacements cannot ?e ﬁeasured
which leaves only measurements at'eachoof the discs.
| The full system has 24 elgments and’therefore._
100 degrees of fréedom; ‘The Slopes constiéute‘SO‘
degrees of freedom ahd the bearing nodes further
vrgduce-the‘syspém by 8. Three measurementé k#ef;iéal
‘énd.hqrizontal displacgﬁéﬁ£s and phasgvahgléy‘in'each
~ Span were conSidereé pracﬁicai;.'”The size of £he
 sys£em‘was'therefore :educed.from iob%to‘iBJdegfees 6f‘
o » _ ‘ L . :

>

S
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freedom. " o .
To carfy out this reduction ﬁhe weil-knodhﬂ"Guyah?

Reduction" technique was used. MelroV1tch(l4) explainé,x

the method ;d‘detail; which is also refegred to as .

"mass condensation™. One must first partiﬁion the"

stiffness matrix into. the form:

S D W
F

Xl - {2 5.7

Assuming F2}= 0“iie' all the dlsplacements are’ a

~

> result of only the Fl lOads. ,‘T‘ o - S )

R R

oKy Y R% TR
. KX, fR.X. =0 ¢ (5.81 -
S  x21xlv:,K22x2 0 (2 »)_

e

fTherefore a f" . ’ 4 | |
| K, Y RXK, . o (5091

Substitutingkinﬁo-Sﬁyielas:
X+ Ko [eK.TE R "xs] =.F3; o (5.10)
Er¥y * KpplrKyy & KXyl =By o T2
The stiffness7ma£:ix forgthe gedd9éé’§ystemJisfthen'!
T g =L o 5l
T -”1lu 12,?2.%°2L:_r%' ST

' This 1s the basis for "statxc condensatlon S

. where for- frames and trusses,'ett there are no ;

: The method

approximations and the results are exact
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can also be applied to dynamic systems where the mass
' matrix is. diagonal with zero rotatary inertla terms.
Here.again, ‘exact results are obtained. For the
system in question,‘however, the mass matrix is not:
diagonal and therefore some approximations are 1n—.
‘?volved in using the "Guyan Reduction” technique.

! The kinetic and potential energies for the

system are:

T = §x(MIX . (5.12)

N

* From equation 5

Substituting 5 into 5 gives the reduced stiffness

- and mass matrices to be

| T, . . rl
IK,) = [TI7(DIIT] = X;,7K)5K95 %21 .
: e T e T, =l 1
M) = IT)TMIIT] = My Koy TRy, TMyMioon o
T -1 o=1
-+ Ky Koa M33K22K22 K1 (s, 14)

1

The approximation in the. technmque is reduced
by retaining nodal displacements in areas of low-’
stiffness and high mass._ InJ"Guyan Reductzon" the';
hretained nodes are referred to as "master varrables

-:and the others are "slave" variables. ‘,For the in-
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house rig the master variables are at the disc
nodes which are areas of very high mass and, therefore
this technique was reesonahle. |
‘%he basic assumption in this reduction is Eg. 5.8
where the slave forces (Fé) are zero. With regards
to balancing this physically means that all displacements
are a result of only the master forces (Flr.» In other
words the.correction masses from Eq. 5.5 will force -
elﬁethe displacements to be zero and will yield a
- balanced rotor. obviously then, the more halance R
planes the better the prediction of the load vector.
~ Fig. 5.15 shows the predicted load vecgor given
the eboVe 18 displacement measurements. A_pointfload
was pleced~at node 5 and measurements taken at‘2700 RPM.
Since‘only’one load was olaced into the shaft, at 0°
phase engle, the horizontal plane;should showlgnIY”a
point 1dad of 0.0002 Lb-in at node‘5 and zero load in
‘the vertical. ) This balancing attempt is quite un-
successful but does not prove that the "dynamic'matxixf
techniQue is~inadequete. _
- Several factors contribute to the poor load pre-
diction in Fig 5. 15 : The in house . rig rides on -
/bearrngs with spherical seats designed to eliminate
" any rotational stiffnessb For any real'system¢there
'~_'will be friction in the bearipg housings which will

add SOme rotational stiffness.vs These rotational-

istiffnesses w1ll affect the displaCements by @dding

o
B L
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another constraint. The computer model does not

have these rotational stiffnesses and therefore;the
measurements taken from the physical system will
introduce some error in the load vector. -Placing this
) rotational stiffness into the fini£e element program
will gliminate‘this problem. .

Another source of error lies in the YGuyan Re-
duction"” teéhnique. As stated before this method is
only é&act for static systems or simple dynamic
systéms. The autﬁ?r feels that a more sophisticated
redﬁction technique wouid vield a.load vector which is

~

CIOSe;<to the initial imbalance. Such a method would
be to use the accuraé; mode shape predictions agd use
a modal redﬁcﬁién in which a few of the lowér modes g
- aré used élong.with a least sqﬁares fit; Thus the
. measured deflecﬁién vector is adﬁlsted tq_take on é
shape governed by the modes.

~ A closer examination of Fig. 5.15 indicates that
the load prediction in the regidn of the load is fairly
accdrate. '_Most Targe machines are balanced in stages,
i.e., HP then IP,'étc. and perhaps if the rig were

also bllanced in stages the balance would be more

successful.



6. CONCLUSIONS ,

6.1 Dynamic Model

The in-house rig was designed tthUgh‘the aid
of the scaling parametexs described in chapte; 2.
A single plane analysis of the 286 MW turbine
defined the parameters. For the same single plane
analysis for the rig the mode shapes (Fig. 2.10)
matched very closely. The natural frequency ratios
were within +6% for wl/w3 and l% for wl/wz. The ~
Sommerfeld numbers and stiffness ratios were within
+15%. The mode shapes and natural frequencies were
considered to be the most important design consider-
ations. |

Cdmparing the mode shapes and natural frequencies
for the rig as a two plane‘system (Table 4.2 and Figs.
4.10 - 4.12) with the single plane system (Fig. 2.10)
reveals .a large discrepancy in the values for the
natu:al frequencies. - The mode shapes have the same
general shape however. - Tpe reas?n for this lies in
the long journal bearings on the rig. The cross
coupling terms (Table 4.1) are very large whicﬁ increase
the stiffnessvof the system considerably which, of \M
course, raises the-natural frequentcies. The;single ﬁ’
- plane. analysis was merely a method'of design sat the K

two plane analysis reveais the dancer in treating

any rwtating system with journal bearings as an

110
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axi-symmetric problem.

6.2 NUmerical Model

Comparison‘of.the static (or non-rotating) mode
shapes (Fig. 3.9 and Table 3.1) for measured Vs
calculated results shows very good. correlation. The
symﬁetriC'part of the stiffness and mass matrices,
i.e., the Timoshenko beam element weré considered
guite accurate. Addition of bearing terms in the
stiffness and damping matrices rendered the syétem
to be somewhat less'accuratg judging from the two
7 plane mode shapes, Th; correlation is still quite

good but the non-rotating results were better.

Damping wés alsé introduced intq the system as
both’bearing damping and proportional damping. One
wquld assume the"bea:iné damping to be as accﬁrate
as the bearing stiffness. Examining the relatively
good correlation for the polar plots (Figs. 5.10 -
. # ’ .
5.12) the combined damping matrix is fairly accurat.-.
The average proportional damping factor from. the non-routat=
ing tests was 7%‘and a value of 5% was.used;fof the polar
plots. _ |
, \ : c

For gynchronbus whirling there is no reverse
bending but the higher order frequencies (iX, 2X, ecc,i,
,will.prodﬁce structural démping and from Fig. (5.8)
these highér‘order vibfatibné are preseﬁt. . Damping

due to the air between the discs is alSo.pgeSent.

.
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'
the value of 5% was arrived at from thé polar plots
when the magnitude of the response at resonance showed
good correlation for all tﬁree load distributions.

The proportional damping factor, then, includes all

the damping that cannot be measured.

6.3 Baléncing

The purpose of this paper was to produce and test ‘
a purely numerical balancihg ;echnigue. The evidence
of accurate mode shapes and polar plots indicate that
the method has potential. The actual balance run
(F197‘5.15) was not successful but this does not label
the method a failure. The reduction‘technique is

1
the major factor which has to be improved upon. Using

a modal approach will produce better resu}té. As well,
the addition of rotational bearing stiffness will
improve the balanéing; | |

It is the opinion 6f ﬁhe éuthbr that ?\slightly
improved reducfion technique as well as fine adjuét-
ments of thé béaring terms, will yield aubalancing
.:method which will be more accufate than the tecﬁniques

presently empléyed.'
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