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Abstract 

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), continues to be a leading infectious cause 

of death worldwide with approximately 10 million new cases and 2 million deaths attributed annually. There has been 

resurgence in active TB infections since 1980s and the World Health organization (WHO) has declared TB to be a 

“Global emergency”. The lack of an effective vaccine, the lengthy treatment regimens with multiple 

chemotherapeutic agents that have serious side effects, the prevalence of co-infection with HIV and the increasing 

number of cases of multi-, extensively-, and totally-drug resistant tuberculosis (MDR, XDR, TDR-TB), necessitate 

the development of novel vaccine and therapeutic regimens to treat and control the global spread of tuberculosis.  The 

immune correlates of protection from infection and control of an ongoing infection are not clear yet, but intensive 

studies suggest the important role of innate immunity and multi-specific, polyfunctional adaptive cellular immunity. 

In this study, I have designed a novel subunit vaccine by conjugating a palmitoyl-lysine residue to peptides 

of the ESAT-6 antigen of Mtb, which corresponds to dominant human T cell epitopes. I sought to evaluate their 

ability to induce protective cellular immunity against Mtb (H37Ra) by subcutaneous (s.c.) and intranasal (i.n.) 

immunizations in a mouse model of Mtb infection. I have also evaluated how an adjuvant [Poly I:C, MPL, 

Gardiquimod (GDQ) and heat-killed Caulobacter crescentus (HKCC)] contributes to enhancing the induced 

responses and resulting protective efficacy of lipopeptides. My results demonstrated that single C-terminal palmitoyl-

lysine modified lipopeptides of ESAT-6 elicited significant antigen specific CD4+ and CD8+ T cell responses upon 

subcutaneous immunizations. Intriguingly, a combination of immunogenic lipopeptides of ESAT-6 antigen exhibited 

local (pulmonary) and systemic immune responses along with efficient protective efficacy when administered 

intranasally or subcutaneously. Surprisingly, immunization with ESAT-6 derived lipopeptides with MPL and HKCC 

enhanced protection, whereas PolyI:C and GDQ led to reduce protection associated with specific local and systemic 

immune modulation. My studies demonstrate the potential of ESAT-6 derived lipopeptides as a promising vaccine 

candidate against Mtb, and emphasize that selection of the adjuvant is critical for the success of vaccines.  

In addition, I have investigated the ability of the newly discovered immunomodulator HKCC to induce 

immune responses capable of controlling mycobacterial growth. I examined the effect of HKCC in vitro on various 

human immune cells present in human peripheral blood mononuclear cells (PBMCs). I also evaluated the host-

mediated anti-mycobacterial effects of HKCC in human macrophages infected with Mtb (H37Ra) and M. avium, and 
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in a mouse model of Mtb infection. My results demonstrated that HKCC stimulate innate immune cells such as 

antigen-presenting cells (APCs), NK and NKT cells, and also lead to induction of multiple cytokines upon 24 h and 

96 h culture with human PBMCs. Intriguingly, treatment with HKCC stimulated PBMCs supernatant led to 

significant reduction of Mtb and M. avium replication within human macrophages. Further, immunotherapy with 

HKCC alone and combination with isoniazid therapy significantly controlled mycobacterial growth in lungs, liver 

and spleen of Mtb infected mice with the induction of local and systemic protective immune responses. These 

findings reveal the promise of HKCC as a novel immunotherapy to treat mycobacterial infections.  

Overall, a promising vaccine candidate and a novel immunotherapeutic approach have emerged from my 

studies, which may be developed to prevent and/or treat TB infections. 
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1.1 Tuberculosis: Ancient Enemy, Present Threats 

Tuberculosis (TB) is one of the oldest known human diseases. TB is still one of the major 

causes of high mortality among infectious diseases. TB is thought to have originated more than 

150 million years ago during the Jurassic period [1]. The causative agent of TB, Mycobacterium 

tuberculosis (Mtb) originated from soil and over the time some species of mycobacteria evolved 

to live in mammals. Literature reports have shown that early ancestors may have been infected 

with Mtb as far back as 3 million years ago in East Africa [2]. However, prevailing strains of Mtb 

are thought to have originated about 15,000-20,000 years ago. Mtb DNA was isolated from 

Egyptian mummies with bone disease more than 5,000 years ago. Mtb infection was also found 

in Israel (9000 year/ago), Peru (1000 year/ago), India (3300 year/ago) and China (2300 year/ago).  

TB reached Western Europe and North America during the 18th and the first half of the 19th 

centuries [3, 4].   

 TB has been known by many names over its long history in humans. Hippocrates (460–

370 B.C.), the ancient Greek physician, identified TB as phthisis, the most widespread, and 

invariably fatal disease of his time. During the first half of the 20th century, TB was called  

"consumption" or "White Plague” [5-8]. 

Until 1882, the cause of TB was unknown. On March 24, 1882, however, the history of 

this disease changed when Robert Heinrich Hermann Koch identified tubercle bacteria that he 

presented as “Die Aetiologie der Tuberculose”. Robert Koch isolated the bacteria from an 

infected host, grew it in culture and demonstrated that it is the causative agent of TB [9, 10]. In 

1909, pediatrician Clemens Freiherr von Pirquet observed positive tuberculin reactions upon 

subcutaneous administration of Mtb-derived protein in children without any symptoms of disease 

and introduced the term “latent tuberculosis” [11]. In 1921, Albert Calmette and Camille Guérin 
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developed an attenuated strain of Mycobacterium bovis (M. bovis) as a preventive vaccine for 

TB, Bacille Calmette-Guérin (BCG) [12].  

The 1950s brought about the great advances in treating TB with the development of 

several anti-tuberculosis drugs and their different combinations. In the 1970s, TB was starting to 

be considered as a disease of the past-era. However, decades of widespread use of antibiotics 

resulted in the new emergence of drug-resistant strains of mycobacteria. Unfortunately, in the 

1980s, TB returned as one of the most dangerous infectious diseases, and presently it continues to 

spread in every corner of the globe [13-15]. The resurgence in the TB cases worldwide has been due 

to its linkages with the HIV/AIDS epidemic, increased mobility and immigration of people, increased 

poverty and homelessness, poor compliance of drug regimens and their side effects, and/or emergence 

of drug-resistant variants that are not susceptible to almost all of the available drugs [16-21]. Human 

immunodeficiency virus (HIV) is the most important determinant of the widely observed increases in 

TB in both developing and industrialized countries and is associated with a high TB attack rate, rapid 

disease progression and high mortality [22-24]. In addition, other immunocompromised individuals 

such as cancer patients, organ transplantation recipients and elderly people are also highly susceptible to 

TB infection, reactivation and spread [25]. The TB epidemic has exponentially worsened because of 

lack of effective treatment or vaccine.  

In 1993, the World Health Organization (WHO) declared TB a “Global Emergency” due 

to increasing numbers of TB cases and a rise in multi-drug resistant cases [26]. In 1995, WHO 

introduced DOTS (directly observed treatment, short-course) to control the disease and prevent 

development of drug-resistance [27]. It has been estimated that 225 million new infections will occur 

and about 79 million people worldwide will die of TB between the years 1998-2030 [28]. In 2006, 

WHO launched the Global Plan to stop TB in line with the Millennium Development Goals, with 
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an aim to reduce TB prevalence and deaths by 2015 by 50% compared to a baseline of 1990, and 

eliminate TB as a public health problem by 2050 [29]. 

However, despite these global efforts, TB still represents an enormous challenge to health 

services and has a significant socioeconomic impact on communities. Further, in 2009, 

identification of total drug-resistant TB strains (TDR-TB), an incurable form of TB, suggests that 

the current efforts to curb TB disease are not sufficient and more research efforts are needed. 

1.2 Mycobacterium Complexes 

In the bacteria kingdom, Mycobacteria belong to the Phylum Actinobacteria, Order 

Actinomycetales, Family Mycobacteriacea and Genus Mycobacterium. Mycobacteria are 

classified as gram-positive bacteria due to their genetic similarities with other gram-positive 

bacteria [30, 31]. Mycobacterial species are further classified into different complexes based on 

DNA sequencing as follows: 

 The Mycobacterium tuberculosis complex includes M. tuberculosis, M. canettii, M. 

africanum, M. microti, M. bovis, M. caprae and M. pinnipedii, which are pathogenic to humans 

and animals. There is > 99.9% similarity in DNA sequences among the members of this complex 

[32-34].  

The Mycobacterium avium complex (MAC) includes M. avium and M. intracellulare.  

These are atypical environmental bacteria causing infections in humans. They lead to pulmonary 

infection and disseminated TB disease in HIV/AIDS and other immunocompromised individuals. 

Pulmonary infections with MAC rarely occur in immune-competent hosts.  MAC also comprises 

M. avium subsp. Paratuberculosis, the etiologic agent of Johne’s disease or paratuberculosis [35, 

36]. 
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The Mycobacterium fortuitum complex includes M. fortuitum, M. peregrinum, M. 

abcessus and M. chelonae, which are frequently responsible for abscess formation in local 

infections and surgical wounds. These mycobacterial species, especially M. abcessus, can also 

lead to pulmonary disease, particularly in immunosuppressed individuals [37- 40].  

1.3 Characteristics of Mycobacteria 

 Mycobacteria are aerobic, non-motile, non-spore forming, rod-shaped organisms (2-4 

µm in length and 0.2-0.5 µm in width). The high density of lipids in the cell wall prevents gram 

staining, but they can be stained by Ziehl-Neelson acid-fast dyes, and are thus termed as acid-fast 

bacilli. After staining, they appear as slightly curved or straight and small red or pink rods [41-

44]. Mycobacteria are facultative intracellular parasites, usually of macrophages. They are 

obligate aerobic bacteria since they require high levels of oxygen for growth. Mycobacteria are 

always found in the well-aerated upper lobes of the lungs in TB patients [45]. Mycobacteria are 

slow growing bacteria. They have a generation time of 15-20 hours to undergo one cycle of 

replication, which is extremely slow compared to Escherichia coli that can divide every 20 

minutes. Besides its strictly aerobic intracellular nature and slow growth, the other unique 

features of the bacillus include dormancy, complex waxy cell wall and genetic homogeneity [46]. 

1.4  Transmission and Epidemiology 

Mycobacteria are transmitted through the air when a person with active pulmonary 

tuberculosis coughs, sneezes or spits [47]. TB bacilli can infect people of all age groups. 

Approximately one third (2 billion) of the world’s population is latently infected with TB bacilli; 

10% of latently infected individuals develop active TB, while the remaining 90% harbor their 

latent bacilli throughout their lifetime. According to a WHO report worldwide TB accounted for 

9.6 million new cases and 1.4 million deaths in the year 2014 alone [48]. Although most TB 
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infections and deaths were found to occur among men, the burden of disease is also high among 

women and children. In 2014, 480,000 women died from TB (300,000 among HIV-negative 

women and 180,000 among HIV-positive women) with an incidence of 3.2 million new cases. In 

the same year, approximately 140,000 HIV-negative children died from TB and 1.0 million new 

TB cases appeared in children. The estimates for HIV-positive children are not yet available [49-

50].  

In 2014, multidrug-resistant TB (MDR-TB) accounted for 190,000 deaths from 480,000 

newly diagnosed MDR-TB cases. MDR-TB related deaths were over 10% of all TB-related 

deaths. More than half of these cases were in India, China and the Russian Federation. 

Unfortunately, about 9.0% of MDR-TB cases had extensively drug-resistant TB (XDR-TB).  

People living with HIV are up to 37 times more likely to develop TB disease than people 

who are HIV negative [51]. In 2014, 12% of individuals diagnosed with TB were also co-infected 

with HIV, leading to 390,000 deaths due to TB. Most of the TB-HIV cases occurred in South-

East Asia (56%), Africa (29%), the Eastern Mediterranean  (8%), Europe  (4%) and the America 

(3%).  

There are 17 countries with a high burden of TB; Bangladesh, China, Democratic 

Republics of Congo and Korea, Ethiopia, India, Indonesia, Mozambique, Myanmar, Nigeria, 

Pakistan, Philippines, Russian Federation, South Africa, United Republic of Tanzania, Thailand 

and Vietnam. These nations account for 82% of all estimated cases of TB worldwide. The 

incidence rate of TB in these countries is reported as 100 cases per 100,000 populations or more. 

The countries that rank first to sixth in terms of the number of TB incidents in the year 2014 are 

India (2-2.3 million), Indonesia (0.75-1.4 million), China (0.9-1.1 million), Nigeria (340,000-

880,000), Pakistan (370,000-650,000), and South Africa (410,000-520,000). India and China 

alone account for 24% and 11% of global cases of TB, respectively [52, 53]. 
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1.5 Genome  

The genome of the virulent strain of Mtb, H37Rv, was completely sequenced in 1998 by 

Cole et al., providing greater insights about the biochemistry, physiology, genetics and 

immunology of this bacterium. The genome of Mtb comprises 4,411,529 base pairs and 

represents the second-largest bacterial genome sequence currently available (after that of E. coli). 

Bioinformatics analysis has led to the identification of approximately 4000 genes in the 

mycobacterial genome of which > 91% of the genes have potential coding capacity. Overall, 58% 

of the Mtb genes can be attributed a function, 27% show similarity to putative proteins and the 

remaining 15% are unrelated to known genes or proteins in the databank. It has been estimated 

that approximately 51% of the genes present in the Mtb genome have arisen because of gene 

duplication and domain shuffling [54, 55].  

Interestingly, 6% of the total genome of Mtb is putatively devoted to 227 genes, which 

encode for enzymes involved in fatty acid metabolism. These enzymes allow the synthesis and 

degradation of several lipids from simple fatty acids to complex molecules such as mycolic acids. 

Among these, about100 genes are involved in β-oxidation of fatty acids, while in E. coli 

approximately50 enzymes are involved in fatty acid degradation [54, 56].  

Approximately 4% of the Mtb genome consists of two unrelated families of acidic and 

glycine-rich proteins, named as PE and PPE families. These names are derived from the presence 

of conserved proline-glutamate (PE) or proline-proline-glutamate (PPE) residues near the N- 

terminus of 110 and 180 amino acids long proteins, respectively. The 104 PE genes can be 

further sub-divided into three classes containing 29 proteins within the PE region alone, 8 

proteins in which the PE region is followed by unrelated C-terminal sequences and 67 proteins 

that form the PE-PGS family. These proteins are restricted to pathogenic bacteria; however, non-

pathogenic mycobacteria also contain some similar genes. The functions of most of the members 
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of this large family of proteins are still not known, but size variation has been observed between 

different strains [54, 57, 58].  

Genome analysis of the Mycobacterium revealed an efficient DNA repair system with 

nearly 45 genes related to DNA repair mechanisms and code for 13 putative sigma factors and 

more than 100 regulatory proteins. The presence of a single ribosomal ribonucleic acid (rRNA) 

operon (rrn), contrary to most eubacteria that have more than one rrn operon, has been noted to 

be a factor contributing to the slow growth of Mtb [59-60].  

The genome of Mtb has a very high guanine + cytosine (G+C) content (65.5%). Though 

the G+C content in the genome is relatively uniform, the amino acid content of the proteome is 

non-random. The proteins are rich in glycine, alanine, proline, and arginine which are all encoded 

by G+C rich codons at the expense of amino acids such as lysine and asparagine encoded by 

adenine + thymine (A+T) rich codons [54]. 

 The members of the Mtb complex have ≥ 99% 16S rRNA gene sequence homology [61, 

62]. Genome analysis of the attenuated strain of Mtb, H37Ra, showed high similarity to that of its 

virulent parent strain H37Rv with respect to gene content and order as demonstrated by Zheng et 

al [63]. However, the genome size of H37Ra is 8,445 bp larger as a result of 53 insertions and 21 

deletions in H37Ra compare to H37Rv. Further, H37Ra has several distinguishing characteristics, 

such as loss of cord function, impaired ability to arrest phagosome maturation and mutations in 

the PhoPR transcriptional regulator that results in a loss of virulence function [64]. 

1.6 Cell Wall 

Mycobacteria have a unique and intricate cell wall among all gram-positive bacteria, 

which is crucial for its survival and virulence. The presence of long chain fatty acids is   

characteristic of the mycobacterial cell wall that accounts for 60% of the dry weight of the cell 
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wall. The cell envelope of Mtb consists of three main structural components a) the long chain 

mycolic acids, b) a highly branched arabinogalactan (AG) polysaccharide and c) a cross-linked 

network of peptidoglycan, which is surrounded by a non-covalently linked outer capsule of 

protein and polysaccharides. Therefore, the complexity and hydrophobicity of the cell wall are 

responsible for its intrinsic resistance to many antibiotics and host-microbicidal pathways.  The 

mycobacterial cell wall does not contain lipoteichoic acid and lipopolysaccharides, typical of 

gram-positive and gram-negative bacteria, respectively [65-67].  

Mycolic acids (MA) are the major lipid component of the mycobacterial cell wall and 

comprise 40–60% of cell wall dry weight. The structural component, long-chain α-alkyl-β-

hydroxyl fatty acids (C70-C90) of mycolic acid, is highly conserved among mycobacterial species 

and contributes to the fluidity and permeability of the cell wall. They are three distinct types:  α-

MA found in more abundance and existing in a cis-cyclopropane configuration, whereas methoxy 

and keto mycolic acids exist either as cis- or trans configuration and are present in less abundance 

[71, 72]. MA are covalently attached to the cell wall or non-covalently associated with glycolipid 

trehalose 6, 6’-dimycolate (TDM) or cord-factor [73].  

TDM is also one of the major structural components of the hydrophobic cell wall, which 

prevents phagosome-lysosome fusion and contributes to the survival of bacteria within 

granulomas. In addition, the cord factor is responsible for the serpentine or slender arrangement 

of mycobacterial cells [74-77].  

The peptidoglycan layer surrounds the plasma membrane and is responsible for bacterial 

shape and mechanical strength. It comprises a carbohydrate backbone of repeating disaccharide 

N-acetyl glucosamine-N-acetyl muramic acid (NAG-NAM) residues cross-linked to peptides. Up 

to 80% of mycobacterial peptidoglycan contains 3-3 peptide cross-links compared to other 

bacteria that contain 4-3 cross-linking [68, 69]. Glycolylated NAM polymers of peptidoglycan 
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are recognized by innate receptor nucleotide oligomerization domain 2 (NOD2) and induce 

proinflammatory cytokines in Mtb-infected macrophages [70].   

The arabinogalactan (AG) is the major polysaccharide of mycobacterial cell wall, 

consisting of arabinose and galactose sugars in a furanose configuration. They contribute to the 

mycobacteria survival inside the macrophages. 

The outer surface of the mycobacterial cell wall also contains other complex lipids 

including lipoarabinomannan (LAM), glycopeptidolipids, sulpholipids, phthiocerol 

dimycocerosate and phenolic glycolipids [78-80]. LAM is one of the complex glycolipids that 

contains a phosphatidyl-myo-inositol anchor, a D-mannan polymer attached to the inositol ring, 

D-arabinose chains, and capping motifs at the end of the arabinose residues [81, 82]. LAM acts 

as a virulence factor and inhibits phagosomal maturation and interferes with host cell signaling, 

and as a result down-regulates the host immune responses [83]. Virulent, slow-growing 

mycobacteria like Mtb harbor mannose-capped LAM (ManLAM) in their cell wall, while rapidly 

growing non-virulent species of mycobacteria such as M. smegmatis harbor non-capped 

(AraLAM) or phospho-myo-inositol-capped LAM (PILAM) [84]. Thus, the type of capping is 

important among mycobacterial species for their virulence. The cell wall of mycobacteria also 

contains a 19-kDa lipoprotein of unknown function that has been implicated in virulence through 

a role in host cell death or apoptosis, and manipulation of bactericidal mechanisms [85]. 

The cell wall of mycobacteria also encompasses porin proteins, which have similar 

properties to those found in the outer membrane of other gram-negative bacteria, providing a 

pathway for low molecular weight hydrophilic nutrients [86, 87]. The lipid rich complex 

composition of Mtb cell walls provides a permeability barrier against hydrophilic drugs and host 

defense mechanisms [88, 89].  
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nitrogen metabolites. Thus, mycobacteria overcome the early innate immune defenses, which 

allows survival and initial residence within macrophages [91-97].   

Once alveolar macrophages phagocytose the bacteria, they either kill the ingested bacteria 

or bacteria keep multiplying until the primary host cell bursts. Mycobacteria also promote 

necrosis of macrophages, which facilitates bacterial dissemination and delays the onset of 

adaptive T cell immune responses. The inflammation triggered by dying or apoptotic 

macrophages leads to further recruitment of monocytes/macrophages. These macrophages are 

stimulated by ligation of various pathogen recognition receptors (PRRs), and trigger innate 

immune signaling pathways leading to the production of chemokines and cytokines that promote 

further recruitment of immune cells to the site of infection. Epithelial cells and neutrophils also 

secrete chemokines and cytokines in response to bacterial products and begin to organize early 

granuloma [99-101].  

In addition, dendritic cells (DCs) can internalize the mycobacteria, apoptotic macrophages 

or mycobacterial products, and migrate to the local draining lymph nodes to present 

mycobacterial antigens to lymphocytes [102-105]. As a result, Mtb specific T and B cells are 

stimulated and migrate to the site of infection. Eventually, a well-organized granuloma forms that 

consists of central infected macrophages, surrounded by macrophages, foam cells, multinucleated 

giant cells, with peripheral recruited lymphocytes and a fibrous capsule. This granuloma 

formation is the hallmark of TB disease, which represents a fine balance between a potentially 

dangerous pathogen and host immune system [106, 107].  

 An infection with Mtb can have several possible outcomes depending on host immune 

status and the pathogen. In some of the cases, the initial infection subsides, and the collagen 

capsule contracts to form a scar or the calcified granuloma. However, in small percentage of 

individuals, the center of the granuloma undergo necrosis resulting in the formation of caseous 
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1.8  Tuberculosis Disease and Infection  

Mycobacteria mainly cause infections in lungs and lead to pulmonary TB, which can 

either progress to active or chronic latent infection.   

1.8.1 Active Tuberculosis 

In the case of active TB, mycobacteria keep multiplying in the body and spread efficiently 

from one person to another by sneezing, coughing, talking or laughing. Active TB is a fatal, 

symptomatic and contagious form of disease [115]. Only 5-10% of the initially infected people 

develop active TB. Symptoms of active TB in the lungs begin gradually and develop over a 

period of weeks or months. Clinical manifestations of active TB infection include a bad cough 

lasting three weeks or more, chest pain, weight loss, weakness or fatigue, loss of appetite, bloody 

sputum, chills, fever, and night sweats [116]. Besides the lungs, TB can infect other organs such 

as the kidney, brain, liver, bones etc.; the signs and symptoms vary according to the infected 

organs. Active TB is diagnosed with chest radiography, sputum smear microscopy, mycobacterial 

culture, and nucleic acid amplification tests [117]. 

1.8.2 Latent Tuberculosis 

In latent TB infection, mycobacteria remain in the body in a dormant or non-replicating 

stage life-long and cannot be transmitted from one host to another. Latent TB is an asymptomatic 

and non-contagious form of disease. Approximately 90% of newly infected individuals develop 

latent TB infection. Latently infected people have a positive tuberculin skin test or TB blood test. 

However, in certain immune compromised conditions (5-10%), latent TB can be reactivated and 

cause active TB disease [118].  
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1.9.1   Innate Immune Responses 

 Innate immunity acts immediately after encountering a pathogen and therefore plays a 

crucial role in the early recognition and subsequent triggering of broadly specific immune 

responses to all pathogens. A growing body of new evidence suggests that the innate immune 

system can also produce pathogen-specific responses and mount resistance to secondary 

infections through ‘innate immune memory’ or ‘trained immunity’ [123].  

Innate immune cells recognize pathogens through pathogen recognition receptors (PRRs), 

which bind to highly conserve broad microbial structures known as pathogen-associated 

molecular patterns (PAMPs). In addition, they recognize damage-associated molecular patterns 

(DAMPs) of host molecules released by infected cells. During Mtb infection, mycobacterial 

components are recognized by a variety of different PRRs such as Toll-like receptors (TLRs), 

complement receptors (CRs), scavenger receptors, nucleotide binding-oligomerization–domain 

(NOD)- like receptors (NLRs), dectin-1, surfactant protein A (sp-A) receptors, mannose receptors 

(MRs) and the dendritic cell specific intercellular adhesion molecule grabbing non-integrin (DC-

SIGN). These PRRs facilitate entry of the mycobacteria into host cells and, also send an alarm 

signal to initiate innate immune responses [124-127].  

Broadly, upon mycobacterial PAMPs’ engagement, PRRs trigger intracellular signaling 

cascades, which lead to the activation of nuclear factor kappa B (NK-κB), resulting in the 

production of cytokines, chemokines and antimicrobial effector molecules from infected cells 

[128-130]. These secreted cytokines or chemokines bind to the membrane bound receptors 

expressed on innate immune cells in autocrine and/or paracrine manner, and initiate the early host 

response to mycobacterial infection [131]. 

Therefore, the complex interaction of mycobacterial PAMPs with their specific PRRs 

present on host innate immune cells suggests the key role of innate immunity in controlling Mtb 
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infection.  However, accumulating evidence suggests that the host has evolved multifaceted 

innate immune mechanisms to sense mycobacteria and elicit defense responses, while the 

mycobacteria has developed elaborated strategies to circumvent host defense mechanisms. 

Macrophages (MΦ) 

Macrophages, the first immunological barrier against mycobacterial infections, play a 

critical role in the evolution of Mtb infection. In addition to the recognition and immediate 

elimination of bacteria through phagocytosis and secretion of microbial products, macrophages 

are extremely important in orchestrating the immune response and shaping the adaptive immunity 

[132].  

In response to Mtb infection, macrophages up-regulate or trigger antimicrobial effector 

molecules to both prevent mycobacterial replication and recruit other immune cells into the 

lungs. Macrophages upon recognition or uptake of mycobacterial glycolipids, lipoproteins, and 

carbohydrate components through PRRs, initiate the downstream signaling pathways, resulting in 

the activation of transcription factor NK–κB and PPARγ, which lead to the production of 

cytokines (TNF–α, IL-1β, IL-12, IL-8), chemokines (MIP-1α, CCL22), antimicrobial peptides 

(LL-37) reactive nitrogen (iNOS) and oxygen (iROS) species [133-138]. Cumulatively, these 

antimicrobial effector molecules induce autophagy to control mycobacterial replication inside the 

macrophages as well as activate neutrophils, DCs and T cells.  

However, Mtb interferes with effector and signaling pathways of macrophages to reside 

unharmed in infected macrophages of the host for a long period of time. Mtb also down-regulates 

MHC II expression on macrophages and attenuates the T cell recognition of infected 

macrophages.  
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Neutrophils 

Neutrophils are among the first immune cells to penetrate the physical barriers of the 

human body and play a crucial role in the development of innate and acute inflammatory 

responses against bacterial infections. During Mtb infection, neutrophils produce and secrete 

antimicrobial enzymes (α-defensins, matrix metalloproteases, lactoferin and lipocalin), to restrict 

the growth of mycobacteria within macrophages, and also promote apoptosis of infected 

macrophages, thereby limiting Mtb survival within the host. Upon stimulation with Mtb, they also 

secrete chemokines (IP-10, MCP-1, MIP-1α/β) and pro-inflammatory cytokines (IFN-γ and TNF-

α) to recruit and activate other immune cells [139, 140]. However, these effector molecules also 

mediate lung tissue damage and sustained, hyper-activated inflammatory response.  

Neutrophils are the second most abundant cells after lymphocytes found bronchoalveolar 

(BAL) and sputum samples of active pulmonary TB patients [141-143]. Further, neutrophils have 

been reported to highly express programmed death ligand-1 (PDL-1) and type I IFN-inducible 

genes in the blood of active TB patients [144, 145]. Whether the increased expression of PDL-1 

on neutrophils is associated with suppression of protective immunity or in the resolution of 

inflammation remains to be elucidated.  

Dendritic Cells (DCs) 

DCs are the primary antigen-presenting cells and play a central role in bridging innate and 

adaptive immunity through their significant role in internalizing, processing and presenting 

antigens to T cells.  

DCs can internalize mycobacteria or mycobacterial components through different PRRs. 

Several studies have suggested that Mtb is capable of replicating within DCs, but further studies 

are needed to substantiate these observations. Upon recognition, the fate of DC maturation is 
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dictated to a large extent by the interaction of DCs with Mtb.  A number of studies have 

suggested that after interaction, DCs mature and migrate to lymphoid organs where they prime 

naïve T cells and secrete immunoregulatory cytokine IL-12, and therefore, strengthen the cellular 

immune responses against infection. In contrast, others reported that Mtb impairs DC maturation 

and manipulates its functions in order to prevent optimal induction of host adaptive immunity 

[146, 147]. However, some studies indicated that the outcome depends on the interaction of Mtb 

or its components with receptors present on DCs. Recognition of Mtb through TLRs leads to DC 

activation and IL-12 secretion during early infection, whereas interaction with DC-SIGN 

prevents DC maturation that results in high IL-10 secretion and inhibition of antigen-specific T 

cell proliferation [148,149]. Moreover, engagement of TLRs and DC-SIGN down-regulates an 

ubiquitin ligase RING-CH-1 protein (MARCH 1) critical for recycling the MHC-II complex on 

the cell surface of DCs, and interferes with their antigen presenting ability [150]. Therefore, the 

outcome of Mtb and DC interaction is complex and not fully understood.  

 Collectively, DCs are at the forefront in priming Mtb specific immune responses but their 

differential interaction with Mtb components influence the delayed onset of adaptive immunity 

during mycobacterial infection. 

Natural Killer (NK) Cells 

NK cells are prominent components of innate immunity, which recognize and kill 

infected cells, and thus play an important role in controlling intracellular pathogens. NK cells 

mediate their function through cellular cytotoxicity and production of a range of cytokines or 

immunoregulatory mediators.  

During early infection, NK cells become activated by type I IFNs and IL-12 produced 

from the macrophages and DCs. These factors in turn can recruit more NK cells locally at the site 
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of infection [151]. NK cells produce several cytokines such as IFN-γ, TNF-α, IL-10, IL-4, IL-17 

and IL-22, which can activate macrophages, modulate DCs functions, and downstream adaptive 

immune responses [152]. NK cells themselves are regulated by the expression of various 

activation and inhibitory receptors [153]. 

In acute mycobacterial infection, NK cells have been shown to possess increased 

cytotoxic activity, IFN-γ and TNF-α production, and up-regulation of activation marker 

NKG2D/NKp46. They have been also shown to lyse infected monocytes and alveolar 

macrophages through NKp46 and NKG2D receptors [154]. NK cells not only have direct anti-

mycobacterial activity, they can also regulate other immune cells’ functions to control Mtb 

infection. The cytokines produced by NK cells further activate DCs, favor Th1 adaptive immune 

responses, and restrict the expansion of regulatory T cells. NK cells were found to lyse Mtb 

expanded T regulatory cells, induce γδ T cell proliferation and promote IFN-γ production from 

CD8+ T cells [155, 156]. In addition, NK cells can directly recognize mycobacterial the cell wall 

component mycolic acid and peptidoglycan through NKp44 and TLR-2 receptor, respectively 

[157, 158].  

However, NK cells have been reported with reduced cytotoxicity, depressed IFN-γ 

production, and lowered expression of NKp30 and NKp46 activating receptors in patients with 

active TB [159]. 

Natural Killer T (NKT) Cells  

 NKT cells have both NK and T cell markers, and possess both effector and regulatory 

functions. NKT cells are mainly classified as two types: Type I or invariant NKT (iNKT) cells 

are characterized by their restricted expression of an invariant Vα24-Jα18 T cell receptor (TCR) 

paired with Vβ11 chain in humans and Vα14-Jα18 paired with Vβ2, Vβ7 and Vβ8.2 chains in 
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mice, whereas heterogeneous Type II NKT cells are characterized by their less restrictive TCR 

repertoire. Once NKT cells mature in the thymus, they migrate to the periphery, where they can 

be activated through recognition of endogenous and exogenous lipids presented by CD1d [160, 

161]. They can also be activated in a CD1d-independent manner [162]. Upon stimulation, NKT 

cells produce immune-stimulatory cytokines that can alter the strength and quality of adaptive 

immune responses through cross talk with DCs, and by shifting cytokine response to Th1, TH2 or 

TH17 cell type profiles [163].  

Growing evidence suggests that murine and human NKT cells mediate protection against 

Mtb [164]. In mice, administration of α-GalCer (a known iNKT agonist) both alone and in 

combination with anti-TB drugs, improved the clinical outcomes of Mtb infection [165]. 

Incorporation of α-GalCer in BCG vaccine has been shown to enhance the host immune 

responses [166]. Also, patients with active TB were found to have dysfunctional NKT cells with 

increased expression of PD-1 inhibitory molecule [167]. Recently, it has also been shown that 

NKT cells isolated from pleural fluid of TB patients produce IFN-γ, TNF-α, IL17, IL-2 and IL-21 

upon ex-vivo antigen stimulation [168, 169]. Therefore, NKT cells become activated during the 

early response to pulmonary TB and actively participate to resolve Mtb infection. Whether NKT 

cells are associated with early innate resistance to mycobacterial infection is not clear yet. 

Gamma-delta (γδ ) T cells:   

 γδ T cells carry a T cell receptor encoded by Vγ and Vδ gene segments. They recognize 

unprocessed, non-peptide phosphate antigens in a non-MHC restricted manner [170]. During the 

early phase of Mtb infection, γδ T cells expressing IFN-γ and IL-17 along with cytotoxic effector 

function are recruited in the lungs. It has been shown that γδ T cells are the primary source of IL-

17 in early infection and they appear with increased frequency in patients with active TB [171].  
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Mice and human studies suggest that γδ T cells expanded after BCG vaccination are capable of 

restricting mycobacterial growth in perforin and granulysin dependent manner.  γδ T cells also 

elicit protective immune responses upon interaction with NK, DCs and CD8+ T cells [172, 173].  

Thus, γδ T cells represent an early defense against pulmonary TB and link between innate and 

adaptive immunity. 

1.9.2 Adaptive Immune Responses 

Activation of innate signaling pathways and immune cells of the innate system set the 

stage for downstream adaptive immune responses. Inflammatory mediators such as cytokines or 

chemokines, secreted from APCs or various innate immune cells stimulate T lymphocytes, which 

in turn aid B cells and orchestrate adaptive immunity. Adaptive immunity encompasses both 

humoral and cellular immunity mediated by B and T cells, respectively.  

1.9.2.1 Humoral Immune Responses 

Humoral immune responses are represented by B cells and antibodies produced by them. 

Antibodies play a pivotal role in defending a host against extracellular pathogens. Antibodies 

neutralize and disarm invading pathogens with effector mechanisms including neutralization, 

complement activation, opsonization, and antibody-dependent cell-mediated cytotoxicity 

(ADCC) [174].  

Protection against intracellular pathogens such as mycobacteria is believed to be 

exclusively T cell mediated, with B cells and antibodies playing a limited role. The contribution 

of humoral immunity to protect against Mtb infection has been controversial for more than a 

century, because animal and human studies have provided inconsistent and sometime 

contradictory results. The evidence for the role of humoral immunity in defense against Mtb is 

inconsistent. However, a substantial number of studies conducted with serum therapies, mouse 
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polyclonal antibodies, human polyclonal antibodies, secretory human IgA and monoclonal 

antibodies to purified mycobacterial antigens ranging from surface proteins to polysaccharides, 

suggest a protective role of antibodies against Mtb [175]. The complexity and heterogeneity of 

antibody responses during Mtb infection suggest that both protective and non-protective 

antibodies exist and that could be one of the reasons for inconsistent results in animal and clinical 

studies. Furthermore, several studies have demonstrated that BCG vaccination also elicits IgG 

and IgM responses against several mycobacterial antigens, which enhance both innate and cell-

mediated effect against Mtb.  Antibody titers in individuals with active and latent TB are highly 

variable. Interestingly, it has been shown that people with active TB have antibody responses 

with low avidity and low IgG/IgM ratio for surface antigens, and that they fail to produce high-

avidity IgG against surface antigens of the mycobacteria [176, 178]. In addition, patients with 

active TB have antibody responses with increased avidity to inactivated intracellular antigens of 

Mtb. Higher surface binding antibodies were protective and correlated to reduced active TB 

disease [176, 177]. These studies suggest that antibody responses against purified intracellular 

antigens are different than whole TB bacterium.  

Despite being an intracellular pathogen, Mtb is potentially susceptible to various 

antibody-mediated immune mechanisms. IgAs, in addition to neutralization of the pathogen, also 

bind with the mycobacterial cell wall component Gal-3, and interfere with the interaction of 

mycobacteria with the phagosomal membrane, resulting in decreased replication of mycobacteria 

in the phagosomes [179]. Opsonization with Fcγ receptor was shown to promote phagolysosomal 

fusion and intracellular killing, and enhanced cellular responses through uptake and processing of 

mycobacterial antigens. Antibodies also promote phagocytosis and killing by complement 

receptor activation [180]. Several studies have shown a strong antibody response against a wide 

range of Mtb antigens, with an IgG2a ~ IgG2b > IgG1 > IgG3 predominance [181]. 
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In addition to direct antibody-mediated mechanism, B cells also play a crucial role in 

modulating the host immune responses in TB infections by antigen presentation, co-stimulation 

of T cells, cytokine production, enhanced antibody-mediated cellular cytotoxicity (ADCC) and 

recruitment of immune cells in lungs [182, 183]. 

1.9.2.2 Cellular Immune Responses 

Components of cellular immune responses include CD4+ T helper (Th) cells and CD8+ 

cytotoxic T cells (CTLs), which recognize peptides bound to MHC class II and MHC class I 

molecules on antigen presenting cells (APCs), respectively.  

CD4+ T Cells 

CD4+ T cells develop in the thymus as either natural T regulatory cells or naïve CD4+ T 

cells. These T cells are termed as helper T cells because of their role in direct activation of 

macrophages, providing co-stimulatory signals to B cells to mature them into effector plasma 

cells and activation of CD8+ T cells. Upon mycobacterial infection, APCs engulf the Mtb-

infected, apoptotic or necrotic macrophages, or mycobacterial antigens, process and present them 

to T cells expressing TCR and CD4+ molecules. Thereafter, activated CD4+ T cells can polarize 

into different subsets including Th1, Th2 and/or Th17 cells, which secrete distinct pattern of 

cytokine, and control the fate of CD4+ T cells mediated immune responses in TB [184].  

CD4+ T cells have been suggested to play a central role in protection against Mtb. HIV-

infected people are highly susceptible to TB due to a decrease in CD4+ T cell counts [185]. In 

addition, it has been demonstrated that mice that are CD4+ T cell depleted and MHC-II deficient 

poorly control mycobacterial infection [186]. CD4+ T cells influence the immune responses 

mainly by the induction of cytokines. Under the influence of IL-12 from DCs, naïve CD4+ T cells 
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get polarized to Th1 type cells that are the primary source of IFN-γ during the acute phase of 

infection [187, 188].  

IFN–γ is a critical cytokine required to control mycobacterial infection. Mice lacking 

IFN–γ as well humans with a genetic mutation in IFN–γ signaling is most susceptible to 

mycobacterial infections [189]. In addition to IFN–γ, Th1 cells also secrete TNF–α and IL-2. 

IFN–γ synergizes with TNF–α to recruit and activate macrophages, and promotes their anti-

microbial effector functions [190]. IL-2 directly activates the T cells, increases their proliferation 

and survival. Recent studies have suggested that the polyfunctional Mtb-specific CD4+ T cells 

(IFN–γ, TNF–α, IL-2) correlate with immune protection against Mtb [191, 192].   

In contrast, Th2 responses regulate the differentiation of plasma cells by the production of 

IL-4, IL-5 and IL-13, which are associated with intracellular persistence of mycobacteria. Thus, 

dominant Th2 responses can undermine Th1 mediated protection. The Th2 response also 

promotes the polarization of alternatively activated M2 macrophages, which abrogate effective 

immune responses required for protection against Mtb [193, 194]. 

Th17 cells produce IL-17, IL-22 and IL-23 and lead to the activation and recruitment of 

neutrophils into the lung parenchyma [195, 196]. In several studies, a reduced number of Th17 

cells were found in active TB patients. Th17 response has been shown to induce memory 

responses in mice [197]. However, the role of Th17 responses in Mtb protection is controversial.  

CD4+ T Regulatory Cells (Tregs) 

CD4+ T cells can also function as regulatory T cells, and help in the maintenance of 

immune homeostasis. There are mainly two types of Tregs: natural (nTregs) and induced Tregs 

(iTregs). Natural Tregs originate from the thymus with high avidity for self-antigens and express 

the IL-2α chain (CD25) receptor together with the transcription factor FOXP3 and are not 
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influenced by cytokines. In contrast, iTregs originate from naïve CD4+ CD25- T cells in the 

presence of cognate antigen and immunoregulatory cytokines such as TGF-β, IL-4 and IL-10 and 

differentiate into CD25+ and FOXP3+ expressing cells. iTregs are further categorized into Tr1 or 

Tr3, based on IL-10 and TGF-β secretion, respectively [198, 199].   

Tregs have generally been shown to play a significant role in the establishment of 

persistent infection, and in suppressing the induction and proliferation of effector T cell 

responses. However, the exact role of Tregs in Mtb infections is not clear and controversial 

reports have been published. Studies in humans and mice suggest that Tregs are increased in the 

lungs during TB infection and they inhibit antigen-specific T cell responses [200, 201]. Tregs 

also influence the development of active and latent TB in humans. It has been shown that Tregs 

are high in peripheral blood in active TB while during latent TB infection they return to a normal 

level. In contrast, one recent study demonstrated that Tregs could down-regulate the 

inflammatory responses induced during active TB [202, 203]. Interestingly, another study has 

shown that Tregs (CD4+FOXP3+) induces IFN-γ production during pulmonary infection and are 

associated with reduced bacterial load in mice [204]. However, it is not clear whether they should 

be classified as Tregs or effector T cells, since FoxP3 have also been shown to be transiently 

induced in effector T cells.  Whether Tregs are a causative factor for active TB or a response to 

inflammation remains to be elucidated.  

CD8+ T cells 

CD8+ T cells are referred to as cytotoxic T cells (CTLs). They recognize 8-9 amino acid 

long peptide antigens bound to the MHC class I molecule. CD4+ T cell mediated activation is 

required to trigger the differentiation and maturation of CD8+ T cells. CTLs induce destruction of 

infected cells through cytotoxic granules (granzyme or perforin), Fas-FasL interaction and 
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secretion of effector cytokines (IFN–γ and TNF–α). In the case of mycobacterial infections, 

CTLs play an important role in the clearance of intracellular bacteria [205]. CTLs mediate lysis 

of Mtb-infected macrophages through perforin or Fas-FasL mediated mechanisms [206]. In non-

human primates, depletion of CD8+ T cells led to reduced protection against Mtb. A number of 

studies have also shown that depletion of perforin and granulysin expressing CD8+ T cells were 

associated with an increased mycobacterial burden. Further, individuals with active TB were 

found to have impaired expression of perforin and granulysin on CD8+ T cells in the lungs, thus 

dysfunctional CTL responses are associated with disease progression [207]. Besides direct killing 

of the infected cells, CD8+ T cells also produce IFN–γ and TNF–α that activate macrophages to 

inhibit mycobacterial replication [208]. Whether poly-functional Mtb-specific CD8+ T cells are 

needed to provide protection from Mtb is not clear. 

 

Fig 1.4: Immune responses to Mycobacterium tuberculosis.  
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1.10 Treatment of TB Disease 

Various chemotherapeutic drugs have been used not only to cure the disease but also to 

interrupt the transmission and to prevent relapse. There are currently almost 20 drugs approved 

by the U.S. Food and Drug Administration (FDA) for the treatment of TB. Of the approved 

drugs, the first-line anti-TB agents that form the core of treatment regimens include isoniazid, 

rifampicin, pyrazinamide and ethambutol [209-211]. Mtb is a slow growing bacterium and 

difficult to kill, and therefore, TB treatment requires a minimum of six months therapy in two 

phases: two months of four drugs (isoniazid, rifampicin, pyrazinamide and ethambutol) in the 

intensive phase followed by four months of isoniazid plus rifampicin in the continuation stage 

(the so-called short-course chemotherapy). The current recommended six months treatment for 

drug-susceptible TB can provide cure rates of > 95% when administered under directly observe 

therapy (DOT). To treat drug-resistant TB, second-line anti-TB agents are used. The second-line 

anti-TB drugs include aminoglycosides (amikacin, kanamycin and gentamicin), polypeptides 

(capreomycin), thioamides (ethionamide and protionamide), oxazolidinone (linezolid), para-

aminosalicylic acid, fluoroquinolones (oflaxacin, levofloxacin, gatifloxacin and moxifloxacin), 

nitromidazoles (delamanid) and cycloserine. However, the second-line drugs possess lower 

efficacy, demonstrated unfavorable pharmacokinetic profile with more serious side effects, and 

have restricted use. Anti-tuberculosis drugs that are currently used to treat TB are summarized in 

Table 1.1 [212-215]. 
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Table 1.1: First- and second line anti-TB drugs  

Drug Name Route Daily Doses 
(range) mg/kg Mechanism of Action 

First-line TB drugs   

Isoniazid Oral 5 (4-6) Inhibit synthesis of cell wall component 
mycolic acid  

Rifampicin Oral 10 (8-12) Inhibits DNA-dependent -RNA polymerase 
required for transcription 

Pyrazinamide Oral 25 (2-30) Inhibits mycobacterial enzyme fatty acid 
synthase required for fatty acid synthesis 

Ethambutol Oral 15 (15-20) Inhibit arabinosyl transferase enzyme vital for 
cell wall component arabinogalactan synthesis 

Second-line TB drugs   

Capreomycin IM or 
IV 15-20 Inhibits protein synthesis (binds to ribosomal 

subunit 16S and 23S rRNA 

Amikacin IV 15 Inhibits protein synthesis (binds to the bacterial 
30S ribosome) 

Gentamicin IV 7 Inhibits protein synthesis via 30S ribosomal 
protein and 16 S RNA 

Streptomycin Oral 15 Inhibits protein synthesis 

Cycloserine Oral 10 Inhibits peptidoglycan synthesis (D-alanine 
racemase) 

Ethionamide Oral 10-15 Inhibits mycolic acid synthesis 

Ofloxacin Oral 15-20 Inhibits DNA replication and transcription by 
inhibiting DNA gyrase 

Levofloxacin Oral 7.5-10 Inhibits DNA replication and transcription 
Para-amino 
salicylic acid Oral 250 Inhibits folic acid and iron metabolism 

Bedaquiline Oral 200-400 
Inhibits ATP synthase required for energy 
production 

Linezolid IV 300 Inhibits protein synthesis 

Delamanid Oral 100-200 Inhibits biosynthesis of keto-mycolic and 
methoxy-mycolic acids 

1.11 Vaccine Development 

  Successful cure of TB has been hampered due to long-term treatment with multiple drugs 

and their associated cost, side effects, non-compliance and increasing incidence of drug-resistant 

TB cases. Consequently, vaccination is the most effective approach for global control and 

elimination of TB. However, despite huge advancements in TB immunology, we are still awaiting an 
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effective vaccine against TB. The current vaccine BCG provides only partial and inconsistent 

protection against pulmonary TB. Thus, development of an effective and reliable vaccine for TB 

is a high global priority. Development of a new TB vaccine is challenging due to a lack of clear 

understanding of the immune-correlates of protection, disease pathogenesis and availability of relevant 

animal models [217]. Studies conducted so far suggest that broad and multi-specific CD4+ T cell 

responses are required and have been correlated with protection against Mtb infection. In this 

regard, several vaccine strategies focused on generating strong multi-specific cellular immunity 

against immune-dominant antigens of Mtb have shown promise in preclinical models [218-220]. 

An ideal TB vaccine should provide protection against all stages of the mycobacterial life 

cycle. It should prevent new infections, latent infections and reactivation, and eliminate 

mycobacteria completely from the host. Multiple approaches are being used for the current TB 

vaccine development, including a live mycobacterial vaccine to replace BCG, subunit vaccine to 

boost BCG and therapeutic vaccine as an adjunct to chemotherapy [221, 222].  The most 

advanced therapeutic vaccine against TB is a whole inactivated environmental non-tuberculous 

Mycobacterium vaccae (MV). However, conflicting results have been observed in its clinical 

trials [223]. The proportion of patients with sputum smear conversion was 3-fold higher in 

vaccinated group compared to placebo (31.8 vs. 9.5%); however, the difference was not 

statistically significant (p = 0.07). Also, other secondary endpoints such as erythrocyte 

sedimentation rate, leukocyte counts and hemoglobin content were not affected in the vaccinated 

cohort compared to placebo [223]. A few studies have shown the effectiveness of MV as a 

preventive vaccine in small groups; however, large clinical trials including people of different 

age groups, regions and populations are required to confirm whether MV is efficacious as a 

prophylactic vaccine [224].  
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Different prophylactic and therapeutic vaccines currently being tested in clinical trials are 

summarized in the following table [225]: 

Table 1.2: Prophylactic and therapeutic vaccines in clinical trials  

Vaccine Name Composition Clinical  
Status Sponsors 

Preventive Vaccines  

Live vaccines  
VPM 1002 
 

rBCG expressing listeriolysine  and lacking 
urease gene 

Phase IIa 
 

MPIIB, VPM, 
TBVI, SII 

MTBVAC Mtb MT 103 strain with deleted of phoP and 
fadD26 gene 

Phase I U of Zaragoza, 
Biofabri, TBVI 

Subunit recombinant fusion protein based vaccines 
H1:IC31 
 Fusion protein Ag85B-ESAT-6 in IC31 adjuvant 

Phase IIa 
 

SSI, TBVI, 
Intercell 

H4:IC31 
 Fusion protein Ag85B-TB10.4 in IC31 adjuvant 

Phase IIa 
 

SSI, SP, Aeras 
 

H56:IC31 
 

Fusion protein Ag85B-ESAT-6-Rv2660c in 
IC31adjuvant 

Phase IIa 
 

SSI, Intercell, 
Aeras 

M72F:ASO1E 
 

Fusion protein Mtb32a-Mtb39a in ASO1 
adjuvant 

Phase IIb GSK, Aeras 

Subunit modified viral vectors based vaccines 
MVA85A 
 

Modified vaccinia ankara virus expressing 
Ag85A 

Phase I 
 

University of 
Oxford, TBVI 

AdHu5Ag85A Recombinant human adenovirus type 5 
expressing Ag85A 

Phase I 
 

McMaster 
university 

Ad35/AERAS-
402 

Recombinant human adenovirus type 35 
expressing Ag85A, Ag85B and TB10.4 

Phase II 
 

Crucell, Aeras 

ChAdOx-1.85A Recombinant chimp adenovirus type 68 
expressing Ag85A 

Phase II 
 

University of 
Oxford 

Therapeutic /Immunotherapeutic vaccines 
RUTI 
 Detoxified fragment of Mtb in liposome 

Phase IIa 
 

Archivel 
pharma 

M.indicus pranii Whole cell M. indicus pranii Phase III Cadila 
pharmaceuticals 

M. vaccae Whole cell M. vaccae Phase III 
AnHui 

Longcom 
 



 
	  

32	  

1.12 Animal Models of Mycobacterial Infection  

Several models have been developed to study TB disease pathology, immune responses 

and drug testing. However, they vary in aspects of human TB pathology, disease progression and 

immune responses. Major research progress in the field of TB vaccine and drug development has 

been hampered by a lack of animal models that closely mimic the human conditions of 

mycobacterial infection [226]. Some of the most commonly used animal models in TB research, 

drug and vaccine development are summarized in Table 1.3 with their advantages and 

limitations: 

Table 1.3: Different models used in TB research [227-230] 

Model Route of 
infection 

Stage of 
infection  Advantages Disadvantages 

Non-mammalian models 
Amoeba  
(Dictyostelium 
discoideum) 

Phagocytosis 
of M. tb or 
M.marinum  

• Intracellular 
mycobacter
ial growth 
in vacuoles 

• Both species replicate 
similarly in mammalian 
macrophages. 

• Suitable for macrophage-
pathogen interactions. 

• Identifying gene involved in 
phagocytosis. 

• Single-cell 
model with 
limited 
applications 

Fruit fly 
(Drosophila 
melanogaster) 

Injection of 
M. marinum 

• Progressive 
disease 
wasting 
phenotype 

• Innate immunity well 
conserved. 

• Physiological aspects of 
disease similar to human TB. 

• Genetic tool. 

• Mycobacteria 
are not 
natural 
pathogen. 

Zebra fish 
larvae and 
adult Zebra 
fish 

Injection of 
M. marinum 

• Early 
granulomas 
in larvae. 

• Active 
disease 
(necrotic 
granuloma) 

• Latent 
infection 
(fibrotic 
granuloma) 

• Disease progression and 
pathology similar to humans. 

• Suitable for studying 
mechanism of latency, 
dormancy and reactivation. 

• Good for innate (larvae) and 
adaptive immunity (adult). 

• Good for early stage drug and 
vaccine studies. 

• Small, cost-effective, suitable 
for large-scale screening.  

•  

• Physiological 
and 
anatomical 
differences 
between 
human and 
zebra fish.  

• Lack of cell 
lines. 
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Model Route of 
infection 

Stage of 
infection  Advantages Disadvantages 

Mammalian models 
Mouse 
 

Aerosol, 
intratraceal, 
intravenous, 
intranasal 
infection 
with Mtb 

• Chronic 
disease 
with non-
hypoxic 
granulomas
. 

• Latency 
(antibiotic 
required) 

• Immune system similar to 
humans. 

• Small, cost-effective. 
• Availability of extensive 

range of immunological 
reagents. 

• Transgenic, knockout and 
diverse range of genetic 
backgrounds mice are 
available. 

• Mice are not 
natural host of 
Mtb. 

• Granulomas are 
loosely organized. 

• TB pathology is 
different from 
humans. 

Guinea pig Aerosol 
infection 
with Mtb 

• Progressive 
disease 
with 
caseous 
granulomas 

• Highly susceptible to Mtb. 
• Closely resemble to the 

human disease. 
• Suitable for drug and 

vaccine studies. 

• Expensive. 
• Lack of reagents. 

Model Route of 
infection 

Stage of 
infection  Advantages Disadvantages 

Rabbit Aerosol 
infection 
with Mtb  
or M. bovis 

• Latent 
infection 
with 
caseous 
granulomas 

• TB pathology and disease 
progression are similar to 
humans. 

• Excellent model for 
studying pathology and 
cell-mediated immune 
responses. 

• High cost. 
• Large animals. 
• Genetic changes 

are difficult. 
• Lack of reagents. 

Cattle Aerosol 
infection 
with M. 
bovis 

• Latent 
infection 
with 
hypoxic 
granulomas 

• Natural host of M. bovis. 
• Disease pathology similar 

to human TB. 
• Suitable for BCG vaccine 

studies. 

• High cost. 
• Large animals. 
• Genetic changes 

are difficult.  
• Moderate 

availability of 
reagents. 

Non-human 
primates 

Aerosol 
infection 
with Mtb 

• Active 
disease 
with 
caseous 
granulomas 

• Latent 
infection 
with 
hypoxic 
granulomas 

• Naturally susceptible to 
Mtb. 

• Mimics disease 
progression, pathology 
and   human immune 
responses. 

• Suitable for studying 
clinical aspects of disease 
including therapeutics and 
diagnostics. 

 

• High cost. 
• Large animals. 
• Space 

requirements. 
• Ethical concerns. 
• Not suitable for 

large-scale 
experiments. 
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1.13 Rationale and Hypothesis 

Despite the availability of a preventive vaccine and anti-TB drugs, TB still remains a 

global health threat and an economic burden. The current multifaceted TB epidemic continues to 

grow at an alarming rate. The control of TB has become challenging because of the limited 

efficacy of the current vaccine, the lengthy treatment regimens with multiple drugs that possess 

serious side effects, the prevalence of HIV and TB co-infection and the emergence of multi- 

extensively- and totally-drug resistant strains of mycobacteria. Therefore, investigation of novel 

vaccine and therapeutic approaches to address this deadly disease is a global priority.  

Significant efforts are being focused on the development of preventive and/or therapeutic 

vaccines. Several vaccines targeting either early stage antigens or late stage mycobacterial 

antigens formulated in adjuvants are in development. Early secreted antigenic target 6kDa protein 

(ESAT-6) is one such antigen, which has been shown to be an important target for protective T 

cell immunity against TB. ESAT-6 is expressed in pathogenic Mycobacterium species but absent 

in BCG vaccine and environmental mycobacteria. Recombinant ESAT-6 protein and synthetic 

overlapping peptides have been reported to provide strong Th1 responses in TB patients and also 

in patients recovered from TB after antimycobacterial drug treatment, suggesting that ESAT-6 is 

a key antigen for immune protection. Synthetic lipopeptide based cancer vaccines have 

demonstrated improved immunogenicity in clinical trials with very good safety and tolerance 

profiles. Therefore, T cell epitopes of ESAT-6 antigen identified from the literature that 

correspond to dominant human T cell epitopes associated with mycobacterial clearance, 

conjugated to palmitoyl-lysine chain, may have a strong potential as an effective TB vaccine 

candidate. Further, simultaneous stimulation of toll like receptors (TLRs) through agonists acting 

as adjuvants, such as polyI:C (TLR-3), monophosphoryl lipid A (MPL) (TLR-4) and 
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gardiquimod (or resiquimod) (TLR-7/8), may provide enhanced antigen-specific responses 

against the lipopeptides of ESAT-6. 

In addition, investigation of novel host-directed immunotherapeutic approaches could 

provide one of the potential strategies to combat the emerging TB pandemic and improve 

treatment outcomes. It is very clear that besides adaptive immunity, host innate immune 

responses play a definitive role in protection and/or defense against TB infections. Multiple 

strategies are being used to boost the host immune system to fight TB disease. One such 

approach is the use of live and heat-inactivated mycobacterial species such as Mycobacterium 

indicus pranii and Mycobacterium vaccae. However, these bacteria may cause infections as 

genomic analyses have revealed their potential to become pathogenic in a host. Further, they may 

interfere with antigenic responses induced by TB vaccine. Therefore, immunotherapy with a non-

pathogenic bacterium unrelated to mycobacteria genus could provide a unique approach to 

stimulate innate immune responses to treat and/or eliminate mycobacterial infections from a host. 

Heat-killed forms of a non-infectious, non-pathogenic fresh water bacterium Caulobacter 

crescentus HKCC, are being studied in my laboratory as a novel immunotherapeutic agent, and 

may have such potential.  

Based on the above rationales, my hypotheses are as follows:  

I. Palmitoylated-lipopeptides of ESAT-6 antigen can induce strong protective immune 

responses against Mtb infection, which can be further enhanced by selection of an appropriate 

adjuvant and route of immunization.  

II. Heat-killed Caulobacter crescentus (HKCC) can stimulate and/or modulate various 

human innate and adaptive immune cells including DCs, NK, NKT and B cells. 

III. HKCC alone or as adjunct to isoniazid can control TB infection through host-mediated 

mechanisms, and provide a novel immunotherapeutic approach.  
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Chapter 2 
 

Novel lipopeptides of ESAT-6 induce strong protective immunity against 

Mycobacterium tuberculosis:  Routes of immunization and TLR agonists 

critically impact vaccine’s efficacy* 
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 Dr. D.Y. Kunimoto (co-supervisor) contributed to the concept for these studies, the data analysis and manuscript 
composition. Dr. B. Agrawal also contributed to concept formation and manuscript composition.  
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2.1 Introduction  

Tuberculosis (TB) is a re-emerging disease and vaccination is the most effective approach 

for global control of TB [1-4]. Unfortunately, the currently licensed BCG vaccine provides only 

partial and inconsistent protection against pulmonary tuberculosis [5-7]. To restraint the current 

and future outbreaks, and eradicate TB disease, a comprehensive vaccine approach is needed. 

Therefore, investigation of an effective and reliable new and/or improved vaccine against 

tuberculosis is a global priority.  

Early secreted antigenic target 6kDa protein (ESAT-6) is a potent T-cell antigen 

expressed in pathogenic Mycobacterium tuberculosis (Mtb) but absent in BCG and 

environmental mycobacteria [8]. Recombinant ESAT-6 protein and synthetic overlapping 

peptides have been reported as strong Th1 inducing antigens in TB patients and also in patients 

recovered from TB after antibiotic treatment, providing a clue to a potential protective immune 

correlate. Even with its small size of 95 amino acids, ESAT-6 comprises an unusually high 

number of T cell epitopes spanning the entire sequence, supporting the potential of ESAT-6 as a 

putative vaccine candidate [9,10]. Moreover, peptides derived from ESAT-6 can permissively 

bind to multiple MHC molecules to activate T cell responses across HLA-types, supporting their 

role as vaccine candidates [11-13]. Consequently, ESAT-6 based subunit vaccine was found to 

provide significant protection against Mtb in mice and non-human primates [14-16]. 

Ligands/agonists for toll like receptors (TLRs) efficiently induce innate and adaptive 

immunity [17]. Stimulation of TLRs is essential to induce adaptive immunity. Vaccines that co-

target TLRs can induce adaptive immune responses against pathogen-derived antigens, 

eliminating the need for complex toxic adjuvants and producing more specific and regulated 

immune responses. There are 11 known human TLRs, however, their expression and selectivity to 
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ligands dictate the final outcome regarding beneficial immune responses [18-20]. TLRs-3, -7, and -8 are 

all intracellular TLRs associated with recognizing nucleic acid products such as double stranded RNA 

(TLR-3) and single stranded RNA products (TLR-7 & -8) in late endosome lysosomes. TLR-4 is 

expressed on the cell surface and recognizes the active lipid A component of lipopolysaccharide. 

Patterns of TLR expression differ among subsets of dendritic cells (DCs) and other antigen presenting 

cells (APCs), and specific APCs can produce quite different responses to stimulation through a single 

TLR; accounting for diversity in TLR based regulation of innate and adaptive immunity [21]. Agonists 

of TLR-3 (polyI:C), TLR-4 (monophosphoryl lipid A, MPL) and TLR-7/8, (gardiquimod and 

resiquimod) are among the most widely used adjuvants that provide excellent antigen-specific 

responses and promote Th1 type immune responses [22]. 

The route of immunization and selection of adjuvant play critical roles in the induction of 

strong cellular responses. The subcutaneous route (s.c) of immunization is the most commonly 

used in mouse studies with peptide-based vaccines [23]. Immunization via the natural entry route 

(mucosal) would be preferred to induce protective local and systemic immune responses [24-27].  

 In this study, promiscuous immunodominant epitopes of ESAT- 6 antigen were identified 

that are recognized by both helper and cytotoxic T cells, and were modified by covalently linking 

them with a palmitate chain. The rationale for this work was based on the concept that attaching a 

natural fatty acid to peptides will enhance their immunogenicity due to increased stability, 

micelle forming properties, depot effect, efficient presentation by both MHC class I and class II 

and ability to activate PAMP receptors [28]. Peptides of varying lengths (15-25 aa) were chosen 

to allow natural processing and presentation of epitopes by antigen presenting cells. To the best 

of our knowledge, palmitoytated peptides of ESAT-6 antigen have not yet been explored as 

vaccine candidates for Mtb.  
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The immunogenicity of individual and combined ESAT-6-derived lipopeptides in mice 

immunized subcutaneously (s.c.) and/or intranasally (i.n.) was examined. The effect of TLR-3, 

TLR-4 or TLR-7/8 agonists admixed with ESAT-6 lipopeptides delivered intranasally or 

subcutaneously, on the induction of cellular immune responses, and on their role in reducing 

mycobacterial loads after intravenous Mtb (H37Ra) challenge was also determined.  

2.2 Materials and Methods 

2.2.1. Synthetic Peptides and Adjuvants  

Synthetic lipopeptides derived from ESAT-6, were custom synthesized by Genscript Inc. 

(NJ, USA) (Table 1). All lipopeptides were prepared at 10 mg/ml in DMSO, stored at −20°C, and 

diluted with PBS prior to use. Toll-like receptor agonists PolyI:C (TLR-3), MPL (TLR-4) and 

gardiquimod (TLR-7/8) (Sigma Aldrich) were used as adjuvants.   

Caulobacter crescentus (Cc) was kindly provided by Dr. B. Agrawal and was grown on 

solid PYE agar media (ATCC 43427) plates containing chloramphenicol (2 µg/ml, Sigma 

Aldrich) as a selection antibiotic. A single colony was transferred to liquid PYE medium 

supplemented with 2 µg/ml chloramphenicol and bacteria were grown at 25oC. Logarithmically 

growing culture was centrifuged at 6000 rpm for 15 min, then concentration of bacteria was 

determined by measuring optical density at A600 nm and confirmed by plating serially diluted 

bacterial suspension on PYE agar. The following formula was used to determine bacterial colony 

forming units (CFU) per mL (optical density at A600 of 1.000 = 3 x 109 CFU/mL). The pellet, or 

whole cells, of Cc was suspended in PBS and treated at 80oC for 60 min to prepare heat-killed 

Caulobacter crescentus (HKCC). HKCC was stored at 4oC until use and diluted in saline as 

required. 
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2.2.2 Mice Immunizations 

All animal experiments used in this study were approved by the University Animal Care 

and Use Committee (ACUC) for Health Sciences, and conducted in accordance with the 

guidelines of the Canadian Council on Animal Care (CCAC). Five six-week old female BALB/c 

mice (purchased from Charles River Laboratories) were housed in a specific pathogen free 

animal facility. Mice were immunized twice, 14 days apart with individual lipopeptide (25 

µg/mouse) or a pool of lipopeptides (lipopeptide mix: P1, P4, P5, P6 and P6, each at 12 

µg/mouse, total 60 µg/mouse) in the absence or presence of toll-like receptor agonist MPL, 

PolyI:C, gardiquimod (GDQ) or HKCC. For s.c. immunization, each mouse received 100 µl of 

lipopeptide(s) and 25 µg of MPL, 20 µg of GDQ,  20 µg of PolyI:C, 50 x 106 CFU of HKCC or 

PBS. For i.n. immunization, 30 µl (15 µl in each nostril) of lipopeptide(s) and 10 µg of PolyI:C 

or  MPL or GDQ, 50 x 106 CFU of HKCC or PBS were administered to each mouse. Control 

mice were immunized with an equal quantity of PolyI:C, MPL, GDQ, HKCC and PBS. Mice 

were euthanized using a CO2 chamber, and various tissues (lungs, liver, spleen and lymph nodes) 

and samples (BAL, lung washes) were collected aseptically.   

2.2.3 T Cell Proliferation Assay 

 Antigen-specific T cell proliferation assays were performed using nylon wool purified 

splenocytes and local draining lymph node cells as reported previously [29]. Respective 

lipopeptides were used as recall antigen at concentrations described in each figure. Plates were 

incubated for 4 days, culture supernatants were collected and cells were pulsed with 0.5 µCi/well 

[3H]-thymidine (Amersham) for 12-18 h and harvested on filter papers. The levels of [3H]-

thymidine incorporated into the DNA of proliferating cells were counted in a Microbeta Trilux 

liquid scintillation counter (Perkin Elmer). Data are represented as the mean ± SD (standard 
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deviation) of counts per minute (cpm) for proliferation assays, or as the mean ± SEM (standard 

error of the mean) for stimulation indices (SI) of triplicate cultures. SD was used for cpm as it 

demonstrates the variations among replicate values. In the proliferation assay results where I 

presented data after calculating SI, SEM was used since the comparison in the means of SI is 

presented. Stimulation indices were calculated by dividing the mean of cpm of peptide-stimulated 

wells by the mean cpm of non-stimulated wells. 

2.2.4 Cytokine ELISA 

 Cytokines secreted in culture supernatant collected from T-cell proliferation assay 

(described in section 2.2.3) and BAL were measured using sandwich ELISA kits (IFN-γ, TNF-α 

and/or IL-10) following the manufacturer’s protocol (eBioscience, CA, USA). Briefly, 96-well 

ELISA plates (Corning Costar 9018, eBioscience) were coated with capture antibodies (1-4 

µg/ml, 100 µl/well) diluted in coating buffer. Plates were sealed and incubated overnight at 4°C. 

The next day, plates were blocked with 1 x diluent buffer (eBioscience) at room temperature 

(RT) for 1 h, and 2-fold serially diluted recombinant standard or 100 µl/well of test samples were 

added in triplicates. The plates were incubated again at RT for 2 h.  Biotinylated detection 

antibody (100 µl/well) in 1 x diluent buffer was added and plates were incubated for 1 h at RT.  

After incubation, 100 µl/well of avidin-horseradish peroxidase (Avidin-HRP) was added and 

plates were incubated at RT for 30 min. 1 x TMB solution (100 µl/well) was added and plates 

were incubated at RT for 15 min. The enzyme reaction was stopped by adding 50 µl/well of stop 

solution (2N H2SO4) to each well. Plates were washed three times with wash buffer (1 x PBS 

with 0.05% Tween-20) after each incubation step. The ELISA plates were read with an 

automated ELISA plate reader (Fluostar Optima, BMG Labtech GmbH, Ortenberg, Germany). 
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Data are represented as the mean ± SD of concentrations for each cytokine perfomed in triplicate 

wells. 

2.2.5 Bronchoalveolar Lavage (BAL)  

To harvest BAL fluid and cells, lungs were lavaged with 500 µl of ice-cold sterile PBS 

[with 0.3% wt/vol bovine serum albumin (BSA)] and two 500 µl PBS washes. Fluids were 

centrifuged at 1,500 rpm for 10 min, and RBC lysis was performed on cell pellets.  For RBC 

lysis, the cell pellet was resuspended in 500 µl of sterile distilled water and vortexed briefly.  

Immediately after, 500 µl of 2 × PBS was added, the tube was vortexed briefly and the volume 

was made to 2 ml with 1 × PBS. The obtained lymphocytes were used for staining. The 

supernatants of the initial 500 µl BAL fluid were used for cytokine analyses. Dr. Satish Vedi 

provided expertise by collecting and processing BAL from mice. 

2.2.6 Flow Cytometry Analysis of Immune Cells 

A total of 1 × 106 cells from spleen and BAL from immunized mice were stained with 

extracellular (anti-mouse CD3e-FITC, CD4-PECy-5, CD8-APC-Cy-7, CD11b-Alexafluor-700, 

Gr-1-Percp-e fluor 710) (eBioscience, CA, USA) and intracellular (anti-mouse Granzyme B-

Alexafluor-647, FOXP3-PE) (Biolegend, USA) markers using established procedures [30]. For 

intracellular cytokine staining, splenocytes cultured for 5 days with peptide antigens were treated 

with ionomycin (1 µg/ml), PMA (50 ng/ml) and brefeldin A (1.5 µg/ml) 1 X; eBioscience) for 5 

h at 37°C and subsequently stained for extracellular: CD3-PE Cy7, CD4-APC or CD8-APC-Cy 7 

and intracellular cytokines IFN-γ-PE and IL-10-FITC. Samples were run on LSR Fortessa SORP 

flow cytometer and (analyzed using FACS-DIVA software Becton Dickinson, Mountain View, 

CA).  Respective isotype-matched control antibodies were used to gate non-specific staining.  
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Ms. Dorothy Kratochwii-Otto provided assistance in managing and troubleshooting flow 

cytometry instruments. 

2.2.7 Mycobacterial Challenge of Mice 

  M. tuberculosis (H37Ra) was obtained from ATCC (Rockville, MD). Briefly, 14 days 

after the second immunization, mice were injected with 5 × 105 CFU/mouse of H37Ra 

intravenously. Five weeks after H37Ra infection, mice were euthanized using a CO2 chamber, 

and lungs, liver and spleen were removed aseptically and individually homogenized in 5 ml of 

saline. A 100 µl aliquot was taken from each organ homogenate of individual mice and was 

plated on 7H11 Middlebrook agar plates (BD Biosciences) in serial dilution. The plates were 

incubated at 37°C for 3-4 weeks prior to counting the colonies. The number of bacterial colonies 

was counted manually using a magnifying glass apparatus. The bacterial counts obtained were 

multiplied by the dilution factor to represent the total CFUs from the whole organ.   

2.2.8 Statistical Analysis 

Data were analyzed using GraphPad Prism 6 software (GraphPad Software Inc., CA, 

USA). Data were presented as mean ± SD or SEM. Significant differences between two groups 

were determined using the Student's t-test. The difference among the means of multiple 

immunization groups on immune reponses or bacterial loads were compared by two-way 

ANOVA followed by Tukey's multiple comparison test. A p-value less than 0.05 (P < 0.05) was 

considered to be statistically significant. 
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2.3 Results 

2.3.1 Individual modified lip peptides derived from ESAT-6 induce cellular immune 

responses upon subcutaneous immunizations 

  The immunogenicity of modified lipopeptides derived from ESAT-6 were examined and 

depicted in Table 2.1. Mice were immunized s.c. with individual lipopeptides (P1-P7) or PBS 

twice, 14 days apart and examined for antigen-specific T cell responses in spleen and inguinal 

lymph nodes one week after the last immunization. There was dose-dependent T cell proliferation 

in mice immunized with lipopeptides P1, P4, P5, P6 and P7, but not with P2 and P3 (Fig. 2.1 A 

and 2.1 B).  Splenocytes from all mice immunized with P1-P7 provided similar responses against 

ConA (a T cell mitogen), used as a positive control (Fig. 2.1 A and 2.1 B). Induction of antigen-

specific CD4+ and CD8+ T cells responses was determined by IFN-γ production in ex vivo 

antigen-stimulated splenocytes. Concordant with the proliferation assay, both CD4+ and CD8+ T 

lymphocytes from P1 and P4-7 immunized mice demonstrated significant production of IFN-γ, 

while P2 and P3 did not induce an IFN-γ response compared to PBS controls (Fig. 2.1 C).  

Table 2.1: ESAT-6 protein EsxA [Mycobacterium tuberculosis H37Rv], NCBI Reference 
Sequence: YP_178023.1 
 
95 Amino acids from the N terminus to C terminus: MTEQQWNFAGIEAAASAIQG 
NVTSIHSLLDEGKQSLTKLAAAWGGSGSEAYQGVQQKWDATATELNNALQNLARTISE
AGQAMASTEGNV TGMFA 
 
Location of peptide in Mtb 
secretory protein 

Code Amino Acid Sequence 

ESAT-6
1-15

 P1 MTEQQWNFAGIEAAA K(palmitate)G 
ESAT-6

15-29
  P2   ASAIQGNVTSIHSLL K(palmitate)G 

ESAT-6
16-40

 P3 SAIQGNVTSIHSLLDEGKQSLTKLA K(palmitate)G 
ESAT-6

31-55
 P4 EGKQSLTKLAAAWGGSGSEAYQGVQ K(palmitate)G 

ESAT-6
46-70

 P5 SGSEAYQGVQQKWDATATELNNALQ K(palmitate)G 
ESAT-6

61-85
 P6 TATELNNALQNLARTISEAGQAMAS K(palmitate)G 

ESAT-6
76-95

 P7 ISEAGQAMASTEGNVTGMFA K(palmitate)G 
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 Next, I determined whether the addition of the TLR-4 agonist MPL could increase the 

immunogenicity of lipopeptides P2 and P3. I found that inclusion of MPL with lipopeptides P2 

and P3 did not affect their immunogenicity, whereas the T cell responses against lipopeptides P1 

and P4-P7 were further increased with MPL (Fig. 2.1 A and 2.1 B). The absence of a response in 

mice immunized with lipopeptides P2 or P3 proves that induced T cell responses are peptide-

specific, not lipid-specific.  
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Fig 2.1: Cellular immune responses after immunizations with individual lipopeptides of 
ESAT-6. Female BALB/c mice (n = 5) were immunized subcutaneously twice, 14 days apart, 
with individual lipopeptides P1-P7 alone or with MPL as an adjuvant. MPL and PBS alone 
groups were used as controls. Eight days after the last immunization, T cells obtained from 
splenocytes and lymph nodes were cultured with irradiated APCs (splenocytes from 
unimmunized mice) and with respective lipopeptides P1-P7 at 10, 5 and 1 µg/ml concentrations 
for 4 days. T cell proliferation was measured by [3H] thymidine incorporation in (A) spleen and 
(B) inguinal lymph nodes cells. Con A (1 µg/ml) was used as a positive control for all groups. 
Mean ± standard deviation of CPM (counts per minutes) from triplicate wells are shown. Spleen 
cells obtained from mice immunized with lipopeptide P1-P7 were cultured for 4 days with or 
without respective lipopeptides at 5 µg/ml concentration and labeled with antibodies against CD3, 
CD4 and CD8 for extracellular staining along with intracellular IFN-γ. The cells were gated for 
CD3+CD4+ and CD3+CD8+, which were subsequently analyzed for IFN-γ expression. Data are shown 
as the percentage of IFN-γ+ of CD4+ and CD8+ T cells (C). The peptide-specific response was 
calculated by subtracting the percentage of cells positive for IFN-γ expression in the absence of 
peptide (no peptide control). ‘*’ and ‘#’ indicates significant difference (P < 0.001) compared to 
the corresponding group in PBS and MPL immunized mice, respectively. Data are representative 
of three repeated experiments. 
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2.3.2 Immunization with a mix of ESAT-6 lipopeptides broadens the induced T cell 

responses in mice 

To expand the induced T cell responses to multiple epitopes of ESAT-6 antigen, I 

determined the immunogenicity of the five immunogenic lipopeptides mixed together. I also 

investigated the impact of the route of immunization (s.c. and i.n.) and the addition of TLR 

agonists (MPL, polyI:C or gardiquimod) on induced T cell responses. Interestingly, mice 

immunized with pooled peptides by both intranasal and subcutaneous routes, elicited T cell 

proliferation (Fig. 2.2 A) as well as IFN-γ production (Fig. 2.2 B) against each of the 

lipopeptides present in the mix. Thus, the cumulative T cell response induced by the pool 

encompasses most of the T cell epitopes of ESAT-6. This experiment also conclusively 

demonstrated that lipopeptides induced significant systemic T cell immunity upon mucosal 

immunization (Fig. 2.2 A, B). Antigen-specific immune responses were also significantly 

increased with addition of an adjuvant to the lipopeptide mix (Fig. 2.2). Among the TLR-agonists 

used, MPL provided the highest T cell proliferation, whereas PolyI:C led to the maximum IFN-γ 

production by both routes of immunization. Interestingly, addition of GDQ led to T cell response 

higher than lipopeptide mix alone, but lower than the other two TLR agonists MPL and polyI:C. 

Overall, the magnitude of immune responses was higher with the intranasal route than the 

subcutaneous route, and addition of TLR agonists bolstered it.  



 
	  

66	  

 

Lipop
ep

tid
e m

ix,
 

    
    

   2
x i

.n.

Lipop
ep

tid
e m

ix 
+

Poly
 I:

C, 2
x i

.n.

Lipop
ep

tid
e m

ix 
+

M
PL, 2

x i
.n.

Lipop
ep

tid
e m

ix 
+

GDQ, 2
x i

.n.

No i
mmuniza

tio
n

0

5

10

15

20

C
um

ul
at

iv
e 

Pr
ol

ife
ra

tiv
e 

R
es

po
ne

P4
P5
P6
P7

P1

*

**

*

**
#

#

#

Lipop
ep

tid
e m

ix,
 

2x
 s.

c.

Lipop
ep

tid
e m

ix 
+

Poly
 I:

C, 2
x s

.c.

Lipop
ep

tid
e m

ix 
+

M
PL ,2

x s
.c.

Lipop
ep

tid
e m

ix 
+

GDQ, 2
x s

.c.

No i
mmuniza

tio
n

0

5

10

15

20

C
um

ul
at

iv
e 

Pr
ol

ife
ra

tiv
e 

R
es

po
ne

 P4
P5
P6
P7

P1

*

*

**
#

*
##

Lipop
ep

tid
e m

ix,
 

    
    

   2
x i

.n.

Lipop
ep

tid
e m

ix 
+

Poly
 I:

C, 2
x i

.n.

Lipop
ep

tid
e m

ix 
+

M
PL, 2

x i
.n.

Lipop
ep

tid
e m

ix 
+

GDQ, 2
x i

.n.

No i
mmuniza

tio
n

0

50

100

150

200

250

C
um

ul
at

iv
e 

IF
N

-γ
 R

es
po

ns
e

P1
P4
P5
P6
P7

##
* 

#
* 

*

 #
*

Lipop
ep

tid
e m

ix,
 

2x
 s.

c.
Lipop

ep
tid

e m
ix 

+

Poly
 I:

C, 2
x s

.c.

Lipop
ep

tid
e m

ix 
+

M
PL ,2

x s
.c.

Lipop
ep

tid
e m

ix 
+

GDQ, 2
x s

.c.

No i
mmuniza

tio
n

0

50

100

150

200

250

C
um

ul
at

iv
e 

IF
N

-γ
 R

es
po

ns
e

P1
P4
P5
P6
P7#

*  

* 

#
*  

#
*  

A. T Cell Proliferation in Spleen 

I. Intranasal

I. Intranasal

II. Subcutaneous

II. Subcutaneous

B. IFN-γ Production in Spleen 

Immunization groups



 
	  

67	  

Fig 2.2: Cellular immune responses after immunizations with pool of immunogenic 
lipopeptides of ESAT-6 with or without an adjuvant.  (A) Antigen specific T cell proliferation 
in spleen. Female BALB/c mice (n = 5) were immunized twice, 14 days apart with a mixture of 
P1 and P4-P7 alone or combined with Poly I:C, MPL or GDQ by intranasal (i.n.) and 
subcutaneous (s.c.) routes. PBS was used as a control. Eight days after the last immunization, T 
cells obtained from spleens were cultured with irradiated APCs and with the individual 
lipopeptide at 5 µg/ml concentration for 4 days. Proliferation was measured by [3 H] thymidine 
incorporation. Supernatants collected from antigen-stimulated T cell culture were used to determine 
(B) antigen specific IFN-γ by ELISA. Data with intranasal (I) and subcutaneous (II) routes are 
shown. Results are expressed as cumulative proliferative response to all immunizing 
lipopeptides. The stimulation index (SI) ± SEM from triplicate wells was calculated as follows: 
(CPM counts or Concentration (pg/ml) against respective peptide)/(CPM counts or Concentration 
(pg/ml) against no peptide control). Response against each peptide (P1, P4, P5, P6 & P7) was 
added (sum of SI for all lipopeptides) together to calculate the cumulative antigen-specific 
responses. ‘*’, Indicates significant difference (‘*’, P < 0.01, ‘**’, P < 0.001) compared to the 
corresponding group in PBS immunized mice and ‘#’ compared to the group immunized with 
lipopeptide mix alone (‘#’ P ≤ 0.05, ‘##’ P ≤ 0.001). Data are representative of three different 
repeated experiments. 

2.3.3 Immunization with a mix of ESAT-6 lipopeptide along with Poly I:C, MPL or GDQ  

reduces growth of disseminated mycobacteria upon intravenous Mtb challenge 

I then examined the protective efficacy of mucosal and parenteral immunization with the 

lipopeptide mix alone and in combination with a TLR-agonist. Immunization of mice with 

peptide mix alone by both subcutaneous and intranasal routes led to significant reduction in Mtb 

loads in all organs compared to PBS controls (Fig. 2.3 A and B).  

Among the groups immunized with lipopeptide mix plus a TLR agonist, the maximum 

reduction in bacterial load was observed in the intranasal MPL-adjuvanted group, which was also 

significantly higher than lipopeptide mix alone group (Fig. 2.3). However, after subcutaneous 

immunization, bacterial load in the MPL-adjuvanted group was significantly reduced only in the 

lungs (~51%, Fig. 2.3). In contrast, Poly I:C- and GDQ-adjuvanted groups showed increases in 

bacterial burden in lungs and liver, and no difference in spleen, with both routes of immunization. 
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Fig 2.3:  Immunizations with ESAT-6 lipopeptides reduce bacterial loads in mice after Mtb 
challenge. Female BALB/c mice (n = 5) were immunized intranasally and subcutaneously twice, 
14 days apart, with a mixture of P1 and P4-P7 lipopeptides (12 µg each) alone and combined 
with Poly I: C, MPL or GDQ.  Control mice were immunized with PBS. Eight days after the last 
immunization, mice were challenged with H37Ra (0.5 x 106 CFU) intravenously. Five weeks 
later, Mtb-challenged mice were euthanized and lungs, liver and spleens were collected from (A) 
intranasally and (B) subcutaneously immunized mice. Bacterial loads were determined in (I) 
lungs, (II) liver and (III) spleen by CFU assay. All results are shown mean ± standard deviation 
of CFU (colony forming units) from individual mice. Data are representative of three different 
repeated experiments. ‘*’, Indicates significant difference (*P < 0.05; **P < 0.01; ***P < 0.001) 
compared to the corresponding group in PBS immunized mice and ‘#’ compared to the group 
immunized with lipopeptide mix alone (‘#’ P ≤ 0.05, ‘##’ P ≤ 0.01).  
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2.3.4 Reduction in mycobacterial loads in mice immunized with lipopeptide mix and 

adjuvants is associated with local and systemic cytokine and/or systemic CD4+ T cell 

responses 

I measured the production of cytokines in lung washes and splenocytes, to assess if the 

protective effect of immunizing with ESAT-6 lipopeptide correlated with local and systemic 

immune responses. Interestingly, immunization with lipopeptide mix alone by both routes led to 

significantly (**P < 0.01) increased levels of effector cytokines IFN-γ and TNF-α and 

simultaneously reduced IL-10 levels compared to controls (Fig. 2.4 A and B). Co-immunization 

with MPL led to significantly increased IFN-γ by both routes, whereas the IFN-γ levels were 

reduced in polyI:C- and GDQ-adjuvanted groups, compared to lipopeptide mix alone and/or PBS 

controls (Fig 2.4). In comparison, TNF-α production was similar in groups adjuvanted with 

polyI:C (i.n. and s.c.), MPL (s.c) and GDQ (i.n.), while addition of MPL i.n. and GDQ s.c. led to 

reduced levels of TNF-α compared to the peptide mix group with no adjuvant. No significant 

reduction was observed in IL-10 levels among groups immunized with lipopeptide mix and 

PolyI:C, MPL or GDQ , except s.c. in the MPL-adjuvanted group. 

In addition to soluble effectors (cytokines), I examined the intracellular expression of 

effector molecules in CD4+ and CD8+ T cells to determine their contribution in the observed 

reduction in mycobacterial loads. Concurring with cytokines present in BAL, the percentage of 

CD4+IFN-γ+ T cells was significantly higher and CD4+IL-10+ T cells was lower in the peptide 

mix alone and MPL-adjuvanted groups compared to all other groups (Fig. 2.5 A and B). Co-

immunization of lipopeptide mix with PolyI:C and GDQ led to reduced IFN-γ production with 

both routes and increased IL-10 expression in CD4+ T cells by s.c. immunization. There was no 

change in the percentage of CD4+IL-10+ cells upon immunization with PolyI:C and GDQ (i.n.) 

and MPL (s.c.) compared to lipopeptide mix alone. I also examined intracellular expression of 
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IFN-γ, Granzyme B and IL-10 in CD8+T cells, but did not observe any significant difference 

between various experimental groups (Appendix 1-3).  

 

Fig 2.4: Immunizations with ESAT-6 lipopeptides with or without adjuvant lead to 
differential induction of cytokines in lung washes after Mtb challenge in mice. Female 
BALB/c mice (n = 5) were immunized intranasally and subcutaneously twice with a mixture of 
P1 and P4-P7 lipopeptides alone and combined with Poly I:C, MPL or GDQ. Control mice were 
immunized with PBS. One week after the last immunization, mice were challenged with H37Ra 
(0.5 x 106 CFU) intravenously. Five weeks later, Mtb-challenged mice were euthanized and lung 
washes were collected from (A) intranasally and (B) subcutaneously immunized mice to 
determine (I) IFN-γ, (II) TNF-α and (III) IL-10 by ELISA. Mean ± standard deviation of 
cytokine concentrations from individual mice are shown. ‘*’, Indicates significant difference (*P 
< 0.05; **P < 0.01) compared to the corresponding group in PBS immunized mice and ‘#’ 
compared to the group immunized with lipopeptide mix alone (‘#’ P ≤ 0.05). Data are 
representative of three different repeated experiments. 
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Fig 2.5: Intracellular IFN-γ and IL-10 are differentially expressed in antigen-specific CD4+ T 
cells upon Mtb challenge in mice immunized with ESAT-6 lipopeptides with or without an 
adjuvant. Female BALB/c mice (n = 5) were immunized intranasally and subcutaneously twice 
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with a mixture of P1 and P4-P7 lipopeptides alone and combined with an adjuvant Poly I: C, 
MPL or GDQ. PBS immunized mice were used as a controls. One week after the last 
immunization, mice were challenged with H37Ra (0.5 x 106 CFU) intravenously. Five weeks 
later, Mtb-challenged mice were euthanized and spleens were collected. Spleen cells obtained 
from immunized mice were cultured for 4 days with or without peptide pools and were labeled for 
surface expression of CD3 and CD4 and intracellularly for IFN-γ and IL-10. The cells were gated for 
CD3+CD4+ T cells that were subsequently analyzed for IFN-γ and IL-10 expression in (A) 
intranasally and (B) subcutaneously immunized mice. The percentage of IFN-γ+ of CD4+ T cells 
(I) and IL-10+ of CD4+ T cells (II) are shown. The peptide-specific response was calculated by 
subtracting the percentage of cells that were positive for IFN-γ and IL-10 production in the absence 
of peptide pool (no peptide control).‘*’, Indicates significant difference (*P < 0.05; **P < 0.01) 
compared to the corresponding group in PBS immunized mice. Data are representative of three 
different repeated experiments. 

2.3.5 Increased myeloid-derived suppressor cells (MDSCs) in BAL and spleen is correlated 

with reduced protection in polyI:C or GDQ immunized mice 

Next, I determined the basis of the observed reciprocal regulation of IFN-γ and IL-10 

upon immunization with lipopeptide mix plus PolyI:C or GDQ following Mtb challenge despite 

high IFN-γ induction in immunized but unchallenged mice. There was no significant difference 

in percentages of CD4+FOXP3+ Tregs cells among various experimental groups. Intranasal 

administration of poly-L-lysine with carboxymethylcellulose alone has been shown to trigger the 

accumulation of MDSCs in lungs [31] so I quantitated CD11b+Gr-1+ myeloid cells in BAL and 

spleens. I found significantly increased infiltration and/or accumulation of MDSCs in BAL and 

spleen in PolyI:C- and GDQ-adjuvanted groups, upon i.n. and s.c. immunizations, respectively, 

compared to PBS, lipopeptide mix alone and MPL-adjuvanted groups (Fig. 2.6). Therefore, 

reduced protection after Mtb challenge in polyI:C- and GDQ-adjuvanted groups is associated 

with increased levels of MDSCs locally or systemically depending on the route of immunization, 

which may lead to enhanced IL-10 production and reduced IFN-γ production from CD4+ T cells.  
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Fig 2.6: Increase in myeloid derived suppressor (CD11b+Gr-1+) cells in bronchoalveolar 
lavage (BAL) and spleen correlates with decreased reduction in Mtb loads in mice 
immunized with ESAT-6 lipopeptides with PolyI:C or GDQ. Female BALB/c mice (n = 5) 
were immunized intranasally and subcutaneously twice with a mixture of P1 and P4-P7 
lipopeptides alone and combined with Poly I: C, MPL or GDQ. PBS immunized mice were used 
as controls. After 8 days of last immunization, mice were challenged with H37Ra (0.5 x 106 
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CFU) intravenously. Five weeks later, Mtb challenged mice were euthanized. Cells were obtained 
from BAL and spleen and labeled for surface markers CD11b and Gr-1. Percent positive CD11b+Gr-
1int+ are shown from (A) intranasally and (B) subcutaneously immunized mice. Data are 
representative of three different repeated experiments.  

2.3.6 Immunization with ESAT-6 lipopeptides mix along with a novel immunomodulator 

HKCC provides superior immune responses and reduction in Mtb loads  

  I also examined the effect of HKCC, (a novel immunomodulator being studied in Dr. 

Kumar’s laboratory) on the immune responses induced by ESAT-6 lipopeptide mix, and their 

subsequent role in Mtb clearance by both intranasal and subcutaneous routes.  

First I examined lipopeptide specific proliferation and IFN-γ production from splenocytes 

obtained from immunized mice.  Interestingly, subcutaneous immunization of mice with ESAT-6 

and HKCC did not lead to a significant increase in proliferation and IFN-γ production from 

splenocytes, whereas HKCC significantly enhanced T cell responses upon intranasal 

immunization (Fig. 2.7, panel I in A and B). Subsequently, I performed an Mtb challenge 

experiment in immunized mice. The addition of HKCC led to significantly (*P < 0.05) higher 

reduction in Mtb loads by both intranasal (lungs ~58%, liver ~50% and spleen ~60%) and 

subcutaneous (lungs 22%, liver 40% and spleen 43%) routes, compared to the lipopeptide mix 

alone (Fig. 2.7, panel II in A and B). In addition, HKCC also led to significantly increased IFN-γ 

production in lung washes by both routes, compared to the lipopeptide mix alone (Fig. 2.7, panel 

III in A and B). There was no statistically significant difference in TNF-α and IL-10 levels after 

immunization with HKCC by both routes. Interestingly, following Mtb challenge, the percentage 

of CD4+IFN-γ+ T cells in spleen increased despite no difference in T cell responses observed in 

subcutaneously immunized but unchallenged mice (Fig. 2.7 B, panels I and IV). In contrast, 

intranasal immunization with HKCC did not show change in the number of CD4+IFN-γ+ T cells 
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in challenged mice despite increased immune responses before challenge, compared to the 

lipopeptide mix alone (Fig. 2.7 A, panels I and IV). There was no significant difference in the 

number of CD4+IL-10+ T cells and MDSCs in the lipopeptide mix alone and HKCC-adjuvanted 

groups in mice immunized by both subcutaneous and intranasal routes. Therefore, protection 

after Mtb challenge in HKCC-adjuvanted groups is associated with increased levels of IFN-γ 

locally or systemically depending on the route of immunization, however it may be contributed 

from both CD4+ T cells and possibly other cells such as NK and NKT. 
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Fig 2.7: Immunization of mice with ESAT-6 derived lipopeptides along with HKCC leads to 
superior induction of immune responses and reduction in Mtb loads by [A] Intranasal and 
[B] Subcutaneous routes. (I). Antigen specific T cell proliferation and IFN-γ in spleen. Female 
BALB/c mice (n = 5) were immunized twice, 14 days apart with a mixture of P1 and P4-P7 alone 
or combined with HKCC (50 x 106/mouse) by intranasal (i.n.) and subcutaneous (s.c.) routes. 
Saline was used as a control. After 8 days of last immunization, T cells obtained from spleens 
were cultured with irradiated APCs and with the individual lipopeptide at 5 µg/ml concentration 
for 4 days. Proliferation was measured by [3H] thymidine incorporation. Supernatants collected 
from antigen stimulated T cell culture were used to determine antigen specific IFN-γ by ELISA.  
Data with intranasal (A) and subcutaneous (B) routes are shown. Results are expressed as 
cumulative proliferative response to all immunized lipopeptides. For challenge study, after 8 days 
of last immunization, mice were challenged with H37Ra (0.5 x 106 CFU) intravenously. Five 
weeks later, Mtb challenged mice were euthanized and lungs, liver and spleens were collected 
from intranasally and subcutaneously immunized mice. (II). Mtb loads in lungs, liver and spleen 
were determined by CFU assay. All results are shown as mean ± standard deviation of CFU 
(colony forming units) from five individual mice. Lung washes were collected from (A) 
intranasally and (B) subcutaneously immunized mice challenged with Mtb to determine cytokines 
IFN-γ, TNF-α and IL-10 in BAL by ELISA (III). Mean ± standard deviation of cytokine 
concentrations from individual mice are shown. Spleen cells obtained from immunized mice after 
Mtb challenge were cultured for 4 days with or without peptide pools and were labeled for surface 
expression of CD3 and CD4 and intracellularly for IFN-γ and IL-10. The cells were gated for 
CD3+CD4+ T cells that were subsequently analyzed for intracellular IFN-γ and IL-10 expression in 
(A) intranasally and (B) subcutaneously immunized mice. (IV). The percentage of IFN-γ+ and IL-
10+ of CD4+ T cells are shown. The peptide specific response was calculated by subtracting the 
percentage of cells that were positive for IFN-γ and IL-10 production in the absence of peptide pool 
(no peptide control). ‘*’, Indicates significant difference (‘*’, P < 0.05, ‘**’, P < 0.01 ‘***’, P < 
0.001) compared to the corresponding group in PBS immunized mice and ‘#’ compared to 
lipopeptide mix alone immunized group (‘#’ P ≤ 0.05). Data are representative of three different 
repeated experiments. 

2.4 Discussion 

Development of a vaccine, which drives effective cellular immunity, is critical to combat 

deadly mycobacterial infections. Several vaccine strategies focused on generating strong multi-

specific cellular immunity against immune-dominant antigens of Mtb have shown efficacy in 

preclinical models [32-36]. However, their efficacy in humans remains to be seen in clinical 

trials. Peptide-based subunit vaccine offers several advantages over whole antigen- or pathogen-
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based vaccines, by strategically eliminating suppressive and/or non-immunogenic epitopes. 

However, weak immunogenicity and human genetic diversity have limited their use in vaccine 

development [37, 38].  

Numerous studies have suggested that co-activating TLRs by either mixing or 

conjugating TLR(s)-agonists with peptides are effective in eliciting optimum immune responses 

[39-45]. A promiscuous CD4+ T cell epitope of 16 KD antigen linked with the TLR-2 agonist 

Pam2Cys was shown to protect mice from Mtb by inducing memory T cells. However, despite 

effectiveness, their poor solubility and stability are serious problems [46].  

Synthetic peptides covalently attached with a simple palmitoylated lipid chain have 

demonstrated improved immunogenicity in clinical trials with very good safety and tolerance 

profiles [47-50]. Moreover, lipopeptides containing a single palimitic moiety are also known to 

activate TLR-2 and -4 providing moderate self-adjuvantation [51,52]. 

We therefore conjugated a palmitoyl-lysine residue to peptides of Mtb ESAT-6 antigen 

that correspond to dominant human T cell epitopes, as a potential TB vaccine. We also examined 

which combination of TLR-agonist and route of immunization could evoke optimum immune 

responses to protect from subsequent Mtb infection. 

I first assessed the immunogenicity of seven individual lipopeptides covering the entire 

ESAT-6 antigen in mice after two s.c. immunizations. It was surprising to obtain strong cellular 

immune responses upon immunization with lipopeptides P1 and P4-7 without added adjuvants 

(Fig 2.1). On the other hand P2 and P3 were not immunogenic in BALB/c mice (Fig 2.1). 

Although we did not compare these results with those of free peptides, an earlier report showed 

free peptide P2 is immunogenic when given with CFA adjuvant in CB651 mice [53]. The reason 

for this discrepancy is not clear. Lipopeptides are internalized and cross-presented by DCs via an 

endocytosis-independent mechanism whereas non-lipidated peptides are internalized via an 
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endocytosis-dependent mechanism, which could lead to changes in immunogenicity [54]. Use of 

a strong adjuvant such as CFA, which is not approved for humans, may also break the barrier of 

immunogenicity or change a very weak, undetectable response to a detectable one.  In our 

studies, addition of MPL as an adjuvant (a TLR4 agonist) bolstered the T cell responses 

generated against P1 and P4-P7, but did not affect the immunogenicity of P2 and P3 (Fig. 2.1 A 

and B). Lack of immunogenicity of P2 and P3 could be due to inefficient presentation by MHC 

of BALB/c mice (H-2d) and/or inefficient recognition by the T cell repertoire of BALB/c mice.  

The binding of peptide epitopes to MHC and recognition of peptide-MHC complex by T cells are 

critically dependent on the amino acid sequences of the peptide epitopes. It is possible that 

peptide P2 and P3 do not contain anchor amino acid residues to bind at the antigen binding sites 

of MHC class I and class II molecules of H-2d allele, or BALB/c mice lack T cells recognizing 

these peptide-MHC complexes.* To distinguish between these possibilities one could identify the 

binding of MHC class I and II molecules of H-2d allele to these peptides, design the possible 

MHC-peptide tetramers and find their interactions with T cells isolated from BALB/c mice. 

Interestingly, similar to CD4+ T cell response, lipopeptides P1 and P4-P7 also provided a 

peptide-specific CD8+ T cell response (Fig. 2.1 C). Although it has been widely accepted that 

CD4+ T cells play a critical role against Mtb protection, the contribution of CD8+ T cells also 

appears to be equally important in the containment and clearance of Mtb.  It has been shown that 

Mtb-specific CD8+ T cells possess effector functions, including direct killing of infected 

macrophages and production of cytokines (IFN-γ and TNF-α) to activate macrophages to inhibit 

replication of mycobacteria [55].  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
*	  In the peptide design, lysine residue was only used as a linker for palmitoylation and is not critical for ESAT-6 
interaction with MHC.	  
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A protective and successful immune response against Mtb infection requires consideration 

of quantitative and qualitative immune parameters against multi-epitopes, as well as site of 

action. Interestingly, we found that intranasal and subcutaneous immunizations with a mix of 

immunogenic lipopeptides alone induced systemic T cell responses against all epitopes of the 

mix, with an additive cumulative response (Fig. 2.2). In contrast, several studies have reported 

that after immunization with ESAT-6 protein or multiple immunodominant epitopes, immune 

responses are mainly directed towards dominant epitopes [56]. It is possible that the use of 

lipopeptides allows more epitope spreading due to efficient cross-presentation and T cell 

lipopeptide mix with TLR agonists PolyI:C, MPL or GDQ quantitatively enhanced the antigen-

stimulation, compared to unconjugated peptides. Additionally, combining the immunogenic 

specific response by both subcutaneous and intranasal routes, as expected (Fig. 2.2 A and B).  

 Immunization with the lipopeptide mix along with different TLR agonists provided 

protection from Mtb challenge (Fig. 2.3 A and B). Intriguingly, both intranasal and subcutaneous 

immunizations with the lipopeptide mix alone significantly reduced bacterial burden in lungs, 

liver and spleen. Surprisingly, however, only the MPL-adjuvanted lipopeptide mix enhanced the 

efficacy of immunization in terms of reduction in bacterial burden (Fig. 2.3). In contrast, addition 

of PolyI:C or GDQ to the lipopeptide mix led to a reduction in effectiveness of vaccination (Fig. 

2.3) including a reciprocal modulation of IFN-γ and IL-10 (Fig. 2.4), and higher IL-10 

production correlated with increased bacterial load. Besides IFN-γ and IL-10 other 

cytokines/chemokines and/or unconventional T cells (NK, NKT and γδ -T cells) although not 

examined here, may have contributed to reduction in Mtb loads upon immunization with 

lipopeptide mix and various adjuvants, particularly because correlates of protection against Mtb 

are not clear. The mechanism underlying the decrease in protection could be attributed to the role 

of stimulation of different TLRs. TLR-4 agonists enhance antigen presentation by increasing 



 
	  

82	  

antigen internalization and delivery to the cytosol, while TLR-3 and TLR-7 enhance TAP-

dependent antigen presentation [57]. Moreover, TLR-2 co-stimulation with TLR-4 or TLR-7/8 

shifts the T cell responses to Th2 and Th17, respectively [58]. Further, suboptimal antigen 

presentation can also induce antigen-specific tolerance through the induction of Tregs instead of 

protection [59]. However, even though we observed enhanced IL-10 production in CD4+ T cells 

(Fig. 2.5), we did not find evidence of increased percentage of FOXP3+ Tregs (Appendix 4). 

Both PolyI:C and GDQ have been known to stimulate type 1 interferons. Several studies have 

reported the deleterious effect of Type I interferon on the outcome of Mtb infection in vivo, 

despite positive effects in vitro in Mtb infected cells [60]. In a mouse model of pulmonary 

bacterial pneumonia, both polyI:C and GDQ given intranasally, were shown to impair bacterial 

clearance [61]. Interestingly, we observed decreased populations of myeloid-derived suppressor 

cells (CD11b+Gr-1int) in BAL and spleen after intranasal and subcutaneous immunization, 

respectively, in Mtb-challenged mice immunized with lipopeptide mix only and lipopeptide mix 

plus MPL, compared to no immunization groups. However, upon combining polyI:C or GDQ 

with lipopeptide mix, populations of MDSCs were mostly increased, compared to lipopeptide 

only groups. This observation reveals a new pathway of inducing/recruiting MDSCs.  Lung-

residing MDSCs have been shown to provide a niche for Mtb survival and are associated with TB 

lethality [62, 63]. The mechanism of how these MDSCs are generated/recruited and lead to 

enhanced Mtb loads, will be investigated in future studies. 

Several heat-killed pathogenic and non-pathogenic bacteria have been used as a delivery 

vehicle or vaccine adjuvant to induce antigen specific immunity in conjunction with their ability 

to stimulate innate immunity [64-66]. Therefore, I investigated the effect of heat-killed 

Caulobacter crescentus as a vaccine adjuvant to further bolster the protective immunity induced 

by lipopeptide mix in the mouse model of Mtb infection. Intriguingly, both intranasal and 
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subcutaneous immunizations with lipopeptide mix plus HKCC significantly enhanced the 

efficacy of lipopeptides with substantial reduction in bacterial burden and increased IFN-γ in 

BAL (Fig. 2.7 A and B). The mechanisms underlying superior protection by HKCC plus 

lipopeptide mix and the modulation of immune responses before or after challenge are not yet 

clear. I speculate that the enhanced effect with HKCC was due to induction/activation of multiple 

innate cells that regulate adaptive immunity resulting in protective immunity. 

In conclusion, a mixture of simple lipid-modified peptides derived from ESAT-6 with or 

without MPL as an adjuvant, induces strong CD4+ T cell immunity against multiple epitopes and 

provides very promising protection against Mtb infection; immunization by the intranasal route 

confers better protection than by the subcutaneous route. On the other hand, use of PolyI:C and 

GDQ was detrimental to protection induced by lipopeptides of ESAT-6 by both routes. In 

addition, HKCC as a novel adjuvant is also able to stimulate appropriate immune responses to 

provide protective immunity against Mtb infections. Further studies are required to determine the 

role of HKCC in reducing Mtb burden in mice. These results demonstrate the potential of a 

lipopeptide-based multiepitope TB vaccine and suggest a cautious approach in selecting routes of 

immunization and adjuvants. 
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Chapter 3 

Harnessing innate immunity to treat mycobacterial infections: 

Heat-killed Caulobacter crescentus as a novel immunomodulator* 

 

	  

 

 

 

 

 

 

 

 

 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
*	  In this chapter I designed and performed all of the experiments. Dr. R. Kumar (supervisor), Dr. D.Y. Kunimoto 
(co-supervisor) and Dr. B. Agrawal (collaborator) contributed to the concept for these studies and the data analysis.	  
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3.1 Introduction  

The current TB epidemic continues to grow at an alarming rate due to four compounding 

factors: 1) the ineffectiveness of the current vaccine, BCG; 2) poor compliance associated with 

lengthy treatments with multiple chemotherapeutic drugs that have serious side effects; 3) the 

prevalence of TB-HIV co-infections and 4) the rapid emergence of multi/extensively/totally drug 

resistant strains of TB bacilli. These four factors have made the control of tuberculosis disease 

highly challenging. Extensive efforts to discover a new and/or improved TB vaccine have not 

succeeded yet [1-7]. Consequently, there is a need to investigate novel immunotherapeutic 

approaches to combat emerging TB pandemic and improve treatment outcomes.  

Antigen-independent immunotherapy that boosts the host innate immune system to fight 

disease could be one of the potential approaches for the treatment and/or cure of chronic 

mycobacterial infections [8]. Although the precise contributions and fine-regulation of different 

innate immune mechanisms needed to fight against TB remain undefined, animal and human 

studies suggest that regulated activation of immune cells promotes mycobacterial containment. In 

contrast, uncontrolled activation/inflammation causes active disease with severe organ damage 

and immune deficiency as observed in reactivation of latent TB disease [9-12]. Several host-

directed therapies that target different immune mechanisms including cytokines, corticosteroids, 

vitamin D3 and thalidomide, have been explored as potential immunotherapies with limited 

efficacy [13-16].  

Along these lines, several live or inactivated microbes have had a beneficial effect in 

preventing and treating infectious diseases [17-22]. Lactobacillus species in live and heat-

inactivated forms have been evaluated as an immunotherapeutic and vaccine adjuvant. However, 

poor induction of antibody and T-cell response has limited their use [23-30]. Environmental non-
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tuberculous mycobacterial species have also been investigated alone and in combination with 

chemotherapeutics for treatment of cancers and Mtb infections [31- 33]. Live Mycobacterium 

marinum and heat-inactivated Mycobacterium manresensis were found to be effective 

immunotherapeutics in in vitro and in vivo models, respectively. Although environmental 

mycobacterial species do not lead to serious infections and disease, they are known to cause skin 

lesions, induce severe systemic immune responses and/or compromise the host’s ability to 

respond effectively to other pathogens [34, 35]. Therefore, careful study of novel host-directed 

interventions is needed to offer safer and effective immunotherapeutic strategies to induce 

clinically relevant immune response against Mtb.  

In recent years, research on non-pathogenic bacteria-based stimulation and regulation of 

innate immune mechanisms has opened new approaches for novel immunotherapeutic 

interventions. Many of the microbes studied activate innate immunological sensors, which result 

in aberrant production of inflammatory or anti-inflammatory cytokines that lead to either auto-

inflammation or recurrent infections [36, 37]. As these results suggest, careful selection and 

identification of such agents are essential.  

Caulobacter crescentus (Cc) is a non-pathogenic fresh water aquatic bacterium that is not 

known to cause any infection or disease in mammals. Cc has been comprehensively studied due 

to its dimorphic life cycle and high expression of the S-layer subunit protein RsaA [38, 39]. 

Recombinant Cc has been used as an expression vehicle because the abundant S-layer can be 

genetically modified to produce target molecules, antigens or antibodies [40-44-]. Live Cc has 

been shown to provide antitumor responses in mouse models, although the basis of this effect is 

not known [45]. But the heat-killed Caulobacter crescentus (HKCC) have not been investigated 

for immunotherapeutic intervention. Intriguingly, HKCC significantly enhanced protection from 

Mtb when combined with ESAT-6 antigen of Mtb (Chapter 2). While executing vaccine 



 
	  

92	  

experiments, I noted that administering mice with HKCC alone, in the absence of ESAT-6 

lipopeptides, also reduced Mtb loads in mice.  

In the present study, I have explored the role of HKCC in stimulating and modulating 

human innate immunity and ensuing adaptive immunity in vitro. Further, I have examined the 

effect of HKCC in controlling mycobacterial growth using intracellular macrophage and mouse 

models of mycobacterial infection.  

3.2 Materials and Methods 

3.2.1 Animals 

All animal experimental protocols used in this study were approved by the University 

Animal Care and Use Committee (ACUC) for Health Sciences, and conducted in accordance 

with the guidelines of the Canadian Council of Animal Care (CCAC). Five- to six-week-old 

female BALB/c mice were purchased from Charles River Laboratories and housed in BSL 2/3 

animal facility (HSLAS) at the University of Alberta.  

3.2.2 Heat-killed Caulobacter crescentus (HKCC) 

Caulobacter crescentus (Cc), containing plasmid vector p4A723/cmyc possessing a 

chloramphenicol resistance marker, was grown in PYE medium supplemented with 

chloramphenicol (2 µg/ml) at 25oC.  Logarithmically growing cultures were centrifuged at 6000 

rpm for 15 min and the bacterial CFU was determined by measuring OD and confirmed by 

plating serially diluted bacterial suspensions on PYE agar. Cc was treated at 80oC for 60 min to 

prepare heat-killed Caulobacter crescentus (HKCC), resuspended in saline and stored at 4oC, 

prior its use.  
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3.2.3 In vitro PBMCs Stimulation  

Peripheral blood samples were obtained from normal healthy donors 30–60 years old of 

both sexes after informed consent. Use of human blood samples was approved by the institutional 

Health Research Ethics Board at the University of Alberta. Human peripheral blood nuclear cells 

(PBMCs) were isolated from healthy donors blood by Ficoll-Paque (Amersham Biosciences) 

density gradient centrifugation. Heparin-treated blood (20 ml) was layered carefully over Ficoll-

Paque density gradient media (20 ml) without intermixing and was centrifuged at 2000 rpm for 

30 min.  After centrifugation, the intermediate buffy layer containing PBMCs was collected. For 

lymphocyte activation and cytokine production, 4 × 106 cells/ml were incubated in AIM-V 

medium in 24-well plates for 24 h and 96 h in triplicate, with HKCC (1E7) or other 

immunostimulators: LPS (a TLR-4 agonist, 1 µg/ml), Poly:IC (a TLR-3 agonist, 1 µg/ml), 

resiquimod* (a TLR-7/8 agonist, 1 µg/ml), or CpG (a TLR-9 agonist, 3 µg/ml). In all experiments 

saline and PHA (1 µg/ml) were used as negative and positive controls, respectively. At day 1 day 

and day 5, cells were stained for flow cytometry and supernatants were collected for cytokine 

analysis.  

3.2.4 In vitro Differentiation of Monocyte Derived DCs from PBMCs 

  Briefly, PBMCs were isolated from peripheral blood by Ficoll-Paque and re-suspended at 

5 x 106 cells/ml in RPMI 1640 (GIBCO), supplemented with L-glutamine, 1% human AB serum 

(Sigma), 1% sodium pyruvate (GIBCO) and 500 U/ml penicillin-streptomycin (GIBCO).  The 

PBMCs were plated in 6-well plates (5 ml/well) and incubated at 37ºC (5% CO2) for 2 h for 

adherence. After 2 h incubation, the non-adherent cells were removed and fresh RPMI media 

containing recombinant human GM-CSF (50 ng/ml) and recombinant human IL-4 (10 ng/ml) 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
*	  Resiquimod was used due to the unavailability of gardiquimod.	  
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(Peprotech Canada Inc., Ottawa, ON, Canada), was added to the adherent cells and incubated for 

5-6 days. On day 6, ~95% of the obtained cells were CD11c positive, suggesting the 

differentiation of myeloid DCs. DCs (2 x 105 cells/ml) were cultured with HKCC (1E6, 1E7 and 

5E7), poly I:C (1 µg/ml), or medium for 24 h. On day 7, supernatant was collected from each 

well for cytokine analysis and DCs were harvested for staining for flow cytometry.  

3.2.5 Allogeneic T cell Proliferation 

 DCs were prepared from human blood monocytes as described in section 3.2.4. Human T 

cells were purified using nylon wool columns from another donor (different HLA type, 

allogeneic). For allogeneic T cell proliferation, DCs pre-incubated with HKCC or LPS for 24 h 

were re-suspended in AIM-V medium followed by the addition of 10,000 and 20,000 DCs to 2 × 

105 allogeneic T cells in triplicate in 96-well flat bottom plates. Control wells contained only 

media, only DCs, only allogeneic T cells, DCs plus allogeneic T cells or allogeneic T cells plus 

PHA (1 µg/ml). After 4 days of incubation at 37oC, the wells were pulsed with 0.5 µCi/well [3H]-

thymidine (Amersham) for 18 h and harvested on filter papers (Perkin Elmer). The levels of [3H]-

thymidine incorporated into the DNA of proliferating cells were counted in a Microbeta Trilux 

liquid scintillation counter (Perkin Elmer). Proliferation is represented as the mean cpm ± SD 

(standard deviation) of triplicate cultures. 

3.2.6 T cell and B cell Proliferation 

Non-adherent T cells were purified using nylon wool columns according to previously 

reported procedures [46]. 2 × 105 T cells were cultured in triplicates in 96-well plates with HKCC  

(1E6, 1E7 and 5E7) in AIM-V media. Controls included T cells alone or T cells incubated with 1 

µg/ml PHA. After 4 days of incubation at 37oC, the wells were pulsed with 0.5 µCi per well [3H] 

thymidine for 18 h, harvested and analyzed for 3H-thymidine uptake. For B cell proliferation 
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assays, PBMCs were labeled with CFSE dye and cultured with HKCC (1E6, 1E7 and 5E7) or 

CpG (3 µg/ml) for 4 days and then stained for extracellular markers (CD3, CD4, CD8 and 

CD19), followed by examining dilution of CFSE in CD19+ B cells.  

3.2.7 Cytokine ELISA 

   The culture supernatants were tested for cytokines IL-2, IL-10, IL-17A, IL-22, IL-12, 

IL-6, IFN-γ, TNF-α, and granulocyte-macrophage colony stimulating factor (GM-CSF) using R 

& D Systems (Minneapolis, Minnesota) or eBioscience ELISA kits as per manufacturer’s 

protocol. Breifly, for the detection and quantification of cytokines secreted from cells, 96-well 

ELISA plates (Corning Costar 9018, eBioscience) were coated with 100 µl/well of capture 

antibodies for the cytokine of interest diluted in coating buffer at a concentration of 1-4 µg/ml. 

Plates were sealed and incubated overnight at 4°C. The next day, after blocking with 1x diluent 

buffer (eBioscience) at room temperature for 1 h, a 2-fold serial dilution of recombinant standard 

and 100 µl/well of samples were added to the 96-well plate in 3 replicates and incubated again at 

room temperature for 2 h. A dilution of 1:2 to 1:50 was used for samples, with standards ranging 

from 5 to 2000 pg/ml. After application of samples, 100 µl/well of biotinylated detection 

antibody in 1 x diluent buffer was added and plates were incubated for 1 h.  After incubation, 100 

µl/well of avidin-horseradish peroxidase (Avidin-HRP) was added and plates were incubated at 

room temperature for 30 min. After washing, 100 µl/well of 1 x TMB solution was added and 

plates were incubated at room temperature for 15 min. Finally, the enzyme reaction was stopped 

after adding 50 µl/well of stop solution (2 N H2SO4) to each well. Plates were washed with wash 

buffer (1 x PBS with 0.05% Tween-20) after each incubation step. The ELISA plates were read 

with an automated ELISA plate reader (Fluostar Optima, BMG Labtech GmbH, Ortenberg, 
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Germany). Data are represented as the mean ± SD of concentrations for each cytokine perfomed 

in triplicate wells. 

3.2.8 Flow Cytometry Analysis of Surface and Intracellular Markers 

A total of 1 × 106 cells from spleen and bronchoalveolar lavage (BAL) from treated mice 

(see below) was taken for extracellular staining with multicolor fluorescently labeled mAbs 

(concentrations according to manufacturer’s instructions). The cells were incubated with Fc 

mouse-serum (Sigma) to prevent non-specific binding and washed with fluorescence-activated 

cell sorter (FACS)-buffer [2% fetal bovine serum in 1 × phosphate-buffered saline (PBS)]. The 

cells were then incubated for 30 minutes at 4°C with anti-mouse CD3e-FITC, CD4-PECy-5, 

CD4-APC, CD25-PE-Cy7, CD8a-APC-Cy7, CD69-PECy-5, anti-CD49b-Alexafluor-700, anti-

CD11c-FITC, anti-F4/80-efluor 450, anti-CD11b-Alexafluor-700, anti-CD40 PE, anti-CD86-

APC, anti-MHC-II-PECy-5 (eBioscience) to detect extracellular markers. The cells were then 

washed twice with FACS buffer and analyzed using a LSR Fortessa SORP flow cytometer. Data 

analysis was conducted using FACS-DIVA software (Becton Dickinson, Mountain View, CA).  

Each marker was gated based on its respective isotype-matched control monoclonal antibody. 

Similar staining methodology was used with human PBMCs to determine various cells and 

activation markers anti-human CD11c-efluor 450, CD123-FITC, CD19-APC, CD40-Percp-efluor 

710, CD80-PE, CD86-PEcy7, DEC-205-FITC, CD3-e-fluor 450, CD4-APC, CD8-PE, CD56-PE 

Texas Red, CD25-PECy-7, CD69-PerCP-efluor 710, CD11b-PECy-7, IL-17-PE, TNF-α-FITC, 

IL-10-PECy-7 and IL-22-APC (eBioscience) in flow cytometry experiments. Ms. Dorothy 

Kratochwii-Otto provided assistance in managing and troubleshooting flow cytometry 

instruments. 
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3.2.9 Mycobacterial infection of THP-1 cells and Treatment  

THP-1 cells (human monocyte cell line) were grown in complete DMEM medium. Cells 

(1 × 106 cells/ml) were cultured in medium containing 50 ng/ml of PMA in 24-well plates for 24 

h to allow differentiation into macrophages. Next day, cells were infected with M. tuberculosis 

(Mtb) H37Ra or M. avium (5 x 107) CFU/well for 4 h at 37oC and then washed with medium to 

remove extracellular bacilli. Cells were treated twice at 4 days intervals with supernatants 

collected from human PBMCs upon 24 h stimulation with HKCC, Poly I:C, LPS, resiquimod  

CpG, or with control drugs (rifampicin and clarithromycin). Five days after the second treatment, 

cells were lysed and plated on 7H11 agar plates for CFU determination. 

3.2.10 In vivo Cytokine Induction  

Groups of five C57BL/6 male mice were administered with saline or HKCC (50 × 

106/mouse) orally (200 µl/mouse), or intranasally (30 µl/mouse). Five hours later, mice were 

euthanized using a CO2 chamber and lung washes were collected.  

3.2.11 Mycobacterial Challenge and Treatment in Mice 

Female BALB/c mice were infected with Mtb H37Ra (0.5 × 106 CFU/mouse) 

intravenously. After 5 days, mice were treated intranasally or orally once weekly for four weeks 

with HKCC. Five days after the last treatment, mice were euthanized using a CO2 chamber.  

Lungs, liver and spleen were collected from each individual mouse and were homogenized in 5 

ml saline. A 100 µl aliquot was taken from each organ homogenate of each individual mouse and 

was plated on 7H11 Middlebrook agar plates (BD Biosciences). The plates were incubated at 

37°C for 3-4 weeks, then the number of colonies were counted. The bacterial counts obtained 

were multiplied by the dilution factor to represent the total CFUs from the whole organ. Lungs 

washes, bronchoalveolar lavage (BAL) and spleens were also collected to examine cytokine 
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stimulation and activation of immune cells. Dr. Satish Vedi provided expertise by collecting and 

processing BAL from mice. Mr. Saurabh Garg assisted in setting up the CFU assays. 

  For combination studies, mice were treated subcutaneously with HKCC and sequentially 

with oral INH according to the schedule (Fig. 14). Three days after the last treatment, mice were 

euthanized using a CO2 chamber and bacterial loads were determined in lungs, liver and spleen as 

described above. 

3.2.12 Statistical Analysis 

Data were analyzed by GraphPad Prism 6 software (GraphPad Software Inc., CA, USA). 

Data were presented as mean ± SD. Significant differences between two groups were determined 

using the Student's t-test. The difference among the means of multiple treatment groups on 

immune reponses or bacterial loads were compared by two-way ANOVA followed by Tukey's 

multiple comparison test. A p-value less than 0.05 (P < 0.05) was considered to be statistically 

significant. 

3.3 Results 

3.3.1 HKCC induces a distinct pattern of cytokine production from human PBMCs 

First, I examined the effect of HKCC on cytokine production from human PBMCs in 

vitro. Freshly isolated PBMCs from normal healthy human donors were incubated with HKCC at 

1 × 107 and 5 × 107 CFU/ml for 24 and 96 h, and the amount of IFN-γ, TNF-α, IL-1β, IL-6, IL-12, 

IL-10, IL-17, IL-22, GM-CSF and TGF-β were measured in culture supernatants. Interestingly, 

HKCC induced rapid and sustained production of cytokines IFN-γ, TNF-α, IL-6, IL-12, IL-1β, 

IL-10, IL-17 and IL-22 in a dose-dependent manner with markedly different kinetics upon 24 and 

96 h stimulation (Fig. 3.1 and 3.2). The production of IFN-γ, TNF-α, IL-6, IL-12, IL-1β, IL-10, 

IL-17A and IL-22 was significantly increased after 24 h stimulation (Fig. 3.1). After 4 days of 
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culture, the levels of TNF-α, IL-1β and IL-10 significantly declined whereas IFN-γ, IL-6, IL-12, 

IL-17A and IL-22 increased compared to the levels obtained upon 24 h culture (Fig. 3.2). GM-

CSF was detected on day 4 only and not on day 1 (Fig. 3.2) and also with higher concentration of 

HKCC. TGF-β levels were only slightly increased over saline control upon stimulation of 

PBMCs with HKCC for 4 days (Fig. 3.2). These results indicate that HKCC can stimulate 

various innate and/or adaptive immune cells present in PBMCs to produce a diverse range of 

multifunctional cytokines in a dose-dependent manner.  
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Fig 3.1. HKCC induces cytokine production from human PBMCs. PBMCs (4 × 106/ml/well) 
were cultured in 24 well plates with AIM V medium in the presence or absence of HKCC at two 
different concentrations (10 × 106 CFU/ml or 50 × 106 CFU/ml) for 24 h. Supernatants were 
collected, and analyzed for the presence of IFN-γ, TNF-α, IL-6, IL-10, IL-17A and IL-22 using 
sandwich ELISA kits. Results are shown as mean + standard deviations of triplicate values. The 
experiment was repeated with four individual donors and data from a representative donor are 
shown. 

 

 

Fig 3.2. HKCC induces sustained cytokine production from human PBMCs.  PBMCs (4 × 
106/ml/well) were cultured in 24-well plates with AIM V medium with or without HKCC at two 
different concentrations (10 × 106 CFU/ml or 50 × 106 CFU/ml) for 4 days. Supernatants were 
collected, and analyzed for the presence of human IFN-γ, TNF-α, IL-6, IL-12, IL-1β, GM-CSF, IL-
10, IL-17A, IL-22 and TGF-β, using sandwich ELISA kits. Results are shown as mean + standard 
deviations of triplicate values. The experiment was repeated with four individual donors and data 
from a representative donor are shown. ‘*’ P < 0.05, indicate significant differences compared to 
saline. 

Sali
ne

HKCC, 1
E7

HKCC, 5
E7

0

1000

2000

3000

4000

5000

x

*

*

Sali
ne

HKCC, 1
E7

HKCC, 5
E7

0

100

200

300

400

500

x

*

Sali
ne

HKCC, 1
E7

HKCC, 5
E7

0

50

100

150

200

x x

*

Sali
ne

HKCC, 1
E7

HKCC, 5
E7

0

100

200

300

400

x x

*

Sali
ne

HKCC, 1
E7

HKCC, 5
E7

0

5000

10000

15000

20000

25000

x

*

*

Sali
ne

HKCC, 1
E7

HKCC, 5
E7

0

50

100

150

200

250

x

*

*

Sali
ne

HKCC, 1
E7

HKCC, 5
E7

0

100

200

300

400

x

*

Sali
ne

HKCC, 1
E7

HKCC, 5
E7

0

100

200

300

400

500

x

*

Sali
ne

HKCC, 1
E7

HKCC, 5
E7

0

50

100

150

200

x

*

*

Sali
ne

HKCC, 1
E7

HKCC, 5
E7

0

200

400

600
*

Stimulation (conc/ml)

C
on

ce
nt

ra
tio

n 
(p

g/
m

l)

TNF-α IL-6 IL-12IFN-γ IL-1β

IL-17 IL-22GM-CSF TGF-βIL-10



 
	  

101	  

3.3.2 HKCC leads to the activation of both myeloid and plasmacytoid dendritic cells in 

human PBMCs 

Next, I studied the effect of HKCC on the maturation of two major subsets of human 

DCs: myeloid (mDCs) and plasmacytoid (pDCs). Monocyte-derived mDCs were prepared from 

PBMCs using GM-CSF and IL-4 as described in Material and Methods and cultured with HKCC 

or Poly I:C for 24 h. DCs maturation was examined by surface markers and/or cytokine 

production. Stimulation with HKCC up-regulated the expression of co-stimulatory molecules 

CD40 and CD80 on mDCs. Interestingly, maturation marker DEC-205 was also upregulated on 

HKCC-exposed mDCs (Figure 3.3 A), whereas CD86 was only marginally (not significant) 

increased (data not shown). Further, a strong dose-dependent increase in the production of 

cytokines TNF-α, IL-12 and IL-6 and, to a lesser extent, regulatory cytokine IL-10, was induced 

by HKCC from mDCs (Fig. 3.3 B). Stimulation of PBMCs with HKCC also led to increases in 

the percentage and activation (CD40 and CD86) of pDCs (Fig. 3.4 A and 3.4 B). 
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Fig 3.3. Treatment of monocyte-derived DC (mDCs) with HKCC leads to their maturation 
and cytokine induction. Immature monocyte derived DCs were cultured with HKCC or Poly I:C 
for 24 h. (A) Expression of CD11c, CD40, DEC-205 and CD80 was analyzed by flow cytometry. The 
cells were gated on the basis of side and forward scatter and then selected for CD11c-positive cells, 
which were analyzed for the expression of CD40, DEC-205 and CD80. (B) Cytokine profile induced 
upon incubation of mDCs with HKCC, LPS or poly I:C for 24 h. The concentration of IL-12, TNF-α, 
IL-6 and IL-10 was determined using sandwich ELISA kits. Results are shown as mean + standard 
deviation of triplicate values. All experiments were performed with four different donors and 
representative data from a representative donor are shown. ‘*’ P < 0.05, ‘**’P < 0.01 and ‘***’ P 
< 0.001 indicate significant differences compared to controls of medium alone. 
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Fig 3.4. HKCC leads to activation of plasmacytoid DCs (pDCs). PBMCs (4 × 106/ml/well) 
were cultured with HKCC or Poly I:C for 24 h. (A) The percentage of CD123+ pDCs was 
determined by gating for CD11c-, CD11b-, CD19- and CD123+ cells. (B) Up-regulation of CD86 and 
CD40 are shown on CD123+ pDCs. Results represent mean + standard deviation of triplicate 
values. The experiment was performed with four different donors and a representative is shown. 
‘*’ P < 0.05 and ‘**’ P < 0.01 indicate significant differences compared to saline controls. 
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led to enhanced allogeneic T cell proliferation. I co-cultured mDCs pre-stimulated with different 

concentrations of HKCC with allogeneic T cells and measured their proliferation. Notably, allo 

responses were significantly enhanced by HKCC (Fig. 3.5).  

 

Fig 3.5. mDCs stimulated with HKCC augment allogeneic T cell proliferation. mDCs were 
plated in 96 well plates at 10,000 cells/well or 20,000 cells/well, and stimulated with HKCC, medium 
or LPS, followed by addition of 2 × 105/well allogeneic T cells.  Plates were incubated for 4 days and 
proliferation was examined by 3H-thymidine incorporation assay. Mean ± standard deviation of 
CPM from triplicate wells are shown. The data represent three repeated experiments with three 
different donors. ‘*’ P < 0.05 and ‘**’ P < 0.01 indicate significant differences compared to 
saline control. 

 

 To determine whether HKCC directly leads to proliferation and activation of T cells, non-
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four days, followed by examining proliferation and expression of early activation marker CD69. 
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3.6. HKCC does not directly induce proliferation and activation of T cells. (A) Proliferation 
of T cells. Non-adherent T cells isolated from human PBMCs were plated (2 × 105/well) with or 
without HKCC or PHA at different concentrations in 96-flat bottom plates. Cells were incubated for 4 
days and proliferation was examined by 3H-thymidine incorporation assay. Mean ± standard 
deviation of CPM from triplicate wells are shown. Parallel cultures were set up for flow 
cytometry and cells obtained after 4 day culture were stained with CD3, CD4, CD8, and CD69 
surface markers. Data are shown as the percentage of CD69+ of CD4+ (B) and CD8+(C) T cells. The 
data represent four repeated experiments. 

 

3.3.4 HKCC does not induce proliferation and activation of B cells but leads to enhanced 

expression of molecules associated with T cell co-stimulation and cognate T-B cell 

interaction 

 To determine the effect of HKCC on B cell activation, proliferation and expression of co-

stimulatory molecules, CFSE-labeled PBMCs were cultured with or without HKCC for 4 days. 
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CpG was used as positive control. I found that HKCC did not induce proliferation of CD19+ B 

cells from PBMCs and the activation molecule CD69 was not significantly upregulated whereas 

co-stimulatory molecules CD40 and CD86 were significantly upregulated on B cells (Fig. 3.7).  

In contrast, CpG led to increased proliferation and expression of all CD69, CD86 and CD40 

molecules on B cells (Fig. 3.7). I also noted that HKCC did not affect the viability of B cells or 

induce apoptosis of B cells (Appendix 5). 

 

   Fig 3.7. HKCC activates B cells but does not lead to their proliferation. PBMCs (2 × 
106/well) were labeled with CFSE dye and treated with or without HKCC or CpG at different 
concentrations in 24-well plates. Cells were incubated for 4 days and labeled for CD3, CD11b and 
CD19 surface markers.  The cells were gated for CD3-CD11b-CD19+ cells and proliferation was 
examined by the dilution of CFSE dye.  The percentage of CFSE diluted CD19+ B cells is shown 
(A). Unlabeled PBMCs were cultured with or without HKCC or CpG in 24-well plates and 
incubated for 4 days, and stained for CD3, CD11b, CD19, CD86, CD40 and CD69 markers. Data 
are shown as the percentage of CD69+ (B) and CD86+CD40+ of CD19+ B cells (C). Data 
represent mean + SD of three replicates. ‘*’ P < 0.05 indicates significant differences compared 
to saline control. 
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3.3.5 HKCC activates NK and NKT cells 

 The pattern of cytokines induced by HKCC upon co-culture with PBMCs (Fig. 3.1 and 

3.2) pointed towards stimulation of innate lymphocytes. Therefore, I investigated whether HKCC 

activates NK and NKT cells. PBMCs were cultured with or without HKCC or PHA for 1 or 5 

days. Activation was assessed by the expression of activation marker CD69 on CD3-CD56+ NK 

cells and CD3+CD56+ NKT cells after 24 h stimulation. I observed that HKCC significantly up-

regulated the expression of CD69 on both NK and NKT cells after 24 h incubation (Fig 3.8 A, 

B). After five days of culture, HKCC substantially increased the percentage of NK and NKT cells 

in the culture (Fig. 3.8 C, D).  This increase in percentage of NK/NKT cells does not appear to be 

due to increased proliferation, as there was only marginal (not significant) CFSE dilution in 

NK/NKT cell population after 5 days of stimulation with HKCC. It is possible that HKCC is 

directly or indirectly prolonging their survival. The survival of NK cells has been demonstrated 

to be prolonged by IL-15-IL-15R signaling [47]. 
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Fig 3.8. HKCC activates human NK and NKT cells and increases their percentage. PBMCs 
(2 × 106/well) were cultured with or without HKCC or PHA at different concentrations in 24-well 
plates.  Cells were incubated for 1 or 5 days and stained for CD3, CD56 and CD69 surface markers. 
The cells were gated for CD3-CD56+ and CD3+CD56+, which were subsequently analyzed for CD69 
expression. Data are shown as the percentage of CD69+CD3-CD56+ NK cells (A), 
CD69+CD3+CD56+ NKT cells (B) after 24 h of culture, CD3-CD56+ NK (C) and CD3+CD56+ NKT 
(D) cells after 5 days. Data represent mean + SD of triplicates. ‘*’ P < 0.05 and ‘**’ P < 0.01 
indicate significant differences compared to saline control. 
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Fig 3.9. HKCC activates human NK and NKT cells to produce differential cytokines. 
PBMCs (4 × 106/well) were cultured with or without HKCC or PHA at different concentrations in 
24-well plates.  Cells were incubated for 4 days and stained for CD3 and CD56 surface markers along 
with intracellular cytokines. The cells were gated for CD3-CD56+ and CD3+CD56+, which were 
subsequently, analyzed for TNF-α, IL-10, IL-17 and IL-22 expression. Data are shown as the 
percentage of TNF-α +, IL-10+, IL-17+ and IL-22+ of CD3-CD56+ NK cells and CD3+CD56+ NKT 
cells.  (A) Activation of NK cells. (B) Activation of NKT cells. Data represent mean + SD of 
three donors.  ‘*’ P < 0.05 indicate significant differences compared to saline control. 

 

To determine the functional activity of HKCC-induced NK and NKT cells, PBMCs 

cultured with HKCC for 4 days were examined for intracellular TNF-α, IL-10, IL-17A and IL-22 

production by flow cytometry. Intriguingly, HKCC-activated NK and NKT cells showed 

significantly increased expression of TNF-α, IL-10, IL-17A and IL-22 (Fig. 3.9). I also examined 

IFN-γ production. Interestingly, there was a significant increase in IFN-γ production from both 

NK and NKT cells after 24 h whereas at day 4 there was no significant difference compared to 

saline group. 
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3.3.6 Mucosal administration of HKCC induces cytokine production in mice 

 In order to investigate whether HKCC can induce cytokine production in vivo, C57BL/6 

mice were administered with HKCC intranasally or orally. C57BL/6 mice were used in this 

experiment to examine the effect of HKCC in different haplotype (H-2b) to determine its broad 

applicability across MHC-diverse populations. Mucosal routes were chosen instead of 

subcutaneous because DCs are more prominent at mucosal surfaces and more efficiently sense 

external stimuli or bacterial components. In addition, the efficient transcytosis of HKCC across 

the epithelium into the mucosal-associated lymphoid tissue may occur by microfold ‘M’ cells, a 

unique population of epithelial cells. Five hours after administration, cytokines were determined 

in lung washes. HKCC induced rapid production of TNF-α, IL-6, IL-12 and IL-1β in mice with 

both intranasal and oral routes (Fig. 3.10). Thus, HKCC has the ability to induce cytokine 

production in vivo after mucosal administration.  
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Fig 3.10. HKCC induces cytokines production after mucosal administration in mice. Groups of 
five C57BL/6 male mice were administered with saline or HKCC (50 x 106/mouse) orally (200 
µl/mouse), or intranasally (30 µl/mouse).  Five hours after administration, mice were euthanized and 
lung washes (1 ml/mouse) were collected (pooled for a group) and used to determine the presence of 
cytokines TNF-α, IL-6, IL-12 and IL-1β using a sandwich ELISA. Cytokines induced upon (A) 
Intranasal (B) Oral administration are shown. Results are shown as mean + SD of triplicate values. 
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3.3.7 HKCC inhibits mycobacterial growth in human macrophages via host-mediated 

mechanisms 

 Mtb is an intracellular pathogen infecting macrophages, the phagocytic cells of the host 

that are the first defense against an invading pathogen. However, infection with Mtb incapacitates 

the ability of macrophages to destroy the bacteria they engulf [48]. There is ample scientific 

evidence to support immune-mediated clearance of Mtb infection [49, 50].  Therefore, I sought to 

determine whether supernatants obtained from PBMCs stimulated with HKCC would inhibit 

mycobacterial growth within macrophages. I infected THP-1 macrophages with Mtb (H37Ra) or 

M. avium, and treated then with supernatants from PBMC cultures stimulated with HKCC or 

other known immunostimulators (TLR agonists). Rifampicin and clarithromycin were used as 

positive controls for H37Ra and M. avium, respectively. Intriguingly, two treatments with 

supernatants from HKCC-stimulated PBMCs (data from three different donors are shown) led to 

significant host-mediated inhibition (~ 60-70%) of both Mtb and M. avium compared to saline 

treated supernatants (Fig. 3.11). In contrast, the addition of HKCC directly to THP-1 cells 

infected with Mtb or M. avium did not lead to the inhibition of mycobacterial growth. 

Supernatants from PBMCs stimulated with TLR agonists, PolyI:C, LPS, CpG and resiquimod did 

not provide significant inhibition of any of the mycobacteria within macrophages (Fig. 3.11). 
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Fig 3.11.   HKCC inhibits intracellular Mtb and M. avium growth via host-mediated mechanism 
in human THP-1 macrophage cells. Human monocytic cell line (THP-1) was infected with M. 
avium or Mtb H37Ra, followed by two treatments on days 0 and 4 with supernatants (50%) collected 
from human PBMCs treated for 24 h with HKCC, PolyI:C, LPS, CpG, resiquimod or saline in 24- 
well plates. As controls, clarithromycin and rifampicin were added directly to infected THP-1 cells. 
Five days after the second treatment, THP-1 cells were collected, lysed and plated on 7H11 agar 
plates to determine bacterial CFUs. Results are shown from three different donors and represent mean 
+ SD of triplicate wells. 

 

3.3.8 Treatment with HKCC controls disseminated Mtb growth in a mouse model of Mtb 
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 Next I examined the therapeutic potential of HKCC upon intranasal and oral 
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and spleen of individual mouse by the CFU assay. Encouragingly, only four weekly treatments 

with HKCC substantially reduced Mtb loads in all of the organs compared to the saline-treated 

group (Fig. 3.12).  

To investigate whether HKCC led to the modulation of local and systemic immune 

responses in Mtb-infected mice that correlated with its protective efficacy, I determined IFN-γ 

concentrations in lung washes. HKCC by both routes significantly (*P < 0.05) increased IFN-γ 

levels compared to the no treatment group (Fig. 3.13 A). IFN-γ is an effector molecule produced 

by both innate and adaptive lymphocytes. In my in vitro studies with human PBMCs I noted an 

effect of HKCC in activating innate immune cells, so I decided to also examine the activation of 

infiltrated NK and NKT cells in BAL. Interestingly, the percentage of activated NK and NKT 

cells, as determined by CD25 and CD69 expression, were found to be significantly higher in 

mice treated with HKCC by both routes compared to the saline treatment group (Fig. 3.13 B). 

These results coincide with the presence of IFN-γ in lung lavages. 

Next, I determined the systemic innate immune stimulation upon HKCC treatment in 

Mtb-infected mice. Notably, HKCC treatment upregulated expression of CD86 and MHC-II 

molecules on CD11b+F4/80+ macrophages and CD11b+CD11c+ DCs, and CD40 expression on B 

cells (Fig. 3.13 C). In addition, treatment with HKCC was associated with increases in the 

percentage and activation (CD25 and CD69 expression) of NK and NKT cells in the spleen (Fig. 

3.13 D).  Thus, therapy with HKCC in Mtb-infected mice provides significant local and systemic 

recruitment and activation of innate immune cells.  
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Fig 3.12. HKCC significantly reduces Mtb growth in lungs, liver and spleen. BALB/c female 
mice were challenged with H37Ra (0.5 x 106 CFU/mouse) intravenously. Starting three days 
after infection, mice were treated with HKCC intranasally or orally (50 × 106 CFU/mouse) 
once/week for 4 weeks. Control mice were treated with saline.  Five days after the last treatment, 
mice were euthanized and lungs, liver and spleens were collected. Bacterial loads were 
determined in (A) lungs, (B) liver and (C) spleen by the CFU assay. All results are shown as 
mean ± standard deviation of CFU (colony forming units) from five individual mice. Data are 
representative of three different repeated experiments. ‘*’ P ≤ 0.05, indicates significant 
difference compared to the saline-treated mice.  
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Fig 3.13. HKCC treatment boosts both local and systemic immune responses in Mtb 
challenged mice. BALB/c female mice were challenged intravenously with H37Ra (0.5 × 106 
CFU/mouse). Starting three days after infection, mice were treated intranasally or orally with 
HKCC (50 × 106 CFU/mouse) once/week for 4 weeks. Five days after the last treatment, mice 
were euthanized and lung washes, BAL and spleens were collected. (A) IFN-γ in lung washes, by 
ELISA. Mean ± standard deviation of cytokine concentrations from individual mice are shown. 
Percent positive cells are shown: (B) NK and NKT in BAL, (C) DCs, macrophages and B cells in 
spleen, and (D) NK and NKT cells in spleen. ‘*’P ≤ 0.05, indicates significant difference compared 
to the PBS-treated mice. Data are representative of three different repeated experiments.   
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3.3.9 Treatment with HKCC in conjunction with a low dose of first-line anti-TB drug 

isoniazid (INH) augments anti-mycobacterial effects in mice 

 The potential of immunotherapy for the mycobacterial infections could be enhanced if it 

could be used along with anti-TB chemotherapeutics. This could enhance the antimicrobials’ 

therapeutic effects, reduce their doses and side effects, and prevent or delay drug-resistance 

problems. To determine the combinatorial effect of HKCC with available anti-TB drugs, Mtb- 

infected mice were sequentially treated with HKCC (subcutaneously) and a low oral dose of INH 

(1 mg/kg) using the schedule depicted in Fig. 3.14. It was interesting to note that only two 

intermittent subcutaneous treatments of HKCC with a low intermittent oral dose of INH led to 

very promising levels of inhibition of Mtb in lungs (90%), liver (94%) and spleen (98%). These 

effects were significantly superior than either agent used alone at the same dose and schedule 

(Fig. 3.14). 
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Fig 3.14. Treatment with HKCC in combination with isoniazid leads to higher reduction in 
bacterial burden than either agent alone. Groups of 5 BALB/c female mice were challenged 
with H37Ra (0.5 x 106 CFU/mouse) intravenously. From five days post infection, mice were treated 
with HKCC subcutaneously, and INH orally, or PBS (by the same route as a control) using a schedule 
shown in the figure. Mice were euthanized 2 days after the last treatment. Spleens, lungs and liver 
were collected to determine bacterial loads using the CFU assay. Results are shown mean ± standard 
deviation of CFUs from individual mice. Data are representative of three different repeated 
experiments. ‘*’ P ≤ 0.05, indicates significant difference compared to the PBS-treated mice. 

 

3.4 Discussion 

 Tuberculosis is an ancient disease that is re-emerging worldwide in more dangerous drug-

resistant forms. In the past two decades, significant efforts have been focused on developing an 

improved TB vaccine that targets the stimulation of antigen-specific adaptive immune responses. 
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To date, however, they have not led to measurable success clinically [51].  Our understanding of 

the role of innate immune cells is expanding. We now appreciate that they not only provide the 

immediate first line of defense but also extend well beyond that in their role in timelines, memory 

responses, immune regulation, control of inflammatory mechanisms and coordinating the 

downstream adaptive immune response [52-54]. This new knowledge has prompted many to 

investigate novel innate immunomodulatory agents that can be used to treat not only TB but also 

a number of other chronic infections. Our studies have revealed a heat-killed form of Cc (HKCC) 

to be a promising immunomodulatory/immunotherapeutic agent targeting such innate 

mechanisms.  

 I initially examined the induced secretion of various cytokines upon co-culture of HKCC 

with human PBMCs, a mixture of innate and adaptive immune cells, such as NK, NKT, 

monocytes, DCs, T cells, B cells etc. HKCC stimulated early production of IFN-γ, TNF-α, IL-1β, 

IL-6, IL-12, IL-10, IL-17A and IL-22 cytokines within 24 h, which was sustained for four days in 

culture, and delayed GM-CSF production (Fig. 3.1 and 3.2). These results were highly 

unexpected due to the non-pathogenic and non-infectious nature of Cc for humans. The obtained 

pattern of cytokine induction was indicative of direct and/or indirect activation of innate immune 

cells, followed by trans-activation of, and cytokine production by, a variety of innate and 

adaptive immune cells. Therefore, I analyzed the activation states of different cell types in 

PBMCs stimulated by HKCC. I first chose to use non-isolated populations of innate and adaptive 

cells present in PBMCs for the stimulation phase, followed later by examining individual cell 

types by flow cytometry. This way optimum interactions between different cells could occur in 

the PBMCs. Overall, my results reveal a previously unrecognized role of HKCC as a novel 

immunomodulatory agent stimulating mDCs, pDCs, NK and NKT cells, resulting in the 
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activation of CD4+ and CD8+ T cells but without direct T cell activation, and uniquely activating 

B cells (Fig. 3.3-3.9). 

  HKCC induces maturation of mDCs and leads to production of multiple cytokines, which 

are associated with the induction of an adaptive immune response. The co-production of IL-12, 

IL-6, TNF-α and IL-10 from mDCs indicated that HKCC induced a pro Th1 DC and DC-10 

phenotype (Fig. 3.3). Interestingly, HKCC also increased the activation of pDCs, which have 

both stimulatory and regulatory effects on T cells (Fig. 3.4). pDCs have been shown to help 

balance T cell activation during autoimmunity and antiviral defense. Furthermore, enhancement 

of allogeneic T cell proliferation upon co-culture with HKCC-stimulated mDCs suggests the 

ability of HKCC to induce an adaptive immune response of an effector type, as required when 

encountering a pathogen. Different microbes as well as TLR agonists induce aberrant immune 

responses, including production of pro-inflammatory cytokines, and uncontrolled and abnormal 

polyclonal T and B cell proliferation and activation, which are linked to severe immunopathology 

and autoimmune inflammation [54-61]. In contrast, HKCC does not induce non-specific 

lymphoproliferation and activation of B and T cells (Fig. 3.6, 3.7), suggesting that HKCC would 

not lead to immune abnormalities associated with tissue damage or autoimmunity. Also 

specifically, HKCC did not upregulate CD69 expression on T and B cells; CD69 expression has 

been known to be associated with autoimmune and inflammatory responses [62, 63].  

Interestingly, although HKCC did not cause B cell proliferation or upregulation in CD69 

expression, it enhanced the expression of CD86 and CD40 (Fig. 3.7), which would result in the 

increased ability of B cells to interact with T cells or other immune cells to allow both higher 

antibody production and higher effector T cell responses [64, 65].  The reason and mechanism for 

this interesting property is not clear. 



 
	  

121	  

 The early induction of multiple cytokines from PBMCs led us to examine NK and NKT 

cell activation by HKCC (Fig. 3.8). Accordingly, our results clearly demonstrated that HKCC 

activates innate lymphocytes NK and NKT cells (Fig. 3.8). In addition, intracellular cytokine 

staining identified NK and NKT cells as the source of TNF-α, IL-17A, IL-10 and IL-22 (Fig. 

3.9).  Interestingly, the induced cytokine signature suggests the activation of type II and/or 

heterogeneous NKT cells, implicating non-inflammatory characteristics of the induced innate 

immunity [66]. However, our experiments do not rule out the production of these cytokines from 

other cell types, which were not examined here. NK and NKT cells have recently emerged as 

playing important roles in immune regulation, immune homeostasis and memory responses. 

Besides classical mechanisms of activation, i.e., absence of MHC1 for NK cells and CD1d 

restricted activation of NKT cells, both NK and NKT cells have recently been shown to be 

activated by multiple non-classical mechanisms, which expands their role in overall immunity 

and immune regulation [67-69]. NK/NKT cells are able to induce maturation and functional 

activation of DCs, and NK/NKT-DC cross talk plays an important regulatory role both in innate 

and adaptive immunity [70]. NK and NKT cells are known to promote or suppress cell-mediated 

immunity in different conditions. In order to maintain homeostasis, NK and NKT cells can 

directly induce maturation of DCs or lysis of immature but not mature DCs [71]. Functionally 

distinct subsets of NK and NKT cells regulate these diverse biological functions. Both NK and 

NKT cells mediate potent immune regulatory functions in autoimmune diseases, cancer, 

infections and immune tolerance [72, 73]. The induction of TNF-α, IL-10, IL-17A and IL-22 by 

NK and NKT cells upon stimulation with HKCC provides an impetus to examine the potential 

role of HKCC in mediating immunoregulatory mechanisms. Consistent with our in vitro data 

with human PBMCs, I found that mucosal (intranasal and oral) administration of HKCC also 
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induces rapid production of cytokines in lung washes, suggesting the potential of HKCC in 

stimulating or modulating innate immunity (Fig. 3.10).  

 Recently, various innate cytokine pathways have been reported to influence the outcome 

of Mtb infection [74]. The cytokine signature induced by HKCC from human PBMCs was 

indicative of heterogeneous innate immune cells’ stimulation (Fig. 3.1 and 3.2). Accordingly, 

supernatants collected from human PBMCs stimulated with HKCC for 24 hours showed very 

promising effects in reducing Mtb replication in a human macrophage cell line (THP-1) (Fig. 

3.11). The exact role of individual or combinations of cytokines in producing this effect is not 

clear yet. Interestingly, supernatants collected from PBMCs stimulated with individual TLR 

agonists (CpG, polyI:C, resiquimod and LPS) did not have the same effect (Fig. 3.11). This 

observation could be attributed to a broad and distinct range of cytokines/innate cells induced 

upon stimulation with HKCC, compared to individual TLR agonists [75, 76].   

 Mucosal administration of HKCC in Mtb-infected mice led to a remarkable reduction in 

bacterial loads in lungs, liver and spleen (Fig. 3.12) and it was associated with activation of 

various innate and adaptive immune cells including NK and NKT cells (Fig. 3.13). Similarly, 

although I did not examine the role of the expanding universe of other types of innate lymphoid 

cells (ILCs) in our studies, they cannot be overlooked in providing protective immunity against 

Mtb upon treatment with HKCC. NK and NKT are prominent cells of innate immunity, but their 

contribution during mycobacterial infections has not been explored much and remains 

controversial. Depletion of NK cells in mice with antibodies against NK 1.1 and asialo-GM1 

enhanced mycobacterial growth in mice [77]. Numbers and functional activity of NKT cells have 

been shown to be reduced in Mtb-infected patients, supporting their role in natural immunity 

[78]. In addition, Kulprannet et al. have shown a higher frequency of IL-4-producing NKT cells 

compared to IFN-γ-producing cells in TB patients [79]. Dhiman et al. demonstrated that IL-22 
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produced from NK cells but not by T cells inhibit intracellular growth of mycobacteria [80], and 

that NK cells have the ability to lyse the Tregs expanded during chronic infection, providing an 

important role of NK cells in immune defense against Mtb [81]. Our results demonstrate the in 

vitro and in vivo effect of HKCC correlates with the activation of NK/NKT cells and the 

cytokines they produce. Taken together, these findings suggest that the immunotherapeutic 

effects of HKCC in tuberculosis are at least partly dependent upon the functional activation of 

NK and NKT cells. Since, innate cells play a critical role in inducing, maintaining and regulating 

the downstream adaptive immune responses, the participation of adaptive immune responses in 

the observed anti-mycobacterial effect of HKCC, although not investigated in the current study, 

cannot be ruled out or ignored.  

 TB is a resilient chronic infection and extremely difficult to eradicate from a host .  The 

best strategy for successful treatment and/or cure of TB could be envisioned that as Mtb 

replication is reduced by chemotherapy and concurrent immunotherapy, innate immune 

mechanisms will be harnessed to rid the body of Mtb completely. Our experiments using an 

HKCC-based immunotherapy, in conjunction with a low dose of first-line anti-TB drug isoniazid, 

(Fig. 3.14) were very promising and set the stage for such treatment regimens. Intriguingly, I 

observed ~98% reduction in viable Mtb in the lungs of mice treated concurrently with HKCC and 

INH (low dose), compared to 50-70% reduction in bacterial counts obtained with either agent 

alone. Similarly, in liver and spleen, a significantly higher reduction in Mtb counts was observed 

with concurrent HKCC and INH treatment, compared to either agent alone (Fig 3.14). 

Collectively, our data demonstrate tremendous promise of HKCC as a novel immunotherapeutic 

agent to treat a deadly chronic infectious disease TB. The immunotherapeutic potential of HKCC 

may also prove to be useful in stimulating host immunity to protect from a wide range of human 

pathogens. HKCC induces innate immunity to successfully eliminate a pathogen, however, its 
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role in altering the microbiome of a host must be determined. Since HKCC is a non-viable heat-

killed form of the bacterium, it is unlikely to colonize the gut or compete with or displace host 

microbiota.  
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In this thesis, I have investigated novel palmitoyl-lysine conjugated T cell peptide epitopes 

of mycobacterial ESAT-6 antigen as potential vaccine candidate in the induction of antigen 

specific cellular immune responses and protective immunity against Mtb. I also examined the 

influence of various routes of immunization and adjuvants (Poly I:C, MPL and GDQ) in 

modulating the lipopeptides’ induced immune responses and resulting protective immunity in 

mouse model of Mtb infection. In addition to known adjuvants, I have determined the effect of 

HKCC as a novel vaccine adjuvant on the protective immunity induced by ESAT-6 lipopeptides. 

While performing vaccine experiments, I discovered that administration of mice with HKCC 

alone in the absence of ESAT-6 lipopeptides also provided significant reduction in Mtb loads.  I 

therefore, set out to study immunomodulation by HKCC and its subsequent role in reducing Mtb 

loads in mice. First, using human PBMCs in cell culture, I demonstrated unique innate immune 

stimulating properties of HKCC. Subsequently, I examined the ability of HKCC to control the 

growth of Mtb in in vitro and in vivo models through immune stimulation. In human 

macrophages infected with Mtb, I found that supernatants from human PBMCs stimulated with 

HKCC significantly inhibited mycobacterial replication. In mice, I demonstrated that HKCC 

alone could induce innate immunity that can significantly reduce mycobacterial load. Encouraged 

with these observations, I investigated the effect of HKCC in conjunction with the anti-

tuberculosis drug isoniazid in a mouse model of Mtb infection which led to enhanced reduction in 

Mtb loads compared to individual agents alone.  My studies have opened new avenues in vaccine 

and immunotherapy research for tuberculosis. My findings may have immense implications in 

preventing and treating serious tuberculosis infections, reducing the doses and duration of 

chemotherapeutic treatment and avoiding the emergence of drug-resistance.  
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4.1. Novel lipopeptides of ESAT-6 induce strong protective immunity against Mtb which 

critically depends upon route of immunization and adjuvant 

 A new generation of TB vaccine is urgently needed to control the global pandemic of TB, 

since the current BCG vaccine provides inconsistent and inadequate protection and is not very 

effective.  Development of MDR, XDR and TDR strains of TB have further endorsed this need. 

Renewed efforts to develop new TB vaccines have led to investigation of various subunit, 

recombinant-vector based and modified BCG-based vaccines [1]. However, their clinical efficacy 

still remains to be seen. Subunit vaccine candidates that are in development can either boost BCG 

vaccine or can be used as a stand-alone prophylactic vaccine. An effective peptide-or protein 

based subunit vaccine requires an adjuvant that can increase the magnitude and durability of 

adaptive immunity. To date, several TLR agonists have been tested as effective adjuvants to 

induce cellular immune responses, however, none have been successful due to their potential 

toxicity and severe inflammatory side effects [2, 3]. Therefore, there remains a need for a safe 

and effective adjuvant capable of eliciting strong cellular and/or humoral immune responses 

against antigens, to be used in vaccine compositions.  

 Earlier studies have shown that strong multi-functional cellular immune responses against 

dominant antigens of Mtb play a critical role in the protection against Mtb infection [4]. In this 

study, I have designed a novel subunit vaccine by conjugating a palmitoyl-lysine chain to 

peptides derived from ESAT-6 protein corresponding to dominant human T cell epitopes. I 

examined their ability to stimulate antigen specific T cell responses and protective immunity 

against Mtb using intranasal and subcutaneous routes of immunizations in BALB/c mice. In 

addition, I determined the effect of known TLR agonists (PolyI:C, MPL and GDQ) and a novel 

immunomodulator HKCC for their ability to enhance the induced immune responses and 

resulting protective efficacy of our vaccine. 
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 Upon subcutaneous immunization of mice with designed individual lipopeptides of 

ESAT-6, I observed that they induced significant cellular immune responses of their own. 

Interestingly, I found that intranasal and subcutaneous immunizations with a mixture of 

immunogenic lipopeptides alone induced systemic T cell responses against all epitopes of the 

mixture. Further, I noted that our newly designed subunit vaccine containing lipopeptides of 

ESAT-6 provided significant protection from Mtb infection when administered intranasally or 

subcutaneously. 

 Among the adjuvants investigated, I found that MPL (a TLR-4 agonist) and HKCC were 

particularly effective in further inducing antigen specific immune responses against lipopeptides 

of ESAT-6, and in providing enhanced protection from Mtb infection. In contrast, PolyI:C (a 

TLR-3 agonist) and GDQ (a TLR-7/8 agonist) led to reduced protection with increased number 

of myeloid derived suppressors cells and higher production of IL-10 from CD4+ T cells.  

 PD-1 is a co-inhibitory molecule expressed on activated T cells and can dampen T cell 

responses upon engagement with its ligands PDL-1 and PDL-2. It has been shown that during 

Mtb infection, PD-1 expression is increased on T cells and its binding to PDL-1 expressed on 

APCs downregulates effector Th1 responses [5]. It is possible that differential induction of PD-1 

on T cells and PDL-1 on infected macrophages also contributed in varying protection from Mtb 

upon immunization with different TLR agonists. Although in my project I did not examine the 

PD-1 and PDL-1 expression, their role could be determined by understanding their expression 

profiles and using anti-PD-1 or anti-PDL-1 antibodies along with or after immunization(s). 

 The discrepancy in protection by various adjuvants could be attributed to the role of 

stimulation of different TLRs. Although, members of the TLR family share certain structural and 

functional properties, the signal delivered by individual TLRs or their cross talk may elicit 

qualitatively and quantitatively different immune responses [6]. Further, how APCs and innate 
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immune cells are being activated during infection has an important impact on the quality and 

magnitude of adaptive immune responses. My findings suggest that signaling via TLR-3 

(PolyI:C), TLR-4 (MPL), and TLR-7/8 (GDQ) agonists may have delivered qualitatively 

different signals to APCs, which would have affected the nature of the immune responses that 

were elicited as diagrammed in Fig 4.1.  

 

       Fig 4.1: Location of TLRs and signalling pathways in antigen presenting cells 

Additionally, the route of immunization also showed a significant influence on the 

induction of Mtb specific protective immunity. I found that intranasal immunization with 

lipopeptides of ESAT-6 by themselves and their co-immunization with adjuvants impart better 

protection in contrast to the subcutaneous route.  

 In conclusion, I demonstrated that lipopeptides of ESAT-6 could induce protective 

immune responses, which are critically affected by the adjuvant and route of immunization. 
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Inclusion of immunodominant human T cell epitopes of other Mtb antigens in the designed 

subunit vaccine can further broaden these protective immune responses. Overall, these studies 

suggest that the selection of an appropriate adjuvant and route of immunization is critical for a 

vaccine’s success.  

4.2. Heat-killed Caulobacter crescentus (HKCC) uniquely modulates host immune responses 

and provides effective protection against mycobacterial infections. 

Host-directed therapy using immunomodulators may provide a promising strategy for 

treatment of chronic mycobacterial infections. Immunotherapeutic approaches can control 

mycobacterial growth, shorten the duration of drug treatments, reduce their doses and side 

effects, and may prevent the emergence of drug-resistant strains. Although precise contributions 

and fine-regulation of different immune mechanisms needed to fight TB remain undefined, 

animal and human studies suggest that regulated activation of innate immune cells promotes 

mycobacterial containment and stimulates adaptive immunity, while their uncontrolled activation 

and inflammation cause active disease with severe organ damage. Different strategies using live 

and inactivated mycobacteria or their components have been explored as potential 

immunotherapies, however limited success has been achieved [7-10]. In this regard, a whole 

inactivated M. vaccae (MV) has been studied as a therapeutic vaccine in clinical trials. A meta-

analysis of clinical trial results showed that administration of MV with anti-TB drugs in never-

treated patients improved the clinical symptoms of the disease [11]. 

	   In this study, I have investigated non-infectious gram-negative whole cell bacterium 

Caulobacter cresentus in heat-killed form (HKCC), as a novel immunomodulator, and I have 

examined its effect in activating human immune cells (APCs, NK, NKT cells, CD4+ and CD8+ T 

cells) and in the induction of cytokines. Interestingly, I found that HKCC stimulates mDCs, 
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pDCs, NK and NKT cells, the key players of innate immunity, and also induces cytokines’ 

production. The cytokine signature induced by HKCC suggests the activation of type II and/or 

heterogeneous NKT cells. It has been shown that type I NKT cells are mainly associated with 

autoimmune and inflammatory diseases, while type II NKT cells cross-regulate the function of 

type I NKT cells and therefore have the unique ability to maintain homeostasis in infections or 

autoimmune conditions [12]. Further, my results demonstrated that HKCC does not directly lead 

to non-specific T cell activation whereas it uniquely activates B cells without leading to their 

proliferation and CD69 expression. These studies suggest that HKCC would not lead to immune 

abnormalities associated with tissue damage and autoimmunity.  

Although I did not characterize the components of HKCC, it is plausible that various cell 

wall (such as S layer, LPS and peptidoglycans) and intracellular (such as bacterial DNA and 

cytoplasmic proteins) components of HKCC interact with innate patteren recognition receptors 

(PRRs) present on DCs, pDCS, NK and NKT cells to modulate their functions. Rapid production 

of cytokines after intranasal and oral administration of HKCC suggests that it can also interact 

with nasal and gut epithelium and/or mucosal immune cells through M cells and/or PRRs. 

 I also investigated host-mediated effects of HKCC in controlling the replication of 

intracellular Mtb (H37Ra) and M. avium in human macrophages. In a mouse model of Mtb 

infection, I found that mucosal administration (intranasal and oral) of HKCC alone was able to 

induce local (pulmonary) as well as systemic immune responses, and subsequent reduction in 

mycobacterial loads in lungs, liver and spleen. Treatment with HKCC in conjunction with a low 

dose of isoniazid provided a significantly enhanced effect in controlling disseminated growth of 

mycobacteria in mice.  
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 In conclusion, my studies demonstrated that a non-pathogenic, non-viable bacterium 

unrelated to mycobacteria could be used as a novel immunomodulator to successful control 

mycobacterial infections.  

4.3. Conclusions  

 Lipopeptide based subunit vaccines have many advantages due to their intrinsic 

adjuvanticity and efficient antigen delivery. My studies have focused on understanding the role of 

cellular immune responses stimulated by lipopeptides of Mtb ESAT-6 antigen in mycobacterial 

clearance. I have conclusively shown that lipopeptides derived from ESAT-6 antigen alone and 

with adjuvant MPL or HKCC can induce protective cellular immune responses locally and 

systemically, by both subcutaneous and intranasal routes, and could serve as a novel subunit 

vaccine for TB. Further, my studies revealed the immunological mechanisms induced by HKCC 

as a novel immune modulator. Intriguingly, immunotherapy with HKCC was able to induce 

innate immune responses in Mtb challenged mice upon mucosal administration and inhibit 

mycobacterial replication systemically. Additionally, HKCC along with low dose of isoniazid 

demonstrated enhanced reduction of mycobacterial load in mice.  

 Altogether, my studies have advanced our knowledge and provided important information 

in the field of vaccine and immunotherapy for TB.  

4.4. Future directions 

 I have shown that palmitoyl-lysine chain conjugated peptides of Mtb ESAT-6 antigen that 

correspond to dominant human T cell epitopes can induce strong protective immunity in mice, 

and that the induced immunity can be plausibly optimized with the careful selection of route and 

adjuvant. I speculate that inclusion of similar lipopeptide constructs of other dominant antigens of 

Mtb would further broaden and enhance Mtb-specific protective immunity. Lipopeptide based 
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multi-antigen subunit vaccine need to be explored either as stand-alone prophylactic and/or 

therapeutic vaccine or as a booster to BCG vaccine. The protective potential of the immune 

responses induced by lipopeptides of ESAT-6 and/or multi-antigen peptides should be tested 

against an aerosol infection of virulent strain H37Rv in a mouse model or more rigorous animal 

models. The role of antibodies in protecting against Mtb is not clear; however, recent studies are 

emerging that describe the protective role of different isotypes of antibodies against Mtb surface 

antigens [13]. Therefore, the induction of humoral immune responses after immunization with 

lipopeptides of ESAT-6 and/or multi-antigen peptides should be determined to examine their role 

in clearing Mtb in future studies. 

 My studies demonstrated that HKCC as an adjuvant can induce antigen-specific immune 

responses against ESAT-6 lipopeptides and also protect the mice from subsequent challenge with 

Mtb. I further showed that HKCC has potential to stimulate and modulate the human innate and 

adaptive immune cells in vitro and control mycobacterial infection in in vitro and in vivo models.  

It will be interesting to examine whether immunotherapy with HKCC alone and/or in conjunction 

with anti-mycobacterial drugs is able to treat drug-resistant TB in animal models, whether 

combining HKCC as immunotherapy reduces the dose and duration of chemotherapy and 

whether addition of immunotherapy leads to reduction in emergence of drug-resistant Mtb 

strains. 

 I speculate that immune modulatory activity of HKCC is also due to activation of innate 

immunity, particularly innate lymphoid cells (ILCs), whose expanding universe is just beginning 

to be realized.  The precise molecular nature of stimulatory/modulatory components of HKCC 

responsible for the interaction with immune cells should be further investigated.  



 
	  

140	  

 Overall, my studies will have significant implications in the design of new subunit 

vaccine, development of new host directed therapies, and understanding the role of innate 

immunity in mycobacterial infections.  
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Appendix 1 

 

Granzyme B (GrB) expression on antigen-specific CD8+ T cells upon Mtb challenge in mice 

immunized with ESAT-6 lipopeptides with or without adjuvants. Female BALB/c mice (n = 5) 

were immunized intranasally and subcutaneously twice with a mixture of P1 and P4-P7 

lipopeptides alone and combined with an adjuvant Poly I: C, MPL, GDQ or HKCC. PBS 

immunized mice were used as a controls. One week after the last immunization, mice were 

challenged with H37Ra (0.5 x 106 CFU) intravenously. Five weeks later, spleens were collected 

from Mtb-challenged mice. Spleen cells obtained from immunized mice were cultured for 4 days 

with or without peptide pools and were labeled for surface expression of CD3 and CD8 and 

intracellularly for GrB. The cells were gated for CD3+CD8+ T cells that were subsequently analyzed 

for GrB expression in (A) intranasally and (B) subcutaneously immunized mice. The percentage 

of GrB+ of CD8+ T cells is shown. The peptide-specific response was calculated by subtracting the 

percentage of cells that were positive for GrB expression in the absence of peptide pool (no peptide 

control). Data are representative of three different repeated experiments. 
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Appendix 2  

 

Intracellular IFN-γ expression on antigen-specific CD8+ T cells upon Mtb challenge in mice 

immunized with ESAT-6 lipopeptides with or without adjuvants. Female BALB/c mice (n = 5) 

were immunized intranasally and subcutaneously twice with a mixture of P1 and P4-P7 

lipopeptides alone and combined with an adjuvant Poly I: C, MPL, GDQ or HKCC. PBS 

immunized mice were used as a controls. One week after the last immunization, mice were 

challenged with H37Ra (0.5 x 106 CFU) intravenously. Five weeks later, spleens were collected 

from Mtb-challenged mice. Spleen cells obtained from immunized mice were cultured for 4 days 

with or without peptide pools and were labeled for surface expression of CD3 and CD8 and 

intracellularly for IFN-γ. The cells were gated for CD3+CD8+ T cells that were subsequently analyzed 

for IFN-γ expression in (A) intranasally and (B) subcutaneously immunized mice. The 

percentage of IFN-γ+ of CD8+ T cells is shown. The peptide-specific response was calculated by 

subtracting the percentage of cells that were positive for IFN-γ production in the absence of peptide 

pool (no peptide control). Data are representative of three different repeated experiments. 
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Appendix 3 

 

Intracellular IL-10 expression on antigen-specific CD8+ T cells upon Mtb challenge in mice 

immunized with ESAT-6 lipopeptides with or without adjuvants. Female BALB/c mice (n = 5) 

were immunized intranasally and subcutaneously twice with a mixture of P1 and P4-P7 

lipopeptides alone and combined with an adjuvant Poly I: C, MPL, GDQ or HKCC. PBS 

immunized mice were used as a controls. One week after the last immunization, mice were 

challenged with H37Ra (0.5 x 106 CFU) intravenously. Five weeks later, spleens were collected 

from Mtb-challenged mice. Spleen cells obtained from immunized mice were cultured for 4 days 

with or without peptide pools and were labeled for surface expression of CD3 and CD8 and 

intracellularly for IL-10. The cells were gated for CD3+CD8+ T cells that were subsequently analyzed 

for IL-10 expression in (A) intranasally and (B) subcutaneously immunized mice. The 

percentage of IL-10+ of CD8+ T cells is shown. The peptide-specific response was calculated by 

subtracting the percentage of cells that were positive for IL-10 production in the absence of peptide 

pool (no peptide control). Data are representative of three different repeated experiments. 
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Appendix 4 

 

FOXP3 expression on CD4+ T cells upon Mtb challenge in mice immunized with ESAT-6 

lipopeptides with or without adjuvants. Female BALB/c mice (n = 5) were immunized 

intranasally and subcutaneously twice with a mixture of P1 and P4-P7 lipopeptides alone and 

combined with an adjuvant Poly I: C, MPL or GDQ. PBS immunized mice were used as a 

controls. One week after the last immunization, mice were challenged with H37Ra (0.5 x 106 

CFU) intravenously. Five weeks later, Mtb-challenged mice were euthanized and spleens were 

collected. Spleen cells obtained from immunized mice were labeled for surface expression of CD3 

and CD4 and intracellularly for FOXP3. The cells were gated for CD3+CD4+ T cells that were 

subsequently analyzed for FOXP3 expression in (A) intranasally and (B) subcutaneously 

immunized mice. The percentage of FOXP3+ of CD4+ T cells is shown. ‘*’, Indicates significant 

difference (*P < 0.05; **P < 0.01) compared to the corresponding group in PBS immunized 

mice. Data are representative of three different repeated experiments. 
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Appendix 5 

 

HKCC does not lead to apoptosis of B cells. PBMCs (2 x 106/well) were labeled with CFSE dye 

and treated with or without HKCC or CpG at different concentrations in 24 well plates. Cells were 

incubated for 4 days and labeled for CD3, CD11b and CD19 surface markers. The cells were gated 

for CD3-CD11b-CD19+ cells and apoptosis was examined by the expression of Annexin V dye. The 

percentage of Annexin V positive CD19+ B cells is shown. 

 

 

 

 

 

 

Sali
ne

HKCC, 

1E
6 HKCC, 

1E
7 HKCC, 

5E
7

CpG, 

3 µ
g

0

10

20

30

40

50

%
 A

nn
ex

in
 V

 p
os

iti
ve

 c
el

ls

% Apoptotic CD19+ B cells


