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Abstract

This dissertation is a study of radicals of ideals in
mobs. The study of mobs began about 1950, and Professor A.D.
Wallace is known as the founder. He has originated and contributed
heavily to most of the major areas of research in this field,
especially the ideal theory. Our purpose is, in some sense, to give
generalizations of the results of A.D. Wallace and others, by
considering radicals of ideals instead of ideals alone. By a mob,

we shall mean a Hausdorff semigroup.

In Chapter I, we introduce the concept of algebraic radicale
in abelian mobs and study the stability of such radicals. We prove
that under some special conditions, any open ideal A of a mob S
1s radically stable without requiring the algebraic radical of A
to be closed. Relations of a compact group and the boundary of the
algebraic radical of A are also investigated. Theorems concerning

the reducibility of ideals in mobs are obtained.

Topological radicals in compact abelian mobs are trcated
in Chapter II. We prove that if the topological radical is dense in a
compact mob S , then S has no local zeros, and {f S contains

gzero and local zeros, then S must be disconnected.
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Some conditions which leads to the existence of a local zero

in a compact mob are given. A characterization of compact

abelian mobs is obtained.

In Chapter III, we extend our studies to radicals of
non-abelian mobs. The Wedderburn radical, e-invariant radical
and Thierrin radical in mobs are studied. Some results of their
radicals in ring theory are transferred to mobs. We show that in
a divisible mob without zero, its e-invariant radical can be a

compact connected group.
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Background knowledge

A topological semigroup is an ordered triple (S,J,m)

such that (i) (S,J) 1s a non-empty Hausdorff space
(i1) m {8 a continuous function from S x S 1into

§ such that m(x,m(y,z)) = m(m(x,y),z) for all x,y and z in S .
Pollowing accepted custom, we ghall shorten (S,J,m) to S,
m(x,y) to x*y and topological semigroup to mob. The following ,
shown in Figure I>are some simple examples of mobs, and with their
usual multiplication: the fnterval [0,1] , the unit disk D in
the complex plane, and, for fixed n > 1 , any convex subset of D
which contains the nth roots of unity {a1'°2""'°n) . (Ve

sketch an illustration of this for n = 3)

Let S be a mob. An element e fn S 1is called an
{dempotent if e.e=e . We let E(S) denote the sct of idempotents
of S , and where there is no ambiguity we write E instead of
E(S). We remark that E 1s alvays a closed subset of S . An

idempotent e of S s called Primitive if fz = f ¢ eSe implies

f=0 or f=e.
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An element t € S {is called the zero of S if xt=tx=1¢
for all x ¢ S . It is easily seen that the zero of S 1if
it exists, is unique and is an idempotent. For A,B c S, AB
denotes {abla ¢ A, b ¢ B} and A% denotes {aalla,a1 c A} .

A non-empty subset A of S 1is a submob if Az c A

. Moreover,

1f A 1is a submob of S then A is also a submob of S . A
subgroup of S 1is a subset G of S which is algebraically a
group with its {nherited multiplication. The multiplication in a
subgroup G 1is clearly continuous, and, if G 1is locally compact,
inversion is also continuous, 80 that G 1is a topological group.
For each idempotent e € E(S) , there {8 an unique maximal subgroup
H(e) containing e . If e and f are distinct idempotents, then
the maximal subgroups H(e) and H(f) are disjoint. Moreover, if
S 1is compact then H(e) 1is closed for each e ¢ E. If S 1is not
compact then this need not be the case. For example, let S be the

{nterval [0,=) with the usual topology and usual multiplication. Then

S 1is not a compact modb and H(1) = (0,=) {is not closed in S .

A non-empty subset I of a mob S 18 called a left ideal
4¢ SI c 1, a right ideal of IS < I and an ideal if it is both
left and right ideal. A minimal {deal of S 1is an ideal containing no
other ideals. We denote the minimal ideal of S by K(S) . An ideal
M of S is a maximal proper ideal of S if M is a proper {ideal
and for every ideal I of S such that M ¢ I we have that

I =M or I =S.
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If a mob S has no proper ideal then S |is said to be simple.
For a compact mob S , K(5) always exists and its structure is
completely known; in particular, K(S) 1is compact and is the
disjoint union of a family of compact groups. This is a basic but

very important result in the theory of compact mobs.

Let S be a compact mob, and let I be a closed ideal.
Let '% denote the usual quotient space obtained by identifying all
points of I, and let ¢ : S +-% be the natural map. In % , WE
define the multiplication by ¢(x)4(y) = ¢(xy) , and such a quotient
space is called a Rees quotient. % is a mob, because I 1is a closed
{deal and the multiplication is well defined. Compactness of S
and closure of I are used to prove % Hausdorff and the multiplication
i{s continuous. By using the Rees quotients, a disconnected mob can
be made into a connected one if there is a closed ideal intersecting
all components. For example, let W be a semigroup with two elements
and I = [0,1] be the usual thread. Then W x I is compact and has
two components. W x 0 is a closed {deal intersecting them all, and

%—;—% {s a connected fan as shown in Figure II.

FIG. 1I
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In topology, a homeomorphism is a function that {is
4-1 onto, continuous, and whose inverse is a continuous function.
In mobs, an iseomorphism is a function that 1is both isomorphism
and homeomorphism. Thus, two mobs S and T are iseomorphis if

there exists an iseomorphism from S onto T .

The following are the most frequently used facts in this

dissertation.

(1) (Koch and Numakura). For x ¢ S , let Pn(x) = {xplp:p} »

r(x) = T,(x) and K(x) = n(rn(x)ln:}} . If r(x) 1is compact, then
K(x) 1is an ideal of T[(x) and is a group. Thus, for an element x
in a compact mob, the powers of x cluster at some idempotent, and,

in particular, a compact mob contains an idempotent.

(11) (Koch and Wallace). If S 1is a compact mob and U 1s an
open set in S containing an ideal of S , then JO(U) , the maximal

{deal contained in U , is an open ideal of S . Moreover, any maximal

proper ideal of S 1is open.

(111) (Paucett, Koch and Numakura). Let M be a maximal proper
ideal of a compact mob S . Themn S-M |is the disjoint union of
compact groups and of compact sets Aa with the property AG.AQ c M.

(One of these types may fail to appear).
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(1v) (Numakura). If S {is compact, then each open prime
4deal P $ S , has the form Jo(s-e) , vhere e 1is non-minimal
idempotent of S . If conversely e is a non-minimal idempoteant,

then Jo(S-e) is an open prime ideal of S .

For more information about the theory of compact mobs,
see J.M. Day (4], K.H. Hofmann and P.S. Mostert (11), A.B. Paalmann-

de Miranda [21], and A.D. Wallace [29).



CHAPTER 1

On algebraic radicals in mobs

We let A be any subset of a mob S . The algebraic
radical of A 1is defined to be the set ({x ¢ Slxk ¢ A for some
integer k > 1} and is denoted by R(A) . This set A is said to
be radically stable if and only if R(A) = R(A) holds. Obviously
for any open subset A of S, A need not be radically stable. The
purpose of this Chapter is to study some properties of the algebraic
radicals of ideals in S . The main result is: Under some special
conditions, any open ideal A of S can be radically stable without
requiring that R(A) be closed. Moreover, we will demonstrate that the
notion of radical stability of an {deal in abelian mobs is useful : it

gives a necessary and sufficient condition for the closure of a primary

(prime) ideal to be primary (prime).

Throughout this Chapter, we use C to denote the closure of
the set C , C' for the complement of C , and B(C) for the boundery
of C , and in possibly ambiguous situtations, the topological
significance of a quantifier takes precedence over the alternative
algebraic significance. Unless otherwise stated, S will be regarded
as a compact mob with zero. The reader is referred to (21}, (4] and

(33) for terminology and notatfon.



§1. Preliminaries

In this section, pertinent notations, definitions and
properties of algebraic radicals of an abelian mob S (not necessarily

compact) will be given. Most of them are well known results in ring

theory which will be used later.

Notation : Let A be a subset of S .

J(A) = A u AS , that is, the smallest ideal containing A .
JO(A) = the union of all ideals contained in A , that

is, the largest ideal contained in A {if there are any.

Definition 1.1 : (1) A mob S with zero is said to be O-prime if

whenever a,b ¢ S , ab =0 , then a =0 or b =0,

(2) A mob S 1is said to be an 0-mob if for any two

ideals I1 and I2 such that I1 n 12 4+ ¢ , then either l1 c I2 or

I,c1

2 |

Definition 1.2 : (1) An ideal P of S 1is said to be prime if
ab ¢ P 1implies that a ¢ P or b e P .
(2) An ideal Q of S 1s said to be primary {if

ab ¢ Q implies that a ¢ Q or there exists an integer k > 1 such that
bk c Q.

(3) An ideal R of S 1is said to be scai-prime {if
and only {f ‘2 ¢ R implies that a e R .

(4) Let A,B be ideals of S . Define A : B =
{x ¢ S|xB c A} and call it the ideal quoticnt of A and B . It is

easy to see that A : B {s an ideal of S .



Definition 1.3 : (1) An ideal A 1is completely irreducible

(irreducible) if and only if whenever A 1is the intersection of a
family (finite family) of ideals, then A is a member of the family.
(2) An ideal A 1is w-reducible if A is the
{ntersection of a family of open prime ideals containing A properly.
(3) An ideal A 1is strongly reducible (weakly
reducible) if and only if A 1is the intersection of a finite family

(infinite family) of ideals containing A properly.

Facts 1.4 : The algebraic radicals of S have the following properties:

Let A,B be any subsets of S . Then
(1) A c R(A)
(2) Ak c B implies that R(A) < R(B) for any k >1.
(3) R(R(A)) = R(A)
If A,B are ideals of S , then
(4) R(A) 1s an ideal of S
(5) R(AB) = R(AnB) = R(A)n R(B)
(6) If A iz a primary ideal of S , then R(A) 1is a prime
{deal of S which is the smallest prime ideal containing A .
Conversely, if R(A) 1is a prime ideal of S, then A s primary.
(7) Let P, Q be ideals of S . Then Q 1is a primary ideasl
of S with R(Q) = P {f and only if
(1) Q< Pc<R(@Q
and (i1) ab e Q, a { Q imply that b e P .

(8) If A 1is an open subset of S, then R(A) 1is open.



(9) If M 13 a non-prime maximal proper ideal of S , then

R(M) =S . If M 1is any ideal of S such that R(M) = S ,

then M {is primary.

Remark : Some of the above facts are not true if S 18 not an abelian

mob. Por example, let S = {0,1,2,3,4) and define the multiplication

on S by the following table:

] ] )
w9123 &
0,0.0 0 _0_0
1‘;0 1 3:3. 1]
2,0 4.0 20
k) i 01 0 i3- 0 |
404 2l2]4]

Associativity of the multiplication can be easily verified to confirm
that S is a non-abelian mob. A = {0} 1s an ideal of S , but R(A)
« {0,2) 1is not an ideal of S . Moreover, B = {0,1,3}, C = {0,2,4}
are ideals of S . But R(B) = {0,1,2,3}), R(C) = {(0,2,4}, B:.C =

{0,2,3,4) , R(BnC) = R(0) = {0,2} , R(BC) = {0,2,3,4} , R(B) n R(C) =

{0,2) . Hence R(BC) $ R(B) n R(C) , and R(BC) % R(BnC) .

The proofs of some of the above results are analogous to those
in ring theory and can be found in (33]. The proofs of(?}-lS] are

proved here for the convenience of the reader.

Proof :{6’ Let xy ¢ R(A) , then there exists an integer k > 1 such

that (xy)k ¢ A, that {is xkyk ¢e A. If xk € A, then x ¢ R(A) .



1f xk X A , then there exists an integer (n > 1 such that

(yk)n ¢ A since A 1s primary. Hence y X\s(A) . So R(A)

is a prime ideal of S . Suppose P1 > A is'a prime ideal. Let

x € R(A) , so there exists an integer k > 1 such that e Ac P, .
As P1 i{s prime, we have x € Pl. That is R(A) < P1 , 80 R(A)

{s the smallest prime ideal containing A . The other part of (6) is

easy to see.

Remark : Unless A is primary already, there does not exist a smallest
prime ideal containing A .

(7) Suppose R(Q) = P, then clearly Q < P < R(Q) . And 1if
ab ¢ Q, a X Q, then, since Q 1is a primary ideal of S , there exists

an integer k > 1 such that bk €eQ, s0 beR(@Q™=P.

Conversely, let ab ¢ Q, a ¥ Q, then, by (i1), b e P = R(Q) .
That is, bk ¢ Q for some integer k > 1 . Hence Q 1is primary. By
(1), we have P c R(Q) . In order to prove P = R(Q) , we only need
to show that R(Q) <« P . Let x ¢ R(Q) , then there exists an integer
k > 1 such that xk € Q . Suppose k 1is the smallest such integer. If
k=1,xe¢Q, 8 xcP. If k>1, x-xk_l - xk e« Q, so xk-l XQ,

by (1), x ¢ P . Our proof is complete.

(8) Take x ¢ R(A) , then there is an integer k > 1 such that

k
k
x €A ; Let u = { S » 8§ defined by u(xl.xz,...,xk) xlxz...xk .

Then u {s a continuous map and u-l(A) {s an open neighborhood of
x...x (k terms). Let V be an open neighborhood of x such that

VxV s, ..« V(k terms) c_u'l(A).
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Hence u(V x V x,..x V) = V°V...V (k terms) < uu-l(A) = A, That

is Vk c A . This implies V < R(A) , so R(A) is open.

§2 Prime and Primary ideals

We are going to study, in this section, the prime and
primary ideals of S , and, in particular, the algebraic radical of

such ideals and their relationships.

Proposition 2.1 : An ideal A of S 1is a compact prime ideal 1if and

only 1if %' is a O-prime mob.

Proof : Suppose A 18 a compact prime ideal of S . Then A 1is

closed in S . The Rees quotient '% 1s formed by shrinking A to &

single point with the quotient topology. % is a mob. Recall that the
multiplication * of % is defined in the following way:

a*b = ab 1f a,b and ab are in S - A .,
atb = 0 {if ab e A

atb » 0 if a =0 or b=0

If a*b = 0 , there are two possible cases: Either
(1) a=0 or b=0, or (i11) ab ¢ A . In case (ii1) , since A is
prime, we have a ¢ A or b e A . This implies that a =0 or b =0

in % . Thus in either case a =0 or b =0 . Hence is O-prime.

s
A
Conversely, assuming that % i{s an O-prime mob, since % is Hausdorff,
the ideal A 1is closed in S and hence is compact. Suppose X ty=90

in % , then ve have x =0 or y =0 in % .



This means that x ¢ A or y ¢ A in the mob S . Hence A s

a compact prime ideal of S .

Theorem 2.2 Let A be an ideal of S such that R(A) 1is proper
maximal in S . Then A 1is primary if and only if -§€%7 is an

abstract completely O-simple semigroup.

Proof : Suppose A is a primary ideal of S , then R(A) 1is a
prime ideal. As S is compact, it follows that R(A) is open [21],
page 28, By theorem 2 of (20}, page 677, R(A) has the form

JO(S-e) with e being a non-minimal idempotent of S . Therefore
there exists ez = e X R(A) . Now form the Rees quotient E%%T .
Clearly ,‘Ef%y {s an abstract O-simple scmigroup [21], page 59, and
contains e . Hence by [6], page 655, i%%T is completely O-simple.
Conversely, suppose that 'i%%T is completely O-simple. Then there exists
an ez = e X R(A) . Clearly, e is non-minimal. By the maximality
of R(A) , we have R(A) = Jo(S-e) . By theorem 2 of ([20], page 679,
again, R(A) is an open prime ideal of S . Now take xy € A , then

xy ¢ R(A) . Thus x ¢ R(A) or y € R(A) . This implies that A 1is

primary.

Corollary. 1f E , the set of idempotents of S , is contained in &

maximal proper ideal J of S, then J 1is a primary ideal of S .

Proof : By (10], page 655, % {s either the zero semigroup of order

two or else completely O-simple.



Since cJ, %- contains no idempotents other than zero and

E
hence % is the zero semigroup of order two. Suppose xy € J ,

xXJ ,yXJ. Then x € S-J , y € S-J 1in

Since is

s b
J° J
2 2

the zero semigroup of order two, we have y =0 , x* = 0 in

% . This implies that xz €J, y2 €¢J in the mob S . Thus J

is a primary ideal of S .

Theorem 2.3 : Let S be a connected mob with unit and let J be
an open ideal of S such that R(J) is proper in S . Then J

1s a primary ideal if and only 1f the boundary of R(J) is a subset
of S .

Proof : If J 1{is an open primary ideal, then by 1.4(9), R({J) is

an open prime ideal of S . Clearly, R(J)2 < RQJ) aqd (S-R(J))2 c

$ - RUJ) . Thus (B(RW))?Z < B(RW)) . Conversely, suppose R(J)

is not prime, take a,b € S-R(J) with ab = ba ¢ R(J) . Then

Sa n R(J) $¢ and Sa n (S-R(J)) $¢ so, it follows that Sa nB(R(J) % ¢.
Similarly, bS n B(R(J)) $ ¢ . Since R(J) 1is open and S is
connected, we have ¢ % [Sa n B(R(J))][bS n B(R(J))]) < (Sa*bs) n
(B(R(1)))2 < RU) n B(RW)) $4, for B(RW)) 1s a subset of S .

This contradiction proves that R(J) 1s prime, which implies that

J 1is a primary ideal of S .

Corollary : Let S be a connected mob and J be an open ideal of
S . Then S-R(J) 1is a submob of S 1if and only if the boundary of

R(J) 1is a gubmobof S .



A.D. Wallace has proved the following result: Let
S be an abelian mob (not necessarily abelian). Then each open
prime ideal is completely irreducible, and each completely irreducible
{deal is open [29), page 39. One would naturally ask whether the
frreducibility of an ideal Q in an abelian semigroup is a necessary
and sufficient condition for Q to be primary. (This question was
asked by A.D. Wallace in his lecture notes on topological semigroups,
problem J6 page 39 of (29]). We show here, by giving a counter example,

that the answer to this question is negative.

Example 2.4. Let S be an abelian semigroup consisting of four

elements (0,a,b,c} with multiplication table:

-l

]
croomp

lo'es'o-
'ocoo oo
;hféfcican
covoov

The sets {0,b}, {0,b,c}, {0,a,b} are {deals of S . Now {(O,b} =
{0,b,c) n {0,a,b} . It is easily seen that {0,b} 1is a primary ideal
of S, but is not irreducible. Thus we have shown that primary

ideals in abelian mobs are not necessarily irreducible.

Theorem 2.5 : If Q is an open semi-prime ideal of S , then Q {is

prime or w-reducible

Before proving this theorem, we neced the following two

lemmas.
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Lemma 2.6 . Q is a semi-prime ideal if and only if R(Q) = Q .

Proof : If R(Q) = Q , then it is casily seen that Q is semi-
[ =4

prime. Conversely, suppose that Q 4 R(Q) , then there exists

a e R(Q) with a ¥ Q. Let k >1 be the minimal integer such
that ak € Q . Suppose Q |is semi-prime. Then k must be odd.
Write k = 2n + 1 (n > 0) . Since Q {is an ideal, we infer that

'k+l - ak-a e Q. Thus ak+1 - a2n+2 - (an+1)2 € Q

Since Q is

semi-prime, it follows that a“+1 € Q . This contradicts the minimality

of k. Hence R(Q) =Q .

Lemma 2.7 . Let Q be an open ideal of S, then R(Q) = a Pa .

where (Pa} are all the open prime ideals of S containg Q .

Proof : Take x € R(Q) . Then there exists integer k > 1 such that

xk € Q g.Pa for all a . Since Pm is prime, x € Pa for all o ,

that is, x € § P . lHence R(Q <P, . Conversely, supposing that

pl Pa* R(Q) . Then we can find an element y of 1 P, such that

y X R(Q) . We have {y.yz...} =r(y) cJ(y) <aP .

Since [(y) 1is compact and Q is open, we can prove that

there exists an i{dempotent e such that e € I (y) < g Pa and

e X Q. Thus JO(S-e) 5Q . By thcorem 2 of (20}, page 677, JO(S-e)
{s an open prime ideal of S . Therefore JQ(S-e) >0 Pa . This implies

that e X n P, a contradiction. Thus 2 P < R@Q) .
a a a a

v

pop——
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By now, one can easily see that theorem 2.5 is an

immediate consequence of these lemmas.

Corollary 1 : (1) If A 1is an ideal, then R(A) 1is a semi-prime
ideal.
(11) A 1is an open semi-prime ideal of S if and

only if A = n{PaIPa is an open prime ideal containing A} .

Corollary 2 : Let Q be an open semi-prime ideal of S . If B is
an ideal of S which is not contained in Q , then B contains an

idempotent e with e S § Q.

Proof : Let b e B - Q . Consider the principal ideal J(b) generated
by b . Clearly J(b) {is compact, J(b) < B, J(b) X Q. Now let

M be the collection of all compact ideals {Ji}1€I with the properties
J‘ <B, J1 X Q . By the same arguments as lemma 8 (20}, page 676,

we prove that there exists a minimal member J in M with J < B,
JXQ. Nowlet x ¢J -Q claim sz § Q . Suppose sz c Q. Since
Q is semi-prime, by lemma 2.6 and lemma 2.7, Q = a Pu , where Pc

are open prime ideals containing Q . As S {is abelian, we have

J(x)3 c xz Jc Qe Pa for all a . This implies that J(x) ¢ Pa

for all a . Hence J(x) < n Pa = Q , a contradiction. So we assert
that sz ¥ Q. Since sz <J and J 1is minimal, we have sz -J .
Now x ¢ J 9 I'(x) ¢ J 3 there is an idempotent e € J yeS clJ =)

eS =J since J is a minimal ideal and eS X Q.
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Therefore eS =J = sz X Q . Our proof is complete.

Theorem 2.8 : Let S be a compact mob such that Sz =S, If

A is the intersection of maximal proper ideals of S, then A

i{s either prime or w-reducible, and S-A 1is the disjoint union

of compact groups.

Proof : Let M be the family of maximal proper ideals of S .

By P.A. Grillet {9), page 503, every maximal ideal of S 1is prime

{f and only if S = S2

of S 1is an open prime ideal of S . This implies A 1is w-reducible.

Obviously, S-A = u{S-M|M ¢ M}. We claim that the complement of
distinct maximal proper ideals are disjoint. For suppose that "1

and Hz are distinct maximal proper ideals such that (S-Hl) n

(S-Hz) + ¢ . Then we not that H3 = Hl U Hz is consequently a proper

ideal of S , and H3 properly contains Hl and H2 which is a
contradiction. By a result of Paucett-Koch-Numakura (6], page 656,
we have that S-M is the disjoint union of compact groups. Thus

S-A 1is indeed the disjoint union of compact groups.

Theorem 2.9 : Let F be a closed ideal of S and let G = {open
fdeals G of S|G_ >F} . Then F=0nG , G ¢ G for all a .
a a a a a

In otherwords, F 1is weakly reducible if the family G exists.

Proof : Trivially P < nG_ .
—_— a a

only need to show that for any element x X F , x X n Ga

. S 1is compact, so each maximal proper ideal

To prove the converse containment, we

o i s s
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Since F 18 closed in S , it is compact. As S 1is compact
Hausdorff, it is a regular space and hence there exists an open
neighborhood V containing F but excluding x . By the
compactness of S , we have that JO(V) is an open ideal of S .
Obviously, F c JO(V) . Hence JO(V) e G. Clearly x ¥ Jo(V) .

This implies that x ¥ a Ga .

Corollary : If S isfles the second axiom of countability, then
F is a Gs-ldeal, that is, F can be expressed as a countable

intersection of open ideals containing F .

This is because compact and Tz imply regular, and regular
and second countability imply metriziable and every closed set in

any metric space is 66 .

Remark : The author learned from Professor J. M. Day that this theorea
s due to A.D. Wallace in a form like this: "“Every neighborhood of a
closed ideal P contains an open ideal containing P" . It appeared

{n Wallace's notes from University of Florida 1964-1965.

Theorem 2.10 : Let S be an abelian mob (not necessarily compact).
If the algecbraic radical of an fdeal A 1{is non-prime, then it is

strongly reducible.

Proof : Since R(A) 1is not prime, we can find elements x,y in 8
such that xy € R(A) but x X R(A) , y X R(A) . Consider
R(A) : J(y) = {z € s|zi(y) < R(A))} .
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Then R(A) = J(y) 1s an ideal of S with R(A) < R(A) = J(y) .

We claim that R(A) $ R(A) :J(y) . In fact since xy e R(A) ,

we have that xJ(y) = x({y} u yS) = {xy} v xyS < R(A) . Thus

x € R(A) : J(y) but x & R(A) . Now clearly R(A) < (R(A) v J(y))

n (R(A) ; J(y)) . On the other hand, if ¢t ¢ (R(A) v J(y) n

(R(A) : J(y)) but t & R(A) , then we must have t ¢ J(y) . Hence

¢2 ¢ ti(y) < R(A) . Since R(A) 1s semi-prime, we have t € R(A) .
Hence we have shown that R(A) = (R(A) v J(y)) n (R(A) : J(y)) and

hence R(A) 1is strongly reducible.

Corollary 1 : Let F be a closed ideal which is strongly reducible
with respect to a finite family of open primary ideals, then R(F)

is the intersection of a finite number of open prime ideals of S .

n
Proof : F=n Ql , with Q1 open primary ideal of 3 . So
i=1

Fc Q1 c R(Qt) - Pt for all 1 , them F c 2 Pt . Thus
i=1
R R n R
(F) < (2 PL) - 121 (91)

Let X ¢ E Pl , then x € P1 for all 1 =1,...,n , vhich implies

x ¢ R(Ql) . Hence for each { , there exists an integer kl >1
k

such that x"cQt.
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n
Take B = max {ki} , 1 =1,2,...,0 then we have xe €n Q1
i=1
n
which implies x ¢ R( n Qi) = R(F) . By facts 1.4(8), we have

i=1
shown that R(F) 1is the {intersection of a finite number of open

prime ideals of S .

Corollary 2 : 1f Ql""’Qn i{s a finite number of primary ideals
of S with the same algebraic radical C , then Q = Q1 n QZ"' n Q2

is primary and has the algebraic radical C .

Corollary 3 : Let Q be an open primary ideal of the compact mob
S with R(Q) =P . If A is any closed ideal of S with A & Q,

then Q : A 1is an open primary ideal of S with R(Q : A) =P .

Proof : Since Q 1s open, Q' 1is closed and hence compact. A 1is
also compact. If x € Q: A, then xAnQ' = ¢. By the continuity
of multiplication and the compactness of A , there exists an
neighborhood V of x gsuch that VA n Q' = ¢ . That is VA< Q.
Hence x € V € Q : A, that is, Q : A 1is open. By 1.4(7) and the
fact that (Q : A)A < Q , we can obtain that (1) Q : A c P < R(Q : A)
and (i1) ab e Q: A, a ¥ Q: A imply that b e R(Q : A) . Hence,

by 1.4(7) again, Q: A 1is an open primary ideal of S with R(Q : A)
=P .

Corollary & : If Q is a compact primary {deal of the compact mob
S with R(Q) = P and if A 1is any fdeal §Q , then Q : A is a

compact primary ideal of § with R(Q : A) = P .
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In what follows, if the algebraic radical of an ideal

A 1is an open primary ideal P , then A 1is called a P-ideal of
S .

The following result, which is a simple consequence of
a theorem of W.M. Paucett [5], page 749, gives a condition when

and ideal of a compact connected mob S can be a P-ideal.

Proposition 2.11 : Let S be a compact connected mob with unit

and A be an ideal of S . Let z be a cut point of S which cuts
S at R(A) , that is S - {z} = R(A) v B, R(A)[B then A is a

P-ideal if and only if z 1is an idempotent.

Proof : See W.M. Faucett, Theorem 1 (5], page 749.

Prosposition 2.12 : Let S be a compact connected mob and P be

a prime ideal of S . Then P 1is connected if P 1is contained in

the intersection of all maximal proper ideals of S .

Proof : Let A be the intersection of all maximal proper ideals of
S . By Koch and Wallace [14), page 683, we have A < S2 . Hence
Pc S2 . Now let C be a component of P and let x ¢ P, then
x =ab . As P {is prime, then say, a ¢ P . Now x € aS < P and

aS mcets C since S has a zero, so x ¢ aS < C . Thus we obtain

that P = C , P {s connected.

o
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Proposition 2.13 : The set of all P-ideals of S forms a

filter on S .

This proposition follows immediately by observing that
(1) Any finite intersection of P-ideals of S 1is a P-ideal.

(2) Any arbitrary union of P-ideals of S 1is still a P-ideal.

Moreover, we remark that this union is a subset of S and is an open

prime ideal of S .

Now, let e be an idempotent of a compact mob S . We
say that an element x € S belongs to the idempotent e If e
is the unique idempotent of T(x) = (x.x?...) . Let us denote by
B, - {x e Sleu € M(x)} . We shall call it a B-class. St. Schwarz
(21}, page 119, has proved that any compact abelian mob S can be

written as the union of disjoint B-classes.

Theorem 2.14 : Let A be a P-ideal of S . Then there exists at

least one B-class which meets A but is disjoint from S - R(A) .

Proof : We may assume that there exists a B-class B such that

o
B nA$4e. Let xeB nA. Then xecA and x e B . Consider
a a a

o o o
the principal ideal J(x) generated by x . Clearly J(x) 1is compact

and (x.xz....} c J(x) c A . Thus Tr(x) ¢ J(x) . TI(x) has a unique

idempotent which must be e since x ¢ la . Now, suppose there
) o

exists an element y ¢ B, 0 (s-R(A)).

o
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The element y also belongs to the idempotent e . But, since

y € S-R(A) , and R(A) is prime, we have {y,yz,.?.} < S-R(A) .

As R(A) 1is open, S-R(A) 1is compact fn S . It follows that

(y,yz,...) = I(y) < S=R(A) . Therefore e ¢ r(y) < s-R(A) .

Therefore, e ¢ r(y) < S-R(A) . This is Zmposslble since A and
o

§-R(A) are disjoint. Hence Ba n c S-R(A)) = ¢ .
°

Corollary. Any P-ideal A contains exactly the same number of

disjoint B-classes as R(A) . More precisely, A n {gnal- Y (An Ba)

with B <P .
a

§3. Stability of algebraic radicals.

Proposition 3.1. If A 1is a subset of § with R(A) closed, and

x € S is such that A < xA , then we have R(A) = R(xA) . In other
words, the closed ‘algebraic radical of A would not be expanded

under any translation.

Proof : By the "Swelling lemma" [11], page 15, A < xA < A . Hence
R(A) < R(xA) < R(A) . We only need to prove that R(A) < R(A) .
Since A < R(A) , we have A c R(A) = R(A) . Consequently,

R(R) < R(R(A)) = R(A) . Thus we have obtained that R(xA) = R(A) .

Theorem 3.2. (Main theorem). Let A be an open ideal of S . Then

A is radically stable if and only if R(A) does not contain any

{dempotent lying outside A .
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In order to prove this theorem, the following lemma

is crucial.

Lemma 3.3. Let A be any open ideal of S . 1f B is an ideal

which is not contained in R(A) , then B has an idempotent not

in A .

Proof : Since A 1is an ideal of S , so is R(A) . As B X R(A) ,
there exists an element b ¢ B such that b X R(A) . Now

J(b) = {b} ubS < B, and J(b) 1is compact, for S 1is compact. So
there exists an idempotent e2 = @€ I'(b) <« J(b) < B . Suppose on

the contrary that e € A . Then K(b) = e I'(b) ¢ A where

K(b) = nEI {b1|1:p} {21], page 25. Since A is open, we must
have b" ¢ A for some integer n > 1 . For othervise, suppose
b \ A for all integer n > 1 . Then b" ¢ A' for all integer
n > 1 . Because A' 1is closed and hence compact, we have r(b) < A' ,

which implies e X A , a contradiction. Thus b" € A implies

b ¢ R(A) ,which is impossible.

Remark : Por any compact abelian wmob S and A a non-empty open
subset of S , if B 1is a submob of S such that B § R(A) , then

P contains an idempotent which is not in R(A) .

We are now ready to prove theorem 3.2. As A is an ideal,
so 18 A and R(A) . For the necessity, we suppose that
R(A) X R(A) . Then, by our lemma 3.3, there exists an idempotent

02 aecRA), eVA.
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But we assume that such idempotent does not exist. Hence,

R(A) < R(A) . As R(A) < R(A) always holds, we have R(A) = R(A)
that is, A is radically stable. For the converse part, we assume
that A 1is radically stable, that is, R(A) = R(A) . Suppose there
exists ez « e e R(A) . Then e € R(A) , so there exists k > 1
such that ek e A. Thus e ¢ A and hence, R(A) contains no

idempotents which are not in A . Our proof is complete.

Corollary 1 : Let A be a proper ideal of the mob S . Then any
i{deal of S properly containing R(A) contains a compact group which
is disjoint from A . Conversely, let G be a compact group in S
guch that G 1is disjoint from an open ideal A , and suppose that A
contains all the other idempotents of S . Then R(A) 1is an open

ideal of S disjoint from G .

Proof : By corollary 2 of lemma 2.7, we have e S e & R(A) for some
idempotent e . Now e S e 1is a compact submob of S with identity
e . Consider G_ = (gees elgg-1 = e} . This 1s the maximal
subgroup of e S e . It is known that G‘ is a compact subgroup of

e Se ([12], page 13. We claim that e X R(A) . For if e ¢ R(A) ,
then e S e ¢ R(A) , a contradiction. Let us now suppose that

c‘ n R(A) $ 4 , then there exlists g e G. such that g ¢ R(A) . Since
R(A) 1is an ideal of S, sg-% e ¢ R(A) , which is impossible. For

the converse part, suppose G n A = ¢. Since G 1is a group , gk e G

for all k > 1 which g ¢ G .
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Hence gk x A for all k> 1. This implies g ¥ R(A) . Thus
GnRA)=¢. As G and S are compact, JO(S-G) is an open

{deal of S . Clearly, R(A) < Jo(S-G) . Suppose that JO(S-G) L3

R(A) . Then by our lemma 3.3, there exists e2 = e € JO(S—G) .

e X A. This contradicst our assumption on A . Hence R(A) = Jo(s-c)

and hence R(A) 1is an open i{deal of S .

Corollary 2 : Let S be an f-mob . If A is an open ideal of S
which is not radically stable and R(A) 1is gsemi-prime, then R(A)

{s closed and has the form eS with ez = e X R(A) .

Proof : The non-radical stability of A implies that R(A) ; RA) .

By using the same method as lemma 8 in (20]), page 676, and our lemma
3.3, we can prove that there exists a minimal closed ideal M contained
ta R(A) , but not contained in R(A) . Moreover M has the form eS$
with e2 - e X R(A) . Since S 1s compact, eS n R(A) $ 6 . As S

{s @ , it follows that R(A) < e§ < R(A) . Hence R(A) < eS .

Since R(A) 1is semi-prime, we have R(ETK)) = R(A) . Thus A < RQA)
implies that R(A)c R(A) . We have, therefore, R(A) = eS with

.2 = e X A.

Corollary 3 : Let A be an ideal which is radially stable in s .

Then A is a primary {deal if and only if A is a primary ideal.

Proof : We only need to observe that an idecal A 1is primary if and

only if R(A) {8 prime.
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Here we give two examples to demonstrate that, without
radical stability, the closure of a prime (Primary) ideal need not

be prime (Primary).

Example 3.3. Let S be the subset of the plane defined by
s = ([0,1] x 0) v Q x (-1,11)) (see Figure I.) where the underlined

brackets denote the {ntervals, and define a multiplication on S by:

<x,0> * <1,v> = <x,0> for all points x ¢ (a,bl, v ¢ (c,d]) .
<x,0> * <y,0> = <xy,0> for all points X,y € {a,b] .

<l,x> * <1,y> = <1l,xy> for all points X,y € (bye)

<l,x> * <l,y> = <1,-xy> for all points X,y € {b,d]) .

<1,x> & <1,y> = <1,0> if x € (b,d], y € (b,c] and vice versa.

Where xy 1is the usual product of x and Yy .

c = <1,1>

a= <0,00 [— b = <1,0> (Pigure (I.)

E-___“__

d - (1.-1)

Clearly, J[a,b) is a prime ideal of S . Also
<1,1> ® <1,-1> = <1,0> ¢ (a,b) , but <1,1>, <1,-1> are note points in

[a,b] . Hence, the closure of [a,b] 18 not a prime ideal of S .

Pxample 3.4. Let S be the subset of the plane define by

s = ((0,1] = (-1,1)) v (1 ~ (1,-1)) (see Figure I1.) where the
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underlined brackets denote intervals, and define multiplication

on S by:

<x,y> * <u,v> = <xu,yv> for all points <x,y>, <u,v> in the
upper half plane.

<x,y> * <u,v> = <xu,-yv> for all points <x,y>, <u,v> in
the lower half plane.

<x,y> * <u,v> = <xu,0> 1if one of the points lies in the
upper half plane and the other lies

in the lower half plane.

<0.1>4 ———————— " <1,1>
a-(O.%) T TR d = <1,';‘>
;/ "" ‘, . ? .
<0,05 [_ﬂ‘hj_v___” 1,00 (Pigure IL.)
{ [ -
b.<o-;.12_'> F R S {1 ¢ = <1’-%>
WA...-__...--VL

Clearly, the rectangle Q = (0,1) x (:%;%) is a primary

ideal of S , but the closure of Q 1is not primary.

Remark 1 : Every ideal of the usual thread I is a primary ideal.
By a usual thread, we mean a mob {seomorphic to {0,1) with {ts usual
topology and usual real multiplication. Obviously, the minimal ideal
{0) , of I is primary. Any non-minimal ideal of I h;s the form
(0,x) or .{0,x]. for a fixed x in (0,1) [21]), page 84. To see

that [(0,x] 1is primary, suppose ab ¢ {o,x), a X {0,x) .
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Then 0 <ab<x,x<ac<l. Hence, Of_b<§,3—il. Thus

0<b<l. Since x 1is fixed, there exists k > 1 such that

bk <x . As [0,x) 1is radically stable, (0,x] 1is also a primary

ideal of I .

Remark 2 : Every {deal of the min-thread 1 1is prime. By a min-
thread, we mean a mob iseomorphic to [(0,1] with multiplication

x * y = min {x,y} . This remark is clear.

§4. On the boundary of algebraic radicals.

In this section, we prove two very important theorems. These
two theorems tell us that: In a mob S , the boundary of the algebraic
radical of an open ideal A is closely related with a compact

topological group in S .

Theorem 4.1. Let S be a compact mob and A be an open ideal of
S . Then either B(R(A)) = ¢ or there exists a non-zero compact group

which lies in the boundary of R(A) .

Proof : Since A 1is an open {deal of S , by 1.4(8), R(A) 1s also

an open ideal of S . If R(A) = S , then clearly B(R(A)) = ¢ .
Suppose that B(R(A)) = ¢ , then RGA) - R(A) $ ¢ . Since R(A) s
a closed ideal of S , by our lcmma 3.3, therc exists an idempotent
.2 = e ¢ R(A) - R(A) . Since R(A) 1is open, we have

B(R(A)) = R(A) n S-R(A) = R(A) n(s-R(A)) .
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Consequently, we obtain that e ¢ B(R(A)) . Now, let the maximal
subgroup of S containing e the idempotent e by H(e) .
H(e) 1is compact because S 1is compact. As both R(A) and R@A)
are ideals of S , we thus obtain that H(e) n R(A) = ¢ and

H(e) c R(A) , which implies H(e) < B(R(A)) , completing the proof.

Corollary 1 : If S is a bing (compact connected mob) and if R(A)

1s a component of 0 , then R(A) - R(A) 1is a non-zero compact

group.

This is a consequence of our theorem and a theorea of

A.D. Wallace, [27], page 537.

Corollary 2 : Let the clan S (compact connected mob with unit) be

contained in the Euclidean space E* ,n>2., If A isan ideal

of S such that R(A) includes the boundary of S, then R(A) {is

a dense connected ideal of S .

Proof : Let B(S) be the boundary of S in E" . By our hypothesis,

B(S) < R(A) . This implies that B(S) < sB(S) < S R(A) < R(A) , since
YIS * n-1 n-1

S {is a clan and R(A) 1is an ideal of S . Then { : H () ~ H

(R(A)) since, by a famous result of A.D. Wallace (28], n“‘l(s;ﬁfi)) -

0= Hn(S,iTK)) . Hence by a result of (28] again, ﬁTK) = § , which

means that R(A) 1is dense in S . As S s connected, R(A) 1is

connected.
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Remark : The stipulation "A is an ideal"” of S cannot be
weakened. The following example shows that even if A is an open

gsubset of S but is not an ideal, our theorem 4.1 fails to be

true.

Example 4.2. Let S be a comb space, that is,
S - [o,%] « [0,1] v [0,11 x {0} , for all n=1,2,.. . (see Figure IIL.)
where the underlined brackets denote the intervals, and define

multiplication in S by:

<x),¥)> * xp¥p> = <xpxp, minlyyl .

S 1is an abelian mobd.
N R At
1
i

: ca = <%3%o Figure IIIL.

<0,0> <-l-'- 0>

Now, let A = (a,b) where a = <%,%> , b= <%.1> , then

R(A) = (a,b) , B(R(A)) = (a} which is not an idempotent of S .

If the compact group G does not lie in the boundary of

R(A) , then the compact group G must be contained in the ideal A .

In fact, we have:

Theorem 4.3. Let S be a mob (not necessarily compact or abelian)

and G be a compact group in S . Then G {is entirely contained in

the algebraic radical of an open ideal A of § 1f Gn A + ¢ .
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Conversely, 1f G c R(A) , then G < A . (I am indebted to

Professor J.M. Day for the improvement of this statement)

Proof : Suppose GnA=¢ , then Gn A 1is an open submob of

G since A is open in S . By F.B. Wright {32), page 310, any

open submob of a compact group 1s a closed subgroup, then G n A

is a closed neighborhood of the identity of the compact group G .
Recall a famous result in topological groups, see {10], Theorea 7.6,
page 61, we know that G n A contains a normal subgroup N such
that the quotient group % {s finite. Let k be the order of the
group % . Then for any g € G , we have gk e NcGnAcA.,

This means that g € R(A) . In other words, G < R(A) . Conversely,
let us suppose G < R(A) , then for every g ¢ G, 8 ¢ R(A) . Hence
there exists an integer k > 1 such that gk ¢ A. Since G {is a
group, we have gk =g'eG. Thus G nA $ 4. But A 1is assumed

to be an ideal of S , s0 G n A 1is an ideal of G and hence must

equal to G if non-empty. This implies that G c A . Our proof is

complete.

Corollary : In the above theorem, {f A 1is an submob of S, then

G cR(A) if and only if CnA $ ¢ .

The following example shows that the converse part of

theorem 4.3 is not true if A 1is not an ideal of S .

Example 4.4. Let S be the real interval [-1,1] . S with the

usual topology and usual multiplication is clearly a mob.
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Let A = (-1,1] , then (A) = [-i,l] and G = {-1,1} is a

compact group in S . One can observe that G c R(A) but GYXA.

§S. Concluding remarks.

The definitions of reducibility and irreducibility of
{deals can be generalized as follows: An ideal A 1is said to be
R-irreducible 1f A 1is reducible such that R(Au) = R(A) . If
R(A ) 4 R(A) for all a , then A is said to be R-reducible. The

following example shows that R-reducible ideals exist.

Example 5.1. Let S be the semigroup consisting of four elements
{0,a,b,c} such that az =a, c2 = ¢ and all other products are
zero. Clearly, (0}, (0,a},{0,c)} are ideals of S with (0} =
{0,a} n {0,c} . But R({0}) = {0,b} , R({0,a}) = {0,a,b} ,

R({0,c)) = {0,c,b} . Thus {0) is R-reducible.

The following facts are easily verified.

(1) Any algebraic radical of an ideal which is open and non-
prime in the compact mob s is R-reducible.

(2) If A {is strongly reducible such that R(A) 1is a maximal
proper ideal of S, then A 1is R-irreducible.

(3) 1f a primary ideal is strongly reducible, then it is

R-irreducible.
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It should be pointed out that, in general, a primary

ideal Q and its associated prime ideal R(Q) are topologically
unrelated. For instance, the statement:

"Q compact if and only if R(Q) is compact" is not
true. PFor Q is compact does not imply R(Q) is compact: Compare
remark 1 in §3 . Also R(Q) is compact does not imply Q {is
compact. For take S = [{0,1] with the multiplication * defined by
x*ys= % xy for all x,y in S . Then Q= [0;%) is a primary

{deal of S which is not compact while R(Q) = (0,1] .

Also "Q 1is connected if and only if R(Q) 1is connected"
{s not true. For take S = [0,l] v [1,2] . Define x *y --% xy
for all x,y in S . Then lo,l] is a primary ideal of S,
R([O,%]) « S 1is disconnected. On the other hand, take
g = ((x,y)|0<x<1,0<y< 1} . Define (x,y) * (x',y') = ,yy') .
Let Q= {((x,y)|x ¢ 0,1} , 0 <y < 1} . Then it can easily be
checked that Q {s a primary fdeal of S . As R(Q) = S, R(Q) 1is
connected, however, Q {tself is disconnected. But if S |is
connected and Q 1is a connected ideal of S , then R(Q) 1is a connected
ideal, since S connected and has zero, every ideal of S 1is

connected.



CHAPTER II

On topological radicals in mobs

In the previous chapter, we investigated the structure
of algebraic radicals in mobs and extended some results in
commutative algebras to compact abelian mobs with zero. In this
chapter, we study the topological radical of a mob. Several results

converning abelian mobs with zero and local zeros are obtained.

By the topological radical of a mob S with zero, we mean
the union of all the nil ideals of S . An element b in S 1is
called nilpotent {if " > 0 , that is, if for every neighborhood
U of O, there exists an integer " such that b" ¢ U for every
n>n . We denote by N the set of all nilpotent elements of S .

An ideal A of S consisting entirely of nilpotent elements is called
a nil ideal of S . In case N 1s an ideal of S , then N turns
out to be our topological radical of S . The concept of nil ideals
was first introduced by K. Numakura in 1951 (18). In his paper, he
investigated the structure of § when N 1is open. Some amplification

of his results on compact mobs with zero were given by R.J. Koch [13].

It is the purpose of this chapter to apply the work of
Numakura [18] on mobs with zero to compact abelian mobs with zero and

local zeros.
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We are mainly interested in studying some properties of the set

N . We prove that if N can be embedded densely in an abelian mob
S , then S has no local zeros. We also show that if a mob S
contains zero and local zeros, then S must be disconnected. Some
conditions which lead to the existence of a local zero in a compact
N-mob are given. A characterization of compact abelian N-mobs is
obtained. Moreover, if S 1is a compact f{-modb with zero such
that N = N , then N - N is either a group or a semilattice of
groups. The set of topological zero divisors of an element a 1in

S will also be treated.

Since life is considerably different if a mob is not
compact than when it is, we thercfore make it clear when we are assuming
compactness on a mob, and when we are not. Throughout, for sets
X, Yc S, X-Y denotes the complement Y in X, XY denotes the set
of all products Xy with x ¢ X , y € Y ,‘i denotes the closure of
the set X in S . All spaces are topological Hausdorff in this
chapter. Unless otherwise stated, S will always be regarded as a

topological abelian mod with zero. The reader is referred to (21] for

terminology and notations.

§1. Definitions and Preliminary Results.

In this section, N denotes the set of all nilpotent
elements in S and S denotes a non-eapty abelian mob with zero.
To avoid trivialities, we suppose that S $ (0) and the space S has

at least three points.
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Notation. Let A be a subset of S .

J(A) = A U AS , that is, the smallest ideal containing A .
Jo(A) = the union of all ideals contained in A, that is,

the largest ideal contained in A if there are any.

Definition 1.1. S is said to be an N-mob if N 1is an open

subset of S .

S 1is said to be an f-mob if for any two ideals 11 and

12 such that 11 n I2 + ¢ , then either I1 c 12 or Iz S I1 .

Deflnigio; 1.2. An ei;nent 0 such that a0 = Oa = 0 for all a

fn S 18 called a zero element of S and it is easily seen that O

is uniquely defined if it exists.

An idempotent element e 4 0 1is called a local zero if there
exists an open neighborhood U 1in S such that e e¢ U and e 1is
the zero for U , that is, ex = xe = e for every x ¢ U . Ve

observe that a zero is not a local zero.

Definition 1.3. Let a be an element of S . Define Tod a =

{x ¢« Slax € N} , that is, the set of all topological zero divisors of
S. Tod a {is non-empty since (0} 1is always in Tod a . Let A

be a subset of S , then Tod A= uy, Tod a.
acA
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Definition 1.4. Let k > 1 be an integer. A k-ideal A of

S 18 a non-vacuous subset of S such that AkS c A . A principal

k-ideal generated by any subset A of S 1is the set Jk(A) -
Av Az U ...V Aks , which is the smallest k-ideal containing the sets

{A,A ,...,Ak} . We note that Jk(A) is not the set A u AXS unless

A s a submob of S .

The following results are elementary, but they are useful.
Some important properties of the set N are known after these

propositions and counter-examples.

Proposition 1.5. Let S be a mob (not necessarily compact), then

the following are true.

(1) The set N 1is always a submob of S . Moreover, N

contains T[(a) for each a ¢ N .,

(i1) Let S have a unit u . Then u € Tod a 1if and only

if a e N, for any a € S .
(i11) If e 1is an idempotent elcment of S , then N < Tod e .
(iv) If N is an ideal of S , then Tod e 18 an ideal of S .
Moreover, Tod n = S for all n e N .,

(v) If ecach Tod a 1s an ideal of S for every non-zero a ¢ S8 ,
then every principal k-ideal (k > 1) generated by an
element n ¢ N 1is contained in N .

(vi) If N 1is connected and S contains at least an {idempotent

e $ 0, then every element of N {is contained in a connected

ideal of N .



We only prove (v) - (vi) ; the others are direct

consequences of our definitions and we leave them to the reader.

Proof : (v) Take n ¢ N, and let k >1 be an integer. Then

of ¢ N . Hence n € Tod n*"l | By our assumption, Tod N

an ideal of S . Thus for any y € S , ny € Tod nk-1 . That 1is,

ny e¢N. Inotherwords, nks c N . Since the principal k-ideal
generated by the element n is the set Jk(n) =nu nz Uso oV nk

v nkS , clearly, Jk(“) cN.

Remark : I cannot prove the case when k = 1. If k=1 {is true,

then N 1is an ideal of S .

(vi) To prove (vi), we first note that Tod e is a submod
of S. Forlet x ¢ Tod e and y € Tod e . Then we have ex € N
and ey ¢ N . Since S is abelian, by (i), N 1is a submob of S .
Thus exy = ezxy = (ex)(ey) ¢ N2 c N . Hence xy € Tod e . Now let
us denote Tod e by T . By (111), we have N c T and 0eT.
Let D be the component of zero in T . Then 0 € D c T which is &
maximal connected set contained in T . Since N 1is connected, we
have {0} ¢ N < D . For any element y ¢ N, Dy , being the continuous
image of a connected set, is connected and contains zero. By the
maximality of the set D , we have Dy < D.So D 1is a connected

{deal of N and every element of N 1is contained in D . Our proof

is completed.
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-
Let T(x) = (xn} , if Tr(x) 1is compact for each element X
n=1

18 S , then S {is called elementwise compact.

Theorem 1.6. If S 1s an elementwise compact (or sequentially

compact) abelian mob, then N 1is an ideal of S .

Proof : (i) Suppose S {s elementwise compact. We wish to show
that N 1is an ideal of S . Let x €N and y € S . Consider

r(y) , which by our assumption, is compact. Take and z e I(y) . We
have z0 = 0 . Thus, by the continuity of multiplication, for any
arbitrary neighborhood v of 0 , therc exist neighborhood w(z) €
6(z) , wz(O) e G(0) such that w(z) wz(O) c U, where G(Z) , G(0)
are complete systems of neighborhoods of the elements 2z and O
respectively. Let us consider a system of neighborhoods (w(Z)IZ €
r(y)} . It is evident the r{y) < Ze?(y) w(Z) . Since T(y) 1is s
compact mob, there exists a finite system w(Zl), v(Zz),...,w(Zn)

which also covers T[(y) and for i =1,2,...,n, we have w(Zt) wzi
(0) <« U . Evidently, there exists a neighborhood w(0) ¢ G(0) such
that w(0) < igl H(Zl) and "(ZL) w(0) <« U for every { = 1,2,...,n .
But w(0) 1is a neighborhood of 0 and x ¢ N, and hence x" ¢ w(0)
for n > n_ for some n, . Thus y"x" € I(y) w(0) < u(w(zi)lx-l,z,...
n}) w(0) cvU=U, for n2mn . This means that xy ¢ N , that is,

N 1is an ideal of S .

(11) Now suppose S 1is sequentially compact and N is not

an tdeal of S .
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Then we can find x ¢ N and y € S , such that xy X N . That
is, (xy)“ 4 0 . Thus for any open neighborhood V of {0},
there exists a subsequence (xy)nk of (xy)n such that (xy)

¥ V for every k=1,2,...(%) . Consider the subsequence
{ynklk-l.z,...} . Since S 1is sequentially compact and Hausdorff,
there exists a subsubsequence {ynkili-l,Z,...} of {ynk} such

n
that ynkl +8¢€S . Clearly, lim (xy)nkl = lim (x klynki.) -
i

i
% "%
1im x 4 limy 14 > 0.5 =0. This, however, contradicts to » .
1i i

So, indeed, N {8 an ideal of S .

Corollary 1. If S is a compact abelian mob with zero, then N

is an ideal of S .

Corollary 2. If S 1is compact and connected and if s2 = S , then

N 1is connected.

Proof : By Koch and Wallace (14}, page 682, S compact with sz-s
implies ES = S . Thus S has a unit since S is abelian. As S
{s also connected, so by Koch and Wallace [14], page 683, each ideal
of S 1s connected. By Corollary 1, N {8 an ideal of S , so N

{s thercfore connected.

1.7 Counter-cxamples.

Example (1). If S 1is not compact, then N {is not necessarily

an ideal of S .
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Por example, let S = [0,=) with usual topology and usual

multiplication. Then N = (0,1) , which is not an ideal of S .

Example (2). If S 1s not an abelian mob, then N 1is not
necessarily a submob of S . For example, let S = {0 = (gg).

01 00 10 10
x= () V" Go» ¢ ™ (go» 4 = (o)} - Then under the ordinary

matrix multiplication, we have the following multiplication table.

e 0%y cld]
000,00
x 0 0 c 0 x
y 0 d 07y, 0
c 0 x ‘0:c ;0
4:0.0 y 0]

Clearly, N = {0,x,y}, N° = {0,c,d)} . Thus N N . This

example demonstrates that the condition abelian is necessary.

Example (3). Even 1f S 18 an abelian mob, N 1is not necessarily
an idempotent set. For let S be the real line with the usual
topology. Define x*y = 0 for all x,y in S . Then N = § but

N 0.

Example (4). Even {f S 1is connected, Tod e is not necessarily

1

connected. For let S = (-1} v [- % . 2] v {1} . Define x*y = xy

for x and y 20.

xRy = -xy for x and y <0
xty =0 for x>0,y < 0 or y>20,x<0

then Tod {1} = (-1) v [- %311 , which is not connected.
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Example (5). Even if S 1is compact connected, but 82 + S
then N 1is not necessarily connected. For let S be the two
line segments joining the points (0,0), (1,0) and (1,0), (0,1) .
The topology is the usual topology inherited from the planes. Define
the multiplication on S by (xl,yl) * (xz,yz) = (min X, %, ,0) .
Then, S 18 clearly a connected abelian mob with zero. But

N = {(0,0), (0,1)} which is disconnected.

Example (6). k-ideals are natural extension of the ordinary

ideals. We give some examples:

Example (6.1). Let S = {0,1,2,3,4,5) be a semigroup with the

following multiplication table.

T

w s wN'=iolb
rcac{c>c>c;cﬁc;
c>h;u~c$c>c»-
coocooowN
NoocosOoOw
conoOOS

N cocoooON

Let A = {0,1,2,3,4} , then A" = {0,2,4,5)} . Clearly,

AS ¢ A, but A%s = {0,2,4) c A .

Example (6.2). Let S = {3 x 3 matrices) . Then S 1is a mob

with ordinary matrix multiplication. Let A = (O,a,az} , where 0 is
o11

the O-element and a ={0 1 1] . Then A is a submob of S . It is
000

3

clear that AZs $§ A, but A's = (8} cA.
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Example (6.3). Let S = (0,2) with usual topology. Define
the multiplication on S by x*y = xy (mod 2) . Then S is a mob.

Let A = [O, %) , then Aas ¢ A, but Abs cA.

Example 7. We give here a simple example to support the

statements of our proposition 1.5 (i1i)-(v) .

Let S = {0,a,e,f} be a semigroup with the multiplication

table
. [0'a e |€
8.070 0
a 0.0 Ofa
.§>‘0 .0‘;0' 0
£,0 a O]f
The lattice of ideals of S 1is given by the graph in
Figure I. S
\“\ (0,8,0}
\\\\‘- {0,e}
{0,a,f / Figure I.
N={0,a} ///
{0}

Clearly, N = {0,a} , Tod e = {0,a,f} , Tod £ = {0,a,e] =Tod N .

The largest ideal which has a zero intersection with N 1is
(0,e) . Also we note that S contains two minimal ideals, namely,
{0,e} and (0,a} both of them are contained in Tod N = {(0,a,e)} .

Moreover, {(0,e} is a minimal non-nil ideal of S .
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If N 1is the topological radical of S and G is any non-zero
subgroup of S , then G c N' . If N' = (e}, ez =e$ 0, then

N=Tod e .

Proof : To prove that N is the topological radical of S , it
suffices to show that N 1is an ideal of S . But this is trivial
since N' consists only of idempotent elements. If N is the
topological radical of S , then N , in particular, is an ideal of

S . Now let us suppose that N n G + ¢ . Then there exists

x e GnNnN. A8 G 1s a subgroupof S , Gx = xG =G . Hence G =
Gx ¢ SN © N which implies G = {0} . Our supposition is therefore
impossible. As N c Tod e by 1.5 (i1ii), so to prove N = Tod e , it
suffices to show that Tod e ¢ N . Suppose that y X N , then

y ¢ N' = (e} . This means that y = e X Tod e . Our assertion is

proved.

Proposition 1.9. Let a be any arbitrary element in S . If N fis

an open subset of S , then Tod a 1is open. If N 1is a closed lubnci

of S, then Tod a is closed.

Proof : For each x ¢ Tod a , we have ax ¢ N . According to our

assumption, N 13 open and hence there exists a neighborhood V(ax)

of ax such that V(ax) < N .



- 41 -

From the continuity of multiplicationm, there exists a neighborhood
Vl(a), Vz(x) of the points a,x respectively such that

Vl(a) Vz(x) c v(ax) < N . Hence avz(x) < Vl(a) Vz(x) c N . This
means that x € Vz(x) cToda . Hence Tod a 1is an open subset

of . To prode that Tod a 1is closed if N 1is closed, it

suffices to prove that Tod a c Tod a . Llet x ¢ Tod a . Then since

S 1is Hausdorff, there exists a sequence {xi} ¢ Tod a such that

X, "X . This implies that ax, e N for each i and by the continuity

of multiplication, we have ax, > ax . Since N 1is closed, we have

ax ¢ N . This means that x € Tod a .

(1 was told that Professor A.D. Wallace also obtained the

same results in (2] and [31] . He denotes Tod a by a('ll N.)

Remark 1.10. The following example shows that i{f N {is not open,

then not all Tod a are open sets.

Let S = (27) v [0,=) , where {2”) are the negative
integers. The topology of S 1is the usual topology inherited from the

real line. Define the multiplication * in S by

x*y = min{x,y)} whenever x,y ¢ [0,=) .
xty = 0 1f x € {z”) , y e ([0,) and vice versa.
xty = -xy 1if both x,y € (27} where xy 1is the

usual multiplication.



Clearly N = {0} 1is not open. For any a € [o,=),
Tod a = {0} u {27} , which is open subset of S . For any

ae {2}, Tod a = [0,) which is not open.

Now let us call a mob S an A-mob if all Tod a are open
subsets of S for every a ¢ S . From proposition 1.9, we know
that 1€ S 1s an N-mob, then S is an A-mob. But the converse
statement is not known to the author. That 1is, if S 1is an A-mob,

{s S an N-mob? However, Dr. C.S. Hoo gives a partial answer to

this question.

Theorem 1.10. If S 1is a compact A-mob and E 1is finite, then

S is an N-mob.

Proof : It is true that N c eTe Tod e . We only need to show that
A Todec N. Let xe n_ Tod e, then x € Tod e for all e ¢ E.
eeB eck

So ex ¢ N for all e ¢ E . Now there exists e1 € B such that

e, ¢ r(x) (21), page 22. As K(x) = e I'(x) and is a group (21},

page 24, s0 e x € X(x) and e x has an inverse element y € K(x).

By our thcorem 1.6, N 1is an ideal of S . Thus, we have

e, =e Xxye NS ¢ N . This implies that e = 0 , that is, K(x) = {0}.

But K(x) 1is the set of cluster points of the sequence (xn)
x=1

Hence x" + 0 , that is, x ¢ N . Therefore N = e?! Tod e .

If E is finite, then we know immediately that A-mob implies N-mob.

Corollary 1. If S is a compact mob and Tod e is closed for all

e ¢ E, then N {s closed.
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This corollary gives a converse to our proposition 1.9.

Corollary 2. N= n + Tod e , where E+ is the set of all non-
ecE
minimal idempotents of S .

]
Proof : By our theorem, we know N= n ,Tod e , where E =
eckE

E - (0} since Tod 0 = S . Now suppose e,e' are idempotents of
S . Let us suppose e < e' , that is, ee' = e . Then if

x € Tod e' , we have e'x ¢ N . Thus (ee')x = e(e'x) ¢ eN c N .
That is, ex ¢ N . Hence X ¢ Tod e . We therefore obtain that

if e < e' , then Tod e' c Tod e . Thus, N= n Tod e .
ecE

Corollary 3. Let e ¢ E and Pe = {x ¢ Sleer(x)) . 1If e$40,

then Pe ¢ Tod e = ¢ .

The following gives a necessary and sufficient condition

for the set N to be a k-ideal of S .

Theorem 1.11. Let S be connected and let Jk(N) be the k-ideal
generated by N . Then N 1is a k-ideal of S {if and only if the
component C of {0} in N coincides with the the component 0 of

{0} tn J (N) .

To prove this theorem, we prove something more general,
namely, if we replace the set N by any submob A of S containing

zero, we shall sce that our statement still holds.
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Proof : Since A 1is a submob of S , we have

Jk(A) Av A2 UessU Aks =Avu AkS . Suppose A 1is a k-ideal

of S . Then Aks c A and we have Jk(A) = A . Thus, the

component C of {0} imn A and the component D of (0} in

Jk(A) coincides. For the converse part, we first observe that

0 ¢ AS. Also, for any a € A, the point (a,0) ¢ ({a} x S) n

(s x {0}) . Since S 18 connected, (agA ({a} x S) u (S x {0}) =
(A x S) u (S x {0}]) is a connected subset of S x S . By the
continuity of multiplication, we have that AS 1s a connected subset

of S containing O . As a consequence, 0 ¢ Aks and AkS is

connected., Moreover, Jk(A) > Aks . Thus the component D of ({0}
in Jk(A) contains Aks . On the other hand, A -~ Jk(A) and

{0} ¢ A . Thus the component C of A {is also in Jk(A) . By our
assumption, 0 = C . Thus Aks c D=CcA, that is, A is a

k-ideal of S .

52, Abelian N-mobs.

We now study, in this section, the structure of N-mobs,
that is, topological semigroups S in which the set N {s an open
subset of S . We use E to represent the collection of all
{dempotents of S and 8. « E -{0}) . It is easily seen that E s
closed (18], page 408. An idempotent e wmay be looked upon as a
subgroup of S . Following the usage of [11) and elscwhere, H(e)

is the maximal group containing an idempotent e .
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Also, following the notation of R.J. Koch [13] and K. Numakura [18],
we define, for each x in S, Fn(x) - {xi}:_n , M'(x) = Fl(x) , K(x) =
n {Pn(x)ln > 1} and in case TI(x) 1is compact, we have

r(x) = {x,xz,...} u K(x) where K(x) 1is the minimal ideal of TI(x)

and 18 the maximal subgroup of TI(x).
Theorem 2.1. If S 1s a compact N-mob (not necessarily abelian) which
1s not nil, then there always exists a compact subgroup of S which

is disjoint from N .

Proof : Since S 1is not nil, there exists at least an element x S

with x ¢ N . By lemma 2.1.4 of [21], page 58, x & N implies

xn X N for all positive integers n . Thus the sequence (xn}n_1 < N!

Since N 1is open, N' 1is closed and hence compact. Therefore,

r(x) < N' . Clearly, [(x) is compact. So there exists a unique
idempoent O + ez e € '(x) . Consider H(e) Iin r(x) . Since S

is compact, H(e) 1is a non-zero compact group of S . It is clear that

H(e) n N = ¢ , for H(e) < (x) < N' .

One would naturally ask: Under what conditions, can S be
uniquely decomposed into two disjoint sets N and G , vhere N 1s

the set of nilpotent elements and G {s a compact subgroup of S , that

is, we need S = Nu G, NnGCs= ¢ . Algebraically, we can construct

the following:

Theorem 2.2. Let N be an abstract abelian semigroup, G an abelian

group which is disjoint from N .
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Define the multiplication @ in the set S = GuN as follows:

(a) Por x,y €¢G, let xQy*= x*y , where * 1is the group

multiplication.

(b) For x,y ¢ N, let xOy = X.y, where . 1s the semigroup
multiplication.

(c) Por x € G ,yeN,let xX@Qy=y=y9X.
Then S is an abstract abelian semigroup, denoted by S(N,G; ©) »
in which N 1s the unique maximal proper ideal of S . Inm other words,

N can be embedded as the unique maximal proper ideal in S(N,G; Q) .

Proof : One can easily verify that the multiplication ® of § 1is
associative, commutative and closed, hence S(N,G; ® ) 1is an abstract
abelian semigroup. Also, it is easily seen that N 1is an ideal of S .
We only have to show that N 1is the unique maximal proper ideal of S .
In fact, suppose A {is an {deal such that A ¥ N . Then there exists
aeA,aixN. Thus ,-for each x ¢ N , we have a@x-xeANCA,
that is, Nc A . Suppose NFAcS . Then GnA¥ ¢ . Let
beGnA. As G 1is a group, Gb = GcSAcA., Hence S=GuAcA
which implies S = A . Thus A XN -)A =S , and N is indeed the

unique maximal {ideal of S .

We are now able to give an answer to our question raised

above.

Theorem 2.3. (J.M. Day). Let S be a compact mob with only one noa-

zero 1dé-potent,
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then S is the disjoint union of N and a compact group G 1if

and only if N is the maximal proper ideal of S .

Proof : Apply our theorems 2.1 and 2.2. The only thing we need to
observe is that: If N 1is a maximal proper ideal of S , thea N

is open.
We give here a characterization of abelian N-mobs.

Theorem 2.4. Let S be an abelian compact mob which is not nil.

*
Then S 1is an N-mob if and only if E is compact.

In order to prove this theorem, our theorem 1.6 is crucial.

Proof : Let us suppose that S 1is an abelian compact N-mob. Then N

1s an open subset of S . Clearly, E. =N'nE. As N {is open,

N' 1s closed. Also, it is well known that E 18 closed (18], page

408, so by the compactness of S,N' and E are compact subsets of

S . Therfore E. is compact. Conversely, let us suppose E* is compact.
Then S-B. is open and N ¢ S-E. . Clearly, Jo(S-B.) , the unfon of

all fdeals of S contained in S-B* , is open (14], page 68l. By our
Theorem 1.6, N 1is an ideal of S and hence N c Jo(S-B.) . Suppose

if possible, N = Jo(S-E.). Then there exists x ¢ Jo(S-E.) , X X N .
Consider the principal ideal J(x) generated by x . Then J(x) =

%
X U XS ¢ Jo(S-B ) . Since S 1is compact, so is J(x).
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Hence T(x) ¢ J(x) and there exists a unique idempotent element
*
02 = g € I'(x) ¢ JO(S-B ) [21), page 22. Clearly e = 0 for

otherwise e X JO(S-E*) . But if e = 0 , then K(x) = e I'(x) = {0}.
=1’

we would have xn + 0 . This contradicts x ¥ N . Thus we conclude

Since K(x) 1s the set of cluster points of the sequence {x"}

'
that N = JO(S-E ) , which is an open subset of S .

Corollary 1. Let S be compact. If there exists an idempotent
e 40 such that N ¥ Tod e , then Tod e contains at least one

non-zero idempotent of S .

Proof : By Theorem 1.6, N 1is an ideal of S . Since N ¢ Tod e
[ =4

so by proposition 1.5 (ii11) and (iv) , N# Tod e and Tod e 1is

and ideal of S . Applying the same argument as in the proof of

Theorem 2.3, we see that there exists 0 # fz w f € I'(x) c Tod e .

Corollary 2. If S {is compact and D 1s the component of 0 in
N, then NS c D,

Corollary 3. Let S be compact. If E < N and N¢ S, then N

is contained in a proper compact ideal of S .

Proof : Suppose N # S . According to our lemma 2.4, N 1is a proper
fdeal of S . Thus N {8 contained in all proper maximal ideals "1

of S , where Hl has the form Jo(S-xt) for some x, e S-N . Hence
EcNc M, for all 1 . By Koch and Wallace [14), page 683, we have

2 2
§ c nt for all {1 , that is S <c ? K‘ .



- 49 -

But since S is compact, by Koch and Wallace again [14], page
2 2
638, 9 “1 c 8" . Hence S = 0 H1 . Clearly, ? H1 is compact

and N c 2 H1 .

Theorem 2.5. If S 1s a compact Q-mob such that N # N , then

N - N 1is either a group or a semilattice of groups.
To prove theorem 2.5, we need the following:

Lemma 2.6. Let S be a compact Q-mob. If I 1is a minimal ideal
containing N properly, then 1 1is closed. Moreover, I-N is a

closed non-nil submob of S 1f and only if 12 YN.

Proof : One part {s trivial. Por the converse part, let us consider
I-N . We claim that I-N {s a submob of S . For let a,b e I-N.
Then a“,bn e I-N for every n = 1,2,... . Now, let ab € N .
Consider J(a) =a v Sacl, which is the principal ideal generated
by a. As a X N we have J(a) & N . Since S 1is an Q-mob, we
obtain N ; J(a) ¢ 1 . However, by the minimality of I containing
N ; we conclude that J(a) = I , hence 1 1is closed. Similarly ,
J(a) = J(an) = I for every n = 1,2,..., J(b) = J(bn) = [ for every
n=1,2,... . Now J(a) J(b) = (a v sa)(b u Sb) = ab v Sab = J(ab) .
So 12 = J(ab) < I . According to our assumption, 12 X N . Therefore,
we have N i 12 c 1 , which implies J(ab) = I . Similarly,

J((ab)n) « 1 for cvery n = 1,2,... . Hence 12 J((ab)n) =1,
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Since ab ¢ N (ab)® » 0 , we obtain that I = @ J((ab)™) = (0}
which is a contradiction, for we assumed that I contains N

properly. This establishes our claim. Now take a ¢ I-N . Then

a,az,... are all in I-N . Hence T(a) = {an}:_l < J(a) and

r(a) 1is compact. Thus there exists an unique idempotent f = fz

€ (a) 1 . Since a X N, by the same argument as in our Theorem

2.4, we see that f $4 0. Hence I-N contains a non-zero idempotent

and I-N 18 a closed non-nil submob of S .

We now prove theorem 2.5. By Theorem 1.6 , N 1is an ideal
of S which contains N properly. We claim that N itself is the
minimal ideal containing NC properly. For suppose that there exists
an ideal N, such that N t N N . Take x € N-N . Then as $ is
an Q-mob, we have N i J(x) = x U x§ < N1 < N. As S 1is compact,
J(x) 1is closed. Hence by the definition of the closure of N ,

N = J(x) , which implies N1 = N . Now applying our Theorem 1.6, N

{s a minimal non-nil ideal of S . So there exists a non-zero idempotent
cz wmeeN-N such that J(e) = e v Se = N . This implies that

N = eS . Hence, by a result of R.J. Koch (21}, page 57, eS - N is a
group and e i3 primitive. Moreover, if N contains more than one
idempotent, then eS - N fs the disjoint union of the maximal groups
eas-N for all e ¢ N - N [(21], page 61. In other words, eS-N is

either a group or a scmilattice of groups.

The following is a slight modification of a theorem given by

K. Numakura [18], page 407, theorem 4 .
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However, for the sake of completeness, we give the proofs in

detail.

Theorem 2.7. If S 1is locally compact and N 18 a compact
ideal of S , then for any open neighborhood V of N , there

always exists an open non-nil submob J of S such that NcJc V.

Proof : Since S 1is locally compact and Hausdorff, S 1is regular

and we can find a neighborhood U of N having compact closure

such that N c U c Ucv , where V 1s any open neighborhood containing

N . Since N 1is an ideal, so N Uc NcU. By the continuity of

the multiplication and compactness of N and U , we can find an open

get W with NcWcU,and WUcU. Since Wecv, wcwicu

Simtilarly, HJ < U,... and hence y W' < U. Denote T = y W'

T 1s clearly a compact submob of S contained in V . Now let

J = Jo(H) , the unton of all {deals contained in W . Therefore
JcWcTcV . Since T is compact, J 18 therefore open and is a
submob of S . Since N 1is an ideal contained in W, so

N i JcwWeV, Clearly J is non-nil, for otherwise, we would have

J ¢ N , which is false.

$3. Abelian mobs with zero and local zeros.

Ia this section, we shall consider abelian mobs with zero
and local zeros. Throughout, N will stand for the set of all

nilpotent elements of the mob S .
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Theorem 3.1. Let S be a mob (not necessarily compact). Then the
closure of N contains no local zeros.

- ®
Proof : Suppose N = T and suppose T has a local zero e .,

As N 1is dense in T , then for any ¢t ¢ T and any neighborhood

*
v(t) of t , we have V(t) n N 4 ¢ . In particular, as e isa

A *
local zero of T , there isa V(e ) , V(e ) n N $+ ¢ and that

* * * * *
x € V(e ) Implies xe =ex =e . Let us that x € V(e ) n N,

& * * 'y

then e x = xe = e , and by definition of local zero, we have e X N .
* *

However, since x ¢ N , it is nilpotent. Thus (e x)k = e xk +0 .

*
This implies that e = 0 , which contradicts to the definition of local

zero. Therefore, we conclude that N has no local zeros.

The next theorem tells us that if S contains zero and

local zeros, then S must be disconnected.

Theorea 3.2. If P is a component of a mob S (not necessarily

* ] ]
compact) which has a local zero € ¢ P , then Pe = e and P n N =9,

*
Proof : We first show that e i{s the zero element for the subset

" % "
P, that is, Pe = e . Now P 18 connected, hence e P 1is also

a % A
connected, and is a subset of P. Clearly, e eeP . As e is a

local zero for S , then there is an open neighborhood U in 8

* ' 'Y 'Y
suich that ¢ e UnP=V , ex=Xxe =e for all x ¢ V . Hence

N
ePnVs$e. V isopenin P.
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* *
Thus e P nV {3 oven fn e P . Consider

X *

xe¢ e PnV which implies that x = e p , x €V with peP ,
a2 x * * x

and this implies that x = e p = (ep) e =xe =e Hence,

* *
being in a Hausdorff space, {e } = e P nV 1is both open and closed
* * * %
in e P , and hence equal to e P . That is, e P = (e } . Next,
let us suppose that P nN + $ . Then there exists x € P n N

— *
Hence x ¢ P and x ¢ N . Since e is the zero for P , so
'y

% ' %
x¢ = e . Let U be a neighborhood of e so that e is the zero
for U . By the continuity of the multiplication, there exists a
* —
neighborhood V of x such that Ve < U . But since x ¢ N, so
*
VAN$4d. Let yeVnN, then ye N and ye € U . This implies
] TN * * %
that (ye )e = e (ye ) =e . That is, ye = e . But then,
& n A n n*
(e) = (ye) =ye >0, which contradicts to the definition of local

zero. So PnN = é .

Corollary 1. If N' 1is a connected component of a compact mob 8

A
containing e , then

(1) N {s closed

'y
({{) Tod e is a prime ideal containing N .

o
-
8
~

(1) Since S {8 compact, by Theorem 1.6, N 1is an ideal

of S . Suppose on the contrary, N + N . Then there exists an element

- & -
yeN-N. So eye N, since N is an ideal of S . By the theorea

& -
above, we have ey = e ¢ N
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® -
But our Theorem 3.1 tells us that e X N , a contradictionm,
so N must be closed.
*
(11) By proposition 1.5 (iii) and (iv), N c Tod e and
% %
Tod e 1is an ideal of S . We only need to verify that Tod e
%
is prime. For this purpose, let us consider ab ¢ Tod e ,
'y A *
aXTode . Then it follows that abe ¢ N and ae X N . Since
'y * *
ae Y N we have ae X N' . Now,by our theorem 3.2, e acts
XX % * *
as a zero in N' . Hence (ae )e = e , that is, ae =e .
* * * s 'y
Thus abe ¢ N b(ae ) e N be ¢ N beTode . Thus Tod e

is indeed a prime ideal of S containing N .

Corollary 2. If e 1s any non-zero idempotent of a compact mob
®
S such that e X Tod e , then Tod e n C = ¢ , where C 1is the

*
component of e in S .

The following theorem concerns the existence of a local

zero in abelian compact mob with zero.

*
Theorem 3.3. Let S be a compact abelian N-mob. If N' =E ,
which is a connected subset of S , then S contains a local zero.
Furthermore, if S has a unit and N' 1{s arcwise, then N' {s

contratible.

The proof of this theorem is a consequence of the following.

Theorem 3.4. Let S be a compact connected mob (not necessarily

abelian) such that S = ES = SE and E {s an abelian submob of 8 .
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Then S has an idempotent e such that eE = Ee = e and the

%
minimal ideal M(S) = H(e) = eSe = eS = Se . Moreover H (S) 1is

*
isomorphic to H (eSe) .

(This theorem is due to Dr. C.S. Hoo.)

Proof : Let K(S) be the minimal ideal of S . Then by 1.22 of

(12}, we can find a primitive idempotent e in K(S) such that

eSe 1s a group and eSe = e K(S)e . Let l(e) be the maximal
subgroup of S containing e . Then one can easily verify that

H(e) = eSe = eK(S)e . By Theorem 1.2.11 of [21]), page 34, we therefore
have K(S) = SeS , which is a twvo-sided ideal of S . Hence by lemma
1.2.8 of [21] again, we have K(S) = (Se n E) eSe (eS n E) . We now

show that under the condition of the theorem, Se n E = eS5 n E = (e}

Suppose el ¢ Se n E. Then we can write el = xe for some
x ¢ S . Hence ee, = exe € eSe = H(e) . Since E 18 abelian,

ee, is an idempotent and hence ee, = e . Thus e = xe = (xe)e =

ee=ce. Similarly, we have eS n E = {e} . Thus we have established

that K(S) = eSe = H(e) . Since K(S) 1is closed, we have that

'y *
H (S) = H (eSe) . It remains for us to show that eE = Ee = {e}

Let e ¢ E . Since H(e) = K(S) 1is an {dcal, we have H(e)S < H(e) ,

SH(e) c H(e) . Thus ee, ¢ H(e) , e e ¢ H(e) . Since ee, and e

are idempotents we have ee, = ee=e. It only remains to show that
K(S) = Se = eS . In fact, let x be an element of K(S) . Then

x ¢ H(e) , ve have x = ex ¢ Sx . Thus H(e) = K(S) ¢ Sx . On the other

hand, Sx < SK(S) < K(S) . Thus H(e) = K(S) = Sx .
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Similarly, K(S) = xS for any x € K(S) . In fact, for any

x € K(S) , it is easily seen that we have xK(S) = K(S)x = K(S) =

Sx = xS .
We now prove theorem 3.3.

Since S 1is compact abelian N-mob, by theorem 2.4,
we have N' = E* is compact and non-empty. Therefore B* is a
compact submob of S . The hypothesis of Theorem 3.4 on N' are
satisfied. Hence we can find an idempotent e* such that e.N' =
N'e* = {e*} , that is, S has a local zero e* , and e. is the zero
of N' . Moreover, by Theorem 3.4, N' 1is acyclic. Now suppose §

*
has a unit u . Then clearly, u ¢ E . As N' has a unit and is

arcwise connected, we apply a result of Gottlieb and Rothman [8]. Recall
that they say that the semigroup N' satisfies * {if for each x

in N' , there is an clement y such that xy =y . Since N' has

a zero, we see that N' satisfies % ., Then by lemma 1 of (8], page

756, we have that N' 1is contractible.

Theorem 3.5. Let S (not nccessarily compact) have a zero and local
'y ' 'y
zero e . If N' = E {is connected, then Tod e = .g!* Tod a , in
A .
fact, Tod e = Tod a for any a ¢ E .

*
Proof : Since N' = E , by proposition 1.8, N is an ideal of 8.
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By proposition 1.5 (iv), Tod x is an ideal of S for every

x eSS . As e* € B* and E* is connected, applying theorem 3.2,
we can prove that Tod a < Tod e* for all a ¢ N' . Suppose if
possible, Tod a i Tod e* for all a € N' , then there exists

x ¢ Tod e* , x §Tod a . As Tod e* is an ideal of S , we have
xa ¢ Tod e* , which implies axe* ¢ N. But since x X Tod a ,
we have ax ¢ N' , which is connected and is the set of non-zero
idemoptents of S . So by theorem 3.2 again, e* is the zero

* ®
for N' . Thus axe = e € N , contradicts to the definition of

local zero.

X
Corollary : If S {is compact and E is connected, then N = Tod e

'Y
for all e ¢ B .

This is a consequence of our theorem 3.5 and theorem 1.10.

$4. An example

In this section, we construct an example to show that even
1f S is locally compact but not locally connected, some important
properties concerning the set N, which we have just discussed in

section 2 and section 3, are still valid.

*
Example 4.1. Let S be the subset of the plane Bz consisting

of line segments Ln , Joining the points (1,1) and (%.0) for all

®
ne1,2,... . Let S=5 - (1,1) .
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The topology of S 1s the usual topology inherited from the plane.
(1,1)

Figure II.

0,00 4,0 GO 1,0

For any point (xn,yn) on Ln ,» we have

X = A
n n

D |

1
+ (l-An) = An(;'-l) +1

(I-An) where 0 <A < 1.
Define the multiplication * on S as follows:
oy ) * Ly = 0 G, 1) oG - 4, 1) = (8 -141,0)
n’’n n'’m a'n ’ n nn ’ n (ln ’
where & = min (A ,A } and o = min {1-x_,1-)x}
n''=m m n
= min {yn,y-) .

Clearly, * {is associative and S 1is a semigroup.

To see that S 1is a mob, we have to verify that * 1{is a
continuous mapping from S x S into S . It suffices for us to
check that * {s coantinuous at (0,0) , for the continuity at other

points is clear.
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Suppose (xn,yn) + (0,0) , (xu,y.) -+ (x,y) . We have
to show that (xn,yn) * (xn,yn) -+ (0,0) * (x,y) = (0,0) . Suppose
xn.yn) * (xn,y-) = (a,b) . Since (xn,yn) + (0,0) . So for all
€ » 0 , there exists an integer No > % such that when n > No »
x<e€ ,y <€. S b=nin (y“,yn} <y, <€. Since the point
(a,b) lies on the line L, we have a <-% + € < 2¢. Hence
(xn.yn) * (xm,yn) = (0,0), which implies that * {is continuous at

(0,0) . So S 1is a mob. [Note that * is not continuous at (1.1)].

In this example, S {8 locally compact but not locally
connected. The point (1,0) is a local zero for S .
N = (0,0) u {(%,0)|n=2,3,...) , which is totally disconnected and
has no local zeros of S . N 1is an ldeal of S . The component of
(1,0) in S 1{is clearly disjoint from N . The topological zero
divisors of e* = (1,0) 18 the set S-L1 which is the maximal ideal

*
among the ideals (Tod ala ¢ N'} . Moreover, Tod e 1is a prime ideal

*
containing N . Since N' + E , we can see that S 18 not an N-mob.

Remark : Professor J.M. Day pointed out to me that the mob we constructed

in this example 18 topologically equivalent to the teeth of the comb

space with zero added.

Figure 1II .

|
|
|
|
|
| (open at the top).
|
|
0



CHAPTER III

On radicals in non-abelian mobs

In ring theory, in order to get information about the
structure theorems, the use of a radical is a basic technique. Many
kinds of radicals in rings has been introduced and studied in the
literature. We observe that some of these radicals which concern only
multiplicative properties can be studied in semigroups. In previous
chapters, we have studied some kinds of radicals in abelian mobs. The
purpose of the present chapter is to extend our studies on these
radicals to non-abelian mobs. We are mainly interested in studying the
Wedderburn radical and the Thierrin radical, as these two radicals are

closely related to what we have discussed in chapter I and chapter II.

In this chapter, we give a condition for the right annihilator
and the left annihilator of the Wedderburn radical W in a compact
mob to be contained in W . We show that under a special condition, the
celebrated Hopkin's theorem and Levitski's theorem in ring theory can
be transferred to compact N-mob without assuming d.c.c. or a.c.c.
on it ideals. The notion of e-invariant radical is introduced and we
show that in a compact divisible non-abelian mob, some of its e-invariant

radical can be a compact connected group.
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Finally, the concepts of compressed ideals and Thierrin radicals
from ring theory are transferred to mobs. If S is a compact
non-abelian mob satisfying Numakura's condition, then the Thierrin

radical of our open ideal A in S is w-reducible.

Throughout, a "mob" always means a Hausdorff topological
semigroup with zero. We use E to denote the set of all idempotents
of S, |c| to denote the cardinal number of the subset ¢ of §,

and K to denote the minimal ideal of the compact mob S .

Notations. Let A,B be subsets of a mob S .

A-B = the set theoretic complement of B in A .

J(A) = A uAS u SA u SAS , that is, the smallest ideal containing
A .

R(A) = A u AS , that is, the smallest right ideal containing A .

L(A) = A u SA, that is, the smallest left ideal containing A .

It is obvious that if S and A are compact, then J(A) , R(A) ,

L(A) are compact.

Jo(A) = the union of all ideals contained in A , that is, the
largest ideal contained in A . (if JO(A) + %)

lo(A) = the union of all right ideals contained in A , that is
the largest right idcal contained in A . (if Ro(A) $9)

Lo(A) = the union of all left fdeals contained in A , that is,

the largest left ideal contained in A (if Lo(A) + ) .
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Koch and Wallace [14], page 681, proved that: If § is

compact, then JO(A) , RO(A) and LO(A) are open if A 1is open.

For other terminology and notation, the reader is referred

to Chapter I, Chapter II and {21]}.

§l. Wedderburn radicals.

Let S be a mob with zero. An element x of S 1is
said to be algebraically nilpotent or A-nilpotent if there exists an
integer n > 1 such that x" = 0 . A non-zero ideal I of S 1is
said to be A-nil if it consists of only A-nilpotent elements. An
ideal I of S 1is said to be A-nilpotent if there exists an integer
n > 1 such that " =0 , this means that the set of all products
1112...1n of n elements of I 1is zero. We use W to denote the
set of all A-nilpotent elements of S . The maximal ideal contained
{in W 1is called the Wedderburn radical of S ; it is in fact the union
of all A-nil idcals of S . In this section, all ideals to be considered
are non-zero, thus under this assumption, a compact mob need not contain

a minimal ideal

Example 1.1. Let S = (a,b,c,d,0} and define the multiplication in

S by the following table:

.'a'db’'c d 0.
a acc al0o
b d 0Ob 0O
c a 0 c 00O
dd bbdoO
0.0 0000
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Associativity of the multiplication can be easily
verified to confirm that S 1is a mob. Now W = {0,b} , which is

the set of all A-nilpotent elements of S ,is not an ideal of S

Remark. In Chapter II , we proved that: The set of all nilpotent’
elements of a compact mob, in topological sense, 18 an ideal. This

example illustrates that the set of all A-nilpotent elements of a

non-abelfan compact mob need not be an ideal.

Proposition 1.2, Let S be an abstract semigroup, W be the
set of all A-nilpotent elements of S . If lS-Wl =1 ,and W 1is a

subsemigroup of S then W 1is the Wedderburn radical of S .

Proof : Since |S-W| = 1 , then we can write S-W = {c} $ 0 . Suppose
if possible, W 18 not a right ideal of S , then there exists an
element a € W such that a c ¢ W . Hence ac = ¢ , which implies
c = a" for all integer n >1 . As a ¢ W, then ak = 0 for some
integer k > 1 . This i{mplies that ¢ = 0 , a contradiction. Our
supposition is impossible, W 1is a right ideal of S . Similarly,

we can prove that W 1is a left ideal of S . W , is therefore, indeed

the Wedderburn radical of S .

By the method of N.H. McCoy (16], we can also prove that:

Every one-sided A-nil ideal of a mob S {8 contained in some A-nil

fdeal of S .
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Definition 1.3. Let A be a non-vacuous subset of a mob S .

The left annihilator 1(A) of A 1is the set of all x ¢ S with

xA = 0 . The right annihilator r(A) of A is the set of all

x € S with Ax = 0 . Clearly, 1(A) and r(A) are closed left
and right ideals of S respectively. Moreover, A c r(1(A)) and

A c 1(r(A)) and if ¢ ) Al c Az , then l(Al) > 1(A2) and r(Al) >
r(Az) .

Example 1.4. The following shows that the right annihilator (left

annihilator) of the set W need not to be contained in w.

Let S = {0} x [%,1] v [%,1] x {0} with usual topology
inherited from the plane. Define a multiplication * in S as

follows:
(xl,O) * (xz.O) = (max (%.xlle , 0)
Ly) 2,0 = G.0)

(';'.Yl) * (-;'.Yz) = %u min (ylsy2))

Where x ¢ [%,1], y ¢ [0,1] .
c=(1,1)

Figure I.
a= (3,0 T T The(1,0)

Then S with this multiplication is a mob with zero.

Clearly W = [a,b) , r(W) = [a,c) , r(W) XwW.
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We are now going to find out the conditions which will

give us that r(W) < W,

Lemma 1.5. Let S be a compact mob such that W 1is open. If I
is any one-sided ideal of S which is not contained in W , then I

contains a non-zero idempotent.

Proof : Let I be a right ideal which is not in W . Then we can
have x ¢ I-W . Consider the principal right ideal R(x) generated

by x . As S 1is compact and I 1is a right ideal, then we have

r(x) = {xn}:_l c R(x) = x u xS ¢ 1 . By the basic result of compact
mobs [21], page 22, there exists an idempotent e2 = e € I'(x) «c1.
Since x X W , then xk X W for all integers k > 1 . As W {is open,

we must have 0 $ e ¢ W . Our proof is completed.

Lemma 1.6. Let S be a compact mob such that the set W 1s open.
Then there is a closed left (right) ideal L minimum with respect to
not being contained in W . Moreover, L has the form L = Sf with

f a primitive idempotent contained in L .

Proof : Suppose that 1 1s any two-sided ideal which is not contained

in W , then by our lemma 1.5, we can find an idempotent

o4 el eecI-W. So SeSc SIS« I . SeS 1is a two-sided ideal

of S and {s non-A-nil since e Y\ W . Now, let T be the collection
of all closed non-A-nil ideal of S contained in [ and let

{Ta)a be the linear ordered subcollection of T .
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Then Io = Ia is non-empty since S 1is compact. Further,

Io is an ideal of S contained in I and Io § W since W |is
open and each Ta is compact, Ta X W. Thus {Tu}a has a lower
bound and Zorn's lemma assures that the existence of a minimal

closed non-A-nil ideal M in I . Applying K. Numakura's argument
in [18], page 409, we have M = SfS , with f a primitive idempotent
of S . Clearly, Sf 1is a closed left ideal and Sf ¥ W . We claim
that Sf 1is, in fact, the minimal such one. For let L be a
non-A-nil closed left ideal in Sf . Then by lemma 1.5, there exists
a non-zero idempotent gz =g eL-W 80 g e Sf implies gf = g ,
and hence (fg)2 = f(gf) g = fg . Thus fg 18 a non-zero idempotent

contained in fSf . Since f 1is primitive, we have fg = f . Thus

fg = f ¢ fL ¢ L , which implies L = Sf . Our proof is completed.

Theorem 1.7, Let S be a compact mob such that the set W 1is open.
If every one-sided non-A-nil ideals of S has a non-zero intersection

with W , then r(W) u 1(W) c W,

Proof : Suppose on the contrary, r(W) X W . By lemma 1.5, r(W)

has an idempotent ez =e¢e r(W) -W. By lemma 1,6, we can find a
minimal non-A-nil closed left ideal L = Sf < r(W) , vhere f 1is a
primitive idempotent of L . Since Lf < Sf =L and Lf 1is a minimal
closed non-A-nil left ideal of S , so by the minimality of L , we

have L = Lf . But we assume that L nW ¢ O . Denote LnW=
L to.
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Then we have L1 ¢ L = Lf . This implies that for every a ¢ L1 R

a=bf with b ¢ L . Hence af = (bf)f = bf = a , that is

Llf - L1 . On the other hand, we have L1 = Llf ¢ WL c We(W) =0,

a contradiction. Thus we proved that r(W) < W . Similarly, 1(W) c W .

So r(W) u L(W) c W.

It is well-known that in theory of rings, Hopkin and
Levitski proved the following celebrated theorem: If a ring R
satisfies the d.c.c. (or a.c.c.) on its one-sided ideals, then any
nil ideal of R 1is a nilpotent ideal of R . (Or in other words,

under the a.c.c. or d.c.c. on ideals any non-nilpotent ideal of R

is non-nil). In a compact mob S, a nil ideal of S need not be

nilpotent, this can be scen by the following:

Example 1.8. Let S be the unit interval with the usual multiplication.
Then I = [0,1) 1{s an nil ideal of S . (nil in topological sense,

sce chapter II) , however, 1 is not a nilpotent ideal, since ) Gl |

for all n .

Example 1.9. Let S = [%.1] with the usual topology, the multiplication
on S 1is defined by x * y = {%.xy} where xy 1is the usual
amultiplication. Then S i3 a mob and [%,1) ig an A-nil ideal of

S . But [%,l) 1s not A-nilpotent.

The following theorem shows that Hopkin's and Levitski's

results can be obtained in compact N-mobs under some special conditions.
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(For the definition and properties of N-mobs, see chapter II).

Theorem 1.10. Let S be a compact N-mob . If a non-nilpotent

jdeal I of S contains at least one closed non-nilpotent left

(right) ideal of S , then I is non-nil. (Ni1 and Nilpotent in

topological sense).

Proof : Let I be a non-nilpotent ideal of S . Let T be the
collection of all closed non-nilpotent left ideals of S contained

fn I . T is partially ordered by inclusion and is non-empty by

our assumption on I . Suppose {Ta)a is a linearly ordered
subcollection of T . Then n Ta 18 non-empty since S 1is conpact.
So 8 Ta 1s a closed non-empty ideal on [ . We claim that g Tu

is non-nilpotent. For if not, then N Ta is nilpotent and hence is
nil. So a Ta c N, where N 1is the set of all nilpotent elements

of S . (in topological sense). This implies that the intersection of
finitely many mcmbers of (Tu}Cl is contained in N because N ({is
open and Ta's are compact. Since {Ta)a is a > chain, we have
Ta c N for some a . But since T° is a closed subset of S , then
by K.Numakura [20], page 675, Tu is nilpotent. This contradiction
establishes our claim. Thus :Tu}a has a lower bound and Zorn's leoma
assures the existcnce of a minimal closed non-nilpotent left ideal,
say Ll fin 1 . We have Li < L1 , but since L1 is non-nfilpotent,

we have Li - l.1 by the minimality of L1 .
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Let U be the family of all left ideals J in S such that

LIJ $0 and J < L1 . N 18 non-empty since L1 ¢ U. Since

1s compact, applying the above arguments and Zorn's lemma, we can
prove that N has a minimal closed left ideal of S , say J1 such

that L,J, $0. Let 04 xeJ besuchthat L x $0.

1
L,x 1is a closed left ideal of S . L (L x) = L2x = L x $+ 0 and
1 11 1 1
le c LlJ c L1 . Hence le e U . Moreover, le - J1 since
le < Jl and J1 is minimal. Now let a ¢ L1 be such that ax = x .

then for any integer n > 1 , we have a"x = x , which implies that

a" + 0. As a ¢ L1 c I, 1 {is therefore non-nil. Our proof is

completed.

Corollary 1. The Wedderburn radical of a finite simigroup is

A-nilpotent.

Corollary 2. 1f the Wedderburn radical of a mob S 1is A-nilpotent,

then every non-zero minimal ideal of S is contained in r(W) n 1(W).

Following R. Baer {1], the radical ideal of an abstract

semigroup is defined as follows:

Definition 1.11, A subset Q of an abstract semigroup S 1is a

radical ideal 1f (1) Q 1is an ideal of S
(2)
(3)

is an A-nil ideal of S

has no non-zero A-nilpotent ideals.
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If Q 1s a radical ideal of S , then the structure of
the abstract quotient semigroup % has been studied by A.H.
Clifford [3]. We observe that the following theorems in ring theory

which are due to R.Baer [l] can also be transferred to abstract

semigroups.

Theorem 1.12. (Baer] The Wedderburn radical is a radical ideal

of an abstract semigroup S .

Proof : See (1]

A semigroup S 1s said to satisfy Clifford's condition:
1f every two-sided ideal of S contains at least one non-zero left
minimal ideal and at least one non-zero right minimal ideal of 8 .

[3), page 840.

Theorea 1.13. If Q is a radical ideal of an abstract § such

that % satisfies Clifford's condition, then Q 1is the Wedderburn

radical of S .

(The proof of this theorem in ring theory can be found in
(1) and elsewhere. Because this theorem gives a characterization of

radical ideals in mobs, we provide a proof here for the sake of

completeness.)

Proof : We only need to show that Q 1is the union of all A-nfl

ideals of S .
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Suppose on the contrary, J 1is an A-nil ideal in S such that
JXQ. Then QuJ is an fdeal properly containing J . Since
% satisfies the Clifford's condition, hence by Clifford (3], page
840, there exists a non-zero minimal ideal M of S such that

Q z McQulJcS . Hence we have 8 $ % < Q%i c % , where 6 is

the zero element of the quotient semigroup S . As J is A-nil,

Q
9%1 is A-nil which implies % is A-nil . Thus % , being a
non~zero minimal ideal of % , we have either (%)2 = 6 or (%)2 =
M M M2 M
2) . Since = 1s A-nil, we cannot have = = —- , So we must
have (%)2 = 0 . But this case is excluded, since Q 1is a radical

ideal of S , has no non-zero A-nilpotent ideals of S . Hence

oln

Q contains all A-nil {deals of S and must contain W . On the

other hand, as Q 1is a radical ideal of S , it is contained in W.

Thus we conclude that Q = W after all.

It is well known that a compact O0-simple mob S 1is the
union of all O-minimal left (right) fdeals of S [21), page 63. We
shall prove that the same result holds in dual mob. Stefan Schwarz
(23] called a mob S 4 0 dual if for every left ideal L of S , we
have 1(r(L)) = L and for every right ideal R of S , we have
r(1(R)) = R . Examples of discrete dual mobs are given in his paper
{23]. MHe showed that: For every left ideal L $ S and right ideal
R * S , we have 1(R) + 0 and r(L) + 0 and if #» {8 an one-sided

{deal of S , then 1(A) and r(A) are two-sided.
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Moreover, let {Avlveh) be a collection of subsets of S ,

then l(vghAv) = vgh l(Av) ’ r(ng Av) - VQA r(Av) (23).

Theorem 1.12. Let S be a dual mob. If the intersection of all

maximal ideals of S 1is zero, them S 1is the union of all minimal

left (right) ideals of S .

Proof : Let 9 = u all minimal left ideals of S . 0 {itself is

a left {deal of S . If Q¢ S, then by Schwarz's result mentioned
above, r(2) $ 0 . Hence there exists x = 0 such that ax =0 .
Then x belongs to all right annihilaters of all the minimal left
{deals of S . That is, x belongs to the intersection of all
maximal two-sided ideals of S . By our assumption, we have x =0 ,

which 18 a contradlction.

§2. The e-invariant radicals.

A.D. Wallace [3]) has introduced the concepts of relative
{deals in a mob S . He said that a subset A c S 1is a left (right;
two-sided) T-ideal of S {f TA c A.(AT < A, TAT c A) , where T
i{s a closed submob of S . In this section, we are interested in a
particular case, that is when T 1is only an idempotent e of S .
We siiall consider the set @ = {x ¢ S|lex = x} and call @ be the

e-invariant radical of S . In fact, @ 1is the union of all minimal left

e-ideals of S .
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Recall that a mob S 1is left O-simple if S does
not contain a non-zero proper left ideal of S . A necessary and
sufficient condition for a mob S to be left O-simple 1is that

Sx = S for all non-zero x of § . [21].

Proposition 2.1. Any non-zero element of a compact left O-simple

mob S 1is in some e-invariant radical of S where e2 =e + 0

Proof : Given any non-zero element a € S , we can define

Q = {x € S|xa=a} . Q 1is non-empty since S 1is left O-simple. S
is a compact mob, so clearly , Q 1is a compact submob of S . Hence,
Q contains an idempotent e of S. (21]), page 22. We claim that

e $ 0 for otherwise a = 0. Therefore there exists an idempotent

e $ 0 such that ea = a . That is, any non-zero element a of 3 1is

in @ . for some 0+e-ezes.

Proposition 2.2. Let S be a compact f-mob containing a maximal

proper right ideal R of S . If S 1is either connected or |S-R| >1,

then there is an e-invariant radical of S which is equal to S .

Proof : Let a ¢ S-R. Consider the principal right ideal generated by
a. Since a X R and S is an Q-mob , then we have R ; aSva.
Since R is a maximal proper right ideal contained in S , so
aSuvua=S. Hence efther aS =R or aS =S5 . If S 1is connected,

then aS 1is connected, so S = aS u a {if and only if a ¢ aS and

hence if aS = S .
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1t |S—R|>| , then a$ 4R, s as=S5. In both cases, we
must have aS = S . Hence a“s =S for all n > 1. Since S

is compact, consequently, we have eS = § with e2 = e ef(a). In

other words, ©= S .

It is easily seen that if S 1is a mob with zero, then
all e-invariant radicals of S has non-empty intersection. However,

we also have the following:

Proposition 2.3. Let S be a compact mob without zero. I1f E is

abelian, then the e-invariant radicals of S have non-empty

{ntersection.

Proof : This result follows easily from the structure of minimal ideal

of a compact mob. For let K be the minimal ideal of S , then K
is a subgroup of S with {dentity e , each fSf 1is a subgroup and
fntersects with K , so e € £Sf for each idempotent f , hence

e = fea=ef . Hence K= eke ¢ fekef ¢ fSf for all £2 = £f . This

means that f28®+ ¢ .

Remark. If E 1is non-abelian, then the above statement is not
true. For example, let S = [0,% x [0,*) with the usual topology
{nherited from the plane. Define the multiplication * {n S by

® -
(xl.yl) (xz.yz) (xlxz,x1y2+yl) . S 1is casily verified to be a

non-abelian mob without zero. E 1is clearly non-abelian.
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The only idempotents of S are e=(0,0) , f = (0,1) and

enf={e}ln (f)=9.

(0,1)% Figure II.

0,07 G0

Theorem 2.4. Let S be a compact mob and T be a closed submob
of S. If J 1is a maximal T-ideal of S such that [S-J| > 1
and has empty intersection with all e-invariant radicals of S ,

with e ¢ T , then T must be contained in J .

Proof : Let us denote S-J=A . Since J is a maximal T-ideal

of S, we have S=A v J . Hence TST = T(A v J)T = TAT v TJT <

TAT v J . We claim that TAT < J for otherwise, TAT X J implies

TAT nA$ 6. As TAT is a T-ideal of S , hence A cTAT = § .

Then, for any a ¢ A , we have a = clatz = t: a t; for all integer
n>1. By awell known result of Schwarz (24), a = e a t' where

°2 mee€¢T ,t'eT. Thus ea=e(eat')=a (%) . Byour
hypothesis, A n@®=¢ for all e ¢ T . Consequently, for any a e A,
we have ca ¢4 a , which contradicts (*) . Hlence we must have TAT ¢ J

and our claim is established. So TST ¢ J . By Bednarek and

Wallace (2], page 14, we obtain that T J .

If S {is a compact connected abelian mob and e 1is a
primitive idempotent of S , then the e-invariant radical os S s

the set eSe , which is a compact connected group by the Schutzenberger

theorena.
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But in general, 1f S is not abelian, the e-invariant radical
of S 1is not necessarily a compact connected group. For example,
lec S = (0,0) v {1} x [0,1] with usual topology. The

multiplication * 1in S defined by

(0,0) * (0,0) = (0,0)
(1,x) * (1,y) = (1,xy)
(0,0) * (1,x) = (1,0)
(1,x) * (0,0) = (0,0) for all x,y € [0,1)
'(1,1)
Figure II1I,

(0,0)
(1,0)
Then S 1is a compact non-abelian mob. Take e = (1,1) , then

ﬁp- S , which 1is not a compact conrected group.

However, in a compact divisible non-abelian mob, it 1is
possible for the e-invariant radical to be a compact connected
group. A mob S is said to be divisible if for each y € 8 ,
and each integer n , S contains an element x such that xn-y .
That is to say, every element in the semigroup has an nth root

in the mob for all 1ﬁteger n2>1.

Theorem 2.5. Let S be a compact divisible mob without zero.
Let E be abelian. If e 1is a primitive idempotent of S , then
the corresponding e-invariant radical of S 1is a compact connected

group.
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Before proving this theorem, we need the following:

Lemma 2.6. Let S be a compact mob without zero and let E be
abelian. If e 1is a primitive idempotent of S , then the
corresponding e-invariant radical of S 1is a compact group. (Part
of this lemma is known from the structure of minimal ideal of a

compact mbo, see [21], however, we prove this in detail for the sake

of completeness)

Proof : For any X ¢ ® , the set ©x 18 compact. Take

t «e®x, ¢, ¢ ©x , then we have t,t, ¢§ x®Ox = (Dx ) xc@x
since x ¢ ® and @ 1is a submob of S . This shows that ©x 1is

a compact submob of ©® . Hence there exists at least one idempotent
element of S in the compact submob ©®x , say, fz =fe@xc®.
We claim that e = f . Por f € @x <© implies ef = f. As E

is abelian, hence ef = fe = f . Since we suppose that S 1is a

mob without zero and e 1is primitive, so we must have e=f . Thus for
any x ¢®, ©x contains the idempotent e and hence, there is

an clement y € @ such that yx = e . That is, y 1is a left inverse
of x in ® . Consequently @) is an abstract group and is a

compact space. By the continuity of D*x9©*®, (x,y) »xy , implies
the mapping of the group (@ into fitself, x * x_l is continuous.
Hence (@ 1s a compact topological group. In fact, e 1is the maximal

subgroup of S containing the fidempotent e .
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We are now ready for the proof of our theorem 2.5.
Pirst of all, we point out that the group (¢) in a compact divisible
mob S 1s a divisible group. This is the well-known result due to
GCelbaum, Kalisch and Olmstead [7]. Recently, J. Mycielski (17] proved
that a compact topological group is connected if and only if it is
divisible. Applying this result of Mycielski, we obtain that e

is a compact connected group.

Theorem 2.7. Any compact connected group can be embedded into a
compact divisible 0-simple mob. Any compact divisible O-simple

mob is the union of a zero group and a number of homeomorphic copies

of compact connected groups.

Proof : Let G be a compact connected group. By mycielski (17},
G 1is divisible. Let t X G and form S = G u {t} . Define a

multiplication * in S as follows:

x 8y =xy , xy 1is the group multiplication in
G , for all x,y in G
t*te=t

t*ax=x®t==¢.

Then S 1is a compact mob with t acting as a zero element of S .
Clearly S 1is divisible and every {deal of S contains ¢t . To prove
that S is O-simple, we let I be an ideal of s differeant from

zero.
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Then we have 1 nG 4 ¢ . Take x ¢ I nG , 80 G =GCx cGL cI.
As t is the only element of S not in G and t e 1. We

have I =G u {(t}) =S . Hence S is a compact O-simple mob.

Conversely, let S be a compact O-simple mob. Then (0}
is an isolated point of S . (21], page 69. S-{0} is a compact
simple mob, it is therefore the union of all compact subgroups of
S , that is, S - (0} = v {H(e)|e ¢ E - {0} , H(e) = eSe} . (21],
page 30. It is well known that if S is a compact O-simple mob,
and let e , f be non-zero idempotents of S , then the maximal
subgroups H(e) and H(f) containing e and f respectively are
iseomorphic compact groups. [21], page 65. Hence § is the union
of a zero group and a number of homeomorphic copies of compact groups.
Since we assume that S is a compact divisible mob, so by Gelbaum,
Kalisch and Olmstead [7), each H(e) 1is divisible and, by Myclieski

(17]), cach ll(e) 1is a compact connected group. Our proof is completed.

$3. Compressed ideals and Thierrin radicals.

Recall that an ideal P of a mob S 1is called completely
prime, {f ab ¢ P implies that a ¢ P or b € P . An ideal A of
S {8 called completely semi-prime if az € A implies a ¢ A . Ve

shall generalize these notions.

Definition 3.1. An ideal A of a mob S {is said to be strongly

2 2
compressed 1if a az ¢ A implies 01‘2 € A , where nl,az are two

distinct elcments of S .



Por instance, let S = {0,a,b,c,d,e} a multiplication table

as follows:

s

_.fo_a. le_d_le
0ofo o 0 0 0 0|
a 0 0 0 d 0 b}
b 0 0,00 00
c 0 e 0 0 b 0
d 0b OO0 0O
e0 0 0b 0 O
e Wi TR UPSY O

S can be checked to verify that S with this multiplication is
a semigroup. Let A = {0,a,d} , then A is an ideal of S but not
compressed, for c2d2 =0e¢A,but cd=b¥%A. The ideal

B= (0,a,b,d,e} 1is a strongly compressed ideal of S .

Proposition 3.2. Let S be a compact connected mob such that

82 + S , then S 1is the union of strongly compressed ideals of 8,

each of which is dense in 8.

Proof : Since S % s2 , then we can take an element a ¢ S , which
is not in S2 . Clearly, S-a 1is a maximal proper ideal of S .
(9], page 503. Suppose if possible, ai a§ € S-a but aa, X S-a
where a, + a, » then aa, = a . But this means that a ¢ S2 .

which is false. We therefore obtain that S-a 1is a strongly compressed

ideal of S .
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We claim that |S-82| > 2, since 52 is compact, hence closed
and S 1is connected, hence S--S2 has to have more than one element.
So there are at least two distinct elements a,b in S-S2

. Hence

S = (S-a) ua c (S-a) v (S-b) . Thus S = aieg_SZ (S-al) . As
S 1is compact and connected, each of these ideals is dense in S.

(14]. Our proof is completed.

Pollowing G. Thierrin [26], we shall define a compressed
fdeal in amob S . An ideal A of S |is called compressed if
and only {if ai ag “es a: e A for any n implies aa, ... a € A .
In a compressed ideal, we do not require that the an's are all
distinct. Hence a compressed ideal is strongly compressed, but the
converse is not true. The concepts of compressed ideal is, in fact, a
generalization of the completely semi-prime ideal. Clearly, every
completely prime ideal of a mob S is compressed, and every compressed

fdeal of S 1is completely semi-prime. K. Iséki [12] noted that

in semi-rings: If an ideal A is completely prime, then aa cecd_ €A

L ln 2
fmplies a, ...a ¢ A for any positive integers ll'lZ’ e ln
o4 'a
and a, a, ...a, ¢ A implies aja, ...a, e A. It i3 easy to

sce that the same statcment holds for mobs. An example of compressed

ideal in a mob S 1is given below:

Example 3.3. Let S = (0,1] x [0,~) with usual topology finherited

from the plane.



- 82 -

The multiplication * in S s defined by (xl,yl) bl (xz,yz) =

(xlxz,x1y2+y1) . Then S is a non-abelian mob and A = {0} x [0,=)

is a compressed ideal of S .

Theorem 3.4. Let J be a maximal proper ideal of a compact mob S .
Then J 1is a compressed ideal of S {if and only i{f J is a

completely prime idcal of S .

Proof : If J 1is compressed ideal, then J 1is completely semi-prime
ideal. Hence a € S-J implies az € S-J . By Theorem 2.2.7 of [21],
page 66, we have J 1is a completely prime ideal of S . Conversely,

if J 1s a completely prime ideal of S, then it is clear that J 1is

compressed.

Definition 3.5. Let A be an ideal of S . The compressed ideal

generated by A is called the Thierrin radical of A . In other words,

the Thierrin radical of A 1is the minimal compressed ideal of S

containing the ideal A .

GCiven an ideal A of S . The Thierrin radical of A can
be constructed in the following manner: We call an element x a

t-element for A {f x = x X,...X such that xz xz ces xz e A for
172 n 1 72

some n >1 . Let us denote by Tl(A) the set of all t-elements for

A , and let Tl(A) - J(TI(A)) , that is, the principal ideal generated

by the set Tl(A) .
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Write Tz(A) = J(Tl(Tl(A)) . By induction, we have
Tn(A) = J(Tl(Tn_l(A)) . Then each Tn(A) ig an ideal of S and
*
Tn(A) c Tn+1(A) . The Thierrin radical T (A) of A 1is the union
* o
of all sets Tn(A) (n=1,2,...) , that is, T (A) = a1 Tn(A) .

It is clear that an ideal A of S |1is compressed if and only 1if

ftgself is the Thierrin radical of A .

*
Proposition 3.6 (Iséki). The Thierrin radical T (A) of an ideal

A of amob S 1is the intersection of all compressed ideals of S

containing A .

(Iséki proved this statement in semi-rings (12], it is trivial

to see that the same results holds for mobs)

Proposition 3.7. The algebraic radical of an ideal A in a mob S

{s contained in the Thierrin radical of A . (For the definition of

algebraic radical, see chapter I)

Proof : Let a be a clement in the algebraic radical of A . Then
there exists an integer n > 1 such that ak € Ac T*(A) . Since
T.(A) is compressed, we have a ¢ T‘(A) . Hence the algebraic radical
of A 1is contained in T.(A) . If S 1is abelian, the algebralc

radical and the Thierrin radical coincides.

The following conditfon is called Numakura's condition ia

a modb S:
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For e,f E, JO(S-e) = JO(S—f) implies that Ro(s—e) = RO(S-E)

and Lo(s-e) = Lo(S-f) . [20], page 678.

Theorem 3.8. Let S be a non-abelian compact mob. If S satisfies

Numakura's condition, then the Thierrin radical of an open ideal A

%
of S is w-reducible, that is, T (A) 1is the intersection of all

completely open prime {deals of S containing A .

Proof : Denote the open completely prime ideals of S containing

A by Pa'a . Since every completely prime ideal of S 1is compressed
and T.(A) , the Thierrin radical of A , is the smallest compressed
ideal containing A , then we have T*(A) < QPQ . Suppose if possible,
T.(A) i 3?0 , then by the argument of lemma 3.3 in our chapter I, we
can prove that there exists an idempotent e2-e € gPa , but e X A.
As A 1is an ideal, we have JO(S—e) > A . By Numakura (20}, JO(S—e)

{s an open prime ideal of S . As we assume that § satisfies the

Numakura's condition, hence by Theorem 5 of (20), page 679, the prime
ideal Jo(S-e) {s in fact completely prime. So we conclude that
gPu c Jo(s-e) , which implies e X gPa . This contradiction prove that

t *
T (A) = SPG . So T (A) 1is, in fact, w-reducible.

Corollary 1. Under the given assumption, our Thierrin radical is in

fact the algebraic radical of A. (see chapter 1].
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Corollary 2. Let S be a compact mob satisfying Numakura's
condition and let C be a compressed ideal of S containing an
open ideal A , then C 1s not the Thierrin radical of A if

and only if C contains an idempotent not in A .

Proof : If C is not T*(A) , then applying the result of lemma

3.3 of chapter I, we can find an idempotent e2 = e€ C-A . Conversely,
suppose that there is an idempotent e2 = e € C~-A , then by our

theorem, we have T*(A) ‘ZJO(S-e) . Since el JO(S-e) , we conclude

* *
that e XT (A) . Consequently C 4 T (A) .

Definition 3.9. A subset M of amob S is said to be M-system

{f for a,be M , there exists x¢€ S such that axb € M . By

Numakura [20], an ideal P of S is prime if and only if S-P 1is

an M-system of S .

In a non-abelian mob, a prime ideal of S 1is not necessarily
a completely semi-prime {deal. Por example, let S = [el,ez,a,b.o}

with multiplication table

cleje 2R 2

_’l_el ‘0 .0 \b :0

e, 0 ;ez a 30 .0

a a 0 O0'e 0 .
; 2

b O 'b e 00

0’0o 0o 00 !
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Then (0} 1is a prime ideal of S . But b2 =0, by {0}.
However, the following theorem, which is essentially due to Iséki

[12], proved that, under some very special condition, a prime ideal

of S can be completely semi-prime.

Theorem 3.10. Let A be a compressed ideal of a mob S . If P

is a minimal prime ideal of S containing A, then P 1is a

completely semi-prime ideal of S .

Proof : Suppose that S-P 1s not empty. Then S-P is an M-systea

which 18 the maximal M-system which does not meet A . Let C(P)

"™ "k

be the set of all elements of a = X1Th Xy oeee Xy where

X Xy oo x, € S-P , LT PYRRERE »m, are all positive integers and

k=1,2,... . Clearly, S-P < C(P) . To prove that C(P) 1is an
n, oy n,
M-system, let b = B PR Yy € c(P) and Y Y ot Yy € S-P .

As S-P 1is an Ho-system, there is an element t of S such that

(xlx2 ces xk) t (yly2 ce yl) ¢ S-P . Therefore, by the definition of
m, m, m n, 0, n

1 L
c(P) , we can have X, Xyt e X toy, Yy e Yy e C(P) . This

shows that axb € C(P) and C(P) 1is an M-system. We shall prove

that C(P) n A = ¢ . Suppose on the contrary, C(P) nA 4 ¢, then there

‘1 t2 a
{s an clement c € A n C(P) . Hence C = 2,0z, ..o z, with
tlzz cee B € S-P . Since A 1is compressed, we have z,z, ... zn €A .

That is, A n (S-P) + 4 which is a contradiction. Thus we must have
C(P) nA=9¢.

o Sk A a0
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This implies that C(P) c S-P . Hence C(P) = S-P .

xz ¢ P . Suppose that x X P , then x ¢ S-P .

Now let

But by the

definition of C(P) , we have xz ¢ C(P) = S-P , which is false.

Therefore x ¢ P , P 1is a completely semi-prime ideal of 8.
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