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ABSTRACT

A CAPTCHA is an automatically generated test designed to distinguish between humans and computer pro-
grams; specifically, they are designed to be easy for humans but difficult for computer programs to pass in order
to prevent the abuse of resources by automated bots. They are commonly seen guarding webmail registration
forms, online auction sites, and preventing brute force attacks on passwords.

In the following, we address the question: How does adding a grey level to random CAPTCHA generation
affect the utility of the CAPTCHA? We treat the problem of generating the random CAPTCHA as one of
random field simulation: An initial state of background noise is evolved over time using Gibbs sampling and an
efficient algorithm for generating correlated random variables. This approach has already been found to yield
highly-readable yet difficult-to-crack CAPTCHAs. We detail how the requisite parameters for introducing grey
levels are estimated and how we generate the random CAPTCHA. The resulting CAPTCHA will be evaluated in
terms of human readability as well as its resistance to automated attacks in the forms of character segmentation
and optical character recognition.

Keywords: Image processing, security, statistical information compression, Markov random field, simulation,
detection.

1. INTRODUCTION

A CAPTCHA is a method of separating humans and computer programs; More specifically, a CAPTCHA is an
automatically-generated challenge that, given a response, attempts to determine automatically if the response
originated from a human or a computer program. CAPTCHAs are used to protect online resources such as
webmail from abuse by computer programs, or “bots”, and can also be used to prevent brute-force attacks
against passwords.1

Optical character recognition (OCR) is a hard artificial intelligence (AI) problem which is commonly used
as the basis of a CAPTCHA. Contemporary OCR programs continue to struggle with segmentation,2 and even
distorted single characters can be reliably recognized by a computer program with training.3 In general, an
image of a word, called the challenge word, is generated in a fashion that is difficult for a program to recognize
while still being easy for a human to recognize. See Figure 1 for examples.

Further author information: (Send correspondence to F.N.)
F.N: E-mail: fnewton@math.ualberta.ca
M.A.K: E-mail: mkouritz@math.ualberta.ca
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Figure 1. CAPTCHA Examples
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Figure 2. Example of a KNW-CAPTCHA of the word “history”, with outline.

(a) (b)

Figure 3. Examples of EZ-Gimpy CAPTCHAs using grey levels.6

In Kouritzin et al.,4 a method for generating CAPTCHAs using random field simulation was introduced. A
KNW-CAPTCHA is generated using an efficient algorithm for simulating discrete random variables with given
pixel-pixel covariances and marginal probabilities (further detailed in Section 2). The procedure is as follows.

1. Generate samples of the challenge word image by combining character images using random per-character
vertical and horizontal displacement.

2. Estimate parameters from sample images of the challenge word.

3. Initialize the KNW-CAPTCHA with background noise using a ScatterType CAPTCHA, as developed in.5

4. Apply Gibbs-like sampling to re-simulate a given number of sites, based on the estimated parameters and
the algorithm; the number of re-simulated sites impacts both attack resistance and human readability.

The hardened KNW-CAPTCHA was found to be very resistant to OCR attacks while maintaining high
readability; in particular, the Tesseract OCR engine was unable to recognize any of the KNW-CAPTCHAs,
while humans recognized 96.4% of them. The reader is referred to4 for details of the algorithm as well as how
attack resistance and human readability were estimated. See Figure 2 for an example of a KNW-CAPTCHA.

Herein, we extend the KNW-CAPTCHA to grey levels. Where we previously generated KNW-CAPTCHAs
with only black and white, we now add a third level that will fall in between. The main goal of this work
is to determine if adding a grey level to the KNW-CAPTCHA results in a more effective CAPTCHA, where
effectiveness is a measure of both the attack resistance and human readability of the generated CAPTCHA.
We hypothesize that adding grey levels to the KNW-CAPTCHAs will increase attack resistance by adding yet
another dimension to the problem of OCR (i.e., how grey level should be interpreted), while providing more clues
to a human reader about the character form and inter-character separation. The addition of grey levels requires
significant modification to the KNW-CAPTCHA-generation procedure described in.4 In particular, the sample
word image samples used in parameter estimation require grey levels; this is accomplished by overlapping random
character pairs, where the presence of black and grey is determined by the regions of overlap. Furthermore, the
generation of background noise using ScatterType is also extended to include grey levels. Parameter estimation
and the simulation of the KNW-CAPTCHA using Gibbs-like sampling follows in much the same way as in.4

Use of grey levels or colours in CAPTCHAs are well established in practice; for example, see Figure 3.
However, we were unable to locate any research on quantifying the impact of the use of multiple colours or grey
levels on the effectiveness of the CAPTCHA, which is what we set out to do in this work.

The main goals of this paper are to empirically assess the effectiveness of the KNW-CAPTCHA and determine
if black and white or grey-level KNW-CAPTCHAs are the most effective, and to give a sensible approach to
selecting KNW-CAPTCHA parameters to balance false positives with false negatives. Furthermore, we aim
to provide a detailed analysis of the impact of the parameters in the KNW-CAPTCHA-generation process,
including their relation to attack resistance and human readability.

The remainder of this work is laid out as follows. Section 2 details the changes to the work in4 required to
introduce grey levels to the KNW-CAPTCHA; Section 3 explains our procedure for optimizing the effectiveness
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of the KNW-CAPTCHA, as measured by a flexible cost function; Section 4 gives the results of the optimization
procedure; a detailed analysis of the results are given in Section 5; human readability and attack resistance of
the hardened grey-level KNW-CAPTCHA, which would be used in practice, is given in Section 6; finally, Section
7 contains our conclusion and discussion of further work.

2. METHOD OF GENERATING THE KNW-CAPTCHA

2.1 Method of Simulating a Random Field

In the following, we explain how we efficiently simulate a random field with given covariances and marginals.
The intent is to make the basic idea clear, and the reader is referred to4 and Kouritzin et al.,7 which handles
this in a more abstract setting, for details.

Next, we provide the required definitions in order to make sense of our simulation formula, equation (1)
below. In this setting, the random field we want to simulate is a rectangular M × N image, made up of sites
S = {(i, j) : 1 ≤ i ≤ M, 1 ≤ j ≤ N}. We divide the image into an unknown part H ⊂ S and known part
HC � S \H .

We enumerate the sites S column by column: s1 = (1, 1), s2 = (2, 1), . . . , sMN = (M,N). Now, we let L be
the number of sites in H and enumerate the sites in H column by column, i.e.,

hi = smi ∀i ∈ {1, 2, ..., L},
where

mi = min{j > mi−1 : sj ∈ H} and m0 = 0.

The sites in H will be simulated in the above order.

Next, define the �-neighborhood of site (i, j) ∈ S

∂�((i, j)) = {(u, v) ∈ S : 0 < ρ((i, j), (u, v)) ≤ �},
where ρ((i, j), (u, v)) =

√
(i − u)2 + (j − v)2. Then, for each k, we let

Ahk
� ∂�(hk)

⋂(
{h1, h2, ..., hk−1}

⋃
HC

)
,

i.e., Ahk
is the set of sites that are in the neighbourhood of hk and were already known or have already been

simulated.

Having established the prerequisite definitions, the following equation gives us exactly how to compute the
conditional probability of a site given its neighbouring sites. Let X = {−1, 0, 1} = {white, grey, black} be the
state space of each site in S, and XA �

∏
s∈A X for A ⊂ S X � XS . We construct the random field X = (Xs)s∈S

on the canonical space X and let XA denote the projection of X onto XA.

Assume the numbers on the RHS of (1) are in [0, 1]. (The conditions for this to be true are given in.7) Then,
there is a probability measure Π on X such that

Π(Xh = c) = πh(c), ∀h ∈ H, c ∈ X,

and
cov(Xh, Xt) = βh,t, ∀ t ∈ ∂l(h),

i.e., with correct marginals and covariances, and

Π(Xhi = xhi |XAhi
= xAhi

) =

πhi(xhi) +

∑

ti∈Ahi

(xhi − μ̄)βhi,ti(xti − μ̄)

d|Ahi
|+1(σ̄2)2Π(XAhi

= xAhi
|XHC = xHC )

(1)
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for each xhi ∈ X and xAhi
∈ XAhi

(1 ≤ i ≤ n), where μ̄ =
1

d

∑

c∈X

c, σ̄2 =
1

d

∑

c∈X

(c− μ̄)2 and |Ahi | is the cardinality
of Ahi .

Simulation of a particular site hk follows immediately from equation (1) as follows.

1. Compute the value of Π(Xhk
= c|XAhk

= xAhk
) for c ∈ X

2. Generate a [0, 1]-uniform random number U to select which value to use for site hk. In particular, if

w−1∑

u=1

Π(Xhk
= cu|XAhk

= xAhk
) ≤ U <

w∑

u=1

Π(Xhk
= cu|XAhk

= xAhk
)

for some 1 ≤ w ≤ d, then we set Xhk
= cw, i.e., the realization of Xhk

is colour cw ∈ {−1, 0, 1}.

The procedure laid out in Section 2.3 requires simulating sites efficiently in a Gibbs-like manner. For the
sake of brevity, it is sufficient to say that simulating a site s involves extracting a reduced image consisting of
the site s and its neighbourhood. Working with this reduced image, every site is considered to be a neighbour
of every other site; this allows for fast computation of the joint probability in the denominator of (1) using the
multiplication rule. The reader is referred to4 for the details of this method.

2.2 Parameter Estimation

In order to apply (1) to generating KNW-CAPTCHAs, we must first estimate the required parameters πh(c) ∀h ∈
H and βh,s ∀h ∈ H, s ∈ S. The procedure is largely the same as in,4 so we will give a brief description and
highlight the differences. For a particular KNW-CAPTCHA and word, we estimate the parameters from a
sample of K automatically generated word images. Each word image is constructed by assembling a series of
character images. In order to ensure consistent placement of characters, we again work with trimmed images of
{i,j,l,r,t} and scaled images of other characters in order to ensure all images of a particular character have the
same width. In this context, trimming the character images means extra white space around the character is
removed so all images of a particular character have a common width. For a given character string, we generate
K M ×N images representing that string. A particular image is constructed in the following way.

1. The horizontal distance between adjacent characters is randomly selected from {1, 2, 3}.
2. The vertical distance between adjacent characters is determined by a reflecting one dimensional random

walk.

3. Each character image for the string is randomly selected over the available grey-level images of that char-
acter. (The grey-level images are described below.)

4. The character images are concatenated into one image according to the random horizontal and vertical
placements determined above.

Let sik denote the kth site in the ith word image in this sample. As in,4 we use the unbiased estimators

βk,t =
1

K − 1

K∑

i=1

(xsik
− x̄sk)(xsit

− x̄st),

where x̄sk = 1
K

∑K
i=1 xsik

is the empirical mean, for all k, t = 1, ...,MN and

πsk (xsk) =
1

K

K∑

i=1

1x
si
k
=xsk

,
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(a) “a” (b) “w”
Figure 4. Examples of grey-level character images.

(a) (b)
Figure 5. Examples of excluded grey-level character images.

where

1x
si
k
=xsk

=

{
1 if xsik

= xsk

0 otherwise.

Next, we establish exactly how the grey-level images are constructed from a set of black and white character
images. Given two black and white images of the same character, we create a third grey-level image. Let xi

sk

denote the kth pixel of the ith black and white image and let xsk denote the kth pixel of the grey-level image.
Set

xsk =

⎧
⎪⎨

⎪⎩

1 if xi
sk = 1 and xj

sk = 1

−1 if xi
sk = −1 and xj

sk = −1

0 otherwise

,

i.e., the new grey-level image will be black where the black and white images are both black, white where both
are white, and grey otherwise. See Figure 4 for an example.

Remark 2.1. An interesting feature of this process is that we are now working with character images that do not
map easily to any particular font, which should have the effect of making feature detection or pattern matching
much more difficult.

Remark 2.2. We automatically exclude certain grey-level images which may be easily recognized by OCR. For a
given grey-level image, set all grey pixels to black; if this new image is recognized by the OCR program Tesseract,
available at http:// code.google.com/ p/ tesseract-ocr/ , exclude the grey-level image from the database.
Repeat this procedure with all grey pixels set to white. The intent of excluding these images is to help ensure
the introduction of grey levels is not trivially bypassed by setting the grey pixels black or white. See Figure 5 for
examples.

It is clear from Figure 4 that the amount of overlap between the two black and white images will certainly
have an effect on both readability and attack resistance. In the following, the amount of overlap for a particular

grey-level image is calculated as
∑

sk∈S 1xsk
=1

∑
sk∈S 1xsk

�=−1
, i.e., amount of black/amount not white. The effect of overlap

will be analyzed in Section 5.

2.3 Generating a KNW-CAPTCHA

Now that we have estimated the parameters, we describe how to generate a KNW-CAPTCHA for a particular
challenge. Again, the procedure is largely the same as in,4 so we give a summary of the approach and highlight
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(a) KNW-CAPTCHAE (b) KNW-CAPTCHAH

Figure 6. Examples of grey-level KNW-CAPTCHAs.

the differences. Generating a KNW-CAPTCHA begins with initializing the image with background noise using
an implementation of the ScatterType CAPTCHA. Background noise is introduced in order to further complicate
attacks on the KNW-CAPTCHA by serving as red herring character shapes. From this initial state, we simulate
the random field from the parameters estimated in Section 2.2. Simulation is accomplished site-by-site for a
given number of sites via the Gibbs-like sampling described in 2.1. Two passes of the Gibbs-like sampling are
used; the first pass is done with a lag of 0, i.e., all sites are considered independent; the second pass is done with
a lag of 4. The first pass is used to help ensure that the site-site correlations introduced in the second pass are
between sites representing the actual characters instead of between a character site and a site representing the
background noise.

As in,4 we use ScatterType to generate the background noise. In essence, for each character in a string,
ScatterType cuts the character image randomly and scatters the resulting character pieces randomly; these
scattered character images are then concatenated into a single word image.5 In this work, we now use the grey-
level character image database generated in 2.2; in fact, we also use grey-level character images that fall into
the same target overlap range as our KNW-CAPTCHA. This is intended to ensure that the background noise
and simulated character images are not obviously different, and so it is difficult to remove the background noise
heuristically.

In the remainder of this paper, we will work with two variants of the KNW-CAPTCHA. The KNW-
CAPTCHAE, an easy variant, is generated without background noise or vertical displacement of the characters;
the KNW-CAPTCHAH, a hardened variant, is generated with both background noise and vertical displacement.
The KNW-CAPTCHAE is used in cases when we are attempting to measure the relative attack resistance of
the generated CAPTCHAs; in our experience, OCR always fails to recognize KNW-CAPTCHAHs, and would
provide no information about the relative attack resistance. While the failure rate on the KNW-CAPTCHAEs
is still high, it still provides useful results. The KNW-CAPTCHAH should be used in practice since it is more
resistant to attacks See Sections 4 and 5 for results using KNW-CAPTCHAEs, and see Section 6 for readability
and attack resistance results of KNW-CAPTCHAHs. See Figure 6 for examples of both.

3. PROCEDURE

We now present our procedure for determining which method of generating KNW-CAPTCHAs is the most
effective. In essence, we want to determine if grey-levels provide us with a way of generating more effective
KNW-CAPTCHAs. We conjecture that grey will both increase attack resistance and improve human readability.
As stated previously, we work with KNW-CAPTCHAEs in order to capture the relative effectiveness of the
CAPTCHAs; we will present results for KNW-CAPTCHAHs in Section 6.

Before proceeding, we must define “effective”. How effectiveness of the CAPTCHA will depend on the goals
of the user: are false positives or false negatives worse, or are the equally weighted? (Here, a false positive is
claiming a human is a computer program; a false negative is claiming a computer program is a human.) The
ideal but unrealistic result is to always deny access to computers, but always allow access to humans. In reality,
there will be mistakes; furthermore, there will be a penalty associated with mistakenly allowing a program access
(it can abuse whatever resource is being provided) as well as a penalty associated with mistakenly denying access
to a human (the site becomes less usable, human visitors can become frustrated and less likely to visit or use
the site).
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Consider the following diverse examples of CAPTCHA usage. First, a CAPTCHA can be shown after 3
unsuccessful attempts at entering a password, which helps prevent brute force attacks. Second, on an online
auction site, preventing bots from accessing the site and automatically bidding may be more important than
occasionally denying access to a human since a bot can bid faster and more accurately than humans and could
ruin the original intent of the site. Third, a CAPTCHA protecting a low-traffic niche forum might favour allowing
humans over denying bots since it would be a low-reward target for a spam bot. We adopt a flexible definition
of effective to account for the varying needs.

As previously mentioned, we will work with KNW-CAPTCHAEs, i.e., not hardened (no additional noise, no
vertical displacement of characters). For each trial, we generate a KNW-CAPTCHAE for a random character
pair according to a set of randomized parameters. Let NI be the number of sites re-simulated during the first
pass of the Gibbs-like sampling, NG be the number of sites re-simulated during the second pass of the Gibbs-like
sampling, g ∈ [0, 1] be the grey colour used (lower is darker), and [omin, omax) be the acceptable overlap range
for the grey character images used. For each black and white KNW-CAPTCHAE, NI and NG will be selected
randomly from {300, 400, 500}. For each grey-level KNW-CAPTCHAE, NI and NG will be selected randomly
from {300, 400, 500}, g will be selected randomly from {0.25, 0.5, 0.75}, and omin will be selected randomly from
{0, 0.5} and set omax = omin + 0.5.

We work with KNW-CAPTCHAE here since we want to be able to select the best “base” CAPTCHA, then
harden it; in addition, it is unlikely that Tesseract would recognize any of the KNW-CAPTCHAHs, which would
make the results useless. We work with random character pairs to generate the minimal, interesting CAPTCHA:
single characters do not exercise segmentation-based resistance (which is mainly accomplished through character
crowding); words introduce other aspects such as linguistic analysis on the part of Tesseract (see Smith8 for an
overview of Tesseract), as well as being more easily recognizable for humans; however, random character pairs
exercise segmentation resistance while also not being easier to recognize due to linguistic analysis. We work with
a reduced parameter space based partly on prior work in4 as well as visual inspection of the generated KNW-
CAPTCHAs. The selected parameter ranges were determined to yield generally readable KNW-CAPTCHA’s
without being trivial or impossible to crack (i.e., the generated KNW-CAPTCHAs are interesting).

Selecting the most effective KNW-CAPTCHA is now a matter of minimizing a cost function. We use the
cost function

f(θ) = wt · t(θ)− wh · h(θ),
where θ are the parameters, t(θ) is the probability of a KNW-CAPTCHA generated by parameters θ being
recognized by the Tesseract OCR program, and h(θ) is the probability of that KNW-CAPTCHA being recognized
by a human, and wt, wh ∈ [0, 1] are weights to adjust the relative importance of false positives and false negatives.
For example, setting wt = 1, wh = 0.5 would make denying access to a computer program twice as important
as successfully allowing access to a human. Our goal is to find the θ that minimizes the cost function, i.e., we
would like t(θ), the probability of the KNW-CAPTCHA being cracked, to be low, and we would like h(θ) to be
high.

Of course, we don’t know the true functions t(θ) and h(θ), so we work with the estimates of the functions

t̂(θ) and ĥ(θ), respectively. First, we estimate t(θ). For a particular set of parameters θ, model the experimental
trials as independent and identically distributed (i.i.d.) t(θ)-Bernoulli random variables. Let

yi =

{
1 if Tesseract’s ith response was correct

0 otherwise
,

where the response correctness is determined using a case-insensitive comparison. For a particular set of param-
eters θ, the experiment yields nT results, {y1, y2, . . . , ynT }. We use parameter-by-parameter maximum likelihood
estimator t̂(θ) for t(θ), i.e.,

t̂(θ) =
1

nT

nT∑

i=1

yi.

We determine ĥ(θ) in exactly the same manner.
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Remark 3.1. We use the MLE for each unique set of parameters to avoid making any assumptions about the
shape of f(θ) during the optimization process.

Now we optimize the estimated cost function

f̂(θ) = wt · t̂(θ)− wh · ĥ(θ),

i.e., we want to find θ∗, the set of parameters which minimizes f̂(θ). For each unique set of parameters θ ∈ Θ,

where Θ is the parameter space, determine f̂(θ) and choose the parameters which minimize it, i.e.,

θ∗ = argminθ∈Θ f̂(θ)

4. RESULTS

We now present the results of the procedure laid out in Section 3. We give the most effective black and white
KNW-CAPTCHAE and the most effective grey-level KNW-CAPTCHAE for the following cost functions: wt =
1, wh = 1, where human success and attack failure are considered equally important (Table 1); wt = 0.5, wh = 1,
where human success is considered more important than attack failure (Table 2); and wt = 1, wh = 0.5, where
attack failure is considered more important than human success (Table 3). Similarly, we also include results for
wt = 0.25, wh = 1 (Table 4), wt = 1, wh = 0.25 (Table 5), wt = 0, wh = 1 (Table 6), wt = 1, wh = 0 (Table 7);
the final two sets of weights are the edge cases that we only care about human readability and only care about
attack resistance, respectively. These cost functions all balance the trade-offs of security and human usability
differently.

KNW-CAPTCHAE Type Parameters θ∗ t̂(θ∗) ĥ(θ∗) f̂(θ∗)
Black and White NI = 400, NG = 400 0.0082 0.9714 -0.9633

Grey-level NI = 500, NG = 400, g = 0.75,
omin = 0.50, omax = 1.00

0.0000 0.9860 -0.9860

Table 1. Optimization results with wt = 1.00, wh = 1.00

KNW-CAPTCHAE Type Parameters θ∗ t̂(θ∗) ĥ(θ∗) f̂(θ∗)
Black and White NI = 500, NG = 400 0.0298 0.9915 -0.9766

Grey-level NI = 500, NG = 400, g = 0.75,
omin = 0.50, omax = 1.00

0.0000 0.9860 -0.9860

Table 2. Optimization results with wt = 0.50, wh = 1.00

KNW-CAPTCHAE Type Parameters θ∗ t̂(θ∗) ĥ(θ∗) f̂(θ∗)
Black and White NI = 400, NG = 400 0.0082 0.9714 -0.4776

Grey-level NI = 500, NG = 400, g = 0.75,
omin = 0.50, omax = 1.00

0.0000 0.9860 -0.4930

Table 3. Optimization results with wt = 1.00, wh = 0.50

Section 5 contains a detailed analysis of results; however, it is immediately clear that the cost function offers
a flexible way of selecting a CAPTCHA-generation method, and that the exact choice of wt, wh affects the
recommended CAPTCHA; in particular, there does not appear to be a universally better KNW-CAPTCHAE

(i.e., one which maximizes attack resistance and human readability simultaneously). Also, in most cases, the
recommended CAPTCHA was the grey-level KNW-CAPTCHAE; in fact, the sole exception is the edge case wt =
0, wh = 1, which would not normally be deployed in practice. Furthermore, the grey-level KNW-CAPTCHAE

was recommended over the black and white KNW-CAPTCHAE in the case that wt = 1, wt = 1; indeed, in this
case, the grey-level version outperformed the black and white version in both readability and attack resistance.
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KNW-CAPTCHAE Type Parameters θ∗ t̂(θ∗) ĥ(θ∗) f̂(θ∗)
Black and White NI = 500, NG = 400 0.0298 0.9915 -0.9840

Grey-level NI = 500, NG = 300, g = 0.50,
omin = 0.50, omax = 1.00

0.0058 0.9884 -0.9870

Table 4. Optimization results with wt = 0.25, wh = 1.00

KNW-CAPTCHAE Type Parameters θ∗ t̂(θ∗) ĥ(θ∗) f̂(θ∗)
Black and White NI = 400, NG = 300 0.0040 0.9622 -0.2366

Grey-level NI = 500, NG = 400, g = 0.75,
omin = 0.50, omax = 1.00

0.0000 0.9860 -0.2465

Table 5. Optimization results with wt = 1.00, wh = 0.25

5. ANALYSIS

In the following, we set out to understand how the parameters controlling the generation of the KNW-CAPTCHAE

impact both the human readability and attack resistance of the resulting CAPTCHA. The following analysis
uses logistic regression. Let

yi =

{
1 if ith response was correct

0 otherwise
,

and we model yi as independent (μi)-Bernoulli trials. We assume that

log(
μi

1− μi
) = β0 + β1x1,i + · · ·+ βkxk,i.

Our task is to estimate βj , j = 1, . . . , k and determine the covariates which have a significant impact on the
probability of the response being correct, i.e., μi. In the following, x1,i, . . . , x1,k will be the values of the
parameters, and we will consider any coefficient with a p-value less than 0.05 to be significant. We will perform
the analysis on the responses from both Tesseract and humans.

As is clear from Tables 8 and 10, the effect of increasing NI and NG increases the probability that Tesseract
will recognize a given KNW-CAPTCHAE. However, as Tables 9 and 11 show, the effect of increasing NI and
NG is to also increase the probability that a human will recognize a given KNW-CAPTCHAE. (While NG is
not significant at a 0.05 level in the case of human responses on grey-level KNW-CAPTCHAEs, we suspect that
it would become significant with more data.) Thus, NI and NG increase the probability of both Tesseract and
humans recognizing the KNW-CAPTCHAEs, and the effects appear to be roughly the same magnitude. As such,
this parameter does not appear to aid in distinguishing between humans and computer programs.

Interestingly, increasing g (i.e., using a lighter shade of grey) appears to decrease the probability of Tesseract
recognizing the grey-level KNW-CAPTCHAE, yet does not have a significant effect on human readability, as can
be seen in Tables 10 and 11, respectively. This indicates that adjusting the grey level parameter should allow us
to design KNW-CAPTCHAs with higher attack resistance without significantly impacting human readability.

Similarly, it appears that the choice of overlap range significantly impacts human readability (i.e., the more
overlap between characters, the higher the readability), but does not significantly impact Tesseract’s ability to
recognize the KNW-CAPTCHAEs, as seen in Tables 10 and 11, respectively. This indicates that adjusting the
acceptable overlap range can also serve to further differentiate between computer programs and humans.

In summary, it appears that grey-level KNW-CAPTCHAs introduce two new parameters, the grey level and
the acceptable overlap range, that allow for greater flexibility and power when compared with the black and
white KNW-CAPTCHA.

6. KNW-CAPTCHAH

Next, we present the attack resistance and readability results of the grey-level KNW-CAPTCHAH. We generate
the KNW-CAPTCHAH using the parameters for the most effective grey-level KNW-CAPTCHAE on the cost
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KNW-CAPTCHAE Type Parameters θ∗ t̂(θ∗) ĥ(θ∗) f̂(θ∗)
Black and White NI = 500, NG = 500 0.0824 0.9945 -0.9945

Grey-level NI = 500, NG = 300, g = 0.50,
omin = 0.50, omax = 1.00

0.0058 0.9884 -0.9884

Table 6. Optimization results with wt = 0.00, wh = 1.00

KNW-CAPTCHAE Type Parameters θ∗ t̂(θ∗) ĥ(θ∗) f̂(θ∗)
Black and White NI = 400, NG = 300 0.0040 0.9622 0.0040

Grey-level NI = 300, NG = 400, g = 0.50,
omin = 0.00, omax = 0.50

0.0000 0.8361 0.0000

Table 7. Optimization results with wt = 1.00, wh = 0.00

function with wt = 1, wh = 1. We present these results in order to compare the KNW-CAPTCHAH effectiveness
with that of the black and white KNW-CAPTCHAH presented in.4 Results are given in Table 12.

As expected, Tesseract is unable to recognize any of the generated KNW-CAPTCHAHs. Surprisingly, how-
ever, the human readability is significantly lower than the results on the black and white KNW-CAPTCHAH

(which obtained a ĥ(θ) of 0.96). It appears that the introduction of background noise is more likely to interfere
with the readability when working with the grey-level KNW-CAPTCHAs; this may be due to the increased
complexity of the background noise (i.e., the introduction of grey levels into the ScatterType CAPTCHA)
when compared with the black and white KNW-CAPTCHAHs. However, we expect that the readability of
the grey-level KNW-CAPTCHAH can be increased significantly by adjusting the acceptable overlap range, NG,
and NI . For now, those wishing to favour human readability over attack resistance may prefer to deploy the
KNW-CAPTCHAE.

7. CONCLUSION

• KNW-CAPTCHAs are effective distinguishers of humans over computer programs.

• Adding a grey level to a KNW-CAPTCHA can increase the CAPTCHA’s power.

• The actual grey level as well as the amount of grey compared to black are two of the most significant
parameters to KNW-CAPTCHA power.

• Adding grey-level background noise makes both human readability and computer recognizability harder
over black and white.

• Even grey-level KNW-CAPTCHAs are easy to implement in real time using the given algorithm and they
provide effective protection.
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Covariate Estimate p-value Significant?
Intercept −2.66e+ 01 9.74e− 01 No

NG 7.19e− 03 1.14e− 03 Yes
NI 9.56e− 03 1.64e− 02 Yes
g −3.45e+ 00 1.53e− 04 Yes

I[omin,omax)=[0.5,1.0) 1.65e+ 01 9.84e− 01 No
Table 10. Tesseract Responses on Grey-level KNW-CAPTCHAE

Covariate Estimate p-value Significant?
Intercept 4.58e− 01 3.94e− 01 No

NG 9.56e− 04 1.79e− 01 No
NI 3.92e− 03 6.10e− 05 Yes
g −4.27e− 01 2.62e− 01 No

I[omin,omax)=[0.5,1.0) 1.14e+ 00 1.34e− 19 Yes
Table 11. Human Responses on Grey-level KNW-CAPTCHAE

Parameters t̂(θ) ĥ(θ)
NI = 500, NG = 400, g = 0.75, omin = 0.50, omax = 1.00 0.0000 0.8639

Table 12. Human Readability of KNW-CAPTCHAH
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