
Methodical Advice Collection and Reuse in Deep Reinforcement
Learning

by

Sahir

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science
University of Alberta

© Sahir, 2022

Abstract

Reinforcement learning (RL) has shown great success in solving many challenging

tasks via the use of deep neural networks. Although the use of deep learning for

RL brings immense representational power to the arsenal, it also causes sample in-

efficiency. This means that the algorithms are data-hungry and require millions of

training samples to converge to an adequate policy. One way to combat this issue is

to use action advising in a teacher-student framework, where a knowledgeable teacher

provides action advice to a student. Despite the promising results in the action ad-

vising literature, there are limitations, such as a limited advice budget, inflexibility

of choices to conduct advice collection and reuse. This thesis proposes the use of

single (student agent) or dual uncertainties (student and the model of teacher) to

drive the advice collection and reuse process in order to provide more flexibility in

our algorithms to more efficiently exploit a teacher’s advice budget. Additionally, this

thesis introduces a new method to compute uncertainty for a deep learning RL agent

using a secondary neural network. The results show that using two uncertainties to

drive advice collection and reuse improves learning performance across several Atari

games.

ii

Preface

This thesis is an original work by Sahir. No part of this thesis has been previously

published.

iii

Acknowledgements

First of all, I would like to express my deepest thanks to Professor Matthew Taylor,

my supervisor, for his continuous and generous support. His invaluable insights,

360 support, and feedback have taught me lessons of a life-time in such short time.

Without his continuous guidance, this thesis would not have been concluded.

I would also like to acknowledge the consistent efforts of my fellow researcher

Ecrüment İllhan, from the Queen Mary University of London, in contributing to

this work. Moreover, I would like to thank Dr. Srijita Das for introducing me to

Ecrüment’s work and supporting me along the way. I would also like to express

my thanks to my writing coach Dr. Antonie Bodley for their consistent and timely

feedback on this thesis.

I would like to recognize the efforts and teachings of Professor Richard Sutton in

his course that made me fall in love with Reinforcement Learning. I would also like

to thank Nikunj Gupta for expressing interest in this work and providing short-term

support. I am also grateful to Khurram Javed and Zaheer Abbas for motivating me

to pursue my thesis in Reinforcement Learning.

Lastly, I would like to thank my family in my home country and my dearest wife

Gulraiz Sahir, here with me, for their consistent love and support.

iv

Table of Contents

1 Introduction 1

2 Background & Related Work 5

2.1 Reinforcement Learning . 5

2.2 Deep Reinforcement Learning . 7

2.3 Learning from Demonstration . 8

2.4 Action Advising & Student-Teacher Framework 9

2.4.1 Transfer Learning versus Action Advising 12

2.4.2 Advice Imitation & Reuse . 12

3 Uncertainty-Driven Advising with Advice Reuse 16

3.1 Computing Uncertainty via a Secondary Neural Network 16

3.2 Problem Formulation . 18

3.3 Student’s Uncertainty-Driven Advising (SUA) 18

3.4 Student’s Uncertainty-Driven Advising with Advice Imitation & Reuse

(SUA-AIR) . 22

4 Experiments 27

4.1 Testing Environments . 27

4.2 Experimental Setup . 29

5 Results & Discussion 33

5.1 Evaluating Performance of Agents . 33

v

5.2 Evaluating Advice Taken & Reuse Schedule 39

5.3 Evaluating Model Performance . 41

6 Conclusion 43

Bibliography 45

Appendix A: List of Abbreviations 49

Appendix B: List of Student Agent Hyperparameters 50

B.0.1 List of Imitation Model Hyperparameters 51

vi

List of Tables

4.1 Hyperparameters for all DQN student agents and model of the teacher. 31

5.1 Evaluation scores with respect to initial, intermediate, later, final, and

total performance of all agents in 5 domains averaged over 10 indepen-

dent runs. The standard errors are reported with ±. The best scores

are reported in bold. 35

A.1 List of all abbreviations with their full forms. 49

B.1 List of all hyperparameters for the student agents. Hyperparameters

such as drop out rate, no. of forward passes, percentile, minimum,

and maximum uncertainty buffer window size are pertinent to SUA

and SUA-AIR. Similarly, teaching budget is applicable to all agents

(except NA). 50

B.2 List of all hyperparameters for the model of the teacher for AIR and

SUA-AIR taken from AIR [20]. 51

vii

List of Figures

2.1 The flow of AIR. 14

3.1 The flow of SUA. 20

3.2 The flow of SUA-AIR. 22

4.1 A snapshot of the observations for the selected Atari games. 28

5.1 Evaluation rewards of each algorithm for Enduro. 34

5.2 Evaluation rewards of each algorithm for Freeway. 36

5.3 Evaluation rewards of each algorithm for Pong. 37

5.4 Evaluation rewards of each algorithm for Q*bert. 38

5.5 Evaluation rewards of each algorithm for Seaquest. 38

5.6 Advice reuse (actions taken from the model of the teacher) and advice

taken (actions taken directly from the teacher agent) in every 100 steps

taken by the student in Freeway. 40

5.7 Advice reuse (actions taken from the model of the teacher) and advice

taken (actions taken directly from the teacher agent) in every 100 steps

taken by the student in Enduro. 40

5.8 Advice reuse (actions taken from the model of the teacher) and advice

taken (actions taken directly from the teacher agent) in every 100 steps

taken by the student in Pong. 40

viii

5.9 Advice reuse (actions taken from the model of the teacher) and advice

taken (actions taken directly from the teacher agent) in every 100 steps

taken by the student in Q*bert. 41

5.10 Advice reuse (actions taken from the model of the teacher) and advice

taken (actions taken directly from the teacher agent) in every 100 steps

taken by the student in Seaquest. 41

5.11 Percentage of correct actions taken by the model of the teacher for

SUA-AIR and AIR across training steps in Pong averaged over 3 inde-

pendent runs. 42

ix

Chapter 1

Introduction

Reinforcement learning (RL) is a sub-field of machine learning (ML) in which agents

learn what actions to take depending on the environmental states they visit [1]. Re-

cently, deep reinforcement learning (DRL), or reinforcement learning using deep neu-

ral networks, has shown great success in a diverse set of problems and real-world

applications. For example, RL has provided solutions to many complicated prob-

lems, from Atari video games to Go, a board game with a number of legal positions

exceeding the total number of atoms in the observable universe. Moreover, RL has

played a pivotal role in solving many interdisciplinary problems such as optimization

of molecules [2], drug discovery [3], and estimating optimal treatment regimes [4].

Despite this success, DRL algorithms still suffer from the sample inefficiency prob-

lem where millions of samples can be required to learn a decent policy. For example,

OpenAI Five [5] defeated the Dota 2 world champions by obtaining experience equiv-

alent to 45,000 years in 10 months of training. Similarly, AlphaStar [6] was trained

with 16,000 matches to achieve the Grandmaster level in StarCraft. These are highly

complicated applications, but it is evident that they require massive computing re-

sources. This sample inefficiency becomes more critical in real-world applications

where obtaining samples could incur any form of cost (e.g., robotics and healthcare).

To combat this issue, domain knowledge has been used in the past. Such methods

include reward shaping [7] and policy shaping [8]. The first method works by modifying

1

the reward function to accommodate feedback for good behavior and the other works

by modifying the policy via provided feedback. Learning from Demonstration (LfD)

[9] is another prominent technique that works by collecting demonstrations from the

expert to model its behavior. Human-Agent Transfer (HAT) [10] and Confidence-

based Human-Agent Transfer (CHAT) [11] are two methods that use learning from

demonstration to alleviate the need for a significant amount of data. Following this

approach, recent off-policy work leverages both perfect [12] and imperfect demonstra-

tions [13] to speed up learning in a deep reinforcement learning setting.

Another important paradigm, introduced by Clouse [14], provided an integrated

approach for reinforcement learning and apprentice learning to speed up learning.

Apprentice learning [15], which is now known as learning from demonstration or

imitation learning, is a supervised learning technique where an agent learns from an

expert. Clouse showed that providing an expert’s actions to the learning agent makes

the agent learn faster than a traditional RL agent. He also introduced an uncertainty-

based technique to ask for help by using the agent’s Q-values. This notion of action

advising was further refined into a teacher-student framework by Torrey and Taylor

[16], in which the teacher acts as a source of knowledge for the naive student. They

also introduced multiple heuristics to help in deciding when the teacher should provide

advice.

Action advising uses a teaching budget, which is the number of times a teacher

can provide action advice. This budget is limited in most scenarios as obtaining

a knowledge source can be costly in a real-world setting and thus, should be used

wisely by the agent. Whether it is the teacher providing advice or a student asking

for advice, multiple techniques have been used in the past to account for the limited

teaching budget [16–18].

Significant work is being done to investigate the different types of advising, but

limited research exists on how to reuse collected advice effectively. Advice reuse is

important as obtaining a teacher or expert could be costly. Moreover, as said earlier,

2

there exists a limited teaching budget after which the teacher would not be available.

In the past year, Illhan et al. [19, 20] proposed an approach where a supervised

learning model is trained from the student-teacher advising. This model of the teacher

allowed for effective advice reuse for the student RL agent by computing and using the

model’s uncertainty. Inspired by their work, this thesis provides a dual uncertainty-

based advising framework that offers more flexibility for the student agent. Systematic

use of uncertainties of both the student and the model of teacher offers an effective

use of the advice budget. With the proposed framework, the student agent, based on

its uncertainty, can decide between the 3 available choices at any time: asking the

teacher for advice, reusing the model of teacher, or following its own policy. Advice

reuse allows for prolonged use of teacher-like action advice to guide the student agent.

Leveraging the model of the teacher for advice reuse is a form of off-policy learn-

ing. Techniques such as a replay buffer for experience replay help achieve better

convergence in DRL off-policy algorithms. However, they too have limitations. For

example, using a replay buffer to replay experience from an old policy can be harmful

if the respective actions are sub-optimal or random. Using the model of the teacher

to reuse advice, in states where the student feels confused (or uncertain), should pre-

vent the agent from suffering the same problems. This is possible since the model of

the teacher intends to provide action advice similar to (or exactly) what the teacher

would provide.

Lastly, this thesis proposes a new method for computing the uncertainty of the

student agent or a typical deep RL agent. To compute the uncertainty without

effecting the performance of the student RL agent itself, a secondary neural network

is trained in supervised fashion. This neural network is equipped with dropout [21] to

help compute the uncertainty from the data collected by the student agent. Dropout

is a technique that is used in deep neural networks to reduce overfitting by randomly

dropping the units or neurons in the network. In this way, dropout helps simulate

exponentially different network architectures during training.

3

To summarize, this thesis proposes the following contributions in the deep rein-

forcement learning field:

1. A flexible action advising framework that gives a student agent the liberty to

choose from requesting advice from the teacher, reusing advice from the model

of the teacher, or following its own policy.

2. Improves on the previous methods by providing a methodical framework allow-

ing the systematic use of uncertainties of both the student agent and the model

of the teacher.

3. Introduces a new method of computing uncertainty for the student agent by

using a secondary neural network.

4

Chapter 2

Background & Related Work

This section provides background and related work for reinforcement learning and

its pertinent fields such as deep reinforcement learning, learning from demonstration,

and action advising with student-teacher framework.

2.1 Reinforcement Learning

Reinforcement learning agents interact with the environment by taking actions and

receiving rewards as feedback for their actions. The purpose of the agent is to find an

optimal policy for solving the given task. We follow the notation as set by Sutton and

Barto in their book [1]. RL problems are typically modelled as a Markov Decision

Process (MDP) and represented by the tuple ⟨S,A,R, P, γ⟩, where S denotes the

state space, A denotes the action space, R denotes the reward function, P denotes

the state-transition probability, and γ ∈ [0, 1) is the discount rate to account for

future rewards. An RL agent at any time-step t and state st ∈ S takes an action

at ∈ A to receive a reward rt+1 ∈ R and the next state st+1 ∈ S by the environment.

The agent’s goal is to maximize the discounted sum of rewards Gt at any time step:

Gt =
T∑︂

k=0

γkrt+k+1

In other words, an agent tries to find an optimal policy by maximizing the sum

of discounted rewards by following the policy π until termination T (for continuous

5

problems T =∞). Policy π is a mapping from states to actions which can be denoted

as the probability π(a|s). The value of a state vπ(s) is the expected sum of discounted

rewards given that the agent starts in state s and follows policy π afterwards:

vπ(s) = Eπ[Gt | st = s] = Eπ

[︄
Gt =

∞∑︂
k=0

γkrt+k+1

⃓⃓⃓⃓
⃓ st = s

]︄
.

Similarly, action-value function qπ(s, a) is the value or expected return of taking

action a starting at a state s and following policy π afterwards:

qπ(s, a) = Eπ[Gt | st = s, at = a] = Eπ

[︄
Gt =

∞∑︂
k=0

γkrt+k+1

⃓⃓⃓⃓
⃓ st = s, at = a

]︄
.

These value functions are approximated by an agent’s interaction with the envi-

ronment, and their estimates get better over time. Due to this iterative improvement,

agents come closer to achieving the optimal policy π∗:

π∗(s) = argmin
a∈A

q∗(s, a)

where q∗(s, a) is the optimal action-value function and defined as:

q∗(s, a) = max
π∈Π

qπ(s, a)

where Π denotes the space of all policies.

Q-learning [22] was one of the first successful off-policy reinforcement learning

algorithms. An off-policy algorithm learns a greedy policy while following a behaviour

policy. Usually, the behaviour policy is represented by an ϵ-greedy policy which

enables random exploration by probability ϵ and greedy actions by probability 1− ϵ.

This epsilon is usually set to a small value (e.g., less than 10%) and can decay over

time.

The optimal Q-function Q∗ obeys the Bellman optimality equation:

6

Q∗(s, a) = E
[︂
r + γmax

a′
Q∗(s

′, a′)
]︂

which means that the value for a state s and action a is an expectation of the sum

of reward obtained by taking action a and the discounted maximum Q-value over

actions a′ to reach the next possible states s′. The idea of Q-learning is to leverage

this Bellman optimality to incrementally update the Q-value estimates to reach the

optimal Q-function as t −→∞:

Qt+1(s, a) = E
[︂
r + γmax

a′
Qt(s

′, a′)
]︂

2.2 Deep Reinforcement Learning

Deep reinforcement learning (DRL) allows us to use non-linear function approxima-

tors such as neural networks to apply reinforcement learning to highly complex tasks.

DRL, for example, can be used to find a non-linear mapping of the states and actions

to their action-values.

Deep Q-Network (DQN) [23] is a well-known off-policy algorithm to approximate

the action-value function for high dimensional or non-tabular problems in the deep

reinforcement learning setting. Since maintaining a tabular Q-function is not feasible

for such complex problems, DQN uses neural networks called convolutional networks

[24] to approximate the action-value function.

Convolutional layers in a neural network allow us to process images (or pixel data)

for tasks such as object detection. Filters in a convolutional layer, typically square in

shape, help process these images by sliding across the input to detect patterns. The

application of a filter is controlled by a stride. Stride defines the offset by which the

filters are moved and applied around the input features.

The notation of the q-function for DQN with parameters θ can be written as

q(s, a; θ). The q-values are estimated by minimizing the loss function at every itera-

7

tion i:

Li(θi) = Es,a,r,s′
[︁
(yi − q(s, a; θi))

2
]︁

which is the squared error between the Temporal Difference (TD) target yi and the

predicted q-value from the parameterized neural network at the current iteration i.

This TD target is given by:

yi = r + γmax
a′

q(s′, a′; θi−1)

where s′ and a′ are the next state and action, respectively, and the q-value is predicted

over the network’s previous iteration i− 1. This copy of the previous iteration of the

network is called the target network. The action a for any time step is then selected

by computing:

a = max
a′

q(s, a, θ)

Lastly, DQN maintains a replay buffer to store the transitions performed by the

agent. This buffer is then used to sample the transitions for computing the loss. Thus,

offering better stability for the off-policy algorithm and increasing the data efficiency

at the same time. This technique is called Experience Replay. The success of DQN

has inspired researchers to develop further enhancements, which are summarized in

Rainbow DQN [25]. From these enhancements, we use Double Q-learning [26], and

Dueling Networks [27] in this thesis.

2.3 Learning from Demonstration

Learning from Demonstration (LfD) [28] is a technique used to combat the sample

inefficiency problem in deep reinforcement learning. It is an offline process that

happens prior to the beginning of actual online training of the agent. Demonstrations

(state-action pairs) from an expert are provided to the RL agent to boost performance

8

and to make sure the agent does not start learning from scratch online. These expert

demonstrations could span as long as the length of an entire episode.

Formally, a set of demonstrations D is provided to the agent. Each demonstration

di ∈ D is a pair of state z ∈ Z and action a ∈ A: di = (z, a). Significant work

has been done to leverage LfD to battle the sample inefficiency of RL algorithms.

Human-Agent Transfer (HAT) [10] used LfD to boost the performance of a Sarsa RL

agent. Building upon HAT, Confidence-based Human Agent Transfer [11] used the

confidence in demonstrations, using estimators such as a Neural Network, to exploit

the knowledge for the RL agent. Deep Q-learning from Demonstrations (DQfD) [12] is

another application that leveraged LfD to achieve state-of-the-art performance across

11 games. LfD has also been applied with imperfect demonstrations [13] to achieve

superior performance (comparable or better than DQfD) using a unified objective

function for both LfD and online reinforcement learning.

Recently, LfD has been used for a skill transmission application where a robot is

trained for the path-following task using expert demonstrations [29]. Another recent

example is the application of LfD for teaching a social robot about sign language [30].

2.4 Action Advising & Student-Teacher Framework

Action advising is an online technique where an RL agent, typically an expert, shares

actions as a form of advice to teach another agent that is relatively naive. Action

advising occurs for a limited number of times during training, characterized by a

teaching or advising budget.

The idea of providing expert actions to an RL agent was originated by Clouse in

his dissertation [14]. The main idea was to integrate apprentice learning, or learning

from demonstration, and reinforcement learning to speed up the learning of RL agents.

Clouse attempted to answer questions such as when the learner (student) and trainer

(teacher) should interact during training and how the trainer’s expertise can help a

learner do well in a task? In doing so, Clouse showed that providing actions to a

9

learner could help achieve better performance than the trainer itself. Moreover, he

also studied uncertainty-based advising, and the results suggested that it is one of

the best ways to ask for advice since it requires less interaction to obtain an adequate

policy.

Since then, significant work has been done in the action advising literature. A

predominant action advising framework is the teacher-student framework, proposed

by Torrey and Taylor [16]. As the name suggests, the teacher in their work is an

expert that intends to help a novice student agent. They explored multiple heuristics

to decide when the teacher should provide advice to the student. Those teacher-driven

heuristics are detailed below:

1. Early Advising: A well-known and simple heuristic for the teacher is to pro-

vide advice from the beginning until the teaching budget is exhausted. This

thesis also uses early advising to serve as a baseline heuristic to compare against.

2. Importance Advising: Building upon Clouse’s work, Importance Advising

enables the teacher to provide advice when it is important to do so. To check

whether it is important to provide advice, the difference between the Q-values

of the teacher for the best and the worst action is computed; and if it is greater

than some threshold, the teacher is bound to provide advice (given there is

enough teaching budget left). Torrey and Taylor define importance I for a

given state s as:

I(s) = max
a

Q(s, a)−min
a

Q(s, a)

3. Mistake Correcting: Building upon Importance Advising, Mistake Correct-

ing further ensures advice is only provided when the teacher and the student’s

action does not match (assuming a two-way communication). Hence, the name

mistake correcting.

10

4. Predictive Advising: Building upon Importance Advising and Mistake Cor-

recting, the teacher in Predictive Advising tries to model student’s actions using

the data of student-environment interaction (state-action pair of the student).

If the predicted action is then different from the teacher’s action, and if it is

important to provide advice, the teacher is bound to do so (given enough advice

budget).

All heuristics except Early Advising are assumed to have access to the teacher’s

Q-value function or student’s intended action beforehand. Thus, for the sake of

simplicity and feasibility, we use Early Advising as one of the baseline heuristics to

compare our proposed algorithms against.

Aside from the teacher-driven advising methods (mentioned above), student-driven

advising is also investigated in the literature. To decide when to ask the teacher for

advice, metrics such as epistemic uncertainty [18, 31] and advice-novelty [32] are

used in previous work. Specifically, Requesting Confidence-Moderated Policy advice

(RCMP) [18] is a recent method, closest to our work (discussed in Section 3.3), that

computes the uncertainty by averaging the variances of multiple Q-values for each

action and uses this uncertainty to decide when to ask for advice. Moreover, jointly-

initiated action advising [33] is also explored in the literature, in which a student

could query the teacher, and the teacher could provide action advice.

The student-teacher framework has been extended to include the support of mul-

tiple agents during training to leverage advising without the explicit need of fixing

a student or teacher role [17]. Another extension includes a general framework for

Learning to Coordinate and Teach Reinforcement (LeCTR) [34], where multiple ob-

jective functions are used to learn when and what to advise. Similar to [17], agents in

the LeCTR framework act as peers. Each agent in the LeCTR framework learns two

policies; a task-level policy; and an advising policy. The task-level policy enables the

agent to solve the task at hand, and the advising policy helps the agent get better at

11

advising other agents.

2.4.1 Transfer Learning versus Action Advising

Transfer learning in reinforcement learning [35] is categorized by multiple dimensions

such as task mappings and transfer knowledge. This work focuses on the transfer

knowledge type of transfer learning – specifically, the transfer of action as advice

from the teacher agent to train a beginner student agent. Transfer of actions in this

manner is called action advising. It is important to highlight that action advising is

a specific type of transfer learning, as mentioned earlier, to define the context so that

it is easy to categorize and follow.

2.4.2 Advice Imitation & Reuse

As discussed in Section 2.4, significant work has been done in the area of action

advising. However, there exists limited work to capture and reuse advice for later

stages of training. Advice reuse is useful because it allows for an extended form of

action advising that is not possible with a limited teaching budget alone. Advice

reuse was proposed by Zhu et al. [36] in a student-teacher framework. They used

multiple heuristics to decide when to perform advice reuse. Those heuristics are

detailed below:

1. Q-Change per Step: To store advice for later reuse, Q-Change per Step

calculates the difference in Q-values before (Qt) and after (Qt+1) applying the

advised action at to a given state st:

β = Qt+1(st, at)−Qt(st, at)

if the difference β is within a predefined threshold, the state and action are

stored for later reuse. If the agent visits the same state again, it will reuse this

12

recorded action, and the same procedure will be applied to assess whether the

action should be recorded again.

2. Reusing Budget: Another way to reuse advice is to have a budget allocated

for each advised state. Reusing Budget allows advice reuse until the state-

specific advising budget is exhausted. If the agent receives a different action

advice for the same state in the future, the budget is reset and the agent will

then reuse the new action.

3. Decay Reusing Probability: A more flexible approach is to allow the agent,

at any state, to decide between reusing the advice, asking the teacher for advice,

exploiting its own greedy action, or exploring randomly. To execute this, reusing

probability Preuse is defined, and advising probability Padvice is computed. The

agent then takes an action at by following the function below:

at =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Reuse Advice with probability: Preuse,

Request Advice with probability: Padvice,

Greedy Action with probability: (1− Preuse × Padvice)× (1− ϵ),

Random Action with probability: (1− Preuse × Padvice)× ϵ

where the reusing probability Preuse is decayed over time.

Zhu et al.’s work was intended for tabular RL algorithms where it is easy to store

advice and recognize states encountered. Taking inspiration from their work, Ilhan

et al. [19, 20] proposed a new method to use advice reuse in the non-tabular DRL

setting called Advice Imitation & Reuse (AIR). It comprises of two important steps:

1. Advice Imitation: They used Imitation Learning [37] (which is a supervised

learning technique used for cloning the behavior of an expert) to train a model

of the teacher using the advice interaction data between the student and the

teacher. They used the model’s uncertainty to drive the advice collection pro-

cess. The model’s uncertainty at any state is computed using dropout [21]

13

(which is a technique used for randomly turning off units in deep neural net-

works to increase generalization) with multiple forward passes.

2. Advice Reuse: Once this model of the teacher is trained, it would then predict

the action of the teacher and provide it as reuse for the student. Moreover, the

model would only provide reuse when it is certain or when its uncertainty is

within some (adaptive or fixed) threshold, and with a probability of reuse ρ.

The probability of reuse ρ is decayed over time.

Figure 2.1: The flow of AIR.

The working flow of AIR is shown in Figure 2.1. In AIR, the model of teacher

uses its uncertainty um to drive the advice collection and advice reuse processes. The

model of teacher will ask the teacher for action advice if its uncertainty um is greater

than some threshold τ . The teacher would then provide an action advice at if the

teaching budget is not consumed b > 0. This action at is also provided to the student

agent. However, if this advice is not received, the student agent can ask the model

of the teacher for reuse. The model of the teacher would then provide advice reuse,

according to reuse probability ρ (which decides if reuse is enabled), if its uncertainty

14

is less than the threshold τ . If the action at is not determined at the end, the student

agent would follow its own policy.

The limitation of their work includes the student’s dependency on the model of the

teacher for advice collection. As the student would continue to experience more states

in the environment, its measure of uncertainty would account for a larger subset of

the state space. This thesis is inspired by the work of Ilhan et al. and thus presents

an effort to improve upon their work.

Frequently used abbreviations are listed in Appendix A.1.

15

Chapter 3

Uncertainty-Driven Advising with
Advice Reuse

This section introduces the two algorithms proposed and tested in this thesis. The

first section introduces and discusses the new method of computing the uncertainty

using a secondary neural network. The second section introduces the problem and

some notation to make the discussion easier to follow. The third section describes

the algorithm that uses the newly computed uncertainty method. The fourth section

introduces the amalgamation of the algorithm in Section 3.3 and the previous work

on advice reuse. Finally, the last section proposes a new method that uses dual un-

certainties to offer an improved and flexible action advising framework. The notation

used in this section is similar to previous work [20] to maintain consistency.

3.1 Computing Uncertainty via a Secondary Neu-

ral Network

The methods proposed in this thesis, discussed in the upcoming sections, use a new

way of computing uncertainty for the student agent. There are various approaches to

computing uncertainties; one approach is to use dropout. This dropout approach was

used in previous work [20] to calculate the uncertainty over probabilities of actions

of the supervised model of the teacher. However, using a similar approach for the

student RL agent is not straightforward. Adding another layer of dropout on a deep

16

RL agent means an increased training time or inferior performance for the same

amount of training time. Thus, we propose a new method of computing uncertainty

which is used by the student agent in Student’s Uncertainty-driven Advising (SUA)

(discussed in Section 3.3) and Student’s Uncertainty-driven Advising with Advice

Imitation & Reuse (AIR) (discussed in Section 3.3).

Here, we compute the uncertainty of the student RL agent by introducing a sec-

ondary neural network. Following previous work [19, 38], this network contains the

dropout functionality to compute the epistemic uncertainty. Moreover, the secondary

network is trained from the same interaction as that of the original student network.

Since the secondary network is trained from the same data, it is safe to assume that it

can serve as a decent proxy for the uncertainty estimations of the original student net-

work. Moreover, it is easy to decouple the secondary neural network if need be. For

example, early advising or no advising algorithms do not need an uncertainty measure

to operate. For such cases, the secondary neural network can be easily turned off.

The uncertainty is computed by averaging the variances of the Q-values, obtained

across multiple forward passes, for each possible action. These forward passes are

different because the secondary neural network is equipped with dropout. Formally,

the uncertainty is computed from the secondary neural network by conducting the

following steps. First, N forward passes are performed for a given state s. This

would give us the matrix F ∈ RN×A, which contains Q-values for each action a ∈

[a1, a2, ..., aA], for each forward pass i ∈ [1, 2, ..., N]:

F =

⎡⎢⎢⎢⎢⎢⎢⎣
Q1(s, a1)Q1(s, a2) . . . Q1(s, aA)

Q2(s, a1)Q2(s, a2) . . . Q2(s, aA)
...

QN(s, a1)QN(s, a2) . . . QN(s, aA)

⎤⎥⎥⎥⎥⎥⎥⎦
where A is the total number of possible actions. The matrix F is then used to

compute the variance across each column or the Q-values Qi(s, a) for each action a.

17

This results in a row matrix Q ∈ R: 1×A :

Q =
[︂
var(Q(s, a1)) var(Q(s, a2)) . . . var(Q(s, aA))

]︂
The average of the values in matrix Q then gives us the uncertainty us:

us =

∑︁A
j=1 var(Q(s, aj))

A

3.2 Problem Formulation

This thesis uses a methodical action advising framework that aims to leverage uncer-

tainty as a metric to wisely reuse advice or to ask the teacher for advice. That being

said, it is not necessary to use only uncertainty to drive decisions. This framework is

intended to be used with a generic metric where instead of using uncertainty, metrics

such as value of information [39] (or its approximation) can be used.

To formalize the problem, we train a student agent to learn its own policy πS with

the help of a trained teacher’s policy πE. There is a limited advice budget b for which

the teacher agent E can provide action advice when requested by the student agent.

Moreover, the student agent can ask for advice reuse from the model of teacher Mη

that is built from prior advice interaction. Thus, the goal is to learn an optimal

student policy π∗
S, where at any time step the student has to decide to either follow

its own policy πS, reuse the model of teacher Mη, or ask the teacher for advice πE if

the budget b is not consumed.

3.3 Student’s Uncertainty-Driven Advising (SUA)

The first method we propose is Student’s Uncertainty-driven Advising (SUA). This

is not the first method to use the student agent’s uncertainty to drive action advising

(as discussed in Section 2.4). SUA is different from RCMP as it is not restricted to

using a certain network architecture to estimate uncertainty. Moreover, RCMP uses a

18

fixed uncertainty threshold that is tuned to be task-specific. However, both SUA and

RCMP estimate the epistemic uncertainty, which is the uncertainty associated to the

dearth of information about the environment (which can be reduced by interacting

with the environment to collect more samples). Here, we use the newly proposed

method of computing uncertainty, as described in Section 3.1, and refer to it as

another baseline to compare against.

Specifically, SUA uses the student agent’s uncertainty to decide when to ask the

teacher for advice. Initially, it would use early advising to gather enough samples

to perform an update for the DQN agent. Afterwards, it would shift to uncertainty-

based advising using the secondary network. This method does not take advantage of

the model of the teacher or advice reuse. This is done to capture the significance of

advice reuse which is added in the next algorithm. Lastly, the uncertainty threshold

could either be fixed initially or adaptively adjusted based on the previously seen

uncertainty estimates. We use adaptive uncertainty thresholds in our experiments

due to its dynamic behavior. Moreover, using adaptive thresholds eliminates the

need for hyperparameter tuning for finding a fixed threshold.

The setup for SUA is as follows. A deep RL student agent is trained to learn a

policy πS for a maximum of tmax training iterations or steps. The teacher agent’s

policy πE can be leveraged to obtain action advice a = πE(s) if the teaching budget

b is not consumed. The student’s secondary network Hω with weights ω (initialized

randomly) is used to compute the uncertainty us for a given state s. In the DQN case,

this secondary network can be referred to as twin DQN. The uncertainty estimates

us are stored in the uncertainty buffer Du. The experience tuple of the current state

st, action at, reward rt, and next state st+1 is stored in the replay buffer Ddqn.

The flow of decision-making involved in SUA is shown in Figure 3.1. At any state,

the student agent can ask the teacher agent for advice if its uncertainty us is greater

than the student’s adaptive uncertainty threshold c1. In other words, the student can

ask the teacher for advice when it feels uncertain. The teacher agent can then provide

19

Figure 3.1: The flow of SUA.

action advice at if the teaching budget is not consumed (b > 0). Lastly, the student

agent would continue to follow its own policy if no advice is received (at is None).

This is possible if either the student agent is certain in the given state us ≤ c1, or if

the teaching budget is consumed (b = 0).

The pseudocode of SUA is given in Algorithm 1. The algorithm is divided into two

steps. The first step is Advice Collection (lines 9-28); which is responsible for deciding

at any state whether the student agent can receive advice from the teacher agent.

Initially, the student agent would receive direct advising from the teacher agent, also

known as early advising (lines 24-27). Once the student agent is trained at least once,

meaning if it has collected samples equal to the minimum replay memory size (line

14), and its uncertainty values are filled with minimum window size (line 15), the

student agent can shift to uncertainty-based advising. To decide whether the student

agent is uncertain, the adaptive uncertainty threshold c1 is determined by obtaining

the (hyperparameter) pth1 percentile from the sorted uncertainty buffer Du (line 16).

The student agent can ask the teacher agent when its uncertainty us is greater than

its adaptive uncertainty threshold c1 (lines 20-23), given that the teaching budget b

is still available (line 13). The second, and the last step is Self Policy (lines 29-31),

in which the student agent would ultimately follow its own policy if action at is not

20

determined. This will be the case when the teaching budget b is consumed or when

the student is certain in the given state st, which means that the student’s uncertainty

us is less than or equal to the threshold c1. The remaining code (lines 32-36) accounts

for standard RL and network updates.

Algorithm 1 Student’s Uncertainty-driven Advising

1: Input: max training iterations tmax, teacher agent policy πE , student DQN policy πS , max
advising budget b, secondary network Hω, minimum window size for uncertainty min-window-
size

2: Ddqn ← ∅; Du ← ∅ ▷ initialize replay and uncertainty buffers respectively
3: c1 ← None; ▷ initialize uncertainty threshold
4: for training steps t ∈ {1, 2, · · · , tmax} do
5: if Env is reset then
6: Obtain start state st from Env
7: end if
8: at ← None ▷ action not determined yet

▷ Advice Collection
9: if DQN-student-model is trained at least once then
10: us ← Hu

ω(st) ▷ measure student uncertainty
11: Du.append(us)
12: end if
13: if b > 0 then
14: if DQN-student-model is trained at least once then
15: if |Du| ≥ min-window-size then
16: c1 ← determine threshold using Du

17: else
18: c1 ← −∞ ▷ activate early advising
19: end if
20: if us > c1 then ▷ uncertainty-based advising or early advising
21: at ← πE(st)
22: b← b− 1
23: end if
24: else
25: at ← πE(st) ▷ early advising
26: b← b− 1
27: end if
28: end if

▷ Self Policy (Ilhan et al., 2021)
29: if at is None then
30: at ← πS(st) ▷ follow student’s current policy
31: end if
32: Take action at, obtain st+1, rt from Env
33: Ddqn.append(⟨st, at, rt, st+1⟩) ▷ Store experience
34: Update DQN-student-model
35: Update Hω with DQN’s mini-batch & target
36: st ← st+1

37: end for

21

3.4 Student’s Uncertainty-Driven Advising with Ad-

vice Imitation & Reuse (SUA-AIR)

Adding the functionality of advice reuse, as done in Advice Imitation & Reuse (AIR)

[20], to SUA gives us a new method that we call Student’s Uncertainty-based Advising

with Advice Imitation & Reuse (SUA-AIR). AIR uses the advice interaction between

the student and teacher agents to train a neural network to imitate the teacher.

The uncertainty of this model is then used to drive advice collection and advice

reuse processes. SUA-AIR, however, uses the student’s uncertainty to drive advice

collection and the model of teacher to drive advice reuse if the uncertainty of the

model of teacher is less than the fixed or adaptive threshold. Moreover, as done in

AIR, advice reuse is subject to a probability-based activation, where this probability

is decayed over time. This is done to provide enough autonomy to the student in the

later stages of training.

Figure 3.2: The flow of SUA-AIR.

The extent of flexibility available in SUA-AIR and the conditions that trigger those

choices are shown in Figure 3.2. At any state, the student agent can ask the teacher

22

agent for advice if it feels certain or if its uncertainty us is greater than the student’s

adaptive uncertainty threshold c1. The teacher agent will then provide action advice

at if the teaching budget is not consumed (b > 0). The student agent can ask

for advice reuse from the model of the teacher if action advice at is not received.

The model of the teacher would provide reuse if its uncertainty um is less than its

uncertainty threshold c2, or simply if the model is certain, and if advice reuse is

enabled (reuse enabled = True). At any step, advice reuse would be enabled if reuse

probability ρ is greater than a random probability. Lastly, the student agent would

follow its own policy if action at is not determined.

The setup for SUA-AIR is similar to SUA with the following additions. Here, as

shown in Algorithm 2, a model of teacher or advice model Mη begins training after

the student has taken a minimum of tmin steps and obtained nmin/2 samples. This is

done to balance the computational complexity and timely training of the model of the

teacher. The model of teacher is leveraged for advice reuse with a reuse probability

ρ. This advice reuse probability is decayed from an initial probability of reuse ρinit

to the final probability of reuse ρfinal in tρ steps.

Algorithm 2 Advice Imitation Model

1: function BuildAdvModel(D,Mη, nlast, nmin, tmin, t, tlast, kinit, kperiodic)
2: if (|D| − nlast >= nmin or
3: (|D| − nlast >= nmin/2 and t− tlast >= tmin) then ▷ check if the model can be trained
4: Train Mη using D for kinit or kperiodic iterations ▷ train the imitation model
5: Determine c2 as explained in Section 3.4 ▷ compute the uncertainty threshold
6: nlast ← |D|
7: tlast ← t
8: end if
9: return Mη, c2, nlast, tlast
10: end function

The pseudocode for SUA-AIR is given in Algorithm 3. The algorithm is divided

into four steps. The first step is Advice Collection (lines 12-33), similar to SUA, with

saving advice in advice buffer D (line 25 and line 30) being the only difference.

23

Algorithm 3 Student’s Uncertainty-driven Advising with Advise Imitation and
Reuse

1: Input: max. training iterations tmax, teacher agent policy πE , student DQN policy πS , advice
model Mη, advising budget b, secondary network Hω, minimum window size for uncertainty
min-window-size, initial reuse probability ρinit, final reuse probability ρfinal, total ρ decaying
steps tρ, min. samples collected and steps taken to begin training Mη: nmin, tmin respectively,
initial imitation training iterations kinit, periodic imitation training iterations kperiodic

2: D ← ∅; Ddqn ← ∅; Du ← ∅ ▷ initialize advice, replay, and uncertainty buffers respectively
3: c1 ← None; c2 ← None ▷ initialize student and model uncertainty thresholds respectively
4: nlast ← 0; tlast ← 0
5: ρ← ρinit ▷ set reuse probability with initial value
6: for training steps t ∈ {1, 2, · · · , tmax} do
7: if Env is reset then
8: reuse enabled← True with probability ρ, False otherwise
9: Obtain start state st from Env
10: end if
11: at ← None ▷ action not determined yet

▷ Advice Collection
12: if DQN-student-model is trained at least once then
13: us ← Hu

ω(st) ▷ measure student uncertainty
14: Du.append(us)
15: end if
16: if b > 0 then
17: if DQN-student-model is trained at least once then
18: if |Du| ≥ min-window-size then
19: c1 ← determine threshold using Du

20: else
21: c1 ← −∞ ▷ activate early advising
22: end if
23: if us > c1 then ▷ uncertainty-based advising or early advising
24: at ← πE(st)
25: D.append(⟨st, at⟩) ▷ append to advice buffer
26: b← b− 1
27: end if
28: else
29: at ← πE(st) ▷ early advising
30: D.append(⟨st, at⟩) ▷ append to advice buffer
31: b← b− 1
32: end if
33: end if

▷ Advice Imitation (Ilhan et al., 2021)
34: Mη, c2, nlast, tlast ← BuildAdvModel(D,Mη, nlast, nmin, tmin, t, tlast, kinit, kperiodic)

▷ Advice Reuse (Ilhan et al., 2021)
35: um ←Mu

η (st) ▷ measure model uncertainty
36: if reuse enabled is True and at is None and Mη is trained and um < c2 then
37: at ← argmaxa Mη(a|st) ▷ Reuse action
38: end if
39: Decay ρ w.r.t. pre-defined schedule if ρ > ρfinal

▷ Self Policy (Ilhan et al., 2021)
40: if at is None then
41: at ← πS(st) ▷ follow student’s current policy
42: end if

24

43: Take action at, obtain st+1, rt from Env
44: Ddqn.append(⟨st, at, rt, st+1⟩) ▷ store experience
45: Update DQN-student-model
46: Update twin DQN Hω with DQN’s mini-batch & target
47: st ← st+1

48: end for

The second, and new step here, is Advice Imitation (line 34), where a model of

the teacher is trained using the data from the advice buffer. The BuildAdvModel

function (line 34), as described in algorithm 2, is responsible for training the model

of teacher Mη from prior advice and adaptively determining its uncertainty threshold

c2. The model of teacher or imitation model is initially trained for kinit iterations and

then trained periodically for kperiodic iterations if all conditions (line 2 of algorithm

2) are met. Similar to AIR [20], the model of teacher is trained to minimize the loss

of negative log-likelihood: L(η) =
∑︁

(s,a)∈D−logMη(a | s). The uncertainty threshold

c2 is then determined by using the updated model of teacher. For this, the model’s

uncertainty Mu
η is computed for each state si in the advice buffer D and stored in a

list U such that the action ai suggested by the teacher (and followed by the student)

is the action predicted by the model. In other words, each uncertainty in U must

satisfy ai = argmaxa Mη(a | s). Then similar to c1, c2 is set to the pth2 percentile of

the sorted list U . lhan et al. followed this approach to ensure that the model can

correctly classify the states it knows (within c2) while marking the remaining states

(above c2) as potential outliers.

The third step in SUA-AIR is Advice Reuse (lines 35-39), which is in charge of

the action-advice reuse mechanism. If all conditions are met (line 36), the student

can leverage the model of teacher for advice reuse (line 37). To successfully reuse

advice, reuse must be enabled (reuse enabled = True) with the probability of reuse

ϵreuse, the current action at must not be determined or None, the model of teacher

Mη must be trained and, deemed certain. The model would be certain when, for a

given state st, its uncertainty Mu
η (st) or um is less than its uncertainty threshold c2.

The probability of reuse is also set to decay here if not fully decayed (line 39).

25

The fourth and final step is Self Policy, which is the same as the previous method,

where the student agent would follow its own policy if it is considered certain (i.e.,

us ≤ c1) or the teaching budget b is consumed. The remaining code (lines 43-47)

accounts for standard RL and network updates.

26

Chapter 4

Experiments

This section details the experiments conducted as well as the research questions an-

swered in this thesis. Below are the research questions explored through the experi-

ments:

1. Does using the uncertainty estimates of the student agent, for advice collection,

and model of the teacher, for advice reuse, help achieve adequate performance?

2. How well do the proposed algorithms perform against the baselines in the lit-

erature?

3. What change(s) do the proposed algorithms bring to the advice collection or

reuse process?

The following section discusses the environments used to test the algorithms. The

last section outlines the experiment details, including all the algorithms tested in this

thesis. To maintain consistency, the pre-processing for domains, network architec-

tures, and many experiment details (e.g., hyperparameter values) are kept the same

as İlhan et al.’s work [20], which are fully specified here for replicability.

4.1 Testing Environments

The proposed algorithms and the baseline heuristics are evaluated here in five games

of the Arcade Learning Environment (ALE) [40]. The five selected games are En-

27

duro, Freeway, Pong, Q*bert and Seaquest. ALE offers a suitable challenge for deep

reinforcement learning algorithms with its vast set of environments. Thus, ALE was

selected as a means to test all algorithms.

Each game or environment works in a Red Green Blue (RGB) image space, where

each observation takes the specific dimension of 160×120×3. The first two dimensions

correspond to the x and y dimensions of the image, whereby the last dimension (3)

denotes that the image is in the RGB space. Pre-processing is applied to reduce the

complexity of these observations by converting them to a squared-grayscale image

of the dimension 80 × 80 × 1. Furthermore, frames are repeated or skipped for 4

consecutive frames by applying the same action decided by the agent to accommodate

for computational cost and high frame rate. The resulting four frames (16 in total)

are stacked on top of each other to account for partial observability effects (e.g.,

capture information like movement), making the final dimensions of the observation

to 80×80×4. Furthermore, the steps for each episode across all games are limited to

27,000 steps which accounts for 108,000 frames (27,000 steps times 4 frames). Lastly,

the rewards for each game are clipped to [−1, 1] for maintaining learning stability.

These design choices correspond with the literature [20, 23].

Figure 4.1: A snapshot of the observations for the selected Atari games.

28

4.2 Experimental Setup

The student agents tested in this work are trained for 5 million steps (or 20 million

total frames) and evaluated at an offset of every 50,000 steps across 10 episodes. A

student agent can request advice from the teacher for a maximum of 25,000 steps

which corresponds to the teaching budget. In evaluation episodes, the student agent

is tested without any aid from the teacher or model of the teacher. This is done to

measure the performance of the student agent alone. Statistics pertaining to evalua-

tion performance are also recorded, such as the average of the total rewards obtained

across 10 evaluation episodes for the corresponding training step. Furthermore, all

student agents were tested for 10 independent runs across each domain. All student

agents involved in the experiments are listed below:

1. No Advising (NA): An unadvised student agent similar to a usual RL agent

learning from scratch.

2. Early Advising (EA): An advised student agent with action advice provided

by the teacher at early training until it has consumed the teaching budget.

3. Random Advising (RA): An advised student agent with a 50% chance of

teacher providing advice until the teaching budget exhausts.

4. Advice Imitation & Reuse (AIR): A previous benchmark [20] that uses an

advised student agent and a model of teacher (trained with advising data) to

drive advice collection and reuse via its uncertainty.

5. Student’s Uncertainty-driven Advising (SUA): An advised student agent

that uses its uncertainty estimates from the secondary neural network to drive

advice collection. The model of teacher and advice reuse mechanism are absent

in SUA.

29

6. Student’s Uncertainty-driven Advising with Advice Imitation & Reuse

(SUA-AIR): To build upon AIR, this agent uses student agent’s uncertainty

from the secondary neural network to drive advice collection and the model of

teacher’s uncertainty to drive advice reuse.

All student agents above use the same architecture which is a Double DQN with 3

convolutional layers followed by a fully-connected hidden layer, and a dueling output.

The first convolutional layer, in the student agent architecture, is comprised of 32

filters of shape 8× 8 with a stride of 4. The second convolutional layer is comprised

of 64 filters of shape 4×4 with a stride of 2. The last convolutional layer is comprised

of 64 filters of shape 3× 3 with a stride of 1. The fully-connected layer is comprised

of a single hidden layer with 512 units. All agents use the ϵ-greedy strategy for

exploration where ϵ is decayed over time. The secondary network of the student is

equipped with a network structure similar to student DQN with two added differences.

The secondary network is a supervised learning model, and is equipped with a dropout

layer. Following the literature [41], the dropout rate is set to 0.2 so that it does not

hamper the learning progress. Dropout rate controls the percentage of units that are

dropped at every training step. Moreover, the number of forward passes performed

to compute the epistemic uncertainty is set to 100.

The supervised learning model of teacher (or imitation model), trained with the

student-teacher interaction data, is equipped with the network structure identical to

the student agent’s secondary network. Here, the model of teacher predicts action

probabilities (instead of Q-values in the secondary network). A dropout layer is

also added to the model. Following AIR [20], the dropout rate here is set to 0.35.

Furthermore, the number of forward passes to compute the epistemic uncertainty is

set to 100.

For each game, a teacher agent is trained beforehand. The teacher agents have

the same network structure and algorithm (DQN) as that of the student agent. The

30

Table 4.1: Hyperparameters for all DQN student agents and model of the teacher.

Hyperparameter Student Agent Imitation Model

Learning rate 6.25× 10−5 1× 10−4

Minibatch size 32 32

Discount factor γ 0.99 -

Replay memory min. and max. size 10k, 500k -

Target network update frequency 7,500 -

ϵinitial, ϵfinal, total ϵ decaying steps 1.0, 0.01, 250k -

teacher agents can be considered competent, as compared to results in the literature,

and obtain the evaluation scores of 1556 for Enduro, 28.8 for Freeway, 12 for Pong,

3705 for Q*bert, and 8178 for Seaquest.

Since SUA, SUA-AIR, and AIR use adaptive uncertainty thresholds, a hyperpa-

rameter for fixing the uncertainty threshold is not required. However, all of the

mentioned algorithms require one or two percentile values to determine the uncer-

tainty thresholds automatically. The percentile p1 for the student’s uncertainty in

SUA and SUA-AIR is set to 70 to maintain a balance for the student agent in asking

the teacher for advice. Whereas percentile p2 for the uncertainty of model of teacher

in SUA-AIR and AIR is set to 90. For SUA-AIR and AIR, the initial probability of

reuse ρinit is set to 0.5, and the final probability of reuse ρfinal is set to 0.1. The decay

from ρinit to ρfinal happens in a total of 1.5 million steps, starting from 500,00 steps

and ending at 2.5 million steps. For training the model of teacher or the imitation

model (in SUA-AIR and AIR), the minimum steps tmin is set to 50,000, and the min-

imum samples nmin is set to 2,500. Moreover, the initial training iterations kinit and

periodic training iterations kperiodic for the model of teacher (in SUA-AIR and AIR)

are set to 50,000 and 20,000, respectively. Lastly, the min-window-size for the uncer-

tainty buffer Du is set to 200, and the maximum size is set to 10,000. The values for

31

minimum and maximum window size for the uncertainty buffer were selected based

on general performance across all domains. The values for other hyperparameters

pertaining to the student agent and the imitation model are listed in table 4.1. The

values for all the mentioned hyperparameters are kept the same across experiments

in all domains.

All other hyperparameter values except replay memory minimum size and ϵ decay-

ing steps are kept the same as in previous work [20]. Minimum replay memory size is

decreased to 10k (from 50k) to enable early training of the student agent (from the

replay buffer) to produce accurate uncertainty estimations and ϵ decaying steps are

decreased to 250k (from 500k) to limit exploration in later stages of training.

The list of all the hyperparameters for the student agents is shown in Appendix

B.1, and the list of all the hyperparameters for the model of the teacher (or imitation

model) is shown in Appendix B.2.

The next section will present and discuss the results of the experiments conducted.

32

Chapter 5

Results & Discussion

This section presents and discusses the results of the experiments conducted with the

proposed algorithms (mentioned in Chapter 4) across all domains.

5.1 Evaluating Performance of Agents

The evaluation performance of all student agents, NA, EA, SUA, AIR, and SUA-AIR,

across Enduro, Freeway, Pong, Q*bert, and Seaquest is reported in Figures 5.1, 5.2,

5.3, 5.4, and 5.5. The x-axis reports the environment steps (not frames) taken by

the agent in millions. The y-axis reports the average of cumulative rewards across

evaluation episodes for the corresponding training step (as mentioned in Section 4.2).

The shaded bars indicate the standard deviation across 10 independent runs. To

serve as a quick reminder, SUA-AIR and AIR are advised agents with advice reuse,

whereas SUA, EA, and RA are advised agents without advice reuse. SUA-AIR and

SUA are the methods proposed in this work. All advised agents without advice reuse

serve as baselines for our study.

The evaluation scores of all student agents in different training phases across all

domains are reported in Table 5.1. The reporting of evaluation scores is divided into

three training phases. The first phase, called the initial performance, refers to the

evaluation performance of the agent across one-third (1
3
) of the training. The second

phase, called the intermediate performance, refers to the evaluation performance of

33

the agent across two-third (2
3
) of the training. The last phase, called the last per-

formance, refers to the evaluation performance of the agent across three-third (3
3
) of

the training. Moreover, the table reports the average cumulative rewards for the last

three evaluations as the final performance. Lastly, the table also reports the total

cumulative evaluation rewards as the total performance.

Figure 5.1: Evaluation rewards of each algorithm for Enduro.

In Enduro, the performance of all advised-agents was similar, with RA being ahead

of all algorithms with a final performance of 1169.99 ± 25.13. However, the differences

in final performance of RA and all other agents are not statistically significant as

they are not more than twice the standard error in the respective means (for 95%

confidence). Thus, it can not be said that RA performed better than all agents, with

respect to final performance, in Enduro. In early training, the NA agent performed

poorly with an initial performance of 196.63 ± 9.47, where the differences in initial

performance of NA and all other agents are statistically significant (as they are more

than twice the standard error in the respective means). However, NA managed to

catch up to the performance of the advised-agents in the end (with respect to later

and final performance). Moreover, NA agent also performed worse than all other

agents with a total performance of 769.67 ± 12.02 in Enduro, where the differences

in total performance of NA and all other agents are statistically significant.

34

Evaluation Scores

Domain Student Initial (1/3) Inter. (2/3) Later (3/3) Final Total

NA 196.63 ± 9.47 975.27 ± 18.70 1120.26 ± 17.31 1133.44 ± 33.07 769.67 ± 12.02

EA 316.59 ± 9.29 1011.35 ± 8.15 1113.29 ± 15.44 1116.52 ± 17.57 818.67 ± 6.99

Enduro RA 320.86 ± 5.56 1015.65 ± 13.25 1148.66 ± 17.64 1169.99 ± 25.13 833.41 ± 11.05

AIR 374.08 ± 5.07 1014.47 ± 7.82 1094.33 ± 16.12 1097.87 ± 47.19 832.12 ± 8.11

SUA 341.69 ± 6.71 1000.59 ± 11.22 1102.97 ± 10.42 1106.68 ± 17.35 819.77 ± 7.66

SUA-AIR 359.34 ± 7.33 1003.02 ± 6.80 1089.54 ± 11.23 1105.11 ± 19.09 821.84 ± 6.01

NA 5.51 ± 0.28 23.68 ± 0.61 31.57 ± 0.13 32.04 ± 0.04 20.40 ± 0.28

EA 6.82 ± 0.40 26.58 ± 0.35 31.87 ± 0.03 32.11 ± 0.04 21.91 ± 0.22

Freeway RA 5.01 ± 0.59 21.55 ± 1.03 31.58 ± 0.07 32.09 ± 0.07 19.52 ± 0.53

AIR 8.95 ± 0.38 28.84 ± 0.16 31.89 ± 0.03 32.12 ± 0.05 23.37 ± 0.13

SUA 6.72 ± 0.24 25.29 ± 0.60 31.75 ± 0.05 32.10 ± 0.04 21.40 ± 0.25

SUA-AIR 8.57 ± 0.43 29.36 ± 0.23 31.98 ± 0.02 32.15 ± 0.07 23.45 ± 0.18

NA -18.37 ± 0.29 -6.70 ± 1.36 3.51 ± 1.59 6.12 ± 1.39 -7.08 ± 1.01

EA -16.58 ± 0.37 -1.02 ± 1.09 6.43 ± 1.73 7.97 ± 1.87 -3.59 ± 0.91

Pong RA -17.17 ± 0.36 -2.08 ± 1.92 6.40 ± 2.08 9.11 ± 1.76 -4.16 ± 1.39

AIR -12.52 ± 0.24 6.46 ± 0.30 10.62 ± 0.45 11.36 ± 0.51 1.66 ± 0.23

SUA -16.89 ± 0.34 -2.50 ± 1.13 6.60 ± 1.30 9.35 ± 1.12 -4.14 ± 0.86

SUA-AIR -11.80 ± 0.28 6.39 ± 0.38 11.19 ± 0.20 12.32 ± 0.27 2.06 ± 0.19

NA 523.17 ± 22.72 1709.45 ± 39.80 2127.62 ± 182.23 2678.62 ± 225.15 1462.62 ± 67.15

EA 239.70 ± 12.52 539.89 ± 49.23 1544.32 ± 157.99 2054.10 ± 225.66 779.93 ± 64.51

Q*bert RA 308.00 ± 23.54 1332.33 ± 150.13 2027.82 ± 115.96 2427.65 ± 165.35 1231.77 ± 78.08

AIR 263.38 ± 20.06 610.25 ± 25.74 2588.68 ± 148.04 3508.49 ± 97.30 1162.92 ± 56.82

SUA 233.19 ± 7.53 571.69 ± 51.65 1797.56 ± 116.56 2307.20 ± 191.48 873.76 ± 54.32

SUA-AIR 270.13 ± 17.40 660.25 ± 60.88 2641.93 ± 185.13 3653.54 ± 151.78 1199.88 ± 78.84

NA 407.18 ± 21.80 2177.36 ± 40.02 4503.52 ± 378.01 5747.69 ± 606.93 2382.05 ± 127.50

EA 703.16 ± 27.12 3628.69 ± 200.65 6799.10 ± 452.63 8131.73 ± 487.51 3740.09 ± 205.78

Seaquest RA 900.46 ± 11.64 2973.80 ± 94.90 4357.73 ± 426.44 5126.56 ± 628.49 2762.25 ± 165.89

AIR 814.67 ± 27.28 4009.80 ± 202.07 7099.48 ± 258.61 8569.04 ± 231.59 4005.94 ± 146.88

SUA 806.88 ± 19.11 3571.92 ± 266.72 6751.58 ± 483.42 8080.32 ± 581.71 3738.87 ± 240.52

SUA-AIR 819.10 ± 31.64 4091.41 ± 179.81 7135.82 ± 449.44 8000.41 ± 541.18 4047.09 ± 206.70

Table 5.1: Evaluation scores with respect to initial, intermediate, later, final, and
total performance of all agents in 5 domains averaged over 10 independent runs. The
standard errors are reported with ±. The best scores are reported in bold.

The benefits of advice reuse become slightly more apparent when we look at the

performance of agents in Freeway. Students with advice reuse, SUA-AIR and AIR,

showed a boost in performance during early-to-mid training. AIR achieved an initial

performance of 8.95 ± 0.38, and SUA-AIR achieved an initial performance of 8.57 ±

0.43, where the differences are not statistically significant. However, the differences in

35

Figure 5.2: Evaluation rewards of each algorithm for Freeway.

the initial performance of SUA-AIR and all other agents, except AIR, are statistically

significant. Similarly, the differences in the initial performance of AIR and all other

agents, except SUA-AIR, are statistically significant. The same trend is observed

for intermediate and total performance where SUA-AIR and AIR are better than

all other agents, with the differences being statistically significant. In terms of later

performance, SUA-AIR performed better than all other agents, except AIR, with

statistically significant differences. AIR, on the other hand, only performed better

than RA in later performance with statistically significant differences.

Advising methods such as EA, RA, and SUA took more time to catch up to the

policies of students using advice reuse in Freeway (as shown in Figure 5.2). Moreover,

SUA performed better than NA and RA in initial performance, with statistically

significant differences. EA, on the other hand, only performed better than NA with

statistical differences.

The difference of performance between students with and without advice reuse be-

comes more evident in Pong. Students with advice reuse (SUA-AIR and AIR) showed

a boost in performance throughout the entire training. SUA-AIR performed better

than all agents, except AIR, in initial, intermediate, later, and total performance

with statistically significant differences. In terms of final performance, SUA-AIR per-

36

Figure 5.3: Evaluation rewards of each algorithm for Pong.

formed better than other agents except AIR and RA, with an evaluation score of

12.32 ± 0.27 and differences being statistically significant. AIR, on the other hand,

performed better than other agents, except for SUA-AIR, in initial, intermediate,

and total performance, with statistically significant differences. In terms of later per-

formance, AIR is only better than NA and SUA with an evaluation score of 11.19

± 0.2 and statistically significant differences. However, AIR performed better than

other agents, except SUA-AIR, in total performance with an evaluation score of 2.06

± 0.19 and differences being statistically significant. Advised agents without advice

reuse (EA, SUA, and RA) failed to keep up with the performance of advice reuse

students in Pong (as shown in Figure 5.3).

In Q*bert, the advice reuse agents performed better towards the end of train-

ing. SUA-AIR and AIR performed better than all other agents in terms of later

performance with evaluation scores 2641.93 ± 185.13 and 2588.68 ± 148.04, respec-

tively, and differences being statistically significant. Moreover, SUA-AIR and AIR

performed better than all other agents in terms of final performance with evaluation

scores of 3653.54 ± 151.78 and 3508.49 ± 97.30, respectively, with statistically sig-

nificant differences. On the other hand, NA agent performed better than all agents

in initial performance with an evaluation score of 523.17 ± 22.72 and statistically

37

Figure 5.4: Evaluation rewards of each algorithm for Q*bert.

significant differences. Moreover, NA agent performed better than other agents, ex-

cept RA, in intermediate performance with an evaluation score of 1709.45 ± 39.80

and statistically significant differences. NA agent also performed better than other

agents, except SUA-AIR and RA, in total performance with an evaluation score of

1462.62 ± 67.15 and statistically significant differences. Furthermore, advised agents

such as EA and SUA had difficulty catching up to the performance of the NA agent

(as shown in Figure 5.4). This reinforces the need to have the model of the teacher

available for advice reuse at any time during training.

Figure 5.5: Evaluation rewards of each algorithm for Seaquest.

In Seaquest, most of the advised agents took the lead over the NA agent throughout

38

the entire training (as shown in Figure 5.5). RA agent performed better than all

agents, except SUA-AIR, in initial performance with an evaluation score of 900.46 ±

11.64 with statistically significant differences. In terms of intermediate performance,

SUA-AIR performed better than NA and RA agents with an evaluation score of

4091.41 ± 179.81 and differences being statistically significant. Moreover, SUA-AIR

also performed better than NA and RA agents in terms of last performance with an

evaluation score of 7135.82 ± 449.44 and statistically significant differences. AIR, on

the other hand, performed better than NA and RA agents in final performance with

an evaluation score of 8569.04 ± 231.59 and statistically significant differences. In

terms of total performance, SUA-AIR performed better than NA and RA agents with

an evaluation score of 4047.09 ± 206.70 and statistically significant differences.

5.2 Evaluating Advice Taken & Reuse Schedule

The advice taken and reuse schedule are reported in Figures 5.7, 5.6, 5.8, 5.9, and

5.10. The left plots report the number of times advice is reused (y-axis) across million

environment steps (x-axis) for each game tested. The plots on the right report the

number of times the advice is taken (y-axis) across million environment steps (x-axis)

for each game tested. In general, SUA-AIR (purple) required less reuse from the

model of the teacher than AIR (green). This could be due to the student agent in

SUA-AIR being more certain in states encountered than the model of the teacher in

AIR. Although SUA-AIR reused less number of advice from the model of teacher, it

still managed to perform on par or slightly better in some games than AIR in terms

of evaluation scores. This is mainly due to the difference in the advice schedule. SUA

and SUA-AIR showed a similar advice schedule since they use the secondary network

to estimate the epistemic uncertainty.

AIR, on the other hand, uses the model of the teacher for advice collection. The

advice taken schedule for SUA and SUA-AIR showed a more erratic pattern than

AIR’s advice taken schedule. This erratic pattern of SUA and SUA-AIR suggests

39

Figure 5.6: Advice reuse (actions taken from the model of the teacher) and advice
taken (actions taken directly from the teacher agent) in every 100 steps taken by the
student in Freeway.

Figure 5.7: Advice reuse (actions taken from the model of the teacher) and advice
taken (actions taken directly from the teacher agent) in every 100 steps taken by the
student in Enduro.

Figure 5.8: Advice reuse (actions taken from the model of the teacher) and advice
taken (actions taken directly from the teacher agent) in every 100 steps taken by the
student in Pong.

40

Figure 5.9: Advice reuse (actions taken from the model of the teacher) and advice
taken (actions taken directly from the teacher agent) in every 100 steps taken by the
student in Q*bert.

Figure 5.10: Advice reuse (actions taken from the model of the teacher) and advice
taken (actions taken directly from the teacher agent) in every 100 steps taken by the
student in Seaquest.

that they are asking the teacher for advice in matters of uncertainty. This is perhaps

possible due to the low percentile value set for SUA and SUA-AIR. Lastly, the advice

taken schedule for AIR is similar to EA, where most of the advice is taken in early

training. This is due to the high percentile value set for AIR by default.

5.3 Evaluating Model Performance

To further investigate the similar evaluation performance of SUA-AIR and AIR, we

evaluate the accuracy of the model of teacher by comparing the actions of the teacher

and the model for the states that the student visits. This evaluation is shown in

41

Figure 5.11.

Figure 5.11: Percentage of correct actions taken by the model of the teacher for
SUA-AIR and AIR across training steps in Pong averaged over 3 independent runs.

The percentage of correct actions taken by the model (y-axis), correct actions are

actions that are the same as teacher’s, over the course of millions of environment steps

(x-axis) taken by the student agent in Pong are reported. It is evident from Figure

5.11 that the model of the teacher for SUA-AIR and AIR show similar accuracies

across training. Since AIR uses the model of the teacher to collect advice, it is

natural to see it slightly more accurate than the model of SUA-AIR. However, this

does not impact the evaluation performance of SUA-AIR, as we have seen it perform

slightly better than AIR (though not statistically significant) in the majority of the

games tested. Lastly, due to the similar performance of these models of the teacher,

SUA and SUA-AIR showed similar evaluation performance across all games.

42

Chapter 6

Conclusion

In this thesis, the use of two uncertainties is investigated to drive the advice collection

and reuse process in the action advising paradigm of deep reinforcement learning.

This work focused on the teacher-student framework in action advising literature.

We first presented a new way of computing the epistemic uncertainty for the student

agent. We then proposed two new methods, Student’s Uncertainty-driven Advising

(SUA), and Student’s Uncertainty-driven Advising with Advice Imitation & Reuse

(SUA-AIR). Both SUA and SUA-AIR use our method for computing uncertainty to

drive the advice collection process. This uncertainty of the student agent and the

uncertainty of the model of teacher were then used for the advice collection (in SUA

and SUA-AIR) and advice reuse processes (in SUA-AIR), respectively. The model of

teacher was trained using advice interaction data between the student and teacher

agents. Using this framework, the student agent can decide when to ask the teacher

agent for direct advice, or the model of teacher for advice reuse, or when to follow

the student’s own policy.

We really hoped that SUA-AIR would outperform AIR but we found that the

differences were not statistically significant. Moreover, the results show that using

advice reuse, in action advising RL agents, provides a significant boost in performance

in different stages of training.

There are multiple avenues for future work. Currently, the student agent in SUA-

43

AIR considerably leverages the model of the teacher for advice reuse after the teaching

budget is consumed. This can be further extended to add more flexibility where

the student agent could start asking the model of the teacher for reuse during the

consumption of the teaching budget, to use the teaching budget efficiently. Moreover,

the decision to reuse advice in SUA-AIR precedes the decision of the student agent.

This can be extended to account for the student agent’s uncertainty before reusing

advice from the model of the teacher. Furthermore, a more thorough study could

be conducted to test different advice reuse schedules by modifying the initial reuse

probability, final reuse probability, and the total decaying steps. For example, the final

reuse probability could be set to 0 to allow the student agent to become independent

from the model of the teacher towards the later stages of training. Lastly, we currently

use fixed percentile values to compute the uncertainties for the student agent and the

model of teacher. This could be better extended to follow a dynamic schedule where

the percentile values start closer to 50 in early training and then restricted to values

closer to 100 in the later stages of training. This change would be better suited for

advice reuse since a lower percentile value for the student agent’s uncertainty would

not capture the states for which the student is genuinely uncertain.

This work can be applied to real-world scenarios in which continuously deploying

new RL models is critical. These new models can then leverage the previously-

built models through action advising and reuse to speed up the training process

significantly.

44

Bibliography

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[2] Z. Zhou, S. Kearnes, L. Li, R. N. Zare, and P. Riley, “Optimization of molecules
via deep reinforcement learning,” Scientific reports, vol. 9, no. 1, pp. 1–10, 2019.

[3] S. K. Gottipati, Y. Pathak, B. Sattarov, Sahir, R. Nuttall, M. Amini, M.
E.T̃aylor, and S. Chandar, “Towered actor critic for handling multiple action
types in reinforcement learning for drug discovery,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, 2021, pp. 142–150.

[4] N. Liu, Y. Liu, B. Logan, Z. Xu, J. Tang, and Y. Wang, “Learning the dy-
namic treatment regimes from medical registry data through deep q-network,”
Scientific reports, vol. 9, no. 1, pp. 1–10, 2019.

[5] OpenAI. (2019). Openai five defeats dota 2 world champions, [Online]. Avail-
able: https://openai.com/blog/openai-five-defeats-dota-2-world-champions/.

[6] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung,
D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, et al., “Grandmaster level in
starcraft ii using multi-agent reinforcement learning,” Nature, vol. 575, no. 7782,
pp. 350–354, 2019.

[7] A Ng, D Harada, and S Russell, “Policy invariance under reward transforma-
tions: Theory and application to reward shaping,” in ICML, 1999.

[8] S. Griffith, K. Subramanian, J. Scholz, C. Isbell, and A. L. Thomaz, “Policy
shaping: Integrating human feedback with reinforcement learning,” in NIPS,
2013.

[9] S. Schaal, “Is imitation learning the route to humanoid robots?” Trends in
cognitive sciences, 1999.

[10] M. E. Taylor, H. B. Suay, and S. Chernova, “Integrating reinforcement learning
with human demonstrations of varying ability,” in AAMAS, 2011.

[11] Z. Wang and M. E. Taylor, “Improving reinforcement learning with confidence-
based demonstrations.,” in IJCAI, 2017.

[12] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, D. Horgan, J.
Quan, A. Sendonaris, I. Osband, et al., “Deep q-learning from demonstrations,”
in AAAI, 2018.

45

https://openai.com/blog/openai-five-defeats-dota-2-world-champions/

[13] Y. Gao, H. Xu, J. Lin, F. Yu, S. Levine, and T. Darrell, “Reinforcement learning
from imperfect demonstrations,” ICLR Workshop Track Proceedings, 2018.

[14] J. A. Clouse, On integrating apprentice learning and reinforcement learning.
University of Massachusetts Amherst, 1996.

[15] A. L. Samuel, “Some studies in machine learning using the game of checkers.
ii—recent progress,” IBM Journal of research and development, vol. 11, no. 6,
pp. 601–617, 1967.

[16] L. Torrey and M. Taylor, “Teaching on a budget: Agents advising agents in
reinforcement learning,” in Proceedings of the 2013 international conference on
Autonomous agents and multi-agent systems, 2013, pp. 1053–1060.

[17] F. L. Da Silva, R. Glatt, and A. H. R. Costa, “Simultaneously learning and
advising in multiagent reinforcement learning,” in Proceedings of the 16th con-
ference on autonomous agents and multiagent systems, 2017, pp. 1100–1108.

[18] F. L. Da Silva, P. Hernandez-Leal, B. Kartal, and M. E. Taylor, “Uncertainty-
aware action advising for deep reinforcement learning agents,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, 2020, pp. 5792–5799.

[19] E. Ilhan, J. Gow, and D. P. Liebana, “Action advising with advice imitation in
deep reinforcement learning,” in AAMAS ’21: 20th International Conference on
Autonomous Agents and Multiagent Systems, Virtual Event, United Kingdom,
May 3-7, 2021, F. Dignum, A. Lomuscio, U. Endriss, and A. Nowé, Eds., ACM,
2021, pp. 629–637. [Online]. Available: https : / /dl . acm . org /doi / 10 . 5555 /
3463952.3464029.

[20] E. Ilhan, J. Gow, and D. P. Liebana, “Learning on a budget via teacher imita-
tion,” CoRR, vol. abs/2104.08440, 2021. arXiv: 2104.08440. [Online]. Available:
https://arxiv.org/abs/2104.08440.

[21] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhut-
dinov, “Improving neural networks by preventing co-adaptation of feature de-
tectors,” arXiv preprint arXiv:1207.0580, 2012.

[22] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4,
pp. 279–292, 1992.

[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A.
Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level con-
trol through deep reinforcement learning,” nature, vol. 518, no. 7540, pp. 529–
533, 2015.

[24] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio, “Object recognition with
gradient-based learning,” in Shape, contour and grouping in computer vision,
Springer, 1999, pp. 319–345.

[25] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D.
Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow: Combining improvements
in deep reinforcement learning,” in Thirty-second AAAI conference on artificial
intelligence, 2018.

46

https://dl.acm.org/doi/10.5555/3463952.3464029
https://dl.acm.org/doi/10.5555/3463952.3464029
https://arxiv.org/abs/2104.08440
https://arxiv.org/abs/2104.08440

[26] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with dou-
ble q-learning,” in Proceedings of the AAAI conference on artificial intelligence,
vol. 30, 2016.

[27] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas, “Du-
eling network architectures for deep reinforcement learning,” in International
conference on machine learning, PMLR, 2016, pp. 1995–2003.

[28] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot
learning from demonstration,” Robotics and autonomous systems, vol. 57, no. 5,
pp. 469–483, 2009.

[29] J. Li, J. Wang, S. Wang, and C. Yang, “Human–robot skill transmission for mo-
bile robot via learning by demonstration,” Neural Computing and Applications,
pp. 1–11, 2021.

[30] S. R. Hosseini, A. Taheri, M. Alemi, and A. Meghdari, “One-shot learning
from demonstration approach toward a reciprocal sign language-based hri,”
International Journal of Social Robotics, pp. 1–13, 2021.

[31] P. Odom and S. Natarajan, “Active advice seeking for inverse reinforcement
learning,” in Proceedings of the 2016 International Conference on Autonomous
Agents & Multiagent Systems, Singapore, May 9-13, 2016, 2016, pp. 512–520.

[32] E. Ilhan and D. P. Liebana, “Student-initiated action advising via advice nov-
elty,” CoRR, vol. abs/2010.00381, 2020. arXiv: 2010.00381. [Online]. Available:
https://arxiv.org/abs/2010.00381.

[33] O. Amir, E. Kamar, A. Kolobov, and B. Grosz, “Interactive teaching strategies
for agent training,” in In Proceedings of IJCAI 2016, 2016.

[34] S. Omidshafiei, D.-K. Kim, M. Liu, G. Tesauro, M. Riemer, C. Amato, M.
Campbell, and J. P. How, “Learning to teach in cooperative multiagent rein-
forcement learning,” in Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol. 33, 2019, pp. 6128–6136.

[35] M. E. Taylor and P. Stone, “Transfer learning for reinforcement learning do-
mains: A survey.,” Journal of Machine Learning Research, vol. 10, no. 7, 2009.

[36] C. Zhu, Y. Cai, H.-f. Leung, and S. Hu, “Learning by reusing previous advice in
teacher-student paradigm,” in Proceedings of the 19th International Conference
on Autonomous Agents and MultiAgent Systems, 2020, pp. 1674–1682.

[37] D. A. Pomerleau, “Efficient training of artificial neural networks for autonomous
navigation,” Neural computation, vol. 3, no. 1, pp. 88–97, 1991.

[38] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Represent-
ing model uncertainty in deep learning,” in international conference on machine
learning, PMLR, 2016, pp. 1050–1059.

47

https://arxiv.org/abs/2010.00381
https://arxiv.org/abs/2010.00381

[39] G. Chalkiadakis and C. Boutilier, “Coordination in multiagent reinforcement
learning: A bayesian approach,” in Proceedings of the Second International Joint
Conference on Autonomous Agents and Multiagent Systems, ser. AAMAS ’03,
Melbourne, Australia: Association for Computing Machinery, 2003, 709–716,
isbn: 1581136838. doi: 10 . 1145 / 860575 . 860689. [Online]. Available: https :
//doi.org/10.1145/860575.860689.

[40] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade learning
environment: An evaluation platform for general agents,” Journal of Artificial
Intelligence Research, vol. 47, pp. 253–279, 2013.

[41] L. Chen, X. Zhou, C. Chang, R. Yang, and K. Yu, “Agent-aware dropout dqn
for safe and efficient on-line dialogue policy learning,” in Proceedings of the
2017 Conference on Empirical Methods in Natural Language Processing, 2017,
pp. 2454–2464.

48

https://doi.org/10.1145/860575.860689
https://doi.org/10.1145/860575.860689
https://doi.org/10.1145/860575.860689

Appendix A: List of Abbreviations

Abbreviation Full Form

AIR Advice Imitation & Reuse

ALE Arcade Learning Environment

CHAT Confidence-based Human Agent Transfer

DQN Deep Q-Network

DQfD Deep Q-learning from Demonstrations

DRL Deep Reinforcement Learning

EA Early Advising

HAT Human-Agent Transfer

LeCTR Learning to Coordinate and Teach Reinforcement

LfD Learning from Demonstration

MDP Markov Decision Process

NA No Advising

RA Random Advising

RCMP Requesting Confidence-Moderated Policy advice

SUA Student’s Uncertainty-driven Advising

SUA-AIR Student’s Uncertainty-driven Advising with Advice Imitation & Reuse

Table A.1: List of all abbreviations with their full forms.

49

Appendix B: List of Student Agent
Hyperparameters

Hyperparameter Value Source or Selected from

Dropout rate 0.2 [41]

No. of forward passes N 100 [20]

Learning rate 6.25× 10−5 [20]

Minibatch size 32 [20]

Discount factor γ 0.99 [20]

Replay memory min. size 10k (10k, 50k)

Replay memory max. size 500k [20]

Target network update frequency 7500 [20]

ϵinitial, ϵfinal 1.0, 0.01 [20]

total ϵ decaying steps 250k (250k, 500k)

Percentile p1 70 (70, 80, 90)

min window size for Du 200 see text below

Maximum window size for Du 10k (5k, 10k)

Teaching budget b 25k (12.5k, 25k, 100k)

Table B.1: List of all hyperparameters for the student agents. Hyperparameters such
as drop out rate, no. of forward passes, percentile, minimum, and maximum uncer-
tainty buffer window size are pertinent to SUA and SUA-AIR. Similarly, teaching
budget is applicable to all agents (except NA).

min window size for Du is set to 200 to initiate the computation of the dynamic

threshold c1 and to ensure that there is enough data to compute accurate estimates.

50

This will have a very little impact as we will reach this value within the first episode.

B.0.1 List of Imitation Model Hyperparameters

Hyperparameter Value

Dropout rate 0.35

No. of forward passes 100

Learning rate 1× 10−4

Minibatch size 32

ρinit, ρfinal, total ρ decaying steps 0.1, 0.5 1.5M

Percentile p2 90

tmin, nmin 50k, 2.5k

kinit, kperiodic 50k, 20k

Table B.2: List of all hyperparameters for the model of the teacher for AIR and
SUA-AIR taken from AIR [20].

51

	Introduction
	Background & Related Work
	Reinforcement Learning
	Deep Reinforcement Learning
	Learning from Demonstration
	Action Advising & Student-Teacher Framework
	Transfer Learning versus Action Advising
	Advice Imitation & Reuse

	Uncertainty-Driven Advising with Advice Reuse
	Computing Uncertainty via a Secondary Neural Network
	Problem Formulation
	Student's Uncertainty-Driven Advising (SUA)
	Student's Uncertainty-Driven Advising with Advice Imitation & Reuse (SUA-AIR)

	Experiments
	Testing Environments
	Experimental Setup

	Results & Discussion
	Evaluating Performance of Agents
	Evaluating Advice Taken & Reuse Schedule
	Evaluating Model Performance

	Conclusion
	Bibliography
	Appendix A: List of Abbreviations
	Appendix B: List of Student Agent Hyperparameters
	List of Imitation Model Hyperparameters

